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Y O U R  T O U R  G U I D E S

This book is the work of many hands and has been guided by many minds.
Whether you’re a computer novice ora seasoned expert, these contributors
will help you make the most of your SCSI hardware and supply you with a
wealth of practical know-how and reference material.

Gary Field

Gary Field has a Computer Engineering degree from Northeastern University
and has worked with device level software since 1978. In 1985, while at Wang
Laboratories, he became involved with SCSI on MSDOS platforms, and later
led the development of an ANSI CAM SCSI subsystem for the support of 
optical disks on several UNIX platforms. He has also maintained the Usenet
comp.periphs.scsi FAQ list since 1994. In 1996 Gary joined Digital Equipment
Corp. (now Compaq Computer Corp.) as a principal software engineer in
their Tru64 UNIX device driver development group. His “SCSI Info Central”
(http://www.scsifaq.org/) web site is a popular oasis for weary SCSI explorers.
In his home life, he is involved in scouting, and in spare moments he enjoys
photography, electronic and computer tinkering, home automation and
astronomy, as well as camping, boating, and fishing with his wife and son.

John Lohmeyer 

John is a principal engineer with LSI Logic in Colorado Springs, Colorado.
He began his involvement with SCSI when it was still called SASI in the sumer
of 1981. Since then, John has contributed to the SCSI effort as a member of
the design team on the first SCSI chip (NCR 5385), technical editor of SCSI-1,
and chair of the T10 Technical Committee, which is responsible for the ANSI
SCSI standards. He also maintains the T10 web site (www.t10.org) to disseminate
information about SCSI and other I/O interface standards.

Gerhard Islinger

Gerhard works for Siemens in Munich, Germany as a security consultant. While
his first experiences with computers were far before SCSI, since 1982 he has
done technical and user support in many fields, most of them associated with
high-speed interfaces. Recently he got sidetracked into firewalls and network
security issues, but SCSI and related interfaces still are a main part of his work
and hobby time.
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Stefan Groll

Stefan was born in Munich, Germany. After finishing school and a long stint in
sports, he began work in freelance software development with a security services
company. In 1986 he began his study of electronics. While developing diagnos-
tic systems and self-test software, he acquired PC and UNIX know-how, which
resulted in his troubleshooting security products for these environments. After
some time in the publishing business developing electronic books and retrieval
systems, he returned to security management, where he currently works in a mixed
mainframe and workstation environment.

Peter Ridge

Peter, who has a degree in Electrical Engineering, has worked in a variety 
of areas of computer technology, including multimedia, speech recognition,
speech synthesis, artificial intelligence, intelligent agents, SCSI, telephony, and
interactive entertainment during his fourteen years in the PC industry. He is
currently the General Manager and Vice President of Product Development at
Game Commander Interactive (www.gamecommander.com), where he designed
the award-winning Game Commander voice control software for games. He has
contributed to several books about computer and multimedia hardware and
software including The Book of SCSI: A Guide for Adventurers (No Starch Press),
Sound Blaster: The Official Book (Osborne/McGraw-Hill), and The Business Week
Guide to Multimedia Presentations (Osborne/McGraw-Hill).
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F O R E W O R D

SCSI amazes me.  Each time I begin to think SCSI cannot evolve further, it does.
The standards committees are now working on SPI-4, the fourth generation of
the physical layer of SCSI-3.  This is the eighth generation of parallel SCSI.  And
still there is no end in sight!

No wonder there is now a second edition of The Book of SCSI. All the great
stuff from the first edition is still here, along with numerous enhancements.  I
know because I naively agreed to be the technical reviewer of this second edition.
I thought it would be a piece of cake; how much could they change? A great
deal. I enjoyed every minute spent reviewing this book. Even when those min-
utes turned into hours and days, I got to read it first!

This book continues to be a practical book aimed at helping SCSI’s real
users. It is chock-full of helpful hints on making SCSI work for you. You’ll
find arcane SCSI concepts explained simply and clearly. Whether you already
have SCSI on your PC or are contemplating adding it, this book is definitely
worth reading.

You will find discussions on terminating your SCSI bus (not with a gun);
setting SCSI IDs; choosing cables; choosing controller card features; setting
up I/O addresses, IRQs, and DMA channels; installing device drivers; and more.
Modern operating systems support SCSI better than ever before, but they do
not do everything.  You still need to understand these concepts to get the most
out of your SCSI investment.

As the chair of the T10 Technical Committee on SCSI, I am occasionally
told that standards committees are slow and plodding organizations. We often
are — for good reason. We are required to achieve consensus on highly technical
concepts and our only resources are volunteers who work for competing com-
panies. Some might think it is amazing that we accomplish anything at all!  In
spite of the obstacles, much is achieved (often on evenings and weekends) by
some dedicated individuals who want to have an impact on the industry. 

The fact is that most users cannot afford to attend standards committee
meetings and are thus underrepresented in the SCSI standards development
process. If you think your needs are not being met, there are ways you can have
input without appearing at meetings or spending a lot of money. All standards
go through a public review process, which is your formal chance to comment
on pending standards. You can find out about these public review periods by
checking the NCITS web site (www.ncits.org).  The public review comment peri-
ods are only two months long, so you’ll need to check monthly.

http://www.nostarch.com/scsi2_redirect.htm?xxiva


You’ll probably get even better results if you lurk on the T10 web site
(www.t10.org) and join the T10 Reflector (it’s free!).  To join, send an email
to majordomo@t10.org and include the following line in the message body:

subscribe t10

If you are crazy enough to want to join the T10 Technical Committee, I urge
you to visit the T10 Web site or contact NCITS (our parent organization) in
Washington, DC by email at ncits@itic.org or by voice at 202-737-8888.

John Lohmeyer
Chair T10 Technical Committee
LSI Logic Corp.
<lohmeyer@t10.org>

http://www.nostarch.com/scsi2_redirect.htm?xxva


I N T R O D U C T I O N

This is the second edition of this book. Time marches to a rapid beat in the
computer industry and to keep up you need to constantly adapt to the rapidly
improving computing environment. This book is an effort to provide an up to
date guide for those who desire to keep their computer performance in line with
the state of the art. The subtitle: “I/O for the New Millennium” is intended to
be more than a catch phrase. I truly believe that SCSI has the necessary ingre-
dients to be the leading storage architecture well into the coming century.

Most of the information presented is generic enough that it should apply
to any type of computer (Macintosh, PC, or UNIX workstation), however, where
system specific information is required, the details are aimed at the IBM PC
clone platform running Microsoft Windows 95/98 or NT 4.0. This detailed infor-
mation is mostly in the area of installing SCSI host adapter cards and loading
device drivers. Most aspects of SCSI relating to the connection of peripheral
devices are the same regardless of platform type and so would be helpful to
Macintosh and UNIX users as well.

The central theme is to provide readers with the practical information
necessary to purchase appropriate SCSI hardware, and then implement SCSI
I/O in their computers. However, it’s not just a cookbook. There’s enough the-
ory and variety of information to give readers a depth of understanding, not
just get them into trouble.

The chapters are presented in an order that is appropriate for a reader who
is new to SCSI, but if you’re already familiar with SCSI you’ll be able to easily
find the updated information you’re looking for. Here’s what we’ve got in store
for you:

Chapter 1: Welcome to SCSI: Introduces the readers to what SCSI is all about
and why they might want to use it.

Chapter 1.5: A Cornucopia of SCSI Devices: A glimpse at the variety of device
types that SCSI has to offer and a little background on each.

Chapter 2: A Look at SCSI-3: An update on the latest SCSI standards as told by
John Lohmeyer, who has been there since the beginning.

Chapter 3: SCSI Anatomy: Describes the basic concepts and terminology of
SCSI to help ready you for what follows.

Chapter 4: Adding SCSI to Your PC: Explains what you need to get your sys-
tem ready for SCSI devices and how to install it.

Chapter 5: How to Connect Your SCSI Hardware: Describes in detail how to
connect a collection of SCSI devices to your system.

Chapter 6: Troubleshooting Your SCSI Installation: OK, so you didn’t get it all
right from the beginning. Now you’ll learn a few things.



Chapter 7: How the Bus Works: For the curious, we explain how all the little
bits do their thing to get the job done.

Chapter 8: Understanding Device Drivers: What a device driver really is and
how it can affect your system.

Chapter 9: Performance Tuning Your SCSI Subsystem: How to squeak all the
performance you can out of your SCSI hardware.

Chapter 10: RAID: Redundant Array of Independent Disks: What RAID is, and
why you might care.

Chapter 11: A Profile of ASPI Programming: This chapter provides the com-
plete ASPI specification, which gives all the details you would need to
write a SCSI application program for MSDOS, Windows 95/98/NT,
OS/2, or Netware. Such a program is the subject of Appendix E.

Chapter 12: Future of the SCSI Industry: My view of storage industry trends
and what’s on the horizon.

Appendix A: All-Platform Technical Reference: This is a comprehensive collec-
tion of diagrams and pinouts for all the SCSI connectors as well as a guide
to solving SCSI problems that can crop up in almost any SCSI based system.

Appendix B: PC Technical Reference: Tables of PC specific information that are
useful when solving SCSI problems that are specific to the PC architecture.

Appendix C: A Look at SCSI Test Equipment: While aimed at professionals who
need to solve tough system integration problems, this chapter might interest
any technically minded reader as well.

Appendix D: ATA/IDE versus SCSI: The battle rages on between price and 
performance.

Appendix E: A Small ASPI Demo Application written using Delphi/Pascal.
The source code referred to here is contained on the CD-ROM.

But wait … there’s more!
The CD-ROM includes an easy to use HTML index which provides hot links

to the CD contents and links to other SCSI related stuff out on the Internet.
(Just point your browser (either Netscape or IE) to:

drive:\BOS_CDtour.html)

• ASPI source code examples

• ASPI tar utility (example tape backup utility)

• SCSIDRVR.C

• SCSI test programs and benchmarks



• SCSIReset

• Some useful SCSI utilities courtesy of Western Digital

• ASPIMenu, SCSIBench, SCSIScan etc.

• The comp.periphs.scsi FAQ and SCSI Quick Start Guide.

• SCSI: A Game With Many Rules and No Rule Book: A Light hearted look
at hooking up SCSI devices and getting them to work in your system.

• Linux SCSI HowTo

• Linux SCSI Programming HowTo

• A collection of some of the most useful links to SCSI information on
the Web

And now to properly set the tone for the reader:

ODE to SCSI

You know that SCSI is the greatest.
Its performance can’t be beat.
For any storage situation,
Its bus bandwidth’s really neat.
Though the cables can get gnarly,
And termination’s such a treat,
The flexibility is worth it,
And the multitasking’s sweet.
When you need to add a scanner.
To your disk and CD-ROM,
You just plug it on the bus,
(Which can only be so long).
Then you load a device driver,
And scan and print with glee,
Without using another resource,
Try that with IDE!

Well, that’s as close an engineer gets to poetry. And now, let’s get to the subject
at hand!

Gary Field



1
W E L C O M E  T O  S C S I

We begin this adventure by getting the
lay of the land, so to speak: some basic

vocabulary followed by a short background
on the birth of SCSI (pronounced “scuzzy”),

then a quick look at what it is and where it’s going. 

A Few Well-Chosen Words

Since this may be the first time you’ve ventured into SCSI territory, here are a
few terms you’ll need to be familiar with before we embark.

bus The bus is the path or channel that carries data between the
computer and other devices (like a printer or scanner) or between a
series of devices. Although cables, wires, and optical fiber are components
commonly used to form a bus, the bus itself is not a single physical object
that you can hold in your hand. Rather, it is the entire collection of cables
and wires used to make up the communications pathway. The size of the
bus changes in direct proportion to the number of connections.
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bus slots Bus slots are connectors inside the computer that attach add-on
cards (like sound or video cards) and devices to a bus. Examples would be
an ISA slot or PCI slot.

controller card (or host adapter card) Host adapters are circuit boards
that plug into the motherboard on the computer. They allow the com-
puter to communicate with and control devices. SCSI, IDE, and ESDI
cards are examples of hard disk controller cards. Some printers and scan-
ners require their own special controller cards. SCSI host adapter cards
are often referred to as controllers. 

For instance, the Windows 95/98 Device Manager menu refers to “SCSI
controllers,” although technically a SCSI controller is a chip on a target
device that controls the operation of the device. They really are referring
to host adapters.

Throughout this book I’ll try to consistently call a card that plugs into
a PC a “host adapter,” but if someone calls it a controller, don’t jump down
his throat.

data transfer rate Data transfer rate is a measure of how quickly informa-
tion can be passed between the computer and another device or between
devices. The higher the data transfer rate, the less you’ll have to wait for
data to get to its destination. It is commonly expressed in megabytes per
second (MB/sec).

device Device generally refers to hardware that can be connected to the
computer (such as printers, hard disks, scanners, and modems), although
sometimes the computer itself is referred to as a device as well. Devices can
also be interface cards, such as video cards, SCSI cards, and sound cards.

hardware interface A hardware interface consists of the electronics neces-
sary to communicate with and control devices. When you put these
electronics on a card you have an interface card, also known as a host
adapter. In this book, we’ll often refer to the hardware interface as simply
“the interface.”

multitasking Multitasking simply means performing more than one func-
tion simultaneously. Multitasking operating systems, such as Windows
95/98, Windows NT, OS/2, and UNIX, can run many programs simulta-
neously. When your software or devices are multitasking, they don’t have
to wait for one program to finish before they can do their work. They all
work simultaneously. And, as a user of a multitasking system, you don’t have
to wait, either.
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IDE Integrated Drive Electronics, or IDE, is a common, parallel bus stan-
dard for hard disk drives. All the control electronics for IDE reside on the
hard disk drive, not on the interface card. Because IDE is not an intelli-
gent bus, simpler, low-cost electronics can be used. The low cost of IDE
makes it an ideal interface for the mass market. The more appropriate
industry term for this type of interface is ATA, which stands for advanced
technology attachment.

EIDE Enhanced IDE is an updated version of IDE that improves on IDE’s
speed and adds support for drives larger than 528 MB.

ATAPI ATA Packet Interface is a software protocol that allows support
for CD-ROM drives on IDE/EIDE interfaces.

The Birth of SCSI

The Prequel

Minicomputer interfaces prior to SCSI were not intelligent; they were each
designed specifically for one device, so a special interface was required for
each different device, such as a hard disk interface for a hard disk. Prior to
SCSI, minicomputer users had to change both software and hardware to sup-
port new devices.

Intelligent Life

SCSI began life in 1979 as the Shugart Associates Systems Interface (abbreviated
SASI and pronounced “sassy”). SASI was the first small-scale intelligent hard
disk interface designed to work with smaller minicomputers. SCSI was developed
based on SASI. SCSI’s birth was a major leap forward in hardware interfaces. 

Intelligent interfaces, like SCSI, know what types of devices are connected
to the computer and how to deal with each. Intelligent interfaces are designed
to support multiple data rates and use logical command sets that hide the imple-
mentation details of the devices. This allows system software to accommodate
the addition of newer devices as they become available.

As an intelligent interface, SCSI allows users to mix and match devices 
on one controller rather than needing to install a separate controller for 
each device.
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But in order to get everyone to use SCSI and to make sure that every com-
pany’s SCSI devices would be compatible, a SCSI standard had to be defined.
And so, in 1981, Shugart Associates and NCR (National Cash Register) presented
their SASI proposal to the X3T9.2 committee for a standard to be published
by the American National Standards Institute (ANSI, pronounced “ANN-see”),
the standard-setting organization in the U.S. After many long years of debate
on the exact specifications for this new bus, ANSI finally gave its approval in
June, 1986. The new standard, document X3.131-1986, was named the Small
Computer System Interface (SCSI), and thus SCSI was born. That first version of
SCSI is now referred to as SCSI-1, because newer standards have been released
since 1986.

SCSI-1 defined a universal, parallel, system-level interface, called the SCSI
bus, for connecting up to eight devices along a single cable. Parallel devices
(such as the majority of printers) send a group of bits (binary digits) at a time,
as opposed to serial devices (such as modems and mice), which send data one
bit at a time. 

As a system-level interface, SCSI is very different from a device-level inter-
face such as the older ESDI (enhanced small device interface). 

SCSI is an independent and intelligent local I/O bus through which a
variety of different devices and one or more controllers can communicate and
exchange information independent of what the rest of the system is doing.
ESDI, on the other hand, was limited to two devices, both of which could only
be ESDI drives. 

SCSI’s benefits were clear; however, because it was a groundbreaking stan-
dard, the system software took a while to become flexible enough to take
advantage of them.

SCSI-1 devices were also limited to a peak throughput of five megabytes
per second (5 MB/sec), which was comparable to the transfer rate of ESDI.
ESDI didn’t have all the compatibility headaches that SCSI-1 did, either. But
ESDI had a significant problem: a lack of flexibility. Although ESDI was fast,
ESDI drives worked only with ESDI controllers, which brings us back to the
one controller–one device problem. So whereas SCSI had the advantage of
flexibility over ESDI and had comparable speed, something had to be done to
solve the integration problem in order to make SCSI a more attractive solution.

SCSI-2: The First Major Improvement

Even before SCSI-1 was made an official standard in 1986, improvements to it
were in the works. SCSI-1 had significant shortcomings: It wasn’t as general
purpose as it needed to be, and, although it was fast, some felt that its speed
could be improved. One of the essential shortcomings was a lack of standard-
ization of command sets. Almost immediately after SCSI-1 was adopted, an
industry group developed an addendum to it called the SCSI Common
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Command Set, or CCS, which solved this problem. This standard was a major
milestone, but the technical committee was already working on improvements.

In January, 1994 (after almost four years of deliberation), ANSI approved
the X3T9.2 committee’s updated draft standard, SCSI-2. The standard was
designated X3.131-1994 to indicate that it replaced SCSI-1.

Everyone had been calling this new standard SCSI-2 as early as 1986,
when it was first proposed. In fact, just as there are a variety of unofficial SCSI-
3 devices on the market today (with the SCSI-3 family of standards still not all
finalized), there had been a number of SCSI-2 devices on the market prior to
the 1994 adoption of the SCSI-2 standard.

N O T E Because SCSI-2 devices were on the market before the adoption of a SCSI-2 standard,
compatibility problems occurred between SCSI-2 devices. You may encounter these prob-
lems if you still have any SCSI-2 hardware developed prior to 1994. Newer SCSI-2
devices were developed to adhere to the official ANSI SCSI-2 standard and have proven
to be very compatible, even between different vendors’ products.

New and Improved SCSI

The following is a list of the improvements provided in the SCSI-2 standard,
together with a brief description of what makes these advances important.
We’ll explore them in more detail in Chapter 2.

1. New 50-pin and 68-pin high-density connectors were standardized, which
shrank the size of the connector and made for more efficient and trouble-
free connections. This was especially important for IBM PC SCSI host
adapters, because the older connectors were extremely difficult to fit onto
an option card rail.

2. The speed of data transfer along the SCSI bus was increased by allowing
for synchronous transfers. This is now standard with optional fast synchro-
nous data transfer mode (Fast SCSI-2).

3. The speed of data transfer was further increased by widening the size of
the bus. Both 16-bit and 32-bit buses were defined (Wide SCSI-2).

4. The reliability of device-to-device communication was increased by allowing
synchronous negotiation to be invoked whenever the initiator or target
device detects a change. Previously, many target devices refrained from
starting such negotiations because some early host adapters locked up.

5. Signal integrity was improved with the addition of mandatory SCSI bus
parity checking.
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6. Command queuing was added to improve performance.

7. Command sets were added for CD-ROMs, scanners, medium changers,
and communications devices.

8. Extensive enhancements were made to the existing command sets.

Fast SCSI: Just Exactly That!

The SCSI bus allows for both asynchronous and synchronous data transfer
modes (see Chapter 2 for a detailed discussion of these transfer modes).
Synchronous transfer is considerably faster than asynchronous. SCSI-1 allowed
asynchronous transfer rates of 1.5 MB/sec and synchronous transfer rates at a
maximum of 5 MB/sec. In order to improve on this, Fast SCSI was introduced
as an optional SCSI-2 operating mode. 

Fast SCSI squeezed some of the timing margins so that faster handshaking
(connections) could occur, doubling the synchronous transfer rates of SCSI.
The maximum SCSI-1 synchronous transfer rate doubled, from 5 MB/sec to
10 MB/sec.

The term “fast” is generally used to describe SCSI devices that can support
synchronous transfers at this improved rate of 10 MB/sec. “Fast SCSI” may be
used only when describing SCSI-2, because SCSI-1 did not support this faster
synchronous transfer mode.

But this increase in speed did not come without added costs and demands.
Sending data twice as fast meant that devices needed better electronics to
ensure error-free data transfers. Similarly, faster data transfer also required
that the cables used for the SCSI bus be of higher quality than those used for
SCSI-1 or regular SCSI-2. (We’ll talk more about cables in Chapters 3 and 4.)
This is the typical progression of SCSI — indeed, of any advancing technology:
Faster and better always means that all supporting technology needs to
advance, too.

N O T E In order to use Fast SCSI, both your SCSI interface and SCSI devices must have Fast
SCSI capability. Be sure to check the device’s specifications if you’re interested in using
Fast SCSI, because not all SCSI-2 devices support it. Remember, Fast SCSI is an option
with SCSI-2; you don’t need to use Fast SCSI in order to use SCSI-2-compatible devices.

Wide SCSI: Two Lanes Are Better Than One

Besides doubling the rate at which data can be transferred over the SCSI bus
or pathway, SCSI-2 also provided the option to double or quadruple the width
of the SCSI bus with Wide SCSI. 

N O T E Although SCSI-2 defined Wide SCSI using a two-cable approach, Wide SCSI didn’t
catch on until SCSI-3 introduced the single “P” cable method of implementing Wide.
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The width of the bus is the number of its data lines. By increasing the width of
the bus from 8 bits to either 16 or 32 bits (although 32-bit Wide has yet to catch
on), the Wide SCSI bus can transfer two to four times more data in the same
amount of time than regular 8-bit SCSI-2 did. Of course, this also means that
the size of the cables must be increased, because more bits require more wires.

N O T E As with Fast SCSI, both the SCSI interface and SCSI devices have to support Wide SCSI
in order to take advantage of the Wide capability. If your SCSI controller supports Wide
SCSI but your device does not, or vice versa, communication between the controller and
device will take place at regular 8-bit SCSI-2 speed, and you won’t be able to take advan-
tage of Wide SCSI. But even if your system won’t use Wide SCSI, communication will
still take place without a hitch; it will simply be slower.

The Best of Both Worlds

Although Fast and Wide SCSI can certainly operate independently, a combi-
nation of the two features provides even greater improvement in the rate of
data transfer. The faster transfer rate of Fast SCSI and the extra bus width of
Wide SCSI can be combined to create Fast Wide SCSI, which can send data at
20 MB/sec (on a 16-bit Wide bus). 

Data on a SCSI-2 bus won’t travel any faster than the 20 MB/sec achieved
with Fast Wide SCSI, and this speed is probably more than most people need
on their desktop. However, if Fast SCSI still leaves you hungry for more when
you get into tasks such as full-motion digital video (for editing movies) and
large-scale computer networks, read on. In fact, in such demanding SCSI
applications, you’re likely to find that even Fast Wide SCSI isn’t enough and
you’ll need even more speed. Don’t worry, help is on the way with SCSI-3.

SCSI-3 Is on Its Way

Throughout the history of SCSI, ever-newer SCSI standards have always been
waiting in the wings, and today is no different. Proposals are currently before
the T10 Technical Committee for the next generation of SCSI, called SCSI-3.
For several reasons, including size and flexibility, SCSI-3 is being partitioned
into a family of about fourteen standards. These standards will be used as build-
ing blocks, much like communications standards, to create various combinations
of SCSI-3 features, including serial versions. And, although the entire family of
SCSI-3 standards is not all officially approved, you will notice a bunch of devices
claiming to include SCSI-3 features cropping up on store shelves.

Fast-20 SCSI and Fast-40 SCSI, also marketed as Ultra SCSI and Ultra2
SCSI, may be the SCSI-3 feature most commonly found in new devices. These
Ultra SCSI rates are basically an extension of the Fast SCSI, found in the SCSI-
2 specification, except that Ultra SCSI offers double or quadruple the old “Fast”
rate. Fast-20 SCSI (or Ultra SCSI) will provide 20 MB/sec over the 8-bit bus or
40 MB/sec over the 16-bit Wide SCSI bus. Fast-40 (Ultra2 SCSI) is twice as fast
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as Fast-20. The future even promises an Ultra3, Fast80 option (up to 160
MB/sec). These aspects of the SCSI-3 protocol are covered in the SPI (SCSI
Parallel Interface) standard and its successors. 

N O T E Unfortunately, as with everything in real life, speed has its price. The high data transfer
rates promised by Fast-20 SCSI will limit the SCSI bus length to 1.5 meters (about 5 feet)
for 8 devices, 3 meters (about 10 feet) for 4 devices, and will require even higher-quality
cables. 

Furthermore, single-ended buses are not acceptable for Fast-40! You will need a host
adapter with “low voltage differential” bus drivers to use this option.

Another hot — but perhaps deferred — feature of the SCSI-3 protocol is
SCAM (SCSI Configured “AutoMagically”). 

SCAM, along with Intel PCI and Microsoft’s Plug-and-Play, will allow users
to plug in SCSI interface cards and attach SCSI devices without worrying about
jumpers, switches, wheels, or any other kind of configuration option. All con-
figuration options will be handled by the computer — no more headaches. At
least, that’s what ANSI had in mind when they created SCAM. After all was said
and done, however, Microsoft didn’t implement SCAM in their operating sys-
tems and ANSI is considering removing it from SPI-3.

Serial versus Parallel

Perhaps SCSI-3’s most notable addition to SCSI will be its introduction of sup-
port for a new breed of very high speed serial devices. The existing standards
for serial communication, such as RS-232, are much too slow for hard disks
and other SCSI devices. In general, parallel data transfer is faster than serial,
but this doesn’t always apply in SCSI. SCSI-3 defines both serial and parallel
communication, and its serial buses are very fast. However, parallel bus devel-
opment is not standing still and is currently on par with Fibre Channel.
Today’s silicon electronics can operate at speeds approaching 1 GHz
(GigaHertz, or billions of cycles per second), and SCSI-3 will make use of
every bit of it. In fact, expensive gallium arsenide chips offer speeds in excess
of several GHz. That’s blazing speed, compared with the 5 MHz bus rate of
SCSI-1. There is a real horse race going on between parallel and serial SCSI
with no clear winner.

The Serial Future

Two interfaces are competing to provide the link between the new high-speed
SCSI-3 serial devices: Fibre Channel and IEEE-1394 (Apple’s FireWire). These
interfaces offer transfer rates of 400 to 1000 Mb/sec (Megabits per second) as
opposed to the 20 MB/sec parallel transfer rate of SCSI-2, which is equivalent
to 160 Mb/sec. (There actually is a third serial interface option called SSA,
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but it seems to have run out of steam and probably won’t see widespread
acceptance.)

Each interface promises quick and easy cabling between devices and the
SCSI interface card via small, keyed connectors. (For those of you who struggle
with SCSI device connections, this is sure to be a welcome improvement.) 

Going serial also means that cables will have fewer wires (or fibers, as the
case may be). Rather than the monstrous 50 and 68 wire cables required by
parallel SCSI implementations, serial SCSI will only need 6 (or fewer) wires.

However, the change to serial will require a different way of thinking for
device driver writers. For example, parallel buses supported no more than 15
devices. Scanning the bus for devices took no more than four seconds (that is,
1/4 second to timeout on each device). With Fibre Channel supporting 16
million devices, clearly a different approach is needed! Also, drivers frequently
used bus reset to recover from certain types of error conditions — and there is no
such thing on Fibre Channel!

For the latest information about SCSI developments, for SCSI standards,
and for the latest on SCSI-3, you can access the T10 Technical Committee’s
web site at http://www.t10.org/.

You can also write to: 

Global Engineering Documents
15 Inverness Way
Englewood, CO 80112 
(800) 854–7179

We’ll hear more about the latest developments in SCSI-3 from the chair of the
T10 Technical Committee himself in Chapter 2!

Why Choose SCSI?

If you’re reading this book, you’ve probably either already purchased SCSI
hardware, you’re thinking about it, or you’re just wondering what SCSI is. But
have you thought about why you should use SCSI and not some other stan-
dard, such as the mass-market IDE or EIDE? Well, take a look at the benefits
SCSI brings, as well as the pitfalls, as shown in Table 1.1.

Multi-Platform Capability

As you can see in the first row of Table 1.1, SCSI is a cross-platform interface.
As such, it is highly flexible. In most cases, a SCSI device taken from one type
of computer system (like a Mac or a PC) will work on a completely different
system without your having to modify it in any way. As long as your computer
has a SCSI host adapter card, you simply buy a SCSI drive. 

http://www.nostarch.com/scsi2_redirect.htm?9a
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Table 1.1: Comparison of Features

Feature SCSI IDE/ATA/EIDE/UDMA

Computers supported PC, Macintosh, UNIX PC, some newer low-end
servers, and workstations workstations, newer Macintosh

Device types supported Hard disk, CD-ROM, Hard disk, CD-ROM, DVD, 
DVD,scanner, tape drive, low-end tape drive
printer, optical WORM
and MO

Maximum number of Narrow SCSI = 7 2
devices supported Wide (16) = 15 n/a
(per bus or channel) Fibre Channel AL = 126 n/a

Fibre Channel fabric = 16 M n/a
Unlimited number of Maximum of 2 
buses per host buses per host

External device support? Yes No

Data transfer rate SCSI-1 = 5 MB/sec EIDE (PIO) = 3 to 16 MB/sec
FAST-10 = 10 MB/sec EIDE (DMA) = 2 to 8 MB/sec

Note: This is the maximum FAST-10 Wide = 20 MB/sec UDMA = up to 33 MB/sec
burst rate for the interface …
bus. No individual drive FAST-20 Wide = 40 MB/sec Note: Although PIO might seem 
will achieve these rates. … fast according to these figures, it 

FAST-40 Wide = 80 MB/sec consumes the CPU, causing multi-
FAST-80 Wide = 160 MB/sec tasking to suffer severely.
Fibre Channel = 100 MB/sec

Multitasking ability Excellent IDE = Poor owing to polled I/O
• Bus master DMA EIDE = Fair owing to DMA
• Disconnect/reconnect UDMA = good
• Tagged queuing • Only one device active per bus

Error detection Yes = Bus parity, CRC will None currently.
be introduced with FAST-80. (Rumor has it that, when UDMA66 

is introduced, it will use CRC.)

Cost Relatively expensive because Inexpensive because of high-
of the need for terminators, volume production, no need for 
more involved device terminators (because of short bus 
firmware testing, and also length) and simplified testing 
because a premium is owing to single-threaded structure.
charged for the extra
performance.
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In contrast, this is definitely not the case with IDE and many other kinds of
drives. PC IDE drives will not work with your Mac. When buying a drive for an
IDE system, you must buy the specific IDE drive made for your system.

N O T E SCSI’s ability to allow swapping peripherals between platforms comes in particularly
handy if you’ve got both a Mac and a PC at home or in the office. As long as the PC is
SCSI-based, you’ll be able to swap SCSI devices — whether hard drive, CD-ROM, or the
like — between both systems. Of course, whereas you can interchange the drives, you
won’t necessarily be able to read the data on the drive, because Macs and PCs format
their drives differently and the file structures are different.

SCSI is widely supported by many operating systems and platforms, including
Macintosh, UNIX, DOS, Windows, Windows NT, OS/2, and a variety of other
operating systems. Most of these operating systems have built-in support for
SCSI, which makes it even easier to use, install, and swap SCSI devices among
all operating systems.

Devices Supported

The second row of Table 1.1 compares the number of devices supported by
SCSI with that supported by IDE. You’ll notice that the list for SCSI is consid-
erably longer. In fact, IDE and EIDE support only hard drives, CD-ROM
drives, and some inexpensive tape drives. SCSI can support just about any
device you throw at it. When new device types are developed, the earliest mod-
els are typically equipped with SCSI interfaces.

Expandability

SCSI offers efficient expandability. As you can see in the third row of Table
1.1, if you have a SCSI-1 based system, you’ll be able to connect up to seven
devices to one interface card, as opposed to a maximum of four if you have
EIDE. These seven devices could be any combination of hardware, such as
hard disks, CD-ROMs, tape drives, image scanners, or even printers. If seven
devices aren’t enough, just add a second SCSI adapter, and you’re ready for
the next seven devices. With Wide SCSI, you can connect fifteen devices (with
16-bit Wide SCSI); with Fibre Channel Arbitrated Loop you can connect 126.
We’re talking about a real system of devices here.

External Device Support

Unlike IDE or EIDE, SCSI supports devices connected to your computer
externally. With IDE or EIDE, all drives that you connect must fit inside your
computer (in fact, the cables are restricted to about 0.5 meter (18 inches) 
in length. This presents some limitations. If you’re using IDE or EIDE and
you’ve maxed out your computer case’s expandability with something like two
floppy drives, a CD-ROM, tape backup, and a hard disk, you won’t have room
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to add anything else. On the other hand, with SCSI you can buy devices that
are housed in their own cases and simply connect them to the back of your
computer with a SCSI cable. You therefore won’t need a refrigerator-sized
computer case, and your system’s expandability will be much greater. With
Fibre Channel, your devices can be spaced up to 10 kilometers (about 6.2
miles) apart with an unlimited number of hops of 10 km each using fibre
optic cable! This makes a terrific backup strategy, which allows for off-site
backups in case of fire.

The Speed Thing

Although SCSI isn’t always as fast as simpler interfaces (like IDE or EIDE), if
you’re using just one hard disk, it leaves them behind when you attach several
drives. (That’s the reason network servers use SCSI drives: They provide the
flaming speeds required by heavy network use.) Also, because SCSI supports
multitasking environments, multitasking operating systems such as UNIX,
Windows NT, and OS/2 can realize better performance with SCSI than with
IDE or EIDE. 

Multitasking

Only SCSI devices will really multitask in multitasking operating systems. IDE
and EIDE devices are single-tasking, so although they’ll work in a multitasking
environment, only one drive per bus can be active. (See Appendix A, “The All-
Platform Technical Reference,” for more detailed comparisons of IDE, EIDE,
and SCSI.)

Built-In Error Checking

Unlike IDE or EIDE, SCSI offers built-in error checking. This capability
ensures that data transferred through your system from card to device and
back will be error-free. (We’ll talk more about SCSI’s error-checking ability in
Chapter 2.) IDE depends on short cables to reduce the likelihood of errors.
But if errors do occur, they may well go undetected.

Cost

Price seems to be the only thing that matters in PCs these days; even at the
expense of performance. There’s no doubt that ATA/IDE drives cost less, but
in my opinion many people who buy them probably regret it later when they
want to add spiffy new stuff onto their system. But, c’est la vie.
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SCSI Is Easy to Use

And finally, believe it or not, SCSI is easy to use. For example, when you con-
nect a new SCSI hard disk, you don’t have to worry about all the things that
plague many IDE hard disk installations, such as the number of heads, cylin-
ders, and sectors per track in your hard drive. Even the computer doesn’t
worry about such details. The SCSI interface takes care of all that. In essence,
all you have to do is plug it in. And Windows 95/98 and OS/2 Warp make this
installation even easier with their built-in detection of SCSI cards and devices.

. . . but Not a Panacea

Although SCSI has a tremendous amount to offer its users, it’s not without its
drawbacks. You should be aware of these drawbacks before going out to buy a
SCSI system.

Installation

For one, interface cards aren’t all that easy to install. If you’ve had problems
installing interface cards before, SCSI is no less a challenge. This book is
intended to help you through as much of the installation as possible, but the
best way to minimize problems is to look for PCI Plug-and-Play SCSI interface
cards that configure themselves. (Or, have your dealer do the installation.) A
system with PCI slots (almost all Pentium- or Pentium II–based systems) sim-
plifies the process and increases performance greatly. If you have Microsoft’s
Windows 95 or 98 you should look to its built-in tools for step-by-step help
with the installation of your SCSI card. Similarly, IBM’s OS/2 Warp’s installa-
tion program scans for the most popular SCSI host adapters and installs them
automatically.

That Cost Issue

Another drawback to SCSI is the cost of the interface card. Although you can
pick up interface cards for less than $50, the performance you’ll get out of
them often isn’t worth the trouble. To take full advantage of SCSI you need a
“real” SCSI host adapter, and it’s going to cost upward of $100, depending on
its capabilities. At a minimum, we consider a real SCSI card to be one with
built-in BIOS, which has the ability to boot the system from a SCSI hard disk —
and preferably from a CD-ROM as well. Cheap cards do not have built-in
BIOS, which means you’ll have to boot your system from a floppy disk or non-
SCSI hard disk.

The first thing people notice is that SCSI devices cost more than EIDE or
UDMA devices. In order to be flexible, fast, and easy to use, SCSI devices need
more built-in intelligence than simple IDE devices tend to have — this costs
money. Beyond this, the difference in price is due primarily to three things.
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First, because IDE was less expensive when it was introduced, more of them
were sold. Volumes went up, which drove their prices down even farther. Sec-
ond, because SCSI performance is better, vendors feel justified in charging a
premium for it. Third, testing SCSI devices is far more difficult than testing
IDE devices, because the multi-threaded nature of SCSI makes the device firm-
ware more complicated. When you consider the benefits of SCSI (speed, flexi-
bility, and expandability), the slightly higher cost of SCSI is easily justifiable.

N O T E SCSI is for you if, like us, you struggle to have a useful computer without upgrading
annually. SCSI devices tend to be used longer than any others. Because the interface
isn’t changing so often, a lot of SCSI disks from as far back as 1988 are still in use,
whereas other early drives (like ST-506 and ESDI) from the same period in time were
generally replaced with SCSI or IDE disks. And, unlike with IDE- or EIDE-based sys-
tems, you’re not likely to run out of bus slots or IRQs (interrupt requests) with a SCSI
system. This means that you can easily add a second or even a third hard disk to your
system and still have room to add more devices to the SCSI bus.

Upgrading the User

Finally, in order to use SCSI effectively, you’ll need some basic knowledge of
SCSI technology. You need to know how to install and configure the interface
card (if it isn’t Plug-and-Play), how to set device IDs, how to terminate the SCSI
bus, how to choose and load device drivers, and how to optimize your system
and keep it healthy. 

Not to worry — we’ll show you how to handle all of these tasks.



1.5
A  C O R N U C O P I A  O F  S C S I  D E V I C E S

One of the great advantages of using
SCSI is that it gives you the flexibility to

connect to your system a variety of devices,
not just hard disks. Following are descriptions

of just a few of the many devices you can connect
to a SCSI system.

Storage Devices

When you’re shopping for a storage device, the first thing you look at is its
capacity (how much data you can store on it). The capacity of these devices is
specified in megabytes (MB) or gigabytes (GB). 

Hard Disks

Of all the types of hardware you can connect via SCSI, hard disks are by far the
most commonly used. Hard disks are generally mounted inside the computer,
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enclosed in a sealed case. The PC industry coined the phrase hard disk to dif-
ferentiate them from floppy disks, which were the main storage medium on
early PCs. Because the media platters inside the drive are permanently fixed
inside of it, they are also called fixed disks. Removable media hard disk drives,
such as those from SyQuest, allow you to take them with you, ship them, or
lock them up for safekeeping. Another method that helps keep data secure is
to enclose the entire fixed disk drive in a docking case that is constructed to
allow the entire drive mechanism to be pulled out and stored separately.

One benefit of using SCSI hard disks is that they are available in higher-
performance models with larger capacities than the IDE hard disks generally
offer. Although recent developments have made 36 GB hard disks available
for IDE, SCSI hard disks are now available with capacities of 73 GB, and even
bigger disks are on the way. Also, IDE drives have just become available with
rotation speeds of up to 10,000 RPM, but SCSI drives have sported 10,000
RPM for a while — and word has it that 14,400 RPM is just around the corner.
The higher the rotational speed of the media, the less time the user has to
wait for his data to come around to the heads that will read or write it. This
waiting time is called rotational latency and is one of the most important perfor-
mance parameters.

TERMINOLOGY WARS

Computer engineers have always used the convention that “kilo” means 1024,
“mega” means 1024x1024 and “giga” means 1024x1024x1024. This is
because everything in a computer works in binary (base 2), and 1024 is 210

(two raised to the tenth power). A megabyte (MB) is therefore 220 and a giga-
byte (GB) is 230. Using this convention makes calculations easy for engineers.
The exponents come out to nice round numbers.

Then along came the marketing people, who are not used to binary and
use decimal like most other people. When a marketing person writes an ad for
a disk drive, they use decimal numbers (thousands, millions, and so on) to
describe the capacity of the device. This practice, likely originated by the fact
that most folks dislike using unfamiliar systems, coincidentally makes the capac-
ity of the device sound bigger. As a result, almost any ad you see for a 9.1 GB
disk will be referring to a capacity of 9,100,000,000 bytes. An engineer
would refer to that same drive as an 8.475 GB disk.

The main reason I bring all this up is that, when your new 9.1 GB drive
(which was thus described in an ad) arrives and you install it in your computer
(which was designed by engineers), the BIOS and operating system will tell
you it has a capacity of 8.475 GB! Don’t get upset—you didn’t get cheated!
It’s simply a lack of agreement about the definition of a gigabyte.
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Removable Media Disk Drives
This class of drives has gotten quite popular. Some examples are the 100 MB
and 250 MB ZIP drives, the 120 MB LS-120 SuperDisks and the 2.2 GB ORB
drives. These make handy back-up drives and are good for storing sensitive data
that can’t be left on the system, but are generally too slow to act as the main
storage in a system. Also, they are not really designed to be operated continu-
ously, or in severe environments where hard disks are a much better choice.

Tape Drives

Tape drives can easily be attached to the SCSI bus. Tapes come in various
types and are used to store large amounts of data (usually as backup, in case
something happens to the computer’s hard disks). They are not generally
used for primary storage because the data can only be accessed sequentially,
not randomly, as a disk drive allows. The low cost and large storage capability
of tape cartridges make them ideal for archiving purposes. Because tape drives
are rather slow (rewinding a tape can take 30 minutes!), SCSI’s ability to let
them disconnect from the bus and allow other devices to go about their busi-
ness is a big plus. Several types of tape drives are discussed below. Most of the
tape drives mentioned here are only available with a SCSI interface. IDE just
isn’t suitable.

Quarter-Inch Cartridge (QIC)

Quarter-inch cartridge tapes aren’t as common on PCs as they once were.
They are so named because the tape used in the first cartridges was one-
quarter of an inch wide. QIC tapes can hold from 40 MB to as much as 2 GB.
QIC-150, QIC-1350, and QIC-2100c are common tape formats. Because they
have well-standardized formats, these tapes have also been used extensively as
a medium of data exchange between UNIX systems. Tape drives that adhere
to these standards are available with SCSI interfaces.

Digital Audio Tape (DDS DAT)

Digital audio tape is well known in the music industry for recording digital
audio. In the PC world, the DAT system provides huge data storage capacity in
a small form factor cassette. 4mm DAT drives employ helical scan similar to a
VCR to increase the bit density on the tape. DDS (digital data storage) stan-
dard DAT tapes hold from 1.3 GB to 2 GB and cost less than one-third the
price of QIC tapes per megabyte. The DDS-2 tapes store up to 4 GB on one
tape. DDS-2 and newer 4mm drives also employ data compression to increase
the data capacity per tape cassette even more.
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8mm Tape

An 8mm tape, similar to the tape used in camcorders, can also be used for
recording data. As in a camcorder, a helical scan technique is used. It provides
slightly more storage capability than DDS-1, weighing in at 2 GB to 5 GB per
cartridge. This format was primarily supported by one manufacturer (Exabyte)
and didn’t become as popular as DDS.

DLT

Digital Linear Tape provides very fast transfer rates and high storage capacity,
but unfortunately, also at a high price. The cartridges consist of a 4" square
cassette with 1/2" tape inside.

Optical Disk Drives

Optical drives are so named because they use light (optics) in the form of a
laser to read and write data, as opposed to magnetic field changes that are 
the basis for most other computer storage. Until 1993 or so, optical drives
could store more data than magnetic drives such as hard disks, but in recent
years magnetic storage has improved in leaps and bounds while most optical
drives improved only slightly. Optical drives come in two types: Magneto-
Optical (MO) (which can be written and re-written many times), and Write
Once Read Many (WORM). 

As magnetic storage has gotten larger, cheaper, and faster, reasons to use
optical disks have dwindled. WORM media, however, has a loyal following that
actually appreciates the fact that the media cannot be altered after writing: This
provides confidence that the data has not been altered and is used where data
authenticity is very important, such as in storing government records.

Magneto-Optical (MO) Drives

Magneto-optical drives are a cross between an optical drive and a hard disk.
MO drives read data using a laser, and some are almost as fast as hard drives.
The fastest MO drive access time — around 30 ms (milliseconds) — is consider-
ably slower than the average hard disk access times (around 15 ms or less),
and the transfer rates of MOs are slower than hard disks as well.

Magneto-opticals also use a high-powered laser to write to the disk. The
laser heats up the surface of the disk and, once the disk material is hot enough
(a temperature known as the curie point), a magnetic field changes the heated
material so it either absorbs or reflects light. 
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In spite of the speed difference, magneto-optical disks have several
advantages over hard disks: Their storage space is large and expandable for
relatively little money; the disks themselves last for a very long time (about 
30 years, or nearly 100,000 rewrites); and data stored on magneto-opticals 
lasts for several decades.

Write Once Read Many (WORM) Drives

WORM drives are similar to CD-ROM writers in that both burn data onto the
disks and cannot be erased or overwritten. WORM drives are slightly cheaper
than MO drives, but because the disks can’t be reused, this system is more
expensive in the end and is generally only used for specific archival purposes.

CD-ROM Drives

CD-ROM (compact disk read-only memory) made its mark in the industry
with the birth of multimedia because of the large storage requirements of
audio and video data. CD-ROMs are manufactured in the same way as audio
CDs and are designed to be read-only. As a result, they are used to distribute
programs and data files, not to back up your hard disk. CD-ROMs can store up
to 650 MB of data. This medium has become extremely popular for distribut-
ing software because each disk holds so much data and the disks can be mass
produced for less than $1.00 each. CD-ROM disks come in many data formats,
which are governed by a set of standards defined by Sony and Philips called
the colored books, because each standard has a different color cover. Almost
all CD-ROMs have their files stored in ISO-9660 file system format (which is
sometimes also called “High Sierra format” after the name of the hotel where
the standards meeting took place). CD-ROM has become the standard media
for software distribution since every new system shipped can read them.

If copying audio data from music CDs is something you want to be able to
use your drive for, you should check the drive’s spec sheet for its ability to
“rip” audio tracks as data. Some drives cannot do this at all and some can only
do it at the 1x speed (the base speed of 1x being 150 kbytes/sec). A few drives
have been optimized for this use and can rip audio tracks at 11x and even 20x. 

CD-ROM Recorders (CD-R and CD-RW)

CD-ROM recorders take the read-only aspect out of CD-ROM. By using a 
special kind of CD called a CD-R (compact disk recordable), the CD-ROM
recorder makes a CD-ROM by altering the color of a special dye on the media
using a laser. There are two types of dye that can be used to make blank CD-
Rs: cyanine (a dark blue/green color) and pthalocyanine (a gold color).
CD-ROM recorders are also referred to as CD-ROM burners. The data can
only be burned in once. You can’t erase or overwrite data on CD-R, but data
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can be written to it in multiple “sessions.” The best-known example of this is
Kodak’s PhotoCD system.

CD-R drives present special problems to the host system and interface.
They are burned sequentially and must receive a continuous flow of data or
the disk being written will become useless. (This is known as “making a
coaster.”) To improve this situation, CD-R drives usually contain a large
amount of buffer memory (usually about 1 MB), which helps even out the
flow of data.

CD-RW, a variation on the CD-R, creates disks that can be erased and re-
written. The drawback is that these disks aren’t compatible with most older
CD-ROM drives. CD-RW drives make great backup devices.

The rating for these drives is usually given as the speed multiple that it
can perform each of its functions at. For example, a drive that can record CD-
R media at 6x, CD-RW media at 4x, and read CD-ROM media at 24x might be
referred to as a 6x4x24 CD recorder.

DVD-ROM Drives

DVD-ROM (Digital Versatile Disk Read-Only Memory) is the latest arrival in
the world of multimedia. DVD is fundamentally a CD with huge capacity (up
to 17 GB per disk). DVD-ROMs are manufactured in the same way as CDs are
and, like CDs, are read-only. These drives can also read all existing CD-ROM
disks. The main purpose of this medium is to contain very high quality, full-
length movies complete with multiple audio tracks, closed captions, and so on. 
The film master is converted into a high-quality video master and then digitized
and compressed using MPEG - 2 encoding. This highly compressed data is
then stored on the DVD in large files using the newly developed UDF file sys-
tem format. Three different storage densities are available: single-sided, single
layer for 5 GB; single-sided, dual layer for 9 GB; and double-sided, dual layer
for 17 GB. These disks can also be used to store ordinary computer data and
should become popular for distributing software that currently takes multiple
CD-ROM disks. The price of these drives is expected to come down to about
the same as a current CD-ROM drive. Therefore, it is expected that ordinary
CD-ROM drives will soon become extinct. For some reason, the IDE interface
became much more popular for DVD-ROM drives, and I’m only aware of two
manufacturers producing SCSI DVD-ROM drives, but I think that will change
when DVD-R becomes standardized — forecast to occur late in 2000.

Printers and Scanners

Storage devices aren’t the only devices that work with SCSI. Even printers and
scanners are available with SCSI interfaces.
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Printers

Printers with SCSI interfaces aren’t commonly used now, but more will likely
appear in the high-end market. Why? Because the amount of data transferred
to the printer increases with color images, so a bi-directional high-speed inter-
face, like SCSI’s, is very desirable. Many high-end PostScript printers have an
internal SCSI interface for attaching hard disks as font, macro, or cache mem-
ory that is used by the printer when printing large files with a variety of typefaces.
Perhaps the longer allowed cable lengths of the IEEE-1394 flavor of SCSI will
be more appropriate for SCSI printers and also increase their popularity.

Image Scanners

Some of the most common SCSI devices are image scanners. The amount of
image data increases dramatically with color depth (the number of colors in the
image), in fact, it’s not unusual for scanners to generate files of over 20 MB
for a single image, so SCSI is the interface of choice for most scanner manu-
facturers. Non-SCSI full-page scanners are generally too slow for professional
scanning. Recently released USB scanners are lower cost, and slightly easier to
install, but they can’t keep up with SCSI-equipped devices.

Variety Is the Spice of Life

As you have seen, SCSI allows you to connect quite a spectrum of peripherals
to your system. This is largely due to its high speed and flexible connection
schemes. In my opinion this is one of the strongest reasons for choosing SCSI
I/O for your system.
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A  L O O K  A T  S C S I - 3

by John Lohmeyer, Senior Consulting Engineer, LSI Logic Corp.,
and Chair of the T10 Technical Committee on SCSI

SCSI-3 departs from SCSI-1 and SCSI-2 in
that it is not a single standard. SCSI-3 is a col-

lection of over a dozen standards that are arranged
in a building-block fashion. This provides greater
flexibility: SCSI-3 supports the traditional parallel
bus plus at least three serial interfaces. Also, the
building-block approach permits publication of the
various pieces of SCSI-3 when they are ready rather
than requiring that developers wait for all of the
pieces to be ready at the same time (which is nearly
impossible).

Unfortunately, the building-block approach is not as easy to comprehend
as is the structure of SCSI-2, where everything you needed to know was in one
standard. Figure 2.1 shows the various building blocks planned for SCSI-3. 
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When developing a SCSI-3 product, designers must first conform to two
of the standards, namely SCSI-3 Architecture Model and SCSI-3 Primary Com-
mands. Then they must pick a physical interface (usually a pair of associated
standards) and a command set (one of the standards—SBC, RBC, SSC, and so
on—shown across the top of Figure 2.1). In sum, each SCSI-3 peripheral prod-
uct must conform to at least four standards. Although this may be a bit
confusing at first, don’t forget that this is a powerful architecture. And a bit of
confusion will be well worth it—there will be no need to rewrite SCSI-3 driver
software when you move from one physical interface to another!

If you are already familiar with communications standards, then you proba-
bly recognize that SCSI-3 has essentially adopted the layered-standards arch-
itecture promoted in the ISO Reference Model, with one key difference: SCSI-3

is optimized for storage and local I/O applications. It is not optimized to
operate over the long distances typically associated with communications,
although these distances can be supported using the Fibre Channel serial
interface.

The SCSI-3 family has undergone several changes since the first edition 
of this book.1 Many of the SCSI-3 standards have been completed, approved,
and published. Some second-generation SCSI-3 standards have also been pub-
lished, and one third-generation SCSI-3 standard (SPI-3) is well along in
development. Rather than calling these standards SCSI-4 or SCSI-5, the T10
Technical Committee has instead added a “-2” or “-3” to the base acronym.
For example, the second generation of SPI is SPI-2; the third is SPI-3. And a

1. The Book of SCSI: A Guide for Adventurers, No Starch Press, ISBN 1-886411-02-6

Figure 2.1: SCSI-3 Organization Chart
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WHAT’S IN A NAME?

SCSI terminology is confusing for a lot of good and some not-so-good reasons.
Part of the problem stems from multiple naming sources, the T10 Technical
Committee (T10), the SCSI Trade Association (STA), and various industry groups.

In spite of the confusing names, there is remarkable interoperability
between the various SCSI products. This is because devices negotiate for
advanced speeds and features. In almost all cases, a compatible speed and a
compatible set of features can be found.

Here is a short guide to SCSI names you may encounter:

Name Defined by Meaning

narrow SCSI STA The original 8-bit Wide SCSI.

Wide SCSI T10 16-bit Wide SCSI. Doubles the data trans-
fer rates as compared to 8-bit SCSI. First 
documented as a single-cable feature in 
the SCSI-3 Parallel Interface (SPI) standard.

Fast-xx T10 The maximum data transfer rate xx in 
megatransfers per second. Multiply this 
number by 2 to get megabytes per second 
for a Wide (16-bit) SCSI bus. Fast-xx is 
mostly used in the various SCSI standards; 
marketing names usually include the word 
“Ultra.”

SCSI-2 T10 The second-generation all-in-one SCSI 
standard adopted in 1994.
(ANSI X3.131:1994)

SPI T10 The first SCSI-3 standard for the parallel 
physical interface layer. This standard 
defined “Fast SCSI” later called Fast-10. 
(ANSI X3.253:1995)

Fast-20 T10 A “delta” standard that, used in conjunc-
tion with SPI, defines the Fast-20 data rate.
(ANSI X3.277:1996)

Ultra SCSI Industry Fast-20 SCSI—20 MB/sec on a narrow 
SCSI bus and 40 MB/sec on a Wide SCSI
bus as defined in SPI and Fast-20.
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Name Defined by Meaning

SPI-2 T10 The second-generation SCSI-3 standard for
the parallel physical interface layer. This 
standard introduced low-voltage differen-
tial (LVD) technology.
(ANSI X3.302:1999)

Ultra2 STA Fast-40 SCSI—40 MB/sec on a narrow 
SCSI bus and 80 MB/sec on a Wide SCSI
bus as defined in SPI-2.

SPI-3 T10 The draft third-generation SCSI-3 standard 
for the parallel physical interface layer.This
standard introduced double transition (DT) 
clocking, CRC protection, packetized pro-
tocol, and quick arbitrate and selection 
(QAS).

Ultra3 STA Fast-80 SCSI—80 MB/sec on a narrow 
SCSI bus and 160 MB/sec on a Wide 
SCSI bus as defined in SPI-3.

Ultra160/m Industry Ultra3 on a Wide bus with the Domain 
Validation feature (does not include packe-
tized or QAS features).

Ultra160 Industry Same as Ultra160/m. The “/m” was 
dropped to reduce complexity.

Ultra3+ IBM Corp. Ultra3 plus the packetized and QAS 
features.

SPI-4 T10 The draft fourth-generation SCSI-3 stan-
dard for the parallel physical interface 
layer. At the time of publication, this draft 
standard project was just getting started.

Ultra4 —- This term was dropped in late 1999 in 
favor of Ultra320.

Ultra320 STA Fast-160 on a Wide bus plus packetized 
and QAS as defined in SPI-4.
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SPI-4 project is likely. In a somewhat futile attempt to avoid further confusing
layers of dashes, developers of the second-generation SCSI-3 projects dropped
the “-3” on SCSI-3, so that SPI-2 was called “SCSI Parallel Interface-2” instead
of “SCSI-3 Parallel Interface-2.”

If you aren’t confused yet, another set of names may do the trick. The SCSI
Trade Association has created the marketing names Ultra SCSI, Ultra2 SCSI,
and Ultra3 SCSI to correspond to SPI + Fast-20, SPI-2, and SPI-3, respectively.
You’ll probably also see the name, Ultra 160, which is Ultra3 SCSI minus a few,
less popular features. 

Physical SCSI-3 Interfaces

Parallel SCSI

Ultra SCSI

The first generation of parallel SCSI-3 consisted of two standards, the SCSI-3
Parallel Interface (SPI, pronounced “spy”) and the SCSI-3 Interlocked Protocol
(SIP, pronounced “sip”). A close follow-on standard was SCSI-3 Fast-20 Parallel
Interface (Fast-20). Together these three standards defined new features that
the marketing people dubbed “Ultra SCSI.” The features included a single-
cable, 16-bit interface, 16-device support, and up to 20 MB/sec transfers on
narrow cables or 40 MB/sec transfers on wide cables.

Ultra2 SCSI

As good as Ultra SCSI was, it had some serious shortcomings. Each time the
speed was doubled, the maximum cable length was cut in half. This was due 
to the marginal signal characteristics of single-ended drivers and receivers
used in over 80 percent of SCSI designs. If Ultra2 SCSI retained single-ended
drivers and receivers, the maximum cable length would be 0.5 meters (about
20 inches)—too short to be useful. And if the high-powered differential dri-
vers and receivers previously in use were also used for another generation, the
system costs would be too high, because these parts required so much power
that they had to be in separate chips from the protocol logic. Furthermore,
doubling the speed meant cutting the skew budget in half—a nearly impossi-
ble feat if the drivers and receivers were on separate chips. It appeared that
SCSI was at the end of its life unless a new driver and receiver technology
could be adopted.

That is when low-voltage differential (LVD) came to the rescue. LVD had
almost all of the benefits of the high-powered differential plus it could be inte-
grated directly on the protocol chip. Besides that, it is 3-volt and 2.5-volt
friendly, so it is compatible with the newest silicon processes. LDV SCSI could
support 16 devices on a 12-meter cable (about 39 feet), and it was possible to
design a multi-mode driver and receiver that could also operate in single-
ended mode (although at Ultra SCSI speeds)—a real win-win situation.
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The standard that documents LVD SCSI is called SPI-2. Besides defining
this new technology, it also documents all the rest of the SCSI physical layer,
including SPI, Fast-20, SIP, and the various SCSI-2 connectors. SPI-2 contains
everything you need to know about the physical layer of parallel SCSI.

Ultra3 SCSI

Of course, we are not done yet. The SPI-3 draft standard defines another dou-
bling of SCSI speed and also adds several new features. The standard is still in
development, so it might change yet. However, the following features appear
locked in:

1. Fast-80 synchronous data rates. This is done by keeping the REQ and ACK
signal timing the same as for Fast-40 (Ultra2 SCSI), but both the rising and
falling edges are used. This means that data is transferred twice as fast
without doubling the clocking signal frequencies. This signaling method
is called double transition (DT) as compared to the older method of single
transition (ST). Also, DT is defined only for 16-bit bus widths, because vir-
tually all devices are now 16 bits; this simplifies product testing.

2. CRC has been added to protect data integrity on DT transfers.

3. Domain validation has been defined to verify that the system is capable of
running at the higher rates. This works a bit like modems in that the system
will verify that data can be transferred reliably at the negotiated rate; if
verification fails, the system falls back to a lower speed.

4. Packetized protocol. A new protocol for transferring commands, status, and
data sends this information in packets that are protected with a CRC. These
packets are also sent synchronously (instead of asynchronously) to reduce
the protocol overhead.

5. Quick arbitrate and select (QAS) reduces the time from one pair of devices
using the bus to the next pair of devices using the bus.

The last two features have been somewhat controversial because of the amount
of work needed to reduce SCSI overhead. Some companies think the work is
not justified and have coined the term Ultra160 to refer to only the first three
features—the “160” is the 16-bit data rate (MB/sec).

Ultra4 SCSI

This concept is just a gleam in the eyes of the SCSI architects. However, it will
almost certainly involve yet another doubling of SCSI data rates. Stay tuned.
The standards committee will call this standard SPI-4, while the SCSI Trade
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Association has already dubbed this effort Ultra320 (abandoning their previ-
ous UltraN naming scheme).

Serial SCSI

Serial SCSI means different things to different people. It is used here as a
generic term to describe the process of transporting SCSI commands over any
serial interface. The T10 Technical Committee has defined SCSI mappings for
three serial interfaces: Fibre Channel (FC), serial storage architecture (SSA),
and high-performance serial bus (IEEE 1394). 

Fibre Channel

Fibre Channel is being positioned as the high-end “universal pipe.” It is capable
of connecting almost anything to anything else at speeds up to 100 MB/sec (1
Gbit/sec) using either coaxial cable or fiber optics. FC devices are connected
through networks that are called fabrics, most of which are actually made up of
circuit switches. 

The only trouble with Fibre Channel is that its flexibility and speed are
expensive, and the challenge for its proponents is to get the costs of its fabric
down to a competitive level. One approach, called the Fibre Channel Arbitrated
Loop (FC-AL), simplifies connections by including a piece of the fabric in each
FC-AL device. A number of FC-AL devices can be connected in a loop or ring,
referred to as an arbitrated loop, in theory reducing the system costs. (The
loop is called “arbitrated” because, like parallel SCSI, FC-AL devices arbitrate
for exclusive use of the loop. The winning device gets access to the loop and,
once finished, the winning device gives up control of the loop so that another
device may arbitrate.) I say “in theory” because FC-AL devices are almost
always used in high-availability systems which then must include Loop Resiliency
Circuits (LRC) to bypass failed devices. The LRCs add cost and complexity, so
circuit switches may still be the best solution.

Serial Storage Architecture

Serial storage architecture (SSA) is less of a general-purpose interface than FC,
because IBM designed it principally as a storage interface. Although SSA
could be used for many of the same applications as FC, it does not extend as
far or connect as many devices as FC. Still, SSA is a powerful interface that can
connect more devices than any PC system is ever likely to need.

Although SSA transfer rates (20 or 40 MB/sec) are somewhat lower than
those of FC, SSA loops work differently from FC-AL loops. SSA loops are full-
duplex, allowing for simultaneous two-way conversations. The whole loop is not
dedicated to a conversation, so several separate conversations can occur at the
same time. SSA proponents call these multiple conversations spatial reuse. In
the best case, spatial reuse could give SSA an effective quadrupling of band-
width. However, the reality is that, because many of today’s operating systems
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(particularly DOS and Windows) are not multithreaded, they cannot exploit
spatial reuse. Of course, multithreaded 32-bit operating systems, like Unix,
Windows NT, and OS/2, could exploit it handily.

IEEE 1394

The third contender for the title of serial SCSI is IEEE 1394, which you may
have heard called Firewire or I.Link, Apple Computer’s and Sony’s names for
their versions, respectively. 1394 was designed to be a serial replacement for
parallel SCSI, and it solves almost every problem that Apple’s engineers per-
ceived was wrong with SCSI. It uses simple flexible cables that can be plugged
into almost any empty socket, there are no terminators to worry about, no IDs
to set, and it logically appears to be a bus, just like parallel SCSI. Furthermore,
1394 supports isochronous services. (Isochronous, “having equal duration,”
here means guaranteed timely delivery of certain data. It’s a great way to
deliver voice and video data.)

Early 1394 chips support only 100 Mbit/sec data rates — clearly not com-
petitive with FC and SSA. To remedy this problem, chips are under development
to support 200 Mbit/sec, and a 400 Mbit/sec version is planned. 1394 is not a
true serial interface, but a 1-bit wide parallel interface. A data signal and a strobe
signal are used to move data. This approach simplifies the interface logic, but
it limits the upper data rates. A third “signal” power keeps the low-level inter-
face logic alive in powered-down devices, thus keeping the bus intact even when
a device is unplugged. Because 1394 has these three signals, its cables have three
twisted pairs.

Which Serial SCSI Will Win?

In the first edition of this book, these interfaces were described as being in a
three-horse race to determine which, if any, would become an important PC
interface. Although we still have not declared a winner, it is safe to say that SSA
has dropped out of the race. Although SSA remains an important interface with-
in IBM Corp., it has not attracted an outside following.

Fibre Channel is gaining ground as a high-end system-to-subsystem inter-
face. Although a few disk drives are available with Fibre Channel Arbitrated Loop
interfaces, they are currently shipping in low volumes.

IEEE 1394 is attractive for consumer applications such as VCRs and video
cameras, but most storage vendors have panned this interface as too expensive
and too slow for disk drives. Still, a few vendors have prototype 1394 disk 
drives available; these drives target audio/video applications rather than 
traditional storage.
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Some new serial contenders have entered the race. The Universal Serial
Bus (USB) is starting to gain acceptance. However, it is much too slow to seri-
ously consider for disk drive applications. Also, the InfiniBand™ interface
proposal (Intel’s NGIO and Compaq’s, IBM’s, and HP’s SIO, which were
worst-kept secrets until they recently merged) is vying for consideration as an
alternative to Fibre Channel. The serial race is far from over.

SCSI’s Greatest Value: The Command Sets

The part of SCSI that has the most value to systems integrators, software 
developers, and peripheral manufacturers is its command sets. Because the
computer industry has made a huge investment in SCSI driver software, all 
of the serial interfaces need SCSI command set mappings to leverage the 
computer industry’s command set investment and to get to market quicker.
Even IDE proponents have leveraged the SCSI command sets: The ATAPI
protocol maps the SCSI CD-ROM command set onto the IDE interface to per-
mit internal IDE CD-ROMs.

The command sets that were in SCSI-2 are partitioned across several
SCSI-3 command set documents near the top of the chart in Figure 2.1.
Enhancements are being made, but most of the changes are evolutionary so
old software continues to run with the new hardware. 

Two SCSI-2 command sets are not included in the SCSI-3 standards: 
Scanner Devices and Communications Devices. If you were building one of these
devices for SCSI-3, you would need to refer to SCSI-2 for the command set. 

Also, SCSI-3 offers several new command sets: 

• The SCSI-3 Controller Commands (SCC) and the SCSI Controller Commands-2
(SCC-2) are new command sets for RAID controllers.

• The Reduced Block Commands (RBC) is a greatly simplified command set
(as compared to SBC) for disk drives.

• The Multimedia Commands-2 (MMC-2) adds DVD support to the CD-ROM
command set.

• The SCSI Enclosure Services (SES) defines a command set for communicating
with an enclosure that holds disk drives or other devices. In high- availability
systems, SES allows the system to find out the status of power supplies, fans,
and so on. 
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Is SCSI-3 Done Yet?

People not familiar with the SCSI-3 architecture and the standards process often
ask this question. Of course, each draft standard goes through the standards
approval process individually, so one cannot name a single specific date. Most
SCSI-3 standards, including SBC, SMC, MMC, SCC, SCC-2, SES, SPC, SAM, SPI,
SIP, Fast-20, SPI-2, SBP-2, FCP, and the six SSA standards are approved ANSI
standards. Most of the others are nearing completion of their development
phases that will be followed by approval phase, which usually takes about nine
months. The fact is that manufacturers rarely wait for final ANSI approval before
starting product development. Although SCSI-2 is still often referenced, most
SCSI products shipping today use at least some of the features documented in
the SCSI-3 standards.



3
S C S I  A N A T O M Y

Before venturing deep into the heart of
connecting and configuring SCSI devices,

you should know some of the basics of SCSI
technology. Once we’ve cut through the morass

of techno-babble, we hope you’ll find that the prin-
ciples behind the way SCSI works are actually quite
easy to understand.

SCSI Devices Can Be Initiators or Targets

Although the different kinds of SCSI devices are numerous — such as interface
cards, hard disks, CD-ROMs, and scanners — all of them fall into two funda-
mental categories: initiators and targets. The initiator device is also called the
host, and it starts or initiates device-to-device communication. The target
device receives the communication from the initiator and responds. For
example, when reading a file from a SCSI hard disk, the SCSI interface card
(the initiator) requests data from the SCSI hard disk, and the hard disk (the
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target) responds to the request by sending the data. This is the most common
initiator–target interaction in a SCSI system. 

In general, the SCSI host adapter card will be the initiator on the bus.
Most of your other devices will probably be targets.

SCSI peripherals can act both as initiators and as targets. For example,
if you were to use the SCSI Copy command to copy data from one SCSI hard
disk to another, the disk that holds the data to be copied (the source disk)
acts as the initiator, and the hard disk that receives the file is the target. 

N O T E To avoid confusion, I want to point out that operating systems do not use the Copy 
command to copy data from one disk to another. In general, the data is read from the
source drive into memory and then written from memory to the destination drive. This
may seem inefficient, but it is necessary to implement the file systems that we all know
and love. Without this convenience, you would need to remember the block numbers on
the disk that your data is stored in! I think you’ll agree that this convenience is worth 
a little inefficiency.

SCSI systems can have up to eight devices connected in a daisy chain (16-bit
Wide SCSI can have up to sixteen devices). These devices can be any combina-
tion of initiators and targets, but at least one must be an initiator and one a
target in order to have a useful system. Typically, a system will have one host
adapter card and one or more peripheral devices, such as hard disks and 
CD-ROM drives.

SCSI IDs and LUNs Identify Individual SCSI Devices

If you have a system with only one initiator and one target, you have a pretty
simple system — no confusion here. But what happens if you have one initiator
and more than one target? How do you tell one target from another? For
example, if you’ve hooked three hard disks — E, F, and G — onto the bus and
want to talk to F, how do you send the command to F, bypassing E and stopping
before G?

SCSI’s answer is to give each device on the SCSI bus, including the SCSI
host adapter, a kind of unique identification called a SCSI ID. These IDs, or
addresses, are a lot like house numbers in a street address, which identify each
house uniquely so that the mail gets to the right place. Without this identifica-
tion, there would be no way to know where to send commands and data along
the bus and no way to direct signals to a specific device. 

Every SCSI device is assigned its own unique SCSI ID number. In our
example above, hard disk E might get ID 2, hard disk F might have ID 3, and
hard disk G could get ID 4. Given that SCSI-1 and SCSI-2 allow you to attach
up to eight SCSI devices on the bus, you can have eight possible SCSI IDs.
These SCSI IDs range from 0 to 7, counting 0 as the first number. Note that
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16-bit Wide SCSI allows a maximum of 16 devices, with IDs ranging from 0 to
15; and 32-bit Wide SCSI allows for 32 devices, ranging from 0 to 31.

Ah, the Mysteries of LUNs

If you’ve been working with SCSI, then you may have encountered LUNs (logical
unit numbers). LUNs can be really confusing, but don’t fret. They’re similar to
SCSI IDs in that they identify SCSI devices. The difference between LUNs and
SCSI IDs, though, is that LUNs represent devices within devices; they’re divisions
within IDs. The way this works in practice is that every device ID, from 0 to 7,
can have up to 8 LUNs (64 LUNs in SCSI-3), also numbered 0 to 7 (0 to 63 in
SCSI-3), for a total of eight subdevices within each ID. LUNs give SCSI a certain
added flexibility.

If you were a device manufacturer and wanted to allow your customers to
have more than eight devices on a SCSI bus, you consider using Wide SCSI,
which allows up to 16 devices (because it uses a 16-bit bus instead of regular
SCSI’s 8-bit bus). But that’s not the only alternative. You could also make your
device respond to a single device ID but have each subdevice device respond
to a different LUN for that ID. So, for example, three hard drives, labeled E,
F, and G, could be put together into one drive case and assigned SCSI ID 2,
but each drive would have a different LUN number: drive E might be LUN 0,
drive F might be LUN 1, and drive G might be LUN 2. This is what is done in
RAID systems. We’ll talk more about RAIDs in Chapter 10.

N O T E The sad fact is that a SCSI user cannot independently decide to use LUNs for some purpose.
The hardware needs to be designed with this in mind. Also, LUNs are so seldom used
that many host adapters don’t check for them by default — a practice that speeds up the
bus scanning process and saves a little memory. If you have a device that uses LUNs
(like a CD-ROM changer), you may need to enable LUN support in the host adapter
BIOS or device driver.

The SCSI Bus Allows Communication Between Your 
Computer and Your SCSI Devices

Once you have an initiator and a target identified, you have to provide a means
for communicating between them so the devices may send and receive com-
mands and data.

Cables are the answer here. When you connect a cable between the two
devices, you provide a bus or pathway between them. This pathway is the SCSI
bus, and it is the communication channel between all SCSI devices. The SCSI
bus begins at one end of the cable, which is usually attached to a target device,
and ends at the other end of the cable, which is usually attached to the SCSI
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host adapter card. We’ll go into more detail about using connectors and cabling
in Chapter 5.

A SCSI bus with one initiator and one target might look like that in 
Figure 3.1.

Types of SCSI Buses

SCSI buses come in two electrical types: single-ended and differential. The essential
difference between the two is that, on a single-ended bus, the devices signal each
other over one wire (and a ground reference), whereas on a differential SCSI
bus, the devices communicate over a pair of wires per signal.

Differential SCSI gets its name from the fact that it subtracts (takes the
difference) between the two wires for each signal. When compared with differ-
ential SCSI, single-ended communication is relatively inexpensive, and it’s fine
for short distances. Differential SCSI is more expensive than single-ended SCSI,
but it allows your system to communicate over longer distances.

Single-Ended SCSI Is Cheap, and It’s Fine for Short Distances

Most SCSI systems use a single-ended bus, which is a bus with only one wire
(plus a ground reference) per signal. Single-ended buses are the most eco-
nomical way to communicate between devices, because the electronics used 
to send and receive the signals are very simple and inexpensive. Single-ended
buses provide high-speed communication for short distances (see Table 3.1
for maximum lengths allowed). The maximum length of the single-ended bus
cable for Fast SCSI is shorter than that for regular SCSI, because Fast SCSI is
more error-prone than regular SCSI. The longer the cable, the greater the
chance of introducing errors into the signal, so the Fast SCSI bus cable is kept
short. Put another way, the faster the signals on the bus are, the harder it is to
distinguish them from noise.

Figure 3.1: A Typical SCSI Bus

Initiator Bus Target

Terminator
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Differential SCSI Allows Communication over Longer Distances

When you want to go beyond the maximum distance allowed by single-ended
SCSI, you risk encountering signal loss and noise problems due to the
extended length of the cable. Differential SCSI offers an alternative to single-
ended SCSI when you want a system to communicate over greater distances.
The differential SCSI bus carries commands and data over pairs of wires, tak-
ing the difference in voltage between each of the two wires (see the sidebar
entitled “The Differences Between Single-Ended and Differential SCSI” for
more information on this process). 

Because the subtraction process also subtracts off any noise that is the
same on the two signals, differential SCSI extends the maximum bus cable
length to 25 meters (about 82 feet).

THE DIFFERENCES BETWEEN SINGLE-ENDED

AND DIFFERENTIAL SCSI

Table 3.1 illustrates the differences between single-ended and differential SCSI
by comparing a 50-pin cable for each. In the single-ended configuration, wires
26 through 50 carry signals between devices. Wires 1 through 25 are ground
returns. Because signals are present on only one set of wires, information is
interpreted by the Voltage (the strength of the signal) on the wire relative to
ground. Unfortunately, electrical noise from the outside world can cause the
voltage to fluctuate, resulting in corrupted data.

In the differential configuration, each signal is sent on two wires. The infor-
mation is interpreted by the difference in voltage between the wires, not as the
voltage of the signal on a single wire relative to ground. When noise interferes
with the signal in this bus configuration, both wires are disturbed equally.
However, because the noise on one wire is the same as the noise on the other
wire and both are affected equally, the difference in Voltage is zero. The result
is that the device receives the information free of noise.

Don’t worry about the details in Table 3.1, but notice that the wires in a
single-ended bus are used differently than the wires in a differential bus and
consequently the two cannot coexist. You must have single-ended SCSI devices
on a single-ended SCSI bus and differential SCSI devices on a differential SCSI
bus. You cannot have single-ended SCSI devices connected to differential SCSI
devices. In LVD, the signals were aligned with the single-ended signals so interop-
eration between the two signaling standards would not be a problem; avoiding
the confusion that occurred with HVD and single-ended being connected.
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Table 3.1: Single-Ended versus Differential SCSI 50-pin Cables

Single-Ended Differential

Pin Signal Pin Signal Pin  Signal Pin Signal
1 GROUND 26 D0– 1 GROUND 26 GROUND

2 GROUND 27 D1– 2 D0+ 27 D0–

3 GROUND 28 D2– 3 D1+ 28 D1–

4 GROUND 29 D3– 4 D2+ 29 D2–

5 GROUND 30 D4– 5 D3+ 30 D3–

6 GROUND 31 D5– 6 D4+ 31 D4–

7 GROUND 32 D6– 7 D5+ 32 D5–

8 GROUND 33 D7– 8 D6+ 33 D6–

9 GROUND 34 DPAR– 9 D7+ 34 D7–

10 GROUND 35 GROUND 10 DPAR+ 35 DPAR–

11 GROUND 36 GROUND 11 DIFFSENS 36 GROUND

12 RESERVED 37 RESERVED 12 RESERVED 37 RESERVED

13 OPEN 38 TERMPWR 13 TERMPWR 38 TERMPWR

14 RESERVED 39 RESERVED 14 RESERVED 39 RESERVED

15 GROUND 40 ATN– 15 ATN+ 40 ATN–

16 GROUND 41 ATN– 16 GROUND 41 GROUND

17 GROUND 42 GROUND 17 BSY+ 42 BSY–

18 GROUND 43 BSY– 18 ACK+ 43 ACK–

19 GROUND 44 ACK– 19 RST+ 44 RST–

20 GROUND 45 RST– 20 MSG+ 45 MSG–

21 GROUND 46 MSG– 21 SEL+ 46 SEL–

22 GROUND 47 SEL– 22 C/D+ 47 C/D–

23 GROUND 48 C/D– 23 REQ+ 48 REQ–

24 GROUND 49 REQ–- 24 I/O+ 49 I/O–

25 GROUND 50 I/O– 25 GROUND 50 GROUND
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Low Voltage Differential

So far when we mentioned differential, we have been referring to what is now
known as High Voltage Differential (HVD). From here on, we will distinguish
HVD from low voltage differential (LVD), which is a new signaling standard
introduced by SCSI-3 (SPI-2).

As SCSI speeds got faster and faster, the allowable length of its cabling got
shorter and shorter. Using differential bus driver chips allowed longer buses,
but greatly increased the cost of both the host adapters and drives, especially
for Wide SCSI, which requires 27 bus drivers. This is because the HVD bus
drivers couldn’t be integrated into the SCSI protocol chips because of the
amount of power dissipated by them. Also the higher speeds made it increasingly
important that the propagation delays in all the bus drivers be matched quite
accurately. What to do, what to do? 

The T10 Technical Committee decided on a compromise. They came up
with an interface that had the advantage of differential signaling, but with low
enough power dissipation that the bus drivers could be integrated into LSI chips.
Also, putting all the bus drivers on the same piece of silicon helps to match
their speeds! To make it even better, they decreed that the devices using this
new LVD interface should be able to determine whether all the devices on the
bus are able to use LVD or switch to single-ended mode to remain compatible. 

As a result, LVD devices go by the Voltage they see on the DIFF SENSE
signal to decide whether any single-ended devices are present. If the Voltage is
less than .6 V, there are single-ended devices; if it’s between .7 V and 1.9 V, it’s
all LVD; and if it’s over 2.2 V, there are HVD devices present. If HVD devices
are present, the LVD device shuts off its bus drivers to avoid damage. Wow!
That’s one less thing we need to worry about when connecting things up.
Starting with Fast-40 devices, this LVD interface became standard. LVD has
been designed to accommodate devices as fast as 320 MHz, so we can expect
to see more of these devices appearing in the future. 

N O T E Single-ended SCSI is based on sending a single signal, whereas differential SCSI takes
the difference between two signals. As a result, the two cannot coexist. You must have
single-ended SCSI devices on a single-ended SCSI bus and HVD SCSI devices on a HVD
SCSI bus. You cannot have single-ended SCSI devices (or even LVD devices) connected
to HVD SCSI devices. LVD bus driver chips are able to identify a single-ended bus and
switch modes to accommodate it, but are not compatible with HVD. You can expect
HVD equipment to be phased out as LVD replaces it.

SCSI Cables and Connectors

Cables are the physical makeup of the SCSI bus. As a result, they become the
lifeline of the entire system. To ensure that the correct cables are used to build
the bus, SCSI-2 and SCSI-3 define minimum requirements for the number of
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wires needed as well as the electrical properties of the cable. SCSI systems can
utilize cabling both inside and outside the device cabinet (or case). Internal
cables are typically flat, unshielded ribbon cables; external cables are generally
round and shielded. Because flat cables can cause excessive cross-talk on dif-
ferential signals, newer LVD systems use round cables internally.

Tables 3.2 and 3.3 summarize the number of wires, maximum transfer
rate, maximum length, and type of cables for the different SCSI standards.
Note in Table 3.2 that, for SCSI-3 32-bit, you need to use two cables, P and Q,
each with 68 wires. This is why you don’t see any 32-bit devices for sale. Table
3.3 lists the maximum and minimum lengths for different parts of the bus for
each SCSI standard. 

Adapters

As mentioned above, there are two kinds of SCSI cables, 50-pin and 68-pin. If
you look at the two quickly you may confuse which one is considered “wide.”
The 68-pin ribbon cable is actually narrower than the 50-pin ribbon because
the wires in the 68-pin cable are spaced only half as far apart. So the “width” 

CABLE SPECIFICATIONS

This section is for the technically curious. Most people will buy their cables from
a vendor who hopefully has read and understood the SCSI specs.

The most common internal cable is the 50-conductor (which means it has
50 wires) flat-ribbon cable, which typically uses 28 AWG (the wire’s gauge or
diameter) wires, with 0.050 inch (1.3mm) between the centers of each wire.
Typical free-air characteristic impedance for this type of cable runs about 105
ohms. This cable is fine for single-ended systems, but should be avoided for
HVD and LVD systems. Wide internal cables have 68 conductors, which are
spaced only 0.025 inch (0.6mm) apart. So actually Wide cables are physi-
cally narrower than narrow cables. Are you still with me? :-)

External shielded 8-bit SCSI cables typically contain 25 (or 34) twisted
pairs of 28 AWG (50- [or 68-] conductor) with an overall foil/braid composite
shield. Generally, round shielded cable, with an impedance of 90 to 95 ohms,
is recommended.

The SCSI-2 standard required that systems using the Fast10 synchronous
data transfer option use cables consisting of 26 AWG or 28 AWG conductors,
with a characteristic impedance between 90 and 132 ohms. This was really
too loose a tolerance for Fast-20 or Fast-40 buses. SCSI-3 therefore tightened
them in the SPI-2 document, which now requires an impedance of 90 to 95 ohms
and specifies that the REQ and ACK signals should be kept closer to 90 ohms.
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Table 3.2: SCSI Cable Reference Table

Bus Maximum Transfer Number of
Standard Width Rate (MB/sec) Cable Type Conductors

SCSI-1 8-bit 4 Not specified Not specified

SCSI-2 8-bit 5 A 50
16-bit 10 B 68

SCSI-3 16-bit 80 P 68
Parallel

Interface 32-bit 60 P and Q 68 and 68
(SPI)

Note: In SPI-3, support for the Q-cable has been dropped.

Table 3.3: SCSI Bus Length Specifications

Differential
Bus Type Property Single-Ended (HVD) LVD

Sync Maximum 6 meters 25 meters 12 meters 
(5 MHz) bus length (20 feet) (82 feet) (39 feet)

Fast-10 Maximum 3 meters 25 meters 12 meters 
bus length (10 feet) (82 feet) (39 feet)

Fast-20 Maximum 1.5 meters 25 meters 12 meters 
(Ultra) bus length (5 feet) (82 feet) (39 feet)

Fast-40 Maximum Don’t do it 25 meters 12 meters 
(Ultra2) bus length (82 feet) (39 feet)

spec. but not 
available**

Fast-80 Maximum Don’t do it Don’t do it 12 meters 
(Ultra3) bus length (39 feet)

All Maximum  0.1 meter 0.1 meter 0.2 meter
stub* (4 inches) (4 inches) (8 inches)
length

All Minimum  0.3 meter n/a n/a
stub* (12 inches)
spacing

* A section of cable that runs between the device and the bus. Considered a defect in the bus, stubs should be as short as
possible.

** Although the SCSI spec. defines HVD transceivers for Fast-40, none are manufactured.
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used in this context concerns the number of pins, not the measured width, of
the cable.

The next thing that may occur to you is “If I get a 68-pin Wide host adapter
and a Wide disk drive, how am I going to be able to connect my existing 50-pin
narrow CD-ROM drive to the same bus?” The answer is adapters.

Additionally, there is another consideration: If you adapt the 16-bit Wide
bus down to 8-bit narrow, you need to terminate the upper half of the bus
where the adapting takes place. You will see adapters that say they contain 
“Hi-9 termination,” which means that the high order bits and their parity bit
will be terminated right in the adapter. This is what would typically be needed
if your host adapter has an external connector on its back rail that is 68-pin
and you want to connect several narrow devices, like CD-ROMs and scanners,
that are external to the system case. This type of adapter would be called a 68-pin
male to 50-pin female. The 50-pin side is usually either a Centronics type or
High Density type.

If a narrow device, like a CD-ROM for instance, will be placed internal to
the system, and connected to the 68-pin cable, you would use a 68-pin male 
to 50-pin female IDC adapter that doesn’t have any terminators in it, and you
would plug it directly onto the back of the narrow device. Then the adapter
can plug directly onto an available connector on the internal 68-pin cable.

SCA Adapters

Another type of connector you might encounter is the 80-pin SCA (single 
connector attachment). There are no host adapters with 80-pin connectors.
Drives with this type of connector are designed to be plugged into bays in
“hot-swap” cabinets. A common use for this type of mounting is in RAID arrays,
where you can replace defective drives without even powering down the system.
Sun Microsystems developed this connector arrangement, and it was standard-
ized by the Small Form Factor (SFF) Committee. SCA just combines the normal
Wide SCSI signals with the four ID bits and power supply connections. In
addition, SCA drives usually lack built-in terminators, so other arrangements
will need to be made for termination. SCA Adapters are available that bring
out these connections separately, so you can connect an SCA drive to a regu-
lar SCSI bus. 

Terminating the SCSI Bus

If there’s one aspect of SCSI that always raises the hair on even the wisest tech-
nician’s head, that honor must go, unequivocally, to properly terminating the
SCSI bus. This section covers the types of termination. How to terminate the bus
will be discussed further in Chapter 5.
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The SCSI Bus Is a Transmission Line

(Drum roll, please. . . .) 
I am now going to attempt to explain, in a few paragraphs, the technical

reasons that a SCSI bus needs terminations. This discussion will require mention
of radio frequency transmission line theory and similar heavy-duty stuff that
most computer people (even computer engineers) have never studied. If this
sounds too scary, just skip to the next section (on page 44), where I’ll explain
it in simpler terms.

A transmission line is a pair of wires, parallel to each other, used to send a
signal from one place to another. Impedance is the ratio of voltage to current in
a circuit. The characteristic impedance of a transmission line is the result of the
distributed inductance of the wire it’s made of and the distributed capacitance
caused by the proximity of the two wires to each other.

The mathematical formula for the characteristic impedance of an ideal
transmission line (one where the wires have zero resistance and the insulation
between the wires has zero dissipation) is:

Z0 = 276 log10 (2D / d) Ohms

where

D = the center-to-center distance between the two wires 
d = the diameter of each wire

A digital signal (a change in voltage from 0 volts to 3 volts, for example) can
be thought of as an incident wave. A transmission line of infinite length does
not need to be terminated, because the incident wave will never reflect back
from anything. A finite transmission line needs a terminating resistance at the
end to absorb the signal wave so it will not reflect.

The effect of a reflection returning from the end of a transmission line is
that the reflected voltage adds to the forward voltage and distorts the wave form. 

Digital circuits require that the signal transitions be sharp rises or falls in
voltage. A signal distorted by reflection — in which the voltage comes part way
down, stays the same for a while, and then falls the rest of the way — confuses
the circuit that’s trying to determine whether it sees a 1 or a 0. Many types of
signal distortion can happen because of reflected signals combining with forward
moving ones.

Because the SCSI bus has devices (any one of which can generate signals)
all along it and not at just one end, both ends need to be terminated — even
on a “single-ended” bus. :-) 
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T H E  B O T T O M A finite transmission line must be terminated using a resistance equal in value to its 
L I N E characteristic impedance to keep reflected waves from causing distortion in forward waves.

What’s That He Said?

Let’s try that again without the math and electronic theory.
Because the SCSI bus is a chain of devices with definite ends, the two ends

of the bus must be capped off or terminated. Every wire, even though it con-
ducts, presents a slight impediment to the passing of electrical signals. The
SCSI bus, too, has a specific impedance; but when the signals reach the end 
of the cables that make up the bus, they encounter the air, which has very
high impedance and acts as a wall. (That’s why the electricity doesn’t jump
out of your wall outlet: The air keeps it in.) The only problem with the high
impedance at the end of the bus for electrical signals is that any signal coming
down the bus is reflected back in the other direction once it hits this barrier.
(Although this is good in racquetball, it’s bad in SCSI.) That’s where termina-
tion comes in.

Termination is an electrical requirement that must be met in order to pre-
vent the reflection of signals when they reach the ends of the bus. You terminate
the bus by attaching a resistor (the terminator) to the physical ends of the SCSI
bus. The terminator provides an impedance that matches the cable’s, thereby
preventing the signal from bouncing back. 

The terminators on a single-ended SCSI bus serve a second purpose, too.
The terminator resistors act as a supply of current to pull the voltage on idle
signals up to about +3 volts. Yes, you heard me correctly. The SCSI bus is active
low. A “one” (asserted signal) is represented by pulling the bus signal line toward
ground. The terminators get this current from the SCSI bus by way of the ter-
mination power (TERMPWR) wire on the bus. (You’ll see this wire in the
Cabling and Connector Pin Out diagrams in Appendix B.) 

N O T E This TERMPWR Voltage must be provided by at least one device on the SCSI bus. In
SCSI-2 and beyond, it is specified that host adapters must supply TERMPWR. One
exception to this that I have seen is PCMCIA host adapters that plug into laptop com-
puters. The manufacturers of these apparently feel that portable computers, which typically
run on battery power, cannot afford to supply TERMPWR. Also, the connector pins on
a PCMCIA card are too thin to carry the current required by terminators. When attach-
ing SCSI devices to laptop systems, set (usually with an internal switch or jumper) one
of the external devices to supply TERMPWR and everyone will be happy.

There are three methods for terminating the bus: passive, active, and forced
perfect termination. 
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Passive Termination

Passive termination is the oldest method of termination and was defined in the
specifications for SCSI-1. 

A passive SCSI terminator is a set of 18 voltage dividers, each containing two
resistors. The resistor pairs have values such that the voltage at their center
junction will be about 3.3 volts when TERMPWR is about 5 volts. That is, for
each signal there is a 220-ohm resistor pulling the signal up to TERMPWR and
a 330-ohm resistor pulling it down to ground.

Any two resistor values having the ratio of 2/3 and connected to a 5-volt
source, would give 3.3 volts at their junction, but these values are chosen
because, when placed in parallel (as they appear to be on the SCSI bus), their
combined value — (R1 x R2) / (R1 + R2) — becomes 132 ohms. This is pretty
close to the value specified for the cable that SCSI buses are made of (but not
as close as we’d like, as we’ll soon see)!

Three fundamental problems occur using passive terminators:

• Much of the power drawn from TERMPWR (.16 Amps idle, to a max. 
of .40 Amps per terminator) is being wasted in the voltage dividers.

• If the TERMPWR voltage isn’t high enough or has noise on it, that 
problem will be passed on to the SCSI signals being terminated.

• The 132-ohm impedance they present turns out not to match typical
cable as well as it should.

Active Termination

Active termination takes a different approach to providing a resistance equal to
the transmission line’s impedance. Instead of a pair of resistors at the end of
the bus, an active terminator has only one. On each of the 18 (or 27 for Wide)
signals is a 110-ohm resistor connected to a 2.8-volt power supply. The 2.8
volts is provided by putting an active voltage regulator in series with the
TERMPWR line. Because of this active regulation, the power that each signal
gets from the TERMPWR source is more stable and noise-free than is possible
with passive termination. Also, it has been found that 110 ohms is closer to the
real impedance of most of the cables being manufactured.

N O T E Active terminators are highly recommended when using any devices faster than 5 MHz.
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Forced Perfect Termination (FPT)

Forced perfect termination is the most complex of the terminators. Beyond merely
stabilizing the power applied to the terminator, it can minimize distortion
caused by reflections. It is usually used in high-speed SCSI systems that have
many different devices, cables, and terminator types. The complexity of such 
a system can introduce many impedance mismatches that will degrade the sig-
nals sent through the bus. FPT actively compensates for these impedance
variations by means of diode switching and biasing to clamp the voltage levels
of the signals so they go no higher than +3 volts nor any lower than ground.
There is a lot of controversy surrounding FPT termination: Although it can
permit a complex bus to work that would otherwise fail, it technically violates
the SCSI standards by supplying more current than allowed under certain con-
ditions. This could cause SCSI protocol chips to fail prematurely. Figure 3.2
shows a schematic of a typical FPT.

Don’t Forget Differential

Differential buses use passive and active terminators that have a different
arrangement of resistors to accommodate the fact that the signaling is done
on two wires instead of one. As with everything else pertaining to HVD, you
cannot mix differential terminators with any other kind.

As if we didn’t already have enough different terminators already, now we
need a new type! Earlier in this chapter we mentioned a new differential inter-
face called Low Voltage Differential (LVD). LVD drives don’t have terminators
built in as do most single-ended drives. You need to put an LVD terminator
on an unused connector at the end of the cable. This technique can also be
used with single-ended drives and eliminates the need to check all the devices

PASSIVE TERMINATION IN DETAIL

SCSI-1 (Alternative-1 in SCSI-2) defined termination by simply attaching a 220-
ohm resistor between TERMPWR and the signal line and a 330-ohm resistor
between the signal line and ground. The resulting impedance of the terminator
is 132 ohms. Because this circuit doesn’t act on the bus in any way, it is referred
to as passive termination. This is the most common type of bus termination in
use. Although this method is inexpensive to build, it draws a lot of power from
the host adapter. Also, any fluctuation in the power supplied by the host adapter
will cause fluctuations in the signal lines of the bus, resulting in data errors.

In order to maintain the largest possible high-level noise margin, it is
advisable to use resistors with a maximum tolerance of 2 percent. In worst-case
conditions, the difference could easily add up to 140 mV (milliVolts). Worst case
occurs when the pull-up resistor is high in value and the pull-down resistor is low.
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ACTIVE TERMINATION IN DETAIL

In order to solve the above mentioned problems (which is especially important
on SCSI buses running at 10 MHz and faster) use active termination. This type
of termination is known as Alternative-2 in SCSI-2 and uses only a 110-ohm
resistor on each signal line connected to a Voltage regulator. This regulator
actively adjusts its output to maintain 2.85 V, thereby offering partial immunity
to voltage drops on the TERMPWR line.

By using 110-ohm resistors, the terminator’s impedance is a much closer
match to the impedance of the cable (105 to 108 ohms) than passive termina-
tion (132 ohms). A closer impedance match between terminators and cables
minimizes reflections at the ends of the bus to reduce data errors.

The lower resistor values in the terminator also result in higher pull-down
currents. As a result, actively terminated buses don’t suffer from rising (“stair-
case”) waveforms commonly seen on weakly driven transmission lines.

Studies by Kurt Chan and Gordon Matheson, both of Hewlett-Packard,
have shown that mixing termination types will yield better performance than
using passive termination alone. Wherever possible, use SCSI devices that employ
active termination. If necessary, add stand-alone active terminators and disable
the internal terminators (usually by setting a switch or jumper in the device).

Figure 3.2: Schematic of Forced Perfect Terminator (FPT)
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to see which ones have their terminator enabled. You just terminate the ends
of the cable and can move devices around later without worry. Figure 3.3 shows
a schematic for differential terminator.

Figure 3.3: Schematic of Differential (HVD) Terminator
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HOW PARITY CHECKING WORKS

When a device receives a byte of data, it can check the data for errors by
counting the number of bits that are set to 1. Because SCSI uses odd parity, the
number of bits set to 1, including the parity bit, must always be odd. For exam-
ple, the decimal value 35 in binary format is 00100011. Looking at this byte,
you see a total of three 1’s (an odd number of 1’s). Therefore, the parity bit for
this byte is 0 so that the total number of 1’s is still odd. The data actually sent is
therefore 001000110. The trailing 0 is the parity bit. When the receiving
device gets this data, it counts the number of 1’s in the nine data bits, sees that
the total is odd, and accepts it as correct.

If the number of 1’s received isn’t odd, the device knows that an error has
occurred in the data transmission, and it asks to have the data sent again.
However, parity checking is not foolproof. As you can see in the last rows of
Table 3.4, as long as there is an odd number of 1’s, it doesn’t matter if one,
three, five, seven, or nine 1’s are received—an error is not generated. This is
definitely a limitation of parity checking. But because it’s fast and inexpensive
to implement, it provides a satisfactory level of security. IDE and EIDE don’t
offer any error checking of the data that’s transmitted over the cable.
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Using Parity Checking

When working with SCSI systems, you’ll probably encounter the term parity
checking. Parity checking is built into all SCSI-2 devices, and it will be part of all
future SCSI devices. It’s not always present in older, SCSI-1 devices, because
parity checking was an option in the SCSI-1 specification. So, if you have a
SCSI-1 device, be sure to check your manual to see whether your device sup-
ports parity checking.

Table 3.4: Odd Parity Checking (Odd Number of 1’s)

Data Value Number Odd Data Received Number 
(8 bits) of 1’s Parity (9 bits, includes of 1’s

Sent Bit parity bit as LSB) Received Error?

00100011 3 (odd) 0 001000110 3 (odd) No

00100011 3 (odd) 0 001010110 4 (even) Yes

00100011 3 (odd) 0 001011110 5 (odd) No

00100111 4 (even) 1 001001111 5 (odd) No

01111011 6 (even) 1 011110111 7 (odd) Yes

There are two types of parity, even and odd. In even parity, there is always an
even number of bits set to 1, including a reference bit called the parity bit. In odd
parity, there is always an odd number of bits set to 1, including the parity bit.

Briefly, parity checking is a simple and fast way to detect errors in the data
sent through the SCSI bus by (1) checking the number of 1’s carried in a byte
(eight bits) of data and (2) checking the parity bit. 

When you send eight bits of data, you count how many ones there are, and
you set the parity bit to either 0 or 1, depending on the type of parity being
used. (See the sidebar “How Parity Checking Works” and Table 3.4 for a detailed
explanation of setting the parity bit.) When the target receives the data, it counts
the number of bits that are set to 1. If the number of 1’s is odd when it should
be even or vice versa, the target knows that a data error has occurred, and it can
request that the device send the signal again.

SCSI uses odd parity, which means that the byte of data always contains an
odd number of bits set to 1. If there is an even number of 1’s, then something
went wrong with the data transfer. The parity bit is included with each byte of
data that is transferred. Thus, rather than sending eight bits of data with each
byte, nine bits are sent. The ninth bit is the parity bit.

Although parity checking is simple and effective, whether you’ll be able to
use it depends on the capabilities of all of your SCSI devices. All devices on the
bus must be able to perform parity checking in order for you to enable it. In 
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fact, if even one device lacks support for parity checking, you must turn parity
checking off on your host adapter. Otherwise, the one device that doesn’t set
the parity bit properly will cause errors, and your system won’t work properly.

Is Parity Really Enough?

As bus speeds continue to increase, the T10 Technical Committee is con-
cerned that simple parity checking may not catch all the errors that may
occur. Therefore, in SPI-3, they are adding CRC (Cyclic Redundancy Check)
to be used with Fast-80. 

Your SCSI Devices Can Communicate Either
Synchronously or Asynchronously 

SCSI devices have two methods of sending and receiving data between devices:
asynchronous and synchronous. Their names are clues to their methods of
operation. In asynchronous communication, every byte of data sent from initiator
to target must be acknowledged by the target, with a kind of return receipt.
Whereas this is a safer way to communicate, it’s also slower because the target
needs to send a receipt and the initiator needs to receive it before another byte
of data is sent, resulting in a delay in communication.

Synchronous communication also requires acknowledgment, but allows the
initiator to send many bytes without having to wait first for an “acknowledge”
for each byte from the target. So the initiator can send a whole stream of data,
and it doesn’t matter when the stream of receipts comes back. Thus, synchro-
nous communication is much faster than asynchronous, because instead of a
delay between each byte sent, a flood of data is sent, followed by a delay until
a flood of receipts comes back. In effect, you have one delay rather than a whole
bunch of delays.

Asynchronous Communication

SCSI devices communicate with the host adapter asynchronously by default.
Asynchronous “handshaking” ensures that the data reaches the target.
Because devices wait for a return receipt before sending another byte of data,
communication between devices sending and receiving at different speeds 
is possible.

For example, let’s say that your SCSI hard disk and host adapter need to
communicate with each other, but they send and receive data at very different
speeds: Your hard disk receives data much more slowly than your host adapter
can send it. If your hard disk were to keep sending data to your host adapter,
you shouldn’t have a problem because the host adapter can keep up. But
reverse the flow of information — assume it’s moving from the fast host adapter
to the slow hard disk — and you have a bottleneck. The host adapter dumps
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out data faster than the hard disk can receive it, and the transfer falls apart.
Asynchronous transfer mode provides the solution for the latter case.

With asynchronous transfers, the host adapter will wait for the hard disk to send
acknowledgment that it has received the data. Once the host adapter receives
this acknowledgment, it will send its next byte of data, and so on. Thus, asyn-
chronous negotiation allows for compatibility between devices despite variations
in communication speed. 

Because asynchronous transfer mode has this built-in “receipt requested”
feature, it’s also a great method for protecting the integrity of data, because
data is sent only after the previous data has been received successfully. But
because of the overhead of the return receipt process, the maximum speed
over the SCSI bus is reduced when using asynchronous transfer.

Synchronous Communication

To speed up the communication process over the bus, synchronous transfer
mode was included in the SCSI specification. “Synchronous” means that the
initiator can issue multiple requests without waiting for the target to acknowl-
edge each one. As a result, the overhead of transferring data is greatly reduced.
However, we have a new problem in the example of our host adapter sending
data faster than the hard disk can receive it. Because the acknowledgments
don’t have to be returned after every byte, how would the host adapter know
not to send data too quickly for the hard disk? Simple. Before a transfer is
going to take place, both devices must agree on the maximum data transfer
speed between them and on the number of bytes that can be sent before
receiving an acknowledge — a process called synchronous transfer negotiation.
For example, a synchronous transfer from host adapter to a hard disk would
be negotiated at the maximum speed of the hard disk, given that it’s the slower
device. Problem solved.

How do you know if your devices can communicate synchronously or only
asynchronously? Choosing the wrong method could lead to trouble with devices
that don’t support synchronous transfers. Synchronous transfer negotiation
takes care of this problem as well. Before a synchronous transfer is attempted,
the devices negotiate whether to use synchronous or asynchronous transfer
modes. If the target device can handle synchronous transfers, then synchronous
transfer mode is used. Otherwise, asynchronous mode is used for maximum
compatibility between the devices.

Disconnect/Reconnect

Even though SCSI provides features such as synchronous transfer mode, Fast
SCSI, and Wide SCSI to increase the performance of data transfers, all of its
attempts to speed up communication are for naught if you have to wait for the
bus to be available while other devices are seeking their heads or positioning
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their tape to prepare to send or receive data. To overcome this problem of
having to wait for devices to respond, SCSI offers disconnect/reconnect.

SCSI transfers data so quickly that, given the speed with which parts in 
a device can move, almost any device can become a time-waster. The simple
fact is that operations such as positioning hard disk heads, fast-forwarding or
rewinding tape cartridges, or changing CDs in a CD-ROM jukebox take a long
time (in terms of computer speed). In cases such as these, where the hardware
itself becomes the time-waster, the device can get off the bus to go about its
own work and stop holding up the works.

In the meantime, with the “otherwise occupied” device out of the way, other
SCSI devices can go about their business performing various operations, like
sending and receiving data, and so on. When the device finally has its act to-
gether and is ready, it reconnects to the host that gave it the command in the
first place and performs its data transfer. This feature is what gives SCSI its
excellent multitasking capability.

N O T E On an active SCSI bus, it’s not unusual to have several devices with operations pending
in a disconnected state, waiting to get their shot at the bus. By planning your system
carefully, you can improve performance by placing heavily used filesystems on different
drives so that operations to them can be overlapped as much as possible.

Consider the case in which you request a file from your tape backup. Because
the tape in the cartridge is very long, a considerable amount of time can be spent
fast-forwarding or rewinding the tape to a specific position in order to read a
file. Rather than tie up the SCSI bus while the tape drive whirrs away, the device
can disconnect from the bus so that you can still access hard drives and any
other SCSI devices attached to the bus, thus preventing devices from hogging
the communication channel. When the tape drive has found the file and is
ready to send, it reconnects to the bus and sends the file. Whew — what a relief!

Disconnect/reconnect is particularly important in multitasking environ-
ments, where more than one program might need to send and request data at
the same time. Because devices can disconnect during slow operations, programs
that are running concurrently within the multitasking environment don’t have
to wait to access other devices on the bus while one device is busy. By using
disconnect/reconnect in a multitasking environment, the bus can be shared
by many devices for greater efficiency and ensure that the bus is not tied up
waiting for a device to be ready.
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N O T E Although SCSI’s disconnect/reconnect feature allows you to overlap the use of devices in
multitasking environments (like Windows NT, OS/2, and UNIX), IDE and EIDE are
poor at multitasking because they lack any similar feature.

Once More for Luck

Although the name may imply the contrary, a “single-ended” SCSI bus needs
terminators on both ends, as do HVD and LVD buses.
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A D D I N G  S C S I  T O  Y O U R  P C

In the first few chapters we’ve tried to give
you an idea of what SCSI is, explain why

you might want to use it in your computer,
and introduce some of the terminology and

technical issues. If you’ve read this far, we hope you’ve
decided to add SCSI to your PC. Your reason may
be one of several: you want the flexibility of SCSI;
you’ve got to have the ultimate in performance; or
maybe you need to install a type of device that’s
only available with a SCSI interface. 

Whatever the reason, the first thing you’ll need to do is select and install 
a SCSI host adapter card. So what are you going to get? Single-Ended, Differ-
ential, or Low Voltage Differential? Bus mastering or not? ISA? PCI? VLB bus?
Fast-10, Fast-20, Fast-40, or maybe Fibre Channel (for the high rollers)? And
then, of course, once you’ve bought the host adapter, you still have to install 
it and get it working. Do you know what interrupt to use? DMA channel? Port
address? Because none of these questions have a single answer that’s right for
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all installations, it’s important to understand the concepts behind the hardware
so that you can figure out what’s right for your system.

Types of SCSI Host Adapters for the PC

Before you go out and buy a host adapter, you need to know a few things about
your PC. Nowadays, PCs have different types of slots, and option cards will work
only in their own specific type of slots.

A Bus by Any Other Name . . . ISA, EISA, MCA,
VESA Local Bus, PCI, AGP

A bus is just a set of electronic signals that conform to a known specification to
allow the transfer of information across an electronic boundary in a computer.
You undoubtedly have heard of one or more of the following bus architectures:
ISA, EISA, MCA, VESA Local Bus, PCI, and AGP. Whereas SCSI is a bus for
transferring data between the computer and a device such as a hard disk, the
above-mentioned buses provide the means for sending data between the com-
puter’s CPU and its interface cards.

ISA, or industry-standard architecture, is the bus used on the original IBM
PC or PC/XT. It is an 8-bit bus running at a maximum data rate of 8 MHz, or
8 MB/sec—very slow by today’s standards. Upon introduction of the IBM PC/AT
and the 16-bit Intel 80286, the ISA bus was extended to support 16-bit data trans-
fers and 16-bit cards. However, the data rate stayed the same. This proved to
be a performance bottleneck once 32-bit (386, 486, and Pentium) computers
came on the scene, because their higher performance demanded more data
faster than the bus could send it.

IBM decided that the only way to increase the data rate performance
between the computer and plug-in cards was to totally redesign the bus. (IBM
also wanted to eliminate the plethora of PC clones.) The micro-channel architec-
ture (MCA) was developed to provide 32-bit data transfers at up to 33 MHz. But,
because it wasn’t compatible with existing ISA cards, the MCA standard fell by
the wayside.

In another attempt to improve performance, an extension to the ISA stan-
dard was developed. The enhanced industry-standard architecture (EISA, pronounced
EE-sa) provides 32-bit data transfers at up to 33 MHz, but it can also accept older
ISA cards. The cost of EISA was high, thus restricting its use to expensive net-
work servers and users with large pocketbooks.

Later the Video Electronics Standards Association (VESA, pronounced VEE-sa)
stepped in and proposed an inexpensive 32-bit bus that could be used in 
conjunction with ISA. The VESA local bus (VL-Bus, or VLB) allows data to be
transferred at up to 40 MHz between the computer and VL-Bus–compatible
cards. (A 50 MHz version was also defined but was problematic.) Although 
VL-Bus is limited to two or three slots for interface cards, it was quite popular
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on 386 and 486 computers because of its speed, low cost, and compatibility with
existing ISA cards. With the coming of Pentium class CPUs, VLB options slots
faded from inclusion in new systems.

Most recently, Intel introduced PCI to remove the bottleneck between the
CPU and the peripheral cards. This new bus offers 32-bit or 64-bit data transfers
at 33 MHz, and it supports more slots than VL-Bus. The maximum number of
card slots depends on the manufacturer’s design. But beware: PCI is not com-
patible with existing ISA, EISA, or VLB cards, so you’ll need to buy new cards
for a PCI machine. 

During the transition period from ISA and VL-Bus to PCI, many machines
had both ISA/VL-Bus and PCI slots so users wouldn’t have to throw away their
old cards. PCI is the bus of choice if you’re running a Pentium or faster machine,
because the speed of the computer won’t be bogged down waiting for data to
come over a sluggish bus.

AGP is a new bus standard that is intended specifically for video cards.
There is typically only one AGP slot per motherboard. SCSI host adapters are
not available for AGP bus slots.

N O T E Many motherboard manufacturers are beginning to include SCSI host adapter logic on
the motherboard. If you buy a motherboard with built-in SCSI, you won’t need to buy a
separate SCSI host adapter card. If you’re considering one of these motherboards, be sure
to ask around (check out the hardware forums online if you can) to see which combina-
tions from which manufacturers are working well for people.

The Decisions

As with most things in the world of PCs, a trade-off exists between price and
performance when it comes to SCSI host adapters. You can expect to pay
more for a high-speed PCI host adapter than you would for a slower ISA one.
However, it doesn’t do any good to install an adapter card that supports DMA
rates faster than the bus allows. 

For example, the Adaptec 1542CF supports DMA bus mastering speeds of
up to 10 MB/sec, which is fast enough for Fast10 SCSI; but because the ISA
architecture supports only 5 MB/sec DMA throughput, there would be a bot-
tleneck at the bus, and your system wouldn’t be able to take advantage of the
higher transfer rate. 

Caching Host Adapter Cards Can
Increase Performance

Caching SCSI host adapter cards can improve your system performance by
increasing the disk I/O performance. Caching works by keeping a copy of cer-
tain data segments in memory so that they are immediately handy if the CPU
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asks for them. Because it’s faster for the system to retrieve a block of data from
memory than to read it off the disk, caching results in faster data transfer.
Caching data that was read from a device is called read caching.

A cache can also be used to improve performance by postponing the writing
of changed blocks of data to disk. This process is known as write caching.
Although write caching doesn’t usually significantly decrease the number of
disk accesses, it can compel the accesses to take place when the system isn’t
busy doing something else. When the system is idle (waiting for you to figure
out where your mouse cursor just went, for example) the blocks in the cache
that are marked as changed (or “dirty”) are written (or “flushed”) out to disk.

Because these changed blocks of data are written to disk only when the
CPU is idle, the CPU is free to finish other processing tasks, and idle time is
minimized. However, because the writing of data to the disk is delayed, if power
fails before the data is written out, that changed data will be lost. This could
potentially result in filesystem corruption. This is one of the reasons you need
to shut down your system properly rather than simply turning off the power.
This situation might prompt you to invest in a UPS (Uninterruptable Power
Supply) backup for your computer so it has time to flush its cache when the
power goes out.

Software Caching Is Flexible

Caching can be maintained either through software or hardware. The advantage
of software caching is that, unlike a hardware cache, it doesn’t require dedicated
memory on the host adapter card. A software cache uses a portion of the system
memory to cache data, and you can adjust the size of the cache to suit your
needs. 

Most operating systems use software caching to increase disk performance,
and many caching host adapters simply duplicate the caching algorithms of the
operating system software. For example, UNIX and Novell are already heavily
software cached, and MSDOS comes with a software caching program called
SmartDrive (smartdrv.exe), which provides both read and write caching capa-
bilities. Windows 95 and 98 also cache certain filesystem data. A software disk
cache can dramatically increase its performance and minimize “thrashing” your
hard disk with repetitive reads and writes of the same data. 

Hardware Caching Can Duplicate Software Caching

Hardware caching is another form of caching that uses the host adapter as the
location of the cache. However, because the memory exists on the host adapter
card itself, you cannot use that memory for any purpose other than the cache.
Also, if you need more cache memory, you have to buy more memory specifi
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cally for that purpose. The benefit of a hardware cache, though, is that the
cache management and maintenance is performed by the host adapter card’s
own CPU, not the main system CPU. As a result, there’s no overhead when using
a hardware cache.

So, if a software cache is good and a hardware cache is good, why not use
both? Well, because using software-caching environments like UNIX, Novell,
Windows 95/98, or DOS with smartdrv.exe, along with a hardware cache in the
SCSI host adapter duplicates the caching algorithms. This double-caching of the
same data adds extra overhead, and it usually slows down the system.

Which Form of Caching Is Right for You?

Should you switch to a caching host adapter card if you’re already using software
caching? Not if yours is a single-user system. Single-user systems running MSDOS
and Windows and already using software caching won’t see much improvement
in disk performance with the extra cost of a hardware cache. The zero cost
(it’s included!) and flexibility of a software cache is the best solution. Also, single-
user systems generally have plenty of available idle time to write data to disk, so
you’d probably want to avoid write caching on your PC. 

On the other hand, a caching SCSI host adapter can give a big performance
boost if you’re building a multi-user system like a Novell fileserver. The reason
is that such a heavily loaded system may not have enough idle time for the
software cache to keep up with all the requests for disk access. This causes two
bad things to happen: First, as the system becomes more heavily loaded, the
software cache begins to fill up with dirty sectors waiting to be written to disk.
These sectors take up space in the software cache that could otherwise be used
for read caching — an operation at which the software cache is much more
effective. Second, the software cache flushing operations can begin to interfere
with other system activity as more users are added to the system and less idle
time results. In fact, when the system is under heavy loads with no idle time,
the benefit of soft- ware write caching completely disappears, and hardware
caching is an excellent alternative.

Some caching host adapters are specifically designed to work cooperatively
in software-caching environments like UNIX or Novell. These host adapters are
engineered to make the process of writing changed data blocks more efficient.
Installing one of these specially designed hardware caching host adapters in a
software caching system doesn’t eliminate the need for the operating system’s
cache buffers to flush the dirty blocks from cache to disk, but it improves the
efficiency and speed of this operation. The hardware cache receives the flushed
data in a fraction of the time it would take without hardware caching, and it
then proceeds to copy the data back to disk concurrently without interfering
with other system activity.
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One Bus or Two?

If you expect to have many devices on your system, you might want to consider
getting a dual host adapter card. Even though SCSI protocol allows each device
to operate at its own speed on the bus, really slow devices like scanners and
CD-ROM drives can take away performance from your hard disks. If you expect
that these devices will be operated heavily simultaneously (as they might be in
a server), you might want to consider getting either two host adapters, or a dual
channel one. The main advantage to a dual channel adapter versus two separate
ones is the dual will only require one IRQ (interrupt request), whereas the two
separate ones will probably need two.

If your system contains LVD devices, you should know that, if you mix sin-
gle-ended devices with LVD devices, the LVD devices won’t be able to operate
in LVD mode, which will limit their performance. The solution to this is to get
a host adapter that has two bus segments. Your system still has only one SCSI
bus, but dividing the bus into segments allows LVD devices to use LVD mode
on their segment and leave the second segment running in single-ended mode.

In a two-segment bus, each segment is separated by a signal conditioner chip
that isolates and re-clocks (cleans up) the signals. This also prevents reflections
from one segment from messing up the signals on the other segment(s).
Because of this, somewhat longer cables are permitted also.

This technique also allows the host adapter to provide three connectors
(50-pin and 68-pin internal and a 68-pin external, for example) that can all 
be used simultaneously. Without a separate segment for the internal devices,
you would be limited to using only two of the three connectors, because using
all three would form a Y-shaped bus, which is not allowed. An example that
illustrates this is the Adaptec 2940UW. It has three connectors but all are on
one segment. The newer version of the host adapter, the 2940UW Pro, has a
second segment, which allows the use of all three connectors simultaneously.

BIOS on the Host Adapter Lets You
Boot from SCSI Devices

Unfortunately, the main BIOS in most PCs doesn’t know how to control a SCSI
drive. On the other hand, the PC BIOS does know how to load extensions to it-
self in the form of PROM-based code on option cards. Therefore, if you want
to boot up your system from a SCSI hard drive, you must have a SCSI host adapt-
er with a built-in BIOS extension. During the boot process, the BIOS on the
computer’s motherboard first checks the setup for a bootable disk. If it does-
n’t find one, it scans for another BIOS on a peripheral card. When it finds the
BIOS on a SCSI host adapter, it allows the SCSI BIOS to handle the boot process.
If you don’t have a BIOS on your SCSI card, you’ll have no choice but to boot
from another type of hard disk (such as IDE or EIDE) or via floppy disk, because
the system’s BIOS will recognize all of these.
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How About Mixing SCSI and Non-SCSI 
Host Disks in One System?

Even if you already have non-SCSI types of hard drives (like IDE, EIDE, or ATA)
in your system, you can still add a SCSI hard drive. The only catch is that, unless
your motherboard is equipped with a modern BIOS, which allows boot device
specification, the system will boot from the non-SCSI drive rather than the SCSI
drive. The reason is that, during the boot process, the motherboard BIOS first
looks for bootable drives that have been set up in its BIOS configuration.
Because most SCSI host adapters (except ones built onto the motherboard) are
supported by option BIOSes on the host adapter, SCSI drives are seen after the
drives supported by the motherboard BIOS.

SCSI host adapters will, in general, coexist with other disk controllers as long
as you make sure there are no IRQ or port conflicts between the controllers.

N O T E When choosing a SCSI host adapter, it’s important to consider what other features the
BIOS offers. Many SCSI cards offer additional features, such as the ability to format a
drive, extra diagnostics, and the ability to configure IRQ, DMA settings, SCSI ID, and
selection of SCSI options through software instead of with jumpers. 

What Performance Level Do I Really Need?

If you’ve begun looking through all the Web sites, catalogs, and magazines, you
already know that the best-performing host adapters generally command pre-
mium prices. If you just want to hook up a CD-ROM or scanner, you can safely
opt for the lower-cost cards. If you will be using SCSI for your main hard disk
storage, however, you should consider getting the best-performing card you
can afford. Read the magazine reviews and the Usenet comp.periphs.scsi news-
group for a while to get a feel for what most people have found to be the best
compromise among performance, price, and compatibility. One of the very
important considerations is whether you can expect the manufacturer to remain
in business long term so that you will continue to get driver updates and so on.

In choosing the performance level of the card, be aware that, unless you also
plan to spend top dollar on the hard disks, going for the maximum bus speed
(currently Fast-40) may not actually give you any more overall performance.
For example, currently the fastest disk drives can read data off the media at about
20 MB/sec. Putting only one of these drives on a Fast-40 host adapter (which
can hustle 80 MB/sec in Wide mode across the bus) is not very cost effective.
If, however, you expect to have several of these drives on the bus (as you prob-
ably would in a departmental server), go for the speed! You can use all the bus
bandwidth you can get.

There is more than bus speed to be gained with Fast-40, though. When
the T10 Technical Committee defined Fast-40, they specified that, when it is
used on single-ended buses, the maximum length of the bus would have been
about 0.5 meter (about 20 inches)! To remedy this situation, they defined 
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the low voltage differential (LVD) protocol. The increased noise immunity
allowed the maximum length to be extended out to 12 meters (about 39 feet).
So if you want to be able to space your devices out more, you might want to
get a Fast-40 (Ultra2) LVD host adapter.

Installing the SCSI Interface Card

The SCSI interface card is the link between your computer and all the SCSI
devices you connect to it. Once you purchase the SCSI interface card, you
have to configure and install it before you can start adding SCSI devices. If
your card uses Intel/Microsoft’s Plug-and-Play SCSI interface, the configura-
tion is handled for you after you plug the card in and power up the computer.

For those of you who don’t have a Plug-and-Play card, you will need to 
set the SCSI ID, I/O port, interrupt, and (on some cards) the DMA channel.
We’ll go over each of these settings, what they do, and what happens if you set
them incorrectly.

PCI Cards Solve Most of the Problems 

PCI-type host adapters have registers that the CPU can read and write to find
out who manufactured the card to set up the appropriate I/O ports, inter-
rupts, and DMA channels automatically. About the only thing you might need
to do is go into your BIOS setup menu and select which interrupts will be
used by the PCI slots. PCI cards can share interrupts, so you don’t need one
for each card—as you do with many other types of option cards. If you have a
PCI-based card, you can skip the next few sections, which explain how to set
these things manually.

Setting the Port Address—the Front Door to the Interface

Every interface card has a port address, also known as the input/output (I/O)
port. The I/O port is the communication channel through which all commands
are passed. Incorrectly setting the port address will render the interface card
useless, because the computer won’t know where the card is. Setting the port
address incorrectly is like writing the wrong mailing address on a letter. The
message won’t go where you want it to.

The reason it’s so important to know what I/O ports are in use is that, when
two ports are set to the same address, your system ends up with a hardware
conflict or, more specifically, an I/O port conflict. You’ll know when you have
a hardware conflict, because either your SCSI card, or the other interface card,
or both will not function properly, if at all. This doesn’t mean that the cards
are broken. The solution is to simply change the port address on either the
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SCSI card or the other conflicting card and try again. As long as there isn’t a
conflict, and assuming no other problems exist with your card or your system,
your SCSI card should begin to work properly.

There’s more than one way to select the port address, but the general
procedure is that you change a set of switches or jumpers. More and more SCSI
cards allow you to configure the port address through their configuration soft-
ware, so you don’t have to actually change any physical settings on the card.
The only way to find out how to change the port address on your card is to read
the manual that came with the card.

Regardless of how you set the port address on your card, you will have
several three-digit addresses to choose from. Common addresses include num-
bers like 130, 134, 230, 234, 330, and 340, but your particular SCSI card may
have other addresses. The particular address you select depends on one thing:
It cannot be the same as an address already being used by another interface in
your PC, like your printer or mouse, for example.

Find Conflicting Addresses

To avoid choosing a conflicting port address, you need to know what ports are
already being used by other devices. To help you to determine which ports are
already being used in the PC, see Appendix B, which lists all the common I/O
port addresses. In addition, check the manuals for the other interface cards in
your computer to see what ports they’re set to. 

A variety of diagnostic programs, such as Microsoft Diagnostic (msd.exe),
comes with DOS 6.x and Windows 3.x, but they cannot always identify all the
devices in your computer. A much better utility, provided in Windows 95/98,
is called the Device Manager. To get to it, select Control Panel • System, then 
the Device Manager tab. Then you can select the device of interest (in our
case the SCSI host adapter), and choose Properties to look at what driver has
been loaded for it and what resources (in this case port addresses) are being
used by it.

The only way to know for sure what you have in there and what I/O ports
your devices use is to open the computer and take a look. Pull out those old
manuals and compare the jumpers or switches on the interface cards in your
system with the information in the manual. Once you determine the settings
for the card, write them down so you won’t have to go through this process next
time you add a card.

Setting Interrupts

Without the ability to be interrupted while running a program, your CPU
would be oblivious to any hardware or software around it, including interface
cards (unless the program were specifically programmed to check up on devices
periodically to see if they were in need of attention). Your computer is a com-
plex system, with different devices placing demands on the CPU at different
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times, regardless of whether the CPU is doing something else at the moment.
What happens when your interface card wants to send data to the CPU but it
doesn’t want to wait around until a program asks for the data? The device uses
a hardware interrupt to request the CPU’s immediate attention.

Hardware interrupts are the vehicle with which your computer manages
different devices requesting attention from the CPU. Your computer has a
number of interrupt lines that carry these requests to interrupt the task the
CPU is working on. When you set hardware interrupts, also called IRQs or
interrupt requests, you’re selecting the interrupt line (your CPU has several
interrupt lines built in as pieces of hardware) in your system that will be used
by a particular device when it wants to request attention from the CPU. Once
IRQs have been set, your devices will use their assigned interrupt line to request
the CPU’s attention. The device, like your interface card or your modem, will
put a signal on the bus via this interrupt line to signal to the CPU that the
device needs attention. Setting the hardware interrupt simply means selecting
which interrupt line the device will use to tell the CPU that the device needs
something.

N O T E On host adapters, where interrupts are not used, polling is required. Polling is a process
whereby the CPU goes out at regular intervals to see if a device needs attention. The biggest
problem with polling is that it wastes a lot of time in your system. Each time a device needs
attention from the CPU, it has to wait for the CPU to poll it. It can’t interrupt the CPU
with a request for attention, as it can when using IRQs.

Just as you did with the port address, you set the interrupt on your card by
changing a switch or jumper on the card. Interrupts can also be set on some
cards by using the manufacturer’s configuration software. See your card’s
manual for specifics on how to change or select your card’s IRQ setting if the
factory default setting won’t work.

Your PC has 16 possible interrupts, ranging from 0 to 15. The interrupt
you select should be free, meaning that it’s not being used by anything else.

A NOTE ABOUT INTERRUPTS

Although there are 16 interrupts on 286 and higher class computers, IRQ 2
is not specifically used. These machines use two interrupt controller chips, in 

a master and slave configuration, with each chip providing eight interrupts.
However, the 8 interrupts from the slave are channeled into the master via IRQ
2. As a result, IRQs 8 to 15 will trigger through IRQ 2. However, IRQ 2 is not
completely lost. A device that is set to IRQ 2 will be relocated to IRQ 9.
However, some motherboards have trouble with IRQ 9, so avoid it unless 
you run out of IRQs.
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Use Appendix B, which lists the interrupts commonly used in most computers,
as an aid to setting your interrupts, but be sure to check the other interface
cards in your system to see exactly which interrupts are used and which ones
are free. Take a look at IRQ 10, 11, and 15 first because these are most com-
monly available for use by a SCSI card.

One way to see which interrupts are in use in your system is to run
Microsoft Diagnostics, msd.exe, from the DOS command prompt. This program
comes bundled in DOS 6.x. A selection in the program will give you a list of all
of the interrupts and their status (free or in use) in your system. Be sure to run
the program from the DOS prompt, not from within Windows, for the most
accurate picture of your system. Although this is all that was available under
Windows 3.x, it wasn’t a completely reliable tool. As we discussed under “Setting
The Port Address,” the Win 95/98 Device Manager can help with interrupts as
well. The only way to know for sure is to open your system and log the settings
for all the cards in your computer. Appendix C also lists IRQs used by the
motherboard. This is important so that you don’t run into an IRQ conflict with
a built-in device such as the real-time clock.

When you assign the same interrupt to two or more cards, you create the
potential for a hardware conflict commonly called an IRQ conflict. An IRQ
conflict is like having two houses with the same doorbell. When you push the
button, the people in both houses hear the ring and come running to the door.
Funny thing is, you’re probably at only one of the doors.

This is not to say that two devices cannot share one IRQ. In fact, interrupts
can be shared between devices, but only if (1) the devices sharing the IRQs have
some other way of identifying themselves to the host, or (2) the devices will never
need to request CPU attention at the same time. The printer port is an example
of such a device. For example, if you have a sound card at IRQ 7, it will share
its interrupt with the printer port at IRQ 7. As long as you don’t use both devices
simultaneously, a conflict doesn’t occur. Not all devices are good about sharing
IRQs, and the risk you run when your devices share IRQs is that your computer
will lock up when it encounters a conflict between the devices at the IRQ. The
best rule of thumb is to give each device its very own IRQ.

Using DMA for High-Speed Data Transfer

When your system accesses a peripheral device, like a disk or tape drive, large
amounts of data are moved back and forth between the device and the com-
puter’s RAM (random access memory). One of the most efficient methods of
moving this data is called direct memory access, or DMA. DMA is a method by
which a plug-in card that controls a peripheral (also called a peripheral con-
troller, or simply a controller) can read or write directly to RAM. In contrast,
when DMA is not being used, the CPU, rather than the controller, reads or
writes to RAM, thus taking time away from the CPU that could be used for other
sorts of data crunching. Controllers that support DMA free up the CPU and,
as a consequence, speed up the rest of your system.
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DATA TRANSFER METHODS: DMA, BUS MASTERING,

PROGRAMMED I/O

DMA

Two primary types of DMA are used in PCs: third-party DMA and first-party
(or bus-mastering) DMA. Third-party DMA, used on floppy disk controllers in
PC/AT ISA and EISA computers, is the slower and less expensive of the two
types of DMA. It relies on an independent DMA controller, typically built into
the PC motherboard, to move data between a peripheral card (the first party)
and system RAM (the second party). Because it can be shared by multiple
peripheral cards, the DMA controller is considered the third party.

BUS MASTERING

Bus-mastering SCSI controllers can take advantage of the faster DMA, called
first-party or bus-mastering DMA. These controllers can move data to and from
system RAM much faster than either PIO or third-party DMA, because they con-
trol the DMA transfer themselves: They don’t need the help of the CPU or a
third-party DMA controller to transfer data. While transferring the data using
first-party DMA, the DMA hardware on the peripheral controller suspends CPU
operation and takes control of the system bus. The hardware then automatically
moves the data between system RAM and a buffer on the controller, resulting in
much faster data transfer, because the CPU is not being used—the data transfer
is implemented by the controller.

Although DMA improves the multi-tasking performance of the SCSI adapter,
controller cards that use bus mastering, rather than third-party DMA, will gener-
ally have the highest performance.

PROGRAMMED I/O

If you don’t have a bus-mastering controller card or a controller card that sup-
ports regular DMA transfers, your system uses a data transfer method called
programmed input/output, or PIO. PIO was used by the hard disk controller on
the first PC/AT. PIO uses the CPU to move data between a controller card and
the computer’s memory, with data transfer speeds reaching about 2.5 MB/sec.
In comparison, data transfer rates on even a slow ISA machine with a bus mas-
tering SCSI card can achieve more than 5 MB/sec, quite a significant increase
in performance.

PIO’s relatively slow data transfer is its primary drawback. Its performance
is hampered by the fact that it needs the CPU to read or write each block of
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Setting Your DMA Channel

If your SCSI card supports DMA, you will have to set its DMA channel. As you
did with I/O ports and IRQs, make sure that you select a DMA channel that is
unused by any other card in your system. Not to belabor the point, but the only
way to really know what DMA channels are in use is to log the settings of all the
cards currently in your system. Also check Appendix C for common DMA usage
in the PC. That’s the last time we’ll say that. Promise.

In addition to setting its DMA channel, you may also have the option to
set the DMA transfer speed on your SCSI card. Your choice of DMA transfer
speed will depend on the type of bus slots in your PC. Following are the major
types in order by speed:

ISA Relatively speaking, ISA is slow, supporting DMA transfer rates of up
to 5 MB/sec. In most machines, it has been replaced by newer and much
faster bus alternatives, namely EISA, VLB, and PCI. 

EISA In contrast to ISA’s top speed of 5 MB/sec, the EISA bus supports
DMA transfer speeds of up to 33 MB/sec. 

VESA local bus, also called VL-Bus or simply VLB, supports DMA burst
speeds (transfers of small blocks of data) of up to 130 MB/sec, though
the sustained rate (continuous data transfer) is closer to 32 MB/sec. 

PCI bus can sustain a rate of 132 MB/sec, which beats even the highest
measured burst speeds of VLB. 

Future PCI In a continuing attempt to improve on bus transfer rates, a
forthcoming PCI standard will support DMA rates of 264 MB/sec, twice
the current sustained rate for PCI.

It’s important that, when you set the DMA transfer speed, you set it no higher
than the highest transfer speed that the bus slot holding your card can handle.
For example, because most ISA slots can handle data transfer rates no higher
than 5 MB/sec, setting an ISA SCSI card higher than 5 MB/sec could introduce
intermittent data corruption into your system resulting from the incompatible
transfer rates. (This data corruption can be very hard to track down, too.) 

data. As a result, transfer speed is slow and the CPU is unavailable for other
tasks, thus slowing down the entire system. PIO’s drawbacks make it unsuitable
for multi-user environments like Windows, UNIX, or Novell fileservers. DMA, by
contrast, is a much more sophisticated and effective method of data transfer.
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When setting the DMA transfer speed, your best option is to use the
card’s factory-set default transfer rate. Don’t experiment with faster DMA
transfer speeds unless you know that your computer can support them.

Setting the DMA is similar to setting the I/O port and IRQ. A set of
jumpers, a switch, or a configuration program will be available to make the
changes. The installation section of your SCSI card’s manual will show you
which method to use.

Set the SCSI ID on Your Interface Card

As with any SCSI device, when you install a SCSI interface card you have to
assign it a SCSI ID. You set the host adapter’s ID by changing a set of switches
or jumpers on the card or by using the manufacturer’s configuration software.
See the manual that came with your SCSI card for specifics on how to set its
host ID.

The host adapter’s ID is normally set to 7, the highest priority ID on the
SCSI bus—and you’re probably safest setting it to 7, because many manufac-
turers of SCSI hardware or software default to a setting of 7. However, you can
select any ID from 0 to 7 as the host ID, as long as the ID is not in use by another
SCSI device. If your interface card is a Wide SCSI interface, you’ll have more
than the 0 to 7 IDs to choose from: 16-bit Wide SCSI offers IDs from 0 to 15;
32-bit offers IDs from 0 to 31. ID 7 is still the highest priority though, even when
higher IDs are available.

Things to Keep in Mind When Setting SCSI Host Adapter IDs

If you’re combining regular and Wide SCSI devices on the same bus, set the
host adapter’s ID to an ID between 0 and 7; otherwise, the 8-bit SCSI devices
won’t be able to talk to the host adapter. About the only reason to set the host
adapters ID to anything other than 7 is if you plan to share SCSI devices between
two host systems. In this case, one of the host adapters should be ID 7 and the
other should be ID 6. This is an unusual situation, however.

Install the Right Drivers

Drivers are programs that allow the operating system and your applications to
communicate with peripheral devices. When you load a driver, you’re actually
loading a program in memory that the computer can use when it needs to access
a device. Some devices, like floppy disk drives for example, have their driver
built into the computer’s BIOS, so you probably won’t have to load a driver
for them. Also, depending on what operating system you install, you may not
need to load any driver for your interface card. If it has a built-in BIOS and
you’re only using it to access hard disk drives under a single-tasking operating
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system like MSDOS, its BIOS probably has all of the software that you’ll need
to access your hard disk.

Still, there are many types of SCSI devices on the market besides hard disk
drives, and each requires its own special driver. But it’s not the case that each
type of SCSI adapter needs a different driver for each type of SCSI device. If
this were the case, SCSI systems would end up with a multiplicity of drivers and
a lot of confused users: People asking questions like “Where can I get a driver
so my Adaptec AHA-1540CF can talk to my Toshiba XM-3301T CD-ROM?”
would probably drive manufacturers crazy.

Layered Drivers

To avoid this potentially unpleasant situation, SCSI card manufacturers have
developed standards for drivers that allow most SCSI devices to talk to their
particular interface card. These special drivers are called layered drivers, because
they’re built up of layers of different drivers. The bottom, or adapter-specific,
layer is a driver that communicates with the hardware on the SCSI adapter.
This is also called the low-level driver. You load drivers for your specific SCSI
devices on top of this adapter-specific, low-level layer. Instead of communicat-
ing directly with the SCSI adapter card itself, these layered device drivers
communicate only with the bottom-layer adapter driver, so that only this bottom-
layer driver needs to be able to communicate with the SCSI device. The use of
layered drivers really simplifies the problems of driver writing and compatibil-
ity, because host adapter manufacturers need only focus on the bottom layer
of the driver, rather than what may be several layers of drivers on top.

Of course, the world of drivers isn’t quite that simple. On PCs there are
two competing standards for SCSI device drivers. The most widely used device-
driver standard right now is ASPI (Advanced SCSI Programming Interface),
which was developed by Adaptec and has since been adopted by most other
card manufacturers. ASPI exists for MSDOS, all flavors of Microsoft Windows,
OS/2, and NetWare. Another advantage to this layered driver approach is the
potential to program the SCSI interface yourself, without needing to know
much about the host adapter itself.

Another driver interface standard is CAM (Common Access Method), an
ANSI standard (X3.232-1996) software interface for SCSI device drivers. CAM-
3 is a draft standard that enhances CA as part of the SCSI-3 architecture model.
Currently, CAM isn’t as widely implemented on PCs as ASPI, though CAM dri-
vers are available for most popular devices. 

Windows 95/98 and Windows NT also use a layered driver architecture.
The Windows 95/98 and NT device drivers are called Miniport drivers. Many
ASPI and CAM device drivers written for DOS and Windows 3.x will work under
Windows 95/98.

For non-PC systems like UNIX workstations, the driver interface is less stand-
ardized. Many manufacturers use their own proprietary driver interface. Digital
Equipment Corporation (now owned by Compaq) uses CAM for their Digital 
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UNIX (now called Tru-64 UNIX) drivers. A few other workstation manufac-
turers do as well. ASPI’s architecture is not flexible enough to accommodate
the needs of UNIX systems.

Get the Latest SCSI Drivers 

Probably the most important thing to keep in mind when dealing with SCSI
device drivers is that hardware manufacturers are constantly updating them. 
If you experience any problems, always make sure you have the latest drivers
for your hardware. You can usually download the drivers from the manufac-
turer’s web site or from the support conferences on online services like
CompuServe or America Online. A list giving many of these URLs is contained
in the SCSI FAQ which is on the CD-ROM accompanying this book. At the same
time that you’re making sure you’ve got the latest device drivers, you should also
make sure that the latest drivers aren’t buggy. Keep up with the latest informa-
tion about device drivers by checking out the appropriate conference online
or read the SCSI newsgroup on Usenet. A little knowledge about what’s happening
in the world of drivers can save you a lot of headache and frustration.

Software That Will Simplify Your Driver Installation

The major SCSI host adapter manufacturers all have SCSI driver installation
tools. For example, Adaptec’s program is called EZSCSI, and Symbios (now LSI
Logic) has SDMS. When you run these programs on your system, they analyze
your hardware and software, load the appropriate drivers, and then add the nec-
essary driver installation commands to your config.sys and autoexec.bat files
(in MSDOS-based systems). In addition to the installation tools, the packages
often include some extra utilities, like a disk formatter or a tape backup pro-
gram as well as performance measuring tools. Also, the Plug-and-Play tools in
Windows 95/98 greatly simplify driver installation.

DOS Drivers

Although the major SCSI host adapter manufacturers supply an easy-to-use
program to install and configure your drivers, you may have to change the
configuration manually someday. To become familiar with the drivers that are
commonly installed into a DOS SCSI system, let’s take a look at the two standard
types of SCSI drivers, ASPI and CAM, and what each driver does. 

N O T E The following examples give you a general idea of which DOS drivers might have been
loaded by your adapter’s installation program. You should check the manual for your
SCSI interface to see exactly what drivers it uses and what drivers it comes with for the
devices you want to attach. If you have a SCSI device that doesn’t have drivers supplied
by the host adapter manufacturer, the driver may have been included with the device.
Check the documentation to see if it has its own SCSI drivers.
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ASPI

The main ASPI driver is the low-level or adapter-specific driver. It’s the driver
that talks directly to your SCSI adapter. Each SCSI card has its own special low-
level driver that presents a standard interface to upper-level drivers, so that
drivers for specific devices don’t have to worry about the brand of host adapter
you’re using. Although the exact name of the low-level driver changes from
company to company and host adapter model to host adapter model, they often
have “ASPI” as a part of the filename, like aspixx.sys. Some drivers also have
“DOS” in the filename, so that you know it’s a DOS driver. For example,
Adaptec’s 1542 SCSI host adapter’s low-level driver is called aspi4dos.sys. The
“aspi” at the beginning indicates that it’s an ASPI-compliant driver; the “4” stands
for the 4x model of the 15xx series of cards; and “dos” indicates that it’s a DOS
driver. If you have a different brand of SCSI card, your driver’s name won’t be
exactly the same, but it will likely be similar.

All the drivers following the ASPI manager in the config.sys file (aspicd.sys
in the example) are device-specific drivers. These drivers provide support for
a certain type of device—a hard disk, for example. Once again, ASPI device-
specific driver filenames will usually include “ASPI” as well as some indication
of the type of device it supports. For example, Adaptec’s aspidisk.sys provides
support for hard disks, and aspicd.sys supports CD-ROM drives. Some drivers
may use only the device name to identify the driver, such as cdrom.sys.

The DOS ASPI drivers are loaded by the config.sys file. Following is a 
sample config.sys file:

device=c:\aspi\aspi4dos.sys /d

dos=high

files=30

buffers=20

device=c:\dos\himem.sys

device=c:\aspi\aspicd.sys /d:mscd001

This file contains entries that load a low-level ASPI driver (device=c:\
aspi\aspi4dos.sys /d) as well as device-specific drivers for hard disks
(device=c:\aspi\aspidisk.sys) and CD-ROMs (device=c:\aspi\aspicd.sys/d:mscd001,
where /d:mscd001 is an identifying label for the driver). Your installation may
have additional options after the name of each driver, depending on the par-
ticular driver you’re using. Refer to your host adapter’s device driver manual
for the use of any additional options. One useful option is to tell the low-level
driver to display a list of what devices are seen at each SCSI ID. This provides
useful troubleshooting info if you run into difficulty later.

If you’re using DOS 5.0 or higher and EMM386 or a third-party memory
manager such as QEMM or 386Max, you can load the ASPI driver into upper
memory by using the Devicehigh command instead of the Device command,
as shown by the series of devicehigh statements in the following config.sys (check
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your DOS manual for more information about upper memory and loading
drivers into upper memory):

device=c:\dos\himem.sys

device=c:\dos\emm386.exe ram

dos=high,umb

file=30

buffers=20

devicehigh=c:\aspi\aspi4dos.sys /d

devicehigh=c:\aspi\aspidisk.sys

devicehigh=c:\aspi\aspicd.sys /d:mscd001

CAM

Like ASPI, CAM also has a low-level or adapter-specific driver that talks directly
to the SCSI adapter. As in the case of ASPI drivers, each manufacturer has its
own version of the low-level driver. CAM drivers usually have “CAM” as a part
of the filename, and some also have “DOS” in the filename so that you know
it’s a DOS driver. For example, Symbios’s low-level CAM driver is called
doscam.sys. The “dos” indicates that it’s a DOS driver and “cam” indicates that
it supports CAM functions. If you have a different brand of SCSI card, your
driver will have a similar name.

Device-specific CAM drivers follow a naming convention similar to that
used with ASPI device-specific drivers. They may have CAM in the filename
and also the type of device supported. For example, Symbios’s scsidisk.sys pro-
vides support for hard disks and cdrom.sys supports CD-ROM drives.

CAM drivers are loaded by entries in the config.sys file like the following:

device=c:\cam\doscam.sys

dos=high

files=30

buffers=20

device=c:\dos\himem.sys

device=c:\cam\scsidisk.sys

device=c:\aspi\cdrom.sys /d:mscd001

This sample config.sys file contains entries that load CAM drivers for a Sym-
bios  SCSI adapter (device=c:\cam\doscam.sys), as well as device-specific drivers
for hard disks (device=c:\cam\scsidisk.sys) and CD-ROMs (device=c:\aspi\
cdrom.sys /d:mscd001). Again, /d:mscd001 in this example is simply an iden-
tifier for the CD-ROM driver. Your installation may look different depending
on your system configuration. (Refer to your host adapter’s device driver man-
ual for more information on the use of your host adapter’s drivers.)

If you’re using DOS 5.0 or higher and EMM386 or other memory man-
ager, you can load the CAM drivers into upper memory with the Devicehigh
command, as shown by the series of devicehigh statements in the following
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config.sys file (check your DOS manual for more information about upper
memory and loading drivers into upper memory):

device=c:\dos\himem.sys

device=c:\dos\emm386.exe ram

dos=high,umb

file=30

buffers=20

devicehigh=c:\cam\doscam.sys

devicehigh=c:\cam\scsidisk.sys

devicehigh=c:\cam\cdrom.sys /d:mscd001

If you have a SCSI card that uses CAM drivers, you may also have an ASPI-to-
CAM translation driver. This driver is used to translate commands from
programs that only support ASPI to ones that your CAM driver can understand.
It’s only needed if you’re using ASPI-specific programs and drivers that don’t
talk CAM, such as Central Point Tape Backup. This translation driver is called
aspicam.sys, aspi2cam.sys, or something close to that. 

N O T E The ASPI-to-CAM driver should be loaded after the CAM low-level driver and before any
ASPI-specific drivers.

Windows 3.1 Drivers

DOS SCSI drivers are compatible with Windows 3.1, so once you finish installing
them, Windows will be able to access all your wonderful SCSI devices. Some
manufacturers also include Windows-specific drivers to squeeze out an extra
bit of performance or to support additional features used by their own utility
programs, such as tape backup software, music CD players, or diagnostic tools.
For example, Adaptec’s software installs two files for Windows ASPI support:
winaspi.dll and vaspid.386. Your particular SCSI card may not use Windows-
specific drivers. If it doesn’t, don’t worry unless you can’t access your SCSI
devices from Windows, in which case you’ll need to get a driver from the man-
ufacturer of your host adapter or replace it with a different one.

If your card does use a Windows driver, make sure that it’s been copied
into the Windows System directory (usually c:\windows\system) and that the
correct entry exists in the 386Enh section of your system.ini file. The example
below shows this entry in a typical system.ini file, including the Adaptec Windows
ASPI driver vaspid.386:

[386Enh]

device=vaspid.386

device=dva.386

keyboard=*vkd

device=*int13

And so on. 
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Windows 95/98 Drivers

Windows 95/98 includes drivers for SCSI cards from the leading manufacturers.
In most cases, Windows 95/98 will know when you install a SCSI card into your
system, and you will be sent straight to the Add Hardware Wizard (in which case
you should skip to step 5 below). If your card wasn’t detected, you’ll need to
run the Add Hardware Wizard yourself as follows:

1. Click the Start button.

2. Click on the Settings menu option.

3. Click on Control Panel.

4. In the Control Panel window, double-click the Add/Remove Hardware icon.

5. At the Add Hardware Wizard opening screen, click the Next button.

6. You can now install hardware by auto-detection or you can install it your-
self. Auto-detection isn’t foolproof and can lock up your system in some
cases. However, it is the simplest way to add new drivers, so try it first. To
auto-detect, click on the button next to Auto-detect. To choose the type of
hardware driver yourself, click on the button next to Install Specific and
skip to step 1 under the “Install Specific” section below.

7. Now click the Next button to run Auto-detect.

Auto-Detect Installation

1. Windows will begin auto-detection. This may take a while. If the progress
meter at the bottom of the window stops for a long period of time (say, 15
minutes), the computer has probably locked up, and you’ll have to restart
your system.

2. After all devices have been properly detected, a new window will come up.
If you want to see what devices were detected, click the Details button.
Otherwise, click the Finish button to install the new drivers.

3. If the required drivers aren’t already on your system, Windows will ask you
for the appropriate disk. Follow the instructions from Windows for any
drivers it needs.

4. After all the drivers are installed, you will need to restart the system for
the changes to take effect. Click the Restart button to restart Windows.
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Install Specific

1. To use Install Specific, first scroll down the list of hardware devices until
you get to SCSI Controllers and then double-click on SCSI Controllers.

2. Select the manufacturer of your SCSI controller from the list on the 
left by clicking on it. If the manufacturer is not listed, click on the 
Have Disk button.

3. Select the model of SCSI card that you installed from the list on the right
by clicking on it.

4. If you have updated drivers on a disk that came with your SCSI card, you
can install the newer version by clicking on the Have Disk button.

5. Click the Next button to install the driver(s).

6. A window will come up showing you the current settings for your SCSI
card. Write this down for future reference so that you can avoid an I/O,
IRQ, or DMA conflict with the SCSI card when installing an interface card
into your system. Click the Next button after you write down the settings.

7. Click the Finish button to finish installing the driver(s).

8. After all the drivers are installed, you will need to restart the system for
the changes to take effect. Click the Restart button to restart Windows.

Windows NT Drivers

Windows NT includes drivers for many SCSI interfaces. After installing your
SCSI card, start Windows NT and see if you can access your SCSI devices. If not,
you have to install the NT drivers for your SCSI interface as follows:

1. Open Program Manager if it isn’t already opened.

2. Open the Main group window and start the Windows NT Setup program.

3. Select Add/Remove SCSI Adapters from the Options menu.

4. Click the Add button and select the type of SCSI adapter you’ve installed.

5. If Windows tells you that the driver already exists on the system, you can
click Current to use the existing driver or New to install a new copy.
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6. If you choose to use the current driver, it will be installed and you will
return to the main window where the new SCSI card will be listed.

7. If you choose to install a new driver, Windows will ask you for the full path
to the location of the driver. Type in A:\ or B:\ (or perhaps the drive letter
of a non-SCSI CD-ROM), depending on which drive you inserted the dri-
ver disk in, and click OK.

8. After the driver is installed, you will see it listed in the Main Setup window.
Click the OK button to close the setup program.

9. Restart Windows NT by clicking on the Restart button for the changes to
take effect.

OS/2 Drivers

OS/2 has its own set of standards and conventions for SCSI device drivers.
Beginning with version 2.0, OS/2 includes drivers that allow for direct SCSI
access. OS/2 includes drivers for SCSI disks, CD-ROM drives, and optical disks,
as well as an ASPI driver for communicating with other devices. 

The concept behind OS/2’s drivers isn’t that different from that of ASPI
in DOS. If you’re running OS/2 and adding a new SCSI device, you have to
load a hardware-specific driver for your host adapter card. Either you’ll find
this driver on a disk that came with your card or you’ll need to get it directly
from the card’s manufacturer or its BBS (see Appendix A for a listing of man-
ufacturers, including their BBS numbers). This hardware-specific device driver
will probably have a filename with a .add extension.

To load these device drivers, choose Device Driver Install from System
Setup. Follow the directions on your screen, and you should be on your way.
Once you’ve loaded your hardware-specific .add driver, you may be asked to
load OS/2’s device type–specific drivers, which usually have a .dmd extension.
Again, either you’ll find this driver on a disk that came with your card or you’ll
need to get it from the manufacturer.

Finally, some devices running under OS/2 may require that you load 
drivers to change or enhance their operation. These drivers will have an 
.flt extension.

N O T E Before direct SCSI support was implemented in version 2.0 of OS/2, Microsoft and 
IBM developed a standard driver interface called LADDR (Layered Device Driver),
which was used in OS/2 versions 1.2 and 1.3. It is not needed in later versions 
of OS/2.
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Linux Drivers

Let’s not forget about Linux. This freely distributable UNIX clone is really
taking off in some segments of the market. One of the fastest growing uses 
for Linux is in Web servers. 

Because the support for new hardware is provided by volunteer developers
who are highly motivated, Linux supports nearly every host adapter and SCSI
device out there. For the most part, if you buy a bootable CD-ROM distribution
of Linux, like Red Hat, the drivers that your host adapter needs will be auto-
matically detected and loaded during installation. If you buy a card that is so
new that Linux doesn’t support it yet, you can always volunteer to write the
driver for it. 

H I N T Unless you’re a UNIX kernel/driver guru, stick with a card that is supported.

For more information on SCSI under Linux, take a look at the Usenet
comp.os.linux.hardware newsgroup.

More About Drivers Later

This chapter’s coverage of device drivers concentrated primarily on how to
install them. If you’re interested in knowing more about the inner workings
of device drivers, take a look at Chapter 8, “Understanding Device Drivers.”
It contains more detail that can aid in understanding and isolating problems
you may encounter in your system.

Tips for a Successful Installation

• Before you remove the SCSI interface card from the package, be sure to
ground yourself. Touch a static discharge plate or your computer’s case
to make sure you aren’t carrying a static charge. If you do zap your card
with a static discharge, you’re liable to fry it with as much as 10,000+ volts!
They’re never quite the same after that!

• Before getting started, print out the BIOS setup for your system. You can
usually do this by going into the setup program (usually by pressing the
DELETE key at bootup) and then pressing the Print Screen key. If that does-
n’t work, jot down the values that you see on your screen. You should also
print out your autoexec.bat and config.sys files before you start changing
them, so that you can recreate them if something goes wrong. (Actually,
this is good advice anytime you install anything.) You can also copy the
files to another directory to save a lot of typing in case you have to return
your system to its original state.
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• Be sure you have a bootable floppy disk handy before fiddling with the
BIOS setups so that you can boot your machine if you really screw it up.

• Remember, when you load the drivers for your SCSI devices, you have to
specify some of the same parameters, like the I/O port, which you deter-
mined when you set up your hardware. If you select an I/O port for the
driver that’s different from the one you set on your host adapter card, for
example, you’ll have to change the port on your host adapter card too.

SCSI CD-ROM Drives

If you’re installing a SCSI CD-ROM drive for use with DOS and Windows 3.x,
be sure that you install the DOS CD extensions driver, mscdex.exe, in
autoexec.bat. And, if you use smartdrv.exe for disk caching, be sure to load
mscdex.exe before smartdrv.exe in your autoexec.bat file so that the caching
program will recognize the CD drive.

An example of this setup might be the following:

MSCDEX /D:MSCD001 /M:12 /L:J

LOADHIGH SMARTDRV.EXE

This will cause the Microsoft CD-ROM extensions to be loaded (an ISO-9660
filesystem for MSDOS), allocate 12 sector buffers for caching CD sectors, and
set the drive letter for the CD-ROM drive to J. This excerpt assumes that you
have loaded a CD-ROM device driver and set its name to MSCD001 in config.sys
as shown in one of the CAM examples above.

An MSDOS boot floppy with the above drivers loaded can also be useful
as a rescue disk or for installing Windows 95/98.

SCSI Hard Drives

Now that SCSI disks have grown so large (up to 73 GB  as of this writing), 
operating systems and BIOSes have needed to increase their address range to be
able to use all that space. If you have a hard disk larger than 8 GB, you need to
enable a feature in your host adapter BIOS called “INT 13 extensions,” which
circumvents a longstanding limit in the INT 13 BIOS interface that hit a wall at
1024 cylinders. (Even though SCSI disks are addressed by logical block number
instead of by cylinder head and sector, the PC BIOS still thinks in those terms).
Without this extension feature, your disk will appear to be only 8 GB when it
may actually be much larger!

N O T E If you’re wondering why the PC BIOS needed to be extended to handle larger disks, bear
in mind that the largest hard disks available in 1985 (when the PC/AT BIOS was written)
were about 33 MB! These new disks are about 1000 times that size. Hindsight is 20/20,
but seeing the future is not so easy! (But that doesn’t stop us from trying in Chapter 12!)
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Extending the PC BIOS

Once you’ve installed a SCSI hard drive, it’s usually a good idea to perform a
low-level format on it. Generally a utility for doing this is provided with the host
adapter, either in the host adapter BIOS or as a disk-based utility. This utility
will send the SCSI FORMAT UNIT command to the disk. You need to be sure
which SCSI ID you want to format, because this process will erase any data on
the disk. The format operation can take as little as a few minutes or as long as
several hours depending on what drive is being formatted. Once the disk is
low-level formatted, you should verify the entire disk to make sure there are no
bad sectors. A utility should be provided for this purpose as well. A good verify
utility will also tell the disk drive to replace any bad sectors with good ones from
its spare sector pool.

Partitioning

Once the system is booted from an install floppy (or CD-ROM), the host
adapter’s BIOS will assign the new, blank disk a drive number (hex 80 for
drive C or 81 for drive D). This number is used by FDISK or other operating
system partitioning utility to make INT 13 hex BIOS calls to partition the disk.
Partitioning is dividing up the available disk space into one or more pieces. In
each of these pieces we need to create a filesystem so that the operating system
can use it. When you boot the operating system, if it sees a properly partitioned
and formatted filesystem, that filesystem will be assigned a drive letter.

If you’re using DOS or Windows version 3.x, you will have to run FDISK,
or a similar disk partitioning utility that came with your SCSI interface, to create
a DOS partition. A FAT16 filesystem cannot be any larger than 2 GB. Starting
with Windows 98 FDISK, if you have a disk larger than 2 GB, FDISK asks if you
want support for large disks (larger than 2 GB). What it’s really asking is whether
you want to format your partitions with the FAT32 filesystem instead of the
FAT16 filesystem (which has been used on all MSDOS and Windows 3.x systems
since about 1987). FAT32, like many things, has advantages and disadvantages.
The main advantage is that it will allow you to create partitions larger than 2 GB
and use them more efficiently because the cluster size is smaller for the same
size partition using FAT16. The main disadvantage of using FAT32 is that this
filesystem is only supported by Windows 95 OSR2 and 98. Windows NT can’t
access them and neither can MSDOS. This means that if you boot different
operating systems, or you need to rescue your disk by changing or adding a file
that’s been corrupted, you won’t be able to access it using a DOS boot floppy.

After you finish partitioning, run the FORMAT command on the disk. If
the O/S will be MSDOS or Windows 3.x, be sure to use the /s option of FOR-
MAT to transfer system files if this will be a boot disk. Windows 95/98 takes
care of installing the system files itself.

When creating a FAT16 partition with FDISK or the partitioning utility
supplied by the SCSI interface manufacturer, don’t create a partition that is
larger than what you need even if you have a large hard disk. Larger partitions



80 Chapter 4

Table 4.1: The Relationship Between Partition and Cluster Size for 
FAT Filesystems

Partition Size (MB) Cluster Size (Bytes)

For FAT16

< 32 512

33–64 1024

65–128 2048

129–256 4096

257–512 8192

513–1024 16384

For FAT32

513–8192 4096

Table 4.2: DOS-Assigned Device Drive Letters

Device Drive Letter

5-1/4-inch floppy drive A:

3-1/2-inch floppy drive B:

IDE primary partition (partition 1) C:

SCSI primary partition (partition 1) D:

IDE first logical partition (partition 2) E:

SCSI first logical partition (partition 2) F:

SCSI second logical partition (partition 3) G:
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use larger clusters to store data. Because the sizes of most files aren’t an even
multiple of the cluster size, more space is wasted with larger clusters. Table 4.1
illustrates how the cluster size increases with larger partitions. On average half
the cluster size is wasted for each file created on the disk. Because it’s not
unusual for a system to contain 10,000 files, this can really add up!

In order to choose the proper size, you need to have an idea of what the
average size of files you will be storing is (not easy, we know). If the average
file will be about 16 kB, you don’t want to choose a cluster size nearly that big
since that will waste on average half the space on the disk!

DOS and Windows assign drive letters to the primary partitions on drives
before assigning any (extended dos) logical partitions. As a result, partitioning
SCSI drives can result in some pretty interesting arrangements of drive letters.
For example, let’s say you have a setup that consists of a PC with two floppy
drives, one IDE drive (the boot drive) with a primary and extended partition,
one SCSI drive with a primary partition, and two logical partitions. Table 4.2
lists the devices, along with the drive letters, as they are assigned by DOS.

Windows NT needs a FAT16 filesystem to install into. It can convert it to
NTFS during install, but the 2 GB FAT16 limit will still apply to that boot par-
tition.

For more tips and hints on troubleshooting and perfecting your SCSI
installation, see Chapter 6, “Troubleshooting Your SCSI Installation.”

Now that you’ve gotten the host adapter installed and drivers loaded for
it, I guess we’re ready to hook all those SCSI goodies up and make them do
something besides sit there! Interestingly enough, that’s the purpose of the
next chapter.



5
H O W  T O  C O N N E C T  Y O U R  S C S I

H A R D W A R E

Once you’ve amassed a bunch of SCSI
hardware, you’ll probably want to connect

it to your computer (unless you’re simply
an enthusiastic collector). This chapter focuses

on attaching SCSI devices to the computer. The
discussion applies to all SCSI devices and all systems.
Regardless of whether you have a PC, a Macintosh,
or a UNIX workstation, this chapter should help
you get those SCSI devices hooked up properly. 

(If you own a PC and you have a SCSI host adapter you need to install,
then go to Chapter 4, which addresses PC-specific issues about plugging in
and configuring a SCSI interface.)
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Use Quality Cables and Connectors

Before you even begin to connect anything together, you should know a bit
about the cables that carry the commands and data between SCSI devices and
the host adapter. If you don’t have good-quality cables specifically meant for
SCSI, you’re liable to create headaches for yourself.

There is a direct relationship between the quality of your SCSI cables and
the performance of your whole SCSI system. Cheap cables can cause data errors
as well as performance loss. There is also usually a direct relationship between
cable quality and price—high-quality cables often command a high price.
Here is the best rule of thumb for buying cables: If it seems like too good a deal, it
probably is.

When setting out to buy SCSI cables, do a little shopping and compare
prices. For example, companies such as Amphenol and Adaptec sell their own
brand of high-quality SCSI cables. The “hole in the wall” clone shops and
warehouse superstores carry low- to mid-grade cables. These mid-grade cables
will probably be just fine if you’re using SCSI-1. On the other hand, Fast SCSI-2
is extremely sensitive to cable quality and will not be reliable at all if you’re using
low- to mid-grade cables. If you’re using Fast SCSI, Wide SCSI, or SCSI-3, be sure
that you buy only cables certified for SCSI-2 or SCSI-3. You should find some
note of that certification on the cable’s packaging. Then again, there is no
agency overseeing the certification of SCSI cables. Just because it says “SCSI-2”
doesn’t always mean much. You really need to trust the vendor on this issue.
Sometimes the only way to find out you have a bad cable is to eliminate all the
other variables and that’s not easy.

The Shorter, the Better

Like a bridge, a SCSI cable should be no longer than it needs to be. Cable quality
is not the only factor that will affect data integrity. Because cables carry signals,
cable length is also important. Even though longer cables might make your
connections neater, fight the temptation. In the case of SCSI cables, shorter is
better. The reason is that signals weaken as they travel longer distances. Signals
have energy and, as the signals pass through the wires in your system, they
progressively lose some of that energy to the wires themselves. 

The farther the signals have to travel, the weaker they get. As signals weaken,
your devices and your host adapter start to have problems interpreting them.
This is because, in addition to losing some of the desired signal, the cable is also
picking up electrical noise along its whole length. Keeping the cables short
minimizes both problems.

If you’re having trouble imagining how signals lose their strength over
greater distances, think of water rushing through a water pipe. As the water
rushes through, it loses energy to the walls of the pipe and slows down. Even-
tually, if nothing pushes (that is, adds energy to) the water, the water will slow
down until it stops. 
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FINDING THE RIGHT CABLE

To ensure the best possible performance and data integrity of the SCSI bus, AMP
Incorporated recommends the following specification in selecting cables.

External SCSI cables should be made up of twisted pairs of 28 AWG wire
encased in a shielded jacket. A-type cables consist of 25 twisted pairs; P-cables
consist of 34 twisted pairs. The single-ended impedance of the cable should be
80 ohms. A-cables are used for narrow SCSI devices and P-cables are used for
Wide SCSI devices.

Four requirements, listed below, govern the arrangement of conductors in
the external cable. These requirements are compatible with all single-ended and
differential SCSI implementations.

1. The conductors assigned to the single-ended REQ signal and its associated
ground shoulde be a twisted pair located in the cable core. The conductors
assigned to the single-ended ACK signal and its associated ground should
also be a twisted pair located in the cable core. If there are more than three
twisted pairs in the cable core, the REQ and ACK pairs should not be adja-
cent to each other.

2. All conductors assigned to single-ended data and parity signals and their
associated grounds should be twisted pairs located in the outer layer of
the cable closest to the external shield. 

3. The conductors assigned to +SIGNAL and –SIGNAL in a differential configu-
ration are associated as twisted pairs.

4. Conductors are not to be connected together anywhere along the cable or
within any connectors except in the case of P-to-A transition cables.

Internal SCSI cables can be either unshielded flat-ribbon or unshielded twisted-
pair flat. Single-ended systems generally use flat-ribbon cable; this cable is
available in 28 AWG with 0.050 inch (1.3mm) between the centers of each
wire or 30 AWG with 0.025 inch (0.6mm) between centers. Normally, stranded
wire is used for flexibility, but solid conductors can also be used for slightly higher
impedance.

The SCSI standard recommends unshielded twisted-pair flat cables for
use as internal cables in differential systems. The twisted-pair configuration helps
to reduce cross talk between wires. Twisted-pair flat cables come in the same
size/spacing as flat-ribbon cables and have flat sections spaced at intervals, such
as every 12 inches (0.3 meter), for attaching connectors.
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Similarly, the strength of the signals that travel through your SCSI system is
finite: The signals are created (pushed) once and then they are moved along
the bus. No wire has zero resistance and no insulation has infinite resistance,
so the signal inevitably weakens as it meets these counter influences. Also, wires
that are close together have capacitance unless they form an ideal, impedance-
matched, transmission line. Added capacitance will cause the nice square
edges of our SCSI signals to get rounded off (not good). Terminators keep
our trans- mission line properly matched and minimize capacitance. Those
darned terminators sure are important!

How Long Can Your Cables Be?

According to the SCSI standards for SCSI-1 and SCSI-2 hardware, SCSI signals
are good for a total bus length of only 6 meters (about 20 feet) when traveling
through SCSI-compliant cables. If you’re using Fast SCSI, the maximum cable
length is cut in half to only 3 meters (about 10 feet). Of course, if you’re using
poorer-quality cables, your signals will be even weaker and will break up much
sooner. The bottom line is this: Whenever connecting a SCSI device, use the
shortest possible cable for the situation; don’t exceed a total of 6 meters
(about 20 feet) for regular SCSI hardware and 3 meters (about 10 feet) for
Fast SCSI. Remember, this is the total length of the bus, including all internal
and external cables.

T I P As cables get longer, the signals weaken and are more susceptible to noise. Buying a
longer cable than you need because it seemed like a good value is false economy. Use 
the shortest and best-quality cable you can afford.

Given all the different speed and bus driver options available in SCSI-2 and
SCSI-3, it takes a table to clearly show what lengths are permissible for the
devices you have. When looking at Table 5.1, find the speed of the fastest
device you have in Column 1 — unless your host adapter is slower, in which
case you find the host adapter’s speed.

Going Farther Requires Repeaters

If you must extend the length of your SCSI bus, you will need to use repeaters
(also called expanders). A repeater is placed at the end of the cable once the
maximum bus length is reached. Then, another cable is attached to the repeater
to extend the bus. The repeater picks up the signal from the host adapter and
reproduces it on the next section of cable, thereby producing a clean, strong
signal to the devices farther down the bus. Repeaters are pretty expensive, so
lengthening your bus beyond the normal limits is not to be taken lightly. Also,
make sure that the repeater is designed to operate at the speed of the fastest
device beyond the repeater.
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Table 5.1: Maximum Allowable SCSI Bus Lengths for Various Transfer Rates 
and Bus Driver Types

Speed of Fastest Maximum Single- Maximum HVD Maximum LVD
Device Ended Bus Length Bus Length Bus Length

5 MHz (SCSI1 synch.) 6 meters (20 feet) 25 meters (82 feet) 12 meters (39 feet)

10 MHz (SCSI2 FAST) 3 meters (10 feet) 25 meters (82 feet) 12 meters (39 feet)
(not recommended 
in SCSI-2)

20 MHz 1.5 meters (5 feet) 25 meters (82 feet) 12 meters (39 feet)
(Ultra or Fast-20) (not recommended  

until SCSI3 SPI) 

40 MHz Not recommended 12 meters (40 feet) 12 meters (40 feet)
(Ultra2 or Fast-40)

Internal versus External Cables

When you shop for SCSI cables, you’ll find two main types: internal and external.
They’re used just as you’d expect: the internal for internal connections; external
for external hookups.

Internal Cables Look Like Ribbons

Internal SCSI cables look a lot like the cables used for any other internal com-
puter storage device. They’re also called ribbon cables because they look like
ribbons. If you haven’t seen an internal ribbon cable (because you haven’t dared
to open your computer), an example is shown in Figure 5.1.

As you can see in Figure 5.1, flat-ribbon cables consist of a flat bunch of
single wires all stuck together side by side and packaged in plastic, like a ribbon.
One edge of the cable has a colored (often red) stripe, which indicates the
first wire of the group. This becomes very important when you need to know
how to orient the cable.

Differential SCSI systems usually use twisted-pair ribbon cables instead of
the more common flat-ribbon cables to reduce interference between the wires.
A twisted-pair flat cable looks similar to a flat-ribbon cable, except that each
pair of wires is twisted together along the length of the cable. As a result, twisted-
pair flat cable looks more like a bunch of twisted wires than a bunch of straight
wires. At certain intervals along the cable, the wires are un-twisted so that the
connectors can be attached to them, as you can see in Figure 5.2.
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External Cables Are Round and Thick

External SCSI cables look similar to computer power cords: They are long,
round, and rather thick. You’ll often find similar cables attached to your printer,
looking something like that shown in Figure 5.3.

T I P Because external SCSI cables are thick and heavy, they have screws or clips on their con-
nectors to keep them firmly attached to your computer. Always make sure that the screws
or clips are properly fastened. If they fall off while you’re saving an important file, you
won’t be a happy camper.

Figure 5.2: Twisted-Pair Ribbon Cable
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The two common types of external cables are:

• A cables with 50 wires (for regular [narrow] and Fast SCSI)

• P-  and Q-  cables with 68 wires (for 16-bit Wide and Fast Wide SCSI-3; P
used alone for 16-bit; P and Q used together for 32-bit)

You don’t need to worry about the number of wires in the cables, though.
When buying SCSI cables, you’ll need to know only the type of SCSI bus
you’re using (e.g., regular 8-bit or 16-bit Wide) and the type of connector. 

Know Your Connectors

Connectors attach the cables to SCSI devices and to the computer. They consist
of a plastic or metal housing with either metal pins visible inside or with cavities
into which those pins will fit. It may have screws or clips to hold it tightly in
place. External and internal SCSI cables have different types of connectors,
and it’s important to recognize the differences so that you’ll fit the right cable
to the task.

Connectors are often referred to as being male or female. A connector
is female if its contacts are female (they are hollow providing a place for a
male pin to insert); male if its contacts are visible pins or other protrusions.
The shape and size of a set of male and female connectors should match
exactly. Remember, too, that it’s the contacts that are being referred to, and
not the connector housing or shell. Here’s how to identify the different types
of connectors.

Figure 5.3: Typical External Cable with Cross Section
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Internal Cables Usually Have Rectangular Connectors with Holes 

Internal SCSI-1 and SCSI-2 cables usually have a rectangular plastic connector
with 50 holes in it (so it’s female). These connectors typically look like that in
Figure 5.4. A male connector for this cable will have 50 pins whose arrangement
matches exactly.

Wide SCSI cable connectors have 68 pins (so they’re male) spaced very close
together. The female connector for such a cable will have 68 hollow contacts
whose arrangement matches exactly.

Four Common (and Some Not-So-Common) External SCSI Connectors 

There are four main types of external SCSI connectors: the 25-pin D-sub, the
Centronics 50-pin, the high-density 50-pin, and the high-density 68-pin. 

The 25-pin connectors are used on Apple computers and some low-end
SCSI adapters (such as those included with scanners); they can support
only 8-bit SCSI and aren’t actually official SCSI connectors at all, because
they don’t appear in any SCSI standard. 

N O T E If you must include any devices that have 25-pin connectors in your system, keep them to
an absolute minimum. Also, keep as much of the bus as possible 50- or 68-pin — that is,
locate a 50-to-25 pin adapter as close to the 25 pin device as possible and keep all the
cables 50-pin to the extent you can. The popularity of drives which are 25-pin has caused
many people to experience SCSI problems that are due to the 25-bus discontinuity. Because
the 25-pin connectors share grounds between data signals they cannot be for differential
and should not be used for anything running faster than asynchronous.

Figure 5.4: Typical Internal SCSI Cable Connector
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The 50-pin connectors are used with 8-bit (narrow) SCSI. Most external
SCSI-1 devices have the Centronics version; SCSI-2 devices have the high-
density connectors. 

The 68-pin connectors are used with Wide SCSI in order to handle the
additional data bits and extra parity signals. You can use the connector
outlines in Appendix A to see which kind you have or which kind you need.

Following are a few special connectors that were made specifically for a partic-
ular manufacturer’s computer:

• IBM created its own version for the PS/2 models by adding 10 pins, which
they marked as “reserved” but never actually used. If you have an IBM PS/2
with an IBM SCSI host adapter, you’ll need a special IBM-to-SCSI adapter
cable between your computer and the cable to the first device.

• Apple created a new, smaller connector for their PowerBook notebooks
to save space. There isn’t anything particularly special about it; it’s just
optimized for space reduction. You can find these cables in better-equipped
shops, but they’re more expensive than standard cables, of course.

Yet another new SCSI connector has appeared in recent years (whatever you
may think about the fact that there are so many SCSI connectors to choose
from, the connector manufacturers have got to love it!).

The 80-pin SCA (Single Connector Attachment) was designed to make it
simpler to “hot-swap” SCSI drives in and out of systems, especially RAID
arrays. Drives with SCA connectors typically don’t provide their own ter-
mination or ID jumpers. They are intended to be plugged into special back-
planes that provide these facilities. You can connect them to a regular SCSI
bus though using SCA to 50/68 pin adapters.

Connecting Devices to the Bus

SCSI devices are connected with cables to form a sequence known as a daisy
chain. It begins at one end of the cable and continues from device to device
until it reaches the last device, usually the SCSI interface inside the computer.
The entire chain of connections is called the SCSI bus, and it carries commands
and data between the host computer and the devices. External devices have
two connectors on their housing so you can chain from one to the next. You
can make an internal device into an external device by simply mounting it in a
special case that has a power supply, an ID switch, and a Y-shaped cable with
an internal connector in the middle and an external connector on each
branch of the Y.

A typical SCSI daisy chain might look like that shown in Figure 5.5.
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Find Pin 1

To connect a cable to a device, you must orient it correctly. An external
cable’s connectors are shaped so that you can only connect them one way, 
so you don’t need to worry that you’ll connect them upside down. Internal
cables, however, don’t always have such a safeguard. As a result you should
always be aware of the colored stripe on internal cables. The stripe on one
edge of the cable indicates Wire 1, and hence Pin 1, on the connector. The
connectors that are crimped onto the flat-ribbon cable often have their Pin 1
position indicated by a small triangle or arrow.

SCSI devices also have a mark of some kind to designate where Pin 1 is
located. Sometimes a “1” is silk-screened on the circuit board, or it may be
indicated by a small triangle embossed on the connector. If you can’t find
it,check the manual that came with the device to see which is Pin 1. Once
you’ve established the orientation of the device’s connector, match the 
orientation of the internal cable’s connector to it, Pin 1 to Pin 1, and plug it
in, as shown in Figure 5.6.

Figure 5.6: Properly Oriented Internal Cables
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Figure 5.5: Daisy Chain of SCSI Devices
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In general if you manage to plug in a SCSI cable reversed, no harm will be
done. The designers of the SCSI standard were wise enough to define that the
pin opposite TERMPWR be left open so that it won’t be shorted to anything
(which might cause damage).

If you want to add another device, say another hard disk, to your SCSI
installation, you need to extend the bus to that device to make it part of the
system too. To add a second hard disk to your system, you simply add a second
cable between the first hard disk and the second one — not between the second
hard disk and your computer. The resulting system is shown in Figure 5.7.

You now have three SCSI devices connected on your SCSI bus: the com-
puter, the first hard disk, and the second hard disk. You’ve started the daisy
chain — connecting the first device to another device, to another device, and
so on. A more elaborate daisy chain, with a couple of hard disks, a CD-ROM,
and an optical drive, might look like that in Figure 5.8.

Figure 5.7: Three Devices on the Bus
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A Daisy-Chained SCSI System

This is one of SCSI’s greatest features — the ability to connect many devices to
one slot on your motherboard, all coming off the same SCSI bus.

If you wanted to max out this daisy-chained system with other SCSI devices,
you’d simply repeat the process of connecting device to device until the number
of devices totaled the maximum for the type of SCSI you’re using (8 devices
for 8-bit SCSI, 16 for 16-bit SCSI). A maxed-out system would look like that in
Figure 5.9.

Note that the device numbers do not refer to their SCSI IDs. The SCSI ID
is independent of the device’s position on the bus.

Terminating the SCSI Bus

That’s all there is to making the basic connections for the SCSI bus. But to have
a fully operational SCSI bus, you must follow one more rule: Use only two ter-
minators, one on each end of the chain. You want your signal to flow freely up
and down the chain but not reflect from the ends. (For a more detailed discus-
sion on the types of terminators, refer to Chapter 3.)

Figure 5.10 shows an example of what not to do.

N O T E Correct placement of terminators is critical for proper system operation. Always terminate
only the first and last devices on the SCSI bus.

The most common mistake made when connecting devices to the bus is incor-
rect termination. Most SCSI devices can be terminated (not killed :-). Some
devices have built-in terminators, and if you attach such a device to the middle

Figure 5.9: Example of a Full 8-bit SCSI System (a Total of Eight Devices) 
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of the bus but forget to remove the terminator, you’ll have the configuration
shown in Figure 5.10 — and a headache. Make sure you check each device so
that no devices in the middle of the bus are terminated. The only devices that
must be terminated are the ones on the ends. (Technically, it’s not the devices
themselves that need to be terminated but the ends of the bus. However, it’s
sometimes less expensive to use the terminators provided in most devices rather
than buying separate ones to plug onto the ends of  the cable.)

Figure 5.11 shows a properly terminated SCSI system.

The Host Adapter Is a Device, Too

Remember that the computer’s host adapter card is also a device on the bus.
As a result, if the host adapter is on one end of the bus, it must be terminated.

Figure 5.10: SCSI Bus Terminated in the Middle 
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However, if you have both internal and external SCSI devices, the host adapter
is in the middle of the bus and must not be terminated. Figure 5.12 shows such
a system.

Terminating Your Particular Device

There is more than one way to terminate a SCSI device. Most SCSI devices
have an internal terminator that can be turned on or off with a switch. The
switch is either a jumper or toggle, or it may be software controlled on some
interface cards. Some older devices have physical terminators that must be
pulled off or plugged in to turn termination off or on, respectively. The manual
for (or the manufacturer of) your particular device will tell you what system

MIX AND MATCH:

COMBINING REGULAR AND WIDE SCSI

Until now, we’ve only discussed methods of connecting devices of the same bus
width: 8-bit devices on an 8-bit bus, 16-bit devices on a 16-bit bus, and so on.
However, these devices can coexist to a certain extent.

When mixing devices, you must be aware of three important requirements:

1. The bus you use must be as wide as the widest device used on the bus. For
example, you can connect an 8-bit device to a 16-bit bus, but not vice versa
(unless you can disable Wide negotiation for that device, or the host adapter
doesn’t even attempt Wide).

2. You must terminate the entire width of the bus, regardless of the width of the
last device. Just because the last device on your 16-bit bus is 8-bit doesn’t
mean you can simply use an 8-bit terminator. The full 16-bit bus must be ter-
minated; otherwise, only the 8-bit devices will communicate properly.

3. You must not assign any two devices the same ID, regardless of their width.
All 8-bit devices will have IDs from 0 to 7; 16-bit devices will have IDs from 0
to 15. As a result, the ID range for 8- and 16-bit devices overlaps from 0 to 7. 

In a 16-bit Wide SCSI-3 system, a P- cable is used. In an 8-bit system, A cables
are used. In order to attach 8-bit devices to a 16-bit bus, you will need a P-to-A
(68-to-50 pin) transition adapter. Generally this adapter should have a termina-
tor in it for the high byte. Also, care needs to be exercised in how pins 17, 18,
and 51 on the 68-pin side are connected, because passing them through in the
simplest manner will result in a short from TERMPWR to GROUND when using
typical terminators.
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your device uses. Figure 5.13 shows a typical physical terminator, just in case
neither your device’s manual nor your manufacturer is available.

External SCSI devices also might have a large physical terminator on the
outside of the device, instead of a cable leading to another device, which
might look like that in Figure 5.14. This particular type of external terminator
looks like a cable connector without the cable.

If you’ve determined that you need to terminate a device (because it’s
either at the beginning or end of the chain), you’ll do so by either turning on
its terminator switch or inserting the physical terminator (as instructed by
your manual). To turn off termination, turn off the switch or remove the phys-
ical terminator. Remember to check that none of the devices  in the middle of
the SCSI bus have their terminators switched on. 

Figure 5.12: A Correctly Terminated SCSI Bus with the Host in the Middle
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Terminator Power

SCSI terminators provide two functions: They prevent reflections (see Chapter 3
for details) from the ends of the bus and provide “pull-up” current to bring
inactive signals up to about 3 volts. In order to provide this second function,
they need a source of power or voltage. Because stand-alone terminators
(ones not inside any device) may be out dangling at the ends of the SCSI bus,
that power needs to be run along the whole bus. The TERMPWR line is pro-
vided for this purpose. The TERMPWR voltage can be supplied by several
devices along the bus or only one device. The SCSI-2 specification requires
that all host adapters (initiators) provide it, but any device can provide it too.

Your components may offer you the choice in this situation: Look for a
jumper on your device marked TP or something similar. It may have two set-
tings: (1) Provide power only to this device’s terminator or (2) Let this device’s
terminator get power from the bus. It doesn’t hurt to have more than one
device supply TERMPWR — but no more than four should, or a short circuit
on the bus could overheat the wires.

N O T E These settings are completely separate from whether the device’s terminator is enabled or not.

SCSI IDs

Because all devices on a SCSI daisy chain are hooked together in one continu-
ous string, each device on the bus (including the host adapter itself) must
have a unique SCSI device ID. The number of available IDs is directly related
to the width of the bus, like so: 

• Regular SCSI-1 and SCSI-2 have eight possible SCSI IDs, one for each of
the eight SCSI devices that can be attached to the bus. These SCSI IDs
range from 0 to 7, counting 0 as the first number.

Figure 5.14: A Typical Physical Terminator on an External SCSI Device 
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• 16-bit Wide SCSI has 16 IDs, ranging from 0 to 15, because it has a 
16-bit bus.

• Likewise, 32-bit Wide SCSI has 32 SCSI IDs, ranging from 0 to 31. (You’re
not likely to see any devices like this, though.)

Setting SCSI IDs

SCSI IDs are set by changing a numbered wheel, a group of switches, or a set
of jumpers on each device. The method for each particular device will differ.
Check your user manual for each device to see exactly how to set them. There
will be a table of SCSI IDs showing the jumper or switch configuration that
corresponds to each ID. If your device has a numbered wheel, just turn the
wheel to the desired ID.

When choosing SCSI IDs, you can use any number you like, as long as it’s
not in use by another device on the bus and as long as it’s within the range for
the type of bus you’re using.

N O T E SCSI-3 will introduce new serial bus designs that will allow more devices on a single
bus, but in general, they will be set automatically so you don’t have to worry about them.

Here’s an example of how you might assign IDs to your SCSI devices. Let’s say
that you have one hard disk attached to your computer and you want to add a
second SCSI hard disk and a SCSI CD-ROM drive. Assigning the IDs is simple.
First of all, call the SCSI interface card on your computer ID 7, just so it’s the
last device. Now, give the first hard disk ID 0, the second hard disk ID 1, and
your CD-ROM ID 2.

N O T E Again, you’ll set these IDs with some sort of wheel, switch, or jumpers. Check your manual.

Figure 5.15 shows the results of assigning these three IDs.

Why Set One Device’s ID Higher than Another?

In order to avoid conflicts when more than one device tries to access the bus,
the SCSI bus protocol provides a concept called priority. If two devices both
put their IDs on the bus at exactly the same time, the one with the higher ID
gets access and the lower one backs off and waits for the bus to be free again.
This is one reason that the host adapter is usually assigned ID 7, because it is
the most important and heaviest user of the bus. Using this line of thinking, 
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you might be tempted to put your hard disk on ID 6, because you likely think
of it as your next most important device. It turns out that this isn’t always a
good idea. Consider this scenario: Your CD-ROM is trying to return data that
you asked for, but because you have so much hard disk activity at a higher pri-
ority, you’ll never get anything from the CD-ROM. In general it is better to
put slower, but less-used devices at the higher IDs and leave the hard disks at
lower IDs. This is especially true of devices like CD recorders and streaming
tape drives which fail to operate properly if their data stream is interrupted. If
you have a CD-R drive and a tape drive, put them at ID 6 and ID 5 respectively.

Parity Checking

When configuring your SCSI system, you’ll probably encounter an option for
parity checking. Parity checking is a simple and fast method of error checking
(discussed in more detail in Chapter 3). You should turn parity checking on if
your devices support it. Parity checking is turned on or off by either hardware
or software, using a switch, jumper, or configuration program. (Check your
manual to see which method your device uses.) 

Whether you’ll be able to use parity checking will depend on the capabili-
ties of all of your SCSI devices. All devices on the bus must be able to perform
parity checking in order for you to enable it. In fact, if only one device lacks
support for parity checking, you must turn parity checking off for all of the
others. Otherwise, the one device that doesn’t know how to do the check won’t
understand the extra data, and your system won’t work properly.

Figure 5.15: SCSI System with ID Numbers Assigned
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N O T E Parity was optional under the old SCSI-1 standard but is required of all SCSI-2 and
SCSI-3 devices. If you’re unsure if all your devices support parity checking, check the
manual that came with each device. Only old SCSI-1 devices may lack this feature.

Another Way to Do All This

Remember a while back we mentioned 80-pin SCA connectors and how they
can be used to connect devices into RAID cabinets and the like? Well, let’s just
touch on that a little more. Now that you’ve seen all the details of connecting
cables and setting IDs for your devices, you can better appreciate the value of
avoiding that stuff altogether. An SCA backplane case allows the user to simply
fasten drives to slide-in trays and install them without being concerned about
individual data and power connections or ID jumpers. IDs are set either by the
slot position the device occupies in the case or by thumbwheel switches on the
outside of the case itself.

These cases aren’t inexpensive, but make it very easy to replace individual
drives (which may have become defective), in some cases without even turn-
ing the power off! SCA provides power pin sequencing which allows drives to
be connected and disconnected from the SCSI bus without disturbing the
other devices.

That’s That, I Guess!

So now you know how to select cables and connectors, hook up all of your
hardware, and assign ID numbers to all devices. What’s next? Well, what hap-
pens if it doesn’t work? 
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T R O U B L E S H O O T I N G  Y O U R  S C S I

I N S T A L L A T I O N

Everyone hopes that troubleshooting will
never be necessary — and then trouble

strikes. Although some vendors still seem to
make a company secret of it, troubleshooting

a SCSI system is like all other troubleshooting jobs:
Once you know a few basic rules, it’s a logical
process.

First off, if you do run into a problem and you’ve changed anything in your
system, check for the typical faults during bootup. If you haven’t changed any-
thing, then some hardware must have developed a fault all by itself. If you en-
counter errors or other faulty behavior during normal bootup, the first rule is
to “note all error messages.” System error messages are your first clue. The
best practice is to keep a log file containing the error messages or a hardcopy
of the error message. If no log or hardcopy is available, write it down yourself.

However, sometimes error messages don’t help; they may be cryptic, mis-
leading, and unreadable for all but your resident system guru. In such cases,
only a systematic search will help. 
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Before beginning the real troubleshooting process, run through the following
list to check a few basics. In many cases, you’ll be able to solve your problem by
resolving one of these issues:

• Does the host adapter have any resource conflicts (namely I/O port, IRQ,
or DMA)? (Remember sharing IRQs is OK with PCI cards.)

• Does each device have its own unique SCSI ID?

• Does termination appear only at the bus ends?

• Are cabling rules obeyed?

• Is the device connected properly? Most shrouded header connectors have
a plastic guard around their perimeter with a notch on one side. To prevent
you from incorrectly inserting connectors, these shrouded headers use a
mechanical key (a slot or tab in the connector), which requires that the
cable be inserted only one way into the shroud. Some cheaper devices (and
a few high-end host adapters) use simple connectors, mostly for cost reasons.
These simple connectors aren’t keyed and won’t prevent incorrect connec-
tions. If your host adapter has such connectors, look for a small white “1”
or a similar label on the board marking pin 1.

Open the computer to be sure  that internal devices are configured correctly —
often they’re not.

Test the system with whatever spare parts you have. You’ll find the following
parts especially useful for particularly pesky problems:

• At least one known good internal and external cable.

• Active and passive terminators.

• A cable with an unused connector (for the purpose of connecting test
equipment, etc.).

• A multi-meter (for voltage and resistance measurements).

• One or more software tools for scanning your bus and formatting disks, etc.
If your host adapter doesn’t have a BIOS or the BIOS doesn’t have a format
utility or similar modules (all such tools need an installed ASPI or CAM
driver), look on the CD accompanying this book for handy tools.
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• For DOS users, a bootable floppy disk with DOS and your adapter’s ASPI
or CAM driver. If possible, have a newer DOS variant (DOS 6.0 or above)
on this floppy with multiple boot configurations, which will allow you to
decide which drivers should be loaded at startup.

• A spare host adapter and a small hard disk with a bootable partition on
it — especially if you have to troubleshoot frequently.

• An oscilloscope or transient recorder is necessary for some very tricky things,
like measuring RF distortion or noise on static signals like TERMPWR.
There is no way around buying or borrowing these tools if you want to take
measurements like these.

Common Problems

Now that you know what tools you should have (and which, of course, you don’t
have handy when you need them most), here are some of the most basic system
problems and their possible cures:

Problem: Host Adapter Not Recognized by the System

Symptom

The host adapter isn’t recognized on startup, or you get a message like
“Couldn’t initialize host adapter.”

Possible Causes/Problems

1. The SCSI adapter isn’t seated correctly in the computer’s bus connector.

2. Your system’s hardware is using conflicting system resources, like an I/O
address, interrupt (IRQ), or DMA channel.

3. An illegal system resource is set on the host adapter.

4. The host adapter is plugged into the wrong type of bus slot.

5. A device on the SCSI bus is locking up the host adapter because of 
a conflict in SCSI settings, such as parity checking or duplicate IDs.

Explanations and Possible Remedies

Problem 1: Check to see that the host adapter is seated properly in the sys-
tem’s card slot. Make sure that it’s not installed at an angle so that, although
some functions seem to work, a few conductors are not making contact.
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Problem 2: Check for a resource conflict with the host adapter. (If you
encounter a resource conflict when installing a new SCSI host adapter,
see the installation guidelines in Chapter 4, “Adding SCSI to Your PC.”)
Many systems work fine prior to the installation of a SCSI card, but then
encounter resource conflicts immediately after you add a new adapter
card. (Sound cards are especially notorious for causing resource conflicts,
because many sound cards use the same I/O ports, interrupts, or DMA
channels as SCSI host adapters.)

Problem 3: Verify your adapter’s jumper and switch settings with its user
manual. Some adapters have a set of jumpers or DIP switches, but allow
you to set only a few specific combinations. If you set an undefined combi-
nation, you can create all sorts of problems in your system. 

• If your system includes EISA or PCI, verify that each card has a dedi-
cated resource. EISA and PCI add a tricky issue — although the hard-
ware may be able to share interrupts between cards, the drivers may
not. In such cases, try to give each card dedicated resources.

• Check that adapters don’t share I/O addresses. Some adapters restrict
the combination of resources that they can use. For example, the older
Adaptec 1540A and B models could set different I/O addresses, but
the BIOS worked only with I/O address 330 hex.

Problem 4: Confirm that correct slots have been used. EISA, VLB, and
PCI systems have both busmaster-capable and non-busmaster–capable
slots available. Because nearly all SCSI host adapters for these bus systems
use bus mastering, ensure that you select the correct slot type when you
install the adapter.

Problem 5: Check that option settings are compatible with the host adapter’s
setting. In some cases, where the SCSI device offers a data transfer option,
like parity, that option has been set but it is incompatible with the host
adapter’s setting (not all host adapters will support parity checking, for
example). This incompatibility could lock up the SCSI controller chip 
on the host adapter, thus causing the BIOS or driver to think the adapter
is defective.

Finally, consider the worst case: The host adapter may be defective. 
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Hints

After ensuring that the board is seated properly and that there are no
resource conflicts, disconnect the bus cables from the host adapter to see
if the adapter is recognized. If it is, your problem is caused by something
related to the SCSI bus.

If you inserted a new board or changed the setup of another board, the
affected board may now have a resource conflict. For example, some sound
boards’ MIDI addresses conflict with those of certain SCSI host adapters.

N O T E When you encounter errors like those listed above, always remember that the BIOS and
the SCSI controller are independent components on the board. Just because one of them
works doesn’t necessarily mean that the other one also works.

Problem: One Device Not Found

Symptom

A device isn’t found on startup.

Possible Causes/Problems

1. There is a power failure in this component or its power connector.

2. There are conflicting SCSI ID settings.

3. Termination is incorrect.

4. Cabling is incorrect. A connector plugged in the wrong way may be very
dangerous! Incorrect connections can cause short circuits.

5. The cables are too long.

6. There is a bad cable(s).

7. An external device was turned on after the SCSI bus scan.

Explanations and Possible Remedies

Problem 1: Check to see that the device power’s on. Make sure that the
connector is seated correctly, that the device spins up, or that the device
accepts a tape or CD-ROM, and so on. If not, attach another power cable
and check the voltage on the device’s connector to ensure that power is
available at the device.
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Problem 2: Check all new or external device settings. If a new or external
device is connected to the bus, its SCSI ID may conflict with that of a device
already on the bus. This conflict may cause the device(s) sharing this ID
to malfunction and may even cause the entire bus to fail.

Problem 3: Make sure that the bus is terminated properly. Make sure that
you didn’t add a terminated device in the middle of the bus or an unter-
minated device at the end of the bus. Be sure that you correctly enabled
or disabled the host adapter’s termination.

Problem 4: Check that connectors, particularly non-keyed connectors, are
oriented properly. It is sometimes the case (though usually only with cheap
host adapters or devices with non-keyed connectors) that an internal con-
nector is plugged in the wrong way. The shrouded (keyed) connectors,
found on better host adapters and devices, prevent you from plugging a
connector in the wrong way. Incorrectly inserted connectors may be haz-
ardous to the SCSI bus itself because termination power may be connected
to ground, thereby causing a short circuit.

Problem 5: Check cable lengths. Your cables may be too long. External
devices, especially scanners, sometimes come with a cable two or three
meters long, which results in an overall bus length that exceeds the SCSI
limitation.

Problem 6: Check cable specs. Your external device may have a cheap
cable that doesn’t meet the SCSI specifications. It is especially important
to use high-quality cables when using Fast SCSI and beyond.

Problem 7: If the device is external, see that it was powered on soon enough
to be recognized by the SCSI bus scan. Some drivers don’t recognize devices
that are turned on after they have scanned the bus for devices. If you turn
on your system and then turn on your external device — a CD-ROM drive,
for example — the external device may take too long to react to inquiry
commands from the SCSI bus, such that the host adapter thinks it isn’t
present. As a result, the device’s driver fails to install. To see whether this
is your problem, try a warm reboot.

Hint

If you have a working setup and suddenly a device isn’t recognized, then a power
failure or a termination problem are the most likely causes. However, incorrect
setups can continue working for some time and then fail without an obvious
reason, so it’s best to check all possible causes.
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Problem: No Device Found

Symptom

The host adapter seems to work, but it can’t find any devices on the bus.

Possible Causes/Problems

1. The bus cable may have lost its connection.

2. Termination power may have failed.

3. Termination is incorrect.

4. Device IDs are conflicting.

5. Cabling is incorrect or bad.

6. Cables are too long. 

7. There’s a bad cable on the bus.

Explanations and Possible Remedies

Problem 1: Make sure that the cable is still connected properly. If the
SCSI cable was under tension, it may have lost contact with the host
adapter’s connector. 

Problem 2: The TERMPWR fuse may be blown.

Problem 3: Check the termination. You should have terminators only on
the ends of the bus and no terminators on any other devices. 

Problem 4: Check that the SCSI IDs of new or external devices do not con-
flict with that of a device already on the bus. Such a conflict will cause the
device(s) with this ID to malfunction and may cause the entire bus to fail.

Problem 5: Check that connectors, particularly un-keyed connectors, are
oriented properly. If you have internal devices, a connector may have been
plugged in the wrong way, which may either blow the termination power
fuse or simply draw most signals to ground. Either way, the bus won’t work.
The recommended shrouded header connectors prevent this by a mechani-
cal key (a slot in the connector that requires that the cable be inserted only
one way), but some devices use only simple connectors that may be plugged
in backward.



110 Chapter 6

Problem 6: Although cable length is very seldom the cause of a complete
bus failure, check to see that the length of your cables doesn’t exceed the
maximum allowable.

Problem 7: Check the external chain for a bad cable. Try disconnecting a
device or two and swap cables to see if there’s a bad one. The same might
apply if you connected a device by an adapter connector, as is usual for
cheap SCA disk drives. Many of these adapters don’t have a complete pin-
ning and so might miss or short one or more signals. Also, you might keep
in mind that SCA doesn’t have a TERMPWR line — if you rely on an adapter
or a combination of adapters related to SCA, there is no termination power
from this point on.

Hints

• Check for power failure with a voltmeter: If you have a working setup and
suddenly a device isn’t recognized, then a power failure is the most likely
cause. Note that some setups may continue working for some time before
failing for no apparent reason. 

• If you have a new setup and the devices aren’t recognized, turn the sys-
tem off immediately and double-check the complete setup. The fault 
may involve terminators on the host adapter and/or devices. Also, some
older host adapters have pluggable fuses for termination power that may
have blown.

Problem: System Can’t Boot from SCSI Hard Disk

Symptom

Although the host adapter seems to work and recognizes all devices, the system
either won’t boot from a SCSI hard disk or it locks up when booting.

Possible Causes/Problems

1. You have a non-SCSI (ATA/IDE, ESDI, etc.) hard disk in the system.

2. The hard disk has an ID higher than that supported for booting. Some
adapters only boot from a particular ID or range of IDs.

3. There is no active partition on the SCSI disk.

4. A DOS memory manager overwrites the SCSI BIOS.
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5. Your SCSI host adapter has no BIOS or its BIOS is disabled.

6. Your SCSI adapter may need an entry for the disk in the computer’s setup.

Explanations and Possible Remedies

Problems 1 and 2: If a non-SCSI hard disk (IDE, EIDE, ESDI, or ST506)
is in the system, it has boot priority in the system BIOS. Some PC mother-
board BIOSes offer a “SCSI first” entry for the boot-up sequence, but this
may not be reliable. So, if you have a non-SCSI disk, booting from SCSI may
not work until you disable the non-SCSI hard disk. Many host adapters will
only boot from devices with an ID of 0 or 1, so if your disk is set on ID 6,
booting either isn’t possible or you need to set a parameter in the SCSI
host adapter’s settings or a jumper to allow it to boot. (It’s best to set the
hard disks to lower IDs to prevent this sort of problem.)

Problem 3: As with any other disk drive, you need a bootable and active
primary partition to boot from a SCSI hard disk drive. Use FDISK to set
the primary partition to bootable.

Problem 4: If your system boots from the SCSI hard disk, but then locks up,
the DOS memory manager may be overwriting the SCSI BIOS when it is
started in CONFIG.SYS. To see if this is the case, make a backup copy of
your CONFIG.SYS file and then remove the line for the memory manager.
Now try booting the system again to see if it boots from the SCSI hard disk.

• With more advanced operating systems like Windows NT or
Unix/Linux, the initialization of other peripheral’s drivers may con-
flict with the SCSI host adapter’s resources and so render the system
unstable or dead from a specific point in the startup process. In this
case, most operating systems support the troubleshooting with a boot-
up setting that allows tracing of the driver loading.

Problem 5: If you get “no boot device” or similar error messages, see if
your SCSI BIOS is enabled. Sometimes people try to run a hard disk from
a sound card’s SCSI port. While this usually works, the hard disk isn’t boot-
able if the sound card’s embedded SCSI host adapter doesn’t have a SCSI
BIOS, and most do not.

Problem 6: Some older SCSI host adapters (older DPT models, for example)
emulate a WD1003 hard disk interface and need a CMOS entry for the
bootable hard disk. (This is so unusual for SCSI, that it’s easy to forget —
so check your manual.)
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Problem: Intermittent Lockups and Communication Errors

Symptom

The SCSI system usually works but shows intermittent lockups.

Possible Causes/Problems

1. Termination is incorrect.

2. Termination power is too low and/or noisy.

3. You may have folded your internal cable into a tight, neat package, and as
a result, created an R-C (resistor-capacitor) network that has unforeseeable
side effects under dynamic load.

4. Cables are too long. This often happens with external devices, especially
scanners, which sometimes come with a cable two or three meters long.

5. One of your devices, adapter connectors, or cables is bad.

Explanations and Possible Remedies

Problem 1: Check the termination thoroughly. Did you obey all the rules?
Remember, termination occurs only at both ends of the bus.

Problem 2: When using internal devices with resistor SIPs (single inline
packages), be sure that they are inserted facing in the right direction. Pin
1 is usually marked with a colored spot or line. An incorrectly inserted
passive terminator for example, because it has TERMPWR and ground on
the opposite ends, shifts the voltage bias point of the terminator. The bus
may continue to work but will be unreliable. 

• Passive termination is particularly vulnerable to low termination power
voltage. If you follow the specs, TERMPWR should be between 4.25
and 5.25 volts. However, most manufacturers start with the +5 volts
DC (VDC) from the PC’s power supply and connect a silicone rectifier
for protection. Now, if the +5VDC is really only 4.85 volts — definitely
in the legal range—and we lose about 0.6 to 0.7 volts across the rectifier,
we’re below spec. If you add the loss on the SCSI cable, we’re clearly
under spec. (Active termination is far less vulnerable here because it
works with a voltage regulator, and a good voltage regulator needs only
about 0.5 to 1 volt over the needed 2.85 volts.)
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• The same applies for noisy TERMPWR. The basic voltage supply for
the termination power isn’t very clean, which may cause some systems
to hiccup. Noise might get through the termination network to the
signal lines. As just stated, active termination is less vulnerable because
the voltage regulator suppresses the noise to some degree. If noisy
TERMPWR is your problem, you will need an oscilloscope or transient
recorder to find it—and then you’ll need even more good ideas to get
rid of it.

Problem 3: Sometimes, people fold all their internal cables in neat packages,
securing them with cable fasteners or plastic belts. This may or may not
work. When you fold the cables, you create a very complex R-C network,
which may cause the bus to fail at certain dynamic situations under load.
So, even if you’re an order fanatic or neat-nick, resist this temptation!
Let the cables flow freely in the case.

Problem 4: Keep the bus length inside the computer at a minimum. The
maximum bus lengths are defined for an ideal setup, and a real-world setup
is never an ideal one. Also, each connector, each cable change, and each
device introduces impedance changes; so, if possible, keep the cables
shorter than the specified maximum length as a security margin.

Problem 5: If you get a bad cable, replace it. When you identify a cable that
gives you trouble, you may find a cable sequence that works, but it will always
be a suspicious point. So, if possible, replace it right away. When you buy 
a cable, especially an external one, don’t get the cheapest — get one that
adheres to the specs.

N O T E SCSI vendors with a good reputation tend to have good quality cables, so their cables 
are usually a good choice.

How to Check Typical Issues

Two Devices with the Same ID

If one or more installed devices do not work, but one of them is recognized by
a tool like SHOWSCSI or the host adapter is not able to detect one of them
during the boot phase, you may have two devices at the same ID. 

Let’s create a scenario for this situation: You have a setup with hard disk
drives at IDs 0 and 1, a tape drive at ID 2, and a CD-ROM drive at ID 3. Now
you add an external device, say, a CD-ROM drive, configured also for ID 3. 

This change in your setup could cause various error situations: 
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• The two devices at ID 3 may simply not work, but the system works
with the remaining devices; 

• The CD-ROM driver may lock up on initializing its device; or 

• The host adapter hangs at the bus scan. 

With similar device types as in this example, the CD-ROM driver may even load,
but later the CD-R driver may drive the system nuts. . . .

Whatever happens, check all IDs carefully. If you don’t know your IDs or
aren’t able to find out easily, use this quick-and-dirty approach:

1. Power up the system and note which devices are found on what IDs during
bootup. 

2. Turn off the system and disconnect/power down the devices that were
recognized — these are the ones that the system knows about. 

3. Turn the system on again and watch, during bootup, for devices to show
up that weren’t present before you disconnected the known devices. 

4. Add these devices to the list of known devices, and note their IDs to
resolve a possible conflict later in the process. 

5. Repeat these steps until no device is left on your system. 

After following these steps, you may be surprised to discover as many as three
devices at the same ID (it happened to me . . .), and you’ll have a list of all
attached devices and their IDs. Now, armed with your list, change the conflicting
device ID(s) so that there are no longer conflicts, and everything should be OK. 

Remember, ID 0 and ID 1 are usually used for hard disks, and ID 7 should
remain reserved for the host adapter. Do not try to attach more devices than the
host adapter is able to handle. A special case of this problem is if you set a peri-
pheral device to the host adapter’s ID. Usually, on a bus scan, this device shows
up on all IDs except the host adapter’s ID (because the host’s ID isn’t checked).
The problematic part of this situation is that such a single-device configuration
sometimes works, but if you connect a second peripheral device, you won’t get
it to show up during the bootup of your system.

N O T E Some devices MAY have incomplete implementations of the SCSI interface, and some
older devices have fixed IDs (though a device with an ID fixed at 7 is unheard of). See
the “Tricky Devices” section later in this chapter for more information on how to handle
these devices.
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Dead Devices

Electronic devices have many ways of dying, and heaven only knows which path
your device will choose. Usually, if the SCSI electronics are OK, the system finds
the device, the device will react to inquiry commands, but on accesses or tests
you get a “device not ready” or similar message. This is very common for defec-
tive disk drives or tape devices. If the device is electronically dead, it won’t react
at all — which is the easiest symptom to detect.

Termination

First, some rules for termination:

1. Bus termination should only be applied at the physical ends of the SCSI
bus. This is the most basic rule of termination, and the one that causes
the most intermittent trouble. 

2. From a practical point of view, use active terminators only — passive termi-
nators were never really a good choice, and the introduction of higher
transfer rates outlawed them years ago. But passive terminators are still sold
and, because they are cheaper than even the cheapest active ones, are some-
times used even though they’re inferior. Occasionally I’ve seen people using
single-ended FTP terminators on an LVD setup — not that it worked, but
they were always sure that they had done the best thing. If you need to buy
a terminator block, get an active one, and if possible one compatible with
active negation and LVD. With this type, you’re on the safest side for what-
ever situation may occur.

If the termination rules are violated, the violation may not show up at once.
Errors may happen infrequently and unexpectedly, often specifically linked to
one device, leading you to think that that device might be defective. This impres-
sion might be further strengthened when some commands work while others,
possibly including synchronous data transfers, don’t. 

For example, a one-sided termination (only one terminator on the bus)
usually won’t work with multiple devices or a longer bus cable. Some companies
(for example, Apple in some older systems and NEC with some of their OEM
CD-ROMs) claim that the SCSI bus in their configuration will work even with
only one terminator. Although this may be true under some circumstances,
(just through good karma), it isn’t generally true and is definitely not recom-
mended. Incorrect termination has essentially one result: The system won’t
work correctly. “Not correctly” can range from “sometimes works, sometimes
doesn’t” to “definitely dead.”
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Measuring Passive Terminators 

There are two ways to estimate the number of passive terminators installed.
First, count them. This can be a time-consuming job, especially if you have to
open your computer, remove the drives to look at them, and so on. But if you
do, you can check to see that all terminators are installed correctly and all other
device issues are set accordingly. Pay attention to the correct orientation of
internal terminators also.

Second, use your multi-meter. Take appropriate diagrams of the connector
layouts (see Appendix A) and note the position of the following signals:

• Termination power (TERMPWR)

• Ground (GND) 

• One of the data lines

Then power down your computer and all devices attached to it. You can now
either replace one of the SCSI cables with your diagnostic cable or you can
remove one of the SCSI devices, preferably an external one. If you remove a
device, don’t forget to see whether it’s terminated. 

Using this second method, detecting passive terminators is fairly easy.
With your multi-meter, you only have to measure three resistances. If the ter-
mination is correct, your measurement will match those listed in Table 6.1.
(Resistances may differ within a range of approximately 5 percent.)

Table 6.1: Termination Measurements

Any Signal Any Signal TERMPWR 
to GROUND to TERMPWR to GROUND

No terminator — — —

1 passive terminator * 143 ohms 136.8 ohms 30.5 ohms

2 passive terminators 71.5 ohms 68.4 ohms 15.25 ohms

3 passive terminators 47.6 ohms 45.6 ohms 10.2 ohms

more than 2 < 71.5 ohms < 136.8 ohms < 30.5 ohms
passive terminators

1 passive and 1 143 ohms 136.8 ohms 30.5 ohms
active terminator *

*The active terminator we used in our first try didn’t show up when not powered, so this was an unlucky case. Other
active terminators behaved differently, depending on their internal circuitry. If the readings change when you switch
your multi-meter probes, at least one active terminator is somewhere in the system.
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Measuring Active Terminators

Measuring active terminators is difficult and unpredictable. Active terminators
may respond like the example in Table 6.1 (our specific model didn’t show up
when not powered on), but they don’t necessarily react this way. (Some may be
identified because they yield different readings when the multi-meter probes are
interchanged.)

Because an active terminator’s output resistors are clamped directly to the
signal, without the simple pull-up and pull-down resistors, active terminators
affect only the signal-to-TERMPWR reading, if at all — not the signal-to-ground
and TERMPWR-to-ground measurements.

If you find that there are too many terminators in the bus, your only choice
is to remove the additional terminators.

Termination Power: Active versus Passive

Passive termination is especially vulnerable to low or noisy termination power
voltage. The SCSI specification states very clearly that TERMPWR should be
between 4.25 and 5.25 volts. Although the minimal voltage drops to 3.0 volts
in SE/LVD multi-mode setups, let’s stick with the SCSI specifications for the
moment. In their board designs, many manufacturers start with the +5VDC
level from the systems’ power supply and have a silicone diode in the line as a
protection diode. Now, if the +5VDC is just 4.85 volts and we lose about 0.6 to
0.7 volts across the diode, it’s below spec. If you add the loss on the SCSI cable,
it’s clearly under spec.

What Not to Do with Your Power Supply

If this low voltage appears in your system, you might be inclined to try adjusting
the voltage of your power supply — don’t do it! In today’s systems, a power supply
design with test pins and voltage adjustments is so rare that you will rarely see
one — most are sealed boxes. If you open the box, you not only lose your war-
ranty, but you may also lose your life by touching the wrong part! We don’t
recommend that you play with any power supply. (An alternative to monkeying
with the power supply might be replacing the standard diode with a Schottky
type that loses only about 0.3 volts or less.) 

Active termination is far less vulnerable to low or noisy termination power
voltage because it uses a voltage regulator, and a good voltage regulator needs
an input of about 0.5 to 1 volt over its 2.85 volt output. 

Noise on the TERMPWR line, especially noise in the frequency range used
by SCSI data, can be even more of a nightmare and can lead to all sorts of un-
predictable behavior. The supply voltage for termination power isn’t always
clean, and its noise might get through the termination network to the signal
lines. If you encounter strange lockups after you’ve sorted out the basics, and if
you can get access to an oscilloscope, use the oscilloscope to check the signal



118 Chapter 6

condition on the TERMPWR line. There shouldn’t be more than about 100 mV
of noise.

Here again, active termination is far less vulnerable to noise on the
TERMPWR line, because virtually all voltage regulators used in active termina-
tion have very good noise and ripple rejection circuitry. This is another reason
to prefer active termination over the passive variant.

Placing the computer near a high-voltage wire may also cause strange
behavior. If you encounter this sort of noise, try changing the computer’s 
orientation relative to the wire.

If noisy TERMPWR is your problem, you will need an oscilloscope or a
transient recorder to find it. If you find noise in the terminator power, look 
at the +5V pins from the power supply and see if they show the same noise. 
If they do, replace the power supply with a better-quality model and add a
good surge suppressor (the latter often works wonders for this problem). 
If the noise is only on TERMPWR, it may be due to poor quality cables caus-
ing crosstalk between SCSI signals.

Cables

In general, do not exceed the maximum bus length. When making this calcu-
lation, remember that the maximum length varies depending on the bus transfer
rate of the fastest device on the bus, and the number of devices on the bus. As
a rule of thumb, the faster the SCSI bus, the shorter the maximum length.
Also, don’t underestimate the length of the internal cable — a typical internal
four-device cable is between 2.5 feet and 4 feet (76 cm and 122 cm) 
in length.

Because cable quality is a critical issue, keep on hand spare internal and
external cables of good quality, especially if you troubleshoot often. This way,
if you suspect a cable, you can change it to see if the behavior changes.

With external cables, the better the quality of the cable, the better its
shielding should be, both against external RF noise and between the signals.
So, a better cable typically is less vulnerable to a noisy environment. It’s some-
times worth swapping all cables for better ones, especially if you can’t stabilize
the system. (Sadly, though, this is not a feasible alternative to try at home, con-
sidering the price of multiple high-quality cables.) 

Changing cable types is always a potential source of trouble. If, for example,
your system has an external 50-pin cable connected to a disk drive, then a
scanner with a 25-pin connector, and this connects to another disk drive with
a 50-pin cable, you’re probably in trouble. If I cannot avoid a 25-pin connector,
I always make sure it is the last device in the chain and use a 50-pin cable with
a pass-through terminator. This way, at least I ensure correct bus termination,
and the few centimeters to the device count as a legal “stub” length.
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Connectors

Check all connectors for good contact — one or more may have lost contact
on some pins. External cables are rather easy to check — if the security clamps
or screws are OK, everything should be OK. However, this should not keep you
from disconnecting and reconnecting the cable. If the cable is older or was used
in a harsh environment (high humidity, for example) try using a contact clean-
ing spray. If this is not handy, a few disconnects and reconnects may do the trick
too. Home-made cables are susceptible to the common “I needed one more
connector and so I just squeezed it on” (the wrong way) error. 

Tricky Devices

Some devices can cause grief because of their particular SCSI implementation.
For example, most parallel-to-SCSI adapters draw their supply power from the
TERMPWR line, so if your external device(s) doesn’t supply termination power
to the SCSI bus, these adapters won’t work. 

Some older devices can create strange situations because of limited SCSI
implementations. For example, the old NEC CDR-35 and CDR-36 portable
CD-ROM drives don’t have termination, and they have only one SCSI connector.
Thus they can only be used on the end of the chain, and they must be connec-
ted via a pass-through terminator. In addition, the CDR-35 is fixed to SCSI ID
1 and can’t be changed.

On some older devices, you may not find a switch to change the ID. This
may be the case for two reasons: Either the device really is fixed to a specific
ID (the Siemens HighScan 800 scanner, for example), or the switch is hidden
somewhere inside the device. The second case occurs primarily on devices that
have SCSI as an option only, like some older Epson scanners. (These came by
default with special serial and parallel interfaces only, and the SCSI interface
card was an option, with the ID switch on the PCB deep inside the scanner.)

If you encounter strange problems and can’t find a logical explanation,
it’s probably time to give the manuals a look. Most of the time, these trouble-
shooting issues are addressed somewhere in the manual.

Driver Problems

Plug & Play–Related

When you install a plug & play device in a PC system, the BIOS supplies
resources to the new device and sometimes remaps the resources to fit the
new situation. If something goes wrong in this process — and believe me,
it does sometimes — you may be able to force the system to redistribute its
resources through a BIOS option called Reset Configuration Data, Reset
ESCD Configuration, or similar. Before doing this, you might want to write
down the current settings just in case things get worse instead of better.
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This can solve many hardware conflicts, but afterward you may need to
check all hardware-based configuration settings—for example those of network
cards and other peripherals — because the drivers may not find the hardware
at its new settings. 

Windows (All Versions)

In today’s systems, drivers typically aren’t an issue—but add PCI, Plug-and-Play,
and autoconfiguration into the mix and you can be in deeper trouble than
before: You can’t even be sure that the system will repeat its configuration from
one time to the next! Still, here are a few rules of thumb.

Although your Windows version may have drivers for your host adapter,
check whether your adapter came with newer drivers or whether there are
newer ones on the vendor’s web site. Window’s built-in drivers are often early
releases and don’t support the newer adapter models. This is normal, because
the adapter vendors refine their adapters rather often, and the drivers included
with the O/S often don’t know how to handle the newer adapter models. There-
fore, it’s usually better to use the drivers supplied with the adapter or an even
newer version from the vendor’s support web site.

N O T E Before you install a new device, be it a SCSI adapter, a network card, or whatever, try to
save the system configuration. In Windows NT, this is easily done with the RDISK com-
mand. This way, if a problem arises, you can fall back to the old configuration at startup.

DOS

Sometimes, the SCSI device drivers for DOS can be real troublemakers. They
may conflict with memory managers, be incompatible with each other, be buggy,
or who knows. However, when you install them correctly and use the few hints
that follow, you’ll usually be able to avoid these troubles.

Let’s look at a sample configuration, taken from a real support case, that
shows the problems you, or the Install program, might run into (this is for an
ISA PC with an Adaptec 1540 host adapter):

device=c:\dos\himem.sys

devicehigh=c:\dos\scsi\aspicd.sys /d:aspicd

device=c:\dos\emm386.exe ram

devicehigh=c:\dos\scsi\aspi4dos.sys /d

shell=c:\dos\command.com c:\dos\ /e:256 /p

dos=high,umb

lastdrive =f

devicehigh=c:\dos\scsi\aspidisk.sys
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This configuration has one error and two features that may cause problems:

1. The first error is that the CD-ROM device driver (ASPICD.SYS) is started
before the low-level driver (ASPI4DOS.SYS) so that, at the device driver’s
loading time, no ASPI interface is present. The driver will refuse to load
and the CD-ROM won’t work.

2. One potential problem is that EMM386.EXE is loaded with the RAM
parameter without excluding the SCSI BIOS area. This may or may not
work, depending on the memory manager and its version; but it’s usually
the case that, on loading the EMM386.EXE driver, the SCSI BIOS address
range is overwritten with RAM to gain upper memory blocks (UMBs) for
drivers and resident programs. 

3. The other potential problem may occur because many SCSI device drivers
cannot (or should not) be loaded high. In general, the basic ASPI or CAM
shell drivers for SCSI adapters should be placed before all memory manager
commands, because virtually all those drivers do more than just the ASPI
layer. They either provide additional services and/or they provide bug fixes
for the BIOS and other things. 

A working configuration would look like this:

device=c:\dos\scsi\aspi4dos.sys /d

device=c:\dos\himem.sys

device=c:\dos\emm386.exe ram x=dc00-dfff

dos=high,umb

devicehigh=c:\dos\scsi\aspicd.sys /d:aspicd

devicehigh=c:\dos\scsi\aspidisk.sys

shell=c:\dos\command.com c:\dos\ /e:256 /p

lastdrive=f

Of course, the possibility for further optimization always exists, but the changes
to the configuration are fairly straightforward. In this working configuration,
the following are true:

• The ASPI driver is loaded before the memory manager, so as not to inter-
fere with it.

• EMM386.EXE excludes the BIOS address range — in this case DC00 to
DFFF, the 1540’s default.

• All ASPI-dependent drivers are loaded after the ASPI low-level driver so
that they will be able to communicate with the ASPI driver.
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General Rules for Troubleshooting Drivers

• If you suspect driver problems or the system locks up when initializing the
SCSI drivers, try a clean boot with only the SCSI drivers to see if you have
a memory conflict or similar problem. Then add in the other drivers one
by one.

• If one or multiple devices are found by the bus scan but won’t operate later,
check the order of the drivers in CONFIG.SYS.

• Avoid loading the SCSI drivers in upper memory unless you’ve tested that
configuration thoroughly.

• Check memory manager address ranges for proper exclusions.

Driver Combinations

Combinations of different ASPI drivers may cause big trouble. By definition,
ASPI drivers should be cascadable—one manufacturer’s ASPI extensions should
work on another’s low-level driver — but this is in theory only. Virtually every
manufacturer makes their own (read “incompatible”) extensions to the drivers.
As an example, older Adaptec and Buslogic ASPI drivers don’t cooperate.
Either the Buslogic driver kicks the Adaptec driver out, or the Adaptec driver
refuses to load after the Buslogic driver. Ironically, both adapters (in this case,
a 1740A and a Buslogic BT-742) work together at BIOS level without any has-
sles, but only one ASPI driver can be used. No possible combination gives you
both adapters with full ASPI support, and nearly the same applies for all other
combinations we tried.

N O T E Different drivers from the same vendor usually don’t share this problem. The manufac-
turers are definitely interested in making their own adapters work together, but don’t
even count on that before you’ve tried it!

Useful Tools

SCSI Sniffer

A SCSI sniffer is a pass-through connector that is plugged between the SCSI
bus and the device. Some of these connectors are also a terminator and should
therefore be used on the bus ends only. “Sniffer” means that the connector is
equipped with LEDs that show activity or the status of various SCSI signals.
The most common display LED is for Termination Power, where the simpler
version shows only that there is a voltage present on the TERMPWR line.
There are also versions that show the validity of the TERMPWR level with the
LED color or multiple LEDs. 

Table 6.2 shows typical signals from these devices.
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Table 6.2: Diagnostic LED meanings

Signal LED Active Means . . .

I/O The initiator reads data from the bus.
C/D A command is transferred (LED inactive means data is transferred).
SEL The initiator selects a target device.
PWR There is power present at the TERMPWR line.
ACK The initiator acknowledges a target request.
REQ A target requests data from the initiator.
BSY The bus is busy.

Taking the bus phase description from Chapter 7, you can see the system’s bus
phase at any point in time (though this only makes sense when the system is
locked up, of course). Interpreting this is not easy and, even if you can inter-
pret it, you probably won’t help yourself. In most cases it is enough to see that
there is no ongoing bus activity to know it’s reboot time. If your bus is hung
with a certain combination of LEDs on, and you’re diligent about scrutinizing
the meaning of each from the protocol discussions in Chapter 7, you can
probably figure out whether it was the host adapter or target device that
dropped the ball.

In a case where the system is locked up, the BSY LED is active, and SEL,
C/D, I/O, and MSG are not active. If we avoid a disconnect/reconnect sce-
nario, the active device may be defective or too slow, but we don’t know for
sure. Interesting, but not really helpful.

However, a very active MSG LED might hint at too many transfer errors
and retransmits, which in turn might point to a cabling or mis-termination issue.

Oscilloscope 

An oscilloscope is a very useful tool. The major disadvantages are that you
must have one, and you must know how to use it, or it’s just an expensive toy.
The big advantage is that signal-dependent problems are easy to detect with
an oscilloscope.

One case in which an oscilloscope might come in handy is where
termination power is OK without activity and, during bus activity, the
TERMPWR level drops sharply. One possible explanation for such an effect
could be that a “Forced Perfect” terminator draws higher current than the
drivers can deliver. With this knowledge, changing the terminator to a standard
active one might correct the problem in seconds.

Another case in which an oscilloscope would be useful would be where
there are strong overshoots of a signal because of a missing or defective termi-
nator. The upper oscilloscope trace in Figure 6.1 shows these overshoots on
the unterminated side of the bus. The lower oscilloscope trace shows the same



124 Chapter 6

pulse on the other side of the bus (which is equipped with an active negation
terminator). 

Also, the signal is very noisy, because of the cheap ribbon cable used for
the test setup. With clear pictures of the signals, most types of errors — or at
least hints about their causes—can be found.

Amusingly, in this test setup, the single active terminator managed to keep
the system working with the devices “on its side” of the bus, while a device on
the unterminated side of the bus locked up on every request. Of course, this is
only a side effect of a good terminator.

During our troubleshooting exercises in this chapter we’ve pointed you to
some of the detailed information in Chapter 7, where we explain exactly how the
SCSI protocol works; let’s move on and find out more about it. It won’t hurt!

Figure 6.1: Oscilloscope View of a Signal
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H O W  T H E  B U S  W O R K S

As we all know by now, SCSI is an acronym
for the small computer systems interface.

That is all fine and dandy, but what exactly
is SCSI? This chapter goes beyond where the

rest of the book has been to look at the way the
SCSI bus really works. So if you’re running into
problems that will require some analysis, you’re
just the curious type, or even if you’re a hopeless
geek who has to know how everything works, this
chapter may interest you.

An Intelligent Interface

SCSI is an intelligent interface that hides a device’s physical format from the
software layers above it. Each SCSI device attaches to the SCSI bus in the same
manner, and the host computer’s only concern is what type of device is attached
(e.g., disk, tape, and so on). Information is retrieved from a SCSI device via
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logical block addressing, a scheme that hides the device’s physical configuration.
This is beneficial, because the host is not required to know the head, cylinder,
sector, and so on where information is stored. If a host needs a file from a device,
it requests the data in the form of logical block numbers from zero to the
maximum address available on the device.

SCSI Supports Generic Software

SCSI uses device-generic commands, which, in standardized system software,
support many devices. In most systems, the host computer requires special
software, known as a device driver, to properly format the command for each
specified device type. There is usually a separate device driver for each device
type attached to the SCSI bus.

A True Peripheral Interface

SCSI is a true peripheral interface that allows up to 8 devices (SCSI-2) or 16
devices (SCSI-3) to be attached to a single bus/cable. These devices can be
any combination of peripherals or hosts, but there must be at least one host.
SCSI protocol is device-independent. The user can attach disk drives, tape 
drives, optical disks, and other devices (printers, scanners, and the like) to 
the same port. 

In addition, SCSI is a buffered interface where all activities involve hand-
shakes so that all devices operate properly with slower and faster devices and
hosts. SCSI’s handshaking allows devices of various communication speeds 
to coexist on the same cable. (We talk more about handshaking later in this
chapter, in the section titled “Handshaking of Information.”)

SCSI is also a peer-to-peer interface, where communication can take place
from one host to another, one peripheral device to another, or, most commonly,
a host to a peripheral device.

Initiators, Targets, and Logical Units

To understand how SCSI works, you must first know some definitions. For each
communication (I/O process) that occurs between two devices, each device
involved assumes a particular role. One device assumes the role of an initiator
and is responsible for starting or initiating the I/O process. The other device
acts as the target and is responsible for managing or controlling the I/O process.
Logical units are physical peripheral devices that are addressable through a target
or peripheral controller (i.e., sub-address of the target). The operational diagram
in Figure 7.1 shows a host-to-peripheral device connection.
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What Is an I/O Process?

In SCSI, the term I/O process defines a particular method of doing something
with an input/output device. The I/O process generally involves numerous
steps. In most cases an I/O process consists of all the steps required to perform
a single SCSI command, such as read or write a block of data. Figure 7.2 shows
what an I/O process might look like if we were to model it.

The illustration in Figure 7.3 is an example of a SCSI transfer at its simplest.
You’ll find more detail in the section titled “The SCSI Protocol” later in this
chapter.

SCSI Configurations

A SCSI system can have many different configurations, including a single
initiator and single target, single initiator and multiple targets, and multiple
initiators and multiple targets. The diagrams in Figure 7.4 show how the SCSI
standard defines each of these different bus configurations. 

Bus and Device Characteristics

A SCSI device can be a host adapter or target controller attached to the SCSI
bus. Each device usually has a fixed role as an initiator or target, but some may
assume either role. The host adapter is a device that connects the host system
to the SCSI bus and performs the lower layers of protocol when accessing the
SCSI bus. Host adapters usually act as initiators.

N O T E SCSI is an “interlocked interface,” which means that only two devices can communicate
at any given time. When these two devices are communicating, all other devices must wait
for the bus to free up before they can access the bus.

Figure 7.1: Diagram of the Host-to-Peripheral Device Connection
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Figure 7.3: A Simple SCSI Transfer
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When two devices are talking to one another, they are performing an I/O
process, as briefly described later in this chapter. The detailed functions of
each device are listed below.

Initiators

When a device is acting as an initiator, it does the following:

Figure 7.4: Various SCSI Configurations
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• Originates operations.

• Determines what task needs to be executed and which target will 
perform the desired task.

• Delegates authority to the target device to control the I/O process.

• Controls certain bus functions, like arbitrating and target selection.

• Confirms that the target performed the task assigned to it.

Targets

When a device is acting as a target, it does the following:

• Waits to be selected by an initiator.

• Upon selection, controls the data transfer process, by requesting that
COMMAND, DATA, STATUS, or MESSAGE information be sent across
the data bus.

• May arbitrate and reselect an initiator for the purpose of continuing an
operation that was previously suspended because the device disconnected.

SCSI IDs

Each device has a SCSI ID that uniquely identifies it among all other devices
on a particular SCSI bus. When an initiator starts a SCSI request, it sets its ID
bit and the ID bit of the desired target device on the data bus simultaneously.
Priority on the data bus is determined by the bit numbers 0 through 7, with 7
the highest priority and 0 the lowest. The priority on the bus is used only when
multiple devices are trying to access the bus simultaneously. In this instance,
the device with the higher SCSI ID will take over the bus and the other device
will sit back and wait until the bus is free for communication.

A device’s address is determined by jumpers or switches on the device itself
(or in the case of SCA drives, on the SCA back-plane or SCA adapter), as seen
in Table 7.1. Most enclosed SCSI devices come with a switch mounted on the
rear of the peripheral, and newer host adapters allow you to set the host’s ID
via software configuration utilities. On narrow SCSI devices, jumpers A0, A1,
and A2 are required to set the SCSI ID jumper settings, because only eight
devices may be attached. 

When SCSI-3 Wide is used, an additional 8 devices may be attached to the
bus. Priority for the lower bits will stay the same, and the remaining bits will be as
shown in Table 7.1. The additional addressing of all 16 devices is easily achieved
by just adding a single jumper A3. If the Q-cable is implemented, then 32 devices
can be attached to a single bus and a jumper A4 will have to be added.
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Table 7.1: SCSI IDs, Their Priority on the Bus, and Jumper Settings

SCSI ID Priority* Jumper Jumper Jumper Jumper Jumper
A4 A3 A2 A1 A0

7 1 0 0 1 1 1
6 2 0 0 1 1 0
5 3 0 0 1 0 1
4 4 0 0 1 0 0
3 5 0 0 0 1 1
2 6 0 0 0 1 0
1 7 0 0 0 0 1
0 8 0 0 0 0 0

15 9 0 1 1 1 1
14 10 0 1 1 1 0
13 11 0 1 1 0 1
12 12 0 1 1 0 0
11 13 0 1 0 1 1
10 14 0 1 0 1 0
9 15 0 1 0 0 1
8 16 0 1 0 0 0

23 17 1 0 1 1 1
22 18 1 0 1 1 0
21 19 1 0 1 0 1
20 20 1 0 1 0 0
19 21 1 0 0 1 1
18 22 1 0 0 1 0
17 23 1 0 0 0 1
16 24 1 0 0 0 0
31 25 1 1 1 1 1
30 26 1 1 1 1 0
29 27 1 1 1 0 1
28 28 1 1 1 0 0
27 29 1 1 0 1 1
26 30 1 1 0 1 0
25 31 1 1 0 0 1
24 32 1 1 0 0 0

*Where 1 is the highest priority and 32 is the lowest

In the sections that follow, you’ll learn about the cables that carry the signals,
and you’ll go inside the SCSI bus, where you’ll learn about the bus’s data and
control signals. You will also learn which devices drive which signals, and how
these signals control the protocol. 
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SCSI Cables

In order to understand how SCSI protocol works, you’ll need to know what’s
inside the physical cable. The cables used to connect SCSI devices are generally
wired the same, although the number of conductors and the cable specifications
may vary.

Cable Evolution

The A-cable is associated with both SCSI-1 and SCSI-2, B-cable with SCSI-2 only,
and the P- and Q-cables with SCSI-3.

The A-cable (Figure 7.5) is a 50-conductor cable that consists of eight data
signals DB(0-7)(i.e., physical transmission lines), parity (DB(P)), and nine 
control signals.

The B-cable (bottom of Figure 7.6) is a 68-conductor Wide bus option
that has an additional 24 data lines, three parity lines, and two control signals
(REQB and ACKB).

Figure 7.6: The A- and B-Cables
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N O T E The B-cable must be used in conjunction with the A-cable, as seen in Figure 7.6. But, in
reality the B-cable is obsolete and the A, B combination has been replaced by the P-cable,
the 16-bit wide SCSI-3 cable alternative. The B-cable was never used commercially, and
the SCSI-3 alternative offers a better Wide bus solution with only one cable and up to 
16 devices.

The 16-bit Wide P-cable (Figure 7.7) is a 68-conductor bus option that has nine
control signals (just like the A-cable), 16 data lines, and two parity signals. In
equation form, we can look at the P-cable as follows:

P-cable = (A-cable) + (8 data lines and a parity bit)

The Q-cable option (Figure 7.8) adds full 32-bit Wide capability but must be
used in conjunction with the P-cable. This option (using both P and Q)and
adds two control signals (REQQ and ACKQ), 16 data lines, and two additional
parity bits, for a total of 68 more conductors.

N O T E SCSI-3 replaces the Wide A-cable / B-cable combination of SCSI-2 with the P-cable.

Figure 7.7: The P-Cable
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SCSI-1, SCSI-2, and SCSI-3 Cabling Diagram

The diagram in Figure 7.9 shows all the different cabling and bus options and
what is transferred across them.

Legend:

Control signals—9 BSY, SEL, C/D, I/O, MSG, ATN, RST, REQ, ACK
Control signals—2 B-cable—REQB/ACKB or Q-cable—REQQ/ACKQ
P, P1, P2, and P3 The parity bits and byte (0 to 3) are data bus bytes.

SCSI Bus Signals

This section describes each bus signal’s definition and characteristics. This
information will give you a detailed description of what each transmission line
is and what it does. Bus signals are either data bus or control signals. We’ll
address data bus signals first, because they’re relatively straightforward.

N O T E The device driving the signals depends upon whether the device is initiator or target.
Also, note that the minus sign in front of each signal name denotes active low signals,
meaning that when a device drives the signal, it goes to a 0 voltage level (on single-ended
buses). When the device no longer wants to drive the signal line, it releases the signal.
Now, the question is, what happens to the signal level when it is released? It goes to ter-
mination voltage (about 3 volts). This is one reason why the SCSI bus must be terminated.

Data Bus Signals

Data bus signals are relatively straightforward. One thing to keep in mind is your
data bus width. The data bus signals are DB(31–0, P, P1, P2, and P3), and data
bus signals have these five characteristics:

• Up to 32 data bus signals plus their respective parity bits (usually only 8-bit
or 16-bit).

• DB7 is the Most Significant Bit (MSB) and has highest priority during
ARBITRATION; DB0 is the Least Significant Bit (LSB).

Figure 7.9: SCSI-1, SCSI-2, and SCSI-3 Signal Grouping
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• Data bit is defined as 1 when signal is true. (Asserted = 0 volts on Single
Ended [S.E.] bus.)

• Data bit is defined as 0 when signal is false. (Negated = 3 volts on S.E. bus.)

• Parity is odd. (Parity bit will change to maintain an odd number of “1” bits.)

Control Signals

The nine control signals can be split into three categories:

• Basic control signals, which are used to determine if the bus is in use, to
select another device, to get the target’s attention, and to reset the bus.

• Information transfer control signals, which are used by the target to control
the information transfer phases. Information transfer phases are used to
transmit COMMAND, MESSAGE, DATA, and STATUS information across
the bus.

• Data clock signals, which are used to latch (capture) and validate the data
at the receiving device.

Figure 7.10 shows all the signal names and which device can drive which signals.
Notice that some signals are driven only by initiators, and others only by targets.
Conversely, some signals can be driven by both initiators and targets. The control
signals are used to achieve certain protocol phases, which are, in turn, used to
transmit all information (including DATA) across the data bus. We’ll talk about
the protocol in detail in the section entitled “The SCSI Protocol.” Table 7.2
shows you the actual signal name, the signal definition, whether the signal is driven
by an initiator or target, and gives a brief description of the signal’s function.

Figure 7.10: SCSI Signal Sources
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Table 7.2: SCSI Bus Control Signals

Signal Definition Category Initiator Target Description

BSY Busy Basic Y Y Indicates that the bus is 
being used.

SEL Select Basic Y Y Indicates that a SCSI device 
is trying to select or reselect 
another SCSI device. The ini-
tiator uses this signal to select
a target, and the target uses 
it to reselect the initiator.

ATN Attention Basic Y N Used by the initiator to indi-
cate an Attention condition,
marking a moment when the 
initiator needs to get the tar-
get’s attention.

RST Reset Basic Y N Indicates the Reset condition 
and gets everyone’s attention.
(Targets typically do not drive
this signal, even though the 
SCSI standard says they
could.)

C/D Control/ Information N Y Indicates whether control or 
Data transfer data information is on the

bus. False indicates data 
information and true indi-
cates control (COMMAND, 
MESSAGE, or STATUS) 
information on the bus.

I/O Input/ Information N Y Indicates which device is 
Output transfer responsible for driving the 

control datal bus and controls the 
direction of data movement 
on the data bus with respect 
to the initiator. False indicates
the direction of data is out of
the initiator and true indicates
the direction of data is into 
the initiator. This signal is also
used to distinguish between 
SELECTION and RESELEC-
TION phases.
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Signal Definition Category Initiator Target Description

MSG Message Information N Y Indicates that a SCSI device 
transfer has a message to transfer to
control another SCSI device. This 

signal is driven during a 
MESSAGE phase.

REQ Request Data clock N Y Target indicates a request for
an information transfer hand-
shake. When the target is 
driving the data bus, this
signal is used to latch the 
data bus into the initiator’s 
buffer.

ACK Acknowl- Data clock Y N This signal indicates the ini-
edge tiator’s acknowledgment of 

an information transfer hand
shake. When the initiator is 
driving the data bus, this sig-
nal is used to latch the data
bus into the target’s buffer.

Legend:

Y Drives signal
N Doesn’t drive signal

The SCSI Protocol
SCSI uses a method to transfer data between devices on the bus in a circular
process that starts and ends in the same layer—that is, the bus must go through
specific steps in a prescribed order. From the first layer, additional layers of
protocol must be executed before any data is transferred to or from another
device, and layers of protocol must be completed after the data has been trans-
ferred to end the process. Figure 7.11 shows this process.

N O T E The diagram in Figure 7.11 assumes no disconnection occurs (disconnection is covered
in the section titled “Disconnect” in this chapter).

The protocol layers are referred to as SCSI bus phases. Protocol layers and
their SCSI bus phase equivalents can be seen in Table 7.3.

N O T E In Table 7.3, the terms “In” or “Out” are based upon the initiator’s perspective. The
numbers next to the bus phase refer to the illustration in Figure 7.11.
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Table 7.3: Protocol Layers and Their SCSI Bus Phases

Protocol Layer Characteristics SCSI Bus Phase

1. This protocol layer indicates no   BUS FREE 1

bus activity.

2. Devices use this layer to recognize  
that the bus  is available.

3. Any time a device is not ready to 
transfer information, protocol reverts 
to this phase.

4. This phase can happen many times 
for  each I/O process.

1. This protocol layer is used to gain  ARBITRATION 2
control of the bus. 

2. Initiators or targets use this layer to 
resolve bus contention.

3. This phase can occur many times for 
each I/O process.

1. This is the protocol layer that an  SELECTION 2
initiating device uses to choose  
another device (a target).

2. Initiators use this layer to select targets 
to start an I/O process.

3. This phase occurs only once for each 
I/O process.

1. This protocol layer provides interface MESSAGE OUT 2
management to an I/O process. 

2. Initiators use this layer to transmit a 
to a target.

.

Figure 7.11: SCSI Protocol
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Protocol Layer Characteristics SCSI Bus Phase

3. This phase can occur many times for 
message each I/O process

1. This protocol layer transfers the I/O COMMAND OUT 2
process operation information. 

2. This phase tells the target which 
operation to perform.

3. This phase occurs only once, at the 
beginning of each I/O process.

1. This protocol layer transfers data to  DATA OUT 3
or from the device.

2. This phase can occur many times for 
each I/O process.

1. This protocol layer gives an update STATUS IN 4
of the status of an operation.

2. This phase occurs only once, at the 
end of each I/O process.

1. This protocol layer provides interface MESSAGE IN 4
management to an I/O process. 

2. Targets use this layer to transmit a 
message to an initiator.

3. This phase may occur many times for 
each I/O process.

1. This protocol layer is used by a target RESELECTION
to choose an initiator. 

2. Targets use this layer to continue a 
previously disconnected I/O process. 
This phase can occur many times for 
each I/O process.

The SCSI bus can be in only one bus phase at any given time. Each phase has
a predetermined set of rules, or protocol, that apply when the bus changes from
one phase to another. The rules are part of device code, or firmware, that
resides on all devices attached to the SCSI bus. This method of defining what
can happen when is called a state machine. This device code makes the device
intelligent by moving peripheral control operations onto the peripheral
device itself.



140 Chapter 7

Phase Sequence Diagram

The sequence diagram in Figure 7.12 is taken from the SCSI-2 standard.
Firmware developers, IC manufacturers, and anyone who has anything to
do with SCSI all use this chart as the bible for SCSI protocol. These are the
steps the bus must follow for every data transfer.

Following the diagram in Figure 7.12, the normal progression of bus phase
sequencing is as follows:

1. BUS FREE to ARBITRATION

2. ARBITRATION to SELECTION or RESELECTION

3. SELECTION or RESELECTION to one or more of the information 
transfer phases (MESSAGE, COMMAND, DATA, or STATUS)

Figure 7.12: Phase Sequence Diagram 
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Table 7.4 is a bus phase sequence trace taken from a typical SCSI bus analyzer,
which translates the bus signals into protocol phases and data information. This
information is very detailed, but if you read carefully you will get a real under-
standing of how SCSI protocol works.

Table 7.4: Bus Phase Sequence Trace

Data Bus 
(Single values 
represent SCSI IDs. 

Timing Protocol Layer or Bus Otherwise values  
* s.mmm_µµµ_nnn Phase That Transpired are in hex bytes.) Event

1 00.000_000_000 Bus Free Detected 0000

2 26.032_853_700 Arbitration Start 7 0001
2 26.032_856_100 Arb_win 7 0002
2 26.033_514_100 (Atn Assertion) ATN 0003
2 26.033_521_700 Selection Start 7 4 ATN 0004
2 26.033_522_600 Selection Complete ATN 0005
2 26.034_161_850 (Atn Negation) ATN 0006
2 26.034_833_950 Message Out C0 0007
2 26.039_035_750 Command Out 08 00 01 00 01 00 0008

3 26.055_860_800 Data In 00 00 00 00 00 00 0009
3 26.055_862_300 00 00 00 00 00 00 0010
3 26.056_494_450 00 00 00 00 00 00 0011

4 26.056_894_350 Status In 00 0012
4 26.057_852_350 Message In 00 0013

1 26.058_426_300 Bus Free Detected 0014

Legend:

*1 No one using bus
*2 Protocol to access peripheral and start process
*3 Transfer data
*4 Protocol to complete process

Before you panic, take a look at Table 7.5, which provides a detailed description
of the bus phase sequence in Figure 7.13, event by event.
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Table 7.5: Analysis of SCSI Bus Phase Sequence Diagram

Event What Happened

0000 The SCSI bus is in a BUS FREE phase.

0001 A device (initiator) with a SCSI ID=7 starts the ARBITRATION phase to 
gain bus access.

0002 The initiator was granted access to the bus and the ARBITRATION
phase ends.

0003 The initiator asserted the ATN signal to notify the peripheral that it will 
have a message to transfer after the SELECTION phase is completed 
(Attention condition).

0004 The initiator starts the SELECTION phase and is attempting to select a 
peripheral (target) with a SCSI ID=4. The initiator’s ID can also be seen.

0005 The SELECTION phase has ended successfully. At this point the target is 
in control of the bus and will continue controlling the protocol until the 
I/O process is complete.

0006 The initiating device drops the attention signal.

0007 The peripheral goes into the MESSAGE OUT phase and accepts the “C0”
message. This is because the initiator had the ATN signal asserted during
the SELECTION phase.

0008 The target enters into the COMMAND phase and requests that the com-
mand bytes be sent.

0009 The target deciphers the command code (READ command) and knows to
enter the DATA IN phase. The requested data is transferred to the initiator
that started the I/O process. Even though only 18 bytes of data are 
shown, one block (512 bytes) had been transferred. The analyzer used 
in the above display has a data byte filter, which causes only a few data
bytes to be displayed instead of the large number actually transferred.

0012 When the target completes the DATA phase, it enters into the STATUS 
phase and transfers a “00” status to inform the initiating device that all 
went well.

0013 When the target completes the STATUS phase, it enters into the MESSAGE
IN phase and transfers a “00” message to inform the initiating device that
the I/O process is complete.

0014 The target disconnects from the bus and the SCSI bus returns to the BUS 
FREE phase.
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Bus Phases

This section dives a little deeper into the phases of the bus and provides further
examples and descriptions. Not counting the INs and OUTs, there are eight
distinct bus phases, which can be divided into three categories, namely the
waiting phase, bus control phases, and information transfer phases, as shown
in Table 7.6.

Table 7.6: Bus Phases

Waiting Phase Bus Control Phases Information Transfer Phases

BUS FREE ARBITRATION MESSAGE IN/OUT
SELECTION COMMAND
RESELECTION DATA IN/OUT

STATUS

One of two types of bus operations may occur when an I/O process takes place,
namely the phase sequence with no disconnection and the phase sequence
with disconnection, as shown in Tables 7.7 and 7.8. The “disconnect” takes
place when the second “bus free” occurs in Table 7.8. More details of each
phase will be given later in this chapter.

Table 7.7: Phase Sequence with No Disconnection

Phase BSY SEL C/D I/O MSG Data Bus

Bus Free 0 0 X X X X

Arbitration Start 1 X X X X Init SCSI ID

Arb_win 1 X X X X Init SCSI ID

Selection Start 0 1 X 0 X Both SCSI IDs

Selection Complete 1 1 X 0 X Both SCSI IDs

Message Out 1 0 1 0 1 Message Byte(s)

Command Out 1 0 1 0 0 Command Bytes

Data In 1 0 0 1 0 Data Byte(s)

or (Optional-data is not required for some commands.)

Data Out 1 0 0 0 0 Data Byte(s)

Status In 1 0 1 1 0 Status Byte 

Message In 1 0 1 1 1 Message Byte(s)

Bus Free 0 0 X X X X
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Table 7.8: Phase Sequence with Disconnection

Phase BSY SEL C/D I/O MSG Data Bus

Bus Free 0 0 X X X X

Arbitration Start 1 X X X X Init SCSI ID

Arb_win 1 X X X X Init SCSI ID

Selection Start 0 1 X 0 X Both SCSI IDs

Selection Complete 1 1 X 0 X Both SCSI IDs

Message Out 1 0 1 0 1 Message Byte(s)

Command Out 1 0 1 0 0 Command Bytes

Message In 1 0 1 1 1 Message Byte(s)

Bus Free 0 0 X X X X

Arbitration Start 1 X X X X Targ SCSI ID

Arb_win 1 X X X X Targ SCSI ID

Reselection Start 0 1 X 1 X Both SCSI IDs

Reselection Complete 1 1 X 1 X Both SCSI IDs

Message In 1 0 1 1 1 Message Byte(s)

Data xxx 1 0 0       1 or 0 0 Data Byte(s)

Status In 1 0 1 1 0 Status Byte

Message In 1 0 1 1 1 Message Byte(s)

Bus Free 0 0 X X X X

Legend:

1 True xxx In or Out
0 False (doesn’t necessarily mean driven false) Init Initiator
X Not driven Targ Target

Connect, Disconnect, and Reconnect Concepts

The processes that underlie connect, disconnect, and reconnect are what make
SCSI capable of multitasking. The idea behind this process is that when a device 

N O T E The ATN signal has been purposely omitted in Tables 7.7 and 7.8.
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experiences some type of delay during a data transfer, mechanical or otherwise,
it gets off the bus and lets another device on. Usually this is done during data
transfer phases.

Connect

The SCSI objective underlying connect is to establish a nexus, which is a link
between initiator, target, and logical unit. The most basic SCSI nexus is called
an I_T_L (initiator, target, logical unit) nexus. The nexus is used by both ini-
tiators and targets to identify an I/O process. Initiators use the nexus to
ensure that the SCSI pointers in the host adapter associated with an I/O
process are correctly updated when a previously disconnected I/O process
resumes. That was a mouthful, but here is a translation: The nexus allows a
host adapter (initiator) to keep track of multiple operations. The initiator
makes sure that, for every I/O process it starts, a unique I_T_L nexus is estab-
lished which is used to keep track of the progress of the I/O process within
the initiator. 

If an initiator is going to send multiple I/O processes to the same target
and logical unit, then the initiator needs to extend the nexus to an I_T_L_Q
nexus. The Q provides a command queue value that allows an initiator to queue
up to 256 commands to the same target and logical unit. Targets use the nexus
to differentiate I/O processes of one initiator from that of another. They also
use the nexus to differentiate multiple processes from the same initiator, as in
tagged command queuing (i.e., I_T_L_Q nexus).

The diagram in Figure 7.13 shows some examples of forming nexus.
Here are a couple of nexus scenarios, using the devices shown in Figure 7.13.

1. Host 1 (ID=7) wants to send data to the hard disk (ID=0). Because the
hard disk has only one LUN, the process is directed to LUN 0. Therefore
the I_T_L nexus would be 7_0_0.

2. Host 2 (ID=6) wants to get data from the media changer (ID=5). The
desired library file is on LUN 2. Therefore the I_T_L nexus will be 
6_5_2.

If the bus phase sequence in Table 7.9 occurs, a nexus between the initiator,
target, and logical unit will be established. 

N O T E In the phase sequence shown in Table 7.9, we have listed what the control signals are
doing during the protocol phases. This is how an analyzer can distinguish between one
bus phase and another. For example, when the BSY is asserted (true) and all other con-
trol signals are not driven (false) as shown in step 2, the bus phase is ARBITRATION.
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Table 7.9: Bus Phase Sequence Including Creation of I_T_L Nexus

Phase BSY SEL C/D I/O MSG Data Bus

(1) Bus Free 0 0 X X X X

(2) Arbitration Start 1 0 0 0 0 Initiator ID on bus
Arb_win 1 0 0 0 0 I nexus

(3) Selection Start 0 1 X 0 X Both SCSI IDs on bus

(4) Selection Complete 1 1 X 0 X I_T nexus

(5) Message Out 1 0 1 0 1 Identify: I_T_L nexus

Here’s a detailed description of the phase sequence shown in Table 7.9, fol-
lowing it step by step:

1. Bus is free, as indicated by the simultaneously false (not driven) BSY and
SEL signals.

2. A device, in this instance an initiator, arbitrates for the bus by asserting
the BSY signal and its SCSI ID via a data bus bit. The initiator wins the
ARBITRATION phase and proceeds to the SELECTION phase. 

3. The SELECTION phase is used to transfer control of the I/O process from
the initiator to the target. The initiator starts the SELECTION phase by
driving (asserting) SEL and its SCSI ID as well as that of the target it wants
to talk to. It also asserts the ATN signal (not shown in Table 7.9) to indicate
that it wants the target to follow SELECTION phase with MESSAGE OUT
phase. Next, the initiator waits a little while (at least 90 nanoseconds) for
the signals to start propagating down the cable. Then the initiator releases 

Figure 7.13: How SCSI IDs Are Used to Form a Nexus

Host 1
SCSI ID 7

Host 2
SCSI ID 6

(Initiators)

(SCSI Bus)

(Targets)

(Vendor
Unique Bus)

(Logical Units)

Media Changer
SCSI ID 5

LUN
"1"

LUN
"0"

LUN
"2"

Hard Disk
SCSI ID 0

LUN
"0"

LUN
"0"

Tape
SCSI ID 1



How the Bus Works 147

the BSY signal. Because the initiator drives both of the SCSI IDs on the
data bus, the target can retrieve the initiator’s ID from the setting of the
data bus bits. The initiator will now wait for the target to drive the BSY signal
or for a time-out condition to occur (i.e., the target doesn’t drive BSY).

4. When the target detects that it’s being selected, it drives the BSY signal.
This notifies the initiator that the Selection process has completed success-
fully. Once the initiator detects that the target is driving the BSY signal,
the initiator releases the SEL signal, thereby ending the SELECTION phase.
The I_T portion of the nexus is now established

5. The target switches to the MESSAGE OUT phase because the ATN signal
is asserted. The target must know the logical unit number that tells it where
to direct the I/O process, and it gets this LUN from the Identify message
sent by the initiator to the target. Not only does the Identify message con-
tain the LUN, but it also carries an important data bit known as the
Disconnect Privilege bit. If the initiator sets this bit in the Identify message,
then the target can disconnect. The I_T_L nexus is now fully established.

N O T E The use of the IDENTIFY message to specify the LUN was required in SCSI-2. In SCSI-1,
the LUN was allowed to be specified in byte 1 of the CDB if the IDENTIFY message was
not implemented.

It is interesting to note that with respect to SCSI devices, targets control all
I/O processes. Once a target allows itself to be selected, it controls the I/O
process until its completion.

Disconnect

The SCSI objective underlying disconnect is to temporarily terminate the link
between devices so that other devices can access the bus. The reasons for ter-
minating the link are to increase the number of I/Os per second by allowing a
device to disconnect if it is not ready, whether because of mechanical latency
(read/write heads moving into position to access requested data), or a full or
empty buffer, so that another device can access the bus.

N O T E Targets cannot disconnect unless the initiator has granted disconnect privilege in the
Identify message during the original connection process.

Disconnect can have two possible protocol sequences, depending on the type
of operation, how much information is to be transferred, and buffer sizes. For
example, if the initiator asks the target to store a file (WRITE), or to retrieve a 



148 Chapter 7

file (READ), a different sequencing of protocol may occur. Or, if an initiator
issues a command that writes more data than the target can store in its buffer,
a disconnection will be required. The target disconnects from the initiator
when its buffer is full and writes the data to the medium. Once the target has
written the data to the medium, it will reconnect to the initiator and ask for
more data, and so on, and so on, until all the data has been transferred.

An actual SCSI phase disconnection sequence can be seen in Table 7.10.
The target can cause a disconnection by simply switching to the MESSAGE IN
phase and sending a Disconnect message to the initiator. As soon as the initia-
tor decodes a Disconnect message from the target, it will expect the target to
go to the BUS FREE phase.

Table 7.10: A SCSI Phase Disconnection Sequence

Phase BSY SEL C/D I/O MSG Data Bus

(1) Message In 1 0 1 1 1 04h-disconnect

(2) Bus Free 0 0 0 0 0

Another sort of disconnection sequence, which uses the Save Data Pointer
message, can take place if only some of the data has been transferred and a
target wants to disconnect. SCSI data pointers are special program variables
that point to location in the memory of a host computer. Pointers can be
either indirect or indexed and are located on the host adapter or may be
internal to the actual SCSI protocol chip. The objectives of SCSI pointers are
to break up large data transfers into smaller bursts and to facilitate error retry
and recovery.

This Save Data Pointer message sequence acts as a placeholder to ensure
that the initiator remembers where it left off in the data transfer if a discon-
nection occurs before all the data has been transferred. The Save Data Pointer
message sent by the target device tells the initiator to copy its current SCSI
pointers to a saved pointer value. A message sequence involving the Save Data
Pointers message is shown in the phase sequence in Table 7.11.

Table 7.11: A Sequence Showing “Save Data Pointers” and
Disconnect Messages 

Phase BSY SEL C/D I/O MSG Data Bus

(1) Message In 1 0 1 1 1 02h-save data pointer

(2) Message In 1 0 1 1 1 04h-disconnect

(3) Bus Free 0 0 0 0 0
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Reconnect

The SCSI objective underlying reconnect is to reestablish the I_T_L nexus.
When speaking of reconnection in regard to SCSI, we’re talking about a target
reconnecting to an initiator. The following describes the reconnect process:

• A target reselects an initiator to continue a previously disconnected
I/O process.

• The target determines when it’s ready to reconnect to an initiator.

• The target and initiator resume their roles when a reconnection occurs.

• Reconnect is a series of bus phases.

Table 7.12 shows an actual SCSI phase reconnection sequence. At the end of the
sequence, the I_T_L nexus is reestablished. Following is a detailed description
of the phase sequence shown in Table 7.12:

Table 7.12: A SCSI Phase Reconnection Sequence

Phase BSY SEL C/D I/O MSG Data Bus

(1) Bus Free 0 0 X X X X

(2) Arbitration Start 1 0 0 0 0  Targ SCSI ID
Arb_win 1 0 0 0 0  T portion of nexus

(3) Reselection Start 0 1 X 1 X Both SCSI IDs

(4) Reselection Complete 1 1 X 1 X I_T nexus

(5) Message In 1 0 1 1 1 80h: I_T_L nexus

1. Bus is free, indicated by the BSY and SEL signals simultaneously not being
driven (i.e., false).

2. A device, in this instance a target, arbitrates for the bus by asserting the
BSY signal and its own SCSI ID bit on the data bus. The target wins the
ARBITRATION phase and proceeds to the RESELECTION phase. 

3. The RESELECTION phase is used by the target to reconnect to a previously
disconnected initiator. The target starts the RESELECTION phase by driv-
ing the SEL, I/O, and its own SCSI ID bit as well as the initiator ID bit it
wants to talk to. Next the target waits at least 90 nanoseconds for the signals
to start to propagate down the cable. Then the target releases the BSY signal.
Because the target is driving the SCSI IDs on the data bus, the initiator can 
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retrieve the target’s ID from the setting of the data bus bits. The target now
waits for the initiator to drive the BSY signal or for a time-out condition to
occur (i.e., the initiator doesn’t drive BSY).

4. Once the target detects that the initiator has driven BSY, it also drives the
BSY signal and releases the SEL signal. Once the initiator detects the target’s
release of the SEL signal, it releases the BSY signal and the reselection is
complete. As a result, the target drives the BSY signal, as it should, because
targets are responsible for controlling the I/O process.

5. The target switches to the MESSAGE IN phase. The Identify message sent
from target to initiator tells the initiator the logical unit number of the
I/O process. Once the initiator knows the logical unit number, it deduces
the I_T_L nexus and then restores its SCSI pointers. Once the SCSI point-
ers are restored, the I/O process picks up where it left off.

Tagged Command Queuing 

Tagged command queuing is used when an initiator wants to send multiple
I/O processes to the same target and logical unit. When tagged command
queuing is used in a connection sequence, its protocol is like that found in
Table 7.13. Here, a two-byte message (steps 6 and 7) follows the Identify mes-
sage (step 5). The message consists of the Queue Tag Message (step 6),
followed by the Q Tag nexus value. The Q Tag (step 7) value allows up to 256
commands to be queued to the same target–logical unit combination from
the same initiator. As mentioned earlier, the nexus is extended to an I_T_L_Q
nexus when tagged command queuing is used. A code that designates
Ordered, Simple, or Head of Queue command queue type is sent as part of
the Queue tag message.

When tagged command queuing is used in a reconnection sequence, its
protocol is like that found in Table 7.14, where the two queue messages are
used to re-establish the I_T_L_Q nexus upon reconnection (steps 5, 6, and 7).

Table 7.13: Tagged Command Queuing Protocol in a Connection Sequence

Phase BSY SEL C/D I/O MSG Data Bus

(1) Bus Free 0 0 X X X X
(2) Arbitration Start 1 0 0 0 0  Initiator ID on bus

Arb_win 1 0 0 0 0  I nexus
(3) Selection Start 0 1 X 0 X Both SCSI IDs on bus
(4) Selection Complete 1 1 X 0 X I_T nexus
(5) Message Out 1 0 1 0 1 Identify: I_T_L nexus
(6) Message Out 1 0 1 0 1 Queue Tag Message
(7) Message Out 1 0 1 0 1 Q_Tag: I_T_L_Q nexus
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Table 7.14: Tagged Command Queuing Protocol in a Reconnection Sequence

Phase BSY SEL C/D I/O MSG Data Bus

(1) Bus Free 0 0 X X X X

(2) Arbitration Start 1 0 0 0 0 Targ SCSI ID
Arb_win 1 0 0 0 0 T portion of nexus

(3) Reselection Start 0 1 X 1 X Both SCSI IDs

(4) Reselection Complete 1 1 X 1 X I_T nexus

(5) Message In 1 0 1 1 1 80h: I_T_L nexus

(6) Message In 1 0 1 0 1 Queue Tag Message

(7) Message In 1 0 1 0 1 Q_Tag: I_T_L_Q nexus

How Disconnects and Reconnects Work

The sequence diagrams in Figure 7.14 demonstrate how disconnection and
reconnection can help increase the number of I/Os per second on the SCSI
bus when a target is not ready for an I/O process.

With regard to disconnections and reconnections in general, note that

• Any time the bus is disconnected, any device can start a new I/O
process, or the same device can start another I/O process (as in tag-
ged command queuing).

• There is no limit on how many disconnections and reconnections may
occur for each I/O process.

• The COMMAND phase occurs only once at the beginning of the I/O
process, and the STATUS phase occurs only once at the end of the
I/O process.

Information Transfer Phases

Now that you know about BUS FREE, ARBITRATION, SELECTION, and 
RESELECTION phases, it’s time to learn about the other protocol phases.
This section lists all of the information transfer phases that are controlled by
the target and are used to transfer real information across the data bus.
Before we get into any detail about the information transfer phases though,
note that all phase directions (those containing “In” or “Out”) are referenced
from the initiator’s point of view, as shown in Figure 7.15.

The following are descriptions of each of the information transfer phases
shown in Figure 7.15 (following the phase order from top to bottom):
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COMMAND Phase

• Allows the target to request command information from the initiator.

• Target asserts C/D, negates I/O and MSG during the REQ/ACK
handshake.

STATUS Phase

• Allows the target to request that status information be sent to the
initiator.

Figure 7.14: How Disconnection and Reconnection Increase I/Os
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• Target asserts C/D, I/O, and negates MSG during the REQ/ACK
handshake.

MESSAGE IN Phase

• Allows the target to request that it send message(s) to the initiator.

• Target asserts C/D, I/O, and MSG during the REQ/ACK handshake.

MESSAGE OUT Phase

• Allows the target to request that the initiator send it message(s).

• Target invokes this phase in response to the Attention condition from
the initiator.

• Target asserts C/D, MSG, and negates I/O during the REQ/ACK
handshake.

DATA IN Phase

• Allows the target to request that it send data to the initiator.

• Target asserts I/O, negates C/D and MSG during the REQ/ACK handshake.

DATA OUT Phase

• Allows the target to request that the initiator send it data.

• Target negates I/O, C/D, and MSG during the REQ/ACK handshake.

Figure 7.15: Information Transfer Phases
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Table 7.15 lists the contents of the data bus and what is responsible for deter-
mining the information.

Table 7.15: Contents of the Data Bus and What Is Responsible for 
Determining the Information

Information Device That Determines
Transfer Phase Contents of Data Bus Information

COMMAND CDB bytes Initiator
DATA IN Data in byte(s) Target
DATA OUT Data out byte(s) Initiator
STATUS Status byte Target
MESSAGE IN Message in byte(s) Target
MESSAGE OUT Message out byte(s) Initiator

Characteristics of the Information Transfer Phases

N O T E The information contained in Table 7.16 comes directly from the SCSI standard.

Table 7.16: Information Transfer Phases

Phase Name MSG C/D I/O Direction of Transfer Comment

DATA OUT 0 0 0 Initiator to target DATA phase

DATA IN 0 0 1 Target to initiator DATA phase

COMMAND 0 1 0 Initiator to target ————

STATUS 0 1 1 Target to initiator ————

Reserved for future 1 0 0 ———— ————

Reserved for future 1 0 1 ———— ————

MESSAGE OUT 1 1 0 Initiator to target MESSAGE phase

MESSAGE IN 1 1 1 Target to initiator MESSAGE phase

The characteristics of the information transfer phases shown in Table 7.16 are
the following:

1. As seen in Table 7.16, three bus signals are used to distinguish the different
information transfer phases, as follows:
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• MSG When negated, this signal says that the bus is not in a MESSAGE
phase. When asserted, the bus is in a MESSAGE phase.

• C/D When negated, this signal says that the bus is in a DATA phase.
When asserted, the bus is in a COMMAND, STATUS, or MESSAGE
phase.

• I/O When negated, this signal says that the direction of transfer is
from the initiator to the target. When asserted, the direction of transfer
is from the target to the initiator.

2. The target drives all three of these signals and therefore controls all changes
from one information transfer phase to another. Once the target is selected,
it is in control of the bus.

3. The initiator can request a MESSAGE OUT phase by asserting ATN
(not shown in table).

4.   The target can cause BUS FREE by releasing MSG, I/O, C/D, and BSY. 

5. During information transfer phases, BSY remains asserted and SEL
remains de-asserted.

6. Information transfer phases use one or more REQ/ACK handshakes to
control the transfer of information.

7. Each REQ/ACK handshake transfers one byte of information (except for
wide DATA phase transfers).

8. The target continuously envelopes the REQ/ACK handshake(s) with the
C/D, I/O, and MSG signals so that these signals are valid for a bus settle
delay (400 ns) before the assertion of REQ, and they remain valid until
the negation of the ACK signal at the end of the handshake of the last
transfer of the phase, as shown in Figure 7.16. This is necessary to prevent
the initiator from thinking that the current phase has ended.

MESSAGE Phase and Code Descriptions

Certain interface functions must be managed in order for SCSI to work 
properly. These functions include error recovery, synchronous negotiations,
and the Identify message, which we discussed in the “Connect” section of 
this chapter.
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Messages are used to manage the SCSI interface. Some messages are used
exclusively by initiators to abort processes, reset devices, clear a target’s com-
mand queue, or recover from SCSI parity errors. In order for the initiator to
get the target to take a message, the initiator must assert the ATN (Attention)
signal. (Remember that the target is in control of the I/O process and that
the initiator must get the target’s attention before it can send a message.)
Once the target detects the Attention condition, it switches to the MESSAGE
OUT phase and requests the message from the initiator.

Other messages are used exclusively by targets to tell the initiator that 
the I/O process is completed, ignore invalid data bytes, initiate a recovery 
procedure, or instruct the host adapter to save, restore, or modify its data
pointers. Because the target is in control of the I/O process, it simply switches
to the MESSAGE IN phase and requests that the initiator take the message.
The initiator can tell the bus is in the MESSAGE IN phase by the state of the
C/D, I/O, and MSG signals (as shown in Table 7.16).

Though most messages are a single byte long, some messages are two
bytes long and require two consecutive message bytes. Single-byte messages
require the transfer of a single message code from one device to another in
order to perform one of the single byte message functions (such as Save Data
Pointers or Disconnect).

SCSI-land is also populated with messages known as extended messages.
These are used to negotiate for synchronous and Wide data transfers. Once
power-on has completed, the SCSI interface defaults to asynchronous, narrow 
(8-bit) data transfers. If a device wants to transfer data using either synchro-
nous or Wide data transfer, it must negotiate with the receiving device using
an extended message before it can do so.

Probably one of the most important message functions in the SCSI inter-
face is recovery from data bus parity errors. The message system allows two
devices to recover and retry the operation without having to involve an upper-
level protocol, namely the device driver. Thus, the recovery can be handled by
the firmware on each device. Table 7.17 is a complete listing of all message
codes by message names.

Figure 7.16: Enveloping the REQ/ACK Handshakes Until the End of the Handshake
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Table 7.17: Complete Alphabetical List of All Message Codes

Negate 
Support ATN Before 

Code Init Targ Message Name Direction Last ACK

06h O M ABORT Out Yes
0Dh* O O ABORT TAG Out Yes
24h• M M ACA TAG Out No
0Ch O M BUS DEVICE RESET Out Yes
16h M M CLEAR ACA Out No
0Eh* O O CLEAR QUEUE Out Yes
00h M M COMMAND COMPLETE In —
12h• O O CONTINUE I/O Out Yes

PROCESS
04h O O DISCONNECT In —
04h O O DISCONNECT Out Yes
01h O O EXTENDED MESSAGE In Out Yes
80h+ M O IDENTIFY In —
80h+ M M IDENTIFY Out No
23h* O O IGNORE WIDE RESIDUE In —

(Two Bytes)
0Fh* O O INITIATE RECOVERY In —
0Fh* O O INITIATE RECOVERY Out Yes
05h M M INITIATOR DETECTED ERROR Out Yes
0Ah O O LINKED COMMAND COMPLETE In —
0Bh O O LINKED COMMAND COMPLETE In

(with flag)
09h M M MESSAGE PARITY ERROR Out Yes
07h M M MESSAGE REJECT In Out Yes
*** O O MODIFY DATA POINTER In —

08h M M NO OPERATION Out Yes
QUEUE TAG MESSAGES
(Two Bytes)

21h* O O HEAD OF QUEUE TAG Out No
22h* O O ORDERED QUEUE TAG Out No
20h* O O SIMPLE QUEUE TAG In Out No
10h* O O RELEASE RECOVERY Out Yes
03h O O RESTORE POINTERS In —
02h O O SAVE DATA POINTER In —
*** O O SYNCHRONOUS DATA In Out Yes

TRANSFER REQUEST 
*** * O O WIDE DATA TRANSFER In Out Yes

REQUEST
13h O O TARGET TRANSFER DISABLE Out Yes
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Negate
Support ATN Before 

Code Init Targ Message Name Direction Last ACK

11h* O O TERMINATE I/O PROCESS Out Yes
15h Reserved
17h-1Fh Reserved
24h-2Fh Reserved for two-byte messages
30h-7Fh Reserved

Legend:

M Mandatory support
In Target to initiator
— Not applicable
Yes Initiator shall negate ATN before last ACK of message
* Messages added in SCSI-2; these messages are reserved in SCSI-1
80h+ Codes 80h through FFh are used for identify message

O Optional support
Out Initiator to target
*** Extended message
No Initiator may or may not negate ATN before last ACK of message
• Messages added in SCSI-3; these messages are reserved in SCSI-2

Protocol Example of a Synchronous Negotiation

Table 7.18 is a SCSI analyzer display of how messages are used to negotiate for
a synchronous data transfer request (SDTR) between an initiator and target. The
SDTR is established between devices via extended messages. Table 7.18 shows
the extended message codes and their descriptions.

We don’t expect you to fully comprehend the extended message scenario
in Figure 7.18; this display simply shows what an extended message exchange
would look like. Now that we’ve seen how synchronous negotiations are handled,
here are the characteristics of synchronous data transfers.

1. The synchronous negotiation is done only once, usually during initializa-
tion, because both devices have the ability to remember if an agreement
had been previously established.

2. Either initiator or target can start the negotiation process. Once the nego-
tiation process is completed successfully, all DATA IN and DATA OUT
phases will be synchronous.

3. An initiator usually starts the negotiation process if the host adapter has a
jumper installed or a software switch set to direct the host adapter to initi-
ate the process.
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4. A target may start the negotiation process if a jumper is installed or a
software switch is set that directs the target to initiate the process.

5. Once an agreement is established, it can be cleared only by the
following events:

• Reset, power-on reset, or a Bus Device Reset message.

• A re-negotiation between the same initiator and target.

• A Wide Data Transfer Request message sequence.

Table 7.18: Protocol Example of a Synchronous Negotiation

Timing/Description Phase Data Bus Event #

00.000_000_000 Bus Free Detected 0000

26.032_853_700 Arbitration Start 7 0001

26.032_856_100 Arb_win 7 0002

26.033_514_100 (Atn Assertion) ATN 0003

26.033_521_700 Selection Start   7 4 ATN 0004

26.033_522_600 Selection Complete ATN 0005

26.034_161_850 Message Out C0 ATN 0006

Extended Message Message Out 01 ATN 0007

Ext. Msg. Length Message Out 03 INITIATOR ATN 0008

Sync Data Transfer Request Message Out 01 MESSAGES ATN 0009

Transfer Period 200ns Message Out 32 ATN 0010

(Atn Negate) 0011

REQ/ACK Offset Message Out 07 0012

Extended Message Message In 01 0013

Ext. Msg. Length Message In 03 TARGET 0014

Sync Data Transfer Request Message In 01 MESSAGES 0015

Transfer Period 248ns Message In 3E 0016

REQ/ACK Offset Message In 07 0017

26.039_035_750 Command Out 08 00 01 00 01 00 0018

26.055_860_800 Data In 00 00 00 00 00 00 0019

26.055_862_300 00 00 00 00 00 00 0020
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Timing/Description Phase Data Bus Event #

26.056_494_450 00 00 00 00 0021

26.056_894_350 Status In 00 0022

26.057_852_350 Message In 00 0023

26.058_426_300 Bus Free Detected 0024

COMMAND Phase and Code Descriptions

A command is executed when an initiator sends a command descriptor block
(CDB) to the target during the COMMAND phase. Commands tell the target
what operation to perform. The following conditions apply to each CDB:

• The first byte of the CDB is always known as the operation code.

• The last byte of the CDB is the control byte.

• The format of the operation code and control byte are identical for every
SCSI command in the SCSI universe.

Table 7.19 shows an example of the basic format of a six-byte command (keep
in mind, though, that many six-byte SCSI commands will differ dramatically).
Here’s what’s shown in Table 7.19:

Table 7.19: Basic Six-Byte CDB

• Operation Code. This field tells the target how long the CDB will be and
what operation the initiator wants the target to perform. 

• Logical Unit Number.  Although used in SCSI-1, this field is almost never
used today, because the LUN is now determined in the Identify message.

*Reserved in SCSI-3

bit 7

byte 0

byte 1

byte 2

byte 3

byte 4

byte 5

bit 6 bit 5 bit 4

Operation Code

Logical block address (if required)

Transfer length (if required)

Control byte

(MSB)

(LSB)

Logical unit number*

bit 3 bit 2 bit 1 bit 0
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• Logical Block Address. This field tells the target where the information is
located on the physical medium. Logical blocks start at 0 and are contiguous
to the last block location on the device’s medium. Blocks, measured in bytes,
are the smallest unit of measurement on a device, with a typical block size
measuring 512 bytes on a hard disk. CD-ROMs have several different block
sizes in the vicinity of 2K, 2048 and 2352 being the most common. It should
be noted that many SCSI devices can change their logical block size. For
example, if a MODE SELECT that sets the logical block size to 512 bytes is
sent to a CD-ROM drive with media that has 2048 byte blocks, a future
READ command asking for block 3 will return the last 512 bytes in the
first physical 2048 byte block on the media, rather than the entire fourth
2048 byte block as would have happened had the MODE SELECT not
been issued.

• Transfer Length. This field tells the target how much data to transfer,
usually as an amount of blocks, with 512 bytes to each block of data. Some
devices, like tape, may be able to store any number of bytes, from 1 to the
maximum size of the device.

• Control Byte. This field is used for special operations like command
linking, and it also has some bits that can be used for vendor-unique
operations.

Sometimes all the information required to perform an operation cannot be
squeezed into a six-byte command, and SCSI has a cure for this. The solution 

*Reserved in SCSI-3

Table 7.20: Basic Ten-Byte CDB

bit 7

byte 0

byte 1

byte 2

byte 3

byte 4

byte 5

byte 6

byte 7

byte 8

byte 9

bit 6 bit 5 bit 4

Operation Code

Logical block address (if required)

Reserved

Transfer length (if required)

Control byte

Reserved

(LSB)

(MSB)

(LSB)

(MSB)

Logical unit number*

bit 3 bit 2 bit 1 bit 0
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is to allow commands to also come in 10-, 12-, and 16-byte formats. (The 16-byte
format was added in SCSI-3.) As you can see in Table 7.20 and Table 7.21, the
10-byte and 12-byte CDBs allow the initiator to address a higher logical block and
transfer more blocks with a single CDB.

Some devices support different CDB sizes and others may only support six-
byte CDBs. This information must be known by the device driver before it can
properly format the CDBs it sends to the target. SCSI has specific commands
to find out this information, which can determine the block size of the device,
the maximum logical block address available, the type of device (e.g., disk or
tape), and all other operational parameters that the device driver requires.
Table 7.22 lists all the operation codes for the device type known as direct access
(disk), which should give you an idea of the types of operations that a disk can
perform. We have shown only the operation code (the first byte) of the CDB.
Each command will have a specific format of all remaining bytes. It is beyond
the scope of this book to completely define all the commands for all device
types. If you will be writing a SCSI device driver, you will need a copy of the
ANSI standard (SCSI-2 or -3) applicable to the device you’re working with.
Refer to the SCSI FAQ list on the accompanying CD-ROM or at http://www.
scsifaq.org/ to find out how to get the standards documents.

Table 7.21: Basic Twelve-Byte CDB

*Reserved in SCSI-3

bit 7

byte 0

byte 1

byte 2

byte 3

byte 4

byte 5

byte 6

byte 7

byte 8

byte 9

bit 6 bit 5 bit 4

Operation Code

Logical block address (if required)

Transfer length (if required)

Control byte

Reserved

Reserved

(LSB)

(MSB)

(LSB)

(MSB)

Logical unit number*

bit 3 bit 2 bit 1 bit 0

byte 10

byte 11

http://www.nostarch.com/scsi2_redirect.htm?162a
http://www.nostarch.com/scsi2_redirect.htm?162a
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Table 7.22: Direct-Access Devices Commands (Numerical Order)

Operation Code Command Name Type

00h Test Unit Ready M
01h Re-zero Unit O
03h Request Sense M
04h Format Unit M
07h Re-assign Blocks O
08h Read(6) M
0Ah Write(6) M
0Bh Seek(6) O
12h Inquiry M
15h Mode Select(6) O
16h Reserve M
17h Release M
18h Copy O
1Ah Mode Sense(6) O
1Bh Start/Stop Unit O
1Ch Receive Diagnostic Results O
1Dh Send Diagnostic M
1Eh Prevent/Allow Medium Removal O 
25h Read Capacity M
28h Read(10) M
2Ah Write(10) M
2Bh Seek(10) O
2Eh Write and Verify O
2Fh Verify O
30h Search Data High O
31h Search Data Equal O
32h Search Data Low O
33h Set Limits O
34h Pre-fetch O
35h Synchronize Cache O
36h Lock/unlock Cache O
37h Read Defect Data O
39h Compare O
3Ah Copy and Verify O
3Bh Write Buffer O
3Ch Read Buffer O
3Eh Read Long O
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Operation Code Command Name Type

3Fh Write Long O
40h Change Definition O
41h Write Same O
4Ch Log Select O
4Dh Log Sense O
55h Mode Select(10) O
5Ah Mode Sense(10) O

Legend:

M Command implementation is mandatory.
O Command implementation is optional.

Status 

This section explains when a status is sent and describes the status byte’s for-
mat and codes. A single status byte is sent from the target to the initiator
during the STATUS phase at the completion of each command, unless the
command is terminated by one of the following events:

• An Abort message

• An Abort Tag message

• A Bus Device Reset message

• A Clear Queue message

• A hard reset condition

• An unexpected disconnect

The STATUS phase normally occurs at the end of an I/O process. Some sta-
tus codes, like 00 = good, are easy to comprehend, whereas others, like the 02
code — which says that a CHECK CONDITION has occurred — are more diffi-
cult. (CHECK CONDITION is an error condition discussed in more detail
below.) The status byte format and status byte code are shown in Tables 7.23
and 7.24, respectively.

Table 7.23: Status Byte Format

bit 6 bit 5bit 7 bit 4

Status byte code ReservedReserved

bit 3 bit 2 bit 1 bit 0
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Table 7.24: Status Byte Codes

Status Hex Description

GOOD 00 Target has successfully completed the
command.

CHECK CONDITION 02 An error or alert condition has occurred.

CONDITION MET 04 Requested operation is satisfied.

BUSY 08 The target is busy. Returned whenever a
target is unable to accept a command
from an otherwise acceptable initiator.

INTERMEDIATE 10 Returned for every successfully completed 
command in a series of linked commands 
(except for the last command).

INTERMEDIATE CONDITION MET 14 Combination of condition met and inter-
mediate status.

RESERVATION CONFLICT 18 The logical unit or a portion of it is reserved 
for use by another initiator.

COMMAND TERMINATED 22 Target terminated current I/O process. This 
also indicates that a CHECK CONDITION 
has occurred.

QUEUE FULL* or 28 Implemented if tagged command queuing is
TASK SET FULL** supported. Indicates that the target cannot 

accept any more commands.

ACA ACTIVE*** 30 Indicates that an Auto-Contingent Allegiance
condition exists.

All other codes Reserved

Legend:

* New in SCSI-2
** New name in SCSI-3
*** New in SCSI-3 (SAM)

Check Condition

The CHECK CONDITION status, one of the most important, is also the status
that a SCSI device driver will spend most of its code handling. In general,
CHECK CONDITION status indicates that an error of some kind has occurred.
To find out what type of error it is, the device driver must look at the SENSE
DATA. Depending on the operating system and I/O subsystem involved, the
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SENSE DATA may already be stored in the AUTOSENSE buffer, or the driver
may have to issue a REQUEST SENSE command to get it.

Contingent Allegiance Condition

A situation called “Contingent Allegiance Condition” occurs after a target
returns CHECK CONDITION or COMMAND TERMINATED status. When in
this condition the target must retain the SENSE DATA describing the error until
one of the following occurs:

• a BUS RESET is issued

• the initiator issues a BUS DEVICE RESET

• the initiator issues an ABORT message 

• the initiator issues another command (usually a REQUEST SENSE)
to the target

If the target issues an INITIATE RECOVERY message, the condition is now
known as extended contingent allegiance. Once in this state, the target will
preserve the SENSE DATA until it receives a BUS DEVICE RESET or RELEASE
RECOVERY message, or a BUS RESET occurs.

In SCSI-3 the ACA state is retained until an explicit CLEAR ACA message
is received from the initiator that caused the ACA to occur. A BUS RESET will
also do it.

If the NACA bit in the control byte of the CDB is set, the target will follow
SCSI-3 rules; if the NACA bit isn’t set, the target will follow SCSI-2 rules.

The change was deemed necessary because with the new serial SCSI buses
(like Fibre Channel), several commands can be “floating around” at the time
the Contingent Allegiance occurs.

Handshaking of Information

In the previous section, we talked about how to determine which phase the bus
is in. Now we’ll explain how information is transferred. Handshaking is the
term SCSI gurus use when they speak of transferring information across the
data bus. Handshaking the information ensures that data on the bus is prop-
erly latched into the receiving device.

In Chapter 3, we told you a bit about asynchronous and synchronous trans-
fer. These are the two methods of handshaking information. We’ll take you
beyond a basic understanding of these concepts in the paragraphs that follow.
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N O T E COMMAND, MESSAGE, and STATUS information can only be transferred via the
asynchronous handshake method, whereas the DATA phase is the only phase that can
transfer information using either the asynchronous or synchronous handshake method.

Asynchronous Handshake Method

Asynchronous transfer is characterized by the transfer of one byte of data via the
following four-step process:

1. The target asserts the REQ signal.

2. The initiator asserts the ACK signal.

3. The target negates the REQ signal.

4. The initiator negates the ACK signal.

Asynchronous handshaking is shown in the diagram in Figure 7.17.

N O T E During asynchronous transfer, the following rules apply: The ACK signal can’t assert
until the REQ asserts; the REQ signal can’t negate until the ACK signal asserts; the
ACK signal can’t negate until the REQ negates.

The name “asynchronous transfer” stems from the fact that this transfer
method is not dependent upon any uniform timing. Asynchronous transfer
rates range from 2 MB to 6 MB per second, because asynchronous data transfer
is subject to a number of delays, including cable propagation delays; internal
device delays between receiving a signal and responding to that signal; de-
skew delays; and cable skew delays. These latter delays occur because the REQ
and ACK pulses must interlock with one another and because handshake 

Figure 7.17: The Four Steps of Asynchronous Transfer 

–REQ

–ACK
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must occur for each byte of data transferred. The skew delays are required in
order to compensate for small differences in the lengths of the conductors in
the bus (yes, really).

Synchronous Handshake Method

Synchronous transfers allow devices to transfer data more quickly. This is accom-
plished by allowing the target to request that the initiator either send or
receive data before the initiator has to acknowledge the target’s request. It is
all done in hardware (thank goodness!), so you don’t need to worry about it.

That’s the simple explanation. Now for the more technical, detailed
explanation, which sometimes takes half an hour to explain to a roomful of
people during a training session.

The synchronous handshake method is optional and must be negotiated
for between a target and an initiator. Synchronous transfer depends on uniform,
or synchronous, timing, hence its name. The objective behind synchronous
transfers is to minimize the effect of cable and device delays. Although these
delays cannot be eliminated entirely, their effects can be minimized.

Synchronous handshaking can support rates of up to 10 million transfers/sec
when the Fast-10 SCSI option is implemented (or 20 MHz for Fast-20, or 40 MHz
for Fast-40). Synchronous protocol minimizes the effects of cable and device
delays, because the REQ and ACK pulses do not have a one-to-one interlock.
Synchronous transfer is commonly referred to as offset interlock. 

In order to transfer one byte of data (or up to four bytes if a Wide32
transfer) via synchronous handshaking, the process is the following:

1. A REQ/ACK offset is used to establish a pacing mechanism. During the
synchronous data transfer, the REQ and ACK signals are issued indepen-
dent of one another. The specified offset indicates how far ahead the
sender is allowed to get without seeing an ACK. At the end of the DATA
phase, each device checks to ensure that the number of REQ (or ACK)
pulses sent is equal to the number of ACK (or REQ) pulses received.

2. The initiator and target form a transfer period from the leading edge of
a REQ/ACK signal to the leading edge of the next REQ/ACK signal.
During the data transfer, the edges of the REQ and ACK signals are used
to latch the information on the data bus into the receiving device. These
pulses are asserted and negated for a uniform amount of time and form a
transfer period from the leading edge of one pulse to the leading edge of
the next in the pulse train. The width of this period dictates the speed at
which data can be transferred across the bus.
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If any of the foregoing makes sense to you, you’re doing great. The timing
diagram in Figure 7.18 may help you understand the technical side of
synchronous transfers.

N O T E It takes special hardware (including special ICs cables and terminators) to achieve Fast
synchronous transfer rates. Other restrictions on cable length may also affect your config-
uration. Fast synchronous transfers are usually implemented on higher-end systems and
workstations. You should be careful if you are going to use the single-ended interface
option and Fast transfers, because the signal quality decreases as the cable length increases.
Always make sure that the cable length does not exceed the maximum allowed for the
speed selected (See Table 3.3).

Synchronous Offset Timing Diagram

Figure 7.18 demonstrates how the synchronous offset works. The “Pending
ACKs” represent the number of acknowledgments that an initiator must send
to the target to complete the synchronous transfer successfully.

Here’s what’s happening in the diagram in Figure 7.18, following along
step by step, letter by letter:

A A target issues four REQ pulses (because an offset count of four was agreed
upon between the initiator and target), then the offset state machine logic
in the target puts a hold on further data transfers until an ACK pulse is
received from the initiator.

B The initiator issues an ACK pulse, thereby allowing the REQ generator on
the target to issue a REQ pulse. After this occurs, the REQ and ACK gen-
erators are free to issue REQ and ACK pulses independent of one another
unless the data FIFOs (First In First Out memory) are full, empty, or the
offset count is exceeded.

Figure 7.18: Synchronous Offset Timing Diagram

+REQ
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ACK‘s

0
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C This represents the data transfer area. The REQ and ACK pulses form a
transfer period that both the initiator and target agreed upon long before
data was transferred.

D Eventually the ACK pulses sent by the initiator must equal the REQ pulses
sent by the target. Because the first ACK pulse was received at the beginning
of the transfer, three more must be sent to “clean house” and complete
the transfer.

Ever Onward and Upward!

Have you had enough hardware for a while? OK, the next chapter will start to
show that there’s more to SCSI than the hardware. Device drivers are every bit
as important!



8
U N D E R S T A N D I N G  D E V I C E

D R I V E R S

There are all kinds of drivers — truck driv-
ers, bus drivers, pile drivers, screw drivers,

and many other worthy examples — but we’re
here to talk about device drivers.

A device driver is a piece of software that bridges the gap between an oper-
ating system and the computer hardware. We are going to focus on drivers that
control SCSI hardware, but drivers are needed for every part of the computer
except the CPU and memory. This chapter won’t tell you enough to write your
own drivers but will, hopefully, give you some insight into how they are struc-
tured and what functions they perform. Armed with this information, you should
be better able to select the drivers you need and isolate any problems that may
come up.

In the Beginning . . .

When SCSI was first being introduced to PCs (about 1986), each host adapter
manufacturer provided device drivers that supported hard disks attached to
their adapter.
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When CD-ROMs came on the scene, manufacturers needed to support
those as well. But what if you wanted to buy a hard disk from vendor X and a
CD-ROM from vendor Y? At first manufacturers tried to provide a large matrix
of drivers that would cover as many combinations of devices as possible on their
host adapter. They quickly (well, after about two years) realized that this was
not practical and took a different approach: They divided device driver function-
ality into layers with standardized interfaces between the layers. This was a very
important step. 

Initially, each vendor defined their own interfaces, but Adaptec’s ASPI
interface soon emerged as the most popular choice, and the others fell by the
wayside. Now it was possible to buy a device from vendor X, who would provide
an ASPI (Advanced SCSI Programming Interface)-compatible driver with the
device, and this driver could pass SCSI commands down to a host adapter driver
layer made by vendor Y!

The PC BIOS

Every PC contains a collection of I/O routines contained in a ROM (actually,
flash RAM these days). This collection of routines is called the BIOS, which
stands for basic input/output system. It enables the operating system code to
be loaded from disk (booting), and it initializes the various chips in the sys-
tem.

BIOS calls are made via software interrupts like INT 13hex (for disk-
related I/O), INT 14 hex (for serial port I/O), or a whole bunch of others
(each of which have their own special purpose). The BIOS routines are very
simple and don’t allow multiple programs to access them simultaneously
(they’re single-threaded). This was fine for MSDOS, because it had the same
limitations. The PC BIOS on the motherboard knows how to handle only
devices that are on the motherboard itself. However, IBM was farsighted
enough, when defining the original PC/AT BIOS, to allow for the possibility
of BIOS extensions being located on option cards. During system initialization,
the motherboard BIOS looks at specific memory locations for a “BIOS extension
signature” of 55AA hex. If it finds this pattern at the right location, it executes
the extension at its entry point. This allows the option card BIOS to wedge
itself into the interrupt it extends (INT 13hex, for example) adding its own
new functionality.

The Int13 hex BIOS functions (FORMAT, READ, WRITE, etc.) provide
low-level (bypassing the filesystem) access to disk devices (both floppy and
hard). The parameters to these functions are in terms of CYLINDER, HEAD,
and SECTOR.
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MSDOS Drivers

MSDOS is a very simple operating system. One thing to remember in MSDOS
is that only one thing is going on at a time. When one I/O is started, nothing
else happens until that I/O is completed. I/O is done in several different ways.
I/O to very simple devices, like the keyboard, is done directly via the BIOS. If
your system contains a device that is not supported by the BIOS, for example 
a SCSI host adapter, it must have a device driver loaded into RAM to control
and provide access to it. Device drivers are loaded via a configuration file called
CONFIG.SYS.

An example of one entry in such a CONFIG.SYS file would be

Device =  c:\aspi4dos.sys /d

During the boot process, this line tells MSDOS to load a driver into memory
and execute that driver’s init routine.

This particular driver (ASPI4DOS) initializes and controls a particular
type of SCSI host adapter. The next line in CONFIG.SYS might look like

device = c:\aspidisk.sys

This loads another device driver that is responsible for creating SCSI CDBs
(Command Data Blocks) that will read or write the desired data to and from 
a SCSI disk drive. This second driver can send these CDBs to the SCSI host
adapter via the ASPI interface created by the driver loaded previously
(ASPI4DOS). This division of responsibility is a very important feature of device
drivers, because it allows a disk from one vendor to be attached to a host adapter
manufactured by a different vendor. During boot, ASPIDISK tells MSDOS how
many disk drives it will support, and MSDOS assigns a drive number (80 hex
through 83 hex, or in some cases 80 hex through 8F hex). These numbers are
used by the BIOS to select a particular disk. If there are more than four drives,
the ones beyond that cannot be accessed by the BIOS.

Each MSDOS driver has an attribute word, which indicates what type of
device it supports, and two main entry points: Strategy and Interrupt. The
idea was for the Strategy routine to set up an I/O transfer and the Interrupt
routine to complete it. But it doesn’t really matter which does what, because
MSDOS just calls one then the other. The parameters to these routines are
passed in the CPU registers. A set of nineteen command codes cause the driver
to perform the desired operation. Some examples of the command codes are
INIT, OPEN, CLOSE, INPUT, OUTPUT, IOCTL, and CHECK MEDIA. The
driver interface is loosely modeled after UNIX drivers, but the similarity is
purely superficial.
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Windows 3.x Drivers

Windows 3.x is really just a graphical shell running on top of MSDOS. Hence,
regular MSDOS device drivers do most of the I/O under Windows 3.x. This also
means that Windows 3.x doesn’t do much in the way of multitasking.
Applications may “give up control” for a while to let another application run, but
in general, this doesn’t work very smoothly.

There are also 32-bit virtual device drivers for Windows 3.x that enhance
performance by operating in 32-bit mode, instead of 16-bit mode like the rest
of Windows 3.x. ASPI in this environment consists of a DOS driver for the host
adapter and a .vxd (virtual device driver) that handles translation from the
virtual addresses used by Windows programs and the real mode addresses used
by the MSDOS drivers. Also, a .dll (dynamic link library) is included that allows
applications to access the driver by providing entry points that are callable from
Windows programs.

A VxD is a special code module similar to a .dll that has a single entry point
via its device descriptor block, or DDB. Through this single entry point, many logical
entry points can be called. Some examples are event notification, virtual 86
mode services, and protected mode services. One unique thing about VxDs is
that they run entirely in 386 enhanced mode with a flat memory model and
not the segment:offset model used in much of the rest of Windows 3.x. A VxD
is responsible for making the cooperative multitasking used in Windows 3.x
work acceptably well. If not well thought out, one bad VxD can make the whole
system function poorly. Another important function of a VxD is to translate the
virtual addresses used by application programs into physical addresses needed
to actually “touch” the hardware device.

Windows 95/98 Drivers

Windows 95 was designed to be more of a “real” operating system, in that it
contains its own device drivers and operates completely in 32-bit protected
mode. It also provides true pre-emptive multitasking, which means that CPU
time is divided up by the virtual machine manager (VMM32.VXD) and not by
applications giving up the CPU as in Windows 3.x. Windows 98 is not a major
leap forward, but it added some niceties like support for USB (Universal Serial
Bus) devices and a UDF (Universal Data Format) filesystem for DVD support.
A little spit and polish was put into the user interface, too.

One of the most important things about Windows 95/98 is that each
application runs in its own “virtual machine.” This protects each application
from the transgressions of others. This also means that all devices must be vir-
tualized. That is, when each application performs I/O to a particular device,
that I/O doesn’t directly affect the hardware. The VMM maintains a copy of
what needs to be done to the hardware based on what each application is trying
to do, and the VMM actually touches the hardware to make it happen.
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Windows 95/98 uses two types of drivers: .vxd (virtual device drivers,
explained above) and .MPD (miniport drivers). Miniport drivers are the lowest
level of drivers in Windows 95/98. Above the miniport driver is a Microsoft-
provided layer called the “SCSI’izer” (“SKUZ-ee-eye-zer”). There is a SCSI’izer
for each type of SCSI device (disk, tape, CD-ROM, and so on). Above the
SCSI’izer layer is another layer called the type-specific driver or TSD (also one
TSD for each type of device). Like Windows 3.x 32-bit drivers, Windows 95 
drivers are .vxd files. Note that, because of the way Windows 95/98 breaks
down I/O requests into smaller requests, it doesn’t use SCSI as efficiently 
as Windows NT does.

Another interesting thing about Windows 95/98 is that it can use MSDOS
real mode drivers if necessary. This is not desirable if a Windows 95 driver can
be found for your device, but it is a way to use older devices that are not sup-
ported under Windows 95/98.

Windows NT Drivers

Windows NT is considerably more sophisticated than Windows 95/98. In 
addition to providing true multitasking, it is also multi-threaded. This means
that not only can multiple applications run simultaneously, but multiple sub-
processes within those applications can also be running simultaneously. NT 
is also extremely modular. Each portion of the kernel has well-defined inter-
faces so that any one can be replaced without breaking the system (at least in
theory). There are two basic “flavors” of NT: server and workstation. The two
are very similar and for our purposes here we won’t worry about the differ-
ences. In fact, much to Microsoft’s chagrin, some users have found that the
only real difference is a few registry key values and a few additional utilities.
NT applications make requests to the WIN32 subsystem, which passes them 
on to the I/O Manager. The NT I/O Manager subsystem creates I/O request
packets (IRPs) and passes those to a filesystem driver or possibly directly to a
class driver. The class then builds a SCSI request block (SRB) and passes it to
the SCSIport driver.

Windows NT uses Miniport drivers just like Windows 95/98. In fact, when
Windows 95 was first being developed, Microsoft realized that they needed a new
type of driver to accommodate the needs of a 32-bit operating system. Given
that the drivers for Windows NT filled the bill, they adopted the Miniport Driver
Model. If only they had also adopted some of the other driver layers from NT,
things would be a lot simpler now! In my opinion, one of the major things
preventing NT from catching on faster is the lack of suitable device drivers for
many devices. When building a system to run NT, you need to be careful to
select hardware that is supported by NT drivers. Many devices, especially low-
end stuff, don’t include drivers for NT, which can be a particularly big problem
with laptops, because individual devices within the computer aren’t separately
replaceable. Miniport drivers initialize the host adapter, send command
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requests to the adapter, handle interrupts, and perform all the other babysitting
that the SCSI hardware requires.

The next layer above the Miniport driver is the SCSIPort driver. The
SCSIPort driver is the equivalent of the CAM XPT. It acts as a single entry
point for all the SCSI requests generated by the class drivers.

N O T E CAM XPT is the transport function of the ANSI Common Access Method SCSI driver
architecture defined in the T10/792-M specification. See ftp://ftp.t10.org/t10/drafts/
cam/cam-r12b.pdf. 

The disk class driver gets requests from the filesystem and builds disk requests
to send down to the SCSI class driver. The SCSIPort driver takes these system
I/O requests, translates them into SCSI CDBs, and sends them down to the
specified miniport adapter driver.

A tape class driver, also included with Windows NT, performs a translation
from sequential (rather than random) system I/O requests into a form that is
acceptable to the SCSIPort driver.

Although it’s not included as part of the operating system, an ASPI class
driver is also available for Windows NT. This separate driver accepts ASPI
requests from an application (like an image scanner utility, for example) 
and converts it into SCSIPort driver requests. 

As you can see, ASPI is not the native SCSI subsystem in any of the Windows
operating systems, but is layered on top to provide compatibility with existing
applications.

UNIX Drivers

There are many flavors of UNIX. To keep things simple, I’m going to discuss
UNIX drivers in general enough terms that it won’t matter much exactly which
UNIX I’m talking about. UNIX application programs are protected from each
other by a portion of the operating system called the kernel. Applications run
at user privilege level, and the kernel runs at system privilege level. UNIX app-
lications cannot access system hardware directly; they can only talk to the kernel.
To perform I/O applications, users must call device drivers via the kernel.

UNIX device drivers come in two basic types, character and block. Character
drivers are used for devices like keyboards, serial ports, parallel ports, and really,
almost anything except disks. Disk drivers are always block-type drivers.

Character drivers have at least the following entry points:

• Init

• Open

• Close
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• Read

• Write

• Ioctl

Block drivers have these entry points:

• Init

• Open

• Close

• Strategy

These entry points are an application program’s only way to access the device
directly. When I refer to these entry points (which are actually C language
functions [subroutines]) I will use the notation “foo()” which would be formally
read as “The function named foo.” Each device driver has a device special file
(usually in the /dev directory). The purpose of these special files is to allow
applications to communicate with the desired driver. Associated with each 
special file is a major number and minor number. The major number provides
a way for the kernel to know where the driver’s entry points are. It’s an index
into a kernel table called the devswitch table, which has pointers to each of the
above-mentioned entry points.

The minor number can be used in any way desired by the driver writer, most
often to specify parameters to the driver. For example, SCSI drivers often use the
minor number to specify the bus, target, and LUN that the user is referring to.

For disk access, most applications will simply make operating system calls
to read data from a file. The filesystem code within the UNIX kernel will figure
out which driver supports the disk where the requested data is stored.

Because this is a book about SCSI, allow me to explain the typical UNIX
method of handling SCSI commands. For the sake of example, let’s assume
that four requests come in via the filesystem. As each process makes its request,
the filesystem figures out what disk that data is on and opens that device special
file. The minor number decodes to a particular bus/target/LUN nexus. Each
open() creates an instance of the responding driver’s strategy() routine. The
strategy routine creates a SCSI CDB that requests the data be read from the
particular SCSI device. These CDBs are queued to the SCSI host adapter by 
a lower layer (the SIM [SCSI Interface Module] in CAM systems).

When the first command is sent to the disk, the disk will look at the block
being requested. If the block is not one that’s in the device’s buffer cache, the
device will disconnect from the bus and start the heads seeking to that block.
The host adapter, seeing that the bus is now free, will get the next command 
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in the queue and select the proper device to send it to. Let’s say the next com-
mand targets a different device from the first. That second device is available
to take the command, and it does the same as the first (looks at the block, checks
its own buffer, and perhaps disconnects from the bus while it seeks the data).
This continues for all four disks. Remember that disk seek times are still quite
slow relative to the CPU, so all four commands will likely be sent to the disks
before any data is ready to be transferred. 

The disk that finds its data first will reconnect to the initiator. This tells the
host adapter to find the request for that drive in its queue, set up the DMA for
the data, and turn control over to the hardware. That data will transfer and the
command will complete.

Immediately, the next drive that finds the requested data will reconnect to
the initiator and do the same thing and so on until all the requests are satisfied.
So, the arms on each disk may all be seeking at the same time, but the bus can
only be doing one thing at a time. The goal is to fully utilize every cycle of the
bus, and SCSI allows that to be done very efficiently. Of course, this also depends
upon the device drivers doing things cleverly — which is why Win95/98 systems
may not take full advantage of SCSI. Windows NT is much more efficient. 

IDE is not capable of this type of overlapping, however. Once the first drive
is told to get the data, that drive has the bus until it finds and transfers the data.
Then the next command is sent, and so on — each drive remaining on the bus
until the data is transferred. Also, only two disks are allowed per bus. No over-
lapping is possible.

Enough Already!

I realize this wasn’t an in-depth description of device drivers (even though I’m
equally sure it was more than some of you wanted to read), but I hope it left you
with a better understanding of how important device drivers are, as part of a
SCSI subsystem. Without them, all that fancy hardware just sits there!
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S C S I  S U B S Y S T E M

SCSI has become the interface of choice
for high-performance storage subsystems,

and for good reason! The original SCSI
specification envisioned transfer rates of up to

5 MHz. The SCSI-2 specification allows faster rates
of up to 10 MHz. And now SCSI-3 allows operation
at 40 MHz! However, by pushing these original SCSI
standards to their limits, system integrators have seen
reliability problems mount.

A number of factors contribute to delivering the highest SCSI bus
performance:

The four factors that most directly affect SCSI performance are:

• Selection of the fastest devices in the price range you can afford

• Selection of the most appropriate host adapter for the chosen devices

• Isolation of slower devices onto buses (or bus segments) of their own

• Setting all device parameters correctly
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These factors can indirectly affect SCSI performance by causing errors, which
then result in retries, and lost performance:

• Cable type, quality, and length

• Use of proper terminators 

• Terminator power quality

• Connector adapter quality

The optimization process actually starts before you even buy the hardware.
You need to think about what peripherals you want to attach and how much
room for expansion you want to allow for later on.

To a large degree, the performance you get will be directly related to how
much you spend. The amount of bus bandwidth you need depends upon how
many devices you will attach and how fast each of them is. For example, if you
want two fast hard disks that can each transfer data at 20 MB/sec, you need at
least a Fast-20 Wide host adapter. Even in this case, the host adapter will be
maxed out during heavy I/O. This setup also lacks headroom for other devices
on the bus, so you might opt for a Fast-40 LVD (also called Ultra-2 Wide or
U2W) host adapter, and LVD drives, so that you’ll be able to add other devices
without slowing things down.

However, even before optimizing your system hardware, you should first
take care of the indirect factors listed above. Before you can speed things up,
they need to operate as free from error as possible, because the very act of
increasing the performance will most likely also increase the error rate unless
everything is perfect in cable- and terminator-land.

The dilemma is that signal quality problems, which have been present from
the start, become more apparent as buses become more heavily loaded and are
operated at faster data rates.

The SCSI electrical specification has several transceiver specifications:

1. Differential RS-485 transceivers that allow for up to 10 MHz data transfer at
a maximum cable length of 25 meters (82 feet).

2. Single-ended TTL transceivers, which allow

• Synchronous data transfer of up to 5 MHz at a maximum cable length
of 6 meters (20 feet).

• Fast-10 synchronous data transfer up to 10 MHz at a maximum cable
length of 3 meters (10 feet).
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• Fast-20 synchronous data transfer up to 20 MHz at a maximum cable
length of 1.5 meters (5 feet).

• Asynchronous data transfer (no maximum transfer rate is given, but
typical rates are about 1.5 MHz to 2 MHz) at a maximum cable
length of 6 meters (20 feet).

3. Low voltage differential (LVD) transceivers that allow synchronous opera-
tion at up to 40 MHz (soon up to 80 MHz) with up to 12 meters (about 39
feet) of cable.

Each transfer may consist of one, two, or four bytes, depending on the bus width
option implemented. Today, though most implementations utilize 16-bit Wide
data for hard disks, most other device types are only 8 bits (narrow). At this
writing, at least one 16-bit Wide CD-ROM drive is available.

When 10 MHz Fast SCSI was first proposed, only differential SCSI trans-
ceivers were envisioned. However, many drive manufacturers have chosen to
implement Fast SCSI with single-ended drivers because of savings in cost, size,
and power consumption. This presents several problems to integrators, especially
as systems increase in speed and size. A very common symptom of an unreliable
single-ended interface is bus errors following the addition of devices or cabling
to the system. The failures increase as the number of devices and length of the
cable grow. The failures are also unpredictable and are not necessarily the same
from system to system.

Most data reliability problems stem from signal reflections and noise that
are read by SCSI receivers as incorrect data or false SCSI bus phases. The SCSI
cable is a transmission line that has a characteristic impedance whose value
depends upon the type of cable used. Discontinuities in this impedance can
cause signal reflections to occur. These impedance variations can be the result
of extra capacitance due to any or all of the following; chips internal to SCSI
devices, connectors, improper terminators, mixing of different cable types, cable
stubs, and so on. At Fast-10 SCSI rates, these reflections are much more prevalent
than at the slower 5 MHz SCSI rates. Additional noise picked up from external
devices, as well as from other signals on the SCSI cable, can add to these false
signals. Unfortunately, a 10 MHz Fast SCSI bus is a more efficient transmitter
of noise than a slower 5 MHz SCSI bus. In general, most systems become more
prone to noise problems as clock speeds increase.

A carefully configured, single-ended SCSI bus can reliably transfer data at
10 MHz without a problem. However, good engineering practices should be
followed in order to guarantee success:

Use the shortest cable length possible. The SCSI-3 SPI working group
recommends that, for 10 MHz data transfers, the total cable length
should not exceed 3 meters (10 feet).
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Avoid stub clustering. Space SCSI devices on the cable at least 0.3 meter
(12 inches) apart. When devices are clustered closely together on the
SCSI cable, their capacitances add together to create an impedance
discontinuity and thus reflections.

Cable stub length should not exceed 0.1 meter (4 inches). Some SCSI
devices may create stubs internal to the device that exceed this value,
resulting in excessive capacitive loading and signal reflections. This pa-
rameter is under the control of the SCSI device (e.g., tape drive or disk
drive) manufacturer. The SCSI cabling itself should include no stubs.

Watch out for capacitance. As devices are added to a SCSI bus, capacitance
is introduced to each signal from the connectors, receivers, and PC board
traces. The SCSI-2 specification limits this capacitance to 25pF; this number
will probably be lowered to 20pF in SCSI-3. The reason for this limit is that
the added capacitance lowers the impedance of the section of cable to
which these devices are added as well as adding delay. Both of these effects
can be highly detrimental to a Fast SCSI bus. Look for input filters that may
be attached to the SCSI front end of the printed circuit board. These filters
add capacitance which as we’ve seen isn’t a good thing on SCSI buses.

Avoid connector adapters. They are just another source of capacitance and
signal degradation.

Route cable with care. Avoid practices such as rolling the cable up on itself,
running the cable alongside metal for long lengths, or routing the cable
past noise generators (such as power supplies). Placing the cable near
ground planes created by grounded metal cabinetry reduces its impedance.
For example, the free air impedance of an unshielded 28 AWG, 0.05-inch
center-ribbon cable is about 105 ohms, but direct contact with a metal
ground plane cuts that by 61 ohms. Such an impedance discontinuity will
cause signal reflections. The SCSI-3 working group suggests that, in order
to minimize discontinuities due to local impedance variation, a flat cable
should be spaced at least 1.3mm (0.05 inch) from other cables, any other
conductor, or the cable itself when the cable is folded.

Use 90 to 95 ohm impedance cables wherever possible. This will allow for
closer termination impedance matching.

Avoid mixing cable types. Select either flat or round, shielded or non-
shielded. Typically, mixing cables mixes impedances. Cable impedance
mismatch is a common problem resulting in signal reflections. If cable
types must be mixed, use of 26 AWG wire in 1.3mm (0.05 inch) pitch-flat 
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cable will more closely match impedances of many round-shielded cables,
resulting in fewer impedance discontinuities and therefore improved signal
quality. Internal cables are typically flat-ribbon cables, whereas external
cables should be shielded. Where they offer easier routing, size advantages,
and better air flow, round cables can be used internally as well. This, in
fact, may be desirable if it allows for better impedance matching to the
external cable.

Ribbon cable shows fairly good cross talk rejection characteristics for single-
ended buses, because of the Ground-signal-Ground layout. However, more care
needs to be taken to ensure adequate performance when round, shielded cable
is employed. 

When round cable is used, select a cable that uses a wise placement of key
lines within the cable. The following is suggested: In the case of a standard
25-pair round construction, pairs are arranged inside the cable in three layers.
The closer the pair is to the outside shield, the lower the impedance. Conversely,
pairs located closer to the center of the cable have higher impedances. Using
centrally located high-impedance pairs for speed-critical signals such as REQ
and ACK is desirable. By locating data pairs in the outermost layer of the cable,
cross talk between REQ, ACK, and the data lines is minimized. The middle layer
might contain status lines such as C/D, I/O, MSG, ATN, and so on. Another
thing to look for in a round-shielded cable is to make sure that the lowest
impedance wire in the cable is used for TERMPOWER to minimize transmis-
sion line effects on what is meant to be a voltage supply line. Some SCSI cable
vendors have put a low-impedance conductor into the cable specifically for this
purpose. Typically, a larger wire gauge along with a high dielectric constant
insulation is used on this conductor.

SCSI Cable Types

SCSI systems can utilize cabling both inside and outside the cabinet. Internal
cables are typically flat unshielded ribbon cables, whereas external cables are
generally round and shielded. The most common internal cable is the 50-
conductor flat-ribbon cable, which typically uses 28 AWG conductors on 0.05-
inch centers. Typical free air characteristic impedances for this type of cable run
about 105 ohms. Good success can be had with the 3365 round conductor flat-
ribbon cable manufactured by 3M Corp. It uses 28 AWG stranded wire on 0.05-
inch centers and has a nominal free air characteristic impedance of 108 ohms.

External shielded 8-bit SCSI cables typically contain 25 twisted pairs 
(50-conductor) with an overall foil/braid composite shield. Typical free air
characteristic impedances for this type of cable have run about 65 to 80 ohms.
Single-ended round shielded cable impedances of 90 to 100 ohms are available
and should be used where appropriate.
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The SPI-2 specification requires that systems employing the fast synchronous
data transfer option shall use cables consisting of 26 AWG or 28 AWG conduc-
tor s. Characteristic impedance is specified as between 90 and 95 ohms. In
addition, signal attenuation should be 0.095 dB maximum per meter at 5 MHz.
The pair-to-pair propagation delay delta (difference) should not exceed 0.2 ns
per meter. Finally, the DC resistance is specified as 0.23 ohms maximum per
meter at 20 degrees C.

Passive Termination

Passive termination (called Alternative-1 in the SCSI-2 specification) was the
most common form of termination in use a few years ago. A typical single-ended
SCSI passive terminator will employ 18 sets of 220-ohm pull-up and 330-ohm
pull-down, thick film resistors to equalize impedance and to absorb reflected
signals. The Thevenin equivalent impedance for this type of termination is
132 ohms.

In order to maintain the largest possible high-level noise margin, it is advis-
able to use resistors with a maximum tolerance of 2 percent rather that 10
percent. In worst-case conditions, the difference could easily add up to 140 mV.
Worst case occurs when the pull-up resistor is high and the pull-down resistor
is low.

Consider the situation where TERMPWR is being driven across a 6-meter
(19-foot) cable. Due to power supply tolerances and to the 15 or so SCSI bus
signals that may be drawing current simultaneously, it is possible for the remote
end TERMPWR to be sitting at 3.65 volts (see the “Where to Terminate” sec-
tion for more details). If 2 percent resistors are used, the worst-case
termination voltage divider will have a divider ration of 0.588, and the quies-
cent signal bias will be 2.15 V. If 10 percent resistors are used, the worst-case
termination voltage divider will have a divider ratio of 0.551, and the quies-
cent signal bias will be 2.01 V. In this worst-case example, given the
SCSI-mandated minimum logic high voltage of 2.0 V, only 10 mV of high-
end noise margin will remain.

Active Termination

The preferred termination for 10 MHz and faster SCSI buses is active termination.
This type of termination is known as Alternative-2 and uses only one 110-ohm
resistor per signal per bus end pulled up to locally supplied, voltage-regulated
2.85 V. Features of this termination include the following:

• Termination voltages, and therefore the currents flowing through the 110-
ohm termination resistors, are at least partly immune to IR voltage drops
on the TERMPWR line until TERMPWR minus 2.85 V equals the dropout
voltage of the voltage regulator, or about 1.1 V.
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• Closer match to the characteristic impedance of the cable (110 versus 132
for passive as compared to the typical 105–108 ohms free air impedance of
the cable) minimizes reflections.

• Increased high-level noise margin of de-asserted signals.

• Higher pull-down currents avoid rising “staircase” waveforms seen on weakly
driven transmission lines.

Wherever possible, place SCSI devices that employ active termination at the
ends of the bus or plug active terminators onto the connectors at the ends of
the cable.

Where to Terminate

Termination should be installed only at the far ends of the cable. If the host
adapter is at one end of the bus and a SCSI device is at the other end, the host
adapter’s terminator should be enabled. If the host adapter is supporting both
internal and external SCSI devices and thus is located in the middle of the bus,
its terminator must be disabled. In both cases, disable the termination of any
SCSI devices that are not located at the cable ends. This can usually be done
by jumper configuration, removal of resistor packs, or both. Another approach
is to plug a terminator module onto the end connector of the cable and not
enable any of the drive terminators.

Ideally, TERMPWR should be located at the terminations, not in the mid-
dle of the cable. Interface error rates are lower if the termination voltage is
maintained at the extreme ends of the cable. From strictly a signal-quality per-
spective, it is best if terminators get power only from the device to which they
attach, and not over the bus. Unfortunately, cable end devices may be pow-
ered-down and the bus would then be inoperative unless the terminators are
supplied from the other voltage sources along the bus. This fact must be bal-
anced against desired signal quality.

Most drives provide jumpers to select the manner in which TERMPWR is
supplied to their on-board termination. Having drives configured to supply
their own isolated TERMPWR can help solve problems in noisy systems, but
the flexibility of being able to power down individual devices shouldn’t be given
up lightly. TERMPWR should be applied near terminations because
TERMPWR is a transmission line that shares many of the same characteristics as
the signal lines. Current surges entering this line at the terminators will
propagate and reflect exactly as they would on any signal line, except where
there is a low-impedance voltage source. It follows, then, that current surge
waveforms propagating down the bus, from a point where many data lines are
changing simultaneously, will couple into other signals through the pull-up
termination resistors if the TERMPWR voltage source impedance isn’t low
enough right at the terminator to absorb or provide the current surge needed.
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For this reason, plug-on terminators often include a large capacitor (1 to 10 uF)
on TERMPWR to lower the AC impedance.

The worst real-life case is one in which data lines along with MSG, C/D, and
I/O all change at the same time, causing noise on signals of opposite polarity
(several signals going low causing a de-asserted signal to also go low, or signals
going high causing an asserted signal to also go high). This phenomenon has
nothing to do with cross talk or driver skew rate, but is instead a function of
where TERMPWR is applied and where the drivers are located.

Another reason to supply TERMPWR locally is to prevent the loss of
receiver noise margin caused by TERMPWR DC voltage drop across the cable.
It is not uncommon to find TERMPWR resistances of 2 ohms or more on
maximally configured systems. When 15 to 18 signals conduct, the TERMPWR
line will carry nearly 300 mA to the far terminators, which would cause a voltage
drop across the cable of about 0.6 V during these periods. This can cause
TERMPWR to drop below the specified minimum voltage, causing bus errors.

Modern host adapters drive TERMPWR onto the cable through a self-
healing polymer fuse and a Schottky diode (these have only .3 V forward drop
where ordinary silicon diodes drop .6 V). Taking into account power supply
tolerances, it is not inconceivable that under maximum loading conditions,
TERMPWR at the controller connector may be lowered to 4.25 V. Subtract 0.6
V caused by TERMPWR DC resistance, and far-end TERMPWR ends up at 3.65
V. This would bias a quiescent signal to 2.19 V ((330 / 220 + 330) * 3.65). Com-
paring this to the SCSI-specified minimum V(ih) of 2.0 V for single-ended
inputs leaves a high-end noise margin of only 190 mV which is too close for
comfort. This quick and dirty worst-case analysis does not even include termi-
nation resistor tolerances that could exacerbate the problem. It’s a good thing
that TTL receivers typically switch near 1.4 V to 1.5 V (the middle of the V[ih]
range) rather than at 2.0 V; otherwise, most SCSI implementations would not
work reliably.

For all the reasons discussed above, it is advised that TERMPWR be
maintained as close to nominal voltage as possible. 

TERMPWR Bypassing

The SCSI-3 Technical Committee SPI working group recommends that all
TERMPWR lines be decoupled at each terminator to minimize TERMPWR
glitch coupling.

The minimum recommended values are a 2.2 uF solid tantalum capacitor
along with .01 uF ceramic capacitor in parallel to help with high-frequency,
low-voltage noise. These capacitors, when utilized, will supply the high-frequency,
low-impedance path to ground necessary to filter out glitches. Without the
capacitors, TERMPWR acts simply as a high-impedance node and couples 
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noise from signal to signal. With the capacitors, an “AC ground” exists that filters
this noise.

For cables of significant length and configurations without TERMPWR at
each terminator, there is a high probability of signal corruption without
adequate decoupling. Therefore, the system integrator should inspect the
chosen devices to ensure that all SCSI devices provide proper decoupling
capacitors on TERMPWR.

However, it is important to keep in mind that decoupling in the middle
of the bus is not sufficient. If the host adapter is supporting both the internal
and external SCSI buses simultaneously, then the SCSI devices at the ends of
the cable need to be bypassed at their terminations. This requirement applies
to both passive and active termination.

High Voltage Differential SCSI

When the total length of a Fast-10, synchronous SCSI bus cable must exceed 
3 meters (10 feet), the use of a differential SCSI interface may be indicated.
With Fast-20, the decision point is 1.5 meters (5 feet).

An important concern is cable selection. When twisted-pair cable is used,
differential SCSI buses provide greater signal integrity over longer distances
than do single-ended, because noise coupled into a twisted-pair generally
appears equally on both wires. Because differential receivers respond to differ-
ences between the conductors of the twisted-pair, rather than to their absolute
Voltage, the coupled common-mode noise is rejected.

On the other hand, the signal positioning of a differential SCSI on a flat
non-twisted ribbon cable causes two problems. First, noise introduced into
parallel conductors tends not to be common mode. Second, whereas the sin-
gle-ended conductor arrangement naturally interleaves ground wires between
signal wires, there are not enough conductors to interleave grounds between
each differential signal pair. These factors lead to increased cross talk between
adjacent conductors on a ribbon cable.

The use of twisted-pair cable (either twisted-flat or discrete wire twisted-
pairs) for differential-ended SCSI interfaces is highly recommended.

The maximum cumulative cable length permitted is 25 meters (82 feet)
with devices not to be spaced any closer then 0.3 meter apart (12 inches) and
stub lengths not to exceed 0.2 meter (8 inches). As in single-ended, SCSI bus
terminators should be installed only at each end of the cable.

Low Voltage Differential

For the highest performance disk drives, you’ll want to use LVD drives.
Because only hard disks are currently manufactured with LVD interfaces, you’ll
need to keep these devices isolated on their own host adapter or their own bus
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segment. This is because the presence of a single-ended device on the bus will
prevent the LVD devices from operating in LVD mode. Certain motherboards
with on-board host adapters provide bus conditioner chips that create separate
LVD and single-ended segments, thus allowing the LVD drives to run at full
speed without the added expense of a second host adapter.

Tricks

One of the major parameters that affects I/O performance is seek time. This
includes the rotational latency of waiting for the proper sector to fly under the
heads. One way of minimizing this is a trick called striping or RAID0, which
means instead of writing all data to one drive and incurring all the latency
involved in doing that, the data will be divided into odd and even stripes (usually
track-sized pieces) and written to two identical drives. The odd-numbered stripes
go to one drive and the even stripes to the other. This takes advantage of the
SCSI disconnect/reconnect protocol by keeping both drives busy seeking and
not having to wait to write/read our data. There’s more about these techniques
in the Chapter 10 introduction to RAID. Striping can also be done with more
than two drives, but this requires a more complicated algorithm than odd/even
to distribute the data.

How Daring Are You?

There is another trick that can be done which will increase the write perfor-
mance of your system. But as with many tricks, you need to be careful or you
might get hurt! The trick is to enable the “write cache” on your drives. This
increases performance because the drive doesn’t wait until the data is written
to the magnetic media before telling the system that it’s “done.” Normally, this
is not a problem because shortly the drive will write the data to the medium and
it will be safe. But what happens if there is a power failure before the data gets
written to the media? You could lose some of the data that you were writing, or
even worse, the entire filesystem could be corrupted by losing blocks containing
metadata like directories or FATs.

For this reason, we recommend that you only enable write caching on systems
that have a UPS for power backup.

Let’s See How We Did

Now that we’ve applied all we know about improving SCSI performance, it’s
time to see how well we accomplished that task. We need to select a benchmark
utility and run it to measure the transfer rate, average seek time, and CPU
consumption. Some of these tools are included on the CD-ROM that comes
with this book, and many others are available from various Internet sources.



Performance Tuning Your SCSI Subsystem 189

Keep Your Expectations Realistic

It’s easy to get caught up in the quest for speed. When you see specifications
that say “This host adapter has an 80 MB/second transfer rate!,” you might
tend to take this at face value and expect that running a benchmark on a disk
attached to one of these host adapters will yield a result equal to or close to that
number. This is not the case!

Did the host adapter manufacturer lie? No, not at all. You need to under-
stand the difference between maximum transfer rate and the real data rate
coming off the disk media. The host adapter is specifying the maximum speed
it can move bytes across the SCSI bus. A single disk, however, cannot supply
data at 80 MB/sec. A more realistic expectation would be 15 MB/sec for a single
disk. This means that the Fast-40 Wide host adapter we’re talking about here
can handle the data from four or five such disks before it becomes the bottle-
neck.

Once you’ve eeked out all the speed you can out of your system, if you’re
still not satisfied and your wallet’s not yet empty, you might be ready for RAID
(coming right up. . .).
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R A I D :  R E D U N D A N T  A R R AY  O F

I N D E P E N D E N T  D I S K S

RAID (Redundant Array of Independent
Disks) is a technology to combine multiple

small, independent disk drives into an array
that looks like a single, big disk drive to the

system. In 1987, David A. Patterson, Garth Gibson,
and Randy H. Katz at the University of California
Berkeley published a study entitled “A Case for
Redundant Arrays of Inexpensive Disks (RAID).”
Aside from the basic theory to replace a single big disk drive called SLED
(Single Large Expensive Disk) with an array, the Berkeley paper defined five
types of array architectures, called RAID levels — each providing disk fault toler-
ance and each offering different feature sets and performance trade-offs. To
differentiate among the RAID levels, each was assigned a number from 1 to 5,
where each RAID level number stands for an array architecture concept, not 
a quality level.
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(Fault tolerance features had to be a main part of the concept, simply because
in a configuration of n disk drives, a failure of one disk drive is about the factor
n more likely to happen than for a single drive.)

Data is distributed over the disks of an array in blocks called stripes. The
stripe size may range from the size of a single sector (typically 512 bytes) to
several megabytes, depending on the application and its I/O requirements. 
A stripe is always confined to a single disk.

While it is possible to implement RAIDs using ATA drives, SCSI’s parallel
processing nature is of great benefit in the application.

Name Games

After the term “RAID” was introduced, “RAID 0” was quickly adopted to describe
non-redundant disk arrays, wherein the data striping was used only to increase
capacity and performance of the storage system.

Around RAID 0 and the five “official” array definitions, some proprietary
models were created by vendors that mostly used their own (typically high-level)
numbers, to appear superior. Storage Computer’s RAID 7 is such an example,
although it’s basically a RAID 4 system with multiple caches. Combinations of
levels also get high numbers that are mostly a combination of the used levels —
RAID 10, for example, mostly is used for the combination of the levels 0 and 1.

However, the practice of calling any proprietary method of array or non-
array techniques “RAID level something” leads to confusion. RAID 7, for
example, means typically Storage Computer’s proprietary approach, whereas
Mylex, one of the biggest RAID adapter manufacturers, uses the term “Mylex
RAID 7” for JBOD (Just a Bunch Of Disks) configurations, where no RAID-like
technology is used. Also, Mylex calls the aforementioned combination of RAID
level 0 and 1 not Level 0+1 or 10, but “Mylex RAID 6.”

Now, before listing the RAID levels, just a couple more definitions you’ll
need later: A disk drive that is part of a disk array is typically called a member
disk, and the group of member disks that are related to a logical disk drive is
called a rank. A RAID array may have multiple ranks.

RAID Levels

RAID Level 0: Block Striping

As noted above, RAID level 0 is not a “real” RAID in the Berkeley paper sense,
but it is listed here because the data striping technology it uses is the base for
all RAID levels. RAID level 0 breaks data down into stripes and distributes them
over the member drives of the array. While this method doesn’t provide any
redundancy, it does provide high I/O performance and a resulting capacity
consisting of the sum of all drives. RAID level 0 is typically called striping and
shouldn’t be used in an application where data availability matters. Figure 10.1
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shows how a stream of data is broken down into stripes ABCDEFGH and then
shuffled between the two ranks in the stripe set.

An even simpler method of combining multiple disk drives, called disk
spanning, just adds the drives one after the other to a big logical drive without
striping data. This also was sometimes called RAID 0 in the early days of RAID
technology.

All RAID 0 arrays have one major flaw — if one drive fails, the whole array’s
data are gone. Therefore, RAID 0 is typically used only to achieve high capacity
and performance as cheaply as possible.

RAID Level 1: Drive Mirroring or Duplexing

RAID level 1, or mirroring, was used long before the RAID definitions were
published. Mirroring provides redundancy by writing the same data to both
sides of the mirror — i.e., to both ranks of the array, therefore leaving a “mir-
rored” copy on each disk. This is shown in Figure 10.2: The data ABCD are
written to both disks of the array.

Level 1 is rather simple to implement, provides very good data reliability,
and improves read performance of the array, but the capacity/cost ratio is
unfavorable — you have to buy twice the capacity you need. To enhance reli-
ability even more, many RAID level 1 solutions also can use mirrored disk
controllers, which eliminates the disk controller as a single point of failure and
is typically called duplexing. Even though this system requires purchasing double
your capacity needs, today’s disk space is cheap, and the cost of downtime is
rising, so RAID level 1 is definitely worth considering for applications where
data availability matters.

Figure 10.1: RAID 0—Block Striping
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RAID Level 2: Striping with ECC

RAID level 2 distributes data in single bits over the member drives and uses 
an algorithm called Hamming Code to generate ECC (error correction code)
checksum bits that are stored on multiple dedicated ECC disk drives (shown
in Figure 10.3). At the time the RAID definitions were written, this made
sense — but because most disk drives today embed ECC information in each
sector, and RAID level 2 shares all disadvantages of RAID level 3 without the
additional benefits, level 2 isn’t used any more. (The biggest disadvantage was
the high number of drives needed for ECC generation. According to the theory,
you’d need four ECC drives for ten data drives and so on.)

Figure 10.2: RAID 1—Mirroring

Figure 10.3: RAID 2—Striping with ECC Stored on Dedicated Drives
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RAID Level 3: Byte Striping with Parity

RAID level 3 uses the same striping method as RAID level 2, but instead of 
calculating ECC information over the whole data set, level 3 generates parity
information over the data on a dedicated parity disk(see Figure 10.4).

If a disk drive fails, the data can be restored on the fly by calculating the
exclusive OR (XOR) of the data from the remaining drives. RAID level 3 provides
high data transfer rates and high data availability and is cheaper than mirroring. 

The major drawback to level 3 is that every read or write operation needs
to access all drives of a rank, so only one request can be pending at a time and
the transaction rate is limited to the transaction rate of a single drive. Also, the
block size depends on the number of disks — with the practical stripe size of
one sector (512 bytes) per drive, if you want to add a drive to a set of four disk
drives and a parity drive, the request block size of the array would be 2.5K
(kilobytes). This is very unusual block size and hard to handle for most operat-
ing systems. So, RAID level 3 arrays typically work only with an even number of
data drives to achieve more normal block sizes. 

RAID level 3 is bad for a “standard” system with multiple I/O transactions
at any time but, on the other hand, a single read transaction performs very well
with the cumulative bandwidth of all drives of the rank.

RAID Level 4: Block Striping with Parity Drive

RAID level 4 is somewhat similar to level 3, but where level 3 distributes data
bit or byte oriented over the drives of a rank, level 4 uses larger stripe sizes —
various vendors offer data block sizes between 8K and 128K. Therefore, small
(≤ stripe size) data blocks can be read asynchronously from multiple drives of
the rank, giving a very good read transaction rate. 

Figure 10.4: RAID 3—Byte Striping with Parity
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For example, using Figure 10.5, the Parity 1 block (P1) would contain the
XOR of blocks A, B, C, and D, but each of these blocks is separately accessible.
So, if data records fit into the logical block size, multiple records can be read
from the drives in a quasi-parallel manner.

On the other hand, every write access has to wait until the writing of the
parity data on the parity drive is completed. When re-writing block C, both C
and P1 have to be read then re-written; the other three drives do not have to be
accessed. The parity drive therefore becomes a bottleneck because it has to be
accessed for all writes, and write performance is identical to that of a single
drive — the parity drive. 

With this in mind, RAID level 4 performs best with parallel read accesses
to several logical blocks. However, because RAID level 5 shares the advantages
of level 4, but avoids the single parity drive, it is the better choice in such a
system. Possibly for that reason, we don’t know of any commercial RAID 4
implementation.

RAID Level 5: Block Striping with Distributed Parity

RAID level 5 is identical to level 4 in all but one aspect: It reduces the write
bottleneck by distributing the parity data across all member drives of the rank. 

Figure 10.6 shows how the parity drives are re-arranged for RAID level 5.
As with RAID level 4, read performance is very good, whereas write performance
is substantially less so — although not as troublesome as in level 4. Because the
combination of performance, data availability, and cost/capacity ratio is the
best compromise of all Berkeley RAID levels, RAID level 5 is the most used
level today.

Figure 10.5: RAID 4—Block Striping with Parity
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RAID Level 6: Block Striping with Two Distributed Parities

RAID level 6 is a RAID level 5 array with an additional parity generated over all
drives, including the RAID 5 parity. This gives one additional level of data
availability, because this scheme can compensate for the loss of two drives — an
improvement over RAID 5’s one-drive fault tolerance. Figure 10.7 shows the
arrangement of a level 7 system.

Although level 6 was later established as one additional “official” RAID
level, no one has implemented it yet. It would be the perfect RAID for
mission-critical applications; its downsides are the cost of a very complex con-
troller design and very bad write performance because of the two-stage parity
generation.

Figure 10.6: RAID 5—Block Striping with Distributed Parity

Figure 10.7: RAID 6 — Block Striping with Two Distributed Parities
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RAID Level 7: Storage Computer Proprietary

Storage Computer’s RAID 7 system is simply a RAID 4 system with fully asyn-
chronous I/O transfers and big caches (see Figure 10.8). Each disk drive has
its own SCSI disk controller that caches all read and write transfers. The system
controller accesses these SCSI disk controllers asynchronously via a proprietary
high-speed bus called X-Bus. Additionally, the system controller has a very big
cache and confirms write operations while they are stored in the cache only. 

RAID 7’s main advantage over the “standard” RAID levels is extremely high
performance for both read and write operations due to the larger number of
disk drives. The major disadvantage is extremely high cost per megabyte.

RAID Level 0+1 or Level 10: Mirrored Striping Array

RAID level 0+1 or 10 is a combination of the levels 0 (striping) and 1 (mirroring)
and has the same advantages and disadvantages as a standard RAID 1 solution
(shown in Figure 10.9). 

The additional advantage of RAID level 0+1 is performance — read per-
formance goes up because of the parallel access over multiple drives, and
because no parity needs to be calculated, write operations are very fast. RAID
0+1 is usually considered the fastest of the available RAID implementations.

Figure 10.8: RAID 7—Storage Computer
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Analyze Your Needs

The advantages and disadvantages of the RAID levels vary depending on the
system architecture of the RAID adapter and the disk drives. If an intelligent
RAID controller with big memory caches can be used, the write performance
hit of, for example, RAID 5, is not really noticeable. If, on the other hand,
RAID 5 is done in software, the XOR calculation draws noticeable resources
from your main CPU(s). Selection of a RAID system should be done only after
careful analysis of your needs.

RAID and the RAB

In 1992, eight RAID manufacturers and consultants founded the RAB (RAID
Advisory Board) to present a podium for RAID and to achieve better market
presence for the RAID idea and their products. The RAB (www.raid advisory.
com) offers the RAIDBook, which describes all RAID and EDAP issues in
great detail. 

Since then, the RAB has grown to include all major players in the RAID
field and has extended the fault tolerance aspect of RAID to a broader view
called EDAP (Extended Data Availability and Protection). The idea behind
EDAP is that a storage system with EDAP capability can protect its data and
provide online access to its data despite failures within the disk system, attached
units, or its environment. This is a major extension of the RAID concept.
Specifically, RAID is the part that addresses failures in the disk system on the
lowest level.

Figure 10.9: RAID 0+1 — Mirrored Striping Array

http://www.nostarch.com/scsi2_redirect.htm?199a
http://www.nostarch.com/scsi2_redirect.htm?199a
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Extended Data Availability and Protection (EDAP)

The original definition of EDAP is the ability of a storage system to provide
reliable online access to data even under abnormal conditions. These condi-
tions are clearly specified as shown in Table 10.1.

Table 10.1: Types of Failures and Their Conditions

Failure Type Example

Internal Failures Failures within the disk system.

External Failures Failures of equipment attached to the disk system, including 
host I/O buses and host computers.

Environmental Failures Failures resulting from abnormal environmental conditions, 
from a power outage or over-temperature to flood, earthquake,
terrorism, or sabotage.

Replacement Periods Replacement periods means the time needed to do mainte-
nance, for example to replace a disk drive. Typically, in a 
good RAID setup with hot standby disks and hot-swap sup-
port, this means only some time in “reduced mode,” where 
the next failing disk drive could mean disaster. (Note that if 
hot swap is not supported by the disk system, then the com-
ponent replacement period is identical to down time.)

Vulnerable Periods Vulnerable period, or reduced mode time, means that the disk
system has to work around a failing component, that the system
is vulnerable to additional (possibly disastrous) failures, and 
that the system operates at reduced performance until the fault
is corrected.

EDAP now certifies whether a storage system or component fulfills specific
EDAP criteria called EDAP attributes. The EDAP attribute range of a disk system
may include providing EDAP capability in case of an internal disk failure to
providing EDAP capability against any internal, external, or environmental
failure.

RAID denotes the lowest level of EDAP capability — prevention of online
data access because of a disk failure — whereas the highest levels include 
things like remote mirroring to protect data access in case of catastrophes 
like earthquakes.

EDAP Criteria

EDAP uses seven base classifications for disk systems. Each EDAP classification
level supercedes the previous level. To meet the criteria for a classification,
the listed EDAP attributes must be fulfilled.
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Failure Resistant Disk System, FRDS, criteria are:

• Protection against data loss and loss of access to data due to disk failure

• Reconstruction of failed disk contents to a replacement disk

• Protection against data loss due to a “write hole”

• Protection against data loss due to host and host I/O bus failures

• Protection against data loss due to component failure

• FRU monitoring and failure indication

Failure Resistant Disk System Plus, FRDS+, does everything an FRDS does 
and adds the following criteria:

• Disk hot swap

• Protection against data loss due to cache component failure

• Protection against data loss due to external power failure

• Protection against data loss due to a temperature-out-of-operating-range
condition

• Component and environmental failure warning

Failure Tolerant Disk System, FTDS, adds the following criteria:

• Protection against loss of access to data due to device channel failure

• Protection against loss of access to data due to controller failure 

• Protection against loss of data access due to cache component failure

• Protection against loss of data access due to power supply failure
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Failure Tolerant Disk System Plus, FTDS+, meets all previous criteria and
additionally offers:

• Protection against loss of access to data due to host and host I/O bus failures

• Protection against loss of access to data due to external power failure

• Protection against loss of data access due to FRU replacement

• Disk hot spare

Failure Tolerant Disk System Plus Plus, FTDS++, meets all previous criteria
and adds:

• Protection against data loss and loss of access to data due to multiple disk
failures in an FTDS+

Disaster Tolerant Disk System, DTDS, adds the term “zone,” meaning a geo-
graphic zone. Being an FTDS+ array by definition, the DTDS adds mainly:

• Protection against loss of data access due to zone failure

This means that if, for example, a building is flooded, the DTDS has some
provision to offer online data access by a backup unit in a different building
that’s definitely not affected by this flood.

Disaster Tolerant Disk System Plus, DTDS+, uses bigger zones to guarantee
online data access, as follows:

• Long distance protection against loss of data access due to zone failure

As you might expect, the higher the EDAP classification, the higher the price
of a complete solution — to fulfill the DTDS criteria, you need to set up two
data centers in two separate buildings or at least building parts that may not
be vulnerable to the same fire, for example. If you’re really serious about dis-
aster tolerance you’ll want the two locations in separate cities, or counties —
preferably on separate tectonic plates!

How Does All This Stuff Connect to My System?

There are three basic types of RAID implementations, internal hardware,
external hardware, and software only. Internal RAID controllers consist of an
intelligent multi-channel host adapter card (usually PCI). The card contains 
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a CPU (usually a RISC processor) and a large amount of memory as well as
several SCSI bus channels (usually three).

An external RAID unit consists of a cabinet with a controller card and a
bunch of bays to mount drives in. The controller card is similar to the one in
internal RAIDs, but also provides another SCSI bus to act as the “front side”
connection (from the host to the RAID). More sophisticated external RAIDs
provide a second “front side” bus to remove the possibility of this being a sin-
gle point of failure. When all is said and done the entire RAID looks to the
host like one giant SCSI disk drive!

Software RAID

The software approach is certainly the least expensive, but also the most lim-
ited way to implement RAID. Software RAID0 or RAID1 are fairly practical,
but going beyond this incurs a substantial performance hit. Windows NT
Server and Linux have software RAID capability. Remember, though, that you
can’t boot from a software RAID.

RAID can be a topic for an entire book, but I think we’ve gone far
enough to inform the typical user or system integrator of what this RAID stuff
is all about.
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ASPI stands for advanced SCSI program-
ming interface. ASPI is an Adaptec-developed

interface specification for sending commands to
SCSI host adapters that most hardware manufactur-
ers have adopted today. The interface provides an
abstraction layer that insulates the programmer from
considerations of the particular host adapter used.
With ASPI, software drivers can be broken into two
components: the low-level ASPI manager, which is
operating system and hardware dependent, and
the ASPI module. The ASPI manager accepts ASPI
commands and performs the steps necessary to send
the SCSI command to the target. For example, 
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although the Adaptec AHA-152x and AHA-294x host adapters have very different
hardware, the ASPI interface to these boards is the same. (Obviously, the driver
module that implements the ASPI interface for the particular host adapter,
e.g., ASPI2DOS.SYS, is different for each board.)

The ASPI module is tailored to the command set of a particular peripheral,
such as CD-ROM. Although an ASPI-based CD-ROM driver would have to handle
the differences between different CD-ROM drives, it would not have to handle
host adapter differences.

I. ASPI Developer Information

In response to widespread demand for ASPI software, Adaptec provides the ASPI
Software Developer’s Kit (SDK), a complete toolkit for developing SCSI drivers
for PC peripherals. This kit is designed to help you write your own ASPI device
module that will work with any ASPI-compliant host adapter. The following sec-
tions describe the ASPI specifications for DOS, Windows, and OS/2. Updated
information can be downloaded from the Adaptec FTP site:
ftp://ftp.adaptec.com/pub/BBS/adaptec/.

The ASPI Software Developer Kit contains the following documentation
and tools.

• A copy of the ASPI specification document and programming guides for
four major operating systems: DOS, Windows, OS/2, and NetWare.

• Sample assembler source code for DOS.

• A SCSI DOS disk driver, which can handle at most one SCSI partition on
one SCSI drive.

• An ASPI demo program, which provides examples of how to use the ASPI
programming interface.

• Sample C source code for Windows.

• An ASPI for Windows utility, which constantly scans the SCSI bus and dis-
plays the name of a device, if it finds one.

• A debugging utility for ASPI for Windows development.

• An ASPI demo utility for OS/2, which scans the SCSI bus and displays
information about the targets it finds. It is a 32-bit application created
with Borland C++ for OS/2. A project file and makefile are included.
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• Sample C source code for OS/2.

• An ASPI device driver for OS/2. This driver is intended for simple, single-
threaded applications. If you need to support multitasking, you need to
make your own modifications.

• A complimentary copy of Adaptec EZ-SCSI, the latest version of
DOS/Windows software managers, plus an installation program, CD-
ROM drivers, and other utilities.

To use this kit, it is assumed that you have a solid understanding of system-level
programming and are familiar with at least device driver development for the
operating system you are targeting. Prior to getting this kit, you should get the
device driver kit from the appropriate operating system vendor.

To order in the U.S. and Canada, call 800-442-7274. To order internation-
ally, call 408-957-7274. Price is US $150.00.

N O T E Numerous tables of information appear throughout this chapter. For convenience, we
have abbreviated certain column headings as R/W. In cases where R/W appears as a
heading, the entries in that column indicate whether the field is sent to ASPI (W),
returned from ASPI (R), or reserved (—).

II. ASPI for DOS Specification

Two steps are involved in order for a driver to make use of ASPI: obtain the
ASPI entry point, and call the ASPI driver. Typically, the entry point is obtained
once, and then ASPI calls are made multiple times within a device driver. ASPI
function calls are used to return data about the ASPI manager, host adapter, and
SCSI devices, but they are mainly used to execute SCSI I/O requests. The ASPI
layer is re-entrant and can accept function calls before previous calls have com-
pleted. A call will normally return immediately with zero status, indicating that
the request has been successfully queued. In order to continue program flow
after the function completes, the driver either polls ASPI status or enables the
post bit, which turns control over to a specified routine upon completion of
the ASPI call.

N O T E When a program makes a call to an ASPI manager, the manager uses the caller’s stack.
It is therefore necessary for the program to allocate enough stack memory for itself as well
as the ASPI manager. There is no fixed amount of stack needed by all ASPI managers; a
programmer needs to be aware of this constraint and test code with individual managers
for compatibility.

Accessing ASPI

Device drivers wishing to access ASPI must open the driver by performing a
DOS Int 21h function call OPEN A FILE as follows:
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On Entry:

AX = 3D00h
DS:DX = Pointer to SCSIMGR$, 0

On Return:

AX = File handle if carry flag is not set
Error code if carry flag is set

Getting the ASPI Entry Point

Device drivers can get the entry point to ASPI by performing a DOS Int 21h
function call IOCTL READ as follows:

On Entry:

AX = 4402h
DS:DX = Pointer to data returned (4 bytes)
CX = 4
BX = File handle

On Return:

AX = Nothing
Data returned in DS:DX contains the ASPI entry point:
Byte 0–1: ASPI Entry Point Offset
Byte 2–3: ASPI Entry Point Segment

Closing ASPI

Device drivers wishing to close ASPI must do it by performing a DOS Int 21h
function call CLOSE A FILE as follows:

On Entry:

AH = 3Eh
BX = File handle

On Return:

AX = Error code if carry flag is set
Nothing if carry flag is not set
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Calling ASPI

The following is an example of how to call the ASPI manager:

.MODEL SMALL

.STACK 100h                       ;100h byte stack

.DATA

SCSIMgrString  db "SCSIMGR$"

dw 0                              ;NULL-terminate string

ASPI_Entry     db 4 dup (?)

SRB            db 58 dup (0)                     ;Initialize SRB for Host

;Adapter Inquiry

.CODE

start:         mov  ax,@DATA

mov  ds,ax                        ;Init DS

mov  ax,03D00h

lea  dx,SCSIMgrString

int  21h                          ;Open ASPI Manager

jc   NoASPIManager                ;Branch if none found

push ax                           ;Save ASPI File Handle

mov  bx,ax                        ;BX = File Handle

mov  ax,4402h

lea  dx,ASPI_Entry                ;Store entry point here

mov  cx,4                         ;Four bytes to transfer

int  21h                          ;Get ASPI entry point

mov  ah,03Eh

pop  bx                           ;BX = ASPI File Handle

int  21h                          ;Close ASPI Manager

push ds                           ;Push SRB's segment

lea  bx,SRB

push bx                           ;Push SRB's offset

lea  bx,ASPI_Entry

call DWORD PTR [bx]               ;Call ASPI

add  sp,4                         ;Restore the stack

ASPI_Exit:     mov  ax,4C00h                     ;Exit to DOS

int  21h

ret

NoASPIManager:                                   ;No ASPI Manager found!!

jmp  ASPI_Exit                    ;Handle it.

END
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As shown in the preceding sample code, the SRB’s segment is first pushed
onto the stack followed by its offset. ASPI is then called directly.

SCSI Request Block (SRB)

A SCSI request block (SRB) (see Table 11.1) contains the command to be exe-
cuted by the ASPI manager and is used by both drivers and application programs.
An SRB consists of an SRB header followed by additional fields dependent on
the command code. All request blocks have an 8-byte header.

Table 11.1: SCSI Request Block

Offset #Bytes Description R/W

00h (00) 01h (01) Command Code W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —

Command Codes

The Command Code field is used to indicate which of the ASPI services is
being accessed. Refer to Valid ASPI Command Codes in Table 11.2.

Table 11.2: Valid ASPI Command Codes

Command Code Description

00h Host Adapter Inquiry

01h Get Device Type

02h Execute SCSI I/O Command

03h Abort SCSI I/O Command

04h Reset SCSI Device

05h Set Host Adapter Parameters

06h Get Disk Drive Information

07h–7Fh Reserved for Future Expansion

80h–FFh Reserved for Vendor Unique
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Status

The Status Byte field is used to post the status of the command. Refer to ASPI
Status Bytes in Table 11.3.

Host Adapter Number

The Host Adapter Number field specifies which installed host adapter the re-
quest is intended for. Host adapter numbers are always assigned by the SCSI
manager layer beginning with zero.

SCSI Request Flags

The SCSI Request Flags field definition is command code-specific.

Reserved for Expansion

The last 4 bytes of the header are reserved and must be zero.

ASPI Command Codes

Table 11.3: ASPI Status Bytes

Status Byte Description

00h SCSI Request in Progress

01h SCSI Request Completed Without Error

02h SCSI Request Aborted by Host

04h SCSI Request Completed With Error

80h Invalid SCSI Request

81h Invalid Host Adapter Number

82h SCSI Device Not Installed

ASPI Command Code = 0: Host Adapter Inquiry

The status byte (defined in Table 11.3) will always return with a nonzero status.
A SCSI Request Completed Without Error (01h) status indicates that the remaining
fields are valid. An Invalid Host Adapter Number (81h) status indicates that
the specified host adapter is not installed. This function (as shown in Table 11.4)
is used to get information on the installed host adapter hardware, including
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number of host adapters installed. It can be issued once with host adapter
zero specified to get the number of host adapters. If further information is
desired, it can be issued for each individual host adapter.

The SCSI Request Flags field is currently undefined for this command and
should be zeroed.

Table 11.4: ASPI Command Code = 0: Host Adapter Inquiry

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code = 0 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —

08h (08) 01h (01) Number of Host Adapters R

09h (09) 01h (01) ID of Host Adapter R

0Ah (10) 10h (16) SCSI Manager ID R

1Ah (26) 10h (16) Host Adapter ID R

2Ah (42) 10h (16) Host Adapter Unique Parameters R

The SCSI Manager ID field contains a 16-byte ASCII string describing the
SCSI manager.

The Host Adapter ID field contains a 16-byte ASCII string describing the
SCSI host adapter.

The definition of the Host Adapter Unique Parameters field is left to imple-
mentation notes specific to a particular host adapter.

ASPI Command Code = 1: Get Device Type

This command (defined in Table 11.5) will always return with nonzero status.
A SCSI Request Completed Without Error (01h) status indicates that the 

specified device is installed and the peripheral device type field is valid. A
SCSI Device Not Installed Error (82h) indicates that the peripheral device
type field is not valid.

This command is intended for use by various drivers, during initialization,
for identifying the targets that they need to support. A CD-ROM driver, for ex-
ample, can scan each target/LUN on each installed host adapter looking for the
device type corresponding to CD-ROM devices. This eliminates the need for
each driver to duplicate the effort of scanning the SCSI bus for devices.
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The peripheral device type is determined by sending a SCSI Inquiry com-
mand to the given target. Refer to any SCSI specification to learn more about
the Inquiry command.

The SCSI Request Flags field is currently undefined for this command
and should be zeroed.

Table 11.5: ASPI Command Code = 1: Get Device Type

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code = 1 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —

08h (08) 01h (01) Target ID W

09h (09) 01h (01) LUN W

0Ah (10) 01h (01) Peripheral Device Type of Target/LU R

ASPI Command Code = 2: Execute SCSI I/0 Command

This command (defined in Table 11.6) will usually return with zero status indi-
cating that the request was queued successfully. Command completion can be
determined by polling for nonzero status or through the use of the Post Routine
Address field (discussed later in the section “ASPI Command Posting”). Keep
in mind that if you are going to use polling, interrupts must be enabled.

Table 11.6: ASPI Command Code = 2: Execute SCSI I/O Command

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code = 2 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —

08h (08) 01h (01) Target ID W

09h (09) 01h (01) LUN W

0Ah (10) 04h (04) Data Allocation Length W
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Offset # Bytes Description R/W

0Eh (14) 01h (01) Sense Allocation Length (N) W

0Fh (15) 02h (02) Data Buffer Pointer (Offset) W

11h (17) 02h (02) Data Buffer Pointer (Segment) W

13h (19) 02h (02) SRB Link Pointer (Offset) W

15h (21) 02h (02) SRB Link Pointer (Segment) W

17h (23) 01h (01) SCSI CDB Length (M) W

18h (24) 01h (01) Host Adapter Status R

19h (25) 01h (01) Target Status R

1Ah (26) 02h (02) Post Routine Address (Offset) W

1Ch (28) 02h (02) Post Routine Address (Segment) W

1Eh (30) 22h (34) Reserved for ASPI Workspace —

40h (64) _______ SCSI Command Descriptor Block (CDB) W

40h+M N Sense Allocation Area R

The SCSI Request Flags Byte Is Defined As Follows:

7 6 5 4 3 2 1 0 

Rsvd Rsvd Rsvd Direction Bits Rsvd Link Post 

The Post bit specifies whether posting is enabled (bit 0 = 1) or disabled 
(bit 0 = 0).

The Link bit specifies whether linking is enabled (bit 1 = 1) or disabled
(bit 1 = 0).

The Direction bits specify which direction the transfer is:

00 Direction determined by SCSI command. Length not checked.

01 Transfer from SCSI target to host. Length checked.

10 Transfer from host to SCSI target. Length checked.

11 No data transfer.

The Target ID and LUN fields are used to specify the peripheral device involved
in the I/O.

The Data Allocation Length field indicates the number of bytes to be trans-
ferred. If the SCSI command to be executed does not transfer data (i.e., Rewind,
Start Unit, etc.) the Data Allocation Length must be set to zero.



A Profile of ASPI Programming 215

The Sense Allocation Length field indicates, in bytes, the number of bytes
allocated at the end of the SRB for sense data. A request sense is automatically
generated if a check condition is presented at the end of a SCSI command.

The Data Buffer Pointer field is a pointer to the I/O data buffer. You place
the logical address here. ASPI will convert it to the physical address in the case
of a bus master or DMA transfer.

The SRB Link Pointer field is a pointer to the next SRB in a chain. See the
discussion on linking for more information.

The SCSI CDB Length field establishes the length, in bytes, of the SCSI
command descriptor block (CDB).

The Host Adapter Status field is used to report the host adapter status
as follows:

00h Host adapter did not detect any error

11h Selection timeout

12h Data overrun/underrun

13h Unexpected bus free

14h Target bus phase sequence failure

The Target Status field is used to report the target’s SCSI status including:

00h No target status

02h Check status (sense data is in sense allocation area)

08h Specified target/LUN is busy

18h Reservation conflict

The Post Routine Address field, if specified, is called when the I/O is completed.
See the discussion on posting for more information.

The SCSI command descriptor block (CDB) field contains the CDB as
defined by the target’s SCSI command set. The length of the SCSI CDB is
specified in the SCSI Command Length field.

The sense allocation area is filled with sense data on a check condition. The
maximum length of this field is specified in the Sense Allocation Length field.
Note that the target can return fewer than the number of sense bytes requested.

SCSI Command Linking with ASPI

ASPI provides the ability to use SCSI linking to guarantee the sequential exe-
cution of several commands. Note that the use of this feature requires the
involved target(s) to support SCSI linking.

To use SCSI linking, a chain of SRBs is built with the SRB link pointer used
to link the elements together. The link bit should be set in the SCSI request
flags byte of all SRBs except the last in the chain. When a SCSI target returns
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indicating that the linked command is complete, the next SRB is immediately
processed, and the appropriate CDB is dispatched. When using SCSI linking,
make sure that the linking flags in the SCSI CDB agree with the link bit in the
SCSI request flags. Inconsistencies can cause unpredictable results. For example,
setting the CDB up for linking but failing to set the link bit may result in a ran-
dom address being used for the next SRB pointer.

Any error returned from the target on a linked command will break the
chain. Note that if linking without tags is used, as defined in SCSI, posting may
not occur on any elements in the chain until the chain is complete. If you have
the post bit set in each SRB’s SCSI request flags byte, then each SRB’s post
routine will be called.

N O T E It is strongly recommended that you do not use SCSI linking. There are many SCSI targets,
as well as SCSI host adapters, which do not handle SCSI linking and will not work with
your ASPI module.

ASPI Command Posting

To use posting, the post bit must be set in the SCSI request flags. Posting refers
to the SCSI manager making a FAR call to a post routine as specified in the SRB.
The post routine is called to indicate that the SRB is complete. The specific SRB
completed is indicated by a 4-byte SRB pointer on the stack. It is assumed that
all registers are preserved by the post routine.

The ASPI manager will first push the completed SRB’s 2-byte segment
onto the stack followed by its 2-byte offset. The following is a sample ASPI post
handler:

ASPI_Post     proc far

push bp

mov  bp,sp

pusha                    ;Save all registers

push ds

push es

mov  bx,[bp+6]           ;BX = SRBs offset

mov  es,[bp+8]           ;ES = SRBs segment

.                     ;ES:BX points to SRB 

.

.

pop  es

pop  ds

popa

pop  bp                  ;Restore all registers

retf                     ;and return to ASPI

ASPI_Post     endp
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When your post routine is first entered, the stack will look as follows:

Top of Stack [SP+0] —> Return Address (Offset)

[SP+2] —> Return Address (Segment)

[SP+4] —> SRB Pointer (Offset)

[SP+6] —> SRB Pointer (Segment)

...

...

...

You may issue any ASPI command from within your post routine except for an
Abort command. Your post routine should get in and out as quickly as possible.

Posting can be used by device drivers and terminate and stay resident (TSR)
programs, which need to operate in an interrupt-driven fashion.

ASPI Command Code = 3: Abort SCSI I/O Command

This command (defined in Table 11.7) is used to request that an SRB be
aborted. It should be issued on any I/O request that has not completed if 
the driver wishes to timeout on that request. Success of the Abort command 
is never assured.

Table 11.7: ASPI Command Code = 3: Abort SCSI I/O Command

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code = 3 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —

08h (08) 02h (02) SRB Pointer to Abort (Offset) W

0Ah (10) 02h (12) SRB Pointer to Abort (Segment) W

This command always returns with SCSI Request Completed Without Error, but
the actual failure or success of the abort operation is indicated by the status
eventually returned in the SRB specified.

The SCSI Request Flags field is currently undefined for this command and
should be zeroed.
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The SRB Pointer to Abort field contains a pointer to the SRB that is to 
be aborted.

N O T E An Abort command should not be issued during a post routine.

ASPI Command Code = 4: Reset SCSI Device

This command (defined in Table 11.8) is used to reset a specific SCSI target.
Note that the structure passed is nearly identical to the execute SCSI I/O SRB
except that some of the fields are not used.

This command usually returns with zero status indicating that the request
was queued successfully. Command completion can be determined by polling
for nonzero status or through the use of posting.

Table 11.8: ASPI Command Code = 4: Reset SCSI Device

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code = 4 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —

08h (08) 01h (01) Target ID W

09h (09) 01h (01) LUN W

0Ah (10) 0Eh (14) Reserved —

18h (24) 01h (01) Host Adapter Status R

19h (25) 01h (01) Target Status R

1Ah (26) 02h (02) Post Routine Address (Offset) W

1Ch (28) 02h (02) Post Routine Address (Segment) W

1Eh (30) 02h (02) Reserved for ASPI Workspace —

The SCSI Request Flags Byte Is Defined As Follows:

7 6 5 4 3 2 1 0  

Rsvd      Post  
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The Post bit specifies whether posting is enabled (bit 0 = 1) or disabled 
(bit 0 = 0).

ASPI Command Code = 5: Set Host Adapter Parameters

The definition of the host adapter unique parameters (shown in Table 11.9)
is left to implementation notes specific to a particular host adapter.

Table 11.9: ASPI Command Code = 5: Set Host Adapter Parameters

Offset # Bytes Description R/W

00h (00) 201h (01) Command Code = 5 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —

08h (08) 10h (16) Host Adapter Unique Parameters W

ASPI managers that support this command code always return with a status 
of SCSI Request Completed Without Error (01h). ASPI managers that do 
not support this command code always return with a status of Invalid SCSI
Request (80h).

ASPI Command Code = 6: Get Disk Drive Information

This command (defined in Table 11.10) is intended for use by SCSI disk drivers
that need to determine which disk drives are already being controlled by some
BIOS/DOS and which disk drives are available for use by the disk driver. It also
provides a means to determine which drives are not under control of the BIOS/
DOS yet are still accessible via Int 13h. This is useful because many disk caching
utilities will cache Int 13h requests but not any disk driver requests. There are
also some disk utility programs that will allow the user to access physical sectors
on a disk via Int 13h.

Table 11.10: ASPI Command Code = 6: Get Disk Drive Information

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code = 6 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W
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Offset # Bytes Description R/W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —

08h (08) 01h (01) Target ID W

09h (09) 01h (01) LUN W

0Ah (10) 01h (01) Drive Flags R

0Bh (11) 01h (01) Int 13h Drive R

0Ch (12) 01h (01) Preferred Head Translation R

0Dh (13) 01h (01) Preferred Sector Translation R

0Eh (14) 0Ah (10) Reserved for Expansion = 0 —

The SCSI Requests Flags field is currently undefined for this command and
should be zero.

The Drive Flags Byte Is Defined As Follows:

7 6 5 4 3 2 1 0  

Rsvd Rsvd Rsvd Rsvd Rsvd Rsvd Int 13 Info  

All reserved (Rsvd) bits will return zeroed.

The Int 13 Info bits return information pertaining to the Int 13h drive field:

00 The given drive (HA #/target/LUN) is not accessible via Int 13h. If you wish to 
read/write to this drive, you will need to send ASPI read/write requests to the 
drive. The Int 13h Drive field is invalid.

01 The given drive (HA #/target/LUN) is accessible via Int 13h. The Int 13h Drive field
contains the drive’s Int 13h drive number. This drive is under the control of DOS.

10 The given drive (HA #/target/LUN) is accessible via Int 13h. The Int 13h Drive field
contains the drive’s Int 13h drive number. This drive is not under control of DOS 
and can be used, for example, by a SCSI disk driver.

11 Invalid.

The Int 13h Drive field returns the Int 13 drive number for the given host
adap-ter number, target ID, and LUN. Valid Int 13 drive numbers range for
00-FFh. The Preferred Head Translation field indicates the given host adapter’s/
disk drive’s preferred head translation method. A typical value will be 64 heads.
The Preferred Sector Translation field indicates the given host adapter’s/disk
drive’s preferred sector translation method. A typical value will be 32 sectors
per track.
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ASPI for DOS under Windows 3.x

Windows is a graphical user interface that runs under DOS, but writing a device
driver or application capable of making ASPI calls in a Windows environment is
not as simple as in the strictly DOS case. The problem is that ASPI for DOS uses
a real mode interface and Windows uses the DOS protected mode interface
(DPMI). ASPI expects a real mode segment and offset for the SRB and the
entry point of ASPI, while Windows uses a selector and offset to address data
and code. To program correctly in this environment, a consortium of companies
(including Microsoft and Intel) have written the DOS Protected Mode Inter-
face Specification. The details are too complex to go into detail here, but a copy
should be obtained from the DPMI committee for programming purposes. Two
steps need to be followed to access ASPI for DOS from a Windows application:

1. Allocate all SRBs and buffers down in real mode memory. This can be
accomplished using Windows’ GlobalDosAlloc routine or using DPMI
interrupt 31h, function 100h. This allows the ASPI module and manager
to locate the SRB and data buffers using segments and offsets.

2. Call the real mode procedure with Far Return Frame Function (interrupt
31h, function 0301h). This makes it possible to call the ASPI manager,
which is a real mode procedure.

III. ASPI for Windows Specification

ASPI for Windows is implemented as a dynamic link library (DLL). The name
of this file is called winaspi.dll. ASPI function calls (shown in Table 11.11) are
used to return information about the ASPI manager, host adapter, and SCSI
devices, but they are mainly used to execute SCSI I/O requests. The ASPI for
Windows layer is fully multitasking and can accept function calls before previ-
ous calls have completed. There are two functions that need to be imported
from winaspi.dll into your Windows application.

Table 11.11: Description of ASPI for Windows Functions

Function Description

GetASPISupportInfo This function returns the number of host adapters installed and
other miscellaneous information. You should call this function 
to make sure that ASPI is properly initialized before calling 
the SendASPICommand function.

SendASPICommand This function allows you to send an ASPI for Windows 
command. All of your SRBs and data buffers must be in 
locked memory before being passed to ASPI.
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ASPI Managers for Windows

It is not the intent of this specification to define the protocol between winaspi.dll
and any DOS ASPI managers that may be loaded. There are many reasons for
this, including the following:

• Some hardware companies may decide to write an ASPI for Windows
manager without concurrent ASPI for DOS support.

• Some may decide to have winaspi.dll communicate with a Windows 386
enhanced mode virtual device driver (VxD).

• Some may decide to only support Windows 3.1, which may or may not
have improved hardware support.

It is also not the intent of this specification to define which modes of Windows
need to be supported. We anticipate that most hardware companies will sup-
port ASPI for Windows in standard and 386 enhanced modes, and forego real
mode support.

GetASPISupportInfo

WORD GetASPISupportInfo(VOID)
The GetASPISupportInfo function returns the number of host adapters installed
and other miscellaneous information. It is recommended that this function be
called first before issuing an ASPI command to ensure ASPI has been properly
initialized. This function call does not perform any initialization itself, but rather
confirms that everything is ready for processing.

This function has no parameters.

Returns

The return value specifies the outcome of the function. The LOBYTE returns
the number of host adapters installed if the HIBYTE value equals SS_COMP.
The HIBYTE returns whether ASPI for Windows is ready to accept ASPI 
commands. Refer to the sample code. The HIBYTE is defined as shown in
Table 11.12.

Table 11.12: HIBYTE Return Values for GetASPISupportInfo

Value Meaning

SS_COMP SCSI/ASPI request has completed without error. 

SS_OLD_MANAGER One or more ASPI for DOS managers are loaded that do not 
support ASPI for Windows.
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Value Meaning

SS_ILLEGAL_MODE This ASPI manager does not support this mode of Windows. 
You will typically see this error code when running Windows 
in  real mode.

SS_NO_ASPI No ASPI managers are loaded. This is typically caused by a 
DOS ASPI manager not being resident in memory.

SS_FAILED_INIT For some reason, other than SS_OLD_MANAGER, 
SS_ILLEGAL_MODE, or SS_NO_ASPI, ASPI for Windows 
could not properly initialize itself. This may be caused by a 
lack of system resources.

Example

The following example returns the current status of ASPI for Windows:

WORD ASPIStatus;

BYTE NumAdapters;

HWND hwnd;

.

.

ASPIStatus = GetASPISupportInfo();

switch ( HIBYTE(ASPIStatus) )

{

case SS_COMP:

//ASPI for Windows is properly initialized

NumAdapters = LOBYTE(ASPIStatus);

break;

case SS_NO_ASPI:

MessageBox( hwnd, "No ASPI managers were found!!", NULL, MB_ICONSTOP );

return 0;

case SS_ILLEGAL_MODE:

MessageBox( hwnd, "ASPI for Windows does not support this mode!!", NULL, MB_ICONSTOP );

return 0;

case SS_OLD_MANAGER:

MessageBox( hwnd, "An ASPI manager which does not support Windows is resident!!",

NULL, MB_ICONSTOP );

return 0;

default:

MessageBox( hwnd, "ASPI for Windows is not initialized!!",

NULL, MB_ICONSTOP );

return 0;

}

.

.
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SendASPICommand—SC_HA_INQUIRY

WORD SendASPICommand(lpSRB)
LPSRB lpSRB;

The SendASPICommand function with command code SC_HA_INQUIRY
(defined in Table 11.13) is used to get information on the installed host
adapter hardware, including the number of host adapters installed.

Parameter Description

lpSRB Points to the following SCSI request block:

typedef struct

{

BYTE  SRB_Cmd;      // ASPI command code = SC_HA_INQUIRY

BYTE  SRB_Status;   // ASPI command status byte

BYTE  SRB_HaId;   // ASPI host adapter number

BYTE  SRB_Flags;  // ASPI request flags

DWORD SRB_Hdr_Rsvd; // Reserved, MUST = 0

BYTE  HA_Count; // Number of host adapters present

BYTE  HA_SCSI_ID; // SCSI ID of host adapter

BYTE  HA_ManagerId[16]; // String describing the manager

BYTE  HA_Identifier[16]; // String describing the host adapter

BYTE  HA_Unique[16];  // Host Adapter Unique parameters

} SRB_HAInquiry;

Table 11.13: SRB_HAInquiry Structure Definition

Member Description R/W

SRB_Cmd This field must contain SC_HA_INQUIRY. W

SRB_Status On return, this field will be the same as the return R
status defined below.

SRB_HaId This field specifies which installed host adapter the W
request is intended for. Host adapter numbers are
always assigned by the SCSI manager layer begin-
ning with zero. 

SRB_Flags The SRB Flags field is currently reserved for this function W
and must be zeroed before passed to the ASPI manager.

SRB_Hdr_Rsvd This DWORD field is currently reserved for this function —
and must be zeroed before passed to the ASPI manager.
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Member Description R/W

HA_Count The ASPI manager will set this field with the number of R
host adapters installed under ASPI. For example, a 
return value of 2 indicates that host adapters #0 and
#1 are valid. To determine the total number of host 
adapters in the system, the SRB_HaId field should be
set to zero, or GetASPISupportInfo can be used.

HA_SCSI_ID The ASPI manager will set this field with the SCSI ID of R
the given host adapter.

HA_ManagerId[..] The ASPI manager will fill this 16-character buffer with R
an ASCII string describing the ASPI manager.

HA_Identifier[..] The ASPI manager will fill this 16-character buffer with R
an ASCII string describing the SCSI host adapter.

HA_Unique[..] The ASPI manager will fill this 16-byte buffer with host R
adapter unique parameters. The definition is left to impl-
ementation notes specific to a particular host adapter.

Returns

The return value specifies the outcome of the function. One of the values
shown in Table 11.14 will be returned by ASPI for Windows.

Table 11.14: Values Returned by ASPI for Windows

Value Meaning

SS_COMP SCSI/ASPI request has completed without error

SS_INVALID_HA Invalid host adapter number

SS_INVALID_SRB The SCSI request block (SRB) has one or more parameters 
set incorrectly

Example

The following example retrieves host adapter hardware information from
adapter #0:

SRB_HAInquiry MySRB;

WORD ASPI_Status;

.

.

MySRB.SRB_Cmd = SC_HA_INQUIRY;
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MySRB.SRB_HaId = 0;

MySRB.SRB_Flags = 0;

MySRB.SRB_Hdr_Rsvd = 0;

ASPI_Status = SendASPICommand ( (LPSRB) &MySRB );

.

.

SendASPICommand—SC_GET_DEV_TYPE

WORD SendASPICommand(lpSRB)
LPSRB lpSRB;

The SendASPICommand function with command code SC_GET_DEV_TYPE
(defined in Table 11.15) is intended for use by Windows applications for iden-
tifying the targets they need to support. For example, a Windows tape backup
package can scan each target/LUN on each installed host adapter looking for
the device type corresponding to sequential access devices. This eliminates the
need for each Windows application to duplicate the effort of scanning the SCSI
bus for devices.

N O T E Rather than use this command, some Windows applications may favor scanning the
SCSI bus themselves in case a SCSI device was not present during ASPI initialization
but was rather powered up after ASPI initialization.

Parameter Description

lpSRB Points to the following SCSI request block:

typedef struct 

{

BYTE  SRB_Cmd;                       // ASPI command code = SC_GET_DEV_TYPE

BYTE  SRB_Status;                    // ASPI command status byte

BYTE  SRB_HaId;                      // ASPI host adapter number

BYTE  SRB_Flags;                     // ASPI request flags

DWORD SRB_Hdr_Rsvd;                  // Reserved, MUST = 0

BYTE  SRB_Target;                    // Target's SCSI ID

BYTE  SRB_Lun;                       // Target's LUN number

BYTE  SRB_DeviceType;                // Target's peripheral device type

} SRB_GDEVBlock;

Returns

The return value specifies the outcome of the function. One of the values
shown in Table 11.16 will be returned by ASPI for Windows.
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Table 11.15: SRB_GDEVBlock Structure Definition

Member Description R/W

SRB_Cmd This field must contain SC_GET_DEV_TYPE. W

SRB_Status On return, this field will be the same as the R
return status defined below.

SRB_HaId This field specifies which installed host adapter W
the request is intended for. Host adapter numbers
are always assigned by the SCSI manager layer 
beginning with zero.

SRB_Flags The SRB Flags field is currently reserved for this W
function and must be zeroed before passed to
the ASPI manager.

SRB_Hdr_Rsvd This DWORD field is currently reserved for this —
function and must be zeroed before passed to
the ASPI manager.

SRB_Target Target ID of device. W

SRB_Lun Logical unit number (LUN) of device. W

SRB_DeviceType The ASPI manager will fill this field with the peri- R
pheral device type. Refer to any SCSI specification
to learn more about the SCSI Inquiry command.

Table 11.16: Return Values for SendASPI Command SC_GET_DEV_TYPE

Value Meaning

SS_COMP SCSI/ASPI request has completed without error.

SS_INVALID_HA Invalid host adapter number.

SS_NO_DEVICE SCSI device not installed.

SS_INVALID_SRB The SCSI request block (SRB) has one or more parameters
set incorrectly.

Example

The following example retrieves the peripheral device type from host adapter
#0, target ID #4, and LUN #0.
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SRB_GDEVBlock MySRB;

WORD ASPI_Status;

.

.

MySRB.SRB_Cmd = SC_GET_DEV_TYPE;

MySRB.SRB_HaId = 0;

MySRB.SRB_Flags = 0;

MySRB.SRB_Hdr_Rsvd = 0;

MySRB.SRB_Target = 4;

MySRB.SRB_Lun = 0;

ASPI_Status = SendASPICommand ( (LPSRB) &MySRB );

.

/***************************************************/

/* If ASPI_Status == SS_COMP, MySRB.SRB_DeviceType */

/* will contain the peripheral device type.        */

/***************************************************/

.

.

SendASPICommand—SC_EXEC_SCSI_CMD

WORD SendASPICommand(lpSRB)
LPSRB lpSRB;

The SendASPICommand function with command code SC_EXEC_SCSI_CMD
(defined in Table 11.17) is used to execute a SCSI command, for example, send
a SCSI Test Unit Ready command to a tape drive, etc.

Returns

The return value specifies the outcome of the function. One of the values
shown in Table 11.18 will be returned by ASPI for Windows.

Table 11.17: ExecSCSICmd Structure Definition

Member Description R/W

SRB_Cmd This field must contain SC_EXEC_SCSI_CMD. W

SRB_Status On return, this field will be the same as the return status defined R
below.
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Member Description R/W

SRB_HaId This field specifies which installed host adapter the request is in- W
tended for. Host adapter numbers are always assigned by the 
SCSI manager layer beginning with zero.

SRB_Flags The SRB Flags field is defined as follows: W

Value Meaning

SRB_DIR_SCSI Direction determined by SCSI command. 
Length not checked.

SRB_DIR_IN Transfer from SCSI target to host. Length 
checked.

SRB_DIR_OUT Transfer from host to SCSI target. Length 
checked.

SRB_POSTING If this value is ORed in with one of the pre-
vious three values, posting will be enabled. 
Refer to the section on ASPI posting.

SRB_Hdr_Rsvd This DWORD field is currently reserved for this function and must —
be zeroed before passed to the ASPI manager.

SRB_Target Target ID of device. W

SRB_Lun Logical unit number (LUN) of device. W

SRB_BufLen This field indicates the number of bytes to be transferred. If the W
SCSI command to be executed does not transfer data (i.e., est  
Unit Ready, Rewind, etc.), this field must be set to zero.

SRB_SenseLen This field indicates the number of bytes allocated at the end of the W
SRB for sense data. A request sense is automatically generated if 
a check condition is presented at the end of a SCSI command.

SRB_BufPointer This field is a pointer to the data buffer. W

SRB_CDBLen This field establishes the length, in bytes, of the SCSI command W
descriptor block (CDB). This value will typically be 6 or 10.
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Member Description R/W

SRB_HaStat Upon completion of the SCSI command, the ASPI manager will 
set this field with the host adapter status as follows:

Value Meaning

HASTAT_OK Host adapter did not detect an error

HASTAT_SEL_TO Selection timeout

HASTAT_DO_DU Data overrun/underrun

HASTAT_BUS_FREE Unexpected bus free

HASTAT_PHASE_ERR Target bus phase sequence failure

SRB_TargStat Upon completion of the SCSI command, the ASPI manager will R
set this field with the target status as follows:

Value Meaning

STATUS_GOOD No target status

STATUS_CHKCOND Check status (sense data is in Sense Area)

STATUS_BUSY Specified target/LUN is busy

STATUS_RESCONF Reservation conflict

SRB_PostProc If posting is enabled, ASPI for Windows will post completion of W
an ASPI request to this function pointer. Refer to the section on 
ASPI Posting.

CDBByte[..] This field contains the CDB as defined by the target’s SCSI W
command set. The length of the SCSI CDB is specified in the
SRB_CDBLen field.

SenseArea[..] The SenseArea is filled with the sense data on a check con- R
dition. The maximum length of this field is specified in the 
SRB_SenseLen field. Note that the target can return fewer 
than the number of sense bytes requested.

N O T E You can easily create a new structure for nonstandard CDB lengths.
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Parameter Description

lpSRB Points to one of the following SCSI request blocks:

typedef struct

{                                      // Structure for 6-byte CDBs

BYTE  SRB_Cmd;                       // ASPI command code = SC_EXEC_SCSI_CMD

BYTE  SRB_Status;                    // ASPI command status byte

BYTE  SRB_HaId;                      // ASPI host adapter number

BYTE  SRB_Flags;                     // ASPI request flags

DWORD SRB_Hdr_Rsvd;                  // Reserved, MUST = 0

BYTE  SRB_Target;                    // Target’s SCSI ID

BYTE  SRB_Lun;                       // Target’s LUN number

DWORD SRB_BufLen;                    // Data Allocation LengthPG

BYTE  SRB_SenseLen;                  // Sense Allocation Length

BYTE  far *SRB_BufPointer;           // Data Buffer Pointer

DWORD SRB_Rsvd1;                     // Reserved, MUST = 0

BYTE  SRB_CDBLen;                    // CDB Length = 6

BYTE  SRB_HaStat;                    // Host Adapter Status

BYTE  SRB_TargStat;                  // Target Status

FARPROC SRB_PostProc;                // Post routine

BYTE  SRB_Rsvd2[34];                 // Reserved, MUST = 0

BYTE  CDBByte[6];                    // SCSI CDB

BYTE  SenseArea6[SENSE_LEN];         // Request Sense buffer

} SRB_ExecSCSICmd6;

typedef struct

{                                      // Structure for 10-byte CDBs

BYTE  SRB_Cmd;                         // ASPI command code = SC_EXEC_SCSI_CMD

BYTE  SRB_Status;                      // ASPI command status byte

BYTE  SRB_HaId;                        // ASPI host adapter number

BYTE  SRB_Flags;                       // ASPI request flags

DWORD SRB_Hdr_Rsvd;                    // Reserved, MUST = 0

BYTE  SRB_Target;                      // Target's SCSI ID

BYTE  SRB_Lun;                         // Target's LUN number

DWORD SRB_BufLen;                      // Data Allocation Length

BYTE  SRB_SenseLen;                    // Sense Allocation Length

BYTE  far *SRB_BufPointer;             // Data Buffer Pointer

DWORD SRB_Rsvd1;                       // Reserved, MUST = 0

BYTE  SRB_CDBLen;                      // CDB Length = 10

BYTE  SRB_HaStat;                      // Host Adapter Status

BYTE  SRB_TargStat;                    // Target Status

FARPROC SRB_PostProc;                  // Post routine
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BYTE  SRB_Rsvd2[34];                   // Reserved, MUST = 0

BYTE  CDBByte[10];                     // SCSI CDB

BYTE  SenseArea10[SENSE_LEN];          // Request Sense buffer

} SRB_ExecSCSICmd10;

Table 11.18: Return Values for SendASPI Command SC_EXEC_SCSI_CMD

Value Meaning

SS_PENDING SCSI request is in progress.

SS_COMP SCSI/ASPI request has completed without error.

SS_ABORTED SCSI command has been aborted.

SS_ERR SCSI command has completed with an error.

SS_INVALID_SRB SCSI request block (SRB) has one or more parameters set incorrectly.

SS_ASPI_IS_BUSY ASPI manager cannot handle the request at this time. This error will 
generally occur if the ASPI manager is already using up all of its 
resources to execute other requests. You should try resending the 
command later.

SS_BUFFER_TO_BIG ASPI manager cannot handle the given transfer size. Please refer to 
the “Miscellaneous” section for more information.

Example

The following example sends a SCSI Inquiry command to host adapter #0, 
target #0, and LUN #0:

SRB_ExecSCSICmd6 MySRB;

char InquiryBuffer[32];

FARPROC lpfnPostProcedure;

.

.

lpfnPostProcedure = MakeProcInstance (PostProcedure, hInstance);

.

.

MySRB.SRB_Cmd = SC_EXEC_SCSI_CMD;

MySRB.SRB_HaId = 0;

MySRB.SRB_Flags = SRB_DIR_SCSI | SRB_POSTING;

MySRB.SRB_Hdr_Rsvd = 0;

MySRB.SRB_Target = 0;

MySRB.SRB_Lun = 0;

MySRB.SRB_BufLen = 32;

MySRB.SRB_SenseLen = SENSE_LEN;

MySRB.SRB_BufPointer = InquiryBuffer;
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MySRB.SRB_CDBLen = 6;

MySRB.SRB_PostProc = lpfnPostProcedure;

MySRB.CDBByte[0] = SCSI_INQUIRY;

MySRB.CDBByte[1] = 0;

MySRB.CDBByte[2] = 0;

MySRB.CDBByte[3] = 0;

MySRB.CDBByte[4] = 32;

MySRB.CDBByte[5] = 0;

.

/**************************************************/

/* Make sure all other reserved fields are zeroed */

/* before passing the SRB to ASPI for Windows     */

/**************************************************/

.

SendASPICommand ( (LPSRB) &MySRB );

.

.

SendASPICommand—SC_ABORT_SRB

WORD SendASPICommand(lpSRB)
LPSRB lpSRB;

The SendASPICommand function with command code SC_ABORT_SRB
(defined in Table 11.19) is used to request that an SRB be aborted. It should
be issued on any I/O request that has not completed if the application wishes
to timeout on that request. Success of the Abort command is never ensured.

Table 11.19: SRB_Abort Structure Definition

Member Description R/W

SRB_Cmd This field must contain SC_ABORT_SRB. W

SRB_Status On return. R

SRB_HaId This field specifies which installed host adapter the request is in- W
tended for. Host adapter numbers are always assigned by the 
SCSI manager layer beginning with zero. 

SRB_Flags The SRB flags field is currently reserved for this function and must W
be zeroed before passed to the ASPI manager. 

SRB_Hdr_Rsvd This DWORD field is currently reserved for this function and must —
be zeroed before passed to the ASPI manager. 

SRB_ToAbort This field contains a pointer to the SRB that is to be aborted. The W
actual failure or success of the abort operation is indicated by the 
status eventually returned in this SRB. 
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Parameter Description

lpSRB Points to the following SCSI request block:

typedef struct 

{

BYTE  SRB_Cmd;                       // ASPI command code = SC_ABORT_SRB

BYTE  SRB_Status;                    // ASPI command status byte

BYTE  SRB_HaId;                      // ASPI host adapter number

BYTE  SRB_Flags;                     // ASPI request flags

DWORD SRB_Hdr_Rsvd;                  // Reserved, MUST = 0

LPSRB SRB_ToAbort;                   // Pointer to SRB to abort

} SRB_Abort;

Returns

The return value specifies the outcome of the function. One of the values
shown in Table 11.20 will be returned by ASPI for Windows.

Table 11.20: Return Values for SendASPICommand SC_ABORT_SRB

Value Meaning

SS_COMP SCSI/ASPI request has completed without error.

SS_INVALID_HA Invalid host adapter number.

SS_INVALID_SRB SCSI request block (SRB) has one or more parameters set  incorrectly.

Example

The following example shows how to abort a stuck SCSI I/O:

SRB_ExecSCSICmd6 StuckSRB;

SRB_Abort AbortSRB;

WORD ASPI_Status;

.

.

AbortSRB.SRB_Cmd = SC_ABORT_SRB;

AbortSRB.SRB_HaId = 0;

AbortSRB.SRB_Flags = 0;

AbortSRB.SRB_Hdr_Rsvd = 0;

AbortSRB.SRB_ToAbort = (LPSRB) &StuckSRB;

ASPI_Status = SendASPICommand ( (LPSRB) &AbortSRB );

.

.

while (StuckSRB.SRB_Status==SS_PENDING);

.

.



A Profile of ASPI Programming 235

/**************************************************/

/* This sample code has no error handling, time-  */

/* out code, nor does it free up the processor.   */

/* Your application should be more robust.        */

/**************************************************/

SendASPICommand—SC_RESET_DEV

WORD SendASPICommand(lpSRB)
LPSRB lpSRB;

The SendASPICommand function with command code SC_RESET_DEV
(defined in Table 11.21) is used to send a SCSI bus device reset to the speci-
fied target.

Table 11.21: SRB_BusDeviceReset Structure Definition

Member Description R/W

SRB_Cmd This field must contain SC_RESET_DEV. W

SRB_Status On return, this field will be the same as the return status defined R
below.

SRB_HaId This field specifies which installed host adapter the request is in- W
tended for. Host adapter numbers are always assigned by the 
SCSI manager layer beginning with zero.

SRB_Flags The SRB Flags field is currently reserved for this function and must W
be zeroed before passed to the ASPI manager.

SRB_Hdr_Rsvd This DWORD field is currently reserved for this function and must —
be zeroed before passed to the ASPI manager.

SRB_Target Target ID of device. W

SRB_Lun Logical unit number (LUN) of device. This field is ignored by ASPI W
for Windows since SCSI bus device resets are done on a per tar-
get basis only.

SRB_HaStat Upon completion of the SCSI command, the ASPI manager will R
set this field with the host adapter status as follows:
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Member Description R/W

Value Meaning

HASTAT_OK Host adapter did not detect an error

HASTAT_SEL_TO Selection timeout

HASTAT_DO_DU Data overrun/underrun

HASTAT_BUS_FREE Unexpected bus free

HASTAT_PHASE_ERR Target bus phase sequence failure

SRB_TargStat Upon completion of the SCSI command, the ASPI manager will R
set this field with the target status as follows:

Value Meaning

STATUS_GOOD No target status

STATUS_CHKCOND Check status (sense data is in SenseArea)

STATUS_BUSY Specified target/LUN is busy

STATUS_RESCONF Reservation conflict

SRB_PostProc If posting is enabled, ASPI for Windows will post completion of W
an ASPI request to this function pointer. Refer to the section on 
ASPI Posting.

Parameter Description
lpSRB Points to the following SCSI request block:

typedef struct 

{

BYTESRB_Cmd;                         // ASPI command code = SC_RESET_DEV

BYTE  SRB_Status;                    // ASPI command status byte

BYTE  SRB_HaId;                      // ASPI host adapter number

BYTE  SRB_Flags;                     // ASPI request flags

DWORD SRB_Hdr_Rsvd;                  // Reserved, MUST = 0

BYTE  SRB_Target;                    // Target's SCSI ID

BYTE  SRB_Lun;                       // Target's LUN number

BYTE  SRB_ResetRsvd1[14];            // Reserved, MUST = 0

BYTE  SRB_HaStat;                    // Host Adapter Status

BYTE  SRB_TargStat;                  // Target Status

FARPROC SRB_PostProc;                // Post routine

BYTE  SRB_ResetRsvd2[34];            // Reserved, MUST = 0

} SRB_BusDeviceReset
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Returns

The return value specifies the outcome of the function. One of the values
shown in Table 11.22 will be returned by ASPI for Windows. Refer to each 
ASPI command code definition for information on which ASPI commands
return which errors.

Table 11.22: Return Values for SendASPICommand SC_RESET_DEV

Value Meaning

SS_COMP SCSI/ASPI request has completed without error.

SS_INVALID_HA Invalid host adapter number.

SS_INVALID_SRB SCSI request block (SRB) has one or more parameters set incorrectly.

SS_ASPI_IS_BUSY ASPI manager cannot handle the request at this time. This error will gen-
erally occur if the ASPI manager is already using up all of his resources 
to execute other requests. You should try resending the command later.

Example

The following example issues a SCSI bus device reset to host adapter #0, 
target #5:

SRB_BusDeviceReset MySRB;

WORD ASPI_Status;

.

.

MySRB.SRB_Cmd = SC_RESET_DEV;

MySRB.SRB_HaId = 0;

MySRB.SRB_Flags = 0;

MySRB.SRB_Hdr_Rsvd = 0;

MySRB.SRB_Target = 5;

MySRB.SRB_Lun = 0;

ASPI_Status = SendASPICommand ( (LPSRB) &MySRB );

.

/**************************************************/

/* Make sure all other reserved fields are zeroed */

/* before passing the SRB to ASPI for Windows     */

/**************************************************/

.

while (MySRB.SRB_Status==SS_PENDING);

.

.
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/**************************************************/

/* This sample code has no error handling, time-  */

/* out code, nor does it free up the processor.   */

/* Your application should be more robust.        */

/**************************************************/

ASPI Polling
Once you send an ASPI for Windows SCSI request, you have two ways of being
notified that the SCSI request has completed. The first and simplest method is
called polling. After the command is sent, and ASPI for Windows returns control
back to your program, you can poll the status byte waiting for the command to
complete. For example, the following code segment sends a SCSI Inquiry
command to target #2.

SRB_ExecSCSICmd6 MySRB;

char InquiryBuffer[32];

.

.

/**************************************************/

/* Code is entered with 'MySRB' zeroed.           */

/**************************************************/

MySRB.SRB_Cmd = SC_EXEC_SCSI_CMD;

MySRB.SRB_Flags = SRB_DIR_SCSI;

MySRB.SRB_Target = 2;

MySRB.SRB_BufLen = 32;

MySRB.SRB_SenseLen = SENSE_LEN;

MySRB.SRB_BufPointer = InquiryBuffer;

MySRB.SRB_CDBLen = 6;

MySRB.CDBByte[0] = SCSI_INQUIRY;

MySRB.CDBByte[4] = 32;

.

.

SendASPICommand ( (LPSRB) &MySRB );                // Send Inquiry command

while ( MySRB.SRB_Status == SS_PENDING );          // Wait till it's finished

/**************************************************/

/* At this point, the SCSI command has completed  */

/* with or without an error.                      */

/**************************************************/

if ( MySRB.SRB_Status == SS_COMP )

;                                         // Command completed without error

else

;                                         // Command completed with error
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Since Windows is currently a nonpreemptive multitasking operating system, you
should use polling with caution. The example above is not very good about
freeing up the processor, nor does it have any timeout handler. Later in this
specification, you will find sample code that does free up the processor while
using polling.

ASPI Posting
Most applications will use posting, rather than polling, to be notified that 
a SCSI request has completed. When posting is enabled, ASPI for Windows 
will post completion by calling your callback function. For example, the fol-
lowing code segment will send a SCSI Inquiry command to target #2 during
the WM_CREATE message.

long FAR PASCAL WndProc (HWND, WORD, WORD, LONG);

void FAR PASCAL ASPIPostProc ( LPSRB );

HWND PostHWND;

HANDLE hInstance;

.

.

.

//**********************************************************************

// ASPIPostProc - ASPI for Windows will post completion of a SCSI

//                request to this function. Note that this is most

//                likely during interrupt time so you can only use

//                a few Windows functions like 'PostMessage.' This

//                example post procedure is very simple. It will 

//                wake up your application by posting a WM_ASPIPOST

//                message to your window handle.

//**********************************************************************

void FAR PASCAL ASPIPostProc ( LPSRB DoneSRB )

{

PostMessage (PostHWND, WM_ASPIPOST,

(WORD) ((SRB_ExecSCSICmd6 far *)DoneSRB)->SRB_Status,

(DWORD) DoneSRB );

return;

}

//***********************************************************************

// WndProc - Window message handler

//***********************************************************************

long FAR PASCAL WndProc ( HWND hwnd, WORD message, WORD wParam, LONG lParam)

{

static SRB_ExecSCSICmd6 MySRB;

static char InquiryBuffer[32];

switch (message)
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{

case WM_CREATE:

/**************************************************/

/* Code is entered with 'MySRB' zeroed.           */

/**************************************************/

lpfnASPIPostProc = MakeProcInstance (ASPIPostProc, hInstance);

PostHWND = hwnd;

MySRB.SRB_Cmd = SC_EXEC_SCSI_CMD;

MySRB.SRB_Flags = SRB_DIR_SCSI|SRB_POSTING;

MySRB.SRB_Target = 2;

MySRB.SRB_BufLen = 32;

MySRB.SRB_SenseLen = SENSE_LEN;

MySRB.SRB_BufPointer = InquiryBuffer;

MySRB.SRB_CDBLen = 6;

ExecSRB.SRB_PostProc = lpfnASPIPostProc;

MySRB.CDBByte[0] = SCSI_INQUIRY;

MySRB.CDBByte[4] = 32;

.

.

if ( SendASPICommand ( (LPSRB) &MySRB ) != SS_PENDING )

{

;   // Check return status for cause of failure!

; // Posting will NOT occur due to failure

}

else

{

; // ASPI for Windows will post completion to

; // 'lpfnASPIPostProc' when command has completed.

}

return 0;

case WM_ASPIPOST:

// Return status is in 'wParam'

// SRB Pointer is in 'lParam'

// We might want to send another ASPI request here.

// Look at 'ASPIPostProc' for more information.

return 0;

case WM_DESTROY:

PostQuitMessage(0);

return 0;

}

return DefWindowProc ( hwnd, message, wParam, lParam );

}

.

.

.
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When the post routine gets called, the sample post handler will fill the wParam
field and will contain the status of ASPI command (SRB_Status) while the
lParam field will contain a far pointer to the SRB that has completed.

Miscellaneous

• Your ASPI for Windows program should never exit with pending SCSI I/Os.
Doing so could lead to system instability. Send an ASPI Abort command if
you need to.

• Your SRBs and data buffers must be in page-locked memory. Most SCSI
host adapters are bus masters. This means that the data buffer must not
move while the transfer is taking place. We recommend that you allocate
your buffers using GlobalAlloc and then locking it first with GlobalLock
and then with GlobalPageLock. This technique has been used to over-
come some of the quirks that Windows 3.x seems to have with locking
down buffers.

• It is a minimal requirement that all ASPI for Windows managers support
transfers of 64K (64 kilobytes) or less. It is not possible for all SCSI host
adapters to transfer data larger than this size. If the ASPI manager is
unable to support your requested transfer size, you will be returned the
SS_BUFFER_TO_BIG error from the SendASPICommand routine. No
posting will occur. If this occurs, you should break the transfer down into
64K transfers or less. For maximum compatibility, it is recommended that
you do not request transfer sizes larger than 64K if you do not need to.

• Do not forget to support the SS_ASPI_IS_BUSY return status when sending
a SCSI command. Under extreme loads, some ASPI for Windows managers
may not have enough resources to service each request.

• If you send an ASPI request with posting enabled, and the return value is
not equal to SS_PENDING (in other words, the request is not in progress),
then ASPI for Windows will not post completion to your specified window
handle. (Refer to the specific return value for more information as to why
the request is not in progress.)

• ASPI for Windows is fully multitasking. You can send a request to ASPI while
another request is executing. Make sure you use a separate SRB for each
ASPI request. It is also recommended that you only send one SRB at a time
per target.

• If using posting, your post routine will most likely be called during inter-
rupt time. Since most Windows routines are non-reentrant, you should call
Windows routines with caution. One function you can call is PostMessage,
which can be called during interrupt time.

• Make sure that you zero out all reserved fields before passing the SRB to
ASPI for Windows.
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Error Codes and Messages

All ASPI for Windows calls can fail. This specification has already defined which
error codes can be returned by each ASPI routine. Table 11.23 summarizes all
of the error codes returned by ASPI routines.

Table 11.23: ASPI for Windows Error Codes

Error Code Value Meaning

0x0000 SS_PENDING SCSI request is in progress.

0x0001 SS_COMP SCSI/ASPI request has completed without error.

0x0002 SS_ABORTED SCSI command has been aborted.

0x0004 SS_ERR SCSI command has completed with an error.

0x0080 SS_INVALID_CMD Invalid ASPI command code.

0x0081 SS_INVALID_HA Invalid host adapter number.

0x0082 SS_NO_DEVICE SCSI device not installed.

0x00E0 SS_INVALID_SRB SCSI request block (SRB) has one or more parameters
set incorrectly.

0x00E1 SS_OLD_MANAGER One or more ASPI for DOS  managers are loaded 
that do not support Windows.

0x00E2 SS_ILLEGAL_MODE This ASPI manager does not support this mode of 
Windows. You will typically see this error code 
when running Windows in real mode.

0x00E3 SS_NO_ASPI No ASPI managers are loaded. This is typically 
caused by a DOS ASPI manager not being resident
in memory.

0x00E4 SS_FAILED_INIT For some reason, other than SS_OLD_MANAGER, 
SS_ILLEGAL_MODE, or SS_NO_ASPI, ASPI for 
Windows could not properly initialize itself. This 
may be caused by a lack of system resources.

0x00E5 SS_ASPI_IS_BUSY ASPI manager cannot handle the request at this 
time. This error will generally occur if the ASPI man-
ager is already using up all of his resources to exe-
cute other requests. You should try resending the 
command later.

0x00E6 SS_BUFFER_TO_BIG ASPI manager cannot handle this larger than 64K 
transfer. You’ll need to break up the SCSI I/O into 
smaller 64K transfers.
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IV. ASPI for Win32 Specification

ASPI for Win32 is rather similar to ASPI for Windows, but has a few issues to
keep in mind:

• If you are using explicit dynamic linking, remember that the ASPI for Win32
DLL is named WNASPI32.DLL and not WINASPI.DLL. Make sure to call
LoadLibrary appropriately. Similarly, make sure to use WNASPI32.LIB
instead of WINASPI.LIB when using implicit dynamic linking.

• ASPI for Win32 is fully reentrant and permits overlapped, asynchronous
I/O. ASPI modules can send additional ASPI requests while others are
pending completion. Be sure to use separate SRBs for each ASPI request.

• SRB structure definitions are different in ASPI for Win32 from those in ASPI
for Win16; however, structure names are consistent with those used in ASPI
for Win16. If you would like to use one source base for both 16- and 32-bit
applications, make sure that you conditionally compile with the appropriate
include files for each programming model. Include files are available in
the ASPI developer’s kit.

• For requests requiring data transfers, the direction bits in the SRB_Flags
field must be set correctly. Direction bits are no longer optional for data
transfers. This means that SRB_DIR_SCSI is no longer a valid setting. For
requests not requiring data transfers, the direction bits are ignored.

• Be sure that buffers are aligned according to the buffer alignment mask
returned by the SC_HA_INQUIRY command. An alignment of at least a
double word is recommended.

• ASPI SCSI Request Blocks (SRBs) and data buffers do not need to be in
page-locked memory. The ASPI manager takes care of locking buffers and
SRBs. This is different from previous versions of ASPI for Win16 which
required the application to page lock both the SRB and the data buffer.

• If an error SS_BUFFER_TO_BIG is returned by the SendASPI32Command
routine, you should break the transfer down into multiple 64K-byte trans-
fers or less. Another alternative is to use the GetASPI32Buffer/
FreeASPI32Buffer calls to allocate large transfer buffers. For maximum
compatibility, however, we strongly recommend that you do not request
transfer sizes larger than 64K bytes.

• If you send an ASPI request with posting (callbacks) enabled, the post
procedure will always be called. This is different from previous versions 
of ASPI for DOS and ASPI for Win16 which only performed the callback
if SS_PENDING was returned from SendASPI32Command.



244 Chapter 11

• The CDB area has been fixed in length at 16. Therefore, the sense data
area no longer shifts location depending on command length as in ASPI
for Win16. If you are developing an application targeted only at Win32, you
no longer need to account for the “floating” sense buffer.

• When scanning for devices, the SendASPI32Command may also return the
status SS_NO_DEVICE in the SRB_Status field. Check for this exception in
addition to the host adapter status HASTAT_SEL_TO. 

Programming Conventions

This specification contains function prototypes and structure definitions with
the following data types (Table 11.24):

Table 11.24: Data Types for ASPI for Win32

Type Size (Bytes) Description

VOID N/A Indicates lack of a return value or lack of function 
arguments.

BYTE 1 Unsigned 8-bit value.

WORD 2 Unsigned 16-bit value.

DWORD 4 Unsigned 32-bit value.

LPVOID 4 Generic pointer. Used in SRB fields which require 
either a pointer to a function or a Win32 handle 
(for example, SRB_PostProc).

LPBYTE 4 Pointer to an array of BYTEs. Mainly used as a 
buffer pointer.

LPSRB 4 Generic pointer to one of the SRB_* structures 
defined below.

Unless otherwise noted, all multibyte fields follow Intel’s byte order of low
byte first and end with the high byte. For example, if there is a 2-byte offset
field, the first byte is the low byte of the offset while the second byte is the
high byte of the offset.

All structure fields marked reserved must be set to zero, and structures must
be packed! Packed means that byte alignment is used on all structure definitions.
Microsoft compilers allow byte packing to be set through the use of “#pragma
pack(1)” while Borland compilers allow packing to be set with “#pragma
option -a1.” See your compiler documentation for more information. Failure
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to pack structures and zero reserved fields can cause system instability, includ-
ing crashes.

All ASPI for Win32 functions are exported from WNASPI32.DLL using the
‘C’ calling convention (specifically, __cdecl as implemented by Microsoft’s
compilers). With the ‘C’ calling convention the caller pushes the last function
argument on the stack first (the first argument has the lowest memory address),
and the caller is responsible for popping arguments from the stack.

Calling ASPI Functions

Applications which utilize ASPI for Win32 are known as ASPI modules. ASPI
modules interact with ASPI through WNASPI32.DLL which is a dynamic link
library with five entry points (Table 11.25):

Table 11.25: ASPI for Win32 functions

Entry Point Description

GetASPI32SupportInfo Initializes ASPI and returns basic configuration information.

SendASPI32Command Submits SCSI Request Blocks (SRBs) for execution by ASPI.

GetASPI32Buffer Allocates buffers which meet Win95/WinNT large transfer 
requirements.

FreeASPI32Buffer Releases buffers previously allocated with GetASPI32Buffer.

TranslateASPI32Address Translates ASPI HA/ID/LUN address triples to/from Win95 
DEVNODEs.

Note that three of these functions — GetASPI32Buffer, FreeASPI32Buffer,
and TranslateASPI32Address — did not become a part of ASPI for Win32
until version 4.01 of EZ-SCSI.

In order to access these five functions, they must be resident in memory.
Dynamic linking is the process by which Windows 95 and Windows NT loads
dynamic link libraries (DLLs) into memory and then resolves application ref-
erences to functions within those DLLs. There are two ways in which this
load/ resolve sequence is handled: explicitly or implicitly.

Explicit Dynamic Linking

Explicit dynamic linking occurs when applications or other DLLs explicitly load
a DLL using LoadLibrary and then manually resolve references to individual
DLL functions through calls to GetProcAddress. This is the preferred method
for loading and calling ASPI for Win32. Explicit dynamic linking allows complete
control over when ASPI is loaded and how load errors are handled. It also is the
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only way to detect if the three new ASPI functions are available for use in an
application.

The following block of code is all that is required to load ASPI:

HINSTANCE hinstWNASPI32;

hinstWNASPI32 = LoadLibrary( "WNASPI32" );

if( !hinstWNASPI32 )

{

// Handle ASPI load error here. Usually this involves the display of an

// informative message based on the results of a call to GetLastError().

}

Once a valid instance handle for ASPI is obtained, GetProcAddress is used to
obtain addresses for each of the ASPI for Win32 entry points:

DWORD (*pfnGetASPI32SupportInfo)( void );

DWORD (*pfnSendASPI32Command)( LPSRB );

BOOL (*pfnGetASPI32Buffer)( PASPI32BUFF );

BOOL (*pfnFreeASPI32Buffer)( PASPI32BUFF );

BOOL (*pfnTranslateASPI32Address)( PDWORD, PDWORD );

pfnGetASPI32SupportInfo = GetProcAddress( hinstWNASPI32, "GetASPI32SupportInfo"

);

pfnSendASPI32Command = GetProcAddress( hinstWNASPI32, "SendASPI32Command" );

pfnGetASPI32Buffer = GetProcAddress( hinstWNASPI32, "GetASPI32Buffer" );

pfnFreeASPI32Buffer = GetProcAddress( hinstWNASPI32, "FreeASPI32Buffer" );

pfnTranslateASPI32Address = GetProcAddress(

hinstWNASPI32,"TranslateASPI32Address" );

At this point there should be a valid address for each of the five functions. If
you have an old version of ASPI then the last three function addresses will be
NULL. This case should be handled by disabling all use of new features in your
ASPI module. It is also good practice to check pfnGetASPI32SupportInfo and
pfnSendASPI32Command for NULL as well. These variables will be NULL if
there is an error accessing the DLL. If either of these two functions have
NULL addresses your application should cease its use of ASPI and unload
WNASPI32.DLL with a call to FreeLibrary.

Using the addresses returned from GetProcAddress is very simple. Just
use the variable name wherever you would normally use the function name.
For example,

DWORD dwASPIStatus = pfnGetASPI32SupportInfo();

will call the GetASPI32SupportInfo and place the result in dwASPIStatus. Of
course, if one of these function pointers is NULL and you make a call to it, your
application will crash.
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Implicit Dynamic Linking

Implicit dynamic linking occurs when a dependent DLL is loaded as a result of
loading another module. This dependency can be established either by listing
exported functions from the DLL in the IMPORTS section of a “.DEF” file
linked with the application, or by including the WNASPI32.LIB file (from the
ASPI SDK) on the linker command line of the calling application.

Implicit dynamic linking is not recommended for three reasons:

• You cannot control when ASPI is loaded. Like anything else, ASPI consumes
system resources. When you use implicit dynamic linking those resources
are allocated as soon as the application starts, and they remain allocated
until the application shuts down. With explicit dynamic linking the appli-
cation controls when (and if) ASPI is loaded.

• You have no control over how load errors are reported to users. If ASPI is
not found during an implicit load a fairly ugly error message (sometimes
two) is displayed by the operating system. If you use explicit loading in con-
junction with a call to SetErrorMode( SEM_NOOPENFILEERRORBOX )
then your application can fully handle any load errors on its own.

• Your application cannot recover if it relies on new ASPI features and it is run
with an older version of ASPI. If your application relies on GetASPI32Buffer,
FreeASPI32Buffer, or TranslateASPI32Address, and then that function is
not found in the loaded version of WNASPI32.DLL, then the load fails. By
using explicit dynamic linking the application can alter its behavior so
that the functions are not used. For example, an application which “relies”
on TranslateASPI32Address could simply disable Plug and Play support if
the function is not found in the DLL.

GetASPI32SupportInfo

The GetASPI32SupportInfo function returns the number of host adapters 
installed and ensures that the ASPI manager is initialized properly. This func-
tion must be called once at initialization time, before SendASPI32Command
is accessed.

DWORD GetASPI32SupportInfo( VOID );

Parameters

None.
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Return Values

The DWORD return value is split into three pieces. The high order WORD is
reserved and shall be set to 0. The two low order bytes represent a status code
(bits 15-8) and a host adapter count (bits 7-0).

If the call to GetASPI32SupportInfo is successful, then the status byte is
set to either SS_COMP or SS_NO_ADAPTERS. If set to SS_COMP then the
host adapter status will be non-zero. An error code of SS_NO_ADAPTERS
indicates that ASPI initialized successfully, but that it could not find any SCSI
host adapters to manage.

If the function fails the status byte will be set to one of SS_ILLEGAL_MODE,
SS_NO_ASPI, SS_MISMATCHED_COMPONENTS,
SS_INSUFFICIENT_RESOURCES, SS_FAILED_INIT. See the table of ASPI
errors later in this chapter for more information on each of the errors.

Remarks

The number of host adapters returned represents the logical bus count, not
the true physical adapter count. For host adapters with a single bus, the host
adapter count and logical bus count are identical.

Example

This example returns the current status of ASPI for Win32.

BYTE byHaCount;

BYTE byASPIStatus;

DWORD dwSupportInfo;

dwSupportInfo = GetASPI32SupportInfo();

byASPIStatus = HIBYTE(LOWORD(dwSupportInfo));

byHaCount = LOBYTE(LOWORD(dwSupportInfo));

if( byASPIStatus != SS_COMP && byASPIStatus != SS_NO_ADAPTERS )

{

// Handle ASPI error here. Usually this involves the display

// of a dialog box with an informative message.

}

SendASPI32Command

The SendASPI32Command function handles all SCSI I/O requests. Each
SCSI I/O request is handled through a SCSI Request Block (SRB) which
defines the exact ASPI operation to be performed.

DWORD SendASPI32Command( LPSRB psrb );
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Parameters

psrb:

All SRBs have a standard header, and the header contains a command code
which defines the exact type of SCSI I/O being requested.

typedef struct

{

BYTE SRB_Cmd; // ASPI command code

BYTE SRB_Status; // ASPI command status byte

BYTE SRB_HaId; // ASPI host adapter number

BYTE SRB_Flags; // ASPI request flags

DWORD SRB_Hdr_Rsvd; // Reserved, MUST = 0

}

SRB_Header;

The SRB_Cmd field contains the command code for the desired SCSI I/O
operation. This field can be set to one of the values from Table 11.26.

Table 11.26: ASPI Commands

Symbol Value Description

SC_HA_INQUIRY 0x00 Queries ASPI for information on specific host adapters.

SC_GET_DEV_TYPE 0x01 Requests the SCSI device type for a specific SCSI target.

SC_EXEC_SCSI_CMD 0x02 Sends a SCSI command (arbitrary CDB) to a SCSI target.

SC_ABORT_SRB 0x03 Requests that ASPI cancel a previously submitted request.

SC_RESET_DEV 0x04 Sends a BUS DEVICE RESET message to a SCSI target.

SC_GET_DISK_INFO 0x06 Returns BIOS information for a SCSI target  (Win95 only).

SC_RESCAN_SCSI_BUS 0x07 Requests a rescan of a host adapter’s SCSI bus.

SC_GETSET_TIMEOUTS 0x08 Sets SRB timeouts for specific SCSI targets.

The use of the remaining header fields varies according to the command type.
Each of the commands along with their associated SRBs is described in detail
in the following sections.

Return Values

The above ASPI commands may be broken into two categories: synchronous
and asynchronous. All of the SRBs are synchronous except for
SC_EXEC_SCSI_CMD and SC_RESET_DEV, which are asynchronous.
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Calls to SendASPI32Command with synchronous SRBs will not return until
execution of that SRB is complete. Upon return the SRB_Status field will be set
to the same value which is returned from SendASPI32Command.

Calls to SendASPI32Command with asynchronous SRBs may return control
to the caller before the submitted SRB has completed execution. In this case
the return value from this function is SS_PENDING, and the caller will have
to use polling, posting, or event notification to wait for SRB completion. Once
completed, the SRB_Status field contains the true completion status. Remember
that while waiting for SRB completion, it is always safe to submit additional SRBs
to ASPI for execution.

See the “Waiting for Completion” and “ASPI for Win32 Errors” sections
for more information on synchronous/asynchronous SRBs and the various
error codes which can be returned either from this function or within an
SRB_Status field.

SC_HA_INQUIRY

The SendASPI32Command function with command code SC_HA_INQUIRY
is used to get information on the installed host adapter hardware, including
the number of host adapters installed.

typedef struct

{

BYTE SRB_Cmd; // ASPI command code = SC_HA_INQUIRY

BYTE SRB_Status; // ASPI command status byte

BYTE SRB_HaId; // ASPI host adapter number

BYTE SRB_Flags; // Reserved, MUST = 0

DWORD SRB_Hdr_Rsvd; // Reserved, MUST = 0

BYTE HA_Count; // Number of host adapters present

BYTE HA_SCSI_ID; // SCSI ID of host adapter

BYTE HA_ManagerId[16]; // String describing the manager

BYTE HA_Identifier[16]; // String describing the host adapter

BYTE HA_Unique[16]; // Host Adapter Unique parameters

WORD HA_Rsvd1; // Reserved, MUST = 0

}

SRB_HAInquiry, *PSRB_HAInquiry;

SRB Fields

SRB_Cmd (Input) This field must contain SC_HA_INQUIRY (0x00).
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SRB_Status (Output) SC_HA_INQUIRY is a synchronous SRB. On return, this
field is the same as the SendASPI32Command return value and is set to either
SS_COMP or SS_INVALID_HA.

SRB_HaId (Input) This field specifies which installed host adapter the request
is intended for. Host adapter numbers are always assigned by the ASPI manager,
beginning with zero. To determine the total number of host adapters in the
system set this field to 0 and then check the HA_Count value on return.
GetASPI32SupportInfo can also be used.

HA_Count (Output) The number of host adapters detected by ASPI. For
example, a return value of 2 indicates that host adapters #0 and #1 are valid.
The number of host adapters returned represents the logical bus count instead
of the true physical adapter count. For host adapters that support single bus
only, the host adapter count and logical bus count are identical. For host
adapters that support multiple buses, the host adapter count represents the
total logical bus count.

HA_SCSI_ID (Output) The SCSI ID of the host adapter on the SCSI bus. SCSI
adapters usually use ID 7 as their SCSI ID.

HA_ManagerId (Output) The ASCII string “ASPI for Win32.” The string is
padded with spaces to the full width of the buffer, and it is not null terminated.

HA_Identifier (Output) An ASCII string describing the host adapter. The
string is padded with spaces to the full width of the buffer, and it is not null
terminated.

HA_Unique (Output) Host adapter unique parameters as defined in 
Table 11.27.

Table 11.27: Host Adapter Unique Parameters

Size Offset Description

WORD 0 Buffer alignment mask. The host adapter requires data buffer align-
ment specified by this 16-bit value. A value of 0x0000 indicates no 
boundary requirements (e.g., byte alignment), 0x0001 indicates word
alignment, 0x0003 indicates double-word, 0x0007 indicates 8-byte
alignment, etc. The 16-bit value allows data buffer alignments of up 
to 65536-byte boundaries. Alignment of buffers can be tested by 
logical ANDing (‘&’ in ‘C’) this mask with the buffer address. If the 
result is 0 the buffer is properly aligned.
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Size Offset Description

BYTE 2 Residual byte count. Set to 0x01 if residual byte counting is supported,
0x00 if not. See “Remarks” below for more information.

BYTE 3 Maximum SCSI targets. Indicates the maximum number of targets 
(SCSI IDs) the adapter supports. If this value is not set to 8 or 16, 
then it should be assumed by the application that the maximum target
count is 8.

DWORD 4 Maximum transfer length. DWORD count indicating the maximum 
transfer size the host adapter supports. If this number is less than 64KB
then the application should assume a maximum transfer count of 64KB.

Remarks

Residual byte length is the number of bytes not transferred to, or received from,
the target SCSI device. For example, if the ASPI buffer length for a SCSI
INQUIRY command is set for 100 bytes, but the target only returns 36 bytes;
the residual length is 64 bytes. If the ASPI buffer length for a SCSI WRITE
command is set for 514 bytes but the target only takes 512 bytes, the residual
length is 2 bytes. ASPI modules can determine if the ASPI manager supports
residual byte length by checking byte 1 of the HA_Unique field. See SC_EXEC_
SCSI_CMD for more information on enabling residual byte counting.

Example

This example sends an SC_HA_INQUIRY to host adapter #1, and, if successful,
records the maximum transfer length supported by the host adapter.

DWORD dwMaxTransferBytes;

SRB_HAInquiry srbHAInquiry;

memset( &srbHAInquiry, 0, sizeof(SRB_HAInquiry) );

srbHAInquiry.SRB_Cmd = SC_HA_INQUIRY;

srbHAInquiry.SRB_HaId = 1;

SendASPI32Command( (LPSRB)&srbHAInquiry );

if( srbHAInquiry.SRB_Status != SS_COMP )

{

// Error in HAInquiry. Most likely SS_INVALID_HA.

Return FALSE;

}

dwMaxTransferBytes = *(DWORD *)(srbHAInquiry.HA_Unique + 4);
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SC_GET_DEV_TYPE

The SendASPI32Command function with command code SC_GET_DEV_TYPE
enables you to identify the devices available on the SCSI bus. A Win32 tape
backup package, for example, can scan each target/LUN on each installed host
adapter looking for a device type corresponding to sequential access devices.
This eliminates the need for each Win32 application to duplicate the effort of
scanning the SCSI bus for devices.

typedef struct

{

BYTE SRB_Cmd; // ASPI command code = SC_GET_DEV_TYPE

BYTE SRB_Status; // ASPI command status byte

BYTE SRB_HaId; // ASPI host adapter number

BYTE SRB_Flags; // Reserved, MUST = 0

DWORD SRB_Hdr_Rsvd; // Reserved, MUST = 0

BYTE SRB_Target; // Target's SCSI ID

BYTE SRB_Lun; // Target's LUN number

BYTE SRB_DeviceType; // Target's peripheral device type

BYTE SRB_Rsvd1; // Reserved, MUST = 0

}

SRB_GDEVBlock, *PSRB_GDEVBlock;

SRB Fields

SRB_Cmd (Input) This field must contain SC_GET_DEV_TYPE (0x01).

SRB_Status (Output) SC_GET_DEV_TYPE is a synchronous SRB. On return,
this field is the same as the SendASPI32Command return value and is set to
SS_COMP, SS_INVALID_HA, or SS_NO_DEVICE.

SRB_HaId (Input) This field specifies which installed host adapter the request
is intended for.

SRB_Target (Input) SCSI ID of target device.

SRB_Lun (Input) Logical Unit Number (LUN) of target device.

SRB_DeviceType (Output) The peripheral device type. The value is one of the
codes defined by the SCSI specification (see Table 11.28).
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Table 11.28: Peripheral Device Types

Symbol Value Description

DTYPE_DASD 0x00 Direct-access device (e.g. magnetic disk).

DTYPE_SEQD 0x01 Sequential-access device (e.g. magnetic tape).

DTYPE_PRNT 0x02 Printer device.

DTYPE_PROC 0x03 Processor device.

DTYPE_WORM 0x04 Write-once device (e.g. some optical disks).

DTYPE_CDROM 0x05 CD-ROM device.

DTYPE_SCAN 0x06 Scanner device.

DTYPE_OPTI 0x07 Optical memory device (e.g. some optical disks).

DTYPE_JUKE 0x08 Medium changer device (e.g. jukeboxes).

DTYPE_COMM 0x09 Communication device.

N/A 0x0A-0x0B Defined by ASC IT8 (Graphic arts pre-press devices).

N/A 0x0C-0x1E Reserved.

DTYPE_UNKNOWN 0x1F Unknown or no device type.

Example

This example scans the system for all CD-ROM drives (all targets must be at
LUN #0). Please note that MAX_HA_ID and MAX_TARGET_ID should be
replaced with a host adapter count returned by GetASPI32SupportInfo and a
target count retrieved from a SC_HA_INQUIRY SRB performed within the host
adapter loop.

BYTE byHaId;

BYTE byTarget;

SRB_GDEVBlock srbGDEVBlock;

for( byHaId = 0; byHaId < MAX_HA_ID; byHaId++ )

{

for( byTarget = 0; byTarget < MAX_TARGET_ID; byTarget++ )

{

memset( &srbGDEVBlock, 0, sizeof(SRB_GDEVBlock) );

srbGDEVBlock.SRB_Cmd = SC_GET_DEV_TYPE;

srbGDEVBlock.SRB_HaId = byHaId;

srbGDEVBlock.SRB_Target = byTarget;

SendASPI32Command( (LPSRB)&srbGDEVBlock );

if( srbGDEVBlock.SRB_Status != SS_COMP ) continue;

if( srbGDEVBlock.SRB_DeviceType == DTYPE_CDROM )
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{

// A CD-ROM exists at HA/ID/LUN = byHaId/byTarget/0.

// Do whatever you want with it from here!

}

}

}

SC_EXEC_SCSI_CMD

The SendASPI32Command function with command code SC_EXEC_
SCSI_CMD is used to execute a SCSI I/O command. Once an ASPI 
client has initialized, virtually all I/O is performed with this command.

typedef struct

{

BYTE SRB_Cmd; // ASPI command code = SC_EXEC_SCSI_CMD

BYTE SRB_Status; // ASPI command status byte

BYTE SRB_HaId; // ASPI host adapter number

BYTE SRB_Flags; // ASPI request flags

DWORD SRB_Hdr_Rsvd; // Reserved, MUST = 0

BYTE SRB_Target; // Target's SCSI ID

BYTE SRB_Lun; // Target's LUN number

WORD SRB_Rsvd1; // Reserved for Alignment

DWORD SRB_BufLen; // Data Allocation Length

LPBYTE SRB_BufPointer; // Data Buffer Pointer

BYTE SRB_SenseLen; // Sense Allocation Length

BYTE SRB_CDBLen; // CDB Length

BYTE SRB_HaStat; // Host Adapter Status

BYTE SRB_TargStat; // Target Status

LPVOID SRB_PostProc; // Post routine

BYTE SRB_Rsvd2[20]; // Reserved, MUST = 0

BYTE CDBByte[16]; // SCSI CDB

BYTE SenseArea[SENSE_LEN+2]; // Request Sense buffer

}

SRB_ExecSCSICmd, *PSRB_ExecSCSICmd;

SRB Fields

SRB_Cmd (Input) This field must contain SC_EXEC_SCSI_CMD (0x02).

SRB_Status (Output) SC_EXEC_SCSI_CMD is an asynchronous SRB. This field
should not be examined until after the caller has waited for proper completion
of the SRB (see “Waiting for Completion”). Once completed, this field may be
set to a number of different values. The most common values are SS_COMP or
SS_ERR.
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SS_COMP indicates successful completion while SS_ERR indicates the caller
should examine the SRB_HaStat and SRB_TargStat fields for more information.
See “ASPI for Win32 Error” for a complete description of possible error codes.

SRB_HaId (Input) This field specifies which installed host adapter the request
is intended for. Host adapter numbers are always assigned by the SCSI manager
layer beginning with zero.

SRB_Flags (Input) One or more of the following flags (see Table 11.29 — note
restrictions where they apply):

Table 11.29: SRB Flags

Symbol Value Description

SRB_POSTING 0x01 Enable posting. See “Waiting for 
Completion” for more information. This 
flag and SRB_EVENT_NOTIFY are mutu-
ally exclusive.

SRB_ENABLE_RESIDUAL_COUNT 0x04 Enables residual byte counting assuming 
it is supported. Whenever a data under-
run occurs the SRB_BufLen field is updated
to reflect the remaining bytes to transfer.

SRB_DIR_IN 0x08 Data transfer is from SCSI target to host. 
Mutually exclusive with SRB_DIR_OUT.

SRB_DIR_OUT 0x10 Data transfer is from host to SCSI target. 
Mutually exclusive with SRB_DIR_IN.

SRB_EVENT_NOTIFY 0x40 Enable event notification. See “Waiting 
for Completion” for more information. 
This flag and SRB_POSTING are mutually
exclusive.

SRB_Target (Input) SCSI ID of target device.

SRB_Lun (Input) Logical Unit Number (LUN) of target device.

SRB_BufLen (Input) This field indicates the number of bytes to be transferred.
If the SCSI command to be executed does not transfer data (e.g., Test Unit
Ready, Rewind, etc.), this field must be set to zero. If residual byte length is
supported (see “SC_HA_INQUIRY”) and selected (see SRB_Flags above), this
field is returned with the residual number of bytes (usually 0).
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SRB_BufPointer (Input) This field is a pointer to the data buffer. If there is
no data to be transfered this field should be NULL.

SRB_SenseLen (Input) This field indicates the number of bytes allocated at
the end of the SRB for sense data. A request sense is automatically generated
if a check condition is presented at the end of a SCSI command. Please note
that under Windows NT it is not possible to reliably request more than 18 bytes
of sense data.

SRB_CDBLen (Input) This field establishes the length, in bytes, of the SCSI
Command Descriptor Block (CDB). This value is typically 6, 10, or 12. See the
SCSI specification for more information on valid CDBs.

SRB_HaStat (Output) Upon completion of the SCSI command, this field is
set to the host adapter status as defined in Table 11.30. Do not examine this
status byte if SRB_Status is set to SS_COMP. It is only to be considered valid 
if there is unsuccessful completion of the SRB.

Table 11.30: Host Adapter Status

Symbol Value Description

HASTAT_OK 0x00 Host adapter did not detect an error.

HASTAT_TIMEOUT 0x09 The time allocated for a bus transaction 
ran out.

HASTAT_COMMAND_TIMEOUT 0x0B SRB expired while waiting to be 
processed.

HASTAT_MESSAGE_REJECT 0x0D MESSAGE REJECT received while pro-
cessing SRB.

HASTAT_BUS_RESET 0x0E A bus reset was detected.

HASTAT_PARITY_ERROR 0x0F A parity error was detected.

HASTAT_REQUEST_SENSE_FAILED 0x10 The adapter failed in issuing a Request 
Sense after a check condition was 
reported by the target device.

HASTAT_SEL_TO 0x11 Selection of target timed out.

HASTAT_DO_DU 0x12 Data overrun.

HASTAT_BUS_FREE 0x13 Unexpected Bus Free.

HASTAT_PHASE_ERR 0x14 Target Bus phase sequence failure.
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SRB_TargStat (Output) Upon completion of the SCSI command, this field is
set to the final SCSI target status. Do not examine this status byte if SRB_Status
is set to SS_COMP. It is only to be considered valid if there is unsuccessful
completion of the SRB. Note that Table 11.31 only covers the most common
result codes. Check the SCSI specification for more information on these and
other status byte codes.

Table 11.31: SCSI Target Status

Symbol Value Description

STATUS_GOOD 0x00 No target status.

STATUS_CHKCOND 0x02 Check status (sense data is in SenseArea).

STATUS_BUSY 0x08 Specified Target/LUN is busy.

STATUS_RESCONF 0x18 Reservation conflict.

SRB_PostProc (Input) If posting is enabled (SRB_POSTING) this field contains
a pointer to a function. The ASPI manager calls this function upon completion
of the SRB. If event notification is enabled (SRB_EVENT_NOTIFY) this field
contains a handle to an event. The ASPI manager signals this event upon com-
pletion of the SRB. See “Waiting for Completion” for more information.

CDBByte (Input) This field contains the CDB as defined by the target’s SCSI
command set. The length of the SCSI CDB is specified in the SRB_CDBLen
field.

SenseArea (Output) The SenseArea is filled with the sense data after a check
condition (SRB_Status == SS_ERR and SRB_TargStat == STATUS_CHKCOND).
The maximum length of this field is specified in the SRB_SenseLen field.

Example

This example sends a SCSI INQUIRY command to host adapter #0, target #5,
LUN #0. When examining the code, please note the following:

Manual-reset events are used. The ResetEvent is not needed in this partic-
ular sample because we just created the event, but it is good practice to put
the reset immediately before every SendASPI32Command call to make sure
you don’t enter the routine with an event signalled.

Because this is an asynchronous SRB, we fully wait for completion before
checking the SRB_Status byte. Also, we use dwASPIStatus instead of SRB_Status
to check for a SS_PENDING return for the same reason.



A Profile of ASPI Programming 259

There is an INFINITE timeout on the WaitForSingleObject because SRB
timeouts are not the same as event timeouts. Use SC_GETSET_TIMEOUT to
associate a timeout with an SRB.

BYTE byInquiry[32];

DWORD dwASPIStatus;

HANDLE heventSRB;

SRB_ExecSCSICmd srbExec;

heventSRB = CreateEvent( NULL, TRUE, FALSE, NULL );

if( !heventSRB )

{

// Couldn't get manual reset event, put error handling code here!

}

memset( &srbExec, 0, sizeof(SRB_ExecSCSICmd) );

srbExec.SRB_Cmd = SC_EXEC_SCSI_CMD;

srbExec.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY;

srbExec.SRB_Target = 5;

srbExec.SRB_BufLen = 32;

srbExec.SRB_BufPointer = byInquiry;

srbExec.SRB_SenseLen = SENSE_LEN;

srbExec.SRB_CDBLen = 6;

srbExec.SRB_PostProc = (LPVOID)heventSRB;

srbExec.CDBByte[0] = SCSI_INQUIRY;

srbExec.CDBByte[4] = 32;

ResetEvent( hevenSRB );

dwASPIStatus = SendASPI32Command( (LPSRB)&srbExec );

if( dwASPIStatus == SS_PENDING )

{

WaitForSingleObject( heventSRB, INFINITE );

}

if( srbExec.SRB_Status != SS_COMP )

{

// Error processing the SRB, put error handling code here.

SC_ABORT_SRB

The SendASPI32Command function with command code SC_ABORT_SRB is
used to request that a pending SRB be aborted. It should be issued on any I/O
request that has not completed if the application wishes to halt execution of
that request. Success of the abort command is never assured.
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typedef struct

{

BYTE SRB_Cmd; // ASPI command code = SC_ABORT_SRB

BYTE SRB_Status; // ASPI command status byte

BYTE SRB_HaId; // ASPI host adapter number

BYTE SRB_Flags; // Reserved, MUST = 0

DWORD SRB_Hdr_Rsvd; // Reserved, MUST = 0

LPSRB SRB_ToAbort; // Pointer to SRB to abort

}

SRB_Abort, *PSRB_Abort;

SRB Fields

SRB_Cmd (Input) This field must contain SC_ABORT_SRB (0x03).

SRB_Status (Output) SC_ABORT_SRB is a synchronous SRB. On return,
this field is the same as the SendASPI32Command return value and is set to
SS_COMP, SS_INVALID_HA, or SS_INVALID_SRB. Remember that a return
of SS_COMP does not indicate that the SRB to be aborted has been halted.
Instead, it indicates that an attempt was made at aborting that SRB. If the SRB
to be aborted completes with SS_ABORTED then there is positive indication
that the original SC_ABORT_SRB worked.

SRB_HaId (Input) This field specifies which installed host adapter the request
is intended for. Host adapter numbers are always assigned by the ASPI manager
layer beginning with zero.

SRB_ToAbort (Input) This field contains a pointer to the SRB which is to be
aborted. The actual failure or success of the abort operation is indicated by the
status eventually returned in this SRB.

Remarks

As stated above, the success of an SC_ABORT_SRB command is never guaran-
teed. As a matter of fact, the situations in which ASPI is capable of aborting an
SRB already sent to the system are few and far between. The original use for
SC_ABORT_SRB was to terminate I/O which had timed out under ASPI for
DOS and ASPI for Win16. The nature of SC_ABORT_SRB under Win32 greatly
reduces its usefulness. It is recommended that the SC_GETSET_TIMEOUTS
SRB be used to manage SRB timeouts in all new ASPI modules.
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SC_RESET_DEV

The SendASPI32Command function with command code SC_RESET_DEV is
used to send a SCSI Bus Device reset to the specified target.

typedef struct

{

BYTE SRB_Cmd; // ASPI command code = SC_RESET_DEV

BYTE SRB_Status; // ASPI command status byte

BYTE SRB_HaId; // ASPI host adapter number

BYTE SRB_Flags; // Reserved, MUST = 0

DWORD SRB_Hdr_Rsvd; // Reserved, MUST = 0

BYTE SRB_Target; // Target's SCSI ID

BYTE SRB_Lun; // Target's LUN number

BYTE SRB_Rsvd1[12]; // Reserved, MUST = 0

BYTE SRB_HaStat; // Host Adapter Status

BYTE SRB_TargStat; // Target Status

LPVOID SRB_PostProc; // Post routine

BYTE SRB_Rsvd2[36]; // Reserved, MUST = 0

}

SRB_BusDeviceReset, *PSRB_BusDeviceReset;

SRB Fields

SRB_Cmd (Input) This field must contain SC_RESET_DEV (0x04).

SRB_Status (Output) SC_RESET_DEV is an asynchronous SRB. This field should
not be examined until after the caller has waited for proper completion of the
SRB (see “Waiting for Completion”). Once completed, this field may be set 
to a number of different values. The most common values are SS_COMP or
SS_ERR. SS_COMP indicates successful completion while SS_ERR indicates
the caller should examine the SRB_HaStat and SRB_TargStat fields for more
information. See “ASPI for Win32 Error” for a complete description of possible
error codes.

SRB_HaId (Input) This field specifies which installed host adapter the request
is intended for. Host adapter numbers are always assigned by the SCSI manager
layer beginning with zero.

SRB_Target (Input) SCSI ID of target device.
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SRB_Lun (Input) Logical Unit Number (LUN) of target device. This field is
ignored by ASPI for Win32, since SCSI BUS DEVICE RESET is done on a per-
target basis only.

SRB_HaStat (Output) Upon completion of the SCSI command, this field is set
to the host adapter status as defined in Table 11.32. Do not examine this status
byte if SRB_Status is set to SS_COMP. It is only to be considered valid if there
is unsuccessful completion of the SRB.

Table 11.32: Host Adapter Status

Symbol Value Description

HASTAT_OK 0x00 Host adapter did not detect an error.

HASTAT_TIMEOUT 0x09 The time allocated for a bus transaction 
ran out.

HASTAT_COMMAND_TIMEOUT 0x0B SRB expired while waiting to be 
processed.

HASTAT_MESSAGE_REJECT 0x0D MESSAGE REJECT received while pro-
cessing SRB.

HASTAT_BUS_RESET 0x0E A bus reset was detected.

HASTAT_PARITY_ERROR 0x0F A parity error was detected.

HASTAT_REQUEST_SENSE_FAILED 0x10 The adapter failed in issuing a Request 
Sense after a check condition was report-
ed by the target device.

HASTAT_SEL_TO 0x11 Selection of target timed out.

HASTAT_DO_DU 0x12 Data overrun.

HASTAT_BUS_FREE 0x13 Unexpected Bus Free.

HASTAT_PHASE_ERR 0x14 Target Bus phase sequence failure.

SRB_TargStat (Output) Upon completion of the SCSI command, this field is
set to the final SCSI target status. Do not examine this status byte if SRB_Status
is set to SS_COMP. It is only to be considered valid if there is unsuccessful
completion of the SRB. Note that Table 11.33 only covers the most common
result codes. Check the SCSI specification for more information on these and
other status byte codes.
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Table 11.33: SCSI Target Status

Symbol Value Description

STATUS_GOOD 0x00 No target status.

STATUS_CHKCOND 0x02 Check status (sense data is in SenseArea).

STATUS_BUSY 0x08 Specified Target/LUN is busy.

STATUS_RESCONF 0x18 Reservation conflict.

SRB_PostProc (Input) If posting is enabled (SRB_POSTING) this field contains
a pointer to a function. The ASPI manager calls this function upon completion
of the SRB. If event notification is enabled (SRB_EVENT_NOTIFY) this field
contains a handle to an event. The ASPI manager signals this event upon com-
pletion of the SRB. See “Waiting for Completion” for more information.

Remarks

The Windows 95 and Windows NT operating systems do not handle BUS
DEVICE RESET properly at the current time. For this reason, SC_RESET_DEV
calls are not guaranteed to function properly. The command is present mainly
to keep older code ported from Win16 from failing.

SC_GET_DISK_INFO

The SendASPI32Command function with command code SC_GET_DISK_INFO
is used to obtain information about a disk type SCSI device. The information
returned includes BIOS Int 13h control and accessibility of the device, the
drive’s Int 13h physical drive number, and the geometry used by the Int 13h
services for the drive.

N O T E This command is not valid for Windows NT, which does not use the Int 13 interface.

typedef struct

{

BYTE SRB_Cmd; // ASPI command code = SC_GET_DISK_INFO

BYTE SRB_Status; // ASPI command status byte

BYTE SRB_HaId; // ASPI host adapter number

BYTE SRB_Flags; // Reserved

DWORD SRB_Hdr_Rsvd; // Reserved

BYTE SRB_Target; // Target's SCSI ID

BYTE SRB_Lun; // Target's LUN number

BYTE SRB_DriveFlags; // Driver flags

BYTE SRB_Int13HDriveInfo; // Host Adapter Status
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BYTE SRB_Heads; // Preferred number of heads translation

BYTE SRB_Sectors; // Preferred number of sectors translation

BYTE SRB_Rsvd1[10]; // Reserved

}

SRB_GetDiskInfo, *PSRB_GetDiskInfo;

SRB Fields

SRB_Cmd (Input) This field must contain SC_GET_DISK_INFO (0x06).

SRB_Status (Output) SC_GET_DISK_INFO is a synchronous SRB. On return,
this field is the same as the SendASPI32Command return value and is set to
SS_COMP, SS_INVALID_HA, or SS_NO_DEVICE, or SS_INVALID_SRB.

SRB_HaId (Input) This field specifies which installed host adapter the request
is intended for. Host adapter numbers are always assigned by the ASPI manager
layer beginning with zero.

SRB_Target (Input) SCSI ID of target device.

SRB_Lun (Input) Logical Unit Number (LUN) of target device.

SRB_DriveFlags (Output) Upon completion of the SCSI command this field is
set according to Table 11.34.

Table 11.34: Drive Flags

Symbol Value Description

DISK_NOT_INT13 0x00 Device is not controlled by Int 13h services.

DISK_INT13_AND_DOS 0x01 Device is under Int 13h control and is 
claimed by DOS.

DISK_INT13 0x02 Device is under Int 13h control but not 
claimed by DOS.

SRB_Int13DriveInfo (Output) Upon completion of the SCSI command, the
ASPI manager sets this field with the physical drive number that Int 13h services
assigned to the device. The valid drive numbers are 0x00 to 0xFF. This field is
only valid if SRB_DriveFlags is set to DISK_INT13_AND_DOS or DISK_INT13.

SRB_Heads (Output) Upon completion of the SCSI command, the ASPI man-
ager sets this field to the number of heads the Int 13h services is using for this
device’s geometry. The valid drive numbers are 0x00 to 0xFF. This field is only
valid if SRB_DriveFlags is set to DISK_INT13_AND_DOS or DISK_INT13.
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SRB_Sectors (Output) Upon completion of the SCSI command, the ASPI
manager sets this field to the number of sectors the Int 13h services is using
for this device’s geometry. The valid drive numbers are 0x00 to 0xFF. This
field is only valid if SRB_DriveFlags is set to DISK_INT13_AND_DOS or
DISK_INT13.

Example

This example obtains disk information from device LUN 0, SCSI ID 2,
attached to host adapter 0.

SRB_GetDiskInfo srbGetDiskInfo;

memset( &srbGetDiskInfo, 0, sizeof(SRB_GetDiskInfo) );

srbGetDiskInfo.SRB_Header.SRB_Cmd = SC_GET_DISK_INFO;

srbGetDiskInfo.SRB_Target = 2;

SendASPI32Command( (LPSRB)&srbGetDiskInfo );

if( srbGetDiskInfo.SRB_Status != SS_COMP )

{

// Error handling GetDiskInfo SRB. Error handling code goes here!

SC_RESCAN_SCSI_BUS

The SendASPI32Command function with command code SC_RESCAN_SCSI_
BUS is used to rescan the SCSI bus specified by the host adapter number in the
SRB. It will instruct the I/O subsystem to rescan the SCSI bus and update both
the system device map and the ASPI manager device tables.

typedef struct

{

BYTE SRB_Cmd; // ASPI command code = SC_RESCAN_SCSI_BUS

BYTE SRB_Status; // ASPI command status byte

BYTE SRB_HaId; // ASPI host adapter number

BYTE SRB_Flags; // Reserved, MUST = 0

DWORD SRB_Hdr_Rsvd; // Reserved, MUST = 0

}

SRB_RescanPort, *PSRB_RescanPort;

SRB Fields

SRB_Cmd (Input) This field must contain SC_RESCAN_SCSI_BUS (0x07).

SRB_Status (Output) SC_RESCAN_SCSI_BUS is a synchronous SRB. On return,
this field is the same as the SendASPI32Command return value and is set to
SS_COMP, or SS_INVALID_HA.
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SRB_HaId (Input) This field specifies which installed host adapter the request
is intended for. Host adapter numbers are always assigned by the ASPI manager
layer beginning with zero.

Remarks

Under Windows NT, the I/O subsystem does not rescan devices/IDs it already
knows about. The impact of this is that it will detect new devices but will not
detect removal of devices or exchanging of devices.

Under Windows 95, there can be a substantial delay between the time 
a rescan is initiated with this command and the time at which new devices 
are added or old devices are removed from the device map. The best way 
deal with this is to rely on the Plug and Play messages in conjunction with
TranslateASPI32Address, or to simply perform your own refresh five or ten
seconds after the rescan command is issued.

There is no way to force a rescan of the entire system. It is up to the oper-
ating system to detect the arrival of new host adapters (for example, PCMCIA)
through Plug and Play, if it is available.

Example

The following example forces a rescan of the SCSI bus attached to host
adapter #0:

SRB_RescanPort srbRescanPort;

memset( &srbRescanPort, 0, sizeof(SRB_RescanPort) );

srbRescanPort.SRB_Cmd = SC_RESCAN_SCSI_BUS;

SendASPI32Command( (LPSRB)&srbRescanPort );

if( srbRescanPort.SRB_Status != SS_COMP )

{

// Error issuing port rescan. Error handling code goes here.

SC_GETSET_TIMEOUTS

The SendASPI32Command function with command code SC_GETSET_
TIMEOUTS enables you to set target specific timeouts in 1/2 second incre-
ments. Once set, a timeout applies to all SCSI commands sent through the
SC_EXEC_SCSI_CMD command. Timeouts are process specific, so two differ-
ent applications may set different timeouts for the same target. The SRB_HaId,
SRB_Target, and SRB_Lun fields may be set to a wildcard value to ease the setting
of timeouts on multiple targets. Note that by default, all target timeouts are set
to 30 hours (the maximum allowed).
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typedef struct

{

BYTE SRB_Cmd; // ASPI command code = SC_GETSET_TIMEOUTS

BYTE SRB_Status; // ASPI command status byte

BYTE SRB_HaId; // ASPI host adapter number

BYTE SRB_Flags; // ASPI request flags

DWORD SRB_Hdr_Rsvd; // Reserved

BYTE SRB_Target; // Target's SCSI ID

BYTE SRB_Lun; // Target's LUN number

DWORD SRB_Timeout; // Timeout in half seconds

}

SRB_GetSetTimeouts, *PSRB_GetSetTimeouts;

SRB Fields

SRB_Cmd (Input) This field must contain SC_GETSET_TIMEOUTS (0x08).

SRB_Status (Output) SC_GETSET_TIMEOUTS is a synchronous SRB. On
return, this field is the same as the SendASPI32Command return value and is
set to SS_COMP, SS_INVALID_HA, SS_NO_DEVICE, or SS_INVALID_SRB
(bad flags, invalid timeout, etc.).

SRB_HaId (Input) This field specifies which installed host adapter the request
is intended for. If SRB_DIR_OUT is set in SRB_Flags then this value may be a
wildcard (0xFF) indicating that the SRB_Target/SRB_Lun combination on ALL
host adapters should get a new timeout.

SRB_Flags (Input) May be set to one and only one of the two constants from
Table 11.35.

Table 11.35: SRB Flags for SC_GETSET_TIMEOUTS

Symbol Value Description

SRB_DIR_IN 0x08 SRB is being used to retrieve current timeout setting.
Wildcards are not allowed in the ASPI address fields.

SRB_DIR_OUT 0x10 SRB is being used to change the current timeout setting.
Wildcards are valid in the ASPI address fields.

SRB_Target (Input) This field indicates the SCSI ID of the target device. If
SRB_DIR_OUT is set in SRB_Flags then this value may be a wildcard (0xFF)
indicating that ALL SCSI IDs of the passed SRB_HaId/SRB_Lun combination
should get a new timeout.
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SRB_Lun (Input) This field indicates the Logical Unit Number (LUN) of the
device. If SRB_DIR_OUT is set in SRB_Flags then this value may be a wildcard
(0xFF) indicating that ALL LUNs of the passed SRB_HaId/SRB_Target com-
bination should get a new timeout.

SRB_Timeout (Input) Target’s timout in half seconds. If SRB_DIR_OUT then
this value holds the new timeout for the specified target(s). If SRB_DIR_IN
then the value is set by ASPI to the current timeout for the specified target.
The timeout can be from 0-108000 (30 hours) with 0 being an easier way of
saying “max timeout” (again, 30 hours).

Remarks

Once a timeout is set for a target, that timeout will be used on all SRBs passed
to SendASPI32Command with SC_EXEC_SCSI_CMD. If one of these SRBs actually
times out, then the SCSI bus will be reset (this is NOT a bus device reset, but a
full SCSI bus reset). This causes all of the SRBs executing on the bus to be
cancelled, and the miniport will set error codes in the SRBs as appropriate. It
is up to the code which originally submitted these SRBs to retry the commands
as necessary (for example, if an ASPI request times out and the bus is reset, a
file system command to another target could be cancelled, and it is up to the
file system to retry the command).

In addition, the result placed in the SRB which times out depends on the
error codes which the miniport places in the SRB. In the case of Adaptec con-
trollers, the result code is SS_ABORT. In other miniports, the result may be
SS_ERR with a host adapter status set to HASTAT_TIMEOUT or HASTAT_
COMMAND_TIMEOUT, or it may be some new error result not yet encoun-
tered. Suffice it to say that the SRB which times out should return with an error,
and it is up to the higher-level applications to perform retries of the SRB and
any other SRB which may have been affected by the associated bus reset.

When using event notification with timeouts, it is important to remember
that the HEVENT used in the SRB_PostProc field has an ENTIRELY SEPERATE
timeout associated with it. In other words, the timeout associated with an event
is seperate from the timeout associated with an SRB. If you set a timeout on an
SRB and then set an infinite timeout in WaitForSingleObject on the SRB event,
then the SRB will STILL TIMEOUT and signal completion of the SRB. Con-
versely, if you set a 30-hour timeout on the SRB and a 5-second timeout on the
event, the event will always go signaled before the SRB completes, and no
cleanup of the SRB on the bus will take place.

Examples

The first example (Table 11.36) illustrates how wildcards work with set time-
out. The main point here is that the wildcards are specific. In other words,
setting the HaId to 0xFF does not make SRB_Target / SRB_Lun “don’t cares.”
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Table 11.36: Wildcard Validity for SC_GETSET_TIMEOUTS

HA ID LN Affected Device

00 01 FF All of target 1’s luns on host adapter 0.

FF 00 FF All luns on targets with ID 0 on any host adapter.

FF FF 00 Lun 0 of all targets on any host adapter.

FF FF FF All targets on any host adapter with any lun number (everything).

Next is an example in which all LUNs on target 5, host adapter 0 are set to 10
seconds:

SRB_GetSetTimeouts srbGetSetTimeouts;

memset( &srbGetSetTimeouts, 0, sizeof(SRB_GetSetTimeouts) );

srbGetSetTimeouts.SRB_Cmd = SC_GETSET_TIMEOUTS

srbGetSetTimeouts.SRB_Flags = SRB_DIR_OUT;

srbGetSetTimeouts.SRB_Target = 0x05;

srbGetSetTimeouts.SRB_Lun = 0xFF;

srbGetSetTimeouts.SRB_Timeout = 10*2;

SendASPI32Command( (LPSRB)&srbGetSetTimeouts );

if( srbGetSetTimeouts.SRB_Status != SS_COMP )

{

// Error setting timeouts. Put error handling code here.

GetASPI32Buffer

GetASPI32Buffer allocates blocks of memory (up to 512KB) which are “safe”
for use in ASPI modules. Under normal circumstances memory buffers from
the stack or allocated with VirtualAlloc will be too physically fragmented to
allow a transfer greater than 64KB on bus-mastering host adapters. For those
rare instances where a large transfer is required, GetASPI32Buffer allows a
buffer to be allocated which will pass all operating system requirements for
physical continuity.

BOOL GetASPI32Buffer( PASPI32BUFF pab );

Parameters

pab:
Pointer to a filled out ASPI32BUFF structure.

typedef struct
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{

LPBYTE AB_BufPointer; // Pointer to the ASPI allocated buffer

DWORD AB_BufLen; // Length in bytes of the buffer

DWORD AB_ZeroFill; // Flag set to 1 if buffer should be zeroed

DWORD AB_Reserved; // Reserved, MUST = 0

}

ASPI32BUFF, *PASPI32BUFF;

AB_BufPointer (Output) After a successful call (return value TRUE) this field
contains the address of the large transfer buffer which has been allocated for
the application.

AB_BufLen (Input) Set to the size, in bytes, desired for the transfer buffer.
This must be less than or equal to 512KB and should be greater than 64KB
(although there are no requirements on the low end).

AB_ZeroFill (Input) Set this flag to 1 if ASPI should clear the transfer buffer
after allocation but before returning to the caller. Leave the flag set to 0 if the
memory can remain uninitialized.

Return Values

This function returns TRUE if it successfully allocates a large transfer buffer,
and FALSE otherwise. The caller should assume that this call can fail, and
should allow the code to work with smaller transfer buffers allocated from
VirtualAlloc (if at all possible).

Example

The following example allocates a 128KB buffer for use with ASPI.

ASPI32BUFF ab;

memset( &ab, 0, sizeof(ASPI32BUFF) );

ab.AB_BufLen = 131072lu;

ab.AB_ZeroFill = 1;

if( !GetASPI32Buffer( &ab ) )

{

// Unable to allocate buffer. Error handling code goes here!

FreeASPI32Buffer

FreeASPI32Buffer releases memory previously allocated by a successful call go
GetASPI32Buffer.

BOOL FreeASPI32Buffer( PASPI32BUFF pab );
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Parameters

pab:
Pointer to a filled out ASPI32BUFF structure.

typedef struct

{

LPBYTE AB_BufPointer; // Pointer to the ASPI allocated buffer

DWORD AB_BufLen; // Length in bytes of the buffer

DWORD AB_ZeroFill; // Reserved, MUST = 0

DWORD AB_Reserved; // Reserved, MUST = 0

}

ASPI32BUFF, *PASPI32BUFF;

AB_BufPointer (Input) Pointer to the buffer previously returned from a suc-
cessful call to GetASPI32Buffer. The address must match exactly for the free
to occur.

AB_BufLen (Input) Set to the original size, in bytes, of the buffer allocated by
a call to GetASPI32Buffer. The size must match exactly for the free to occur.

Return Values

This function returns TRUE if the memory allocated to the buffer has been
released. FALSE is returned if there is an error freeing the memory or if the
passed in AB_BufPointer/AB_BufLen fields don’t match those of a previously
allocated buffer.

TranslateASPI32Address

TranslateASPI32Address provides translation between Windows 95 DEVNODEs
and ASPI HA/ID/LUN triples (or vice versa). Because DEVNODEs are associ-
ated with WM_DEVICECHANGE messages, it is possible to use this function to
associate ASPI target addresses with Plug and Play events. 

N O T E This command is not valid for Windows NT, which does not currently have Plug and
Play capabilities.

BOOL TranslateASPI32Address( PDWORD pdwPath, PDWORD pdwDEVNODE );

Parameters

pdwPath Pointer to a ASPI address “path.” The path is simply a packed version
of an ASPI address triple. Every target address in ASPI consists of a host adapter
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identifier, a SCSI ID, and a SCSI LUN. Each of these values consists of a BYTE,
so an ASPI address “path” is a DWORD encoded as 0x00HHIILL where HH is
the host adapter identifier, II is the SCSI ID, and LL is the SCSI LUN. Note that
if II and LL are both 0xFF then the path represents a host adapter. This is
necessary because host adapters have their own DEVNODEs in the Plug and
Play subsystem.

pdwDEVNODE Pointer to a DWORD which contains a Windows 95 DEVNODE
ID. This parameter controls the direction of translation. If the DWORD contains
a 0 (note that this does not mean that pdwDEVNODE is NULL) then translation
is from the ASPI triple to the DEVNODE. If the DEVNODE is non-zero then
translation is from the DEVNODE to an ASPI triple.

Return Values

TRUE if there is a successful translation. FALSE is returned if the parameters
are invalid or if there is no translation between ASPI path and Windows 95
DEVNODE.

Remarks

In order for this scheme to work properly, applications should pay attention
to WM_DEVICECHANGE messages which utilize DBT_DEVTYP_DEVNODE
device change data. The device change data type can be detected by checking
the dcbh_devicetype field in the DEV_BROADCAST_HEADER associated
with device change events. Review the Plug and Play documentation in Win32
for more information.

Example

The function below checks broadcast data from a WM_DEVICECHANGE
message to see if the device change message is related to an ASPI target 
(but not host adapter).

BOOL CheckForASPITargetBroadcast( PDEV_BROADCAST_HDR pHeader )

{

BOOL bStatus;

DWORD dwTargetPath;

DWORD dwDEVNODE;

PDEV_BROADCAST_DEVNODE pDevnodeData
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if( pHeader->dbch_devicetype != DBT_DEVTYP_DEVNODE )

{

return FALSE;

}

pDevnodeData = (PDEV_BROADCAST_DEVNODE)pHeader;

dwDEVNODE = pDevnodeData->dbcd_devnode;

bStatus = TranslateASPI32Address( &dwTargetPath, &dwDEVNODE );

if( !bStatus || ((dwTargetPath & 0xFFFFlu) == 0xFFFFlu) )

{

return FALSE;

}

return TRUE;

}

Waiting for Completion

There are two types of SRBs sent to SendASPI32Command: synchronous 
and asynchronous. Synchronous SRBs are always complete when the call 
to SendASPI32Command returns. Asynchronous SRBs, however, may or 
may not be complete upon return from the SendASPI32Command call.

When called with an asynchronous SRB, the status return from
SendASPI32Command should be checked for a value of SS_PENDING. If 
the status code is not SS_PENDING then the SRB is complete and it is safe 
to look at its status codes, etc. If SS_PENDING is returned then the SRB is still
under the control of ASPI, and the caller needs to wait for the SRB to
complete before doing anything else with that SRB.

There are three ways of being notified that an asynchronous SRB has
completed. The first and recommended method uses event notification. The
second method uses posting (a callback), and the third method uses polling.
All three completion methods are illustrated below using a simple INQUIRY
command to host adapter #0, SCSI ID #5, LUN #0.

Event Notification

Event notification is an ideal mechanism for notifying ASPI clients of the com-
pletion of an ASPI request. ASPI clients may efficiently block on this event until
completion. Upon completion of a request, the ASPI for Win32 manager will
set the event to the signaled state. The ASPI client is responsible for making
sure that the event is a manual-reset style event which is not in a signaled state
when an ASPI request is submitted.
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BYTE byInquiry[32];

DWORD dwASPIStatus;

HANDLE heventSRB;

SRB_ExecSCSICmd srbExec;

heventSRB = CreateEvent( NULL, TRUE, FALSE, NULL );

if( !heventSRB )

{

// Couldn't get manual reset event, put error handling code here!

}

memset( &srbExec, 0, sizeof(SRB_ExecSCSICmd) );

srbExec.SRB_Cmd = SC_EXEC_SCSI_CMD;

srbExec.SRB_Flags = SRB_DIR_IN | SRB_EVENT_NOTIFY;

srbExec.SRB_Target = 5;

srbExec.SRB_BufLen = 32;

srbExec.SRB_BufPointer = byInquiry;

srbExec.SRB_SenseLen = SENSE_LEN;

srbExec.SRB_CDBLen = 6;

srbExec.SRB_PostProc = (LPVOID)heventSRB;

srbExec.CDBByte[0] = SCSI_INQUIRY;

srbExec.CDBByte[4] = 32;

ResetEvent( hevenSRB );

dwASPIStatus = SendASPI32Command( (LPSRB)&srbExec );

if( dwASPIStatus == SS_PENDING )

{

WaitForSingleObject( heventSRB, INFINITE );

}

if( srbExec.SRB_Status != SS_COMP )

{

// Error processing the SRB, put error handling code here.

}

Posting

Posting (or callbacks) may be used to receive notification that a SCSI request
has completed. When posting is used, ASPI for Win32 posts completion by
passing control to a callback function. If you send an ASPI request with posting
enabled, the callback procedure will always be called. The post or callback
routine is called as a standard C function. The caller (in this case, the ASPI man-
ager) cleans up the stack. The prototype for the callback is below in the sample.

BYTE byInquiry[32];

SRB_ExecSCSICmd srbExec;

memset( &srbExec, 0, sizeof(SRB_ExecSCSICmd) );

srbExec.SRB_Cmd = SC_EXEC_SCSI_CMD;

srbExec.SRB_Flags = SRB_DIR_IN | SRB_POSTING;
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srbExec.SRB_Target = 5;

srbExec.SRB_BufLen = 32;

srbExec.SRB_BufPointer = byInquiry;

srbExec.SRB_SenseLen = SENSE_LEN;

srbExec.SRB_CDBLen = 6;

srbExec.SRB_PostProc = ASPIInquiryCallback;

srbExec.CDBByte[0] = SCSI_INQUIRY;

srbExec.CDBByte[4] = 32;

SendASPI32Command( (LPSRB)&srbExec );

. . .

/**

*** The code above is a separate thread of execution from

*** the code below which handles the inquiry callback. Note that

*** the callback usually signals the main thread of execution that

*** the an SRB it submitted has completed. In this case we aren't

*** doing anything but checking for errors.

**/

VOID ASPIInquiryCallback( SRB_ExecSCSICmd psrbExec )

{

if( psrbExec->SRB_Status != SS_COMP )

{

// Error processing the SRB, put error handling code here.

}

}

Polling

Polling is another method of determining SCSI request completion. This
method is not recommended because of the large number of CPU cycles con-
sumed while checking the status byte. After the command is sent and ASPI for
Win32 returns control back to the calling application, you can then poll the
status byte waiting for the command to complete. Note that this completion
method is the only one to “break” the rule of not touching an SRB’s data until
after completion. With polling you must look at the SRB_Status byte in order
to tell when the SRB is complete. You are still prohibited from accessing any
other fields of the SRB.

BYTE byInquiry[32];

SRB_ExecSCSICmd srbExec;

memset( &srbExec, 0, sizeof(SRB_ExecSCSICmd) );

srbExec.SRB_Cmd = SC_EXEC_SCSI_CMD;

srbExec.SRB_Flags = SRB_DIR_IN;

srbExec.SRB_Target = 5;

srbExec.SRB_BufLen = 32;

srbExec.SRB_BufPointer = byInquiry;
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srbExec.SRB_SenseLen = SENSE_LEN;

srbExec.SRB_CDBLen = 6;

srbExec.CDBByte[0] = SCSI_INQUIRY;

srbExec.CDBByte[4] = 32;

SendASPI32Command( (LPSRB)&srbExec );

while( srbExec.SRB_Status == SS_PENDING );

if( srbExec.SRB_Status != SS_COMP )

{

// Error processing the SRB, put error handling code here.

}

ASPI for Win32 Errors

Each of these errors can be returned by ASPI for Win32 on either Windows 95
or Windows NT. The ASPI header files included with the ASPI SDK may have
codes defined which cannot be returned by an actual ASPI implementation.
These codes are in the header file to serve as placeholders for other ASPI
managers. They are not documented in this table (Table 11.37).

Table 11.37: ASPI for Win32 Errors

Symbol Value Description

SS_PENDING 0x00 Returned from SendASPI32Command 
on SC_EXEC_SCSI_CMD and SC_RESET_DEV
SRBs to indicate that the command is in 
progress. Use polling, posting, or event-noti-
fication (preferred) to wait for completion.

SS_COMP 0x01 Either returned from SendASPI32Command, 
or set in the SRB_Status field of the SRB 

header. This value indicates successful com-
pletion of an SRB.

SS_ABORTED 0x02 The current SRB was aborted either by the 
operating system directly (for example, a 
third party does a hard reset of the SCSI 
bus) or through a SC_ABORT_SRB.

SS_ERR 0x04 Returned on SC_EXEC_SCSI_CMD calls 
if there is a host adapter, SCSI bus, or 
SCSI target error. It indicates that the 
caller should examine SRB_TargStat and 
SRB_HaStat for additional information.

SS_INVALID_CMD 0x80 The SRB_Cmd passed in an SRB is invalid.
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Symbol Value Description

SS_INVALID_HA 0x81 The SRB_HaId passed in an SRB is invalid. 
Call GetASPI32SupportInfo to determine the 
valid range of host adapters identifiers.

SS_NO_DEVICE 0x82 Returned from calls to SendASPI32Command,
or set in the SRB_Status field of the SRB 
header. This value indicates that there is no 
target present at the SCSI address indicated 
in the SRB. Note that this is not a selection 
timeout. The operating system keeps a table 
of known devices and does not permit 
commands to “non-existent” devices. This 
code could be returned if an operating 
system rescan of the SCSI bus is required 
to detect a newly powered-on device.

SS_INVALID_SRB 0xE0 An SRB sent to ASPI had a valid address 
and a valid command byte, but it was some-
how faulty in another way. The exact cause of
the failure is dependent on the SRB type. For
example, an SC_EXEC_SCSI_CMD SRB may
fail if an invalid flag is set in the SRB_Flags 
word, if a buffer length is specified but there
is a NULL buffer pointer, or if ASPI detects 
an SRB has been reused. In any case, the 
code creating the SRB is faulty and needs 
to be analyzed.

SS_BUFFER_ALIGN 0xE1 SRB data buffers must meet alignment 
requirements as returned by SC_HA_INQUIRY
SRBs. If a transfer buffer does not meet those 
requirements, this error is returned.

SS_ILLEGAL_MODE 0xE2 An attempt was made to start ASPI for Win32
from Win32s. ASPI for Win32 is a pure 
Win32 component and cannot be run under
the Windows 3.1x Win32 subsystem.

SS_NO_ASPI 0xE3 WNASPI32.DLL is present on the system, 
but it could not find its helper driver. Under 
Windows 95 APIX.VXD is the helper driver, 
and under Windows NT ASPI32.SYS is the 
helper driver. Either the ASPI installation is 
invalid, or there are resource conflicts pre-
venting ASPI from starting.
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Symbol Value Description

SS_FAILED_INIT 0xE4 A general internal failure has occurred 
within ASPI. This can occur during initial-
ization or at run-time. This error should 
only occur if basic Windows operating 
services begin to fail, in which case the 
whole system is unstable.

SS_ASPI_IS_BUSY 0xE5 Returned either from SendASPI32Command,
or set in the SRB_Status field of the SRB 
header. This code indicates that ASPI did not
have enough resources to complete the 
requested SRB at the present time. This is 
different from SS_INSUFFICIENT_RESOURCES
in that it is usually a temporal condition, and
the failed SRB may be retried at a later time.

SS_BUFFER_TO_BIG 0xE6 Returned in the SRB_Status field of a failing 
SRB. The code indicates that the buffer associ
ated with the SRB did not meet internal oper-
ating system constraints for a valid transfer 
buffer. For example, a buffer >64KB on a 
bus-mastering controller will usually fail with 
this error because it is not physically contigu-
ous enough to be described by a 
scatter/gather list.

SS_MISMATCHED_COMPONENTS 0xE7 ASPI for Win32 consists of three components
under Windows 95: WNASPI32.DLL, 
APIX.VXD, and ASPIENUM.VXD. It consists 
of two components under Windows NT: 
WNASPI32.DLL, ASPI32.SYS. Each of 
these components has a version number, and
all the version numbers on a particular plat
form must agree for ASPI to function. This error
will only occur if the installation has been 
corrupted, and components with different 
version numbers have been installed on the 
system. The only fix for this is to remove all 
of the ASPI components for that operating 
system, and then reinstall a full,consistent set
of ASPI drivers.
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Symbol Value Description

SS_NO_ADAPTERS 0xE8 Returned from GetASPI32SupportInfo if ASPI
has initialized successfully, but there are no 
host adapters on the system. It is still possible
that an adapter may become active through 
Plug and Play, so a lack of manageable host
adapter is no longer considered an error as 
it was in previous versions of ASPI.

SS_INSUFFICIENT_RESOURCES 0xE9 The error occurs only during initialization if 
there are not enough system resources (mem-
ory, event handles, critical sections, etc.) to 
fully initialize ASPI. If this error occurs it is 
likely that the system is critically low on memory.

V. ASPI for OS/2 Specification

Device drivers wishing to access ASPI must determine the address of the ASPI
entry point through an OS/2 Attach Device Help call as follows:

SCSIMGR$            DB `SCSIMGR$´,0

Return_Data_Buffer  DB 12 DUP(?)

MOV BX,OFFSET SCSIMGR

MOV DI,OFFSET Return_Data_Buffer

MOV DL,DevHlp_AttachDD

CALL [DevHlp]

On return from the Attach Device Help call, a clear carry flag indicates that
the SCSI manager SCSIMGR$ was found and that the return data is valid. A
set carry flag indicates that the SCSI manager was not found.

The return data buffer has the following format:

ASPI_Real  DW Real Mode offset of ASPI entry point

DW Real Mode CS segment of ASPI entry point

Real_DS    DW Real Mode DS of ASPI entry point

ASPI_Prot  DW Protected Mode offset of ASPI entry point

DW Protected Mode CS selector of ASPI entry point

Prot_DS    DW Protected Mode DS of ASPI entry point
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N O T E ASPI_Real and Real_DS are used by OS/2 1.x only. Information returned under OS/2
2.x is irrelevant.

Calling ASPI

Once the ASPI entry point parameters have been successfully determined,
calling ASPI is a matter of using the values appropriate to the mode of the
processor. The address of the ASPI request block and the DS of the ASPI
entry point must be pushed onto the stack before making a FAR call.

The following is an example of how to call ASPI:

PUSH AX     ;Save AX

PUSH @ASPI_SRB ;Push pointer to ASPI SRB

SMSW AX        ;Check mode of processor

TEST AX,PROTECT_MODE

JNZ  PROT_CALL

PUSH Real_DS

CALL [ASPI_REAL]

JMP  CALL_DONE

PROT_CALL:  PUSH Prot_DS

CALL [ASPI_PROT]

CALL_DONE:  ADD  SP,6  ;Restore the stack

POP  AX

Accessing ASPI at Initialization Time

At initialization time, an OS/2 device driver lacks the privilege level for making
a FAR call to the ASPI interface. To circumvent this restriction, the SCSI man-
ager provides a special IOCTL that can be used by a driver to pass an ASPI
request. To use the IOCTL, the driver must first use a DOSOPEN call to get a
file handle for the SCSI manager. Having completed this successfully, the driver
can call ASPI at initialization time as follows:

PUSH @DATA_BUFFER   ;Not Applicable

PUSH @REQUEST_BLOCK ;Parameter List = SRB

PUSH 40H     ;Function Code

PUSH 80H    ;Function Category

PUSH ASPI_Handle ;File handle from DosOpen

CALL DOSDEVIOCTL
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Once the driver has returned from initialization, this access method is no
longer valid.

ASPI and OS/2 2.x

The device driver architecture for OS/2 2.x is divided into several basic layers.
Device manager drivers (DMDs) receive requests from the file systems and other
device drivers. These requests are passed on to an adapter device driver (ADD),
which sends the appropriate command to the host adapter.

ASPI for OS/2 2.x is a translation layer, and it has been implemented as a
device driver (os2aspi.dmd). An application can send SRBs to any SCSI adapter
that has an ADD installed. It is no longer possible to set host adapter parameters,
because OS2ASPI has no direct control over the host adapter.

Target Allocation with OS/2 2.x

The device driver architecture for OS/2 2.x is structured so that targets con-
trolled by an ADD must be allocated to an individual DMD. For example, when
the system boots, os2dasd.dmd is normally the first device manager loaded, and
it will automatically search for all available hard drives and permanently allocate
them for use by the file systems. Other DMDs usually do something similar with
targets that they assume should be controlled by them. 

The standard method for preventing a DMD from allocating a particular
target is through the use of command line switches on the ADD that handles
the device. If you are planning on using ASPI to control a device that may be
allocated by a DMD that loads before os2aspi.dmd, be sure to specify that the
device manager in question is not allowed access to it. 

• If you are writing an ASPI application for a magneto-optical drive (target
6 on an AHA-1540) that returns device type 0 (DASD) in the Inquiry data,
you must be sure to prevent OS2DASD from accessing it:

BASEDEV=AHA154X.ADD /A:0 /!DM:6

• If you are writing an ASPI application for a device that also may be con-
trolled by a device driver through os2scsi.dmd (target 6 on an AHA-1540),
you can also prevent OS2SCSI from accessing it:

BASEDEV=AHA154X.ADD /A:0 /!SM:6

Currently, only os2dasd.dmd and os2scsi.dmd can be controlled in this manner,
because they are the only DMDs mentioned in IBM’s specification for ADDs.
For a complete explanation of command line switches supported by the ADD
that are provided with OS/2 2.1, consult the online help for SCSI.
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The current ASPI specification does not provide a method for allocating
targets, and there are no command line switches for os2aspi.dmd that can be
used with the current ADD. The target for each SRB will be allocated and
deallocated on a command basis until the first Execute I/O SRB is sent. At
this point, the target will be permanently allocated to os2aspi.dmd and other
DMDs will no longer have access to the target.

Sample Code for OS/2 2.x

The SDK (ASPI Software Developer’s Kit) includes sample code for designing
ASPI applications and device drivers to be used with OS/2 2.x.

ASPIAPP is a simple program that scans the SCSI bus and displays informa-
tion about any targets that it finds on adapters in the system. This application is
a single-threaded, character-based application intended to show you how ASPI
can be used. 

ASPIDRV is a simple device driver that passes requests from ASPIAPP to
os2aspi.dmd after converting any virtual addresses to physical addresses. This
driver is intended for handling single-threaded requests that are small enough
not to require a scatter/gather list. If you are transferring large blocks of data,
you may have to convert the virtual address of the buffer into a page table that
can be used as a scatter/gather list.

SCSI Request Block (SRB)

A SCSI request block (SRB), defined in Table 11.38, contains the command 
to be executed by the ASPI manager and is used by both drivers and applica-
tion programs. An SRB consists of an SRB header followed by additional fields
dependent on the command code. All request blocks have an 8-byte header.

Table 11.38: SCSI Request Block Header

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —
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Command Code

The Command Code field is used to indicate which of the ASPI services is being
accessed. Refer to Table 11.39 for a description of valid ASPI command codes.

Status

The Status Byte field is used to post the status of the command. Refer to Table
11.40 for a description of ASPI status bytes.

Host Adapter Number

The Host Adapter Number field specifies which installed host adapter the
request is intended for. Host adapter numbers are always assigned by the SCSI
manager layer beginning with zero.

SCSI Request Flags

The SCSI Request Flags field definition is command code–specific.

Reserved for Expansion

The last 4 bytes of the header are reserved and must be zero.

ASPI Command Codes

Valid ASPI Command Codes

See Table 11.39 for a list of valid ASPIcommand codes, and their descriptions.

Table 11.39: Valid ASPI Command Codes

Command Code Description

00h Host Adapter Inquiry

01h Get Device Type

02h Execute SCSI I/O Command

03h Abort SCSI I/O Command

04h Reset SCSI Device

05h Set Host Adapter Parameters

06h-7Fh Reserved for Future Expansion

80h-FFh Reserved for Vendor Unique
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ASPI Status Bytes

See Table 11.40 for a list of ASPI status bytes, and their descriptions.

Table 11.40: ASPI Status Bytes

Status Byte Description

00h SCSI Request In Progress

01h SCSI Request Completed Without Error

02h SCSI Request Aborted By Host

04h SCSI Request Completed With Error

80h Invalid SCSI Request

81h Invalid Host Adapter Number

82h SCSI Device Not Installed

ASPI Command Code = 0: Host Adapter Inquiry

The status byte (defined in Table 11.41) always returns with a nonzero status.
A SCSI Request Completed Without Error (01h) status indicates that the remain-
ing fields are valid. An Invalid Host Adapter Number (81h) status indicates that
the specified host adapter is not installed.

Table 11.41: ASPI Command Code = 0: Host Adapter Inquiry

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code = 0 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —

08h (08) 01h (01) Number of Host Adapters R

09h (09) 01h (01) Target ID of Host Adapter R

0Ah (10) 10h (16) SCSI Manager ID R

1Ah (26) 10h (16) Host Adapter ID R

2Ah (42) 10h (16) Host Adapter Unique Parameters R
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This function is used to get information on the installed host adapter hardware,
including number of host adapters installed. It can be issued once with host
adapter zero specified to get the number of host adapters. If further information
is desired, it can be issued for each individual host adapter.

The SCSI Request Flags field is currently undefined for this command
and should be zeroed.

The SCSI Manager ID field contains a 16-byte ASCII string describing the
SCSI manager.

The Host Adapter ID field contains a 16-byte ASCII string describing the
SCSI host adapter.

The definition of the Host Adapter Unique Parameters field is left to
implementation notes specific to a particular host adapter.

ASPI Command Code = 1: Get Device Type

This command (defined in Table 11.42) always returns with a nonzero status.

Table 11.42: ASPI Command Code = 1: Get Device Type

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code = 1 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —

08h (08) 01h (01) Target ID W

09h (09) 01h (01) LUN W

0Ah (10) 01h (01) Peripheral Device Type of Target/LUN R

A SCSI Request Completed Without Error (01h) status indicates that the spec-
ified device is installed and the peripheral device type field is valid. A SCSI
Device Not Installed Error (82h) indicates that the peripheral device type
field is not valid.

This command is intended for use by various drivers, during initialization,
for identifying the targets they need to support. A CD-ROM driver, for example,
can scan each target/LUN on each installed host adapter looking for the device
type corresponding to CD-ROM devices. This eliminates the need for each
driver to duplicate the effort of scanning the SCSI bus for devices.

The peripheral device type is determined by sending a SCSI Inquiry com-
mand to the given target. Refer to any published SCSI specification to learn
more about the Inquiry command.
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The SCSI Request Flags field is currently undefined for this command and
should be zeroed.

ASPI Command Code = 2: Execute SCSI I/O Command

This command (defined in Table 11.43) usually returns with zero status indicating
that the request was queued successfully. Command completion can be deter-
mined by polling for nonzero status or through the use of the Post Routine
Address field in the ASPI Command Posting section (discussed later). Keep 
in mind that if you are going to use polling, interrupts must be enabled.

Table 11.43: ASPI Command Code = 2: Execute SCSI I/O Command

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code = 2 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 02h (02) Length of Scatter/Gather List W

06h (06) 02h (02) Reserved for Expansion = 0 —

08h (08) 01h (01) Target ID W

09h (09) 01h (01) LUN W

0Ah (10) 04h (04) Data Allocation Length W

0Eh (14) 01h (01) Sense Allocation Length (N) W

0Fh (15) 04h (04) Data Buffer Pointer W

13h (19) 04h (04) SRB Link Pointer W

17h (23) 01h (01) SCSI CDB Length (M) W

18h (24) 01h (01) Host Adapter Status R

19h (25) 01h (01) Target Status R

1Ah (26) 02h (02) Real Mode Post Routine Offset* W

1Ch (28) 02h (02) Real Mode Post Routine CS* W

1Eh (30) 02h (02) Real Mode Post Routine DS* W

20h (32) 02h (02) Protected Mode Post Routine Offset W

22h (34) 02h (02) Protected Mode Post Routine CS W
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Offset # Bytes Description R/W

24h (36) 02h (02) Protected Mode Post Routine DS W

26h (38) 04h (04) Physical Address of SRB W

2Ah (42) 16h (22) Reserved for ASPI Workspace —

40h (64) M SCSI Command Descriptor Block (CDB) W

40h+M N Sense Allocation Area R

*Used by OS/2 1.x only. Fields are not used under OS/2 2.x.

The SCSI Request Flags Byte Is Defined as Follows:

7 6 5 4 3 2 1 0  

Rsvd Rsvd SGE Direction Bit Rsvd Link Post 

The Post bit specifies whether posting is enabled (bit 0 = 1) or disabled 
(bit 0 = 0).

The Link bit specifies whether linking is enabled (bit 1 = 1) or disabled
(bit 1 = 0).

The Direction Bits specify which direction the transfer is:

00 Direction determined by SCSI command. Length not checked.

01 Transfer from SCSI target to host. Length checked.

10 Transfer from host to SCSI target. Length checked.

11 No data transfer.

The Scatter/Gather Enable (SGE) bit specifies whether scatter/gather is enabled
(bit 5=1) or disabled (bit 5=0).

The Target ID and LUN fields are used to specify the peripheral device
involved in the I/O.

The Data Allocation Length field indicates the number of bytes to be
transferred. If the SCSI command to be executed does not transfer data (i.e.,
Rewind, Start Unit, etc.), the data allocation length must be set to zero.

The Length of Scatter/Gather List field is valid only when the scatter/gather
enable bit in the flags is set. It contains the number of descriptors in the array
pointed by the Data Buffer Pointer field.

The Sense Allocation Length field indicates, in bytes, the number of bytes
allocated at the end of the SRB for sense data. A request sense is automatically
generated if a check condition is presented at the end of a SCSI command.
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The Data Buffer Pointer field is a pointer to the I/O data buffer. When
scatter/gather is enabled, this field is a physical pointer to a scatter/gather list.
A scatter/gather list is made up of one or more descriptors of the following
format:

DWORD Buffer Pointer

DWORD Buffer Size

The SRB Link Pointer field is a pointer to the next SRB in a chain. See the
section “SCSI Command Linking with ASPI” for more information.

The SCSI CDB Length field establishes the length, in bytes, of the SCSI
command descriptor block (CDB).

The Host Adapter Status field is used to report the host adapter status
as follows:

00h Host adapter did not detect any error

11h Selection timeout

12h Data overrun/underrun

13h Unexpected bus free

14h Target bus phase sequence failure

The Target Status field is used to report the target’s SCSI status, including:

00h No target status

02h Check status (sense data is in sense allocation area)

08h Specified target/LUN is busy

18h Reservation conflict

N O T E The host adapter status and the target status are valid only when the status byte is 
either 2 or 4.

The Post Routine Address field, if specified, is called when the I/O is completed.
See the section “ASPI Command Posting” for more information.

The SCSI command descriptor block (CDB) field contains the CDB as
defined by the target’s SCSI command set. The length of the SCSI CDB is
specified in the SCSI Command Length field.

The sense allocation area is filled with sense data on a check condition.
The maximum length of this field is specified in the Sense Allocation Length
field. Note that the target can return fewer than the number of sense bytes
requested.



A Profile of ASPI Programming 289

SCSI Command Linking with ASPI

ASPI provides the ability to use SCSI linking to guarantee the sequential execu-
tion of several commands. Note that the use of this feature requires the involved
target(s) to support SCSI linking.

To use SCSI linking, a chain of SRBs is built with the SRB link pointer used
to link the elements together. The link bit should be set in the SCSI request
flags byte of all SRBs except the last in the chain. When a SCSI target returns
indicating that the linked command is complete, the next SRB is immediately
processed and the appropriate CDB is dispatched. When using SCSI linking,
make sure that the linking flags in the SCSI CDB agree with the link bit in the
SCSI request flags. Inconsistencies can cause unpredictable results. For example,
setting the CDB up for linking but failing to set the link bit may result in a
random address being used for the next SRB pointer.

Any error returned from the target on a linked command will break the
chain. Note that if linking without tags is used, as defined in SCSI, posting may
not occur on any elements in the chain until the chain is complete. If you have
the post bit set in each SRB’s SCSI request flags byte, then each SRB’s post
routine will be called.

N O T E It is strongly recommended that you do not use SCSI linking. There are many SCSI targets,
as well as SCSI host adapters, that do not handle SCSI linking and will not work with
your ASPI module.

ASPI Command Posting

Posting refers to the SCSI manager making a FAR call to a post routine as spec-
ified in the SRB. This can be used by a driver much like a hardware interrupt
might be used. Post routines have all the same privileges and restrictions as a
hardware interrupt service routine in OS/2. Posting is optional but should
almost always be used in OS/2. To use posting, the post bit must be set in the
SCSI request flags. The post routine is called to indicate that the requested I/O
is complete. The specific SRB completed is indicated by the 4-byte SRB
pointer on the stack. The DS of the post routine as specified in the SRB is also
passed to the stack.

The post routine will be called with interrupts enabled. It is assumed that
all registers are preserved by the post routine.

ASPI_Post  proc far

push bp                     ;Use bp as a reference

mov  bp,sp

pusha                       ;Save all registers

push es                     ;Save ES

mov  bx,[bp+6]              ;Load DS of POST routine

mov  ax,[bp+10]             ;Physical address of SRB—>AX:BX

mov  ax,[bp+8]
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.

.

.

pop  es                     ;Restore registers

popa

pop  ds

pop  bp

retf

ASPI_Post  endp

When your post routine is first entered, the stack will look as follows:

Top of Stack [SP+0] —> Return Address (Offset) 

[SP+2] —> Return Address (Segment) 

[SP+4] —> SRB Pointer (Offset) 

[SP+6] —> SRB Pointer (Segment) 

...  

...  

...  

You may issue any ASPI command from within your post routine except for an
abort command. Your post routine should get in and out as quickly as possible.

ASPI Command Code = 3: Abort SCSI I/O Request

This command (defined in Table 11.44) is used to request that an SRB be
aborted. It should be issued on any I/O request that has not completed if 
the driver wishes to timeout on that request. Success of the Abort command
is never assured.

Table 11.44: ASPI Command Code = 3: Abort SCSI I/O Request

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code = 3 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —

08h (08) 04h (04) Physical SRB Pointer W

This command always returns with SCSI Request Completed Without Error, but
the actual failure or success of the abort operation is indicated by the status
eventually returned in the SRB specified.
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The SCSI Request Flags field is currently undefined for this command
and should be zeroed.

The SRB Pointer to Abort field contains a pointer to the SRB that is to 
be aborted.

N O T E An Abort command should not be issued during a post routine.

ASPI Command Code = 4: Reset SCSI Device

This command (defined in Table 11.45) is used to reset a specific SCSI target.
Note that the structure passed is nearly identical to the execute SCSI I/O SRB
except that some of the fields are not used.

Table 11.45: ASPI Command Code = 4: Reset SCSI Device

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code = 4 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —

08h (08) 01h (01) Target ID W

09h (09) 01h (01) LUN W

0Ah (10) 0Eh (14) Reserved —

18h (24) 01h (01) Host Adapter Status R

19h (25) 01h (01) Target Status R

1Ah (26) 02h (02) Real Mode Post Routine Offset* W

1Ch (28) 02h (02) Real Mode Post Routine CS* W

1Eh (30) 02h (02) Real Mode Post Routine DS* W

20h (32) 02h (02) Protected Mode Post Routine Offset W

22h (34) 02h (02) Protected Mode Post Routine CS W

24h (36) 02h (02) Protected Mode Post Routine DS W

26h (38) 16h (22) Reserved for ASPI Workspace —

*Used by OS/2 1.x only. Fields are not used under OS/2 2.x.
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This command usually returns with zero status indicating that the request was
queued successfully. Command completion can be determined by polling for
nonzero status or through the use of posting.

The SCSI Request Flags Byte Is Defined as Follows:

7 6 5 4 3 2 1 0 

Rsvd      Post 

The Post bit specifies whether posting is enabled (bit 0 = 1) or disabled 
(bit 0 = 0).

ASPI Command Code = 5: Set Host Adapter Parameters

The definition of the host adapter unique parameters (defined in Table 11.46)
is left to implementation notes specific to a particular host adapter.

Table 11.46: ASPI Command Code = 5: Set Host Adapter Parameters

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code = 5 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —

08h (08) 10h (16) Host Adapter Unique Parameters W

VI. ASPI for NetWare Specification

Before creating your NetWare loadable module (NLM), you must first create
the object file and a definition file. In the definition file, you tell NetWare®
what routines you wish to export to the operating system and what routines
you wish to import into your NLM. You will need to import one ASPI routine.
Sample definition file:
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.

.

IMPORT

.

.

ASPI_Entry

.

.

Using the Novell linker, the object and definition files are linked together to
create your NLM.

During load time, if NetWare 386 does not find this imported routine, it
will not load your NLM. You must load the ASPI module before the other
modules can access it.

ASPI Routine: ASPI_Entry

This routine allows you to pass a SCSI request block (SRB) to ASPI.

Syntax

Void ASPI_Entry ( void *ASPIRequestBlock )

Return Values

Returns nothing

Parameters

Parameter Description

ASPIRequestBlock This field contains a pointer to your SRB.

Assembly Example

push OFFSET ASPI_ReqBlock              ;Push SRB onto the stack

call ASPI_Entry                        ;Call ASPI

lea  esp,[esp+(1*4)]                   ;Restore the stack
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Remarks

On entry, interrupts should be disabled. Returns with interrupts disabled.

SCSI Request Block (SRB)

A SCSI request block (SRB) contains the command to be executed by the ASPI
manager and is used by both drivers and application programs. An SRB consists
of an SRB header (shown in Table 11.47) followed by additional fields depen-
dent on the command code. All request blocks have an 8-byte header.

Table 11.47: SCSI Request Block Header

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —

Command Code

The Command Code field indicates which ASPI service is being accessed.
Table 11.48 lists the valid ASPI command codes.

Status

The Status Byte field is used to post the status of the command. Refer to Table
11.49 for a description of ASPI status bytes.

Host Adapter Number

The Host Adapter Number field specifies which installed host adapter the re-
quest is intended for. Host adapter numbers are always assigned by the SCSI
manager layer beginning with zero.

SCSI Request Flags

The SCSI Request Flags field definition is command code–specific.
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Reserved for Expansion

The last 4 bytes of the header are reserved and must be zero.

ASPI Command Codes

Valid ASPI Command Codes

Table 11.48 lists the valid ASPI command codes and their descriptions.

Table 11.48: Valid ASPI Command Codes

Command Code Description

00h Host Adapter Inquiry

01h Get Device Type

02h Execute SCSI I/O Command

03h Abort SCSI I/O Command

04h Reset SCSI Device

05h Set Host Adapter Parameters

06h-7Fh Reserved for Future Expansion

80h-FFh Reserved for Vendor Unique

ASPI Status Bytes

Table 11.49 lists the ASPI status bytes and their descriptions.

Table 11.49: ASPI Status Bytes

Status Byte Description

00h SCSI Request in Progress

01h SCSI Request Completed Without Error

02h SCSI Request Aborted by Host

04h SCSI Request Completed With Error

80h Invalid SCSI Request

81h Invalid Host Adapter Number

82h SCSI Device Not Installed
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ASPI Command Code = 0: Host Adapter Inquiry

The status byte (defined in Table 11.50) always returns with a nonzero status.
A SCSI Request Completed Without Error (01h) status indicates that the remaining
fields are valid. An Invalid Host Adapter Number (81h) status indicates that the
specified host adapter is not installed.

Table 11.50: ASPI Command Code = 0: Host Adapter Inquiry

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code = 0 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —

08h (08) 01h (01) Number of Host Adapters R

09h (09) 01h (01) Target ID of Host Adapter R

0Ah (10) 10h (16) SCSI Manager ID R

1Ah (26) 10h (16) Host Adapter ID R

2Ah (42) 10h (16) Host Adapter Unique Parameters R

This function is used to get information on the installed host adapter hardware,
including number of host adapters installed. It can be issued once with host
adapter zero specified to get the number of host adapters. If further informa-
tion is desired, it can be issued for each individual host adapter.

The SCSI Request Flags field is currently undefined for this command
and should be zeroed.

The SCSI Manager ID field contains a 16-byte ASCII string describing the
SCSI manager.

The Host Adapter ID field contains a 16-byte ASCII string describing the
SCSI host adapter.

The definition of the Host Adapter Unique Parameters field is left to
implementation notes specific to a particular host adapter.
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ASPI Command Code = 1: Get Device Type

This command (defined in Table 11.51) always returns with nonzero status.
A SCSI Request Completed Without Error (01h) status indicates that the

specified device is installed and the peripheral device type field is valid. A
SCSI Device Not Installed Error (82h) indicates that the peripheral device
type field is not valid.

Table 11.51: ASPI Command Code = 1: Get Device Type

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code = 1 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —

08h (08) 01h (01) Target ID W

09h (09) 01h (01) LUN W

0Ah (10) 01h (01) Peripheral Device Type of Target/LUN R

This command is intended for use by various drivers during initialization for
identifying the targets that they need to support. A CD-ROM driver, for example,
can scan each target/LUN on each installed host adapter looking for the device
type corresponding to CD-ROM devices. This eliminates the need for each driver
to duplicate the effort of scanning the SCSI bus for devices.

The peripheral device type is determined by sending a SCSI Inquiry com-
mand to the given target. Refer to any SCSI specification to learn more about
the Inquiry command.

The SCSI Request Flags field is currently undefined for this command and
should be zeroed.

ASPI Command Code = 2: Execute SCSI I/O Command

This command (defined in Table 11.52) usually returns with zero status indi-
cating that the request was queued successfully. Command completion can be
determined by polling for nonzero status or through the use of the Post Routine
Address field (discussed later in the section ASPI Command Posting). Keep in
mind that if you are going to use polling, interrupts must be enabled.
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Table 11.52: ASPI Command Code = 2: Execute SCSI I/O Command

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code = 2 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 W

08h (08) 01h (01) Target ID —

09h (09) 01h (01) LUN W

0Ah (10) 04h (04) Data Allocation Length W

0Eh (14) 01h (01) Sense Allocation Length (N) W

0Fh (15) 04h (04) Data Buffer Pointer W

13h (19) 04h (04) SRB Link Pointer W

17h (23) 01h (01) SCSI CDB Length (M) W

18h (24) 01h (01) Host Adapter Status R

19h (25) 01h (01) Target Status R

1Ah (26) 04h (04) Post Routine Address W

1Eh (30) 22h (34) Reserved for ASPI Workspace —

40h (64) M SCSI Command Descriptor Block (CDB) W

40h+M N Sense Allocation Area R

The SCSI Request Flags Byte Is Defined as Follows:

7 6 5 4 3 2 1 0  

Rsvd Rsvd Rsvd Direction Bits Rsvd Link Post  

• The Post bit specifies whether posting is enabled (bit 0 = 1) or disabled
(bit 0 = 0).

• The Link bit specifies whether linking is enabled (bit 1 = 1) or disabled
(bit 1 = 0).

• The Direction bits specify which direction the transfer is.
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00 Direction determined by SCSI command. Length not checked.

01 Transfer from SCSI target to host. Length checked.

10 Transfer from host to SCSI target. Length checked.

11 No data transfer.

The Target ID and LUN fields are used to specify the peripheral device involved
in the I/O.

The Data Allocation Length field indicates the number of bytes to be
transferred. If the SCSI command to be executed does not transfer data (i.e.,
Rewind, Start Unit, etc.) the Data Allocation Length must be set to zero.

The Sense Allocation Length field indicates, in bytes, the number of bytes
allocated at the end of the SRB for sense data. A request sense is automatically
generated if a check condition is presented at the end of a SCSI command.

The Data Buffer Pointer field is a pointer to the I/O data buffer. You
place the logical address here. ASPI will convert it to the physical address in
the case of a bus master or DMA transfer.

The SRB Link Pointer field is a pointer to the next SRB in a chain. See
the discussion on linking for more information.

The SCSI CDB Length field establishes the length, in bytes, of the SCSI
command descriptor block (CDB).

The Host Adapter Status field is used to report the host adapter status 
as follows:

00h Host adapter did not detect any error.

11h Selection timeout.

12h Data overrun/underrun.

13h Unexpected bus free.

14h Target bus phase sequence failure.

The Target Status field is used to report the target’s SCSI status, including:

00h No target status.

02h Check status (sense data is in sense allocation area).

08h Specified target/LUN is busy.

18h Reservation conflict.
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The Post Routine Address field, if specified, is called when the I/O is completed.
See the section ASPI Command Posting for more information.

The SCSI command descriptor block (CDB) field contains the CDB as
defined by the target’s SCSI command set. The length of the SCSI CDB is
specified in the SCSI Command Length field.

The Sense Allocation Area is filled with sense data on a check condition.
The maximum length of this field is specified in the Sense Allocation Length
field. Note that the target can return fewer than the number of sense bytes
requested.

SCSI Command Linking with ASPI

ASPI provides the ability to use SCSI linking to guarantee the sequential exe-
cution of several commands. Note that the use of this feature requires the
involved target(s) to support SCSI linking.

To use SCSI linking, a chain of SRBs is built with the SRB link pointer used
to link the elements together. The link bit should be set in the SCSI request
flags byte of all SRBs except the last in the chain. When a SCSI target returns
indicating that the linked command is complete, the next SRB is immediately
processed, and the appropriate CDB is dispatched. When using SCSI linking,
make sure that the linking flags in the SCSI CDB agree with the link bit in the
SCSI request flags. Inconsistencies can cause unpredictable results. For example,
setting the CDB up for linking but failing to set the link bit may result in a
random address being used for the next SRB pointer.

Any error returned from the target on a linked command will break the
chain. Note that if linking without tags is used, as defined in SCSI, posting may
not occur on any elements in the chain until the chain is complete. If you have
the post bit set in each SRB’s SCSI request flags byte, then each SRB’s post
routine will be called.

N O T E It is strongly recommended that you do not use SCSI linking. There are many SCSI targets,
as well as SCSI host adapters, that do not handle SCSI linking and will not work with
your ASPI module.

ASPI Command Posting

To use posting, the Post bit must be set in the SCSI request flags. Posting refers
to the SCSI manager making a call to a post routine as specified in the SRB.
The post routine is called to indicate that the SRB is complete. The specific SRB
completed is indicated by a 4-byte SRB pointer on the stack.

If your post routine is written in assembly language, it must save the C 
registers: EBP, EBX, ESI, and EDI. Below is a sample ASPI post handler:
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ASPI_Post  proc near

Cpush                       ;Push 'C' required regs

mov  eax, [esp+20]          ;EAX points to SRB

.

.                           ;Handle posted SRB

.

CPop                        ;Restore registers and

ret                         ;  return to ASPI

ASPI_Post  endp

C example:

void ASPI_Post  ( SRB_Pointer )

void *SRB_Pointer;

{

.

.                             /* Handle posted SRB */

.

}

N O T E On entry, interrupts will be disabled. You should return with interrupts disabled. You
may issue any ASPI command from within your post routine except for an abort com-
mand. Your post routing should get in and out as quickly as possible.

ASPI Command Code = 3: Abort SCSI I/O Command

This command (defined in Table 11.53) is used to request that an SRB be aborted.
It should be issued on any I/O request that has not completed if the driver wishes
to timeout on that request. Success of the Abort command is never assured.

Table 11.53: ASPI Command Code = 3: Abort SCSI I/O Command

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code = 3 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —

08h (08) 04h (04) SRB Pointer to Abort W
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This command always returns with SCSI Request Completed Without Error (01h),
but the actual failure or success of the abort operation is indicated by the status
eventually returned in the SRB specified.

The SCSI Request Flags field is currently undefined for this command
and should be zeroed.

The SRB Pointer to Abort field contains a pointer to the SRB that is to 
be aborted.

N O T E An abort command should not be issued during a post routine.

ASPI Command Code = 4: Reset SCSI Device

This command (defined in Table 11.54) is used to reset a specific SCSI target.
Note that the structure passed is nearly identical to the execute SCSI I/O SRB
except that some of the fields are not used.

This command usually returns with zero status indicating that the request
was queued successfully. Command completion can be determined by polling
for nonzero status or through the use of posting.

Table 11.54: ASPI Command Code = 4: Reset SCSI Device

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code = 4 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —

08h (08) 01h (01) Target ID W

09h (09) 01h (01) LUN W

0Ah (10) 0Eh (14) Reserved —

18h (24) 01h (01) Host Adapter Status R

19h (25) 01h (01) Target Status R

1Ah (26) 02h (02) POST Routine Address W

1Eh (30) 02h (02) Reserved for ASPI Workspace —
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The SCSI Request Flags Byte Is Defined as Follows:

7 6 5 4 3 2 1 0  

Rsvd Rsvd Rsvd Direction Bits Rsvd Link Post  

The Post bit specifies whether posting is enabled (bit 0 = 1) or disabled 
(bit 0 = 0).

ASPI Command Code = 5: Set Host Adapter Parameters

The definition of the host adapter unique parameters (defined in Table 11.55)
is left to implementation notes specific to a particular host adapter.

Table 11.55: ASPI Command Code = 5: Set Host Adapter Parameters

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code = 5 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0 —

08h (08) 10h (16) Host Adapter Unique Parameters W

Handling Greater than 16 MB

Bus master ISA SCSI host adapters have a restriction in that they cannot perform
DMA above 16MB of RAM. This is because the ISA bus only receives 2 bits of
the address bus (224 = 16 MB). Thus, if you pass a buffer pointer above 16MB
to an ASPI manager/hardware that cannot handle it, you will most likely crash
the file server. For these host adapters, you must make sure that both the ASPI
SRBs and data buffers are below the first 16MB of RAM. Adaptec’s current
host adapters handle this situation as detailed:
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Host Adapters Handling > 16MB

• AHA-1510

• AHA-1520

• AHA-1522

• AIC-6260

• AIC-6360

Host Adapters Handling PIO or Second-Party DMA Host Transfers

When in PIO mode, there is no restriction. When in second-party DMA mode,
all ASPI SRBs and all data buffers must be below the first 16MB of RAM.

• AHA-1540

• AHA-1542

Host Adapters Handling Bus Mastering ISA Mode Host Transfers

All ASPI SRBs and all data buffers must be below the first 16MB of RAM.

• AHA-1640

• AHA-1740 (standard mode)

• AHA-1740 (enhanced mode)

• AHA-2740 series

Host Adapters Handling EISA or PCI Mode Host Transfers

Host adapters with no restrictions are the EISA adapters AHA-1740 in enhanced
mode and the AHA-2740 series, and all PCI adapters.

For the AHA-1540/1542/1640/1740 (standard mode), you will need to run
with an ASPI manager that can run with more than 16MB of RAM. You will need
aha1540.dsk v2.22 or later, or aha1640.dsk v2.22 or later for this.

NetWare 386 v3.11 (and above) has defined some new routines you can
use to force a buffer allocation below the first 16MB of RAM. Refer to the 
NetWare 386 Technical Specification for more information.
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Scanning for New Devices

Most ASPI managers will not immediately scan the SCSI bus when first loaded.
Rather, ASPI managers will wait for NetWare 386 to call its Scan for New Devices
routine before the ASPI manager will scan the bus and update its internal ASPI
device table. There may be some cases where you use ASPI’s Get Device Type
routine and your device does not appear although it is really there. In this case,
you may want to request NetWare Force A Scan For New Devices, or you may
want to scan the SCSI bus from within your own ASPI module. Refer to the
appropriate NetWare 386 Technical Specification for more information.

VII. ASPI Specification Addendum
Adaptec has made minor additions to the ASPI specification to give greater
flexibility to ASPI modules. The main addition is support for residual byte
length reporting.

What Is Residual Byte Length?

Residual byte length is the number of bytes not transferred to, or received from,
the target SCSI device.  For example, if the ASPI buffer length for a SCSI Inquiry
command is set for 100 bytes, but the target only returns back 36 bytes, this makes
for a residual length of 64 bytes.  As another example, if the ASPI buffer length
for a SCSI write command is set for 514 bytes, but the target only takes 512 bytes,
this makes for a residual length of 2 bytes.

How Do I Find Out If the ASPI Manager Loaded
Supports This New Feature?

ASPI modules can determine if the loaded ASPI manager supports residual
byte length by issuing an Extended Host Adapter Inquiry command.  If you
refer to the current ASPI for DOS specification, the standard Host Adapter
Inquiry command is shown in Table 11.56.

N O T E The following discussion assumes you are already familiar with sending an ASPI Host
Adapter Inquiry command to an ASPI manager. If not, refer to the section ASPI Com-
mand Codes for the operating system you are using.
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Table 11.56: Host Adapter Inquiry Command

Offset # # Bytes Description R/W

00h (00) 01h (01) Command Code = 0 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 04h (04) Reserved for Expansion = 0

08h (08) 01h (01) Number of Host Adapters R

09h (09) 01h (01) Target ID of Host Adapter R

0Ah (10) 10h (16) SCSI Manager ID R

1Ah (26) 10h (16) Host Adapter ID R

2Ah (42) 10h (16) Host Adapter Unique Parameters R

The Extended Host Adapter Inquiry command is defined in Table 11.57.

Table 11.57: Extended Host Adapter Inquiry Command

Offset # Bytes Description R/W

00h (00) 01h (01) Command Code = 0 W

01h (01) 01h (01) Status R

02h (02) 01h (01) Host Adapter Number W

03h (03) 01h (01) SCSI Request Flags W

04h (04) 01h (01) Extended Request Signature = 55h R/W

05h (05) 01h (01) Extended Request Signature = AAh R/W

06h (06) 01h (01) Length of Extended Buffer (N),Low Byte R/W

07h (07) 01h (01) Length of Extended Buffer (N),High Byte R/W

08h (08) 01h (01) Number of Host Adapters R

09h (09) 01h (01) Target ID of Host Adapter R

0Ah (10) 10h (16) SCSI Manager ID R

1Ah (26) 10h (16) Host Adapter ID R

2Ah (42) 10h (16) Host Adapter Unique Parameters R

3Ah (58) N Extended Buffer R
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The user places the AA55h in bytes #4–5 of the structure.  The Extended Buffer
length (N) also needs to be initialized to the size of the extended buffer.  A typical
value would be four.

If the ASPI manager that is passed this new extended structure supports
the Extended Host Adapter Inquiry command, the AA55h bytes will be flipped
around to 55AAh.  If this does not occur, the caller should assume that the ASPI
manager does not support residual byte length or any of the other defined fields
in the extended buffer.  Note that it is possible to have multiple host adapters
loaded where the ASPI manager loaded for one card supports this Extended call,
while the ASPI manager for the other card does not.  In certain situations, this
could cause the Extended Host Adapter Inquiry call to fail (i.e., default back to
standard Host Adapter Inquiry call).

If the signature bytes are swapped (AA55h->55AAh), the Length of Extended
Buffer field will also be modified to indicate how many bytes of the extended
buffer were modified.  This leaves us room to expand the meaning of the ex-
tended buffer in the future.  For example, if an extended buffer size of ten is
passed in, though the ASPI manager loaded only supports the first 4 bytes, then
the value of four will be returned in the Length of Extended Buffer field.

Currently only the first 8 bytes of the extended buffer are defined.
The extended buffer field is formatted as shown in Table 11.58.

Table 11.58: Extended Buffer Field Definition

Offset # Bytes Description R/W

3Ah (58) 02h (02) Features Word R

Bits 15-4 Reserved

Bit 3 0 = Not Wide SCSI 32 host adapter
1 = Wide SCSI 32 host adapter

Bit 2 0 = Not Wide SCSI 16 host adapter
1 = Wide SCSI 16 host adapter

Bit 1 0 = Residual byte length not reported
1 = Residual byte length reported

Bit 0 0 = Scatter/gather not supported
1 = Scatter/gather supported

3Ch (60) 02h (02) Maximum Scatter/gather list length R

3Eh (62) 04h (04) Maximum SCSI data transfer length R

The Features Word bit fields defined above are self-explanatory. Note that if
bit #2 is set, your ASPI module should scan SCSI IDs 0–15 on this host adapter
for SCSI devices.  The Scatter/Gather fields (including the scatter/gather list
length) are currently only used by ASPI for OS/2.
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A Maximum SCSI Data Transfer Length of zero indicates no data transfer
length limitation.  A nonzero value indicates the largest value you should specify
in the ASPI SRB Data Allocation Length.

I M P O R T A N T Make sure you check the return value in the Length of Extended Buffer field to make
certain that the field you are looking at is valid (e.g., if 4 is returned in the Length of
Extended Buffer field, you should not use the value in the Maximum SCSI Data Trans-
fer Length field).

Now That I Know My ASPI Manager Supports Residual
Byte Length, How Do I Make Use of It?

The SCSI Request Flags Byte Is Currently Defined in the Various ASPI
Specifications as Follows:

7 6 5 4 3 2 1 0  

Rsvd Rsvd S/G Direction Bits Rsvd Link Post  

Note: The S/G (scatter/gather) bit is currently used only under ASPI for OS/2.

The New Definition For This Byte Is as Follows:

7 6 5 4 3 2 1 0  

Rsvd Rsvd S/G Direction Bits Residual Link Post  

If bit #2 (Residual) is set to 1, and the ASPI manager supports residual byte
length, then the residual byte length will be reported in the Data Allocation
Length field within the SRB (bytes 0Ah–0Dh). On a typical command comple-
tion with all requested data transferred and no residual bytes, the Data
Allocation Length field will contain the value zero.

N O T E Adaptec EZ-SCSI since v3.0 includes support for the residual byte feature.



12
T H E  F U T U R E  O F  S C S I  A N D

S T O R A G E  I N  G E N E R A L

Perhaps Winston Churchill best expressed
the frustration involved in trying to predict

what is yet to come: “The future is just one
damned thing after another . . . ” It hasn’t gotten

any easier since his day!

If You Can’t Beat ’em, Buy ’em!

That seems to be the accepted business philosophy these days. Almost every
day, the business section of the newspaper describes the latest corporate merger
or acquisition. The computer industry is constantly churning with such trans-
actions, and the SCSI segment is no different.

Adaptec bought Trantor, then Future Domain, then Western Digital’s host
adapter product line, then Corel’s CD creator product, then Incat Systems’ Easy
CD product. Apparently they’re not done yet, because in November, 1999, they
announced their intention to buy DPT for $235 million. This gives them primary
control of the PC host adapter market and the CD recording software market.
With the addition of DPT’s resources it gives them a strong grip on the RAID
market, too!
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AT&T bought NCR and called it AT&T GIS. Then they sold the Micro-
electronics Division to Hyundai, who called it Symbios. Adaptec tried to buy
Symbios, but the FTC said no (because it would give Adaptec too much con-
trol of the SCSI industry), so LSI Logic bought them instead!

It seems strange, but these days former competitors form alliances and
pool their resources to withstand the market pressure of larger companies
looking to take over their market. Other companies that try to go it alone often
buckle and disappear — like Micropolis and many other names from the past.

Another sequence of interesting acquisitions was when Conner Peripherals
bought Archive and then Seagate bought Conner. Seagate’s purchase of Conner
Peripherals was the final blow that killed SSA. With Conner gone, IBM had no
credible second source of SSA disk drives.

All these changes can influence your decision when choosing a host
adapter. For example, you look for assurance that the company will be there
when you need technical support or updated drivers. Will your card be sup-
ported under the new whiz-bang operating system when it’s available? All
manufacturers compete to provide what their market research tells them is
the best combination of price, performance, support, name recognition, and
so on. If you choose the wrong product, it may become an orphan if it loses
sufficient market share to keep software vendors interested in supporting it.

Coming Down the Pike

Ultra-3 (Fast-80) LVD

As of early 2000, manufacturers offer host adapters and disk drives that transfer
data at 160 MB/sec over a parallel bus. The first implementations at this speed
will be called Ultra3 160. The parallel SCSI vendors find themselves in a race
with the serial SCSI vendors, and at the moment it seems that parallel is winning.
They’re trying to increase the performance of parallel SCSI to the point where
Fibre Channel (100 MB/sec) and IEEE-1394 (50 MB/sec) will not be improve-
ments and thus postpone the serial takeover as long as possible.

IEEE 1394

This interface holds great promise and potential, but has been slow in coming
to fruition. Currently, the main application for IEEE 1394 is in connecting
digital cameras and camcorders to PCs for high-quality video capture and edit-
ing. Standard parallel SCSI is unsuitable for this purpose for several reasons:
First, the parallel SCSI cables are just too big and thick to attach to something
like a camcorder. Second, parallel SCSI lacks an isochronous (real time) transfer
mode. IEEE 1394 provides this ability and is relatively inexpensive to implement
as well. “Time waits for no man,” and neither does video!
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Fibre Channel

This has been the “Promised Land” of heavy-duty storage users and is finally
coming into popular use.

Fibre Channel comes in two interface types: copper and actual glass fibre.
The copper connection is lower in cost, yet still offers many of the serial inter-
face’s advantages. A fibre connection is required to get the full benefit of Fibre
Channel, though. Its long connection distances (10 km/segment for glass fibre)
and high speed (100 MB/sec) make fibre channel a good choice for corporate
servers, off-site backups, and redundant storage systems.

At some point, the price of fibre channel host adapters and devices may
come down to the point where it will be used in PCs, but that day seems quite
a ways off. See http://www.fibrechannel.com for more information.

Device Bay

This is a proposed standard being developed by Compaq, Intel, and Microsoft
to allow computer users to add peripheral devices to their system without
opening the case. It can support any computer peripheral except for memory,
CPUs, and video cards. The three sizes of Device Bay modules — DB13 (.5"),
DB20 (.8"), and DB32 (1.3") — accommodate the different sizes of computers
and devices, laptops through desktops. It combines IEEE 1394 and USB.
Whether Device Bay becomes an important development remains to be seen.
See http://www.devicebay.org for more information.

SCSI Harbor

This is an attempt by the SCSI Industry to define a standard modular package
for SCSI devices. This would make them more interchangeable and user instal-
lable. The current proposal consists of a “wrapper” assembly that accepts a 3.5"
form factor SCA-2 drive, which plugs into a dock assembly allowing easy insertion
and removal of the drive from a system.

It’s a shame this wasn’t standardized long ago. We’re looking forward to
being able to install SCSI drives without fiddling with ID switch cables and
jumpers! To check on the progress of this project, go to http://www.scsita.org.

Storage Area Networks

Corporations with vast amounts of mission-critical data want their data not
only to be available quickly throughout their entire company, they demand
that it also be automatically backed up in separate geographic locations so
that it is protected from natural disasters, fire, and so on. Storage Area Networks
are the answer to this need. They are similar in some ways to data communica-
tions networks like intranets, but they have some additional requirements 

http://www.nostarch.com/scsi2_redirect.htm?311a
http://www.nostarch.com/scsi2_redirect.htm?311b
http://www.nostarch.com/scsi2_redirect.htm?311c
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because of the nature of the data they carry. Protocols for data storage must
ensure that the data actually gets written onto the media even in situations where
the connection is lost or hardware fails. Communications protocols like TCP/IP
generally don’t handle such situations well, so special protocols are being devel-
oped for this purpose. In general, Fibre Channel is the transport of choice for
SANs. They may even be its raison d’etre.

Watch companies like Compaq, EMC, Adaptec and others for product
announcements. Comedian Stephen Wright has been heard to say: “You can’t
have everything; Where would you put it?” Well, the storage industry apparently
didn’t realize he was joking! It seems that at the current rate of growth, before
too long, there will be enough disk space to store a detailed description of every
atom on the planet (well, maybe not quite). In the “Information Age,” the more
data you can store, the more value you provide. We don’t see an end to this
trend any time soon.



A
A L L - P L A T F O R M  T E C H N I C A L

R E F E R E N C E

Parallel SCSI contains two types of electrical interface: single-ended and dif-
ferential. The single-ended interface, labeled “SE,” is the standard signal-to-
ground interface that came from the legacy of the SCSI predecessor SASI.
Differential SCSI, which uses the voltage difference between two signal wires,
came into the game as an interface for the professional market, where greater
distances between the system and the peripherals were desirable and reliability
requirements were higher.

With the ongoing work on SCSI-3, differential SCSI now splits into two
interfaces: the old differential SCSI, now called high voltage differential or
HVD, and low voltage differential, or LVD. Whereas HVD has always been
more expensive to implement, LVD is comparable to single-ended SCSI in
price and therefore should replace HVD in time.

Because most interface types use the same connectors, SCSI-2 introduced
logos to indicate the type of interface. Figure A.1 shows these logos. If you have
a system or external device that’s not too old (made in 1996 or later), it should
have one of these logos near the SCSI port to differentiate between the visually
identical interfaces. These icons can be used on devices, cables, terminators,
and connectors; they may appear with or without text labels. Also, they can be
scaled as needed. 
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(In Figure A.1, SCSI LVD/SE means the device is a multi-mode SCSI device that
senses if it’s connected to an LVD or an SE SCSI bus and switches its drivers to
the correct mode.

Now let’s take a deeper look at the interfaces.

Electrical Specs

Single-Ended SCSI Interface

The standard electrical interface for SCSI is single-ended, which means an inter-
face with one signal line and a corresponding ground line for each SCSI signal.
All signals are active low, which means that when the voltage is high the signal
is false, and when the voltage is low the signal is true. The official SCSI term for
the true signal state is signal assertion.

To define it more technically, the single-ended SCSI interface consists of
an open-collector or tri-state driver for each signal, capable of sinking at least
48 milliamps of current on signal assertion. The signal levels are listed in
Table A.1.

Table A.1: Single-Ended SCSI Signal Levels

Signal State Electrical Level Voltage

True (or “asserted”) Low 0.0 to 0.5 V DC
False (or “deasserted”) High 2.5 to 5.25 V DC, 2.5 to 3.7 V DC 

mode (see below) in active negation 

The single-ended SCSI interface can have a bus length of up to 6 meters (19.7
feet), when using standard 5 MB/sec SCSI-2 timing. Using higher signal fre-
quencies makes it necessary to shorten the bus accordingly. Therefore, if you
use Fast SCSI, your maximum bus length drops to 3 meters (9.8 feet). Ultra- 

Figure A.1: SCSI Logos (left to right): Single-Ended (SE), High Voltage Differential (DIFF), 
Low Voltage Differential (LVD), and LVD/SE SCSI

SCSI SE SCSI DIFF SCSI LVD SCSI LVD/SE
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SCSI (Fast-20) keeps this bus length, if you attach no more than four devices
on the bus. With more than four devices, UltraSCSI specifies a maximum bus
length of 1.5 meters (4.9 feet).

Active Negation

The faster UltraSCSI timing required active negation, a method to speed up
the asserted/deasserted transition of the line drivers by supporting the line
driver. Whereas a standard SE SCSI driver has two states, asserted and high-
impedance (deasserted), an active negation driver additionally has a transitional
state, wherein it actively negates (in the SCSI logical sense) the signal by pulling
the signal up to about 3 V. Technically, this is done by sourcing current until
the signal line has reached a safe negation level.

Active negation should be used by devices capable of higher speeds than
Fast SCSI on the REQ, ACK, and data lines. Active negation cannot be used
on the OR-tied signals, and it needs to be disabled while the SCAM protocol
runs. You may find “Active Negation” also written on terminator packages,
because newer termination chips tend to have active negation compatibility
listed as a feature, but any active terminator will work fine.

Differential SCSI Interfaces

“Classic” or “High Voltage” Differential (HVD)

The differential SCSI interface was defined to increase robustness and to over-
come the maximum bus length limitation of single-ended SCSI. Two-wire
differential signaling is an old and proven way to achieve reliable signal trans-
mission in noisy environments and over long distances. The industry standard
for HVD SCSI interfaces is ISO/IEC 8482-1993-12.

Differential SCSI’s greatest advantage is its ability to use bus lengths of up
to 25 meters (82 feet), regardless of the signal timing used. Also, differential
SCSI is the only SCSI-2 interface that officially supports Fast SCSI timings. It’s
interesting to note the elegant way the SCSI-2 standard says this: “Use of single-
ended drivers and receivers with the fast synchronous data transfer option is
not recommended.”

In differential SCSI, each signal consists of two lines called “–signal” and
“+signal.” A signal is true if the +signal is higher than the –signal and false if
the –signal is higher than the +signal. This setup, along with twisted-pair cables,
yields very good noise immunity. Also, the resultant higher voltage levels of the
differential configuration make it possible to achieve a 25-meter (82-foot) bus. 

The signal levels for high voltage differential SCSI are shown in Table A.2. 
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Table A.2: Differential SCSI Signal Levels

Signal State HVD Voltage Levels

Low-level (false) output voltage 1.7 V maximum
High-level (true) output voltage 2.7 V minimum
Differential output voltage 1 V minimum
Common mode (DC) voltage range –7 to +12 V DC

To avoid the risk of burning up a SCSI bus by accidentally connecting a single-
ended device to a differential bus, the SCSI standard defines a protection
scheme. The differential line drivers are enabled by a signal called DIFFSENS
(differential sense) on the SCSI bus. If you connect a single-ended device to
the bus, the DIFFSENS line is grounded and the differential drivers are disabled.
However, some (fortunately only a few) older devices didn’t use the DIFFSENS
line, so if you have some older differential SCSI disks, be sure to find out if
they are single-ended or differential before connecting them to your system.
Single-ended and high voltage differential devices can’t coexist on the same bus.

Low Voltage Differential (LVD as Used in “Ultra2” and “Ultra3” SCSI)

The higher working frequencies of Fast-40 SCSI made it nearly impossible to
maintain data integrity with the single-ended interface. On the other hand, the
implementation cost of the classic differential SCSI interface made it too expen-
sive for the mass market. So a new standard was born, called low voltage
differential, or LVD, signaling. With LVD, the synchronous timing could be
reduced to achieve an effective working frequency of 40 MHz, or an 80
MB/sec data rate for a 16-bit wide channel. Additionally, cable length could go
up to 12 meters (39.4 feet). For point-to-point connections, this distance may
even be extended up to 25 meters (82 feet). 

Additionally, with LVD, differential technology and its advantages can be
implemented into the protocol chip, eliminating the need for external drivers
and high voltages on the logic board. This makes LVD competitive with the
standard single-ended interface in terms of implementation cost and introduces
differential signaling in the mass market.

(It’s nearly impossible for a simple signal table to show the voltage levels 
as in SE or HVD. If you’re ready to dig deeply into electrical matters, check
Chapter 7 and Annex A of the actual SCSI-3 SPI standard — but this may be
more than you need to know to create a robust, functional system.)

As compatibility with single-ended interfaces is built in, LVD will likely
eliminate the single-ended interface in the long term, The newer line drivers
that are used in LVD devices don’t turn off the interface when they sense
ground on the DIFFSENS line, but switch to single-ended mode. This happens 
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at power-on, and LVD devices on this bus react like standard single-ended
UltraSCSI devices. This downward compatibility poses one potential problem,
however: Imagine a typical system with, say, two LVD disks inside and one
external, all attached to 4 meters (13.1 feet) of cable length—easily within the
spec. Now, if for any reason you need to connect a single-ended device (with
external cable) to this SCSI channel — bingo, you just exceeded the single-
ended UltraSCSI spec by at least 2 meters (6.6 feet). In such cases you would
have to disable all “Fast anything” support. To overcome this issue, most host
adapter vendors use a two-channel solution with one LVD and one SE channel
on one chip.

Cable Specs

In SCSI, the cable is — in some ways — the most important part of the bus,
because its quality directly affects the reliability of the whole system. It’s important
to obey SCSI’s rather tight cable specifications in order to get the best perfor-
mance from your SCSI system. Like everything in SCSI, the cable evolved over
time. In SCSI-1, a cable impedance of 132 ohms would have been a perfect
impedance match with the SE termination circuit (an HVD cable impedance
should have been 122 ohms). At that time, such cables simply were not available,
so this was noted in the standard. In the end, 100 ohms ± 10% were defined.
SCSI-2 used the same recommendations but restated them slightly, specifying
cable impedance of over 90 ohms and under 140 ohms. For Fast SCSI-2, the
upper limit dropped to 132 ohms. The SCSI-3 drafts SPI-2 and SPI-3 now state
minimum and maximum impedances for every speed and interface. In general,
using a cable with a characteristic impedance between 84 ohms and 96 ohms
meets the SE requirements for all speeds, and a cable with an impedance
between 115 and 135 ohms is the perfect match for differential SCSI, be it HVD
or LVD. This sounds like different cables, but because of the different measuring
setups for SE and differential modes, a good quality cable typically can meet both
specs. For example, a typical good ribbon SCSI cable is specified with impedance
values of 90 ± 6 ohms for SE and 125 ± 10 ohms for differential SCSI mode. 

Internal Cables

The SCSI-2 standard defines 50- and 68-conductor unshielded flat-ribbon cables
with an impedance between 90 and 140 ohms and a minimum conductor size
of 0.080 inch (28 AWG). Also specified is a 25- or 34-pair twisted-pair cable.
The twisted-pair cable is better for two reasons: First, a signal line twisted with
its ground wire is less sensitive to RF (radio frequency) noise than is a flat-ribbon
cable. Second, twisted-pair cables often have loose cable pairs between the
connectors, making them more flexible and easier to handle than a rather
stiff 50- or 68-conductor ribbon cable.
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External Cables

The electrical specifications for external cables are fundamentally identical to
those of internal cables. External cables are, in virtually all cases, round shielded
cables with a SCSI connector on both ends. The SCSI standard even specifies
a particular layout for an external cable, wherein the signals are distributed in
three layers of wire pairs with REQ and ACK, the most sensitive signals, in the
center. For cables that have a third pair of wires in the center, the SCSI stan-
dard defines the third pair as ground.

Figure A.2 shows a cross section of an external SCSI cable with some of the
wire pairs drawn in to indicate the layers. The REQ and ACK signals are in the
very center, control signals are in the middle layer, and data lines and termi-
nation power are in the outer layer.

N O T E The largest hurdle to overcome with external SCSI cabling is the numerous connections
between the round external cables and ribbon cables. The junction of every connector
causes impedance mismatches and signal losses. As a result, a SCSI system with many
external devices is more susceptible to data errors than one with many internal devices.

Lately, Teflon® cables have gotten a lot of attention. This refers to a standard
copper cable with a PTFE (Poly Tetra Fluoro Ethylene) insulation instead of
the typical polyvinyl chloride (PVC) or thermoplastic elastomer (TPE) insula-
tion. These really are better cables — aside from better electrical specs
(capacitance and cross talk are lower, insulation resistance is higher than with

Figure A.2: Recommended SCSI Round Cable Layout

Control signals

REQ and ACK signals

Data lines and 
Termination Power
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PVC, for example), PTFE is harder and tougher than PVC—giving you a more
robust cable physically and electrically.

Connector Specs

Connectors are a continuing saga in the life of SCSI because of the various
interface widths, longevity of the standards process, and manufacturer prefer-
ences. We’ll look at the standard connectors first. 

Since the first SCSI-2 drafts, the cables are called by one-letter names like
A-cable or B-cable and so on, differentiated by bus width and cable/connector
layout. You might expect that each letter would name a typical combination of
cable layout and connector type, but that would be too easy. Instead, the A-
cable comes in three different flavors, all three in current use, and some of
the other cable connectors in both a shielded and an unshielded version.

We need to differentiate between unshielded and shielded official con-
nectors, vendor-specific connectors, and obsolete connectors (both shielded
and unshielded). To sum up, following are the connectors we’ll specify later.

The unshielded connectors in use are:

• 50-pin flat cable connector called IDC header (“A-cable”; female configu-
ration for cables, male for devices). This connector was defined in SCSI-1. 

• 68-pin high-density connector (“P-cable” and “Q-cable”; male for cables,
female for devices). This connector was introduced in SCSI-2 and is the
standard connector for Wide SCSI.

• 80-pin single connector attachment (SCA-2) connector. This connector
was introduced in the SCSI-3 SPI-2 standard and carries the P-cable
together with device power and a few additional control signals. It is
meant to be used with SCSI backplanes.

Shielded connectors that are common in the market are:

• 50-pin Centronics-type connector (“A-cable”; male for cables, female for
devices). This connector was defined in SCSI-1.

• 50-pin high-density connector (“A-cable”; male for cables, female for
devices). This connector was defined in SCSI-2 and, together with the
Centronics-type connector, is the standard connector for 8-bit SCSI.

• 68-pin high-density connector (“P-cable” and “Q-cable”; male for cables,
female for devices). This connector was introduced in SCSI-2 and is the
standard external connector for Wide SCSI.
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• 68-pin very high-density cable interconnect (VHDCI or VHD) connector
(“P-cable” and “Q-cable”; male for cables, female for devices). The VHDCI
connector was introduced in the SCSI-3 SPI-2 standard.

From the vendor-specific connectors, the following are still in use:

• 25-pin Sub-D connector (Apple defined pin wiring). Apple defined this
connector and layout with the introduction of the Macintosh computer.
Because of the Mac’s popularity, the cable was widely used for external
devices (and still haunts us to this day). This connector works only for 
single-ended, asynchronous signaling.

• Apple 30-pin HDI connector (“PowerBook connector”). When Apple
needed a SCSI connector for their PowerBook notebooks, they defined 
a new compact SCSI connector instead of using the new HD connector,
presumably for cost reasons.

• IBM 60-pin high-density mini Centronics connector. This connector was
in discussion for SCSI-2, but then became unpopular. IBM used this con-
nector on PS/2 and RS-6000 machines.

And last, but not least, the obsolete connectors:

• 68-pin high-density for the Wide SCSI B-cable. The B-cable never really
appeared . . . .

• Sun 50-pin sub-D connector. This three-row sub-D connector was widely
used by Sun Microsystems on their old workstations.

• Novell/Procomp DCB SCSI connector. A two-row 37-pin sub-D connector
defined by Novell for their DCB controller boards.

• 25-pin sub-D connector (Future Domain pinout). At about the same time
as Apple, Future Domain defined this connector and layout as a cheap
SCSI connector for the emerging market of personal computers. This
pinout never caught on in a big way.

All official standard connectors are available in single-ended, high voltage dif-
ferential, and low voltage differential versions. Some of the vendor-specific and
obsolete ones are available in single-ended and high voltage differential: In
sum, this adds up to a whopping 40 connector/interface options — and you
can be sure that some are missing!
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N O T E Cables designed for differential use generally can be used for single-ended operation, but
be careful if you attempt to use a single-ended cable in a differential system. Aside from the
connector options with less than 50 pins, some — mainly cheaper — SCSI cables use less
than the required 50 conductors by combining multiple ground pins on one conductor.
On a single-ended system, it’s “only” the signal quality that is at risk, but using this cable
in a differential setup shorts multiple signal lines and may not be healthy for the devices.

Unshielded Connectors

50-Pin 8-Bit IDC Header Connector

The venerable 50-pin IDC header connector was the standard connector for
SCSI’s predecessor SASI and still is the standard device connector for 8-bit
SCSI devices. Even devices with vendor-specific external connectors (Apple,
Future Domain, IBM, Novell/Procomp) use this connector on the inside.
Figures A.3 and A.4 show the 50-pin IDC header connector. The upper con-
nector with the female contacts is the cable connector, and the lower male
part is the connector you will see on SCSI devices. If you’re unsure about 
the orientation or if you have a connector without the keying notch, you can
generally identify pin 1 by a mark on the connector’s plastic body—typically
an arrow, spot, or line is used.

The pinouts for the single-ended and differential variants of this connector
are shown in Table A.3.

Figure A.3: Female IDC Header Connector (Cable)

Pin 1
Pin 2

Pin 49
Pin 50

Figure A.4: Male IDC Header Connector (Device)

Pin 49
Pin 50

Pin 1
Pin 2
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Table A.3: A-Cable Pinouts (IDC Header Connector)

High Low High Low
Single Voltage Voltage Single Voltage Voltage

Pin Ended Differential Differential Pin Ended Differential Differential

1 SIGNAL RETURN GROUND +DB(0) 26 TERMPWR TERMPWR TERMPWR 
2 –DB(0) GROUND –DB(0) 27 RESERVED RESERVED RESERVED  
3 SIGNAL RETURN +DB(0) +DB(1) 28 RESERVED RESERVED RESERVED
4 –DB(1) –DB(0) –DB(1) 29 GROUND +ATN GROUND
5 SIGNAL RETURN +DB(1) +DB(2) 30 GROUND –ATN GROUND
6 –DB(2) –DB(1) –DB(2) 31 SIGNAL RETURN GROUND +ATN
7 SIGNAL RETURN +DB(2) +DB(3) 32 –ATN GROUND –ATN
8 –DB(3) –DB(2) –DB(3) 33 GROUND +BSY GROUND
9 SIGNAL RETURN +DB(3) +DB(4) 34 GROUND –BSY GROUND
10 –DB(4) –DB(3) –DB(4) 35 SIGNAL RETURN +ACK +BSY
11 SIGNAL RETURN +DB(4) +DB(5) 36 –BSY –ACK –BSY
12 –DB(5) –DB(4) –DB(5) 37 SIGNAL RETURN +RST +ACK  
13 SIGNAL RETURN +DB(5) +DB(6) 38 –ACK –RST –ACK
14 –DB(6) –DB(5) –DB(6) 39 SIGNAL RETURN +MSG +RST
15 SIGNAL RETURN +DB(6) +DB(7) 40 –RST –MSG –RST  
16 –DB(7) –DB(6) –DB(7) 41 SIGNAL RETURN +SEL +MSG
17 SIGNAL RETURN +DB(7) +DB(P) 42 –MSG –SEL –MSG
18 –DB(P) –DB(7) –DB(P) 43 SIGNAL RETURN +C/D +SEL 
19 GROUND +DB(P) GROUND 44 –SEL –C/D –SEL
20 GROUND –DB(P) GROUND 45 SIGNAL RETURN +REQ +C/D
21 GROUND DIFFSENS DIFFSENS 46 –C/D –REQ –C/D
22 GROUND GROUND GROUND 47 SIGNAL RETURN +I/O +REQ 
23 RESERVED RESERVED RESERVED 48 –REQ –I/O –REQ 
24 RESERVED RESERVED RESERVED 49 SIGNAL RETURN GROUND +I/O 
25 N/C TERMPWR TERMPWR 50 –I/O GROUND –I/O 

68-Pin Wide SCSI P- and Q-Cables

The P- and Q-cables use the high-density connector introduced in SCSI-2. The
high-density connector was specified for multiple reasons, but one of the most
pressing was that the emerging (at that time) 31/2-inch devices didn’t have
enough mounting space to fit an IDC connector with 68 pins. This connector
is basically the same for internal and external cables — the internal version 
is unshielded, has a plastic body, and lacks locking mechanisms. The cable
connector is the male connector (Figure A.5); the device is the female con-
nector (Figure A.6).

Table A.4 shows the pinouts for single-ended and differential P-cables. 

Figure A.5: SCSI-2 Wide High-Density Connector, Male (P- and Q-cable)

Pin 1

Pin 2

Pin 34

Pin 68
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Table A.4 shows the pinouts for single-ended and differential P-cables. 

Table A.4: P-Cable Pinouts

Pin SE HVD LVD Pin SE / LVD HVD 

1 SIGNAL RETURN +DB(12) +DB(12)  35 –DB(12) –DB(12)
2 SIGNAL RETURN +DB(13) +DB(13)  36 –DB(13) –DB(13) 
3 SIGNAL  RETURN +DB(14) +DB(14)  37 –DB(14) –DB(14)
4 SIGNAL RETURN +DB(15) +DB(15)  38 –DB(15) –DB(15)
5 SIGNAL RETURN +DB(P1) +DB(P1)  39 –DB(P1) –DB(P1) 
6 SIGNAL RETURN GND +DB(0)  40 –DB(0) GROUND 
7 SIGNAL RETURN +DB(0) +DB(1)  41 –DB(1) –DB(0) 
8 SIGNAL RETURN +DB(1) +DB(2)  42 –DB(2) –DB(1) 
9 SIGNAL RETURN +DB(2) +DB(3)  43 –DB(3) –DB(2) 
10 SIGNAL RETURN +DB(3) +DB(4)  44 –DB(4) –DB(3) 
11 SIGNAL RETURN +DB(4) +DB(5)  45 –DB(5) –DB(4) 
12 SIGNAL RETURN +DB(5) +DB(6)  46 –DB(6) –DB(5) 
13 SIGNAL RETURN +DB(6) +DB(7)  47 –DB(7) –DB(6) 
14 SIGNAL RETURN +DB(7) +DB(P)  48 –DB(P) –DB(7) 
15 GROUND  +DB(P) GROUND  49 GROUND –DB(P)
16 GROUND DIFFSENS DIFFSENS  50 GROUND GROUND 
17 TERMPWR TRMPWR TERMPWR   51 TERMPWR TRMPWR 
18 TERMPWR TRMPWR TERMPWR  52 TERMPWR TRMPWR 
19 RESERVED  RESERVED RESERVED  53 RESERVED RESERVED
20 GROUND  +ATN GROUND 54 GROUND –ATN 
21 SIGNAL RETURN GROUND +ATN  55 –ATN GROUND 
22 GROUND  +BSY GROUND  56 GROUND –BSY 
23 SIGNAL RETURN +ACK +BSY  57 –BSY –ACK 
24 SIGNAL RETURN +RST +ACK  58 –ACK –RST 
25 SIGNAL RETURN +MSG +RST  59 –RST –MSG 
26 SIGNAL RETURN +SEL +MSG  60 –MSG –SEL 
27 SIGNAL RETURN +C/D +SEL  61 –SEL –C/D 
28 SIGNAL RETURN +REQ +C/D  62 –C/D –REQ 
29 SIGNAL RETURN +I/O +REQ  63 –REQ –I/O 
30 SIGNAL RETURN GROUND +I/O  64 –I/O GROUND 
31 SIGNAL RETURN +DB(8) +DB(8)  65 –DB(8) –DB(8) 
32 SIGNAL RETURN +DB(9) +DB(9)  66 –DB(9) –DB(9) 
33 SIGNAL RETURN +DB(10) +DB(10)  67 –DB(10) –DB(10)
34 SIGNAL RETURN +DB(11) +DB(11)  68 –DB(11) –DB(11) 

Figure A.6: SCSI-2 Wide High-Density Connector, Female (Device)
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Pin 35
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Table A.5 shows the pinouts for single-ended and differential Q-cables.

Table A.5: Q-Cable Pinouts

Pin SE LVD HVD Pin SE / LVD HVD

1 SIGNAL RETURN +DB(28) +DB(28) 35 –DB(28) –DB(28)
2 SIGNAL RETURN +DB(29) +DB(29) 36 –DB(29) –DB(29) 
3 SIGNAL RETURN +DB(30) +DB(30) 37  –DB(30) –DB(30)  
4 SIGNAL RETURN +DB(31) +DB(31) 38 –DB(31) –DB(31) 
5 SIGNAL RETURN +DB(P3) +DB(P3) 39 –DB(P3) –DB(P3)
6 SIGNAL RETURN +DB(16) GROUND 40 –DB(16) GROUND  
7 SIGNAL RETURN +DB(17) +DB(16) 41 –DB(17) –DB(16) 
8 SIGNAL RETURN +DB(18) +DB(17) 42 –DB(18) –DB(17)
9 SIGNAL RETURN +DB(19) +DB(18) 43 –DB(19) –DB(18)
10 SIGNAL RETURN +DB(20) +DB(19) 44 –DB(20) –DB(19)
11 SIGNAL RETURN +DB(21) +DB(20) 45 –DB(21) –DB(20)
12 SIGNAL RETURN +DB(22) +DB(21) 46 –DB(22) –DB(21)
13 SIGNAL RETURN +DB(23) +DB(22) 47 –DB(23) –DB(22) 
14 SIGNAL RETURN +DB(P2) +DB(23) 48 –DB(P2) –DB(23)
15 GROUND GROUND +DB(P2) 49 GROUND –DB(P2)  
16 GROUND DIFFSENS DIFFSENS 50 GROUND GROUND  
17 TERMPWRQ TERMPWRQ TERMPWRQ 51 TERMPWRQ TERMPWRQ
18 TERMPWRQ TERMPWRQ TERMPWRQ 52 TERMPWRQ TERMPWRQ
19 RESERVED RESERVED RESERVED 53 RESERVED RESERVED 
20 GROUND GROUND TERMINATED 54 GROUND TERMINATED
21 GROUND TERMINATED GROUND 55 TERMINATED GROUND 
22 GROUND GROUND TERMINATED 56 GROUND TERMINATED
23 GROUND TERMINATED +ACKQ 57 TERMINATED –ACKQ
24 SIGNAL RETURN +ACKQ TERMINATED 58 –ACKQ TERMINATED
25 GROUND TERMINATED TERMINATED 59 TERMINATED TERMINATED
26 GROUND TERMINATED TERMINATED 60 TERMINATED TERMINATED
27 GROUND TERMINATED TERMINATED 61 TERMINATED TERMINATED
28 GROUND TERMINATED +REQQ 62 TERMINATED –REQQ 
29 SIGNAL +REQQ TERMINATED 63 –REQQ TERMINATED
30 GROUND TERMINATED GROUND 64 TERMINATED GROUND
31 SIGNAL RETURN +DB(24) +DB(24) 65 –DB(24) –DB(24)
32 SIGNAL RETURN +DB(25) +DB(25) 66 –DB(25) –DB(25) 
33 SIGNAL RETURN  +DB(26) +DB(26) 67 –DB(26) –DB(26)
34 SIGNAL RETURN +DB(27) +DB(27) 68 –DB(27) –DB(27)

80-Pin Wide SCSI SCA Connector

The SCA-2 connector was specified in SCSI-3 SPI-2 for SCSI backplanes — with
disk drive arrays in mind — and is a bit different from the other connectors,
because it not only carries the SCSI signals, but also supplies voltage for the
devices and necessary control signals for drive arrays.

The SCA-2 connector is an approved EIA standard (EIA-700A0AE) and
an SFF project (SFF-8451). SCA-2 has some advantages for applications
wherein drives may be swapped or lots of identical drives must be held as
spare parts:
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• SCA-2, together with the defined connector position, is ideal for slide-in
devices. The manufacturer doesn’t necessarily need to define a proprietary
connector (nor do you). Of course, most manufacturers still do.

• As stated, it carries all SCSI signals and the supply power in one connector,
removing the need for different connectors.

• SCA-2 is hot-pluggable. Defined lengths of the pins lead to a defined con-
tact sequence with pre-charging of the drive’s electronic circuits, enabling
suppression of spikes and other signal noise while connecting. The embed-
ded motor start control helps here and also carries the mechanism for
standby drives.

• SCA-2 carries spindle synchronization. Even though spindle sync is not yet
standardized over different disk drives, it remains desirable for arrays of
identical drives. This signal is now considered obsolete and may be removed
in new devices.

• SCA-2 devices by definition are not terminated. Therefore you can’t acci-
dentally forget to remove this jumper.

Figures A.7 and A.8 show the connectors; Table A.6 lists the pinouts.

Figure A.7: SCA-2 Connector, Female (Backplane)

Position 1

Position 41

Position 40

Position 80
Advanced Grounding Contacts

Figure A.8: SCA-2 Connector, Male (Device)

Pin 40

Pin 80

Pin 1

Pin 41
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Table A.6: SCA-2 Pinouts

Pin Single Ended LVD/HVD Pin Single Ended LVD/HVD

1 (Long) 12 V CHARGE 12 V CHARGE 41 (Long) 12 V GROUND 12 V GROUND
2 12 V 12 V 42 (Long) 12 V GROUND 12 V GROUND
3 12 V 12 V 43 (Long) 12 V GROUND 12 V GROUND 
4 12 V 12 V 44 MATED 1 MATED 1 
5 3.3 V 3.3 V 45 (Long) 3.3 V CHARGE 3.3 V CHARGE 
6 3.3 V 3.3 V 46 (Long) GROUND DIFFSENS 
7 –DB(11) –DB(11) 47 SIGNAL RETURN +DB(11) 
8 –DB(10) –DB(10) 48 SIGNAL RETURN +DB(10) 
9 –DB(9) –DB(9) 49 SIGNAL RETURN +DB(9) 
10 –DB(8) –DB(8) 50 SIGNAL RETURN +DB(8) 
11 –I/O –I/O 51 SIGNAL RETURN +I/O 
12 –REQ –REQ 52 SIGNAL RETURN +REQ 
13 –C/D –C/D 53 SIGNAL RETURN +C/D 
14 –SEL –SEL 54 SIGNAL RETURN +SEL 
15 –MSG –MSG 55 SIGNAL RETURN +MSG 
16 –RST –RST 56 SIGNAL RETURN +RST 
17 –ACK –ACK 57 SIGNAL RETURN +ACK 
18 –BSY –BSY 58 SIGNAL RETURN +BSY 
19 –ATN –ATN 59 SIGNAL RETURN +ATN 
20 –DB(P) –DB(P) 60 SIGNAL RETURN +DB(P) 
21 –DB(7) –DB(7) 61 SIGNAL RETURN +DB(7) 
22 –DB(6) –DB(6) 62 SIGNAL RETURN +DB(6) 
23 –DB(5) –DB(5) 63 SIGNAL RETURN +DB(5) 
24 –DB(4) –DB(4) 64 SIGNAL RETURN +DB(4) 
25 –DB(3) –DB(3) 65 SIGNAL RETURN +DB(3) 
26 –DB(2) –DB(2) 66 SIGNAL RETURN +DB(2) 
27 –DB(1) –DB(1) 67 SIGNAL RETURN +DB(1) 
28 –DB(0) –DB(0) 68 SIGNAL RETURN +DB(0) 
29 –DB(P1) –DB(P1) 69 SIGNAL RETURN +DB(P1) 
30 –DB(15) –DB(15) 70 SIGNAL RETURN +DB(15) 
31 –DB(14) –DB(14) 71 SIGNAL RETURN +DB(14) 
32 –DB(13) –DB(13) 72 SIGNAL RETURN +DB(13) 
33 –DB(12) –DB(12) 73 SIGNAL RETURN +DB(12) 
34 5 V 5 V 74 MATED 2 MATED 2 
35 5 V 5 V 75 (Long) 5 V GROUND 5 V GROUND 
36 (Long) 5 V CHARGE 5 V CHARGE 76 (Long) 5 V GROUND 5 V GROUND 
37 (Long) SPINDLE SYNC SPINDLE SYNC 77 (Long) ACTIVE LED OUT ACTIVE LED OUT 
38 (Long) RMT_START RMT_START 78 (Long) DLYD_START DLYD_START 
39 (Long) SCSI ID (0) SCSI ID (0) 79 (Long) SCSI ID (1) SCSI ID (1) 
40 (Long) SCSI ID (2) SCSI ID (2) 80 (Long) SCSI ID (3) SCSI ID (3) 

N O T E On most of the cheap SCA connector adapters on the market, the DIFFSENS pin in the
SCA connector is not connected. This leads to trouble with an SCA LVD drive on an SE
bus. If you have such an adapter, you’ll need to solder a short wire from the SCA con-
nector’s pin 46 to the HD connector’s pin 16 to connect DIFFSENS.



All-Platform Technical Reference 327

Shielded Connectors

Shielded connectors are used generally for external cables, meaning cables
that are not located in closed cases and therefore need shielding. Compared
with the few standardized unshielded connectors, this is where the real mess
with SCSI connectors starts. Whatever you do, be prepared for the fact that
the adapter you need now isn’t available in your favorite store.

50-Pin Centronics-Style (A-Cable)

The Centronics-style connector started in SCSI-1 and is still the de facto standard
for external connections — even though it is losing ground against the high- density
connector. This connector is usually secured with two spring clamps. Like all
other ribbon-contact connectors, it is intended to be foolproof — you virtually
can’t damage it or connect it incorrectly, even using force, and contact reliability
is typically very high.

Table A.7 lists the pinouts for 50-pin Centronics-style connectors. Figures
A.9 and A.10 show the 50-position shielded low-density cable and device con-
nectors (A-cable).

Table A.7: Centronics-Style Connector Pinouts

Single Single 
Pin Ended HVD LVD Pin Ended HVD LVD

1 GROUND GROUND +DB(0) 26 –DB(0) GROUND TERMPWR 
2 GROUND +DB(0) –DB(0) 27 –DB(1) –DB(0) RESERVED
3 GROUND +DB(1) +DB(1) 28 –DB(2) –DB(1) RESERVED
4 GROUND +DB(2) –DB(1) 29 –DB(3) –DB(2) GROUND 
5 GROUND +DB(3) +DB(2) 30 –DB(4) –DB(3) GROUND
6 GROUND +DB(4) –DB(2) 31 –DB(5) –DB(4) +ATN 
7 GROUND +DB(5) +DB(3) 32 –DB(6) –DB(5) -ATN 
8 GROUND +DB(6) –DB(3) 33 –DB(7) –DB(6) GROUND 
9 GROUND +DB(7) +DB(4) 34 –DB(P) –DB(7) GROUND 
10 GROUND +DB(P) –DB(4) 35 GROUND –DB(P) +BSY 
11 GROUND DIFFSENS +DB(5) 36 GROUND GROUND –BSY 
12 RESERVED RESERVED –DB(5) 37 RESERVED RESERVED +ACK 
13 Not  TERMPWR +DB(6) 38 TERMPWR TERMPWR –ACK

connected
14 RESERVED  RESERVED –DB(6) 39 RESERVED RESERVED +RST 
15 GROUND +ATN +DB(7) 40 GROUND –ATN –RST 
16 GROUND GROUND –DB(7) 41 –ATN GROUND +MSG 
17 GROUND +BSY +DB(P) 42 GROUND –BSY –MSG 
18 GROUND +ACK –DB(P) 43 –BSY –ACK +SEL 
19 GROUND +RST GROUND 44 –ACK –RST –SEL 
20 GROUND +MSG GROUND 45 –RST –MSG +C/D 
21 GROUND +SEL DIFFSENS 46 –MSG –SEL –C/D 
22 GROUND +C/D GROUND 47 –SEL –C/D +REQ 
23 GROUND +REQ RESERVED 48 –C/D –REQ –REQ 
24 GROUND +I/O RESERVED 49 –REQ –I/O +I/O 
25 GROUND GROUND TERMPWR 50 –I/O GROUND –I/O 
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50-Pin High-Density Connector (A-cable)

Figures A.11 and A.12 show the 50-position shielded high-density cable and
device connectors for the A-cable. This is the standard connector you will see
as external cable connector on SCSI-2 host adapters now.

Table A.8 lists the pinouts for this connector.

Figure A.9: Centronics-Style Low-Density Connector, Male (Cable)

Pin 1

Pin 26

Pin 25

Pin 50

Figure A.10: Centronics-Style Low-Density Connector, Female (Device)

Pin 25 Pin 1

Pin 50 Pin 36

Figure A.11: Shielded High-Density Sub-D Connector, Male (Cable)

Pin 1

Spring clamp lock mechanisms

Pin 25

Pin 26 Pin 50
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Table A.8: High-Density Sub-D Connector (A-Cable Pinouts)

Pin SE LVD HVD Pin SE / LVD HVD

1 SIGNAL RETURN +DB(0) GROUND 26 –DB(0) GROUND 
2 SIGNAL RETURN +DB(1) +DB(0) 27 –DB(1) –DB(0) 
3 SIGNAL RETURN +DB(2) +DB(1) 28 –DB(2) –DB(1) 
4 SIGNAL RETURN +DB(3) +DB(2) 29 –DB(3) –DB(2) 
5 SIGNAL RETURN +DB(4) +DB(3) 30 –DB(4) –DB(3) 
6 SIGNAL RETURN +DB(5) +DB(4) 31 –DB(5) –DB(4) 
7 SIGNAL RETURN +DB(6) +DB(5) 32 –DB(6) –DB(5)
8 SIGNAL RETURN +DB(7) +DB(6) 33 –DB(7) –DB(6) 
9 SIGNAL RETURN +DB(P) +DB(7) 34 –DB(P) –DB(7) 
10 GROUND GROUND +DB(P) 35 GROUND –DB(P) 
11 GROUND DIFFSENS DIFFSENS 36 GROUND GROUND 
12 RESERVED RESERVED RESERVED 37 RESERVED RESERVED 
13 OPEN (1) TERMPWR TERMPWR 38 TERMPWR TERMPWR 
14 RESERVED RESERVED RESERVED 39 RESERVED RESERVED 
15 GROUND GROUND +ATN 40 GROUND –ATN 
16 SIGNAL RETURN +ATN GROUND 41 –ATN GROUND 
17 GROUND GROUND +BSY 42 GROUND –BSY 
18 SIGNAL RETURN +BSY +ACK 43 –BSY –ACK 
19 SIGNAL RETURN +ACK +RST 44 –ACK –RST 
20 SIGNAL RETURN +RST +MSG 45 –RST –MSG 
21 SIGNAL RETURN +MSG +SEL 46 –MSG –SEL 
22 SIGNAL RETURN +SEL +C/D 47 –SEL –C/D 
23 SIGNAL RETURN +C/D +REQ 48 –C/D –REQ 
24 SIGNAL RETURN +REQ +I/O 49 –REQ –I/O 
25 SIGNAL RETURN +I/O GROUND 50 –I/O GROUND 

68-Pin High-Density Connector (P- and Q-Cables)

The pinouts and mechanical dimensions for the shielded P- and Q-cable con-
nectors are the same as those of the internal connectors, except that they have
a metal-shielded body and their locking mechanism uses screws instead of
clamps(Figures A.13 and A.14). This is the standard connector for 16-bit SCSI
interfaces since SCSI-2 Wide regardless of the electrical interface, be it Wide
SCSI, Ultra Wide, or Ultra2 LVD.

Figure A.12: Shielded High-Density Sub-D Connector, Female (Device)
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Pin 50 Pin 26

Spring clamp lock mechanisms
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Table A.9 shows the pinouts for the P-cables, Table A.10 for the Q-cable.

Table A.9: High-Density Sub-D Connector (P-Cable Pinouts)

Pin SE HVD LVD Pin SE / LVD HVD

1 SIGNAL RETURN +DB(12) +DB(12) 35 –DB(12) –DB(12) 
2 SIGNAL RETURN +DB(13) +DB(13) 36 –DB(13) –DB(13) 
3 SIGNAL RETURN +DB(14) +DB(14) 37 –DB(14) –DB(14) 
4 SIGNAL RETURN +DB(15) +DB(15) 38 –DB(15) –DB(15) 
5 SIGNAL RETURN +DB(P1) +DB(P1) 39 –DB(P1) –DB(P1) 
6 SIGNAL RETURN GROUND +DB(0) 40 –DB(0) GROUND 
7 SIGNAL RETURN +DB(0) +DB(1) 41 –DB(1) –DB(0) 
8 SIGNAL RETURN +DB(1) +DB(2) 42 –DB(2) –DB(1) 
9 SIGNAL RETURN +DB(2) +DB(3) 43 –DB(3) –DB(2)
10 SIGNAL RETURN +DB(3) +DB(4) 44 –DB(4) –DB(3) 
11 SIGNAL RETURN +DB(4) +DB(5) 45 –DB(5) –DB(4) 
12 SIGNAL RETURN +DB(5) +DB(6) 46 –DB(6) –DB(5) 
13 SIGNAL RETURN +DB(6) +DB(7) 47 –DB(7) –DB(6) 
14 SIGNAL RETURN +DB(7) +DB(P) 48 –DB(P) –DB(7) 
15 GROUND  +DB(P) GROUND 49 GROUND –DB(P) 
16 GROUND  DIFFSENS DIFFSENS 50 GROUND GROUND 
17 TERMPWR TERMPWR TERMPWR  51 TERMPWR TERMPWR 
18 TERMPWR TERMPWR TERMPWR 52 TERMPWR TERMPWR 
19 RESERVED  RESERVED RESERVED 53 RESERVED RESERVED 
20 GROUND  +ATN GROUND 54 GROUND –ATN 
21 SIGNAL RETURN GROUND +ATN 55 –ATN GROUND 
22 GROUND  +BSY GROUND 56 GROUND –BSY 
23 SIGNAL RETURN +ACK +BSY 57 –BSY –ACK 
24 SIGNAL RETURN +RST +ACK 58 –ACK –RST 
25 SIGNAL RETURN +MSG +RST 59 –RST –MSG
26 SIGNAL RETURN +SEL +MSG 60 –MSG –SEL 
27 SIGNAL RETURN +C/D +SEL 61 –SEL –C/D 
28 SIGNAL RETURN +REQ +C/D 62 –C/D –REQ 
29 SIGNAL RETURN +I/O +REQ 63 –REQ –I/O 
30 SIGNAL RETURN GROUND +I/O 64 –I/O GROUND 
31 SIGNAL RETURN +DB(8) +DB(8) 65 –DB(8) –DB(8) 
32 SIGNAL RETURN +DB(9) +DB(9) 66 –DB(9) –DB(9) 
33 SIGNAL RETURN +DB(10) +DB(10) 67 –DB(10) –DB(10) 
34 SIGNAL RETURN +DB(11) +DB(11) 68 –DB(11) –DB(11) 

Figure A.13: Shielded High-Density Sub-D Connector, Male (Cable)
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Pin 35
Screw-in lock mechanisms

Pin 68
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Table A.10: High-Density Sub-D Connector (Q-Cable Pinouts)

Pin SE LVD HVD Pin SE / LVD HVD

1 SIGNAL RETURN +DB(28) +DB(28) 35 –DB(28) –DB(28) 
2 SIGNAL RETURN +DB(29) +DB(29) 36 –DB(29) –DB(29) 
3 SIGNAL RETURN +DB(30) +DB(30) 37 –DB(30) –DB(30) 
4 SIGNAL RETURN +DB(31) +DB(31) 38 –DB(31) –DB(31) 
5 SIGNAL RETURN +DB(P3) +DB(P3) 39 –DB(P3) –DB(P3) 
6 SIGNAL RETURN +DB(16) GROUND  40 –DB(16) GROUND 
7 SIGNAL RETURN +DB(17) +DB(16) 41 –DB(17) –DB(16) 
8 SIGNAL RETURN +DB(18) +DB(17) 42 –DB(18) –DB(17) 
9 SIGNAL RETURN +DB(19) +DB(18) 43  –DB(19) –DB(18) 
10 SIGNAL RETURN +DB(20) +DB(19) 44 –DB(20) –DB(19) 
11 SIGNAL RETURN +DB(21) +DB(20) 45 –DB(21) –DB(20) 
12 SIGNAL RETURN +DB(22) +DB(21) 46 –DB(22) –DB(21) 
13 SIGNAL RETURN +DB(23) +DB(22) 47 –DB(23) –DB(22) 
14 SIGNAL RETURN +DB(P2) +DB(23) 48 –DB(P2) –DB(23) 
15 GROUND GROUND +DB(P2) 49 GROUND –DB(P2) 
16 GROUND DIFFSENS DIFFSENS 50 GROUND GROUND 
17 TERMPWRQ TERMPWRQ TERMPWRQ 51 TERMPWRQ TERMPWRQ 
18 TERMPWRQ TERMPWRQ TERMPWRQ 52 TERMPWRQ TERMPWRQ
19 RESERVED RESERVED RESERVED 53 RESERVED RESERVED 
20 GROUND GROUND TERMINATED 54 GROUND TERMINATED 
21 GROUND TERMINATED GROUND 55 TERMINATED GROUND 
22 GROUND GROUND TERMINATED 56 GROUND TERMINATED
23 GROUND TERMINATED +ACKQ 57 TERMINATED –ACKQ 
24 SIGNAL RETURN +ACKQ TERMINATED 58 –ACKQ  TERMINATED
25 GROUND TERMINATED TERMINATED 59 TERMINATED TERMINATED
26 GROUND TERMINATED TERMINATED 60 TERMINATED TERMINATED
27 GROUND TERMINATED TERMINATED 61 TERMINATED TERMINATED
28 GROUND TERMINATED +REQQ 62 TERMINATED –REQQ 
29 SIGNAL RETURN +REQQ TERMINATED 63 –REQQ TERMINATED
30 GROUND TERMINATED GROUND 64 TERMINATED GROUND 
31 SIGNAL RETURN +DB(24) +DB(24) 65 –DB(24) –DB(24) 
32 SIGNAL RETURN +DB(25) +DB(25) 66 –DB(25) –DB(25) 
33 SIGNAL RETURN +DB(26) +DB(26) 67 –DB(26) –DB(26) 
34 SIGNAL RETURN +DB(27) +DB(27) 68 –DB(27) –DB(27)

Figure A.14: Shielded High-Density Sub-D Connector, Female (Device)

Pin 34 Pin 1

Pin 68

Screw-in lock mechanisms

Pin 35



332 Appendix A

68-Pin Very High Density Cable Interconnect (VHDCI) Connector 
(P- and Q-Cables)

The new very high density cable interconnect (VHDCI or VHD) connector is
a real godsend for RAID adapter manufacturers—with its small dimensions,
two Wide SCSI bus connectors use about the same space as one HD-68 con-
nector. The pin layout is the same as that of the high-density sub-D connector,
but the VHD connector uses ribbon contacts similar to the old Centronics-
type connector. 

Figures A.15 and A.16 show the connectors, and Table A.11 lists the pinouts.
Like the SCA-2 connector, the VHDCI connector is an approved EIA standard
(EIA-700A0AF) and an SFF project(SFF-8441).

Table A.11: VHDCI Connector (P-Cable Pinouts)

Pin SE HVD LVD Pin SE / LVD HVD

1 SIGNAL RETURN +DB(12) +DB(12) 35 –DB(12) –DB(12) 
2 SIGNAL RETURN +DB(13) +DB(13) 36 –DB(13) –DB(13) 
3 SIGNAL RETURN +DB(14) +DB(14) 37 –DB(14) –DB(14) 
4 SIGNAL RETURN +DB(15) +DB(15) 38 –DB(15) –DB(15) 
5 SIGNAL RETURN +DB(P1) +DB(P1) 39 –DB(P1) –DB(P1) 
6 SIGNAL RETURN GROUND +DB(0) 40 –DB(0) GROUND 
7 SIGNAL RETURN +DB(0) +DB(1) 41 –DB(1) –DB(0) 
8 SIGNAL RETURN +DB(1) +DB(2) 42 –DB(2) –DB(1) 
9 SIGNAL RETURN +DB(2) +DB(3) 43 –DB(3) –DB(2) 
10 SIGNAL RETURN +DB(3) +DB(4) 44 –DB(4) –DB(3) 
11 SIGNAL RETURN +DB(4) +DB(5) 45 –DB(5) –DB(4) 
12 SIGNAL RETURN +DB(5) +DB(6) 46 –DB(6) –DB(5) 
13 SIGNAL RETURN +DB(6) +DB(7) 47 –DB(7) –DB(6) 
14 SIGNAL RETURN +DB(7) +DB(P) 48 –DB(P) –DB(7) 
15 GROUND  +DB(P) GROUND 49 GROUND –DB(P) 
16 GROUND  DIFFSENS DIFFSENS 50 GROUND GROUND 
17 TERMPWR TERMPWR TERMPWR  51 TERMPWR TERMPWR
18 TERMPWR TERMPWR TERMPWR 52 TERMPWR TERMPWR 
19 RESERVED  RESERVED RESERVED 53 RESERVED RESERVED 
20 GROUND  +ATN GROUND 54 GROUND –ATN 
21 SIGNAL RETURN GROUND +ATN 55 –ATN GROUND 
22 GROUND  +BSY GROUND 56 GROUND –BSY 
23 SIGNAL RETURN +ACK +BSY 57 –BSY –ACK 
24 SIGNAL RETURN +RST +ACK 58 –ACK –RST 
25 SIGNAL RETURN +MSG +RST 59 –RST –MSG 
26 SIGNAL RETURN +SEL +MSG 60 –MSG –SEL 
27 SIGNAL RETURN +C/D +SEL 61 –SEL –C/D 
28 SIGNAL RETURN +REQ +C/D 62 –C/D –REQ 
29 SIGNAL RETURN +I/O +REQ 63 –REQ –I/O 
30 SIGNAL RETURN GROUND +I/O 64 –I/O GROUND 
31 SIGNAL RETURN +DB(8) +DB(8) 65 –DB(8) –DB(8) 
32 SIGNAL RETURN +DB(9) +DB(9) 66 –DB(9) –DB(9) 
33 SIGNAL RETURN +DB(10) +DB(10) 67 –DB(10) –DB(10) 
34 SIGNAL RETURN +DB(11) +DB(11) 68 –DB(11) –DB(11) 
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Table A.12: VHDCI Connector (Q-Cable Pinouts)

Pin SE LVD HVD Pin SE / LVD HVD

1 SIGNAL RETURN +DB(28) +DB(28) 35 –DB(28) –DB(28) 
2 SIGNAL RETURN +DB(29) +DB(29) 36 –DB(29) –DB(29) 
3 SIGNAL RETURN +DB(30) +DB(30) 37 –DB(30) –DB(30) 
4 SIGNAL RETURN +DB(31) +DB(31) 38 –DB(31) –DB(31) 
5 SIGNAL RETURN +DB(P3) +DB(P3) 39 –DB(P3) –DB(P3) 
6 SIGNAL RETURN +DB(16) GROUND 40 –DB(16) GROUND 
7 SIGNAL RETURN +DB(17) +DB(16) 41 –DB(17) –DB(16) 
8 SIGNAL RETURN +DB(18) +DB(17) 42 –DB(18) –DB(17) 
9 SIGNAL RETURN +DB(19) +DB(18) 43 –DB(19) –DB(18) 
10 SIGNAL RETURN +DB(20) +DB(19) 44 –DB(20) –DB(19) 
11 SIGNAL RETURN +DB(21) +DB(20) 45 –DB(21) –DB(20) 
12 SIGNAL RETURN +DB(22) +DB(21) 46 –DB(22) –DB(21) 
13 SIGNAL RETURN +DB(23) +DB(22) 47 –DB(23) –DB(22) 
14 SIGNAL RETURN +DB(P2) +DB(23) 48 –DB(P2) –DB(23) 
15 GROUND GROUND +DB(P2) 49 GROUND –DB(P2) 
16 GROUND DIFFSENS DIFFSENS 50 GROUND GROUND 
17 TERMPWRQ TERMPWRQ TERMPWRQ 51 TERMPWRQ TERMPWRQ 
18 TERMPWRQ TERMPWRQ TERMPWRQ 52 TERMPWRQ TERMPWRQ 
19 RESERVED RESERVED RESERVED 53 RESERVED RESERVED 
20 GROUND GROUND TERMINATED 54 GROUND TERMINATED
21 GROUND TERMINATED GROUND 55 TERMINATED GROUND 
22 GROUND GROUND TERMINATED 56 GROUND TERMINATED
23 GROUND TERMINATED +ACKQ 57 TERMINATED –ACKQ 
24 SIGNAL RETURN +ACKQ TERMINATED 58 –ACKQ TERMINATED
25 GROUND TERMINATED TERMINATED 59 TERMINATED TERMINATED
26 GROUND TERMINATED TERMINATED 60 TERMINATED TERMINATED
27 GROUND TERMINATED TERMINATED 61 TERMINATED TERMINATED
28 GROUND TERMINATED +REQQ 62 TERMINATED –REQQ 
29 SIGNAL RETURN +REQQ TERMINATED 63 –REQQ TERMINATED
30 GROUND TERMINATED GROUND 64 TERMINATED GROUND 
31 SIGNAL RETURN +DB(24) +DB(24) 65 –DB(24) –DB(24) 
32 SIGNAL RETURN +DB(25) +DB(25) 66 –DB(25) –DB(25) 
33 SIGNAL RETURN +DB(26) +DB(26) 67 –DB(26) –DB(26) 
34 SIGNAL RETURN +DB(27) +DB(27) 68 –DB(27) –DB(27)

Vendor-Specific SCSI Connectors

Companies decide to introduce proprietary SCSI connectors for their own
reasons. The most common ones still in use are Apple’s 25-pin sub-D connec-
tor and their 30-pin HDI connector—used in the Macintosh computer and 
in PowerBook notebooks, respectively—and IBM’s proprietary 60-pin mini-
Centronics connector used on RS/6000 and PS/2 systems.

25-Pin Sub-D Connector (Apple Layout)

When Apple introduced the Macintosh computer, which used SCSI as the
default bus system, it was a revolutionary event for the SCSI market: Suddenly
a mass market existed for SCSI peripherals. Sadly (and possibly for space 
reasons) Apple did not use a standard SCSI connector — at that time, the
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Centronics connector would have been the logical choice, but instead of using
it, Apple introduced a 25-pin sub-D connector (as Future Domain did but with
a different signal layout). When it was introduced, Apple’s connector/cable
combination worked well with the then-current version of SCSI. However, after
the introduction of Fast SCSI, the so-called “Apple SCSI” connector became
the most prominent source of trouble in SCSI. Because of the lack of dedicated
ground lines, signal integrity is lousy. And, because of the Mac’s success, lots
of peripherals still use this connector: Image scanners, ZIP drives, and similar
removable media drives are good (or bad) examples of this. Figure A.17 shows
the connectors and Table A.13 lists the signal pins.

Figure A.17: Apple Sub-D Connectors (top to bottom): Female (Device); Male (Cable)

Pin 13 Pin 1

Pin 14 Pin 25

Pin 1 Pin 13

Pin 25 Pin 14

Figure A.15: VHDCI Connector, Male (Cable)

Position 1 Position 34

Position 35 Position 68

Screw-in lock mechanism

Figure A.16: VHDCI Connector, Female (Device)

Position 34

Screw-in lock mechanism

Position 1

Position 68 Position 35
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Table A.13: Apple Sub-D Connector

Pin Signal Pin Signal

1 –REQ 13 –DB7 
2 –MSG 14 RESERVED/ GROUND
3 –I/O 15 –C/D 
4 –RST 16 RESERVED /GROUND
5 –ACK 17 –ATN 
6 –BSY 18 GROUND 
7 GROUND 19 –SEL 
8 –DB0 20 –DBP 
9 GROUND 21 –DB1 
10 –DB3 22 –DB2 
11 –DB5 23 –DB4 
12 –DB6 24 GROUND 

25 TERMPWR*

* Pin 25: Termination Power is not connected in some Mac connectors.

Apple PowerBook 30-Pin HDI Connector

The most recent addition to the growing list of non-standard SCSI connectors
is Apple’s HDI connector used in the PowerBook series of notebook computers.
Its main feature is the very compact and rugged external connector shown in
Figure A.18.

The pinout is listed in Table A.14. Pin 1 is not used and not connected in the
standard cable, because it is used to select the “PowerBook Disk Mode,” where
the PowerBook, when connected with a special adapter cable, acts as external
disk drive to a “standard” Macintosh computer.

Figure A.18: HDI-30 Connectors, Male (Cable) and Female (PowerBook). Pin 1 is reserved 
for special use.

Pin

Spring Clamp

25 Pin 30Pin 30
19
13
7

Pin 1
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Table A.14: Pinout for HDI 30 External Connector (SE)

Pin Signal Pin Signal

1 –LINK.SEL 16 –DB(6) 
2 –DB(0)  17 GROUND
3 GROUND 18 –DB(7) 
4 –DB(1) 19 –DB(P) 
5 TERMPWR 20 GROUND
6 –DB(2) 21 –REQ 
7 –DB(3) 22 GROUND
8 GROUND 23 –BSY 
9 –ACK 24 GROUND
10 GROUND 25 –ATN 
11 –DB(4) 26 –C/D 
12 GROUND 27 –RST 
13 GROUND 28 –MSG 
14 –DB(5) 29 –SEL 
15 GROUND 30 –I/O 

IBM 60-Pin High-Density Centronics Connector

IBM, for whatever reasons, used the 60-pin connector for their RS/6000 and
early PS/2 systems. It is a high-density Centronics-style connector, and its first
50 pins are identical to the standard SCSI-2 HD connectors. The remaining 10
conductors are simply defined as “reserved” without any explanation of their
purpose. (A reasonable guess would be that they’re reserved for additional signals,
such as spindle synchronization or a failure message bus for RAID systems.)

The connector is shown in Figures A.19 and A.20, and the pin assignments
are shown in Table A.15.

Table A.15: Pinout for IBM 60-Pin High-Density Centronics Connector (SE)

Pin Signal Pin Signal Pin Signal Pin Signal

1 GROUND 16 –DB(7) 31 GROUND 46 –C/D 
2 –DB(0) 17 GROUND 32 –ATN 47 GROUND
3 GROUND 18 –DB(P) 33 GROUND 48 –REQ 
4 –DB(1) 19 GROUND 34 GROUND 49 GROUND
5 GROUND 20 GROUND 35 GROUND 50 –I/O 
6 –DB(2) 21 GROUND 36 –BSY 51 GROUND
7 GROUND 22 GROUND 37 GROUND 52 RESERVED
8 –DB(3) 23 RESERVED / GROUND 38 –ACK 53 RESERVED
9 GROUND 24 RESERVED / GROUND 39 GROUND 54 RESERVED 
10 –DB(4) 25 NOT CONNECTED 40 –RST 55 RESERVED
11 GROUND 26 TERMPWR 41 GROUND 56 RESERVED
12 –DB(5) 27 RESERVED 42 –MSG 57 RESERVED
13 GROUND 28 RESERVED 43 GROUND 58 RESERVED
14 –DB(6) 29 GROUND 44 –SEL 59 RESERVED
15 GROUND 30 GROUND 45 GROUND 60 RESERVED
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Obsolete Connectors

Some connectors were defined in SCSI-2 and later, but never really saw the
market — the B-cable and the L-cable were such tragic cases. Just for com-
pleteness, let’s have a look at them and at several other proprietary connectors
that have (luckily) died since their introduction.

68-pin High-Density Sub-D Connector (Wide SCSI “B-Cable”)

The B-cable would have expanded the 8-bit SCSI bus of the A-cable to 32 
bits. Mainly for mechanical reasons — the upcoming smaller (31/2") disk drives
didn’t have the space to fit the neccessary connectors. Thus, it never appeared,
and the P- and Q-cables were instead defined as one of the first tasks of the
SCSI-3 committee. 

25-Pin Sub-D Connector (Future Domain Layout)

Very early in SCSI history, Future Domain (a major player then) created cheap
(at that time) SCSI host adapters for IBM PC and clones. To reduce cost, a 25-pin
sub-D connector with a proprietary layout was used. This connector is shown in
Figure A.21.

Figure A.19: IBM 60-Pin High-Density Centronics Connector, Male (Cable)

Pin 1

Lock Mechanism (screws)

Pin 30

Pin 31 Pin 60

Figure A.20: IBM 60-Pin High-Density Centronics Connector, Female (Device)

Pin 30 Pin 1

Pin 60
Lock Mechanism (screws)

Pin 31
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When Apple later introduced their own layout on the same connector, one
major reason for SCSI smoke signals they also created — see for yourself in
Table A.16.

Table A.16: Future Domain and Apple Sub-D Connector Layouts

Future Domain Apple

Pin Signal Pin Signal

1 GROUND 1 –REQ 
2 –DB(1)  2 –MSG 
3 –DB(3)  3 –I/O 
4 –DB(5)  4 –RST 
5 –DB(7)  5 –ACK 
6 GROUND 6 –BSY 
7 –SEL  7 GROUND
8 GROUND 8 –DB0 
9 SPARE  9 GROUND

10 –RST  10 –DB3 
11 –C/D  11 –DB5 
12 –I/O  12 –DB6 
13 GROUND 13 –DB7 
14 –DB(0) 14 RESERVED/ GROUND
15 –DB(2)  15 –C/D 
16 –DB(4)  16 RESERVED/ GROUND
17 –DB(6)  17 –ATN 
18 –DB(P)  18 GROUND
19 GROUND 19 –SEL 
20 –ATN  20 –DBP 
21 –MSG  21 –DB1 
22 –ACK  22 –DB2 
23 –BSY  23 –DB4 
24 –REQ  24 GROUND
25 GROUND 25 TERM. POWER 

Figure A.21: 25-Pin Sub-D Connector (top to bottom): Female (Device); Male (Cable)

Pin 13 Pin 1

Pin 1 Pin 13

Pin 25 Pin 14

Pin 14 Pin 25
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A L E R T ! Virtually all signal positions are incompatible between this and the Apple connector
layout, but the dangerous part is pin 25. Apple’s cables don’t have a connection here so
there isn’t a problem, but most SCSI adapters or devices with the Apple connector pinout
do provide Termination Power at pin 25. So, connecting an Apple layout SCSI adapter
with an old Future Domain cable will cause a short circuit that will blow the host adapter’s
or device’s terminator power fuse. The same thing could happen with a device providing
terminator power via an old Future Domain adapter. If you have an older Future Domain
SCSI adapter, look for the label “Apple layout” on the cover plate and/or an “M” in the
model number. If it’s a Future Domain pinout type, you need a special SCSI cable —
type HCA-108—from Future Domain (now Adaptec).

Sun Microsystems’ Sub-D Connector

Figure A.22 and Table A.17 show the Sun 50-pin sub-D connector. According
to Sun’s documentation, pin 1 is the pin in the upper-left corner. Remember
that this means the male connector’s pin 1 is on the upper-left as shown in
Figure A.22. Pin 2 is the lower-left pin (in the third row of contacts, labeled
pin 34). Pin 3 is the leftmost pin in the middle row (labeled pin 18). Pin 4 is
the second-left pin in the upper row, and so on.

Instead of Sun’s pin numbering scheme, Table A.17 uses the scheme the
connector manufacturers use in their documentation, because this way all 
sub-D connectors use a comparable numbering system. So, Table A.17 is the
pinout scheme you will see if you look at a real cable, not the one shown in
Sun’s documentation. Beware, however, of confusing the two if you have an
older Sun device.

Figure A.22: Sun 50-Pin Sub-D Connector

Pin 1

Pin 18

Pin 17

Pin 17 Pin 1

Pin 50 Pin 34

Pin 34 Pin 50

Pin 33

Pin 33

Pin 18
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A L E R T ! When looking at Table A.17, keep in mind that there are two connector numbering
schemes shown in the table. But the ones in Figure A.22 are the standard ones that 
connector manufacturers like AMP use on the connectors. These are not the numbers
used by Sun. For whatever reason, Sun used an unusual numbering scheme, which 
differs from the counting scheme the connector manufacturers use and print on the 
connector bodies. So, if you use an older Sun device, be extremely careful when supply-
ing home-made cables.

Table A.17: Sun 50-Pin Sub-D Connector Layouts

Sun Single-Ended SCSI Pinout

Standard Sun’s Standard Sun’s
Pin  Pin Signal Pin Pin Signal  

1 1 GROUND 26 27 RESERVED
2 4 –DB(1) 27 30 GROUND
3 7 GROUND 28 33 GROUND
4 10 –DB(4) 29 36 –BSY 
5 13 GROUND 30 39 GROUND
6 16 –DB(7) 31 42 –MSG 
7 19 GROUND 32 45 GROUND
8 22 GROUND 33 48 –REQ 
9 25 N.C. 34 2 –DB(0) 
10 28 RESERVED 35 5 GROUND
11 31 GROUND 36 8 –DB(3) 
12 34 GROUND 37 11 GROUND
13 37 GROUND 38 14 –DB(6) 
14 40 –RST 39 17 GROUND
15 43 GROUND 40 20 GROUND
16 46 –C/D 41 23 RESERVED
17 49 GROUND 42 26 TERMPWR 
18 3 GROUND 43 29 GROUND
19 6 –DB(2) 44 32 –ATN 
20 9 GROUND 45 35 GROUND
21 12 –DB(5) 46 38 –ACK 
22 15 GROUND 47 41 GROUND
23 18 –DB(P) 48 44 –SEL 
24 21 GROUND 49 47 GROUND
25 24 RESERVED 50 50 –I/O 

Novell and Procomp DCB 37-Pin D-Sub Connector

Years ago, Novell designed a proprietary external connector for their DCB
SCSI boards. Procomp used the same connector for their F-DCB and M-DCB
host adapters to maintain 100 percent compatibility. This connection uses a 
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37-pin D-sub connector. Unlike the 25-pin connectors, it has enough conductors
to provide discrete wire pairs for each signal. It’s interesting to note that
Novell’s cable doesn’t connect the TERMPWR line, so that the terminated
device must supply its own termination power. Figure A.23 shows the connec-
tor; Table A.18 shows the pin assignments.

Table A.18: Novell/Procomp DCB External Layout

Pin Signal Pin Signal

1 GROUND 20 –DB(0) 
2 GROUND 21 –DB(1) 
3 GROUND 22 –DB(2) 
4 GROUND 23 –DB(3) 
5 GROUND 24 –DB(4) 
6 GROUND 25 –DB(5) 
7 GROUND 26 –DB(6) 
8 GROUND 27 –DB(7) 
9 GROUND 28 –DB(P) 
10 GROUND 29 –ATN 
11 GROUND 30 –BSY 
12 GROUND 31 –ACK 
13 GROUND 32 –RST 
14 GROUND 33 –MSG 
15 GROUND 34 –SEL 
16 GROUND 35 –C/D 
17 GROUND 36 –REQ 
18 GROUND 37 –I/O 
19 TERMPWR 

(possibly not connected) 

Figure A.23: Novell/Procomp 37-Pin D-Sub Connector

Pin 19 Pin 1

Pin 20 Pin 37

Pin 1 Pin 19

Pin 37 Pin 20
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SCSI Bus Signals

The SCSI bus has eight (or more) data lines and a few control signals. Table A.19
shows, briefly, what the signals are and how they’re used.

Table A.19: SCSI Signals, 8- and 16-Bit

BSY (Busy) BSY indicates that the SCSI bus is in use. 

SEL (Select) SEL is used in the Arbitration phase to select a target for communication. In this case, 
the term target could also mean an initiator, if SEL is set in a RESELECTION phase.  

C/D (Control/Data) C/D indicates whether control or data information is on the data bus. If C/D is set, it 
indicates control information. 

I/O (Input/Output) I/O controls the direction of data movement on the data bus, seen from the initiator. 
True indicates input to the initiator. I/O also distinguishes between SELECTION and 
RESELECTION phases. 

MSG (Message) MSG is used to indicate a MESSAGE phase (together with C/D). 

REQ (Request) REQ is used by a target to request an ACK information transfer handshake. 

ACK (Acknowledge) ACK is used by an initiator to acknowledge the above REQ information transfer hand-
shake request. 

ATN (Attention) ATN is set by an initiator to indicate the ATTENTION condition. 

RST (Reset) RST indicates the RESET condition. 

DB(0) to DB(7) These are the data bits on the 8–bit SCSI data bus. 

DB(P) DB(P) is the parity bit for the first data byte. If a 16–bit bus is used, the second data 
byte and its parity bit are used.

DB(8) to DB(15) These are the additional data bits for the 16–bit SCSI data bus. 

DB(P1) DB(P1) is the parity bit for the second data byte. 

Some notes about the above mentioned signals:

• BSY, SEL, and RST are OR-tied, which means they can be asserted by 
multiple devices simultaneously.

• ACK and ATN are used only by the initiator for control purposes.

• C/D, I/O, MSG, and REQ are driven, or controlled, by the target.

• Each data byte is accompanied by a parity bit (odd parity is used, so the
parity bit is set to 1 when the number of logical 1 signals, without the par-
ity bit, is an even number).

• If a 32-bit bus is used, additional data and control signals are needed, as
shown in Table A.20. These additional signals are supplied by a second
cable, the Q-cable.
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Table A.20: Additional 32-Bit SCSI Signals

REQQ  (RequestQ) REQQ is the REQ signal for the Q-cable, if 32-bit data transfers are used. 

ACKQ  (AcknowledgeQ) Similar to REQQ, ACKQ is the ACK signal for the Q-cable, if 32-bit data
transfers are used. 

DB(16) to DB(31) These are the additional data bits for the 32-bit SCSI data bus. 

DB(P2) and  DB(P3) DB(P2) and DB(P3) are the parity bits for the third and fourth data bytes.

Bus Phases and Timing Diagrams

Bus Phases and Conditions

This section lists the bus phases defined in the SCSI standard (Tables A.21
through A.23) and provides a phase sequence diagram (Figure A.24) for quick
reference.

Principally, the SCSI bus is a “state machine.” This means it has a number of
states, of which at any given time exactly one is active. To maintain this behavior,
several states (phases) are defined, along with numerous timing parameters
that are used in the state switching process.

SCSI bus states are called “phases”; the eight phases break down into two
types: four phases handle the bus protocol and access control, and four phases
handle information transfer. The phases handling the protocol are shown in
Table A.21.

Table A.21: Protocol Phases

Phase Definition

BUS FREE  The BUS FREE phase indicates that no I/O process is running and the SCSI bus is available
for a connection. It is the basic state of the bus before every transfer. 

ARBITRATION The ARBITRATION phase allows all attached SCSI devices to announce “I need the bus” and
eventually gain control over the SCSI bus so that the bus can initiate or resume an I/O process. 

SELECTION  In the SELECTION phase, the initiator (the ARBITRATION winner) selects a target for its pending
operation. When this target selection has happened, the target asserts the REQ signal to enter 
an information transfer phase. 

RESELECTION The RESELECTION phase is a special version of a SELECTION phase needed in case of an
uncompleted operation. For example, if a target device disconnected itself (it allowed a BUS 
FREE phase by releasing the BSY and SEL signals), the RESELECTION process allows the target 
to reconnect to the initiator of the suspended operation. Contrary to the standard SELECTION 
phase, in a RESELECTION phase, the target of a former operation takes action to get a 
connection to the initiator.

The COMMAND, DATA, STATUS, and MESSAGE phases are commonly
called the information transfer phases because, in these phases, the actual
data exchange between the initiator and the target happens. Their specifica-
tions are shown in Table A.22.
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Table A.22: Information Transfer Phases

Phase Definition

COMMAND  The COMMAND phase allows the target to request command information from the initiator. 
DATA DATA phase has two variants, DATA IN and DATA OUT, in which the target asks to send 

data to or receive data from the initiator. 
STATUS The STATUS phase allows the target to request that status information be sent from the target 

to the initiator. 
MESSAGE MESSAGE phase also can be a MESSAGE IN or a MESSAGE OUT phase. In the MESSAGE phase, the 

target can request a message to or from the initiator. A message can be either a single-byte or
a multiple-byte message, but the whole message must be contained in one MESSAGE phase—
that means without any change in the C/D, I/O, and MSG signals. 

Three bus signals (C/D, I/O, and MSG) are used to distinguish between the
different information transfer phases and data directions.

Table A.23: Information Transfer Phase Control Signals

Signal* Phase Name Transfer Direction

MSG C/D I/O

0 0 0 DATA OUT From Initiator to Target 
0 0 1 DATA IN To Initiator from Target 
0 1 0 COMMAND From Initiator to Target 
0 1 1 STATUS To Initiator from Target 
1 0 0 RESERVED**  ————
1 0 1 RESERVED**  ————
1 1 0 MESSAGE OUT From Initiator to Target 
1 1 1 MESSAGE IN To Initiator from Target 

*0 = False = Deasserted, 1 = True = Asserted
**Reserved for future standardization

During a SCSI operation, the target device controls these signals, so it has con-
trol over the changes among these information transfer phases. In these
phases, REQ/ACK handshake procedures are used for each byte of information.
REQ/ACK handshake means that the target asserts the REQ signal to REQuest
a byte of information, then the initiator sets the data bus and sets the ACK signal
to ACKnowledge the transfer request. The target then reads the data bus and
releases the REQ signal to allow the initiator to release the ACK signal. Then
the next byte can be transferred with the same REQ/ACK procedure.

In addition to the bus phases are two SCSI bus “conditions”: the 
ATTENTION and the RESET conditions.

In the ATTENTION condition, the initiator can inform a target that he
has a message ready. The target then can get this message by performing a
MESSAGE OUT phase. An ATTENTION condition is issued by asserting the 



All-Platform Technical Reference 345

ATN signal; this can happen in any bus state except during the ARBITRATION
or BUS FREE phases.

The RESET condition is used to immediately clear all SCSI devices from
the bus. The RESET condition has absolute priority over all other phases and
conditions. Any SCSI device can create the RESET condition by asserting the
RST signal. On RESET, all SCSI devices release all SCSI bus signals except RST,
so that a BUS FREE phase follows the reset condition.

Phase Sequence

SCSI bus phases usually follow a defined sequence pattern. A typical phase
sequence on the bus could be as follows:

• BUS FREE phase

• ARBITRATION phase

• SELECTION or RESELECTION phase

• MESSAGE OUT phase

• One or more of the information transfer phases (COMMAND, DATA,
STATUS, or MESSAGE) 

• MESSAGE IN phase where a DISCONNECT or COMMAND COMPLETE
message is transferred, followed by the next

• BUS FREE phase

The RESET condition can abort any phase and is always followed by a BUS
FREE phase. Any other phase can also be followed by the BUS FREE phase. 
If this happens, it’s generally due to an error, but it’s legal.

A complete phase model looks a bit puzzling at first, with its plentiful 
possible action sequences, but on second glance, it is not too difficult. See 
Figure A.24.

BUS FREE as the initial state can lead only into an ARBITRATION phase.
ARBITRATION can lead into a SELECTION or RESELECTION phase, then
either the requested Information Transfer Phase(s) are issued, until the device
enters a BUS FREE phase — its idle state. The last of the information transfer
phases usually is a STATUS phase for the command, followed by a MESSAGE
phase with the “Command Complete” message.

To show a simple example, a typical phase sequence for the TEST UNIT
READY command would have the following sequence order:

.
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• BUS FREE idle state

• ARBITRATION data according to the IDs 90hex would be ID7 and ID4
(1.0.0.1.0.0.0.0bin), meaning that the devices 7 and 4 want to get the bus

• SELECTION data according to the IDs 81hex would be ID7 and ID0
(1.0.0.0.0.0.0.1bin), meaning that the devices at ID7 and at ID0 
communicate

• MESSAGE OUT data byte 80hex = Identify command

• COMMAND data byte 00hex = Test Unit Ready command
(The TEST UNIT READY command has 6 bytes, all 6 bytes are 00hex)

• STATUS data byte 00hex = GOOD, which means the SCSI device is ready

• MESSAGE IN data byte 00hex = Command Complete

• BUS FREE idle state

The “frame” (BUS FREE to MESSAGE OUT and STATUS to BUS FREE) is
identical for most combinations, but the number of COMMAND phases varies
with the different commands.

Figure A.24: SCSI Phase Sequence Model

Message Out

Command

Data In or
Data Out

Status
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Selection
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Reselection

Bus Free

SCSI Reset or
Bus Error
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Bus Timing

SCSI bus timing is a very complex thing, but it can be broken down into some
fundamental figures. The timing diagrams in this appendix are simplified.
They do not include the various signal delays that actually occur on the SCSI
bus. In reality, if an electrical signal changes its state, it never happens as cleanly
as the timing diagrams would lead you to believe. To give the signals time to
settle to their states, various delays are implemented. Table A.24 lists the various
delays along with minimum or maximum times for defined changes to occur. 

Table A.24: SCSI Timing Elements

Timing
Element Time Description

SCSI-2 Syn Fast SCSI UltraSCSI Ultra2 SCSI

(Fast 5) (Fast 10) (Fast-20) (Fast-40)

Arbitration 2.4 µs 2.4 µs 2.4 µs 2.4 µs When a SCSI device Delay has asserted BSY during the 
arbitration phase, it must wait at least one Arbitration 
Delay before deciding that it has won the arbitration. 

Assertion Period,  70 ns 22 ns 11 ns 6.5 ns  
Receive

Transmit 80 ns 30 ns 15 ns 8 ns REQ/REQB and ACK/ACKB signals must be asserted for
at least one Receive Assertion period to be recognized, 
and the sender has to assert them for at least one transmit
assertion period. 

Bus Clear Delay 800 ns 800 ns 800 ns 800 ns If a device detects a Bus Free phase, it has this amount of
time to release all signals. 

Bus Free Delay 800 ns 800 ns 800 ns 800 ns After detection of a Bus Free phase, a device must wait one
Bus Free Delay before starting the arbitration process.

Bus Set Delay 1.6 µs 1.6 µs 1.6 µs 1.6 µs A SCSI device may assert BSY and its ID bit for an arbi-
tration not longer than one Bus Set Delay. 

Bus Settle Delay 400 ns 400 ns 400 ns 400 ns After a phase change, signal levels should not be changed
by devices during the Bus Settle Delay.

Cable Skew Delay 4 ns (10 ns) 4 ns (5 ns) 3 ns 2.5 ns The signal run length between two SCSI signals on the bus
shouldn’t differ by more than a Cable Skew Delay. This is
especially important when a signal is influenced by a fer-
rite core or similar damping measures. 

Data Release Delay 400 ns 400 ns 400 ns 400 ns When I/O changes its state from true to false, the initiator
must release the data lines for one Data Release Delay. 

System Deskew Delay 45 ns 45 ns 45 ns 45 ns Time to decouple various signals. 

Disconnection Delay 200 µs 200 µs 200 µs 200 µs When a target gets disconnected by the initiator, the 
target must wait at least one Disconnection Delay before
trying a new arbitration. 

Hold Time, Receive 25 ns 25 ns 11.5 ns 4.75 ns  

Transmit 53 ns 33 ns 16.5 ns 9.25 ns During a synchronous transfer, data must be asserted for 
at least one Hold Time to allow the receiving device to 
read them from the bus. 

Negation  70 ns 22 ns 11 ns 6.5 ns During a synchronous transfer, each REQ/REQB Receive
Period 80 ns 30 ns 15 ns 8 ns Transmit or ACK/ACKB pulse must be followed by at least

one Negation Period. 

Reset Hold Time 25 µs 25 µs 25 µs 25 µs The RST signal must be asserted for at least one Reset Hold
Time before a reset is issued. 
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Timing
Element Time Description

SCSI-2 Syn Fast SCSI UltraSCSI Ultra2 SCSI

(Fast 5) (Fast 10) (Fast-20) (Fast-40)

Selection Abort Time 200 µs 200 µs 200 µs 200 µs If a target doesn’t react to a selection by asserting BSY 
during the Selection Abort Time, the initiator enforces a 
Bus Free phase (either through a reset condition or by 
releasing the data ines and then releasing SEL and ATN).

Setup Time 15 ns 15 ns 6.5 ns 4.75 ns  
Receive 

Transmit 23 ns 23 ns 11.5 ns 9.25 ns  

Transfer Period 200 ns 100 ns 50 ns 25 ns The minimum time between two REQ/REQB or ACK/ACKB
pulses. The possible Transfer Period is negotiated, between
the involved devices. This is listed simply as “negotiated”
in older specs, but with SCSI-3 defined timings come up. 

Power On to Selection 10 s 10 s 10 s 10 s A SCSI device should be able to answer to SCSI commands
in this amount of time after power-on. This is only a rec-
ommendation, but a meaningful one, because most host 
adapter drivers consider this the maximum time for a 
device to respond before its ID is skipped. 

Reset to Selection   250 ms 250 ms 250 ms 250 ms Reset to Selection is the recommended maximum time a 
device is allowed to sit idle after a reset before it is able 
to answer to commands.

Selection Timeout Delay 250 ms 250 ms 250 ms 250 ms During a Selection phase, a device should wait at least 
one Selection Timeout Delay for an answer before stop-
ping the selection. This is only a recommended 
time, not a mandatory value. 

In the SCSI-3 drafts, new features like Quick Arbitration and Double Transition
Clocking will introduce a few new variables, but the basic values are and will
remain the same.

The timing diagrams included in Figures A.25 through A.30 illustrate the
relationship between the various SCSI signals as follows:

• ARBITRATION and SELECTION phases (Figure A.25)

• ARBITRATION, RESELECTION, and MESSAGE IN phases (Figure A.26)

• MESSAGE OUT and COMMAND phases (Figure A.27)

• DATA I/O phases for asynchronous (Figure A.28) and synchronous
(Figure A.29) transfer modes

• STATUS MESSAGE IN phase followed by a BUS FREE phase (Figure A.30)
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Figure A.25: ARBITRATION Followed by a SELECTION Phase

DB(0)-DB(7)

BSY

SEL

I/O

C/D

MSG

ATN

REQ

ACK

BUS FREE Phase ARBITRATION Phase SELECTION Phase

Arbitration-IDs

Initiator Target

Initiator- and Target-ID

Figure A.26: ARBITRATION, RESELECTION, and MESSAGE IN Phases
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Figure A.27: MESSAGE OUT and COMMAND Phases
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Figure A.28: Asynchronous Data Transfer 
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Figure A.29: Synchronous Data Transfer 
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Figure A.30: MESSAGE IN Phase and BUS FREE Phase
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Termination

Next to cabling, termination is the most crucial part of SCSI. The basic rule of
termination is simple: Both ends of the bus must be closed with termination
circuits. Notwithstanding this simplicity, termination and termination-related
issues are the cause of at least 80 percent of all SCSI problems.

To illustrate this, let’s just look at three simple setups.

Internal Devices Only

With internal devices only (Figure A.31), one cable with multiple connectors
leads from the host adapter to the devices. The host adapter and the device
on the last connector have to be terminated. If you don’t have a device on the
last connector, either move your connectors so that the last connector is used
or apply a terminator to the last connector.

External Devices Only

With external devices only (Figure A.32), a cable goes to the first device; from
this device’s second SCSI connector, a second cable goes on to the next
device, and so on. The host adapter and the last device on this chain have 
to be terminated. On a modern host adapter, this is usually done by a jumper 
or by software via its SCSI BIOS. The device either has to be terminated inter-
nally or you have to attach a terminator plug on its second SCSI connector. 

Figure A.31: Termination, Internal Devices Only
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Internal and External Devices

With both connectors on your host adapter used (Figure A.33), the same rules
apply — terminate both ends only. So you disable the termination on the host
adapter and terminate the last internal and the last external device.

With Wide SCSI, one new wrinkle shows up — the mix of Wide SCSI and
“narrow” SCSI devices. The basic rules are the same, of course — termination
on both ends of the bus. However, if you mix Wide SCSI disks and a narrow
SCSI CD-ROM, the easiest setup is to have the complete SCSI bus 16 bits wide
and to connect the CD-ROM in the middle of the bus with a 50-pin female

Figure A.32: Termination, External Devices Only
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Figure A.33: Termination, Internal and External Devices
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to 68-pin female adapter to the bus. In this configuration, you don’t need 
termination on the CD-ROM and an adapter without high byte termination—
easy and trouble-free.
With a Wide SCSI disk drive on your narrow SCSI bus, it’s a bit more complex
because most Wide SCSI devices need to “see” a correctly implemented Wide
SCSI bus. You therefore need an adapter that terminates the high byte. This
can be either a full-scale active termination circuit or a simple version that
pulls up the upper byte [-DB(8) to -DB(15) and -DB(P1)] with a 4.7 kilo-ohms
resistor to TERMPWR. If the adapter has no high byte termination, the drive
may work or not—it depends on the drive and its abilities: Some drives won’t
work at all with the high byte “open,” some drives can be switched to “narrow”
mode and then ignore the high byte completely. It just depends on the SCSI
implementation.

Some combinations may not even work when assembled correctly: An
Ultra Wide SCSI host adapter with internal Ultra Wide disk drives, together
with an external scanner with a 68- to 25-pin adapter and 1.5 meter cable is a
nearly sure no-go case. Such an assemblage contains so many mismatches for
impedance, propagation delay, grounding problems, and so on that it’s pure
luck if it works.

LVD is a bit different here—LVD devices typically don’t have on-board
termination, therefore you needn’t hassle with termination settings on the
devices. You just terminate the bus with a terminator plug if the cable itself is
not terminated. Typically, if you buy an LVD cable or an LVD host adapter kit,
you get a 16-bit LVD-compatible cable with an active LVD/SE multi-mode ter-
minator mounted on one or on both ends.

Termination Circuits

Passive Termination

When the SCSI-1 standard was published, the established standard for termi-
nation was a passive terminator for each signal. Passive means that only passive
parts were used—in this case two resistors per signal line, one with 220 ohms
as a pull-up resistor against the TERMPWR line and the other a 330-ohm pull-
down resistor to ground (0 V). This resulted in a standby signal level of about
3 V if TERMPWR is at 5 V. Passive termination has a few drawbacks. It draws a
relatively high current and, although the standard stated that using resistors
with +/–1 percent tolerance improves noise margins, most passive terminators
use 5 percent resistor arrays just because they’re about ten cents cheaper.
Figure A.34 shows a schematic of single-ended passive termination. Figure A.35
shows the schematic of the differential version of the passive terminator. Only
one signal line is shown.
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Active Termination

SCSI-2 introduced active termination (shown in Figure A.36), also called Boulay-
Terminator after Paul Boulay, who first designed it. Even with the historic card
computer buses, like S100 or the European ECB and SMP bus systems, active
termination proved far superior to passive termination in signal quality and
current draw. Active is far better than passive termination with respect to all signal 

Figure A.34: Passive Termination, Single-Ended
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Figure A.35: Passive Termination, High Voltage Differential
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quality issues, and it is needed for Fast SCSI timing. However, one of active ter-
mination’s biggest advantages is often underestimated: It is far more forgiving
of low voltage and noise on the TERMPWR line than passive termination.
Unfortunately, as with many other advances in the high-tech industry, active
termination’s advantages make it more complex and more expensive to use
than passive termination.

The official active termination specification recommends a voltage of 2.85
V at the signal lines. Because good low-drop regulators need an input voltage
of only 0.5 V above the output, the terminator could be designed to work reli-
ably with TERMPWR as low as 3.5 V—far below the specification. To be on the
safe side, however, newer devices tend to use SCSI termination ICs (integrated
circuits)—like the Dallas Semiconductor DS2107A, which operates safely with
TERMPWR from 4.0 to 5.25 V.

As you can see in Figure A.36, the official active termination circuit needs
a voltage regulator. Although this isn’t an expensive part, many vendors tend
to simplify this circuit and replace the voltage regulator with a simple green
LED with about 2.7 V reverse breakdown voltage. In general, these cheap ter-
minators work, but they are a bit on the risky side.

Figure A.36: Active Termination, Single-Ended
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Forced Perfect Termination

Forced perfect termination, or FPT, is a variant of active termination. It works
with a network of diodes and voltage regulators (or zener diodes acting as
voltage regulators) to “force” an impedance match of the terminator to the
cable. Some people recommend FPT as a means to get a critical bus to stable
operation, and this sometimes even works. However, I do not recommend it
in general because it draws much higher current than the SCSI spec allows
(during peak surges) and so is a bit dangerous. Especially in combination with
active negation drivers (see discussion earlier in this appendix) in new host
adapters and devices, it is extremely dangerous for the line drivers of the
negating device.



B
P C  T E C H N I C A L  R E F E R E N C E

The following tables will give you a starting point for determining the possible
configuration of add-on cards in your system. Due to the sheer number of add-
on cards for the PC, these tables are by no means an exhaustive list of devices
and their resource usage. Be sure to check the installation or user manuals for
the devices in your system to ensure that you don’t introduce hardware conflicts
when adding new cards.
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Table B.1: I/O Port Usage

Hex Port 
Range Defined Use Other Uses, Comments 

0–FF Internal use only Plug-in cards generally don’t use I/O ports in this range.

100–1EF undefined

170h-177h Secondary ATA 
hard disk controller  

1F0–1F7 Primary ATA hard
disk controller

200–20F Joystick port Typically, only 200–207 are used. 

210–26F undefined 210, 220, 230, 240, 250, 260, 280 are typical for Sound 
Blaster and compatibles. 

270–27F Printer port Typically no longer used for printers. ISA Plug & Play 
generally uses this space. 

280–2AF undefined  

2B0–2DF Alternative EGA 
address range  

2E0–2EF undefined GPIB interface card at 2E0h–2Efh. 

2F0–2F7 undefined  

2F8–2FF Serial port 2 
(COM2:)  

300–36F undefined This range was reserved for a prototype card, so many 
developers used it for their adapters. MPU-401 MIDI sec-
ondary address range at 300h–301h. MPU-401 MIDI primary
addresses at 330h–331h. 

370–37F Parallel port 1 Only 370–377 are used. 

380–38F undefined SDLC or second bisync controller. 

390–39F undefined This was reserved for IBM cluster adapter. 

3A0–3AF undefined This was reserved for IBM bisync controller. 
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Hex Port 
Range Defined Use Other Uses, Comments 

3B0–3BF Monochrome Still needed for compatibility. Printer port on that board
video card and used 3BC–3BF. 
printer port    

3C0–3CF EGA vieo card Still needed for compatibility. 

3D0–3DF CGA video card Still needed for compatibility. 

3E0–3EF undefined  

3F0–3F7 Floppy disk 
controller  

3F8–3FF Serial port 1 
(COM1:)  

400–FFFF EISA and PCI In this range, addresses are typically assigned automatically
boards by PCI. 

Table B.2: Interrupt (IRQ) Usage

Interrupt 
Number (IRQ) Defined Use Comments

0 Timer Needed by the motherboard. 

1 Keyboard Needed by the motherboard. 

2 Cascade for IRQ  IRQ 2 is used for cascading the second interrupt controller. 
8–15 Devices on IRQ 2 are relocated to IRQ 9, so for the system, IRQ 

2 = IRQ 9. This IRQ can be used for expansion boards, but is 
sometimes a bit tricky. 

3 Serial port COM2  

4 Serial port COM1  

5 free If installed, this is used by printer port LPT 2. 

6 Floppy controller  

7 Printer port LPT1 IRQ 7 can often be shared between the printer port and a 
sound card. 

8 Real-time clock Needed by the motherboard. 
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Interrupt 
Number (IRQ) Defined Use Comments

9 IRQ 2 redirect See IRQ 2. 

10 free  

11 free  

12 free  

13 Math coprocessor Needed by the motherboard. 

14 Hard disk  Typically IDE/ATA channel 1. Free if no IDE/ATA devices are 
controller 1 used and the onboard controller is disabled. 

15 Hard disk  Typically IDE/ATA channel 2. Free if no IDE/ATA devices are 
controller 2 used and the onboard controller is disabled. 

Table B.3: DMA Channel Usage

DMA  
Channel Defined Use Comments

0 free 8-bit DMA 

1 free 8-bit DMA 

2 Floppy controller 8-bit DMA 

3 free 8-bit DMA 

4 Cascade for  Needed by the motherboard. 
DMA 0-3

5 free 16-bit DMA 

6 free 16-bit DMA 

7 free 16-bit DMA 

Given that ISA Plug-and-Play and PCI’s mostly automatic configuration are
both common in today’s systems, you shouldn’t need to take extra care —
but if your system experiences strange lockups, check anyway.



C
A  L O O K  A T  S C S I  T E S T  E Q U I P M E N T

This chapter is really aimed at engineers whose job it is to bring together a 
set of SCSI peripherals to create a high-performance system. Also, if you’re 
a software engineer developing SCSI device drivers, you’ll find this appendix 
useful. If you’re Joe Average-User, you can just skip this section unless your
curiosity has gotten the better of you.

In SCSI, as in so many other technologies, things are great when they work,
but what about when they don’t? When you are responsible for deciding which
devices to integrate into a system, and the ones you chose don’t play happily
together, what do you do? Whose fault is it? You properly terminated the bus,
the IDs are all unique, but sometimes the system hangs! Now what?

If the devices are all manufactured by the same vendor, you can usually get
the vendor to work it out for you. But more commonly, you’ll choose a host
adapter from one vendor, a disk from another vendor, and a DVD-ROM from
yet another. You try to isolate the problem by removing all but one device, but
find that the problem only occurs when everything is connected.
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It’s time to call in the big guns. Armed with some experience, the right
test equipment, and your trusty SCSI standards documents, you enter the
dragon’s lair. When the finger-pointing starts, there just isn’t any substitute
for good test equipment.

Your Mission . . .

What you need to do is capture the moment in time when things go awry and
the events immediately leading up to that moment. Then, using your under-
standing of the SCSI protocol, you must figure out which device messed up
the perfect order of things and either (1) get that vendor to fix the problem
or (2) choose a different device. (Some analyzers actually minimize your own
need for SCSI protocol expertise by incorporating significant intelligence of
their own.)

Rent or Buy?

These types of problems are not as common these days as they were when SCSI
was new, but when they occur, you need to be able to solve them quickly. If your
company is small or doesn’t work with SCSI too often, renting test equipment
might be the best option for you. The price tags on this stuff could scare the
warts off a toad, and the SCSI standards evolve so fast that equipment can
become obsolete in just a few years. You need to weigh the issues carefully and
decide whether to buy or rent. Owning the equipment gives you fast access to
it and — given that you own it — you use it more often and become more
skilled in its use.

Back in the Stone Age

When I first started working with SCSI in 1986, there was no such thing as SCSI
test equipment. I used a standard 16-channel logic analyzer and connected the
probes to test points on a perfboard upon which I had wired SCSI connectors,
some LEDs (to display the current signal state of all the SCSI signals), and a
reset switch. Because the logic analyzer only had about 8K words of memory and
no combination trigger, capturing exactly the part of the bus activity I wanted
was no easy feat. If I set the sample rate too fast, I wouldn’t capture enough. 
If I set it too slow, I might miss brief signal transitions (like ACK/REQ) that might
be important. Developing those first device drivers was quite a challenge,
because neither the host adapter hardware nor the devices I was trying to talk
to had been tested, and there were no “example drivers” to give me an idea of
what needed to be done!

I suppose this approach could still be used today if you’re really strapped
for cash or enjoy mental anguish, but I wouldn’t recommend it. Today, test 
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tools are available to help you work out problems, but the price tags pretty
much restrict their purchase to professional developers. To add insult to injury,
SCSI technology changes so quickly that today’s state-of-the-art SCSI analyzer
becomes tomorrow’s doorstop very rapidly!

Types of SCSI Analyzers

Several forms of SCSI analyzers exist. One type consists of an aluminum brief-
case with a built-in data display/keyboard and several connectors (to accommo-
date the ever-widening selection of “standard” SCSI connectors). Switches to
enable or disable internal termination or reset the bus are also present. These
stand-alone units typically offer a printer connection and internal disk or other
storage media. Many times you’ll need to send the printed output to a device
manufacturer to point out a deficiency in their device.

Another approach is to offer a small box with the SCSI connections. The
box has a cable that connects to a special PCMCIA card in a notebook computer.
A software analyzer application is then run on the notebook, which displays
the data captured by the external module. Some analyzers allow data capture
without the notebook computer attached — which helps you avoid coming
back to get your results only to find that your notebook has magically
vanished!

Another type consists of a special SCSI adapter in a desktop PC that, in
combination with application software, performs SCSI bus analysis.

I know what you’re thinking: Why doesn’t someone just write software that
will use my existing SCSI host adapter and let me snoop on what’s happening
on the SCSI bus? The answer is that SCSI controller chips, used on host
adapter cards, don’t provide sufficient control to allow this. So, as much as
we’d all like to see it, you can’t use your general-purpose host adapter as a SCSI
analyzer, no matter what software you are willing to write.

Analyzer Output

The basic function of SCSI analyzers is to display a snapshot of the sequence of
bus states that were involved in a particular SCSI command execution. This may
be in the form of a logic analyzer–style timing diagram or as a text listing show-
ing which initiator selected which target and what command was sent with which
parameters. The result looks similar to an assembly language program listing.

Analyzers offer so many options about what will be captured and what will
cause a trigger that it generally takes longer to get things set the way you want
them than to actually capture the data of interest. However, if you’ve decided
that you’ve just got to have one of these, and your budget allows a $6,000 to
$12,000 expenditure, here are some companies that make them:
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Manufacturers

Ancot

115 Constitution Drive
Menlo Park, CA 94025
(650) 322-5322
http://www.ancot.com/

Data Transit

3732-A Charter Park Drive
San Jose, CA 95136
(408) 264-4300
http://www.data-transit.com/

Innotec Design

7035 Orangethrope Avenue, Unit I
Buena Park, CA 90621
(714) 522-1469
http://www.innotecdesign.com/

I-Tech

10200 Valley View Road
Eden Prairie, MN 55344
(612) 941-5905
http://www.i-tech.com/

Verisys

335-H Spreckels Drive
Aptos, CA 95003
(831) 662-7900
http://www.verisys.com

Xyratex

U.K.:
Langstone Road
Havant
Hampshire
PO9 1SA
+44(0)23 9249 6000
http://www.xyratex.co.uk/

USA:
2151 Michelson Drive, Suite 235
Irvine, CA 92612
(949) 476-1016

http://www.nostarch.com/scsi2_redirect.htm?366a
http://www.nostarch.com/scsi2_redirect.htm?366b
http://www.nostarch.com/scsi2_redirect.htm?366c
http://www.nostarch.com/scsi2_redirect.htm?366d
http://www.nostarch.com/scsi2_redirect.htm?366e
http://www.nostarch.com/scsi2_redirect.htm?366f
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A T A / I D E  V E R S U S  S C S I

“What is better, SCSI or ATA?” is a question you may hear often these days.
Usenet carries heated discussions between ATA and SCSI zealots every day
(check for yourself in the comp.periphs.scsi newsgroup), and the prejudices
on both sides are, in many cases, far from the technical facts.

As you might expect in a book about SCSI, the authors think SCSI is the
better interface. However, the question “What is better?” usually means “What
is faster?” — simply the wrong question. In fact, we have two interfaces that
had (and have) rather different goals.

Because high-end systems and servers have no serious choice other than
SCSI at the moment, we’ll look at the issues from a small workstation’s point
of view. 

History

SCSI

Historically, SCSI emerged from Shugart’s SASI approach to define a univer-
sal interface for disk drives and other peripherals like tape drives, the most
common peripherals at that time. Remember that we’re talking about a time 
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when CD-ROMs and other common devices used today didn’t exist. The uni-
versal interface that resulted needs considerable effort to implement the hard-
and software.

ATA

ATA, the AT Attachment interface, was developed as a replacement for the
ST-506 disk interface to overcome that interface’s inherent limitations and yet
remain as compatible as possible with old software. Therefore, all ATA disk
drives still emulate the old WD-1003 controller at the I/O register level. 

As the ATA specification states, “This standard defines the AT Attachment
Interface. This standard defines an integrated bus interface between disk drives
and host processors.”

IDE/EIDE

Whenever you see the name IDE or EIDE, the same interface is meant: When
the first ATA drives came into the market, the name IDE (Integrated Drive
Electronics) was used to distinguish the new ATA interface from the old ST-506
interface. When later the ATA interface was enhanced by the addition of faster
transfer modes and by moving it off the slow AT bus to the faster local VLB and
PCI buses, the end product was called Enhanced IDE or EIDE. ATA was the
name used when formalizing the standard for this interface.

ATAPI

Later, the ATA Packet Interface (ATAPI) was added to control additional 
storage devices, like CD-ROM and tape drives. From an abstract technical
view, there is no SCSI storage device that couldn’t be made available as an
ATAPI device. After all, the ATAPI commands are just SCSI commands sent
over the ATA bus.

Speed—and Why It Isn’t Everything

Data transfer rates are the feature most often compared — a silly comparison.
Besides, SCSI Ultra/160 m — with bus transfer rates of up to 160 MB/sec —
should settle this question for the next few years. As you’ll read later, there are
other considerations, but for the moment, let’s have a look at the interfaces’
data transfer rates shown in Table D.1.
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Table D.1: Interface Burst Transfer Rates in MB/sec

SCSI ATA 

Single- Multi-
Word Word 

Mode 8 Bit 16 Bit Mode PIO DMA DMA 

SCSI 5  10  0 3.3   2.1  4.2  
1/2

Fast 10  20  1 5.2  4.2  13.3
SCSI 2

Ultra 20  40  2 8.3  8.3  16.6 
SCSI

Ultra 2 40  80  3 11.1  — 33.3 
LVD

Ultra 80  160  4 16.6  — 66.6 
/160 m

As you see, from a raw speed point of view, both ATA and SCSI are suitably fast
for a small disk system, keeping in mind that a typical high-end disk drive still
delivers under 30 MB/sec and that ATA has a limit of two devices per channel.
So, at the moment, speed isn’t an issue you need to consider. 

What will arise isn’t yet clear — IEEE 1394 should be fairly well established
within a couple years, but still won’t have the potential to replace ATA from a
speed point of view. 

Features That Make a Difference

I/O Device Independence and Multitasking

A big difference between SCSI and ATA is device independence and overlapping
I/O capability. 

Device Independence

A SCSI host adapter negotiates the synchronous data transfer speed indepen-
dently for each device. Older, slower devices therefore limit the bus transfer
speed only when they’re busy transmitting data, but faster devices, in their own
transmissions, use their own maximum transfer rate.
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N O T E  ATA can do this to some extent too, but most ATA controllers and drivers don’t imple-
ment this feature. So in many situations, the slowest device on an ATA channel limits
the transfer mode and throttles the faster devices. Fortunately, this seems to be getting
better in the newer chip sets. 

Overlapping

Overlapping I/O is a different issue: When a command is issued in ATA, the
next command can’t be sent to the drive until the first command’s execution
has finished. This is especially ugly when a command — like Recalibrate or
Seek — takes a long time. So, command tasks in ATA can only be executed in
the order you send them to the device. This was not an issue in MS-DOS and
similar operating systems, but given the increasing frequency of concurrent
disk requests in today’s operating systems, it matters now. 

SCSI has two mechanisms to avoid this problem. The easiest is “Disconnect/
Reconnect” — a device receiving a command that needs some time can acknowl-
edge the command, disconnect from the bus, execute the command, and, when
it’s done, reconnect to the host adapter and deliver the result.

In addition, more sophisticated SCSI devices will do tagged command queuing.
This feature lets the device rearrange pending tasks to optimize the execution
order of the commands. For example, a disk drive can reorder disk reads to
optimize head movements. This was sometimes also called elevator seeking because
the model fits perfectly — in an elevator, the door opens on the nearest selected
floor, regardless of the order in which the buttons were pressed.

Sadly, because both mechanisms are only optional, you may encounter
poorly designed SCSI peripherals that don’t support these features. 

OS Support

Also, depending on the operating system you plan to use, you should check
whether the OS supports these features. It is pointless, for example, to boast
about the multitasking capabilities of the hardware if you plan to use DOS or
Windows 95 on a PC. On the other hand, operating systems such as Windows
NT, OS/2, and all flavors of Unix strongly benefit from these capabilities.

Cable Length—and What It Means in Real Life

Cable length is always an issue. The maximum ATA cable length of 18 inches
(0.5 meter) is not much, especially if you need to shorten the cable a few inches
because the board vendor sacrificed maintaining short traces against a more
convenient connector position. So you’re nearly always on the border of the
critical range with ATA systems. This poses no problem with slow transmit rates,
but is a threat to system integrity with the faster ATA modes.
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Compared to ATA, SCSI allows cable lengths beyond compare, even in
the most limited high-speed implementations — 1.5 meters (59 inches) is the
shortest limitation SCSI has under most circumstances. 

Mainly because of the defined bus length, external devices in ATA are
dubious, even if there are some implementations of external “tabletop” cabinets
for CD-ROMs. 

With SCSI’s bus length specifications and the definition of shielded cables,
addition of external devices is not only possible but simple. SCSI is therefore
still the interface of choice to attach image scanners and other external periph-
erals to computer systems, although USB (for low-end peripherals) and IEEE
1394 (also known as FireWire or i.Link) show some potential to compete with
parallel SCSI in this area.

Devices per Channel: Why Should You Care?

A SCSI channel allows you to attach seven to fifteen devices to a host adapter.
Wide SCSI is an interesting issue for disk drives, but — aside from some high-
end tape drives — non-disk peripherals are virtually unavailable as Wide SCSI.
Let’s therefore settle for seven devices per channel for this comparison. ATA, 
on the other hand, accepts only two devices per channel. Although this doesn’t
seem to be a big issue — you could just add channels — the reality is that in
today’s PC architecture, you typically need an interrupt for a channel, and
interrupts are a scarce resource. In your everyday PC, you lose IRQ 14 and 15
to the two standard ATA ports.

Multi-channel adapters that overcome the IRQ issue are available for both
interfaces, so all is not lost if you’re out of device resources. However, with SCSI
this isn’t too likely at all.

This discussion is not as far-fetched as it seems. A typical home or office PC
today has a disk and a CD-ROM or DVD. For such devices, distributed to both
ATA channels of a system, everything should be okay. Now, if you add a CD
recorder and a removable disk device like a Zip drive — two common devices —
ATA’s limit is reached. If you want any additional device — be it an additional
disk drive, a tape drive, or something new we haven’t dreamt of yet — you need
to go either the SCSI route or buy a special multi-channel controller, if one is
available that fits your system, and if your system has free resources (one free
IRQ and a free slot) to install it. A lot of “ifs” there! 

What to Choose?

With the above said, the question is what to choose for the desired system.
After the feature comparisons in Table D.2, we’ll suggest a few simple rules to
use as an appropriate guide.
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Table D.2: SCSI Versus ATA Design Issues

Feature SCSI ATA

Devices per channel 7 (8 bit) or 15 (Wide) 2 

Cable length per channel Depending on clock  18 inches (46 cm)
rate, 1.5 m to 6 m* 
(4.9 ft to 19.7 ft)  

External cabling Yes No 

Independent timing per device Yes Sometimes 

Data integrity mechanisms One bit parity SCSI-3 None 
provides ECC Ultra DMA provides ECC

Overlapping I/O (Multitasking) Yes No 

Maximum Data Rate 80 MB/sec * 66 MB/sec

* A few issues like LVD and Ultra/160 m are not relevant here 

Consider Your Requirements

CPU Load

Note that we don’t (okay, we do . . .) mention CPU load. Although SCSI tends
to have lower CPU load on transfers than ATA, the introduction of busmastering
DMA transfers in ATA has shifted the emphasis to exactly which devices you
purchase — that is, CPU load is now more dependent on the devices and the
driver quality than on the interface itself. So, for a standard system the point 
is moot — and where it really counts, other issues inhibit ATA.

Games

If you’re building a standard home PC  and/or a system directed at games, think
about using ATA. For such systems you’d typically have one big disk drive and
a fast CD-ROM, and you’d use Windows 95/98 as your operating system, which
strongly limits the advantage of SCSI’s device independence. The price advan-
tage of ATA cannot be overlooked, and so you’d end up with a possibly 20
percent cheaper system to get essentially the same performance.
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Graphics, Video, or Development

If you want to do graphics, video manipulation, or development work, go SCSI.
All such applications require lots of disk activity for tasks like background
compiling, swapping large image files (or parts of them) in and out of memory,
and generally multitasking to a high degree. With ATA’s sequential tasking,
timing is so much more critical that you might decide to use SCSI for that 
reason alone.

External Peripherals

If you want to use external peripherals, check your requirements. Middle-quality
desktop scanners are available with USB interfaces and alone are possibly not
enough reason to go SCSI. Higher-end devices typically aren’t available with
interfaces other than SCSI, and then it’s likely you’ll be doing graphics work as
discussed above. So again, it makes sense to go SCSI anyway. 

Operating Systems

If you want to use Windows NT, Windows 2000, or a flavor of UNIX, go SCSI.
In operating systems like these, a lot of background processing requires disk
activity, resulting in better responsiveness under load. There are profound
reasons why all vendors of such operating systems recommend SCSI over ATA.

The Bottom Line

Under most conditions, SCSI is the better — and even faster — interface.
You’ll have to decide for yourself if your application can use the advantages
and if it’s worth the price tag.



E
A  S M A L L  A S P I  D E M O

A P P L I C A T I O N
(OR,  HOW TO USE  ASPI  WITHOUT  DIGGING TOO

DEEP)

Source files for all the code shown in this section are included on the CD-ROM accompanying
this book.

ShowSCSI.pas is a small program that shows how to communicate with the
ASPI interface. Because it concentrates strictly on communicating with the
ASPI interface, there are no bells and whistles. Mostly, even error checking 
is simplified or omitted to keep it as small as possible. We will, however, con-
tinue developing it and extend it into a usable library with the possible add-on
of a few handy tools. Check http://www.nostarch.com/scsi_updates.htm from
time to time.

Program Structure

ShowSCSI is written in Delphi and consists of mainly three components:

1. ShowSCSI.pas, the main program. Basically, it offers the GUI and the 
program logic — not much in this case: It just calls the interface functions
from AspiApplication.pas and offers the container lists for the results from
this call.

http://www.nostarch.com/scsi_updates.htm
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2. AspiApplication.pas, the middle layer. AspiApplication.pas offers high
level function calls for things like “Start Device” or “Eject Medium” and
such. This unit doesn’t know much about ASPI—it just calls a function from
the “hardcore” layer ASPI_Interface.pas, submits the address of the device
(host adapter, SCSI ID, LUN) and an object to hold the return value(s).

As an example, after the completion of an issued command the list
referenced by P_ASPI_DevInfo contains the result value of the command—
in this case the Inquiry string of the device with list vendor name, device
name, and so on.

3. ASPI_Interface.pas, the lowest layer and the only part that “talks” ASPI/SCSI
to the devices. In ASPI_Interface, the ASPI/SCSI commands are defined,
for example ASPI_GetDeviceType to get the device type (Disk, Optical
drive, etc.) of the addressed SCSI device.

Why Use Three Layers? 

There are mainly three goals, the most important being to keep  a clean struc-
ture to the code.

1. The ASPI interface should be wrapped in a layer where you can say “I
want the CD-ROM tray to open” without knowing that you need to issue 
a Start/Stop Unit command with the right settings for the Start/Stop and
Load/Eject bits in the SCSI command descriptor block. While you need
to know this to implement the function in ASPI_Interface.pas, there is no
need to have a SCSI CDB reference ready to use this late in your
ShowSCSI application.

2. While this program and its parts are only small excerpts from the ASPI/SCSI
world, the concept can be used for bigger applications, too, and we want
to expand the tool chest over time. In a layered concept, it is easily possi-
ble to extend the list of SCSI functions from ASPI_Interface.pas without
changing anything in other parts of the project and without the program
becoming “spaghetti code.” The same reason applies for the middle layer
AspiApplication.pas. Therefore, if you want to add a new function, which
we’ll do later in this appendix, you’ll stay compatible with all other parts
of the old program.

3. The user interface should be strictly separated from the technical part of
the program. While we have an application with a graphical user interface
here, it is no problem to replace ShowSCSI.pas with a console mode part,
for example, to eject a CD from the command line or a batch file.
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So, using a layered concept is a key point to easy expansion of the program,
and if you want to add a new function, which we’ll do later in this appendix,
you’ll stay compatible with all other parts of the old program.

Additionally, a few files offer definitions: wnaspi32.pas for ASPI for 
Windows 32, SCSI.pas has some SCSI definitions, and LibUtil.pas gives us a
handy conversion routine for packing option bits into bytes for the SCSI com-
mand. Please keep in mind that the separation is not complete; for clarity,
some definitions are local in the sources.

What we want is a program that checks if ASPI is installed, shows us the
known devices, and offers buttons to stop and start a selected device. Provided
that this command (Start/Stop Unit) makes sense to the device, it should then
spin down or up. A slightly extended version should have the possibility to eject
and load the medium tray, for example on a CD-ROM drive.

Now let’s dive a little deeper into it. On startup, ShowSCSI searches for ASPI
host adapters (including the check if ASPI is installed at all) and collects the
host adapter data in a list called HAList.

If a host adapter is selected, all possible device IDs are checked for a device
with the SCSI Inquiry command. The inquiry data are written to a new list called
DeviceList and the devices are shown in the GUI. After a device is selected, a
command can be issued to it, in our case either Start or Stop. These two “high-
level” commands are basically the same SCSI command with just one bit set
differently.

Typically, the first thing to do is to initialize all neccessary structures of
the program. This is done by the startup routine in the main program:

procedure TForm1.FormCreate(Sender: TObject);

.

...

HAList     :=TList.Create; // list of host adapters

DeviceList :=TList.Create; // list of actual devices

.

.

GetHAInfos(Memo.Lines); // get HA's and display list in Memo

for i:=0 to HAList.count-1 do begin // load HA listbox with all HA's

HAListBox.Items.Add(inttostr(PHADevices(HAList[i])^.HA)+': ' +

PHADevices(HAList[i])^.HAName);

.

.

Of course, the ASPI parts of the program from the lower layers are responsible
for their own initializing, for the code here doesn’t know anything about their
internals. Therefore the GetHAInfos function from AspiApplication.pas has
its own housekeeping that uses the parameters from ASPI_Interface.pas. As
confusing as it may sound at first, it is easier to define it this way than to have
all parameters defined locally.
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function GetHAInfos(Protokoll:TStrings):boolean;

VAR NumAdap    : Longint;

HA_Num     : integer;

pString    : string ;

AktHA      : PHADevices;

PASPI_HAInfo:P_ASPI_HAInfo ;

begin

GetHAInfos:=false; // initialise ASPI manager

PASPI_HAInfo := New(P_ASPI_HAInfo) ; // from ASPI_Interface ...

ASPI_GetHANum(NumAdap) ; // return the number of HAs 

[0..n]

for HA_Num:=0 to NumAdap-1 do begin // ask every found hostadapter ...

ASPI_GetHAInfos(HA_Num, PASPI_HAInfo) ;

AktHA:=New(PHADevices);

AktHA^.HA:=HA_Num;

HAList.Add(AktHA) ; // add one entry (hostadapter) to the 

//listbox "host adapters"

pString := format('Hostadapter ' + PASPI_HAInfo^.HaName + 

' AspiNum: %d, SCSI-ID: %d', 

[PASPI_HAInfo^.HaAspiId,PASPI_HAInfo^.HaScsiId]);

Protokoll.add(pString); // add one entry to the 

// memofield "device info"

AktHA^.HAName := PASPI_HAInfo^.HaName;

end;

end;

Here, the ASPI manager is asked whether there are host adapters present, and
which ones they are. If no ASPI manager is present, we can safely assume that
there is no point in continuing the program. Due to the lack of an error handler
here, the program just quits with an error message from Windows, while in a
commercial quality program, you would include an error handler here to end
the program gracefully.

Now we have a list of host adapters (in HAList) from which we can select
one. This is done back in the GUI part ShowSCSI.pas in the HAListBoxClick
procedure:

procedure TForm1.HAListBoxClick(Sender: TObject); // clicking on a HA

var

i : integer; // adapter from the list ...

HA:integer ; // Number of the selected hostadapter

begin

HA := HAListBox.ItemIndex; // selected Host adapter, defined in

// the ASPIApplication unit
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// form cleanup ....

ListBox1.Clear; // clear devicelist

ListBox1.Refresh; // refresh devicelist

// action ...

GetDeviceList(HA, DeviceList); // get devices and load memo field

for i:=0 to DeviceList.count-1 do // fill device listbox

ListBox1.Items.Add(inttostr(P_ASPI_DevInfo(DeviceList[i])^.ID)+':'+

inttostr(P_ASPI_DevInfo(DeviceList[i])^.LUN)+': '+

P_ASPI_DevInfo(DeviceList[i])^.Inquiry.ProductId);

end;

Again, some housekeeping should be done by clearing the device list first, then
GetDeviceList from AspiApplication.pas is called with the selected host adapter,
and fills the list of devices called DeviceList. The GUI part then extracts the
neccessary data to fill the Listbox to click on a particular device. If this click
happens, the clicked device is selected and the inquiry data from this device
are shown in a text box (Memo).

procedure TForm1.ListBox1Click(Sender: TObject);

var

DEVINDEX  : integer ;

begin

Memo.Clear; // clear memofield

DEVINDEX := ListBox1.ItemIndex; // selected Device (element from Listbox)

with P_ASPI_DevInfo(DeviceList[DEVINDEX])^ do // add device information

// to memolist "Devices"

begin

Memo.Lines.add(format('Device HA: %d : ID %d, LUN %d, Type %d = '

+DevType,[HA,ID,LUN,TypeNum])); // output inquiry data in

Memo.Lines.add(InquiryString); // memofield

end;

end;

Now, any of the buttons can be pressed to submit a SCSI command to the device.

procedure TForm1.StopButtonClick(Sender: TObject); //Stop Button

var i:integer;

begin

for i:=0 to ListBox1.items.count-1 do

if Listbox1.selected[i] // for each selected device

then // send Start/Stop Unit command with

// 'start' and 'eject' flags set false

StartStopUnit(false,DeviceList[i]);

end;



380 Appendix E

This button sends a Start/Stop Unit command with the Start/Stop bit set to
“Stop” to the selected device (DeviceList[i]). If we look deeper into what hap-
pens now, StartStopUnit fills the SRB structure with the neccessary parameters
and calls ASPI_StartStopUnit:

function ASPI_StartStopUnit(HA,ID,LUN:integer; Start:boolean; 

var errorcode:integer):boolean ;

var Buffer:PSRBBuf; // PSRBBuf from Wnaspi32

SRB:PSRB_ExecSCSICmd; // PSRB_ExecSCSICmd from Wnaspi32

begin

SRB:=New(PSRB_ExecSCSICmd); // create new SRB structures

Buffer:=New(PSRBBuf);

InitSRB(SRB,sizeOf(SRB^)); // initialize SRB

SRB^.SRB_HAId:=HA; // fill SRB parameters ...

SRB^.SRB_Target:=ID;

SRB^.SRB_Lun:=LUN;

SRB^.SRB_BufPointer:=Buffer;

SRB^.SRB_CMD:=SC_EXEC_SCSI_CMD;

SRB^.SRB_Flags:=0;

SRB^.SRB_BufPointer:=nil; // no buffer:

SRB^.SRB_Buflen:=0; // buffer size 0, the Start/Stop Unit

//   command doesn't transfer data...

SRB^.SRB_SenseLen:=SENSE_LEN; // default ASPI sense buffer length, 14 bytes

SRB^.SRB_CDBLen:=6; // 6-Byte command

// ---- SCSI command block parameters ----

SRB^.CDBByte[0]:=$1B; // Start/Stop Unit $1B

SRB^.CDBByte[1]:=LUN*32; // LUN shifted 5 bits to the left

// where it belongs ....

if Start then // set SCSI command - start bit

SRB^.CDBByte[4]:=1

else

SRB^.CDBByte[4]:=0;

SendASPI32Command(SRB); // action!

Now the program polls the ASPI status until it indicates that the command has
completed. Because it’s pointless to poll a few million times until a start/stop
unit command completes, we add 100ms pauses to release the CPU for this time. 

while SRB^.SRB_Status=0 do begin

sleep(100) ; // don't lockup the machine...

end ;
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If the command has completed, the SCSI target status of the device is checked.
This would be the place to implement a SCSI error handler, if you want or need
one. At the moment, we check only if the command succeeded or not.

case SRB^.SRB_TargStat of       // This handler may be used later to repeat

// a command based on certain conditions

TARGSTAT_GOOD:             // All done now

begin

ASPI_StartStopUnit:=True ;

end;

TARGSTAT_CHKCOND:          // Check Condition,

begin                      // e.g. process sense data

ASPI_StartStopUnit:=False ;

end;

TARGSTAT_BUSY:             // Device is Busy

begin

ASPI_StartStopUnit:=False ;

end;

TARGSTAT_RESCONF:          // Reservation Conflict

begin

ASPI_StartStopUnit:=False ;

end;

else

begin                       // there may be very special cases...

ASPI_StartStopUnit:=False ;

end;

end ;

Finally, the data structures used for the SCSI function call are freed.

// cleanup data structures...

dispose(SRB);

dispose(Buffer);

end ;

More or less, this is it — a working program using the ASPI interface to com-
municate with a SCSI device. However, this code has two known problems.
One lies in using the ASPI polling mechanism. As shown above in the

while SRB^.SRB_Status=0 do begin

sleep(100) ;                    // don't lockup the machine...

end ;

piece of code, we add a pause of 100ms after each ASPI poll for the SRB status.
If this weren’t there, the program would use 100 percent of CPU time until the
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command completes and SRB^.SRB_Status would change from 0 to another
value. If you write more complex or commercial applications with ASPI, the
keyword here is “ASPI posting,” together with setting timeouts using the ASPI
SC_GETSET_TIMEOUTS command.

The second problem is a bigger one. With the standard ASPI layer present
in Windows 95, 98, or NT4, all interfaces being or mimicking a SCSI host adapter
are listed as host adapters. This includes the standard ATAPI driver under the
name ESDI_506 as well as special drivers like Notebook PCMCIA ATA cards and
drivers like VirtualCD. Note that most of these appear only if there are non-disk
devices attached to the adapter. 

Now, our program sends the Inquiry command to each possible device to
get a list of devices. If such a real or virtual device doesn’t respond, the ASPI
layer locks up waiting for a response and — usually after a few tries of the user
to kill the program — takes the system with him. In general, behavior here is not
really predictable; as far as the systems used in writing this demo program, some
worked, and some locked up — without any possibility of recovery. A possible
quick and dirty approach that even some commercial programs use is to filter
the names of the host adapters and either eliminate the known names or accept
only known names, but this isn’t a very good solution. Here again, the
keyword is setting timeouts using the ASPI SC_GETSET_TIMEOUTS command.

Enough for now with complex problems — next, we’ll try to implement a
new command in our program to load or eject the media tray, for example on
a CD-ROM or a removable disk drive.

Implementation of the Load/Eject Functionality in
ASPI_Interface

To add a command, you basically use the same function layout as used for the
other commands in ASPI_Interface.pas. The SendASPI32Command() function
call needs an SRB structure, so we fill this structure with the correct parameters
for our command. Because Load/Eject is an application of the Start/Stop
Unit command, the parameters are basically the same as in
ASPI_StartStopUnit, with the exception of Byte 4 of the CDB. In addition to the
Start bit to determine between a Start and a Stop Unit operation, we need the
Eject bit to add the Load/Eject action.

SRB^.SRB_HAId:=HA;

SRB^.SRB_Target:=ID;

SRB^.SRB_Lun:=LUN;

SRB^.SRB_BufPointer:=Buffer;

SRB^.SRB_CMD:=SC_EXEC_SCSI_CMD;

SRB^.SRB_Flags:=0;

SRB^.SRB_BufPointer:=nil;        // no buffer:
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SRB^.SRB_Buflen:=0; // buffer size 0, for the Start/Stop Unit

// command doesn't transfer data...

SRB^.SRB_SenseLen:=SENSE_LEN; // default ASPI sense buffer length, 14 bytes

SRB^.SRB_CDBLen:=6; // 6-Byte command

// SCSI command block parameters

SRB^.CDBByte[0]:=$1B; // Start/Stop Unit $1B

SRB^.CDBByte[1]:=LUN*32; // LUN shifted 5 bits to the left

// where it belongs ....

if Eject then // set SCSI command - start and eject bit

SRB^.CDBByte[4] := 2

else

SRB^.CDBByte[4] := 3 ;

After filling the SRB structure, SendASPI32Command(SRB) is called and the
program polls for the command completion.

SendASPI32Command(SRB);        

while SRB^.SRB_Status=0 do begin

sleep(100) ; // ASPI command pending  ...

end;

.

.

Now we check the target status code from the addressed device in SRB_TargStat.
This would be the place to implement a better error handler for the command,
if needed. This code mainly checks if the command worked or not, but doesn’t
do more.

case SRB^.SRB_TargStat of // This handler may be used later

// to repeat a command based on

// special conditions

TARGSTAT_GOOD:    // All done now

begin

ASPI_LoadEjectUnit:=True ;

end;

TARGSTAT_CHKCOND: // Check Condition,

begin     // e.g. process sense data

ASPI_LoadEjectUnit:=False ;

end;

TARGSTAT_BUSY:  / Device is Busy

begin

ASPI_LoadEjectUnit:=False ;

end;
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TARGSTAT_RESCONF: // Reservation Conflict

begin

ASPI_LoadEjectUnit:=False ;

end;

else

begin // there may be some very special cases

ASPI_LoadEjectUnit:=False ;

end;

end ;

Again, the complete function for the Load/Eject call:

function ASPI_LoadEjectUnit(HA,ID,LUN:integer; Eject:boolean; 

var errorcode:integer) : boolean ;

{ Description: Start/Stop Unit with Eject bit set

Parameters:  HA, ID, LUN of the SCSI device

Eject bit set true/false

Errorcode (return value for e.c. - not yet implemented)

Returns True/False

}

var Buffer:PSRBBuf; // PSRBBuf from Wnaspi32

SRB:PSRB_ExecSCSICmd; // PSRB_ExecSCSICmd from Wnaspi32

begin

SRB:=New(PSRB_ExecSCSICmd);

Buffer:=New(PSRBBuf);

InitSRB(SRB,sizeOf(SRB^));

SRB^.SRB_HAId:=HA;

SRB^.SRB_Target:=ID;

SRB^.SRB_Lun:=LUN;

SRB^.SRB_BufPointer:=Buffer;

SRB^.SRB_CMD:=SC_EXEC_SCSI_CMD;

SRB^.SRB_Flags:=0;

SRB^.SRB_BufPointer:=nil; // no buffer:

SRB^.SRB_Buflen:=0; // buffer size 0, for the Start/Stop Unit

// command doesn't transfer data...

SRB^.SRB_SenseLen:=SENSE_LEN; // default ASPI sense buffer length, 14 bytes

SRB^.SRB_CDBLen:=6; / 6-Byte command

// SCSI command block parameters

SRB^.CDBByte[0]:=$1B; // Start/Stop Unit $1B
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SRB^.CDBByte[1]:=LUN*32; // LUN shifted 5 bits to the left

// where it belongs ....

if Eject then // set SCSI command - start and eject bit

SRB^.CDBByte[4] := 2

else

SRB^.CDBByte[4] := 3 ;

SendASPI32Command(SRB); // action!

while SRB^.SRB_Status=0 do begin

sleep(100) ; // ASPI command pending  ...

end;

case SRB^.SRB_TargStat of // This handler may be used later

// to repeat a command based on

// special conditions

TARGSTAT_GOOD: // All done now

begin

ASPI_LoadEjectUnit:=True ;

end;

TARGSTAT_CHKCOND: // Check Condition,

begin // e.g. process sense data

ASPI_LoadEjectUnit:=False ;

end;

TARGSTAT_BUSY: // Device is Busy

begin

ASPI_LoadEjectUnit:=False ;

end;

TARGSTAT_RESCONF: // Reservation Conflict

begin

ASPI_LoadEjectUnit:=False ;

end;

else

begin // there may be some very special cases

ASPI_LoadEjectUnit:=False ;

end;

end ;

// cleanup data structures...

dispose(SRB);

dispose(Buffer);

end ;
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Implementation of the Load/Eject Functionality 
in ASPIApplication

The AspiApplication layer is built from function blocks with simple names like
StartStopUnit or LoadEjectUnit that act as call interface for the GUI front end.
This layer more or less translates the functional command (Load Tray) in its
ASPI/SCSI equivalent by calling the neccessary commands from ASPI_Interface.
In our case, this is only the single command Start/Stop Unit, but for a more
complex task, this is the place to implement the high-level function.

Error handling from the called function(s) should also be done here,
because in multi-command functions, the exact place of the error might need
to be checked. Because we have only one command that does the basic checking
itself, we have omitted this here.

function LoadEjectUnit(Eject:boolean;P:P_ASPI_DevInfo ):boolean;

{ Description: Load or eject medium, depending on Eject bit

Parameters:  Eject – If set, ejects, if not, loads

P_ASPI_Devinfo - SCSI device record

Returns True/False

}

var

errorcode : integer ;

begin

result := ASPI_LoadEjectUnit(P^.HA,P^.ID,P^.LUN,Eject, errorcode) ;

end;

Implementation of the Load/Eject Functionality 
in the GUI

Calling the new function is the easiest part of all — we need two new buttons
in the front end, reasonably labeled Load and Eject. The ClickEvent of these
buttons gets a callback procedure to call our new function LoadEjectUnit with
the parameters of the device selected in the DeviceList. 

procedure EjectButtonClick(Sender: TObject);

procedure LoadButtonClick(Sender: TObject);

implementation

procedure TForm1.LoadButtonClick(Sender: TObject);

var i:integer;

begin

Screen.Cursor := crHourglass;

try
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for i:=0 to ListGUIx1.items.count-1 do

if ListGUIx1.selected[i] // as aGUIve, but 'start' bit

then  // and 'eject' bit true

LoadEjectUnit(false,DeviceList[i]);

finally

Screen.Cursor := crDefault;

end;

end;

procedure TForm1.EjectButtonClick(Sender: TObject);

var i:integer;

begin

for i:=0 to ListGUIx1.items.count-1 do

if ListGUIx1.selected[i]

then            // Stop Unit with 'eject' bit true

LoadEjectUnit(true,DeviceList[i]);

end;

This is it — you just added a new command to your application.
As stated above, there are issues in this example program you wouldn’t

(and couldn’t) accept in a commercial application. But basically, this is a 
possible way to use the ASPI interface for your own programs.

Have fun in programming, and if you extend the functionality, let us know.



A
Adapter A card that connects the SCSI bus with the host system’s bus.

Address A number that refers to a specific location in memory.

ANSI American National Standards Institute.

API(Application Program Interface) A clearly defined set of software routines
and variables that form the interface between related programs.

ASPI (Advanced SCSI Programming Interface) A software layer that allows
SCSI peripheral drivers and applications to send SCSI commands to a SCSI
host adapter without needing to know the details about that host adapter.

Asynchronous SCSI A way of sending data over the SCSI bus. The initiator
sends a command or data over the bus and then waits until it receives a
reply (e.g., an ACKnowledge). All commands are sent asynchronously
over the 8-bit part of the SCSI bus. Data may be transferred via either
asynchronous or synchronous protocol.

B
Backward compatibility The ability of newer technology to work with older

technology without any modification.

BIOS (Basic Input Output System) Software stored in ROM or other non-
volatile memory in all PCs. The BIOS contains routines that allow the PC
to boot from various disk devices and communicate with other vital
devices, such as the keyboard and video display.

Block A portion, or sector, of a disk that stores a group of bytes that must all
be read or written together. Most current hard disks and operating systems
use a block size of 512 bytes. CD-ROM disks have 2048-byte blocks.

Burst speed The maximum speed at which data can be transferred, even if only
for a very short time.

G L O S S A R Y
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Bus A set of hardware signals and connections that act together to communicate
between SCSI devices. Narrow (8-bit) SCSI provides a 50-pin bus; Wide SCSI
uses a 68-pin bus.

Bus mastering A method of transferring data across a bus in which the device
takes control of the bus from the CPU and performs the data transfer
directly to or from memory. Most PCI cards can do this, but some mother-
boards only allow bus mastering in certain PCI slots.

C
Cache Memory that is used as a high-speed temporary storage place for fre-

quently used data.

CAM (Common Access Method) The ANSI standard for SCSI device driver
and software layering. It is similar in nature and superior in capabilities to
ASPI, but never received as much industry acceptance.

CDB (Command Descriptor Block) The bytes that form a SCSI command.

Chain A chain is a set of SCSI devices “daisy-chained” together to form a bus.

Channel A SCSI channel is a block of hardware that provides an independent
SCSI bus. Some SCSI host adapters contain the hardware for two (or more)
SCSI buses. Some cards provide separate bus segments that allow isolation
of some devices from others and localize signal reflections. A true SCSI
channel allows another entire set of SCSI IDs to be connected.

Cluster A group of blocks in a filesystem (most commonly FAT16 or 32) that
must be used together. The term can also refer to a group of computers
that share storage devices and other resources for purposes of maintain-
ing operation even during a hardware failure in one of the systems.

Cylinder A collection of tracks all aligned one above the other on multiple
disk platters.

D
Device driver A specialized software module that communicates with and

transfers data to/from a device or host adapter.



Glossary 391

Differential (now called high voltage differential [HVD] to distinguish it from
LVD) Uses two wires to drive each signal. Electrically incompatible with
single-ended devices! HVD uses much more expensive line driver chips
than  single-ended interfaces. Differential signaling is more immune to
noise because the same noise is picked up on both signal wires and the
differential amplifier on the input subtracts the two signals from each
other, which causes the noise to be cancelled out.

Disconnect/reconnect (also called reselect) This feature of the SCSI protocol
allows a device to temporarily give up control of the SCSI bus. This is typi-
cally done when the device is performing an operation that will take some
time. For example, it is very important for tape drives, which would other-
wise lock out other devices during long operations such as Rewind.

DLL (Dynamic Link Library) A Windows file that contains code that can be
shared between applications.

E
ECC (Error Correction Code) A mathematical algorithm that allows for cor-

recting small amounts of data that were read incorrectly from the disk
media.

EIDE (Enhanced IDE) The second generation of IDE technology) Improves
the data throughput of IDE hard disks and adds the ability to support
ATAPI CD-ROM drives to the same interface.

ESDI (Enhanced Small Disk Interface) An enhanced version of the ST-506
disk interface that provided increased performance for disks only. Has
been superseded by SCSI and IDE.

F
Fast SCSI A synchronous data transfer option, which allows up to a 10 MHz

data rate on the bus. Also called Fast-10. Newer variations allow for 20
MHz (also called Ultra) and 40 MHz (Ultra2) rates.

Filesystem A collection of blocks of data and the information that organizes
that data so that specific data can be associated with named files. An exam-
ple of a simple filesystem would be the FAT16 filesystem used by MS-DOS
and Windows 95. 

Examples of more sophisticated filesystems would be NTFS for Windows NT,
ext2fs for Linux, and ISO-9660, used on CD-ROMs.
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Format How blocks (sectors) are arranged on the disk medium.

FPT (Forced Perfect Termination) A sophisticated form of active SCSI termi-
nator that clamps the voltage level of reflected bus signals to minimize the
effect of impedance mismatches.

G
GB (Gigabyte) Two values commonly represent a gigabyte: One is the binary

value of 2 to the thirtieth power or 1,073,741,824 bytes; the other is the
decimal value of one billion or 1,000,000,000. Computer engineers gener-
ally use the binary meaning; sales and marketing people like the decimal
value better (because it makes the disk sound bigger).

H
Head A very tiny electromagnet used for reading and writing bits on disk

media. A disk drive usually has 2 to 20 of these so that data can be read or
written to multiple media platters without mechanically needing to move
the heads.

Host adapter Also called a host bus adapter or HBA. The interface card 
that connects your computer’s bus to the SCSI bus. Sometimes called 
a SCSI controller.

I
IDE (Integrated Drive Electronics) A hard disk technology that combines the

communication, control, and related circuitry on the same physical unit
as the disk media. Older ST-506 technology had some of the electronics
on the drive mechanism and some on a controller card.

IEEE 1394 An interface standard for connecting computer peripherals to a
host system that uses a serial protocol (one bit at a time) rather than 8
bits at a time (as does normal SCSI). Apple called their version of this
interface Firewire. SCSI-3 provides for sending SCSI commands over IEEE
1394 buses.
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IRQ (Interrupt Request) A computer signal used by a device to indicate that
it needs the attention of the CPU. IRQs can be shared by PCI devices, but
not ISA devices.

J
JBOD Acronym for Just a Bunch Of Disks. This refers to a group of disk drives

that are not organized into a RAID set.

K
KB Kilobyte. 1024 bytes.

L
Logical Unit Number (LUN) A LUN is a sub-unit of a target. Most of the time,

the LUN is just 0, because most types of target devices don’t have sub-units.
One example of where you might use LUNs is with multi-disk CD-ROM
changers. Many of these units refer to each disk in the changer as a LUN.
For example, with the CD-ROM drive set as target ID 4, the first CD disk
would be ID 4, LUN 0, the next would be ID 4, LUN 1, and so forth.
Another example is an optical disk jukebox where the optical drive might
be LUN 0 and the changer might be LUN 1.

Some host adapters ignore LUNs unless the Enable LUNs option is set in
the host adapter BIOS or operating system driver configuration. They
default to not using LUNs because doing so speeds up the bus scan
process and because most targets don’t support LUNs anyway.

LUN numbers are generally defined by the manufacturer and can’t be
changed by the user.

LVD (Low Voltage Differential) A variation on the older high voltage differ-
ential signaling used in SCSI-1 and SCSI-2. LVD has the advantage of noise
immunity, yet is low in cost because its low voltage levels — and consequently
lower power dissipation — allow it to be integrated into single bus-driver
chips. It also has the advantage of being able to coexist with single-ended
devices on the same bus segment. LVD devices detect what type of bus
they’re on by looking at the TERMPWR voltage.
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M
MB (Megabyte) 1024 kilobytes.

N
Nexus A complete SCSI address that specifies not only the SCSI ID but 

bus, LUN, and Queue as well. This is sometimes referred to as an
I_T_L_Q nexus.

P
P-Cable A 68-pin cable used for Wide SCSI.

Partition A logically separate portion of a disk. Partitions are used to allow
multiple different filesystems or even operating systems to coexist on a
single disk drive. Under Microsoft operating systems, partitions are cre-
ated and changed by using a utility called FDISK.

PCI (Peripheral Component Interconnect bus) A bus developed by Intel that
allows devices to communicate efficiently with the CPU.

R
RAID (Redundant Array of Independent Disks) A set of disk drives connected

in such a way as to allow certain types of access optimization or data security.
This can be accomplished either in hardware using a special dual-ported
SCSI adapter or completely in software in a special device driver.

A RAID 0 array stripes the data across multiple drives to decrease data
latency. A RAID 1 array mirrors the data on multiple drives for increased
data integrity. A RAID 5 array uses extra drives in a distributed manner to
store parity information that can be used to apply data correction and
recover any data in the event of any individual disk failure. This provides
high reliability.
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S
SCA, SCA-2 (Single Connector Attachment) SCA is a standard for providing a

single connector on SCSI devices that contains connections for SCSI signals,
SCSI ID selection, drive options, and power. It uses an 80-pin very high
density (VHD) connector. SCA devices are aimed primarily at the hot-
swap RAID controller market, but adapters can be purchased that allow
SCA drives to connect to regular 50-pin or 68-pin SCSI buses. These
adapters bring out separate conventional connectors for the various sig-
nals and frequently provide an optional terminator. Most SCA drives do
not include a terminator on board.

Segment, bus A portion of a SCSI bus isolated by a signal conditioner chip. A
bus segment is logically part of a single SCSI bus (e.g., SCSI IDs must be
unique) but is electrically separated such that reflections on the segment
do not affect other segments. Using bus segments allows longer buses
because the signals are cleaned up (edges re-clocked and so on) by the
signal conditioner chips. Each segment must have its own termination:
one at the signal conditioner chip and one at the far end of the segment.
Using a separate bus segment also allows LVD devices to be used on the
same SCSI bus as regular single-ended devices.

Single-ended “Normal” SCSI signals. Uses open collector drivers to drive 
the SCSI bus, meaning that a transistor closes the circuit from the SCSI
bus signal to ground to represent an asserted signal. The terminator 
supplies the current to make the signal go to a high voltage to represent 
a de-asserted signal.

SLED (Single Large Expensive Disk) The opposite of RAID.

SSA (Serial Storage Architecture) An IBM serial device interface.

Synchronous SCSI Rather than waiting for an ACK, a pair of devices that both
support synchronous SCSI can send bytes more efficiently than single-ended
devices using the following sequence:

send data1 : send data2 : ... : send data3 (max outstanding bytes)

: wait : wait : response1 : reponse2: ...
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This improves throughput, especially if you use long cables. (The time
that a signal spends traveling from one end of the cable to the other end
of the cable is not zero.)

T
Target A device that responds to commands from the initiator.

Terminator (active) In contrast to passive terminators that use TERMPWR,
which may not be exactly +5 V, active terminators use a voltage regulator. An
active terminator consists of a set of 110-ohm resistors, one from each
SCSI signal connected to a 2.85 V regulated voltage source.

Terminator (passive) A group of resistors on the physical ends of a single-ended
SCSI bus (and only on these ends) that dampens reflected signals from
the ends of the bus. Each terminated signal is connected by a 220-ohm
resistor to TERMPWR and by a 330-ohm resistor to ground. 

TERMPWR (Terminator power) One of the signals present on all SCSI buses.
Supplies current to the terminators at the ends of the SCSI bus. The host
adapter is normally responsible for supplying TERMPWR, but other
devices may supply it as well.

Track A ring of blocks (sectors) on a disk.

Twisted pair A type of transmission line used for sending electrical signals
across a SCSI bus. It is NOT two people who are into kinky stuff. :-)

U
UltraSCSI Synchronous data transfer option, which allows up to a 20 MHz

data rate on the bus. Also called Fast-20.

Ultra2 SCSI Synchronous data transfer option, which allows up to a 40 MHz
data rate on the bus. Also called Fast-40. Use of this option also requires
the use of LVD bus drivers.

Ultra160 SCSI Synchronous data transfer option, which allows up to an 80 MHz
data rate on the bus. Also called Fast-80. The 160 refers to the fact that,
because this option also assumes a Wide SCSI bus, you will get a 160 MB/sec
maximum transfer rate. Use of this option also requires the use of LVD
bus drivers.
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W
Wide SCSI Uses a 68-pin P-cable (which contains an extra 8 data bits and an

extra parity bit) to send the data 16 bits at a time as opposed to regular
narrow SCSI, which only sends data 8 bits at a time (over a 50-pin cable),
thus doubling data transfer speed over the SCSI bus.

X
X3T10 The former name for the ANSI technical committee responsible for

organizing, realizing, and promoting the SCSI standards. The new name
is simply T10.
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