
Ruby is famous for being easy to learn, but most users
only scratch the surface of what it can do. While other
books focus on Ruby’s trendy features, The Book of ™

Ruby reveals the secret inner workings of one of the
world’s most popular programming languages, teaching
you to write clear, maintainable code.

You’ll start with the basics—types, data structures, and
control flows—and progress to advanced features like
blocks, mixins, metaclasses, and beyond. Rather than
bog you down with a lot of theory, The Book of Ruby
takes a hands-on approach and focuses on making you
productive from day one. As you follow along, you’ll
learn to:

• Leverage Ruby’s succinct and flexible syntax to
maximize your productivity

• Balance Ruby’s functional, imperative, and object-
oriented features

• Write self-modifying programs using dynamic
programming techniques

• Create new fibers and threads for lightweight
multitasking

M A S T E R
R U B Y F R O M T H E

I N S I D E O U T

M A S T E R
R U B Y F R O M T H E

I N S I D E O U T

• Catch and recover from execution errors with robust
exception handling

• Develop powerful web applications with the Ruby on
Rails framework

Each chapter includes a “Digging Deeper” section that
shows you how Ruby works under the hood, so you
won’t be caught off guard by its deceptively simple
scoping, multithreading features, or precedence rules.

Whether you’re new to programming or just new to
Ruby, The Book of Ruby is your guide to mastering rapid,
real-world software development with this unique and
elegant language.

A B O U T T H E A U T H O R

Huw Collingbourne is the Director of Technology for
SapphireSteel Software, developer of the Ruby In Steel
IDE. With 30 years of programming experience, he has
written programming columns for numerous magazines,
presented features on computing for BBC Television,
and currently edits the online technical journal Bitwise
Magazine. He has previously released two free ebooks
on Ruby—The Little Book of Ruby and The Book of Ruby.

Covers Ruby 1.8 and 1.9

SHELVE IN
:

COM
PUTERS/PROGRAM

M
ING

LANGUAGES/RUBY

$39.95 ($45.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

 “ I L I E F LAT .”

Th is book uses a lay-flat b ind ing that won’t snap shut.

FSC LOGO

H U W C O L L I N G B O U R N E

T H E B O O K O F

R U B Y
T H E B O O K O F

R U B Y
A H A N D S - O N G U I D E F O R T H E A D V E N T U R O U S

™

™

T
H

E
 B

O
O

K
 O

F
 R

U
B

Y
T

H
E

 B
O

O
K

 O
F

 R
U

B
Y

C
O

L
L

IN
G

B
O

U
R

N
E

THE BOOK OF™ RUBY

THE BOOK
OF™ RUBY

A H a n d s - O n G u i d e f o r
t h e A d v e n t u r o u s

by Huw Col l ingbourne

San Francisco

THE BOOK OF RUBY. Copyright © 2011 by Huw Collingbourne

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means, electronic or
mechanical, including photocopying, recording, or by any information storage or retrieval system, without the prior
written permission of the copyright owner and the publisher.

Printed in Canada

15 14 13 12 11 1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-294-4
ISBN-13: 978-1-59327-294-4

Publisher: William Pollock
Production Editor: Serena Yang
Developmental Editor: Keith Fancher
Technical Reviewer: Pat Eyler
Copyeditor: Kim Wimpsett
Compositors: Serena Yang and Alison Law
Proofreader: Ward Webber

For information on book distributors or translations, please contact No Starch Press, Inc. directly:

No Starch Press, Inc.
38 Ringold Street, San Francisco, CA 94103
phone: 415.863.9900; fax: 415.863.9950; info@nostarch.com; www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Collingbourne, Huw.
 The book of Ruby : a hands-on guide for the adventurous / Huw Collingbourne.
 p. cm.
 Includes index.
 ISBN-13: 978-1-59327-294-4
 ISBN-10: 1-59327-294-4
 1. Ruby (Computer program language) 2. Object-oriented programming (Computer science) I. Title.
 QA76.73.R83C65 2011
 005.1'17--dc23
 2011014782

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. “The Book of” is
a trademark of No Starch Press, Inc. Other product and company names mentioned herein may be the trademarks
of their respective owners. Rather than use a trademark symbol with every occurrence of a trademarked name, we
are using the names only in an editorial fashion and to the benefit of the trademark owner, with no intention of
infringement of the trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has been
taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
information contained in it.

B R I E F C O N T E N T S

Acknowledgments ..xv

Introduction ...xvii

Chapter 1: Strings, Numbers, Classes, and Objects ..1

Chapter 2: Class Hierarchies, Attributes, and Class Variables ..15

Chapter 3: Strings and Ranges ...33

Chapter 4: Arrays and Hashes ...47

Chapter 5: Loops and Iterators..67

Chapter 6: Conditional Statements ..83

Chapter 7: Methods ..97

Chapter 8: Passing Arguments and Returning Values ...121

Chapter 9: Exception Handling...139

Chapter 10: Blocks, Procs, and Lambdas ...155

Chapter 11: Symbols...181

Chapter 12: Modules and Mixins..191

Chapter 13: Files and IO ...213

Chapter 14: YAML ..227

Chapter 15: Marshal...239

vi Brie f Conten ts

Chapter 16: Regular Expressions ..249

Chapter 17: Threads ...263

Chapter 18: Debugging and Testing ...283

Chapter 19: Ruby on Rails ...299

Chapter 20: Dynamic Programming ..325

Appendix A: Documenting Ruby with RDoc ..345

Appendix B: Installing MySQL for Ruby on Rails..349

Appendix C: Further Reading ...353

Appendix D: Ruby and Rails Development Software ..357

Index ...361

C O N T E N T S I N D E T A I L

ACKNOWLEDGMENTS xv

INTRODUCTION xvii
What Is Ruby? ..xviii
What Is Rails? ...xviii
Matters of Ruby Style ...xviii
How to Read This Book ... xix
Digging Deeper ... xix
Making Sense of the Text .. xix
Downloading Ruby .. xx
Getting the Source Code of the Sample Programs .. xxi
Running Ruby Programs .. xxi
The Ruby Library Documentation .. xxi

1
STRINGS, NUMBERS, CLASSES, AND OBJECTS 1
Getting and Putting Input ... 2
Strings and Embedded Evaluation .. 2
Numbers ... 3
Comments ... 4
Testing a Condition: if..then ... 4
Local and Global Variables .. 5
Classes and Objects ... 6

Instance Variables ... 7
Retrieving Data from an Object ... 7
Messages, Methods, and Polymorphism ... 9
Constructors: new and initialize .. 10
Inspecting Objects ... 11

2
CLASS HIERARCHIES, ATTRIBUTES, AND
CLASS VARIABLES 15
Superclasses and Subclasses ... 17
Passing Arguments to the Superclass ... 18
Accessor Methods .. 19
Attribute Readers and Writers .. 20
Calling Methods of a Superclass .. 23
Class Variables .. 23
Digging Deeper .. 25

Superclasses ... 25
The Root of All Classes ... 29
Constants Inside Classes .. 30
Partial Classes .. 30

viii Contents in Detai l

3
STRINGS AND RANGES 33
User-Defined String Delimiters .. 35
Backquotes .. 36
String Handling .. 36

Concatenation .. 37
What About Commas? .. 38
String Assignment .. 38
Indexing into a String .. 39
Removing Newline Characters: chop and chomp .. 42
Format Strings ... 43

Ranges ... 43
Ranges of Strings .. 44
Iterating with a Range .. 44

Digging Deeper .. 45
Heredocs ... 45
String Literals .. 46

4
ARRAYS AND HASHES 47
Arrays .. 47

Creating Arrays .. 48
Multidimensional Arrays ... 50
Iterating over Arrays .. 51
Indexing into Arrays .. 52
Copying Arrays .. 53
Testing Arrays for Equality .. 53
Sorting Arrays .. 54
Comparing Values .. 55
Array Methods .. 57

Hashes ... 58
Creating Hashes ... 58
Indexing into a Hash ... 60
Copying a Hash ... 60
Hash Order .. 60
Sorting a Hash .. 61
Hash Methods .. 62

Digging Deeper .. 63
Treating Hashes as Arrays .. 63
Appending vs. Concatenating ... 63
Vectors and Matrices ... 64
Sets ... 65

5
LOOPS AND ITERATORS 67
for Loops ... 67
Blocks and Block Parameters ... 70
Iterating upto and downto ... 70

Contents in Detai l ix

Multiple Iterator Arguments .. 71
while Loops ... 72

while Modifiers ... 72
Ensuring a while Loop Executes at Least Once .. 73

until Loops ... 74
loop ... 75
Digging Deeper .. 76

The Enumerable Module .. 76
Custom Comparisons ... 77
each and yield .. 81

6
CONDITIONAL STATEMENTS 83
if..then..else ... 84
and, or, and not .. 85
Negation .. 86
if..elsif .. 86
unless ... 88
if and unless Modifiers .. 88
Case Statements ... 89

The === Method ... 92
Alternative Case Syntax ... 92

Digging Deeper .. 93
Boolean Operators .. 93
Eccentricities of Boolean Operators ... 94
catch and throw .. 94

7
METHODS 97
Class Methods ... 97
What Are Class Methods For? ... 98
Class Variables .. 99
Ruby Constructors: new or initialize? .. 104
Singleton Methods .. 105
Singleton Classes ... 108
Overriding Methods ... 110
Public, Protected, and Private Methods ... 111
Digging Deeper .. 114

Protected and Private Methods in Descendant Classes 114
Invading the Privacy of Private Methods ... 116
Singleton Class Methods .. 116
Nested Methods .. 118
Method Names ... 119

8
PASSING ARGUMENTS AND RETURNING VALUES 121
Summarizing Instance, Class, and Singleton, Methods .. 121
Returning Values .. 123

x Contents in Detai l

Returning Multiple Values .. 124
Default and Multiple Arguments ... 124
Assignment and Parameter Passing .. 125
Integers Are Special ... 127
The One-Way-In, One-Way-Out Principle .. 128
Modifying Receivers and Yielding New Objects .. 130
Potential Side Effects of Reliance on Argument Values ... 131
Parallel Assignment .. 133
Digging Deeper .. 134

By Reference or By Value? ... 134
Are Assignments Copies or References? ... 135
Tests for Equality: == or equal? ... 136
When Are Two Objects Identical? ... 136
Parentheses Avoid Ambiguity .. 137

9
EXCEPTION HANDLING 139
rescue: Execute Code When Error Occurs ... 140
ensure: Execute Code Whether or Not an Error Occurs .. 144
else: Execute Code When No Error Occurs ... 145
Error Numbers ... 146
retry: Attempt to Execute Code Again After an Error ... 148
raise: Reactivate a Handled Error ... 149
Digging Deeper .. 152

Omitting begin and end ... 152
catch..throw ... 152

10
BLOCKS, PROCS, AND LAMBDAS 155
What Is a Block? .. 156
Line Breaks Are Significant .. 156
Nameless Functions .. 157
Look Familiar? ... 158
Blocks and Arrays .. 159
Procs and Lambdas .. 161
Block or Hash? .. 161
Creating Objects from Blocks ... 162
What Is a Closure? ... 163
yield ... 164
Blocks Within Blocks ... 165
Passing Named Proc Arguments .. 165
Precedence Rules ... 170
Blocks as Iterators ... 172
Digging Deeper .. 175

Returning Blocks from Methods ... 175
Blocks and Instance Variables ... 176
Blocks and Local Variables ... 177

Contents in Detai l xi

11
SYMBOLS 181
Symbols and Strings ... 182
Symbols and Variables ... 186
Why Use Symbols? .. 188
Digging Deeper .. 190

What Is a Symbol? .. 190

12
MODULES AND MIXINS 191
A Module Is Like a Class 192
Module Methods .. 192
Modules as Namespaces .. 193
Included Modules, or “Mixins” ... 194
Name Conflicts .. 198
Alias Methods .. 199
Mix In with Care! ... 200
Including Modules from Files ... 201
Digging Deeper .. 205

Modules and Classes ... 205
Predefined Modules ... 205
Scope Resolution ... 208
Module Functions .. 209
Extending Objects ... 210
Freezing Objects ... 211

13
FILES AND IO 213
Opening and Closing Files .. 214
Characters and Compatibility .. 216
Files and Directories ... 217
Copying Files .. 217
Directory Inquiries .. 219
A Discursion into Recursion ... 219
Sorting by Size .. 222
Digging Deeper .. 224

Recursion Made Simple ... 224

14
YAML 227
Converting to YAML ... 228
Nested Sequences .. 231
Saving YAML Data ... 231
Omitting Variables on Saving .. 232
Multiple Documents, One File .. 233
A YAML Database .. 234

xii Contents in Detai l

Adventures in YAML ... 236
Digging Deeper .. 237

A Brief Guide to YAML .. 237

15
MARSHAL 239
Saving and Loading Data .. 239
Omitting Variables on Saving .. 240
Saving Singletons ... 242

YAML and Singletons ... 242
Marshal and Singletons ... 243

Digging Deeper .. 246
Marshal Version Numbers .. 246

16
REGULAR EXPRESSIONS 249
Making Matches .. 250
Match Groups ... 253
MatchData .. 254
Prematch and Postmatch ... 255
Greedy Matching ... 256
String Methods .. 256
File Operations .. 258
Digging Deeper .. 260

Regular Expression Elements ... 260
Regular Expression Examples .. 260
Symbols and Regular Expressions .. 261

17
THREADS 263
Creating Threads ... 264
Running Threads .. 264
Going Native .. 265
The Main Thread .. 266
Thread Status ... 266
Ensuring That a Thread Executes .. 268
Thread Priorities ... 269
The Main Thread Priority ... 271
Mutexes .. 272
Fibers ... 275
Digging Deeper .. 278

Passing Execution to Other Threads ... 278

18
DEBUGGING AND TESTING 283
IRB: Interactive Ruby ... 283
Debugging .. 286

Contents in Detai l xiii

Unit Testing ... 292
Digging Deeper .. 295

Assertions Available When Unit Testing ... 295
Line Breaks Are Significant ... 296
Graphical Debuggers .. 297

19
RUBY ON RAILS 299
Installing Rails .. 300

Do It Yourself 300
Or Use an “All-in-One” Installer .. 301

Model-View-Controller .. 301
A First Ruby on Rails Application .. 302
Create a Rails Application ... 302
Create a Controller ... 305
Anatomy of a Simple Rails Application ... 307
The Generate Controller Script Summarized .. 309
Create a View ... 310
Rails Tags .. 313
Let’s Make a Blog! ... 316

Create the Database .. 316
Creating a MySQL Database .. 317
Scaffolding ... 317
Migration ... 318
Partials .. 318
Test It! .. 320

Digging Deeper .. 322
MVC ... 322
The Rails Folders ... 323
Other Ruby Frameworks ... 324

20
DYNAMIC PROGRAMMING 325
Self-Modifying Programs ... 326
eval .. 327
Special Types of eval .. 329
Adding Variables and Methods ... 331
Creating Classes at Runtime .. 333
Bindings .. 334
send ... 336
Removing Methods ... 337
Handling Missing Methods .. 338
Writing Programs at Runtime ... 340
Exploring Further .. 341
Digging Deeper .. 342

Freezing Objects ... 342

A
DOCUMENTING RUBY WITH RDOC 345

xiv Contents in Detai l

B
INSTALLING MYSQL FOR RUBY ON RAILS 349
Downloading MySQL ... 350
Installing MySQL .. 350
Configuring MySQL .. 351
Can’t Find the Database? .. 351

C
FURTHER READING 353
Books ... 353
Ebooks .. 355
Websites ... 355

D
RUBY AND RAILS DEVELOPMENT SOFTWARE 357
IDEs and Editors ... 357
Web Servers ... 358
Databases ... 358
Ruby Implementations ... 359

INDEX 361

A C K N O W L E D G M E N T S

I’d like to express my appreciation of all the hard work
that’s gone into the preparation of this book by the
people at No Starch Press, especially Keith Fancher,
Serena Yang, and Bill Pollock. Thanks also to the copy-
editor, Kim Wimpsett, and to the technical reviewer, Pat
Eyler. For keeping me on the right side of sanity, I owe
a debt of gratitude to my two dogs, Beryl and Seven, and
to their beautiful mother, Bethan, who, to my enor-
mous sadness, died while I was writing this book.

I N T R O D U C T I O N

As you are now reading a book on Ruby,
I think it is safe to assume you don’t need

me to persuade you of the merits of the Ruby
language. Instead, I’ll take the somewhat unconven-

tional step of starting with a warning: Many people are
attracted to Ruby by its simple syntax and its ease of
use. They are wrong. Ruby’s syntax may look simple at
first sight, but the more you get to know the language, the more you will real-
ize that it is, on the contrary, extremely complex. The plain fact of the matter
is that Ruby has a number of pitfalls just waiting for unwary programmers to
drop into.

In this book, it is my aim to guide you safely over the pitfalls and lead you
through the choppy waters of Ruby’s syntax and class libraries. In the pro-
cess, I’ll be exploring both the smooth, well-paved highways and the gnarlier,
bumpy little byways of Ruby. By the end of the journey, you should be able to
use Ruby safely and effectively without getting caught by unexpected hazards
along the way.

xviii In t roduct ion

The Book of Ruby describes versions 1.8.x and 1.9.x of the Ruby language.
In most respects, Ruby 1.8 and 1.9 are very similar, and most programs writ-
ten for one version will run unmodified in the other. There are important
exceptions to this rule, however, and these are noted in the text. Ruby 1.9
may be regarded as a stepping stone toward Ruby 2.0. At the time of writing,
a release date for Ruby 2.0 has not been announced. Even so, on the basis of
currently available information, I anticipate that most (or all) of the informa-
tion on Ruby 1.9 in this book should also apply to Ruby 2.0.

What Is Ruby?

Ruby is a cross-platform interpreted language that has many features in com-
mon with other “scripting” languages such as Perl and Python. It has an eas-
ily readable type of syntax that looks somewhat Pascal-like at first sight. It is
thoroughly object-oriented and has a good deal in common with the great-
granddaddy of “pure” object-oriented languages, Smalltalk. It has been said
that the languages that most influenced the development of Ruby were Perl,
Smalltalk, Eiffel, Ada, and Lisp. The Ruby language was created by Yukihiro
Matsumoto (commonly known as Matz), and it was first released in 1995.

What Is Rails?

Over the past few years, much of the excitement surrounding Ruby can be
attributed to a web development framework called Rails—popularly known
as Ruby on Rails. Rails is an impressive framework, but it is not the be-all, end-
all of Ruby. Indeed, if you were to leap right into Rails development without
first mastering Ruby, you might find that you end up creating applications
that you don’t even understand. (This is all too common among Ruby on
Rails novices.) Understanding Ruby is a necessary prerequisite for under-
standing Rails. You’ll look at Rails in Chapter 19.

Matters of Ruby Style

Some Ruby programmers have very fixed—or even obsessive—views on what
constitutes a “Ruby style” of programming. Some, for example, are passionately
wedded to the idea that method_names_use_underscores while variableNamesDoNot.
The style of naming in which separate words are indicated by capital letters
likeThis is called camel case—and that is the last time it will be mentioned in
this book.

I have never understood why people get so worked up about naming
conventions. You like underscores, I can’t stand them; you say po_ta_toes, I
say poTaToes. As far as I am concerned, the way in which you choose to write
the names of identifiers in Ruby is of no interest to anyone but you or your
programming colleagues.

That is not to say that I have no opinions on programming style. On the
contrary, I have very strong opinions. In my view, good programming style
has nothing to do with naming conventions and everything to do with good

In t roduct ion xix

code structure and clarity. Language elements such as parentheses, for
instance, are important. Parentheses clarify code and avoid ambiguity that,
in a highly dynamic language such as Ruby, can mean the difference between
a program that works as you expect and one that is full of surprises (also
known as bugs). For more on this, refer to the index entries on “ambiguity”
and “parentheses.”

In more than two decades of programming, one thing I have learned
through bitter experience is that the most important characteristics of well-
written code are clarity and lack of ambiguity. Code that is easy to understand
and easy to debug is also likely to be easier to maintain. If adopting certain
naming conventions helps you achieve that goal, that’s fine. If not, that’s fine
too. The Book of Ruby does not preach on matters of style.

How to Read This Book

The book is divided into bite-sized chunks. Each chapter introduces a theme
that is subdivided into subtopics. Each programming topic is accompanied
by one or more small, self-contained, ready-to-run Ruby programs.

If you want to follow a well-structured “course,” read each chapter in
sequence. If you prefer a more hands-on approach, you can run the pro-
grams first and refer to the text when you need an explanation. If you already
have some experience with Ruby, feel free to cherry-pick topics in any order
you find useful. There are no monolithic applications in this book, so you
don’t have to worry you might lose the plot if you read the chapters out of
order!

Digging Deeper

Every chapter, apart from the first one, includes a section called “Digging
Deeper.” This is where you will explore specific aspects of Ruby (including a
few of those gnarly byways I mentioned a moment ago) in greater depth. In
many cases, you could skip the “Digging Deeper” sections and still learn all
the Ruby you will ever need. On the other hand, it is in these sections that you
will often get closest to the inner workings of Ruby, so if you skip them, you
are going to miss out on some pretty interesting stuff.

Making Sense of the Text

In The Book of Ruby, Ruby source code is written like this:

def saysomething
 puts("Hello")
end

Often the code will be annotated with comments. Ruby comments are
any text following a hash mark (#) on a single line. The comments are
ignored by the Ruby interpreter. When I want to draw attention to some

xx In t roduct ion

output that Ruby displays or to a value returned by a piece of code (even if
that value is not displayed), I indicate this with this type of comment: # =>.
Occasionally, when I want to draw attention to some input that the user
should enter, I use this type of comment: # <=. Here is an example to illus-
trate these commenting conventions:

puts("Enter a calculation:") # Prompt user this is a simple comment
exp = gets().chomp() # <= Enter 2*4 comment shows data to enter
puts(eval(exp)) # => 8 comment shows result of evaluation

When a piece of code returns or displays too much data to be shown in a
single-line comment, the output may be shown like this:

This is the data returned from method #1
This is the data returned from method #2
This is the data returned from method #3

helloname.rb When a sample program accompanies the code, the program name is
shown in the margin as it is here.

Explanatory notes that provide hints or extra information are shown
like this:

NOTE This is an explanatory note.

More in-depth explanation of points mentioned in the text may be
shown in a box like this:

Downloading Ruby

You can download the latest version of Ruby at http://www.ruby-lang.org/en/
downloads/. Be sure to download the binaries (not merely the source code).
Windows users have the option of installing Ruby using the Ruby Installer,
available at http://www.rubyinstaller.org/. There are also several alternative
implementations of Ruby, the most established of which is JRuby. You
can find information on where to download these implementations in
Appendix D.

F U R T H E R E X P L A N A T I O N

This is some additional information. You can skip it if you like—but if you do, you
may miss something interesting!

In t roduct ion xxi

Getting the Source Code of the Sample Programs

All the programs in every chapter in this book are available for download as a
.zip archive at http://www.nostarch.com/boruby.htm.

When you unzip the programs, you will find that they are grouped into a
set of directories—one for each chapter.

Running Ruby Programs

It is often useful to keep a command window open in the source directory
containing your Ruby program files. Assuming that the Ruby interpreter is
correctly pathed on your system, you will then be able to run programs by
entering ruby programname. For example, this is the command you would enter
in order to run the helloworld.rb program:

ruby helloworld.rb

If you use a Ruby IDE, you may be able to load the Ruby programs into
the IDE and run them using the integrated tools of that IDE.

The Ruby Library Documentation

The Book of Ruby covers many of the classes and methods in the standard Ruby
library—but by no means all of them! At some stage, therefore, you will need
to refer to documentation on the full range of classes used by Ruby. Fortu-
nately, the Ruby class library contains embedded documentation that has been
extracted and compiled into an easily browsable reference, which is available
in several formats. For example, you can find the online documentation for
Ruby 1.9 at http://www.ruby-doc.org/ruby-1.9/index.html. For Ruby 1.8, go to
http://www.ruby-doc.org/ruby-1.8/index.html.

Okay, that’s enough of the preamble—let’s get down to work.

http://nostarch.com/XXX

S T R I N G S , N U M B E R S , C L A S S E S ,
A N D O B J E C T S

The first thing to know about Ruby is that
it’s easy to use. To prove this, let’s look at

the code of the traditional “Hello world”
program:

1helloworld.rb puts 'hello world'

That’s it in its entirety. The program contains one method, puts, and one
string, “hello world.” It doesn’t have any headers or class definitions, and it
doesn’t have any import sections or “main” functions. This really is as simple
as it gets. Load the code, 1helloworld.rb, and try it.

2 Chapter 1

Getting and Putting Input

Having “put” a string to the output (here, a command window), the obvious
next step is to “get” a string. As you might guess, the Ruby method for this
is gets. The 2helloname.rb program prompts the user for his or her name—
let’s suppose it’s Fred—and then displays a greeting: “Hello Fred.” Here is
the code:

2helloname.rb print('Enter your name: ')
name = gets()
puts("Hello #{name}")

Although this is still very simple, a few important details need to be
explained. First, notice that I’ve used print rather than puts to display the
prompt. This is because puts adds a line feed at the end of the printed string,
whereas print does not; in this case, I want the cursor to remain on the same
line as the prompt.

On the next line, I use gets() to read in a string when the user presses
ENTER. This string is assigned to the variable name. I have not predeclared this
variable, nor have I specified its type. In Ruby, you can create variables as and
when you need them, and the interpreter “infers” their types. In the example,
I have assigned a string to name so Ruby knows that the type of the name vari-
able must be a string.

NOTE Ruby is case sensitive. A variable called myvar is different from one called myVar. A
variable such as name in the sample project must begin with a lowercase character. If it
begins with an uppercase character, Ruby will treat it as a constant. I’ll have more to
say on constants in Chapter 6.

Incidentally, the parentheses following gets() are optional, as are the
parentheses enclosing the strings after print and puts; the code would run
just the same if you removed them. However, parentheses can help resolve
ambiguities, and in some cases, the interpreter will warn you if you omit them.

Strings and Embedded Evaluation

The last line in the sample code is rather interesting:

puts("Hello #{name}")

Here the name variable is embedded into the string. You do this by plac-
ing the variable between two curly brackets preceded by a hash mark (or “num-
ber” or “pound” character), as in #{}. This kind of embedded evaluation works
only with strings delimited by double quotes. If you were to try this with a
string delimited by single quotes, the variable would not be evaluated, and
the string 'Hello #{name}' would be displayed exactly as entered.

St r ings, Numbers, Classes, and Objects 3

You can also embed nonprinting characters such as newlines ("\n") and
tabs ("\t"), and you can even embed bits of program code and mathematical
expressions. For instance, let’s assume you have a method called showname that
returns the string “Fred.” The following string would, in the process of evalu-
ation, call the showname method and display “Hello Fred”:

puts "Hello #{showname}"

See whether you can figure out what would be displayed by the following:

3string_eval.rb puts("\n\t#{(1 + 2) * 3}\nGoodbye")

Now run the 3string_eval.rb program to see whether you are right.

Numbers

Numbers are just as easy to use as strings. For example, let’s suppose you want
to calculate the selling price or grand total of some item based on its pretax
value or subtotal. To do this, you would need to multiply the subtotal by the
applicable tax rate and add the result to the value of the subtotal. Assuming
the subtotal to be $100 and the tax rate to be 17.5 percent, this Ruby pro-
gram does the calculation and displays the result:

4calctax.rb subtotal = 100.00
taxrate = 0.175
tax = subtotal * taxrate
puts "Tax on $#{subtotal} is $#{tax}, so grand total is $#{subtotal+tax}"

Obviously, this program would be more useful if it could perform calcula-
tions on a variety of subtotals rather than calculating the same value time after
time! Here is a simple calculator that prompts the user to enter a subtotal:

taxrate = 0.175
print "Enter price (ex tax): "
s = gets
subtotal = s.to_f
tax = subtotal * taxrate
puts "Tax on $#{subtotal} is $#{tax}, so grand total is $#{subtotal+tax}"

Here s.to_f is a method of the String class. It attempts to convert the
string to a floating-point number. For example, the string "145.45" would be
converted to the floating-point number 145.45. If the string cannot be con-
verted, 0.0 is returned. For instance, "Hello world".to_f would return 0.0.

4 Chapter 1

Comments

Many of the source code examples that come with this book are documented
with comments that are ignored by the Ruby interpreter. You can place a
comment after the hash mark (#). The text on a line following this character
is all treated as a comment:

this is a comment
puts("hello") # this is also a comment

If you want to comment out multiple lines of text, you can place =begin at
the start and =end at the end (both =begin and =end must be flush with the left
margin):

=begin
 This is a
 multiline
 comment
=end

Testing a Condition: if..then

The problem with the simple tax calculator code shown earlier is that it
accepts negative subtotals and calculates negative tax on them—a situation
upon which the government is unlikely to look favorably! I therefore need to
check for negative numbers and, when found, set them to zero. This is my
new version of the code:

5taxcalculator.rb taxrate = 0.175
print "Enter price (ex tax): "
s = gets
subtotal = s.to_f

if (subtotal < 0.0) then
 subtotal = 0.0
end

tax = subtotal * taxrate
puts "Tax on $#{subtotal} is $#{tax}, so grand total is $#{subtotal+tax}"

The Ruby if test is similar to an if test in other programming languages.
Note, however, that the parentheses are once again optional, as is the key-
word then. However, if you were to write the following, with no line break
after the test condition, the then would be obligatory:

if (subtotal < 0.0) then subtotal = 0.0 end

St r ings, Numbers, Classes, and Objects 5

Putting everything on one line like this adds nothing to the clarity of the
code, which is why I tend to avoid it. My long familiarity with Pascal instinc-
tively makes me want to add a then after the if condition, but because this
really is not required, you may look upon this as a willful eccentricity of mine.
The end keyword that terminates the if block is not optional. If you forget to
add it, your code will not run.

Local and Global Variables

In the previous example, I assigned values to variables such as subtotal, tax,
and taxrate. Variables such as these that begin with a lowercase character are
called local variables. This means they exist only within a specific part of a pro-
gram—in other words, they are restricted to a well-defined scope. Here is an
example:

variables.rb localvar = "hello"
$globalvar = "goodbye"

def amethod
 localvar = 10
 puts(localvar)
 puts($globalvar)
end

def anotherMethod
 localvar = 500
 $globalvar = "bonjour"
 puts(localvar)
 puts($globalvar)
end

In the previous code, there are two functions (or methods), amethod and
anotherMethod, each of which is declared using the keyword def and contains
code up to the keyword end. There are three local variables called localvar.
One is assigned the value "hello" within the “main scope” of the program;
two others are assigned integers within the scope of two separate methods.
Since each local variable has a different scope, the assignments have no
effect on the other local variables with the same name in different scopes.
You can verify this by calling the methods in turn. The following examples
show output in comments followed by the => characters. In this book, output
or returned values will often be indicated in this way:

amethod #=> localvar = 10
anotherMethod #=> localvar = 500
amethod #=> localvar = 10
puts(localvar) #=> localvar = "hello"

6 Chapter 1

On the other hand, a global variable—one that begins with the dollar sign
character ($)—has global scope. When an assignment is made to a global
variable inside a method, that affects the value of that variable elsewhere in
the program too:

amethod #=> $globalvar = "goodbye"
anotherMethod #=> $globalvar = "bonjour"
amethod #=> $globalvar = "bonjour"
puts($globalvar) #=> $globalvar = "bonjour"

Classes and Objects

Instead of going through all the rest of Ruby’s syntax—its types, loops, mod-
ules, and so on—let’s move rapidly on and look at how to create classes and
objects. (But fear not, we’ll return to those other topics soon.)

It may seem like no big deal to say that Ruby is object-oriented. Aren’t
all languages these days? Well, up to a point. Most modern “object-oriented”
languages (Java, C++, C#, Object Pascal, and so on) have a greater or lesser
degree of object-oriented programming (OOP) features. Ruby, on the other
hand, is obsessively object-oriented. In fact, unless you have programmed in
Smalltalk or Eiffel (languages that are even more obsessive than Ruby about
objects), it is likely to be the most object-oriented language you have ever
used. Every chunk of data—from a simple number or string to something
more complicated like a file or a module—is treated as an object. And almost
everything you do with an object is done by a method. Even operators such as
plus (+) and minus (–) are methods. Consider the following:

x = 1 + 2

Here + is a method of the Fixnum (Integer) object 1. The value 2 is sent
to this method; the result, 3, is returned, and this is assigned to the object x.
Incidentally, the assignment operator (=) is one of the rare exceptions to the
rule that “everything you do with an object is done by a method.” The assign-
ment operator is a special built-in “thingummy” (this is not the formal termi-
nology, I hasten to add), and it is not a method of anything.

B A S I C T E R M I N O L O G Y : C L A S S E S , O B J E C T S ,
A N D M E T H O D S

A class is the blueprint for an object. It defines the data an object contains and
the way it behaves. Many different objects can be created from a single class. So,
you might have one Cat class but three cat objects: tiddles, cuddles, and flossy. A
method is like a function or subroutine that is defined inside the class.

St r ings, Numbers, Classes, and Objects 7

Now you’ll see how to create objects of your own. As in most other
OOP languages, a Ruby object is defined by a class. The class is like a blue-
print from which individual objects are constructed. For example, this class
defines a dog:

6dogs.rb class Dog
 def set_name(aName)
 @myname = aName
 end
end

Note that the class definition begins with the keyword class (all lower-
case) and the name of the class itself, which must begin with an uppercase
letter. The class contains a method called set_name. This takes an incoming
argument, aName. The body of the method assigns the value of aName to a vari-
able called @myname.

Instance Variables
Variables beginning with the at sign (@) are instance variables, which means
they belong to individual objects (or instances) of the class. It is not necessary
to predeclare instance variables. I can create instances of the Dog class (that
is, “dog objects”) by calling the new method. Here I am creating two dog objects
(note that although class names begin with uppercase letters, object names
begin with lowercase letters):

mydog = Dog.new
yourdog = Dog.new

At the moment, these two dogs have no names. So, the next thing I do is
call the set_name method to give them names:

mydog.set_name('Fido')
yourdog.set_name('Bonzo')

Retrieving Data from an Object
Having given each dog a name, I need to have some way to find out their
names later. How should I do this? I can’t poke around inside an object to get
at the @name variable, since the internal details of each object are known only
to the object itself. This is a fundamental principle of “pure” object orienta-
tion: The data inside each object is private. There are precisely defined ways
into each object (for example, the method set_name) and precisely defined
ways out. Only the object itself can mess around with its internal state; the
outside world cannot. This is called data hiding, and it is part of the principle
of encapsulation.

8 Chapter 1

Since you need each dog to know its own name, let’s provide the Dog
class with a get_name method:

def get_name
 return @myname
end

The return keyword here is optional. When it is omitted, Ruby methods
will return the last expression evaluated. However, for the sake of clarity—and
to avoid unexpected results from methods more complex than this one—I will
make a habit of explicitly returning any values that I plan to use.

Finally, let’s give the dog some behavior by asking it to talk. Here is the
finished class definition:

class Dog
 def set_name(aName)
 @myname = aName
 end

 def get_name
 return @myname
 end

 def talk
 return 'woof!'
 end
end

Now, you can create a dog, name it, display its name, and ask it to talk:

mydog = Dog.new
mydog.set_name('Fido')
puts(mydog.get_name)
puts(mydog.talk)

I’ve written an expanded version of this code in the 6dogs.rb program.
This also contains a Cat class that is similar to the Dog class except that its
talk method, naturally enough, returns a meow instead of a woof.

E N C A P S U L A T I O N

Encapsulation describes the fact that an object contains both its own data and the
methods required to manipulate that data. Some object-oriented languages encour-
age or enforce data hiding so that the data encapsulated within an object cannot be
accessed by code outside that object. In Ruby, data hiding is not quite as rigorously
enforced as it initially appears. You can use some very dirty tricks to mess around
inside an object, but to keep things simple, I’ll silently pass over these features of the
language for now.

St r ings, Numbers, Classes, and Objects 9

Messages, Methods, and Polymorphism
This cats and dogs example, incidentally, is based on a classic Smalltalk demo
program that illustrates how the same “message” (such as talk) can be sent to
different objects (such as cats and dogs), and each different object responds
differently to the same message with its own special method (here the talk
method). The ability to have different classes containing methods with the
same name goes by the fancy object-oriented name of polymorphism.

When you run a program such as 6dogs.rb, the code is executed in sequence.
The code of the classes themselves is not executed until instances of those
classes (that is, objects) are created by the code at the bottom of the pro-
gram. You will see that I frequently mix class definitions with “free-standing”
bits of code that execute when the program is run. This may not be the way
you would want to write a major application, but for just trying things, it is
extremely convenient.

W H A T H A P P E N S W H E N A V A R I A B L E I S U N A S S I G N E D ?

Oops! It seems that this program contains an error. The object named someotherdog
never has a value assigned to its @name variable since its set_name() method is never
called. This means the following code, which attempts to print its name, cannot
succeed:

puts(someotherdog.get_name)

Fortunately, Ruby doesn’t blow up when you try to display this dog’s name. Instead,
it just prints “nil.” You’ll shortly look at a simple way of making sure that errors like
this don’t happen again.

F R E E - S T A N D I N G B I T S O F C O D E ?

If Ruby is really an object-oriented language, you may think it’s odd that you can
enter “free-floating” methods. In fact, when you run a program, Ruby creates a main
object, and any code that appears inside your main code unit—that is, the main
Ruby code file you have loaded and run—is actually running inside that object. You
can easily verify this by creating a new source file and adding the following code:

puts self
puts self.class

When you run this program, you’ll see the following output:

main
Object

10 Chapter 1

One obvious defect of this program is that the two classes, Cat and Dog,
are highly repetitious. It would make more sense to have one class, Animal,
that has get_name and set_name methods and two descendant classes, Cat and
Dog, that contain only the behavior specific to that species of animal (woof-
ing or meowing). We’ll find out how to do this in the next chapter.

Constructors: new and initialize
Let’s take a look at another example of a user-defined class. Load 7treasure.rb.
This is an adventure game in the making. It contains two classes, Thing and
Treasure. The Thing class is similar to the Cat and Dog classes from the pre-
vious program—except that it doesn’t woof or meow, that is.

7treasure.rb class Thing
 def set_name(aName)
 @name = aName
 end

 def get_name
 return @name
 end
end

class Treasure
 def initialize(aName, aDescription)
 @name = aName
 @description = aDescription
 end

 def to_s # override default to_s method
 "The #{@name} Treasure is #{@description}\n"
 end
end

thing1 = Thing.new
thing1.set_name("A lovely Thing")
puts thing1.get_name

t1 = Treasure.new("Sword", "an Elvish weapon forged of gold")
t2 = Treasure.new("Ring", "a magic ring of great power")
puts t1.to_s
puts t2.to_s
The inspect method lets you look inside an object
puts "Inspecting 1st treasure: #{t1.inspect}"

The Treasure class doesn’t have get_name and set_name methods. Instead,
it contains a method named initialize, which takes two arguments. Those
two values are then assigned to the @name and @description variables. When a
class contains a method named initialize, it will be called automatically when
an object is created using the new method. This makes it a convenient place
to set the values of an object’s instance variables.

St r ings, Numbers, Classes, and Objects 11

This has two clear benefits over setting each instance variable using
methods such set_name. First, a complex class may contain numerous instance
variables, and you can set the values of all of them with the single initialize
method rather than with many separate “set” methods; second, if the vari-
ables are all automatically initialized at the time of object creation, you will
never end up with an “empty” variable (like the “nil” value returned when
you tried to display the name of someotherdog in the previous program).

Finally, I have created a method called to_s, which returns a string repre-
sentation of a Treasure object. The method name, to_s, is not arbitrary—the
same method name is used throughout the standard Ruby object hierarchy. In
fact, the to_s method is defined for the Object class itself, which is the ultimate
ancestor of all other classes in Ruby (with the exception of the BasicObject
class, which you’ll look at more closely in the next chapter). By redefining
the to_s method, I have added new behavior that is more appropriate to the
Treasure class than the default method. In other words, I have overridden its
to_s method.

Since the new method creates an object, it can be thought of as the
object’s constructor. A constructor is a method that allocates memory for an
object and then executes the initialize method, if it exists, to assign any
specified values to the new object’s internal variables. You should not nor-
mally implement your own version of the new method. Instead, when you
want to perform any “setup” actions, do so in the initialize method.

Inspecting Objects
Notice that in the 7treasure.rb program I “looked inside” the Treasure object
t1 using the inspect method:

puts "Inspecting 1st treasure: #{t1.inspect}"

The inspect method is defined for all Ruby objects. It returns a string
containing a human-readable representation of the object. In the present
case, it displays something like this:

#<Treasure:0x28962f8 @description="an Elvish weapon forged of gold", @name="Sword">

G A R B A G E C O L L E C T I O N

In many languages (such as C++ and Delphi for Win32), it is the programmer’s
responsibility to destroy any object that has been created when it is no longer
required. In other words, objects are given destructors as well as constructors. This
isn’t necessary in Ruby, since a built-in garbage collector automatically destroys
objects and reclaims the memory they used when they are no longer referenced
in your program.

12 Chapter 1

This begins with the class name, Treasure. This is followed by a number,
which may be different from the number shown earlier—this is Ruby’s inter-
nal identification code for this particular object. Next the names and values
of the object’s variables are shown.

Ruby also provides the p method as a shortcut to inspect objects and
print their details, like this:

p(anobject)

where anobject can be any type of Ruby object. For example, let’s suppose you
create the following three objects: a string, a number, and a Treasure object:

p.rb class Treasure
 def initialize(aName, aDescription)
 @name = aName
 @description = aDescription
 end

 def to_s # override default to_s method
 "The #{@name} Treasure is #{@description}\n"
 end
end

a = "hello"
b = 123
c = Treasure.new("ring", "a glittery gold thing")

Now you can use p to display those objects:

p(a)
p(b)
p(c)

This is what Ruby displays:

"hello"
123
#<Treasure:0x3489c4 @name="ring", @description="a glittery gold thing">

To see how you can use to_s with a variety of objects and test how a
Treasure object would be converted to a string in the absence of an over-
ridden to_s method, try the 8to_s.rb program.

8to_s.rb puts(Class.to_s) #=> Class
puts(Object.to_s) #=> Object
puts(String.to_s) #=> String
puts(100.to_s) #=> 100
puts(Treasure.to_s) #=> Treasure

St r ings, Numbers, Classes, and Objects 13

As you will see, classes such as Class, Object, String, and Treasure simply
return their names when the to_s method is called. An object, such as the
Treasure object t, returns its identifier—which is the same identifier returned
by the inspect method:

t = Treasure.new("Sword", "A lovely Elvish weapon")
puts(t.to_s)
 #=> #<Treasure:0x3308100>
puts(t.inspect)
 #=> #<Treasure:0x3308100 @name="Sword", @description="A lovely Elvish
weapon">

Although the 7treasure.rb program may lay the foundations for a game
containing a variety of different object types, its code is still repetitive. After
all, why have a Thing class that contains a name and a Treasure class that also
contains a name? It would make more sense to regard a Treasure as a “type
of” Thing. In a complete game, other objects such as Rooms and Weapons
might be yet other types of Thing. It is clearly time to start working on a
proper class hierarchy, which is what you will do in the next chapter.

C L A S S H I E R A R C H I E S ,
A T T R I B U T E S , A N D C L A S S

V A R I A B L E S

We ended the previous chapter by creating
two new classes: a Thing and a Treasure.

Despite the fact that these two classes shared
some features (notably both had a “name”),

there was no connection between them.
These two classes are so trivial that this tiny bit of repetition doesn’t really

matter much. However, when you start writing real programs of some com-
plexity, your classes will frequently contain numerous variables and methods,
and you really don’t want to keep coding the same things over and over again.

It makes sense to create a class hierarchy in which one class may be a
“special type” of some other (ancestor) class, in which case it will automati-
cally inherit the features of its ancestor. In our simple adventure game, for
instance, a Treasure is a special type of Thing, so the Treasure class should
inherit the features of the Thing class.

16 Chapter 2

NOTE In this book, I will often talk about descendant classes inheriting features from their
ancestor classes. These terms deliberately suggest a kind a family relationship between
“related” classes. Each class in Ruby has only one parent. It may, however, descend
from a long and distinguished family tree with many generations of parents, grand-
parents, great-grandparents, and so on.

The behavior of Things in general will be coded in the Thing class. The
Treasure class will automatically “inherit” all the features of the Thing class,
so we won’t need to code them all over again; it will then add some addi-
tional features, specific to Treasures.

As a general rule, when creating a class hierarchy, the classes with the most
generalized behavior are higher up the hierarchy than classes with more spe-
cialist behavior. So, a Thing class with just a name and a description would be
the ancestor of a Treasure class that has a name, a description, and, addition-
ally, a value; the Thing class might also be the ancestor of some other specialist
class such as a Room that has a name, a description, and exits . . . and so on.

Let’s see how to create a descendant class in Ruby. Load the 1adventure.rb
program. This starts simply enough with the definition of a Thing class, which
has two instance variables, @name and @description.

1adventure.rb class Thing
 def initialize(aName, aDescription)
 @name = aName
 @description = aDescription
 end

O N E P A R E N T , M A N Y C H I L D R E N

This diagram shows a Thing class that has a name and a description (in a Ruby
program, these might be internal variables such as @name and @description plus some
methods to access them). The Treasure and Room classes both descend from the
Thing class, so they automatically “inherit” a name and a description. The Treasure
class adds one new item, value, so it now has name, description, and value. The
Room class adds exits—so it has name, description, and exits.

Thing
name

description

Treasure
name

description
value

Room
name

description
exits

Class Hierarchies, At t r ibu tes, and Class Var iables 17

 def get_name
 return @name
 end

 def set_name(aName)
 @name = aName
 end

 def get_description
 return @description
 end

 def set_description(aDescription)
 @description = aDescription
 end
end

The @name and @description variables are assigned values in the initialize
method when a new Thing object is created. Instance variables generally can-
not (and should not) be directly accessed from the world outside the class
itself, because of the principle of encapsulation (as explained in the previous
chapter). To obtain the value of each variable, you need a get accessor method
such as get_name; in order to assign a new value, you need a set accessor
method such as set_name.

Superclasses and Subclasses

Now look at the Treasure class, which is also defined in the following program:

1adventure.rb class Treasure < Thing
 def initialize(aName, aDescription, aValue)
 super(aName, aDescription)
 @value = aValue
 end

 def get_value
 return @value
 end

 def set_value(aValue)
 @value = aValue
 end
end

Notice how the Treasure class is declared:

class Treasure < Thing

18 Chapter 2

The left angle bracket (<) indicates that Treasure is a subclass, or
descendant, of Thing, and therefore it inherits the data (variables) and
behavior (methods) from the Thing class. Since the methods get_name,
set_name, get_description, and set_description already exist in the ancestor class
(Thing), these methods don’t need to be recoded in the descendant class
(Treasure).

The Treasure class has one additional piece of data, its value (@value),
and I have written get and set accessors for this. When a new Treasure object is
created, its initialize method is automatically called. A Treasure has three
variables to initialize (@name, @description, and @value), so its initialize method
takes three arguments. The first two arguments are passed, using the super
keyword, to the initialize method of the superclass (Thing) so that the
Thing class’s initialize method can deal with them:

super(aName, aDescription)

When used inside a method, the super keyword calls a method with the
same name as the current method in the ancestor or superclass. If the super
keyword is used on its own, without any arguments being specified, all the
arguments sent to the current method are passed to the ancestor method. If,
as in the present case, a specific list of arguments (here aName and aDescription)
is supplied, then only these are passed to the method of the ancestor class.

Passing Arguments to the Superclass

Parentheses matter when calling the superclass! If the argument list is empty
and no parentheses are used, all arguments are passed to the superclass. But
if the argument list is empty and parentheses are used, no arguments are
passed to the superclass:

super_args.rb # This passes a, b, c to the superclass
def initialize(a, b, c, d, e, f)
 super(a, b, c)
end

This passes a, b, c to the superclass
def initialize(a, b, c)
 super
end

This passes no arguments to the superclass
def initialize(a, b, c)
 super()
end

NOTE To gain a better understanding of the use of super, see “Digging Deeper” on page 25.

Class Hierarchies, At t r ibu tes, and Class Var iables 19

Accessor Methods

Although the classes in this would-be adventure game work well enough, they
are still fairly verbose because of all those get and set accessors. Let’s see what
you can do to remedy this.

Instead of accessing the value of the @description instance variable with
two different methods, get_description and set_description, like this:

puts(t1.get_description)
t1.set_description("Some description")

it would be so much nicer to retrieve and assign values just as you would
retrieve and assign values to and from a simple variable, like this:

puts(t1.description)
t1.description = "Some description"

To be able to do this, you need to modify the Treasure class definition.
One way of accomplishing this would be to rewrite the accessor methods for
@description as follows:

accessors1.rb def description
 return @description
end

def description=(aDescription)
 @description = aDescription
end

I have added accessors similar to these in the accessors1.rb program. Here,
the get accessor is called description, and the set accessor is called description=
(that is, it appends an equals sign to the method name used by the corre-
sponding get accessor). It is now possible to assign a new string like this:

t.description = "a bit faded and worn around the edges"

And you can retrieve the value like this:

puts(t.description)

Note that when you write a set accessor in this way, you must append the
= character to the method name, not merely place it somewhere between the
method name and the arguments. In other words, this is correct:

def name=(aName)

but this results in an error:

def name = (aName)

20 Chapter 2

Attribute Readers and Writers

In fact, there is a simpler and shorter way of creating a pair of get and set
accessors simultaneously. All you have to do is use two special methods,
attr_reader and attr_writer, followed by a symbol (a name preceded by a
colon):

attr_reader :description
attr_writer :description

You should add this code inside your class definition like this:

class Thing
 attr_reader :description
 attr_writer :description
 # maybe some more methods here...
end

Calling attr_reader with a symbol has the effect of creating a get accessor
(here named description) for an instance variable (@description) with a name
matching the symbol (:description).

Calling attr_writer similarly creates a set accessor for an instance variable.
Instance variables are considered to be the “attributes” of an object, which is
why the attr_reader and attr_writer methods are so named.

The accessors2.rb program contains some examples of attribute readers
and writers in action. This is its version of the Thing class:

accessors2.rb class Thing

 attr_reader :description
 attr_writer :description

 attr_writer :name

 def initialize(aName, aDescription)
 @name = aName
 @description = aDescription
 end

W H A T I S A S Y M B O L ?

In Ruby, a symbol is a name preceded by a colon (for example, :description). The
Symbol class is defined in the Ruby class library to represent names inside the Ruby
interpreter. When you pass one or more symbols as arguments to attr_reader (which
is a method of the Module class), Ruby creates an instance variable and a get acces-
sor method. This accessor method returns the value of the corresponding variable;
both the instance variable and the accessor method will take the name that was
specified by the symbol. So, attr_reader(:description) creates an instance vari-
able with the name, @description, and an accessor method named description().
Symbols are discussed in detail in Chapter 11.

Class Hierarchies, At t r ibu tes, and Class Var iables 21

 # get accessor for @name
 def name
 return @name.capitalize
 end

end

Here the Thing class explicitly defines a get method accessor for the
@name attribute. The advantage of writing a complete method like this is that
it gives you the opportunity to do some extra processing rather than simply
reading and writing an attribute value. The get accessor, name , uses the
String.capitalize method to return the string value of @name with its initial
letter in uppercase.

When assigning a value to the @name attribute, I don’t need to do any spe-
cial processing, so I have given it an attribute writer instead of a set accessor
method .

The @description attribute needs no special processing at all, so I use
attr_reader and attr_writer instead of accessor methods in order to get and
set the value of the @description variable .

NOTE Are they attributes or properties? Don’t be confused by the terminology. In Ruby, an
attribute is the equivalent of what many programming languages call a property.

When you want both to read and to write a variable, the attr_accessor
method provides a shorter alternative than using both attr_reader and
attr_writer. I have used this to access the value attribute in the Treasure
class:

attr_accessor :value

This is equivalent to the following:

attr_reader :value
attr_writer :value

Earlier I said that calling attr_reader with a symbol actually creates a vari-
able with the same name as the symbol. The attr_accessor method also does this.

In the code for the Thing class, this behavior is not obvious since the class
has an initialize method that explicitly creates the variables. The Treasure
class, however, makes no reference to the @value variable in its initialize
method:

class Treasure < Thing
 attr_accessor :value

 def initialize(aName, aDescription)
 super(aName, aDescription)
 end
end

22 Chapter 2

The only indication that @value exists at all is this accessor definition:

attr_accessor :value

My code at the bottom of the accessors2.rb source file sets the value of
each Treasure object as a separate operation, following the creation of the
object itself, like this:

t1.value = 800

Even though it has never been formally declared, the @value variable
really does exist, and you are able to retrieve its numerical value using the
get accessor: t1.value. To be absolutely certain that the attribute accessor
really has created @value, you can always look inside the object using the
inspect method. I have done so in the final two code lines in this program:

puts "This is treasure1: #{t1.inspect}"
puts "This is treasure2: #{t2.inspect}"

This displays the data inside the t1 and t2 objects, including the @value
variables:

This is treasure1: #<Treasure:0x33a6c88 @value=100, @name="sword",
@description="an Elvish weapon forged of gold (now somewhat tarnished)">
This is treasure2: #<Treasure:0x33a6c4c @value=500, @name="dragon horde",
@description="a huge pile of jewels">

Attribute accessors can initialize more than one attribute at a time if you
send them a list of symbols separated by commas, like this:

accessors3.rb attr_reader :name, :description
attr_writer(:name, :description)
attr_accessor(:value, :id, :owner)

As always, parentheses around the arguments are optional but, in my
view (for reasons of clarity), are to be preferred.

Now let’s see how to put attribute readers and writers to use in my adven-
ture game. Load the 2adventure.rb program. You will see that I have created
two readable attributes in the Thing class: name and description. I have also
made description writeable; however, because I don’t plan to change the
names of any Thing objects, the name attribute is not writeable:

2adventure.rb attr_reader(:name, :description)
attr_writer(:description)

I have created a method called to_s, which returns a string describing the
Treasure object. Recall that all Ruby classes have a to_s method as standard.
The Thing.to_s method overrides (and replaces) the default one.

Class Hierarchies, At t r ibu tes, and Class Var iables 23

def to_s # override default to_s method
 return "(Thing.to_s):: The #{@name} Thing is #{@description}"
end

You can override existing methods when you want to implement new
behavior appropriate to the specific class type.

Calling Methods of a Superclass

The game in 2adventure.rb will have two classes descending from Thing: the
Treasure class and the Room class. The Treasure class adds a value attribute,
which can be both read and written. Note that its initialize method calls its
superclass in order to initialize the name and description attributes before ini-
tializing the new @value variable:

super(aName, aDescription)
@value = aValue

Here, if I had omitted the call to the superclass, the name and description
attributes would never be initialized. This is because Treasure.initialize over-
rides Thing.initialize, so when a Treasure object is created, the code in
Thing.initialize will not automatically be executed.

On the other hand, the Room class, which also descends from Thing,
currently has no initialize method, so when a new Room object is created,
Ruby goes scrambling back up the class hierarchy in search of one. The first
initialize method it finds is in Thing, so a Room object’s name and description
attributes are initialized there.

Class Variables

A few other interesting things are going on in this program. Right at the top
of the Thing class you will see this:

@@num_things = 0

The two @ characters at the start of this variable name, @@num_things, define
this to be a class variable. The variables we’ve used inside classes up to now have
been instance variables, preceded by a single @, like @name. Whereas each new
object (or instance) of a class assigns its own values to its own instance vari-
ables, all objects derived from a specific class share the same class variables.
I have assigned 0 to the @@num_things variable to ensure that it has a meaning-
ful value at the outset.

Here, the @@num_things class variable is used to keep a running total of
the number of Thing objects in the game. It does this simply by increment-
ing the class variable (by adding 1 to it: += 1) in its initialize method every
time a new object is created:

@@num_things += 1

24 Chapter 2

If you look later in the code, you will see that I have created a Map class
to contain an array of rooms. This includes a version of the to_s method that
prints information on each room in the array. Don’t worry about the imple-
mentation of the Map class right now; we’ll be looking at arrays and their
methods in Chapter 4.

class Map

 def initialize(someRooms)
 @rooms = someRooms
 end

 def to_s
 @rooms.each {
 |a_room|
 puts(a_room)
 }
 end

end

Scroll to the code at the bottom of the file, and run the program to see
how I have created and initialized all the objects and used the class variable,
@@num_things, to keep a tally of all the Thing objects that have been created.

C L A S S V A R I A B L E S A N D I N S T A N C E V A R I A B L E S

This diagram shows a Thing class (the rectangle) that contains a class variable,
@@num_things, and an instance variable, @name. The three oval shapes represent
“Thing objects”—that is, instances of the Thing class. When one of these objects
assigns a value to its instance variable, @name, that value affects only the @name vari-
able in the object itself. So here, each object has a different value for @name. But when
an object assigns a value to the class variable, @@num_things, that value “lives inside”
the Thing class and is shared by all instances of that class. Here @@num_things equals
3, and that is true for all the Thing objects.

Thing
@@num_things=3

@name

@name="Fred"
@@num_things=3

@name="Bert"
@@num_things=3

@name="Mary"
@@num_things=3

Class Hierarchies, At t r ibu tes, and Class Var iables 25

D I G G I N G D E E P E R
Every class you create will descend from one or more other classes. Here I
explain the fundamentals of the Ruby class hierarchy.

Superclasses
To understand how the super keyword works, take a look at the sample pro-
gram super.rb. This contains five related classes. The Thing class is the ances-
tor of all the others, and from Thing descends Thing2, from Thing2 descends
Thing3, from Thing3 descends Thing4, and from Thing4 descends Thing5.

super.rb class Thing
 def initialize(aName, aDescription)
 @name = aName
 @description = aDescription
 puts("Thing.initialize: #{self.inspect}\n\n")
 end

 def aMethod(aNewName)
 @name = aNewName
 puts("Thing.aMethod: #{self.inspect}\n\n")
 end
end

class Thing2 < Thing
 def initialize(aName, aDescription)
 super
 @fulldescription = "This is #{@name}, which is #{@description}"
 puts("Thing2.initialize: #{self.inspect}\n\n")
 end

 def aMethod(aNewName, aNewDescription)
 super(aNewName)
 puts("Thing2.aMethod: #{self.inspect}\n\n")
 end
end

class Thing3 < Thing2
 def initialize(aName, aDescription, aValue)
 super(aName, aDescription)
 @value = aValue
 puts("Thing3.initialize: #{self.inspect}\n\n")
 end

26 Chapter 2

 def aMethod(aNewName, aNewDescription, aNewValue)
 super(aNewName, aNewDescription)
 @value = aNewValue
 puts("Thing3.aMethod: #{self.inspect}\n\n")
 end
end

class Thing4 < Thing3
 def aMethod
 puts("Thing4.aMethod: #{self.inspect}\n\n")
 end
end

class Thing5 < Thing4
end

Let’s take a closer look at the first three classes in this hierarchy: The
Thing class has two instance variables, @name and @description. Thing2 also
defines @fulldescription (a string that contains @name and @description);
Thing3 adds yet another variable, @value.

These three classes each contain an initialize method that sets the values
of the variables when a new object is created; they also each have a method
named, rather inventively, aMethod, which changes the value of one or more
variables. The descendant classes, Thing2 and Thing3, both use the super
keyword in their methods.

At the bottom of this code unit I’ve written a “main” loop that executes
when you run the program. Don’t worry about the syntax of this; you’ll be
learning about loops in Chapter 5. I’ve added this loop so that you can easily
run the different bits of code contained in the methods, test1 to test5. You
can run the program in a command window and enter a number, 1 to 5, when
prompted, or Q to quit. When you run it for the first time, type 1 at the prompt
and press the ENTER key. This will run the test1 method containing these two
lines of code:

t = Thing.new("A Thing", "a lovely thing full of thinginess")
t.aMethod("A New Thing")

The first line here creates and initializes a Thing object, and the second
line calls its aMethod method. Because the Thing class doesn’t descend from any-
thing special, nothing very new or interesting happens here. In fact, as with
all Ruby classes, Thing descends from the Object class, which is the ancestor
of all other classes (with the sole exception of the BasicObject class in Ruby
1.9, as explained later in this chapter). The output uses the inspect method
to display the internal structure of the object when the Thing.initialize and
Thing.aMethod methods are called. This is the result:

Thing.initialize: #<Thing:0x28e0290 @name="A Thing", @description="a lovely
thing full of thinginess">
Thing.aMethod: #<Thing:0x28e0290 @name="A New Thing", @description="a lovely
thing full of thinginess">

Class Hierarchies, At t r ibu tes, and Class Var iables 27

The inspect method can be used with all objects and is an invaluable
debugging aid. Here, it shows a hexadecimal number, which identifies this
specific object followed by the string values of the @name and @description
variables.

Now enter 2 at the prompt to run test2, which contains the following code:

t2 = Thing2.new("A Thing2", "a Thing2 thing of great beauty")
t2.aMethod("A New Thing2", "a new Thing2 description")

This creates a Thing2 object, t2, and calls t2.aMethod. Look carefully
at the output. You will see that even though t2 is a Thing2 object, it is the
Thing class’s initialize method that is called first. And only then is the
Thing2 class’s initialize called.

Thing.initialize: #<Thing2:0x2a410a0 @name="A Thing2", @description="a Thing2
thing of great beauty">

Thing2.initialize: #<Thing2:0x2a410a0 @name="A Thing2", @description="a Thing2
thing of great beauty", @fulldescription="This is A Thing2, which is a Thing2
thing of great beauty">

To understand why this is so, look at the code of the Thing2 class’s
initialize method:

def initialize(aName, aDescription)
 super
 @fulldescription = "This is #{@name}, which is #{@description}"
 puts("Thing2.initialize: #{self.inspect}\n\n")
end

This uses the super keyword to call the initialize method of Thing2’s
ancestor, or superclass. The superclass of Thing2 is Thing, as you can see from
its declaration:

class Thing2 < Thing

In Ruby, when the super keyword is used on its own (that is, without
any arguments), it passes all the arguments from the current method (here
Thing2.initialize) to a method with the same name in its superclass (here
Thing.initialize). Alternatively, you can explicitly specify a list of arguments
following super. So, in this case, the following code would have the same effect:

super(aName, aDescription)

Although it is permissible to use the super keyword all on its own, it is often
preferable to explicitly specify the list of arguments to be passed to the super-
class, for the sake of clarity. If you want to pass only a limited number of the
arguments sent to the current method, an explicit argument list is necessary.

28 Chapter 2

Thing2’s aMethod, for example, passes only the aName argument to the initialize
method of its superclass, Thing1:

super(aNewName)

This explains why the @description variable is not changed when
Thing2.aMethod is called.

Now if you look at Thing3, you will see that this adds one more variable,
@value. In its implementation of initialize, it passes the two arguments, aName
and aDescription, to its superclass, Thing2. In its turn, as you’ve already seen,
Thing2’s initialize method passes these same arguments to the initialize
method of its superclass, Thing.

With the program running, enter 3 at the prompt to view the output.
The following code will execute:

t3 = Thing3.new("A Thing3", "a Thing3 full of Thing and Thing2iness",500)
t3.aMethod("A New Thing3", "and a new Thing3 description",1000)

Note how the flow of execution goes right up the hierarchy so that code
in the initialize and aMethod methods of Thing execute before code in the
matching methods of Thing2 and Thing3.

It is not obligatory to override a superclass’s methods as I have done in
the examples so far. This is required only when you want to add some new
behavior. Thing4 omits the initialize method but implements the aMethod
method.

Enter 4 at the prompt to execute the following code:

t4 = Thing4.new("A Thing4", "the nicest Thing4 you will ever see", 10)
t4.aMethod

When you run it, notice that the first available initialize method is
called when a Thing4 object is created. This happens to be Thing3.initialize,
which, once again, also calls the initialize methods of its ancestor classes,
Thing2 and Thing. However, the aMethod method implemented by Thing4
contains no call to its superclasses, so this executes right away, and the code
in any other aMethod methods in the ancestor classes is ignored:

def aMethod
 puts("Thing4.aMethod: #{self.inspect}\n\n")
end

Finally, Thing5 inherits from Thing4 and doesn’t introduce any new
data or methods. Enter 5 at the prompt to execute the following:

t5 = Thing5.new("A Thing5", "a very simple Thing5", 40)
t5.aMethod

Class Hierarchies, At t r ibu tes, and Class Var iables 29

This time, you will see that the call to new causes Ruby to backtrack
through the class hierarchy until it finds the first initialize method. This
happens to belong to Thing3 (which also calls the initialize methods of
Thing2 and Thing). The first implementation of aMethod, however, occurs
in Thing4, and there are no calls to super, so that’s where the trail ends.

The Root of All Classes
As I mentioned earlier, all our Ruby classes will ultimately descend from the
Object class. You may think of Object as the “root” or “base” class of the Ruby
hierarchy. In Ruby 1.8 this is literally true—there are no classes from which
Object itself descends. In Ruby 1.9, however, Object is derived from a new
class called BasicObject. This new class was created to provide programmers
with a very lightweight class—one that supplies only the bare minimum of
methods for creating objects, testing equality, and manipulating special meth-
ods called singletons. (I’ll talk more about singletons in Chapter 7.)

The Ruby 1.9 Object class inherits the methods from BasicObject and adds
a number of new methods of its own. BasicObject does not exist in Ruby 1.8,
and the Object class supplies all the methods provided by the combination
of BasicObject and Object in Ruby 1.9. Since all normal Ruby classes—both
Ruby 1.8 and Ruby 1.9—descend from Object, you may generally think of
Object as being the “root” of all other classes. Just bear in mind that in Ruby
1.9, the ultimate ancestor of all classes is BasicObject.

The root class itself has no superclass, and any attempt to locate its super-
class will return nil. You can see this for yourself by running superclasses.rb. This
calls the superclass method to climb up the class hierarchy from the Three
class to the Object or BasicObject class. At each turn through the loop, the
variable x is assigned the class of x’s immediate parent until x equals nil. Here
class and superclass are methods that return references to Ruby classes rather
than to objects created from those classes. The begin..until block is one of
Ruby’s looping constructs, which you’ll look at in more detail in Chapter 5.

superclasses.rb class One
end

class Two < One
end

class Three < Two
end

Create ob as instance of class Three
and display the class name
ob = Three.new
x = ob.class
puts(x)

30 Chapter 2

now climb back through the hierarchy to
display all ancestor classes of ob
begin
 x = x.superclass
 puts(x.inspect)
end until x == nil

The previous code displays the following output:

Three
Two
One
Object
BasicObject # Ruby 1.9 only!
nil

Constants Inside Classes
There may be times when you need to access constants (identifiers begin-
ning with a capital letter, which are used to store nonchanging values)
declared inside a class. Let’s assume you have this class:

classconsts.rb class X
 A = 10

 class Y
 end
end

To access the constant A, you would need to use the special scope resolu-
tion operator :: like this:

X::A

Class names are constants, so this same operator gives you access to
classes inside other classes. This makes it possible to create objects from
“nested” classes such as class Y inside class X:

ob = X::Y.new

Partial Classes
In Ruby it is not obligatory to define a class all in one place. If you want, you
can define a single class in separate parts of your program. When a class
descends from a specific superclass, each subsequent partial (or open) class
definition may optionally repeat the superclass in its definition using the <
operator.

Class Hierarchies, At t r ibu tes, and Class Var iables 31

Here I create one class, A, and another that descends from it, B:

partial_classes.rb class A
 def a
 puts("a")
 end
end

class B < A
 def ba1
 puts("ba1")
 end
end

class A
 def b
 puts("b")
 end
end

class B < A
 def ba2
 puts("ba2")
 end
end

Now, if I create a B object, all the methods of both A and B are available
to it:

ob = B.new
ob.a
ob.b
ob.ba1
ob.ba2

You can also use partial class definitions to add features to Ruby’s stan-
dard classes such as Array:

class Array
 def gribbit
 puts("gribbit")
 end
end

This adds the gribbit method to the Array class so that the following
code can now be executed:

[1,2,3].gribbit

S T R I N G S A N D R A N G E S

I’ve made use of strings in many of my
programs so far. In fact, a string was fea-

tured in the very first program in the book.
Here it is again:

puts 'hello world'

Although that first program used a string enclosed within single quotes,
my second program used a string in double quotes:

print('Enter your name: ')
name = gets()
puts("Hello #{name}")

Double-quoted strings do more work than single-quoted strings. In par-
ticular, they have the ability to evaluate bits of themselves as though they
were programming code. To have something evaluated, you need to place it
between a pair of curly brackets preceded by a hash mark (#).

34 Chapter 3

In the previous example, #{name} in a double-quoted string tells Ruby to
get the value of the name variable and insert that value into the string itself.
The second line of code calls the gets() method to get some user input, which
is then assigned to the variable name. If the user entered Fred, the final line of
code would evaluate the embedded variable, #{name}, and the string “Hello
Fred” would be displayed. The 1strings.rb sample program provides a few more
examples of embedded evaluation in double-quoted strings. For example,
here I have created an object, ob, from a custom class, MyClass, and used
embedded evaluation to display the values of its name and number attributes:

1strings.rb class MyClass
 attr_accessor :name
 attr_accessor :number

 def initialize(aName, aNumber)
 @name = aName
 @number = aNumber
 end

 def ten
 return 10
 end

end

ob = MyClass.new("James Bond", "007")
puts("My name is #{ob.name} and my number is #{ob.number}")

When the final line of code executes, this is displayed:

My name is James Bond and my number is 007

A double-quoted string can also evaluate expressions such as 2*3, bits
of code such as the method-call ob.ten (where ten is a method name), and
escape characters such as \n and \t (representing a newline and a tab).
A single-quoted string does no such evaluation. A single-quoted string can,
however, use a backslash to indicate that the next character should be used
literally. This is useful when a single-quoted string contains a single-quote
character, like this:

'It\'s my party'

Assuming that the method named ten returns the value 10, you might
write the following code:

puts("A tab\ta new line\na calculation #{2*3} and method-call #{ob.ten}")

St r ings and Ranges 35

Because this is a double-quoted string, the embedded elements are eval-
uated, and the following is displayed:

A tab new line
calculation 6 and method-call 10

Now let’s see what happens when a single-quoted string is used:

puts('A tab\tnew line\na calculation #{2*3} and method-call #{ob.ten}')

This time, no embedded evaluation is done, so this is what is displayed:

A tab\tnew line\ncalculation #{2*3} and method-call #{ob.ten}

User-Defined String Delimiters

If, for some reason, single and double quotes aren’t convenient—for example,
if your strings contain lots of quote characters and you don’t want to have to
keep putting backslashes in front of them—you can also delimit strings in
many other ways.

The standard alternative delimiters for double-quoted strings are %Q and
/ or %/ and /, while for single-quoted strings they are %q and /. Thus . . .

2strings.rb %Q/This is the same as a double-quoted string./
%/This is also the same as a double-quoted string./
%q/And this is the same as a single-quoted string/

You can even define your own string delimiters. They must be non-
alphanumeric characters, and they may include nonprinting characters such
as newlines or tabs as well as various characters that normally have a special
meaning in Ruby such as the hash mark (#). Your chosen character should
be placed after %q or %Q, and you should be sure to terminate the string with
the same character. If your delimiter is an opening square bracket, the corre-
sponding closing bracket should be used at the end of the string, like this:

3strings.rb %Q[This is a string]

You will find examples of a broad range of user-selected string delimiters
in the sample program 3strings.rb. Here are two examples using an asterisk
(*) after %Q instead of a double-quoted string and using an exclamation point
(!) after %q instead of a single-quoted string:

puts(%Q*a)Here's a tab\ta new line\na calculation using * #{2*3} and a method-call #{ob.ten}*)
puts(%q!b)Here's a tab\ta new line\na calculation using * #{2*3} and a method-call #{ob.ten}!)

36 Chapter 3

Here, as in the previous program, ob is a user-defined object whose
method named ten returns the integer, 10. The previous code produces
the following output:

a)Here's a tab a new line
a calculation using * 6 and a method-call 10
b)Here's a tab\ta new line\na calculation using * #{2*3} and a method-call
#{ob.ten}

Although there may be times when it is useful to delimit a string by
some esoteric character such as a newline or an asterisk, in many cases the
disadvantages (not least the mental anguish and confusion) resulting from
such arcane practices may significantly outweigh the advantages.

Backquotes

One other type of string deserves a special mention: a string enclosed by
backquotes—that is, the inward-pointing quote character that is usually
tucked away up toward the top-left corner of the keyboard: `.

Ruby considers anything enclosed by back-quotes to be a command that
can be passed for execution by the operating system using a method such as
print or puts. By now, you will probably already have guessed that Ruby pro-
vides more than one way of doing this. It turns out %x/some command/ has the
same effect as `somecommand` and so does %x{some command}. On the Windows
operating system, for example, each of the three lines shown next would pass
the command dir to the operating system, causing a directory listing to be
displayed:

4backquotes.rb puts(`dir`)
puts(%x/dir/)
puts(%x{dir})

You can also embed commands inside double-quoted strings like this:

print("Goodbye #{%x{calc}}")

Be careful if you do this. The command itself is evaluated first. Your Ruby
program then waits until the process that starts has terminated. In the present
case, the calculator will pop up. You are now free to do some calculations, if
you want. Only when you close the calculator will the string “Goodbye” be
displayed.

String Handling

Before leaving the subject of strings, you’ll take a quick look at a few com-
mon string operations.

St r ings and Ranges 37

Concatenation
You can concatenate strings using << or + or just by placing a space between
them. Here are three examples of string concatenation; in each case, s is
assigned the string “Hello world”:

hello_world_
concat.rb

s = "Hello " << "world"
s = "Hello " + "world"
s = "Hello " "world"

Note that when you use the << method, you can append Fixnum integers
(in the range 0 to 255), in which case those integers are converted to the char-
acter with that character code. Character codes 65 to 90 are converted to the
uppercase characters A to Z, 97 to 122 are converted to the lowercase a to z,
and other codes are converted to punctuation, special characters, and non-
printing characters. However, if you want to print the number itself, you must
convert it to a string using the to_s method. The to_s method is obligatory
when concatenating Fixnums using the + method or a space; attempting to
concatenate a number without using to_s is an error. The following program
prints out characters and numeric codes for values between 0 and 126, which
include the standard Western alphanumeric and punctuation characters:

char_codes.rb i = 0
begin
 s = "[" << i << ":" << i.to_s << "]"
 puts(s)
 i += 1
end until i == 126

For examples of concatenating using <<, +, or a space, see string_contact.rb:

string_contact.rb s1 = "This " << "is" << " a string " << 36 # char 36 is '$'
s2 = "This " + "is" + " a string " + 36.to_s
s3 = "This " "is" " a string " + 36.to_s

puts("(s1):" << s1)
puts("(s2):" << s2)
puts("(s3):" << s3)

The previous program produces this output:

(s1):This is a string $
(s2):This is a string 36
(s3):This is a string 36

38 Chapter 3

What About Commas?
You may sometimes see Ruby code that uses commas to separate strings and
other data types. In some circumstances, these commas appear to have the
effect of concatenating strings. For example, the following code might, at first
sight, seem to create and display a string from three substrings plus an integer:

s4 = "This " , "is" , " not a string!", 10
print("print (s4):" , s4, "\n")

In fact, a list separated by commas creates an array—an ordered list of the
original strings. The string_concat.rb program contains examples that prove this
to be the case:

x = "This " , "is" , " not a string!", 36
print("print (x):" , x, "\n")
puts("puts(x):", x)
puts("puts x.class is: " << (x.class).to_s)

print("print(x):" , x, "\n")
puts("puts(x):", x)
puts("puts x.class is: " << (x.class).to_s)

The previous code causes the following to be displayed:

print (x):This is not a string!36
puts(x):
This
is
 not a string!
36
puts x.class is: Array

The first print statement here looks as though it is displaying a single
string. This is because each successive item in the array, x, is printed on the
same line as the preceding item. When you use puts instead of print, you can
see that each item is printed on a separate line. This is because puts prints
each item in turn and appends a carriage return after it. The fact that you are
dealing with an array rather than a string is confirmed when you ask Ruby to
print the class of the x object. It displays Array. You’ll learn about arrays in
more depth in the next chapter.

String Assignment
The Ruby String class provides a number of useful string-handling methods.
Most of these methods create new string objects. So, for example, in the fol-
lowing code, the s on the left side of the assignment on the second line is not
the same object as the s on the right side:

s = "hello world"
s = s + "!"

St r ings and Ranges 39

A few string methods actually alter the string itself without creating a new
object. These methods generally end with an exclamation mark (for example,
the capitalize! method changes the original string, whereas the capitalize
method does not). In addition, the string itself is also modified—and no new
string is created—when you assign a character at an index of the string. For
example, s[1] = 'A' would place the character A at index 1 (the second
character) of the string s.

If in doubt, you can check an object’s identity using the object_id method.
I’ve provided a few examples of operations that do and do not create new
strings in the string_assign.rb program. Run this, and check the object_id of s
after each string operation is performed.

string_assign.rb s = "hello world"
print("1) s='#{s}' and s.object_id=#{s.object_id}\n")
s = s + "!" # this creates a new string object
print("2) s='#{s}' and s.object_id=#{s.object_id}\n")
s = s.capitalize # this creates a new string object
print("3) s='#{s}' and s.object_id=#{s.object_id}\n")
s.capitalize! # but this modifies the original string object
print("4) s='#{s}' and s.object_id=#{s.object_id}\n")
s[1] = 'A' # this also modifies the original string object
print("5) s='#{s}' and s.object_id=#{s.object_id}\n")

This produces output similar to that shown next. The actual object ID
values may differ, but the important thing to notice is when consecutive values
remain the same, showing that the string object, s, remains the same and,
when they change, showing that a new string object, s, has been created:

1) s='hello world' and s.object_id=29573230
2) s='hello world!' and s.object_id=29573190
3) s='Hello world!' and s.object_id=29573160
4) s='Hello world!' and s.object_id=29573160
5) s='HAllo world!' and s.object_id=29573160

Indexing into a String
In one of the previous examples, I treated a string as an array of characters
and specified a character index with an integer inside square brackets: s[1].
Strings and arrays in Ruby are indexed from the first character at index 0. So,
for instance, to replace the character e with u in the string s (which currently
contains “Hello world”), you would assign a new character to index 1:

s[1] = 'u'

If you index into a string in order to find a character at a specific loca-
tion, the behavior differs according to which version of Ruby you are using.
Ruby 1.8 returns a numeric ASCII code of the character, whereas Ruby 1.9
returns the character itself.

40 Chapter 3

s = "Hello world"
puts(s[1]) #=> Ruby 1.8 displays 101; Ruby 1.9 displays 'e'

To obtain the actual character from the numeric value returned by
Ruby 1.8, you can use a double index to print a single character, starting
at index 1:

s = "Hello world"
puts(s[1,1]) # prints out 'e'

If, on the other hand, you need the numeric value of the character
returned by Ruby 1.9, you can use the ord method like this:

puts(s[1].ord)

The ord method does not exist in Ruby 1.8, so the previous code causes
an “undefined method” error. To ensure compatibility between Ruby 1.8
and 1.9, you should use the double-index technique, with the first index indi-
cating the starting position and the second index indicating the number of
characters. For example, this returns one character at position 1: s[1,1]. You
can see some more examples in the char_in_string.rb program:

char_in_string.rb s = "Hello world"
puts(s[1])
achar=s[1]
puts(achar)
puts(s[1,1])
puts(achar.ord)

When you run this code, Ruby 1.9 displays this:

e
e
e
101

whereas Ruby 1.8 displays this:

101
101
e
undefined method `ord' for 101:Fixnum (NoMethodError)

You can also use double-indexes to return more than one character. If
you want to return three characters starting at position 1, you would enter this:

puts(s[1,3]) # prints 'ell'

St r ings and Ranges 41

This tells Ruby to start at position 1 and return the next three characters.
Alternatively, you could use the two-dot range notation:

puts(s[1..3]) # also prints 'ell'

NOTE Ranges are discussed in more detail later in this chapter.

Strings can also be indexed using negative values, in which case -1 is the
index of the last character, and, once again, you can specify the number of
characters to be returned:

string_index.rb puts(s[-1,1]) # prints 'd'
puts(s[-5,5]) # prints 'world'

When specifying ranges using a negative index, you must use negative
values for both the start and end indexes:

string_methods.rb puts(s[-5..5]) # this prints an empty string!
puts(s[-5..-1]) # prints 'world'

Finally, you may want to experiment with a few of the standard methods
available for manipulating strings. These include methods to change the case
of a string, reverse it, insert substrings, remove repeating characters, and so
on. I’ve provided a few examples in string_methods.rb. The method names are
generally descriptive of their functions. However, bear in mind that methods
such as reverse (with no ! at the end) return a new string but do not modify
the original string, whereas reverse! (with the !) modifies the original string.
You saw similar behavior with the capitalize end capitalize! methods used
earlier.

The insert method takes two arguments, an index and a string, and it
inserts the string argument at the given index of the string, s. The squeeze
method returns a string with any repeating character, such as the second
adjacent l in “Hello” removed. The split method splits a string into an array.
I’ll have more to say on split when I discuss regular expressions in Chapter 6.
The following examples assume that s is the string “Hello world” and the out-
put is shown in the #=> comments. In the program supplied in this book’s code
archive, you may also experiment using much longer strings:

s.length #=> 11
s.reverse! #=> Hello world
s.reverse #=> dlrow olleH
s.upcase #=> HELLO WORLD
s.capitalize #=> Hello world
s.swapcase #=> hELLO WORLD
s.downcase #=> hello world
s.insert(7,"NOT ") #=> hello wNOT orld
s.squeeze #=> helo wNOT orld
s.split #=> ["helo", "wNOT", "orld"]

42 Chapter 3

Removing Newline Characters: chop and chomp
A couple of handy string-processing methods deserve special mention. The
chop and chomp methods can be used to remove characters from the end of a
string. The chop method returns a string with the last character removed or
with the carriage return and newline characters removed (\r\n) if these are
found at the end of the string. The chomp method returns a string with the ter-
minating carriage return or newline character removed (or both the carriage
return and the newline character if both are found).

These methods are useful when you need to remove line feeds entered
by the user or read from a file. For instance, when you use gets to read in a
line of text, this returns the line including the terminating record separator,
which, by default, is the newline character.

You can remove the newline character using either chop or chomp. In most
cases, chomp is preferable because it won’t remove the final character unless it
is the record separator (usually a newline), whereas chop will remove the last
character no matter what it is. Here are some examples:

chop_chomp.rb # NOTE: s1 includes a carriage return and linefeed
s1 = "Hello world
"
s2 = "Hello world"
s1.chop # returns "Hello world"
s1.chomp # returns "Hello world"
s2.chop # returns "Hello worl" – note the missing 'd'!
s2.chomp # returns "Hello world"

The chomp method also lets you specify a character or string to use as the
separator:

s2.chomp('rld') # returns "Hello wo"

T H E R E C O R D S E P A R A T O R : $ /

Ruby predefines a variable, $/, as a record separator. This variable is used by meth-
ods such as gets and chomp. The gets method reads in a string up to and including
the record separator. The chomp method returns a string with the record separator
removed from the end (if present); otherwise, it returns the original string unmodified.
You can redefine the record separator if you want, like this:

$/= "*" # the "*" character is now the record separator

When you redefine the record separator, this new character (or string) will now
be used by methods such as gets and chomp. Here’s an example:

$/= "world"
s = gets() # user enters "Had we but world enough and time..."
puts(s) # displays "Had we but world"

record_separator
.rb

St r ings and Ranges 43

Format Strings
Ruby provides the printf method to print “format strings” containing spec-
ifiers starting with a percent sign (%). The format string may be followed by
one or more data items separated by commas; the list of data items should
match the number and type of the format specifiers. The actual data items
replace the matching specifiers in the string, and they are formatted accord-
ingly. These are some common formatting specifiers:

%d – decimal number
%f – floating-point number
%o – octal number
%p – inspect object
%s – string
%x – hexadecimal number

You can control floating-point precision by putting a point-number
before the floating-point formatting specifier, %f. For example, this would
display the floating-point value to six digits (the default) followed by a car-
riage return ("\n"):

string_printf.rb printf("%f\n", 10.12945) #=> 10.129450

And the following would display the floating-point value to two digits
("%0.02f"). It is purely a matter of stylistic preference whether the floating-
point specifier includes a preceding 0 or not and "%0.2f" is equivalent.

printf("%0.02f\n", 10.12945) #=> 10.13

Here are a couple more examples:

printf("d=%d f=%f o=%o x=%x s=%s\n", 10, 10, 10, 10, 10)

That would output d=10 f=10.000000 o=12 x=a s=10.

printf("0.04f=%0.04f : 0.02f=%0.02f\n", 10.12945, 10.12945)

That would output 0.04f=10.1295 : 0.02f=10.13.

Ranges

In Ruby, a Range is a class that represents a set of values defined by a starting
value and an ending value. Typically a range is defined using integers, but it
may also be defined using other ordered values such as floating-point num-
bers or characters. Values can be negative, though you should be careful that
your starting value is lower than your ending value!

44 Chapter 3

Here are a few examples:

ranges.rb a = (1..10)
b = (-10..-1)
c = (-10..10)
d = ('a'..'z')

You can also specify ranges using three dots instead of two; this creates a
range that omits the final value:

d = ('a'..'z') # this two-dot range = 'a'..'z'
e = ('a'...'z') # this three-dot range = 'a'..'y'

You can create an array of the values defined by a range using the to_a
method, like this:

(1..10).to_a

Note that to_a is not defined for floating-point numbers for the simple
reason that the number of possible values between two floating-point num-
bers is not finite.

Ranges of Strings
You can even create ranges of strings—though you would need to take great
care in so doing because you might end up with more than you bargain for.
For example, see whether you can figure out which values are specified by
this range:

str_range.rb str_range = ('abc'..'def')

At first sight, the range from 'abc' to 'def' might not look like much.
In fact, this defines a range of no less than 2,110 values! They are ordered
like this: abc, abd, abe, and so on, until the end of the as; then you start on the
bs: baa, bab, bac, and so on. Suffice to say that ranges of this sort are probably
rather a rare requirement and are best used with extreme caution or not
at all.

Iterating with a Range
You may use a range to iterate from a start value to an end value. For example,
here is one way of printing all the numbers from 1 to 10:

for_to.rb for i in (1..10) do
 puts(i)
end

St r ings and Ranges 45

D I G G I N G D E E P E R
Here you will learn how to create and iterate over ranges, write multiline
strings with heredocs, and define your own string delimiters.

Heredocs
Although you can write long strings spanning multiple lines between single
or double quotes, many Ruby programmers prefer to use an alternative type
of string called a heredoc. A heredoc is a block of text that starts by specifying
an end marker, which is simply an identifier of your choice. Here, I specify
EODOC as the end marker:

heredoc.rb hdoc1 = <<EODOC

This tells Ruby that everything following the previous line is a single
string that terminates when the end marker is located. The string is assigned
to the variable, hdoc1. Here is an example of a complete heredoc assignment:

hdoc1 = <<EODOC
I wandered lonely as a #{"cloud".upcase},
That floats on high o'er vale and hill...
EODOC

By default, heredocs are treated as double-quoted strings, so expressions
such as #{"cloud".upcase} will be evaluated. If you want a heredoc to be treated
as single-quoted string, specify its end marker between single quotes:

hdoc2 = <<'EODOC'
I wandered lonely as a #{"cloud".upcase},
That floats on high o'er vale and hill...
EODOC

The end marker of a heredoc must, by default, be placed flush with the
left margin. If you want to indent it, you should use <<- rather than << when
assigning the end marker:

hdoc3 = <<-EODOC
I wandered lonely as a #{"cloud".upcase},
That floats on high o'er vale and hill...
 EODOC

It is up to you to pick an appropriate end marker. It is even legitimate
(though, perhaps, not particularly sensible!) to use a reserved word:

hdoc4 = <<def
I wandered lonely as a #{"cloud".upcase},
That floats on high o'er vale and hill...
def

46 Chapter 3

A variable to which a heredoc is assigned can be used just like any other
string variable:

puts(hdoc1)

String Literals
As explained earlier in this chapter, you can optionally delimit strings by %q/
and / for single-quoted strings and either %Q/ and / or %/ and / for double-
quoted strings.

Ruby provides similar means of delimiting back-quoted strings, regular
expressions, symbols, and arrays of either single-quoted or double-quoted
strings. The ability to define arrays of strings in this way is particularly useful
since it avoids the necessity of entering string delimiters for each item. Here
is a reference to these string literal delimiters:

%q/ / # single-quoted
%Q/ / # double-quoted
%/ / # double-quoted
%w/ / # array
%W/ / # array double-quoted
%r| | # regular expression
%s/ / # symbol
%x/ / # operating system command

Note that you may choose which delimiters to use. I have used / except
with the regular expression where I have used | (since / is the “normal”
regular expression delimiter), but I could equally have used square brackets,
asterisks, ampersands, or other symbols (for example, %W*dog cat #{1+2}* or
%s&dog&). Here is an example of these literals in use:

literals.rb p %q/dog cat #{1+2}/ #=> "dog cat \#{1+2}"
p %Q/dog cat #{1+2}/ #=> "dog cat 3"
p %/dog cat #{1+2}/ #=> "dog cat 3"
p %w/dog cat #{1+2}/ #=> ["dog", "cat", "\#{1+2}"]
p %W/dog cat #{1+2}/ #=> ["dog", "cat", "3"]
p %r|^[a-z]*$| #=> /^[a-z]*$/
p %s/dog/ #=> :dog
p %x/vol/ #=> " Volume in drive C is OS [etc...]"

A R R A Y S A N D H A S H E S

Up to now, you’ve generally been using
objects one at a time. In this chapter, you’ll

find out how to create a list of objects. You’ll
start by looking at the most common type of list

structure: an array.

Arrays

An array is a sequential collection of items in which each item can be indexed.
In Ruby (unlike many other languages), a single array can contain items of
mixed data types such as strings, integers, and floats or even a method call
that returns some value. For example, the final element in a1 shown here
calls my method, array_length, which returns the length of the array, a0:

array0.rb def array_length(anArray)
 return anArray.length
end

48 Chapter 4

a0 = [1,2,3,4,5]
a1 = [1,'two', 3.0, array_length(a0)]
p(a1) #=>[1, "two", 3.0, 5]

The first item in an array has the index 0, which means the final item has
an index equal to the total number of items in the array minus 1. Given the
array a1, shown previously, this is how to obtain the values of the first and last
items:

a1[0] # returns 1st item (at index 0)
a1[3] # returns 4th item (at index 3)

You’ve already used arrays a few times—for example, in 2adventure.rb you
used an array to store a map of Room objects:

mymap = Map.new([room1,room2,room3])

Creating Arrays
Like many other programming languages, Ruby uses square brackets to
delimit an array. You can easily create an array, fill it with some comma-
delimited values, and assign it to a variable:

arr = ['one','two','three','four']

As with most other things in Ruby, arrays are objects. They are defined,
as you might guess, by the Array class and, just like strings, they are indexed
from 0. You can reference an item in an array by placing its index between
square brackets. If the index is invalid, nil is returned:

array1.rb arr = ['a', 'b', 'c']
puts(arr[0]) # shows 'a'
puts(arr[1]) # shows 'b'
puts(arr[2]) # shows 'c'
puts(arr[3]) # nil

D I S P L A Y I N G N I L

When you attempt to display a nil value using print or puts, Ruby 1.8 displays “nil,”
whereas Ruby 1.9 displays an empty string. If you want to be sure that the string
representation of nil is displayed, use p or the inspect method instead of print. You
may also display its class (nil is an instance of NilClass) or test whether it is nil
using the nil? method:

puts(arr[3].inspect) #=> nil
puts(arr[3].class) #=> NilClass
p(arr[3]) #=> nil
puts(arr[3].nil?) #=> true

array1.rb

Arrays and Hashes 49

An array may include expressions that yield values. Let’s assume you
have already created this method:

array2.rb def hello
 return "hello world"
end

You can now declare this array:

x = [1+2, hello, `dir`]

Here, the first element is a mathematical expression that yields the inte-
ger 3, and the second is the string “hello world” (returned by the method
hello). If you run this on Windows, the third array element will be a string
containing a directory listing. This is because `dir` is a back-quoted string,
which is executed by the operating system (see Chapter 3). The final “slot” in
the array is, therefore, filled with the value returned by the dir command,
which happens to be a string of filenames. If you are running on a different
operating system, you may need to substitute an appropriate command at
this point. (For example, if you’re running a Unix-like operating system, you
could substitute `ls` to get a similar string of filenames.)

If you want to create an array of single-quoted strings but can’t be both-
ered to type all the quotation marks, a shortcut is to put unquoted text sepa-
rated by spaces between parentheses preceded by %w (or use a capital %W for
double-quoted strings, as explained in Chapter 3).

array2.rb y = %w(this is an array of strings)

The previous code assigns the array shown next to the variable, y:

["this", "is", "an", "array", "of", "strings"]

You can also create arrays using the usual object construction method,
new. Optionally, you can pass an integer to new to create an empty array
of a specific size (with each element set to nil), or you can pass two

C R E A T I N G A N A R R A Y O F F I L E N A M E S

A number of Ruby classes have methods that return arrays of values. For example,
the Dir class, which is used to perform operations on disk directories, has the entries
method. Pass a directory name to the method, and it returns a list of files in an array:

Dir.entries('C:\\') # returns an array of files in C:\dir_array.rb

50 Chapter 4

arguments: the first to set the size of the array and the second to specify the
element to place at each index of the array, like this:

a = Array.new # an empty array
a = Array.new(2) # [nil,nil]
a = Array.new(2,"hello world") # ["hello world","hello world"]

Multidimensional Arrays
To create a multidimensional array, you can create one array and then add
other arrays to each of its “slots.” For example, this creates an array contain-
ing two elements, each of which is itself an array of two elements:

a = Array.new(2)
a[0]= Array.new(2,'hello')
a[1]= Array.new(2,'world')

NOTE You can also create an Array object by passing an array as an argument to the new
method. Be careful, though: Ruby considers it a syntax error if you fail to leave a space
between the new method and the opening square bracket. In other words, this works:
a = Array.new [1,2,3]. However, this doesn’t: a = Array.new[1,2,3]. But using
parentheses always works, no matter where you put a space: a = Array.new([1,2,3]).

It is also possible to nest arrays inside one another using square brackets.
This creates an array of four arrays, each of which contains four integers:

a = [[1,2,3,4],
 [5,6,7,8],
 [9,10,11,12],
 [13,14,15,16]]

In the previous code, I have placed the four “subarrays” on separate
lines. This is not obligatory, but it does help clarify the structure of the multi-
dimensional array by displaying each subarray as though it were a row, simi-
lar to the rows in a spreadsheet. When talking about arrays within arrays, it is
convenient to refer to each nested array as a “row” of the “outer” array.

For some more examples of using multidimensional arrays, load the
multi_array.rb program. This starts by creating an array, multiarr, containing
two other arrays. The first of these arrays is at index 0 of multiarr, and the
second is at index 1:

multi_array.rb multiarr = [['one','two','three','four'],[1,2,3,4]]

Next you need to find some way to locate the individual elements within
arrays, which are themselves contained inside other arrays. You’ll consider
this problem in the next section.

Arrays and Hashes 51

Iterating over Arrays
You can access the elements of an array by iterating over them using a for
loop. In many programming languages, a for loop counts over a fixed num-
ber of elements from a starting number (such as 0) to an ending number
(such as 10), incrementing a counter variable (such as i) at each pass through
the loop. So, in other languages, you might be used to writing a loop some-
thing like this: for i = 1 to 10.

In Ruby, the normal for loop counts over all the items in a collection
and may be referred to as a for..in loop. Its counter variable is assigned each
object in a collection, one by one, at each pass through the loop. The syntax
may be summarized as for anObject in aCollection, and at each turn through
the loop, the variable anObject is assigned a new item from the collection
aCollection until no more items remain. The loop shown next iterates over
two elements, namely, the two subarrays at index 0 and 1:

for i in multiarr
 puts(i.inspect)
end

This displays the following:

["one", "two", "three", "four"]
[1, 2, 3, 4]

So, how do you iterate over the items (the strings and integers) in each
of the two subarrays? If there is a fixed number of items, you could specify a
different iterator variable for each, in which case each variable will be assigned
the value from the matching array index.

Here you have four subarray slots, so you could use four variables like this:

for (a,b,c,d) in multiarr
 print("a=#{a}, b=#{b}, c=#{c}, d=#{d}\n")
end

You could also use a for loop to iterate over all the items in each subarray
individually:

multi_array2.rb for s in multiarr[0]
 puts(s)
end
for s in multiarr[1]
 puts(s)
end

52 Chapter 4

Both of these techniques (multiple iterator variables and multiple for
loops) have two requirements: that you know how many items there are in
either the “rows” or the “columns” of the grid of arrays and that each sub-
array contains the same number of items as each other.

For a more flexible way of iterating over multidimensional arrays, you
could use nested for loops. An outer loop iterates over each row (subarray),
and an inner loop iterates over each item in the current row. This technique
works even when subarrays have varying numbers of items:

for row in multiarr
 for item in row
 puts(item)
 end
end

You’ll be looking at for loops and other iterators in more depth in the
next chapter.

Indexing into Arrays
As with strings (see Chapter 3), you can index from the end of an array using
negative numbers, where –1 is the index of the last element, –2 is the second-
to-last, and so on. You can also use ranges, like this:

array_index.rb arr = ['h','e','l','l','o',' ','w','o','r','l','d']

print(arr[0,5]) #=> hello (or) ["h", "e", "l", "l", "o"]
print(arr[-5,5]) #=> world (or) ["w", "o", "r", "l", "d"]
print(arr[0..4]) #=> hello (or) ["h", "e", "l", "l", "o"]
print(arr[-5..-1]) #=> world (or) ["w", "o", "r", "l", "d"]

Note that the output displayed by print or puts may vary depending on
your version of Ruby. When Ruby 1.8 displays the elements in an array, it shows
them one after the other so they look like a single string, as in hello. Ruby 1.9,
however, shows the items in array format, as in ["h", "e", "l", "l", "o"].

If you use p instead of print to inspect the array, both Ruby 1.8 and 1.9
display the same result:

p(arr[0,5]) #=> ["h", "e", "l", "l", "o"]
p(arr[0..4]) #=> ["h", "e", "l", "l", "o"]

As with strings, when you provide two integers in order to return a
number of contiguous items from an array, the first integer is the start
index, while the second is a count of the number of items (not an index):

arr[0,5] # returns 5 chars - ["h", "e", "l", "l", "o"]

Arrays and Hashes 53

You can also make assignments by indexing into an array. Here, for
example, I first create an empty array and then put items into indexes 0, 1,
and 3. The “empty” slot at index 2 will be filled with a nil value:

array_assign.rb arr = []

arr[0] = [0]
arr[1] = ["one"]
arr[3] = ["a", "b", "c"]

arr now contains:
[[0], ["one"], nil, ["a", "b", "c"]]

Once again, you can use start-end indexes, ranges, and negative index
values:

arr2 = ['h','e','l','l','o',' ','w','o','r','l','d']

arr2[0] = 'H'
arr2[2,2] = 'L', 'L'
arr2[4..6] = 'O','-','W'
arr2[-4,4] = 'a','l','d','o'

arr2 now contains:
["H", "e", "L", "L", "O", "-", "W", "a", "l", "d", "o"]

Copying Arrays
Note that when you use the assignment operator (=) to assign one array
variable to another variable, you are actually assigning a reference to the array;
you are not making a copy. For example, if you assign one array called arr1 to
another array called arr2, any changes made to either variable will also alter
the value of the other because both variables refer to the same array. If you want the
variables to reference two different arrays, you can use the clone method to
make a new copy:

array_copy.rb arr1=['h','e','l','l','o',' ','w','o','r','l','d']
arr2=arr1 # arr2 is now the same as arr1.
 # Change arr1 and arr2 changes too!
arr3=arr1.clone
 # arr3 is a copy of arr1.
 # Change arr3 and arr2 is unaffected

Testing Arrays for Equality
The comparison operator for arrays is <=>. This compares two arrays—let’s
call them arr1 and arr2. It returns -1 if arr1 is less than arr2, it returns 0 if arr1
and arr2 are equal, and it returns 1 if arr2 is greater than arr1. But how does
Ruby determine whether one array is “greater than” or “less than” another?

54 Chapter 4

It compares each item in one array with the corresponding item in the other.
When two values are not equal, the result of their comparison is returned. In
other words, if this comparison were made:

[0,10,20] <=> [0,20,20]

the value -1 would be returned. This means the first array is “less than” the
second, since the integer at index 1 of the first array (10) is less than the
integer at index 1 in the second array (20).

If you want to make a comparison based on the array’s length rather
than the value of its elements, you can use the length method:

Here [2,3,4].length is less than [1,2,3,4].length
p([1,2,3].length<=>[1,2,3,4].length) #=> -1
p([2,3,4].length<=>[1,2,3,4].length) #=> -1

If you are comparing arrays of strings, then comparisons are made on the
ASCII values of the characters that make up those strings. If one array is longer
than another and the elements in both arrays are equal, then the longer array
is deemed to be “greater.” However, if two such arrays are compared and one
of the elements in the shorter array is greater than the corresponding element
in the longer array, then the shorter array is deemed to be greater.

array_compare.rb p([1,2,3]<=>[2,3,4]) #=> -1 (array 1 < array 2)
p([2,3,4]<=>[1,2,3]) #=> 1 (array 1 > array 2)
p([1,2,3,4]<=>[1,2,3]) #=> 1 (array 1 > array 2)all
p([1,2,3,4]<=>[100,200,300]) #=> -1 (array 1 < array 2)
p([1,2,3]<=>["1","2","3"]) #=> nil (invalid comparison)

Sorting Arrays
The sort method compares adjacent array elements using the comparison
operator <=>. This operator is defined for many Ruby classes, including Array,
String, Float, Date, and Fixnum. The operator is not, however, defined for
all classes (that is to say, it is not defined for the Object class from which all
other classes are derived). One of the unfortunate consequences of this is
that it cannot be used to sort arrays containing nil values. However, it is pos-
sible to get around this limitation by defining your own sorting routine. This
is done by sending a block to the sort method. You’ll learn about blocks in
detail in Chapter 10, but for now it’s enough to know a block is a chunk of
code delimited either by curly brackets or by the keywords do and end. The
following block determines the comparison used by the sort method:

arr.sort{
 |a,b|
 a.to_s <=> b.to_s
}

Here arr is an array object, and the variables a and b represent two con-
tiguous array elements. I’ve converted each variable to a string using the to_s

Arrays and Hashes 55

method; this converts nil to an empty string that will be sorted “low.” Note
that although my sorting block defines the sort order of the array items, it
does not change the array items themselves. So, nil will remain as nil, and
integers will remain as integers. The string conversion is used only to imple-
ment the comparison, not to change the array items.

array_sort.rb arr = ['h','e','l','l','o',' ',nil,'w','o','r','l','d',1,2,3,nil,4,5]

sort ascending from nil upwards
sorted_arr = arr.sort{
 |a,b|
 a.to_s <=> b.to_s
 }

p(sorted_arr)

This is the array created and displayed by the previous code:

[nil, nil, " ", 1, 2, 3, 4, 5, "d", "e", "h", "l", "l", "l", "o", "o", "r", "w"]

The array_sort.rb program supplied in the code archive also contains a
method to sort in descending order. This is done simply by changing the
order of the items on either side of the comparison operator:

reverse_sorted_arr = arr.sort{
 |a,b|
 b.to_s <=> a.to_s
 }

Comparing Values
The comparison “operator” <=> (which is, in fact, a method) is defined in the
Ruby module named Comparable. For now, you can think of a module as a
sort of reusable code library. You’ll be looking more closely at modules in
Chapter 12.

You can include the Comparable module in your own classes. This lets
you override the <=> method to enable you to define exactly how compari-
sons will be made between specific object types. For example, you may want
to subclass Array so that comparisons are made based purely on the length of
two arrays rather than on the value of each item in the array (which is the
default, as explained in “Testing Arrays for Equality” on page 53). This is
how you might do this:

comparisons.rb class MyArray < Array
 include Comparable

 def <=> (anotherArray)
 self.length <=> anotherArray.length
 end
end

56 Chapter 4

Now, you can initialize two MyArray objects like this:

myarr1 = MyArray.new([0,1,2,3])
myarr2 = MyArray.new([1,2,3,4])

And you can use the <=> method defined in MyArray to make compari-
sons:

 # Two MyArray objects
myarr1 <=> myarr2 #=> 0

This comparison returns 0, which indicates that the two arrays are equal
(since our <=> method evaluates equality according to length alone). If, on
the other hand, you were to initialize two standard arrays with exactly the
same integer values, the Array class’s own <=> method would perform the
comparison:

 # Two Array objects
arr1 <=> arr2 #=> -1

Here the comparison returns -1, which indicates that the first array evalu-
ates to “less than” the second array, since the Array class’s <=> method com-
pares the numerical values of each item in arr1 and these are less than the
values of the items at the same indexes in arr2.

But what if you want to make “less than,” “equal to,” and “greater than”
comparisons using the traditional programming notation?

< # less than
== # equal to
> # greater than

In the MyArray class, you can make comparisons of this sort without writ-
ing any additional code. This is because the Comparable module, which has
been included in the MyArray class, automatically supplies these three com-
parison methods; each method makes its comparison based on the definition
of the <=> method. Since our <=> makes its evaluation based on the number of
items in an array, the < method evaluates to true when the first array is shorter
than the second, == evaluates to true when both arrays are of equal length, and
> evaluates to true when the second array is longer than the first:

p(myarr1 < myarr2) #=> false
p(myarr1 == myarr2) #=> true

The standard Array class does not include the Comparable module. So if
you try to compare two ordinary arrays using <, ==, or >, Ruby will display an
error message telling you that the method is undefined.

Arrays and Hashes 57

However, it’s easy to add these three methods to a subclass of Array. All
you have to do is include Comparable, like this:

class Array2 < Array
 include Comparable
end

The Array2 class will now perform its comparisons based on the <=>
method of Array—that is, by testing the values of the items stored in the array
rather than merely testing the length of the array. Assuming that the Array2
objects, arr1 and arr2, are initialized with the same arrays that you previously
used for myarr1 and myarr2, you would now see these results:

p(arr1 < arr2) #=> true
p(arr1 > arr2) #=> false

Array Methods
Several of the standard array methods modify the array itself rather than
returning a modified copy of the array. These include the methods marked
with a terminating exclamation point, such as sort!, reverse!, flatten!, and
compact!. These also include the << method, which modifies the array to its left
by adding to it the array on its right; clear, which removes all the elements
from the given array; and delete and delete_at, which remove selected ele-
ments. Table 4-1 shows some of the more commonly used Array methods.

Table 4-1: Commonly Used Array Methods

Array Task

& Returns common elements of two arrays, no duplicates

+ Returns array concatenating two arrays

- Returns array with items in second array removed from first

<< Modifies first array by appending items from second array

clear Modifies array by removing all elements

compact Returns array with nil items removed

compact! Modifies array by removing nil items

delete(object) Modifies array by deleting object

delete_at(index) Modifies array by deleting item at index

flatten Unpacks nested array items and returns array

flatten! Modifies array by unpacking nested array items

length Returns number of elements in array

reverse Returns array with elements in reverse order

reverse! Modifies array by reversing element order

sort Returns array sorted using <=>

sort! Modifies array sorted using <=>

58 Chapter 4

You can try the previous methods in the array_methods.rb sample program.
Here are a few examples:

array_methods.rb arr1 = [1,1,2,2,3,3]
arr2 = [1,2,3,4,5,6,7,8,9]
arr3 = ['h','e','l','l','o',' ',nil,'w','o','r','l','d']

p(arr1&arr2) #=> [1, 2, 3]
p(arr1+arr2) #=> [1, 1, 2, 2, 3, 3, 1, 2, 3, 4, 5, 6, 7, 8, 9]
p(arr1-arr2) #=> []
p(arr2-arr1) #=> [4, 5, 6, 7, 8, 9]
arr1<<arr2
p(arr1) #=> [1, 1, 2, 2, 3, 3, [1, 2, 3, 4, 5, 6, 7, 8, 9]]
arr1.clear
p(arr1) #=>[]

Although most of the behavior array methods may be deduced from their
names, the flatten and compact methods need some explanation. An array is
said to be flattened when it contains no subarrays. So if you have an array like
[1,[2,3]], you can call [1,[2,3]].flatten to return this array: [1,2,3].

An array is said to be compacted when it contains no nil items. So if you
have an array like [1,2,nil,3], you can call [1,2,nil,3].compact to return this
array: [1,2,3]. The methods of Array can be chained together by placing one
method call directly after the other:

flatten_compact.rb p([1,nil,[2,nil,3]].flatten.compact) #=> [1,2,3]

Hashes

Although arrays provide a good way of indexing a collection of items by num-
ber, sometimes it would be more convenient to index them in some other way.
If, for example, you were creating a collection of recipes, it would be more
meaningful to have each recipe indexed by name, such as “Rich Chocolate
Cake” and “Coq au Vin,” rather than by numbers.

Ruby has a class that lets you do just that, called a hash. This is the equiv-
alent of what some other languages call a dictionary or associative array. Just
like a real dictionary, each entry is indexed by a unique key (in a real-life dic-
tionary, this would be a word) that is associated with a value (in a dictionary,
this would be the definition of the word).

Creating Hashes
Just like an array, you can create a hash by creating a new instance of the
Hash class:

hash1.rb h1 = Hash.new
h2 = Hash.new("Some kind of ring")

Arrays and Hashes 59

Both the previous examples create an empty Hash object. A Hash object
always has a default value—that is, a value that is returned when no specific
value is found at a given index. In these examples, h2 is initialized with the
default value "Some kind of ring"; h1 is not initialized with a value, so its default
value will be nil.

Having created a Hash object, you can add items to it using an arraylike
syntax—that is, by placing the index in square brackets and using = to assign
a value. The obvious difference is that, with an array, the index (or key) must
be an integer; with a hash, it can be any unique data item:

h2['treasure1'] = 'Silver ring'
h2['treasure2'] = 'Gold ring'
h2['treasure3'] = 'Ruby ring'
h2['treasure4'] = 'Sapphire ring'

Often, the key may be a number or, as in the previous code, a string. In
principle, however, a key can be any type of object. For example, given some
class X, the following assignment is perfectly legal:

x1 = X.new('my Xobject')
h2[x1] = 'Diamond ring'

There is a shorthand way of creating Hashes and initializing them
with key-value pairs. Just add a key followed by => and its associated value;
each key-value pair should be separated by a comma and the whole lot
placed inside a pair of curly brackets:

h1 = { 'room1'=>'The Treasure Room',
 'room2'=>'The Throne Room',
 'loc1'=>'A Forest Glade',
 'loc2'=>'A Mountain Stream' }

U N I Q U E K E Y S ?

Take care when assigning keys to hashes. If you use the same key twice in a hash,
you will end up overwriting the original value. This is just like assigning a value twice
to the same index in an array. Consider this example:

h2['treasure1'] = 'Silver ring'
h2['treasure2'] = 'Gold ring'
h2['treasure3'] = 'Ruby ring'
h2['treasure1'] = 'Sapphire ring'

Here the key 'treasure1' has been used twice. As a consequence, the original
value, 'Silver ring', has been replaced by 'Sapphire ring', resulting in this hash:

{"treasure1"=>"Sapphire ring", "treasure2"=>"Gold ring", "treasure3"=>"Ruby ring"}

60 Chapter 4

Indexing into a Hash
To access a value, place its key between square brackets:

puts(h1['room2']) #=> 'The Throne Room'

If you specify a key that does not exist, the default value is returned.
Recall that you have not specified a default value for h1, but you have for h2:

p(h1['unknown_room']) #=> nil
p(h2['unknown_treasure']) #=> 'Some kind of ring'

Use the default method to get the default value and the default= method
to set it (see Chapter 2 for more information on get and set accessor methods):

p(h1.default)
h1.default = 'A mysterious place'

Copying a Hash
As with an array, you can assign one Hash variable to another, in which case
both variables will refer to the same hash, and a change made using either
variable will affect that hash:

hash2.rb h4 = h1
h4['room1']='A new Room'
puts(h1['room1']) #=> 'A new Room'

If you want the two variables to refer to the same items in different Hash
objects, use the clone method to make a new copy:

h5 = h1.clone
h5['room1'] = 'An even newer Room'
puts(h1['room1']) #=> 'A new room' (i.e., its value is unchanged)

Hash Order
The ordering of elements in a hash varies according to which version of Ruby
you are using. In Ruby 1.8, a hash is generally stored in the order defined by
its key where, for example, key 1 is less than key 2. When new items are added,
these are inserted in key order. In Ruby 1.9, the hash is stored in the order in
which it is defined. When new items are added, these are appended to the
end of the hash.

As a general principle, it is best to make no assumptions about the order
of elements in a hash. Most programming languages treat hashes or dictio-
naries as unordered collections. If you make the assumption that hash order
is unpredictable, not only will you avoid bugs that may occur when running

Arrays and Hashes 61

programs with different Ruby implementations, but you will also avoid prob-
lems that may arise when keys are of different types. Remember, a single hash
may contain a mix of integer, string, and floating-point keys whose relative
orders may not be self-evident.

hash_order.rb h = {2=>"two", 1=>"one", 4=>"four" }
p(h)
h[3] = "three"
p(h)
h2 = {"one"=>1, 2=>"two", 4.5=>"four" }
p (h2)

When this code is run, Ruby 1.8 produces this output:

{1=>"one", 2=>"two", 4=>"four"}
{1=>"one", 2=>"two", 3=>"three", 4=>"four"}
{4.5=>"four", 2=>"two", "one"=>1}

But Ruby 1.9 shows this:

{2=>"two", 1=>"one", 4=>"four"}
{2=>"two", 1=>"one", 4=>"four", 3=>"three"}
{2=>"two", "one"=>1, 4.5=>"four"}

Sorting a Hash
If you want to ensure that the elements of a hash are in a specific order, you
may sort them. As with the Array class, you may find a slight problem with the
sort method of Hash. It expects to be dealing with keys of the same data type,
so if, for example, you merge two arrays, one of which uses integer keys and
another of which uses strings, you won’t be able to sort the merged hash. The
solution to this problem is, as with Array, to write some code to perform a
custom type of comparison and pass this to the sort method. You might give
it a method, like this:

hash_sort.rb def sorted_hash(aHash)
 return aHash.sort{
 |a,b|
 a.to_s <=> b.to_s
 }
end

This performs the sort based on the string representation (to_s) of each
key in the hash. In fact, the Hash sort method converts the hash to a nested
array of [key, value] arrays and sorts them using the Array sort method.

62 Chapter 4

Hash Methods
The Hash class has numerous built-in methods. For example, to delete an
item from a hash using its key, use the delete method:

aHash.delete(someKey)To test if a key or value exists, use the has_key? and
has_value? methods:aHash.has_key?(someKey)
aHash.has_value?(someValue)

To combine two hashes, use the merge method: hash1.merge(hash2).
To return a new hash created using the original hash’s values as keys and

its keys as values, use aHash.invert. To return an array populated with the
hash’s keys or values, use aHash.keys and aHash.values.

Here’s an example that uses some of these methods:

hash_methods.rb h1 = {
 'room1'=>'The Treasure Room',
 'room2'=>'The Throne Room',
 'loc1'=>'A Forest Glade',
 'loc2'=>'A Mountain Stream'
 }

h2 = {1=>'one', 2=>'two', 3=> 'three'}

h1['room1'] = 'You have wandered into a dark room'
h1.delete('loc2')
p(h1)

#=> {"room1"=>"You have wandered into a dark room",
#=> "room2"=>"The Throne Room",
#=> "loc1"=>"A Forest Glade"}

p(h1.has_key?('loc2')) #=> false
p(h2.has_value?("two")) #=>true
p(h2.invert) #=> {"one"=>1, "two"=>2, "three"=>3}
p(h2.keys) #=>[1, 2, 3]
p(h2.values) #=>["one", "two", "three"]

If you want to find the position of an item in a hash, use the index method
with Ruby 1.8 and the key method in Ruby 1.9. The index method is still present
in Ruby 1.9 but is deprecated, so it may be removed in future versions:

h2.index("two") # use this with Ruby 1.8
h2.key("two") # use this Ruby 1.9

Arrays and Hashes 63

D I G G I N G D E E P E R
In this section you will learn more ways of manipulating arrays and hashes as
well as the fundamentals of matrices, vectors and sets.

Treating Hashes as Arrays
The keys and values methods of Hash each return an array, so you can use
various Array methods to manipulate them. Here are a few simple examples
(remember the order of the keys and value may differ according to the ver-
sion of Ruby being used):

hash_ops.rb h1 = {'key1'=>'val1', 'key2'=>'val2', 'key3'=>'val3', 'key4'=>'val4'}
h2 = {'key1'=>'val1', 'KEY_TWO'=>'val2', 'key3'=>'VALUE_3', 'key4'=>'val4'}

p(h1.keys & h2.keys) # set intersection (keys)
#=> ["key1", "key3", "key4"]

p(h1.values & h2.values) # set intersection (values)
#=> ["val1", "val2", "val4"]

p(h1.keys+h2.keys) # concatenation
#=> ["key1", "key2", "key3", "key4", "key1", "key3", "key4", "KEY_TWO"]

p(h1.values-h2.values) # difference
#=> ["val3"]

p((h1.keys << h2.keys)) # append
#=> ["key1", "key2", "key3", "key4", ["key1", "key3", "key4", "KEY_TWO"]]

p((h1.keys << h2.keys).flatten.reverse) # 'un-nest' arrays and reverse
#=> ["KEY_TWO", "key4", "key3", "key1", "key4", "key3", "key2", "key1"]

Appending vs. Concatenating
Be careful to note the difference between concatenating using + to add the
values from the second array to the first and appending using << to add the
second array itself as the final element of the first:

append_concat.rb a =[1,2,3]
b =[4,5,6]
c = a + b #=> c=[1, 2, 3, 4, 5, 6] a=[1, 2, 3]
a << b #=> a=[1, 2, 3, [4, 5, 6]]

In addition, << modifies the first (the receiver) array, whereas + returns a
new array but leaves the receiver array unchanged.

64 Chapter 4

NOTE In object-oriented terminology, the object to which a method belongs is called the receiver.
The idea is that instead of calling functions as in procedural languages, “messages” are
sent to objects. For example, the message + 1 might be sent to an integer object, while the
message reverse might be sent to a string object. The object that “receives” a message tries
to find a way (that is, a method) of responding to the message. A string object, for
example, has a reverse method and so is able to respond to the reverse message,
whereas an integer object has no such method so cannot respond.

You can use the flatten method to clean up two arrays you’ve combined
with <<, like this:

a=[1, 2, 3, [4, 5, 6]]
a.flatten #=> [1, 2, 3, 4, 5, 6]

Vectors and Matrices
For the benefit of mathematicians, Ruby provides a Vector class and a Matrix
class. A vector is an ordered set of elements upon which certain mathematical
operations may be performed. A matrix is a collection of rows and columns,
and each row is itself a vector. Matrices allow you to perform matrix manipu-
lations, which is a subject beyond the scope of this book and is only likely to
be of interest to mathematical programmers. However, you’ll look at some
simple examples here.

First, given two Matrix objects, m1 and m2, you can add the values of each
corresponding cell in the matrices with the plus sign, like this: m3 = m1+m2. You
must import Matrix using a require directive in order to use it:

matrix.rb require "Matrix" # This is essential!

m1 = Matrix[[1,2,3,4],
 [5,6,7,8],
 [9,10,11,12],
 [13,14,15,16]]

m2 = Matrix[[10,20,30,40],
 [50,60,70,80],
 [90,100,110,120],
 [130,140,150,160]]

m3 = m1+m2
p(m3)

This outputs the following matrix:

Matrix[[11, 22, 33, 44], [55, 66, 77, 88], [99, 110, 121, 132], [143, 154, 165, 176]]

Arrays and Hashes 65

The following example creates a matrix from two vectors. By passing vec-
tors to the Matrix.columns() method, you construct a matrix whose rows are
arrays of arrays. Here the matrix has two columns created from the vectors v
and v2, with each row containing two items, one from each column:

v = Vector[1,2,3,4,5]
v2 = Vector[6,7,8,9,10]
m4 = Matrix.columns([v,v2])
p(m4)

This outputs the following:

Matrix[[1, 6], [2, 7], [3, 8], [4, 9], [5, 10]]

If, on the other hand, you pass the same two vectors to the Matrix.rows()
method, you would end up by creating a matrix that contains two rows, each
of which is a vector:

m5 = Matrix.rows([v,v2])
p(m5)

This outputs the following:

Matrix[Vector[1, 2, 3, 4, 5], Vector[6, 7, 8, 9, 10]]

Sets
The Set class implements a collection of unordered values with no dupli-
cates. You can initialize a Set with an array of values, in which case duplicates
are ignored:

sets.rb s1 = Set.new([1,2,3,4,5,2])
s2 = Set.new([1,1,2,3,4,4,5,1])
s3 = Set.new([1,2,100])
weekdays = Set.new(%w(Monday, Tuesday, Wednesday, Thursday,
 Friday, Saturday, Sunday))

You can add new values using the add method:

s1.add(1000)

The merge method combines values of one set with another:

s1.merge(s2)

66 Chapter 4

You can use == to test for equality. Two sets that contain the same values
(remembering that duplicates will be removed when a set is created) are con-
sidered to be equal:

p(s1 == s2) #=> true

If you display the contents of a set, the order may differ according to the
version of Ruby being used. If order is important, you may convert a set to an
array using the to_a method and use a standard or custom sort, as explained
in “Sorting Arrays” on page 54:

p(weekdays.to_a.sort) # sort alphabetically
#=> ["Friday,", "Monday,", "Saturday,", "Sunday", "Thursday,", "Tuesday,", "Wednesday,"]

L O O P S A N D I T E R A T O R S

Much of programming is concerned with
repetition. Maybe you want your program

to beep 10 times, read lines from a file as
long as there are more lines to read, or display a

warning until the user presses a key. Ruby provides a
number of ways of performing this kind of repetition.

for Loops

In many programming languages, when you want to run a bit of code a certain
number of times, you can just put it inside a for loop. In most languages, you
give a for loop a variable initialized with a starting value that is incremented
by 1 on each turn through the loop until it meets some specific ending value.
When the ending value is met, the for loop stops running.

68 Chapter 5

Here’s a version of this traditional type of for loop written in Pascal:

(* This is Pascal code, not Ruby! *)
for i := 1 to 3 do
 writeln(i);

You may recall from the previous chapter that Ruby’s for loop doesn’t
work like this at all! Instead of giving it starting and ending values, you give
the for loop a list of items, and it iterates over them, one by one, assigning
each value in turn to a loop variable until it gets to the end of the list.

For example, here is a for loop that iterates over the items in an array,
displaying each in turn:

for_loop.rb # This is Ruby code...
for i in [1,2,3] do
 puts(i)
end

The for loop is more like the “for each” iterator provided by some other
programming languages. The items over which the loop iterates don’t have
to be integers. This works just as well:

for s in ['one','two','three'] do
 puts(s)
end

The author of Ruby describes for as “syntax sugar” for the each method,
which is implemented by collection types such as Arrays, Sets, Hashes, and
Strings (a String being, in effect, a collection of characters). For the sake of
comparison, this is one of the for loops shown earlier rewritten using the each
method:

each_loop.rb [1,2,3].each do |i|
 puts(i)
end

As you can see, there isn’t really all that much difference. To convert the
for loop to an each iterator, all I’ve had to do is delete for and in and append
.each to the array. Then I’ve put the iterator variable, i, between a pair of
upright bars after do. Compare these other examples to see just how similar
for loops are to each iterators.

for_each.rb # --- Example 1 ---
i) for
for s in ['one','two','three'] do
 puts(s)
end

Loops and I te ra tors 69

ii) each
['one','two','three'].each do |s|
 puts(s)
end

--- Example 2 ---
i) for
for x in [1, "two", [3,4,5]] do puts(x) end

ii) each
[1, "two", [3,4,5]].each do |x| puts(x) end

Note, incidentally, that the do keyword is optional in a for loop that spans
multiple lines, but it is obligatory when it is written on a single line:

Here the 'do' keyword can be omitted
for s in ['one','two','three']
 puts(s)
end

But here it is required
for s in ['one','two','three'] do puts(s) end

This example shows how both for and each can be used to iterate over the
values in a range:

for_each2.rb # for
for s in 1..3
 puts(s)
end

each
(1..3).each do |s|
 puts(s)
end

H O W T O W R I T E A “ N O R M A L ” F O R L O O P

If you miss the traditional type of for loop, you can always fake it in Ruby by using
a for loop to iterate over the values in a range. For example, this is how to use a
for loop variable to count up from 1 to 10, displaying its value at each turn through
the loop:

for i in (1..10) do
 puts(i)
end

for_to.rb

70 Chapter 5

Note, incidentally, that a range expression such as 1..3 must be enclosed
between parentheses when used with the each method, or Ruby assumes you
are attempting to use each as a method of the final integer (a Fixnum) rather
than of the entire expression (a Range). The parentheses are optional when
a range is used in a for loop.

Blocks and Block Parameters

In Ruby, the body of an iterator is called a block, and any variables declared
between upright bars at the top of a block are called block parameters. In a way,
a block works like a function, and the block parameters work like a function’s
argument list. The each method runs the code inside the block and passes to
it the arguments supplied by a collection (such as the array, multiarr). In the
example from the previous section, the each method repeatedly passes an
array of four elements to the block, and those elements initialize the four
block parameters, a, b, c, d. Blocks can be used for other things, in addition
to iterating over collections.

Ruby also has an alternative syntax for delimiting blocks. Instead of using
do..end, you can use curly brackets {..} like this:

block_syntax.rb # do..end
[[1,2,3],[3,4,5],[6,7,8]].each do
 |a,b,c|
 puts("#{a}, #{b}, #{c}")
end

curly brackets {..}
[[1,2,3],[3,4,5],[6,7,8]].each{
 |a,b,c|
 puts("#{a}, #{b}, #{c}")
}

No matter which block delimiters you use, you must ensure that the
opening delimiter, { or do, is placed on the same line as the each method.
Inserting a line break between each and the opening block delimiter is a
syntax error. I’ll have more to say on blocks in Chapter 10.

Iterating upto and downto

If you need to count from a specific low value up to a high value, you may use
the upto() method of an integer. A block argument may optionally be used if
you want to display the value at each iteration:

upto_downto.rb 0.upto(10) do
 | i |
 puts(i)
end

Loops and I te ra tors 71

The previous code displays the integers 0 to 10. You may also count
down from a high to a low value using the downto() method:

10.downto(0) do
 | i |
 puts(i)
end

As you can probably guess, this code displays 10 to 0.

Multiple Iterator Arguments

In the previous chapter, you used a for loop with more than one loop vari-
able to iterate over a multidimensional array. On each turn through the for
loop, a variable was assigned one row (that is, one “subarray”) from the outer
array:

multi_array.rb # Here multiarr is an array containing two 'rows'
(subarrays) at index 0 and 1
multiarr = [['one','two','three','four'],
 [1,2,3,4]
]
This for loop runs twice (once for each 'row' of multiarr)
for (a,b,c,d) in multiarr
 print("a=#{a}, b=#{b}, c=#{c}, d=#{d}\n")
end

The previous loop prints this:

a=one, b=two, c=three, d=four
a=1, b=2, c=3, d=4

However, you could also use the each method to iterate over this four-item
array by passing four block parameters—a, b, c, d—into the block delimited
by do and end at each iteration:

multiarr.each do |a,b,c,d|
 print("a=#{a}, b=#{b}, c=#{c}, d=#{d}\n")
end

And, of course, the alternative block syntax, delimited by curly brackets,
works just as well:

multiarr.each{ |a,b,c,d|
 print("a=#{a}, b=#{b}, c=#{c}, d=#{d}\n")
}

72 Chapter 5

Both of the previous examples pass the two elements from the multiarr
array into the iterator block. The first element is itself an array of four strings:
['one','two','three','four']. Since the block has four parameters declared
between a pair of upright bars, |a,b,c,d|, the four strings are assigned to the
matching parameters, which are then printed with the print statement. Then
the each method passes the second element of multiarr into the block. This is
another four-element array, this time containing integers: [1,2,3,4]. These
are again assigned to the block parameters, |a,b,c,d|, and the print state-
ment displays them. Note that the output is identical as when you used the
for loop:

a=one, b=two, c=three, d=four
a=1, b=2, c=3, d=4

while Loops

Ruby has a few other loop constructs too. This is how to do a while loop:

while tired
 sleep
end

Or, here’s another way to put it:

sleep while tired

Even though the syntax of these two examples is different, they perform
the same function. In the first example, the code between while and end (here
a call to a method named sleep) executes just as long as the Boolean condition
(which, in this case, is the value returned by a method called tired) evaluates
to true. As in for loops, the keyword do may optionally be placed between the
test condition and the code to be executed when these appear on separate
lines; the do keyword is obligatory when the test condition and the code to
be executed appear on the same line.

while Modifiers
In the second version of the loop (sleep while tired), the code to be exe-
cuted (sleep) precedes the test condition (while tired). This syntax is called a
while modifier. When you want to execute several expressions using this syntax,
you can put them between the begin and end keywords:

begin
 sleep
 snore
end while tired

Loops and I te ra tors 73

Here is an example showing the various alternative syntaxes:

1loops.rb $hours_asleep = 0

def tired
 if $hours_asleep >= 8 then
 $hours_asleep = 0
 return false
 else
 $hours_asleep += 1
 return true
 end
end

def snore
 puts('snore....')
end

def sleep
 puts("z" * $hours_asleep)
end

while tired do sleep end # a single-line while loop

while tired # a multiline while loop
 sleep
end

sleep while tired # single-line while modifier

begin # multiline while modifier
 sleep
 snore
end while tired

The last example in the previous code (the multiline while modifier)
needs close consideration because it introduces some important new behav-
ior. When a block of code delimited by begin and end precedes the while test,
that code always executes at least once. In the other types of while loop, the
code may never execute at all if the Boolean condition initially evaluates
to false.

Ensuring a while Loop Executes at Least Once
Usually a while loops executes zero or more times since the Boolean test is
evaluated before the loop executes; if the test returns false at the outset, the
code inside the loop never runs. However, when the while test follows a block
of code enclosed between begin and end, the loop executes one or more times
as the Boolean expression is evaluated after the code inside the loop executes.

74 Chapter 5

These examples should help clarify:

2loops.rb x = 100

 # The code in this loop never runs
while (x < 100) do puts('x < 100') end

 # The code in this loop never runs
puts('x < 100') while (x < 100)

 # But the code in loop runs once
begin puts('x < 100') end while (x < 100)

until Loops

Ruby also has an until loop, which can be thought of as a while not loop. Its
syntax and options are the same as those applying to while—that is, the test
condition and the code to be executed can be placed on a single line (in
which case the do keyword is obligatory) or can be placed on separate lines
(in which case do is optional). There is also an until modifier that lets you put
the code before the test condition and an option to enclose the code between
begin and end in order to ensure that the code block is run at least once.

Here are some simple examples of until loops:

until.rb i = 10

until i == 10 do puts(i) end # never executes

until i == 10 # never executes
 puts(i)
 i += 1
end

puts(i) until i == 10 # never executes

begin # executes once
 puts(i)
end until i == 10

Both while and until loops can, just like a for loop, be used to iterate over
arrays and other collections. For example, the following code shows two ways
of iterating over all the elements in an array:

array_iterate.rb arr= [1,2,3,4,5]
i = 0

while i < arr.length
 puts(arr[i])
 i += 1
end

Loops and I te ra tors 75

i=0
until i == arr.length
 puts(arr[i])
 i +=1
end

loop

Unlike for and while, the loop command does not evaluate a test condition to
determine whether to continue looping. To break out of the loop, you have
to explicitly use the break keyword, as you can see in the following examples:

3loops.rb i=0
loop do
 puts(arr[i])
 i+=1
 if (i == arr.length) then
 break
 end
end

loop {
 puts(arr[i])
 i+=1
 if (i == arr.length) then
 break
 end
}

These use the loop method repeatedly to execute the block of code that
follows. These blocks are just like the iterator blocks you used earlier with the
each method. Once again, you have a choice of block delimiters, either curly
brackets or do and end.

In each case, the code iterates through the array, arr, by incrementing
a counter variable, i, and breaking out of the loop when the (i == arr.length)
condition evaluates to true. Note that without a break, these would loop
forever.

76 Chapter 5

D I G G I N G D E E P E R
Ruby provides a number of ways of iterating over items in structures such as
arrays and ranges. Here we discover the inner details of the enumerations
and comparisons.

The Enumerable Module
Hashes, Arrays, Ranges, and Sets all include a Ruby module called Enumerable.
It provides these data structures with a number of useful methods such as
include?, which returns true if a specific value is found; min, which returns
the smallest value; max, which returns the largest; and collect, which creates
a new structure made up of values returned from a block. In the following
code, you can see some of these functions being used on an array:

enum.rb x = (1..5).collect{ |i| i }
p(x) #=> [1, 2, 3, 4, 5]

arr = [1,2,3,4,5]
y = arr.collect{ |i| i }
p(y) #=> [1, 2, 3, 4, 5]
z = arr.collect{ |i| i * i }
p(z) #=> [1, 4, 9, 16, 25]

p(arr.include?(3)) #=> true
p(arr.include?(6)) #=> false
p(arr.min) #=> 1
p(arr.max) #=> 5

These same methods are available to other collection classes too, as long
as those classes include Enumerable. Here’s an example using the Hash class:

enum2.rb h = {'one'=>'for sorrow',
 'two'=>'for joy',
 'three'=>'for a girl',
 'four'=>'for a boy'}

y = h.collect{ |i| i }
p(y)

This code outputs the following:

[["one", "for sorrow"], ["two", "for joy"], ["three", "for a girl"], ["four", "for a boy"]]

Note that because of changes in the way hashes are stored, the order of
the items displayed when this code runs differs in Ruby 1.8 and Ruby 1.9.
Remember too that the items in a Hash are not indexed in sequential order,

Loops and I te ra tors 77

so when you use the min and max methods, these return the items that are low-
est and highest according to their numerical value—here the items are strings,
and the numerical value is determined by the ASCII codes of the characters
in the key.

p(h.min) #=> ["one", "for sorrow"]
p(h.max) #=> ["two", "for joy"]

Custom Comparisons
What if you want min and max to return items based on some other criterion
(say the length of a string)? The easiest way to do this would be to define the
nature of the comparison inside a block. This is done in a similar manner to
the sorting blocks I defined in Chapter 4. You may recall that you sorted a
hash (here the variable h) by passing a block to the sort method like this:

h.sort{ |a,b| a.to_s <=> b.to_s }

The two parameters, a and b, represent two items from the hash that are
compared using the <=> comparison method. You can similarly pass blocks to
the max and min methods:

h.min{ |a,b| a[0].length <=> b[0].length }
h.max{|a,b| a[0].length <=> b[0].length }

When a hash passes items into a block, it does so in the form of arrays,
each of which contains a key-value pair. So, if a hash contains items like this:

{'one'=>'for sorrow', 'two'=>'for joy'}

then the two block arguments, a and b, would be initialized to two arrays:

a = ['one', 'for sorrow']
b = ['two', 'for joy']

This explains why the two blocks in which I have defined custom com-
parisons for the max and min methods specifically compare the first elements,
at index 0, of the two block parameters:

a[0].length <=> b[0].length

This ensures that the comparisons are based on the keys in the hash. There
is a potential pitfall here, however. As explained in the previous chapter, the
default ordering of hashes is different in Ruby 1.8 and Ruby 1.9. This means
that if you sort by the length of the key, as I did with my custom comparator
earlier, and more than one key has the same length, the first match returned
will be different in different versions of Ruby. For example, in my hash, the

78 Chapter 5

first two keys (“one” and “two”) have the same length. So when I use min with
a comparison based on the key length, the result will be different in Ruby
versions 1.8 and 1.9:

p(h.min{|a,b| a[0].length <=> b[0].length })

Ruby 1.8 displays the following:

["two", "for joy"]

Ruby 1.9 displays the following:

["one", "for sorrow"]

This is another illustration of why it is always safer to make no assump-
tions of the ordering of the elements in a hash. Now let’s assume you want to
compare the values rather than the keys. In the previous example, you could
do this quite simply by changing the array indexes from 0 to 1:

enum3.rb p(h.min{|a,b| a[1].length <=> b[1].length })
p(h.max{|a,b| a[1].length <=> b[1].length })

The value with the lowest length is “for joy” and the value with the high-
est length is “for a secret never to be told,” so the previous code displays the
following:

["two", "for joy"]
["seven", "for a secret never to be told"]

You could, of course, define other types of custom comparisons in your
blocks. Let’s suppose, for example, that you want the strings “one,” “two,”
“three,” and so on, to be evaluated in the order in which you would speak
them. One way of doing this would be to create an ordered array of strings:

str_arr=['one','two','three','four','five','six','seven']

Now, if a hash, h, contains these strings as keys, a block can use str_array
as a reference in order to determine the minimum and maximum values.
This also assures that we obtain the same results no matter which version of
Ruby is used:

h.min{|a,b| str_arr.index(a[0]) <=> str_arr.index(b[0])}
h.max{|a,b| str_arr.index(a[0]) <=> str_arr.index(b[0])}

Loops and I te ra tors 79

This displays the following:

["one", "for sorrow"]
["seven", "for a secret never to be told"]

All the previous examples use the min and max methods of the Array and
Hash classes. Remember that these methods are provided to those classes by
the Enumerable module, which is “included” in the Array and Hash classes.

There may be occasions when it would be useful to be able to apply
Enumerable methods such as max, min, and collect to classes that do not descend
from existing classes (such as Array) that implement those methods. You can
do that by including the Enumerable module in your class and then writing an
iterator method called each like this:

include_enum1.rb class MyCollection
 include Enumerable

 def initialize(someItems)
 @items = someItems
 end

 def each
 @items.each{ |i|
 yield(i)
 }
 end
end

Here you initialize a MyCollection object with an array, which will be
stored in the instance variable, @items. When you call one of the methods
provided by the Enumerable module (such as min, max, or collect), this will call
the each method to obtain each piece of data one at a time. So, here the
each method passes each value from the @items array into the block where
that item is assigned to the block parameter i. The keyword yield is a spe-
cial bit of Ruby magic that runs a block of code that was passed to the each
method. You’ll look at this in much more depth when I discuss Ruby blocks
in Chapter 10.

Now you can use the Enumerable methods with your MyCollection objects:

include_enum2.rb things = MyCollection.new(['x','yz','defgh','ij','klmno'])

p(things.min) #=> "defgh"
p(things.max) #=> "yz"
p(things.collect{ |i| i.upcase })
 #=> ["X", "YZ", "DEFGH", "IJ", "KLMNO"]

80 Chapter 5

You could similarly use your MyCollection class to process arrays such
as the keys or values of hashes. Currently the min and max methods adopt the
default behavior: They perform comparisons based on numerical values.
This means that “xy” is considered to have a “higher” value than “abcd” on
the basis of the characters’ ASCII values. If you want to perform some other
type of comparison—say, by string length, so that “abcd” would be deemed
to be higher than “xz”—you can override the min and max methods:

def min
 @items.to_a.min{|a,b| a.length <=> b.length }
end

def max
 @items.to_a.max{|a,b| a.length <=> b.length }
end

Here is the complete class definition with its versions of each, min, and max:

include_enum3.rb class MyCollection
 include Enumerable

 def initialize(someItems)
 @items = someItems
 end

 def each
 @items.each{ |i| yield i }
 end

 def min
 @items.to_a.min{|a,b| a.length <=> b.length }
 end

 def max
 @items.to_a.max{|a,b| a.length <=> b.length }
 end
end

A MyCollection object can now be created, and its overridden methods
can be used in this way:

things = MyCollection.new(['z','xy','defgh','ij','abc','klmnopqr'])
x = things.collect{ |i| i }
p(x) #=> ["z", "xy", "defgh", "ij", "abc", "klmnopqr"]
y = things.max
p(y) #=> "klmnopqr"
z = things.min
p(z) #=> "z"

Loops and I te ra tors 81

each and yield
So what is really going on when a method from the Enumerable module uses
the each method that you’ve written? It turns out that the Enumerable methods
(min, max, collect and so forth) pass to the each method a block of code. This
block of code expects to receive one piece of data at a time (namely, each
item from a collection of some sort). Your each method supplies it with that
item in the form of a block parameter, such as the parameter i here:

def each
 @items.each{ |i|
 yield(i)
 }
end

As mentioned earlier, the keyword yield tells the code to run the block
that was passed to the each method—that is, to run the code supplied by the
Enumerable module’s min, max, or collect methods. This means that the code of
those methods can be used with all kinds of different types of collections. All
you have to do is include the Enumerable module into your class and write an
each method that determines which values will be used by the Enumerable
methods.

C O N D I T I O N A L S T A T E M E N T S

Computer programs, like life itself, are
full of difficult decisions waiting to be made.

Things like “If I stay in bed, I will get more
sleep, else I will have to go to work; if I go to work,

I will earn some money, else I will lose my job,” and so
on. You’ve already performed a number of if tests in
previous programs. To take a simple example, this is
from the Tax calculator in Chapter 1:

if (subtotal < 0.0) then
 subtotal = 0.0
end

In this program, the user was prompted to enter a value, subtotal, that was
then used in order to calculate the tax due on it. If the user, in a fit of madness,
enters a value less than 0, the if test spots this since the test (subtotal < 0.0)
evaluates to true, which causes the body of the code between the if test and
the end keyword to be executed; here, this sets the value of subtotal to 0.

84 Chapter 6

if..then..else

A simple test like this has only one of two possible results. Either a bit of code
is run or it isn’t, depending on whether the test evaluates to true or not. Often,
you will need to have more than two possible outcomes. Let’s suppose, for
example, that your program needs to follow one course of action if the day
is a weekday and a different course of action if it is a weekend. You can test
these conditions by adding an else section after the if section, like this:

if_else.rb if aDay == 'Saturday' or aDay == 'Sunday'
 daytype = 'weekend'
else
 daytype = 'weekday'
end

NOTE Like many other programming languages, Ruby uses one equal sign (=) to assign a
value and two (==) to test a value.

The if condition here is straightforward. It tests two possible conditions:
if the value of the variable aDay is equal to the string “Saturday” and if the value
of aDay is equal to the string “Sunday.” If either of those conditions is true, then
the next line of code executes daytype = 'weekend'; in all other cases, the code
after else executes daytype = 'weekday'.

When an if test and the code to be executed are placed on separate
lines, the then keyword is optional. When the test and the code are placed
on a single line, the then keyword is obligatory:

if_then.rb if x == 1 then puts('ok') end # with 'then'
if x == 1 puts('ok') end # syntax error!

In Ruby 1.8, a colon character (:) was permitted as an alternative to then.
This syntax is not supported in Ruby 1.9:

if x == 1 : puts('ok') end # This works with Ruby 1.8 only

An if test isn’t restricted to evaluating just two conditions. Let’s suppose,
for example, that your code needs to work out whether a certain day is a work-
ing day or a holiday. All weekdays are working days; all Saturdays are holidays,
but Sundays are only holidays when you are not working overtime. This is my
first attempt to write a test to evaluate all these conditions:

and_or_wrong.rb working_overtime = true
if aDay == 'Saturday' or aDay == 'Sunday' and not working_overtime
 daytype = 'holiday'
 puts("Hurrah!")
else
 daytype = 'working day'
end

Condi t ional S ta tements 85

Unfortunately, this doesn’t have quite the effect intended. Remember
that Saturday is always a holiday. But this code insists that Saturday is a work-
ing day. This is because Ruby takes the test to mean “If the day is Saturday
and I am not working overtime or if the day is Sunday and I am not working
overtime,” whereas what I really meant was “If the day is Saturday or if the
day is Sunday and I am not working overtime.” The easiest way to resolve this
ambiguity is to put parentheses around any code to be evaluated as a single
unit, like this:

and_or.rb if aDay == 'Saturday' or (aDay == 'Sunday' and not working_overtime)

and, or, and not

Incidentally, Ruby has two different syntaxes for testing Boolean (true/false)
conditions. In the previous example, I’ve used the English-language style
operators: and, or, and not. If you prefer, you could use alternative operators
similar to those used in many other programming languages, namely, &&
(and), || (or), and ! (not).

Be careful, though: The two sets of operators aren’t completely inter-
changeable. For one thing, they have different precedence, which means
that when multiple operators are used in a single test, the parts of the test
may be evaluated in different orders depending on which operators you use.
For example, look at this test:

days.rb if aDay == 'Saturday' or aDay == 'Sunday' and not working_overtime
 daytype = 'holiday'
end

Assuming that the Boolean variable working_overtime is true, would this
test succeed if the variable aDay were initialized with the string “Saturday”?
In other words, would daytype be assigned the value “holiday” if aDay is “Satur-
day”? The answer is no, it wouldn’t. The test will succeed only if aDay is either
“Saturday” or “Sunday” and working_overtime is not true. So, when or is used in
the previous code, Saturday would be deemed to be a working day.

Now consider this test:

if aDay == 'Saturday' || aDay == 'Sunday' && !working_overtime
 daytype = 'holiday'
end

On the face of it, this is the same test as the last one; the only difference
is that this time I’ve used the alternative syntax for the operators. However,
the change is more than cosmetic since if aDay is “Saturday,” this test evalu-
ates to true and daytype is initialized with the value “holiday.” This is because
the || operator has a higher precedence than the or operator. So, this test
succeeds either if aDay is “Saturday” or if aDay is “Sunday” and working_overtime
is not true. So, when || is used in the previous code, Saturday would be
deemed to be a holiday.

86 Chapter 6

Refer to “Digging Deeper” on page 93 for more on this. As a general
principle, you would do well to decide which set of operators you prefer—
stick to them and use parentheses to avoid ambiguity.

Negation

In the previous example, I used the negation operator (!) in the expression
!working_overtime, which can be read as “not working_overtime.” The nega-
tion operator can be used at the start of an expression; as an alternative, you
can use the “not equals” (!=) operator between the left and right sides of an
expression:

negation.rb !(1==1) #=> false
1!=1 #=> false

Alternatively, you can use not instead of !:

not(1==1) #=> false

if..elsif

There will no doubt be occasions when you will need to take multiple differ-
ent actions based on several alternative conditions. One way of doing this is
by evaluating one if condition followed by a series of other test conditions
placed after the keyword elsif. The whole lot must then be terminated using
the end keyword.

For example, here I am repeatedly taking input from a user inside a while
loop. An if condition tests whether the user enters “q” (I’ve used chomp() to
remove the carriage return from the input). If “q” is not entered, the first
elsif condition tests whether the integer value of the input (input.to_i) is
greater than 800; if this test fails, the next elsif condition tests whether it is
less than or equal to 800:

if_elsif.rb while input != 'q' do
 puts("Enter a number between 1 and 1000 (or 'q' to quit)")
 print("?- ")
 input = gets().chomp()
 if input == 'q'
 puts("Bye")
 elsif input.to_i > 800
 puts("That's a high rate of pay!")
 elsif input.to_i <= 800
 puts("We can afford that")
 end
end

Condi t ional S ta tements 87

The problem with this program is that, even though it asks the user to
enter a value between 1 and 1,000, it accepts values less than 1 (incidentally,
if you really want a salary in negative figures, I’ll be glad to offer you a job!)
and greater than 1,000 (in which case, don’t look to me for employment!).

You can fix this by rewriting the two elsif conditions and adding an else
section that executes if all the preceding tests fail:

if_elsif2.rb if input == 'q'
 puts("Bye")
elsif input.to_i > 800 && input.to_i <= 1000
 puts("That's a high rate of pay!")
elsif input.to_i <= 800 && input.to_i > 0
 puts("We can afford that")
else
 puts("I said: Enter a number between 1 and 1000!")
end

Here’s another example of a longer sequence of if..elsif sections fol-
lowed by a catchall else section. This time the trigger value, i, is an integer:

days2.rb def showDay(i)
 if i == 1 then puts("It's Monday")
 elsif i == 2 then puts("It's Tuesday")
 elsif i == 3 then puts("It's Wednesday")
 elsif i == 4 then puts("It's Thursday")
 elsif i == 5 then puts("It's Friday")

S H O R T H A N D N O T A T I O N F O R I F . . T H E N . . E L S E

Ruby also has a short-form notation for if..then..else in which a question mark (?)
replaces the if..then part and a colon (:) acts as else. Formally, this may be known
either as a ternary operator or as a conditional operator.

< Test Condition > ? <if true do this> : <else do this>

For example:

x == 10 ? puts("it's 10") : puts("it's some other number")

When the test condition is complex (if it uses ands and ors), you should enclose it
in parentheses. If the tests and code span several lines, the ? must be placed on the
same line as the preceding condition and the : must be placed on the same line as
the code immediately following the ?. In other words, if you put a newline before the
? or the :, you will generate a syntax error. This is an example of a valid multiline
code block:

(aDay == 'Saturday' or aDay == 'Sunday') ?
 daytype = 'weekend' :
 daytype = 'weekday'

if_else_alt.rb

88 Chapter 6

 elsif (6..7) === i then puts("Yippee! It's the weekend! ")
 else puts("That's not a real day!")
 end
end

Notice that I’ve used the range (6..7) to match the two integer values
for Saturday and Sunday. The === method (that is, three = characters) tests
whether a value (here i) is a member of the range. In the previous example,
the following:

(6..7) === i

could be rewritten as this:

(6..7).include?(i)

The === method is defined by the Object class and overridden in descen-
dant classes. Its behavior varies according to the class. As you will see shortly,
one of its fundamental uses is to provide meaningful tests for case statements.

unless

Ruby also can also perform unless tests, which are the exact opposite of if tests:

unless.rb unless aDay == 'Saturday' or aDay == 'Sunday'
 daytype = 'weekday'
else
 daytype = 'weekend'
end

Think of unless as being an alternative way of expressing “if not.” The fol-
lowing is equivalent to the previous code; both consider Saturday and Sun-
day to be the weekend and other days to be weekdays:

if !(aDay == 'Saturday' or aDay == 'Sunday')
 daytype = 'weekday'
else
 daytype = 'weekend'
end

if and unless Modifiers

You may recall the alternative syntax for while loops mentioned in Chapter 5.
Instead of writing this:

while tired do sleep end

Condi t ional S ta tements 89

you can write this:

sleep while tired

This alternative syntax, in which the while keyword is placed between the
code to execute and the test condition, is called a while modifier. It turns out
that Ruby has if and unless modifiers too. Here are a few examples:

if_unless_mod.rb sleep if tired

begin
 sleep
 snore
end if tired

sleep unless not tired

begin
 sleep
 snore
end unless not tired

The terseness of this syntax is useful when you repeatedly need to take
some well-defined action if some condition is true. You might, for example,
pepper your code with debugging output if a constant called DEBUG is true:

puts("somevar = #{somevar}") if DEBUG

Case Statements

When you need to take a variety of different actions based on the value of a
single variable, multiple if..elsif tests are verbose and repetitive.

A neater alternative is provided by a case statement. This begins with the
word case followed by the variable name to test. Then comes a series of when
sections, each of which specifies a “trigger” value followed by some code.

This code executes only when the test variable equals the trigger value:

case.rb case(i)
 when 1 then puts("It's Monday")
 when 2 then puts("It's Tuesday")
 when 3 then puts("It's Wednesday")
 when 4 then puts("It's Thursday")
 when 5 then puts("It's Friday")
 when (6..7) then puts("Yippee! It's the weekend! ")
 else puts("That's not a real day!")
end

90 Chapter 6

In the previous example, I’ve used the then keyword to separate each when
test from the code to execute. In Ruby 1.8, just as with if tests mentioned ear-
lier, you could use a colon as an alternative, but this syntax is not supported
in Ruby 1.9:

when 1 : puts("It's Monday") # This works in Ruby 1.8 only!

The then can be omitted if the test and the code to be executed are on
separate lines. Unlike case statements in C-like languages, there is no need
to enter a break keyword when a match is made in order to prevent execution
trickling down through the remainder of the sections. In Ruby, once a match
is made, the case statement exits:

case_break.rb def showDay(i)
 case(i)
 when 5 then puts("It's Friday")
 puts("...nearly the weekend!")
 when 6 then puts("It's Saturday!")

C O N S T A N T S

In principle, constants are objects whose values never change. For example, PI
in Ruby’s Math module is a constant. Constants in Ruby begin with a capital letter.
Class names are also constants. You can obtain a list of all defined constants using
the constants method:

Object.constants

Ruby provides the const_get and const_set methods to get and set the value
of named constants specified as symbols (identifiers preceded by a colon such as
:RUBY_VERSION). Note that, unlike the constants in many other programming lan-
guages, Ruby’s constants may be assigned new values:

RUBY_VERSION = "1.8.7"
RUBY_VERSION = "2.5.6"

The previous reassignment of the RUBY_VERSION constant produces an “already ini-
tialized constant” warning but not an error! You can even reassign constants declared
in Ruby’s standard class library. For example, here I reassign the value of PI. Although
this displays a warning, the assignment succeeds nonetheless:

puts Math::PI #=> 3.141592653589793
Math::PI = 100 #=> warning: already initialized constant PI
puts Math::PI #=> 100

You need to be aware that the constancy of Ruby’s constants is a programming
convention, rather than a rigorously enforced rule. Naturally, it is not good program-
ming practice to reassign constants.

constants.rb

math_pi.rb

Condi t ional S ta tements 91

 # the following never executes
 when 5 then puts("It's Friday all over again!")
 end
end

showDay(5)
showDay(6)

This displays the following:

It's Friday
...nearly the weekend!
It's Saturday!

You can include several lines of code between each when condition, and
you can include multiple values separated by commas to trigger a single when
block, like this:

when 6, 7 then puts("Yippee! It's the weekend! ")

The condition in a case statement is not obliged to be a simple variable;
it can be an expression like this:

case2.rb case(i + 1)

You can also use noninteger types such as a string. If multiple trigger val-
ues are specified in a when section, they may be of varying types—for example,
both string and integers:

when 1, 'Monday', 'Mon' then puts("Yup, '#{i}' is Monday")

Here is a longer example, illustrating some of the syntactical elements
mentioned earlier:

case3.rb case(i)
 when 1 then puts("It's Monday")
 when 2 then puts("It's Tuesday")
 when 3 then puts("It's Wednesday")
 when 4 then puts("It's Thursday")
 when 5 then puts("It's Friday")
 puts("...nearly the weekend!")
 when 6, 7
 puts("It's Saturday!") if i == 6
 puts("It's Sunday!") if i == 7
 puts("Yippee! It's the weekend! ")
 # the following never executes
 when 5 then puts("It's Friday all over again!")
 else puts("That's not a real day!")
end

92 Chapter 6

The === Method
As mentioned earlier, the when tests on an object used in a case statement
are performed using the === method. So, for example, just as the === method
returns true when an integer forms part of a range, a when test returns true when
an integer variable in a case statement forms part of a range expression:

when (6..7) then puts("Yippee! It's the weekend! ")

If in doubt on the effect of the === method for a specific object, refer to
the Ruby documentation on that object’s class. Ruby’s standard classes are
documented in the core API here: http://www.ruby-doc.org/.

Alternative Case Syntax
There is an alternative form of the case statement that is like a shorthand
form of a series of if..then..else statements. Each when section can perform
some arbitrary test and execute one or more lines of code. No case variable
is required. Each when section returns a value that, just like a method, is the
result of the last piece of code that’s evaluated. This value can be assigned
to a variable preceding the case statement:

case4.rb salary = 2000000
season = 'summer'

happy = case
 when salary > 10000 && season == 'summer' then
 puts("Yes, I really am happy!")
 'Very happy'
 when salary > 500000 && season == 'spring' then 'Pretty happy'
 else puts('miserable')
end

puts(happy) #=> 'Very happy'

Condi t ional S ta tements 93

D I G G I N G D E E P E R
There is more to Ruby comparison operators than meets the eye. Here you
will learn about their effects and side effects and discover how to break out of
blocks when a condition is met.

Boolean Operators
The following operators are available in Ruby for testing expressions that
may yield true or false values.

Be careful when using the alternative Boolean operators. Because of the
difference in precedence, conditions will be evaluated in different orders
and may yield different results.

Consider the following:

boolean_ops.rb # Example 1
if (1==3) and (2==1) || (3==3) then
 puts('true')
else
 puts('false')
end

Example 2
if (1==3) and (2==1) or (3==3) then
 puts('true')
else
 puts('false')
end

These may look the same at first sight. In fact, Example 1 prints “false,”
while Example 2 prints “true.” This is entirely because or has lower prece-
dence than ||. As a consequence, Example 1 tests “if 1 equals 3 [false] and
(either 2 equals 1 or 3 equals 3) [true].” Because one of these two necessary
conditions is false, the entire test returns false.

Now look at Example 2. This tests “(if 1 equals 3 and 2 equals 1) [false] or
3 equals 3 [true].” This time, you need only one of the two tests to succeed;
the second test evaluates to true so the entire tests returns true.

The side effects of operator precedence in this kind of test can lead to
very obscure bugs. You can avoid these by clarifying the meaning of the test

and and && These operators evaluate the left-hand side; only if the
result is true do they then evaluate the right side. and has
lower precedence than &&.

or and || These operators evaluate the left-hand side; if the result
is false, then they evaluate the right side. or has lower pre-
cedence than ||.

not and ! These operators negate a Boolean value; in other words,
they return true when false and return false when true.

94 Chapter 6

using parentheses. Here, I have rewritten Examples 1 and 2; in each case, the
addition of one pair of parentheses has inverted the initial Boolean value
returned by the test:

Example 1 (b) – now returns true
if ((1==3) and (2==1)) || (3==3) then
 puts('true')
else
 puts('false')
end

Example 2 (b) – now returns false
if (1==3) and ((2==1) or (3==3)) then
 puts('true')
else
 puts('false')
end

Eccentricities of Boolean Operators
Be warned that Ruby’s Boolean operators can sometimes behave in a curious
and unpredictable manner. For example:

eccentricities.rb puts((not(1==1))) # This is okay
puts(not(1==1)) # Syntax error in Ruby 1.8
 # but okay in Ruby 1.9

puts(true && true && !(true)) # This is okay
puts(true && true and !(true)) # This is a syntax error

puts(((true) and (true))) # This is okay
puts(true && true) # This is okay
puts(true and true) # This is a syntax error

In many cases, you can avoid problems by sticking to one style of
operator (either and, or, and not or &&, ||, and !) rather than mixing the
two. In addition, the generous use of parentheses is recommended!

catch and throw
Ruby provides a pair of methods, catch and throw, which can be used to break
out of a block of code when some condition is met. This is Ruby’s nearest
equivalent to a goto in some other programming languages. The block must
begin with catch followed by a symbol (that is, a unique identifier preceded
by a colon), such as :done or :finished. The block itself may be delimited
either by curly brackets or by the keywords do and end, like this:

think of this as a block called :done
catch(:done){
 # some code here
}

Condi t ional S ta tements 95

and this is a block called :finished
catch(:finished) do
 # some code here
end

Inside the block, you can call throw with a symbol as an argument. Nor-
mally you would call throw when some specific condition is met that makes
it desirable to skip all the remaining code in the block. For instance, let’s
assume the block contains some code that prompts the user to enter a num-
ber, divides some value by that number, and then goes on to do a multitude
of other complex calculations with the result. Obviously, if the user enters 0,
then none of the calculations that follow can be completed, so you would
want to skip them all by jumping right out of the block and continuing with
any code that follows it. This is one way of doing that:

catch_throw.rb catch(:finished) do
 print('Enter a number: ')
 num = gets().chomp.to_i
 if num == 0 then
 throw :finished # if num is 0, jump out of the block
 end
 # Here there may be hundreds of lines of
 # calculations based on the value of num
 # if num is 0 this code will be skipped
end
 # the throw method causes execution to
 # jump to here – outside of the block
puts("Finished")

You can, in fact, have a call to throw outside the block, like this:

def dothings(aNum)
 i = 0
 while true
 puts("I'm doing things...")
 i += 1
 throw(:go_for_tea) if (i == aNum)

throws to end of go_to_tea block
 end
end

catch(:go_for_tea){ # this is the :go_to_tea block
 dothings(5)
}

And you can have catch blocks nested inside other catch blocks, like this:

catch(:finished) do
 print('Enter a number: ')
 num = gets().chomp.to_i

96 Chapter 6

 if num == 0 then throw :finished end
 puts(100 / num)

 catch(:go_for_tea){
 dothings(5)
 }

 puts("Things have all been done. Time for tea!")
end

As with gotos and jumps in other programming languages, catch and
throw in Ruby should be used with great care because they break the logic
of your code and can, potentially, introduce hard-to-find bugs.

M E T H O D S

You’ve used numerous methods through-
out this book. On the whole, they aren’t

particularly complicated things, so you may
wonder why this chapter, which is all about meth-

ods, is so long. As you will discover, there is much more
to methods than meets the eye.

Class Methods

The methods you’ve been using so far have been instance methods. An instance
method belongs to a specific instance of a class—in other words, to an indi-
vidual object. It is also possible to write class methods. (Some other languages
refer to this kind of method as a static method.) A class method belongs to
the class itself. To define a class method, you must precede the method name
with the class name and a full stop.

98 Chapter 7

class_methods1.rb class MyClass
 def MyClass.classMethod
 puts("This is a class method")
 end

 def instanceMethod
 puts("This is an instance method")
 en
end

You should use the class name when calling a class method:

MyClass.classMethod

A specific object cannot call a class method. Nor can a class call an
instance method:

MyClass.instanceMethod #=> Error! This is an 'undefined method'
ob.classMethod #=> Error! This is an 'undefined method'

What Are Class Methods For?

But why, you may reasonably ask, would you ever want to create a class method
rather than the more usual instance method? There are two main reasons:
First, a class method can be used as a “ready-to-run function” without having
to go to the bother of creating an object just to use it, and second, it can be
used on those occasions when you need to run a method before an object
has been created.

For a few examples of using methods as “ready-to-run functions,” con-
sider Ruby’s File class. Many of its methods are class methods. This is because
most of the time you will be using them to do something to, or return infor-
mation about, an existing file. You don’t need to create a new File object to do
that; instead, you pass the filename as an argument to the File class methods.
You’ll look more closely at the File class in Chapter 13. Here are examples of
a few of its class methods in use:

file_methods.rb fn = 'file_methods.rb'
if File.exist?(fn) then
 puts(File.expand_path(fn))
 puts(File.basename(fn))
 puts(File.dirname(fn))
 puts(File.extname(fn))
 puts(File.mtime(fn))
 puts("#{File.size(fn)} bytes")
else
 puts("Can't find file!")
end

Methods 99

This outputs something like this:

C:/bookofruby2/ch7/file_methods.rb
file_methods.rb
.
.rb
2010-10-05 16:14:53 +0100
300 bytes

The other occasion when a class method is vital is when you need to use
a method before an object has been created. The most important example of
this is the new method.

You call the new method every time you create an object. Until the object has
been created, you clearly cannot call one of its instance methods—because you
can call instance methods only from an object that already exists. When you
use new, you are calling a method of the class itself and telling the class to cre-
ate a new instance of itself.

Class Variables

Class methods may remind you of the class variables you used previously
(that is, variables whose names begin with @@). You may recall that you used
class variables in a simple adventure game (see 2adventure.rb on page 22)
to keep a tally of the total number of objects in the game; each time a new
Thing object was created, 1 was added to the @@num_things class variable:

class Thing
 @@num_things = 0

 def initialize(aName, aDescription)
 @@num_things +=1
 end

end

Unlike an instance variable (that is, a variable that belongs to a specific
object created from a class), a class variable must be given a value when it is
first declared:

@@classvar = 1000 # class variables must be initialized

Initialization of either instance or class variables within the body of the
class affects only the values stored by the class itself. Class variables are avail-
able both to the class itself and to the objects created from that class. How-
ever, each instance variable is unique; each object has its own copy of any
instance variables—and the class itself may also have its own instance variables.

100 Chapter 7

To understand how a class may have instance variables, refer to the
class_methods2.rb program. This defines a class containing one class method
and one instance method:

class_methods2.rb class MyClass
 @@classvar = 1000
 @instvar = 1000

 def MyClass.classMethod
 if @instvar == nil then
 @instvar = 10
 else
 @instvar += 10
 end

 if @@classvar == nil then
 @@classvar = 10
 else
 @@classvar += 10
 end
 end

 def instanceMethod
 if @instvar == nil then
 @instvar = 1
 else
 @instvar += 1
 end

 if @@classvar == nil then
 @@classvar = 1

C L A S S V A R I A B L E S , I N S T A N C E V A R I A B L E S ,
A N D M E T H O D S : S U M M A R Y

Instance variables begin with @:

@myinstvar # instance variable

Class variables begin with @@:

@@myclassvar # class variable

Instance methods are defined by def MethodName:

def anInstanceMethod
 # some code
end

Class methods are defined by def ClassName.MethodName:

def MyClass.aClassMethod
 # some code
end

Methods 101

 else
 @@classvar += 1
 end

 end

 def showVars
 return "(instance method) @instvar = #{@instvar}, @@classvar = #{@@classvar}"
 end

 def MyClass.showVars
 return "(class method) @instvar = #{@instvar}, @@classvar = #{@@classvar}"
 end

end

Notice that it declares and initializes a class variable and an instance vari-
able, @@classvar and @instvar, respectively. Its class method, classMethod, incre-
ments both these variables by 10, while its instance method, instanceMethod,
increments both variables by 1. Notice that I have assigned values to both the
class variable and the instance variable:

@@classvar = 1000
@instvar = 1000

I said earlier that initial values are not normally assigned to instance vari-
ables in this way. The exception to the rule is when you assign a value to an
instance variable of the class itself rather than to an object derived from that
class. The distinction should become clearer shortly.

I’ve written a few lines of code that create three instances of MyClass (the
ob variable is initialized with a new instance on each turn through the loop)
and then call both the class and instance methods:

for i in 0..2 do
 ob = MyClass.new
 MyClass.classMethod
 ob.instanceMethod
 puts(MyClass.showVars)
 puts(ob.showVars)
end

The class method, MyClass.showVars, and the instance method, showVars,
display the values of @instvar and @@classvar at each turn through the loop.
When you run the code, these are the values displayed:

(class method) @instvar = 1010, @@classvar = 1011
(instance method) @instvar = 1, @@classvar = 1011
(class method) @instvar = 1020, @@classvar = 1022
(instance method) @instvar = 1, @@classvar = 1022
(class method) @instvar = 1030, @@classvar = 1033
(instance method) @instvar = 1, @@classvar = 1033

102 Chapter 7

You may need to look at these results carefully in order to see what is
going on here. In summary, this is what is happening: The code in both the
class method, MyClass.classMethod, and the instance method, instanceMethod,
increments both the class and instance variables, @@classvar and @instvar.

You can see clearly that the class variable is incremented by both these
methods (the class method adds 10 to @@classvar whenever a new object is
created, while the instance method adds 1 to it). However, whenever a new
object is created, its instance variable is initialized to 1 by the instanceMethod.
This is the expected behavior since each object has its own copy of an instance
variable, but all objects share a unique class variable. Perhaps less obvious is
that the class itself also has its own instance variable, @instvar. This is because,
in Ruby, a class is an object and therefore can contain instance variables, just
like any other object. The MyClass variable, @instvar, is incremented by the
class method MyClass.classMethod:

@instvar += 10

When the instance method, showVars, prints the value of @instvar, it prints
the value stored in a specific object, ob; the value of ob’s @instvar is initially nil
(not the value 1,000 with which the MyClass variable @instvar was initialized),
and this value is incremented by 1 in instanceMethod.

When the class method, MyClass.showVars, prints the value of @instvar, it
prints the value stored in the class itself (in other words, MyClass’s @instvar
is a different variable from ob’s @instvar). But when either method prints the
value of the class variable, @@classvar, the value is the same.

Just remember that there is only ever one copy of a class variable, but
there may be many copies of instance variables. If this is still confusing, take
a look at the inst_vars.rb program:

inst_vars.rb class MyClass
 @@classvar = 1000
 @instvar = 1000

 def MyClass.classMethod
 if @instvar == nil then
 @instvar = 10
 else
 @instvar += 10
 end
 end

 def instanceMethod
 if @instvar == nil then
 @instvar = 1
 else
 @instvar += 1
 end
 end
end

Methods 103

ob = MyClass.new
puts MyClass.instance_variable_get(:@instvar)
puts('--------------')
for i in 0..2 do
 # MyClass.classMethod
 ob.instanceMethod
 puts("MyClass @instvar=#{MyClass.instance_variable_get(:@instvar)}")
 puts("ob @instvar= #{ob.instance_variable_get(:@instvar)}")
end

This time, instead of creating a new object instance at each turn
through the loop, you create a single instance (ob) at the outset. When
the ob.instanceMethod is called, @instvar is incremented by 1.

Here I’ve used a little trick to look inside the class and method and
retrieve the value of @instvar using Ruby’s instance_variable_get method
(I’ll return to this when I cover dynamic programming in Chapter 20):

puts("MyClass @instvar= #{MyClass.instance_variable_get(:@instvar)}")
puts("ob @instvar= #{ob.instance_variable_get(:@instvar)}")

Because you only ever increment the @instvar that belongs to the object
ob, the value of its @instvar goes up from 1 to 3 as the for loop executes. But
the @instvar that belongs to the MyClass class is never incremented; it remains
at its initial value of 1,000:

1000

MyClass @instvar= 1000
ob @instvar= 1
MyClass @instvar= 1000
ob @instvar= 2
MyClass @instvar= 1000
ob @instvar= 3

But now let’s uncomment this line:

MyClass.classMethod

This calls a class method that increments @instvar by 10. This time when
you run the program, you see that, as before, the @instvar variable of ob is
incremented by 1 on each turn through the loop, while the @instvar variable
of MyClass is incremented by 10:

1000

MyClass @instvar= 1010
ob @instvar= 1
MyClass @instvar= 1020
ob @instvar= 2
MyClass @instvar= 1030
ob @instvar= 3

104 Chapter 7

Ruby Constructors: new or initialize?

I gave a brief explanation of new and initialize in Chapter 1. At that stage,
you had not examined the differences between Ruby’s class and instance
methods and variables, so it was not possible to give a full discussion of how
new and initialize work together. Because these are such important methods,
you’ll look at them in more detail now.

The method responsible for bringing an object into being is called the
constructor. In Ruby, the constructor method is called new. The new method is a
class method that, once it has created an object, will run an instance method
named initialize if such a method exists.

In brief then, the new method is the constructor, and the initialize
method is used to initialize the values of any variables immediately after an
object is created. But why can’t you just write your own new method and ini-
tialize variables in it? Well, let’s try that:

new.rb class MyClass
 def initialize(aStr)
 @avar = aStr
 end

 def MyClass.new(aStr)
 super
 @anewvar = aStr.swapcase
 end
end

ob = MyClass.new("hello world")
puts(ob)
puts(ob.class)

Here, I’ve written a MyClass.new method that begins with the super key-
word to invoke the new method of its superclass. Then I’ve created a string
instance variable, @anewvar. So what do I end up with? Not, as you might sup-
pose, a new MyClass object containing a string variable. Remember that the
last expression evaluated by a method in Ruby is the value returned by that

A C L A S S I S A N O B J E C T

To understand instance variables of classes, just remember that a class is an object
(actually, it’s an instance of the Class class!). The MyClass “class object” has its own
instance variable (@instvar) just as the ob object has its own instance variable (which
here also happens to be called @instvar). In spite of the same names, these are two
different variables: One belongs to the class itself; the other belongs inside each
object created from the class. Instance variables are always unique to an object
instance, so no two objects (not even an object like MyClass, which also happens
to be a class!) can ever share a single instance variable.

Methods 105

method. The last expression evaluated by the new method here is a string. I
evaluate this:

ob = MyClass.new("hello world")

And I display the newly created ob object and its class:

puts(ob)
puts(ob.class)

This is the output:

HELLO WORLD
String

This proves that MyClass.new returns a string, and it is this string (not a
MyClass object) that is assigned to the variable ob. If you find this confusing,
don’t panic. The moral of the story is that overriding new is confusing and is
generally a bad idea. Unless you have a very good reason for doing so, you
should avoid trying to override the new method.

Singleton Methods
A singleton method is a method that belongs to a single object rather than to
an entire class. Many of the methods in the Ruby class library are singleton
methods. This is because, as mentioned earlier, each class is an object of the
type Class. Or, to put it simply, the class of every class is Class. This is true of
all classes—both those you define yourself and those provided by the Ruby
class library:

class_classes.rb class MyClass
end

puts(MyClass.class) #=> Class
puts(String.class) #=> Class
puts(Object.class) #=> Class
puts(Class.class) #=> Class
puts(IO.class) #=> Class

Now, some classes also have class methods—that is, methods that belong
to the Class object itself. In that sense, these are singleton methods of the
Class object. Indeed, if you evaluate the following, you will be shown an array
of method names that match the names of IO class methods:

p(IO.singleton_methods)

This displays the following:

[:new, :open, :sysopen, :for_fd, :popen, :foreach, :readlines, :read,
:binread, :select, :pipe, :try_convert, :copy_stream]

106 Chapter 7

As explained earlier, when you write your own class methods, you do so
by prefacing the method name with the name of the class:

def MyClass.classMethod

It turns out that you can use a similar syntax when creating singleton
classes for specific objects. This time you preface the method name with the
name of the object:

def myObject.objectMethod

Let’s look at a concrete example. Suppose you have a program contain-
ing Creature objects of many different species (maybe you are a veterinarian,
the head keeper at a zoo, or, like the author of this book, an enthusiastic player
of adventure games); each creature has a method called talk that displays the
vocal noise each creature usually makes.

Here’s my Creature class and a few creature objects:

singleton_meth1
.rb

class Creature
 def initialize(aSpeech)
 @speech = aSpeech
 end

F I N D I N G A N O B J E C T ’ S A N C E S T O R C L A S S E S

Ultimately all classes descend from the Object class. In Ruby 1.9, the Object class
itself descends from the BasicObject class (see Chapter 2). This is true even for the
Class class! To prove this, try the class_hierarchy.rb program:

def showFamily(aClass)
 if (aClass != nil) then
 puts("#{aClass} :: about to recurse with aClass.superclass =
#{aClass.superclass.inspect}")
 showFamily(aClass.superclass)
 end
end

Pass a class name to this method to track back up its family tree of ancestor
classes. For example, try this:

showFamily(File)

In Ruby 1.9, this displays the following:

File :: about to recurse with aClass.superclass = IO
IO :: about to recurse with aClass.superclass = Object
Object :: about to recurse with aClass.superclass = BasicObject
BasicObject :: about to recurse with aClass.superclass = nil

class_hierarchy
.rb

Methods 107

 def talk
 puts(@speech)
 end
end

cat = Creature.new("miaow")
dog = Creature.new("woof")
budgie = Creature.new("Who's a pretty boy, then!")
werewolf = Creature.new("growl")

Then you suddenly realize that one of those creatures, and one alone,
has additional special behavior. On the night of a full moon, the werewolf
not only talks (“growl”) but also howls (“How-oo-oo-oo-oo!”). It really needs
a howl method.

You could go back and add such a method to the Creature class, but then
you’d end up with howling dogs, cats, and budgies too—which is not what you
want. You could create a new Werewolf class that descends from Creature,
but you will only ever have one werewolf (they are, alas, an endangered spe-
cies), so why do you want a whole class for just that? Wouldn’t it make more
sense to have a werewolf object that is the same as every other creature object
except that it also has a howl method? Okay, let’s do that by giving the were-
wolf its very own singleton method. Here goes:

def werewolf.howl
 puts("How-oo-oo-oo-oo!")
end

Heck, you can do better than that! It howls only on a full moon, so let’s
make sure that, if asked to howl when the moon is new, it just growls. Here’s
my finished method:

def werewolf.howl
 if FULLMOON then
 puts("How-oo-oo-oo-oo!")
 else
 talk
 end
end

Notice that, even though this method has been declared outside the
Creature class, it is able to call the instance method talk. That’s because the
howl method now lives “inside” the werewolf object so has the same scope
within that object as the talk method. It does not, however, live inside any
of the werewolf’s fellow creatures; the howl method belongs to him and him
alone. Try to make the budgie.howl, and Ruby will inform you that howl is an
undefined method.

108 Chapter 7

Now, if you are debugging your code for your own use, having your pro-
gram blow up thanks to an undefined method may be acceptable; however,
if your program does so out in the big, bad world of the “end user,” it is defi-
nitely not acceptable.

If you think undefined methods are likely to be a problem, you can take
avoidance measures by testing whether a singleton method exists before try-
ing to use it. The Object class has a singleton_methods method that returns an
array of singleton method names. You can test a method name for inclusion
using the Array class’s include? method. In singleton_meth2.rb, for example, I’ve
programmed an “open the box” game, which has a number of Box objects,
only one of which, when opened, contains the star prize. I’ve named this spe-
cial Box object starprize and given it a singleton method called congratulate:

singleton_meth2
.rb

starprize = Box.new("Star Prize")
def starprize.congratulate
 puts("You've won a fabulous holiday in Grimsby!")
end

The congratulate method should be called when the starprize box is
opened. This bit of code (in which item is a Box object) ensures that this
method (which does not exist in any other object) is not called when some
other box is opened:

if item.singleton_methods.include?("congratulate") then
 item.congratulate
end

An alternative way of checking the validity of a method would be to pass
that method name as a symbol (an identifier preceded by a colon) to the
Object class’s respond_to? method:

if item.respond_to?(:congratulate) then
 item.congratulate
end

NOTE You’ll see another way of handling nonexistent methods in Chapter 20.

Singleton Classes

A singleton method is a method that belongs to a single object. A singleton
class, on the other hand, is a class that defines a single object. Confused? Me
too. Let’s take a closer look.

Let’s suppose you create a few dozen objects, each of which is an instance
of the Object class. Naturally they all have access to inherited methods such
as inspect and class. But now you decide that you want just one special object
(for the sake of variety, let’s call him ob), which has one special method (let’s
call it blather).

Methods 109

You don’t want to define a whole new class for this one object since you
will never again create any more objects with the blather method. So, you cre-
ate a class especially for little ob.

You don’t need to name this class. You just tell it to attach itself to ob by
putting a << between the keyword class and the name of the object. Then you
add code to the class in the usual way:

singleton_class.rb ob = Object.new
 # singleton class
class << ob
 def blather(aStr)
 puts("blather, blather #{aStr}")
 end
end

Now ob, and only ob, has not only all the usual methods of the Object
class; it also has the methods (here just the blather method, but there could,
in principle, be many more) of its own special anonymous class:

ob.blather("weeble") #=> "blather, blather weeble"

If you’ve been paying close attention, you might have noticed that the
singleton class seems to be doing something rather similar to a singleton
method. With a singleton class, I can create an object and then add extra
methods packaged up inside an anonymous class. With singleton methods,
I can create an object and then add methods one by one:

singleton_class2
.rb

ob2 = Object.new

def ob2.blather(aStr) # <= this is a singleton method
 puts("grippity, grippity #{aStr}")
end

ob2.blather("ping!") #=> grippity, grippity ping!

Similarly, I could rewrite the “star prize” program. In the previous ver-
sion I added a singleton method, congratulate, to an object named starprize.
I could just as easily have created a singleton class containing the congratulate
method:

starprize = MyClass.new("Star Prize")

class << starprize
 def congratulate
 puts("You've won a fabulous holiday in Grimsby!")
 end
end

110 Chapter 7

In fact, the similarity is more than skin deep. The end result of the previ-
ous code is that congratulate becomes a singleton method of starprize. I can
verify this by checking whether the array of singleton methods available for
the item object contains the name congratulate:

if item.singleton_methods.include?(:congratulate) # Ruby 1.9

In Ruby 1.9, the singleton_methods method returns an array of symbols rep-
resenting the method names. This is why I have used the symbol :congratulate
in the previous code. However, in Ruby 1.8, singleton_methods returns an array
of strings. So, if you are using Ruby 1.8, you should be sure to use the follow-
ing test using the string argument "congratulate":

if item.singleton_methods.include?("congratulate") # Ruby 1.8

NOTE What’s the difference between a singleton method and a singleton class? The short
answer is, not a lot. These two syntaxes provide different ways of adding methods to
a specific object rather than building those methods into its defining class.

Overriding Methods

Sometimes you may want to redefine a method that already exists in some
class. You’ve done this before when, for example, you created classes with
their own to_s methods to return a string representation. Every Ruby class,
from Object downward, has a to_s method. The to_s method of the Object
class returns the class name and a hexadecimal representation of the object’s
unique identifier. However, many Ruby classes have their own special versions
of to_s. For example, Array.to_s concatenates and returns the values in the
array.

When a method in one class replaces a method of the same name in
an ancestor class, it is said to override that method. You can override methods
that are defined in the standard class library such as to_s as well as methods
defined in your own classes. If you need to add new behavior to an existing
method, remember to call the superclass’s method using the super keyword
at the start of the overridden method.

Here is an example:

override.rb class MyClass
 def sayHello
 return "Hello from MyClass"
 end

 def sayGoodbye
 return "Goodbye from MyClass"
 end
end

Methods 111

class MyOtherClass < MyClass
 def sayHello #overrides (and replaces) MyClass.sayHello
 return "Hello from MyOtherClass"
 end

 # overrides MyClass.sayGoodbye but first calls that method
 # with super. So this version "adds to" MyClass.sayGoodbye
 def sayGoodbye
 return super << " and also from MyOtherClass"
 end

 # overrides default to_s method
 def to_s
 return "I am an instance of the #{self.class} class"
 end
end

Public, Protected, and Private Methods

In some cases, you may want to restrict the “visibility” of your methods to
ensure that they cannot be called by code outside the class in which the
methods occur.

This may be useful when your class defines various “utility” methods that
it requires in order to perform certain functions that it does not intend for
public consumption. By imposing access restrictions on those methods, you
can prevent programmers from using them for their own nefarious purposes.
This means you will be able to change the implementation of those methods
at a later stage without having to worry you are going to break somebody
else’s code.

Ruby provides three levels of method accessibility:

public
protected
private

As the name suggests, public methods are the most accessible, and
private methods are the least accessible. All your methods are public unless
you specify otherwise. When a method is public, it is available to be used by
the world outside the object in whose class it is defined.

When a method is private, it can be used only by other methods inside
the object in whose class it is defined.

A protected method generally works in the same way as a private method
with one tiny but important difference: In addition to being visible to the
methods of the current object, a protected method is also visible to objects of
the same type when the second object is within the scope of the first object.

112 Chapter 7

The distinction between private and protected methods will probably be
easier to understand when you see a working example. Consider this class:

pub_prot_priv.rb class MyClass

 private
 def priv
 puts("private")
 end

 protected
 def prot
 puts("protected")
 end

 public
 def pub
 puts("public")
 end

 def useOb(anOb)
 anOb.pub
 anOb.prot
 anOb.priv
 end
end

I’ve declared three methods, one for each level of accessibility. These
levels are set by putting private, protected, or public prior to one or more
methods. The specified accessibility level remains in force for all subsequent
methods until some other access level is specified.

NOTE public, private, and protected may look like keywords. But they are, in fact, methods
of the Module class.

Finally, my class has a public method, useOb, which takes a MyOb object as
an argument and calls the three methods pub, prot, and priv of that object.
Now, let’s see how a MyClass object can be used. First, I’ll create two instances
of the class:

myob = MyClass.new
myob2 = MyClass.new

Now, I try to call each of the three methods in turn:

myob.pub # This works! Prints out "public"
myob.prot # This doesn't work! I get an error
myob.priv # This doesn't work either - another error

Methods 113

From the previous, it would seem that the public method is (as expected)
visible from the world outside the object to which it applies. But both the pri-
vate and the protected methods are invisible. This being so, what is the pro-
tected method for? Another example should help clarify this:

myob.useOb(myob2)

This time, I am calling the public method useOb of the myob object, and I
am passing to it a second object, myob2, as an argument. The important thing
to note is that myob and myob2 are instances of the same class. Now, recall what
I said earlier: In addition to being visible to the methods of the current object, a protected
method is also visible to objects of the same type when the second object is within the scope
of the first object.

This may sound like gobbledygook. Let’s see if I can make some sense
out of it. In the program, the first MyClass object (here myob) has a second
MyClass object within its scope when myob2 is passed as an argument to a
method of myob. When this happens, you can think of myob2 as being present
“inside” myob. Now myob2 shares the scope of the “containing” object, myob. In
this special circumstance—when two objects of the same class are within the
scope defined by that class—the protected methods of any objects of this
class become visible.

In the present case, the protected method prot of the object myob2 (or, at
any rate, of the argument that “receives” myob2, here called anob) becomes vis-
ible and can be executed. Its private arguments, however, are not visible:

def useOb(anOb)
 anOb.pub
 anOb.prot # protected method can be called
 anOb.priv # calling a private method results in an error
end

114 Chapter 7

D I G G I N G D E E P E R
Here you will learn more about the visibility of code inside methods and
another way of defining singleton methods.

Protected and Private Methods in Descendant Classes
The same access rules described in this chapter also apply when calling the
methods of ancestor and descendant objects. That is, when you pass an object
to a method (as an argument) that has the same class as the receiver object
(in other words, the object to which the method belongs), the argument
object can call the public and protected methods of the class but not its
private methods.

For an example of this, take a look at the protected.rb program. Here I have
created a MyClass object called myob and a MyOtherClass object, myotherob,
where MyOtherClass descends from MyClass:

protected.rb class MyClass

 private
 def priv(aStr)
 return aStr.upcase
 end

 protected
 def prot(aStr)
 return aStr << '!!!!!!'
 end

 public

 def exclaim(anOb) # calls a protected method
 puts(anOb.prot("This is a #{anOb.class} - hurrah"))
 end

 def shout(anOb) # calls a private method
 puts(anOb.priv("This is a #{anOb.class} - hurrah"))
 end

end

class MyOtherClass < MyClass

end

class MyUnrelatedClass

end

Methods 115

I now create objects from each of these three classes, and I try to pass
myotherob as an argument to the myob public method, shout:

myob = MyClass.new
myotherob = MyOtherClass.new
myunrelatedob = MyUnrelatedClass.new

If you load this program from the code archive, you will see that it con-
tains a number of lines of code in which these three objects attempt to exe-
cute the shout and exclaim methods. Many of these attempts are doomed to
failure and so have been commented out. However, when testing the code,
you may want to uncomment each method call one by one to see the results.
This is my first attempt:

myob.shout(myotherob) # fails

Here the shout method calls the private method priv on the argument
object:

def shout(anOb) # calls a private method
 puts(anOb.priv("This is a #{anOb.class} - hurrah"))
end

This won’t work! Ruby complains that the priv method is private.
Similarly, were I to do it the other way around—that is, by passing the

ancestor object myob as the argument and invoking the method shout on the
descendant object—I would encounter the same error:

myotherob.shout(myob) # fails

The MyClass class also has another public method, exclaim. This one calls
a protected method, prot:

def exclaim(anOb) # calls a protected method
 puts(anOb.prot("This is a #{anOb.class} - hurrah"))
end

Now, I can pass either the MyClass object, myob, or the MyOtherClass
object, myotherob, as an argument to the exclaim method, and no error will
occur when the protected method is called:

myob.exclaim(myotherob) # This is OK
myotherob.exclaim(myob) # And so is this...
myob.exclaim(myunrelatedob) # But this won’t work

116 Chapter 7

Needless to say, this works only when the two objects (the receiver object
to the left of the dot and the argument passed to the method) share the same
line of descent. If you send an unrelated object as an argument, you would
not be able to call methods of the receiver class, no matter what their protec-
tion levels.

Invading the Privacy of Private Methods
The whole point of a private method is that it cannot be called from outside
the scope of the object to which it belongs. So, this won’t work:

send.rb class X
 private
 def priv(aStr)
 puts("I'm private, " << aStr)
 end
end

ob = X.new
ob.priv("hello") # This fails

However, it turns out that Ruby provides a “get out clause” (or maybe I
should say a “get in” clause?) in the form of a method called send.

The send method invokes the method whose name matches that of a
symbol (an identifier beginning with a colon such as :priv), which is passed
as the first argument to send like this:

ob.send(:priv, "hello") # This succeeds

Any arguments supplied after the symbol (like the string “hello”) are
passed in the normal way to the specified method.

Using send to gain public access to a private method is not generally a
good idea. After all, if you need access to a certain method, why make it pri-
vate in the first place? Use this technique with caution or not at all.

Singleton Class Methods
Earlier, I created class methods by appending a method name to the name of
the class like this:

def MyClass.classMethod

There is a “shortcut” syntax for doing this. Here is an example:

class_methods3.rb class MyClass

 def MyClass.methodA
 puts("a")
 end

Methods 117

 class << self
 def methodB
 puts("b")
 end

 def methodC
 puts("c")
 end
 end

end

Here, methodA, methodB, and methodC are all class methods of MyClass;
methodA is declared using the syntax used previously:

def ClassName.methodname

But methodB and methodC are declared using the syntax of instance methods:

def methodname

So, why do they end up as class methods? It’s all because the method
declarations have been placed inside this code:

class << self
 # some method declarations
end

This may remind you of the syntax used for declaring singleton classes.
For example, in the singleton_class.rb program, you may recall that I first cre-
ated an object named ob and then gave it its very own method, blather:

class << ob
 def blather(aStr)
 puts("blather, blather #{aStr}")
 end
end

The blather method here is a singleton method of the ob object. Simi-
larly, in the class_methods3.rb program, the methodB and methodC methods are
singleton methods of self—and self happens to be the MyClass class. You
can similarly add singleton methods from outside the class definition by
using << followed by the class name, like this:

class << MyClass
 def methodD
 puts("d")
 end
end

118 Chapter 7

Finally, the code checks that all four methods really are singleton meth-
ods by first printing the names of all available singleton methods and then
calling them:

puts(MyClass.singleton_methods.sort)
MyClass.methodA
MyClass.methodB
MyClass.methodC
MyClass.methodD

This displays the following:

methodA
methodB
methodC
methodD
a
b
c
d

Nested Methods
You can nest methods; that is, you can write methods that contain other meth-
ods. This gives you a way of dividing a long method into reusable chunks. So,
for example, if method x needs to do calculation y at several different points,
you can put the y method inside the x method (the methods in the following
example are called outer_x, nested_y, and nested_z for clarity):

nested_methods
.rb

class X

 def outer_x
 print("x:")

 def nested_y
 print("ha! ")
 end

 def nested_z
 print("z:")
 nested_y
 end

 nested_y
 nested_z
 end

end

Methods 119

Nested methods are not initially visible outside the scope in which they
are defined. So, in the previous example, although nested_y and nested_z may
be called from inside outer_x, they may not be called by any other code:

ob = X.new
ob.outer_x #=> x:ha! z:ha!

If, instead of ob.outer_x in the previous code, you were to call ob.nested_y
or ob.nested_z, you would see an error message since the nested_y and nested_z
methods would not, at this stage, be visible. However, when you run a method
that encloses nested methods, those nested methods will be brought into
scope outside that method!

nested_methods2
.rb

class X
 def x
 print("x:")
 def y
 print("y:")
 end

 def z
 print("z:")
 y
 end
 end
end

ob = X.new
ob.x #=> x:
puts
ob.y #=> y:
puts
ob.z #=> z:y:

To see another example of this, try running the nested_methods.rb code
again, but this time uncomment all three method calls. This time, when the
outer_x method executes, it brings nested_y and nested_z into scope so the
calls to the two nested methods now succeed:

ob.outer_x #=> x:ha! z:ha!
ob.nested_y #=> ha!
ob.nested_z #=> z:ha!

Method Names
As a final point, it’s worth mentioning that method names in Ruby almost
always begin with a lowercase character like this:

def fred

120 Chapter 7

However, that is a convention, not an obligation. It is also permissible to
begin method names with capital letters, like this:

def Fred

Since the Fred method looks like a constant (it starts with a capital letter),
you would need to tell Ruby that it is a method when calling it by adding
parentheses:

method_names.rb Fred # <= Ruby complains 'uninitialized constant'
Fred() # <= Ruby calls the Fred method

On the whole, it is better to stick to the convention of using method
names that begin with a lowercase character.

P A S S I N G A R G U M E N T S A N D
R E T U R N I N G V A L U E S

In this chapter, you’ll be looking at many of
the effects (and side effects) of passing argu-

ments and returning values to and from methods.
First, though, I’ll take a moment to summarize the types
of methods you’ve used up to now.

Summarizing Instance, Class, and Singleton Methods

An instance method is declared inside a class definition and is intended for
use by a specific object or “instance” of the class, like this:

methods.rb class MyClass
 # declare instance method
 def instanceMethod
 puts("This is an instance method")
 end
end

122 Chapter 8

 # create object
ob = MyClass.new
 # use instance method
ob.instanceMethod

A class method may be declared inside a class definition, in which case the
method name may be preceded by the class name, or a class << self block
may contain a “normal” method definition. Either way, a class method is
intended for use by the class itself, not by a specific object, like this:

class MyClass
 # a class method
 def MyClass.classmethod1
 puts("This is a class method")
 end

 # another class method
 class << self
 def classmethod2
 puts("This is another class method")
 end
 end
end

 # call class methods from the class itself
MyClass.classmethod1
MyClass.classmethod2

Singleton methods are methods that are added to a single object and cannot
be used by other objects. A singleton method may be defined by appending
the method name to the object name followed by a dot or by placing a “nor-
mal” method definition inside an ObjectName << self block like this:

 # create object
ob = MyClass.new

 # define a singleton method
def ob.singleton_method1
 puts("This is a singleton method")
end

 # define another singleton method
class << ob
 def singleton_method2
 puts("This is another singleton method")
 end
end

 # use the singleton methods
ob.singleton_method1
ob.singleton_method2

Pass ing Arguments and Return ing Values 123

Returning Values

In many programming languages, a distinction is made between functions
or methods that return a value to the calling code and those that do not. In
Pascal, for example, a function returns a value, but a procedure does not. No
such distinction is made in Ruby. All methods always return a value, though
of course you are not obliged to use it.

When no return value is specified, Ruby methods return the result of the
last expression evaluated. Consider this method:

return_vals.rb def method1
 a = 1
 b = 2
 c = a + b # returns 3
end

The last expression evaluated is a + b, which happens to return 3, so that
is the value returned by this method. There may often be times when you don’t
want to return the last expression evaluated. In such cases, you can specify
the return value using the return keyword:

def method2
 a = 1
 b = 2
 c = a + b
 return b # returns 2
end

A method is not obliged to make any assignments in order to return a
value. If a simple piece of data happens to be the last thing evaluated in a
method, that will be the value the method returns. When nothing is evalu-
ated, nil is returned:

def method3
 "hello" # returns "hello"
end

def method4
 a = 1 + 2
 "goodbye" # returns "goodbye"
end

def method5
end # returns nil

My own programming prejudice is to write code that is clear and
unambiguous whenever possible. For that reason, whenever I plan to use
the value returned by a method, I prefer to specify it using the return key-
word; only when I do not plan to use the returned value do I omit this.
However, this is not obligatory—Ruby leaves the choice to you.

124 Chapter 8

Returning Multiple Values

But what about those occasions when you need a method to return more
than one value? In other program languages, you may be able to “fake” this
by passing arguments by reference (pointers to the original data items) rather
than by value (a copy of the data); when you alter the values of “by reference”
arguments, you alter the original values without explicitly having to return
any values to the calling code.

Ruby doesn’t make a distinction between “by reference” and “by value,”
so this technique is not available to you (though you will see some exceptions
to the rule shortly). However, Ruby is capable of returning multiple values all
in one go, as shown here:

return_many.rb def ret_things
 greeting = "Hello world"
 a = 1
 b = 2.0
 return a, b, 3, "four", greeting, 6 * 10
end

Multiple return values are placed into an array. If you were to evaluate
ret_things.class, Ruby would inform you that the returned object is an
Array. You could, however, explicitly return a different collection type
such as a Hash:

def ret_hash
 return {'a'=>'hello', 'b'=>'goodbye', 'c'=>'fare thee well'}
end

Default and Multiple Arguments

Ruby lets you specify default values for arguments. Default values can be
assigned in the parameter list of a method using the usual assignment
operator:

def aMethod(a=10, b=20)

If an unassigned variable is passed to that method, the default value will
be assigned to it. If an assigned variable is passed, however, the assigned value
takes precedence over the default. Here I use the p() method to inspect and
print the return values:

def aMethod(a=10, b=20)
 return a, b
end

Pass ing Arguments and Return ing Values 125

p(aMethod) #=> displays: [10, 20]
p(aMethod(1)) #=> displays: [1, 20]
p(aMethod(1, 2)) #=> displays: [1, 2]

In some cases, a method may need to be capable of receiving an uncertain
number of arguments—say, for example, a method that processes a variable-
length list of items. In this case, you can “mop up” any number of trailing
items by preceding the final argument with an asterisk:

default_args.rb def aMethod(a=10, b=20, c=100, *d)
 return a, b, c, d
end

p(aMethod(1,2,3,4,6)) #=> displays: [1, 2, 3, [4, 6]]

Assignment and Parameter Passing

Most of the time, Ruby methods come with two access points—like the doors
into and out of a room. The argument list provides the way in; the return value
provides the way out. Modifications made to the input arguments do not affect
the original data for the simple reason that when Ruby evaluates an expres-
sion, the result of that evaluation creates a new object, so any changes made
to an argument affect only the new object, not the original piece of data. But
there are exceptions to this rule, which I’ll show you now.

Let’s start by looking at the simplest case—a method that takes one value
as a named parameter and returns another value:

in_out.rb def change(x)
 x += 1
 return x
end

On the face of it, you might think you are dealing with a single object,
x, here: The object x goes into the change method, and the same object x is
returned. In fact, that is not the case. One object goes in (the argument),
and a different object comes out (the return value). You can easily verify this
using the object_id method to show a number that uniquely identifies each
object in your program:

num = 10
puts("num.object_id=#{num.object_id}")
num = change(num)
puts("num.object_id=#{num.object_id}")

The identifier of the variable, num, is different before and after you call the
change method. This shows that even though the variable name remains the
same, the num object that is returned by the change method is different from
the num object that was sent to it.

126 Chapter 8

The method call itself has nothing to do with the change of the object.
You can verify this by running method_call.rb. This simply passes the num object
to the change method and returns it:

method_call.rb def nochange(x)
 return x
end

In this case, the object_id is the same after num is returned as it was before
num was sent to the method. In other words, the object that went into the
method is the same object as the one that came out again. That leads to the
inevitable conclusion that there is something about the assignment in the
change method (x += 1) that caused the creation of a new object.

But assignment itself isn’t the whole explanation. If you simply assign a
variable to itself, no new object is created:

assignment.rb num = 10
num = num # a new num object is not created

If you now display the object_id of the num variable, the number is the
same before an after assignment, proving that this really is the same object.
So, what if you assign to the object the same value that it already has?

num = 10
num = 10 # a new num object is not created

Once again, the object_id is unchanged after the assignment. This dem-
onstrates that assignment alone does not necessarily create a new object. Now
let’s try assigning a new value:

num = 10
num += 1 # this time a new num object is created

This time, if you display num.object_id before and after the assignment, you
will see a different number—say 21 before and 23 after. The actual numbers
are automatically determined by Ruby and may vary. The important thing to
understand is that a different object ID indicates a different object. If the same
variable returns a different object_id when a value is assigned to it, that means
a new object has been created.

Most data items are treated as unique, so one string “hello” is considered
to be different from another string “hello,” and one float 10.5 is considered to
be different from another float 10.5. Thus, any string or float assignment will
create a new object.

But when working with integers, only when the assignment value is
different from the previous value is a new object created. You can do all kinds
of complicated operations on the right side of the assignment, but if the
yielded value is the same as the original value, no new object is created.

Pass ing Arguments and Return ing Values 127

num = 11
puts("num.object_id=#{num.object_id}")
num = (((num + 1 - 1) * 100) / 100)
puts("num.object_id=#{num.object_id}")

In the previous code, the first assignment creates a new num object with the
integer value 11. Even though the result of a fairly complex expression is used
in the next assignment, this still has the value 11. Since the value of num is not
changed, no new objects are created, and its object_id remains the same:

num.object_id=23
num.object_id=23

Integers Are Special

In Ruby, an integer (or Fixnum) has a fixed identity. Every instance of the
number 10 or every variable to which the value 10 is assigned will have the
same object_id. The same cannot be said of other data types. Each instance of
a floating-point number such as 10.5 or of a string such as “hello world” will
be a different object with a unique object_id. Be aware that when you assign
an integer to a variable, that variable will have the object_id of the integer itself.
But when you assign some other type of data to a variable, a new object will
be created even if the data itself is the same at each assignment:

object_ids.rb # 10 and x after each assignment are the same object
puts(10.object_id)
x = 10
puts(x.object_id)
x = 10
puts(x.object_id)

10.5 and x after each assignment are 3 different objects!
puts(10.5.object_id)
x = 10.5
puts(x.object_id)
x = 10.5
puts(x.object_id)

But why does all this matter?
It matters because of a few rare exceptions to the rule. As I said earlier,

most of the time, a method has a well-defined way in and a well-defined way
out. Once an argument goes inside a method, it enters a closed room. Any
code outside that method has no way of learning about any changes that
have been made to the argument until it comes out again in the form of a
returned value. This is, in fact, one of the deep secrets of “pure” object orien-
tation. The implementation details of methods should, in principle, be hid-
den away, or encapsulated. This ensures that code outside an object cannot be
dependent on things that happen inside that object.

128 Chapter 8

The One-Way-In, One-Way-Out Principle

In most modern object-oriented languages such as Java and C#, encap-
sulation and information hiding are not rigorously enforced. In Smalltalk,
on the other hand—the most famous and influential object-oriented lan-
guage—encapsulation and information hiding are fundamental principles:
If you send a variable x to a method y and the value of x is changed inside y,
you cannot obtain the changed value of x from outside the method—unless
the method explicitly returns that value.

Usually, Ruby adheres to this principle: Arguments go into a method,
but any changes made inside the method cannot be accessed from the out-
side unless Ruby returns the changed value:

hidden.rb def hidden(aStr, anotherStr)
 anotherStr = aStr + " " + anotherStr
 return anotherStr.reverse
end

str1 = "dlrow"
str2 = "olleh"
str3 = hidden(str1, str2)
puts(str1) #=> dlrow
puts(str2) #=> olleh
puts(str3) #=> hello world

In the previous code, the string value of the second object, str2, is received
by the anotherStr argument of the hidden method. The argument is assigned a
new string value and reversed. Even so, neither of the original variables, str1
or str2, is changed. Only the variable assigned the return value, str3, con-
tains the changed “hello world” string.

E N C A P S U L A T I O N O R I N F O R M A T I O N H I D I N G ?

Often these two terms are used interchangeably. To be nitpicky, however, there is a
difference. Encapsulation refers to the grouping together of an object’s “state” (its
data) and the operations that may alter or interrogate its state (its methods). Informa-
tion hiding refers to the fact that data is sealed off and can be accessed only using
well-defined routes in and out—in object-oriented terms, this implies “accessor meth-
ods” to get or return values. In procedural languages, information hiding may take
other forms; for example, you might have to define interfaces to retrieve data from
code “units” or “modules” rather than from objects.

In object-oriented terms, encapsulation and information hiding are almost synon-
ymous—true encapsulation necessarily implies that the internal data of an object is
hidden. However, many modern object-oriented languages such as Java, C#, C++,
and Object Pascal are quite permissive in the degree to which information hiding is
enforced (if at all).

Pass ing Arguments and Return ing Values 129

It turns out that there are occasions when arguments passed to a Ruby
method can be used like the “by reference” arguments of other languages
(that is, changes made inside the method may affect variables outside the
method). This is because some Ruby methods modify the original object
rather than yielding a value and assigning this to a new object.

For example, there are some methods ending with an exclamation mark
that alter the original object. Similarly, the String append method << concat-
enates the string on its right to the string on its left but does not create a new
string object in the process: So, the value of the string on the left is modified,
but the string object itself retains its original object_id.

The consequence of this is that if you use the << operator instead of the +
operator in a method, your results will change:

not_hidden.rb def nothidden(aStr, anotherStr)
 anotherStr = aStr << " " << anotherStr
 return anotherStr.reverse
end

str1 = "dlrow"
str2 = "olleh"
str3 = nothidden(str1, str2)
puts(str1) #=> dlrow olleh
puts(str2) #=> olleh
puts(str3) #=> hello world

In the previous code, the anotherStr argument is concatenated with a
space and the aStr argument using <<, and the resulting string is reversed
when returned. If information hiding were rigorously enforced, this might
be expected to produce the same results as in the previous program—that
is, str1 and str2 would remain unchanged. However, the use of << has had
profound effects because it has caused the modifications made to the aStr
argument inside the nothidden method to change the value of the str1 object
outside the method.

This behavior, incidentally, would be the same if the nothidden method
were placed into a separate class:

nothidden2.rb class X
 def nothidden(aStr, anotherStr)
 anotherStr = aStr << " " << anotherStr
 return anotherStr.reverse
 end
end
ob = X.new
str1 = "dlrow"
str2 = "olleh"
str3 = ob.nothidden(str1, str2)
puts(str1) #=> dlrow olleh

130 Chapter 8

This shows that, in certain cases, the internal implementation details of
an object’s methods may accidentally alter the code that calls it. It is gener-
ally safer to make implementation details hidden; otherwise, when code is
rewritten inside a class, the changes may have side effects on code that uses
that class.

Modifying Receivers and Yielding New Objects

You may recall from Chapter 4 that I made the distinction between methods
that modify their receiver and those that do not. (Remember that a receiver
is the object that “owns” the method.) In most cases, Ruby methods do not
modify the receiver object. However, some methods, such as those ending
with !, do modify their receiver.

The str_reverse.rb sample program should help clarify this. This shows that
when you use the reverse method, for example, no change is made to the
receiver object (that is, an object such as str1). But when you use the reverse!
method, a change is made to the object (its letters are reversed). Even so, no
new object is created: str1 is the same object before and after the reverse!
method is called.

Here reverse operates like most Ruby methods: It yields a value, and
in order to use that value, you must assign it to a new object. Consider the
following:

str_reverse.rb str1 = "hello"
str1.reverse

Here, str1 is unaffected by calling reverse. It still has the value “hello”
and still has its original object_id. Now look at this:

str1 = "hello"
str1.reverse!

This time, str1 is changed (it becomes “olleh”). Even so, no new object is
created: str1 has the same object_id with which it started. So, how about this:

str1 = "hello"
str1 = str1.reverse

This time, the value yielded by str1.reverse is assigned to str1. The
yielded value is a new object, so str1 is now assigned the reversed string
(“olleh”), and it now has a new object_id.

Refer to the sample program concat.rb for an example of the string con-
catenation method, <<, which, just like those methods that end with !, modi-
fies the receiver object without creating a new object (once again, the actual
object_id numbers may be different when you run the code):

concat.rb str1 = "hello" #object_id = 23033940
str2 = "world" #object_id = 23033928
str3 = "goodbye" #object_id = 23033916

Pass ing Arguments and Return ing Values 131

str3 = str2 << str1
puts(str1.object_id) #=> 23033940 # unchanged
puts(str2.object_id) #=> 23033928 # unchanged
puts(str3.object_id) #=> 23033928 # now the same as str2!

In this example, str1 is never modified, so it has the same object_id
throughout; str2 is modified through concatenation. However, the << oper-
ator does not create a new object, so str2 also retains its original object_id.

But str3 is a different object at the end than at the beginning, because
it is assigned the value yielded by this expression: str2 << str1. This value
happens to be the str2 object itself, so the object_id of str3 is now identical
to that of str2 (that is, str2 and str3 now reference the same object).

In summary, then, methods ending with a ! such as reverse!, plus some
other methods such as the << concatenation method, change the value of the
receiver object. Most other methods do not change the value of the receiver
object. To use any new value yielded as a result of calling one of these meth-
ods, you have to assign that value to a variable (or pass the yielded value as an
argument to a method).

NOTE The fact that a few methods modify the receiver object whereas most do not may seem
harmless enough, but beware: This behavior provides you with the ability to retrieve
the values of arguments “by reference” rather than retrieving values that are explicitly
returned. Doing so breaks encapsulation by allowing your code to rely upon the inter-
nal implementation details of a method. This can potentially lead to unpredictable
side effects and, in my view, should be avoided.

Potential Side Effects of Reliance on Argument Values

For a simple (but, in real-world programming, potentially serious) example
of how relying on the modified values of arguments rather than on explicit
return values can introduce undesirable dependencies on implementation
details, see side_effects.rb. Here is a method called stringProcess that takes two
string arguments, messes about with them, and returns the results:

side_effects.rb def stringProcess(aStr, anotherStr)
 aStr.capitalize!
 anotherStr.reverse!.capitalize!
 aStr = aStr + " " + anotherStr.reverse!
 return aStr
end

Let’s assume the object of the exercise is to take two lowercase strings
and return a single string that combines these two strings, separated by a
space and with the first and last letters capitalized. So, the two original strings
might be “hello” and “world,” and the returned string is “Hello worlD.” This
works fine:

str1 = "hello"
str2 = "world"

132 Chapter 8

str3 = stringProcess(str1, str2)
puts("#{str3}") #=> Hello worlD

But now there is an impatient programmer who can’t be bothered with
return values. He notices that the modifications made inside the method
change the values of the ingoing arguments. So, heck! (he decides), he
might as well use the arguments themselves! This is his version:

puts("#{str1} #{str2}") #=> Hello worlD

By using the values of the input arguments, str1 and str2, he has obtained
the same result as if he had used the returned value, str3. He then goes away
and writes a fabulously complicated text-processing system with thousands of
bits of code reliant on the changed values of those two arguments.

But now the programmer who originally wrote the stringProcess method
decides that the original implementation was inefficient or inelegant and
so rewrites the code confident in the knowledge that the return value is
unchanged (if “hello” and “world” are sent as arguments, “Hello worlD” is
returned just as it was by the previous version):

def stringProcess(aStr, anotherStr)
 myStr = aStr.capitalize!
 anotherStr.reverse!.capitalize!
 myStr = myStr + " " + anotherStr.reverse
 return myStr
end

str1 = "hello"
str2 = "world"
str3 = stringProcess(str1, str2)

puts("#{str3}") #=> Hello worlD
puts("#{str1} #{str2}") #=> Hello Dlrow

Aha! But the new implementation causes the values of the input argu-
ments to be changed inside the body of the method. So, the impatient pro-
grammer’s text-processing system, which relies on those arguments rather
than on the return value, is now filled with bits of text saying “hello Dlrow”
instead of the “Hello worlD” he was expecting (actually, it turns out that his
program was processing the works of Shakespeare, so a generation of actors
will end up declaiming, “To eb or ton to eb, that si the noitseuq...”). This is
the kind of unexpected side effect that can easily be avoided by following the
one-way-in, one-way-out principle.

Pass ing Arguments and Return ing Values 133

Parallel Assignment

I mentioned earlier that it is possible for a method to return multiple values,
separated by commas. Often you will want to assign these returned values to
a set of matching variables.

In Ruby, you can do this in a single operation by parallel assignment.
This means you can have several variables to the left or an assignment opera-
tor and several values to the right. The values to the right will be assigned, in
order, to the variables on the left, like this:

parallel_assign.rb s1, s2, s3 = "Hickory", "Dickory", "Dock"

This ability not only gives you a shortcut way to make multiple assign-
ments; it also lets you swap the values of variables (you just change their
orders on either side of the assignment operator):

i1 = 1
i2 = 2

i1, i2 = i2, i1 #=> i1 is now 2, i2 is 1

And you can make multiple assignments from the values returned by a
method:

def returnArray(a, b, c)
 a = "Hello, " + a
 b = "Hi, " + b
 c = "Good day, " + c
 return a, b, c
end
x, y, z = returnArray("Fred", "Bert", "Mary")

If you specify more variables to the left than there are values on the right
of an assignment, any “trailing” variables will be assigned nil:

x, y, z, extravar = returnArray("Fred", "Bert", "Mary") # extravar = nil

Multiple values returned by a method are put into an array. When you
put an array to the right of a multiple-variable assignment, its individual ele-
ments will be assigned to each variable, and once again if too many variables
are supplied, the extra ones will be assigned nil:

s1, s2, s3 = ["Ding", "Dong", "Bell"]

134 Chapter 8

D I G G I N G D E E P E R
In this section we look at some of the inner workings of parameter-passing
and object equality. I also discuss the value of parentheses for code clarity.

By Reference or By Value?
Earlier, I said that Ruby does not make a distinction between arguments that
are passed “by value” and “by reference.” Even so, if you search the Internet,
you’ll soon discover that Ruby programmers often get into arguments about
how exactly arguments are passed. In many procedural programming lan-
guages such as Pascal or C, there is a clear distinction between arguments
passed by value or by reference.

A by value argument is a copy of the original variable; you can pass it to
a function and mess around with it, and the value of the original variable
remains unchanged.

A by reference argument, on the other hand, is a pointer to the original vari-
able. When this gets passed to a procedure, you are not passing a new copy
but a reference to the bit of memory in which the original data is stored. So,
any changes made inside the procedure are made to the original data and
necessarily affect the value of the original variable.

So, which way does Ruby pass arguments? It’s actually pretty easy to resolve
this issue. If Ruby passes by value, then it makes a copy of the original vari-
able, and that copy will therefore have a different object_id. In fact, this is not
the case. Try the arg_passing.rb program to prove this point.

arg_passing.rb def aMethod(anArg)
 puts("#{anArg.object_id}\n\n")
end

class MyClass
end

i = 10
f = 10.5
s = "hello world"
ob = MyClass.new

puts("#{i}.object_id = #{i.object_id}")
aMethod(i)
puts("#{f}.object_id = #{f.object_id}")
aMethod(f)
puts("#{s}.object_id = #{s.object_id}")
aMethod(s)
puts("#{ob}.object_id = #{ob.object_id}")
aMethod(ob)

Pass ing Arguments and Return ing Values 135

This prints out the object IDs of an integer, a floating-point number, a
string, and a custom object both when they are originally declared and when
they are passed as arguments to the aMethod() method. In each case, the ID of
the argument is the same as the ID of the original variable, so the arguments
must be passed by reference.

Now, it may well be that in certain circumstances the passing of argu-
ments could, “behind the scenes” so to speak, be implemented as “by value.”
However, such implementation details should be of interest to writers of
Ruby interpreters and compilers rather than to Ruby programmers. The
plain fact of the matter is that if you program in a “pure” object-oriented
way—by passing arguments into methods but only subsequently using the
values that those methods return—the implementation details (by value or
by reference) will be of no consequence to you.

Nevertheless, because Ruby can occasionally modify arguments (for
example, using ! methods or <<, as explained in “Modifying Receivers and
Yielding New Objects” on page 130), some programmers have formed the
habit of using the modified values of the arguments themselves (equivalent
to using by reference arguments in C) rather than using the values returned.
In my view, this is a bad practice. It makes your programs reliant upon the
implementation details of methods and should, therefore, be avoided.

Are Assignments Copies or References?
I said earlier that a new object is created when a value is yielded by some expres-
sion. So, for example, if you assign a new value to a variable called x, the object
after the assignment will be a different object from the one before the assign-
ment (that is, it will have a different object_id):

x = 10 # this x has one object_id
x +=1 # and this x has a different one

But it isn’t the assignment that creates a new object. It is the value that is
yielded that causes a new object to be created. In the previous example, +=1 is
an expression that yields a value (x+=1 is equivalent to the expression x=x+1).

Simple assignment of one variable to another does not create a new
object. So, let’s assume you have one variable called num and another called
num2. If you assign num2 to num, both variables will refer to the same object. You
can test this using the equal? method of the Object class:

assign_ref.rb num = 11.5
num2 = 11.5

 # num and num 2 are not equal
puts("#{num.equal?(num2)}") #=> false

num = num2
 # but now they are equal
puts("#{num.equal?(num2)}") #=> true

136 Chapter 8

Tests for Equality: == or equal?
By default (as defined in Ruby’s Kernel module), a test using == returns true
when both objects being tested are the same object. So, it will return false if
the values are the same but the objects are different:

equal_tests.rb ob1 = Object.new
ob2 = Object.new
puts(ob1==ob2) #=> false

In fact, == is frequently overridden by classes such as String and will then
return true when the values are the same but the objects are different:

s1 = "hello"
s2 = "hello"
puts(s1==s2) #=> true

For that reason, the equal? method is preferable when you want to estab-
lish whether two variables refer to the same object:

puts(ob1.equal?(ob2)) #=> false
puts(s1.equal?(s2)) #=> false

When Are Two Objects Identical?
As a general rule, if you initialize 10 variables with 10 values, each variable will
refer to a different object. For example, if you create two strings like this:

identical.rb s1 = "hello"
s2 = "hello"

then s1 and s2 will refer to independent objects. The same goes for two floats:

f1 = 10.00
f2 = 10.00

But, as mentioned earlier, integers are different. Create two integers
with the same value, and they will end up referencing the same object:

i1 = 10
i2 = 10

This is even true with literal integer values. If in doubt, use the equals?
method to test whether two variables or values reference exactly the same
object:

10.0.equal?(10.0) # compare floats – returns false
10.equal?(10) # compare integers (Fixnums) – returns true

Pass ing Arguments and Return ing Values 137

Parentheses Avoid Ambiguity
Methods may share the same name as local variables. For example, you might
have a variable called name and a method called name. If it is your habit to call
methods without parentheses, it may not be obvious whether you are refer-
ring to a method or a variable. Once again, parentheses avoid ambiguity:

parentheses.rb greet = "Hello"
name = "Fred"

def greet
 return "Good morning"
end

def name
 return "Mary"
end

def sayHi(aName)
 return "Hi, #{aName}"
end

puts(greet) #=> Hello
puts greet #=> Hello
puts greet() #=> good morning
puts(sayHi(name)) #=> Hi, Fred
puts(sayHi(name())) #=> Hi, Mary

E X C E P T I O N H A N D L I N G

Even the most carefully written program will
sometimes encounter unforeseen errors. For

example, if you write a program that needs to
read some data from disk, it works on the assump-

tion that the specified disk is actually available and the
data is valid. If your program does calculations based on
user input, it works on the assumption that the input is
suitable to be used in a calculation.

Although you may try to anticipate some potential problems before they
arise—for example, by writing code to check that a file exists before reading
data from it or checking that user input is numerical before doing a calcula-
tion—you will never be able to predict every possible problem in advance.

140 Chapter 9

The user may remove a data disk after you’ve already started reading data
from it, for example; or some obscure calculation may yield 0 just before your
code attempts to divide by this value. When you know that there is the possi-
bility that your code may be “broken” by some unforeseen circumstances at
runtime, you can attempt to avoid disaster by using exception handling.

An exception is an error that is packaged into an object. The object is an
instance of the Exception class (or one of its descendants). You can handle
exceptions by trapping the Exception object, optionally using information
that it contains (to print an appropriate error message, for instance) and tak-
ing any actions needed to recover from the error—perhaps by closing any
files that are still open or assigning a sensible value to a variable that may
have been assigned some nonsensical value as the result of an erroneous
calculation.

rescue: Execute Code When Error Occurs

The basic syntax of exception handling can be summarized as follows:

begin
 # Some code which may cause an exception
rescue <Exception Class>
 # Code to recover from the exception
end

When an exception is unhandled, your program may crash, and Ruby is
likely to display a relatively unfriendly error message:

div_by_zero.rb x = 1/0
puts(x)

The program terminates with this error:

C:/bookofruby/ch9/div_by_zero.rb:3:in `/': divided by 0 (ZeroDivisionError)
from C:/bookofruby/ch9/div_by_zero.rb:3:in `<main>'

To prevent this from happening, you should handle exceptions yourself.
Here is an example of an exception handler that deals with an attempt to
divide by zero:

exception1.rb begin
 x = 1/0
rescue Exception
 x = 0
 puts($!.class)
 puts($!)
end
puts(x)

Except ion Handl ing 141

When this runs, the code following rescue Exception executes and dis-
plays this:

ZeroDivisionError
divided by 0
0

The code between begin and end is my exception-handling block. I’ve
placed the troublesome code after begin. When an exception occurs, it is
handled in the section beginning with rescue. The first thing I’ve done is
to set the variable x to a meaningful value. Next come these two inscrutable
statements:

puts($!.class)
puts($!)

In Ruby, $! is a global variable to which is assigned the last exception.
Printing $!.class displays the class name, which here is ZeroDivisionError;
printing the variable $! alone has the effect of displaying the error message
contained by the Exception object, which here is “divided by 0.”

I am not generally keen on relying upon global variables, particularly
when they have names as undescriptive as $!. Fortunately, there is an alter-
native. You can associate a variable name with the exception by placing the
“assoc operator” (=>) after the class name of the exception and before the
variable name:

exception2.rb rescue Exception => exc

You can now use the variable name (here exc) to refer to the Exception
object:

puts(exc.class)
puts(exc)

Although it may seem pretty obvious that when you divide by zero, you
are going to get a ZeroDivisionError exception, in real-world code there may
be times when the type of exception is not so predictable. Let’s suppose, for
instance, that you have a method that does a division based on two values
supplied by a user:

def calc(val1, val2)
 return val1 / val2
end

This could potentially produce a variety of different exceptions. Obviously,
if the second value entered by the user is 0, you will get a ZeroDivisionError.

142 Chapter 9

However, if the second value is a string, the exception will be a TypeError,
whereas if the first value is a string, it will be a NoMethodError (because the
String class does not define the “division operator,” which is /). Here the
rescue block handles all possible exceptions:

multi_except.rb def calc(val1, val2)
 begin
 result = val1 / val2
 rescue Exception => e
 puts(e.class)
 puts(e)
 result = nil
 end
 return result
end

You can test this by deliberately generating different error conditions:

calc(20, 0)
 #=> ZeroDivisionError
 #=> divided by 0
calc(20, "100")
 #=> TypeError
 #=> String can't be coerced into Fixnum
calc("100", 100)
 #=> NoMethodError
 #=> undefined method `/' for "100":String

Often it will be useful to take different actions for different exceptions.
You can do that by adding multiple rescue clauses. Each rescue clause can
handle multiple exception types, with the exception class names separated

E X C E P T I O N S H A V E A F A M I L Y T R E E

To understand how rescue clauses trap exceptions, just remember that exceptions
are objects, and like all other objects, they are defined by a class. There is also
a clear “line of descent” that starts with the base class: Object (in Ruby 1.8) or
BasicObject (Ruby 1.9). Run exception_tree.rb to display the ancestors of an excep-
tion. This is what is displayed by Ruby 1.9:

ZeroDivisionError
StandardError
Exception
Object
BasicObject

exception_tree.rb

Except ion Handl ing 143

by commas. Here my calc method handles TypeError and NoMethodError
exceptions in one clause with a catchall Exception handler to deal with other
exception types:

multi_except2.rb def calc(val1, val2)
 begin
 result = val1 / val2
 rescue TypeError, NoMethodError => e
 puts(e.class)
 puts(e)
 puts("One of the values is not a number!")
 result = nil
 rescue Exception => e
 puts(e.class)
 puts(e)
 result = nil
 end
 return result
end

This time, when a TypeError or NoMethodError is handled (but no
other sort of error), my additional error message is displayed like this:

NoMethodError
undefined method `/' for "100":String
One of the values is not a number!

When handling multiple exception types, you should always put the
rescue clauses dealing with specific exceptions first and then follow these
with rescue clauses dealing with more generalized exceptions.

When a specific exception such as TypeError is handled, the begin..end
exception block exits so the flow of execution won’t “trickle down” to more
generalized rescue clauses. However, if you put a generalized exception-
handling rescue clause first, that will handle all exceptions, so any more spe-
cific clauses lower down will never execute.

If, for example, I had reversed the order of the rescue clauses in my calc
method, placing the generalized Exception handler first, this would match all
exception types so the clause for the specific TypeError and NoMethodError
exceptions would never be run:

multi_except_err
.rb

This is incorrect...
rescue Exception => e
 puts(e.class)
 result = nil
 rescue TypeError, NoMethodError => e
 puts(e.class)
 puts(e)
 puts("Oops! This message will never be displayed!")
 result = nil
 end

144 Chapter 9

calc(20, 0) #=> ZeroDivisionError
calc(20, "100") #=> TypeError
calc("100", 100) #=> NoMethodError

ensure: Execute Code Whether or Not an Error Occurs

There may be some circumstances in which you want to take some particular
action whether or not an exception occurs. For example, whenever you are
dealing with some kind of unpredictable input/output—say, when working
with files and directories on disk—there is always the possibility that the loca-
tion (the disk or directory) or the data source (the file) either may not be
there at all or may provide some other kinds of problems—such as the disk
being full when you attempt to write to it or the file containing the wrong
kind of data when you attempt to read from it.

You may need to perform some final “cleanup” procedures whether
or not you have encountered any problems, such as logging onto a specific
working directory or closing a file that was previously opened. You can do
this by following a begin..rescue block of code with another block starting
with the ensure keyword. The code in the ensure block will always execute,
whether or not an exception has arisen beforehand.

Let’s look at two simple examples. In the first one, I try to log onto a disk
and display the directory listing. At the end of this, I want to be sure that my
working directory (given by Dir.getwd) is always restored to its original loca-
tion. I do this by saving the original directory in the startdir variable and
once again making this the working directory in the ensure block:

ensure.rb startdir = Dir.getwd

begin
 Dir.chdir("X:\\")
 puts(`dir`)
rescue Exception => e
 puts e.class
 puts e
ensure
 Dir.chdir(startdir)
end

When I run this, the following is displayed:

We start out here: C:/Huw/programming/bookofruby/ch9
Errno::ENOENT
No such file or directory - X:\
We end up here: C:/Huw/programming/bookofruby/ch9

Let’s now see how to deal with the problem of reading the incorrect data
from a file. This might happen if the data is corrupt, if you accidentally open
the wrong file, or—quite simply—if your program code contains a bug.

Except ion Handl ing 145

Here I have a file, test.txt, containing six lines. The first five lines are
numbers; the sixth line is a string, “six.” My code opens this file and reads
in all six lines:

ensure2.rb f = File.new("test.txt")
begin
 for i in (1..6) do
 puts("line number: #{f.lineno}")
 line = f.gets.chomp
 num = line.to_i
 puts("Line '#{line}' is converted to #{num}")
 puts(100 / num)
 end
rescue Exception => e
 puts(e.class)
 puts(e)
ensure
 f.close
 puts("File closed")
end

The lines are read in as strings (using gets), and the code attempts to con-
vert them to integers (using to_i). No error is produced when the conversion
fails; instead, Ruby returns the value 0. The problem arises in the next line of
code, which attempts a division by the converted number.

Having opened the data file at the outset, I want to ensure that the file is
closed whether or not an error occurs. If, for example, I read in only the first
five lines by editing the range in the for loop to (1..5), then there would be
no exception. I would still want to close the file. But it would be no good put-
ting the file-closing code (f.close) in the rescue clause because it would not,
in this case, be executed. By putting it in the ensure clause, however, I can be
certain that the file will be closed whether or not an exception occurs.

else: Execute Code When No Error Occurs

If the rescue section executes when an error occurs and ensure executes
whether or not an error occurs, how can you specifically execute some code
only when an error does not occur?

The way to do this is to add an optional else clause after the rescue sec-
tion and before the ensure section (if there is one), like this:

begin
 # code which may cause an exception
rescue [Exception Type]
else # optional section executes if no exception occurs
ensure # optional exception always executes
end

146 Chapter 9

This is an example:

else.rb def doCalc(aNum)
 begin
 result = 100 / aNum.to_i
 rescue Exception => e # executes when there is an error
 result = 0
 msg = "Error: " + e.to_s
 else # executes when there is no error
 msg = "Result = #{result}"
 ensure # always executes
 msg = "You entered '#{aNum}'. " + msg
 end
 return msg
end

Try running the previous program and enter a number such as 10, which
won’t cause an error, so msg will be assigned in the else clause; then try enter-
ing 0, which will cause an error, so msg will be assigned in the rescue clause.
Whether or not there is an error, the ensure section will execute to create a
msg string that begins with “You entered ” followed by any other messages.
For example:

You entered '5'. Result = 20
You entered '0'. Error: divided by 0

Error Numbers

If you ran the ensure.rb program earlier and you were watching closely, you
may have noticed something unusual when you tried to log onto a non-
existent drive (for example, on my system that might be the X:\ drive).
Often, when an exception occurs, the exception class is an instance of a
specific named type such as ZeroDivisionError or NoMethodError. In this
case, however, the class of the exception is shown to be Errno::ENOENT.

It turns out that there is quite a variety of Errno errors in Ruby. Try
disk_err.rb. This defines a method, chDisk, which attempts to log onto a disk
identified by the character, aChar. So if you pass “A” as an argument to chDisk,
it will try to log onto the A:\ drive. I’ve called the chDisk method three times,
passing to it a different string each time:

disk_err.rb def chDisk(aChar)
 startdir = Dir.getwd
 begin
 Dir.chdir("#{aChar}:\\")
 puts(`dir`)
 rescue Exception => e
 #showFamily(e.class) # to see ancestors, uncomment
 puts e.class # ...and comment out this
 puts e

Except ion Handl ing 147

 ensure
 Dir.chdir(startdir)
 end
end

chDisk("F")
chDisk("X")
chDisk("ABC")

You might, of course, need to edit the paths to something different on
your computer. On my PC, F:\ is my DVD drive. At the moment, it is empty,
and when my program tries to log onto it, Ruby returns an exception of this
type: Errno::EACCES.

 I have no X:\ drive on my PC, and when I try to log onto that, Ruby
returns an exception of this type: Errno::ENOENT.

 In the previous example, I pass the string parameter “ABC,” which
is invalid as a disk identifier, and Ruby returns an exception of this type:
Errno::EINVAL.

Errors of this type are descendants of the SystemCallError class. You
can easily verify this by uncommenting the line of code to show the class’s
family where indicated in the source code of disk_err.rb. This calls the same
showFamily method, which you used earlier in the exception_tree.rb program.

These Error classes, in effect, wrap up integer error values that are
returned by the underlying operating system. Both the names and the values
of constants may vary according to the operating system and the version of
Ruby. Here Errno is the name of the module containing the constants, such as
EACCES and ENOENT, which match the integer error values.

To see a complete list of Errno constants, run this:

errno.rb puts(Errno.constants)

To view the corresponding numerical value of any given constant, append
::Errno to the constant name, like this:

Errno::EINVAL::Errno

You can use the following code to display a list of all Errno constants
along with their numerical values (here the eval method evaluates the
expression passed to it—you’ll look at how this works in Chapter 20):

for err in Errno.constants do
 errnum = eval("Errno::#{err}::Errno")
 puts("#{err}, #{errnum}")
end

148 Chapter 9

retry: Attempt to Execute Code Again After an Error

If you think an error condition may be transient or may be corrected (by the
user, perhaps?), you can rerun all the code in a begin..end block using the
keyword retry, as in this example that prompts the user to re-enter a value if
an error such as ZeroDivisionError occurs:

retry.rb def doCalc
 begin
 print("Enter a number: ")
 aNum = gets().chomp()
 result = 100 / aNum.to_i
 rescue Exception => e
 result = 0
 puts("Error: " + e.to_s + "\nPlease try again.")
 retry # retry on exception
 else
 msg = "Result = #{result}"
 ensure
 msg = "You entered '#{aNum}'. " + msg
 end
 return msg
end

NOTE When you want to append the message from an exception object such as e to a
string such as "Error: ", Ruby 1.9 insists that you explicitly convert e to a string
("Error: " + e.to_s), whereas Ruby 1.8 does the conversion for you ("Error: " + e).

There is, of course, the danger that the error may not be as transient as
you think, so if you use retry, you may want to provide a clearly defined exit
condition to ensure that the code stops executing after a fixed number of
attempts.

You could, for example, increment a local variable in the begin clause. (If
you do this, make sure it is incremented before any code that is liable to gener-
ate an exception since once an exception occurs, the remainder of the code
prior to the rescue clause will be skipped!) Then test the value of that variable
in the rescue section, like this:

rescue Exception => e
 if aValue < someValue then
 retry
 end

Here is a complete example, in which I test the value of a variable named
tries to ensure no more than three tries to run the code without error before
the exception-handling block exits:

retry2.rb def doCalc
 tries = 0
 begin
 print("Enter a number: ")
 tries += 1

Except ion Handl ing 149

 aNum = gets().chomp()
 result = 100 / aNum.to_i
 rescue Exception => e
 msg = "Error: " + e.to_s
 puts(msg)
 puts("tries = #{tries}")
 result = 0
 if tries < 3 then # set a fixed number of retries
 retry
 end
 else
 msg = "Result = #{result}"
 ensure
 msg = "You entered '#{aNum}'. " + msg
 end
 return msg
end

If the user were to enter 0 three times in a row, this would be the output:

Enter a number: 0
Error: divided by 0
tries = 1
Enter a number: 0
Error: divided by 0
tries = 2
Enter a number: 0
Error: divided by 0
tries = 3
You entered '0'. Error: divided by 0

raise: Reactivate a Handled Error

Sometimes you may want to keep an exception “alive” even after it has been
trapped in an exception-handling block. You can do this, for example, to defer
the handling of the exception, say by passing it on to some other method. You
can do this using the raise method. You need to be aware, however, that, once
raised, an exception needs to be rehandled; otherwise, it may cause your pro-
gram to crash. Here is a simple example of raising a ZeroDivisionError excep-
tion and passing on the exception to a method called, in this case, handleError:

raise.rb begin
 divbyzero
rescue Exception => e
 puts("A problem just occurred. Please wait...")
 x = 0
 begin
 raise
 rescue
 handleError(e)
 end
end

150 Chapter 9

Here divbyzero is the name of a method in which the divide-by-zero oper-
ation takes place, and handleError is a method that prints more detailed infor-
mation on the exception:

def handleError(e)
 puts("Error of type: #{e.class}")
 puts(e)
 puts("Here is a backtrace: ")
 puts(e.backtrace)
end

Notice that this uses the backtrace method, which displays an array of
strings showing the filenames and line numbers where the error occurred
and, in this case, the line that called the error-producing divbyzero method.
This is an example of this program’s output:

A problem just occurred. Please wait...
Error of type: ZeroDivisionError
divided by 0
Here is a backtrace:
C:/Huw/programming/bookofruby/ch9/raise.rb:11:in `/'
C:/Huw/programming/bookofruby/ch9/raise.rb:11:in `divbyzero'
C:/Huw/programming/bookofruby/ch9/raise.rb:15:in `<main>'

You can also specifically raise your exceptions to force an error condition
even when the program code has not caused an exception. Calling raise on
its own raises an exception of the type RuntimeError (or whatever exception
is in the global variable $!):

raise # raises RuntimeError

By default, this will have no descriptive message associated with it. You
can add a message as a parameter, like this:

raise "An unknown exception just occurred!"

You can raise a specific type of error:

raise ZeroDivisionError

You can also create an object of a specific exception type and initialize it
with a custom message:

raise ZeroDivisionError.new("I'm afraid you divided by Zero")

Except ion Handl ing 151

This is a simple example:

raise2.rb begin
 raise ZeroDivisionError.new("I'm afraid you divided by Zero")
rescue Exception => e
 puts(e.class)
 puts("message: " + e.to_s)
end

This outputs the following:

ZeroDivisionError
message: I'm afraid you divided by Zero

If the standard exception types don’t meet your requirements, you can,
of course, create new ones just by subclassing existing exceptions. Provide
your classes with a to_str method in order to give them a default message.

raise3.rb class NoNameError < Exception
 def to_str
 "No Name given!"
 end
end

Here is an example of how you might raise a custom exception:

def sayHello(aName)
 begin
 if (aName == "") or (aName == nil) then
 raise NoNameError
 end
 rescue Exception => e
 puts(e.class)
 puts("error message: " + e.to_s)
 puts(e.backtrace)
 else
 puts("Hello #{aName}")
 end
end

If you now enter sayHello(nil), this would be the output:

NoNameError
error message: NoNameError
C:/Huw/programming/bookofruby/ch9/raise3.rb:12:in `sayHello'
C:/Huw/programming/bookofruby/ch9/raise3.rb:23:in `<main>'

152 Chapter 9

D I G G I N G D E E P E R
When trapping exceptions, the begin keyword may, in some circumstances,
be omitted. Here you will learn about this syntax. I will also clarify some
potential confusion about catch and throw.

Omitting begin and end
You can optionally omit begin and end when trapping exceptions inside a
method, a class, or a module. For example, all the following are legal:

omit_begin_end
.rb

def calc
 result = 1/0
 rescue Exception => e
 puts(e.class)
 puts(e)
 result = nil
 return result
end

class X
 @@x = 1/0
 rescue Exception => e
 puts(e.class)
 puts(e)
end

module Y
 @@x = 1/0
 rescue Exception => e
 puts(e.class)
 puts(e)
end

In all the previous cases, the exception-handling will also work if you place
the begin and end keywords at the start and end of the exception-handling code
in the usual way.

catch..throw
In some languages, exceptions are trapped using the keyword catch and may
be raised using the keyword throw. Although Ruby provides catch and throw
methods, these are not directly related to its exception handling. Instead,
catch and throw are used to break out of a defined block of code when some
condition is met. You could, of course, use catch and throw to break out of a

Except ion Handl ing 153

block of code when an exception occurs (though this may not be the most
elegant way of handling errors). For example, this code will exit the block
delimited by curly brackets if a ZeroDivisionError occurs:

catch_except.rb catch(:finished) {
 print('Enter a number: ')
 num = gets().chomp.to_i
 begin
 result = 100 / num
 rescue Exception => e
 throw :finished # jump to end of block
 end
 puts("The result of that calculation is #{result}")
} # end of :finished catch block

See Chapter 6 for more on catch and throw.

B L O C K S , P R O C S , A N D
L A M B D A S

When programmers talk about blocks, they
often mean some arbitrary “chunks” of code.

In Ruby, however, a block is special. It is a unit of
code that works somewhat like a method but, unlike a
method, it has no name.

Blocks are very important in Ruby, but they can be difficult to under-
stand. In addition, there are some important differences in the behavior of
blocks in Ruby 1.8 and Ruby 1.9. If you fail to appreciate those differences,
your programs may behave in unexpected ways when run in different versions
of Ruby. This chapter looks at blocks in great detail. Not only does it explain
how they work and why they are special, but it also provides guidance on ensur-
ing that they continue to work consistently no matter which version of Ruby
you happen to be using.

156 Chapter 10

What Is a Block?

Consider this code:

1blocks.rb 3.times do |i|
 puts(i)
end

It’s probably pretty obvious that this code is intended to execute three
times. What may be less obvious is the value that i will have on each succes-
sive turn through the loop. In fact, the values of i in this case will be 0, 1, and
2. The following is an alternative form of the previous code. This time, the
block is delimited by curly brackets rather than by do and end.

3.times { |i|
 puts(i)
}

According to the Ruby documentation, times is a method of Integer (let’s
call the Integer int), which iterates a block “int times, passing in values from
0 to int -1.” So here, the code within the block is run three times. The first
time it is run, the variable i is given the value 0; each subsequent time, i is
incremented by 1 until the final value, 2 (that is, int-1), is reached.

The two code examples shown earlier are functionally identical. A block
can be enclosed either by curly brackets or by the do and end keywords, and
the programmer can use either syntax according to personal preference.

NOTE Some Ruby programmers like to delimit blocks with curly brackets when the entire code
of the block fits onto a single line and with do..end when the block spans multiple lines.
My personal prejudice is to be consistent, irrespective of code layout, so I generally use
curly brackets when delimiting blocks. Usually your choice of delimiters makes no differ-
ence to the behavior of the code—but see “Precedence Rules” on page 170.

If you are familiar with a C-like language such as C# or Java, you may, per-
haps, assume that Ruby’s curly brackets can be used, as in those languages,
simply to group together arbitrary “blocks” of code—for example, a block of
code to be executed when a condition evaluates to true. This is not the case.
In Ruby, a block is a special construct that can be used only in very specific
circumstances.

Line Breaks Are Significant

You must place the opening block delimiter on the same line as the method
with which it is associated.

For example, these are okay:

3.times do |i|
 puts(i)
end

Blocks, Procs, and Lambdas 157

3.times { |i|
 puts(i)
}

But these contain syntax errors:

3.times
do |i|
 puts(i)
end

3.times
{ |i|
 puts(i)
}

Nameless Functions

A Ruby block may be regarded as a sort of nameless function or method, and
its most frequent use is to provide a means of iterating over items from a list
or range of values. If you have never come across nameless functions, this may
sound like gobbledygook. With luck, by the end of this chapter, things will
have become a little clearer. Let’s look back at the simple example given ear-
lier. I said a block is like a nameless function. Take this block as an example:

{ |i|
 puts(i)
}

If that were written as a normal Ruby method, it would look something
like this:

def aMethod(i)
 puts(i)
end

To call that method three times and pass values from 0 to 2, you might
write this:

for i in 0..2
 aMethod(i)
end

When you create a nameless method (that is, a block), variables declared
between upright bars such as |i| can be treated like the arguments to a named
method. I will refer to these variables as block parameters.

158 Chapter 10

Look again at my earlier example:

3.times { |i|
 puts(i)
}

The times method of an integer passes values to a block from 0 to the
specified integer value minus 1.

So, this:

3.times{ |i| }

is very much like this:

for i in 0..2
 aMethod(i)
end

The chief difference is that the second example has to call a named
method to process the value of i, whereas the first example uses the name-
less method (the code between curly brackets) to process i.

Look Familiar?

Now that you know what a block is, you may notice that you’ve seen them
before. Many times. For example, you previously used do..end blocks to iter-
ate over ranges like this:

(1..3).each do |i|
 puts(i)
end

You have also used do..end blocks to iterate over arrays (see for_each2.rb
on page 69):

arr = ['one','two','three','four']
arr.each do |s|
 puts(s)
end

And you have executed a block repeatedly by passing it to the loop
method (see 3loops.rb on page 75):

i=0
loop {
 puts(arr[i])
 i+=1
 if (i == arr.length) then
 break
 end
}

Blocks, Procs, and Lambdas 159

The previous loop example is notable for two things: It has no list of
items (such as an array or a range of values) to iterate over, and it is pretty
darn ugly. These two features are not entirely unrelated! The loop method is
part of the Kernel class, which is “automatically” available to your programs.
Because it has no “end value,” it will execute the block forever unless you
explicitly break out of it using the break keyword. Usually there are more ele-
gant ways to perform this kind of iteration—by iterating over a sequence of
values with a finite range.

Blocks and Arrays

Blocks are commonly used to iterate over arrays. The Array class, conse-
quently, provides a number of methods to which blocks are passed.

One useful method is called collect; this passes each element of the array
to a block and creates a new array to contain each of the values returned by
the block. Here, for example, a block is passed to each of the integers in an
array (each integer is assigned to the variable x); the block doubles its value
and returns it. The collect method creates a new array containing each of
the returned integers in sequence:

2blocks.rb b3 = [1,2,3].collect{|x| x*2}

The previous example assigns this array to b3:

[2,4,6]

In the next example, the block returns a version of the original strings in
which each initial letter is capitalized:

b4 = ["hello","good day","how do you do"].collect{|x| x.capitalize }

So, b4 is now as follows:

["Hello", "Good day", "How do you do"]

The each method of the Array class may look rather similar to collect; it
too passes each array element in turn to be processed by the block. However,
unlike collect, the each method does not create a new array to contain the
returned values:

b5 = ["hello","good day","how do you do"].each{|x| x.capitalize }

This time, b5 is unchanged:

["hello", "good day", "how do you do"]

160 Chapter 10

Recall, however, that some methods—notably those ending with an excla-
mation mark (!)—actually alter the original objects rather than yielding new
values. If you wanted to use the each method to capitalize the strings in the
original array, you could use the capitalize! method:

b6 = ["hello","good day", "how do you do"].each{|x| x.capitalize! }

So, b6 is now as follows:

["Hello", "Good day", "How do you do"]

With a bit of thought, you could also use a block to iterate over the char-
acters in a string. First, you need to split off each character from a string. This
can be done using the split method of the String class like this:

"hello world".split(//)

The split method divides a string into substrings based on a delimiter
and returns an array of these substrings. Here // is a regular expression that
defines a zero-length string; this has the effect of returning a single charac-
ter, so you end up creating an array of all the characters in the string. You
can now iterate over this array of characters, returning a capitalized version
of each:

a = "hello world".split(//).each{ |x| newstr << x.capitalize }

At each iteration, a capitalized character is appended to newstr, and the
following is displayed:

H
HE
HEL
HELL
HELLO
HELLO
HELLO W
HELLO WO
HELLO WOR
HELLO WORL
HELLO WORLD

Because you are using the capitalize method here (with no terminating
! character), the characters in the array a remain as they began, all lowercase,
since the capitalize method does not alter the receiver object (here the
receiver objects are the characters passed into the block).

Blocks, Procs, and Lambdas 161

Be aware, however, that this code would not work if you were to use
the capitalize! method to modify the original characters. This is because
capitalize! returns nil when no changes are made, so when the space char-
acter is encountered, nil would be returned, and your attempt to append
(<<) a nil value to the string newstr would fail.

You could also capitalize a string using the each_byte method. This iter-
ates through the string characters, passing each byte to the block. These bytes
take the form of ASCII codes. So, “hello world” would be passed in the form
of these numeric values: 104 101 108 108 111 32 119 111 114 108 100.

Obviously, you can’t capitalize an integer, so you need to convert each
ASCII value to a character. The chr method of String does this:

a = "hello world".each_byte{|x| newstr << (x.chr).capitalize }

Procs and Lambdas

In the examples up to now, blocks have been used in cahoots with methods.
This has been a requirement since nameless blocks cannot have an indepen-
dent existence in Ruby. You cannot, for example, create a stand-alone block
like this:

{|x| x = x*10; puts(x)} # This is not allowed!

This is one of the exceptions to the rule that “everything in Ruby is an
object.” A block clearly is not an object. Every object is created from a class,
and you can find an object’s class by calling its class method.

Do this with a hash, for example, and the class name “Hash” will be
displayed:

puts({1=>2}.class)

Try this with a block, however, and you will only get an error message:

puts({|i| puts(i)}.class) #<= error!

Block or Hash?

Ruby uses curly brackets to delimit both blocks and hashes. So, how can you
(and Ruby) tell which is which? The answer, basically, is that it’s a hash when
it looks like a hash, and otherwise it’s a block. A hash looks like a hash when
curly brackets contain key-value pairs:

puts({1=>2}.class) #<= Hash

162 Chapter 10

or when they are empty:

block_or_hash.rb puts({}.class) #<= Hash

However, if you omit the parentheses, there is an ambiguity. Is this an
empty hash, or is it a block associated with the puts method?

puts{}.class

Frankly, I have to admit I don’t know the answer to that question, and I
can’t get Ruby to tell me. Ruby accepts this as valid syntax but does not, in
fact, display anything when the code executes. So, how about this?

print{}.class

Once again, this prints nothing at all in Ruby 1.9, but in Ruby 1.8 it dis-
plays nil (not, you will notice, the actual class of nil, which is NilClass, but nil
itself). If you find all this confusing (as I do!), just remember that this can all
be clarified by the judicious use of parentheses:

print({}.class) #<= Hash

Creating Objects from Blocks

Although blocks may not be objects by default, they can be “turned into”
objects. There are three ways of creating objects from blocks and assigning
them to variables—here’s how:

proc_create.rb a = Proc.new{|x| x = x*10; puts(x) } #=> Proc
b = lambda{|x| x = x*10; puts(x) } #=> Proc
c = proc{|x| x.capitalize! } #=> Proc

In each of the three cases, you will end up creating an instance of the
Proc class—which is the Ruby “object wrapper” for a block.

Let’s take a look at a simple example of creating and using a Proc object.
First, you can create an object calling Proc.new and passing to it a block as an
argument:

3blocks.rb a = Proc.new{|x| x = x*10; puts(x)}

Second, you can execute the code in the block to which a refers using
the Proc class’s call method with one or more arguments (matching the
block parameters) to be passed into the block; in the previous code, you
could pass an integer such as 100, and this would be assigned to the block
variable x:

a.call(100) #=> 1000

Blocks, Procs, and Lambdas 163

Finally, you can also create a Proc object by calling the lambda or proc
methods, which are supplied by the Kernel class. The name lambda is taken
from the Scheme (Lisp) language and is a term used to describe an anony-
mous method, or closure.

b = lambda{|x| x = x*10; puts(x) }
b.call(100) #=> 1000

c = proc{|x| x.capitalize! }
c1 = c.call("hello")
puts(c1) #=> Hello

Here is a slightly more complicated example that iterates over an array
of strings, capitalizing each string in turn. The array of capitalized strings is
then assigned to the d1 variable:

d = lambda{|x| x.capitalize! }
d1 = ["hello","good day","how do you do"].each{ |s| d.call(s)}
puts(d1.inspect) #=> ["Hello", "Good day", "How do you do"]

There is one important difference between creating a Proc object using
Proc.new and creating a Proc object using a lambda method—Proc.new does not
check that the number of arguments passed to the block matches the num-
ber of block parameters. lambda does. The behavior of the proc method is dif-
ferent in Ruby 1.8 and 1.9. In Ruby 1.8, proc is equivalent to lambda—it checks
the number of arguments. In Ruby 1.9, proc is equivalent to Proc.new—it does
not check the number of arguments:

proc_lamba.rb a = Proc.new{|x,y,z| x = y*z; puts(x) }
a.call(2,5,10,100) # This is not an error

b = lambda{|x,y,z| x = y*z; puts(x) }
b.call(2,5,10,100) # This is an error

puts('---Block #2---')
c = proc{|x,y,z| x = y*z; puts(x) }
c.call(2,5,10,100) # This is an error in Ruby 1.8
 # Not an error in Ruby 1.9

What Is a Closure?

A closure is a function that has the ability to store (that is, to “enclose”) values
of local variables within the scope in which the block was created (think of
this as the block’s “native scope”). Ruby’s blocks are closures. To understand
this, look at this example:

block_closure.rb x = "hello world"

ablock = Proc.new { puts(x) }

164 Chapter 10

def aMethod(aBlockArg)
 x = "goodbye"
 aBlockArg.call
end

puts(x)
ablock.call
aMethod(ablock)
ablock.call
puts(x)

Here, the value of the local variable x is “hello world” within the scope of
ablock. Inside aMethod, however, a local variable named x has the value “good-
bye.” In spite of that, when ablock is passed to aMethod and called within the
scope of aMethod, it prints “hello world” (that is, the value of x within the block’s
native scope) rather than “goodbye,” which is the value of x within the scope
of aMethod. The previous code, therefore, only ever prints “hello world.”

NOTE See “Digging Deeper” on page 175 for more on closures.

yield

Let’s see a few more blocks in use. The 4blocks.rb program introduces some-
thing new, namely, a way of executing a nameless block when it is passed to a
method. This is done using the keyword yield. In the first example, I define
this simple method:

4blocks.rb def aMethod
 yield
end

It doesn’t really have any code of its own. Instead, it expects to receive a
block, and the yield keyword causes the block to execute. This is how I pass a
block to it:

aMethod{ puts("Good morning") }

Notice that this time the block is not passed as a named argument. It
would be an error to try to pass the block between parentheses, like this:

aMethod({ puts("Good morning") }) # This won't work!

Instead, you simply put the block right next to the method to which you
are passing it, just as you did in the first example in this chapter. That method
receives the block without having to declare a named parameter for it, and it
calls the block with yield.

Blocks, Procs, and Lambdas 165

Here is a slightly more useful example:

def caps(anarg)
 yield(anarg)
end

caps("a lowercase string"){ |x| x.capitalize! ; puts(x) }

Here the caps method receives one argument, anarg, and passes this argu-
ment to a nameless block, which is then executed by yield. When I call the
caps method, I pass it a string argument ("a lowercase string") using the nor-
mal parameter-passing syntax. The nameless block is passed after the end of
the parameter list.

When the caps method calls yield(anarg), then the string argument is
passed into the block; it is assigned to the block variable x. This capitalizes it
and displays it with puts(s), which shows that the initial letter has been cap-
italized: “A lowercase string.”

Blocks Within Blocks

You’ve already seen how to use a block to iterate over an array. In the next
example (also in 4blocks.rb), I use one block to iterate over an array of strings,
assigning each string in turn to the block variable s. A second block is then
passed to the caps method in order to capitalize the string:

["hello","good day","how do you do"].each{
 |s|
 caps(s){ |x| x.capitalize!
 puts(x)
 }
}

This results in the following output:

Hello
Good day
How do you do

Passing Named Proc Arguments

Up to now, you have passed blocks to procedures either anonymously (in
which case the block is executed with the yield keyword) or in the form
of a named argument, in which case it is executed using the call method.
There is another way to pass a block. When the last argument in a method’s
list of parameters is preceded by an ampersand (&), it is considered to be a
Proc object. This gives you the option of passing an anonymous block to a

166 Chapter 10

procedure using the same syntax as when passing a block to an iterator, and
yet the procedure itself can receive the block as a named argument. Load
5blocks.rb to see some examples of this.

First, here is a reminder of the two ways you’ve already seen of passing
blocks. This method has three parameters, a, b, and c:

5blocks.rb def abc(a, b, c)
 a.call
 b.call
 c.call
 yield
end

You call this method with three named arguments (which here happen
to be blocks but could, in principle, be anything) plus an unnamed block:

a = lambda{ puts "one" }
b = lambda{ puts "two" }
c = proc{ puts "three" }
abc(a, b, c){ puts "four" }

The abc method executes the named block arguments using the call
method and the unnamed block using the yield keyword. The results are
shown in the #=> comments here:

a.call #=> one
b.call #=> two
c.call #=> three
yield #=> four

The next method, abc2, takes a single argument, &d. The ampersand here
is significant because it indicates that the &d parameter is a block. Instead of
using the yield keyword, the abc2 method is able to execute the block using
the name of the argument (without the ampersand):

def abc2(&d)
 d.call
end

So, a block argument with an ampersand is called in the same way as one
without an ampersand. However, there is a difference in the way the object
matching that argument is passed to the method. To match an ampersand-
argument, an unnamed block is passed by appending it to the method name:

abc2{ puts "four" }

Blocks, Procs, and Lambdas 167

You can think of ampersand-arguments as type-checked block parame-
ters. Unlike normal arguments (without an ampersand), the argument can-
not match any type; it can match only a block. You cannot pass some other
sort of object to abc2:

abc2(10) # This won't work!

The abc3 method is essentially the same as the abc method except it spec-
ifies a fourth formal block-typed argument (&d):

def abc3(a, b, c, &d)

The arguments a, b, and c are called, while the argument &d may be
either called or yielded, as you prefer:

def abc3(a, b, c, &d)
 a.call
 b.call
 c.call
 d.call # first call block &d
 yield # then yield block &d
end

This means the calling code must pass to this method three formal argu-
ments plus a block, which may be nameless:

abc3(a, b, c){ puts "five" }

The previous method call would result in this output (bearing in mind
that the final block argument is executed twice since it is both called and
yielded):

one
two
three
five
five

You can also use a preceding ampersand in order to pass a named block
to a method when the receiving method has no matching named argument,
like this:

myproc = proc{ puts("my proc") }
abc3(a, b, c, &myproc)

168 Chapter 10

An ampersand block variable such as &myproc in the previous code may be
passed to a method even if that method does not declare a matching variable
in its argument list. This gives you the choice of passing either an unnamed
block or a Proc object:

xyz{ |a,b,c| puts(a+b+c) }
xyz(&myproc)

Be careful, however! Notice in one of the previous examples, I have used
block parameters (|a,b,c|) with the same names as the three local variables
to which I previously assigned Proc objects: a, b, c:

a = lambda{ puts "one" }
b = lambda{ puts "two" }
c = proc{ puts "three" }
xyz{ |a,b,c| puts(a+b+c) }

In principle, block parameters should be visible only within the block
itself. However, it turns out that assignment to block parameters has pro-
foundly different effects in Ruby 1.8 and Ruby 1.9. Let’s look first at Ruby
1.8. Here, assignment to block parameters can initialize the values of any
local variables with the same name within the block’s native scope (see
“What Is a Closure?” on page 163).

Even though the variables in the xyz method are named x, y, and z, it
turns out that the integer assignments in that method are actually made to
the variables a, b, and c when this block:

{ |a,b,c| puts(a+b+c) }

is passed the values of x, y, and z:

def xyz
 x = 1
 y = 2
 z = 3
 yield(x, y, z) # 1,2,3 assigned to block parameters a,b,c
end

As a consequence, the Proc variables a, b, and c within the block’s native
scope (the main scope of my program) are initialized with the integer values
of the block variables x, y, and z once the code in the block has been run. So,
a, b, and c, which began as Proc objects, end up as integers.

In Ruby 1.9, on the contrary, the variables inside the block are sealed
off from the variables declared outside the block. So, the values of the xyz
method’s x, y, and z variables are not assigned to the block’s a, b, and c param-
eters. That means once the block has executed, the values of the a, b, and c
variables declared outside that method are unaffected: They began as Proc
objects, and they end up as Proc objects.

Blocks, Procs, and Lambdas 169

Now let’s suppose you execute the following code, remembering that a,
b, and c are Proc objects at the outset:

xyz{ |a,b,c| puts(a+b+c) }
puts(a, b, c)

In Ruby 1.8, the puts statement shown earlier displays the end values of a,
b, and c, showing that they have been initialized with the integer values that
were passed into the block when it was yielded (yield(x, y, z)) in the xyz
method. As a consequence, they are now integers:

1
2
3

But in Ruby 1.9, a, b, and c are not initialized by the block parameters
and remain, as they began, as Proc objects:

#<Proc:0x2b65828@C:/bookofruby/ch10/5blocks.rb:36 (lambda)>
#<Proc:0x2b65810@C:/bookofruby/ch10/5blocks.rb:37 (lambda)>
#<Proc:0x2b657f8@C:/bookofruby/ch10/5blocks.rb:38>

This behavior can be difficult to understand, but it is worth taking the
time to do so. The use of blocks is commonplace in Ruby, and it is important
to know how the execution of a block may (or may not) affect the values of
variables declared outside the block. To clarify this, try the simple program
in 6blocks.rb:

6blocks.rb a = "hello world"

def foo
 yield 100
end

puts(a)
foo{ |a| puts(a) }

puts(a)

Here a is a string within the scope of the main program. A different
variable with the same name, a, is declared in the block, which is passed to
foo and yielded. When it is yielded, an integer value, 100, is passed into the
block, causing the block’s parameter, a, to be initialized to 100. The question
is, does the initialization of the block argument, a, also initialize the string
variable, a, in the main scope? And the answer is, yes in Ruby 1.8 but no in
Ruby 1.9.

170 Chapter 10

Ruby 1.8 displays this:

hello world
100
100

Ruby 1.9 displays this:

hello world
100
hello world

If you want to make sure that block parameters do not alter the values of
variables declared outside the block, no matter which version of Ruby you
use, just ensure that the block parameter names do not duplicate names used
elsewhere. In the current program, you can do this simply by changing the
name of the block argument to ensure that it is unique to the block:

foo{ |b| puts(b) } # the name 'b' is not used elsewhere

This time, when the program is run, Ruby 1.8 and Ruby 1.9 both pro-
duce the same results:

hello world
100
hello world

This is an example of one of the pitfalls into which it is all too easy to fall
in Ruby. As a general rule, when variables share the same scope (for exam-
ple, a block declared within the scope of the main program here), it is best to
make their names unique in order to avoid any unforeseen side effects. For
more on scoping, see “Blocks and Local Variables” on page 177.

Precedence Rules

Blocks within curly brackets have stronger precedence than blocks within do
and end. Let’s see what that means in practice. Consider these two examples:

foo bar do |s| puts(s) end
foo bar{ |s| puts(s) }

Here, foo and bar are both methods, and the code between curly brackets
and do and end are blocks. So, to which of the two methods is each of these
blocks passed? It turns out that the do..end block would be passed to the left-
most method, foo, whereas the block in curly brackets would be sent to the
rightmost method, bar. This is because curly brackets are said to have higher
precedence than do and end.

Blocks, Procs, and Lambdas 171

Consider this program:

precedence.rb def foo(b)
 puts("---in foo---")
 a = 'foo'
 if block_given?
 puts("(Block passed to foo)")
 yield(a)
 else
 puts("(no block passed to foo)")
 end
 puts("in foo, arg b = #{b}")
 return "returned by " << a
end

def bar
 puts("---in bar---")
 a = 'bar'
 if block_given?
 puts("(Block passed to bar)")
 yield(a)
 else
 puts("(no block passed to bar)")
 end
 return "returned by " << a
end

foo bar do |s| puts(s) end # 1) do..end block
foo bar{ |s| puts(s) } # 2) {..} block

Here the do..end block has lower precedence, and the method foo is
given priority. This means both bar and the do..end block are passed to foo.
Thus, these two expressions are equivalent:

foo bar do |s| puts(s) end
foo(bar) do |s| puts(s) end

A curly bracket block, on the other hand, has stronger precedence, so
it tries to execute immediately and is passed to the first possible receiver
method (bar). The result (that is, the value returned by bar) is then passed
as an argument to foo, but this time, foo does not receive the block itself.
Thus, the two following expressions are equivalent:

foo bar{ |s| puts(s) }
foo(bar{ |s| puts(s) })

If you are confused by all this, take comfort in that you are not alone!
The potential ambiguities result from the fact that, in Ruby, the parentheses
around argument lists are optional. As you can see from the alternative ver-
sions I gave earlier, the ambiguities disappear when you use parentheses.

NOTE A method can test whether it has received a block using the block_given? method. You
can find examples of this in the precedence.rb program.

172 Chapter 10

Blocks as Iterators

As mentioned earlier, one of the primary uses of blocks in Ruby is to provide
iterators to which a range or list of items can be passed. Many standard classes
such as Integer and Array have methods that can supply items over which a
block can iterate. For example:

3.times{ |i| puts(i) }
[1,2,3].each{|i| puts(i) }

You can, of course, create your own iterator methods to provide a series of
values to a block. In the iterate1.rb program, I have defined a simple timesRepeat
method that executes a block a specified number of times. This is similar to
the times method of the Integer class except it begins at index 1 rather than
at index 0 (here the variable i is displayed in order to demonstrate this):

iterate1.rb def timesRepeat(aNum)
 for i in 1..aNum do
 yield i
 end
end

Here is an example of how this method might be called:

timesRepeat(3){ |i| puts("[#{i}] hello world") }

This displays the following:

[1] hello world
[2] hello world
[3] hello world

I’ve also created a timesRepeat2 method to iterate over an array:

def timesRepeat2(aNum, anArray)
 anArray.each{ |anitem|
 yield(anitem)
 }
end

This could be called in this manner:

timesRepeat2(3, ["hello","good day","how do you do"]){ |x| puts(x) }

This displays the following:

hello
good day
how do you do

Blocks, Procs, and Lambdas 173

Of course, it would be better (truer to the spirit of object orientation) if
an object itself contained its own iterator method. I’ve implemented this in
the next example. Here I have created MyArray, a subclass of Array:

class MyArray < Array

It is initialized with an array when a new MyArray object is created:

def initialize(anArray)
 super(anArray)
end

It relies upon its own each method (an object refers to itself as self), which
is provided by its ancestor, Array, to iterate over the items in the array, and it
uses the times method of Integer to do this a certain number of times. This is
the complete class definition:

iterate2.rb class MyArray < Array
 def initialize(anArray)
 super(anArray)
 end

 def timesRepeat(aNum)
 aNum.times{ # start block 1...
 | num |
 self.each{ # start block 2...
 | anitem |
 yield("[#{num}] :: '#{anitem}'")
 } # ...end block 2
 } # ...end block 1
 end
end

Notice that, because I have used two iterators (aNum.times and self.each),
the timesRepeat method comprises two nested blocks. This is an example of
how you might use this:

numarr = MyArray.new([1,2,3])
numarr.timesRepeat(2){ |x| puts(x) }

This would output the following:

[0] :: '1'
[0] :: '2'
[0] :: '3'
[1] :: '1'
[1] :: '2'
[1] :: '3'

174 Chapter 10

In iterate3.rb, I have set myself the problem of defining an iterator for an
array containing an arbitrary number of subarrays, in which each subarray
has the same number of items. In other words, it will be like a table or matrix
with a fixed number of rows and a fixed number of columns. Here, for exam-
ple, is a multidimensional array with three “rows” (subarrays) and four “col-
umns” (items):

iterate3.rb multiarr =
[['one','two','three','four'],
 [1, 2, 3, 4],
 [:a, :b, :c, :d]
]

I’ve tried three alternative versions of this. The first version suffers from
the limitation of only working with a predefined number (here 2 at indexes
[0] and [1]) of “rows” so it won’t display the symbols in the third row:

multiarr[0].length.times{|i|
 puts(multiarr[0][i], multiarr[1][i])
}

The second version gets around this limitation by iterating over each
element (or “row”) of multiarr and then iterating along each item in that row
by obtaining the row length and using the Integer’s times method with that
value. As a result, it displays the data from all three rows:

multiarr.each{ |arr|
 multiarr[0].length.times{|i|
 puts(arr[i])
 }
}

The third version reverses these operations: The outer block iterates
along the length of row 0, and the inner block obtains the item at index i
in each row. Once again, this displays the data from all three rows:

multiarr[0].length.times{|i|
 multiarr.each{ |arr|
 puts(arr[i])
 }
}

However, although versions 2 and 3 work in a similar way, you will find that
they iterate through the items in a different order. Version 2 iterates through
each complete row one at a time. Version 3 iterates down the items in each
column. Run the program to verify that. You could try creating your own sub-
class of Array and adding iterator methods like this—one method to iterate
through the rows in sequence and one to iterate through the columns.

Blocks, Procs, and Lambdas 175

D I G G I N G D E E P E R
Here we look at important differences between block scoping in Ruby 1.8
and 1.9 and also learn about returning blocks from methods.

Returning Blocks from Methods
Earlier, I explained that blocks in Ruby may act as closures. A closure may
be said to enclose the “environment” in which it is declared. Or, to put it
another way, it carries the values of local variables from its original scope
into a different scope. The example I gave previously showed how the block
named ablock captures the value of the local variable x:

block_closure.rb x = "hello world"
ablock = Proc.new { puts(x) }

It is then able to “carry” that variable into a different scope. Here, for
example, ablock is passed to aMethod. When ablock is called inside that method,
it runs the code puts(x). This displays “hello world” and not “goodbye”:

def aMethod(aBlockArg)
 x = "goodbye"
 aBlockArg.call #=> "hello world"
end

In this particular example, this behavior may seem like a curiosity of no
great interest. In fact, block/closures can be used more creatively.

For example, instead of creating a block and sending it to a method, you
could create a block inside a method and return that block to the calling code.
If the method in which the block is created happens to take an argument,
the block could be initialized with that argument.

This gives you a simple way of creating multiple blocks from the same
“block template,” each instance of which is initialized with different data.
Here, for example, I have created two blocks and assigned them to the vari-
ables salesTax and vat, each of which calculates results based on different val-
ues (0.10) and (0.175):

block_closure2.rb def calcTax(taxRate)
 return lambda{
 |subtotal|
 subtotal * taxRate
 }
end

salesTax = calcTax(0.10)
vat = calcTax(0.175)

176 Chapter 10

print("Tax due on book = ")
print(salesTax.call(10)) #=> 1.0

print("\nVat due on DVD = ")
print(vat.call(10)) #=> 1.75

Blocks and Instance Variables
One of the less obvious features of blocks is the way in which they use vari-
ables. If a block may truly be regarded as a nameless function or method,
then, logically, it should be able to contain its own local variables and have
access to the instance variables of the object to which the block belongs.

Let’s look first at instance variables. Load the closures1.rb program. This
provides another illustration of a block acting as a closure—by capturing the
values of the local variables in the scope in which it was created. Here I have
created a block using the lambda method:

closures1.rb aClos = lambda{
 @hello << " yikes!"
}

This block appends the string “ yikes!” to the instance variable @hello.
Notice that at this stage in the proceedings, no value has previously been
assigned to @hello. I have, however, created a separate method, aFunc, which
does assign a value to a variable called @hello:

def aFunc(aClosure)
 @hello = "hello world"
 aClosure.call
end

When I pass my block (the aClosure argument) to the aFunc method, the
method brings @hello into being. I can now execute the code inside the block
using the call method. And sure enough, the @hello variable contains the
“hello world” string. The same variable can also be used by calling the block
outside of the method. Indeed, now, by repeatedly calling the block, I will
end up repeatedly appending the string “ yikes!” to @hello:

aFunc(aClos) #<= @hello = "hello world yikes!"
aClos.call #<= @hello = "hello world yikes! yikes!"
aClos.call #<= @hello = "hello world yikes! yikes! yikes!"
aClos.call # ...and so on

If you think about it, this is not too surprising. After all, @hello is an
instance variable, so it exists within the scope of an object. When you run a
Ruby program, an object called main is automatically created. So, you should
expect any instance variable created within that object (the program) to be
available to everything inside it.

Blocks, Procs, and Lambdas 177

The question now arises: What would happen if you were to send the
block to a method of some other object? If that object has its own instance
variable, @hello, which variable will the block use—the @hello from the scope
in which the block was created or the @hello from the scope of the object in
which the block is called? Let’s try that. You’ll use the same block as before,
except this time it will display a bit of information about the object to which
the block belongs and the value of @hello:

aClos = lambda{
 @hello << " yikes!"
 puts("in #{self} object of class #{self.class}, @hello = #{@hello}")
}

Now, create a new object from a new class (X), and give it a method that
will receive the block b and call the block:

class X
 def y(b)
 @hello = "I say, I say, I say!!!"
 puts(" [In X.y]")
 puts("in #{self} object of class #{self.class}, @hello = #{@hello}")
 puts(" [In X.y] when block is called...")
 b.call
 end
end

x = X.new

To test it, just pass the block aClos to the y method of x:

x.y(aClos)

And this is what is displayed:

 [In X.y]
in #<X:0x32a6e64> object of class X, @hello = I say, I say, I say!!!
 [In X.y] when block is called...
in main object of class Object, @hello = hello world yikes! yikes! yikes!
yikes! yikes! yikes!

So, it is clear that the block executes in the scope of the object in which
it was created (main) and retains the instance variable from that object even
though the object in whose scope the block is called has an instance variable
with the same name and a different value.

Blocks and Local Variables
Now let’s see how a block/closure deals with local variables. In the closures2.rb
program, I declare a variable, x, which is local to the context of the program:

closures2.rb x = 3000

178 Chapter 10

The first block/closure is called c1. Each time I call this block, it picks up
the value of x defined outside the block (3,000) and returns x + 100:

c1 = proc{
 x + 100
}

Incidentally, even though this returns a value (in ordinary Ruby meth-
ods, the default value is the result of the last expression to be evaluated), in
Ruby 1.9 you cannot explicitly use the return statement here like this:

return x + 1

If you do this, Ruby 1.9 throws a LocalJumpError exception. Ruby 1.8,
on the other hand, does not throw an exception.

This block has no block parameters (that is, there are no “block-local”
variables between upright bars), so when it is called with a variable, someval,
that variable is discarded, unused. In other words, c1.call(someval) has the
same effect as c1.call().

So, when you call the block c1, it returns x+100 (that is, 3,100); this value
is then assigned to someval. When you call c1 a second time, the same thing
happens all over again, so once again someval is assigned 3,100:

someval=1000
someval=c1.call(someval); puts(someval) #<= someval is now 3100
someval=c1.call(someval); puts(someval) #<= someval is now 3100

NOTE Instead of repeating the call to c1, as shown earlier, you could place the call inside a
block and pass this to the times method of Integer like this:

2.times{ someval=c1.call(someval); puts(someval) }

However, because it can be hard enough to work out what just one block is up to
(such as the c1 block here), I’ve deliberately avoided using any more blocks than are
absolutely necessary in this program!

The second block is named c2. This declares the “block parameter” z.
This too returns a value:

c2 = proc{
 |z|
 z + 100
}

Blocks, Procs, and Lambdas 179

However, this time the returned value can be reused since the block
parameter acts like an incoming argument to a method—so when the value
of someval is changed after it is assigned the return value of c2, this changed
value is subsequently passed as an argument:

someval=1000
someval=c2.call(someval); puts(someval) #<= someval is now 1100
someval=c2.call(someval); puts(someval) #<= someval is now 1200

The third block, c3, looks, at first sight, pretty much the same as the sec-
ond block, c2. In fact, the only difference is that its block parameter is called
x instead of z:

c3 = proc{
 |x|
 x + 100
}

The name of the block parameter has no effect on the return value.
As before, someval is first assigned the value 1,100 (that is, its original value,
1,000, plus the 100 added inside the block). Then, when the block is called
a second time, someval is assigned the value 1,200 (its previous value, 1,100,
plus 100 assigned inside the block).

But now look at what happens to the value of the local variable x. This
was assigned 3,000 at the top of the unit. Remember that, in Ruby 1.8, an
assignment to a block parameter can change the value of a variable with the
same name in its surrounding context. In Ruby 1.8, then the local variable x
changes when the block parameter x is changed. It now has the value, 1,100—
that is, the value that the block parameter, x, last had when the c3 block was
called:

x = 3000
someval=1000
someval=c3.call(someval); puts(someval) #=> 1100
someval=c3.call(someval); puts(someval) #=> 1200
puts(x) # Ruby 1.8, x = 1100. Ruby 1.9, x = 3000

Incidentally, even though block-local variables and block parameters can
affect similarly named local variables outside the block in Ruby 1.8, the block
variables themselves have no “existence” outside the block. You can verify
this using the defined? keyword to attempt to display the type of variable if it
is, indeed, defined:

print("x=[#{defined?(x)}],z=[#{defined?(z)}]")

180 Chapter 10

This demonstrates that only x, and not the block variable z, is defined in
the main scope:

x=[local-variable], z=[]

Matz, the creator of Ruby, has described the scoping of local variables
within a block as “regrettable.” Although Ruby 1.9 has addressed some issues,
it is worth noting that one other curious feature of block scoping remains:
Namely, local variables within a block are invisible to the method containing
that block. This may be changed in future versions. For an example of this,
look at this code:

local_var_scope
.rb

def foo
 a = 100
 [1,2,3].each do |b|
 c = b
 a = b
 print("a=#{a}, b=#{b}, c=#{c}\n")
 end
 print("Outside block: a=#{a}\n") # Can't print #{b} and #{c} here!!!
end

Here, the block parameter, b, and the block-local variable, c, are both
visible only when inside the block. The block has access to both these vari-
ables and to the variable a (local to the foo method). However, outside of
the block, b and c are inaccessible, and only a is visible.

Just to add to the confusion, whereas the block-local variable, c, and the
block parameter, b, are both inaccessible outside the block in the previous
example, they are accessible when you iterate a block with for, as in the fol-
lowing example:

def foo2
 a = 100
 for b in [1,2,3] do
 c = b
 a = b
 print("a=#{a}, b=#{b}, c=#{c}\n")
 end
 print("Outside block: a=#{a}, b=#{b}, c=#{b}\n")
end

S Y M B O L S

Many newcomers to Ruby are confused
by symbols. A symbol is an identifier whose

first character is a colon (:), so :this is a sym-
bol and so is :that. Symbols are, in fact, not at all

complicated—and, in certain circumstances, they may
be extremely useful, as you will see shortly.

Let’s first be clear about what a symbol is not : It is not a string, it is not a
constant, and it is not a variable. A symbol is, quite simply, an identifier with
no intrinsic meaning other than its own name. Whereas you might assign a
value to a variable like this . . .

name = "Fred"

you would not assign a value to a symbol:

:name = "Fred" # Error!

182 Chapter 11

The value of a symbol is itself. So, the value of a symbol called :name
is :name.

NOTE For a more technical account of what a symbol is, refer to“Digging Deeper” on page 190.

You have, of course, used symbols before. In Chapter 2, for instance, you
created attribute readers and writers by passing symbols to the attr_reader
and attr_writer methods, like this:

attr_reader(:description)
attr_writer(:description)

You may recall that the previous code causes Ruby to create a @description
instance variable plus a pair of getter (reader) and setter (writer) methods
called description. Ruby takes the value of a symbol literally. The attr_reader
and attr_writer methods create, from that name, variables and methods with
matching names.

Symbols and Strings

It is a common misconception that a symbol is a type of string. After all, isn’t
the symbol :hello pretty similar to the string "hello"? In fact, symbols are quite
unlike strings. For one thing, each string is different—so, as far as Ruby is
concerned, "hello", "hello", and "hello" are three separate objects with three
separate object_ids.

symbol_ids.rb # These 3 strings have 3 different object_ids
puts("hello".object_id) #=> 16589436
puts("hello".object_id) #=> 16589388
puts("hello".object_id) #=> 16589340

But a symbol is unique, so :hello, :hello, and :hello all refer to the same
object with the same object_id.

These 3 symbols have the same object_id
puts(:hello.object_id) #=> 208712
puts(:hello.object_id) #=> 208712
puts(:hello.object_id) #=> 208712

In this respect, a symbol has more in common with an integer than with
a string. Each occurrence of a given integer value, you may recall, refers to
the same object, so 10, 10, and 10 may be considered to be the same object,
and they have the same object_id. Remember that the actual IDs assigned to
objects will change each time you run a program. The number itself is not

Symbols 183

significant. The important thing to note is that each separate object always
has a unique ID, so when an ID is repeated, it indicates repeated references
to the same object.

ints_and_symbols
.rb

These three symbols have the same object_id
puts(:ten.object_id) #=> 20712
puts(:ten.object_id) #=> 20712
puts(:ten.object_id) #=> 20712

These three integers have the same object_id
puts(10.object_id) #=> 21
puts(10.object_id) #=> 21
puts(10.object_id) #=> 21

You can also test for equality using the equal? method:

symbols_strings.rb puts(:helloworld.equal?(:helloworld)) #=> true
puts("helloworld".equal?("helloworld")) #=> false
puts(1.equal?(1)) #=> true

Being unique, a symbol provides an unambiguous identifier. You can
pass symbols as arguments to methods, like this:

amethod(:deletefiles)

A method might contain code to test the value of the incoming argument:

symbols_1.rb def amethod(doThis)
 if (doThis == :deletefiles) then
 puts('Now deleting files...')
 elsif (doThis == :formatdisk) then
 puts('Now formatting disk...')
 else
 puts("Sorry, command not understood.")
 end
end

Symbols can also be used in case statements where they provide both the
readability of strings and the uniqueness of integers:

case doThis
 when :deletefiles then puts('Now deleting files...')
 when :formatdisk then puts('Now formatting disk...')
 else puts("Sorry, command not understood.")
end

184 Chapter 11

The scope in which a symbol is declared does not affect its uniqueness.
Consider the following:

symbol_ref.rb module One
 class Fred
 end
 $f1 = :Fred
end

module Two
 Fred = 1
 $f2 = :Fred
end

def Fred()
end

$f3 = :Fred

Here, the variables $f1, $f2, and $f3 are assigned the symbol :Fred in three
different scopes: module One, module Two, and the “main” scope. Variables
starting with $ are global, so once created, they can be referenced anywhere.
I’ll have more to say on modules in Chapter 12. For now, just think of them
as “namespaces” that define different scopes. And yet each variable refers to
the same symbol, :Fred, and has the same object_id.

All three display the same id!
puts($f1.object_id) #=> 208868
puts($f2.object_id) #=> 208868
puts($f3.object_id) #=> 208868

Even so, the “meaning” of the symbol changes according to its scope.
In module One, :Fred refers to the class Fred; in module Two, it refers to the
constant Fred = 1; and in the main scope, it refers to the method Fred.

A rewritten version of the previous program demonstrates this:

symbol_ref2.rb module One
 class Fred
 end
 $f1 = :Fred
 def self.evalFred(aSymbol)
 puts(eval(aSymbol.id2name))
 end
end

module Two
 Fred = 1
 $f2 = :Fred
 def self.evalFred(aSymbol)
 puts(eval(aSymbol.id2name))
 end
end

Symbols 185

def Fred()
 puts("hello from the Fred method")
end

$f3 = :Fred

First I access the evalFred method inside the module named One using two
colons (::), which is the Ruby “scope resolution operator.” I then pass $f1 to
that method:

One::evalFred($f1)

In this context, Fred is the name of a class defined inside module One, so
when the :Fred symbol is evaluated, the module and class names are displayed:

One::Fred

Next I pass $f2 to the evalFred method of module Two:

Two::evalFred($f2)

In this context, Fred is the name of a constant that is assigned the integer
1, so that is what is displayed: 1. And finally, I call a special method called
simply method. This is a method of Object. It tries to find a method with the
same name as the symbol passed to it as an argument and, if found, returns
that method as an object that can then be called:

method($f3).call

The Fred method exists in the main scope, and when called, its output is
this string:

"hello from the Fred method"

Naturally, since the variables $f1, $f2, and $f3 reference the same symbol,
it doesn’t matter which variable you use at any given point. Any variable to
which a symbol is assigned, or, indeed, the symbol itself, will produce the
same results. The following are equivalent:

One::evalFred($f1) #=> One::Fred
Two::evalFred($f2) #=> 1
method($f3).call #=> hello from the Fred method

One::evalFred($f3) #=> One::Fred
Two::evalFred($f1) #=> 1
method($f2).call #=> hello from the Fred method

186 Chapter 11

One::evalFred(:Fred) #=> One::Fred
Two::evalFred(:Fred) #=> 1
method(:Fred).call #=> hello from the Fred method

Symbols and Variables

To understand the relationship between a symbol and an identifier such as a
variable name, take a look at the symbols_2.rb program. It begins by assigning
the value 1 to a local variable, x. It then assigns the symbol :x to a local vari-
able, xsymbol:

symbols_2.rb x = 1
xsymbol = :x

At this point, there is no obvious connection between the variable x
and the symbol :x. I have declared a method that simply takes some incom-
ing argument and inspects and displays it using the p method. I can call this
method with the variable and the symbol:

def amethod(somearg)
 p(somearg)
end

Test 1
amethod(x)
amethod(:x)

This is the data that the method prints as a result:

1
:x

In other words, the value of the x variable is 1, since that’s the value
assigned to it and the value of :x is :x. But the interesting question that arises
is this: If the value of :x is :x and this is also the symbolic name of the variable
x, would it be possible to use the symbol :x to find the value of the variable x?
Confused? I hope the next line of code will make this clearer:

Test 2
amethod(eval(:x.id2name))

Here, id2name is a method of the Symbol class. It returns the name or string
corresponding to the symbol (the to_s method would perform the same func-
tion); the end result is that, when given the symbol :x as an argument, id2name
returns the string “x.” Ruby’s eval method (which is defined in the Kernel

Symbols 187

class) is able to evaluate expressions within strings. In the present case, that
means it finds the string “x” and tries to evaluate it as though it were execut-
able code. It finds that x is the name of a variable and that the value of x is 1.
So, the value 1 is passed to amethod. You can verify this by running symbols2.rb.

NOTE Evaluating data as code is explained in more detail in Chapter 20.

Things can get even trickier. Remember that the variable xsymbol has
been assigned the symbol :x.

x = 1
xsymbol = :x

That means that if you eval :xsymbol, you can obtain the name assigned to
it—that is, the symbol :x. Having obtained :x, you can go on to evaluate this
also, giving the value of x, namely, 1:

Test 3
amethod(xsymbol) #=> :x
amethod(:xsymbol) #=> :xsymbol
amethod(eval(:xsymbol.id2name)) #=> :x
amethod(eval((eval(:xsymbol.id2name)).id2name)) #=> 1

As you’ve seen, when used to create attribute accessors, symbols can refer
to method names. You can make use of this by passing a method name as a
symbol to the method method and then calling the specified method using the
call method:

#Test 4
method(:amethod).call("")

The call method lets you pass arguments, so, just for the heck of it, you
could pass an argument by evaluating a symbol:

method(:amethod).call(eval(:x.id2name))

If this seems complicated, take a look at a simpler example in symbols_3.rb.
This begins with this assignment:

symbols_3.rb def mymethod(somearg)
 print("I say: " << somearg)
end

this_is_a_method_name = method(:mymethod)

188 Chapter 11

Here method(:mymethod) looks for a method with the name specified by the
symbol passed as an argument (:mymethod), and if one is found, it returns the
Method object with the corresponding name. In my code I have a method
called mymethod, and this is now assigned to the variable this_is_a_method_name.

When you run this program, you will see that the first line of output
prints the value of the variable:

puts(this_is_a_method_name) #=> #<Method: Object#mymethod>

This shows that the variable this_is_a_method_name has been assigned the
method, mymethod, which is bound to the Object class (as are all methods that are
entered as “freestanding” functions). To double-check that the variable really
is an instance of the Method class, the next line of code prints out its class:

puts("#{this_is_a_method_name.class}") #=> Method

Okay, so if it’s really and truly a method, then you should be able to call
it, shouldn’t you? To do that, you need to use the call method. That is what
the last line of code does:

this_is_a_method_name.call("hello world") #=>I say: hello world

Why Use Symbols?

Some methods in the Ruby class library specify symbols as arguments. Natu-
rally, if you need to call those methods, you are obliged to pass symbols to
them. Other than in those cases, however, there is no absolute requirement
to use symbols in your own programming. For many Ruby programmers, the
“conventional” data types such as strings and integers are perfectly sufficient.
However, many Ruby programmers do like to use symbols as the keys into
hashes. When you look at the Rails framework in Chapter 19, for example,
you will see examples similar to the following:

{ :text => "Hello world" }

Symbols do have a special place in “dynamic” programming, however.
For example, a Ruby program is able to create a new method at runtime by
calling, within the scope of a certain class, define_method with a symbol repre-
senting the method to be defined and a block representing the code of the
method:

add_method.rb class Array
 define_method(:aNewMethod, lambda{
 |*args| puts(args.inspect)
 })
end

Symbols 189

After the previous code executes, the Array class will have gained a
method named aNewMethod. You can verify this by calling method_defined? with
a symbol representing the method name:

Array.method_defined?(:aNewMethod) #=> true

And, of course, you can call the method itself:

[].aNewMethod(1,2,3 #=> [1,2,3]

You can remove an existing method at runtime in a similar way by calling
remove_method inside a class with a symbol providing the name of the method
to be removed:

class Array
 remove_method(:aNewMethod)
end

Dynamic programming is invaluable in applications that need to modify the
behavior of the Ruby program while that program is still executing. Dynamic
programming is widely used in the Rails framework, for example, and it is
discussed in depth in the final chapter of this book.

190 Chapter 11

D I G G I N G D E E P E R
Symbols are fundamental to Ruby. Here you will learn why that is so and how
you can display all the symbols available.

What Is a Symbol?
Previously, I said that a symbol is an identifier whose value is itself. That
describes, in a broad sense, the way that symbols behave from the point of
view of the Ruby programmer. But it doesn’t tell you what symbols are literally
from the point of view of the Ruby interpreter. A symbol is, in fact, a pointer
into the symbol table. The symbol table is Ruby’s internal list of known iden-
tifiers—such as variable and method names.

If you want to take a peek deep inside Ruby, you can display all the sym-
bols that Ruby knows about like this:

allsymbols.rb p(Symbol.all_symbols)

This will shows thousands of symbols including method names such as
:to_s and :reverse, global variables such as :$/ and :$DEBUG, and class names
such as :Array and :Symbol. You may restrict the number of symbols displayed
using array indexes like this:

p(Symbol.all_symbols[0,10])

In Ruby 1.8, you can’t sort symbols since symbols are not considered to
be inherently sequential. In Ruby 1.9, sorting is possible, and the symbol
characters are sorted as though they were strings:

In Ruby 1.9
p [:a,:c,:b].sort #=> [:a,:b,:c]

In Ruby 1.8
p [:a,:c,:b].sort #=> 'sort': undefined method '<=>' for :a:Symbol

The easiest way to display a sorted list of symbols in a way that avoids
incompatibility problems related to Ruby versions is to convert the symbols to
strings and sort those. In the following code, I pass all the symbols known to
Ruby into a block, convert each symbol to a string, and collect the strings into
a new array that is assigned to the str_array variable. Now I can sort this array
and display the results:

str_arr = Symbol.all_symbols.collect{ |s| s.to_s }
puts(str_arr.sort)

M O D U L E S A N D M I X I N S

In Ruby, each class has only one immediate
“parent,” though each parent class may have

many “children.” By restricting class hierar-
chies to a single line of descent, Ruby avoids some

of the problems that may occur in those programming
languages (such as C++) that permit multiple lines of
descent. When classes have many parents as well as
many children and when their parents and children also have other parents
and children, you risk ending up with an impenetrable network (a knotwork?)
rather than the neat, well-ordered hierarchy that you may have intended.

Nevertheless, sometimes it is useful for classes that are not closely related
to implement some shared features. For example, a Sword might be a type of
Weapon but also a type of Treasure; a PC might be a type of Computer but
also a type of Investment; and so on. But, since the classes defining Weapons
and Treasures or Computers and Investments descend from different ances-
tor classes, their class hierarchy gives them no obvious way of sharing data
and methods. Ruby’s solution to this problem is provided by modules.

192 Chapter 12

A Module Is Like a Class . . .

The definition of a module looks very similar to the definition of a class. In
fact, modules and classes are closely related; the Module class is the immedi-
ate ancestor of the Class class. Just like a class, a module can contain constants,
methods, and classes. Here’s a simple module:

simple_module.rb module MyModule
 REWARD = 100

 def prize
 return "You've won #{REWARD} credits"
 end

end

As you can see, this contains a constant, REWARD, and an instance method,
prize.

Module Methods

In addition to instance methods, a module may also have module methods.
Just as class methods are prefixed with the name of the class, module meth-
ods are prefixed with the name of the module:

def MyModule.lose
 return "Sorry, you didn't win"
end

You can call a module’s module methods just as you would call a class’s
class methods, using dot notation, like this:

MyModule.lose #=> "Sorry, you didn't win"

But how do you call an instance method? Neither of the following
attempts succeeds:

puts(prize) # Error: undefined local variable or method
puts(MyModule.prize) # Error: undefined method 'prize'

In spite of their similarities, classes possess two major features that
modules do not: instances and inheritance. Classes can have instances (objects
created from the class), superclasses (parents), and subclasses (children);
modules can have none of these. It is not possible to call an instance method
from an instance of a module (a “module object”) for the simple reason that
it is impossible to create instances of a module. This explains the errors when
you try to call the prize method in the previous code.

Modules and Mixins 193

NOTE The Module class does have a superclass, namely, Object. However, any named mod-
ules that you create do not have superclasses. For a more detailed account of the rela-
tionship between modules and classes, see “Digging Deeper” on page 205.

That leads me to the next question: If you can’t create an object from a
module, what are modules for? This can be answered in two words: namespaces
and mixins. Ruby’s mixins provide a way of dealing with the problem of mul-
tiple inheritance. You’ll learn how mixins work shortly. First, though, let’s
look at namespaces.

Modules as Namespaces

You can think of a module as a sort of named “wrapper” around a set of
methods, constants, and classes. The various bits of code inside the module
share the same “namespace,” so they are all visible to each other but are not
visible to code outside the module.

The Ruby class library defines a number of modules such as Math and
Kernel. The Math module contains mathematical methods such as sqrt to
return a square route and constants such as PI. The Kernel module contains
many of the methods you’ve been using from the outset such as print, puts,
and gets.

Let’s assume you have written this module:

modules1.rb module MyModule
 GOODMOOD = "happy"
 BADMOOD = "grumpy"

 def greet
 return "I'm #{GOODMOOD}. How are you?"
 end

 def MyModule.greet
 return "I'm #{BADMOOD}. How are you?"
 end
end

You’ve already seen how to use a module method such as MyModule.greet,
and you can access the module constants just as you would access class con-
stants, using the scope resolution operator, :: , like this:

puts(MyModule::GOODMOOD) #=> happy

But how can you access the instance method, greet? This is where mixins
enter the picture.

194 Chapter 12

Included Modules, or “Mixins”

An object can access the instance methods of a module by including that
module using the include method. If you were to include MyModule in your
program, everything inside that module would suddenly pop into existence
within the current scope. So, the greet method of MyModule will now be
accessible:

modules2.rb include MyModule

Note that only instance methods are included. In the previous example,
the greet (instance) method has been included, but the MyModule.greet (mod-
ule) method has not. As it’s included, the greet instance method can be used
just as though it were a normal instance method within the current scope,
whereas the module method, also named greet, is accessed using dot notation:

puts(greet) #=> I'm happy. How are you?
puts(MyModule.greet) #=> I'm grumpy. How are you?

The process of including a module is also called mixing in, which explains
why included modules are often called mixins. When you mix modules into
a class definition, any objects created from that class will be able to use the
instance methods of the mixed-in module just as though they were defined
in the class itself. Here the MyClass class mixes in the MyModule module:

modules3.rb class MyClass
 include MyModule

 def sayHi
 puts(greet)
 end

end

Not only can the methods of this class access the greet method from
MyModule, but so too can any objects created from the class:

ob = MyClass.new
ob.sayHi #=> I'm happy. How are you?
puts(ob.greet) #=> I'm happy. How are you?

You can think of modules as discrete code units that may simplify the
creation of reusable code libraries. On the other hand, you might be more
interested in using modules as an alternative to multiple inheritance.

Returning to an example that I mentioned at the start of this chapter,
let’s assume you have a Sword class that is not only a weapon but also a trea-
sure. Maybe Sword is a descendant of the Weapon class (so it inherits the
Weapon’s deadliness attribute), but it also needs to have the attributes of a
Treasure (such as value and owner). Moreover, since this happens to be an

Modules and Mixins 195

Elvish Sword, it also requires the attributes of a MagicThing. If you define these
attributes inside Treasure and MagicThing modules rather than Treasure and
MagicThing classes, the Sword class would be able to include those modules
in order to “mix in” their methods or attributes:

modules4.rb module MagicThing
 attr_accessor :power
end

module Treasure
 attr_accessor :value
 attr_accessor :owner
end

class Weapon
 attr_accessor :deadliness
end

class Sword < Weapon # descend from Weapon
 include Treasure # mix in Treasure
 include MagicThing # mix in MagicThing
 attr_accessor :name
end

The Sword object now has access to the methods and attributes of the
Sword class, of its ancestor class, Weapon, and also of its mixed-in modules,
Treasure and MagicThing:

s = Sword.new
s.name = "Excalibur"
s.deadliness = "fatal"
s.value = 1000
s.owner = "Gribbit The Dragon"
s.power = "Glows when Orcs appear"
puts(s.name) #=> Excalibur
puts(s.deadliness) #=> fatal
puts(s.value) #=> 1000
puts(s.owner) #=> Gribbit The Dragon
puts(s.power) #=> Glows when Orcs appear

Note, incidentally, that any variables that are local to the module cannot
be accessed from outside the module. This is the case even if a method inside
the module tries to access a local variable and that method is invoked by
code from outside the module, such as when the module is mixed in through
inclusion:

mod_vars.rb x = 1 # local to this program

module Foo
 x = 50 # local to module Foo

 # this can be mixed in but the variable x won't be visible

196 Chapter 12

 def no_bar
 return x
 end

 def bar
 @x = 1000
 return @x
 end
 puts("In Foo: x = #{x}") # this can access the module-local x
end

include Foo # mix in the Foo module

When you run this program, the puts method executes when the module
is initialized, and it displays the value of the module-local variable x:

In Foo: x = 50

If you display the x variable within the main scope of the program, the
value of the variable x local to the main scope of the program is used, not
the value of the variable x local to the module:

puts(x) #=> 1

But any attempt to execute the no_bar method will fail:

puts(no_bar) # Error: undefined local variable or method 'x'

Here the no_bar method is unable to access either of the local variables
named x even though x is declared both in the scope of the module (x = 50)
and in the current or “main” scope (x = 1). But there is no such problem
with instance variables. The bar method is able to return the value of the
instance variable @x:

puts(bar) #=> 1000

A module may have its own instance variables that belong exclusively to
the module “object.” These instance variables will be in scope to a module
method:

inst_class_vars.rb module X
 @instvar = "X's @instvar"

 def self.aaa
 puts(@instvar)
 end
end

X.aaa #=> X's @instvar

Modules and Mixins 197

But instance variables that are referenced in instance objects “belong” to
the scope into which that module is included:

module X
 @instvar = "X's @instvar"
 @anotherinstvar = "X's 2nd @instvar"

 def amethod
 @instvar = 10 # creates @instvar in current scope
 puts(@instvar)
 end
end

include X
p(@instvar) #=> nil
amethod #=> 10
puts(@instvar) #=> 10
@instvar = "hello world"
puts(@instvar) #=> "hello world"

Class variables are also mixed in, and like instance variables, their values
may be reassigned within the current scope:

module X
 @@classvar = "X's @@classvar"
end

include X

puts(@@classvar) #=> X's @classvar
@@classvar = "bye bye"
puts(@@classvar) #=> "bye bye"

You may obtain an array of instance variable names using the
instance_variables method:

p(X.instance_variables) #=> [:@instvar, @anotherinstvar]
p(self.instance_variables) #=> [:@instvar]

Here, X.instance_variables returns a list of the instance variables belong-
ing to the X class, while self.instance_variables returns the instance variables
of the current, main, object. The @instvar variable is different in each case.

NOTE In Ruby 1.9, the instance_variables method returns an array of symbols. In Ruby 1.8,
it returns an array of strings.

198 Chapter 12

Name Conflicts

Module methods (those methods specifically preceded by the module name)
can help protect your code from accidental name conflicts. However, no
such protection is given by instance methods within modules. Let’s suppose
you have two modules—one called Happy and the other called Sad. They
each contain a module method called mood and an instance method called
expression.

happy_sad.rb module Happy
 def Happy.mood # module method
 return "happy"
 end

 def expression # instance method
 return "smiling"
 end
end
module Sad
 def Sad.mood # module method
 return "sad"
 end

 def expression # instance method
 return "frowning"
 end
end

Now a class, Person, includes both these modules:

class Person
 include Happy
 include Sad
 attr_accessor :mood

 def initialize
 @mood = Happy.mood
 end
end

The initialize method of the Person class needs to set the value of its
@mood variable using the mood method from one of the included modules. The
fact that they both have a mood method is no problem; being a module method,
mood must be preceded by the module name so Happy.mood won’t be confused
with Sad.mood.

Modules and Mixins 199

But both the Happy and Sad modules also contain a method called
expression. This is an instance method, and when both the modules are
included in the Person class, the expression method can be called without
any qualification:

p1 = Person.new
puts(p1.expression)

Which expression method is object p1 using here? It turns out that it uses
the method last defined. In the example case, that happens to be the method
defined in the Sad module for the simple reason that Sad is included after
Happy. So, p1.expression returns “frowning.” If you change the order of inclu-
sion so that Happy is included after Sad, the p1 object will use the version of the
expression method defined in the Happy module and will display “smiling.”

Before getting carried away with the possibilities of creating big, com-
plex modules and mixing them into your classes on a regular basis, bear this
potential problem in mind: Included instance methods with the same name will
“overwrite” one another. The problem may be obvious to spot in my little pro-
gram here. But it may not be so obvious in a huge application!

Alias Methods

One way of avoiding ambiguity when you use similarly named methods from
multiple modules is to alias those methods. An alias is a copy of an existing
method with a new name. You use the alias keyword followed by the new
name and then the old name:

alias happyexpression expression

You can also use alias to make copies of methods that have been over-
ridden so that you can specifically refer to a version prior to its overridden
definition:

alias_methods.rb module Happy
 def Happy.mood
 return "happy"
 end

 def expression
 return "smiling"
 end
 alias happyexpression expression
end

200 Chapter 12

module Sad
 def Sad.mood
 return "sad"
 end

 def expression
 return "frowning"
 end
 alias sadexpression expression
end

class Person
 include Happy
 include Sad
 attr_accessor :mood
 def initialize
 @mood = Happy.mood
 end
end

p2 = Person.new
puts(p2.mood) #=> happy
puts(p2.expression) #=> frowning
puts(p2.happyexpression) #=> smiling
puts(p2.sadexpression) #=> frowning

Mix In with Care!

Although each class can descend from only one superclass, it can mix in
numerous modules. In fact, it is perfectly permissible to mix one lot of mod-
ules into another lot of modules, then mix those other modules into classes,
then place those classes into yet more modules, and so on.

The following is an example of some code that subclasses some classes,
mixes in some modules, and even subclasses classes from within mixed-in
modules. I’ve deliberately simplified the following code to help you see what
is happening. For the full horror of a working example, see the sample pro-
gram, multimods.rb, which is supplied in the code archive for this chapter:

multimods.rb # This is an example of how NOT to use modules!
module MagicThing # module
 class MagicClass # class inside module
 end
end

module Treasure # module
end

Modules and Mixins 201

module MetalThing
 include MagicThing # mixin
 class Attributes < MagicClass # subclasses class from mixin
 end
end

include MetalThing # mixin
class Weapon < MagicClass # subclass class from mixin
 class WeaponAttributes < Attributes # subclass
 end
end

class Sword < Weapon # subclass
 include Treasure # mixin
 include MagicThing # mixin
end

Let me emphasize that the code shown previously and included in the
archive is not intended as a model to be emulated. Far from it! It is included
purely to demonstrate how rapidly a program that makes overenthusiastic
use of modules may become difficult to understand and nearly impossible
to debug.

In brief, although modules may, when used with care, help avoid some
of the complexities associated with the C++ type of multiple inheritance, they
are nonetheless open to misuse. If programmers really want to create convo-
luted hierarchies of classes with inscrutable dependencies on multiple levels
of mixed-in modules, then they can certainly do so. The code in multimods.rb
shows how easy it is to write an impenetrable program in just a few lines.
Imagine what you could do over many thousands of lines of code spread
over dozens of code files! Think carefully before mixing in modules.

Including Modules from Files

So far, I’ve mixed in modules that have been defined within a single source
file. Often it is more useful to define modules in separate files and mix them
in as needed. The first thing you have to do in order to use code from another
file is to load that file using the require method, like this:

require_module.rb require("./testmod.rb")

Optionally, you may omit the file extension:

require("./testmod") # this works too

202 Chapter 12

If no path is given, the required file must be in the current directory, on
the search path, or in a folder listed in the predefined array variable $:. You
can add a directory to this array variable using the usual array-append method,
<<, in this way:

$: << "C:/mydir"

NOTE The global variable, $: (a dollar sign and a colon), contains an array of strings repre-
senting the directories that Ruby searches when looking for a loaded or required file.

There is one documented difference in the way require works in Ruby 1.8
and Ruby 1.9. In Ruby 1.8, the filename is not converted to an absolute path,
so require "a"; require "./a" will load a.rb twice. In Ruby 1.9, the filename is
converted to an absolute path, so require "a"; require "./a" will not load a.rb
twice.

In addition, I’ve found that require may, in at least some versions of
Ruby 1.9, fail to load a file from the current directory if you use an unquali-
fied filename as in require("testmod"). In such cases, a LoadError is thrown.
This occurs when the array of searchable directories stored in the global vari-
able, $:, does not contain the current directory. You can verify whether this is
the case by running this code:

search_dirs.rb puts($:)

The search paths will be displayed one per line. There should be a line
that displays a single dot (.) representing the current directory. If that dot is
missing, then files in the current directory are not on the search path and
cannot be loaded using an unqualified filename.

To ensure that the file is loaded, I have preceded the filename with a dot
to specify the current directory, and this now succeeds: require("./testmod").
Alternatively, you could use the require_relative method, though this is new
to Ruby 1.9 and cannot be used in earlier versions:

require_relative("testmod.rb") # Ruby 1.9 only

Alternatively, if $: doesn’t contain the current directory, you could add
it. Once this is done, require will work with the unqualified names of files in
the current directory:

$: << "." # add current directory to array of search paths
require("testmod.rb")

The require method returns a true value if the specified file is success-
fully loaded; otherwise, it returns false. If the file does not exist, it returns a
LoadError. If in doubt, you can simply display the result.

puts(require("testmod.rb")) #=> true, false or LoadError

Modules and Mixins 203

Any code that would normally be executed when a file is run will be exe-
cuted when that file is required. So, if the file, testmod.rb, contains this code:

testmod.rb def sing
 puts("Tra-la-la-la-la....")
end

puts("module loaded")
sing

when the require_module.rb program is run and it requires testmod.rb, this will
be displayed:

module loaded
Tra-la-la-la-la....

When a module is declared in the required file, it can be mixed in:

require_module2.rb
require("testmod.rb")
include MyModule #mix in MyModule declared in testmod.rb

Ruby also lets you load a file using the load method. In most respects,
require and load can be regarded as interchangeable. But there are a few
subtle differences. In particular, load can take an optional second argument,
which, if this is true, loads and executes the code as an unnamed or anony-
mous module:

load("testmod.rb", true)

When the second argument is true, the file loaded does not introduce the
new namespace into the main program, and you will not have access to the
module(s) in the loaded file. In that case, the Module methods, constants,
and instance methods will not be available to your code:

load_module.rb load("testmod.rb", true)

puts(MyModule.greet) #=>Error:uninitialized constant Object::MyModule
puts(MyModule::GOODMOOD) #=>Error:uninitialized constant Object::MyModule
include MyModule #=>Error:uninitialized constant Object::MyModule
puts(greet) #=>Error:undefined local variable or method 'greet'

When the second argument to load is false or when there is no second
argument, however, you will have access to modules in the loaded file:

load_module_
false.rb

load("testmod.rb", false)

puts(MyModule.greet) #=> I'm grumpy. How are you?
puts(MyModule::GOODMOOD) #=> happy

204 Chapter 12

include MyModule #=> [success]
puts(greet) #=> I'm happy. How are you?

Note that you must enter the full filename with load (testmod minus the
.rb extension will not suffice). Another difference between load and require is
that require loads a file once only (even if your code requires that file many
times), whereas load causes the specified file to be reloaded each time load is
called. Let’s suppose you have a file, test.rb, containing this code:

test.rb MyConst = 1
if @a == nil then
 @a = 1
else
 @a += MyConst
end

puts @a

You now require this file three times:

require_again.rb require "./test"
require "./test"
require "./test"

This will be the output:

1

But if you load the file three times . . .

load_again.rb load "test.rb"
load "test.rb"
load "test.rb"

then this will be the output:

1
./test.rb:1: warning: already initialized constant MyConst
2
./test.rb:1: warning: already initialized constant MyConst
3

Modules and Mixins 205

D I G G I N G D E E P E R
How exactly is a module related to a class? Here we answer that question,
examine some important Ruby modules and find out how to use modules
to extend objects.

Modules and Classes
In this chapter, I’ve discussed the behavior of a module. Let’s now find out
what a module really is. It turns out that, as with most other things in Ruby,
a module is an object. Each named module is, in fact, an instance of the
Module class:

module_inst.rb module MyMod
end

puts(MyMod.class) #=> Module

You cannot create descendants of named modules, so this is not allowed:

module MyMod
end

module MyOtherMod < MyMod # You can't do this!
end

However, as with other classes, it is permissible to create a descendant of
the Module class :

class X < Module # But you can do this
end

Indeed, the Class class is itself a descendant of the Module class. It inherits
the behavior of Module and adds some important new behavior, notably the
ability to create objects. You can verify that Module is the superclass of Class
by running the modules_classes.rb program, which shows this hierarchy:

modules_classes
.rb

Class
Module #=> is the superclass of Class
Object #=> is the superclass of Module
BasicObject #=> (in Ruby 1.9) is the superclass of Module

Predefined Modules
The following modules are built into the Ruby interpreter: Comparable, Enumerable,
FileTest, GC, Kernel, Math, ObjectSpace, Precision, Process, and Signal.

206 Chapter 12

Comparable is a mixin module that permits the including class to imple-
ment comparison operators. The including class must define the <=> opera-
tor, which compares the receiver against another object, returning -1, 0, or
+1 depending on whether the receiver is less than, equal to, or greater than
the other object.

Comparable uses <=> to implement the conventional comparison operators
(<, <=, ==, >=, and >) and the method between?.

Enumerable is a mixin module for enumeration. The including class must
provide the method each.

FileTest is a module containing file test functions; its methods can also
be accessed from the File class.

The GC module provides an interface to Ruby’s mark and sweep garbage
collection mechanism. Some of the underlying methods are also avail-
able via the ObjectSpace module.

Kernel is a module included by the Object class; it defines Ruby’s “built-
in” methods.

Math is a module containing module functions for basic trigonometric
and transcendental functions. It has both “instance methods” and mod-
ule methods of the same definitions and names.

ObjectSpace is a module that contains routines that interact with the gar-
bage collection facility and allow you to traverse all living objects with an
iterator.

Precision is a mixin for concrete numeric classes with precision. Here,
“precision” means the fineness of approximation of a real number, so
this module should not be included into anything that is not a subset of
Real (so it should not be included in classes such as Complex or Matrix).

Process is the module for manipulating processes. All its methods are
module methods.

Signal is the module for handling signals sent to running processes.
The list of available signal names and their interpretation is system
dependent.

The following is a brief overview of three of the most commonly used
Ruby modules.

Kernel

The most important of the predefined modules is Kernel, which provides
many of the “standard” Ruby methods such as gets, puts, print, and require.
In common with much of the Ruby class library, Kernel is written in the C lan-
guage. Although Kernel is, in fact, “built into” the Ruby interpreter, conceptu-
ally it can be regarded as a mixed-in module that, just like a normal Ruby
mixin, makes its methods directly available to any class that requires it. Since
it is mixed into the Object class from which all other Ruby classes descend,
the methods of Kernel are universally accessible.

Modules and Mixins 207

Math

The Math module’s methods are provided as both “module” and “instance”
methods and can therefore be accessed either by mixing Math into a class or
by accessing the module methods “from the outside” by using the module
name, a dot, and the method name; you can access constants using a double
colon:

math.rb puts(Math.sqrt(144)) #=> 12.0
puts(Math::PI) #=> 3.141592653589793

Comparable

The Comparable module provides the neat ability to define your own compari-
son “operators” as in <, <=, ==, >=, and > (strictly speaking, these are methods,
but they can be used like the comparison operators in other languages). This
is done by mixing the module into your class and defining the <=> method.
You can then specify the criteria for comparing some value from the current
object with some other value. You might, for example, compare two integers,
the length of two strings, or some more eccentric value such as the position
of a string in an array. I’ve opted for this eccentric type of comparison in my
example program, compare.rb. This uses the index of a string in an array of
mythical beings in order to compare the name of one being with that of
another. A low index such as hobbit at index 0 is considered to be “less than”
a high index such as dragon at index 6:

compare.rb class Being
include Comparable

 BEINGS = ['hobbit','dwarf','elf','orc','giant','oliphant','dragon']

 attr_accessor :name

 def <=> (anOtherName)
BEINGS.index(@name)<=>BEINGS.index(anOtherName.name)

 end

 def initialize(aName)
 @name = aName
 end

end

elf = Being.new('elf')
orc = Being.new('orc')
giant = Being.new('giant')

puts(elf < orc) #=> true
puts(elf > giant) #=> false

208 Chapter 12

Scope Resolution
As with classes, you can use the double-colon scope resolution operator to
access constants (including classes and other modules) declared inside
modules. For example, let’s suppose you have nested modules and classes,
like this:

module OuterMod
 moduleInnerMod
 class Class1
 end
 end
end

You could use the :: operator to access Class1, like this:

OuterMod::InnerMod::Class1

NOTE See Chapter 2 for an introduction to scope resolution of constants within classes.

Each module and class has its own scope, which means that a single con-
stant name might be used in different scopes. This being so, you could use
the :: operator to specify a constant within a precise scope:

Scope1::Scope2::Scope3 #...etc

If you use this operator at the very start of the constant name, this has the
effect of breaking out of the current scope and accessing the “top-level” scope:

::ACONST # refers to ACONST at top-level scope

 The following program provides some examples of the scope operator:

scope_resolution
.rb

ACONST = "hello" # This is a top-level constant

module OuterMod
 module InnerMod
 ACONST=10 # OuterMod::InnerMod::ACONST
 class Class1
 class Class2
 module XYZ
 class ABC
 ACONST=100 # Deeply nested ACONST
 def xyz
 puts(::ACONST) # <= This refers to top-level ACONST
 end
 end
 end
 end
 end
 end
end

Modules and Mixins 209

puts(OuterMod::InnerMod::ACONST) #=> 10
puts(OuterMod::InnerMod::Class1::Class2::XYZ::ABC::ACONST) #=> 100
ob = OuterMod::InnerMod::Class1::Class2::XYZ::ABC.new
ob.xyz #=> hello

Module Functions
If you want a function to be available both as an instance and as a module
method, you can use the module_function method with a symbol matching the
name of an instance method, like this:

module_func.rb module MyModule
 def sayHi
 return "hi!"
 end

 def sayGoodbye
 return "Goodbye"
 end

 module_function :sayHi
end

The sayHi method may now be mixed into a class and used as an instance
method:

class MyClass
 include MyModule
 def speak
 puts(sayHi)
 puts(sayGoodbye)
 end
end

It may be used as a module method, using dot notation:

ob = MyClass.new
ob.speak #=> hi!\nGoodbye
puts(MyModule.sayHi) #=> hi!

Since the sayGoodbye method here is not a module function, it cannot be
used in this way:

puts(MyModule.sayGoodbye) #=> Error: undefined method

Ruby uses module_function in some of its standard modules such as Math
(in the Ruby library file, complex.rb) to create “matching pairs” of module and
instance methods.

210 Chapter 12

Extending Objects
You can add the methods of a module to a specific object (rather than to an
entire class) using the extend method, like this:

extend.rb module A
 def method_a
 puts('hello from a')
 end
end

class MyClass
 def mymethod
 puts('hello from mymethod of class MyClass')
 end
end

ob = MyClass.new
ob.mymethod #=> hello from mymethod of class MyClass
ob.extend(A)

Now that the object ob is extended with the module A, it can access that
module’s instance method, method_a:

ob.method_a #=> hello from a

You can, in fact, extend an object with several modules all at once. Here,
the modules B and C extend the object, ob:

module B
 def method_b
 puts('hello from b')
 end
end

module C
 def mymethod
 puts('hello from mymethod of module C')
 end
end

ob.extend(B, C)
ob.method_b #=> hello from b
ob.mymethod #=> hello from mymethod of module C

When an object is extended with a module containing a method with
the same name as a method in the object’s class, the method from the mod-
ule replaces the method from the class. So, when ob is extended with C and
you call ob.mymethod, the string “hello from mymethod of module C” will be
displayed rather than the “hello from mymethod of class MyClass” that was dis-
played before ob was extended with module C.

Modules and Mixins 211

Freezing Objects
You can explicitly prevent an object from being extended it by “freezing” it
using the freeze method:

ob.freeze

Any attempt to extend this object further would result in a runtime
error:

module D
 def method_d
 puts('hello from d')
 end
end
ob.extend(D) #=> Error: can't modify frozen object (RuntimeError)

To avoid such an error, you can use the frozen? method to test whether
an object has been frozen:

if !(ob.frozen?)
 ob.extend(D)
 ob.method_d
else
 puts("Can't extend a frozen object")
end

F I L E S A N D I O

Ruby provides classes dedicated to handling
input and output (IO). Chief among these

is a class called, unsurprisingly, IO. The IO
class lets you open and close IO streams (sequences

of bytes) and read and write data to and from them.
For example, assuming you have a file called textfile.txt, containing some

lines of text, this is how you might open the file and display each line on the
screen:

io_test.rb IO.foreach("testfile.txt") {|line| print(line) }

Here foreach is a class method of IO, so you don’t need to create a new
IO object to use it; instead, you just specify the filename as an argument. The
foreach method takes a block into which each line that is read from the file is
passed as an argument. You don’t have to open the file for reading and close
it when you’ve finished (as you might expect from your experience with other
languages) because Ruby’s IO.foreach method does this for you.

214 Chapter 13

IO has a number of other useful methods. For example, you could use
the readlines method to read the file contents into an array for further pro-
cessing. Here is a simple example that once again prints the lines to screen:

lines = IO.readlines("testfile.txt")
lines.each{|line| print(line)}

The File class is a subclass of IO, and the previous examples could be
rewritten using the File class:

file_test.rb File.foreach("testfile.txt") {|line| print(line) }

lines = File.readlines("testfile.txt")
lines.each{|line| print(line)}

Opening and Closing Files

Although some standard methods open and close files automatically, often
when processing the contents of a file, you will need to open and close the
file explicitly. You can open a file using either the new or open method. You
must pass two arguments to one of those methods—the filename and the file
“mode”—and it returns a new File object. The File modes may be either inte-
gers that are defined by operating system–specific constants or strings. The
mode generally indicates whether the file is be opened for reading ("r"),
writing ("w"), or reading and writing ("rw"). Table 13-1 shows the list of avail-
able string modes.

Table 13-1: File Mode Strings

Mode Meaning

"r" Read-only, starts at beginning of file (default mode)

"r+" Read-write, starts at beginning of file

"w" Write-only, truncates existing file to zero length or creates a new file for writing

"w+" Read-write, truncates existing file to zero length or creates a new file for reading and
writing

"a" Write-only, starts at end of file if file exists; otherwise, creates a new file for writing

"a+" Read-write, starts at end of file if file exists; otherwise, creates a new file for reading
and writing

"b" (DOS/Windows only) Binary file mode (may appear with any of the key letters listed
earlier)

Fi les and IO 215

Let’s look at an actual example of opening, processing, and closing files.
In open_close.rb, I first open a file, myfile.txt, for writing ("w"). When a file is
opened for writing, a new file will be created if it doesn’t already exist. I use
puts() to write six strings to the file, one string on each of six lines. Finally, I
close the file:

f = File.new("myfile.txt", "w")
f.puts("I", "wandered", "lonely", "as", "a", "cloud")
f.close

Closing a file not only releases the file handle (the pointer to the file data)
but also “flushes” any data from memory to ensure that it is all saved into the
file on disk.

Having written text into a file, let’s see how to open that file and read the
data back in. This time I’ll read in the data one character at a time up to the
end of the file (eof). As I do so, I’ll keep a count of the characters that have
been read. I’ll also keep a count of the lines, which will be incremented when-
ever I read in a linefeed character (given by ASCII code 10). For the sake of
clarity, I’ll add a string to the end of each line that’s been read, displaying its
line number. I’ll display the characters plus my line-end strings on the screen,
and when everything has been read from the file, I’ll close it and display the
statistics that I’ve calculated. Here is the complete code:

open_close.rb f = File.new("myfile.txt", "w")
f.puts("I", "wandered", "lonely", "as", "a", "cloud")
f.close # Try commenting this out!

charcount = 0
linecount = 0
f = File.new("myfile.txt", "r")
while !(f.eof) do # while not at end of file...
 c = f.getc() # get a single character
 if (c.ord == 10) then # test ASCII code (Ruby 1.9)
 linecount += 1
 puts(" <End Of Line #{linecount}>")
 else
 putc(c) # put the char to screen
 charcount += 1
 end
end
if f.eof then
 puts("<End Of File>")
end
f.close
puts("This file contains #{linecount} lines and #{charcount} characters.")

216 Chapter 13

NOTE This code is written for Ruby 1.9 and won’t run in Ruby 1.8. See the following section
for more details.

When manipulating files in this way, it is the programmer’s responsibility
to ensure that the file is closed after data is written to or read from it. Failing to
close a file may result in unpredictable side effects. For example, try comment-
ing out the first f.close (on the third line in the previous code) to see for your-
self! You’ll find that when the program subsequently tries to read back the
contents of the file, no data is found, and a count of zero lines and characters
is returned!

Characters and Compatibility

The open_close.rb program is written for Ruby 1.9 and cannot be run in
Ruby 1.8. This is because when a single character is returned by Ruby 1.8, it
is treated as an integer ASCII value, whereas in Ruby 1.9 it is treated as a one-
character string. So, when getc() returns the character, c, Ruby 1.8 is able to
test its ASCII value (c == 10), whereas Ruby 1.9 must either test it as a string
(c == "\n") or convert the character to an integer using the ord method:
(c.ord == 10). The ord method does not exist in Ruby 1.8.

As a general principle, if you want to write programs that work in different
versions of Ruby, you may code around incompatibility issues by testing the
value of the RUBY_VERSION constant. This constant returns a string giving a ver-
sion number such as 1.9.2. You could simply convert the string to a floating-
point number using the to_f method and then take different actions if the
value is greater than 1.8:

if (RUBY_VERSION.to_f > 1.8) then
 c = c.ord
end

Alternatively, you could analyze the string to determine the minor and
major version numbers. Here, for example, is a very simple method that
indexes into the RUBY_VERSION string to obtain the first character as the major
version (1 or 2) and the second character as the minor version (for example,
8 or 9). It returns true if the Ruby version is 1.9 or higher and false otherwise:

open_close2.rb def isNewRuby
 newR = false # is this > Ruby version 1.8?
 majorNum = RUBY_VERSION[0,1]
 minorNum = RUBY_VERSION[2,1]
 if (majorNum == "2") || (minorNum == "9") then
 newR = true
 else
 newR == false
 end
 return newR
end

Fi les and IO 217

You can use this test in your code to deal with compatibility issues. Here
the ord method is applied to the character, c, only if the Ruby version is 1.9 or
greater:

if (isNewRuby) then
 c = c.ord
end

Files and Directories

You can also use the File class to manipulate files and directories on disk.
Before attempting to perform some operation on a file, you must naturally
make sure that the file exists. It might, after all, have been renamed or deleted
after the program started—or the user may have incorrectly entered a file or
directory name.

You can verify the existence of a file using the File.exist? method. This
is one of several testing methods that are provided to the File class by the
FileTest module. As far as the File.exist? method is concerned, a directory
counts as a file, so you could use the following code to test for the presence
of a C:\ drive (note that you must use double file separator "\\" characters in
strings, because a single "\" will be treated as an escape character):

file_ops.rb if File.exist?("C:\\") then
 puts("Yup, you have a C:\\ directory")
else
 puts("Eeek! Can't find the C:\\ drive!")
end

If you want to distinguish between a directory and a data file, use the
directory? method:

def dirOrFile(aName)
 if File.directory?(aName) then
 puts("#{aName} is a directory")
 else
 puts("#{aName} is a file")
 end
end

Copying Files

Let’s put the File class to some practical use by writing a simple file backup
program. When you run copy_files.rb, you will be asked to choose a directory
to copy from (the source directory) and another directory to copy to (the tar-
get directory). Assuming both directories exist, the program will then copy
all the files from the source directory to the target directory. If the target
directory does not exist, it will ask you whether you would like to create it,

218 Chapter 13

in which case you should enter Y to accept. I’ve supplied a source directory
for you; just enter the name srcdir when prompted. When asked for a target
directory, enter targetdir in order to create a subdirectory of that name beneath
the current directory.

The program initializes the variable sourcedir with the path of the source
directory, and it initializes targetdir with the name of the target directory.
This is the code that does the file copying:

copy_files.rb Dir.foreach(sourcedir){
 |f|
 filepath = "#{sourcedir}\\#{f}"
 if !(File.directory?(filepath)) then
 if File.exist?("#{targetdir}\\#{f}") then
 puts("#{f} already exists in target directory")
 else
 FileUtils.cp(filepath, targetdir)
 puts("Copying... #{filepath}")
 end
 end
}

Here I’ve used the foreach method of the Dir class, which passes into a
block the filename, f, of each file in the specified directory. I’ll have more to
say about the Dir class shortly. The code constructs a qualified path to the
file, filepath, by appending the filename to the directory name given by the
sourcedir variable. I only want to copy data files but not directories, so I test
that filepath is a file and not a directory:

if !(File.directory?(filepath))

I don’t want this program to copy over files that already exist, so it first
checks to see whether a file with the name f already exists in the target direc-
tory, targetdir:

if File.exist?("#{targetdir}\\#{f}")

Finally, assuming all the specified conditions are met, the source file,
filepath, is copied to targetdir:

FileUtils.cp(filepath, targetdir)

Here cp is a file-copy method found in the FileUtils module. This
module also contains a number of other useful file-handling routines such
as mv(source, target) to move a file from source to target, rm(files) to delete
one or more files listed in the files parameter, and mkdir to create a directory
as I have done when creating targetdir in the current program:

FileUtils.mkdir(targetdir)

Fi les and IO 219

Directory Inquiries

My backup program deals with just one directory level at a time, which is why
it tests to see that a file, f, is not a directory before attempting to copy it. There
are many times, however, when you may want to traverse the subdirectories.
For an example of this, let’s write a program that calculates the sizes of all the
subdirectories beneath a specified root directory. This might be useful if, for
example, you wanted to locate the biggest files and directories in order to
free up disk space by archiving or deleting them.

Navigating through subdirectories creates an interesting programming
problem. When you begin searching for the presence of subdirectories, you
have no idea whether you will find one, none, or many. Moreover, any sub-
directory you find may contain yet another level of subdirectories, each of
which may contain other subdirectories and so on through many possible
levels.

A Discursion into Recursion

This program needs to be able to navigate down the entire subdirectory tree
to any number of levels. To be able to do this, you have to use recursion. Put
simply, a recursive method is one that calls itself. If you aren’t familiar with
recursive programming, see “Recursion Made Simple” on page 224.

In the program file_info.rb, the processfiles method is recursive:

file_info.rb def processfiles(aDir)
 totalbytes = 0
 Dir.foreach(aDir){
 |f|
 mypath = "#{aDir}\\#{f}"
 s = ""
 if File.directory?(mypath) then
 if f != '.' and f != '..' then
 bytes_in_dir = processfiles(mypath) # <==== recurse!
 puts("<DIR> --->
 #{mypath} contains [#{bytes_in_dir/1024}] KB")
 end
 else
 filesize = File.size(mypath)
 totalbytes += filesize
 puts ("#{mypath} : #{filesize/1024}K")
 end
 }
 $dirsize += totalbytes
 return totalbytes
end

You will see that when the method is first called, toward the bottom of
the source code, it is passed the name of a directory in the variable dirname:

processfiles(dirname)

220 Chapter 13

I’ve already assigned the parent of the current directory, given by two dots:

dirname = ".."

If you are running this program in its original location (that is, the loca-
tion to which it is extracted from this book’s source code archive), this will
reference the directory containing the subdirectories of all the sample code
files. Alternatively, you could assign the name of some directory on your hard
disk to the variable, dirname. If you do this, don’t specify a directory containing
huge numbers of files and directories (on Windows, C:\Program Files would
not be a good choice, and C:\ would be even worse!) because the program
would then take quite some time to execute.

Let’s take a closer look at the code in the processfiles method. Once
again, I use Dir.foreach to find all the files in the current directory and pass
each file, f, one at a time, to be handled by the code in a block between curly
brackets. If f is a directory and is not the current one ('.') or its parent direc-
tory ('..'), then I pass the full path of the directory back to the processfiles
method:

if File.directory?(mypath) then
 if f != '.' and f != '..' then
 bytes_in_dir = processfiles(mypath)

If f is not a directory but just an ordinary data file, I find its size in bytes
with File.size and assign this to the variable filesize:

filesize = File.size(mypath)

As each successive file, f, is processed by the block of code, its size is cal-
culated, and this value is added to the variable totalbytes:

totalbytes += filesize

Once every file in the current directory has been passed into the block,
totalbytes will be equal to the total size of all the files in the directory.

However, I need to calculate the bytes in all the subdirectories too.
Because the method is recursive, this is done automatically. Remember that
when the code between curly brackets in the processfiles method determines
that the current file, f, is a directory, it passes this directory name back to
itself—the processfiles method.

Let’s imagine that you first call processfiles with the C:\test directory. At
some point, the variable f is assigned the name of one of its subdirectories,
say, C:\test\dir_a. Now this subdirectory is passed back to processfiles. No fur-
ther directories are found in C:\test\dir_a, so processfiles simply calculates the
sizes of all the files in this subdirectory. When it finishes calculating these

Fi les and IO 221

files, the processfiles method comes to an end and returns the number of
bytes in the current directory, totalbytes, to whichever bit of code called the
method in the first place:

return totalbytes

In this case, it was this bit of code inside the processfiles method that
recursively called the processfiles method:

bytes_in_dir = processfiles(mypath)

So, when processfiles finishes processing the files in the subdirectory,
C:\test\dir_a, it returns the total size of all the files found there, and this is
assigned to the bytes_in_dir variable. The processfiles method now carries on
where it left off (that is, it continues from the point at which it called itself to
deal with the subdirectory) by processing the files in the original directory,
C:\test.

No matter how many levels of subdirectories this method encounters,
the fact that it calls itself whenever it finds a directory ensures that it auto-
matically travels down every directory pathway it finds, calculating the total
bytes in each.

One final thing to note is that the values assigned to variables declared
inside the processfiles method will change back to their “previous” values as
each level of recursion completes. So, the totalbytes variable will first contain
the size of C:\test\test_a\test_b, then of C:\test\test_a, and finally of C:\test. To keep
a running total of the combined sizes of all the directories, you need to assign
values to a variable declared outside the method. Here I use the global vari-
able $dirsize for this purpose, adding to it the value of totalbytes calculated
for each subdirectory processed:

$dirsize += totalbytes

Incidentally, although a byte may be a convenient unit of measurement
for very small files, it is generally better to describe larger files in kilobyte
sizes and very large files or directories in megabytes. To change bytes to kilo-
bytes or to change kilobytes to megabytes, you need to divide by 1,024. To
change bytes to megabytes, divide by 1,048,576. The last line of code in my
program does these calculations and displays the results in a formatted string
using Ruby’s printf method:

printf("Size of this directory and subdirectories is
 #{$dirsize} bytes,
 #{$dirsize/1024}K, %0.02fMB",
 "#{$dirsize/1048576.0}")

222 Chapter 13

Notice that I have embedded the formatting placeholder "%0.02fMB"
in the first string, and I have added a second string following a comma:
"#{$dirsize/1048576.0}". The second string calculates the directory size in
megabytes, and this value is then substituted for the placeholder in the
first string. The placeholder’s formatting option "%0.02f" ensures that the
megabyte value is shown as a floating-point number, "f", with two decimal
places, "0.02".

Sorting by Size

Currently this program prints the file and directory names and their sizes in
alphabetical order. But I am more interested in their relative sizes. It would,
therefore, be more useful if the files were sorted by size rather than by name.

To be able to sort the files, you need some way of storing a complete list
of all file sizes. One obvious way of doing this would be to add the file sizes to
an array. In file_info2.rb, I create an empty array, $files, and each time a file is
processed, I append its size to the array:

file_info2.rb $files << fsize

I can then sort the file sizes to display low to high values or (by sorting
and then reversing the array) to display from high to low values:

$files.sort # sort low to high
$files.sort.reverse # sort high to low

The only trouble with this is that I now end up with an array of file sizes
without the associated filenames. A better solution would be to use a Hash
instead of an Array. I’ve done this in file_info3.rb. First, I create two empty
Hashes:

file_info3.rb $dirs = {}
$files = {}

Now, when the processfiles method encounters a directory, it adds a new
entry to the $dirs Hash using the full directory path, mypath, as the key and
using the directory size, dsize, as the value:

$dirs[mypath] = dsize

Key-value pairs are similarly added to the $files hash. When the entire
structure of subdirectories and files has been processed by recursive calls to
the processfiles method, the $dirs hash variable will contain key-value pairs
of directory names and sizes, and the $files hash will contain key-value
pairs of file names and sizes.

Fi les and IO 223

All that remains now is for these hashes to be sorted and displayed. The
standard sort method for a Hash sorts the keys, not the values. I want to sort
the values (sizes), not the keys (names). To do this, I have defined a custom
sort method (refer to Chapters 4 and 5 for guidance on defining custom
comparisons using <=>):

$files.sort{|a,b| a[1]<=>b[1]}

Here the sort method converts the $files Hash into nested arrays of
[key,value] pairs and passes two of these, a and b, into the block between
curly brackets. The second item (at index [1]) of each [key,value] pair pro-
vides the value. The sorting itself is done on the value using Ruby’s <=> com-
parison method. The end result is that this program now displays first a list of
files in ascending order (by size) and then a similarly sorted list of directo-
ries. This is an example of its output:

..\ch19\blog\app\models\post.rb : 36 bytes

..\ch19\say_hello.html.erb : 41 bytes

..\ch13\testfile.txt : 57 bytes

..\ch01\2helloname.rb : 67 bytes

..\ch9\div_by_zero.rb : 71 bytes

..\ch12\test.rb : 79 bytes

..\ch4\dir_array.rb : 81 bytes

..\ch3\for_to.rb : 89 bytes

224 Chapter 13

D I G G I N G D E E P E R
Recursion is an important programming technique that can, however, be quite
difficult to understand. Here I will explain recursion one step at a time.

Recursion Made Simple
If you’ve never used recursion before, the recursive “directory-walking” meth-
ods in this chapter may need a little explanation. To clarify how recursion
works, let’s look at a much simpler example. Load the recursion.rb program:

recursion.rb $outercount = 0

def addup(aNum)
 aNum += 1
 $outercount +=1
 puts("aNum is #{aNum}, $outercount is #{$outercount}")
 if $outercount < 3 then
 addup(aNum) #<= recursive call to addup method
 end
 puts("At END: aNum is #{aNum},outercount is #{$outercount}")
end

addup(0) #<= This is where it all begins

This contains the recursive method, addup, whose sole purpose in life is to
count from 1 to 3. The addup method receives an integer value as an incom-
ing argument, aNum.

addup(aNum)

There is also global variable, $outercount, which lives “outside” the addup
method. Whenever the addup method executes, 1 is added to aNum, and 1 is
also added to $outercount. Then, just so long as $outercount is less than 3, the
code inside the addup method calls the same method (addup) all over again,
passing to it the new value of aNum:

if $outercount < 3 then
 addup(aNum)
end

Fi les and IO 225

Let’s follow what happens. The process is started off by calling addup with
the value 0:

addup(0)

The addup method adds 1 to both aNum and $outercount, so both variables
now have the value 1. The test ($outercount < 3) evaluates to true, so aNum is
passed as an argument to addup. Once again, 1 is added to both variables, so
aNum is now 2, and $outercount is also 2. Now aNum is once more passed to addup.
Yet again 1 is added to both variables, giving each the value 3. This time, how-
ever, the test condition fails since $outercount is no longer less than 3. So, the
code that calls addup is skipped, and you arrive at the last line in the method:

puts("At END: aNum is #{aNum}, outercount is #{$outercount}")

This prints out the values of aNum and $outercount, which, as you expect,
are both 3. Having arrived at the end of this method, the “flow of control”
moves back to the line of code immediately following the code that originally
called the method. Here, the line of code that called the addup method hap-
pens to be inside the method itself. Here it is:

addup(aNum)

And the first executable line that follows this is (once again) the final
line of the method that prints out the values of the two variables:

puts("At END: aNum is #{aNum}, outercount is #{$outercount}")

So, you have gone back to an earlier “point of execution”—the point at
which you recursively called the addup method. At that time, the value of aNum
was 2, and that is its value now. If this seems confusing, just try to think what
would have happened if aNum had been 2 and then you called some other,
unrelated method. On returning from that other method, aNum would, of
course, still have had the value 2. That’s all that’s happened here. The only
difference is that this method happened to call itself rather than some other
method.

Once again, the method exits, and control returns to the next execut-
able line following the code that called the method, and aNum’s value has
taken another step back into its own history—it now has the value 1. The
$outercount variable, however, lives outside the method and is unaffected by
recursion, so it is still 3.

226 Chapter 13

If you have access to a visual debugger, this entire process will become
much clearer: You can place a breakpoint on line 9 (if $outercount < 3 then),
add aNum and $outercount to the Watch window, and repeatedly step into the
code after you hit the breakpoint.

This screenshot shows the recursion program being debugged visually in
the IDE Ruby In Steel. I can step through the source code, use the call stack
to keep track of the current “level” of recursion (how many times the addup
method has been called), and use the Watch window to monitor the current
values of the variables.

Y A M L

At some point, most desktop applications
are going to want to save and read struc-

tured data to and from disk. You’ve already
seen how to read and write data using simple IO

routines such as gets and puts. But how would you go
about saving and restoring data from, say, lists of mixed
object types? One simple way of doing this with Ruby
is by using YAML.

NOTE YAML is an acronym that is (debatably) either short for Yet Another Markup Lan-
guage or (recursively) for YAML Ain’t Markup Language.

228 Chapter 14

Converting to YAML

YAML defines a serialization (data-saving) format that stores information as
human-readable text. YAML can be used with a variety of programming lan-
guages; in order to use it in Ruby, your code needs access to routines from
Ruby’s yaml.rb file. Generally, this would be done by loading or “requiring”
the file at the top of a code unit like this:

require "yaml"

Having done this, you will have access to a variety of methods to convert
Ruby objects to the YAML format so that they can write their data to a file.
Subsequently, you will be able to read back this saved data and use it to
reconstruct Ruby objects. To convert an object to YAML format, you can
use the to_yaml method. This will convert standard object types such as
strings, integers, arrays, hashes, and so on. For example, this is how you
would convert a string:

to_yaml1.rb "hello world".to_yaml

And this is how you would convert an array:

["a1", "a2"].to_yaml

This is the YAML format that you would obtain as a result of this array
conversion:

- a1
- a2

Notice the three dashes that define the start of a new YAML “document”
and the single dash that defines each new element in a list. In YAML terms, a
document is not a separate file on disk but a separate YAML definition; one
disk file may contain many YAML documents. For more information on the
YAML format, refer to “Digging deeper” on page 237.

You can also convert objects of nonstandard types to YAML. For example,
let’s suppose you create this class and object:

to_yaml2.rb class MyClass
 def initialize(anInt, aString)
 @myint = anInt
 @mystring =aString
 end
end

ob1 = MyClass.new(100, "hello world").to_yaml

YAML 229

The YAML representation of this object will be preceded by the text
!ruby/object: followed by the class name, the names of variables with a colon
appended (but minus the @), and their values, one per line:

--- !ruby/object:MyClass
myint: 100
mystring: hello world

If you want to print out the YAML representation of an object, you can
use the method y(), which is a sort of YAML equivalent of the familiar p()
method used to inspect and print normal Ruby objects:

yaml_test1.rb y(['Bert', 'Fred', 'Mary'])

This displays the following:

- Bert
- Fred
- Mary

You could similarly display a hash:

y({ 'fruit' => 'banana', :vegetable => 'cabbage', 'number' => 3 })

in which case each key-value pair is placed onto a new line:

fruit: banana
:vegetable: cabbage
number: 3

NOTE The ordering of hash elements may differ according to which version of Ruby you are
using (see Chapter 4). It is best to assume no intrinsic order when working with a hash.

Or you could display your own “custom” objects:

t = Treasure.new('magic lamp', 500)
y(t)

This displays data formatted, as in the earlier example where I used
to_yaml, with the class name at the top and with pairs of variable names and
values on successive lines. This is the YAML representation of a Treasure
object containing the instance variables @name and @value:

--- !ruby/object:Treasure
name: magic lamp
value: 500

230 Chapter 14

You can even use y() to display quite complex objects such as nested
arrays:

yaml_test2.rb arr1 = [["The Groovesters", "Groovy Tunes", 12],
 ["Dolly Parton", "Greatest Hits", 38]
]
y(arr1)

This is the YAML representation of arr1:

- - The Groovesters
 - Groovy Tunes
 - 12
- - Dolly Parton
 - Greatest Hits
 - 38

Here is another example of an array containing objects of user-defined
types:

class CD
 def initialize(anArtist, aName, theNumTracks)
 @artist = anArtist
 @name = aName
 @numtracks = theNumTracks
 end
end

arr2 = [CD.new("The Beasts", "Beastly Tunes", 22),
 CD.new("The Strolling Bones","Songs For Senior Citizens",38)
]

y(arr2)

This outputs the following YAML:

- !ruby/object:CD
 artist: The Beasts
 name: Beastly Tunes
 numtracks: 22
- !ruby/object:CD
 artist: The Strolling Bones
 name: Songs For Senior Citizens
 numtracks: 38

YAML 231

Nested Sequences

When related sequences of data (such as arrays) are nested inside other
sequences of data, this relationship is indicated by indentation. So, for
example, let’s suppose you have this array declared in Ruby:

nested_arrays.rb arr = [1,[2,3,[4,5,6,[7,8,9,10],"end3"],"end2"],"end1"]

When rendered as YAML (for example, by y(arr)), this becomes as
follows:

- 1
- - 2
 - 3
 - - 4
 - 5
 - 6
 - - 7
 - 8
 - 9
 - 10
 - end3
 - end2
- end1

Saving YAML Data

Another handy way of turning your Ruby objects into YAML format is pro-
vided by the dump method. At its simplest, this converts your Ruby data into
YAML format and “dumps” it into a string:

yaml_dump1.rb arr = ["fred", "bert", "mary"]
yaml_arr = YAML.dump(arr)
 # yaml_arr is now: "--- \n- fred\n- bert\n- mary\n"

More usefully, the dump method can take a second argument, which is some
kind of IO object, typically a file. You can open a file and dump data to it:

yaml_dump2.rb f = File.open('friends.yml', 'w')
YAML.dump(["fred", "bert", "mary"], f)
f.close

Or you can open the file (or some other type of IO object) and pass this
into an associated block:

File.open('morefriends.yml', 'w'){ |friendsfile|
 YAML.dump(["sally", "agnes", "john"], friendsfile)
}

232 Chapter 14

In each case, the YAML representation of the data from the array will
be saved, as plaintext, into the specified file. For example, when the previous
code executes, it writes this text into the morefriends.yml file:

morefriends.yml ---
- sally
- agnes
- john

If you use a block, the file will be closed automatically on exiting the block;
otherwise, you should explicitly close the file using the close method. You can
also use a block in a similar way to open a file and read in YAML data:

File.open('morefriends.yml'){ |f|
 $arr= YAML.load(f)
}

Assuming morefriends.yml contains the data saved earlier, once it is loaded
and assigned to the global variable $arr in the block shown earlier, $arr will
contain this array of strings:

["sally", "agnes", "john"]

Omitting Variables on Saving

If, for some reason, you want to omit some instance variables when serializing
objects, you can do so by defining a method named to_yaml_properties. In the
body of this method, place an array of strings. Each string should match the
name of the instance variable to be saved. Any variables that are not specified
will not be saved. Take a look at this example:

limit_y.rb class Yclass
 def initialize(aNum, aStr, anArray)
 @num = aNum
 @str = aStr
 @arr = anArray
 end

 def to_yaml_properties
 ["@num", "@arr"] #<= @str will not be saved!
 end
end

Here to_yaml_properties limits the variables that will be saved when you
call YAML.dump to @num and @arr. The string variable, @str, will not be saved. If
you want to reconstruct the objects based on the saved YAML data, it is your
responsibility to ensure that any “missing” variables are either not needed (in
which case they may be ignored) or, if they are needed, that they are initial-
ized with some meaningful value.

YAML 233

ob = Yclass.new(100, "fred", [1,2,3])
 # ...creates object with @num=100, @str="fred", @arr=[1,2,3]

yaml_ob = YAML.dump(ob)
 #...dumps to YAML only the @num and @arr data (omits @str)

ob2 = YAML.load(yaml_ob)
 #...creates ob2 from dumped data with @num=100, @arr=[1,2,3]
 # but without @str

Multiple Documents, One File

Earlier, I mentioned that three dashes are used to mark the start of a new
YAML section known as a document. For example, let’s assume you want to
save two arrays, arr1 and arr2, to a file, multidoc.yml. Here arr1 is an array con-
taining two nested arrays, and arr2 is an array containing two CD objects:

multi_docs.rb arr1 = [["The Groovesters", "Groovy Tunes", 12],
 ["Dolly Parton", "Greatest Hits", 38]
]

arr2 = [CD.new("Gribbit Mcluskey", "Fab Songs", 22),
 CD.new("Wayne Snodgrass", "Singalong-a-Snodgrass", 24)
]

This is my routine to dump these arrays to YAML and write them to a file
(as explained in Chapter 13, the 'w' argument causes the file to be opened
for writing):

File.open('multidoc.yml', 'w'){ |f|
 YAML.dump(arr1, f)
 YAML.dump(arr2, f)
}

If you now look at the file multidoc.yml, you’ll see that the data has been
saved as two separate “documents,” each one beginning with three dashes:

- - The Groovesters
 - Groovy Tunes
 - 12
- - Dolly Parton
 - Greatest Hits
 - 38

- !ruby/object:CD
 artist: Gribbit Mcluskey
 name: Fab Songs
 numtracks: 22

234 Chapter 14

- !ruby/object:CD
 artist: Wayne Snodgrass
 name: Singalong-a-Snodgrass
 numtracks: 24

Now, I need to find a way of reconstructing these arrays by reading in the
data as two documents. This is where the load_documents method comes to the
rescue. The load_documents method calls a block and passes to it each consec-
utive document. Here is an example of how to use this method in order to
reconstruct two arrays (placed inside another array, $new_arr) from the two
YAML documents:

File.open('multidoc.yml') {|f|
 YAML.load_documents(f) { |doc|
 $new_arr << doc
 }
 }

You can verify that $new_arr has been initialized with the two arrays by
executing the following:

p($new_arr)

This displays an array containing the loaded data in two nested arrays:

[[["The Groovesters", "Groovy Tunes", 12], ["Dolly Parton", "Greatest Hits",
38]], [#<CD:0x2c30e98 @artist="Gribbit Mcluskey", @name="Fab Songs",
@numtracks=22>, #<CD:0x2c30ad8 @artist="Wayne Snodgrass", @name="Singalong-a-
Snodgrass", @numtracks=24>]]

Because this is a bit unmanageable, you might prefer to display each of
the nested arrays individually using an index into the outer array:

p($new_arr[0])
p($new_arr[1])

The previous assumes that you know, in advance, the number of nested
arrays available. Alternatively, here’s a more generic way of doing the same
thing, using the each method to pass all available items into a block; this works
with any number of arrays:

$new_arr.each{ |arr| p(arr) }

A YAML Database

For an example of a slightly more complicated application that saves and loads
data in YAML format, take a look at the cd_db.rb sample program. This imple-
ments a simple CD database. It defines three types of CD objects: a basic CD that

YAML 235

contains data on the name, artist, and number of tracks; and two more special-
ized descendants, PopCD, which adds data on the genre (for example, rock or
country), and ClassicalCD, which adds data on the conductor and composer:

cd_db.rb class CD
 def initialize(arr)
 @name = arr[0]
 @artist = arr[1]
 @numtracks = arr[2]
 end

 def getdetails
 return[@name, @artist, @numtracks]
 end
end

class PopCD < CD

 def initialize(arr)
 super(arr)
 @genre = arr[3]
 end

 def getdetails
 return(super << @genre)
 end
end

class ClassicalCD < CD
 def initialize(arr)
 super(arr)
 @conductor = arr[3]
 @composer = arr[4]
 end

 def getdetails
 return(super << @conductor << @composer)
 end
end

When the program is run, the user can enter data to create new CD
objects of any of these three types. There is also an option to save data to
disk. When the application is run subsequently, the existing data is reloaded.

The data itself is organized very simply (trivially even) in the code, with the
data for each object being read into an array before the object itself is created.
The whole database of CD objects is saved into the global variable $cd_arr, and
this is written to disk and reloaded into memory using YAML methods:

def saveDB
 File.open($fn, 'w') {
 |f|
 f.write($cd_arr.to_yaml)
 }
end

236 Chapter 14

def loadDB
 input_data = File.read($fn)
 $cd_arr = YAML::load(input_data)
end

Bear in mind that this program has been written for simplicity rather than
beauty. In a real-world application, you would, I am sure, want to create some-
what more elegant data structures to manage your Dolly Parton collection!

Adventures in YAML

As one final example of using YAML, I’ve provided an elementary framework
for an adventure game (gamesave_y.rb). This creates some Treasure objects and
some Room objects. The Treasure objects are put “into” the Room objects
(that is, they are placed into arrays contained by the Rooms), and the Room
objects are then put into a Map object. This has the effect of constructing a
moderately complex data structure in which an object of one type (a Map)
contains an arbitrary number of objects of another type (Rooms), each of
which may contain zero or more objects of yet other types (Treasures).

At first sight, finding a way of storing this entire network of mixed object
types to disk and reconstructing that network at a later stage might look like
a programming nightmare. In fact, thanks to the serialization capabilities
supplied by Ruby’s YAML library, saving and restoring this data could hardly
be easier. This is because serialization relieves you of the chore of saving each
object one by one. Instead, you have to “dump” only the top-level object;
here, that is the Map object, mymap.

When this is done, any objects that the top-level object “contains” (such
as Rooms) or that the contained objects themselves contain (such as Treasures)
are automatically saved for you. They can then be reconstructed just by load-
ing all the saved data in a single operation and assigning it to the “top-level”
object (here the map):

gamesave_y.rb # Save mymap
File.open('game.yml', 'w'){ |f|
 YAML.dump(mymap, f)
}

Reload mymap
File.open('game.yml'){ |f|
 mymap = YAML.load(f)
}

The full code of this program is too long to show here, so I suggest you
try the program supplied in the source code archive in order to appreciate
how simple it is to save and load a fairly complex data structure with YAML.

YAML 237

D I G G I N G D E E P E R
This section summarizes the structure of a YAML datafile and explains how
to save nested hashes in YAML format.

A Brief Guide to YAML
As I mentioned earlier, YAML stores information in the form of chunks of
text known as documents containing sequences of data. Each document begins
with three hyphens (---), and each individual element in a list begins with a
single hyphen (-) character. Here, for example, is a YAML datafile compris-
ing one document and two list items:

- artist: The Groovesters
 name: Groovy Tunes
 numtracks: 12
- artist: Dolly Parton
 name: Greatest Hits
 numtracks: 38

In the previous example, you can see that each list item consists of two
parts: a name such as artist: (which is the same in each list item) and a piece
of data to its right, such as Dolly Parton, which may vary for each list item.
These items are like the key-value pairs in a Ruby hash. YAML refers to key-
value lists as maps.

The following is a YAML document containing a list of two items, each of
which contains three items; in other words, it is the YAML representation of
an array containing two three-item “nested” arrays:

- - The Groovesters
 - Groovy Tunes
 - 12
- - Dolly Parton
 - Greatest Hits
 - 38

Now let’s see how YAML would deal with nested hashes. Consider
this hash:

hash_to_yaml.rb hsh = { :friend1 => 'mary',
 :friend2 => 'sally',
 :friend3 => 'gary',
 :morefriends => { :chap_i_met_in_a_bar => 'simon',
 :girl_next_door => 'wanda'
 }
}

238 Chapter 14

As you’ve already seen, a hash is quite naturally represented in YAML as
a list of key-value pairs. However, in the example shown previously, the key
:morefriends is associated with a nested hash as its value. How does YAML
represent that? It turns out that, as with arrays (see “Nested Sequences” on
page 231), it simply indents the nested hash:

:friend1: mary
:friend2: sally
:friend3: gary
:morefriends:
 :chap_i_met_in_a_bar: simon
 :girl_next_door: wanda

NOTE For in-depth information on YAML, see http://www.yaml.org/.

The YAML libraries supplied with Ruby are quite large and complex, and
many more methods are available than have been described in this chapter.
However, you should now have enough of an understanding of YAML to use
it to good effect in your own programs. You may explore the outer reaches of
the YAML libraries at your leisure. It turns out, though, that YAML is not the
only way of serializing data in Ruby. You’ll be looking at another way in the
next chapter.

M A R S H A L

An alternative way of saving and loading
data is provided by Ruby’s Marshal library.

This has a similar set of methods to YAML to
enable you to save and load data to and from disk.

Saving and Loading Data

Compare the following program with yaml_dump2.rb from the previous chapter:

marshal1.rb f = File.open('friends.sav', 'w')
Marshal.dump(["fred", "bert", "mary"], f)
f.close

File.open('morefriends.sav', 'w'){ |friendsfile|
 Marshal.dump(["sally", "agnes", "john"], friendsfile)
}

File.open('morefriends.sav'){ |f|
 $arr= Marshal.load(f)
}

240 Chapter 15

myfriends = Marshal.load(File.open('friends.sav'))
morefriends = Marshal.load(File.open('morefriends.sav'))

p(myfriends) #=> ["fred", "bert", "mary"]
p(morefriends) #=> ["sally", "agnes", "john"]
p($arr) #=> ["sally", "agnes", "john"]

The two programs are pretty much identical except that each occur-
rence of YAML (as in YAML.dump and YAML.load) has been replaced with Marshal.
Moreover, Marshal is “built in” to Ruby as standard, so you don’t have to
require any extra files in order to use it.

If you look at the data files produced (such as friends.sav), you will imme-
diately see that there is a major difference, however. Whereas YAML files
are in plaintext format, Marshal files are in binary format. So although you
may be able to read some characters, such as those in the strings, you won’t
simply be able to load the saved data and modify it in a text editor.

As with YAML, most data structures can be automatically serialized using
Marshal just by dumping the top-level object and loading it when you want to
reconstruct all the objects beneath it. For an example, take a look at my little
adventure game program. In the previous chapter, I explained how to save and
restore a Map containing Rooms containing Treasures just by dumping and
loading the Map object, mymap (see gamesave_y.rb on page 236). You can do
the same using Marshal instead of YAML:

gamesave_m.rb File.open('game.sav', 'w'){ |f|
 Marshal.dump(mymap, f) # save data to file
}

File.open('game.sav'){ |f|
 mymap = Marshal.load(f) # reload saved data from file
}

Objects cannot be so easily serialized in a few special circumstances. These
exceptions are documented in the code of Ruby’s Marshal module (marshal.c),
which states, “If the objects to be dumped include bindings, procedure or
method objects, instances of class IO, or singleton objects, a TypeError will
be raised.” I’ll show an example of this while discussing how you might go
about saving singletons with marshaling.

Omitting Variables on Saving

As with YAML serialization, it is possible to limit the variables that are saved
when serializing using Marshal. In YAML, you did this by writing a method
called to_yaml_properties. With Marshal, you need to write a method named
marshal_dump. In the code of this method you should create an array contain-
ing the actual variables to be saved (in YAML, you created an array of strings
containing the variable names).

Marshal 241

This is an example:

def marshal_dump
 [@variable_a, @variable_b]
end

Another difference is that, with YAML, you were able simply to load the
data in order to re-create an object. With Marshal, you need to add a special
method called marshal_load to which any loaded data is passed as an argu-
ment. This will be invoked automatically when you call Marshal.load, and it
will be passed the data in the form of an array. The previously saved objects
can be parsed from this array. You can also assign values to any variables that
were omitted (such as @some_other_variable here) when the data was saved:

def marshal_load(data)
 @variable_a = data[0]
 @variable_b = data[1]
 @some_other_variable = "a default value"
end

Here is a complete program that saves and restores the variables @num and
@arr but omits @str:

limit_m.rb class Mclass
 def initialize(aNum, aStr, anArray)
 @num = aNum
 @str = aStr
 @arr = anArray
 end

 def marshal_dump
 [@num, @arr]
 end

 def marshal_load(data)
 @num = data[0]
 @arr = data[1]
 @str = "default"
 end
end

ob = Mclass.new(100, "fred", [1,2,3])
p(ob)
#=> #<Mclass:0x2be7278 @num=100, @str="fred", @arr=[1, 2, 3]>

marshal_data = Marshal.dump(ob)
ob2 = Marshal.load(marshal_data)
p(ob2)
#=> #<Mclass:0x2be70e0 @num=100, @str="default", @arr=[1, 2, 3]>

242 Chapter 15

Note that although the serialization is done here in memory, the same
techniques can be used when using Marshal to save and load objects to and
from disk.

Saving Singletons

Let’s take a look at a concrete example of a problem mentioned earlier,
namely, the inability to use marshaling to save and load a singleton. In
singleton_m.rb I have created an instance of Object, ob, and then extended
it in the form of a singleton class that is given the additional method, xxx:

singleton_m.rb ob = Object.new

class << ob
 def xxx(aStr)
 @x = aStr
 end
end

The problem arises when I try to save this data to disk using Marshal.dump.
Ruby displays an error message: “singleton can’t be dumped (TypeError).”

YAML and Singletons
Before considering how you might deal with this, let’s briefly take a look at
how YAML would cope in this situation. The program singleton_y.rb tries to
save the singleton that I created a moment ago using YAML.dump, and, unlike
Marshal.dump, it succeeds—well, sort of:

singleton_y.rb # YAML version of singleton-save
ob.xxx("hello world")

File.open('test.yml', 'w'){ |f|
 YAML.dump(ob, f)
}

ob.xxx("new string")

File.open('test.yml'){ |f|
 ob = YAML.load(f)
}

If you look at the YAML file that is saved, test.yml, you’ll find that it
defines an instance of a plain-vanilla Object to which a variable named x
is appended that has the string value hello world:

--- !ruby/object
x: hello world

Marshal 243

That’s all well and good. However, when you reconstruct the object by
loading the saved data, the new ob will be a standard instance of Object, which
happens to contain an additional instance variable, @x. Since it is no longer the
original singleton, this ob will not have access to any of the methods (here the
xxx method) defined in that singleton. So, although YAML serialization is
more permissive about saving and loading data items that were created in a
singleton, it does not automatically re-create the singleton itself when the
saved data is reloaded.

Marshal and Singletons
Let’s now return to the Marshal version of this program. The first thing I need
to do is find a way of at least making it save and load data items. Once I’ve
done that, I’ll try to figure out how to reconstruct singletons on reloading.

To save specific data items, I can define the marshal_dump and marshal_load
methods as explained earlier (see limit_m.rb). These should normally be
defined in a class from which the singleton derives, not in the singleton itself.
This is because, as already explained, when the data is saved, it will be stored
as a representation of the class from which the singleton derives. This means
that although you could indeed add marshal_dump to a singleton derived from
class X, when you reconstruct the object, you will be loading data for an
object of the generic type X, not of the specific singleton instance.

This code creates a singleton, ob, of class X, saves its data, and then
re-creates a generic object of class X:

singleton_m2.rb class X
 def marshal_dump
 [@x]
 end

 def marshal_load(data)
 @x = data[0]
 end
end

ob = X.new

class << ob
 def xxx(aStr)
 @x = aStr
 end
end

ob.xxx("hello")
p(ob)

File.open('test2.sav', 'w'){ |f|
 Marshal.dump(ob, f)
}

ob.xxx("new string")
p(ob)

244 Chapter 15

File.open('test2.sav'){ |f|
 ob = Marshal.load(f)
}

p(ob)

The code here uses Marshal.dump to save an object, ob, of class X and then
calls the singleton method, xxx, to assign a different string to the @x variable
before reloading the saved data using Marshal.load and using this data to
re-create the object. The contents of ob are displayed using p() before it is
saved, then again after a new string is assigned to it, and finally once again
when it is reloaded. This lets you verify that @x is assigned the value that was
saved when the reloaded object is reconstructed:

#<X:0x2b86cc0 @x="hello"> # value when saved
#<X:0x2b86cc0 @x="new string"> # new value then assigned
#<X:0x2b869f0 @x="hello"> # value after saved data loaded

In terms of the data it contains, the object saved and the object reloaded
are identical. However, the object that is reloaded knows nothing about the
singleton class. The method xxx that the singleton class contains forms no
part of the reconstructed object. The following, then, would fail:

ob.xxx("this fails")

This Marshal version of the code is equivalent to the YAML version given
earlier. It saves and restores the data correctly, but it does not reconstruct the
singleton. How, then, is it possible to reconstruct a singleton from saved
data? There are, no doubt, many clever and subtle ways in which this might
be accomplished. I shall, however, opt for a very simple technique:

singleton_m3.rb FILENAME = 'test2.sav'

class X
 def marshal_dump
 [@x]
 end

 def marshal_load(data)
 @x = data[0]
 end
end

ob = X.new

a) if File exists, load data into ob – a generic X object
if File.exists?(FILENAME) then
 File.open(FILENAME){ |f|
 ob = Marshal.load(f)
 }
else
 puts("Saved data can't be found")
end

Marshal 245

b) Now transform ob in a singleton
class << ob
 def xxx=(aStr)
 @x = aStr
 end

 def xxx
 return @x
 end
end

This code first checks whether a file containing the saved data can be
found. (This sample has been kept deliberately simple—in a real application
you would of course need to write some exception-handling code to deal
with the possibility of reading in invalid data.) If the file is found, the data
is loaded into an object of the generic X type.

Only when this has been done is this object “transformed” into a single-
ton in the usual way. In other words, the object is loaded, and then the code
beginning class << ob executes (simply because the singleton-creation code
occurs after the loading code and so is executed in sequence by the Ruby
interpreter). This provides the object with the additional xxx singleton method.
You can then save the new data back to disk and reload and re-create the
modified singleton, as explained earlier, at a later stage:

if ob.xxx == "hello" then
 ob.xxx = "goodbye"
else
 ob.xxx = "hello"
end

File.open(FILENAME, 'w'){ |f|
 Marshal.dump(ob, f)
}

If you wanted to save and load singletons in a real application, the
singleton “reconstruction” code could, naturally, be given its own method
so that you don’t have to rely upon its position in your code as in the previ-
ous example.

singleton_m4.rb def makeIntoSingleton(someOb)
 class << someOb
 def xxx=(aStr)
 @x = aStr
 end

 def xxx
 return @x
 end
 end
 return someOb
end

246 Chapter 15

D I G G I N G D E E P E R
If you attempt to load data that was saved with a different version of the Mar-
shal library you may run into problems. Here you will learn how to verify the
version of Marshal.

Marshal Version Numbers
The embedded documentation of the Marshal library (a C language file
named marshal.c) states the following: “Marshaled data has major and minor
version numbers stored along with the object information. In normal use,
marshaling can only load data written with the same major version number
and an equal or lower minor version number.”

This clearly raises the potential problem that the format of data files
created by marshaling may be incompatible with the current Ruby applica-
tion. The Marshal version number, incidentally, is not dependent on the
Ruby version number, so it is not safe to make assumptions of compatibility
based solely on the Ruby version.

This possibility of incompatibility means you should always check the ver-
sion number of the saved data before attempting to load it. But how do you
get hold of the version number? Once again, the embedded documentation
provides a clue. It states, “You can extract the version by reading the first two
bytes of marshaled data.”

Ruby 1.8 provides this example:

str = Marshal.dump("thing")
RUBY_VERSION #=> "1.8.0"
str[0] #=> 4
str[1] #=> 8

Okay, so let’s try this in a fully worked piece of code. Here goes:

version_m.rb x = Marshal.dump("hello world")
print("Marshal version: #{x[0]}:#{x[1]}\n")

In the previous code, x is a string, and its first two bytes are the major and
minor version numbers. In Ruby 1.8, this prints out the following:

Marshal version: 4:8

In Ruby 1.9, however, no numbers are displayed. This is because the first
two bytes are returned as integers in Ruby 1.8 but as strings in Ruby 1.9. These
strings are not necessarily printable. You can see this quite simply by using
the p() method to display the elements at index 0 and index 1 of the array x:

p(x[0]) #=> 4 (Ruby 1.8) "\x04" (Ruby 1.9)
p(x[1]) #=> 8 (Ruby 1.8) "\b" (Ruby 1.9)

Marshal 247

The strings returned by Ruby 1.9 may be shown either as hexadecimal
values or as escape characters. Here you can see that, for Marshal version 4.8,
the first value is \x04, which is the hexadecimal representation of 4, while the
second value is \b, which is the escape character for the backspace that hap-
pens to have the ASCII value of 8. The ord method can be used to do the
necessary conversion from string to integer. This is the Ruby 1.9 version:

print("Marshal version: #{x[0].ord}:#{x[1].ord}\n")

This now correctly displays the version number: 4:8. Of course, if you are
using a different version of the Marshal library, the numbers displayed will be
different. The Marshal library also declares two constants, MAJOR_VERSION and
MINOR_VERSION, which store the version numbers of the Marshal library cur-
rently in use. So, at first sight, it looks as though it should be easy to compare
the version number of saved data with the current version number.

There is just one problem: When you save data to a file on disk, the
dump method takes an IO or File object, and it returns an IO (or File) object
rather than a string:

version_error.rb f = File.open('friends.sav', 'w')
x = Marshal.dump(["fred", "bert", "mary"], f)
f.close #=> x is now: #<File:friends.sav (closed)>

If you now try to get the values of x[0] and x[1], you will receive an error
message:

p(x[0])
#=> Error: undefined method '[]' for #<File:friends.sav (closed)>
(NoMethodError)

Loading the data back from the file is no more instructive:

File.open('friends.sav'){ |f|
 x = Marshal.load(f)
}

puts(x[0])
puts(x[1])

The two puts statements here don’t (as I was naively hoping) print out
the major and minor version numbers of the marshaled data; in fact, they
print out the names “fred” and “bert”—that is, the two first items loaded into
the array, x, from the data file, friends.sav.

So, how the heck can you get the version number from the saved data?
I have to admit that I was forced to read my way through the C code (not my
favorite activity!) in marshal.c and examine the hexadecimal data in a saved
file to figure this out. It turns out that, just as the documentation says, “You
can extract the version by reading the first two bytes of marshaled data.”

248 Chapter 15

However, this isn’t done for you. You have to read this data explicitly, as
shown here:

version_m2.rb f = File.open('test2.sav')
if (RUBY_VERSION.to_f > 1.8) then
 vMajor = f.getc().ord
 vMinor = f.getc().ord
else
 vMajor = f.getc()
 vMinor = f.getc()
end
f.close

Here the getc method reads the next 8-bit byte from the input stream.
Notice that I have once again written a test to make this compatible both with
Ruby 1.8, in which getc returns a numeric character value, and with Ruby 1.9,
in which getc returns a one-character string that has to be converted to an
integer using ord.

My sample project, version_m2.rb, shows a simple way of comparing the
version number of the saved data with that of the current Marshal library
in order to establish whether the data formats are likely to be compatible
before attempting to reload the data.

if vMajor == Marshal::MAJOR_VERSION then
 puts("Major version number is compatible")
 if vMinor == Marshal::MINOR_VERSION then
 puts("Minor version number is compatible")
 elsif vMinor < Marshal::MINOR_VERSION then
 puts("Minor version is lower - old file format")
 else
 puts("Minor version is higher - newer file format")
 end
else
 puts("Major version number is incompatible")
end

R E G U L A R E X P R E S S I O N S

Regular expressions provide you with power-
ful ways to find and modify patterns in text—

not only short bits of text such as might be
entered at a command prompt but also huge

stores of text such as might be found in files on disk.
A regular expression takes the form of a pattern that is compared with a

string. Regular expressions also provide the means by which you can modify
strings so that, for example, you might change specific characters by putting
them into uppercase, you might replace every occurrence of “Diamond” with
“Ruby,” or you might read in a file of programming code, extract all the com-
ments, and write out a new documentation file containing all the comments
but none of the code. You’ll find out how to write a comment-extraction tool
shortly. First, though, let’s take a look at some very simple regular expressions.

250 Chapter 16

Making Matches

Just about the simplest regular expression is a sequence of characters
(such as “abc”) that you want to find in a string. A regular expression to
match “abc” can be created by placing those letters between two forward
slash delimiters, like this: /abc/. You can test for a match using the =~ opera-
tor method like this:

regex0.rb p(/abc/ =~ 'abc') #=> 0

If a match is made, an integer representing the character position in the
string is returned. If no match is made, nil is returned.

p(/abc/ =~ 'xyzabcxyzabc') #=> 3
p(/abc/ =~ 'xycab') #=> nil

You can also specify a group of characters, between square brackets,
in which case a match will be made with any one of those characters in the
string. Here, for example, the first match is made with “c”; then that charac-
ter’s position in the string is returned:

p(/[abc]/ =~ 'xycba') #=> 2

Although I’ve used forward-slash delimiters in the previous examples,
there are alternative ways of defining regular expressions: You can specifi-
cally create a new Regexp object initialized with a string, or you can precede
the regular expression with %r and use custom delimiters—nonalphanumeric
characters—as you can with strings (see Chapter 3). In the following example,
I use curly bracket delimiters:

regex1.rb regex1 = Regexp.new('^[a-z]*$')
regex2 = /^[a-z]*$/
regex3 = %r{^[a-z]*$}

Each of the previous examples defines a regular expression that matches
an all-lowercase string (I’ll explain the details of the expressions shortly).
These expressions can be used to test strings like this:

def test(aStr, aRegEx)
 if aRegEx =~ aStr then
 puts("All lowercase")
 else
 puts("Not all lowercase")
 end
end

test("hello", regex1) #=> matches: "All lowercase"
test("hello", regex2) #=> matches: "All lowercase"
test("Hello", regex3) #=> no match: "Not all lowercase"

Regular Express ions 251

To test for a match, you can use if and the =~ operator:

if /def/ =~ 'abcdef'

The previous expression evaluates to true if a match is made (and an
integer is returned); it would evaluate to false if no match were made (and
nil were returned):

if_test.rb RegEx = /def/
Str1 = 'abcdef'
Str2 = 'ghijkl'

if RegEx =~ Str1 then
 puts('true')
else
 puts('false')
end #=> displays: true

if RegEx =~ Str2 then
 puts('true')
else
 puts('false')
end #=> displays: false

Frequently, it is useful to attempt to match some expression from the
very start of a string; you can use the character ^ followed by a match term to
specify this. It may also be useful to make a match from the end of the string;
you use the character $ preceded by a match term to specify that.

start_end1.rb puts(/^a/ =~ 'abc') #=> 0
puts(/^b/ =~ 'abc') #=> nil
puts(/c$/ =~ 'abc') #=> 2
puts(/b$/ =~ 'abc') #=> nil

NOTE As mentioned previously, when a nil value is passed to print or puts in Ruby 1.9,
nothing is displayed. In Ruby 1.8, nil is displayed. To be sure that nil is displayed in
Ruby 1.9, use p instead of puts.

Matching from the start or end of a string becomes more useful when it
forms part of a more complex expression. Often such an expression tries to
match zero or more instances of a specified pattern. The * character is used
to indicate zero or more matches of the pattern that it follows. Formally, this
is known as a quantifier. Consider this example:

start_end2.rb p(/^[a-z 0-9]*$/ =~ 'well hello 123')

Here, the regular expression specifies a range of characters between
square brackets. This range includes all lowercase characters (a–z), all digits
(0–9), and the space character (that’s the space between the z and the 0 in
the expression shown earlier). The ^ character means the match must be

252 Chapter 16

made from the start of the string, the * character after the range means that
zero or more matches with the characters in the range must be made, and
the $ character means that the matches must be made right up to the end
of the string. In other words, this pattern will only match a string contain-
ing lowercase characters, digits, and spaces from the start right to the end
of the string:

puts(/^[a-z 0-9]*$/ =~ 'well hello 123') # match at 0
puts(/^[a-z 0-9]*$/ =~ 'Well hello 123') # no match due to ^ and upcase W

Actually, this pattern will also match an empty string, since * indicates
that zero or more matches are acceptable:

puts(/^[a-z 0-9]*$/ =~ '') # this matches!

If you want to exclude empty strings, use + (to match one or more occur-
rences of the pattern):

puts(/^[a-z 0-9]+$/ =~ '') # no match

Try the code in start_end2.rb for more examples of ways in which ^, $, *
and + may be combined with ranges to create a variety of different match
patterns.

You could use these techniques to determine specific characteristics of
strings, such as whether a given string is uppercase, lowercase, or mixed case:

regex2.rb aStr = "HELLO WORLD"

case aStr
 when /^[a-z 0-9]*$/
 puts("Lowercase")
 when /^[A-Z 0-9]*$/
 puts("Uppercase")
 else
 puts("Mixed case\n")
end

Since the string assigned to aStr is currently all uppercase, the previous
code displays the “Uppercase” string. But if aStr were assigned hello world, it
would display “Lowercase,” and if aStr were assigned Hello World, it would dis-
play “Mixed case.”

Often regular expressions are used to process the text in a file on disk.
Let’s suppose, for example, that you want to display all the full-line com-
ments in a Ruby file but omit all the code and partial-line comments. You
could do this by trying to match from the start of each line (^) zero or more
whitespace characters (a whitespace character is represented by \s) up to a
comment character (#).

Regular Express ions 253

regex3a.rb # displays all the full-line comments in a Ruby file
File.foreach('regex1.rb'){ |line|
 if line =~ /^\s*#/ then
 puts(line)
 end
}

Match Groups

You can also use a regular expression to match one or more substrings. To
do this, you should put part of the regular expression between parentheses.
Here I have two groups (sometimes called captures): The first tries to match
the string “hi”, and the second tries to match a string starting with “h” fol-
lowed by any three characters (a dot means “match any single character,” so
the three dots here will match any three consecutive characters) and ending
with “o”:

groups.rb /(hi).*(h...o)/ =~ "The word 'hi' is short for 'hello'."

After evaluating groups in a regular expression, a number of variables,
equal to the number of groups, will be assigned the matched value of those
groups. These variables take the form of a $ followed by a number: $1, $2, $3,
and so on. After executing the previous code, I can access the variables $1 and
$2 like this:

print($1, " ", $2, "\n") #=> hi hello

Note that if the entire regular expression is unmatched, none of the
group variables will be initialized. This would be the case if, for example, “hi”
were in the string but “hello” was not. Both group variables would then be nil.

Here is another example, which returns three groups, indicated by pairs
of parentheses (()), each of which contains a single character given by the
dot: (.). Groups $1 and $3 are then displayed:

/(.)(.)(.)/ =~ "abcdef"
print($1, " ", $3, "\n") #=> a c

Here is a new version of the comment-matching program that was given
earlier (regex3a.rb); this has now been adapted to use the value of the group
() containing a dot followed by an asterisk (.*) to return all the characters
(zero or more) following the string matched by the preceding part of the regu-
lar expression (which here is ^\s*#). This new version reads the text from the
specified file and matches zero or more whitespace (\s*) characters from the
start of the current line (^) up to the first occurrence of a hash mark: #.

254 Chapter 16

regex3b.rb File.foreach('regex1.rb'){ |line|
 if line =~ /^\s*#(.*)/ then
 puts($1)
 end
}

The end result of this is that only lines in which the first printable charac-
ter is # are matched; $1 prints out the text of those lines minus the # character
itself. As you will see shortly, this simple technique provides the basis of a use-
ful tool for extracting documentation from a Ruby file.

You aren’t limited merely to extracting and displaying characters verba-
tim; you can also modify text. This example displays the text from a Ruby file
but changes all Ruby line-comment characters (#) preceding full-line com-
ments to C-style line comments (//):

regex4.rb File.foreach('regex1.rb'){ |line|
 line = line.sub(/(^\s*)#(.*)/, '\1//\2')
 puts(line)
}

In this example, the sub method of the String class has been used; this
takes a regular expression as its first argument (/(^\s*)#(.*)/) and a replace-
ment string as the second argument ('\1//\2'). The replacement string may
contain numbered placeholders such as \1 and \2 to match any groups in the
regular expression—here there are two groups between parentheses: (^\s*)
and (.*). The sub method returns a new string in which the matches made by
the regular expression are substituted into the replacement string, while any
unmatched elements (here the # character) are omitted. So, for example,
let’s assume that the following comments are found in the input file:

aStr = "hello world"
aStr = "Hello World"

After substitution using our regular expression, the displayed output is
as follows:

// aStr = "hello world"
// aStr = "Hello World"

MatchData

The =~ operator is not the only means of finding a match. The Regexp class
also has a match method. This works in similar way to =~, but when a match is
made, it returns a MatchData object rather than an integer. A MatchData
object contains the result of a pattern match. At first sight, this may appear
to be a string.

Regular Express ions 255

match.rb puts(/cde/ =~ 'abcdefg') #=> 2
puts(/cde/.match('abcdefg')) #=> cde

In fact, it is an instance of the MatchData class that contains a string:

p(/cde/.match('abcdefg')) #=> #<MatchData: "cde" >

A MatchData object may contain groups, or captures, and these can be
returned in an array using either the to_a or captures method, like this:

matchdata.rb x = /(^.*)(#)(.*)/.match('def myMethod # This is a very nice method')
x.captures.each{ |item| puts(item) }

The previous displays the following:

def myMethod
#
 This is a very nice method

Note that there is a subtle difference between the captures and to_a meth-
ods. The first returns only the captures:

x.captures #=>["def myMethod ","#"," This is a very nice method"]

The second returns the original string (at index 0) followed by the
captures:

x.to_a #=>["def myMethod # This is a very nice method","def myMethod
","#"," This is a very nice method"]

Prematch and Postmatch

The MatchData class supplies the pre_match and post_match methods to return
the strings preceding or following a match. Here, for example, I am making
a match on the comment character, #:

pre_post_match
.rb

x = /#/.match('def myMethod # This is a very nice method')
puts(x.pre_match) #=> def myMethod
puts(x.post_match) #=> This is a very nice method

Alternatively, you can use the special variables, $` (with a backquote) and
$' (with a normal quote), to access pre- and postmatches, respectively:

x = /#/.match('def myMethod # This is a very nice method')
puts($`) #=> def myMethod
puts($') #=> This is a very nice method

256 Chapter 16

When using match with groups, you can use array-style indexing to obtain
specific items. Index 0 is the original string; higher indexes are the groups:

match_groups.rb puts(/(.)(.)(.)/.match("abc")[2]) #=> "b"

You can use the special variable $~ to access the last MatchData object,
and once again you can refer to groups using array-style indexing:

puts($~[0], $~[1], $~[3])

However, to use the full range of methods of the Array class, you must
use to_a or captures to return the match groups as an array:

puts($~.sort) # this doesn't work!
puts($~.captures.sort) # this does

Greedy Matching

When a string contains more than one potential match, you may sometimes
want to return the string up to the first match (that is, as little of the string as
possible consistent with the match pattern), and at other times you may want
the string up to the last match (that is, as much of the string as possible).

In the latter case (getting as much of the string as possible), the match
is said to be greedy. The * and + pattern quantifiers are greedy. However, you
can put them on a diet, to make them return the least possible, by putting ?
after them:

greedy1.rb puts(/.*at/.match('The cat sat on the mat!')) #=> The cat sat on the mat
puts(/.*?at/.match('The cat sat on the mat!')) #=> The cat

You can control the greediness of pattern matching to do things such as
process directory paths (here matching on the \ character):

greedy2.rb puts(/.+\\/.match('C:\mydirectory\myfolder\myfile.txt'))
 #=> C:\mydirectory\myfolder\
puts(/.+?\\/.match('C:\mydirectory\myfolder\myfile.txt'))
 #=> C:\

String Methods

Up to now, I’ve used methods of the Regexp class when processing strings.
In fact, pattern matching can go both ways because the String class has a few
regular expression methods of its own. These include =~ and match (so you
can switch the order of the String and Regexp objects when matching), plus
the scan method that iterates through a string looking for as many matches as

Regular Express ions 257

possible. Each match is added to an array. Here, for example, I am looking
for matches on the letters a, b, or c. The match method returns the first match
(“a”) wrapped up in a MatchData object, but the scan method keeps scanning
along the string and returns all the matches it finds as elements in an array:

match_scan.rb TESTSTR = "abc is not cba"
puts("\n--match--")
b = /[abc]/.match(TESTSTR) #=> "a" (MatchData)
puts("--scan--")
a = TESTSTR.scan(/[abc]/) #=> ["a", "b", "c", "c", "b", "a"]

The scan method may optionally be passed a block so that the elements
of the array created by scan can be processed in some way:

a = TESTSTR.scan(/[abc]/){|c| print(c.upcase) } #=> ABCCBA

A number of other String methods can be used with regular expressions.
One version of the String.slice method takes a regular expression as an argu-
ment and returns any matched substring, leaving the original (receiver) string
unmodified. The String.slice! method (note the ! at the end) deletes the
matched substring from the receiver string and returns the substring:

string_slice.rb s = "def myMethod # a comment "

puts(s.slice(/m.*d/)) #=> myMethod
puts(s) #=> def myMethod # a comment
puts(s.slice!(/m.*d/)) #=> myMethod
puts(s) #=> def # a comment

The split method splits a string into substrings, based on a pattern. The
results (minus the pattern) are returned as an array:

string_ops.rb s = "def myMethod # a comment"

p(s.split(/m.*d/)) #=> ["def ", " # a comment"]
p(s.split(/\s/)) #=> ["def", "myMethod", "#", "a", "comment"]

You can also split on an empty pattern (//):

p(s.split(//))

In this case, an array of characters is returned:

["d", "e", "f", " ", "m", "y", "M", "e", "t", "h", "o", "d", " ", "#", " ",
"a", " ", "c", "o", "m", "m", "e", "n", "t"]

258 Chapter 16

You can use the sub method to match a regular expression and replace
its first occurrence with a string. If no match is made, the string is returned
unchanged:

s = "def myMethod # a comment"
s2 = "The cat sat on the mat"
p(s.sub(/m.*d/, "yourFunction")) #=> "def yourFunction # a comment"
p(s2.sub(/at/, "aterpillar")) #=> "The caterpillar sat on the mat"

The sub! method works like sub but modifies the original (receiver)
string. Alternatively, you can use the gsub method (or gsub! to modify the
receiver) to substitute all occurrences of the pattern with a string:

p(s2.gsub(/at/, "aterpillar"))
 #=> "The caterpillar saterpillar on the materpillar"

File Operations

I said earlier that regular expressions are often used to process data stored
in files on disk. In some earlier examples, I read in data from a disk file, did
some pattern matching, and displayed the results on the screen. Here is one
more example in which I count the words in a file. You do this by scanning
each line in order to create an array of words (that is, sequences of alpha-
numeric characters) and then adding the size of each array to the variable,
count:

wordcount.rb count = 0
File.foreach('regex1.rb'){ |line|
 count += line.scan(/[a-z0-9A-Z]+/).size
}
puts("There are #{count} words in this file.")

If you want to verify that the word count is correct, you could display a
numbered list of words read in from the file. This is what is do here:

wordcount2.rb File.foreach('regex1.rb'){ |line|
 line.scan(/[a-z0-9A-Z]+/).each{ |word|
 count +=1
 print("[#{count}] #{word}\n")
 }
}

Now let’s see how to deal with two files at once—one for reading, another
for writing. The next example opens the file testfile1.txt for writing and passes
the file variable, f, into a block. I now open a second file, regex1.rb, for read-
ing and use File.foreach to pass into a second block each line of text read
from this file. I use a simple regular expression to create a new string to match

Regular Express ions 259

lines with Ruby-style comments; the code substitutes C-style comment charac-
ters (//) for the Ruby comment character (#) when that character is the first
nonwhitespace character on a line and writes each line to testfile1.txt with
code lines unmodified (because there are no matches on those) and with
comment lines changed to C-style comment lines:

regexp_file1.rb File.open('testfile1.txt', 'w'){ |f|
 File.foreach('regex1.rb'){ |line|
 f.puts(line.sub(/(^\s*)#(.*)/, '\1//\2'))
 }
}

This illustrates just how much can be done with regular expressions
and very little coding. The next example shows how you might read in
one file (here the file regex1.rb) and write out two new files—one of which
(comments.txt) contains only line comments, while the other (nocomments.txt)
contains all the other lines.

regexp_file2.rb file_out1 = File.open('comments.txt', 'w')
file_out2 = File.open('nocomments.txt', 'w')

File.foreach('regex1.rb'){ |line|
 if line =~ /^\s*#/ then
 file_out1.puts(line)
 else
 file_out2.puts(line)
 end
}

file_out1.close
file_out2.close

260 Chapter 16

D I G G I N G D E E P E R
This section provides a handy summary of regular expressions followed by
some short examples in ready-to-use Ruby code.

Regular Expression Elements
This is a list of some of the elements that can be used in regular expressions:

Regular Expression Examples
Here are a few more sample regular expressions:

overview.rb # match chars...
puts('abcdefgh'.match(/cdefg/)) # literal chars
 #=> cdefg
puts('abcdefgh'.match(/cd..g/)) # dot matches any char
 #=> cdefg

^ Beginning of a line or string
$ End of a line or string
. Any character except newline
* Zero or more previous regular expression
*? Zero or more previous regular expression (nongreedy)
+ One or more previous regular expression
+? One or more previous regular expression (nongreedy)
[] Range specification (for example, [a-z] means a character in

the range a–z)
\w An alphanumeric character
\W A nonalphanumeric character
\s A whitespace character
\S A nonwhitespace character
\d A digit
\D A nondigit character
\b A backspace (when in a range specification)
\b Word boundary (when not in a range specification)
\B Nonword boundary
* Zero or more repetitions of the preceding
+ One or more repetitions of the preceding
{m,n} At least m and at most n repetitions of the preceding
? At most one repetition of the preceding
| Either the preceding or next expression may match
() A group

Regular Express ions 261

list of chars in square brackets...
puts('cat'.match(/[fc]at/)
 #=> cat
puts("batman's father's cat".match(/[fc]at/))
 #=> fat
p('bat'.match(/[fc]at/))
 #=> nil

match char in a range...
puts('ABC100x3Z'.match(/[A-Z][0-9][A-Z0-9]/))
 #=> C10
puts('ABC100x3Z'.match(/[a-z][0-9][A-Z0-9]/))
 #=> x3Z

escape 'special' chars with \
puts('ask who?/what?'.match(/who\?\/w..t\?/))
 #=> who?/what?
puts('ABC 100x3Z'.match(/\s\S\d\d\D/))
 #=> 100x (note the leading space)

scan for all occurrences of pattern 'abc' with at least 2 and
no more than 3 occurrences of the letter 'c'
p('abcabccabcccabccccabccccccabcccccccc'.scan(/abc{2,3}/))
 #=> ["abcc", "abccc", "abccc", "abccc", "abccc"]

match either of two patterns
puts('my cat and my dog'.match(/cat|dog/)) #=> cat

puts('my hamster and my dog'.match(/cat|dog/)) #=> dog

Symbols and Regular Expressions
Ruby 1.9 permits you to use match with a symbol. The symbol is converted to
a string, and the index of the match is returned. Symbols cannot be used in
this manner with Ruby 1.8.

regexp_symbols
.rb

p(:abcdefgh.match(/cdefg/)) #=> 2
p(:abcdefgh.match(/cd..g/)) #=> 2
p(:cat.match(/[fc]at/)) #=> 0
p(:cat.match(/[xy]at/)) #=> nil
p(:ABC100x3Z.match(/[A-Z][0-9][A-Z0-9]/)) #=> 2
p(:ABC100x3Z.match(/[a-z][0-9][A-Z0-9]/)) #=> 6

T H R E A D S

There may be times when your programs
need to perform more than one action at

a time. For example, maybe you want to do
some disk operations and simultaneously display

some feedback to the user. Or you might want to copy
or upload some files “in the background” while still
allowing the user to carry on with some other task “in
the foreground.”

In Ruby, if you want to do more than one task at a time, you can run
each task in its own thread. A thread is like a program within a program. It
runs some particular piece of code independently of any other threads.

However, as you will see shortly, multiple threads may need to find ways
of cooperating with each other so that, for example, they can share the same
data and they don’t hog all the processing time available, thereby preventing
other threads from running. When reading this chapter, you need to be aware
that the behavior of threads in Ruby 1.9 and newer is substantially different
from threads in 1.8 and older. I’ll explain why that is shortly.

264 Chapter 17

Creating Threads

Threads can be created like any other object, using the new method. When
you do this, you must pass to the thread a block containing the code you
want the thread to run.

What follows is my first attempt at creating two threads, one of which
should print four strings while the other prints ten numbers:

threads1.rb # This is a simple threading example that, however,
doesn't work as anticipated!

words = ["hello", "world", "goodbye", "mars"]
numbers = [1,2,3,4,5,6,7,8,9,10]

Thread.new{
 words.each{ |word| puts(word) }
}

Thread.new{
 numbers.each{ |number| puts(number) }
}

In all probability, when you run this, you may see nothing or, anyway, very
little. It may display some strings and some numbers but not all of them and
not in any easily predictable order. In the sample code in the archive, I’ve
added a report of the time taken for the program to execute, which shows
that the darn thing finishes before it has time to get started!

Running Threads

Here is a simple fix to the thread-running problem. Right at the end of the
code, add this:

threads2.rb sleep(5)

This inserts a five-second delay. Now when you run the code again, you
should see all the strings and all the numbers, albeit a bit jumbled up, like this:

hello1

2world
3

4goodbye

5mars
6
7
8
9

Threads 265

This is, in fact, exactly what you want since it shows that time is now
being divided between the two threads. That’s why the words and numbers
are jumbled, sometimes with even the carriage returns printed by the puts
statements being mixed up, with either no carriage return or two at once
being displayed. This happens because the threads are madly competing
with one another for the available time—first one thread executes and dis-
plays a word, then the next thread executes and displays a number, then exe-
cution returns to the first thread, and so on, until the first thread ends (when
all four words have been displayed), at which point the second thread can
run without interruption.

Now compare this with the first version of the program. In that program,
I created two threads, but just as Ruby was getting itself ready to run the code
inside each thread—bam!—it arrived at the end of the program and shut every-
thing down, including my two threads. So, in effect, the threads were killed
off before they had time to do anything of any interest.

But when I add a call to sleep(5) to insert a five-second delay, Ruby has
plenty of time to run the threads before the program exits. There is just one
problem with this technique—and it’s a big problem. Adding unnecessary
delays to your programs in order to let threads run defeats the object of the
exercise. The timer display now shows that the program takes all of five whole
seconds to run, which is about 4.99 seconds or so longer than is strictly neces-
sary! You’ll be learning more civilized ways of handling threads shortly. First,
however, I need to say a few words about an important difference between
threads in Ruby 1.8 and threads in Ruby 1.9.

Going Native

In all versions of Ruby up to and including Ruby 1.8.x, there was no access
to “native” threads (that is, threads handled by the operating system). In
effect, Ruby 1.8 threads exist inside the closed world of a Ruby program, with
multiple threads each being allocated time, using a procedure called time-
slicing, within a single process. Ruby 1.9 (and newer) uses a new interpreter,
YARV (Yet Another Ruby Virtual-machine). This allows Ruby 1.9 to make
use of native threads, albeit with some limitations that I’ll explain shortly.

In principle, native threads allow more efficient execution (using pre-
emptive multitasking) whereby the operating system takes care of the execu-
tion of threads on one or more processors. Even though Ruby 1.9 uses native
threads, it does not perform preemptive multitasking. For reasons of compat-
ibility with existing Ruby programs, Ruby 1.9 native threads work in a similar
fashion to Ruby 1.8 non-native (or green) threads. In other words, although
Ruby 1.9 may in fact run a native thread, it is the Ruby virtual machine, rather
than the operating system, that schedules the execution of threads. This means
Ruby threads sacrifice efficiency; however, they do at least benefit from port-
ability: Threads written on one operating system will also run on a different
operating system.

266 Chapter 17

The Main Thread

Even if you don’t explicitly create any threads, there is always at least one
thread executing—the main thread in which your Ruby program is running.
You can verify this by entering the following:

thread_main.rb p(Thread.main)

This will display something like this:

#<Thread:0x28955c8 run>

Here, Thread is the thread’s class, 0x28955c8 (or some other number) is
its hexadecimal object identifier, and run is the thread’s current status.

Thread Status

Each thread has a status that may be one of the following:

You can obtain the status of a thread using the status method. The status
is also shown when you inspect a thread, in which case either a nil or a false
status is shown as dead.

thread_status.rb puts(Thread.main.inspect) #=> #<Thread:0x28955c8 run>
puts(Thread.new{ sleep }.kill.inspect) #=> #<Thread:0x28cddc0 dead>
puts(Thread.new{ sleep }.inspect) #=> #<Thread:0x28cdd48 sleep>
thread1 = Thread.new{ }
puts(thread1.status) #=> false
thread2 = Thread.new{ raise("Exception raised!") }
puts(thread2) #=> nil

Note that the status shown may differ according to the version of Ruby
being used and also when the program is run at different times. This is because
actions on threads may not occur instantly, and the timing of a change in sta-
tus may vary with each execution. For example, sometimes you may see the
status of a killed thread shown as “aborting” and at other times as “dead.” The
thread aborts before it dies, and its change in status may happen in milli-
seconds. Here is an example taken from the Ruby class library documenta-
tion. The documented status of each thread is shown in the comments:

thread_status2.rb p d.kill #=> #<Thread:0x401b3678 aborting>
p a.status #=> nil
p b.status #=> "sleep"

run When the thread is executing
sleep When the thread is sleeping or waiting on I/O
aborting When the thread is aborting
false When the thread terminated normally
nil When the thread terminated with an exception

Threads 267

p c.status #=> false
p d.status #=> "aborting"
p Thread.current.status #=> "run"

But when I run this code with Ruby 1.9, the status varies greatly, and it
does not always match the status shown in the documented example shown
earlier. At one moment, this is what I see:

#<Thread:0x401b3678 aborting>
"run"
"sleep"
false
false
"run"

But when I run it again, this is what I see:

#<Thread:0x401b3678 aborting>
"run"
"run"
"run"
false
"run"

Now look at this program:

thread_status3.rb t = Thread.new{ }
p t
p t.kill
sleep(1) # try uncommenting this
puts(t.inspect)

Once again the output varies each time it is run. I often see the follow-
ing, which shows that even after I have “killed” the thread, it may still be
“aborting” when I test its status:

#<Thread:0x2be6420 run>
#<Thread:0x2be6420 aborting>
#<Thread:0x2be6420 aborting>

Now I force a time delay by calling sleep for one second:

sleep(1)
puts(t.inspect)

This time the thread has time to be terminated, and this is displayed:

#<Thread:0x2be6420 dead>

268 Chapter 17

These timing issues are more likely to arise in Ruby 1.9 than in older
versions. You need to be aware of them and, if necessary, check a thread’s
status repeatedly in order to verify that it is in the state expected at any given
moment.

Ensuring That a Thread Executes

Let’s return to the problem I had in the previous programs. Recall that I
created two threads, but the program finished before either of them had a
chance to run fully. I fixed this by inserting a fixed-length delay using the
sleep method. Deliberately introducing gratuitous delays into your programs
is not something you would want to do as a general rule. Fortunately, Ruby
has a more civilized way of ensuring that a thread has time to execute. The
join method forces the calling thread (for example, the main thread) to sus-
pend its own execution (so it doesn’t just terminate the program) until the
thread that calls join has completed:

join.rb words = ["hello", "world", "goodbye", "mars"]
numbers = [1,2,3,4,5,6,7,8,9,10]

Thread.new{
 words.each{ |word| puts(word) }
}.join

Thread.new{
 numbers.each{ |number| puts(number) }
}.join

At first sight, this looks like progress since both threads get the time
they need to execute and you haven’t had to introduce any unnecessary
delays. However, when you take a look at the output, you will see that the
threads run in sequence—the second thread starts to run after the first thread has
finished. This is why the output shows first all the words, displayed in the first
Thread, and then all the numbers, displayed in the second Thread. But what
you really want to do is get the two threads to run simultaneously, with Ruby
switching from one to the next to give each thread a slice of the available
processing time.

The next program, threads3.rb, shows one way of achieving this. It creates
two threads, as before; however, this time it assigns each thread to a variable,
namely, wordsThread and numbersThread:

threads3.rb wordsThread = Thread.new{
 words.each{ |word| puts(word) }
}
numbersThread = Thread.new{
 numbers.each{ |number| puts(number) }
}

Threads 269

Now it puts these threads into an array and calls the each method to pass
them into a block where they are received by the block variable, t, which sim-
ply calls the join method on each thread:

[wordsThread, numbersThread].each{ |t| t.join }

As you will see from the output, the two threads now run “in parallel,”
so their output is jumbled up, but there is no artificial delay, and the total
execution time is negligible.

Thread Priorities

So far, I’ve given Ruby total freedom in slicing up the time between threads
in any way it wants. But sometimes one thread is more important than the
others. For example, if you are writing a file-copying program with one thread
to do the actual copying and another thread to display the progress bar, it
would make sense to give the file-copying thread most of the time.

NOTE There may be times when the currently executing thread specifically wants to give execu-
tion time to other threads. This is done by calling the Thread.pass method. However,
this may not produce quite the results you expect. The pass method is discussed in more
detail in “Digging Deeper” on page 278.

Ruby lets you assign integer values to indicate the priority of each thread.
In theory, threads with higher priorities are allocated more execution time
than threads with lower priorities. In practice, things aren’t that simple since
other factors (such as the order in which threads are run) may affect the
amount of time given to each thread. Moreover, in very short programs, the
effects of varying the priorities may be impossible to determine. The little
words-and-numbers thread example you’ve used up to now is far too short
to show any clear differences. So, let’s take a look at a slightly more labor-
intensive program—one that runs three threads, each of which calls a method
fifty times in order to compute the factorial of 50. For our purposes, it’s not
important to understand how the code calculates factorials. Bear in mind,
though, that it uses the shorthand (ternary operator) if..else notation (< Test
Condition > ? <if true do this> : <else do this>) explained in Chapter 6:

threads4.rb def fac(n)
 n == 1 ? 1 : n * fac(n-1)
end

t1 = Thread.new{
 0.upto(50) {fac(50); print("t1\n")}
}

t2 = Thread.new{
 0.upto(50) {fac(50); print("t2\n")}
}

270 Chapter 17

t3 = Thread.new{
 0.upto(50) {fac(50); print("t3\n")}
}

You can now set specific priorities for each thread:

t1.priority = 0
t2.priority = 0
t3.priority = 0

In this case, the priorities are the same for each thread, so, in principle,
no thread will be given the biggest slice of the action, and the results from all
three threads should appear in the usual jumble. This is indeed the case in
Ruby 1.8, but be aware that thread priorities may not always produce the
expected results in some versions of Ruby 1.9.

Now, in threads4.rb try changing the priority of t3:

t3.priority = 1

T H R E A D P R I O R I T Y P R O B L E M S I N R U B Y 1 . 9

In Ruby 1.9, thread priorities do not always work as documented. Here is an
example taken from the Ruby class library documentation:

count1 = count2 = 0
a = Thread.new do
 loop { count1 += 1 }
 end
a.priority = -1

b = Thread.new do
 loop { count2 += 1 }
 end

b.priority = -2
p sleep 1 #=> 1
p count1 #=> 622504
p count2 #=> 5832

In principle, count1 is incremented on a higher-priority thread (b) than count2 (on
thread a), and it should, therefore, always result in a higher value number as indi-
cated in the comments in this example. In practice (at least when running this program
using Ruby 1.9.2 on Windows), count1 is sometimes higher and sometimes lower than
count2. This behavior has been reported and documented, and its status as either
a “bug” or a “feature” is open to debate. I personally regard it as undesirable and
still hope that it will be remedied. However, you must be sure to verify the effect of
thread priorities before using them in your own programs. Most of the discussion
of thread priorities in this chapter assumes you are using a version of Ruby in which
priorities work as documented.

priority_test.rb

Threads 271

This time when you run the code, t3 will (at least in Ruby 1.8) grab most
of the time and execute (mostly) before the other threads. The other threads
may get a look in at the outset because they are created with equal priorities
and the priority is changed only after they have started running. When t3 has
finished, t1 and t2 should share the time more or less equally.

So, let’s suppose you want t1 and t2 to run first, sharing time more or less
equally and running t3 only after those two threads have finished. Here’s my
first attempt; you may want to try it yourself:

t1.priority = 2
t2.priority = 2
t3.priority = 1

Hmm, the end result is not what I wanted! It seems that the threads are
run in sequence with no time-slicing at all! Okay, just for the heck of it, let’s
try some negative numbers:

t1.priority = -1
t2.priority = -1
t3.priority = -2

Hurrah! That’s more like it. This time (at least in Ruby 1.8), t1 and t2
run concurrently though you may also see t3 executing briefly before the
thread priorities are set; then t3 runs. So, why do negative values work but
positive values don’t?

There is nothing special about negative values per se. However, you need
to bear in mind that every process has at least one thread running—the main
thread—and this too has a priority. Its priority happens to be 0.

The Main Thread Priority

You can easily verify the priority of the main thread:

main_thread.rb puts(Thread.main.priority) #=> 0

So, in the previous program (threads4.rb), if you set the priority of t1 to 2,
it will “outrank” the main thread itself and will then be given all the execution
time it needs until the next thread, t2, comes along, and so on. By setting the
priorities lower than that of the main thread, you can force the three threads
to compete only with themselves since the main thread will always outrank
them. If you prefer working with positive numbers, you can specifically set
the priority of the main thread to a higher value than all other threads:

Thread.main.priority=100

272 Chapter 17

Ruby 1.9 may not respect all values assigned in this way. For example,
when I display that the priority of a thread to 100 has been assigned, Ruby 1.9
shows 3, whereas Ruby 1.8 shows 100.

If you want t2 and t3 to have the same priority and t1 to have a lower
one, you need to set the priorities for those three threads plus the main
thread:

threads5.rb Thread.main.priority = 200
t1.priority = 0
t2.priority = 1
t3.priority = 1

Once again, this assumes you are using a version of Ruby (such as Ruby 1.8)
in which thread priorities are respected. If you look closely at the output, you
may spot one tiny but undesirable side effect. It is possible (not certain, but
possible) that you will see some output from the t1 thread right at the outset,
just before t2 and t3 kick in and assert their priorities. This is the same prob-
lem noted earlier: Each of the threads tries to start running as soon as it is
created, and t1 may get its own slice of the action before the priorities of the
other threads are “upgraded.” To prevent this, you can specifically suspend
the thread at the time of creation using Thread.stop like this:

stop_run.rb t1 = Thread.new{
 Thread.stop
 0.upto(50){print("t1\n")}
}

Now, when you want to start the thread running (in this case, after set-
ting the thread priorities), you call its run method:

t1.run

Note that the use of some Thread methods may cause deadlocks in Ruby 1.9.
A deadlock occurs when two or more threads are waiting for one another to
release a resource. To avoid deadlocks, you may prefer to use mutexes, as I’ll
explain next.

Mutexes

There may be occasions when multiple threads each need to access some
kind of global resource. This has the potential of producing erroneous results
because the current state of the global resource may be modified by one
thread and this modified value may be unpredictable when it is used by
some other thread. For a simple example, look at this code:

no_mutex.rb $i = 0

def addNum(aNum)
 aNum + 1
end

Threads 273

somethreads = (1..3).collect {
 Thread.new {
 1000000.times{ $i = addNum($i) }
 }
}

somethreads.each{|t| t.join }
puts($i)

My intention here is to create and run three threads, each of which incre-
ments the global variable, $i, 1 million times. I do this by enumerating from 1
to 3 and creating an array using the collect method (the map method is synon-
ymous with collect so could also be used) from the results returned by the
block. This array of threads, somethreads, subsequently passes each thread, t,
into a block to be executed using join, as explained earlier. Each thread calls
the addNum method to increment the value of $i. The expected result of $i at the
end of this would (naturally) be 3 million. But, in fact, when I run this, the end
value of $i is 1,068,786 (though you may see a different result).

The explanation of this is that the three threads are, in effect, competing
for access to the global variable, $i. This means, at certain times, thread a
may get the current value of $i (let’s suppose it happens to be 100), and
simultaneously thread b gets the current value of $i (still 100). Now, a incre-
ments the value it just got ($i becomes 101), and b increments the value it
just got, which was 100 (so $i becomes 101 once again). In other words, when
multiple threads simultaneously access a shared resource, some of them may
be working with out-of-date values, that is, values that do not take into account
any modifications that have been made by other threads. Over time, errors
resulting from these operations accumulate until you end up with results that
differ substantially from those you might have anticipated.

To deal with this problem, you need to ensure that when one thread
has access to a global resource, it blocks the access of other threads. This is
another way of saying that the access to global resources granted to multiple
threads should be “mutually exclusive.” You can implement this using Ruby’s
Mutex class, which uses a semaphore to indicate whether a resource is cur-
rently being accessed and provides the synchronize method to prevent access to
resources inside a block. Note that you must, in principle, require 'thread' to
use the Mutex class, but in some versions of Ruby this is provided automati-
cally. Here is my rewritten code:

mutex.rb require 'thread'

$i = 0
semaphore = Mutex.new

def addNum(aNum)
 aNum + 1
end

274 Chapter 17

somethreads = (1..3).collect {
 Thread.new {
 semaphore.synchronize{
 1000000.times{ $i = addNum($i) }
 }
 }
}

somethreads.each{|t| t.join }
puts($i)

This time, the end result of $i is 3,000,000.
Finally, for a slightly more useful example of using threads, take a look at

file_find2.rb. This sample program uses Ruby’s Find class to traverse directo-
ries on disk. For a nonthreaded example, see file_find.rb. Compare this with
the file_info3.rb program on page 222, which uses the Dir class.

This program sets two threads running. The first, t1, calls the processFiles
method to find and display file information (you will need to edit the call
to processFiles to pass to it a directory name on your system). The second
thread, t2, simply prints out a message, and this thread runs while t1 is “alive”
(that is, running or sleeping):

file_find2.rb require 'find'
require 'thread'

$totalsize = 0
$dirsize = 0

semaphore = Mutex.new

def processFiles(baseDir)
 Find.find(baseDir) { |path|
 $dirsize += $dirsize # if a directory
 if (FileTest.directory?(path)) && (path != baseDir) then

 print("\n#{path} [#{$dirsize / 1024}K]")
 $dirsize = 0
 else # if a file
 $filesize = File.size(path)
 print("\n#{path} [#{$filesize} bytes]")
 $dirsize += $filesize
 $totalsize += $filesize
 end
 }
end

t1 = Thread.new{
 semaphore.synchronize{
 processFiles('..') # you may edit this directory name
 }
}

Threads 275

t2 = Thread.new{
 semaphore.synchronize{
 while t1.alive? do
 print("\n\t\tProcessing...")
 Thread.pass
 end
 }
}

t2.join

printf("\nTotal: #{$totalsize} bytes, #{$totalsize/1024}K, %0.02fMB\n\n",
"#{$totalsize/1048576.0}")
puts("Total file size: #{$filesize}, Total directory size: #{$dirsize}")

In a real application, you could adapt this technique to provide user
feedback of some kind while some intensive process (such as directory
walking) is taking place.

Fibers

Ruby 1.9 introduces a new class called a Fiber, which is a bit like a thread and
a bit like a block. Fibers are intended for the implementation of “lightweight
concurrency.” This broadly means they operate like blocks (see Chapter 10)
whose execution can be paused and restarted just as you can with threads.
Unlike threads, however, the execution of fibers is not scheduled by the Ruby
virtual machine; it has to be controlled explicitly by the programmer. Another
difference between threads and fibers is that threads run automatically when
they are created; fibers do not. To start a fiber, you must call its resume method.
To yield control to code outside the fiber, you must call the yield method.

Let’s look at some simple examples:

fiber_test.rb f = Fiber.new do
 puts("In fiber")
 Fiber.yield("yielding")
 puts("Still in fiber")
 Fiber.yield("yielding again")
 puts("But still in fiber")
end

puts("a")
puts(f.resume)
puts("b")
puts(f.resume)
puts("c")
puts(f.resume)
puts("d")
puts(f.resume) # dead fiber called

276 Chapter 17

Here I create a new fiber, f, but don’t immediately start it running. First
I display “a”, puts("a"), and then I start the fiber, f.resume. The fiber starts
executing and displays the “In fiber” message. But then it calls yield with the
“yielding” string. This suspends the execution of the fiber and allows the code
outside the fiber to continue. The code that called f.resume now puts the
string that’s been yielded, so “yielding” is displayed. Another call to f.resume
restarts the fiber where you left off, so “Still in fiber” is displayed, and so on.
With each call to yield, execution returns to code outside the fiber. And,
when that code calls f.resume, the remaining code in the fiber is executed.
Once there is no more code left to be executed, the fiber terminates. When
an inactive (or dead) fiber is called by f.resume, a FiberError occurs. This is
the output from the program shown earlier:

a
In fiber
yielding
b
Still in fiber
c
But still in fiber
d
C:/bookofruby/ch17/fiber_test.rb:18:in `resume': dead fiber called
(FiberError)
from C:/bookofruby/ch17/fiber_test.rb:18:in `<main>'

You can avoid “dead fiber” errors by testing the state of a fiber using
the alive? method. This returns true if the fiber is active and returns false
if inactive. You must require 'fiber' in order to use this method:

fiber_alive.rb require 'fiber'

if (f.alive?) then
 puts(f.resume)
else
 puts("Error: Call to dead fiber")
end

The resume method accepts an arbitrary number of parameters. On the
first call to resume, they are passed as block arguments. Otherwise, they become
the return value of the call to yield. The following example is taken from the
documentation in the Ruby class library:

fiber_test2.rb fiber = Fiber.new do |first|
 second = Fiber.yield first + 2
end

puts fiber.resume 10 #=> 12
puts fiber.resume 14 #=> 14
puts fiber.resume 18 #=> dead fiber called (FiberError)

Threads 277

Here’s a simple example illustrating the use of two fibers:

f = Fiber.new {
 | s |
 puts("In Fiber #1 (a) : " + s)
 puts("In Fiber #1 (b) : " + s)
 Fiber.yield
 puts("In Fiber #1 (c) : " + s)
}

f2 = Fiber.new {
 | s |
 puts("In Fiber #2 (a) : " + s)
 puts("In Fiber #2 (b) : " + s)
 Fiber.yield
 puts("In Fiber #2 (c) : " + s)
}

f.resume("hello")
f2.resume("hi")
puts("world")
f2.resume
f.resume

This starts the first fiber, f, which runs until the call to yield. Then it
starts the second fiber, f2, which runs until it too calls yield. Then the main
program displays the string “world,” and finally f2 and f are resumed. This is
the output:

In Fiber #1 (a) : hello
In Fiber #1 (b) : hello
In Fiber #2 (a) : hi
In Fiber #2 (b) : hi
world
In Fiber #2 (c) : hi
In Fiber #1 (c) : hello

278 Chapter 17

D I G G I N G D E E P E R
Here you will learn how to pass execution from one thread to another. You
will discover some things that the Ruby documentation doesn’t tell you and
some oddities about different versions of Ruby.

Passing Execution to Other Threads
Sometimes you might specifically want a certain thread to yield execution
to any other threads that happen to be running. For example, if you have
multiple threads doing steadily updated graphics operations or displaying
various bits of “as it happens” statistical information, you may want to ensure
that once one thread has drawn X number of pixels or displayed Y number
of statistics, the other threads are guaranteed to get their chances to do
something.

In theory, the Thread.pass method takes care of this. Ruby’s source code
documentation states that Thread.pass “invokes the thread scheduler to pass
execution to another thread.” This is the example provided by the Ruby
documentation:

pass0.rb a = Thread.new { print "a"; Thread.pass;
 print "b"; Thread.pass;
 print "c" }
b = Thread.new { print "x"; Thread.pass;
 print "y"; Thread.pass;
 print "z" }
a.join
b.join

According to the documentation, this code, when run, produces the out-
put axbycz. And, sure enough, it does. In theory, then, this seems to show that
by calling Thread.pass after each call to print, these threads pass execution to
another thread, which is why the output from the two threads alternates.

Being of a suspicious turn of mind, I wondered what the effect would be
with the calls to Thread.pass removed. Would the first thread hog all the time,
yielding to the second thread only when it has finished? The best way to find
out is to try it:

pass1.rb a = Thread.new { print "a";
 print "b";
 print "c" }
b = Thread.new { print "x";
 print "y";
 print "z" }
a.join
b.join

Threads 279

If my theory is correct (that thread a will hog all the time until it’s fin-
ished), this would be the expected output: abcdef. In fact (to my surprise!),
the output actually produced was axbycz.

In other words, the result was the same with or without all those calls to
Thread.pass. So what, if anything, is Thread.pass doing? And is the documenta-
tion wrong when it claims that the pass method invokes the thread scheduler
to pass execution to another thread?

For a brief and cynical moment I confess that I toyed with the possibility
that the documentation was simply incorrect and that Thread.pass didn’t do
anything at all. A look into Ruby’s C-language source code soon dispelled my
doubts; Thread.pass certainly does something, but its behavior is not quite as
predictable as the Ruby documentation seems to suggest. Before explaining
why this is, let’s try an example of my own:

pass2.rb s = 'start '
a = Thread.new { (1..10).each{
 s << 'a'
 Thread.pass
 }
}
b = Thread.new { (1..10).each{
 s << 'b'
 Thread.pass
 }
}

a.join
b.join
puts("#{s} end")

At first sight, this may look very similar to the previous example. It sets
two threads running, but instead of printing out something repeatedly, these
threads repeatedly add a character to a string—“a” being added by the a thread
and “b” by the b thread. After each operation, Thread.pass passes execution
to the other thread. At the end, the entire string is displayed. When run
with Ruby 1.8, it comes as no surprise that the string contains an alternating
sequence of “a” and “b” characters: abababababababababab. However, in Ruby 1.9,
the characters do not alternate, and this is what I see: aaaaaaaaaabbbbbbbbbb. In
my view, the pass method is not to be trusted with Ruby 1.9, and the remain-
ing discussion applies to Ruby 1.8 only.

Now, remember that in the previous program, I obtained the same alter-
nating output even when I removed the calls to Thread.pass. Based on that
experience, I guess I should expect similar results if I delete Thread.pass in
this program. Let’s try it:

pass3.rb s = 'start '
a = Thread.new { (1..10).each{
 s << 'a'
 }
}

280 Chapter 17

b = Thread.new { (1..10).each{
 s << 'b'
 }
}

a.join
b.join
puts("#{s} end")

This time, this is the output: aaaaaaaaaabbbbbbbbbb.
In other words, this program shows the kind of differing behavior that I

had originally anticipated in the first program (the one I copied out of Ruby’s
embedded documentation), which is to say that when the two threads are left
to run under their own steam, the first thread, a, grabs all the time for itself
and only when it’s finished does the second thread, b, get a look in. But by
explicitly adding calls to Thread.pass in Ruby 1.8, you can force each thread
to pass execution to any other threads.

So, how can you explain this difference in behavior? In essence, pass0.rb
and pass3.rb are doing the same things—running two threads and displaying
strings from each. The only real difference is that, in pass3.rb, the strings are
concatenated inside the threads rather than printed. This might not seem
like a big deal, but it turns out that printing a string takes a bit more time than
concatenating one. In effect, then, a call to print introduces a time delay.
And as you found out earlier (when I deliberately introduced a delay using
sleep), time delays have profound effects on threads.

If you still aren’t convinced, try my rewritten version of pass0.rb, which I
have creatively named pass0_new.rb. This simply replaces the prints with con-
catenations. Now if you comment and uncomment the calls to Thread.pass,
you will indeed, in Ruby 1.8, see differing results:

pass0_new.rb s = ""
a = Thread.new { s << "a"; Thread.pass;
 s << "b"; Thread.pass;
 s << "c" }

b = Thread.new { s << "x"; Thread.pass;
 s << "y"; Thread.pass;
 s << "z" }

a.join
b.join
puts(s)

With Thread.pass, Ruby 1.8 displays the following:

axbycz

Without Thread.pass, Ruby 1.8 displays the following:

abcxyz

Threads 281

In Ruby 1.9, the presence or absence of Thread.pass has no obvious effect.
And, with or without it, this is displayed:

abcxyz

Incidentally, my tests were conducted on a PC running Windows. It is
quite possible that different results will be seen on other operating systems.
This is because the implementation of the Ruby scheduler, which controls
the amount of time allocated to threads, is different on Windows and other
operating systems.

As a final example, you may want to take a look at the pass4.rb program,
which is intended for Ruby 1.8 only. This creates two threads and immedi-
ately suspends them (Thread.stop). In the body of each thread the thread’s
information, including its object_id is appended to an array, arr, and then
Thread.pass is called. Finally, the two threads are run and joined, and the array,
arr, is displayed. Try experimenting by uncommenting Thread.pass to verify
its effect (pay close attention to the execution order of the threads as indi-
cated by their object_id identifiers):

pass4.rb arr = []
t1 = Thread.new{
 Thread.stop
 (1..10).each{
 arr << Thread.current.to_s
 Thread.pass
 }
}
t2 = Thread.new{
 Thread.stop
 (1..10).each{ |i|
 arr << Thread.current.to_s
 Thread.pass
 }
}
puts("Starting threads...")
t1.run
t2.run
t1.join
t2.join
puts(arr)

D E B U G G I N G A N D T E S T I N G

The development of any real-world appli-
cation progresses in steps. Most of us would

prefer to take more steps forward than back-
ward. To minimize the backward steps—caused

by coding errors or unforeseen side effects—you can
take advantage of testing and debugging techniques.
This chapter provides a brief overview of some of the most useful debugging
tools available to Ruby programmers. Bear in mind, however, that if you are
using a dedicated Ruby IDE, you may have more powerful visual debugging
tools at your disposal. I will be discussing only the “standard” tools available
to Ruby in this chapter.

IRB: Interactive Ruby

Sometimes you may just want to “try something” with Ruby. It is possible
to do this using the standard Ruby interpreter: Enter ruby at the command
prompt, and then enter your code one line at a time. However, this is far
from being an ideal interactive environment. For one thing, the code you

284 Chapter 18

enter will be executed only when you enter an end-of-file character such as
^Z or ^D (that is, CTRL-Z on Windows or CTRL-D on some other operating sys-
tems). So, to do something as simple as displaying the value of 1 plus 1, you
would enter the following sequence commands (remembering to enter which-
ever end-of-file character is required on your operating system).

ruby
1+1
^Z

Only once the end-of-file character (here ^Z) has been entered does
Ruby execute the code and display the result:

2

For a better way to interact with Ruby, use the Interactive Ruby shell
(IRB). To start IRB, go to a command prompt and enter the following:

irb

You should now see a prompt similar to the following:

irb(main):001:0>

Now you are ready to start entering some Ruby code. You can enter an
expression over more than one line; as soon as the expression is complete,
IRB will evaluate it and display the result. Try the following (pressing ENTER
after the + on the first line):

x = (10 +
(2 * 4))

Finally, press ENTER after the closing parenthesis. Now IRB will evaluate
the expression and show the result:

=> 18

You can now evaluate x. Enter this:

x

IRB shows this:

=> 18

Debugging and Tes t ing 285

So, up to this point, your entire IRB session should look like this:

irb(main):001:0> x = (10 +
irb(main):002:1* (2*4))
=> 18
irb(main):003:0> x
=> 18
irb(main):004:0>

Be careful, though. Try entering this:

x = (10
+ (2*4))

This time the result is as follows:

=> 8

This is, in fact, normal Ruby behavior. It is normal because a line break
acts as a terminator, while the + operator, when it begins the new line, acts as
a unary operator (that is, rather than adding together two values—one to its
left and one to its right—it merely asserts that the single expression that fol-
lows the + is positive). You will find a fuller explanation of this in “Digging
Deeper” on page 295.

For now, just be aware that when entering expressions one line at a
time, the position of the line break is important! When using IRB, you can
tell whether the interpreter considers that you have ended a statement. If
you have done so, a prompt is displayed ending with > like this:

irb(main):013:1>

If a statement is complete and returns a result, a => prompt is displayed
followed by the result. For example:

=> 18

If the statement is incomplete, the prompt ends with an asterisk:

irb(main):013:1*

To end an IRB session, enter the word quit or exit at the prompt. You
can, if you want, load a Ruby program into IRB by passing to it the program
name when you run IRB like this:

irb myprogram.rb

286 Chapter 18

You may also invoke IRB with a variety of options to do things such as load
a module (irb –r [load-module]) or display the IRB version number (irb –v).
Many of the available IRB options are rather esoteric and are not likely to be
required by most users. The full range of options may be listed by entering
this at the command line:

irb --help

Although IRB may be useful for trying out some code, it does not pro-
vide all the features you need for debugging programs. Ruby does, however,
provide a command-line debugger.

Debugging

The default Ruby debugger allows you to set breakpoints and watchpoints
and evaluate variables while your programs execute. To run a program in the
debugger, use the –r debug option (where –r means “require” and debug is the
name of the debugging library) when you start the Ruby interpreter. For
example, this is how you would debug a program called debug_test.rb:

ruby –r debug debug_test.rb

Once the debugger has started, you can enter various commands to step
through your code, set breakpoints to cause the execution to pause at specific
lines, set watches to monitor the values of variables, and so on. The following
are the available debugging commands:

b[reak] [file|class:]<line|method> and b[reak] [file|class:]<line|method>
Sets breakpoint to some position

b[reak] [class.]<line|method>
Sets breakpoint to some position

wat[ch] <expression>
Sets watchpoint to some expression

cat[ch] <an Exception>
Sets catchpoint to an exception

b[reak]
Lists breakpoints

cat[ch]
Shows catchpoint

del[ete][nnn]
Deletes some or all breakpoints

disp[lay] <expression>
Adds expression to display expression list

undisp[lay][nnn]
Deletes one particular or all display expressions

Debugging and Tes t ing 287

c[ont]
Runs until end or breakpoint

s[tep][nnn]
Steps (into code) one line or to line nnn

n[ext][nnn]
Goes over one line or until line nnn

w[here]
Displays frames

f[rame]
Is the alias for where

l[ist][(-|nn-mm)]
Lists program, lists backward nn-mm, lists given lines

up[nn]
Moves to higher frame

down[nn]
Moves to lower frame

fin[ish]
Returns to outer frame

tr[ace] (on|off)
Sets trace mode of current thread

tr[ace] (on|off) all
Sets trace mode of all threads

q[uit]
Exits from debugger

v[ar] g[lobal]
Shows global variables

v[ar] l[ocal]
Shows local variables

v[ar] i[nstance] <object>
Shows instance variables of object

v[ar] c[onst] <object>
Shows constants of object

m[ethod] i[nstance] <obj>
Shows methods of object

m[ethod] <class|module>
Shows instance methods of class or module

th[read] l[ist]
Lists all threads

th[read] c[ur[rent]]
Shows current thread

th[read] [sw[itch]] <nnn>
Switches thread context to nnn

288 Chapter 18

th[read] stop <nnn>
Stops thread nnn

th[read] resume <nnn>
Resumes thread nnn

p expression
Evaluates expression and prints its value

h[elp]
Prints this help

<everything else>
Evaluates

U B Y G E M S ? W H A T ’ S U B Y G E M S ?

In some cases, if you enter the command ruby –r debug, you may see an inscrutable
message similar to the following:

c:/ruby/lib/ruby/site_ruby/1.8/ubygems.rb:4:require 'rubygems'

If this happens, when you then start debugging, you will find yourself trying to
debug the file ubygems.rb rather than your program! This problem may occur when
some software (for example, some customized Ruby installers) set the environment
variable RUBYOPT=-rubygems. In most cases, this has the desirable effect of allowing
your Ruby programs to use the Ruby Gems “packaging system,” which helps install
Ruby libraries. When you try to use the –r option, however, this is interpreted as
–r ubygems, which is why an attempt is made to load the file ubygems.rb. Ruby con-
veniently (or possibly confusingly?) provides a file named ubygems.rb that does noth-
ing apart from requiring rubygems.rb. There are two ways of dealing with this. You
can remove RUBYOPT permanently, or you can disable it temporarily. If you choose to
remove it permanently, however, you may encounter side effects when using Ruby
Gems later. The way in which environment variables are added or removed varies
according to your operating system. On Windows, you would need to click the Start
menu (then Settings if using XP) and click Control Panel (then System and Mainte-
nance if using Vista); then click System (on Vista, you should now click Advanced
System Settings). In the System Properties dialog, select the Advanced tab. Next, click
Environment Variables; finally, in the System Variables panel, find RUBYOPT and
delete it. A safer alternative is to disable the variable at the command prompt prior
to loading the debugger. To do this, enter the following:

set RUBYOPT=

This will disable the RUBYOPT environment variable for this command session only.
You can verify this by entering the following:

set RUBYOPT

You should see the message:

Environment variable RUBYOPT not defined

However, open another command window and enter set RUBYOPT, and you will
see that the environment variable here retains its default value.

Debugging and Tes t ing 289

Let’s see how a few of these commands might be used in a real debug-
ging session. Open a system prompt, and navigate to the directory containing
the file debug_test.rb, which is supplied in the sample code for this chapter.
Start the debugger by entering this:

debug_test.rb ruby –r debug debug_test.rb

Now, let’s try a few commands. In these examples, I’ve written [Enter] to
show that you should press the ENTER key after each command. First let’s see
a code listing (here note that l is a lowercase L character):

l [Enter]

You should see this, which is a partial listing of the file debug_test.rb:

debug_test.rb:2: class Thing
(rdb:1) l
[-3, 6] in debug_test.rb
 1 # Thing
=> 2 class Thing
 3
 4 attr_accessor(:name)
 5
 6 def initialize(aName)
(rdb:1)

NOTE If you see a listing from a file called ubygems.rb at this point instead of your program,
refer to “Ubygems? What’s Ubygems?” on page 288 for ways of correcting this problem.

The l you entered is the “list” command, which instructs the debugger to
list the code in bite-sized chunks. The actual number of lines will vary with
the code being debugged. Let’s list some more:

l [Enter]
l [Enter]

Now list a specific number of lines. Enter the letter l followed by the
digit 1, a hyphen, and 100:

l 1-100 [Enter]

Let’s put a breakpoint on line 78:

b 78 [Enter]

The Ruby debugger should reply with this:

Set breakpoint 1 at debug_test.rb:78

290 Chapter 18

You might also set one or more watchpoints. A watchpoint can be used
to trigger a break on a simple variable (for example, entering wat @t2 would
break when the @t2 object is created); or it may be set to match a specific
value (for example, i == 10). Here I want to set a watchpoint that breaks
when the name attribute of @t4 is “wombat”. Enter this:

wat @t4.name == "wombat" [Enter]

The debugger should confirm this:

Set watchpoint 2:@t4.name == "wombat"

Notice the watchpoint number is 2. You’ll need that number if you sub-
sequently decide to delete the watchpoint. Okay, so now let’s continue (c)
execution:

c [Enter]

The program will run until it hits the breakpoint. You will see a message
similar to the following:

Breakpoint 1, toplevel at debug_test.rb:78
debug_test.rb:78: puts("Game start")

Here it shows the line number it’s stopped on and the code on that line.
Let’s continue:

c [Enter]

This time it breaks here:

Watchpoint 2, toplevel at debug_test.rb:85
debug_test.rb:86: @t5 = Treasure.new("ant", 2)

This is the line immediately following the successful evaluation of the
watchpoint condition. Check that by listing the line number indicated:

l 86

The debugger shows a set of lines with the current line of execution (86)
preceded by the => marker:

[81, 90] in debug_test.rb
 81 @t1 = Treasure.new("A sword", 800)
 82 @t4 = Treasure.new("potto", 500)
 83 @t2 = Treasure.new("A dragon Horde", 550)
 84 @t3 = Treasure.new("An Elvish Ring", 3000)
 85 @t4 = Treasure.new("wombat", 10000)

Debugging and Tes t ing 291

=> 86 @t5 = Treasure.new("ant", 2)
 87 @t6 = Treasure.new("sproggit", 400)
 88
 89 # ii) Rooms
 90 @room1 = Room.new("Crystal Grotto", [])

As you can see, line 86 contains the code that matches the watchpoint
condition. Notice that execution did not stop after line 82, where @t4 was
originally created, because the watchpoint condition was not met there (its
name attribute was “potto” and not “wombat”). If you want to inspect the value
of a variable when paused at a breakpoint or watchpoint, just enter its name.
Try this:

@t4 [Enter]

The debugger will display the following:

#<Treasure:0x315617c @value=10000, @name="wombat">

You can similarly enter other expressions to be evaluated. Try this:

@t1.value [Enter]

This shows 800.
Or enter some arbitrary expression such as this:

10+4/2 [Enter]

This shows 12.
Now delete the watchpoint (recall that its number is 2):

del 2 [Enter]

And continue until the program exits:

c [Enter]

You can use many more commands to debug a program in this way, and
you may want to experiment with those shown in the table given earlier. You
can also view a list of commands during a debugging session by entering help
or just h:

h [Enter]

To quit a debugging session, enter quit or q:

q [Enter]

292 Chapter 18

Although the standard Ruby debugger has its uses, it is far from as simple
or convenient to use as one of the graphical debuggers provided by integrated
development environments. Moreover, it is quite slow. In my view, it is fine
for debugging simple scripts but cannot be recommended for debugging
large and complex programs.

Unit Testing

Unit testing is a postdebugging testing technique that lets you try bits of your
program in order to verify that they work as expected. Some programmers
use unit testing habitually in addition to or even instead of interactive debug-
ging; other programmers use it rarely or never. Entire books have been writ-
ten on the techniques and methodologies of unit testing, and I will only
cover its fundamentals here.

The basic idea of unit testing is that you can write a number of “asser-
tions” stating that certain results should be obtained as the consequence of
certain actions. For example, you might assert that the return value of a spe-
cific method should be 100, that it should be a Boolean, or that it should be
an instance of a specific class. If, when the test is run, the assertion proves to
be correct, it passes the test; if it is incorrect, the test fails.

Here’s an example, which will fail if the getVal method of the object, t,
returns any value other than 100:

assert_equal(100, t.getVal)

But you can’t just pepper your code with assertions of this sort. There are
precise rules to the game. First you have to require the test/unit file. Then you
need to derive a test class from the TestCase class, which is found in the Unit
module, which is itself in the Test module:

class MyTest < Test::Unit::TestCase

Inside this class you can write one or more methods, each of which
constitutes a test containing one or more assertions. The method names
must begin with test (so methods called test1 or testMyProgram are okay, but
a method called myTestMethod isn’t). The following method contains a test that
makes the single assertion that the return value of TestClass.new(100).getVal
is 1,000:

def test2
 assert_equal(1000,TestClass.new(100).getVal)
end

And here is a complete (albeit simple) test suite in which I have defined
a TestCase class called MyTest that tests the class, TestClass. Here (with a little

Debugging and Tes t ing 293

imagination!), TestClass may be taken to represent a whole program that I
want to test:

test1.rb require 'test/unit'

class TestClass
 def initialize(aVal)
 @val = aVal * 10
 end

 def getVal
 return @val
 end
end

class MyTest < Test::Unit::TestCase
 def test1
 t = TestClass.new(10)
 assert_equal(100, t.getVal)
 assert_equal(101, t.getVal)
 assert(100 != t.getVal)
 end

 def test2
 assert_equal(1000,TestClass.new(100).getVal)
 end
end

This test suite contains two tests: test1 (which contains three assertions)
and test2 (which contains one). To run the tests, you just need to run the
program; you don’t have to create an instance of MyClass. You will see a
report of the results that states there were two tests, three assertions, and
one failure:

1) Failure:
test1(MyTest) [C:/bookofruby/ch18/test1.rb:19]:
<101> expected but was
<100>.

2 tests, 3 assertions, 1 failures, 0 errors

In fact, I made four assertions. However, assertions following a failure are
not evaluated in a given test. In test1, this assertion fails:

assert_equal(101, t.getVal)

Having failed, the next assertion is skipped. If I now correct this failed
assertion (asserting 100 instead of 101), this next assertion will also be tested:

assert(100 != t.getVal)

294 Chapter 18

But this too fails. This time, the report states that four assertions have
been evaluated with one failure:

2 tests, 4 assertions, 1 failures, 0 errors, 0 skips

Of course, in a real-life situation, you should aim to write correct asser-
tions, and when any failures are reported, it should be the failing code that is
rewritten—not the assertion!

For a slightly more complex example of testing, see the test2.rb program
(which requires a file called buggy.rb). This is a small adventure game that
includes the following test methods:

test2.rb def test1
 @game.treasures.each{ |t|
 assert(t.value < 2000, "FAIL: #{t} t.value = #{t.value}")
 }
end

def test2
 assert_kind_of(TestMod::Adventure::Map, @game.map)
 assert_kind_of(Array, @game.map)
end

Here the first method, test1, performs an assert test on an array of
objects passed into a block, and it fails when a value attribute is not less than
2,000. The second method, test2, tests the class types of two objects using the
assert_kind_of method. The second test in this method fails when @game.map is
found to be of the type TestMod::Adventure::Map rather than Array as is asserted.

The code also contains two more methods named setup and teardown.
When defined, methods with these names will be run before and after each
test method. In other words, in test2.rb, the following methods will run in
this order:

This gives you the opportunity of reinitializing any variables to specific
values prior to running each test or, as in this case, re-creating objects to
ensure that they are in a known state as in the following example:

def setup
 @game = TestMod::Adventure.new
end

def teardown
 @game.endgame
end

1. setup 2. test1 3. teardown

4. setup 5. test2 6. teardown

Debugging and Tes t ing 295

D I G G I N G D E E P E R
This section contains a summary of assertions for unit testing, explains why
IRB may show different results for what appears to be the same code, and
considers the merits of more advanced debugging tools.

Assertions Available When Unit Testing
The list of assertions shown next is provided for ease of reference. A full
explanation of each assertion is beyond the scope of this book. You can find
complete documentation of the testing libraries at http://ruby-doc.org/stdlib/.
On this site, select the class listing for Test::Unit::Assertions in order to view
the full documentation of the available assertions plus numerous code samples
demonstrating their usage.

assert(boolean, message=nil)
Asserts that boolean is not false or nil.

assert_block(message="assert_block failed.") {|| ...}
The assertion upon which all other assertions are based. Passes if the
block yields true.

assert_equal(expected, actual, message=nil)
Passes if expected == actual.

assert_in_delta(expected_float, actual_float, delta, message="")
Passes if expected_float and actual_float are equal within delta tolerance.

assert_instance_of(klass, object, message="")
Passes if object .instance_of? klass.

assert_kind_of(klass, object, message="")
Passes if object .kind_of? klass.

assert_match(pattern, string, message="")
Passes if string =~ pattern.

assert_nil(object, message="")
Passes if object is nil.

assert_no_match(regexp, string, message="")
Passes if regexp !~ string.

assert_not_equal(expected, actual, message="")
Passes if expected != actual.

assert_not_nil(object, message="")
Passes if ! object .nil?.

assert_not_same(expected, actual, message="")
Passes if ! actual .equal? expected.

296 Chapter 18

assert_nothing_raised(*args) {|| ...}
Passes if block does not raise an exception.

assert_nothing_thrown(message="", &proc)
Passes if block does not throw anything.

assert_operator(object1, operator, object2, message="")
Compares the object1 with object2 using operator. Passes if
object1.send(operator, object2) is true.

assert_raise(*args) {|| ...}
Passes if the block raises one of the given exceptions.

assert_raises(*args, &block)
Alias of assert_raise. (Deprecated in Ruby 1.9 and to be removed in 2.0.)

assert_respond_to(object, method, message="")
Passes if object .respond_to? method.

assert_same(expected, actual, message="")
Passes if actual .equal? expected (in other words, they are the same
instance).

assert_send(send_array, message="")
Passes if the method send returns a true value.

assert_throws(expected_symbol, message="", &proc)
Passes if the block throws expected_symbol

build_message(head, template=nil, *arguments)
Builds a failure message; head is added before the template and
*arguments replaces the question marks positionally in the template.

flunk(message="Flunked")
flunk always fails.

Line Breaks Are Significant
I said earlier that you need to take care when entering line breaks into the
interactive Ruby console (IRB) since the position of line breaks may alter the
meaning of your Ruby code. So, for example, the following:

linebreaks.rb x = (10 +
(2 * 4))

assigns 18 to x, but the following:

x = (10
+ (2*4))

assigns 8 to x.

Debugging and Tes t ing 297

This is not merely a quirk of IRB. This is normal behavior of Ruby code
even when entered into a text editor and executed by the Ruby interpreter.
The second example just shown evaluates 10 on the first line, finds this to be
a perfectly acceptable value, and promptly forgets about it; then it evaluates +
(2*4), which it also finds to be an acceptable value (8), but it has no connec-
tion with the previous value (10), so 8 is returned and assigned to x.

If you want to tell Ruby to evaluate expressions split over multiple lines,
ignoring the line breaks, you can use the line continuation character (\).
This is what I’ve done here:

x = (10 \
+ (2*4))

This time, x is assigned the value 18.

Graphical Debuggers
For serious debugging, I strongly recommend a graphical debugger. For
example, the debugger in the Ruby In Steel IDE allows you to set breakpoints
and watchpoints by clicking the margin of the editor.

It lets you monitor the values of selected “watch variables” or all local
variables in separate docked windows. It maintains a “callstack” of all method
calls leading to the current point of execution and allows you to navigate
“backward” through the callstack to view the changing values of variables.
It also has “drill-down” expansion of variables to allow you to expand arrays
and hashes and look inside complex objects. These capabilities go well
beyond the features of the standard Ruby debugger. For information on
Ruby IDEs, see Appendix D.

R U B Y O N R A I L S

Rails has become so closely connected with
Ruby that it is now quite commonplace for

people to talk about programming “in” Ruby
on Rails as though “Ruby on Rails” were the name

of the programming language.
In fact, Rails is a framework—a set of tools and code libraries—that can

be used in cahoots with Ruby. It gives you the ability to develop database-
driven websites that respond to user interaction. For example, users might
enter and save data on one page and search for data on other pages. This
makes Rails suitable for creating dynamic websites that generate web pages
“on the fly” rather than loading up static, predesigned pages. Typical applica-
tions include collaborative sites such as online communities, multi-author
books or wikis, shopping sites, discussion forums, and blogs.

I’ll provide a hands-on guide to creating a blog shortly. First, though,
let’s take a closer look at the nitty-gritty details of the Rails framework.

300 Chapter 19

NOTE This chapter will give you a taste of developing in Ruby on Rails. Bear in mind, how-
ever, that Rails is a big and complex framework, and I will cover only the fundamental
features. At the time of writing, Rails 3 is the latest version, but Rails 2 is still widely
used; therefore, both versions are covered in this chapter.

Installing Rails

Rails is not a standard part of Ruby, so you may need to install it as a separate
operation. Note that Ruby and Rails ship as standard with some operating sys-
tems, such as Mac OS X. There is, however, no guarantee that these are the
latest versions, and you may want to update the default installation manually.

Do It Yourself . . .
There are various ways in which Rails can be installed. The easiest way is to
use an all-in-one installer (some alternatives are described in this chapter).
However, you may also install Rails and the tools it requires one at a time.
Rails may be installed using the Ruby Gems “package manager.” As long as
you are connected to the Internet, Ruby Gems will go online to find and
install the latest version of Rails.

NOTE For Ruby Gems documentation, go to http://docs.rubygems.org/.

At the command prompt, enter the following:

gem install rails

If, instead of installing the latest version, you want to install a specific ver-
sion of Rails, you should append --version= followed by the appropriate version
number when entering the previous command. For example, to install Rails
2.3.8, enter the following:

gem install rails --version=2.3.8

Alternatively, you can download and install Rails from the Ruby on Rails
website, http://www.rubyonrails.org/. Most Rails applications require a database,
which you will need to install as a separate operation. Many people use either
SQLite or the free MySQL database server. MySQL is the more powerful of
the two systems and is used on many professional websites. However, many
people find SQLite simpler to use for local development of Ruby applications.
Installation of SQLite varies according to which operating system is being
used. SQLite3 is pre-installed on Mac OS X Leopard.

Installation of SQLite3 can be notably tricky on Windows. You should
begin by running this command at the command line:

gem install sqlite3-ruby

Ruby on Rai ls 301

Pay close attention to the message that is displayed when this executes.
This tells you which version of the SQLite3 DLL you need to install and the
web address from which you can download it. This DLL is a requirement.
Failure to install it will mean that SQLite3 will not be available for use with
Rails. This message will state something like this:

 You've installed the binary version of sqlite3-ruby.
 It was built using SQLite3 version 3.7.3.
 It's recommended to use the exact same version to avoid potential issues.

 At the time of building this gem, the necessary DLL files where available
 in the following download:

 http://www.sqlite.org/sqlitedll-3_7_3.zip

 You can put the sqlite3.dll available in this package in your Ruby bin
 directory, for example C:\Ruby\bin

Be sure to follow the instructions, download the correct DLL, and copy it
into the \bin directory beneath your Ruby installation.

Refer to the SQLite site for more information on SQLite: http://www.sqlite
.org/docs.html. You can find installation help on MySQL in Appendix B of this
book. Many other database servers can also be used including Microsoft SQL
Server, PostgresSQL, and Oracle.

NOTE If you plan to install or update Rails from scratch or if you need to update the version
pre-installed with your operating system, you should refer to Rails Guides website at
http://guides.rubyonrails.org/getting_started.html. These guides provide detailed
OS-specific information relating to Rails 3. Several Rails wikis also provide informa-
tion on supporting older versions of Rails—for example, http://en.wikibooks.org/
wiki/Ruby_on_Rails.

Or Use an “All-in-One” Installer
Various all-in-one Ruby and Rails setup programs are available. These include
the Bitnami RubyStack installers for Windows, Linux, and Mac: http://www
.bitnami.org/stack/rubystack/. Windows users can also use the Rails installer
from RubyForge: http://www.rubyforge.org/frs/?group_id=167. These installers
provide their own installation guides.

Model-View-Controller

A Rails application is divided into three main areas: the Model, the View, and
the Controller. Put simply, the Model is the data part—the database and any
programmatic operations (such as calculations) that are done upon that data.
The View is what the end user sees; in Rails terms, that generally means the
web pages that appear in the browser. The Controller is the programming
logic—the “glue” that joins the Model to the View.

302 Chapter 19

The Model-View-Controller methodology is used in various forms by all
kinds of programming languages and frameworks. It is more fully described
in “Digging Deeper” on page 322. For the sake of brevity, I will henceforward
call it MVC.

A First Ruby on Rails Application

Without more ado, let’s start programming with Rails. I’ll assume you have
Rails installed, along with a web server. I happen to be using the WEBrick
server, which is installed as standard with Rails, but you may use some other
server such as Apache, LightTPD, or Mongrel. You can find more informa-
tion on web servers in Appendix D.

NOTE A web server is a program that delivers data, such as web pages, using the Hypertext
Transfer Protocol (HTTP). You don’t need to understand how this works. You just
need to be aware that you need a web server for use with Rails.

This chapter assumes you are using only the “raw” Rails development
tools—programs that are executed from the command line—plus, at the very
least, a text editor and a web browser; as a consequence, you will find that you
frequently have to enter commands at the system prompt. If you are using an
integrated development environment for Rails, you will probably be able to
accomplish these tasks much more easily using the tools provided by the IDE.

Unlike the source code examples supplied for the other chapters in this
book, the sample code for the Ruby on Rails applications in this chapter is
not complete and “ready to run.” There are three reasons for this:

Each Rails application comprises a great many files and folders, most of
which are autogenerated by Rails, so it would be pointless to distribute
them separately.

I would also have to supply the data for each database, and you would
have to import it prior to using it. Importing databases is often more dif-
ficult than creating your own.

Not only is it simpler to create Rails applications yourself, but doing so
will also help you understand how Rails works. I have, however, supplied
some sample files—component parts of a complete application—with
which you can compare your own code in case you run into problems.

Create a Rails Application

For the sake of simplicity, this first application will not use a database at all.
This will let you explore the View and the Controller without having to worry
about the complexities of the Model.

To begin, open a system prompt (on Windows, select the Start menu,
and enter cmd into the Run or Search box). Navigate to a directory into which
you intend to place your Rails applications. Let’s assume this is C:\railsapps.

Ruby on Rai ls 303

Check that Rails is installed and that its home directory is on the system path.
To do this, enter the following:

rails

If all is well, you should now see a screenful of help about using the rails
command. If you don’t see this, there is a problem with your Rails installation
that you need to fix before continuing. Refer to “Installing Rails” on page 300.

NOTE When there are any differences in the commands or code for Rails 2 and Rails 3, these
will be indicated in the text with the Rails version number—Rails 2 or Rails 3—in the
margin next to the example.

Assuming Rails is working, you can now create an application. Enter this:

Rails 3 rails new helloworld

Rails 2 rails helloworld

After a bit of whirring of your hard disk, you should see a list of the files
that Rails has just created (the actual list is quite long, and some of the items
created are different in Rails 2 and Rails 3):

create app
create app/controllers/application_controller.rb
create app/helpers/application_helper.rb
create app/mailers
create app/models
create app/views/layouts/application.html.erb
create config
(etcetera)

Take a look at these files using your computer’s file manager. Beneath
the directory in which you ran the Rails command (\helloworld), you will see
that several new directories have been created: \app, \config, \db, and so on.
Some of these have subdirectories. The \app directory, for example, contains
\controllers, \helpers, \models, and \views. The \views directory itself contains a
subdirectory, \layouts.

The directory structure in a Rails application is far from random; the
directories (or folders) and the names of the files they contain define the rela-
tionships between the various parts of the application. The idea behind this
is that by adopting a well-defined file-and-folder structure, you can avoid the
necessity of writing lots of configuration files to link the various bits of the
application together. There is a simplified guide to the default directory
structure of Rails in “Digging Deeper” on page 322.

304 Chapter 19

Now, at the system prompt, change the directory to the top-level folder
(\helloworld) of your newly generated Rails application. Assuming you are still
in the C:\railsapps directory and you named the Rails application helloworld, as
suggested earlier, you would (on Windows) enter this command to change to
that directory:

cd helloworld

Now run the server. If (like me) you are using WEBrick, you should
enter the following:

Rails 3 rails server

Rails 2 ruby script/server

Note that servers other than WEBrick may be started in different ways,
and if the previous does not work, you will need to consult the server’s docu-
mentation. You should now see something similar to the following:

=> Booting WEBrick...
=> Rails application started on http://0.0.0.0:3000
=> Ctrl-C to shutdown server; call with --help for options
[2006-11-20 13:46:01] INFO WEBrick 1.3.1
[2006-11-20 13:46:01] INFO ruby 1.8.4 (2005-12-24) [i386-mswin32]
[2006-11-20 13:46:01] INFO WEBrick::HTTPServer#start: pid=4568 port=3000

P R O B L E M S ?

If, instead of seeing a message confirming that the server has started, you see error
messages, check that you have entered the server command exactly as shown for the
version of Rails being used, and check that it is run from within the appropriate direc-
tory: \helloworld.

If you still have problems, it is possible that the default port (3000) is already in
use—for example, if you already have an Apache server installed on the same PC.
In that case, try some other value such as 3003, placing this number after -p when
you run the script:

rails server –p3003

ruby script/server –p3003

If you see error messages that include the text no such file to load -- sqlite3,
be sure you have correctly installed SQLite3 as explained in “Installing Rails” on
page 300. If you are attempting to use MySQL and the error message includes the
text no such file to load—mysql, refer to Appendix B.

Rails 3

Rails 2

Ruby on Rai ls 305

Now fire up a web browser. Enter the host name, followed by a colon and
the port number, into its address bar. The host name should (normally) be
localhost, and the port number should match the one used when starting the
server, or else it defaults to 3000. Here is an example:

http://localhost:3000/

The browser should now display a page welcoming you aboard Rails. If
not, verify that your server is running on the port specified in the URL.

Create a Controller

As mentioned earlier, a Controller is where much of your Ruby code will live.
It is the part of the application that sits between the View (what appears in
the browser) and the Model (what happens to the data). Because this is a
“Hello world” application, let’s create a Controller to say “hello.” In the spirit
of originality, I’ll call this the SayHello controller. Once again, you can create
this by running a script at the system prompt. You will need to open another
command window in the directory from which you previously ran the server
script (for example, C:\railsapps\helloworld). You can’t reuse your existing com-
mand window because the server is running in that one, and you would need
to close it down to get back to the prompt—and that would stop your Rails
application from working!

At the prompt, enter this (be sure to use the capitalization of SayHello as
shown):

Rails 3 rails generate controller SayHello

Rails 2 ruby script/generate controller SayHello

306 Chapter 19

After a few moments, you will be informed that various files and directo-
ries have been created, including the following:

app/views/say_hello
app/controllers/say_hello_controller.rb
test/functional/say_hello_controller_test.rb
app/helpers/say_hello_helper.rb

NOTE The generate controller script also creates the file application_controller.rb in
Rails 3 or application.rb in Rails 2, which is the controller for the entire application,
plus a folder, /views/say_hello, which you will make use of shortly.

Notice how Rails has parsed the name SayHello into two lowercase words,
say and hello, separated by an underscore, and it has used this name as the first
part of the generated Ruby files such as say_hello_controller.rb. This is just one
example of the “configuration by convention” approach that Rails uses.

Locate the controller file say_hello_controller.rb, which has been created in
\helloworld\app\controllers. Open this file in a text editor. This empty method
has been autogenerated:

class SayHelloController < ApplicationController
end

Inside this class you can write some code to be executed when a certain
page is displayed. Edit the class definition to match the following:

class SayHelloController < ApplicationController
 def index
 render :text => "Hello world"
 end

 def bye
 render :text => "Bye bye"
 end
end

This now contains two methods, index and bye. Each method contains a
single line of code. In spite of the fact that I have omitted parentheses (a
parentheses-light style of coding is favored by many Rails developers), you
can probably deduce that render is a method that takes a hash as an argu-
ment; the hash itself contains a key-value pair comprising a symbol and a
string. For parentheses-lovers, the index method can be rewritten like this:

def index
 render({ :text => "Hello world" })
end

And there you have your first real Rails application. To try it, you need to
go back to the web browser and enter the full “address” of the two functions
you just wrote. But first you may need to restart your server. Just press CTRL-C

Ruby on Rai ls 307

in the command window where the server is running. When the server exits,
restart by entering the following:

Rails 3 rails server

Rails 2 ruby script/server

There’s just one more thing you have to do in Rails 3. You need to tell
it how to find a “route” specified by an address entered into web browser.
This step is not required for Rails 2. In Rails 3, open the routes.rb file in
your helloworld\config\ folder. Now edit it to match the following (or simply
uncomment the line of code that you’ll find at the bottom of the file):

match ':controller(/:action(/:id(.:format)))'

You are now ready to test the application. To do so, you just need to
enter an address to access a controller method. The address takes the form
of the host and port (the same as you entered previously—for example, http://
localhost:3000), plus the name of the controller (/say_hello) and finally the
name of a specific method (/index or /bye). Try entering these, as shown next,
into your browser’s address field, once again ensuring that you are using the
appropriate port number if it is not 3000:

http://localhost:3000/say_hello/index
http://localhost:3000/say_hello/bye

Your browser should display “Hello world” and “Bye bye” respectively for
each address. If all is working at this point, you can bathe in the warm glow of
having created your first Ruby on Rails application. If however, you are see-
ing MySQL database errors, read “Can’t Find the Database?” on page 351
and fix the problem before continuing.

Incidentally, Rails uses the index method as a default so you can use the
index view as your home page and omit that part of the URL when entering
the address into the browser:

http://localhost:3000/say_hello

Anatomy of a Simple Rails Application

Before moving on, let’s take a closer look at the class that you have created in
this application. Rails has named the class by appending Controller to the name
you specified when running the controller generator script (HelloWorld), and
it has made it a descendant of the ApplicationController class:

class SayHelloController < ApplicationController

308 Chapter 19

But what exactly is the ApplicationController class? You may recall that I
mentioned that the generate controller script you ran earlier silently created
a file called application_controller.rb (Rails 3) or application.rb (Rails 2) inside
the /app/controllers folder. This file is the application controller, and if you
open it, you will see that it contains a class called as follows:

ApplicationController < ActionController::Base

So, the SayHelloController class descends from the ApplicationController
class that itself descends from the Base class in the ActionController module.
You can prove this by climbing back through the hierarchy and asking each
class to display itself. This, incidentally, also gives you the chance to try doing
some real Ruby programming in the SayHelloController class.

Just edit the contents of say_hello_controller.rb file to match the following
(or copy and paste the code from the sayhello1.rb file in the code archive for
this chapter):

sayhello1.rb class SayHelloController < ApplicationController
 def showFamily(aClass, msg)
 if (aClass != nil) then
 msg += "
#{aClass}"
 showFamily(aClass.superclass, msg)
 else
 render :text => msg
 end
 end

 def index
 showFamily(self.class, "Class Hierarchy of self...")
 end
end

To see the result, enter this address into your browser (once again,
change the port number if necessary):

http://localhost:3000/say_hello

Your web browser should now display the following (in Rails 3):

Class Hierarchy of self...
SayHelloController
ApplicationController
ActionController::Base
ActionController::Metal
AbstractController::Base
Object
BasicObject

Ruby on Rai ls 309

In Rails 2 it will display the following:

Class Hierarchy of self...
SayHelloController
ApplicationController
ActionController::Base
Object

Don’t worry about the actual class ancestry; the internal implementation
details of the Rails framework are not of immediate interest. The important
thing to understand is that a controller is a real Ruby object that inherits
behavior from the ApplicationController class and its ancestors. Any Rails
controller class you write or that is autogenerated by running scripts can con-
tain normal Ruby code, just like all the other classes you’ve written in previ-
ous chapters. Within a controller, you can use all the usual Ruby classes such
as strings and hashes.

But bear in mind that the end result needs to be displayed in a web
page. This has certain consequences. For example, instead of putting line-
feeds ("\n") into strings, you should use HTML paragraph (<P>) or break
(
) tags, and it is only permissible to call render once each time a page is
displayed, which explains why I’ve constructed a string in the course of call-
ing the method recursively and then passed this to the render method right
at the end:

def showFamily(aClass, msg)
 if (aClass != nil) then
 msg += "
#{aClass}"
 showFamily(aClass.superclass, msg)
 else
 render :text => msg
 end
end

The Generate Controller Script Summarized

Before moving on, let’s consolidate the fundamental details of running the
Rails generate controller script and learn a few extra tricks you can use when
creating views. Each time a new controller is generated, it creates a Ruby
code file in the app/controllers directory, with a name matching the name you
entered but all in lowercase, with any noninitial capitals that you specified
being preceded by an underscore and _controller appended. So, if you entered
SayHello, the controller file will be called say_hello_controller.rb. The controller
will contain a class definition such as SayHelloController. You may subsequently
add to this class some “view methods” such as index and bye. Alternatively, you
may use the generate script to create one or more empty view methods auto-
matically by including those view names when you execute the script.

310 Chapter 19

For example, you could run this script:

Rails 3 rails generate controller SayHello index bye

Rails 2 ruby script/generate controller SayHello index bye

Rails will now create the file say_hello_controller.rb, containing this code:

class SayHelloController < ApplicationController
 def index
 end

 def bye
 end
end

Whether or not you specify views, a folder in the /views directory is cre-
ated with a name matching the controller (views/say_hello). In fact, the script
also creates a few other files including some more Ruby files in the /helpers
folder, but in our simple application you can ignore these files.

If you specified view names when running the controller script, some
files with matching names and the extension .html.erb will be added to the
appropriate view folder. For instance, if you entered the following command:

ruby script/generate controller SayHello xxx

the /views/say_hello directory should now contain a file called xxx.html.erb. If,
on the other hand, you entered the following:

ruby script/generate controller Blather xxx bye snibbit

the views/blather directory should now contain three files: xxx.html.erb,
bye.html.erb, and snibbit.html.erb.

Create a View

It would be possible to create an entire application by coding everything
inside a Controller and doing all the formatting inside view methods. How-
ever, you would soon end up with some pretty ugly web pages. To apply more
formatting, you need to create a View that more accurately defines the layout
of a web page.

You can think of a View as an HTML page that will be displayed when
someone logs onto a specific web address—in which case, the name of the
View forms the final part of the address as in the previous examples where
the /index and /bye parts of the URL took you to views that displayed data sup-
plied by the index and bye methods in the Controller.

Ruby on Rai ls 311

You can create HTML view “templates” that match these web addresses
and the corresponding method names. Using an HTML (or plaintext) edi-
tor, create a file named index.html.erb in the \app\views\say_hello directory, if
such a template does not already exist. Remember, as explained previously
(in “The Generate Controller Script Summarized” on page 309), you can
optionally autocreate one or more view templates when you initially generate
the Controller.

Now that you have a view template, you can edit it in order to control the
way data is displayed in the web page. That means you won’t need to display
plain, unformatted text using the render method in the Controller from now
on. But, with the View being out of the Controller’s control (so to speak),
how can the Controller pass data to the View? In turns out that it can do this
by assigning data to an instance variable.

Edit the code in say_hello_controller.rb (or delete it and paste in the code
from the file sayhello2.rb, supplied in the source code archive) so that it
matches the following:

sayhello2.rb class SayHelloController < ApplicationController
 def showFamily(aClass, msg)
 if (aClass != nil) then
 msg += "#{aClass}"
 showFamily(aClass.superclass, msg)
 else
 return msg
 end
 end

 def index
 @class_hierarchy = "#{showFamily(self.class, "")}"
 end
end

This version calls the showFamily() method in order to build up a string
inside two HTML “unordered list” tags, and . Each time a class name
is found, it is placed between two HTML “list item” tags, and . The
complete string forms a valid HTML fragment, and the index method simply
assigns this string a variable named @class_hierarchy.

H T M L T A G S I N T H E C O N T R O L L E R ?

Some Ruby on Rails developers object to having any HTML tags, no matter how
trivial, included in the Controller code. In my opinion, if you intend to display the
end results in a web page, it little matters where you put the odd <p>, , or
tag. Although the MVC paradigm encourages strong separation between the pro-
gram code of the Controller and the layout definition of the View, you will inevitably
have to make some compromises—at the very least by putting some program code
into the View. Avoiding the use of HTML tags in the Controller is, largely, an aes-
thetic rather than a pragmatic objection. I personally have no very strong views on
the subject, though (be warned!) other people do.

312 Chapter 19

All you need to do now is to find some way of putting that HTML frag-
ment into a fully formed HTML page. That’s where the View comes in. Open
the view file you just created, index.html.erb, in the app/views/say_hello folder.
According to the Rails naming convention, this is the default view (the “index”
page) that is partnered with the say_hello_controller.rb file. Since Rails works
out relationships based on file, folder, class, and method names, you don’t
have to load or require any files by name or write any configuration details.

In the index.html.erb file, add this:

<h1>This is the Controller's Class Hierarchy</h1>
<%= @class_hierarchy %>

The first line is nothing more than plain HTML formatting that defines
the text enclosed by the <h1></h1> tags as a heading. The next line is more
interesting. It contains the variable @class_hierarchy. Look back at the index
method in say_hello_controller.rb, and you’ll see that this is the variable to which
you assigned a string. Here in the View, @class_hierarchy is placed between
two odd-looking delimiters: <%= and %>. These are special Rails tags. They are
used to embed bits of Ruby that will be executed prior to displaying a web
page in the browser. The page that is finally displayed will be a fully formed
HTML page that includes any HTML fragments from the view template plus
the results, after execution, of any embedded Ruby code. Try it now, by
entering the page address into your browser:

http://localhost:3000/say_hello/

This should now display the heading “This is the Controller’s Class Hier-
archy” in big, bold letters followed by a list of classes each element of which is
preceded by a dot. In Rails 2, this is what you’ll see:

• SayHelloController
• ApplicationController
• ActionController::Base
• Object

However, in Rails 3, you seem to have a problem. Instead of a list, the
HTML tags are rendered literally like this:

SayHelloControllerApplicationController</
li>ActionController::BaseActionController::Metal</
li>AbstractController::BaseObjectBasicObject

This definitely is not what you want. The explanation for this is that the
default treatment of HTML tags embedded in strings has changed between
Rails 2 and Rails 3. In Rails 2, tags were passed through to the View unmodi-
fied. In Rails 3, substitution is done to ensure that HTML tags are displayed
on the screen rather than rendered by the browser. For example, the tag

Ruby on Rai ls 313

is changed to where < and > are the HTML codes for angle
brackets (< and >). To ensure that HTML tags are not substituted in this
way, you need to use the raw method, passing to it a string argument. This
is index.html.erb rewritten for Rails 3:

<h1>This is the Controller's Class Hierarchy</h1>
<%= raw(@class_hierarchy) %>

Now when you log onto the address http://localhost:3000/say_hello in
Rails 3, you should see class names shown as a bulleted list with no HTML
tags displayed.

You could, if you want, remove all the HTML from the view file by creat-
ing the heading in the Controller and assigning the resulting string to another
variable. You can do this by editing the index method in say_hello_controller.rb
to this:

def index
 @heading = "<h1>This is the Controller's Class Hierarchy</h1>"
 @class_hierarchy = "#{showFamily(self.class, "")}"
end

Then edit the view file (/app/views/say_hello/index.html.erb) to match
the code shown next (or cut and paste the code from the sample file into
index.html.erb) for use with Rails 3:

say_hello_rails3
.html.erb

<%= raw(@heading) %>
<%= raw(@class_hierarchy) %>

For Rails 2, use this code:

say_hello.html.erb <%= @heading %>
<%= @class_hierarchy %>

If you do this, the end result, as displayed in the web page, will remain
unchanged. All that’s happened is that some formatting has been moved out
of the view template and into the Controller.

Rails Tags

There are two variations on the Rails tags that you can place into Rails HTML
Embedded Ruby (ERb) template files. The ones you’ve used so far include
an equal sign in the opening delimiter: <%=.

These tags cause Rails not only to evaluate Ruby expressions but also to
display the results in a web page. If you omit the equals sign from the open-
ing delimiter, then the code will be evaluated, but the result will not be dis-
played: <%.

314 Chapter 19

NOTE ERb files contain a mix of HTML markup and Ruby code between tags such as <%=
and %>. Rails processes these files before the final pages are displayed in the web browser,
executing the embedded Ruby and constructing the HTML page as a result.

If you want, you can place quite long pieces of code—your entire Ruby
program even!—between <% and %> tags and then use <%= and %> when you
want to display something in the web page. In fact, you could rewrite your
application by omitting the Controller entirely and putting everything into
the View. Try it by editing app/views/say_hello/index.html.erb to match the fol-
lowing (or copy and paste the code from the file embed_ruby_rails2.html.erb or
embed_ruby_rails3.html.erb according to the Rails version being used):

embed_ruby_
rails3.rhtml

<% def showFamily(aClass, msg)
 if (aClass != nil) then
 msg += "#{aClass}"
 showFamily(aClass.superclass, msg)
 else
 return msg
 end
 end %>

<%= raw("#{showFamily(self.class, "")}") %>

In this particular case, the text displayed in the web page will be slightly
different from before since it now shows the class hierarchy of the view’s class,
rather than that of the controller’s class. As you will see, the view descends
from the ActionView::Base class.

You can also divide a contiguous block of code by placing the individual
lines between <% and %> tags instead of placing the entire block between a
single pair. The advantage of doing this is that it lets you put standard HTML
tags outside the individually delimited lines of Ruby code. You could, for
instance, put this into a view:

<% arr = ['h','e','l','l','o',' ','w','o','r','l','d'] %>

<% # sort descending from upper value down to nil
reverse_sorted_arr = arr.sort{
 |a,b|
 b.to_s <=> a.to_s
 } %>

<% i = 1 %>

<% reverse_sorted_arr.each{ |item| %>
<%= "Item [#{i}] = #{item}" %>
<% i += 1 %>
<% } %>

Ruby on Rai ls 315

Here, I’ve assigned an array of chars to the variable, arr, between one
set of tags. I’ve written a block to reverse-sort the array and assigned the result
to another variable between a second set of tags. Then I’ve assigned 1 to the
variable, i; and finally I’ve written this method:

reverse_sorted_arr.each{ |item|
 "Item [#{i}] = #{item}"
 i += 1
}

But instead of enclosing the method between a single set of <% %> tags,
I’ve enclosed each separate line within its own pair of tags. Why should I do
this? Well, there are two reasons. First, I want the string in the middle of the
block to be displayed on the web page, so I need to use the <%= tag there:

<%= "Item [#{i}] = #{item}" %>

And second, I want the whole set of strings to be displayed as an HTML
list. So, I’ve placed the and tags before and after the Ruby code
block, and I’ve placed the line of code that displays each array item inside
 and tags. Notice that these tags are inside the Ruby code block but
outside the embedded Ruby tags on this particular line:

<%= "Item [#{i}] = #{item}" %>

So, by dividing up a contiguous block of Ruby code into separately
delimited lines, I am no longer forced to construct strings to contain HTML
tags. Instead, I have been able to do the useful trick of mixing HTML into the
Ruby code itself. To be honest, I haven’t really mixed it in at all—the Ruby
code is still closed off inside the tags; what I’ve done is told Rails to mix in the
HTML at specific points prior to displaying the page in a web browser.

Incidentally, you may find it interesting to compare the version of the
application that puts all the embedded Ruby code into the view (index.html.erb)
with the previous version in which the code was all put into the Controller
(the version of say_hello_controller.rb supplied in the sample file sayhello2.rb)
and only tiny bits of embedded Ruby (a couple of variables) were placed into
the view:

<%= @heading %>
<%= @class_hierarchy %>

You will probably agree that the first version, in which the programming
logic was put into the Controller rather than embedded into the View, is
neater. On the whole, Ruby code belongs in Ruby code files, and HTML for-
matting belongs in HTML files. Although embedded Ruby provides an easy
way of letting a View and a Controller communicate, it is generally better to
keep embedded Ruby code short and simple and put more complex Ruby
code into Ruby code files.

316 Chapter 19

Let’s Make a Blog!

For many people, the one thing that really “turned them on” to Ruby on
Rails was the 20-minute demo given by Rails’s creator, David Heinemeier
Hansson, in which he showed how to create a simple weblog. That demo
was originally done using Rails 1 and has since been updated (and changed
somewhat) for Rails 2 and Rails 3. You can watch the latest demos online at
http://www.rubyonrails.com/screencasts/.

A blog is a great way to show how easy it is to create a fairly complex
application using Rails. In the remainder of this chapter, I’ll explain how you
can create a very simple blog application. I’ll use a feature called migrations,
which will cut out a lot of the hard work of creating the database structure of
the Model.

Bear in mind that I have tried to keep the creation of this application
as simple as possible. It is not an exact duplication of David Heinemeier
Hansson’s tutorial, and it has only a subset of the features of a fully functional
blog (there are no user comments and no administration interface, for
example). Once you have completed my blog application, you may want to
study the screencast tutorials mentioned earlier. These will show you alter-
native ways of producing similar results, and they will also take you further
toward the creation of a more complex blog.

NOTE You can compare the code of your blog application with one I created. My code is sup-
plied in the \blog subdirectory of the code accompanying this chapter. This blog appli-
cation is not “ready to run,” however, because it requires a database that you will have
to create. You should create your own blog application by following the instructions
given in the chapter. You may use the supplied code as a reference to check that the files
you create match the ones I created.

Open a command prompt in the directory in which you keep your Rails
applications (for example, C:\railsapps), and execute a command to create an
application called Blog:

Rails 3 rails new blog

Rails 2 rails blog

Create the Database
Now let’s create a database. Here I am assuming you are using either the
SQLite3 or MySQL database. As said earlier, SQLite3 is regarded as the stan-
dard database system for local development with Rails 3, and it is easier to set
up and use. MySQL, on the other hand, is an industry-standard database that
is more likely to be used for deployment on a website. If you are using SQLite3,
you won’t need to take any special actions to create the database—Rails does
it for you. You can skip straight to “Scaffolding” on page 317. If you are using
MySQL, you should follow the steps outlined in the next sections.

Ruby on Rai ls 317

Creating a MySQL Database
If you are using MySQL, open a MySQL prompt by running the MySQL
Command Line Client from the MySQL program group. When prompted,
enter your MySQL password. Now you should see this prompt:

mysql>

Enter the following at the prompt (be sure to put the semicolon at the end):

create database blog_development;

MySQL should reply “Query OK” to confirm that the database has been
created. Now ensure that your database configuration file for your Rails appli-
cation contains the appropriate entries for the development database. If you
are using some other database (not MySQL), your configuration entries must
refer to that database.

Go to the folder in which Rails created your new blog application, and
open the file database.yml in the \config\ subdirectory. Assuming you are using
MySQL, enter mysql as the adapter, localhost as the host, your MySQL username
(for example, root), and your password, if you have one. The database name
should match the database you just created. Here is an example (where you
would enter an actual password instead of mypassword):

development:
 adapter: mysql
 host: localhost
 username: root
 database: blog_development
 password: mypassword

NOTE If the server is running when you make changes to database.yml, you should restart
the server afterward!

It is common to have multiple configurations—for example, for develop-
ment, test, and production. For the sake of simplicity, here you will create a
development configuration only; you may comment out any other entries in
database.yml.

Scaffolding
You are going to use a feature called scaffolding to create a model, views, and
controllers all in one go. Scaffolding is a convenient way of getting a simple
application up and running quickly. Move into the new \blog directory, and
enter the following at the system prompt:

Rails 3 rails generate scaffold post title:string body:text created_at:datetime

Rails 2 ruby script/generate scaffold post title:string body:text created_at:datetime

318 Chapter 19

This tells the scaffold generator to create a model comprising Ruby
code to access a database table called post with three columns, title, body, and
created_at, each of which has the data type (string, text and datetime) specified
after the colon. To create the database structure based on this model, you
need to run a “migration” to update the database table itself.

Migration
The scaffold script has created a database migration file for you. Navigate to
the \db\migrate directory. You will see that this contains a numbered migra-
tion file whose name ends with _create_posts.rb. If you open this file, you can
see how the table structure is represented in Ruby code:

def self.up
 create_table :posts do |t|
 t.string :title
 t.text :body
 t.datetime :created_at

 t.timestamps
 end
end

An application may, over time, gain numerous migrations, each of which
contains information on a specific iteration of the Model—changes and addi-
tions made to the table structure of the database. Experienced Rails develop-
ers can use migrations selectively to activate different versions of the Model.
Here, however, you will use this migration to create the initial structure of
the database.

At the system prompt in your application’s main directory (for example,
/blog), you can use the rake tool to run the migration. Enter this command:

rake db:migrate

After a few moments, you should see a message stating that the rake task
has completed and that CreatePosts has been migrated.

Partials
Now let’s create a new partial view template. A partial is a fragment of a web
page template that Rails may insert, at runtime, into one or more complete
web pages. If, for example, you plan to have the same data entry form in
multiple pages on your site, you could create that form inside a partial tem-
plate. The names of partial templates begin with an underscore.

Ruby on Rai ls 319

Create a new file called _post.html.erb in your \app\views\posts\ directory.
Open this file, and edit its contents to match the following (or you may copy
the _post.html.erb from the sample project in the source code archive):

_post.html.erb <div>
<h2><%= link_to post.title, :action => 'show', :id => post %></h2>
<p><%= post.body %></p>
<p><small>
<%= post.created_at.to_s %>
</small></p>
</div>

Save your changes. Then open the file named show.html.erb. This file was
automatically created by the scaffold script. Delete the following “boilerplate”
code from the file:

Title:
 <%=h @post.title %>
</p>

<p>
 Body:
 <%=h @post.body %>
</p>

<p>
 Created at:
 <%=h @post.created_at %>
</p>

M Y S Q L E R R O R S ?

If you are using MySQL and you see errors when you run rake, first verify that MySQL
is installed, as explained in Appendix B. Also watch out for any error messages that
begin with something like the following:

rake aborted!
!!! Missing the mysql gem. Add it to your Gemfile: gem 'mysql', '2.8.1'

If you see this, you will need to add the specified entry to a file named Gem-
file, which you will find in the top-level directory of your application (for example,
\blog). For example, given the previous message, you would need to add this text
to Gemfile:

gem 'mysql', '2.8.1'

320 Chapter 19

And replace it with this:

<%= render :partial => "post", :object => @post %>

This tells Rails to render the _post partial template at this point. The
code in show.html.erb should now look like this:

<%= render :partial => "post", :object => @post %>

<%= link_to 'Edit', edit_post_path(@post) %> |
<%= link_to 'Back', posts_path %>

Test It!
And that’s it! Now you are ready to test your application. First, run the server.
At the prompt in the \blog directory, enter this:

Rails 3 rails server

Rails 2 ruby script/server

NOTE Recall that if you are not using the default port, 3000, you will need to specify
the actual port number after –p as explained earlier in this chapter, for example:
rails server –p3003.

Go into your web browser, and enter the following address (again, use
the actual port number if this is not 3000):

http://localhost:3000/posts

You should see your page with its index page active. This is what should
appear:

Now click the New Post link. In the New Post page, enter a title and some
body text. Then click Create.

Ruby on Rai ls 321

The next page that displays is the Show page. This is defined by the
combination of the show.html.erb view and the _post.html.erb partial. Now
carry on entering posts and clicking the links to navigate through the
various defined views.

NOTE As mentioned earlier, this chapter assumes you are using Rails “in the raw,” by enter-
ing all the necessary commands at the system prompt. Some IDEs provide a more inte-
grated environment, which allows you to generate and code your application using
built-in tools and utilities. You will find an overview of some Ruby and Rails IDEs
in Appendix D.

322 Chapter 19

D I G G I N G D E E P E R
The three letters “MVC” are fundamental to understanding how Rails works.
Here I explain the underlying concepts. You will also learn about the Rails
directory structure and alternative Ruby frameworks.

MVC
As explained earlier, Rails adopts the Model-View-Controller (MVC) para-
digm. Put simply, these may be thought of as the database (Model), the dis-
play (View), and the programming logic (Controller).

Although these three component parts are, in theory, separate entities,
there is, in practice, inevitably a degree of overlap. For instance, some calcu-
lations may be done in the Model with others done in the Controller; opera-
tions that affect the formatting of data could happen in the Controller or in
the View. There are no hard-and-fast rules—just a general principle that, as
much as possible, operations “close to the data” should happen in the Model,
operations “close to the display” should happen in the View, and everything
else should go into the Controller.

That’s MVC in theory. Now let’s see how it is implemented by Rails.

Model

The Model in Ruby on Rails is a combination of tables in a database—handled
by a database server such as MySQL—and a matching set of Ruby classes to
work upon those tables. For example, in a blog you might have a database
containing a table called Posts. In that case, the Rails model would also con-
tain a Ruby class named Post (notice that Rails works with plurals—the Posts
table can contain many Post objects). The Ruby Post class would typically
contain methods to find, save, or load individual Post records from the Posts
database. This combination of database tables and corresponding Ruby
classes comprises a Rails Model.

View

The View is pretty much what it sounds like—the visual representation of a
Ruby on Rails application. It is (typically but not necessarily) created in the
form of HTML templates with some Ruby code mixed in. In fact, other view
types (for example, a graphical view made using Adobe’s Flex or Microsoft’s
Silverlight) are possible, but the Rails default is HTML. These templates, which
generally have the extension .html.erb (but may also use the extension .rhtml
that was the Rails 1 default), are not loaded directly into a web browser—
after all, web browsers haven’t any way of running Ruby code. Instead, they
are preprocessed by a separate tool that executes the Ruby code in order to
interact with the Model (finding or editing data as necessary); then, as an
end result, it creates a new HTML page whose basic layout is defined by an

Ruby on Rai ls 323

ERb template but whose actual data (that is, the blog posts, shopping cart
items, or whatever) are provided by the Model. This makes it possible to
create highly dynamic web pages that change as a user interacts with them.

Controller

The Controller takes the form of Ruby code files that act as go-betweens that
link the Model and the View. For example, in the web page (the View), a user
might click a button to add a new post to a blog; using ordinary HTML, this
button submits a value named Create. This causes a method named create, in
a post “controller” (a file of Ruby code) to save the new blog entry (some
text) that has been entered in the web page (the View) into the database
(the data repository of the Model).

The Rails Folders
This is a simplified guide to the top-level folders generated by Rails, with a
brief description of the files and folders they contain:

app This contains the code specific to this application. Sub-
folders may include app\controllers, app\models, app\views,
app\helpers, and app\mailers.

config This contains configuration files for the Rails environment,
the routing map, the database, and other dependencies;
database configuration is put into the file database.yml.

db This contains the database schema in schema.rb and may con-
tain code that works on the data in the database. If migra-
tions have been applied, it will also contain migration files
in the \migrate subdirectory.

doc This may contain RDOC documentation (see Appendix A
for more on RDOC).

lib This may contain code libraries (that is, code that does not
logically belong in \controllers, \models, or \helpers) for the
application.

log This may contain error logs.
public This directory contains “static” files that may be used by the

web server. It has subdirectories for images, stylesheets, and
javascripts.

script This contains scripts that Rails uses to perform various tasks
such as generating certain file types and running the web
server.

test This may contain tests generated by Rails or specified by
the user.

tmp This contains temporary files used by Rails.
vendor This may contain third-party libraries that do not form part

of the default Rails installation.

324 Chapter 19

Other Ruby Frameworks
Rails may be the most famous Ruby framework, but it certainly is not the only
one. Others such as Ramaze and Sinatra also have a dedicated following. A
framework called Merb was once seen as the closest competitor to Rails. How-
ever, in December 2008, the Rails and Merb teams announced they would be
collaborating on the next iteration of Rails, and it was that collaboration that
resulted in Rails 3.

If you are interested in exploring other Ruby frameworks, follow these
links:

Ramaze: http://www.ramaze.net/

Sinatra: http://www.sinatrarb.com/

Waves: http://www.rocket.ly/waves

Bear in mind that open source Ruby frameworks have a tendency to
come and go, waxing and waning according to the enthusiasm or other com-
mitments of the core developers. The Ramaze team maintains a list of Ruby
frameworks on its home wiki: http://wiki.ramaze.net/Home#other-frameworks.

D Y N A M I C P R O G R A M M I N G

In the past 19 chapters, I’ve covered a huge
range of features of the Ruby language. One

thing I haven’t covered in any detail is Ruby’s
dynamic programming capability.

If you have used only a nondynamic language (say one of the languages
from the C or Pascal family), it is likely that dynamism in programming may
take a little getting used to. Before going any further, I’ll clarify what I mean
by a dynamic language. The definition is, in fact, a bit vague, and not all
languages that lay claim to being dynamic share all the same features. In
a general sense, however, a language that provides some means by which
programs may be modified at runtime can be considered to be dynamic.
Another quality of a dynamic language is its ability to change the type of a
given variable—something you have done countless times in the examples
throughout this book.

326 Chapter 20

A further distinction may also be made between a dynamically typed lan-
guage such as Ruby and a statically typed language (one in which the type of
a variable is predeclared and fixed) such as C, Java, or Pascal. In this chapter,
I will concentrate on the self-modifying capabilities of Ruby.

NOTE In formal computer science, the term dynamic programming is sometimes used to
describe an analytic approach to solving complex problems. That is not the sense in
which the term is used in this chapter.

Self-Modifying Programs

In most compiled languages and many interpreted languages, writing pro-
grams and running programs are two completely distinct operations: The
code you write is fixed, and it is beyond any possibility of further alteration
by the time the program is run.

That is not the case with Ruby. A program—by which I mean the Ruby
code itself—can be modified while the program is running. It is even possible
to enter new Ruby code at runtime and execute the new code without restart-
ing the program.

The ability to treat data as executable code is called metaprogramming.
You’ve been doing metaprogramming, albeit of a rather simple sort, through-
out this book. Every time you embed an expression inside a double-quoted
string, you are doing metaprogramming. After all, the embedded expression
is not really program code—it is a string—and yet Ruby clearly has to “turn it
into” program code in order to be able to evaluate it.

Most of the time you will probably embed rather simple bits of code
between the #{ and } delimiters in double-quoted strings. Often you might
embed variable names, say, or mathematical expressions:

str_eval.rb aStr = 'hello world'
puts("#{aStr}")
puts("#{2*10}")

But you aren’t limited to such simple expressions. You could, if you
wanted, embed just about anything into a double-quoted string. You could,
in fact, write an entire program in a string. You don’t even need to display
the end result using print or puts. Just placing a double-quoted string into
your program will cause Ruby to evaluate it:

"#{def x(s)
 puts(s.reverse)
 end;
(1..3).each{x(aStr)}}"

Dynamic Programming 327

Even though the previous code fragment is a string, the Ruby interpreter
will evaluate its embedded code and display the result, shown here:

dlrow olleh
dlrow olleh
dlrow olleh

Interesting as this may be, writing a whole program inside a string would
probably be a pretty pointless endeavor. However, there are other occasions
when this, and similar, features can be used much more productively. For
example, you might use metaprogramming to explore artificial intelligence
and “machine learning.” In fact, any application that would benefit from hav-
ing a program’s behavior modified in response to user interaction is a prime
candidate for metaprogramming.

NOTE Dynamic (metaprogramming) features are ubiquitous in Ruby. Consider, for example,
attribute accessors: Passing a symbol (such as :aValue) to the attr_accessor method
causes two methods (aValue and aValue=) to be created.

eval

The eval method provides a simple way of evaluating a Ruby expression in a
string. At first sight, eval may appear to do the same job as the #{ } delimiters
in a double-quoted string. These two lines of code produce identical results:

eval.rb puts(eval("1 + 2")) #=> 3
puts("#{1 + 2}") #=> 3

Sometimes, however, the results may not be what you are expecting.
Look at the following, for instance:

eval_string.rb exp = gets().chomp() #<= User enters 2*4
puts(eval(exp)) #=> 8
puts("#{exp}") #=> 2*4

Let’s suppose you enter 2 * 4, and this is assigned to exp. When you
evaluate exp with eval, the result is 8, but when you evaluate exp in a double-
quoted string, the result is "2*4". This is because anything read in by gets() is
a string and "#{exp}" evaluates it as a string and not as an expression, whereas
eval(exp) evaluates a string as an expression. To force evaluation inside a string,
you could place eval in the string (though that, admittedly, might defeat the
object of the exercise):

puts("#{eval(exp)}")

328 Chapter 20

Here is another example. Try it, and follow the instructions when
prompted:

eval2.rb print("Enter a string method name (e.g. reverse or upcase):")
 # user enters: upcase
methodname = gets().chomp()
exp2 = "'Hello world'."<< methodname
puts(eval(exp2)) #=> HELLO WORLD
puts("#{exp2}") #=> 'Hello world'.upcase
puts("#{eval(exp2)}") #=> HELLO WORLD

The eval method can evaluate strings spanning many lines, making it
possible to execute an entire program embedded in a string:

eval3.rb eval('def aMethod(x)
 return(x * 2)
end

num = 100
puts("This is the result of the calculation:")
puts(aMethod(num))')

Look carefully at the previous code. It contains just one executable
expression, which is a call to the eval() method. Everything else, which at
first sight looks like code, is in fact a single-quoted string that is passed as an
argument to eval(). The eval() method “unpacks” the contents of the string
and turns it into real Ruby code that is then executed. This is displayed:

This is the result of the calculation:
200

With all this eval cleverness, let’s now see how easy it is to write a pro-
gram that can itself write programs. Here it is:

eval4.rb input = ""
until input == "q"
 input = gets().chomp()
 if input != "q" then eval(input) end
end

This may not look like much, and yet this little program lets you both
create and execute Ruby code from a prompt. Try it. Run the program, and
enter the two methods shown here one line at a time (but don’t hit Q to quit
yet—you’ll be writing some more code in a moment):

def x(aStr); puts(aStr.upcase);end
def y(aStr); puts(aStr.reverse);end

Dynamic Programming 329

Note that you have to enter each whole method on a single line since the
program evaluates every line as it is entered. I’ll explain how to get around
that limitation later. Thanks to eval, each method is turned into real, work-
able Ruby code. You can prove this by entering the following:

x("hello world")
y("hello world")

Now, when you press ENTER after each line in the previous code, the
expressions are evaluated, and they call the two methods, x() and y(), which
you wrote a moment ago, resulting in this output:

HELLO WORLD
dlrow olleh

That’s not bad for just five lines of code!

Special Types of eval

There are some variations on the eval theme in the form of the methods
named instance_eval, module_eval, and class_eval. The instance_eval method
can be called from a specific object, and it provides access to the instance
variables of that object. It can be called either with a block or with a string:

instance_eval.rb class MyClass
 def initialize
 @aVar = "Hello world"
 end
end

ob = MyClass.new
p(ob.instance_eval { @aVar }) #=> "Hello world"
p(ob.instance_eval("@aVar")) #=> "Hello world"

The eval method, on the other hand, cannot be called from an object
in this way because it is a private method of Object (whereas instance_eval is
public):

p(ob.eval("@aVar")) # This won't work!

In fact, you could explicitly change the visibility of eval by sending its
name (the symbol :eval) to the public method. Here I am adding eval as a
public method of the Object class:

class Object
 public :eval
end

330 Chapter 20

Indeed, bearing in mind that when you write “free-standing” code you
are actually working within the scope of Object, simply entering the follow-
ing code (without the Object class “wrapper”) would have the same effect:

public :eval

Now you can use eval as a method of the ob variable:

p(ob.eval("@aVar")) #=> "Hello world"

NOTE Strictly speaking, eval is a method of the Kernel module that is mixed into the Object
class. In fact, it is the Kernel module that provides most of the functions available as
methods of Object.

The modification of class definitions at runtime is sometimes called
monkey patching. This may have a part to play in certain highly specialized
types of programming, but as a general principle, gratuitous messing about
with standard Ruby classes is definitely not recommended. Changing the visi-
bility of methods and adding new behavior to base classes are excellent ways
of creating inscrutable code dependencies (in which, for example, your own
programs work because you happen to know how you’ve changed a base
class, but your colleagues’ programs don’t work because they don’t know
how the classes have been changed).

The module_eval and class_eval methods operate on modules and classes
rather than on objects. For example, the code shown next adds the xyz method
to the X module (here xyz is defined in a block and added as an instance
method of the receiver by define_method, which is a method of the Module
class), and it adds the abc method to the Y class:

module_eval.rb module X
end

class Y
 @@x = 10
 include X
end

X::module_eval{ define_method(:xyz){ puts("hello") } }
Y::class_eval{ define_method(:abc){ puts("hello, hello") } }

NOTE When accessing class and module methods, you can use the scope resolution operator ::
or a single dot. The scope resolution operator is obligatory when accessing constants and
optional when accessing methods.

Dynamic Programming 331

So, now an object that is an instance of Y will have access to both the
abc method of the Y class and the xyz method of the X module that has been
mixed into the Y class:

ob = Y.new
ob.xyz #=> hello
ob.abc #=> hello, hello

In spite of their names, module_eval and class_eval are functionally identi-
cal, and each can be used with either a module or a class:

X::class_eval{ define_method(:xyz2){ puts("hello again") } }
Y::module_eval{ define_method(:abc2){ puts("hello, hello again") }}

You can also add methods into Ruby’s standard classes in the same way:

String::class_eval{ define_method(:bye){ puts("goodbye") } }
"Hello".bye #=> goodbye

Adding Variables and Methods

You can also use the module_eval and class_eval methods to retrieve the values
of class variables (but bear in mind that the more you do this, the more your
code becomes dependent on the implementation details of a class, thereby
compromising encapsulation):

Y.class_eval("@@x")

In fact, class_eval can evaluate expressions of arbitrary complexity. You
could, for example, use it to add new methods to a class by evaluating a string:

ob = X.new
X.class_eval('def hi;puts("hello");end')
ob.hi #=> hello

Returning to the earlier example of adding and retrieving class variables
from outside a class (using class_eval), it turns out that there are also methods
designed to do this from inside a class. The methods are called class_variable_get
(this takes a symbol argument representing the variable name, and it returns
the variable’s value) and class_variable_set (this takes a symbol argument
representing a variable name and a second argument that is the value to be
assigned to the variable).

332 Chapter 20

Here is an example of these methods in use:

classvar_getset.rb class X
 def self.addvar(aSymbol, aValue)
 class_variable_set(aSymbol, aValue)
 end

 def self.getvar(aSymbol)
 return class_variable_get(aSymbol)
 end
end

X.addvar(:@@newvar, 2000)
puts(X.getvar(:@@newvar)) #=> 2000

To obtain a list of class variable names as an array of strings, use the
class_variables method:

p(X.class_variables) #=> ["@@abc", "@@newvar"]

You can also add instance variables to classes and objects after they have
been created using instance_variable_set:

dynamic.rb ob = X.new
ob.instance_variable_set("@aname", "Bert")

By combining this with the ability to add methods, the bold (or maybe
reckless?) programmer can completely alter the internals of a class “from
the outside.” Here I have implemented this in the form of a method called
addMethod in class X, which uses the send method to create the new method m
using define_method with the method body, defined by &block:

def addMethod(m, &block)
 self.class.send(:define_method, m , &block)
end

NOTE The send method invokes the method identified by the first argument (a symbol), pass-
ing to it any arguments specified.

Now, an X object can call addMethod to insert a new method into the X class:

ob.addMethod(:xyz) { puts("My name is #{@aname}") }

Although this method is called from a specific instance of the class (here
ob), it affects the class itself, so the newly defined method will also be avail-
able to any subsequent instances (here ob2) created from the X class:

ob2 = X.new
ob2.instance_variable_set("@aname", "Mary")
ob2.xyz

Dynamic Programming 333

If you don’t care about the encapsulation of data in your objects (my
definition of encapsulation assumes the hiding of internal data, though some
people have less rigorous definitions), you can also retrieve the value of
instance variables using the instance_variable_get method:

ob2.instance_variable_get(:@aname)

You can similarly set and get constants:

X::const_set(:NUM, 500)
puts(X::const_get(:NUM))

Because const_get returns the value of a constant, you could use this
method to get the value of a class name, which is itself a constant, and then
append the new method to create a new object from that class. This could
even give you a way of creating objects at runtime by prompting the user to
enter class names and method names. Try this by running this program:

dynamic2.rb class X
 def y
 puts("ymethod")
 end
end

print("Enter a class name: ") #<= Enter: X
cname = gets().chomp
ob = Object.const_get(cname).new
p(ob) #=> #<X:0x2bafdc0>
print("Enter a method to be called: ") #<= Enter: y
mname = gets().chomp
ob.method(mname).call #=> ymethod

Creating Classes at Runtime

So far, you have modified classes and created new objects from existing classes.
But how would you go about creating a completely new class at runtime? Well,
just as you can use const_get to access an existing class, you can use const_set
to create a new class. Here’s an example of how to prompt the user for the
name of a new class before creating that class, adding a method (myname) to it,
creating an instance (x) of that class, and calling its myname method:

create_class.rb puts("What shall we call this class? ")
className = gets.strip().capitalize()
Object.const_set(className,Class.new)
puts("I'll give it a method called 'myname'")
className = Object.const_get(className)
className::module_eval{ define_method(:myname){
 puts("The name of my class is '#{self.class}'") }
 }

334 Chapter 20

x = className.new
x.myname

If you run this program and enter Xxx when prompted for the name of a
new class, the code will use const_set to create the constant Xxx as a new class;
then module_eval is called on this class, and define_method is used to create a
method whose name matches the symbol :myname and whose contents are
given by the code in the curly brace–delimited block; here this happens to
be a single puts statement that displays the class name.

Run this code, and enter Xxx when prompted. An object, x, is created
from the Xxx class; its myname() method is called; and, sure enough, it displays
the class name:

The name of my class is 'Xxx'

Bindings

The eval method may take an optional “binding” argument that, if provided,
causes the evaluation to be done within a specific scope or “context.” It prob-
ably won’t come as any surprise to discover that, in Ruby, a binding is an object
that is an instance of the Binding class. You can return a binding using the
binding method. The documentation of eval in the Ruby class library provides
this example:

binding.rb def getBinding(str)
 return binding()
end
str = "hello"
puts(eval("str + ' Fred'")) #=> "hello Fred"
puts(eval("str + ' Fred'", getBinding("bye"))) #=> "bye Fred"

Simple as it may look, this example may take a bit of thinking about in
order to understand what’s going on. Essentially, the first call to puts evalu-
ates str in the current scope where it has a “hello” value. The second call to
puts evaluates str in the scope of the getBinding() method where it has a “bye”
value. In this example, str happens to be passed as an argument, but this is
not a requirement. In the rewritten version here, I’ve made str a local vari-
able inside getBinding(). The effect is the same:

binding2.rb def getBinding()
 str = "bye"
 return binding()
end
str = "hello"
puts(eval("str + ' Fred'")) #=> "hello Fred"
puts(eval("str + ' Fred'", getBinding())) #=> "bye Fred"
puts(eval("str + ' Fred'")) #=> "hello Fred"

Dynamic Programming 335

Note that binding is a private method of Kernel. The getBinding method is
able to call binding within the current context and return the current value of
str. At the time of the first call to eval, the context is the main object, and the
value of the local variable, str, is used; in the second call, the context moves
inside the getBinding method, and the local value of str is now that of the str
argument or variable within that method. The context may also be defined
by a class. In binding3.rb, you can see that the values of the instance variable
@mystr varies according to the class. So, what happens when you eval those
variables with different bindings?

binding3.rb class MyClass
 @@x = " x"
 def initialize(s)
 @mystr = s
 end
 def getBinding
 return binding()
 end
end

class MyOtherClass
 @@x = " y"
 def initialize(s)
 @mystr = s
 end
 def getBinding
 return binding()
 end
end

@mystr = self.inspect
@@x = " some other value"

ob1 = MyClass.new("ob1 string")
ob2 = MyClass.new("ob2 string")
ob3 = MyOtherClass.new("ob3 string")

puts(eval("@mystr << @@x", ob1.getBinding))
puts(eval("@mystr << @@x", ob2.getBinding))
puts(eval("@mystr << @@x", ob3.getBinding))
puts(eval("@mystr << @@x", binding))

In Ruby 1.8, you see the following output, showing that the bindings for
both the instance variable, @mystr, and the class variable, @@x, are applied:

ob1 string x
ob2 string x
ob3 string y
main some other value

336 Chapter 20

But in Ruby 1.9, only the binding of the instance variable is applied; the
class variable in the current (main) context is always used:

ob1 string some other value
ob2 string some other value
ob3 string some other value
main some other value

Does this mean class variables in given bindings are ignored? Let’s try an
experiment. Just comment out the assignment to @@x in the main context:

@@x = " some other value"

Now run the program again. This time, Ruby 1.9 displays this:

ob1 string x
ob2 string x
ob3 string y
...uninitialized class variable @@x in Object (NameError)

Clearly, Ruby 1.9 does evaluate class variables within a binding. However,
it gives preference to class variables, if they exist, in the current binding. You
need to be aware of this difference if you are migrating Ruby 1.8 programs to
Ruby 1.9 or newer.

send

You can use the send method to call a method with the same name as the
specified symbol:

send1.rb name = "Fred"
puts(name.send(:reverse)) #=> derF
puts(name.send(:upcase)) #=> FRED

Although the send method is documented as requiring a symbol argu-
ment, you can also use a string argument. Or, for consistency, you could use
to_sym to transform the string to a symbol and then call the method with the
same name as that symbol:

name = MyString.new(gets())
methodname = gets().chomp.to_sym #<= to_sym is not strictly necessary
name.send(methodname)

Dynamic Programming 337

Here is a working example of using send to execute a named method
entered at runtime:

send2.rb class MyString < String
 def initialize(aStr)
 super aStr
 end

 def show
 puts self
 end

 def rev
 puts self.reverse
 end
end

print("Enter your name: ") #<= Enter: Fred
name = MyString.new(gets())
print("Enter a method name: ") #<= Enter: rev
methodname = gets().chomp.to_sym
puts(name.send(methodname)) #=> derF

Removing Methods

Recall you created a new method earlier (dynamic.rb) using send to call
define_method and passed to it the name, m, of the method to be created plus
a block, &block, containing the code of the new method:

dynamic.rb def addMethod(m, &block)
 self.class.send(:define_method, m , &block)
end

In addition to creating new methods, sometimes you may want to remove
existing methods. You can do this using remove_method within the scope of a
given class. This removes the method specified by a symbol from a specific
class:

rem_methods1.rb puts("hello".reverse) #=> olleh
class String
 remove_method(:reverse)
end
puts("hello".reverse) #=> undefined method error!

338 Chapter 20

If a method with the same name is defined for an ancestor of that class,
the ancestor class method is not removed:

rem_methods2.rb class Y
 def somemethod
 puts("Y's somemethod")
 end
end

class Z < Y
 def somemethod
 puts("Z's somemethod")
 end
end

zob = Z.new
zob.somemethod #=> Z's somemethod
class Z
 remove_method(:somemethod) # Remove somemethod from Z class
end

zob.somemethod #=> Y's somemethod

In this example, somemethod is removed from the Z class, so when
zob.somemethod is subsequently called on a Z object, Ruby executes the first
method with that name in the ancestor classes of Z. Here, Y is the ancestor
of Z, so its somemethod method is used.

The undef_method, by contrast, prevents the specified class from respond-
ing to a method call even if a method with the same name is defined in one
of its ancestors. The following example uses the same Y and Z classes used
in the previous example. The only difference is that this time somemethod is
undefined using undef_method rather than merely removed from the current class
using remove_method:

undef_methods.rb zob = Z.new
zob.somemethod #=> Z's somemethod

class Z
 undef_method(:somemethod) #=> undefine somemethod
end

zob.somemethod #=> undefined method error

Handling Missing Methods

When Ruby tries to execute an undefined method (or, in object-oriented
terms, when an object is sent a message that it cannot handle), the error
causes the program to exit. You may prefer your program to recover from

Dynamic Programming 339

such an error. You can do this by writing a method named method_missing,
with an argument to which the missing method’s name is assigned. This will
execute when a nonexistent method is called:

nomethod1.rb def method_missing(methodname)
 puts("Sorry, #{methodname} does not exist")
end
xxx #=> Sorry, xxx does not exist

The method_missing method can also take a list of incoming arguments
(*args) after the missing method name:

nomethod2.rb def method_missing(methodname, *args)
 puts("Class #{self.class} does not understand:
 #{methodname}(#{args.inspect})")
end

Assuming the previous method_missing method were written into a class
called X, you could now attempt to call any method on an X object, whether
or not that method exists and whether or not it is passed any arguments.
If, for example, you were to attempt to call a nonexistent method called
aaa, first with no arguments and then with three integer arguments, the
method_missing method would respond to the invalid method call and display
an appropriate error message:

ob = X.new
ob.aaa #=> Class X does not understand: aaa([])
ob.aaa(1,2,3) #=> Class X does not understand: aaa([1, 2, 3])

The method_missing method could even create an undefined method
dynamically so that a call to a nonexistent method automatically brings that
method into existence:

def method_missing(methodname, *args)
 self.class.send(:define_method, methodname,
 lambda{ |*args| puts(args.inspect) })
end

Remember that the lambda method turns a block (here the code between
curly brackets) into a Proc object. This is explained in Chapter 10. The code
is then able to pass this object as an argument to send, defining a new method
with the same name as the methodname argument passed to method_missing. The
effect is that when an unknown method is called on a Z object, a method with
that name is created. Run the nomethod2.rb program, which contains this code:

ob3 = Z.new
ob3.ddd(1,2,3)
ob3.ddd(4,5,6)

340 Chapter 20

This gives the following output:

Class Z does not understand: ddd([1, 2, 3])
Now creating method ddd()
[4, 5, 6]

Writing Programs at Runtime

Finally, let’s return to the program you looked at earlier: eval4.rb. This, you
may recall, prompts the user to enter strings to define code at runtime, eval-
uates those strings, and creates new runnable methods from them.

One drawback of that program was that it insists that each method be
entered on a single line. It is, in fact, pretty simple to write a program that
allows the user to enter methods spanning many lines. Here, for example, is
a program that evaluates all the code entered up until a blank line is entered:

writeprog.rb program = ""
input = ""
line = ""
until line.strip() == "q"
 print("?- ")
 line = gets()
 case(line.strip())
 when ''
 puts("Evaluating...")
 eval(input)
 program += input
 input = ""
 when '1'
 puts("Program Listing...")
 puts(program)
 else
 input += line
 end
end

You can try this by entering whole methods followed by blank lines, like
this (just enter the code, of course, not the comments):

def a(s) # <= press Enter after each line
return s.reverse # <= press enter (and so on...)
end
 # <- Enter a blank line here to eval these two methods
def b(s)
return a(s).upcase
end
 # <- Enter a blank line here to eval these two methods
puts(a("hello"))

Dynamic Programming 341

 # <- Enter a blank line to eval
 #=> olleh
puts(b("goodbye"))
 # <- Enter a blank line to eval
 #=> EYBDOOG

After each line entered, a prompt (?-) appears except when the program
is in the process of evaluating code, in which case it displays “Evaluating,” or
when it shows the result of an evaluation, such as olleh.

If you enter the text exactly as indicated earlier, this is what you should see:

Write a program interactively.
Enter a blank line to evaluate.
Enter 'q' to quit.
?- def a(s)
?- return s.reverse
?- end
?-
Evaluating...
?- def b(s)
?- return a(s).upcase
?- end
?-
Evaluating...
?- puts(a("hello"))
?-
Evaluating...
olleh
?- b("goodbye")
?-
Evaluating...
EYBDOOG

This program is still very simple. It doesn’t even have any basic error
recovery let alone fancy stuff such as file saving and loading. Even so, this
small example demonstrates just how easy it is to write self-modifying pro-
grams in Ruby.

Exploring Further

Using the techniques outlined in this chapter, you could create anything
from a natural-language parser that can be taught rules of grammar to an
adventure game that can learn new puzzles.

In this book I’ve covered a lot of ground—from “hello world” to dynamic
programming. You’ve explored most of the important and powerful features
of the Ruby language. The rest is up to you.

This is where the adventure really begins.

342 Chapter 20

D I G G I N G D E E P E R
There may be times when you want to make sure that your Ruby objects can-
not be modified in the ways described in this chapter. Here you will learn
how to do this.

Freezing Objects
With all these ways of modifying objects at your disposal, you may be con-
cerned that objects are at risk of being modified unintentionally. In fact,
you can specifically fix the state of an object by “freezing” it using the freeze
method, which you first encountered in Chapter 12. Once frozen, the data
contained by an object cannot be modified, and if an attempt is made to do
so, a TypeError exception will be raised. Take care when freezing an object,
however, because, once frozen, it cannot be “unfrozen.”

freeze.rb s = "Hello"
s << " world"
s.freeze
s << " !!!" # Error: "can't modify frozen string"

You can specifically check whether an object is frozen using the frozen?
method:

a = [1,2,3]
a.freeze
if !(a.frozen?) then
 a << [4,5,6]
end

Be aware that although the data of a frozen object cannot be modified,
the class from which it is defined can be modified. Let’s suppose you have a
class X that contains the method addMethod, which can create new methods
with the name given by the symbol m:

cant_freeze.rb def addMethod(m, &block)
 self.class.send(:define_method, m , &block)
end

Now, if you have an object, ob, created from the M class, then it is per-
fectly legitimate to call addMethod to add a new method to class M:

ob.freeze
ob.addMethod(:abc) { puts("This is the abc method") }

Dynamic Programming 343

If you want to prevent a frozen object from modifying its class, you could,
of course, test its state using the frozen? method:

if not(ob.frozen?) then
 ob.addMethod(:def){puts("'def' is not a good name for a method")}
end

You can also freeze the class itself (remember, a class is also an object):

freeze_class.rb X.freeze
if not(X.frozen?) then
 ob.addMethod(:def){puts("'def' is not a good name for a method")}
end

D O C U M E N T I N G R U B Y
W I T H R D O C

RDoc is the name given to a Ruby source
code documentation format and tool. The

RDoc tool, which comes standard with Ruby, can
process Ruby code files and Ruby’s C-code class library
in order to extract documentation and format it so
that it can be displayed in, for example, a web browser. You can explicitly
add RDoc documentation to your own code in the form of source code com-
ments. The RDoc tool can also extract elements of the source code to pro-
vide the names of classes, modules, and methods, along with the names of
any arguments required by methods.

It is easy to document your own code in a way that is accessible to the
RDoc processor. Either you write a block of ordinary single-line comments
before the code being documented (such as a class or method) or you write

346 Appendix A

an embedded multiline comment delimited by =begin rdoc and =end. Note
that rdoc must follow =begin; otherwise, the RDoc processor will ignore the
comment block:

=begin rdoc
This is an RDoc comment
=end

This example, using single-line comments, is taken from the RDoc
documentation:

Determine the letters in a word or phrase
#
* all letters are converted to lowercase
* anything not a letter is stripped out
* the letters are converted into an array
* the array is sorted
* the letters are joined back into a string
def letters_of(text)
 text.downcase.delete('^a-z').split('').sort.join
end

Here the * characters instruct RDoc to format items as a bulleted list,
producing output similar to the following:

letters_of(text)
Determine the letters in a word or phrase

• all letters are converted to lowercase
• anything not a letter is stripped out
• the letters are converted into an array
• the array is sorted
• the letters are joined back into a string

When you are ready to generate the documentation, you just need to
run the RDoc processor from the command prompt. To generate documen-
tation for a single file, enter rdoc followed by the name of the file:

rdoc rdoc1.rb

To generate documentation for multiple files, enter the filenames sepa-
rated by spaces after the rdoc command:

rdoc rdoc1.rb rdoc2.rb rdoc3.rb

The RDoc tool will create a nicely formatted HTML file (index.html) with
three panes at the top and a fourth, larger pane at the bottom. The three top
panes display the names of the files, classes, and methods, while the bottom
pane displays the documentation.

Document ing Ruby wi th RDoc 347

The HTML contains hyperlinks so that you can click class and method
names to navigate to the associated documentation. The documentation is
placed into its own subdirectory, \doc, along with a number of required HTML
files and a style sheet to apply formatting.

You can add extra formatting to your RDoc comments by placing format-
ting characters around single words or by placing tags around multiple words.
Use * and * for bold, _ and _ for italic, and + and + for a monospaced, “type-
writer” font. The equivalent tags for longer pieces of text are and for
bold, and for italic, and <tt> and </tt> for typewriter.

If you want to exclude comments, or parts of a comment, from the RDoc
documentation, you can place it between #-- and #++ comment markers,
like this:

#--
This comment won’t appear
in the documentation
#++
But this one will

Special instructions are also available, enclosed between pairs of colons.
For instance, if you want to add a title to be displayed in the browser bar, use
:title: like this:

#:title: My Fabulous RDoc Document

Many more options are available with RDoc to enable you to format doc-
umentation in a variety of ways and output in alternative formats to HTML.
If you really want to master RDoc, be sure to read the complete documenta-
tion, available online at http://rdoc.sourceforge.net/doc/index.html.

I N S T A L L I N G M Y S Q L F O R
R U B Y O N R A I L S

If you are working with Rails, you will need
to install a database. Although quite a few

choices are available to you, one of the most widely
used is MySQL. If you’ve never used MySQL before, you
may find some of the setup options confusing. Here,
I’ll try to guide you through the process to avoid potential problems. The
MySQL main site is at http://www.mysql.com/, where you can navigate to the
download page for various versions.

NOTE This appendix is based on an installation of MySQL 5.0 under Windows. There may
be differences when installing other versions on other operating systems. Refer to the
MySQL site for additional guidance.

350 Appendix B

Downloading MySQL

I will assume you will be using the free edition of MySQL. This is available
for download from http://dev.mysql.com/downloads/. The current version, at
the time of writing, is MySQL 5 Community Server. The name and version
number will, of course, change over time. Download whichever is the current
(not an upcoming, alpha, or beta) release. Choose the specific version rec-
ommended for your operating system (there may be different versions for
Win32 and Win64, for example).

You will need to locate the installer for your operating system. For Win-
dows, you can download either the complete MySQL package or, if available,
the smaller Windows Essentials package. The complete package contains extra
tools for database developers, but these are not required for simple Rails
development. For most people, therefore, the smaller Windows Essentials
download file is the one to get. You may be asked to select a mirror site, and
you may also be shown a questionnaire, which you can fill out if you want.

Installing MySQL

Once the download has completed, run the program by selecting Open or
Run in the download dialog if this is still visible or by double-clicking the
installation file via, for example, the Windows Explorer.

NOTE During the installation of MySQL, some advertising screens may appear. Click the but-
tons to move through the screens. Some security warnings may also prompt you to verify
your intention to install the software. When prompted, you should click the necessary
options to continue with the installation.

The first page of the Setup Wizard will now appear. Click the Next but-
ton. You can either leave the Typical setup option selected if you are happy
to install the software into the default MySQL directory—on Windows that’s
beneath C:\Program Files\ . If you want to install to some other directory, how-
ever, select Custom. Then click Next. Click Change to change the directory.

When you are ready to move on, click Next.
You will see the screen stating “Ready To Install the Program.” Verify

that the destination folder is correct, and then click the Install button.
Depending on the version of MySQL, you may now be shown some pro-

motional screens, or you may be prompted to create a new MySQL account,
which will let you receive news of changes and updates. These are not an
essential part of the software installation, and you can click the Next or Skip
button to move on through the installation.

The Wizard Completed dialog now appears.
Click the Finish button.

Ins ta l l ing MySQL for Ruby on Rai ls 351

Configuring MySQL

In fact, this isn’t the end of the installation after all. With some installers, a
new screen pops up welcoming you to the MySQL Server Instance Configura-
tion Wizard. If this does not occur, you will need to load this yourself. On
Windows, click the Start menu, and then navigate through your program
groups to MySQL MySQL Server 5.0 (or whichever version number you
are using) MySQL Server Instance Config Wizard. Click Next.

Assuming that this is the first time you have installed MySQL on this
machine, you can select Standard Configuration (if you are upgrading from
an older version of MySQL, you need to select Detailed Configuration, but
that is beyond the scope of this simple setup guide). Click Next. In the next
dialog, leave the default options selected (that is, Install As Windows Service,
Service Name = ‘MySQL’, and Launch the MySQL Server automatically). Then
click Next.

On the next screen, leave Modify Security Settings checked, and enter
the same password (of your choice) into the first two text fields. You will
need this password later, so remember it or write it down in a secure loca-
tion. If you need to access MySQL from another computer, you can check
“Enable root access from remote machines.” Then click Next.

NOTE The default MySQL username is “root.” The password is the one you just entered. You
will need both of these items of information later when creating Rails applications.

The next screen just gives you some information about the tasks that are
about to be performed. Click the Execute button.

If you have previously installed or configured MySQL, you may see an
error message that tells you to skip the installation. You can click Retry to
see whether you can bypass this problem. If not, click Skip, and then restart
the MySQL configuration process, selecting Reconfigure Instance and Stan-
dard Instance when prompted.

When everything is installed, click Finish.
And that’s it!

Can’t Find the Database?

When using MySQL with Rails, even following a successful installation of
MySQL, Rails may display an error message similar to the following when
you try to run your application:

no such file to load -- mysql

Some versions of Rails (Rails 2.2 and newer) require that the MySQL
gem be installed as a separate operation. To do this, enter the following at
the system prompt:

gem install mysql

352 Appendix B

Another problem may arise on Windows. When you run your applica-
tion, it is possible that you will see an error message similar to this:

The specified module could not be found.
c:/ruby/lib/ruby/gems/1.8/gems/mysql-2.7.3-x86-mswin32/ext/mysql.so

If you encounter this problem, you should be able to fix it by making
a copy of a file called libmySQL.dll from your MySQL binary directory (for
example, C:\Program Files\MySQL\MySQL Server 5.0\bin) into the Ruby binary
directory (for example, C:\ruby\bin). Restart your application (shut down and
restart the server), and then try running it again.

F U R T H E R R E A D I N G

This appendix contains some of the most
useful reading material about Ruby and

Rails.

Books

There are many books on Ruby and Rails. In my opinion, the following are
among the most useful.

Programming Ruby: The Pragmatic Programmer’s Guide
by Dave Thomas, with Chad Fowler and Andy Hunt ($49.95)
ISBN: 978-0-9745-1405-5 (second edition)
ISBN: 978-1-9343-5608-1 (third edition)
Pragmatic: http://www.pragmaticprogrammer.com/titles/ruby/index.html
A vast guide to the Ruby language and libraries, the so-called Pickaxe

book is generally considered to be an essential Ruby reference. It’s not a
light read, though, and not (in my view) the best first book on Ruby. All the
same, you may need it sooner or later. The second edition covers Ruby 1.8;
the third edition covers Ruby 1.9.

354 Appendix C

Beginning Ruby: From Novice to Professional
by Peter Cooper ($39.99)
ISBN: 978-1-5905-9766-8 (first edition)
ISBN: 978-1-4302-2363-4 (second edition)
Apress: http://www.apress.com/
The book provides a gentle introduction to Ruby programming. The

explanations are clear, and the code examples are useful. The second edi-
tion covers some aspects of Ruby 1.9 but not in much detail. If you already
have some programming experience and want an accessible introduction
to the world of Ruby, this would be a good book.

The Ruby Way
by Hal Fulton ($39.99)
ISBN: 978-0-6723-2884-8
Addison-Wesley: http://www.awprofessional.com/ruby/
This is a solid, in-depth book on aspects of Ruby programming. In the

introductory section, the author states that because of its relative lack of tuto-
rial material, “You probably won’t learn Ruby from this book.” He describes
it more as a “sort of ‘inverted reference.’ Rather than looking up the name of
a method or a class, you will look things up by function or purpose.” Person-
ally, I think he underestimates the tutorial value of The Ruby Way. The author
does, however, assume you are already reasonably adept at programming.

The Well-Grounded Rubyist
by David A. Black ($44.99)
ISBN: 978-1-9339-8865-8 (softbound print book, includes free ebook)
Manning: http://www.manning.com/black2/
This is, in large part, an adaptation of David Black’s previous book, Ruby

for Rails, though this time the author concentrates on the Ruby language
rather than the Rails framework. It covers Ruby 1.8 and 1.9 but is rather vague
on the precise differences between the two versions. It’s a decent introduc-
tory book for fairly experienced programmers.

Agile Web Development with Rails
by Sam Ruby, Dave Thomas, and David Heinemeier Hansson ($43.95)
ISBN: 978-1-93435-616-6 (third edition)
ISBN: 978-1-93435-654-8 (fourth edition)
Pragmatic: http://pragprog.com/titles/rails4/agile-web-development-with-rails/
This is the “must-have” book on Rails. Several Ruby programming books

might compete for the claim to being essential, but I know of no other Rails
book that comes anywhere close to rivaling Agile Web Development with Rails for
its comprehensive coverage of its subject. The third edition covers Rails 2.
The fourth edition covers Rails 3.

Fur ther Reading 355

Ebooks

If you prefer to read books on your computer screen, here are some good
choices—and they are all free.

Learn to Program
The first edition of Chris Pine’s book provides a gentle introduction

to Ruby.
http://www.pine.fm/LearnToProgram/

Programming Ruby: The Pragmatic Programmer’s Guide
This is the first edition of the well-known “Pickaxe” book.
http://www.ruby-doc.org/docs/ProgrammingRuby/

The Little Book of Ruby
This is the baby brother to the book you are currently reading.
http://www.sapphiresteel.com/The-Little-Book-Of-Ruby/

Websites

There are innumerable websites devoted to Ruby, Rails, and related technol-
ogies. Here are a few to start exploring.

Ruby language site
http://www.ruby-lang.org/

Ruby documentation site
http://www.ruby-doc.org/

Ruby 1.8 class library reference (online)
http://www.ruby-doc.org/ruby-1.8/index.html

Ruby 1.9 class library reference (online)
http://www.ruby-doc.org/ruby-1.9/index.html

Ruby class library reference (to download)
http://www.ruby-doc.org/downloads/

Ruby on Rails
http://www.rubyonrails.org/

Ruby Inside (information/blog)
http://www.rubyinside.com/

My blog
http://www.sapphiresteel.com/Blog/

R U B Y A N D R A I L S
D E V E L O P M E N T S O F T W A R E

To program Ruby, you will need a Ruby
interpreter and an editor or IDE. This appen-

dix lists the primary sources of Ruby and Rails
development tools.

IDEs and Editors

Some Ruby programmers like to use simple text editors and run programs
from the command line; others like a fully integrated IDE with built-in debug-
ging. Here are some possibilities.

3rdRail
http://www.embarcadero.com/products/3rdrail/
This is a commercial Rails-centric IDE for Eclipse. It currently supports

Rails 1.x and 2.x only.

358 Appendix D

Aptana RadRails
http://www.aptana.com/products/radrails/
This is a free Rails-centric IDE for Eclipse.

NetBeans
http://www.netbeans.org/ruby/
This is a free Ruby IDE for NetBeans. The future development of Ruby

support in NetBeans has now been discontinued.

Ruby In Steel
http://www.sapphiresteel.com/
This is a commercial Ruby and Rails IDE for Visual Studio.

RubyMine
http://www.jetbrains.com/ruby/
This is a commercial Ruby IDE with emphasis on Rails.

TextMate
http://www.macromates.com/
This is a Ruby editor for Mac OS X.

Web Servers

Here are some popular web servers for use with Ruby on Rails.

WEBrick
http://raa.ruby-lang.org/project/webrick/

LightTPD
http://www.lighttpd.net/

Mongrel
http://www.rubygems.org/gems/mongrel/

Nginx
http://www.nginx.org/

Apache
http://www.apache.org/

Databases

If you are using Rails, you will need a database. Often SQLite 3 may be used
for local development, while one of the others might be used for deployment.

MySQL
http://www.mysql.com/

Ruby and Rai l s Development Sof tware 359

SQLite
http://www.sqlite.org/

PostgreSQL
http://www.postgresql.org/

SQL Server Express
http://www.microsoft.com/sql/editions/express/

Ruby Implementations

At the time of writing, versions of both Ruby 1.8 and 1.9 are available, and
version 2.0 is promised for some future date. Currently Ruby 1.8.6, 1.8.7,
and 1.9.2 are probably the most widely used versions of Ruby. JRuby also has
a pretty strong user base. Several other Ruby interpreters, compilers, and vir-
tual machines are available or are in development. Here is a short list of web-
sites that will provide more information on (and downloads of) implementat-
ions of Ruby.

Ruby
The “standard” Ruby implementation
http://www.ruby-lang.org/en/downloads/

JRuby
Ruby for Java
http://www.jruby.org/

IronRuby
An implementation of Ruby for .NET
http://www.ironruby.net/

Rubinius
Compiler/virtual machine for Ruby (written largely in Ruby)
http://www.rubini.us/

MagLev
Fast Ruby implementation (in development)
http://maglev.gemstone.com/

I N D E X

Symbols & Numbers
& (ampersand), 166, 167
&& (and operator), 85, 93
* (asterisk), 251–252, 260
*?, 260
@ (at sign), 23, 100
@@ (class variables), 23, 100
\ (line continuation character), 297
\B, 260
\b, 260
\D, 260
\d, 260
\S, 260
\s, 260
\W, 260
\w, 260
^ (caret), 251, 260. See also regular

expressions
: (colon)

in case statements, 90
instead of then, 84
in symbols), 181

:: (scope resolution operator), 30,
185, 193, 208–209, 330

{} (curly brackets)
as delimiters, 161
in regular expressions, 260

$ (dollar sign), 251–252, 260. See
also regular expressions;
variables

$`, 255. See also regular expressions
$:, 202
$!, 141
$/ (record separator), 42
$', 255. See also regular expressions
$~, 256. See also regular expressions

= (assignment operator), 6
=begin, 4
=begin rdoc, 345–346
=end, 4, 345–346
== (equal-to operator), 56, 136
===, 88, 92
=> (assoc operator), 141
=~, 250. See also regular expressions
! (exclamation mark)

at end of methods, 131
as not operator, 85, 86, 93

!= (not-equals operator), 86
// (delimiters), 250
> (greater-than sign), 56
(hask mark), for comments, 4
#{}, in strings, 2
< (less-than sign), 56

indicating descent, 17–18
<=> (comparison operator), 54, 55,

77, 207, 223
<<

append operator, 37, 63, 129
concatenation method, 130–131
with heredocs, 45
and singletons, 109, 117

<<-, with heredocs, 45
<%%>. See Rails, tags
<%=. See Rails, tags
(), parentheses,

avoiding ambiguity, 85, 137, 162
optional, 2, 22
in regular expressions, 260
and super, 18

%/, 35
%d, 43
%f, 43
%o, 43

362 INDEX

%p, 43
%Q, 35
%q, 35
%r, 250. See also regular expressions
%s, 43
%W, 46, 49
%w, 49
%x, 36, 43
. (period), 260
+ (plus sign), 252, 260
+=, 23
+?, 260
? (question mark), 256, 260
?..:, as shorthand for if..then..else,

87, 269
[] (square brackets), 260
| (vertical pipe), 260
|| (or operator), 85, 93
3rd Rail, 357

A
accessor methods, 19
Ada, xviii
Adobe Flex, 322
alias, 199–200
all_symbols, 190
ambiguity, xix. See also

parentheses ()

avoiding, 123, 199
hashes and blocks, 162
line breaks, 285, 296

ampersand (&), 166, 167
ancestors. See class hierarchy
and operator (&&), 85, 93
Apache, 302, 358
Aptana RadRails, 358
arguments

by reference, 129
default, 124
passing, 134–135
by value, 134

arrays, 47–48
&, 57
-, 57
<<, 57
+, 57
appending, 63–64

clear, 57
clone, 53
collect, 159, 190
compact, 57, 58
compact!, 57
concatenating, 63–64
copying, 53
creating, 48–50
delete, 57
delete_at, 57
each, 159
expressions in, 49
of filenames, 49
flatten, 57, 58
flatten!, 57
indexing, 52–53
iterators, 51–52, 159
length, 47
methods, 57–58
multidimensional, 50
nested, 50
reverse, 57
reverse!, 57
sort, 57
sort!, 57
sorting, 54–55
of strings, 49
testing for equality, 53–54
treating hashes as, 63

ASCII character codes, testing, 215
assert, 293, 295
assert_block, 295
assert_equal, 292, 295
assert_in_delta, 295
assert_instance_of, 295
assert_kind_of, 294
assert_match, 295
assert_nil, 295
assert_no_match, 295
assert_not_equal, 295
assert_nothing_raised, 296
assert_nothing_thrown, 296
assert_not_nil, 295
assert_not_same, 295
assert_operator, 296
assert_raise, 296
assert_raises, 296
assert_respond_to, 296

INDEX 363

assert_same, 296
assert_send, 296
assert_thrown, 296
assignment operator (=), 6
assignments, 135–136

multiple, 133
parallel, 133

associative arrays. See hashes
assoc operator (=>), 141
asterisk (*), 251–252, 260
at sign (@), 23, 100
attr_accessor, 21, 327
attributes, 20–23
attr_reader, 20, 182
attr_writer, 20, 182

B
\B, 260
\b, 260
backquotes. See strings
backtrace, 150. See also exceptions
BasicObject, 29, 106, 142
=begin, 4
begin..end, 73, 152
=begin rdoc, 345–346
bindings, 334–336
block_given?, 171
block parameters, 70, 157, 168,

170, 179
blocks, 70, 155–156. See also fibers

{}, 70, 161
call, 162
creating methods from, 332, 337
creating objects from, 162
do..end, 70, 158
and for loops, 180
and instance variables, 176–177
and iterating arrays, 159–161
as iterators, 172–174
and line breaks, 156–157
and local variables, 177–180
nested, 165
parameters, 70, 157, 168,

170, 179
passing as named arguments,

165–170
precedence, 170–171

returning from methods,
175–176

Ruby 1.9, 155
scope of, 168, 177
sorting with, 54

blogs, 316–321
books, on Ruby, 353–354
Boolean operators, 85–86, 93–94

negation, 86
precedence, 93
side effects, 94

break, 75, 90, 158–159
breaking code over a line, 297. See

also line breaks
breakpoints, 289. See also debugging
build_message, 296
bytes, reading, 247

C
call, 187
camel case, xviii
capitalization. See strings
caret (^), 251, 260. See also regular

expressions
case sensitivity, 2
case statements, 89

return values, 92
selectors, 91

catch, 94–96, 152–153
character codes. See strings
chomp, 42
chop, 42
classes, 6

descending from Object, 106
vs. modules, 192, 205
as objects, 104
open, 30
partial, 30–31
singleton, 108

class_eval, 329–331
class hierarchy, 15–16
class methods, 97, 98, 122. See also

methods
class_variable_get, 331–333
class variables, 23, 99
class_variables, 332
class_variable_set, 331–333

364 INDEX

clone, 60
closures, 163–164. See also blocks
collect, 76, 273. See also arrays;

Enumerable

colon (:)
in case statements, 90
instead of then, 84
in symbols, 181

comments, 4
in code examples, xvii
multiline, 4
single line, 4

Comparable, 55, 206, 207
comparison operator (<=>), 54, 55,

77, 207, 223
conditional statements, 83. See

also case statements;
if modifiers

constants, 90
accessing with ::, 30, 207, 208
inside classes, 30

const_get, 333
constructors

initialize, 10–11, 104–105
new, 10–11, 104–105
overriding, 104–105

const_set, 333
Controller, 305–307, 323
copying files, 217–218. See also files
cp, 218
curly brackets, {}

as delimiters, 161
in regular expressions, 260

custom comparisons, 77

D
\D, 260
\d, 260
%d, 43
databases, 358–359
data hiding, 128
debuggers, visual, 226, 297, 357–358
debugging, 286

breakpoints, 289
with Ruby Debugger, 289
watchpoints, 290

def, 5

default, 60
default=, 60
defined?, 179
define_method, 188, 330, 337
delete, 62
descendants, 15–16
destructors, 11
dictionaries. See hashes
Digging Deeper

arguments, passing, 134–135
arrays, 63
assertions, 295–296
assignments, 135–136
begin..end, 152
blocks and closures, 175–180
Boolean operators, 93–94
catch..throw, 94, 152–153
debuggers, 297
each, 81
Enumerable, 76–81
equality, testing for, 136
exceptions, 152–153
extending objects, 210
freezing objects, 211, 342–343
hashes, 63
heredocs, 45–46
line breaks, 296–297
Marshal version numbers,

246–248
method accessibility, 114–116
modules, 205–210
MVC, 322–323
Rails folders, 323
recursions, 224–226
regular expressions, 260–261
Ruby frameworks, 324
scope resolution, 208–209
string literals, 46
superclasses, 25–30
symbols, 190, 261
threads, 278–281
unit testing, 295–296
YAML, 237–238
yield, 81

directories, navigating in, 219. See
also files

Dir.foreach, 220
Dir.getwd, 144

INDEX 365

do, 69, 156
documenting Ruby. See RDoc
do..end, 156, 158. See also blocks
dollar sign ($), 251–252, 260. See

also regular expressions;
variables

downto, 70–71
dynamic programming, 188, 325

adding methods, 337
adding methods to classes, 332
creating classes at runtime, 333
creating objects at runtime, 333
and embedded evaluation, 326
eval, 327
freezing objects, 342
monkey patching, 330
removing methods, 337
self-modifying programs,

326, 328
writing programs at runtime, 340

E
each, 68, 79, 159, 234

vs. for, 68
and yield, 81

ebooks, on Ruby, 355
editors, Ruby, 357–358
Eiffel, xviii, 6
else, 145. See also exceptions
Embedded Ruby (ERb), 313, 314
encapsulation, 8, 128

breaking, 131, 333
end, 5
=end, 4, 345–346
ensure, 145. See also exceptions
Enumerable, 76–81, 206

collect, 76
include?, 76
including in a class, 79
max, 76
min, 76, 78
overriding methods, 80

equal?, 135, 136, 183
equality, testing for, 136
equal-to operator (==), 56, 136
ERb (Embedded Ruby), 313, 314
Errno, 146–147. See also exceptions

eval, 186, 327. See also dynamic
programming

example programs, xix
exception hierarchy, 142
exceptions, 140

and $!, 141
associating with variable

name, 141
backtrace, 150
begin..end, omitting, 152
creating custom messages for,

150–151
custom, raising, 151
displaying as strings, 148
else, 145–146
ensure, 144
Errno constants, 147
multiple, 142
NoMethodError, 142
raise, 149
rescue, 140
retry, 148
RuntimeError, 150
subclassing, 151
TypeError, 142, 342
ZeroDivisionError, 141

exclamation mark (!)
at end of methods, 131
as not operator, 85, 86, 93

extend, 210

F
%f, 43
fibers

alive?, 276
and blocks, 275
dead, 276
FiberError, 276
parameters, 276
resume, 275
and threads, 275
yield, 275

File methods, 98
files

backing up, 219
closing, 214–216
copying, 217

366 INDEX

files (continued)
and directories, 217
eof, 215
exist?, 217
foreach, 254, 258
handles, 215
modes, 214
opening, 214
processing using regular

expressions, 258–259
reading/writing text, 215, 259
saving data to YAML, 231
size of, 220

calculating, 219
sorting by, 222

as a subclass of IO, 214
FileTest, 206
FileUtils, 218
Fixnums, 136. See also integers
flunk, 296
foreach, 213
for..in loops, 51
for loops, 67–70

and arrays, 71
and blocks, 180
and local variable scoping, 180
and multiple iterator

arguments, 71
and ranges, 69

format strings, 43
freeze, 211, 342–343
frozen?, 211, 342
functions, 157–158. See also methods

and module_function, 209

G
garbage collection, 11
GC, 206
Gemfile, 319
Gems, Ruby, 300
generate, 306
getc, 216, 248
global variables, 5, 184. See also

variables
goto, 94

H
Hansson, David Heinemeier, 316
hashes, 58

copying, 60
creating, 58–59
and curly brackets, 161–162
has_key?, 62
has_value?, 62
indexing into, 60
items in

deleting, 62
finding position of, 62

merging, 62
methods, 62
order of elements, 60, 229
sort, 223
sorting, 61
treating as arrays, 63

hask mark (#), for comments, 4
heredocs, 45–46
HTML, tags, 309, 311. See also Rails

I
id2name, 186
IDEs (integrated development envi-

ronments), 283, 357–358
if..else, 84
if..elsif, 86
if modifiers, 88–89
if..then, 4–5
if..then..else, 84
include, 194. See also modules
include?, 76, 88. See also Enumerable
index, 62
information hiding, 128
inheritance, 16
initialize, 10–11
input and output. See IO (input and

output)
inspect, 11–13
instance_eval, 329
instance methods, 121–122
instance_variable_get, 103, 333
instance variables, 7, 23, 100
instance_variables, 197
instance_variable_set, 332

INDEX 367

integers
object_id, 127
testing for equality, 136

integrated development environ-
ments (IDEs), 283,
357–358

Interactive Ruby (IRB), 283–286
invert, 62
IO (input and output)

class, 213
eof, 215
exceptions in, 144
foreach, 213
getc, 215, 248
gets, 2
print, 2
printf, 43, 221
putc, 215
puts, 1
readlines, 214

IRB (Interactive Ruby), 283–286
IronRuby, 359

J
JRuby, 359

K
Kernel, 193, 206, 330
key, 62
keys, 59, 62

L
lambda, 162–163
lambdas, 161
less-than sign (<), 56

indicating descent, 17–18
LightTPD, 302, 358
line breaks, 285, 296–297
line continuation character (\), 297
Lisp, xviii, 163
load, 203
LoadError, 202
LocalJumpError, 178
local variables. See variables
loop, 75, 158

loops, 73
begin..end, 73
each, 68
executing at least once, 73
for. See for loops
until, 29, 74
while, 72

M
Maglev, 359
main object, 9
map, 273
Marshal library, 239

compared to YAML, 240
dump, 239
file formats, 240
load, 239, 241
marshal_dump, 240, 243
marshal_load, 241, 243
omitting variables, 240
and singletons, 243
TypeError, 240
version numbers, 246–248

MatchData, 254–255. See also regu-
lar expressions

Math, 193, 206, 207
matrices, 64–65
Matsumoto, Yukihiro (Matz), xviii
max, 76–80. See also Enumerable
messages, sending, 9, 64
metaprogramming, 326. See also

dynamic programming
method, 185, 187
method_defined?, 189
method_missing, 339
methods, 9, 97

adding at runtime, 188, 337
class, 97, 122

vs. instance methods, 102
vs. singleton methods, 105,

116–118
declaring, 5
default arguments, 124
instance, 121

vs. class methods, 102
and message sending, 64

368 INDEX

methods (continued)
missing, 338
module, 192
nameless, 157–158
naming, and capitalization,

119–120
nested, 118–119
overriding, 110
private, 111–113

in descendant classes, 115
invading private methods, 116

protected, 111–113, 114–116
public, 111–113, 115–116
removing at runtime, 337
returning multiple values, 124
returning values, 8, 123
singleton, 105, 122

vs. class methods, 105,
116–118

static, 97
migration, 318. See also Rails
min, 76–80. See also Enumerable
mixins, 194–197. See also modules

potential problems with, 200–201
vs. multiple inheritance, 201

mkdir, 218
Model, 322
Model-View-Controller (MVC),

301–302, 322–323
Controller, 305–307, 323
Model, 322
View, 310–313, 322–323

module_eval, 329
module_function, 209
modules, 191, 192

vs. classes, 192, 205
and class variables, 197
defined, 205
and extend, 210
and functions, 209
included. See mixins
including from files, 201
and instance methods, 192
and local variables, 195
as namespaces, 193
predefined, 205–207
resolving name conflicts

with, 198

Mongrel, 302, 358
monkey patching. See dynamic pro-

gramming
Mutex class, 272–275
mv, 218
MVC. See Model-View-

Controller (MVC)
MySQL, 300, 317, 349, 358

configuring, 351
.dll file (Windows), 352
errors, 319, 351–352

no such file to load, 304, 351
rake aborted, 319

gem, installing, 351
installing, 350
username and password, 351

N
namespaces, 193. See also modules
nested methods, 118–119
NetBeans, 358
new, 10–11
Nginx, 358
nil

and array indexes, invalid, 48
displaying, 48, 251

nil?, 48
NilClass, 48
not-equals operator (!=), 86
not operator (!), 85, 86, 93
numbers, 3

O
%o, 43
Object, 29, 106

methods, 185, 188
object_id, 39, 125, 126
objects, 6–7

creating at runtime, 333
extending, 210
freezing, 211, 342–343
identical, identifying, 136
inspecting, 11–13

ObjectSpace, 206
or operator (||), 85, 93
overriding methods, 110

INDEX 369

P
p, 12
%p, 43
parallel assignments, 133
parameters. See arguments
parentheses, ()

and super, 18
avoiding ambiguity, 85, 137, 162
optional, 2, 22
in regular expressions, 260

partial classes, 30–31
Pascal, 5, 68
period (.), 260
PI, 207
plus sign (+), 252, 260
polymorphism, 9
PostgreSQL, 359
Precision, 206
private methods, 111–113

in descendant classes, 115–116
invading, 116

Proc, 162–163
new, 162
in Ruby 1.8, 163
in Ruby 1.9, 163

Process, 206
procs, 161. See blocks
properties, 21. See also attributes
protected methods, 111–113,

114–116
public methods, 111–113, 115–116

Q
%Q, 35
%q, 35
question mark (?), 256, 260

R
%r, 250. See also regular expressions
Rails

and ApplicationController, 308
blog application in, 316
and class hierarchy, 312–313
“configuration by convention”

approach, 306, 312

creating a View in, 310
database.yml, 317
and embedded Ruby, 312,

314–315
ERb files, 313–314, 322
folders, 323
generate, 306
generate controller, 306, 308,

309–310
generating view methods in, 309
and HTML tags

in Controller, 311
in strings, 312–313

installating, 300–301
and instance variables, 311–312
migration, 318
and MySQL, configuring, 317
vs. other frameworks, 324
partials, 318
passing data from Controller to

View, 311
pluralization, 322
and raw, 313
and render, 306, 309, 311
.rhtml, 314, 322
routes, in Rails 3, 307
running server, 320
scaffolding, 317–318
tags, 312, 313
templates, 323
updating, 301

Rails 2, commands, 303, 316
generate controller, 305, 310
generate scaffold, 317
server, 304, 307, 320

Rails 3, commands, 303, 316
script/generate controller,

305, 310
script/generate scaffold, 317
script/server, 304, 307, 320

raise, 149–151. See also exceptions
rake, 318
Ramaze, 324
ranges, 43–44
RDoc, 345–347

adding title with, 347
excluding comments from, 347
formatting, 347

370 INDEX

readlines, 214
receiver objects, 64

modifying, 130–131
record separator ($/), 42
recursions, 219–222, 224–226
regular expressions (Regexp), 249

captures, 253, 255
custom delimiters, 250
elements, 260–261

*, 251–252, 260
^ , 251, 260
$, 251–252, 260
$`, 255
$~, 256
$', 255
// (delimiters), 250
%r, 250
+, 252
?, 256

greedy, 256
groups, 253–254
match, 254–255
MatchData, 254–255
matching, 250–253
post_match, 255–256
pre_match, 255–256
processing paths, 256
quantifiers, 251
quick reference, 260
samples of, 260
and strings, 256
symbols, 261
to_a, 255

remove_method, 189, 337
require, 201

vs. load, 203
problems, 202

require_relative, 202
rescue, 140–144. See also exceptions
respond_to?, 108
retry, 148–149
return, 8, 123
RHTML, 314, 322. See also Rails
rm, 218
Rubinius, 359
Ruby

books on, 353–354
defined, xviii

downloading, xx, 359
ebooks on, 355
editors, 357–358
frameworks, 324. See also Rails
IDEs, 357–358
implementations, xviii, 359
library documentation, xxi
one-click Installer, 288
running Ruby programs, xxi
software, 357–358
style conventions, xviii–xix
websites on, 355

Ruby 1.8, xviii, xxi
Ruby 1.9

BasicObject, 29, 106
binding, 336
block parameters, 168, 179
class variable scope, 335
deadlocks, 272
displaying arrays, 52
fibers, 275
getc, 248
handling Ruby 1.8

compatibility, 216
hash order, 60, 76, 78
indexing a hash, 62
instance_variables, 197
local variables, 179
Marshal version numbers,

246–248
nil, 48, 251
not, 94
print, 48, 52
puts, 48, 52
regular expressions, symbols, 261
require, 202
require_relative, 202
singleton_methods, 110
sorting symbols, 190
string indexing, 39–41
then syntax, unsupported, 84, 90
Thread.pass, 279
threads, 265

priorities, 270, 272
statuses, 266–267

to_s, with exceptions, 148
Ruby 2.0, xviii
Ruby Gems, 300

INDEX 371

rubygems.rb, 288
Ruby In Steel, 226, 297, 358. See also

IDEs (integrated develop-
ment environments)

RubyMine, 358
Ruby on Rails. See Rails
RUBYOPT, 288
RUBY_VERSION, 216

S
\S, 260
\s, 260
%s, 43
saving data. See Marshal

library; YAML
scaffolding, 317. See also Rails
scope resolution operator (::), 30,

185, 193, 208–209, 330
scopes, 5–6
send, 116, 332, 336
serialization, 240. See also Marshal

library; YAML
server ports, 304
sets, 65

adding new values to, 65
merging, 65
sorting, 66
testing for equality, 66

setup. See unit testing
Signal, 206
Sinatra, 324
singleton classes, 108–110
singleton class methods, 116–118
singleton methods, 105–108, 122.

See also methods
singleton_methods, 108, 110
singletons

and Marshal library, 243–245
saving, and reloading, 242
and YAML, 242–243

sleep, 265
Smalltalk, xviii, 6, 9, 128
sort, 61, 77, 223
source code for this book, xxi
SQLite, 301, 359

no such file to load, 304
and Rails, 300

SQLite3, installaing, 301
SQL Server Express, 359
sqrt, 207
square brackets, [], 260
static methods. See class methods
static variables. See class variables
string literals, 46
strings. See also regular expressions

=~, 256
assignments, 38–39
backquotes, 36, 49
and capitalize method, 39,

41, 160
and capitalize! method, 160–161
character codes, 37
and chomp method, 42
and chop method, 42
chr, 161
concatenation, 37
delimiters, user-defined, 35
double-quoted, 2, 33–35
downcase, 41
each_byte, 161
and embedded evaluation,

2–3, 33
format, 43
formatting, 221
gsub, 258
indexing into, 39–41
and insert method, 41
length, 41
matching

methods of String class, 256
regular expressions, 250–253

and ord method, 216, 247
record separator ($/), 42
and reverse method, 41
and reverse! method, 130
scan, 256–257
single-quoted, 34
slice, 257
split, 41, 160, 257
squeeze, 41
sub, 258
swapcase, 41
and to_f method, 3, 216
and to_s method, 13
upcase, 41

372 INDEX

super, 18, 23, 27, 104
superclasses, 17–18, 25–30
symbols, 20, 181

defined, 181, 190
and dynamic programming, 188
evaluating, 186
and regular expressions, 261
scope of, 184
sorting, 190
vs. strings, 182
uniqueness of, 182
usefulness of, 188–189
and variables, 186

T
teardown, 294. See also unit testing
TestCase, 292. See also unit testing
TextMate, 358
then, 4–5
threads, 263

creating, 264
deadlocks, 272
ensuring execution of, 268–269
and fibers, 275
green, 265
and join method, 268
main, 266, 271
mutexes, 272–275
native, 265
and pass method, 269, 278–281
and preemptive multitasking, 265
priorities, 269

problems, 270
setting, 270

running, 264–265
scheduling, 281
and sleep method, 268
statuses, 266–268
and stop method, 272, 281
synchronizing, 273
time-slicing, 265

throw, 94–96, 152–153
times, 156, 178
to_a, 44, 255
to_f, 3, 216
to_s, 13, 22, 148
to_yaml, 228

U
ubygems.rb, 288
undef_method, 338
unit testing, 292

assertions available, 295–296
setup, 294
teardown, 294
TestCase, 292

unless modifiers, 88–89
unless tests, 88
until loops, 74–75. See also loops
upto, 70–71

V
variables

class, 23
class instance, 102
class methods, 99
global, 5, 184
instance, 7, 100
local, 5
in modules, 195
static, 99

vectors, 64–65
vertical pipe (|), 260
View, 310–313, 322–323

W
\W, 260
\w, 260
%W, 46, 49
%w, 49
Waves, 324
WEBrick, 302

running, 304
website, 358

web servers, 302, 358
websites, on Ruby, 355
when, 89–91, 92
while loops, 72–74
while modifiers, 72–73, 89
word counter, 258

X
%x, 36, 43

INDEX 373

Y
y, 229
YAML, 227

adventure game, 236
arrays, 230, 237–238
documents, 228, 233
and dump method, 231
elements, 228
formats, 237
and hashes, 237
and indentation, 231, 238
and load_documents method, 234
loading data, 231, 234
and nested sequences, 231
omitting variables, 232–233
reconstructing complex

data, 236
saving data, 231, 234
and singletons, 242–243
to_yaml, 228
to_yaml_properties, 232
y, 229

YARV (Yet Another Ruby Virtual-
machine), 265

yield, 81, 164. See also blocks

The Book of Ruby is set in New Baskerville, TheSansMono Condensed,
Futura, and Dogma.

This book was printed and bound by Transcontinental, Inc. at
Transcontinental Gagné in Louiseville, Quebec, Canada. The paper is
Domtar Husky 60# Smooth, which is certified by the Forest Stewardship
Council (FSC). The book has an Otabind binding, which allows it to lie
flat when open.

More no-nonsense books from NO STARCH PRESS

ELOQUENT JAVASCRIPT
A Modern Introduction to
Programming
by MARIJN HAVERBEKE
JANUARY 2011, 224 PP., $29.95
ISBN 978-1-59327-282-1

THE BOOK OF CSS3
A Developer’s Guide to the
Future of Web Design
by PETER GASSTON
MAY 2011, 304 PP., $34.95
ISBN 978-1-59327-286-9

WICKED COOL RUBY SCRIPTS
Useful Scripts That Solve Difficult
Problems
by STEVE PUGH
DECEMBER 2008, 216 PP., $29.95
ISBN 978-1-59327-182-4

LEARN YOU A HASKELL
FOR GREAT GOOD!
A Beginner’s Guide
by MIRAN LIPOVAČA
APRIL 2011, 400 PP., $44.95
ISBN 978-1-59327-283-8

LAND OF LISP
Learn to Program in Lisp,
One Game at a Time!
by CONRAD BARSKI, M.D.
OCTOBER 2010, 504 PP., $49.95
ISBN 978-1-59327-281-4

WICKED COOL PHP
Real-World Scripts That Solve
Difficult Problems
by WILLIAM STEINMETZ with BRIAN WARD
FEBRUARY 2008, 216 PP., $29.95
ISBN 978-1-59327-173-2

UPDATES
Visit http://nostarch.com/boruby.htm for updates, errata, and other information.

PHONE:
800.420.7240 OR

415.863.9900
MONDAY THROUGH FRIDAY,
9 A.M. TO 5 P.M. (PST)

EMAIL:
SALES@NOSTARCH.COM

WEB:
WWW.NOSTARCH.COM

The Electronic Frontier Foundation (EFF) is the leading
organization defending civil liberties in the digital world. We defend
free speech on the Internet, fight illegal surveillance, promote the
rights of innovators to develop new digital technologies, and work to
ensure that the rights and freedoms we enjoy are enhanced —
rather than eroded — as our use of technology grows.

EFF has sued telecom giant AT&T for giving the NSA unfettered access to the
private communications of millions of their customers. eff.org/nsa

EFF’s Coders’ Rights Project is defending the rights of programmers and security
researchers to publish their findings without fear of legal challenges.
eff.org/freespeech

EFF's Patent Busting Project challenges overbroad patents that threaten
technological innovation. eff.org/patent

EFF is fighting prohibitive standards that would take away your right to receive and
use over-the-air television broadcasts any way you choose. eff.org/IP/fairuse

EFF has developed the Switzerland Network Testing Tool to give individuals the tools
to test for covert traffic filtering. eff.org/transparency

EFF is working to ensure that international treaties do not restrict our free speech,
privacy or digital consumer rights. eff.org/global

PRIVACY

FREE SPEECH

INNOVATION

FAIR USE

TRANSPARENCY

INTERNATIONAL

EFF is a member-supported organization. Join Now! www.eff.org/support

A B O U T T H E A U T H O R

Huw Collingbourne is the technology director at
SapphireSteel Software (http://www.sapphiresteel
.com/), developers of the “Ruby In Steel” Ruby
and Rails IDE for Visual Studio and the “Ame-
thyst” IDE for the Adobe Flash Platform. Huw
has been a programmer for more than 30 years.
He is a well-known technology writer in the UK
and has written numerous opinion and pro-
gramming columns (including tutorials on C#,
Delphi, Java, Smalltalk, and Ruby) for a num-
ber of computer magazines, such as Computer
Shopper, Flash & Flex Developer’s Magazine, PC Pro, and PC Plus. He is the author
of the free ebook The Little Book of Ruby and is the editor of the online com-
puting magazine Bitwise (http://www.bitwisemag.com/).

In the 1980s he was a pop music journalist and interviewed most of the
New Romantic stars, such as Duran Duran, Spandau Ballet, Adam Ant, Boy
George, and Depeche Mode. He is now writing a series of New Romantic
murder mysteries.

At various times Huw has been a magazine publisher, editor, and TV
broadcaster. He has an MA in English from the University of Cambridge and
holds a 2nd dan black belt in aikido. The aikido comes in useful when trying
(usually unsuccessfully) to keep his Pyrenean Mountain Dogs under some
semblance of control.

Ruby is famous for being easy to learn, but most users
only scratch the surface of what it can do. While other
books focus on Ruby’s trendy features, The Book of ™

Ruby reveals the secret inner workings of one of the
world’s most popular programming languages, teaching
you to write clear, maintainable code.

You’ll start with the basics—types, data structures, and
control flows—and progress to advanced features like
blocks, mixins, metaclasses, and beyond. Rather than
bog you down with a lot of theory, The Book of Ruby
takes a hands-on approach and focuses on making you
productive from day one. As you follow along, you’ll
learn to:

• Leverage Ruby’s succinct and flexible syntax to
maximize your productivity

• Balance Ruby’s functional, imperative, and object-
oriented features

• Write self-modifying programs using dynamic
programming techniques

• Create new fibers and threads for lightweight
multitasking

M A S T E R
R U B Y F R O M T H E

I N S I D E O U T

M A S T E R
R U B Y F R O M T H E

I N S I D E O U T

• Catch and recover from execution errors with robust
exception handling

• Develop powerful web applications with the Ruby on
Rails framework

Each chapter includes a “Digging Deeper” section that
shows you how Ruby works under the hood, so you
won’t be caught off guard by its deceptively simple
scoping, multithreading features, or precedence rules.

Whether you’re new to programming or just new to
Ruby, The Book of Ruby is your guide to mastering rapid,
real-world software development with this unique and
elegant language.

A B O U T T H E A U T H O R

Huw Collingbourne is the Director of Technology for
SapphireSteel Software, developer of the Ruby In Steel
IDE. With 30 years of programming experience, he has
written programming columns for numerous magazines,
presented features on computing for BBC Television,
and currently edits the online technical journal Bitwise
Magazine. He has previously released two free ebooks
on Ruby—The Little Book of Ruby and The Book of Ruby.

Covers Ruby 1.8 and 1.9

SHELVE IN
:

COM
PUTERS/PROGRAM

M
ING

LANGUAGES/RUBY

$39.95 ($45.95 CDN)

www.nostarch.com

TH E F I N EST I N G E E K E NTE RTA I N M E NT™

 “ I L I E F LAT .”

Th is book uses a lay-flat b ind ing that won’t snap shut.

H U W C O L L I N G B O U R N E

T H E B O O K O F

R U B Y
T H E B O O K O F

R U B Y
A H A N D S - O N G U I D E F O R T H E A D V E N T U R O U S

™

™

T
H

E
 B

O
O

K
 O

F
 R

U
B

Y
T

H
E

 B
O

O
K

 O
F

 R
U

B
Y

C
O

L
L

IN
G

B
O

U
R

N
E

	Copyright
	Brief Contents
	Contents in Detail
	Acknowledgments
	Introduction
	What Is Ruby?
	What Is Rails?
	Matters of Ruby Style
	How to Read This Book
	Digging Deeper
	Making Sense of the Text
	Downloading Ruby
	Getting the Source Code of the Sample Programs
	Running Ruby Programs
	The Ruby Library Documentation

	1: Strings, Numbers, Classes, and Objects
	Getting and Putting Input
	Strings and Embedded Evaluation
	Numbers
	Comments
	Testing a Condition: if..then
	Local and Global Variables
	Classes and Objects
	Instance Variables
	Retrieving Data from an Object
	Messages, Methods, and Polymorphism
	Constructors: new and initialize
	Inspecting Objects

	2: Class Hierarchies, Attributes, and Class Variables
	Superclasses and Subclasses
	Passing Arguments to the Superclass
	Accessor Methods
	Attribute Readers and Writers
	Calling Methods of a Superclass
	Class Variables
	Digging Deeper
	Superclasses
	The Root of All Classes
	Constants Inside Classes
	Partial Classes

	3: Strings and Ranges
	User-Defined String Delimiters
	Backquotes
	String Handling
	Concatenation
	What About Commas?
	String Assignment
	Indexing into a String
	Removing Newline Characters: chop and chomp
	Format Strings

	Ranges
	Ranges of Strings
	Iterating with a Range

	Digging Deeper
	Heredocs
	String Literals

	4: Arrays and Hashes
	Arrays
	Creating Arrays
	Multidimensional Arrays
	Iterating over Arrays
	Indexing into Arrays
	Copying Arrays
	Testing Arrays for Equality
	Sorting Arrays
	Comparing Values
	Array Methods

	Hashes
	Creating Hashes
	Indexing into a Hash
	Copying a Hash
	Hash Order
	Sorting a Hash
	Hash Methods

	Digging Deeper
	Treating Hashes as Arrays
	Appending vs. Concatenating
	Vectors and Matrices
	Sets

	5: Loops and Iterators
	for Loops
	Blocks and Block Parameters
	Iterating upto and downto
	Multiple Iterator Arguments
	while Loops
	while Modifiers
	Ensuring a while Loop Executes at Least Once

	until Loops
	loop
	Digging Deeper
	The Enumerable Module
	Custom Comparisons
	each and yield

	6: Conditional Statements
	if..then..else
	and, or, and not
	Negation
	if..elsif
	unless
	if and unless Modifiers
	Case Statements
	The === Method
	Alternative Case Syntax

	Digging Deeper
	Boolean Operators
	Eccentricities of Boolean Operators
	catch and throw

	7: Methods
	Class Methods
	What Are Class Methods For?
	Class Variables
	Ruby Constructors: new or initialize?
	Singleton Methods
	Singleton Classes
	Overriding Methods
	Public, Protected, and Private Methods
	Digging Deeper
	Protected and Private Methods in Descendant Classes
	Invading the Privacy of Private Methods
	Singleton Class Methods
	Nested Methods
	Method Names

	8: Passing Arguments and Returning Values
	Summarizing Instance, Class, and Singleton Methods
	Returning Values
	Returning Multiple Values
	Default and Multiple Arguments
	Assignment and Parameter Passing
	Integers Are Special
	The One-Way-In, One-Way-Out Principle
	Modifying Receivers and Yielding New Objects
	Potential Side Effects of Reliance on Argument Values
	Parallel Assignment
	Digging Deeper
	By Reference or By Value?
	Are Assignments Copies or References?
	Tests for Equality: == or equal?
	When Are Two Objects Identical?
	Parentheses Avoid Ambiguity

	9: Exception Handling
	rescue: Execute Code When Error Occurs
	ensure: Execute Code Whether or Not an Error Occurs
	else: Execute Code When No Error Occurs
	Error Numbers
	retry: Attempt to Execute Code Again After an Error
	raise: Reactivate a Handled Error
	Digging Deeper
	Omitting begin and end
	catch..throw

	10: Blocks, Procs, and Lambdas
	What Is a Block?
	Line Breaks Are Significant
	Nameless Functions
	Look Familiar?
	Blocks and Arrays
	Procs and Lambdas
	Block or Hash?
	Creating Objects from Blocks
	What Is a Closure?
	yield
	Blocks Within Blocks
	Passing Named Proc Arguments
	Precedence Rules
	Blocks as Iterators
	Digging Deeper
	Returning Blocks from Methods
	Blocks and Instance Variables
	Blocks and Local Variables

	11: Symbols
	Symbols and Strings
	Symbols and Variables
	Why Use Symbols?
	Digging Deeper
	What Is a Symbol?

	12: Modules and Mixins
	A Module Is Like a Class . . .
	Module Methods
	Modules as Namespaces
	Included Modules, or “Mixins”
	Name Conflicts
	Alias Methods
	Mix In with Care!
	Including Modules from Files
	Digging Deeper
	Modules and Classes
	Predefined Modules
	Scope Resolution
	Module Functions
	Extending Objects
	Freezing Objects

	13: Files and IO
	Opening and Closing Files
	Characters and Compatibility
	Files and Directories
	Copying Files
	Directory Inquiries
	A Discursion into Recursion
	Sorting by Size
	Digging Deeper
	Recursion Made Simple

	14: YAML
	Converting to YAML
	Nested Sequences
	Saving YAML Data
	Omitting Variables on Saving
	Multiple Documents, One File
	A YAML Database
	Adventures in YAML
	Digging Deeper
	A Brief Guide to YAML

	15: Marshal
	Saving and Loading Data
	Omitting Variables on Saving
	Saving Singletons
	YAML and Singletons
	Marshal and Singletons

	Digging Deeper
	Marshal Version Numbers

	16: Regular Expressions
	Making Matches
	Match Groups
	MatchData
	Prematch and Postmatch
	Greedy Matching
	String Methods
	File Operations
	Digging Deeper
	Regular Expression Elements
	Regular Expression Examples
	Symbols and Regular Expressions

	17: Threads
	Creating Threads
	Running Threads
	Going Native
	The Main Thread
	Thread Status
	Ensuring That a Thread Executes
	Thread Priorities
	The Main Thread Priority
	Mutexes
	Fibers
	Digging Deeper
	Passing Execution to Other Threads

	18: Debugging and Testing
	IRB: Interactive Ruby
	Debugging
	Unit Testing
	Digging Deeper
	Assertions Available When Unit Testing
	Line Breaks Are Significant
	Graphical Debuggers

	19: Ruby on Rails
	Installing Rails
	Do It Yourself . . .
	Or Use an “All-in-One” Installer

	Model-View-Controller
	A First Ruby on Rails Application
	Create a Rails Application
	Create a Controller
	Anatomy of a Simple Rails Application
	The Generate Controller Script Summarized
	Create a View
	Rails Tags
	Let’s Make a Blog!
	Create the Database
	Creating a MySQL Database
	Scaffolding
	Migration
	Partials
	Test It!

	Digging Deeper
	MVC
	The Rails Folders
	Other Ruby Frameworks

	20: Dynamic Programming
	Self-Modifying Programs
	eval
	Special Types of eval
	Adding Variables and Methods
	Creating Classes at Runtime
	Bindings
	send
	Removing Methods
	Handling Missing Methods
	Writing Programs at Runtime
	Exploring Further
	Digging Deeper
	Freezing Objects

	A: Documenting Ruby with RDoc
	B: Installing MySQL for Ruby on Rails
	Downloading MySQL
	Installing MySQL
	Configuring MySQL
	Can’t Find the Database?

	C: Further Reading
	Books
	Ebooks
	Websites

	D: Ruby and Rails Development Software
	IDEs and Editors
	Web Servers
	Databases
	Ruby Implementations

	Index
	Colophon
	UPDATES
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /UseDeviceIndependentColor
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 100
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 100
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 300
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU ([Based on '[Smallest File Size]'] Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks true
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

