

arduino playground

A R D U I N O
P L A Y G R O U N D

G e e k y P r o j e c t s f o r t h e
E x p e r i e n c e d M a k e r

by Warren Andrews

San Francisco

arduino playground. Copyright © 2017 by Warren Andrews.

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

21 20 19 18 17   1 2 3 4 5 6 7 8 9

ISBN-10: 1-59327-744-X
ISBN-13: 978-1-59327-744-4

Publisher: William Pollock
Production Editor: Laurel Chun
Cover Illustration: Josh Ellingson
Interior Design: Octopod Studios
Developmental Editor: Jennifer Griffith-Delgado
Technical Reviewer: Scott Collier
Copyeditor: Julianne Jigour
Compositor: Laurel Chun
Proofreader: James Fraleigh
Indexer: BIM Creatives, LLC

For information on distribution, translations, or bulk sales, please contact No Starch Press, Inc. directly:
No Starch Press, Inc.
245 8th Street, San Francisco, CA 94103
phone: 1.415.863.9900; info@nostarch.com
www.nostarch.com

Library of Congress Cataloging-in-Publication Data

Names: Andrews, Warren, author.
Title: Arduino playground : geeky projects for the experienced maker / by
 Warren Andrews.
Description: San Francisco : No Starch Press, [2017] | Includes index.
Identifiers: LCCN 2016013631 (print) | LCCN 2016019891 (ebook) | ISBN
 9781593277444 (pbk.) | ISBN 159327744X (pbk.) | ISBN 9781593277857 (epub)
 | ISBN 9781593277864 (mobi) | ISBN 1593277865 (mobi)
Subjects: LCSH: Arduino (Programmable controller) | Electric
 circuits--Computer-aided design.
Classification: LCC TJ223.P76 A54 2017 (print) | LCC TJ223.P76 (ebook) | DDC
 621.381--dc23
LC record available at https://lccn.loc.gov/2016013631

No Starch Press and the No Starch Press logo are registered trademarks of No Starch Press, Inc. Other
product and company names mentioned herein may be the trademarks of their respective owners. Rather
than use a trademark symbol with every occurrence of a trademarked name, we are using the names only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The information in this book is distributed on an “As Is” basis, without warranty. While every precaution
has been taken in the preparation of this work, neither the author nor No Starch Press, Inc. shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in it.

www.nostarch.com

To all the electronic hobbyists
and amateur radio operators who,

throughout the years, have taken their
hobbies to new levels

About the Author
Warren Andrews received his first amateur radio license at age 12 and has
been an inveterate electronics hobbyist ever since. He has been writing
about electronics for more than 30 years, and his work has been featured
in publications like EE Times, Electronic Design, and Computer Design. He
managed several publications in the RTC group and contributed exten-
sively to all of their publications. Warren has also done extensive design
and engineering development on a variety of commercial projects and was
a technical consultant for several major corporations, including Motorola
and GE. He holds one US Patent.

About the Technical Reviewer
Scott Collier is a self-taught Arduino Enthusiast who has created and
published over 50 free Arduino tutorials on his blog: http://arduinobasics​
.blogspot.com. With more than 3.5 million views, it is very likely you have
come across some of his work. Scott is an active online member of the
Arduino community and fully supports the maker movement ideology.

B rie f C on t en t s

Acknowledgments . xvii

Introduction . xix

Chapter 0: Setting Up and Useful Skills . 1

Chapter 1: The Reaction-Time Machine . 25

Chapter 2: An Automated Agitator for PCB Etching . . 41

Chapter 3: The Regulated Power Supply . 69

Chapter 4: A Watch Winder . 89

Chapter 5: The Garage Sentry Parking Assistant . . 129

Chatper 6: The Battery Saver . 155

Chapter 7: A Custom pH Meter . 185

Chapter 8: Two Ballistic Chronographs . 217

Chapter 9: The Square-Wave Generator . 255

Chapter 10: The Chromatic Thermometer . . 279

Index . . 303

C on t en t s in D e t ail

Acknowledgments	 xvii

Introduction	 xix
Who This Book Is For . xx
How This Book Is Organized . xx
About the Parts Lists . . xxii
Tools and Supplies . xxiii

Drilling, Cutting, and Assembling . xxiii
Prototyping, Soldering, and Testing . xxiv
Online Retailers . xxv

About the Online Resources . xxv

0
Setting Up and Useful Skills	 1
Preparing the Arduino Board . 2
Affixing the I2C Board to the LCD . 3
Uploading Sketches to Your Arduino . 5

Installing the Arduino IDE . 5
Using the Arduino IDE . 5
Connecting and Programming an Arduino Nano . 6
Connecting and Programming an Arduino Pro Mini . 8

Using PCB Software . 11
Making Your Own PCBs . 13

Applying the Pattern . 14
Etching the Board . . 15
Drilling the Board . . 17

Connectors Used in This Book . . 18
Using SOICs . . 20

What Are SMT Devices? . 21
The Solder Paste Method . . 21
Soldering Directly . . 23

Closing Thoughts . 24

1
The Reaction-Time Machine	 25
Required Tools . 26
Parts List . . 26
Downloads . . 27
Reaction vs. Reflex . 27
How Does the Game Work? . 28

Measuring Time with the Arduino Nano . 28
Expected Speed Ranges . 29

The Schematic . 29
The Breadboard . 30

xii Contents in Detail

The Sketch . 32
Customized Reaction Commentary . 35
What Happens in the Loop . 36

Construction . 37
Preparing a Sturdy Case . 37
Mounting the Hardware . 38

Ideas for Customization . 40

2
An Automated Agitator for PCB Etching	 41
Required Tools . 43
Parts List . . 43
Downloads . . 44
How Automatic Motor Reversal Works . 44
The Schematic . 45
Determining the Reversal Threshold . 46
Using an H-Bridge . . 48
The Breadboard . . 50
The Sketch . 53
The Shield . 57

PCB Layout . 57
Shield Design Notes . 58

Construction . 60
The Limit Wires . 62
The Crank Bushing . 63
Packaging . . 64

The Etching Process . 66

3
The Regulated Power Supply	 69
Required Tools . 70
Parts List . . 70
Downloads . . 71
A Flexible Voltage Regulator Circuit . 72
How the Circuit Works . 73
The Schematic . 75
The Breadboard . 76

Preparing the Arduino Pro Mini and LCD . 76
Building the Breadboard . 77

The Sketch . 79
The Shield . 80
Construction . 82

Preparing the Enclosure . 83
Mounting the Circuit Board . 85

4
A Watch Winder	 89
Why a Watch Winder? . 90
Required Tools . 93

Contents in Detail xiii

Parts List . . 93
Acrylic . 93
Other Hardware and Circuit Components . 94

Downloads . . 95
Basic Watch Winder Requirements . 95
Using an Arduino to Control Winder Revolutions . 96
Using a Hall Effect Sensor to Monitor Rotations . . 96
The Schematic . 97
The Breadboard . 98
The Sketch . 102
The Shield . 108
Overview of the Motor Assembly . 110
Construction . 110

Preparing the Motor Mount and Bearing Box Acrylic 111
Bonding the Acrylic for the Bearing Box . 114
Building the Stand . 115
Preparing the Motor and the Driveshaft . . 116
Making the Watch Basket . 120
Adding the LEDs . 122
Leaving the Components on Display . 123
Keeping the Watches in the Basket . 124

Design Notes . . 124
Total Rotation Adjustment . 124
How Many LEDs to Use and Where to Put Them . 125
Motor Voltage . 126
How Many Rotations Does the Watch Winder Make? 126

5
The Garage Sentry Parking Assistant	 129
Required Tools . 130
Parts List . . 130
Deluxe Parts . 132
Downloads . . 132
The Schematic . 132
Basics of Calculating Distance . 133
How the Garage Sentry Works . . 134
The Breadboard . 136
The Sketch . 138

Inside the setup() Function . 140
Inside the loop() Function . 140
Determining Distance . 141
Triggering the Alarm . 142

Construction . 143
Drilling Holes for the Electronics . . 144
Mounting Options . 145
Soldering the Transistors and Current-Limiting Resistors 147
Wiring the Pieces Together . 147

The Deluxe Garage Sentry . 148
The Deluxe Schematic . . 148
The Deluxe Sketch . 149

xiv Contents in Detail

The Deluxe Shield . 151
A Bigger Box . . 152

6
The Battery Saver	 155
Boats, Tractors, and Other Vehicles . . 157
Required Tools . 157
Parts List . . 159
Downloads . . 160
The Schematic . 160

How the Battery Saver Prevents Draining . . 162
Arduino to the Rescue . . 163

The Breadboard . 164
The Sketch . 167
The Shield . 168

The PCB Layout . 168
Preparing the Shield and Pro Mini Controller . 169

Construction . 170
Preparing the Enclosure . 171
The Contact Support . 172
Preparing the Copper Contact Assembly . 173
Mounting Supplies for the Solenoid . 175
Preparing the Release Rod, Springs, and E-Clip . 175
Making the Release Lever and Pylon . . 176
Assembling All the Parts . 178

Installing the Battery Saver into a Vehicle . 180
Operating the Battery Saver . 180

Normal Operation . 180
Setting the Threshold Voltage . . 181
Protection from the Environment . 182
Applying Cool Amp . 182

7
A Custom pH Meter	 185
Why Build Your Own pH Meter? . 186
Required Tools . 187
Parts List . . 187
Downloads . . 189
About the pH Probe . . 189
The Schematic . 191

Integrating the High-Impedance Probe . 193
General Design Notes . 193
The Op-Amp Circuit in Detail . 195
Some Notes on IC Selection . 196

Preparing the LCD . 196
The Breadboard . 197
Calibrating the Custom pH Meter . 201
About the Effects of Temperature . 203

Adding a Temperature Sensor . 204
Checking Accuracy . 204

Contents in Detail xv

The Sketch . 205
Smoothing the pH and Temperature Output . . 208
Centering an Analog Meter . 208

The Shield . 210
Construction . 211

The Custom pH Meter Enclosure . . 212
Mounting the Circuit Board . 214
Installing the Other Hardware . 214

8
Two Ballistic Chronographs	 217
What Is a Ballistic Chronograph? . 219

Commercial Chronographs . 219
Measuring Muzzle Velocity . 219
This Project’s Approach . 220

The Chronograph Lite . 221
Required Tools . 221
Parts List . 221
Downloads . 222
The Schematic . 222
Building a Test Bed . . 222
The Breadboard . . 224
The Sketch . 226
Construction . 230

The Full Ballistic Chronograph . 233
Required Tools . 234
Parts List . 234
Downloads . . 235
Improving the Accuracy . 235
Designing the Full Ballistic Chronograph . 238
The Schematic . 239
The Sketch . . 241
The Shield . 242
Soldering the Full Ballistic Chronograph . 244
Construction . 245

The Sensor Channel . 247
Building the Sensor Channel . 247
Optoschmitt Light Sensors and UV LEDs . 250
Sensor Umbilical Cable . 251

Final Setup and Operation . 252
Using the Full Ballistic Chronograph . 253
Using the Chronograph Lite . 253

9
The Square-Wave Generator	 255
Why Build a Square-Wave Generator? . 256

What Is a Square Wave? . 256
Why Square Waves Are Useful . 257
A Frequency Counter . 258

xvi Contents in Detail

Shortcomings of the Square-Wave Generator . 259
Required Tools . 260
Parts List . . 260
Downloads . 262
The Schematic . 262
Important Notes on the Pro Mini . 263
How the Square-Wave Generator Was Developed . 264

Deciding How to Generate Signals . 265
Planning How to Display the Frequency . 265

Signal Integrity . 266
Fine-tuning with a Decade Counter . 268
The Oscillator in Detail . 268
The Breadboard . 269
The Sketch . 271
The Shield . 272
Construction . 273

Preparing the Enclosure . 274
Wiring the Electronics . . 276

Design Notes and Mods . 277
Displaying Frequency in Other Units . . 277
Reading External Input Frequencies . 277
Battery Power . 278

10
The Chromatic Thermometer	 279
Choosing a Temperature Sensor . 280
Required Tools . 282
Parts List . . 282
Downloads . . 284
How the Chromatic Thermometer Works . 284
The Schematic . 284
The Breadboard . 286
The Sketches . . 288

Sketch for the LM35 System . . 289
Sketch for the MCP9808 System . 292
How the Temperature Readouts Work . . 295

The Shield . 296
Construction . 298
Using the Chromatic Thermometer . . 301

index	 303

A c k no w ledgmen t s

I would like to acknowledge all the friends, colleagues, and fellow editors
that offered help and encouragement during the production of my book.
In particular, I’d like to thank my friend Pete Yeatman, who consistently
offered technical advice and counsel as I put together the various projects.
In addition, I’d like to thank the editors and production staff at No Starch
Press for doing such an excellent job bringing the book to publication. And
of course, what acknowledgment would be complete without thanking my
wife and family who have put up with me during the difficult as well as the
easy times.

I n t roduc t ion

Welcome to Arduino Playground! This book
provides a broad spectrum of projects

demonstrating the flexibility and versatil-
ity of the Arduino family of microcontroller

boards. Each project contains everything you need to
know to build it, including a schematic, a component
list, and any sketches (that’s what Arduino folks call programs). I also endeav-
ored to provide all information about the mechanical parts of each project,
including a list of supplies, so you can complete any enclosures, moving
parts, skeletons, and so on. Any special tools required are also described in
the projects.

I have tried to make the projects more than just recipes for assembling
the parts by including some background explanations of how I came up
with the projects and how the technology works. I hope that the projects
can be useful end products by themselves and, with some ingenuity, per-
haps even serve as a launching pad for you to create projects of your own.

xx Introduction

Who This Book Is For
Building the projects in this book does not require an engineering degree,
advanced mechanical aptitude, or programming expertise. That said, there
are some basic requirements you should have to get the most out of the book:

•	 An understanding of basic electronics, including the ability to read
a schematic diagram and recognize elements such as resistors and
capacitors

•	 An understanding of how to use computers and write software (Von
Neumann architecture if you want to be snobby); knowledge of
Arduino or other microcontroller architectures helps

•	 Experience soldering connections and wires

•	 Limited mechanical skills, such as how to operate an electric drill, vari-
ous saws, and so on

My hope is that both beginner and experienced Arduino users will
learn something new about electronics in these projects.

How This Book Is Organized
Each chapter focuses on one project and describes how to prototype it on
a breadboard for testing, briefly discusses how the sketch works, and finally
shows how to construct the final product.

•	 Chapter 0: Setting Up and Useful Skills provides you with some basic
knowledge that you’ll use throughout the book, including how to pre-
pare Arduino boards, how to program them, and how to use PCB soft-
ware and make your own PCBs.

•	 In Chapter 1: The Reaction-Time Machine, you take advantage of the
real-time capabilities of the Arduino microcontroller by measuring a
user’s reaction to a stimulus. This project is quick and easy to build,
and you’ll learn some of the fundamentals of using a controller for
timing—with lots of opportunity to experiment with the sketch. The
finished unit will provide hours of fun and entertainment for you and
your friends and family.

•	 Chapter 2: An Automated Agitator for PCB Etching shows how you can
use a change in current drain to make things happen in a circuit. In
this case, the change reverses the direction of a motor so that it can be
used to agitate printed-circuit boards in an etchant solution. Etching
PCBs is but one application for the technology, as explained in the
chapter.

•	 The project in Chapter 3: The Regulated Power Supply may well turn
out to be one of the most frequently used products on your workbench.
It’s a regulated variable-voltage power supply with a digital readout for
voltage and current. The design is simple yet effective, and it’s fun to
build.

Introduction xxi

•	 The project in Chapter 4: A Watch Winder is one of my favorites. It
serves the utilitarian function of keeping automatic (self-winding)
watches wound when not being worn, but the cool design also makes
it a great kinetic sculpture. The Watch Winder uses an Arduino Nano
to handle all the timing functions for keeping the watches wound and
includes a multi-colored LED light display. Some of the assembly tech-
niques may challenge a beginner, but the effort is more than worth it.

•	 The project in Chapter 5: The Garage Sentry Parking Assistant is a
high-tech device designed to help you park your vehicle in your garage.
It’s the electronic version of a tennis-ball-on-a-string contraption that’s
designed to measure the distance you want to pull into your garage.
It introduces ultrasonic transmitters and receivers and illustrates how
they can be integrated with the Arduino controller. While this is a very
practical application of the technology, other applications (such as liq-
uid measurement) are limited only by your imagination.

•	 In Chapter 6: The Battery Saver, you make a device to help keep lead-
acid storage batteries from being ruined by accidental discharge. The
design is basically a high-current switch in series with a battery that
disconnects when the battery reaches a dangerous level. While most
automobiles today incorporate such circuitry, I have found this project
particularly useful on boats and utility vehicles (tractors, mowers, and
so on), and it can save you from having to replace these expensive bat-
teries needlessly.

•	 In Chapter 7: A Custom pH Meter, you build a precision instrument
for measuring pH in a variety of liquids. While the Custom pH Meter
uses a professional probe, the electronics and readout are based on the
Arduino processor. If you’re into home brewing, winemaking, hydro-
ponics, or aquariums, or if you’re just managing the chemistry in your
pool, the Custom pH Meter will be a welcome tool.

•	 The project in Chapter 8: Two Ballistic Chronographs is designed to
measure the muzzle velocity of various guns from Airsoft pistols and
rifles to BB guns and pellet guns. While not intended for conventional
firearms, it boasts capability of measuring velocities over 2,500 feet per
second. It also introduces some new technology to the stage, including
some stand-alone logic, a counter, and a DAC. Two versions of the chro-
nograph are described; the smaller one, Chronograph Lite, measures
projectiles with velocities up to about 700 feet per second.

•	 In Chapter 9: The Square-Wave Generator, you build a low cost instru-
ment for generating electronic waveforms. The genesis of the project
was to provide a simulator for the Ballistic Chronograph in Chapter 8,
but it worked so well that I made a separate project of it. While it falls
short of the resolution and flexibility of regular laboratory instruments,
you’ll find it useful in designing and testing various products—and at a
fraction of the price.

xxii Introduction

•	 In Chapter 10: The Chromatic Thermometer, you create a handy gad-
get that tells the temperature using a sequence of colored LEDs. While
the initial design is simple, the project led to variations that are more
complex. You can add a digital readout, a high-accuracy sensor, and a
variety of mechanical variants for everything from monitoring a fish
tank to a wall decoration.

This book does not cover the basic engineering or programming
concepts behind every project in depth, as it assumes you have enough
background knowledge to understand those concepts based on a brief
explanation. But for the curious reader, the text does provide references
where extra information can be found about the design and technology. It
also gives background into the history of the project: why I built the project
(and why you might want to build it). In all cases, there has been an effort
to provide a learning experience at a level the user can appreciate and
understand.

Where possible, the projects also suggest alternative approaches that
advanced readers can try. To demonstrate why I selected a particular
approach, I illustrate how some alternative ways of doing things solve cer-
tain problems and cause others. There’s a lot of room to personalize, and
perhaps even improve on, each project, whether it be packaging, construc-
tion technique, or the sketch itself. For example, the Watch Winder can be
a utilitarian device or an upscale kinetic sculpture.

About the Parts Lists
In the design phase of this book, the selection of parts for projects was
often determined by what I might have had lying around the shop. For
example, the bearings in the Watch Winder from Chapter 4 were originally
bearings I had in my junk bin, but I eventually replaced them with the ones

W h at is Mech at ronics?

During the course of writing this book, I ran across the term mechatronics sev-
eral times. Being kind of a traditionalist (or just an old fuddy-duddy), I ignored
the first several references. However, I eventually took the time to look up the
term, and it sure sounds a lot like what we’re doing in this book.

Put simply, mechatronics is the process of designing with electronics and
mechanical engineering. Tetsuro Mori, the senior engineer of the Japanese
company Yaskawa in 1969, coined the term to describe the process of building
industrial robots, which requires electrical, mechanical, and computer engineer-
ing. A mechatronics engineer unites the principles of mechanics, electronics,
and computing to generate a simpler, more economical, and more reliable
system.

http://en.wikipedia.org/wiki/Economy_of_Japan
http://en.wikipedia.org/wiki/Yaskawa

Introduction xxiii

mentioned in the parts list. I have made every effort to make the projects
with the tools and materials as described, but I encourage you to use what
you have handy.

N o t e 	 Almost everyone I know who has programmed an Arduino started with the simple
“blink” sketch. As a result, many see Arduino as inextricably entwined with LEDs
turning on and off. Throughout the book, I attempt to reinforce this association by
including LEDs in as many projects as possible. While blinking an LED doesn’t even
scratch the surface of the Arduino’s capabilities, LEDs make the projects more fun and
visually interactive.

Tools and Supplies
Before you begin working through this book, review the following lists
of tools and supplies, and note any items you don’t have. Not all of these
are required for every project, so when you want to build a project, read
the required tools and supplies lists for that particular chapter to see if
you are missing anything essential. You can purchase most of these items
at your local hardware store, but I will indicate where buying online might
be a better option.

Drilling, Cutting, and Assembling
Screwdrivers  You’ll want both Philips and slotted, in multiple sizes.

Dremel tool (or equivalent)  A small drill or rotary tool can be very
useful for a variety of tasks, from drilling and cutting to etching and
polishing. An inexpensive bench attachment turns the Dremel tool into
a small drill press, which is really handy, especially for drilling PCBs.

Electric drill  Battery operated is preferable. If possible, I suggest a
chuck with 3/8-inch or 1/2-inch capacity—the bigger the better.

Drill bit set  I recommend purchasing a numbered drill set (that is,
with bits labeled #1 through #60) in addition to a fractional drill set.

Pliers  I find that a pair of vise-grip pliers, about 6 to 8 inches long,
fills many needs for clamping, holding things in place, and tightening.
I also recommend getting a good pair of needle-nose pliers.

Saws  A simple hacksaw is handy for a variety of tasks. For cutting
plastic, there are many options: a keyhole saw works well, or if you don’t
mind spending some more money, a small variable-speed, hand-held
jigsaw (or saber saw) is handy for making a variety of cuts. I use my jig-
saw almost exclusively with hacksaw blades. (Practice sawing on some
scrap wood if you’ve never used a jigsaw before. Once you understand
how to use it, a jigsaw can be one of the handiest tools in the shop.)

Sharp knife and scissors

Screws and nuts   I suggest trying to get a small assortment of both
English and metric screws and nuts. There are many such assortments
on eBay, if your local hardware store doesn’t have a good selection.

xxiv Introduction

Tap and die set  A set isn’t required for most projects, as individual
taps and dies are available, but a set is cheap and handy to have around.

Tapered reamer  A tapered reamer is useful in many of the book’s
projects, and it’s a tool I heartily recommend having. I use a set of two
inexpensive reamers that I purchased on Amazon, and they work very
well on plastic, aluminum, and mild steel. I suggest getting reamers that
can create holes up to 7/8 inches in diameter.

Tape  I suggest keeping masking tape, double-sided foam tape, and
rugged outdoor double-sided tape (3M brand works well) on hand.

Prototyping, Soldering, and Testing
Alligator clips or clip-lead set  There are many alligator clips avail-
able, and they are very handy when putting together breadboards.
Sets are available from multiple sources, including RadioShack and
Amazon.

Breadboard and jumper wires  These are available from multiple
sources, including Pololu and Amazon.

Digital multimeter  A broad spectrum of multimeter units is available.
You can pay anywhere from under $5 to hundreds of dollars, but low-
priced portable units work fine. You will find a multimeter a welcome
addition to your household tool collection.

Resistor assortment  I suggest checking eBay or Amazon, where
you can buy resistors in bulk easily. Some assortments might include
10 units each of 20 or 30 values, while others contain 100 or more resis-
tors per value. These are very economically priced.

Soldering iron and solder  Soldering irons are readily available at
hardware stores, often for less than $10. Jameco even has an online sol-
dering tutorial (http://www.jameco.com/Jameco/workshop/learning-center/
soldering-basics.html) that might be worth reading if you’re a beginner.

Solder paste  This is needed only if you have trouble soldering surface-
mount components. While these projects use only a small handful of
surface-mount components, you may use more in the future as manufac-
turers make fewer through-hole versions of newer integrated circuits. I
use a lead-free solder paste called Chip Quik. Don’t despair, though: you
can solder surface-mount components with regular rosin-core solder and
a soldering iron as described in “Using SOICs” on page 20.

Solder wick  While none of us would ever be careless enough to make
a solder bridge across connections, sometimes a gremlin sneaks in and
does it anyway. For those occasions, solder wick (a copper braid with a
little rosin on it to soaks up solder) lets you remove solder cleanly.

If you like building complete Arduino projects, consider filling out your
tool collection with any missing items. Everything described here will surely
be useful at some point.

Introduction xxv

Online Retailers
If you can’t find an electronic component or tool at your local hardware
store, check one of these online retailers:

•	 Adafruit (https://www.adafruit.com/)

•	 Amazon (http://www.amazon.com/)

•	 Bitsbox (good in the UK; http://bitsbox.co.uk/)

•	 Digi-Key (http://www.digikey.com/)

•	 eBay (has almost anything you need for this book at low costs; http://
www.ebay.com/)

•	 Electronic Goldmine (http://www.goldmine-elec-products.com/)

•	 Farnell (ships globally; http://www.farnell.com/)

•	 Harbor Freight (http://www.harborfreight.com/)

•	 Jameco (http://www.jameco.com/)

•	 MCM Electronics (http://www.mcmelectronics.com/)

•	 Mouser (http://www.mouser.com/)

•	 Newark Electronics (http://www.newark.com/)

•	 Newegg (https://www.newegg.com/)

•	 Pololu Robotics and Electronics (https://www.pololu.com/)

•	 SparkFun (https://www.sparkfun.com/)

About the Online Resources
Each project has a Downloads section that lists any sketch, PCB, or tem-
plate files provided online. Using those files is optional—you can copy the
sketch from the book by hand, design your own PCB, and decide where
to make holes for components yourself if you prefer. But if you want a
place to start, download the resource files from https://www.nostarch.com/
arduinoplayground/.

http://www.amazon.com
http://bitsbox.co.uk/
http://www.ebay.com
http://www.ebay.com
http://www.goldmine-elec-products.com/
http://www.farnell.com/
http://www.harborfreight.com/
http://www.mouser.com
https://www.sparkfun.com/

0
Se t t ing U p and U s e f ul S k ill s

This book assumes you have some previ-
ous hardware experience, so the projects

in it won’t hold your hand. That said, if you
need a refresher on some basic skills, such

as wiring and programming Arduino boards, keep on
reading.

This chapter also covers some skills that you will find helpful but that
you don’t necessarily need to build the projects. For example, in most
projects, I provide PCB files that you can use to manufacture a shield PCB,
but if you want to make a PCB rather than solder the circuits to proto-
typing board, read the “Making Your Own PCBs” on page 13. And if
you’ve never assembled a connector yourself or need guidance on working
with small-outline integrated circuits, you will find information on that in
“Using SOICs” on page 20.

2 Chapter 0

Preparing the Arduino Board
Whether you use an Arduino Nano, a Pro Mini, or one of their clones, there
is a good chance your board will arrive with the header pins separate and
unsoldered. All of the boards I’ve purchased came that way (see Figure 0-1).

Figure 0-1: An Arduino Nano clone board with headers and a breadboard, which I use
as an aid to soldering.

Before you can use an Arduino or clone, you need to solder the header
pins. The strips of headers that come with a processor board usually have
more pins than required, and the first step is to trim them to the number
you need. The black plastic retainers are grooved to make cutting easy. I
use a simple set of diagonal cutters to cut the plastic (see Figure 0-2).

Figure 0-2: The Arduino Pro Mini clone, with the header pins trimmed to length.
The 5-pin strip fits on the end of the board.

Setting Up and Useful Skills 3

The next step is to insert the header pins into a breadboard, spaced so
the holes in the processor board will fit over the pins. Insert the long end
of the header pins into the breadboard, as shown in Figure 0-3. There are
four rows of holes left empty between the two rows of header pins—that
is, three rows plus the space in the center divide—so the processor board
will fit.

The final step is to place the processor board over the short end of the
header pins, as shown in Figure 0-4, and solder.

Now your board has all its pins and is ready to be wired up.

Affixing the I2C Board to the LCD
Many projects in this book also use a liquid crystal display (LCD) with an
inter-integrated circuit (I2C) interface (see Figure 0-5). The LCDs used in
this book can be purchased with or without the I2C adapter board, though
I have often had to buy the LCD and the adapter board separately.

If the adapter board isn’t already attached to the LCD, connecting the
two is about the same as preparing the Arduino board. The adapter board
usually comes with header pins installed, so all you have to do is insert them
into the display and solder them.

Connecting the display and the adapter usually works without any prob-
lems, but in some cases the adapters may have circuitry that almost touches
the display board. To avoid connections shorting out, I suggest putting elec-
trical tape on the back of the LCD to insulate it from the connections on
the I2C adapter board.

Figure 0-3: The header pins have been
inserted into the breadboard in prepara-
tion for soldering the Nano clone.

Figure 0-4: The Nano clone in place on the bread-
board and ready for soldering

4 Chapter 0

Figure 0-5: A 16×2 LCD and an FTDI module

You may also find that the pins of the header on the I2C board protrude
through the LCD board enough that it causes a problem when mounting
the display in a case. Try to solder the I2C board as far from the LCD board
as possible to minimize the amount that the pins protrude through the
board. Figure 0-6 shows an adapter board ready to have the pins inserted
into the LCD base board.

Figure 0-6: The I2C board in place, ready for soldering

Setting Up and Useful Skills 5

If soldering the adapter board in such a position proves too awkward,
you can insert pins to their limit, solder them, and then trim them with a
wire cutter to make them as flush as possible with the LCD board.

Depending on your LCD and adapter board, the I2C address you need
to enter into the sketch may be different. There is a very simple scanner
available at http://playground.arduino.cc/Main/I2cScanner/. Just follow the
instructions to figure out your LCD’s I2C address. 0x27 and 0x30 are com-
mon addresses.

Uploading Sketches to Your Arduino
After you’ve assembled a project’s circuit on a breadboard, it’s time to
load your sketch onto the microcontroller and give it a whirl. I suggest an
Arduino Nano, Pro Mini, or clones of those for most projects in this book.

Installing the Arduino IDE
You may already have the free Arduino integrated development environ-
ment (IDE) installed on your computer; if not, download the program and
install it now. Just visit https://www.arduino.cc/, click Download, and down-
load the appropriate version of the Arduino IDE for your operating system.
The latest version is 1.6.x. Then, go to the Getting Started with Arduino
page at https://www.arduino.cc/en/Guide/HomePage/, and follow the corre-
sponding official installation instructions.

N o t e 	 If you’re not familiar with the IDE, there are a number of tutorials and sample code
files on the Arduino website. I strongly recommend that you read them to familiarize
yourself with the software.

Using the Arduino IDE
After installation, open the Arduino IDE. A blank sketch will appear with
a name in this format: sketch_<date>. To save your sketch, select File4Save
As. In the dialog that opens, choose where you want to save your sketch and
what you want to name it.

You have a choice when creating a new sketch for a project in this
book: you can type the sketch into the sketch window, or you can down-
load the sketch file from the resource files at https://www.nostarch.com/
arduinoplayground/ and then copy and paste the code into the sketch
window.

I usually like to verify the sketch—that is, compile it—before attempt-
ing to upload it to the board to make sure no errors crept in as the sketch
was typed into the IDE. Verification is easily accomplished by clicking the
checkmark in the upper-left corner (see Figure 0-7). The word Verify will
appear to the right of the five icons on that line when you hover the mouse
over the checkmark button.

6 Chapter 0

Figure 0-7: The sketch window with the Verify icon clicked at the
beginning of the list of icons

If your code compiles correctly, it’s ready to upload to your board.

Connecting and Programming an Arduino Nano
After verifying your sketch, you have to connect the Arduino board to your
computer. Of the Arduino boards used in this book, the Nano is the easiest
to hook up and program, as it includes a built-in USB interface.

For a Nano, find a cable with a USB plug (type A) on one end and
a mini-B USB plug on the other; your board probably came with one.
Connect the USB end to the computer, and connect the mini-B USB end
to the Nano. Select Tools4Board, and then select the correct board and
microcontroller (see Figure 0-8).

You may also need to select the correct serial COM port for your
Arduino, though some versions of the IDE will automatically find a free
port and connect to it. Go to Tools4Port and select a serial port from the
menu that appears. If you have any issues, consult the individual operating
system guides at https://www.arduino.cc/en/Guide/HomePage/.

Setting Up and Useful Skills 7

Figure 0-8: The sketch window, with the Tools menu open. I selected Arduino Nano
with the ATmega328.

The last step in programming the Nano is to upload the code. First,
make sure the board is still plugged into the computer via the USB cable.
Then, click the Upload button, which looks like an arrow pointing to the
right (see Figure 0-9). When you hover the mouse over the Upload button,
the word Upload should appear to the right of the five main icons.

Uploading code to the Arduino shouldn’t take too long, but it depends
on the length of the sketch. Afterward, you should be set to power and test
your circuit. (Don’t forget to unplug the USB before powering it with an
external power source.)

8 Chapter 0

Figure 0-9: The sketch window with the Upload button clicked

Connecting and Programming an Arduino Pro Mini
The Arduino Pro Mini (or clone) works much the same as the Arduino
Nano, but it doesn’t have a built-in USB interface, opting instead for a
transistor-transistor logic (TTL) connection. The easiest way I found
to upload code to the Pro Mini was to remove the processor chip from
an Arduino Uno, as shown in Figure 0-10, and use the Uno board as a
programmer.

The processor-free Uno can be connected to the computer directly
via USB, so it can provide power as well as programming signals to a
Pro Mini board connected to it. The USB cable for an Arduino Uno is a
standard USB cable with a regular (type A) USB connector on one end
and a square (type B) USB on the other (see Figure 0-10). More informa-
tion about USB cables can be found at https://www.sparkfun.com/pages/
USB_Guide/.

https://www.sparkfun.com/pages/USB_Guide/
https://www.sparkfun.com/pages/USB_Guide/

Setting Up and Useful Skills 9

Figure 0-10: An Arduino Uno clone with the processor removed (to the right of the board), a USB cable, the
programming cable assembly, and a loose reset wire

Connect the Uno to the Pro Mini as follows:

•	 Rx on the Pro Mini to Rx on the Uno

•	 Tx on the Pro Mini to Tx on the Uno

•	 VCC on the Pro Mini to 5.0V on the Uno

•	 GND on the Pro Mini to GND on the Uno

•	 RST on the Pro Mini to RST on the Uno

I made a simple cable to connect the positive and negative voltage sup-
plies as well as the receive (Rx) and transmit (Tx) signals (see Figure 0-11).
The individual wires on one end plug directly into headers on the Uno,
and a 4-pin plug attaches to the edge headers on the Pro Mini. You could
also use separate jumper wires, like those you would use for a breadboard.
I have found it easiest to plug the Pro Mini into a breadboard so I can con-
nect the RST signal with a jumper wire, as shown in Figure 0-11.

10 Chapter 0

Figure 0-11: The Arduino Pro Mini clone ready for programming with the Arduino Uno
clone serving as programmer. The Arduino Uno’s USB connection supplies the power.

Make sure that all connections line up correctly before plugging the
UNO’s USB cable into your computer. When you program the Pro Mini,
select the proper board from the Board section of the Tools menu; even
though you are plugging an Arduino Uno into the computer, you are still
programming a Pro Mini. Once this setup is done, you can upload sketches
to the Pro Mini just as you would the Nano.

While using an Arduino Uno intermediary is the easiest way to pro-
gram the Pro Mini, you can also purchase USB-to-TTL devices like the one
in Figure 0-12. I purchased several on eBay in the $5 to $12 range, and with
a little tinkering (the terminals are sometimes marked differently), they all
worked well.

Programming the Arduino is only part of the battle, though. To build
a truly permanent project, you need to solder your working Arduino circuit
to a board. A custom printed circuit board (PCB), also sometimes called a
printed wiring board, is the best way to keep your project clean and neat—if
you are willing to put in the extra work to make one.

Setting Up and Useful Skills 11

Figure 0-12: A USB adapter for programming the Pro Mini and other controller boards
without their own USB interface. This adapter uses a male USB (type A) plug and has a
Data Terminal Ready (DTR) pin instead of a reset pin (RST). Most USB-to-TTL devices can
be powered with 3.3V as well as 5V, but check before you power them, as some devices
operate at 3.3V only.

Using PCB Software
There are many PCB design programs out there, and they vary in complex-
ity and cost. Many are free in order to attract customers to use the com-
pany’s facilities to make boards. Therefore, there are some hang-ups when
trying to use those free tools for DIY boards—for example, the software
might have some features locked in the free version. I use ExpressPCB
(https://www.expresspcb.com/) for both single- and double-sided boards.

N o t e 	 For double-sided DIY boards, I’ve had to reverse the image manually. The trick to
making double-sided boards is properly aligning the two sides. To greatly simplify the
alignment process for many projects, you can make alignment marks and drill align-
ment holes on the blank copper board before transferring the image. I have also, from
time to time, used a drawing program called TurboCAD (similar to AutoCAD) to
produce double-sided boards.

ExpressPCB offers the least expensive solution for making boards that
I’ve been able to find. The company has a MiniBoard service that offers a
standard-size board with no frills for a relatively low cost. Further, as the
industry creates newer packages, using a software package that includes the
newer IC footprints is essential. I have used ExpressPCB to make adapter
boards—from SOIC to DIP—and to integrate SOICs into a finished board,
as the software works well with the smaller geometries. Even if I want to

12 Chapter 0

make a “purpose-built” microcontroller board, which will likely require
multiple layers, a ground, and VCC plane, ExpressPCB will probably fill the
requirements.

To use the program, simply go to the ExpressPCB website, download
the free software, and install it. The ExpressPCB website has several tuto-
rials on using the software, which I recommend you take advantage of.
There is a companion free software program, ExpressSCH, which is a sche-
matic capture program for writing your own schematic diagrams. While
the features are not as well integrated as they could be, using the programs
together has helped with circuit design.

N o t e 	 All the PCB designs in this book have been prepared using ExpressPCB design software,
and they are all available at https://www.nostarch.com/arduinoplayground/. To
view or change the PCB drawings, you will have to download the software.

Another advantage of using ExpressPCB is that you can take the same
file you develop for making the circuit board yourself and send it out to
the company’s factory for finishing. I did that for a few of the projects in
this book—in most cases, after making my own and wanting to clean up
the board. I found the results more than satisfactory. The factory-prepared
boards offer plated-through holes—if you build your own double-sided
boards, soldering on both sides of the board is necessary. They also include
a solder-plate finish and can be made with a solder-resistant coating and
silkscreen image printed on the board. Figure 0-13 shows a board I made
using ExpressPCB.

Figure 0-13: A professionally finished PCB, with solder-resistant coating and
silkscreening. I used this board to make the Ballistic Chronograph in Chapter 8.

A Tip for M anu fac t uring Mult iple Dif f eren t Board s

You can use ExpressPCB’s MiniBoard service to make more than one board for
very little cost. The mandatory size for a board to qualify as a MiniBoard—
and thus, to get the discount—is 3.8×2.5 inches, and when you bring up the
program, a yellow guide box automatically displays an area of that size. In
preparing PCBs such as the one in Figure 0-14, I combined several smaller
boards into one large “board” by copying and pasting the small boards into
the maximum size for the MiniBoard price.

Figure 0-14: Three different boards for one MiniBoard order. The board for
the Ballistic Chronograph is on the top left, and the pH Meter’s is on the bot-
tom. The top right is for an optical tachometer, which didn’t make it into the
book. For one price, you get three copies of each board. All you have to do
is cut them apart.

Setting Up and Useful Skills 13

Making Your Own PCBs
There are a number of techniques for making PCBs after you design one.
As I’ll discuss in Chapter 2, the most common method is a subtractive
approach, in which copper is selectively removed from a foil-clad phenolic
or epoxy/glass board to leave a pattern on the board. The copper can be
mechanically milled off, but if you want to make a PCB at home, the most
common—and least expensive—approach is to chemically etch the pattern.

When chemically etching a PCB, a circuit pattern is printed on the
blank board with a resist, a chemical that prevents the copper from being
removed by the etchant in treated areas. The etchant is an acid that attacks
the untreated copper on the clad board. Figure 0-15 shows a copper board’s
transition into a PCB.

make a “purpose-built” microcontroller board, which will likely require
multiple layers, a ground, and VCC plane, ExpressPCB will probably fill the
requirements.

To use the program, simply go to the ExpressPCB website, download
the free software, and install it. The ExpressPCB website has several tuto-
rials on using the software, which I recommend you take advantage of.
There is a companion free software program, ExpressSCH, which is a sche-
matic capture program for writing your own schematic diagrams. While
the features are not as well integrated as they could be, using the programs
together has helped with circuit design.

N o t e 	 All the PCB designs in this book have been prepared using ExpressPCB design software,
and they are all available at https://www.nostarch.com/arduinoplayground/. To
view or change the PCB drawings, you will have to download the software.

Another advantage of using ExpressPCB is that you can take the same
file you develop for making the circuit board yourself and send it out to
the company’s factory for finishing. I did that for a few of the projects in
this book—in most cases, after making my own and wanting to clean up
the board. I found the results more than satisfactory. The factory-prepared
boards offer plated-through holes—if you build your own double-sided
boards, soldering on both sides of the board is necessary. They also include
a solder-plate finish and can be made with a solder-resistant coating and
silkscreen image printed on the board. Figure 0-13 shows a board I made
using ExpressPCB.

Figure 0-13: A professionally finished PCB, with solder-resistant coating and
silkscreening. I used this board to make the Ballistic Chronograph in Chapter 8.

A Tip for M anu fac t uring Mult iple Dif f eren t Board s

You can use ExpressPCB’s MiniBoard service to make more than one board for
very little cost. The mandatory size for a board to qualify as a MiniBoard—
and thus, to get the discount—is 3.8×2.5 inches, and when you bring up the
program, a yellow guide box automatically displays an area of that size. In
preparing PCBs such as the one in Figure 0-14, I combined several smaller
boards into one large “board” by copying and pasting the small boards into
the maximum size for the MiniBoard price.

Figure 0-14: Three different boards for one MiniBoard order. The board for
the Ballistic Chronograph is on the top left, and the pH Meter’s is on the bot-
tom. The top right is for an optical tachometer, which didn’t make it into the
book. For one price, you get three copies of each board. All you have to do
is cut them apart.

14 Chapter 0

Figure 0-15: From left to right: an untreated, scrubbed copper-clad board; the board with resist printed on it;
and the etched board without its holes drilled

In the old days, making a PCB was a tedious and messy job—particularly
for a hobbyist. First, you would have to lay out the PCB pattern, which until
not long ago, was done with tape on an acetate sheet with a light table.
Then, you’d clean the copper-clad board and whirl on the photo resist.
This needed to be exposed to UV light and developed with carbon tetra-
chloride (CCl4), which is not so good for you, or trichloroethylene (C2HCl3),
which is not much better. After that, you’d begin the messy etching process
with ferric chloride (FeCl3) or ammonium persulfate [(NH4)2S2O8]. With all
those steps, you could usually count on spending a good part of a day produc-
ing one board.

Today, that’s all changed. With today’s contemporary PCB software, you
can frequently lay out a pattern for a relatively simple single-sided or even
double-sided board in less than an hour, depending on its complexity. From
there, the process gets even easier.

Applying the Pattern
If you want to learn to etch your own PCBs, go to the PulsarProFX website
(http://www.pcbfx.com/), which has the tools you need to put an image on a
copper-clad board easily. Pulsar’s PCB Fab-in-a-Box product is a complete
kit that contains all you need to get going and make several boards. One
key ingredient is a special paper that you print on with a laser printer and
that uses heat to transfer the image to the copper-clad board. The whole
fabrication process—before drilling the holes—almost never takes more
than an hour, unless you’re running low on etchant, which slows the etch-
ing time.

Apart from the items in the Pulsar kit, the only tools needed are:

•	 A laser printer

•	 A plastic laminator (Pulsar suggests using a GBC laminator, but I’ve
used an Office Depot brand unit for years, and it works fine.)

•	 A water bath

Setting Up and Useful Skills 15

The procedure for applying a PCB pattern to a copper-clad board is
relatively simple:

1.	 Design the pattern on a computer using a PCB layout program, such as
ExpressPCB.

2.	 Print the image on the special paper provided by Pulsar with a laser
printer, not an inkjet. The laser ink is a polymer compound that melts
when heated and partially bonds to the paper, leaving your image on
the paper. The paper, when reheated on the blank PC board, allows for
easy transfer of the image.

3.	 Transfer the image from the paper directly to a clean copper-clad
board, using an inexpensive office laminating machine.

The thermal ink on the paper becomes the resist on the copper-clad
board. Pulsar provides an additional, thin film layer thermally bonded to
the laser-jet ink, but the ink alone will resist the etchant.

Etching the Board
While copper is not a highly active metal, there are several replacement
reactions that etch it effectively. However, many of the resulting byproducts
are somewhat toxic, and almost all of them result in materials that have to
be discarded or recycled in a special way because they are extremely harm-
ful to the environment. Most copper salts are strong poisons for a variety of
plants and animals, including humans.

For a better etching method, I recommend an Instructables page called
“Stop Using Ferric Chloride Etchant (A Better Solution),” which you can find
at https://www.instructables.com/id/Stop-using-Ferric-Chloride-etchant!--A-better-etc/.
Read the environmental and personal safety warnings in this tutorial care-
fully before mixing your etchant.

The system described in this tutorial uses standard household chemi-
cals: hydrogen peroxide (H2O2) and muriatic acid (essentially hydrochloric
acid, HCl). The process is far more environmentally friendly than the old
ferric chloride or ammonium persulfate techniques. You can also regenerate
the described solution without having to discard the old solution because it
actually uses copper—that is, copper chloride in aqueous hydrochloric acid
solution—to dissolve the copper.

In addition to the etchant, you will need a vessel or container to etch
the board in. For very small- and medium-sized boards, it’s possible to use a
cylindrical container, such as the beaker in Figure 0-16.

With your etchant in a safe container, all that’s left is to put the PCB
in the etchant and take the PCB out when the unwanted copper is gone. In
the scenario in Figure 0-16, the circuit board is dipped in and out of the
etching solution. Note that the beaker is sitting on a hot plate. Heating the
solution accelerates the etching process, but be sure to keep the tempera-
ture between 100 and 120°F.

For larger boards, some kind of pan can be used. If you tip the pan, the
etchant flows over the board, as illustrated in Figure 0-17.

http://www.instructables.com/id/Stop-using-Ferric-Chloride-etchant!--A-better-etc/

16 Chapter 0

Figure 0-16: Etching a small board in a beaker agitated with
the Automated Agitator for PCB Etching from Chapter 2. The
board is held using a plastic wire tie.

Figure 0-17: Etching larger boards in a container that is tipped by
the Automated Agitator for PCB Etching

Setting Up and Useful Skills 17

The pan can be glass or plastic. In the past, I’ve use a glass baking pan,
but the container in Figure 0-17 is plastic. Just be careful with the heat if
you use a plastic container. Temperatures in the recommended area should
be safe.

In both the etching situations shown, an Arduino-based agitator (see
Chapter 2 to build the project) makes etching go even faster. The agitator
provides a simple, mechanical way to agitate the etchant and speed up the
process.

Drilling the Board
Etching only removes copper, so unless you are making a single-sided, all
surface-mount board, you will have to manually drill holes for your compo-
nents. Drilling the PCB can be tedious depending on your equipment and
the number of holes.

In my early days making
boards, I used a Dremel tool free-
hand with a #66 drill. For small
projects, hand-drilling is fine, but
it’s easier to use a drill press for
larger ones.

If you already own a Dremel
tool, then you’re in luck. For
under $40, depending on where
you buy it, a Dremel drill press
accessory works well for circuit
boards, as well as hundreds of
other tasks. If you don’t already
have a Dremel tool, you can get
one of those for around $30 or
less if you shop around. There are
a variety of other high-speed drill
and drill press combinations avail-
able at relatively low prices, too.
Check with Harbor Freight and
other suppliers of imported prod-
ucts on the web.

If you plan to produce a num-
ber of PCBs, I suggest a dedicated
drill press rather than a drill press
attachment. There are inexpen-
sive units that run on low-voltage
supplies as well as high-priced
units, such as the Electro-Mechano
pictured in Figure 0-18, which is
designed exclusively for drilling
small holes in jewelry and PCBs.
Just pick one that suits your needs.

Figure 0-18: The small Electro-Mechano drill
press I use for drilling PCBs

18 Chapter 0

You’ll need small drill bits to drill the PCB. I recommend an assortment of
10 tungsten-carbide drills with 1/8-inch shanks, which are available from
Electronic Goldmine (part #G15421). A similar assortment is available from
Amazon, and I have purchased several sets of these at very modest prices.

Connectors Used in This Book
Throughout this book, I’ve tried to simplify the use of connectors and mini-
mize the number of different connectors used. But whether you make your
own PCBs or not, you will always need some way to interconnect modules
like LCDs, I2C adaptors, sensors, and so on; and sometimes you will have to
assemble your own connectors.

The connectors I use quite frequently are a family of connectors on
0.100-inch centers, a standard that works both for male and female headers
on PCBs and for stand-alone connectors for some cable assemblies. While the
units I use in this book were purchased from Pololu Robotics and Electronics
(https://www.pololu.com/), the same or similar units are available from many
other suppliers, including Jameco, Newark, Mouser, Digi-Key, and so on.

Figure 0-19 shows a few basic connector configurations I’ve used.

Male crimp pins Female crimp pins

15-pin female header

4-pin right-angle
header

Single connector housing

Quad connector housing 4-pin male header

Figure 0-19: A few basic connectors

The male and female crimp connectors are the workhorses in most
cables I make. However, these connectors must be crimped onto the wire
they connect. To crimp a pin, you can use a professional crimping tool (see
Figure 0-20), which results in a nicely finished crimp (see Figure 0-21).

Setting Up and Useful Skills 19

Figure 0-20: Crimping tool used to crimp 0.100 crimp connectors to 26-,
28-, and 30-gauge wire

Figure 0-21: A male crimp connector properly crimped using the crimping tool

The crimper that Pololu sells for its crimp connectors is relatively easy
to use and makes a nice solid crimp, but it is a bit pricey at around $30. If
you don’t want to buy a crimping tool, you can crimp the connectors with
a small pair of pliers. The resulting connection may not be as pretty, but it
should work just as well. Figure 0-22 shows a cable I crimped using pliers.

Figure 0-22: A male connector identical to the one in Figure 0-21 that was crimped by
hand with a pair of pliers. Both fit snugly in the connector housing and work well.

20 Chapter 0

You can create cables that plug into male headers with female crimp
pins. These are useful for connecting parts of a PCB with a cable and for
connecting an Arduino board to a shield.

Headers and housings are available in sizes from a single-pin wide up to
10 pins, 15 pins, and beyond. Most projects in this book that involve hand-
made connectors use 2- and 4-pin connectors.

Using SOICs
Making connectors for through-hole headers is fine, but through-hole inte-
grated circuits with pins on 0.100-inch centers are becoming harder to get.
While manufacturers continue to make many ICs in the older format, new
designs are often available only as surface-mount components. These new
packages are known as small-outline integrated circuits (SOICs). Figure 0-23
shows two SOIC components next to an 8-pin DIP IC, for a size comparison.

Figure 0-23: A standard DIP package (top) compared to two tiny SMD ICs, a 5-pin Linear
Technology LTC1799 in a TSOT-23 package (middle) and a 3-pin Maxim MAX7375AUR
in a SOT-23 package (bottom), next to a dime for scale

Setting Up and Useful Skills 21

What Are SMT Devices?
The two non-DIP ICs shown in Figure 0-23 are surface-mount technology
(SMT) devices. SMT devices are soldered directly to the surface of a PCB
instead of with their pins protruding through holes in the bottom. The
advantage of SMT is that the devices can be made a lot smaller and placed
in close proximity to each other, resulting in a more compact device. Many
SMT components have 0.95 mm (0.0374-inch) centers or smaller, which
doesn’t match up to the 0.100-inch centered parts discussed so far.

Using SMT components also reduces wiring lengths, which can be criti-
cal at high frequencies. Many circuit boards have multiple layers (projects
in this book have a maximum of two layers), and connections between
layers were formerly made with holes for the pins on the ICs. These con-
nections are now more commonly made with vias, which are small, plated-
through holes in the board. Automated pick-and-place equipment is now
concentrating on SMT devices, too. One day, resistors, capacitors, induc-
tors, LEDs, fuses, and so on will likely be available only in surface-mount
configurations, but it will probably take a while.

The SMT packages that I talk about in this book are leaded—that is,
the package itself has leads protruding from it, even though the leads are
not designed to go through holes in the PCB. Leaded ICs come in a vari-
ety of configurations with pins at different spacing, from relatively sparse
leads—like the two SMT components in Figure 0-23—to ICs with hundreds
of leads.

N o t e 	 This book avoids certain SMT packages, such as the ultra-small packages with direct-
connect patches, where the chip connects directly to the PCB (called chip-on-board),
and ball-grid arrays, where the connection is a controlled-collapse solder bump on the
bottom of the package.

The Solder Paste Method
Using leaded SMT chips leaves you a couple of options. One is to design
a PCB with the correct pads for the SOIC footprint and solder the IC
directly to the PCB. Soldering an SOIC component involves applying sol-
der paste and heating the board itself. While this is a viable approach (and
a fair amount of tutorials on the web cover it), populating the board can
be difficult—particularly if the board has both through-hole and SMT
devices. Unless you have a stencil for depositing the solder paste, the paste
has to be applied manually, usually with a syringe and sometimes with a
sharp toothpick or dental pick. Figure 0-24 shows a set of tools I have used
for this process.

Several online suppliers offer solder paste in syringes at reasonable
prices. Most of the solder paste compounds have a melting point between
300 and 470°F (some less), so boards can be soldered in a toaster oven or
in a container on a hot plate.

22 Chapter 0

SOIC

Adapter
board

Figure 0-24: Chip Quik solder, a head-mounted magnifier, a dental pick, tweezers, an
adapter board, and an SOIC (the speck next to the tweezers), ready for mounting

The solder paste that I use is Chip Quik. It’s relatively inexpensive, comes
in its own syringe with a tip, and has a melting point of only 138°C, or 281°F.
While the tip could be a little smaller, it has worked for most applications.
Chip Quik’s low melting point makes soldering the board in a toaster oven
or on a hot plate easy but could conceivably be a problem otherwise: in a
high-current application, a solder joint could heat up enough to melt the
solder. But with the voltage, current, and signal levels in this book, I don’t
expect this to be a problem.

After the solder paste is applied, the components can be carefully
placed on the paste with a pair of tweezers and a steady hand. I also use a
head-mounted magnifier so I can see the connections. When the chip is set
in place, all that remains is heating the assembly to the melting point of the
solder, and voilà—the chore is done.

If you opt to heat the board in a standard toaster oven rather than buy-
ing a specialized SMT oven, just don’t use the same toaster oven you use to
cook food. Many solders still contain lead, which has been deemed not-so-
good for you. Flux materials (present in the solder paste to make the solder
flow more easily) and binders also contain certain volatile compounds that
may be unhealthy if ingested.

You can also put smaller boards in a small, clean metal can. Then, place
the can on a hot plate, and set a small scrap piece of steel (aluminum will
also work) on top of the can to hold the heat in. When the solder paste has
melted, remove the heat. The process usually takes only a few minutes.

For someone like me with fat fingers, 0.95 mm is pretty small, whether
applying solder paste, placing a component, or soldering a leaded SMT
component directly. The process has, on occasion, taken me several tries.
If you’re not quite ready to try the solder paste solution directly on your
main PCB, consider buying an adapter board to convert SMTs to conven-
tional 0.100-inch center through-hole mounting.

Setting Up and Useful Skills 23

Several vendors offer small adapter boards that convert from an SOIC
package to DIPs with 0.100-inch centers. The adapter board in Figure 0-25
is from Futurlec (http://www.futurlec.com/). Futurlec adapter boards go for
all of $0.28 each, so I ordered a variety, including those for 8-, 14-, 16-, and
18-pin SOICs.

Figure 0-25: Futurlec 6PINSO23 adapter board

The best soldering solution, even with the adapter, is to use solder paste
and an oven (or a can, as I just described). But if you don’t have access to
the materials for that technique, you can always solder the SOIC compo-
nent directly.

Soldering Directly
Soldering an SOIC component directly is a little tricky. Doing so requires a
soldering iron with a fine tip, though I used the tip I use for everything else.
(I believe mine is 0.7 mm.) Here’s how this approach works:

1.	 First, place male headers in a breadboard with the adapter on top, and
solder them to make a stable platform (see Figure 0-26).

Figure 0-26: Adapter board with stakes installed and plugged into a bread
board for soldering the IC. The particles shown are residue from the solder
and flux, which I later removed using alcohol and a Q-tip swab.

24 Chapter 0

2.	 Even though the adapter has solder plate on the copper, it’s not thick
enough to secure the leads of the IC. More solder is needed, so care-
fully melt a thin layer of solder on only one pad. (Often, I place too
big a blob of solder and have to remove it with solder wick, but that too
works out fine, as it still leaves a thin coating of solder on the pad itself.)

3.	 Place the component on the adapter board, hold it down securely (I
apply pressure with a dental pick), and put the hot iron on the lead that
has the solder under it.

4.	 Once the first leg is secure, it holds the device in place, and you can
carefully solder the other terminals with the iron.

Figure 0-27 shows a board I soldered this way. It may not look real
pretty, but it works.

Figure 0-27: A completed adapter board with the
male headers installed, the chip soldered, and a
decoupling capacitor soldered across two of the
pins. This is the cleaned-up version of Figure 0-26.

A completed adapter board like the one in Figure 0-27 can then be
mounted on a conventional through-hole board with holes on 0.100-inch
centers. I used this technique on the Ballistic Chronograph (Chapter 8)
and Square-Wave Generator (Chapter 9) projects in this book.

Closing Thoughts
With the knowledge in this chapter and some previous electronics experi-
ence, you are ready to tackle any project in this book. I will cover other
important techniques and information on an as-needed basis throughout.

1
T h e R eac t ion - Time M ac h ine

In this chapter, I will show you how to
build a time machine—that is, a Reaction-

Time Machine. I’d love to say that this
project will bring you “back to the future,”

but alas, it won’t. The “time” it’s looking at is the time
it takes you to react to a stimulus, which makes for a
fun game. This project is designed to accurately mea-
sure an individual’s reaction time and provide an area
for comments on the level of the individual’s perfor-
mance (see Figure 1-1). There is also plenty of room
to personalize the game to make it even more fun for
you, your friends, and your family.

26 Chapter 1

Figure 1-1: Completed Reaction-Time Machine

Required Tools
Soldering iron and solder

Drill and drill bits

Mounting tape

Wire cutters

Parts List
This project has one of the smallest parts counts of all the projects in this
book, but don’t let that attenuate its value for you. My family and friends
have enjoyed playing the game repeatedly, and it’s portable, so you can take
it with you to get-togethers and other events.

Here’s what you’ll need:

One Arduino Nano or clone

Two SPST momentary switches (preferably one with a red button and
one with a button of a different color)

One SPST toggle switch

One red LED

Stop button

The Reaction-Time Machine 27

Two 10-kilohm resistors

One 470-ohm resistor

(Optional) One audible annunciator, Mallory Sonalert or similar

One 4×20 LCD

One I2C adapter, if not included with the LCD (see “Affixing the I2C
Board to the LCD” on page 3)

N o t e 	 I purchased a 16×2 LCD and its external I 2C board separately and soldered the
two together. However, many online vendors offer the same display and I 2C adapter
already soldered for about the same price or less than the two boards separately. Check
eBay in particular.

One 9V battery

One 9V battery clip

One 3.5 mm jack (if remote switch is used)

One Hammond 1591 BTCL enclosure

28-or 30-gauge hookup wire

22-gauge solid conductor wire

Downloads
Before you start this project, check the following resource files for this book
at https://www.nostarch.com/arduinoplayground/:

Sketch file  Reaction.ino

Drilling template for case  ReactionEnclosure.pdf

Reaction vs. Reflex
People often confuse reactions and reflexes, so I will start by defining both.
Reflexes are involuntary, automatic responses to a stimulus. In a reflex action,
the stimulus bypasses the brain and travels from the source of the stimulus
to the spinal cord and back to the receptor that controls the response, with-
out any cognitive acknowledgment. (Though I know many people for whom
almost all stimuli—and information—seem to bypass the brain, often just
getting lost instead.) Think of the doctor hitting your knee with a patellar
hammer to trigger your knee-jerk reflex.

Reactions, on the other hand, take the stimulus to the brain to be pro-
cessed, and then a return reaction travels to a receptor to result in some
motor action. This process takes somewhat longer than a typical reflex,
though some athletes are said to have reaction times so fast that it’s possible
their response is more similar to a reflex than a reaction.

28 Chapter 1

N O T E 	 Sports Illustrated has done interesting work in this area, with eye-opening articles
on baseball players and other athletes who have what appear to be exceptional reac-
tion times.

How Does the Game Work?
The Reaction-Time Machine game measures how long it takes an individual
to press a button in response to a visual stimulus—in this case an LED. With
a minor modification, you can add an auditory stimulus to the game: simply
replace the LED with an audible annunciator, such as a Mallory Sonalert.
Reaction time is measured in milliseconds or seconds (your choice), and it
is the time between the moment the stimulus is activated and the moment
the participant presses the button.

Measuring Time with the Arduino Nano
While there are many ways to measure elapsed time, this project takes advan-
tage of the Arduino Nano’s ability to keep accurate time. Microcontrollers
keep time exceptionally well, and they measure the time that elapses between
one input and another with a minimum latency. In addition to timing your
reactions, the Nano shows the result on an LCD.

The Nano does almost all of the work in this project; the other compo-
nents are basically passive. After testing some early builds, I added features to
the sketch to make the game more interesting and accurate. For example, I
initially used a simple pushbutton to reset the Nano and start a counter. The
participant would press the red stop button as soon as the LCD indicated so,
and the Nano measured the time between pressing the reset and stop but-
tons. I found, however, that the player could anticipate the reset button being
pushed and come up with some amazing reaction times.

His tory of R eac t ion-Time De v ice s

Over the years, there have been many devices to measure reaction time. One
of the simplest I remember from years ago required you to keep your fingers
on either side of a ruler held by another person in mid-air. When the ruler was
dropped, you would see how far it traveled before you could grasp it. The dis-
tance was translated to time using the algebraic equation

S AT=
1
2

2,

where S is the distance traveled, A is the acceleration due to gravity, and T
is the reaction time. After you build this project, try both the ruler test and the
Reaction-Time Machine to see how close your times are between devices.

The Reaction-Time Machine 29

To prevent the player from anticipating when the stimulus is about to
occur, I had the Nano start the timer on a delay instead. The version in this
book generates a random delay from when the reset button is depressed,
activates the stimulus after the random delay, and counts the time from the
stimulus to the moment the participant responds by depressing the stop
button. That solved one problem.

Then, one of the participants tried to jump the gun and get an early
start by holding down the stop button. I solved this problem by setting
a minimum reaction time in the sketch. Any time under that minimum
throws an error, and the LCD displays “Jumped the Gun” to indicate that
the player pressed the button too soon.

I used a relatively large display—4 lines with 20 characters each—so
there would be enough room to display the reflex time and some commen-
tary on the relative prowess of the player. You can make your commentary as
funny or serious as you want, but it must not exceed 60 characters in length—
that is, three lines of 20 characters each. While I leave the commentary up to
you, the sketch for this project includes some ideas that I used when putting it
together. You can always edit the commentary and reload the sketch to show
comments specific to a set of users, like friends or relatives.

Expected Speed Ranges
Most individuals’ reaction times seem to vary greatly, based on the small
sample I tested. Interestingly, age doesn’t seem to be a factor. The average
reaction time was around 200 milliseconds, and that is the average reaction
time identified by many researchers.

The fastest response of anyone I sampled was 105 milliseconds; how-
ever, the individual was not able to repeat that performance. Several indi-
viduals scored between 105 and 125 milliseconds, but not consistently.
Significantly lower reaction times may well be anomalous or the result
of an individual actually anticipating the stimulus. My players’ failure to
repeat extremely fast reaction times would tend to bolster that idea. (I
wouldn’t want to accuse anyone of successfully pre-guessing the release
moment.)

The Schematic
While the display could have been wired directly, using the I2C inter
connect made it a lot simpler and reduced the interface to only four wires:
positive, ground, data, and clock (see Figure 1-2).

The only components needed are the Nano, three switches (one toggle
switch for power and two momentary pushbutton switches for activate and
reset), an LED, the display, and three resistors. Despite the relatively sparse
parts count, the project performs elegantly.

30 Chapter 1

Figure 1-2: Schematic diagram of the Reaction-Time Machine

The Breadboard
As is the case for most of my Arduino projects, the first step is to prepare a
breadboard to prove the concept and test the sketch. Here’s how to wire up
the breadboard:

1.	 Connect the red positive rails on the breadboard together.

2.	 Connect the blue negative rails on the breadboard together.

3.	 Insert the Arduino Nano (or clone) in the breadboard, leaving two rows
on one side and three on the other. (If the Nano does not come with
stakes soldered in, see “Preparing the Arduino Board” on page 2.)

4.	 Connect the 5V terminal on the Nano to the red positive rail on the
breadboard.

The Reaction-Time Machine 31

5.	 Connect the GND terminal on the Nano to the blue negative rail on
the breadboard.

6.	 Connect the negative wire from the battery connector to the blue nega-
tive rail. Remember that the breadboard has no switch, so you must
disconnect the battery to turn it off.

7.	 Connect the positive lead from the battery connector to VIN on the
Nano. (Do not connect the positive terminal of the battery to the red
positive rail—it could permanently damage the Nano.)

8.	 Attach 5-inch wires to two normally open momentary pushbutton
switches. (I use 22-gauge solid conductor wire so it can plug in to the
breadboard directly.)

9.	 Prepare a wire harness for the LCD (see “Affixing the I2C Board to the
LCD” on page 3).

10.	 Connect the red wire from the LCD to the red positive rail on the
breadboard (5V) and the black wire from the LCD to the blue nega-
tive rail.

11.	 Insert the yellow wire from the display (SDA) to pin A4 on the Nano.

12.	 Insert the green wire from the display (SCL) to pin A5 on the Nano.

13.	 Connect one side of each pushbutton switch to the blue negative rail.

14.	 Connect the other side of the red reaction switch (SW2) to pin D7 on
the Nano.

15.	 Connect the other side of the yellow reset switch (SW1) to pin D2 on
the Nano.

16.	 Connect a 10-kilohm resistor from pin D7 on the Nano to the red posi-
tive rail.

17.	 Connect a 10-kilohm resistor from pin D2 on the Nano to the red posi-
tive rail.

18.	 Connect the anode side of the LED (the longer leg) to the red positive
rail and the cathode side to an empty row on the breadboard.

19.	 Connect a 470-ohm resistor from the cathode side of the LED to pin D4
on the Nano.

Upload the Reaction.ino sketch to the Arduino Nano (see “Uploading
Sketches to Your Arduino” on page 5), and you should now be ready to
go. Figure 1-3 shows the breadboard laid out with the switches dangling
from their wires.

32 Chapter 1

Figure 1-3: The breadboard setup for the Reaction-Time Machine. Because there is no
on/off switch, you have to disconnect the battery to shut it off.

The Sketch
The sketch is the actual computer program that tells the Arduino what to do
and when to do it. It is written in a language of its own that comprises struc-
tures, variables, arrays, functions, and so on, which represent a recipe for the
microcontroller to follow. This language is converted into a sequence of zeros
and ones that are routed to various parts of the controller and can perform
storage, timing, comparison, arithmetic functions, and more.

The process of converting a computer language to a sequence of zeros
and ones is called compiling. The compiling routine in the Arduino Integrated
Development Environment (IDE) is activated when you click the Verify and
Compile buttons in the upper-left side of the Sketch window.

The sketch gets pretty long because of all the messages that can be
inserted when it checks the score; however, the basic operation uses only a
handful of code lines. You can use the scoring function as is, modify it, or
copy and paste it to make a new scoring function. As you’ll see in my mes-
sages options, I’ve had fun with it.

The following code has been truncated to minimize the number of lines.
However, you can simply go to https://www.nostarch.com/arduinoplayground/ to
download the entire sketch, which includes a number of messages.

/*
Includes score function, random number generation, false start
"jump the gun" indicator, and multiple messages spaced 10 ms apart

Mod for "jump the gun" gives response if time <70 ms
*/

The Reaction-Time Machine 33

#include <Wire.h> //Libraries included
#include <LiquidCrystal_I2C.h>

int start_time = 0;
int stop_time = 0;
int reacttime = 0;
int x;
int R;
int randnumber1;
int z;

LiquidCrystal_I2C lcd (0x3F, 20, 4); //Initiate LCD

void setup() {
 Serial.begin (9600);
 pinMode(2, INPUT);
 pinMode(4, OUTPUT);
 pinMode(7, INPUT);
 lcd.init();
 lcd.backlight();
}
//Begin function "score"
void score() {
 lcd.clear();
 lcd.print("Reaction Time ");
 lcd.print(reacttime);
 lcd.print(" ms");
 lcd.setCursor(0, 1);

 if((reacttime >= 105) && (reacttime < 135)) {
 lcd.print("Approaching Superman");
 lcd.setCursor(0, 2);
 lcd.print("but you can still do");
 lcd.setCursor(0, 3);
 lcd.print("a lot better");
 }

 if((reacttime >= 135) && (reacttime < 180)) {
 lcd.print("Superhero Status");
 lcd.setCursor(0, 2);
 lcd.print("but not yet");
 lcd.setCursor(0, 3);
 lcd.print("Superman");
 }

 if((reacttime >= 180) && (reacttime < 225)) {
 lcd.print("You are trying ??");
 lcd.setCursor(0, 2);
 lcd.print("but not hard enough");
 lcd.setCursor(0, 3);
 lcd.print("still a loser");
 }

34 Chapter 1

 if(reacttime > 225) {
 lcd.print("Lost your touch");
 lcd.setCursor(0, 2);
 lcd.print("If you ever had it");
 lcd.setCursor(0, 3);
 lcd.print("on the border of wimpy");
 }
}

//Begin main program
void loop() {
 digitalWrite(4, HIGH);
 lcd.clear();
 lcd.print("System is Armed");
 delay(1000);
 lcd.setCursor(0, 1);
 lcd.print(" READY ");
 lcd.setCursor(0, 2);
 lcd.print(" Push Red Button");
 lcd.setCursor(0, 3);
 lcd.print("When Red lamp lights");

 randnumber1 = random(5, 25); //Generate random number between 5 and 25
 R = randnumber1;
 for(x = 0; x < R; x++);
 delay(5000);
 if(x == R) {
 digitalWrite(4, LOW); //Turn on start lamp
 start_time = millis(); //Initiate timer
 lcd.clear();
 lcd.print("Mash React Button");
 lcd.setCursor(0, 1);
 lcd.print(" ");
 lcd.setCursor(0, 2);
 lcd.print(" ");
 lcd.setCursor(0, 3);
 lcd.print(" ");

 while(digitalRead(7) == 1); //Wait for response

 stop_time = millis(); //Complete timing cycle
 }

 reacttime = stop_time - start_time;

 if(reacttime < 70) { //Jump the gun indicator
 lcd.clear();
 lcd.setCursor(0, 0);
 lcd.print("Too anxious. You");
 lcd.setCursor(0, 1);
 lcd.print("(Jumped the Gun)");
 lcd.setCursor(0, 3);
 lcd.print("Could be Fatal!");
 }
 score();

The Reaction-Time Machine 35

 Halt:
 while(digitalRead(2) == 1);
}

The #include lines initiate the libraries: the I2C library, Wire.h, establishes
the rules for I2C communications, and the LiquidCrystal library allows the
Arduino to control LCDs. Then, we define the seven variables used to calcu-
late reaction time. Next, setup() sets up the serial communication—in case
you want to adjust the code and view it on the serial monitor—and defines
various pins as inputs and outputs. Inputs are required for the reset and
stop buttons, and an output pin is defined for the LED that tells the player
when to press the stop button.

Customized Reaction Commentary
One of the most entertaining aspects of this project is the chance to get
creative when displaying the player’s reaction time. After setup(), the sketch
shows a function called score(), which lists different comments that could
be displayed on the LCD based on the participant’s response speed. A func-
tion may not necessarily be the most efficient approach (a look-up table or
other approach could also have been used), but it works well enough. I used
only a single scoring function in this iteration; however, you could easily
define as many as you like and change your sketch to select one. For example,
you might write a second function called score1() that could include a dif-
ferent set of comments and timing. Then, to switch from one function
to the other, you’d have to change only the line that calls score() to call
score1() instead.

To customize the sketch to include comments that could refer to your
own friends or family members, you can simply enter your comments in
place of the ones that are in my sketch. Don’t forget to keep the text you
want to print to the LCD in quotes so the Arduino recognizes the printable
characters.

A word on the reaction time itself: each comment is for a range of
reaction times of either 5 or 10 milliseconds. I selected these ranges arbi-
trarily. After you play with the Reaction-Time Machine for a bit, you may
wish to change these ranges based on the fact that users’ responses may
cluster around a particular area, such as from 195 to 225 milliseconds. I
found that many reaction times were in the 190 to 250 milliseconds range,
but your friends and family may be different. In that case, you can sepa-
rate the comments by as little as 1 or 2 milliseconds so players don’t keep
getting the same comment.

You can add as many comments as you wish, up to one comment per
millisecond. If you accidentally overlap the times, the sketch may not compile.

N O T E 	 You can find reaction-time measurement tools on the web if you want to see how
your game’s measurements compare. However, their accuracy is suspect because of
the latency in the PC itself.

36 Chapter 1

What Happens in the Loop
Now let’s look at the sketch’s loop. After void loop() initiates the start of the
program, the program calls digitalWrite(4, HIGH) to turn off the active light.
Then, the LCD screen is cleared, and text is written to the LCD to indicate
that the system is armed and ready for a player to push the reaction button as
soon as the red LED illuminates.

Next, a random number between 5 and 25 is generated, and the pro-
gram calls delay(5000) to count every five seconds from zero to the random
number. As soon as the random number is reached, three things happen:
first, the annunciator lamp illuminates; second, an internal timer is started
in the Nano; and third, the display then changes to read “Mash the React
Button.”

N O T E 	 A wider range of random numbers might make this game even more interesting for
players. You can easily experiment by changing the random number count, the delay,
or both.

The Nano is then instructed by while(digitalRead(7) == 1); to wait until
the reaction button is depressed. After the button is depressed, the Nano
calculates the reaction time with reacttime = stop_time - start_time. This
time will be displayed on the LCD and used to select the appropriate com-
ment in the score() function. Also, if the player’s reaction time is less than

On Wri t ing Code to Se t Up LCDs

There are a few points to note about the setup of the LCD. The sketch uses a
LiquidCrystal library, LiquidCrystal_I2C.h. If this library is not included in your
Arduino IDE, you can easily download it using the instructions provided in the
reference section on the Arduino website (http://www.arduino​.cc/reference/).

In addition, each I2C device comes with its own I2C address. This allows
several I2C devices to be used on a single serial line. Usually the device docu-
mentation provides the address—in the case of the I2C LCD I used, the address
was 0x3F. Thus, when the sketch initiates the LCD, the code looks like this:

LiquidCrystal_I2C lcd (0x3F, 20, 4);

However, different displays come with different addresses. If you have an
I2C device that you do not have an address for, you can easily find the address
by hooking up the device to an Arduino, downloading a scanner sketch from
http://playground.arduino.cc/Main/i2cScanner/, and running the sketch. The
scanner sketch should display the I2C address on the serial monitor.

Many projects in this book use similar code to work with an LCD, so refer
to this box any time you need a refresher on how that code works.

http://playground.arduino.cc/Main/I2cScanner

The Reaction-Time Machine 37

70 milliseconds at this point, then the conditional statement looking for a
participant to be “ jumping the gun” displays appropriate wording for the
LCD. The system is then halted and ready to be reset.

Otherwise, the serial print block is included in case you want to
adjust the code and view it on a serial monitor. It also helps for debugging
purposes.

Finally, the score() function is invoked, followed by the Halt command,
and the system is ready to have the reset button depressed.

Construction
Building the Reaction-Time Machine can be as simple or as complex as
you want. Initially, I placed all the components in the vinyl package that
a flexible wrist brace came in. I cut a hole for the display connectors with
an X-ACTO knife and punched the holes for the switches and LED with a
paper punch, followed by a tapered reamer. The result was somewhat crude,
as shown in Figure 1-4.

Figure 1-4: This was the Reaction-Time Machine’s original, primitive package, which
worked but turned out to be too flimsy. The vinyl was only 0.018 inches thick.

Preparing a Sturdy Case
Of course, a real case makes the game much sturdier, which is important
when you have competitive players mashing those buttons. To keep things
as simple as possible, I employed one of the clear ABS plastic cases from
Hammond (1591 BTCL). The clear top of the case allowed me to place the
display behind the cover rather than machining out a hole for the display to
protrude through. To mount the components, I simply drilled holes in the
cover according to the drawing in Figure 1-5.

38 Chapter 1

0.75 in

0.25 in 0.375 in

0.25 in

0.25 in

0.25 in

0.75 in

Figure 1-5: Drilling template for the Reaction-Time Machine

Quarter-inch holes work well for the momentary pushbutton switches,
as well as for the toggle switch and 3.5 mm jack. For the 10 mm LED, I used
a 3/8-inch drill and then reamed the hole out to make a tight fit. No other
mounting hardware for the LED was necessary.

N O T E 	 The 3.5 mm jack is wired in parallel to the execute switch. If you want to use an
external stand-alone switch, it can simply plug in to the jack. I abandoned the effort,
however, as most participants preferred to hold the box in their hands.

Mounting the Hardware
To mount the display to the case, I used two-sided 3M Indoor/Outdoor
Super Heavy Duty mounting tape. I cut two sections the size of the LCD
display’s end bezel sections and bonded the display directly to the cover.
The tape is difficult to remove, so make sure to place it right the first time.
I used the same tape to mount the Nano and the battery holder to the
back of the display. When mounting the display, I also used wire cutters
to carefully cut off the corners of the display circuit board so it would fit
far enough into the case without hitting the cover mounting pylons. See
Figure 1-6 for the finished product, viewed from the underside.

Once all the components are in place, all that remains is to solder the
components together, inserting the resistors where required. Take par-
ticular note of the I2C adapter, which is the black paddleboard just below
the switches and LED. While I could have bent the connectors and used a
header to wire that up, the case may not have closed, depending on how
carefully I crimped the connectors. Instead, I elected to solder the wires
directly. It was only four wires, and it worked without much trouble. Finally,
I printed out and attached labels from a Brother label maker. Figure 1-7
shows the completed unit.

The Reaction-Time Machine 39

Figure 1-6: This is the rear of the unit mounted in the ABS plastic enclosure. Notice that
the corners of the display (lower left and right) have been clipped off to fit around the
top mounting pylons. The 3.5 mm jack is not wired, as I decided not to use it in this
implementation.

Figure 1-7: The completed Reaction-Time Machine mounted in the Hammond 1591
BTCL clear plastic enclosure

Battery Arduino NanoLCD

I2C adapterPushbuttons LEDToggle3.5 mm jack

40 Chapter 1

Ideas for Customization
There are many variations you could implement to increase the versatility
and enjoyment of the Reaction-Time Machine. For example, as I developed
it, I connected a Hall effect switch to one of the analog inputs and modi-
fied the sketch to automatically decrease the reaction time by a percentage
when the Hall effect switch is activated. Then, I taped a small magnet to my
finger that sat opposite the Hall effect switch so as I grabbed the box, it acti-
vated the switch. When I played, my reaction time was reduced by around
20 percent, while others had an actual reading. Far be it from me to suggest
that readers try to hoodwink their adversaries, of course!

There are other modifications that can be made, such as incorporating
a tone sound, or beep, as the sketch counts up to the random number. This
can easily be accomplished with the addition of an annunciator and a few
lines of code. If you’re ingenious, there are other sound effects you could
add, such as a vulgar sound that plays when poor scores are achieved.

You can also exercise your brain and add code to the sketch that will
average scores after, for example, three tries before you reset it. I experi-
mented with many variations as I played with the device, but I would cau-
tion that you can spend a great deal of time for minimal advantage. Put the
game together and enjoy.

2
A n A u t oma t ed A gi t a t or

f or  P C B E t c h ing

This project uses the Arduino micro
controller to sense change in a motor’s

current drain (the rate at which the motor
uses electricity) and then reverse the direction

of the motor. There are numerous applications for the
measurement and use of current drain, and this project
provides an example method that can prove useful in
the development of future electronics projects.

“Making Your Own PCBs” on page 13 illustrates different ways to
design and make circuit boards at home for a very modest cost using read-
ily available and environmentally safe household products. Part of this
process includes etching the copper off a clad board. The process is more
efficient when the board is agitated in the etching solution, resulting in a
laminar flow of liquid across the surface of the board in both directions.
Depending on the chemical activity of the etchant and thickness of copper
to be etched, this process can take anywhere from 10 or 15 minutes to well

42 Chapter 2

over half an hour! Standing there stirring the pot is pretty boring, but you
can create a device that dunks the board in and out of the solution for you
(see Figure 2-1).

Etchant Etchant

Circuit board Circuit board

Line

Motor

Crank

Limit

Screw holding crank
Set screw

Hub to hold crank

Etching vessel

Line

Crank

Rotation

Limit Limit

Motor

Figure 2-1: Illustration of the motor, crank, and etching vessels set up to dip a circuit board
in and out of the etchant. While there are many ways to agitate a circuit board, dipping it
into and out of the etching solution works well, especially for small boards.

In this project, the Arduino is measuring the current from the motor.
When the motor’s rotation reaches the limit pin, it begins to stall, increas-
ing the current drain. The Arduino reacts to the increase in current by
reversing the motor.

Inspira t ion Be hind t he

Au toma t ic Motor R e v er s al Projec t

This project has its roots in a problem my friend had with a model train set
accessory. The accessory included a tramway to take make-believe skiers up
and down a miniature mountain. The original mechanism failed, so I created
a little circuit to drive a DC motor that moved the skiers up and down. My
idea was that when the tramcar reached either the top or bottom of its run, the
motor would slow down or stall, resulting in an increase in current drain. That
excessive current drain would reverse the motor by changing the polarity and
thereby send the car back the other way. To date, the skiers are still at the bot-
tom of the mountain because my friend and I never installed the board, but the
core circuit works well and promises other interesting applications.

An Automated Agitator for PCB Etching 43

The ability to receive an input, process the information, and produce
an output is the fundamental function of any microcontroller. In this case,
the Arduino starts the motor turning, waits until it detects the motor draw-
ing more current than usual, and then reverses the motor’s rotational direc-
tion. This simple function has a number of different applications: you could
use the voltage drop to provide a safety turn-off for an overloaded motor,
create a system to limit motion, and more.

Required Tools
One 6-32 tap

Drill and drill bits

Needle-nose pliers

Parts List
One Arduino Nano or clone

One SN754410 quad H-bridge IC, with socket if desired (Note that if you
use the socket, you lose whatever value the PCB offers as a heat sink.)

One printed circuit board (PCB) or perf board

One current-limiting resistor (You should have a selection available for
experimentation, from 1 ohm to 10 ohm. A 1/8 W resistor will work for
smaller motors, but get a 1/4 or 1/2 W resistor for larger loads.)

Two 330-ohm, 1/8 W resistors

Two LEDs, one red, one green

One LM7805 voltage regulator

One plastic enclosure (I recommend the Hammond 1591 XXATBU.)

Two 2-pin female headers to connect the motor to the shield

Four 4-pin female headers to plug the Nano into

One small solder lug

One 3.5 mm, 2-conductor jack and plug

One SPST toggle switch

One plug-in wall adapter with an output of 5 to 12V at 200 mA or better

One gear head motor (I used a 6V motor, the Amico 20 RPM 6VDC.)

Two M3×0.5 mm screws with threaded spacers

Limit wires, preferably 0.039 piano wire or spring wire

Scrap brass or aluminum

One 4-40 or 6-32 screw

44 Chapter 2

Downloads
Before you start this project, check the following resource files for this book
at https://www.nostarch.com/arduinoplayground/:

Sketch  Reverse.ino

Shield  Reverse.pcb

Template  MotorMount.pdf

How Automatic Motor Reversal Works
The Arduino is perfect for this project because it can control the whole
system, and it simplifies the problem of accommodating different motors
with different current requirements. Implementing the project in discrete
components would require several more components than the equivalent
Arduino circuit. Further, changing values for different motors or differ-
ent reversal thresholds would mean changing a lot of hardware, but with
Arduino, you just have to make a simple program change. The Arduino also
provides the flexibility to add delays at each end of the run if desired.

The motor circuit you’ll connect to the Arduino uses a resistor between
the power supply and the motor (see Figure 2-2). When the motor slows or
stalls, the current increases, creating a voltage drop across the resistor.

Motor

R
Voltage drop

measured here

Figure 2-2: A voltage is created across the resistor
between the positive supply and the input to the
motor. It is this voltage that triggers the operation
of the circuit.

An Automated Agitator for PCB Etching 45

The voltage drop across resistor R is the real-world input to the micro-
controller. In this project, that voltage drop is fed to the Arduino Nano’s two
analog input pins that straddle the dropping resistor. The microcontroller
digests this input and creates an output designated by your program.

N O T E 	 You could implement the circuit with only a single analog input, but that would
curtail some of the flexibility of the circuit—particularly if you use motors that run
at different voltages.

The Schematic
The agitator circuit feeds the voltage that appears across resistor R1 into
two of the Arduino’s analog input pins, A0 and A1, setting up the real-world
input (see Figure 2-3).

Figure 2-3: The completed schematic for this project shows the 5.6-ohm voltage-drop resistor (R1), the two
LEDs (D), the 330-ohm current-limiting resistors (R2 and R3), and the quad H-bridge (SN754410), of which
half is used.

All grounds in this circuit are connected together, and the voltage
across pins A0 and A1 is the voltage your program will use to decide
when to reverse the motor’s direction. Note that this voltage is not refer-
enced to either the positive or negative rail, but it must be between 0 and
5V to prevent damage to the microcontroller. If you get stuck on wiring the
H-Bridge, see “Using an H-Bridge” on page 48.

46 Chapter 2

The analog-to-digital converter (ADC) behind each analog pin pro-
vides 10 bits of resolution, which means the converter can deliver up to
1,024—that is, 210—different values, from 0 to 1,023, depending on the
input.

Thus, if the power supply is 5V, each increment is roughly

5 1023 0 0048V V÷ ≈ . .

Determining the Reversal Threshold
In order to write a program that tells the Arduino when to reverse your
motor, you have to determine that point yourself, with some math and a
little bit of faith.

First, determine the current drain of the motor you’re using. It’s usually
printed on the motor’s label. The motor I used has a current drain of about
40 milliamps (mA), or 40 thousandths of an ampere (see Figure 2-4). Now
we get into the heavy math. You’re going to have to use a formula known as
Ohm’s law to determine the voltage threshold to set in the sketch.

Figure 2-4: I used an Asian import motor, shown here with
one limit pin installed, that has demonstrated reliability and
performance. The screws are M3×0.05.

I used a 5.6-ohm resistor in series with my motor circuit. Using Ohm’s
law, which states that voltage equals current times resistance (V = IR, with
voltage in volts, current in amperes, and resistance in ohms), we’re able to
calculate that 40 mA times the resistance of 5.6 ohm is about 0.224V:

40
1000

5 6 0 224
 A

 V. .× =Ω

Now, go back to the ADC. It has 1,024 units to represent 5V, so each
unit represents 0.0049V. A little arithmetic reveals that the 0.224V dropped
represents about 46 units out of the 1,024:

0 224
0 0049

45 71
.

.
.

V
V per unit

units=

An Automated Agitator for PCB Etching 47

There are some estimates you have to take on faith—at least until you
confirm with a test. This is one. As a motor is slowed or stalled, the current
drain increases. Depending on the motor, the increase in current is typi-
cally somewhere between two and four times the normal current drain, but
possibly more.

N O T E 	 With no load (or minimal load), current drain on the motor is minimal. With a
usual running load, current can be four to five times the no-load current. With a
heavy load, current can be as much as 10 times that, depending on the motor design.

So according to our good-faith model, a good place to start setting the
threshold for reversing the motor would be in the area of 90 to 100 units of
the ADC’s 1,024 units.

Alternatively, you could use a digital multimeter to measure the exact
current drain first (see Figure 2-5). To use a multimeter to measure current
drain, set its indicator to 200 mA to start; you may need to set it as high as
10 A if the motor doesn’t move when you build the circuit described here.

Figure 2-5: Multimeters are handy for
many projects and useful to have around
the house. They’re available from a variety
of sources at a range of prices. I use this
cheap one from Electronic Goldmine, but
if you plan to do high-voltage experiments,
invest in a really good multimeter.

Build the circuit as shown in Figure 2-6, and then connect the red
lead of the multimeter to the power supply. Connect the black lead of the
multimeter to the motor lead to complete the circuit. If the reading is nega-
tive, reverse the red and black leads of the multimeter. Depending on your
power supply voltage and the motor’s voltage requirement, you may also
need to connect the motor to power through a voltage regulator circuit, as
described in “The Voltage Regulator” on page 58.

48 Chapter 2

Motor Digital multimeter
200 mA scale

Power supply/battery

Black lead Red lead

Positive terminalNegative terminal

Figure 2-6: Connection diagram for measuring the current drain of the motor

To check the current drain, hold the shaft of the motor to slow it, and
watch the readout on the multimeter. You can get an accurate indication of
the number of ADC steps by plugging your readout in to Ohm’s law, calcu-
lating the voltage, and converting into steps, as I did.

N O T E 	 In the sketch, I use a value of 100 as the threshold for reversing. You could also calcu-
late the absolute value of the voltage drop by multiplying 100 by 0.0049V:

100 0 0049 0 49steps V per step V× =. .

Remember, the exact threshold depends on the type of motor you
use. Different motors will have different current capabilities and may even
require a different value resistor. Also, note that the value of current drain
is not precise. The nature of permanent magnet motors is such that the cur-
rent drain under load will be a range, not an exact number.

As the current increases, the voltage drop increases until it reaches
the point where the microcontroller is instructed to do something. At that
point, the difference in analog voltage that appears between A0 and A1 is
above the preset threshold, which will set the Arduino into action. Once the
threshold is reached, the Arduino tells the H-bridge to reverse the current
to the motor.

Using an H-Bridge
You’ll likely encounter an H-bridge driver in future projects because it’s a
very versatile part and can serve numerous functions. There is quite a selec-
tion of H-bridge chips available, but I’ve been using the Texas Instruments
SN754410 quad H-bridge. It’s popular because it operates over a wide volt-
age range and is extremely flexible—and inexpensive. The logic operates at

An Automated Agitator for PCB Etching 49

a 5V level, while the drive can be as much as 36V with a continuous output
of 1 A (and a peak output of 2 A), making it capable of driving a wide variety
of hobby motors, solenoids, and even relays. It comes in a standard 16-pin
dual inline package (DIP). The DIP package was a longtime standard but is
slowly being replaced by newer types (see “Using SOICs” on page 20). It’s
the conventional centipede-looking circuit.

Figure 2-7 shows the pinout for the SN754410 H-bridge, and Table 2-1
shows its function table. You’ll find more information in Texas Instruments’
data sheet at http://www.ti.com/lit/ds/slrs007b/slrs007b.pdf.

16

15

14

13

12

11

10

 9

1

2

3

4

5

6

7

8

Heat sink
and ground

Heat sink
and ground

VCC1

4A

4Y

3Y

3A

3,4ENVCC2

2A

2Y

1Y

1A

1,2EN

Figure 2-7: The pinout for the SN754410 quad H-bridge chip
used in this project. Note that pin 1 is in the top-left corner of
the chip when viewed from the top with the notch pointing up.

Table 2-1: Function Table for the SN754410

Inputs Output (Y)

A EN

H H H

L H L

X L Z

According to the data sheet, in this function table, H stands for high
level, L stands for low level, X means the level is irrelevant to the circuit
behavior, and Z indicates high impedance, which turns the motor off.

The H-bridge is an elegant motor-control solution for several reasons.
It allows you to reverse the polarity from a single supply, and it provides for
different logic and control voltages. In addition, if both inputs of the dual
H-bridge are either high or low, there will be no output. The sketch takes
advantage of that in a function written to stop the motor. Other projects in
this volume also use this capability.

50 Chapter 2

The Breadboard
For most Arduino projects, I suggest building the circuit on a breadboard
first to make sure you’re going in the right direction and to prove your ini-
tial hypothesis. Use a standard breadboard and the plug-in wires that are
sold as accessories for the breadboard (see Figure 2-8).

Figure 2-8: Typical small breadboard and plug-in wires

Before you begin building the circuit on the breadboard, look over
your Arduino. Many Arduino boards come complete with the male headers
already soldered in place. However, that’s not always the case; some Asian
suppliers include the headers loose with the processor board. If your board
lacks headers, see “Preparing the Arduino Board” on page 2 for complete
instructions on attaching them.

Most breadboards include a red and blue stripe on the entire length of
each side of the board; the holes next to these stripes are used for power (+)
and ground (−), respectively. Before you hook up the circuit, use a wire to
connect the red column on the right to the red column on the left. Connect
the blue columns to each other, too.

Warning 	 Do not connect the red column to the blue column! This will cause a short circuit and
will burn out the electronics.

Figure 2-9 shows my breadboard for this project, and the schematic
from Figure 2-3 lays out the connections.

An Automated Agitator for PCB Etching 51

Figure 2-9: This is the breadboard I used as a proof-of-concept to make sure every-
thing worked as anticipated.

Warning 	 Don’t plug the Arduino in to the computer while it is actually receiving power from
the voltage regulator. This could burn out the Arduino.

I suggest prototyping your circuit as follows:

1.	 Insert the Nano board into the breadboard, leaving a couple of rows of
holes at one end.

2.	 Place a wire from the pin labeled 5V on the Nano (pin 27) to the red
positive rail on the breadboard.

3.	 Place a wire from GND on the Nano (pin 29) to the blue negative rail
on the breadboard.

4.	 Find three consecutive holes on the board where they will not connect
to anything and insert the three leads of the LM7805 into them.

5.	 The input lead of the LM7805 will go to the 9V power supply, the
ground of the LM7805 will go to the blue negative rail, and the out-
put of the chip will go to the red positive rail. (See Figure 2-10 for the
LM7805 pinout.)

Output

Ground
Input

Figure 2-10: Pinout of the LM7805 regulator

6.	 Insert the H-bridge into the breadboard with the notch facing the
Nano, and leave a couple of rows between the H-bridge and the Nano.

52 Chapter 2

7.	 Use a wire to connect pin 1 and pin 16 of the H-bridge together (see
Figure 2-7). Then, use another wire to connect pin 1 to the positive
connection on the breadboard. This connection from pins 1 and 16
provides the voltage to run the logic on the H-bridge and also to enable
the section of the H-bridge used.

8.	 Use a wire to connect pins 4 and 5 of the H-bridge, and then connect
them to the negative terminal on the breadboard. Running a wire from
either pin 4 or pin 5 to ground will do the trick.

9.	 Similarly, connect pins 12 and 13 of the H-bridge together, and connect
them to ground.

10.	 Use a wire to connect one side of the motor (it doesn’t matter which) to
pin 3 of the H-bridge, and connect pin 6 of the H-bridge to the other
side of the motor.

11.	 Connect digital pin D12 of the Nano to pin 2 of the H-bridge.

12.	 Connect digital pin D13 of the Nano to pin 7 of the H-bridge.

13.	 Connect one side of the 5.6-ohm resistor (R1) to pin 8 of the H-bridge.

14.	 Connect the other side of resistor R1 to the red positive rail on the
breadboard.

15.	 Insert a wire from pin 8 of the H-bridge to analog pin A0 of the Nano.

16.	 Insert a wire from the positive (red) connector to analog pin A1 of
the Nano.

17.	 Insert the positive side (long lead) of one LED to D12 of the Nano.

18.	 Insert the negative side of the LED into an empty row on the
breadboard.

19.	 From that row with the negative side of the LED, connect a 300-ohm
resistor (R2) to the blue negative rail.

20.	 Insert the positive side (long lead) of the second LED to D13 of
the Nano.

21.	 Insert the negative side of the second LED into an empty row on the
breadboard.

22.	 From that row with the negative side of the second LED, connect a 330-
ohm resistor (R3) to the blue negative rail.

The VCC2 supply drives the output to the motor. It goes from the posi-
tive side of the supply—the output pin of the regulator in the schematic—
through resistor R1 to pin 8 of the H-bridge. VCC2 becomes the low-voltage
side of resistor R1; it will have a lower voltage as the load on the motor
increases because the other end of the resistor is attached to the positive of
the power supply. The VCC2 supply voltage can be anywhere from the 5V
that the logic uses to the 36V limit of the H-bridge. For this project, I simply
tied the voltage-drop resistor directly to the 5V supply, which worked well
with a 6V motor.

The Nano’s D12 and D13 output pins drive the A inputs of the
H-bridge, while A0 and A1 inputs straddle the voltage-drop resistor, R1.

An Automated Agitator for PCB Etching 53

It’s this voltage-drop value that tells the Arduino to change the outputs
to instruct the H-bridge to reverse the motor. When output D13 is high
and D12 is low, output pin 2Y on the H-bridge becomes positive while 1Y
remains negative. When D12 is high and D13 is low, the reverse happens,
and 1Y becomes positive while 2Y stays negative. When both pins have high
or low output, they are at the same potential (or voltage), and the motor is
not driven. (Refer to the function table in the H-bridge chip’s data sheet, or
see Table 2-1.)

The Sketch
The following sketch is written so that when the motor reaches its limits
in one direction, both outputs go low, and when it reaches its limits in the
other direction, both outputs go high. When both outputs are either high
or low, there is no potential across the motor and it is stopped for a speci-
fied delay time. After the delay is satisfied, the motor starts in the other
direction. Because LEDs are wired to pins D12 and D13, you’ll also get a
visual indication. Both LEDs are illuminated when the motor pauses in
one direction, and both LEDs are off whe the motor pauses in the other
direction.

/* Sketch for the Automatic Motor Reversal Project
*/

//Identify pins that will not change
const int ledPin1 = 12; //LED1 in schematic
const int ledPin2 = 13; //LED2 in schematic
const int analog0 = A0;
const int analog1 = A1;
int analogValue0 = 0; //Identify variables for analog inputs
int analogValue1 = 0;
int analogdifference = 0;
int threshold = 100; //The threshold value calculated to stop the motor

int reading;
int state;
int previous = LOW;
int count = 0;
int numberstops = 250;
int time = 0; //The last time the motor reversed

//Amount of time to wait to get rid of the jitters when the motor reverses
int debounce = 400;

u void setup() { //This is the setup routine
//Initializes pins as input or output
 pinMode(analog0, INPUT);
 pinMode(analog1, INPUT);
 pinMode(ledPin1, OUTPUT);
 pinMode(ledPin2, OUTPUT);

54 Chapter 2

 Serial.begin(9600); //Was used in setting up the parameters
}

v void loop() { //This begins the processing section
 //Enter an endless do-nothing loop after the counter reaches the limit
 while(count > numberstops) {
 digitalWrite(ledPin1, LOW);
 digitalWrite(ledPin2, LOW);
 }

 analogValue0 = (analogRead(analog0)); //Read the analog values
 analogValue1 = (analogRead(analog1));

 //Setting up the analog difference
 analogdifference = analogValue1 - analogValue0; //This is the voltage drop
 //analogValue1 will be greater than analogValue0

 //These were added to view what was happening on the serial monitor
 Serial.print("count = ");
 Serial.println(count);
 Serial.print("analogdifference = ");
 Serial.println(analogdifference);
 Serial.println();
 Serial.print("numberstops = ");
 Serial.println(numberstops);

 //This comparator looks at the difference or drop across the resistor
 if(analogdifference > threshold) {

 reading = HIGH;
 }
 else {
 reading = LOW;
 }

 //Toggles the output and includes the debounce

y if(reading == HIGH && previous == LOW && millis() - time > debounce) {
 if(state == HIGH) {
 state = LOW;
 }
 else {
 state = HIGH;
 }
 //Increments the counter each time the motor reverses

z count++;
 time = millis();
 }

 //Writes the state to the output pins that drive the H-Bridge
 digitalWrite(ledPin1, state);
 digitalWrite(ledPin2, !state);

An Automated Agitator for PCB Etching 55

 previous = reading;

}

This sketch sets up human-understandable aliases for the pins the proj-
ect uses and adds convenient constants and variables for referencing analog
inputs and other key values. After the sketch defines and initializes the input
and output pins at , it starts the main loop at .

Inside the main loop, the sketch finds the voltage drop across the resis-
tor in terms of analog steps . At , the sketch determines whether the
reading was high or low. Threshold values from 100 to 120 work reliably for
the 6V, 20 RPM motor I used, but you may need to experiment to find the
right value for your motor. See “Determining the Reversal Threshold” on
page 46 for more on how to estimate the threshold value. The reading
at  dictates whether to reverse the motor.

When the sketch checks reading to see whether the motor needs revers-
ing, it also uses the debounce value to assure that a high reading wasn’t caused
by electrical noise created by the motor’s commutator or brushes during a
legitimate reversal. I set debounce to 400, but you may have to adjust that for
different motors. For larger motors specifically, this may need to be set a
little higher.

This sketch also includes a few functions that aren’t strictly necessary to
reversing the motor but are helpful when using the motor as a PCB agitator.
These aspects of the project may appeal to you in other applications, too, so
let’s look at them in more detail.

One of the things that I added was a counter to track the number of
times that the motor reversed. In the sketch, the count increment appears
at z as count++. In the project, when a certain value of count is reached, the

T he Dropping R e sis tor is Key to Sen sing Curren t

I’ve tried this reversing circuit with several similar motors, and I’ve only ever
needed to make a slight adjustment to the threshold value in the sketch. But
for a motor with extremely high or low current drain, you may need to antici-
pate a much different value for analogdifference and/or use a different drop-
ping resistor, which was R1 in the schematic. You might need to reduce the
value of the dropping resistor to something like 2.2 ohms, which then requires
a reduction in the value you compare analogdifference to.

For most small motors, the lower the value of the dropping resistor—which
is usually between 1 and 10 ohms—the better, as the analog difference tends
to be more stable. For other motors, experiment to find the resistor value that
works best.

56 Chapter 2

motor stops (if count = numberstops). If you wanted to set off an alarm, such
as an audible noisemaker, to tell you it’s finished, that can easily be accom-
plished by adding a line to write to one of the digital outputs. I set a maxi-
mum count value in the sketch, using numberstops = 250, so the motor will
reverse 250 times and then stop. That provides a little more than 15 min-
utes of etching time with the motor I’ve selected running at 5V, which
should be enough to etch most circuit boards.

When the maximum count is reached, the sketch enters the while loop
at the beginning, stopping the agitation. This basically stalls the processor,
and you have to hit the power switch to restart, or reset, the agitator. The
placement of this loop near the beginning of the software is just a reminder
that it’s there.

The thinking behind the count, optional alarm, and stop capabilities
is that a reminder to check on your board is helpful. If the board has com-
pleted etching, continued agitation would speed undercutting of the traces,
which is not a good thing because it weakens (and can break!) small copper
traces. On the other hand, if it fails to etch in a reasonable time, you might
need to refresh the etchant.

Mod: A djus table S top A moun t

If setting a fixed stop maximum in a sketch doesn’t leave you satisfied, try
connecting a potentiometer between power and ground with the adjust pin,
which is usually the center pin on the potentiometer, to the A2 input pin of the
Arduino. Then, set numberstops equal to the value of A2, which should range
from 0 to 1,023, depending on the position of the potentiometer wiper.

Here’s how the sketch would differ. First, change

int numberstops = 250;

to

int numberstops = setNumber;

Then, add the following:

int setNumber;
int analogPin2 = A2;
int analogValue2;
setNumber = analogRead(analogPin2);

Because the timing is relative, you could use a 270-degree rotation linear
potentiometer and make some rough markings on the enclosure to indicate the
number of counts.

An Automated Agitator for PCB Etching 57

The Shield
For this project, I recommend making a small PCB shield, which is basically
a host board designed to plug into the Arduino Nano. With a shield, your
motor reversal project can remain compact, and you can design and build it
with a minimum of effort.

PCB Layout
You could just solder the parts for your project directly to a piece of perfo-
rated project board, but I believe creating and populating the shield takes
less time than putting the parts on a perforated board and wiring them by
hand. You’ll also gain invaluable experience by preparing, etching, drill-
ing, and assembling your own PCB. And in the end, some projects are com-
plex enough that wiring by hand just won’t be an attractive option. (See
Figure 5-13 on page 148 for an example.)

To make my printed circuit layouts, I use a free software program
called ExpressPCB. Figure 2-11 shows my layout of the PCB.

Figure 2-11: This is the actual PCB pattern I used in the
project. The Arduino Nano can be soldered directly to
the board or can plug in if you use header connectors.

If you don’t want to lay out your own PCB but still want to make
the board, download the Reverse.pcb file from https://www.nostarch.com/
arduinoplayground/ and follow the directions in “Making Your Own PCBs”
on page 13. When you’ve made your PCB, just solder all the components
to it in the right places, and you’ll be done with the shield.

58 Chapter 2

Shield Design Notes
If you lay out your own shield, there are a few design factors you should
definitely keep in mind.

Analog Inputs

Be certain to connect the A1 and A0 inputs to the correct sides of resis-
tor R1, according to the schematic in Figure 2-3. A1 should attach to the
power supply side and A0 to the H-bridge side. In the sketch, to compare
the analog values, we take the difference as analogdifference = analogValue1 –
analogValue0, with analogValue1 as the input at the high end of the resistor. In
this case, analogValue0 is A0, and analogValue1 is A1.

Grounding and Heat Sink

Pins 4, 5, 12, and 13 are ground on the H-bridge, and they are also a heat
sink to keep the chip from overheating. A small area on the proposed shield
is included to increase the heat sink area. If you’re using a relatively small
motor—such as the 6V, 20 mA unit—no more heat sinking is required. If
you’re using a much larger motor or driving a heavy load, consider using
the second side of the PCB as a heat sink.

The Voltage Regulator

This project uses its own 5V regulator to supply power to the Nano. A 9V,
200 mA plug-in wall adapter is connected to the voltage regulator LM7805
on the shield, which reduces the voltage from about 9V to 5V. An external
regulator is included so a more powerful regulator than the one built into
the Nano can be used. Make sure to connect the pins of the regulator cor-
rectly (see Figure 2-10).

You could feed a 7.5V DC or 9V DC wall supply directly to the VIN pin
of the Nano and use the onboard regulator, which worked with my motor.
But if you use a larger motor—or higher-current LEDs—it might tax the
onboard regulator and could conceivably burn it out.

The higher the voltage of the power supply, the more work the regula-
tor has to do to bring it down to 5V. Overtaxing the regulator could cause
it to heat up and fail. For example, feeding the regulator 12V is probably
at the high end for 5V regulation. A 9V input is better, and a 7.5V input
is better yet. If the regulator chip gets warm, add a heat sink to the tab. A
small piece of aluminum is often sufficient, but a regular heat sink can be
used. And while it’s good to have the supply voltage as close to the output
voltage as possible, remember that the regulator needs at least 1V above
the regulated output to work, so it must be fed with at least 6V, which is a
5V-regulated output plus 1V. Input voltages above 12V are feasible, too, but
just be sure not to exceed the limits of the device.

An Automated Agitator for PCB Etching 59

Mod: Using a Higher Voltage

If you use a higher-voltage motor for this project, it will turn faster, have more
torque, and so on. But you can’t simply connect the higher voltage to the high
end of the dropping resistor connected to pin 8 of the H-bridge. That would
cause the voltage between both A0 and A1 and ground to exceed 5V, which
is hazardous to the health of the ATmega328 microcontroller on the Arduino.
(This is the only time that the voltage referenced to ground is important.) Thus,
a modification is required. Look at R1 in the schematic in Figure 2-12. The sup-
ply first goes to resistor R2; R2 joins with resistor R3, which goes to ground.

Figure 2-12: If you elect to use a higher voltage and drive
a faster motor, you will have to modify the circuit by adding
voltage dividers in front of both the A0 and A1 inputs.

To avoid damage to the Nano processor, you will want to keep the volt-
age that appears at that joining point under 5V, referenced to ground. The
easiest way to do this is to use a voltage divider. Two resistor pairs divide the
higher voltage: the first pair is R2 and R3; the second is R4 and R5. The value
of these resistors should be such that the output at the joining of each pair—R1
and R2, and R4 and R5—is somewhat less than 5V for whatever value of input
voltage you use.

(continued)

60 Chapter 2

Directional LEDs

Of course, what Arduino project would be complete without blinking
LEDs? As you’ll see in the schematic and on the shield PCB, I included
two LEDs: a red one for clockwise rotation and a green one for counter
clockwise rotation. But which direction belongs to which LED is your
choice: simply reverse the motor leads to change the LED status.

Construction
For this project, you’ll use the motor-reverse technique to create an agitator
that accelerates the etching of PCBs. To do this, you’ll suspend a PCB from
an Arduino-driven motor over etching solution, as shown in Figure 2-1. A
small enclosure will contain the Arduino Nano, the shield, the motor with
limit wires, direction LEDs, a power switch, and the power jack.

Use this formula:

V Vout in
R

R
= ×

+ R
2

1 2

and the schematic in Figure 2-13 to determine the values of the resistors to use
in a voltage-divider circuit.

For example, if you start with 9V and arbitrarily
select a 10-kilohm resistor in series, you would have to
shunt it with a 12.5-kilohm resistor to ground, accord-
ing to the calculator. The closest resistor I had was
12 kilohm, and it worked fine. If you can’t find a stan-
dard resistor to fit your needs, you can also combine
two standard values in parallel to achieve the value
you want with this formula:

R total R R
R R

=
×
+

1 2
1 2

If you don’t want to do the algebra yourself, you
could use one of the convenient online voltage-divider
calculators such as http://www.sengpielaudio.com/
calculator-paralresist.htm or http://www.raltron.com/
cust/tools/voltage_divider.asp. SparkFun also has an
excellent tutorial on voltage dividing, with a calcula-
tor of its own: http://learn.sparkfun.com/tutorials/
voltage-dividers/.

Ground

Vout

Vin

R1

R2

Figure 2-13: A
basic voltage
divider. To find
the resistors you
should use, plug
the values from
your own divider
into the formula
as if your divider
were this circuit.

An Automated Agitator for PCB Etching 61

After assembling the box, you just have to mount it somewhere above
your etching setup and attach the reverser, either directly to the PCB or to
a tray. I clamped my box to a cabinet door above my workspace, with a place
for the etching vessel below (see Figure 2-14). The entire system can be
assembled and disassembled quickly.

Figure 2-14: For larger PCBs, try etching in a tray for a more conventional
approach. Just attach the motor reverser to your tray to agitate the board
rather than using the reverser to dip the board in and out of the solution.

Construction of the rest of this project takes a little bit of patience and
perhaps some ingenuity in scavenging some of the parts required. You will
need a couple of M3 screws to mount the motor to the motor plate—in
this case, a small aluminum L bracket—and some limit wires, preferably
made of 0.039 piano or spring wire. You’ll also need a small block of scrap
brass or aluminum—round or rectangular, doesn’t matter—to attach to
the motor shaft and crank, a long 4-40 or 6-32 screw to act as the crank,
and an M3 spacer and solder lug to attach the agitator line to the crank.
Figure 2-15 shows the nearly-finished, unmounted product.

62 Chapter 2

Figure 2-15: Wire up your components and lay them out for a final test before
you put them in an enclosure. For the test, I held the motor in a clamp so the
crank was free to move. The regulator heat sink obscures much of the shield.

The Limit Wires
The limit wires will create resistance to the motor’s rotation by essentially
bumping into the motor crank. The point in the rotation where they strike
the crank is the limit of rotation. When the crank runs up against the limit
wire, the wires prevent the motor from turning and initiate the reversal.

I recommend piano or spring wire to provide a little spring as the crank
hits it at the extent of rotation. Use a pair of needle-nose pliers to bend two
pieces of the limit wire into shape (see Figure 2-16). These wires will fit on
the motor mount screws outside of the motor mounting bracket. You can
change the limit of rotation by loosening the screw and rotating the wire.

Figure 2-16: This is how the limit pins are formed.
A good pair of needle-nose pliers does the trick.

An Automated Agitator for PCB Etching 63

The Crank Bushing
The crank bushing is simply what transfers the rotation of the motor to the
crank. Figure 2-17 details the construction of the bushing, the spacer, and
the solder lug.

Drill with #36 and tap with 6-32 tap

Drill hole for motor shaft

Rectangular solid optional

Crank screw

Locks against motor shaft

Motor shaft

Locking nut
Drill with #36 drill and tap 6-32

Thread onto crank
M3 threaded spacer

M3 screw binds to crank

Bushing

Solder lugM3 threaded
spacer installed

Figure 2-17: The detail of the drive mechanism that transfers the rotation of the motor to
the lifting motion of the agitator

While there can be a number of different variations in your approach
to assembling this part of the project, here’s the sequence I used to put it
together:

1.	 Drill a hole for the motor shaft through the center of the bushing,
which can be a small piece of brass or aluminum round stock about
0.5 inches in diameter and 0.75 inches long. A rectangular piece will
work just as well. Use a drill that is as close to the size of the motor shaft
as possible. For example, if your motor shaft is 0.157 inches in diameter
like the one I used, then a 11/64-inch drill bit is close enough. It isn’t
important to get the hole exactly on center—just close.

2.	 In the bushing, perpendicular to the motor shaft hole, use a #36 drill
to drill a hole. Then, tap the hole you drilled so a long 6-32 screw can
serve double duty as a setscrew and crank. You can also use a sepa-
rate setscrew to move the crank farther from the motor, as I did in
Figure 2-18.

3.	 Thread the crank screw into the bushing so it bears tightly against
the motor shaft, and use a locking nut to hold the screw in place (see
Figure 2-18).

64 Chapter 2

Figure 2-18: A photograph detailing the head of the crank. Note the solder
lug used to hold the wire and the alligator stop clip on the left side.

4.	 At the end of the crank, you are ultimately
going to attach the line that will pull the PCB
in and out of the etchant. This fitting can be
just a nut, or even an alligator clip, attached
to the crank. However, in the detail, I used an
M3 hex female-female spacer that was 7 mm
long. I drilled clean through the spacer to
one side, starting on one of the flat surfaces
with the same #36 drill. I then tapped the
hole with the 6-32 tap and threaded it onto
the crank.

5.	 Take an M3×0.5 mm machine screw and put it
through the solder lug (see Figure 2-19 for the
lug itself and Figure 2-18 for the lug in place).
Screw it into the standoff all the way so it binds
on the crank screw.

My local Ace Hardware store had all of the
accessories I needed, with the exception of the
M3 spacer, which I got from eBay. You should be
able to find the same items at Home Depot or
Lowe’s.

Packaging
The shield and Nano fit in a standard plastic enclosure (see Figure 2-20).
Drill holes in the enclosure for the 3.5 mm power jack, the SPST switch
that serves as a power switch and reset, the indicator LEDs, and the motor
wires.

Threaded bushing Setscrew

Limit wire

Solder lug

Figure 2-19: The solder
lug used to hold the
wire that holds the
etching board. If you
can’t purchase some-
thing similar, you can
easily make one with
a piece of scrap metal
or plastic.

An Automated Agitator for PCB Etching 65

Figure 2-20: Completed enclosure with motor, limit wires, direction LEDs, power switch
(reset), and power jack. The LEDs light up, with one for each direction. When the motor
pauses in one direction, both LEDs turn on; when it pauses in the other direction, both LEDs
turn off.

Most 3.5 mm jacks use approximately a 1/4-inch hole, which is the
same sized hole as the switch. If you want a tight fit, 15/64 inches is closer.
Whether you use a 5 mm or 10 mm LED will dictate the size of the holes
required for those. It’s been my experience that different brands tend to
have slightly different diameters, so you might want to try a smaller drill
first and test whether the LED fits. The arbitrary English-sized drill bits for
the 5 mm and 10 mm LEDs are 3/8 inches and 3/16 inches, respectively.
If you have a set of tapered reamers, you can start with a smaller hole and
ream it out to make a tight fit for the LEDs.

Mount the motor on a small piece
of aluminum angle, readily available
at most hardware stores. I purchased a
1-inch section of 1.5×1.5–inch alumi-
num angle and cut it down to size with a
hacksaw. If you’re using the motor I use,
you can copy the template in Figure 2-21
or download and print it from https://
www.nostarch.com/arduinoplayground/, cut
it out, tape it to the aluminum angle

17.50 mm

6.75 mm

6.95 mm

Figure 2-21: Template for the
motor mount

66 Chapter 2

bracket, and carefully mark the hole positions on the bracket with a center
punch or nail. Now, drill the holes—1/8 inches for the motor mount and
5/16 inches for the center hole. If you use a different motor, you will have to
measure and mark out the mounting holes.

Just use some double-sided foam tape to secure the shield to the enclo-
sure if you think you’ll want to use it in another project. Otherwise, attach it
to the inside with standoffs and screws in any size you like.

The Etching Process
There are a number of techniques for making PCBs. The most common is
a subtractive approach, which involves starting with a copper clad board,
or a copper foil bonded to an electrically insulating substrate, from which
the copper is selectively removed to leave a pattern on the board. While the
copper can be mechanically milled off, the most common approach is to
selectively etch the pattern on the board chemically.

In the chemical etching process, the circuit pattern is printed on the
blank board with a chemical resist so that the copper is removed by the
etchant in the areas not treated with the resist. The etchant is a chemi-
cally active material that attacks the untreated copper on the clad board,
leaving you with only the copper you need for your circuit. I describe how
to etch circuits step-by-step in “Making Your Own PCBs” on page 13,
and this project makes that process easier.

Our goal is to suspend an unetched circuit board over the etchant in
the vessel and keep it in the etchant for the maximum time as the agitator
goes up and down, resulting in a laminar flow of etchant across the surface
of the circuit board. I suggest using a nylon cable tie to hold the circuit
board during the etching process, as nylon is relatively impervious to the
etchant. You could attach the tie, in turn, to the motor shaft with an alliga-
tor clip so the board is easy to remove (see Figure 2-22).

I used a 250 mL beaker as an etching vessel. For very small boards, this
works extremely well. For larger boards, I recommend a large measuring
cup, such as a 2 qt Pyrex cup. A 600 mL beaker works for intermediate-
sized boards. For even larger boards, you can use a tray, as illustrated in
Figure 2-14.

The switch and power input are located on the left-hand side of the
enclosure. To hold the board being etched, I suspended a wire through the
solder lug and attached that wire to the board with a small alligator clip.
On the back of the lug, you can either tie a small knot in the wire or attach
a clip of some sort to make sure the wire doesn’t fall through the lug and
into the acid. In my setup, a clamp (behind the motor in the photo) holds
the enclosure to an overhanging door.

An Automated Agitator for PCB Etching 67

Figure 2-22: This Arduino-based etcher-agitator etches a board. The etchant
should turn emerald as the copper is etched. The board is held by a wire tie
that is attached to a wire by an alligator clip. The wire goes through a hole
on the crank and is held in place with another alligator clip. One of the LEDs
is lit.

Note that the etching vessel is sitting on a hot plate. Though etching
will occur at room temperature, it’s accelerated somewhat by heating. Be
careful not to get the etchant too hot: if you set the hot plate on low to keep
the liquid at about 100 to 120°F, it will speed etching without softening the
resist.

3
T h e R egula t ed P o w er Supply

Whether you use a standard bench power
supply or run your Arduino off the USB

port of your computer, sooner or later
you’re going to need a stand-alone, regu-

lated power supply capable of providing a variable volt-
age. This project shows you how to make exactly that,
using only a handful of inexpensive parts. A variable power supply is one of
the most frequently used tools in many workshops. This one is easy and fun
to build, and you will find that you end up using it over and over again.

When set for 5V or 3.3V, the Regulated Power Supply can power
most Arduino projects with ease. You can also use it to power some ancil-
lary piece of equipment, to vary a particular voltage in a system while
the main power is fixed, or simply to test a lamp circuit, LED, motor, or
other device.

70 Chapter 3

The circuit uses the extremely versatile LM317 regulator chip. If
you ever find yourself in need of a precision voltage regulator with some
unusual demands, look up the LM317 on the web. The JavaScript Electronic
Notebook has a particularly good article titled “LM 317 Voltage Regulator
Designer” by Martin E. Meserve, which can be found at http://www.k7mem​
.com/Electronic_Notebook/power_supplies/lm317.html.

Required Tools
Soldering iron and solder

Drill and drill bits (3/8 and 1/4 inches)

Hacksaw or keyhole saw (nibbler or other)

Phillips head screwdriver

(Optional) Tapered reamer set

(Optional) Crimping tool

Parts List
The Regulated Power Supply is capable of providing an adjustable voltage
from 1.25V to about 12V at up to 1.5 A, depending on the fundamental
power you use. It uses the LM317 single-chip voltage regulator to set the
voltage. To build this project, you will need the following parts:

One Arduino Pro Mini or clone

One LM317 voltage regulator

One LM7805 voltage regulator

Two 2.2-ohm, 5 W resistors

Three 10-kilohm, 1/8 W resistors

Three 6.8-kilohm, 1/8 W resistors

One 68 µF tantalum capacitor

Three 0.1 µF ceramic capacitors

One 1 µF tantalum capacitor

One 16×2 LCD

One I2C adapter, if not included with the LCD

Four 4-40 screws

Eight 4-40 nuts

http://www.k7mem.com/Electronic_Notebook/power_supplies/lm317.html
http://www.k7mem.com/Electronic_Notebook/power_supplies/lm317.html

The Regulated Power Supply 71

One 5 mm LED (for power indicator)

One SPST switch

One 470-ohm, 1/8 W resistor

One 10-kilohm, 1/8 W potentiometer

One Hammond panel/case (#1456CE3WHBU)

Two banana plug jacks

One 3.5 mm jack

One 12V 2 A AC adapter

One power adapter jack

One PCB/shield

Six 1×4 headers

Four 1×4 housings

Four 1×2 headers

One heavy-duty TO-220 heat sink

One medium-duty TO-220 heat sink

Four male crimp connectors

Four female crimp connectors

30-gauge hookup wire

One knob to cover the potentiometer shaft

Double-sided foam tape

A note on heat-sink selection: there are a wide variety of heat sinks
available. The one pictured in Figure 3-2 is the Futurlec TO220ST, which
works okay but runs pretty warm as you approach the 1 A range. A larger
one that will still fit in an enclosure may be better. Futurlec TO220SMAL,
the heat sink for the LM7805, is sufficient for the job.

Downloads
You will find the following files in this book’s online resources to help you
complete this project:

Templates  PowerSupplyFront.dxf, PowerSupplyFrontBottom.dxf

Sketch  PowerSupply.ino

Shield file  VoltageRegulator.pcb

72 Chapter 3

W h at t he R egula t ed Pow er Supply Is and Isn’t

The power supply in this project is not intended to replace a regular bench
power supply. It does not provide any current limiting and is rated up to
1.5 A, due to the current capacity of the LM317. However, for a wide variety
of applications—including all of the projects in this book—it works very well. If
you’re new to Arduino, it will provide a solid power supply and save you a lot
of batteries, if that’s how you’ve been powering your projects. If you already
have a full-sized bench supply, this project will be indispensable as a second
supply. The Regulated Power Supply can be used for several projects in this
book that require a secondary power supply.

I have used the Regulated Power Supply in other applications, and at the
end of this project, I’ll illustrate a more simplified version that can be used as
a remote supply. There are times when you just don’t have the proper voltage
supply for a project, and this build fits the bill.

A Flexible Voltage Regulator Circuit
The basic LM317 regulator circuit in Figure 3-1 is the heart of this voltage
regulator. Though it is relatively rudimentary, the chip’s simplicity belies
what a powerful and versatile tool it can be.

Figure 3-1: This is the schematic diagram for the regulator
component of the Regulated Power Supply. The complete
schematic with the display is shown in Figure 3-4.

I have used some variation of this circuit for many applications, from a
stand-alone variable supply to an integrated part of a larger system, always
with good results.

In the shop, I sometimes use kind of a “hair-wired” version, shown in
Figure 3-2 (left), for testing LEDs and controlling things like motor speed
and lamp intensity. I’ve also used a breadboard version, shown in Figure 3-2
(right), to implement the regulator circuit. In both cases, I used a trimmer
potentiometer, which requires an alignment tool or screwdriver to make
adjustments.

The Regulated Power Supply 73

Figure 3-2: The “hair-wired” version of the voltage regulator circuit with a heat sink
screwed to the LM317 (left) and a breadboard version of the regulator (right). I used this
in an application with minimal power requirements and thus did not include the heat sink.

While those regulator circuits worked, one reason for using the more
refined Regulated Power Supply format in Figure 3-1 was to eliminate the
awkward trimmer potentiometer and instead use a standard 270-degree
potentiometer and knob so that I could make adjustments quickly, easily,
and repeatedly. But the main reason I built it was to have a secondary
variable-voltage power supply with digital readout readily available on the
bench.

How the Circuit Works
The circuit for this project is not overly complex. In essence, it measures the
voltage at the output of the LM317 regulator using the onboard analog-to-
digital converter (ADC) and compares it to an internal reference voltage.
The result is sent to the LCD screen. However, the Arduino Pro Mini 5V
version can accept a maximum of only 5V at the analog inputs. We there-
fore use a voltage divider to make sure that the voltage at the analog input
pin doesn’t exceed 5V. (Make sure voltage supplied to the LM317 is no
greater than 12V.)

In this case, a voltage divider comprises two resistors connected in
series, straddling the output of the LM317 and the ground rail of the
breadboard (see the schematic in Figure 3-4). The voltage coming from
the LM317 gets divided across the two resistors, R2 and R3. As you will
note in the sketch, converting from the divided voltage back to the origi-
nal levels for the display is simply a matter of reversing the arithmetic.

As shown in the schematic in Figure 3-4, the output of the LM317 con-
nects to both the R2-R3 voltage divider and to resistor R1. Together, resistor
R1 in parallel with R9 and the load, or whatever you want to power with
the power supply, can be seen as another voltage divider. The R1-R9 volt-
age divider has a resistance of only 1.1 ohms, so the voltage drop across it

74 Chapter 3

is going to be relatively small. According to Ohm’s law (I = V/R) the voltage
across R1 and R9 is going to be 1.65V for a maximum current drain of 1.5 A
(the maximum supported by the regulator IC): 1.5 A = 1.65V/1.1 Ω.

This means that when the LM317 provides about 12V and the load
draws 1.5 A, there will be a 1.65V voltage drop across R1 and R9, leaving
10.45V at the power supply’s output.

Looking at the schematic in Figure 3-4, we are comparing the voltage
at analog inputs A0 and A2 of the Pro Mini. If you use the same values for
the voltage divider for A0 and A1, you can eliminate one of the sets of resis-
tors and simply connect A0 to A1.

Voltage Di v ider R e sis tor Value s

The values of the resistors needed to achieve a certain voltage are determined
using this formula:

Vout = Vin ×
R2

R1 + R2

The schematic of a typical voltage divider circuit is shown in Figure 3-3.

R1

Vin

R2

Vout

Figure 3-3: A typical voltage divider circuit

You can do the algebra if you’d like, but it’s easiest to use an online
calculator, such as the one at http://www.daycounter.com/Calculators/
VoltageDivider-Calculator.phtml. In this project, the objective is to achieve
an output of around 5V. We’ll start with a 12V input and a 10-kilohm resistor,
represented by R1 in the formula and marked R2 in the schematic. Fill in the
calculator fields with this information, and the formula will give you a resistor
value of 7.1-kilohm for R2 in the schematic and R1 in the formula. The closest
standard resistor value is 6.8 kilohm, so the project uses that along with the
10-kilohm resistor in its voltage divider.

But why start with a 10-kilohm resistor? The first reason is to avoid draw-
ing too much current. Even if the entire 12V dropped across the 10-kilohm resis-
tor, it would result only in a nominal drain of 1.2 mA. Second, I have a lot of
10-kilohm resistors in the parts bin, and I am sure you do, too.

http://www.daycounter.com/Calculators/Voltage-Divider-Calculator.phtml
http://www.daycounter.com/Calculators/Voltage-Divider-Calculator.phtml

The Regulated Power Supply 75

The Schematic
While I wanted the Regulated Power Supply to be relatively robust, I didn’t
want it to be overly complex or hard to build. The hair-wired and bread-
board versions did well in temporary or emergency applications when used
with a digital multimeter (DMM), but I sought to build something more per-
manent that would have its own voltage and current readout, and that would
stay on the workbench or sit on my desk as a regular addition to the tool set.
Figure 3-4 shows the full schematic for the Regulated Power Supply.

Arduino Pro Mini
16-2 LCD/I2C display
U1: LM317
U2: LM7805
R1: 1.2-ohm, 5 W resistor (two 2.2-ohm resistors in parallel)
R2, R4, R7: 10-kilohm, 1/8 W resistor
R3, R5, R8: 6.8-kilohm, 1/8 W resistor
R6: 470-ohm, 1/8 W resistor

R7: 10-kilohm, 1/8 W potentiometer
C1: 68 µF tantalum capacitor
C2: 1 µF tantalum capacitor
C3, C4, C5: 0.1 µF ceramic capacitor
SW: SPST switch
D1: LED
R11: 470-ohm, 1/8 W resistor

Figure 3-4: Schematic for the Regulated Power Supply

I use three sets of voltage dividers in this circuit. The first looks at the volt-
age at the output of the regulator, which is ultimately displayed on the LCD. The
other two divide the voltage in front of and behind the voltage-dropping resis-
tor so that the amperage can be measured according to the formula I = V/R,
where V is the voltage drop across resistors R1 and R9, and R is the value
of those two resistors combined. Could I have eliminated one set of voltage
dividers? Yes, by joining A0 and A1 together. I thought, however, that I might
want to change those values at some point to increase the accuracy of the
ammeter by bringing the value closer to the Arduino reference voltage, so I
did not join them in my version of the project.

76 Chapter 3

The Breadboard
As in all of my Arduino projects, I began with the standard breadboard.
To make life easy, I used a standard potentiometer with pins that would fit
into the 0.100-inch-spaced breadboard holes. With a little effort, a standard
16 mm rotary potentiometer (R7 in the schematic) with printed circuit
board connectors will just about fit into every other hole in a breadboard.
Figure 3-5 shows an overhead view of the finished breadboard before you
power it.

R1
LM317

R6
R2

R4

LM7805

R5R3

Figure 3-5: The breadboard for the Regulated Power Supply. The capacitors in the
schematic—C1, C2, and C3—are not included in the breadboard but should be
included in the completed unit.

Preparing the Arduino Pro Mini and LCD
The Arduino Pro Mini may or may not come with the male headers attached.
If it doesn’t, you’ll have to solder them yourself (see “Preparing the Arduino
Board” on page 2). Make sure the number of header pins in your strip
matches the corresponding holes in the Pro Mini; you may have to cut the
strip to the proper number of pins if the included strip is too long. Trim two
strips of headers to size and place the long ends of the two header strips into
a breadboard, spaced so that the Pro Mini board will fit over them. Put the
Pro Mini in place, and solder all the header pins. Then, take two header pins

The Regulated Power Supply 77

(use the surplus from the longer header or purchase these separately), insert
them in the A4 and A5 holes in the Pro Mini, and solder. These are the pins
used for the LCD.

Finally, install five header pins on the edge of the board (at the TX0 and
RXI end). Some boards come with straight headers, others with the long pins
bent at a 90 degree angle. In most of the applications, I have found it easier
to work with straight headers. You can use right-angle headers, but it may
be more difficult to plug in the connector for programming the board, so I
recommend replacing any right-angle pins with straight ones. You also might
want to take a 1/2-inch length of 22-gauge wire and solder it to the short end
of the RST pin so it sticks up. A female header connector will connect to this
during programming.

You will now have to get the LCD/I2C assembly ready. If you purchased
the display and adapter separately, you will have to assemble them. Go to
“Affixing the I2C Board to the LCD” on page 3 for instructions. If you
purchased the display with the I2C adapter, it’s ready for assembly.

Building the Breadboard
Here’s the step-by-step guide to putting together the breadboard:

1.	 Insert wires to connect the two positive (red) rails together.

2.	 Insert wires to connect the two negative (blue) rails together.

W A R N I N G 	 Be careful not to cross the two and connect the positive rails to negative rails. That
could cause a short circuit and damage the hardware.

3.	 Insert the 10-kilohm rotary potentiometer into the breadboard.

4.	 Insert the LM317, with or without heat sink attached, near the poten-
tiometer, as shown in Figure 3-5. (See Figure 3-6 for the pinout of the
LM317.)

Input

Output
Adjust

Figure 3-6: Pinout of the LM317 regulator

5.	 With the potentiometer shaft facing you, connect the leftmost pin and
center pin of the potentiometer together, and then connect both to the
adjustment (ADJ) pin of the LM317.

6.	 With the potentiometer in the same orientation, connect the rightmost
pin to the blue negative rail (ground).

7.	 Connect a 470-ohm resistor from the output pin to the ADJ pin on the
LM317.

78 Chapter 3

8.	 Connect a 1.2-ohm resistor (R1 in Figure 3-4—I used two 2.2-ohm
resistors in parallel) from the output pin of the LM317 to a load of your
choosing. For test purposes, I used a 1/8 W resistor and connected a 5V,
30 mA incandescent indicator lamp for the load. (You may want to use
the actual R1 and R9 resistors that you will use in the finished unit, so
you can adjust the sketch before completing the unit.)

9.	 Connect the input pin of the LM317 to the 12V system input voltage.
This is the wire going from the LM317 to the upper alligator clip in
Figure 3-5.

10.	 Connect the blue negative rails to the negative side of the input power
(probably a wall plug).

11.	 Insert the LM7805 into the breadboard, as shown in Figure 3-5. (See
Figure 3-7 for the pinout of the LM7805.)

Output

Ground
Input

Figure 3-7: Pinout of the LM7805 regulator

12.	 Connect the output pin of the LM7805 to the red positive rail of the
breadboard.

13.	 Connect the input pin of the LM317 to the input pin of the LM7805.
This is the point at which the input voltage from the power source will
be connected.

14.	 Connect the ground pin of the LM7805 to the blue negative rail of the
breadboard.

15.	 Insert a 6.8-kilohm resistor, and connect one side to the blue negative
rail. This is resistor R3; the other side will connect to resistor R2. See
Figure 3-5 for a top view of the breadboard.

16.	 Insert a 10-kilohm resistor (R2) into the breadboard with one side con-
nected to the LM317 output pin and the other side connected to resis-
tor R3 from step 15.

17.	 Connect resistor R1 from step 8 from the output pin of the LM317
to a blank hole in the breadboard. This row will be the output of the
regulator.

18.	 Connect the voltage divider: first, insert a 10-kilohm resistor (R4) into
the breadboard. Then, connect one side of resistor R4 to the same row
as R1 (you’ll have to use a jumper wire) and the other side to an empty
row on the breadboard.

19.	 Insert a 6.8-kilohm resistor (R5) into the board with one side con-
nected to the open side of R4 and the other side of R5 connected to the
blue negative rail.

20.	 Insert the Arduino Pro Mini in the breadboard so that it straddles the
center break, as shown in Figures 3-4 and 3-5.

The Regulated Power Supply 79

21.	 Use a jumper to connect the VCC terminal of the Pro Mini to the red
positive rail.

22.	 Use a jumper to connect the GND pins of the Arduino Pro Mini to
the blue negative rail. (There are at least two to choose from—one is
located between RST and D2, and the other is located between RAW
and RST on the other side. Take your pick.)

23.	 Use a jumper wire to connect the joining point of R4 and R5 to pins A1
and A0 on the Arduino Pro Mini.

24.	 Find the junction point of R2 and R3, and use a jumper to connect that
junction point to the A2 terminal on the Arduino Pro Mini.

25.	 Load the sketch onto the Arduino Pro Mini. (I often remove the
Pro Mini from the circuit completely to program it. It’s a little less
confusing.)

26.	 Connect the LCD/I2C display by connecting VCC and GND to the red
positive and blue negative rails on the breadboard, respectively.

27.	 Connect the SDA to analog pin A4 on the Arduino Pro Mini and SCL
to analog pin A5.

28.	 Connect the input of the LM7805 voltage regulator to some pin where
the +12V will be attached.

29.	 Connect the output of the LM7805 to the red positive rail, and connect
the ground to the blue negative rail.

Once all of those connections are in place, you’re set to go. Upload the
sketch and test the circuit.

The Sketch
The Regulated Power Supply sketch is about as simple as I could make it. The
only difficulty is that although I use 1% tolerance resistors throughout, I’ve
found some variation in resistance value. So be aware that you may need to
make an adjustment to the sketch to accommodate for this.

Here is the sketch:

// Regulated Power Supply with volt and current read

#include <Wire.h>
#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x27, 16, 2); //Check your library for specific LCD
 //code both here and in setup.

float low_side_res = A0;
float volt_two;
float volt_three;
float volt_disp;
float low_side_res_2 = A1;
float hi_side_res = A2;
float volt_drop_1;

80 Chapter 3

float amp;
float amp_3;
float amp_4;
float amp_disp;

void setup() {
 lcd.init();
 lcd.backlight();
}

void loop() {
 volt_two = analogRead(low_side_res);
 volt_three = (volt_two*5)/1024.0;
 volt_disp = volt_three*(10000+6800)/6800; //Actual voltage reading
 amp_3 = analogRead(low_side_res_2);
 amp_4 = analogRead(hi_side_res);
 amp = amp_3 - amp_4;
 amp_disp = amp *5/1024*(10+6.8)/6.8/1.22*.9; //Calculation of amperage I=V/R
 //*0.9 = adjustment for random error in ref voltage in pro mini

 lcd.setCursor(1,0);
 lcd.print("Volt ");
 lcd.setCursor(12, 0);
 lcd.print(volt_disp);
 lcd.setCursor(1, 1);
 lcd.print("mA ");
 lcd.setCursor(11, 1);
 lcd.print(amp_disp*1000,2);
}

First, this sketch imports some libraries and sets up the LCD (see “On
Writing Code to Set Up LCDs” on page 36). It then defines a series of
variables, all floats, to use when setting the voltage, reading from the ana-
log pins, calculating values to display on the LCD, and so on. The setup()
loop is very short: it has only two lines for initializing the LCD. The main
loop() reads the battery voltage and current, and performs the necessary
calculations to display on the LCD. The volt_disp value is the voltage to be
displayed on the LCD.

The Shield
While the circuitry is not overly complex, using a shield will simplify many
of the connections for driving the LCD and constructing the voltage dividers,
and it will make the assembly of the Regulated Power Supply easier than
point-to-point wiring. Figure 3-8 shows the shield I designed, though you
could also design your own, of course. The PCB file is available at https://
www.nostarch.com/arduinoplayground/.

While I used two layers to construct the shield, with a little effort and
a slightly larger board, the circuitry could be accommodated on a single
layer.

The Regulated Power Supply 81

Figure 3-8: The PCB shield used in the Regulated Power Supply. Black is the top
layer, dark gray is the bottom layer, and light gray is the silkscreen layer.

The shield doesn’t need to be populated in any particular sequence,
but some components will be easier to fit before others. I suggest soldering
in this order:

1.	 First, insert 2.2-ohm, 5 W resistors R1 and R9 into the PCB. These
are voltage-dropping resistors that create the voltage for the amme-
ter (mA), which provide a total resistance (R1 in the schematic) of
1.1 ohms at 10 W. The resistors are a little longer than the configura-
tion on the board, so you’ll have to bend the leads to make them fit.
When the Regulated Power Supply is running close to its maximum rat-
ing, expect these resistors—and the LM317 itself—to get a little warm.

2.	 Capacitor C1, a 68 µF tantalum capacitor, will be a tight fit for the
holes. To make sure it doesn’t interfere with the LM317, install the
capacitor first. Then, install the LM317, making sure to leave room for
the heat sink. Remember that the heat sink is likely to get pretty warm.

3.	 Make sure to install the LM317 with the pins correctly oriented accord-
ing to the pinout in Figure 3-6 and the schematic in Figure 3-4. If you
use the provided shield files, the thick line on the LM317 silkscreen
corresponds to the metal tab on the IC. If you insert the part the wrong
way, the system won’t work, and the part could burn out. It would also
be a pain to remove.

4.	 Install the LM7805 regulator in the upper-right section of the PCB,
and make sure it matches the pinout in Figure 3-7 and the schematic
in Figure 3-4. You can use the heavy line in the silkscreen image of the
PCB as a guide.

82 Chapter 3

5.	 Try both voltage regulator ICs in the shield with the heat sinks installed
(at least temporarily) to make sure they can fit without touching any
active components. Remember that the heat sinks are active: the heat
sink (tab) of the LM7805 is at ground potential, and the heat sink (tab)
of the LM317 is at the output potential.

6.	 Install resistors R2, R3, R4, and R5. It’s easier to place those before
installing the female headers for the Arduino Pro Mini.

7.	 Then, solder in C1, C2, and the wires that will connect the Arduino Pro
Mini to potentiometer R6, which you will mount on the chassis. You
can leave the wires a little long and trim them when you install the
shield in the enclosure. Install capacitors C4 and C5 as indicated in the
schematic in Figure 3-4.

8.	 Next, solder the female headers that comprise the mount for the Pro
Mini and the connector for the LCD. The LCD connections are the
SDA, SCL, –, and + connections in the bottom right of the PCB. I used
male stakes and a female-to-female connector cable to connect from
the LCD to the shield. (To learn how to make the custom connector,
see “Connectors Used in This Book” on page 18.)

For the LCD and Arduino Pro Mini, I usually insert the headers into
the board, solder just one pin, and then, with my finger on the top, heat
that one pin and push on the connector to make sure it fits flush against
the board. For the pins of the Pro Mini, I use only female headers for those
that are active—that is, that have copper traces going to them. I also like to
place one pin (I usually use a 1×4 pin header) right at the last pin on the
Pro Mini to make alignment easy. This would translate to pins RAW, GND,
RST, and VCC. In addition, I like to place at least two headers diagonally
for mechanical stability. This would correspond to pins D8 and D9 on the
Pro Mini. The male headers on the Pro Mini for A4 and A5 are located just
above pins A2, A3, and VCC on the main row of connections.

Construction
When the Regulated Power Supply is all soldered together, you will need to
prepare an enclosure and mount the circuit inside. I selected a nice-looking,
powder-coated metal enclosure, approximately 2 1/4 × 3 1/4 × 4 3/4 inches.
Figure 3-9 shows the completed unit driving a couple of incandescent panel
lamps.

The Regulated Power Supply 83

Figure 3-9: The completed Regulated Power Supply

Bear in mind, though, that while the case is not delicate, the paint is
easy to scratch, so be careful. It’s also a little pricey—coming in around
$20—but as I will have it on my workbench all the time, I thought it was
worth it. Of course, you could also use a different enclosure of your choos-
ing and modify the templates provided with this book accordingly.

Preparing the Enclosure
If the front panel of the enclosure is sloped, you will need to put a piece
of scrap wood behind the areas you need to center punch and drill to
help hold it in place. Make sure to measure, center punch, and drill holes
carefully.

The templates for this project are shown in Figures 3-10 and 3-11, and
they can be downloaded from https://www.nostarch.com/arduinoplayground/.

https://www.nostarch.com/arduinoplayground/

84 Chapter 3

0.37 in

0.125 inF G

0.125 in

0.956 in

0.6 in

0.62 in
A

B

H
2.64 in

I

0.11 in

1 in 1 in

1 in
1.25 in

D

C E

0.25 in

Figure 3-10: Sloping face of the Regulated Power Supply enclosure

0.71 in
Front bottom

Back

0.37 in
0.25 in0.19 in

1.23 in

0.37 in

1.12 in
0.62 in

0.51 in
A B

C

D

Figure 3-11: Front and bottom of the Regulated Power Supply enclosure

The Regulated Power Supply 85

Here is how I suggest you prepare the enclosure:

1.	 Center punch and drill holes for the potentiometer, on-off switch
(1/4 inches), and power indicator LED. See Figure 3-10 for the front
panel dimensions.

2.	 Center punch and drill the hole for the power input jack in the rear of
the panel (see Figure 3-10).

3.	 Drill holes for the output binders and 3.5 mm jack on the front of the
case, as shown in Figure 3-11.

4.	 Carefully measure and mark the cutout for the LCD, as shown in
Figure 3-10. Center punch and drill 1/2-inch holes in the corners of
the LCD screen area to help initiate saw cutting. You can eyeball this
based on the diagram in Figure 3-10 or download a PDF file of the
template. Either trace the image onto your enclosure with carbon
paper or simply mark the corners with a center punch and connect
the punch marks.

5.	 Carefully cut out a hole for the LCD. There are a variety of tools you
can use to do this. I first drilled holes A and B and then used a keyhole
saw with a fine hacksaw blade (available at local hardware stores) to cut
between the holes. Remember that the cutting occurs on the outward
thrust, so you needn’t keep pressure on the blade on the return stroke.
You can clean up the burrs with a file.

6.	 Carefully fit the display into the window, and file where necessary to
get a secure fit. The backlight protrudes on one side of the display, so
in order to avoid crushing the backlight, you can use nuts as spacers to
keep it separated from the panel.

7.	 Drill holes F, G, H, and I, and fasten the display in place. As you do so,
check carefully that the spacer nuts are wide enough (4-40 nuts come
in different dimensions), and, if necessary, use two nuts or a nut and a
washer to space out for the backlight.

Mounting the Circuit Board
Once you have assembled and tested the shield and mounted the LCD,
install the potentiometer, on-off switch, LED, and power jack. Then it’s
time to mount the shield in the enclosure. Originally, I drilled four holes
in the board so that I could screw it into the enclosure, but I’ve found that
3M double-sided mounting tape also does the trick. I mounted the entire
board, heat sinks and all, with a 1 1/4-inch length of the 3/4-inch wide
double-sided adhesive. (The manufacturer claims it will hold 2 pounds.)

The adhesive is relatively aggressive, so before applying it, make sure
you plan carefully where you want to mount the board so it will not be in
the way of other components. I mounted the board upside down on the top
section of the case so all components and connections were on the same
platform (see Figure 3-12).

86 Chapter 3

Figure 3-12: The completed (upside-down) assembly with the board,
LCD, output connectors, potentiometer, on-off switch, LED, and output
power jack all mounted on the inside of the top of the enclosure.

The final step is to connect the on-off switch, LED pilot lamp, LED cur-
rent-limiting resistor, potentiometer, power input jack, and output connec-
tors to the PCB according to the project schematic. I used 28-gauge hookup
wire to tie everything. The two binding posts/banana plug jacks and the
3.5 mm jacks are wired in parallel. Figure 3-12 illustrates how I mounted
the shield. Note that I used small wire ties, which are optional, to keep the
wires neat.

Before closing up the enclosure, make sure there are no areas that
might result in a short circuit. For example, I placed a small piece of
insulating tape between the LCD screen and the shield. They might not
be touching at the time of assembly but could touch when you close the
enclosure. You can apply insulating tape to prevent this kind of short.

After testing for short circuits, all that remains is to put the two
halves of the case together. The connections for the output—the binding
terminal/banana jack and 3.5 mm jack—are in parallel. The final step is to

The Regulated Power Supply 87

screw the two pieces together, and you’re off and running. I put a pointer
knob on the potentiometer even though there are no markings on the case.
You can add a dial if you want, but I find the digital readout sufficient.

And, the coup de grâce: remove the protective paper from the adhesive
on some rubber feet, and install them on the bottom of the enclosure. Voilà!

The full Regulated Power Supply project will take up a decent amount
of space on your workbench, but you will find the digital readout and
banana jacks invaluable. If you’re feeling adventurous, however, you can
build a smaller version of the same circuit, minus the jacks and LCD,
shown in Figure 3-13.

Figure 3-13: This is the quick-and-dirty power supply with the top off. I made it before
biting the bullet and making the full-fledged Regulated Power Supply.

You can find instructions on how to build the Mini Regulated Power
Supply at https://www.nostarch.com/arduinoplayground/.

4
A Wa t c h Winder

If you’re a collector of automatic, or self-
winding, watches, you’re probably famil-

iar with watch winders and what they do.
But why have a watch winder in a book on

Arduino microcontroller projects? The answer to
that will become increasingly clear as we look at the
technology in this project. Further, over the course of this project, we’ll
take a quick look at some automatic watch lore and how these seemingly
anachronistic devices have survived and prospered in the digital age. Even
if you do not collect such treasured timepieces, this project may just inspire
you to start your own collection.

90 Chapter 4

Why a Watch Winder?
Because, as a collector, you own more than a single automatic watch, you
might want to think about keeping the watches that aren’t currently on your
wrist wound. If you read up on mechanical watches and winders, you will
find many pros and cons (probably more pros) of using a watch winder.
One big pro is that multifunction watches can take a long time to set if
they run down. There are also arguments that if a mechanical watch sits
in one position and doesn’t run, the lubricant tends to migrate to a low
point. Regular motion from a watch winder or from being worn keeps the
lubricant distributed and in the bearings where it belongs. While many sub-
scribe to this viewpoint, there is no real evidence either way.

There is yet another compelling argument for a watch winder. As a col-
lector, it’s nice to be able to display more of your collection than just one-at-
a-time on your wrist. Many of the commercial winders available come inside
exotic wood cases to show off the watches. But inexpensive winders tend not
to be reliable, and the expensive ones are, well, expensive.

I took a chance and bought one of the more economical models and
put two of my mechanical watches—a real and a faux Rolex—in it and fig-
ured I was done. But after less than six months, the winder failed. I took
it apart, and it appeared to be very poorly designed and made. Even if I
replaced the failed motor, the rest of the mechanism would probably not
be reliable. While using the winder, the faux Rolex did not wind all the way
and did not keep good time.

At that point, the question was whether to dig deep in my pockets for
the $400 or $500 winder (there are even models that sell well in excess of
$1,500, $2,000, or more) that promises reliability or to try to do better.
So the gauntlet was, metaphorically, thrown down. The challenge was to
design and build a reliable watch winder that would provide both a show-
case for my watches and have the flexibility and control over timing that
I wanted in a robust mechanical format. Arduino was the obvious choice
for controlling the frequency of watch turns, and the mechanics went
around that.

As you build your Watch Winder, you will find a lot of room for per-
sonalization both in the mechanical construction and the sketch. While
a watch winder is a utilitarian device made to keep your watches wound,
this version provides an elegant display platform for your timepieces—and
it is itself a work of art, a kinetic sculpture. You can see the final result in
Figure 4-1.

Because I selected Arduino as the logical timing element, I had to plan
the other electronics and software around that. We will revisit the H-bridge
circuit from the PCB Etcher (see “Using an H-Bridge” on page 48) to drive
the motor in both directions, and we’ll use transistors for increased drive
for the high-output LEDs. We’ll also use a Hall effect sensor to measure the
rotation of the watches.

A Watch Winder 91

Figure 4-1: The finished Watch Winder. Unfortunately the black and white image doesn’t
do it justice: the brightly colored LEDs illuminate the device using the acrylic as a light
guide to transport the various colored LEDs.

The sketch developed for this project uses functions and arrays to flash
the LEDs in repeating patterns. The sketch also instructs the controller to
read the state of the Hall effect sensor, which is either zero or one. Knowing
this state allows the controller to decide when to wind the watches and to
keep count of the number of turns to ensure that the watches don’t get
over- or underwound.

92 Chapter 4

T he M ys t ique of t he Au toma t ic Watch

The automatic watch was invented in the early 1920s and was commercial-
ized several years later. Over the next several years, many improvements
were made until it reached the level of sophistication of today’s instruments.
Automatic watches operate by using a pendulum attached to a ratchet assembly:
the ratchet assembly winds the watch’s mainspring as the pendulum swings. A
built in slip-clutch mechanism prevents overwinding. See Figure 4-2 for a look
inside one of these watches.

Figure 4-2: An automatic watch with the back removed,
exposing the pendulum and the fulcrum (the screw in the
center), which combine with a ratchet assembly to wind
the watch’s mainspring

Automatic watches from just about all watch manufacturers enjoyed broad
success for several decades. However, in the early 1960s, Bulova developed
its Accutron tuning-fork electronic watch, and the digital quartz electronic
watch from Pulsar followed shortly after.1

Despite the influx of electronic watches (and now smart watches), leading
makers of mechanical watches have survived—and even prospered—in this
age. Today, automatic watches are sold anywhere from under $100 to tens or
even hundreds of thousands of dollars.

Why would someone pay a premium for a watch that is not particularly
accurate, is heavy, is often bulky, and has to be kept wound when not in use?
I’m sure the answer is different for every collector, but I’d guess that they, like
me, enjoy the elegance, prestige, sophistication, sense of history, and fine
mechanical machinery that can’t be achieved with its electronic counterparts—
though the iWatch comes close in some respects. And like any collectible, one
automatic watch is never enough—which brings us to the Watch Winder.

1. The transition from mechanical to electronic watches has been described as a prime
example of Thomas Kuhn’s concept of a paradigm shift, which he describes in his 1962
book The Structure of Scientific Revolution.

A Watch Winder 93

Required Tools
Drill and drill bits

Tapered reamer set

Small vise-grip pliers

Center punch

Weld-On 4 and Weld-On 16 acrylic bonding fluid

Assorted sandpaper, including grades from 220 to 600 and grade 1500
for final polish

Jewelers rouge or other liquid plastic polish

(Optional) Circular saw

(Optional) Thread-locking fluid

(Optional) Wire-wrap tool

(Optional) Rotary tool (For example, you could get a Dremel tool with
an abrasive cutoff wheel.)

Parts List
If you want to build a Watch Winder like the one pictured, you will need
several pieces of acrylic and some other hardware, which I detail in this
section.

Acrylic
The following acrylic parts can easily be cut from a standard sheet of
acrylic. Without the disks, which I recommend you purchase separately,
everything can be cut from two 12×12-inch acrylic sheets (one 3/8-inch
thick, one 1/4-inch thick). If you prefer, you can find vendors that will laser-
cut acrylic to your dimensions. (ZLazr, among many others, is equipped to
do that.) It will cost a little more than doing it yourself but will make it both
cutting and finishing easier.

Four pieces with dimensions 1/4 × 2 × 1 1/2 inches (long sides of the
watch basket; can be 3/8 inches)

Four pieces with dimensions 1/4 × 1 × 2 inches (short sides of the watch
basket; can be 3/8 inches)

Two pieces with dimensions 3/8 × 3 × 2 inches (bearing holders of bear-
ing box)

Two pieces with dimensions 3/8 × 2 × 1 1/2 inches (mounting side of
bearing box)

One piece with dimensions 1/4 × 1 × 2 inches (motor mount)

Two round pieces, 3/8 inches thick and 5 inches in diameter (watch
basket ends)

94 Chapter 4

Two pieces with dimensions 1 1/2 × 5 × 1/4 inches (side supports for
stand)

One piece with dimensions 3/8 × 3 × 5 1/2 inches (base for stand)

One piece with dimensions 3 × 1 1/2 × 3/8 inches (lightbar)

One piece with dimensions 2 1/2 × 2 1/2 × 3/8 inches (shield
mounting)

Two 3.5 mm standoffs with M/F M3-05 threads (motor mounts)

Three 1.5 mm standoffs with M/F M3-05 threads (shield mount)

There are several online vendors you could purchase the acrylic for this
project from; just search for acrylic sheet on Google to find one near you. In
the United States, http://www.zlazr.com/ seems to be good. At the time of this
writing, I talked with the owner personally, and he said he can handle the
kind of cutting required for this project with no problem.

Other Hardware and Circuit Components
One Arduino Nano or clone

One Hall effect switch, such as Melexis US5881LUA (Dimensions for
side supports should be 1 1/2 × 5 × 1/4. See “Building the Stand” on
page 115.)

One driveshaft, 8 inches long and 1/4 inches in diameter with 28 threads
per inch (I suggest brass because it’s easy to work.)

Two ball bearings (R4A-2RS)

Six jam nuts, 1/4-inch-28

Two decorative bolts, 1/4-inch-28, 1 inch long (I used chromed Allen
bolts.)

Ten ZTX649 transistors

One SN754410 quad H-bridge

Ten 470-ohm resistors

One 10-kilohm, 1/8 W resistor

One 0.1 µF ceramic capacitor (C1)

One 10 µF tantalum capacitor (C2)

One custom shield as described in “The Shield” on page 108, or
perf board (You can also have the shield custom fabricated from
ExpressPCB; see “Making Your Own PCBs” on page 13.)

One gear head motor (I used a 6V, 20 RPM motor called the Amico 20
RPM 6VDC 0.45 A.)

One LM7805 voltage regulator

Fourteen LEDs, in assorted colors (I purchased both clear and frosted
versions. The higher-output units tended to be clear.)

Assorted hookup wire and wire-wrap wire

A Watch Winder 95

Ten stakes for LED wire wrap or soldering (Try Pololu item #966 or
Electronic Goldmine item #G19870.)

One length brass round that’s 3/8 or 1/2 inches in diameter and
approximately 3/4 inches long (I used one with a 3/8-inch diameter.
Brass stock is readily available in 6- and 12-inch lengths, which can be
cut to size with a hacksaw.)

One 6-inch length of piano wire that’s 0.39 inches in diameter

One niobium, or neodymium, magnet, approximately 3/8 inches round
and 1/8 inches thick

One flat-head 4-40 screw

Six M3×3/8-inch screws

Seven M3-05×1/2-inch screws

(Optional) One Amico H7EC-BCM counter

(Optional) Eight 270-ohm resistors (Use these when you build the
breadboard prototype if you choose to follow my exact instructions in
“The Breadboard” on page 98.)

Downloads
Before you start building, go to https://www.nostarch.com/arduinoplayground/,
download the resource files for this book, and look for the following files
for Chapter 4:

Templates  MotorMountAndBearingBox.pdf, BaseAndLightbar.pdf,
WatchBasket.pdf

Mechanical drawing  MotorAssembly.pdf

Shield  WatchWinder.pcb

Sketch  WatchWinder.ino

Basic Watch Winder Requirements
Some initial research suggested that a watch winder should rotate a watch
between 600 and 1,200 revolutions per day to keep it in top shape. But that
is not completely correct. I subsequently discovered that the range was actu-
ally much wider, and according to at least two websites of leading automatic
watches, watches cannot be overwound because they have a built-in protec-
tion system. I also learned that watches should be rotated both clockwise
and counterclockwise to keep lubricant in the right places and to avoid
possible uneven wear over a very long period of time. There is a wealth of
information about this subject on the web, both on sites for individual watch
manufacturers as well as on sites for watch winders.

96 Chapter 4

Apparently the total number of turns is the important part, not neces-
sarily the sequencing of the turns or getting exactly the same number of
turns in each direction. (There is a possible downside to winding, if a watch
is wound too much over an extended period.) That doesn’t sound so daunt-
ing, right? I thought so, too.

Using an Arduino to Control Winder Revolutions
A purely utilitarian watch winder just has to serve its function, rotating the
watches so the pendulums swing. But it’s more interesting to have a winder
with extra features. As mentioned in “Why a Watch Winder?” on page 90,
some winders are dressed up with fancy exotic wood boxes to display the
watches.

However, this is an Arduino project, and extra technical features and
LEDs should reflect the flexibility and versatility of the platform. In a devel-
opmental model, the original sketch instructed the electronics to turn a
motor first in one direction and then the other, using delays to ensure that
the requisite 600 to 1,200 revolutions occurred each day.

But it turns out that some watches need more than the minimum
number of revolutions, and some can get away with less. The easiest way to
change the number of revolutions is by adjusting the various delays in the
sketch as needed. You could even add hardware to the circuit to allow you
to adjust the number of turns per day with a potentiometer, as I describe in
“Design Notes” on page 124.

To drive the motor itself, I used an H-bridge IC. It accepts control logic
from the Arduino and lets you reverse the polarity to the motor from a
single power supply to allow the motor to rotate in both directions.

N o t e 	 For more information on H-bridges, see “Using an H-Bridge” on page 48.

Using a Hall Effect Sensor to Monitor Rotations
Then, there was the matter of how to meter the number of turns the device
made to assist the timing and give some more information to the sketch.
The number of turns per unit time is a function of the motor, and while the
timing I provided for the motor specified could conceivably work, it might
not be consistent for all motors.

For example, I sampled three motors of the same model at the same
voltage, and each ran at a slightly different speed. Further, if you elect to
substitute another motor with a different rotational speed, the rotation
count would be different. And, in beta testing, one user experienced dif-
ficulty running a 6V motor on 5V. (See “Motor Voltage” on page 126.)
Because the number of turns per unit time is a function of the motor,
these inconsistencies could present a problem if timing alone determined
the total number of rotations; some mechanism to monitor the number of
revolutions is needed.

A Watch Winder 97

To assure consistent timing, I decided to meter the number of turns
the device made. Thus, I attached a small magnet to the rotating shaft that
turns the watches and mounted a Hall effect device, or a sensor that detects
a magnetic field, in line with the magnet. A small reed switch could be sub-
stituted for the Hall effect sensor if you wanted.

When the watch and the magnet rotate, the Hall effect switch turns on
only when in close proximity to the magnet, causing the switch to turn on
and off once per rotation. Each time the Hall effect switch changes state,
the Arduino increments an internal counter. Combined with the sketch,
this ensures the proper number of turns per day is made in all cases, regard-
less of the speed of the motor. Unlike the reed switch, the Hall effect switch
does not require any buffering or debounce, as discussed in “The Sketch”
on page 102, because a Schmitt Trigger is included in the device’s circuit.
If you elect to use a reed switch, you may have to add the debounce into the
sketch.

When using a Hall effect switch with a permanent magnet, you just
have to be careful how you move the magnet around. Some mechanical
watches are damaged by close proximity to a strong magnetic field because
the hairspring becomes magnetized, resulting in a change in physical char-
acteristics that cause timing to be off. While the magnet specified is small
and unlikely to cause a problem, I strongly recommend you keep any mag-
net at least an inch away from any watch—mechanical or electronic.

The Schematic
Figure 4-3 shows the schematic diagram of the circuit used for the Watch
Winder. Notice that the output from the Hall effect device has a pull-up
resistor tied to the positive supply. This holds the input to Arduino pin A0
high until the Hall effect switch, or reed switch, encounters a strong enough
magnetic field, which closes the switch and brings the pin low. The Hall
effect device uses what is essentially an open collector on its output, so with-
out the pull-up resistor, the collector would be left floating and could give a
false trigger.

The two capacitors prevent the LM7805 regulator from oscillating on
its own and drawing excessive power. Although I looked at both the input
and the output of the regulator with an oscilloscope and saw no oscillation,
I decided to add the capacitors as a preventative measure. I selected them
based on previous projects, and they work well.

I was trying to develop a spectacular look for the Watch Winder, as befits
some of the timepieces it holds, so I used higher-power LEDs, as described in
the “Parts List” on page 93. These LEDs have a light output of as much as
100,000 to 200,000 or more millicandela (MCD). But that raised yet another
problem. The Arduino Nano’s processor chip, an ATmega328, can source
or sink only 40 mA per output pin. Further, the entire chip is rated at only
200 to 300 mA for its entire current drain. Because the 100,000+ MCD LEDs
draw around 30 to 60 mA each, something had to be done.

98 Chapter 4

Figure 4-3: The Watch Winder circuit. The transistors connect to the digital outputs of the Nano, while A0 is
tied high through the 10-kilohm resistor.

One 1 A transistor per LED is included in the schematic to pick up the
load. The collectors of the NPN transistors—the positive side—go to VIN
rather than the 5V that powers the Nano and H-bridge, so the LEDs take
no toll on the voltage regulator, even though the emitters follow the base
and send 5V to the LEDs.

The Breadboard
Just like other projects we’ve discussed, the Watch Winder started out as a
breadboard, shown in Figure 4-4. This allowed me to sound out the tech-
nology and do the preliminary tuning of the sketch.

A Watch Winder 99

Figure 4-4: The Watch Winder breadboard was used as a proof-of-concept for the proj-
ect. Here, I powered it with the Regulated Power Supply from Chapter 3.

I suggest building a breadboard for this project first so you can see
where everything goes and why. With a breadboard, you also get to play with
the sketch and LEDs without having to unsolder and resolder with each
change. I used a 6.5-inch long breadboard to hold everything. I did take a
couple of shortcuts on the breadboard, which are noted in the instructions;
you can also just build straight from the schematic, instead.

To wire up the breadboard, take the following steps:

1.	 Connect the red stripe on the right side of the breadboard to the corre-
sponding red stripe on the left. These are your positive rails.

2.	 Connect the blue stripe on the right side of the breadboard to the
corresponding blue stripe on the left. These are your negative rails
(ground connections).

3.	 Insert the Arduino Nano at one end.

4.	 Connect the 5V pin of the Nano to the red positive rail.

5.	 Connect the GND pin of the Nano to the blue negative rail.

6.	 Insert the LM7805 regulator, and connect the output pin to the red posi-
tive rail. (Figure 4-5 shows the regulator pinout.)

Output

Ground
Input

Figure 4-5: LM7805 regulator pinout in a TO-220 package

Hall effect
sensor

Magnet

Arduino
Nano

H-bridge

100 Chapter 4

7.	 Connect the ground terminal of the regulator to the blue negative rail.

8.	 The input terminal of the regulator will connect to a blank row in the
breadboard, which will connect to the +7.5V to 9V supply.

9.	 Connect capacitor C1 from the input of the regulator to ground.

10.	 Connect capacitor C2 from the output of the regulator to ground.

11.	 Insert the SN754410 H-bridge several rows away from the Nano, strad-
dling the gutter in the middle of the breadboard. (Figure 4-6 shows the
H-bridge pinout.)

16

15

14

13

12

11

10

 9

1

2

3

4

5

6

7

8

Heat sink
and ground

Heat sink
and ground

VCC1

4A

4Y

3Y

3A

3,4ENVCC2

2A

2Y

1Y

1A

1,2EN

Figure 4-6: SN754410 H-bridge pinout in a
DIP form factor

12.	 Connect pins 4, 5, 12, and 13 of the H-bridge to ground.

13.	 Connect pins 8, 9, and 16 of the H-bridge to the red positive rail.

14.	 Attach pins 14 and 11 of the H-bridge to the motor with leads at least
10 to 12 inches long. The connections to the motor will have to be
soldered unless you use alligator clips or clip leads.

15.	 Attach approximately 8-inch wires to all three leads of the Hall effect
sensor. Connect the leads attached to the positive and negative leads
of the Hall effect sensor to the red positive rail and blue negative rail,
respectively.

16.	 Connect the wire attached to the third pin of the Hall effect sensor to
pin A0 on the Nano. The Hall effect sensor will be taped (I used mask-
ing tape) to the motor body (this works because the leads are insulated)
in such a position that the active part of the device will be close to the
magnet attached to the shaft as it goes around.

17.	 Connect a 10-kilohm resistor from pin A0 on the Nano to the red posi-
tive rail.

18.	 Connect pin 10 of the H-bridge to pin D13 on the Nano.

19.	 Connect pin 15 of the H-bridge to pin D12 on the Nano.

Emitter
Collector Base

Figure 4-7: ZTX649
transistor pinout in a
TO-92 package

A Watch Winder 101

20.	 Insert five ZTX649 transistors, each using three
rows, on one side of the breadboard. (Figure 4-7
shows the transistor pinout.)

21.	 Connect the collector of each transistor to the
red positive rail.

N O T E 	 These transistor connections differ from the final schematic,
where the collectors will be tied to the 9V input voltage.

22.	 Take five LEDs, and connect the positive termi-
nal of an LED to the emitter of each transistor.

23.	 Connect the negative terminal of each LED to
ground through a 270-ohm resistor.

24.	 Connect three additional transistors, LEDs,
and 270-ohm resistors on the opposite side of
the breadboard in a similar manner to the five
groups connected in steps 20–23.

N O T E 	 Steps 20–25 are different than the schematic, as the LEDs are driven directly from the
Nano, for ease of experimentation. In the schematic, they are connected using a tran-
sistor. Using the 470-ohm resistor instead of the 270-ohm resistor limits the current to
the Nano.

25.	 Connect the positive terminal of another LED to pin D12 of the Nano.

26.	 Connect the negative terminal of the pin D12 LED to an empty row on
the breadboard.

27.	 Connect one end of a 470-ohm resistor to the negative terminal of the
pin D12 LED, and connect the other end of the resistor to ground.

28.	 Connect the positive terminal of another new LED to pin 13 of the Nano.

29.	 Connect the negative terminal of the pin 13 LED to an empty row on
the breadboard.

30.	 Connect one end of a 470-ohm resistor to the negative terminal of the
pin 13 LED, and connect the other end of the resistor to ground.

31.	 Connect pins D4, D5, D6, D7, D8, D9, D10, and D11 on the Nano to the
bases of the transistors feeding the LEDs.

Because the breadboard is for illustration only, the order that the con-
nections are made in doesn’t matter unless you want to reprogram the
Arduino while the circuit is on the breadboard.

The magnet was mounted to a plug on the motor shaft using double-
sided adhesive foam tape. For the plug, you can use almost anything—a
cork, a rubber stopper, and so on—as long as it puts the magnet in a posi-
tion so it will be about 3/8 inches from the sensor as the magnet rotates.

7.	 Connect the ground terminal of the regulator to the blue negative rail.

8.	 The input terminal of the regulator will connect to a blank row in the
breadboard, which will connect to the +7.5V to 9V supply.

9.	 Connect capacitor C1 from the input of the regulator to ground.

10.	 Connect capacitor C2 from the output of the regulator to ground.

11.	 Insert the SN754410 H-bridge several rows away from the Nano, strad-
dling the gutter in the middle of the breadboard. (Figure 4-6 shows the
H-bridge pinout.)

16

15

14

13

12

11

10

 9

1

2

3

4

5

6

7

8

Heat sink
and ground

Heat sink
and ground

VCC1

4A

4Y

3Y

3A

3,4ENVCC2

2A

2Y

1Y

1A

1,2EN

Figure 4-6: SN754410 H-bridge pinout in a
DIP form factor

12.	 Connect pins 4, 5, 12, and 13 of the H-bridge to ground.

13.	 Connect pins 8, 9, and 16 of the H-bridge to the red positive rail.

14.	 Attach pins 14 and 11 of the H-bridge to the motor with leads at least
10 to 12 inches long. The connections to the motor will have to be
soldered unless you use alligator clips or clip leads.

15.	 Attach approximately 8-inch wires to all three leads of the Hall effect
sensor. Connect the leads attached to the positive and negative leads
of the Hall effect sensor to the red positive rail and blue negative rail,
respectively.

16.	 Connect the wire attached to the third pin of the Hall effect sensor to
pin A0 on the Nano. The Hall effect sensor will be taped (I used mask-
ing tape) to the motor body (this works because the leads are insulated)
in such a position that the active part of the device will be close to the
magnet attached to the shaft as it goes around.

17.	 Connect a 10-kilohm resistor from pin A0 on the Nano to the red posi-
tive rail.

18.	 Connect pin 10 of the H-bridge to pin D13 on the Nano.

19.	 Connect pin 15 of the H-bridge to pin D12 on the Nano.

Emitter
Collector Base

Figure 4-7: ZTX649
transistor pinout in a
TO-92 package

102 Chapter 4

After you complete the breadboard, upload the WatchWinder.ino sketch
to the Arduino. Just follow the instructions in “Uploading Sketches to Your
Arduino” on page 5.

The Sketch
The Watch Winder employs functions and arrays to show different flashing
sequences on the LEDs without rewriting the sequence each time. There
are also some excruciatingly long delays: about 829 rotations in 24 hours
translates to a motor at 20 RPM being on for approximately 32.5 minutes
out of 1,400 minutes in the day. This means that if the sketch were to han-
dle an entire day of turning, it would be idle for 1,367.5 minutes a day.

But you can divvy up the rotations so that the sketch can be repeated
and need only some fraction of the 24 hours to complete. For example, if
an hour is selected as the length of time it takes for the sketch loop to com-
plete, the motor has to do some 24 turns. It could do 12 each way or some
other combination.

In the following sketch, I also made an effort to make the lights and
motor movements as visually interesting as possible, leaving very little time
when nothing is happening—but that’s an artistic choice.

/*This gives about 829 revs/day*/

const int HallPin = A0; //Identify those things that will not change
const int CWpin = 12;
const int CCWpin = 13;

const int LED11 = 11;
const int LED10 = 10;
const int LED9 = 9;
const int LED8 = 8;
const int LED7 = 7;
const int LED6 = 6;
const int LED5 = 5;
const int LED4 = 4;

int autoDelay = 1000;
int timer = 500;
int timer2 = 3000;
int repeats = 10;

int previous;
int HallValue = 1; //Response from the Hall effect sensor
int time = 0;
int state;
int count = 0;
int q = 0;
int i;
int j;

A Watch Winder 103

int ledPins[] = {
 11, 4, 7, 6, 8, 10, 5, 9,
};
int pinCount = 8;

void blinkIt() {
 //Initiate rapid blink sequence
 for(int thisPin = 0; thisPin < pinCount; thisPin++) {
 //Turn the pin on:
 digitalWrite(ledPins[thisPin], HIGH);
 delay(timer2);
 //Turn the pin off:
 digitalWrite(ledPins[thisPin], LOW);
 delay(timer2);
 }

 //Loop from the highest pin to the lowest:
 for(int thisPin = pinCount - 1; thisPin >= 0; thisPin--) {
 //Turn the pin on:
 digitalWrite(ledPins[thisPin], HIGH);
 delay(timer2);
 //Turn the pin off:
 digitalWrite(ledPins[thisPin], LOW);
 delay(timer2);
 }
}

void flashIt() {
 //Initiate rapid blink sequence
 for(int thisPin = 0; thisPin < pinCount; thisPin++) {
 //Turn the pin on:
 digitalWrite(ledPins[thisPin], HIGH);
 delay(timer2);
 //Turn the pin off:
 digitalWrite(ledPins[thisPin], LOW);
 }

 //Loop from the highest pin to the lowest:
 for(int thisPin = pinCount - 1; thisPin >= 0; thisPin--) {
 //Turn the pin on:
 digitalWrite(ledPins[thisPin], HIGH);
 delay(timer2);
 //Turn the pin off:
 digitalWrite(ledPins[thisPin], LOW);
 }
}

void allatOncefast() {
 {
 digitalWrite(LED4, HIGH);
 digitalWrite(LED5, HIGH);
 digitalWrite(LED6, HIGH);
 digitalWrite(LED7, HIGH);
 digitalWrite(LED8, HIGH);
 digitalWrite(LED9, HIGH);

104 Chapter 4

 digitalWrite(LED10, HIGH);
 digitalWrite(LED11, HIGH);

 delay(500);

 digitalWrite(LED4, LOW);
 digitalWrite(LED5, LOW);
 digitalWrite(LED6, LOW);
 digitalWrite(LED7, LOW);
 digitalWrite(LED8, LOW);
 digitalWrite(LED9, LOW);
 digitalWrite(LED10, LOW);
 digitalWrite(LED11, LOW);

 delay(500);
 }
}

void allatOnce() {
 {
 digitalWrite(LED4, HIGH);
 digitalWrite(LED5, HIGH);
 digitalWrite(LED6, HIGH);
 digitalWrite(LED7, HIGH);
 digitalWrite(LED8, HIGH);
 digitalWrite(LED9, HIGH);
 digitalWrite(LED10, HIGH);
 digitalWrite(LED11, HIGH);

 delay(4000);

 digitalWrite(LED4, LOW);
 digitalWrite(LED5, LOW);
 digitalWrite(LED6, LOW);
 digitalWrite(LED7, LOW);
 digitalWrite(LED8, LOW);
 digitalWrite(LED9, LOW);
 digitalWrite(LED10, LOW);
 digitalWrite(LED11, LOW);

 delay(2000);
 }
}

void setup() {
 pinMode(HallPin, INPUT); //Identifies inputs and outputs
 pinMode(CWpin, OUTPUT);
 pinMode(CCWpin, OUTPUT);

 Serial.begin(9600);

 for(int thisPin = 0; thisPin < pinCount; thisPin++) {
 pinMode(ledPins [thisPin], OUTPUT);
 }
}

A Watch Winder 105

void loop() {
 int HallValue = (digitalRead(HallPin)); //Sets value of initial Hall effect

 if(HallValue == HIGH && previous == LOW) {
 if(state == HIGH)
 state = LOW;
 else
 state = HIGH;

 //Increments counter each time the Hall effect sensor passes the magnet
u count++;

 }

 /* The "Serial.print" line was used in development. I left it in so that
 you can experiment and look at some of the values on a serial
 monitor. You might even want to change the parameters of what you
 are looking at in the monitor.
 */
 Serial.print("HallValue ");
 Serial.println(HallValue);
 Serial.print("count ");
 Serial.println(count);
 Serial.print("CCW ");
 Serial.println(" ");

 if(count == 1) {
 digitalWrite(CCWpin, HIGH);
 digitalWrite(CWpin, LOW);
 }

 if(count == 3) {
 digitalWrite(CWpin, HIGH);
 digitalWrite(CCWpin, HIGH);
 }

 if(count == 3) {
 for(i = 0; i < repeats; i++) {
 allatOncefast();
 }
 count = count + 1;
 }

 if(count == 3) {
 digitalWrite(CWpin, LOW);
 digitalWrite(CCWpin, HIGH);
 }

 if(count == 4) {
 digitalWrite(CWpin, HIGH);
 digitalWrite(CCWpin, HIGH);
 }

106 Chapter 4

 if(count == 4) {
 for(q = 0; q < repeats; q++) {
 blinkIt();
 }
 count = count + 1;
 }

 if(count == 5) {
 for(j = 0; j < repeats; j++) {
 allatOnce();
 }
 delay(50);
 count = count + 1;
 }

 if(count == 6) {
 digitalWrite(CCWpin, LOW);
 digitalWrite(CWpin, HIGH);
 }

 if(count == 7) {
 digitalWrite(CWpin, LOW);
 digitalWrite(CCWpin, LOW);
 }

 if(count == 7) {
 for(i = 0; i < repeats; i++) {
 flashIt();
 }
 count = count + 1;
 }

 if(count == 8) {
 digitalWrite(CCWpin, HIGH);
 digitalWrite(CWpin, LOW);
 }

 if(count == 10) {
 for(i = 0; i < repeats; i++) {
 allatOncefast();
 }
 count = count + 1;
 }

 if(count == 11) {
 digitalWrite(CCWpin, LOW);
 digitalWrite(CWpin, LOW);
 }

 if(count == 11) {
 for(i = 0; i < repeats; i++) {
 blinkIt();
 }

A Watch Winder 107

 delay(2000);
 count = count + 1;
 }

 if(count == 12) {
 digitalWrite(CCWpin, LOW);
 digitalWrite(CWpin, HIGH);
 }

 if(count == 13) {
 digitalWrite(CCWpin, HIGH);
 digitalWrite(CWpin, HIGH);
 }

 if(count == 13) {
 for(i = 0; i < repeats; i++) {
 flashIt();
 }
 count = count + 1;
 }

 if(count == 14) {
 for(i = 0; i < repeats; i++) {
 allatOnce();
 }
 }

 if(count == 14) {
 digitalWrite(CWpin, LOW);
 digitalWrite(CCWpin, HIGH);
 delay(autoDelay);
 }

 if(count == 17) {
 digitalWrite(CWpin, HIGH);
 digitalWrite(CCWpin, HIGH);
 }

 if(count == 17) {
 for(i = 0; i < 20; i++) {
 blinkIt();
 }
 }

 {
 for(i = 0; i < repeats; i++) {
 allatOncefast();
 }
 count = count + 1;
 }

108 Chapter 4

 if(count == 18) {
 digitalWrite(CCWpin, HIGH);
 digitalWrite(CWpin, LOW);
 delay(2000);
 digitalWrite(CCWpin, LOW);
 digitalWrite(CWpin, HIGH);
 delay(2000);
 }

 if(count > 20) {
v count = 0;

 }
 previous = HallValue;
}

First, the sketch creates several constants, integers, and arrays, which
assist with timing turns by reading from the Hall effect sensor and counting
the turns. Next, come a few function definitions: blinkIt() and flashIt() blink
the LEDs in different patterns, while allatOnceFast() and allatOnce() blink the
LEDs all at the same time with different delays.

As usual, the setup() function tells the Arduino which pins are inputs
and outputs. At the start of the loop() function, the Hall effect sensor is
read, and the sketch increments the counter at u as needed, printing a few
useful debugging values to the serial monitor along the way. This sketch
uses the count value to turn different sequences on or off and limit the rep-
etitions. However, because count is reset at the end of the sequence at v, it
cannot be used as a totalizer.

Finally, for various counts, the sketch uses if statements to hard-code
different patterns for turning the watches and flashing the LEDs; I show a
few here, but I encourage you to set up your own. The sketch is written with
many functions you can use as-is or repeat in a for loop to give multiple
iterations.

The Shield
As in some of the other Arduino projects, the shield is not terribly complex,
but it looks a little busy. For simplicity, this shield is a single-sided board.
The circuit uses an LM7805 voltage regulator to handle excess current that
could result from using a different motor. The on-board regulator built into
the Nano is intended only for currents less than 300 mA.

N O T E 	 I have used the regulator in this project at up to 500 mA, but the regulator tends to
get pretty warm, and I don’t feel comfortable using it at that level.

You may be able to leave the regulator out; the collectors of the transis-
tors feeding the high-output LEDs are configured as emitter-followers and
wired directly to the positive 9V supply, so they are not contributing to the
load on the regulated 5V.

A Watch Winder 109

Figure 4-8 shows the foil pattern for the shield (left), and the silk-
screen layer (right).

Figure 4-8: The foil pattern of the shield (left) and the silk-screen layer (right). The Watch Winder shield’s silk-
screen layer shows the approximate placement of the Nano, H-bridge, contacts for the external counter, Hall
effect sensor, potentiometer, LED connections, jumpers, input voltage (VIN), and ground (GND). The PCB
Express file is available to download from https://www.nostarch.com/arduinoplayground/.

Notice the contacts for the Hall effect switch at the top of the board,
labeled Hall. I soldered wires that connected the Hall effect device directly
to the PCB, though you could use a connector if you prefer.

In the center of the board, I left connections for a potentiometer (POT)
for external adjustment of the period, an option I describe in “Total Rotation
Adjustment” on page 124. The numbers of the digital outputs are labeled at
the left-hand side.

If you choose to assemble the Watch Winder shield, note that the Nano
is meant to be plugged into female headers soldered onto the shield and
that the transistors are underneath the Nano board. Push the transistors
down far enough before you solder them so they will not be in the way of
the Nano when it’s plugged in. I had to place the transistors fairly close
to fit all the connections into the PCB layout. The ZTX649 transistors I
selected fit well enough within the 0.100-inch spacing allowed by the foot-
print of the Nano.

You will also have to add a few jumper wires to complete the con-
nections on the shield. They are marked on the silk-screen pattern. In
Figure 4-8, those appear as five black lines. Don’t forget to include them
when wiring up the board. I also left out the capacitors from the LM7805
regulator’s input and output to ground; in the finished board, they are
soldered on externally. If you want those capacitors, simply solder a 10.0 µF
tantalum and a 0.1 µF ceramic capacitor directly to the pins of the regula-
tor, as shown in the schematic in Figure 4-3.

http://www.nostarch.com/arduinoplayground

110 Chapter 4

Overview of the Motor Assembly
When you’ve had enough fun watching the LEDs blink on the breadboard,
watching the motor start and stop, and playing with the sketch, it’s time
to address the mechanical side of this project, which offers a few special
challenges. This winder won’t be functional until the motor has something
to turn; see Figure 4-9 for a detailed diagram of the motor, motor mount,
transmission, bearing box, and driveshaft, which comprise the turning
assembly.

Jam nut

Ball bearing

Vinyl tubing

Piano wire

Motor shaft

Bushing
Set screw

Piano wire

Motor

Figure 4-9: The construction entails making a small box that retains the bearings through
which the driveshaft is mounted and held in place by jam nuts. The motor, mounted on
standoffs, is connected to the driveshaft, and the watch basket will be attached to the
other end of the driveshaft.

The driveshaft will need to be mounted through the bearings, and the
two can be held together with jam nuts. I chose a fairly standard R4A-2RS
bearing, which is a relatively common part and has a 3/4-inch outer diameter,
a 1/4-inch inner diameter, and a 9/16-inch thickness. I suggest ball bear-
ings because the prebuilt winder I bought used the brass bushing of the
motor as the only bearing, and that’s what failed. Because the inside diam-
eter of the bearing was 1/4 inches, I decided to use a standard threaded
rod at a 1/4-inch × 20 tpi (turns per inch) or 1/4-inch × 28 tpi rather than
attempt to press-fit a 1/4-inch bar into the bearing.

N O T E 	 I used jam nuts to fasten the rod to the bearings because they were thinner and less
obtrusive looking than regular nuts, but you could also use standard nuts.

Construction
Construction of the winder provided a number of challenges, particularly
working with the acrylic material—which was unfamiliar to me before this
project. Though there were some rough spots to get over, I learned by trial
and error some ways to get the job done. Figure 4-10 shows the completed
Watch Winder on its side.

A Watch Winder 111

Figure 4-10: The completed Watch Winder on its side, showing the base fabrication,
bearing box, motor mount, and watch basket

The toughest part was cutting the acrylic and drilling the holes for the
ball bearings. There are several ways to cut acrylic, and none of them is
particularly easy. If you use a supplier that will laser-cut the acrylic parts for
you, this will be a lot easier. Several companies offer that service for a little
more than the price of the raw materials. I mentioned one of them, ZLazr,
earlier.

If you have access to a circular saw, that’s about one of the easiest DIY
approaches. Otherwise, just about any saw will do. I’ve used a hacksaw,
which works better than most if you take your time. (If you go too fast, the
acrylic will heat up and start to melt, causing the saw to bind.) I even know
some people who have had success scoring and snapping the acrylic sheet.
Just use whichever approach works best for you.

See “Acrylic” on page 93 for a list of acrylic shapes needed for the bear-
ing box, the watch basket, and the stand. Cut these pieces now, if you’ve not
done so already, and take the following steps to build the pieces.

Preparing the Motor Mount and Bearing Box Acrylic
First, print the motor mount template from this chapter’s folder (see
Figure 4-11), cut it out, and align it on the acrylic for the motor mount
using the centerline.

112 Chapter 4

D E
F

A B
C

0.33 in

0.69 in

Motor mount

Bearing box

Figure 4-11: Templates for motor mount and bearing
box. You can download the templates at https://
www​.nostarch.com/arduinoplayground/.

Tape the template to the acrylic, lining up the centerline on the center
of the acrylic piece, and mark the drill centers for holes A, B, D, E, and F.
To mark the holes, just punch the centers with a center punch or nail. Now,
drill them; use a 1/8-inch bit for A, B, D, and E and a 3/8-inch bit for F.

Then, set this piece aside, and gather the acrylic for the bearing box.
The final bearing box will look like Figure 4-12 once we put it all together.

Figure 4-12: Completed bearing box, before final trim
and polish. One bearing is temporarily in place.

Use the bearing box template to mark the drill centers for holes A, B,
and C on one of the bearing mount pieces. C will be the bearing hole, and
A and B will be for the motor mount’s standoffs. Center punch and drill
one of the bearing plate’s two smaller holes with a 2.5 mm (or #39) drill
and tap the hole with a M3-05 tap. These holes will accept the standoffs for
mounting the motor. Use the same template to mark only the bearing hole

A Watch Winder 113

(C) on the acrylic for the opposite side of the bearing box. Then, take the
two pieces of bearing box acrylic that won’t hold bearings, and mark the
center by drawing lines from corner to corner. Center punch them, and drill
1/4-inch holes for mounting to the stand.

W A R N I N G 	 When drilling any size hole in the acrylic, securely clamp the piece, as shown in
Figure 4-13. Do not hold it manually. If the drill or hole saw binds, the acrylic will
want to spin. In any case, keep the drill at a slow speed and advance it very gradu-
ally into the work.

Figure 4-13: Drilling a large hole in the acrylic. Note that the acrylic piece is
securely clamped down.

The best solution I found to make the holes for the bearing and other
large holes in the acrylic is to drill a relatively small hole—perhaps 1/4
or 3/8 inches—and ream them out with a tapered reamer to the finished
dimension (see Figure 4-14). This is, by far, the safest and easiest approach
and the one I strongly recommend.

When you ream out the bearing hole, make sure to ream from both
sides. This will result in the center of the hole being a slightly smaller diam-
eter than the outsides. Ream until the bearing is a tight fit and then, if nec-
essary, you can use an anaerobic bonding agent to fill in around the edges.

The final prep stage for the acrylic is to sand and finish it. How you
cut the acrylic originally will determine how much finishing it will take to
get the edges ready. If you had the pieces laser cut, little finishing will be
required. For all finishing, I used ascending grades of sandpaper, starting
with 220 grit and going up to 1500—that is, 220, 320, 400, 600, and then
1500. Automatic sanders—orbital, belt, vibratory, and so forth—often are
too rough, and without special care, they will melt the acrylic. If you use one,
try it on a scrap piece first. The sanding process worked well even though

114 Chapter 4

some extra sanding was required on roughly cut sections. Additional sand-
ing was required on the opposing piece to make everything fit together as a
rectangle—or as a cube in the case of the bearing box.

Figure 4-14: Using a tapered reamer to enlarge the bearing hole
to the finished dimension

Use a liquid polish or jewelers rouge to achieve the final polish. Make
sure to remove all the wax from the polish from the surface before bond-
ing. Try not to round the edges of the sections so the thinner bonding
agent (Weld-On 4) will work well. You want to assure that you have suffi-
cient bonding surface in contact to make a secure bond.

Bonding the Acrylic for the Bearing Box
Now, it’s time to use a bonding agent to connect the pieces of your bearing
box. Fortunately, bonding the acrylic actually turned out to be somewhat
easier than I anticipated.

Where the edges are smooth but not too badly rounded, Weld-On 4
thin bonding fluid should work quite satisfactorily. It partially dissolves
the acrylic and forms an actual weld. The most difficult part is keeping the
fluid from running where it shouldn’t go. If you have larger gaps, or have
rounded the edges, try Weld-On 16, which has a higher viscosity and a clear
acrylic filler, to fill gaps and voids where necessary.

In both cases, you should follow the instructions on the product, but
here’s how the acrylic weld works in general: just clamp the dry pieces of
acrylic together, and then, using a needle applicator included with the

A Watch Winder 115

bonding agent, apply a thin layer of acrylic cement to each joint. Capillary
action will draw the cement into the joint. For joints where the surfaces are
a little more uneven, you can apply the thicker Weld-On 16 to one surface
and then attach it to the other surface. Clamping is required for only a few
minutes, but allow several hours for final curing.

The system doesn’t need a lot of strength, but it should not fall apart
when touched. For the parsimonious, a paint stripper like Klean Strip also
works well to bond the acrylic. (The chemical behind the bonding agent in
Weld-On is methyl chloride, which is the key ingredient in the paint strip-
per.) Klean Strip is less than one-fourth the price of Weld-On.

N O T E 	 There are several tutorials on bonding acrylic on the web, too. If in doubt, look one
up, and experiment with a few scrap pieces of acrylic first before trying it out on the
pieces you worked so hard on.

After bonding the bearing box, as shown in Figure 4-9, and bonding
the side pieces to the bottom, check the alignment. Run the threaded
rod through the bearings, and put the jam nuts in place without over-
tightening them. Make sure the bearings don’t bind. If they are not well
centered, this can happen, but usually, they will align themselves as you
tighten the jam nuts a little. If your alignment is off, you may need to
adjust the holes a little with the reamer and touch up with some acrylic
cement, but I never ran into that problem. For now, remove the driveshaft
from the bearing box.

Building the Stand
The stand is the least complex part of the project. It comprises the two
side supports, 1 1/2 × 5 × 1/4 inches, and the base, 3/8 × 3 × 5 1/2 inches.
I included the lightbar, 3 × 1 1/4 × 3/8 inches, and the shield mounting,
2 1/2 × 2 1/2 × 3/8 inches, with the stand (see Figure 4-15).

First, drill 1/4-inch holes in each side support a 1/2 inch from the
top, centered left to right. Then, bond the two side supports to the base
1 1/2 inches in from the edge of the base that will be the back. Next, drill
the holes for the LEDs in the lightbar. I used five LEDs (red, blue, white,
yellow, and green) that were 10 mm in size. You can use whatever color
combination you choose.

Finally, drill and mount the shield. To find the center of the piece, mark
from corner to corner. Then, in the center, drill a #43 hole and tap for a 4-40
screw. Drill a corresponding hole, centered and 2 inches from the rear edge,
in the base. Next, use the shield itself, or the drawing from the ExpressPCB
print, as a template to drill a hole for the three mounting screws. In design-
ing the board, I failed to leave room for a fourth screw. However, three are
more than sufficient, as there is no mechanical force on the board. I used a

116 Chapter 4

2.5 mm (#39) drill and tap for a M3-05 screw that the standoffs will fit into.
Figure 4-15 shows the dimensions of the parts and the partially assembled
base, including supports, the lightbar, and the shield mount.

2.5 in

1.5 in

Side supports

Base

2.5 in 5 in

5.5 in

0.375 in

0.375 in

1.25 in

Drill #43
Tap 4-40

Use shield as template
to drill mounting holes

Lightbar

3 in

1.5 in

0.5 in

Figure 4-15: The components and configuration of the base and lightbar for the Watch Winder

Preparing the Motor and the Driveshaft
Despite a concerted effort to mark and drill the holes accurately, you may
still end up with misalignment between the motor and driveshaft, so this
build aims to keep the coupling flexible. My solution might not be on the
hit parade of industrial engineers, but I used a length of vinyl tubing to
couple the motor to the driveshaft. This coupling has been working for
more than a year with no sign of deterioration or problems.

A 1-inch length of heavy-wall vinyl tubing with an outside diameter of
7/16 inches and an inside diameter of 3/16 inches should do the job.

It won’t fit the motor shaft or the 1/4-inch threaded shaft without a
bit of work, though. (I drove the sales clerk at Lowe’s batty buying six of
each size they had in stock.) We simply need to reduce the diameter of the
threaded shaft and craft a small bushing for the motor shaft.

Trimming the Threaded Shaft

First, trim the diameter of the threaded shaft. Clamp a hand-held electric
drill in a vise or parallel clamp, using a folded towel to keep from damag-
ing the drill, and place the shaft where the drill bit would normally go
(see Figure 4-16). Then, turn on the drill, and use a sharp file to trim the
shaft.

A Watch Winder 117

Figure 4-16: Reducing the diameter of the threaded shaft

It should take only a minute or two to reduce the shaft diameter to a
little over 3/16 inches for a tight fit on the vinyl tubing.

Creating the Motor Bushing

Next, take a small piece of round stock approximately 3/4 inches long and
3/8 to 1/2 inches in diameter. (I used a 3/8-inch diameter, as it required
less work.) Drill a 11/64-inch (#21) hole in the end approximately 3/8 inches
deep. The bushing hole needs to be as close to the center as possible, so you
might want to mark it with a center punch first (see Figure 4-17).

Figure 4-17: Clamp the shaft of the piece used as the bushing in a vise
or pair of vise-grip pliers, and center punch a mark before drilling the
hole. Get as close to the center as possible.

118 Chapter 4

Then, place the short piece of stock you cut in the drill as you did the
threaded shaft with the center hole toward the drill. File the end without
the hole in it. Reduce the diameter by about 1/4 inches to approximately
equal the filed end of the driveshaft.

Next, drill a 0.041-inch hole through the bushing, about 3/8 inches
from the edge of the bushing.

While you’re at it, drill a corresponding hole in the driveshaft. To center
punch and drill the driveshaft and the bushing holes, file the end flat so the
center punch can find a purchase (see Figure 4-18). These are the holes that
will accept the piano wire through the vinyl tubing.

Figure 4-18: The easiest way to drill the holes in the threaded rod and bushing is to
file a small flat on the shaft and center punch.

Finally, drill a 2.5 mm (#39) hole and tap an M3-05 hole in the bush-
ing, perpendicular to the hole drilled for the motor shaft. This will accept a
set screw for the motor shaft. If you prefer, you can drill a #43 hole and tap
for a 4-40 set screw. This set screw holds the bushing in place on the motor
shaft, and the two 0.041-inch holes drilled in the driveshaft and motor
bushing, respectively, will pin the vinyl tubing in place with piano wire.

Cutting Piano Wire Pins and Completing the Motor Assembly

Cut two pieces of 0.039-inch wide piano wire, 1/2 to 5/8 inches long. This
can be a bit of a job. I used an abrasive cutoff wheel on a Dremel tool. Using
the corner of a small grinding wheel attached to the drill should work to
put a groove in the wire. Once you have a groove in the wire, you can snap
it by hand. You can also use any sharpening stone to score the wire, and it
should easily snap.

Flat-filed

Center
punch

A Watch Winder 119

Once that’s done, the rest of the assembly should go easily. First, mount
the bushing to the motor; put a drop of thread-lock liquid on the set screw
before tightening. Then, fit one end of the vinyl tubing over the bushing,
and run the piano wire through the 0.041-inch hole in the bushing. Hold
one end of the wire tightly in a pair of pliers (small vise-grip pliers work
well), and force it through the vinyl, into the hole in the motor bushing,
and into the vinyl on the other side. If this proves difficult, try heating
the piano wire with a small flame, and then it should go through easily.
Figure 4-19 shows the tubing over the motor bushing.

Figure 4-19: The motor shaft with the bushing comprises half of the transmission to the
winder. The other half is the reduced driveshaft that goes through the bearing and holds
the watch basket.

Attach the motor mount to the motor using M3×3/8-inch screws.
Next, screw the motor standoffs into the bearing cage; see Figure 4-20 for
how to place them. Take the motor assembly—that is, the motor, mount-
ing plate, bushing, and vinyl—and fit it to the bearing cage standoffs
using M3-05×1/2-inch screws.

To make the holes in the vinyl for the driveshaft, just install the
driveshaft into the bearing box without the jam nuts, push the vinyl tub-
ing onto it, and install the piano-wire pin as I described in the previous
section. If you are concerned about the piano-wire pins coming out, you
can wrap a wire tie over them or cover them with a piece of tape. (I never
had a problem.) For now, remove the piano-wire pin from the driveshaft
and remove the driveshaft from the bearing box until you’re ready for the
final assembly.

Motor shaft
Bushing

Set screw
Reduced diameter
of bushing with
vinyl tubing

Piano wire

Motor

120 Chapter 4

Standoffs

Figure 4-20: Motor and motor mount connected to bearing box with stand-
offs. The standoffs are threaded into the bearing box while the motor mount
is fastened with 3 mm × 1/2-inch screws and washers. The bearing box is
mounted to stand with 1-inch-long, 1/4-inch × 28 screws and nuts.

Making the Watch Basket
There are many ways to construct the part of the project that holds the
watches. I chose to make my watch basket from acrylic. The construction is
relatively straightforward, though it does require some patience. First, take
two 5×3/8-inch acrylic disks and carefully mark the center on each. Drill
1/4-inch holes in the center of each. Then, on what will be the top disk,
mark the rectangles shown in Figure 4-21 (left).

If you’ve not done so already, cut the rectangular acrylic pieces I
described in the “Parts List” on page 93 for the watch boxes and assemble
them following the same instructions given under “Bonding the Acrylic for
the Bearing Box” on page 114. (In most of the samples I’ve made, I used
1/4-inch acrylic; however, 3/8-inch acrylic works fine.) Then, carefully mark
out the openings on the disk (see Figure 4-21). Now, bond the watch baskets
to one disk, as shown in Figure 4-22. Then, cut the openings to match up
with the inside of the watch baskets.

A Watch Winder 121

3 in

0.25 in

0.25 in

2 in
1 in

1 in

Figure 4-21: Cut out dimensions for the watch holder basket. This pattern can be down-
loaded as a PDF file from http://www.nostarch.com/arduinoplayground/.

Figure 4-22: The watch holder baskets mounted to the acrylic disk.
Above them is the fully assembled motor, bearing box, and driveshaft.

The simplest way to cut the rectangles out is to drill a hole at the cor-
ners, being careful not to drill into the watch basket, and use a keyhole
or coping saw (or if you’re careful, a saber saw) to cut the openings. They
have to be cut only on one disk, which will be the top. You can clean up the
edges of the cuts a little with a file or sandpaper, but don’t spend too much
time as it will not be noticeable with the watches and cushions in place.

122 Chapter 4

Finally, mount the basket on the driveshaft. First, thread two nuts onto
the driveshaft and lock them against each other—that is, tighten one nut
against the other. Then, add a washer, followed by the lower disk of the bas-
ket, the top assembly with the watch baskets, a washer, and a nut at the top.
If you desire, go to the hardware store to search for a decorative nut to cap
off the project.

N O T E 	 Bonding the bottom disk isn’t necessary if you use locking nuts as I described and
tighten the basket securely. I didn’t bond the boxes to the lower disk, and it has not
been a problem.

At this point, you can mount the finished assembly to the stand using
the two decorative 1/4 inch × 28 bolts and nuts. You can also bond the light-
bar to the base using acrylic cement and drill the hole for mounting the
shield mounting plate.

Adding the LEDs
You’re just about done. Locate and mount the LEDs on the acrylic any-
where you like, and wire them up to the shield. You can see where I placed
mine in Figure 4-1. (The way the acrylic conducts the light produces some
neat effects.) You may want to drill some blind holes to mount the LEDs
in. Simply drill a hole the diameter of the LED but not completely through
the acrylic. If you’re careful, you can probably do a neat job in running the
wires so they can barely be seen.

Because the LEDs are critical to the ultimate appearance of the winder,
their placement and mounting is an important component of the finished
product. Drilling the holes for mounting the LEDs can be a little tricky
because if you bought a variety, they may have slightly different diameters.
As a starting point, try 3/16-inch holes for 5 mm LEDs and 25/64-inch
holes for 10 mm LEDs. I found the best way to get the right size was to drill
a sample hole in a scrap piece of stock and try it before venturing to drill
into a finished piece. If the hole is a bit small, a simple touch up with the
tapered reamer should fix that. If a hole ends up a little large, try filling it
in with some acrylic cement, such as Weld-On 16.

If you have some wire-wrap wire and a wire-wrap tool, you can wire-
wrap the LEDs to the shield instead of soldering. This makes a neat con-
nection to the back of the LEDs and is relatively inconspicuous because of
the small diameter of the wire. It also lets you connect the wire close to the
LED, as in shown Figure 4-23. If you soldered it, you might risk overheating
the junction of the LED.

Wire-wrap or solder the leads from the LEDs to the shield. I soldered a
header to the shield so that it was easy to wire-wrap or solder the leads from
the LEDs to the shield directly. You do have to solder leads from the motor
to the other end of the shield, but it should not be a problem.

The wires from the Hall effect sensor can be soldered to the shield and
to the leads of the sensor. Measure the wires so they fit neatly where you

A Watch Winder 123

plan to mount the Hall effect sensor. You can use a connector, but let’s keep
it simple. The sensor itself and the magnet are mechanically mounted using
double-sided foam tape.

Figure 4-23: Wire-wrap wire on an LED. These wires are very fine
(30 gauge) with thin insulation, so they are unobtrusive. Small wire
ties can neaten up the wiring. I suggest marking the LED’s positive
terminal ahead of time, as I’ve done here, and wiping it off later.

Leaving the Components on Display
Now, what to do with the shield and Nano? The theme of this project has
been transparency, so I suggest letting everything hang out: mount the bare
board on standoffs right out in the open with the switch and power jack at
the back (see Figure 4-24).

Figure 4-24: The Nano and shield mounted on the completed Watch Winder.
Only three standoffs were used on the shield.

124 Chapter 4

I placed the electronics directly under the bearing box, between the
uprights holding the entire assembly to the base. Then, I mounted the
board on a separate piece of acrylic screwed to the base with a flat-head
4-40 screw.

Keeping the Watches in the Basket
To hold the watches in the watch basket, I simply cut a block of fine foam
sponge, and it worked well. If you want something a little dressier than
a sponge, you can sew small pillows that you put the watch band around.
I don’t have any sewing ability, so I stuck with the sponge.

N O T E 	 The open frame works well overall, but it could collect dust. If you have a fastidious
streak, you could build an acrylic box to cover the entire winder from 3/16-inch-thick
acrylic sheet. Or you could just buy a can of dust spray, as I did. Some have also sug-
gested to me that the entire winder could be mounted on a piece of hardwood, such as
walnut or some other decorative hardwood, to add a finishing touch.

Design Notes
Now that you’ve seen how I built the Watch Winder, I’ll walk you through
some key design decisions I made that you might want to do differently.

Total Rotation Adjustment
It’s possible to vary the total number of turns the Watch Winder makes
without changing the sketch, though I chose not to do this.

You can use a potentiometer to create a variable voltage and input it
to one of the analog inputs of the Arduino. Then, you can substitute that
value for one of the delays in the sketch to vary the number of revolutions
per day. Here’s how to install the potentiometer and the tweaks you’d need
to make to the sketch.

Hardware Changes

Connect the upper and lower terminals of a potentiometer to the positive
and negative rails of the system. Solder pads have been included on the
shield for this purpose. You needn’t use a full-size potentiometer; a small
trimmer (10 turn is best) will do nicely, and it saves a lot of space. Connect
the potentiometer’s center pin (in the shield) to an analog pin of the Nano.
Because the Hall effect switch uses pin A0, I suggest using analog input A1.
Solder points have been provided in the shield.

Software Changes

On the sketch, there are several things you must do. First, tell the Nano that
input A1 is in play. Go to the top of the sketch to add the following:

const int revSet = A1;

A Watch Winder 125

Then, a little further, identify the value the potentiometer is set at as
follows:

int revNumber = 0;

revSet is the arbitrary name I gave to the input A1, and revNumber is the
arbitrary name I gave to the number you will substitute in the sketch for
one of the delays.

The potentiometer will give values from 0 to 5 volts. Because the analog
input, A1, is connected to a 10-bit ADC, it will generate 1,024 digital values
between 0 and 1,023. In other applications, it’s been necessary to map these
1,024 values to some other set of values. However, in this particular situa-
tion, it’s easiest to use the values as is.

In the sketch file, move to the line after void loop() { and assign the
value of A1 to revNumber as follows:

revNumber = analogRead(revSet);

Go back to where we define some of the delays in the sketch. Change

int timer = 500;

to

int timer = 0;

Finally, go back to where you entered revNumber = analogRead(revSet);
and after that, enter the following:

timer == revNumber;

Now, each time the sketch calls for the timer value, the revNumber value
should be used automatically, which will give you a wide variation in delay.
The resulting variation runs from 200 to 1,200 revolutions per day.

How Many LEDs to Use and Where to Put Them
I originally imagined the Watch Winder having only two LEDs to indicate
the direction of rotation. The first version used LEDs attached to the motor-
direction pins, D12 and D13, of the Nano (see Figure 4-2). One pin was on
for the duration of rotation in one direction, and vice versa. Red and green
LEDs were used to indicate which direction the winder was going in, like run-
ning lights on a boat.

But that’s still pretty boring, and there were all those pins sitting there
not doing anything. Furthermore, if you invited a friend over to see your
winder, it would sit there, doing nothing most of the time—and so would
your visitor. So I decided to spice up the project with several more deco-
rative LEDs. I also decided to add more variability by having the sketch

126 Chapter 4

provide some animation, calling for the watches to turn a varying number
of times—sometimes shorter but more often. I even added a “ping-pong
effect.”

Because the half of my brain dealing with artistic matters apparently
never developed, I’ll leave the placement of the LEDs to you. On the unit
in Figure 4-1, there are four in the bearing box and five in a lightbar, but
you could place them anywhere.

I arbitrarily chose nine LED channels, and in some cases, I used two
LEDs per channel. I used two LEDs for each direction of the motor—the
two channels, D12 and D13, that serve double duty driving the LEDs as well
as driving the motor. D2 and D13 power two LEDs each. D4 through D10
power the other LEDs, the two behind the watch basket—D9 and D10, each
with two LEDs—and the five out in front in the lightbar—D4–D8. D11 is
reserved for future developments you may want to include.

Motor Voltage
One beta tester of the Watch Winder experienced difficulty running a 6V
motor from the 5V supply. The complaint was insufficient torque. The solu-
tion, should you run into this problem, is to run the second supply (VCC2)
of the H-bridge directly from the 9V supply. To do this, you are either
going to have to cut the traces to pin 8 or remove that pin and solder it
separately to the 9V supply. Because the motor runs so intermittently, there
is little risk of burning it out. It may not be an elegant solution, but it works.
Incidentally, out of about 20 different motors sampled, that was the only
one that experienced that problem. And as addressed earlier, the higher
speed of the motor at the higher voltage will have no, or little, effect on the
number of rotations.

How Many Rotations Does the Watch Winder Make?
If you really have to know how many rotations the Watch Winder makes,
here’s a solution. The internal counter serves to sequence the sketch but
does not accurately reflect the total number of revolutions the motor makes.
While we could have counted the rotations internally, it would have required
a separate readout or being hooked up to the serial monitor. But if you need
to keep count, you can add a small external counter. Because you will need it
only on rare occasions when changing the revolution count, you can plug it
in—a provision is made in the shield—when you need it and save it for other
projects when you don’t. The external counter in Figure 4-25 is self-powered
and costs under $8. See the “Parts List” on page 93 for details.

The external counter is not required; however, it could be a nice acces-
sory to include for this and other projects. It is not included in the design
because it is used only on occasion and can be plugged in. I used a two-pin
female header on the shield—the connections are labeled GND and X-ctr
on the screen layer of the shield—and included a two-pin plug on wires
from the counter. The count connection goes from ground to pin 4 of the
counter and from the Hall effect sensor to pin 1. You can add a reset button

A Watch Winder 127

from ground to pin 3 of the counter. The counter comes from the manufac-
turer with little information, so Figure 4-25 shows a view from the back with
the pushbutton reset on the counter on your right.

Figure 4-25: An external hardware counter with a reset button added

Even if this Watch Winder didn’t keep my watches wound, I think it
would still be a great sculpture. And when you are done with this project,
perhaps your next Arduino build will be just that: a kinetic, blinking, mov-
ing piece of art.

Pin 1

Pin 4

5
T h e G arage Sen t ry
P ar k ing  A s s i s t an t

This project is a reliable electronic device
to gauge the distance you need to pull

your car into your garage. If you park in
a garage, you’re probably familiar with the

problem: how far do you pull your car into the garage
to make sure there’s room in front for whatever is
there and enough space behind so the garage door
will close? Some people suspend a tennis ball on a string from the ceiling
and stop at the point when the ball meets the windshield. That works fine,
but the ball is a pain to set up and adjust, and it often gets in the way if you
want to use the garage for something other than parking the car.

Arduino offers a better solution. This Garage Sentry project is the elec-
tronic version of the classic tennis-ball-on-a-string device, only better. The
Garage Sentry accurately detects when your car reaches exactly the right
position in the garage and sets off an alarm that blinks so you know when
to hit the brakes.

130 Chapter 5

In addition, at the end of the chapter, I’ll show you how to modify the
basic Garage Sentry into a deluxe version that alerts you when you’re get-
ting close to the perfect stopping point.

Required Tools
This project doesn’t require many tools or materials, but you will need the
following tools for both the standard and deluxe versions:

Drill with a 3/8-inch or 1/2-inch chuck (powered by battery or with
110/220V from the wall)

Drill bits for potentiometer (9/32 inches), power input (1/4 inches),
and LED (3/8 inches)

Soldering iron and solder

Tapered reamer set

Philips head and slotted screwdrivers

Pliers (I recommend needle nose.)

(Optional) 1/4-inch tap

Parts List
You’ll need the following parts to build the basic Garage Sentry:

One Arduino Nano (or clone)

One HC-SR04 ultrasonic sensor

Two high-intensity LEDs (>12,000 MCD)

Inspira t ion Be hind t he G arage Sen t ry

This project evolved out of playing with an ultrasonic transceiver module, a
device that emits sound waves and then detects them after they travel to an
object, reflect off that object, and travel back to the module. The output of the
module allows a microcontroller to measure the time it takes to travel to and
from the object and, knowing the speed of sound, determine the distance. To
test the ultrasonic transceiver’s sensitivity and limits, I used the battery-operated
breadboard version in my garage, which had enough space to move objects
around for different distances. It turns out cars are great reflectors for ultrasonic
energy. From this experimentation, I was inspired to turn my test apparatus into
a Garage Sentry.

The Garage Sentry Parking Assistant 131

Two 270-ohm, 1/4 W (or more) resistors (to limit current to the LEDs)

One 20-ohm, 1/8 W potentiometer

Two NPN-signal transistors rated for a collector current of at least 1.5 A
(I used ZTX649 transistors.)

One enclosure (I recommend a blue Hammond 1591 ATBU, clear 1591
ATCL, or something similar.)

(Optional) One 0.80-inch aluminum strip for mounting bracket

(Optional) Two 1/4-inch × 20-inch × 3/4-inch bolts with nuts

One section (approximately 1×1 inch) perforated board (can include
copper-foil rings on one side)

One 3.5 mm jack

Two 2-56×3/8-inch screws and nuts

Two additional 2-56 nuts to use as spacers

One 9V, 100 mA plug-in wall adapter power supply (Anything from
7.5V to 12V DC at 100 mA or upward should work well.)

One piece of double-sided foam tape about 3-inches long

One LM78L05 (TO-92 package) regulator (for the breadboard
build only)

28- or 30-gauge hookup wire

(Optional) Wire-wrap tool and wire

Because the basic version doesn’t require a lot of additional compo-
nents, I suggest building the circuit on a standard perforated circuit board
instead of a shield. To power your circuit, you can use a 9V, 100 mA wall
adapter plugged into a 3.5 mm jack (see Figure 5-1). You shouldn’t need an
on/off switch.

Figure 5-1: I used a Magnavox AC adapter, but any similar power supply with a DC out-
put from 7.5V to 12V should work. These are readily available online and cost from under
$1.00 to about $3.00.

132 Chapter 5

Be sure to use two bright LEDs that are clearly visible, even when a car’s
headlights are on. Bright LEDs range from 10,000 MCD (millicandela)
to more than 200,000 MCD. The brighter, the better; just remember that
brighter LEDs require more power, so the current-limiting resistor will
need a higher power rating for the brighter lamps. The 270-ohm current-
limiting resistors result in a current drain of about 30–40 mA each with the
12,000 MCD LEDs I used at 5V. (Power equals volts times amps, or P = VI,
so at 40 mA and 5V, you’d have 0.20 W.) It’s best to use a 1/2 W or greater
resistor even though you can easily get by with a smaller value—as I did
with 1/4 W—because the LEDs are on only intermittently.

Deluxe Parts
In addition to the components for the basic Garage Sentry, you’ll need the
following extra components if you want to build the deluxe version:

Two high-intensity green LEDs

Two high-intensity amber LEDs

Two additional 270-ohm, 1/4 W resistors

Two additional NPN-signal transistors

One Hammond 1591 BTCL enclosure (to replace the 1591 ATCL)

One PCB (shield)

Downloads
Sketches  GarageSentry.ino and GarageSentryDeluxe.ino

Drilling template  Transducer.pdf

Mechanical drawing  Handle.pdf

Shield file for Deluxe Garage Sentry  GarageSentryDeluxe.pcb

The Schematic
Figure 5-2 shows the schematic for the Garage Sentry. R1 and R3 are the
270-ohm resistors for the LEDs and should be 1/4 W or larger. If a higher
wattage resistor is not available, you could place several resistors in parallel
to gain the required wattage. First, find the right resistor value with the
formula:

1 1 1 1 1

1 2 3R R R R Rntotal

= + + +…+

You can also use an automatic calculator, such as the one at http://
www.1728.org/resistrs.htm, which is a lot easier than doing the math yourself.

The Garage Sentry Parking Assistant 133

Figure 5-2: Schematic diagram of the Garage Sentry

To avoid extra calculations, select resistors of the same value. This way,
the same amount of current flows through each one. For example, two
1/8 W resistors in parallel will give you a 1/4 W value.

If you do use resistors of different values, you will have to calculate the
current flowing through each and the total dissipation.

This schematic also leaves you with room to customize your alarm.
While this version of the project uses LEDs to create a visual alarm, with a
slight modification, you can easily create an audible alarm as well. Simply
replace either the red or blue LED with an audible device, such as a
Sonotone Sonalert, and the alarm will sound. To replace an LED, you
would need to connect the Sonalert across that LED’s connections; just
make sure to get the polarity correct. Alternatively, you could keep both
LEDs and add an audible device for a third warning.

N o t e 	 In this project, the Nano takes advantage of its on-board voltage regulator, which is
why there’s no external regulator in the schematic.

Basics of Calculating Distance
This project measures the time it takes for a sound to originate, bounce off
an object, and be received back at the point of origin, and it uses that time
to calculate the distance between the object and the sensor.

134 Chapter 5

The basic distance calculation is not much different from determining
the distance of a storm by counting the seconds between a lightning flash
and a thunderclap. Each second represents a distance of 1,125 feet, or about
0.2 miles. Given that sound travels at 1,125 feet per second in air at sea level,
if there’s a five-second delay between a lightning flash and the thunderclap,
you can determine that the storm is roughly a mile away. In the case of the
Garage Sentry, once you know how long it takes for the sound to make a
round trip and know the speed of sound, you can calculate the distance
according to the time-speed-distance formula:

Distance = Speed × Time

How the Garage Sentry Works
This project takes advantage of ultrasonic sound, which, unlike thunder, is
above the hearing range of most individuals. If your hearing is good, you
can detect sound ranging from about 30 Hz to close to 20 kHz, although
hearing attenuates quickly above 10 kHz or 15 kHz.

N o t e 	 For reference, middle C on the piano is 261.6 Hz. Young children (and most dogs)
can often hear high frequencies, but hearing, especially in the upper registers, deterio-
rates quickly with age.

The ultrasonic transceiver module used in this project sends out pulses
at a frequency of about 25 kHz and listens for an echo with a microphone.
If there is something for the signal to bounce off, the system receives the
return echo and tells the microcontroller a signal has been received and
to calculate the distance. For the Garage Sentry, the unit is placed in the
front of the garage, and the signal is sent out to bounce off the front—or
rear if you are backing in—of your vehicle. To calculate your car’s distance
from the ultrasonic transceiver, the Arduino measures the time it takes
for the signal’s round trip from the transceiver to the target and back. For
example, if the Arduino measures a time of 10 milliseconds (0.010 sec-
onds), you might calculate the distance as:

Distance
ft
s

 s ft= × =1125 0 010 11 25. .

Ah, but not so fast. Remember the signal is traveling to the car and
then back to the microphone. To get the correct distance to the vehicle,
we will have to divide by two. If the controller measures 10 milliseconds,
then the distance to your car would be:

Distance

ft
s

 s
ft=

×
=

1 125 0 010

2
5 625

, .
.

The Garage Sentry Parking Assistant 135

The HC-SR04 ultrasonic module sends out a signal at the instruction of
the Arduino (see Figure 5-3). Then, the sketch instructs the transmitter to
shut down, and the microphone listens for an echo.

Figure 5-3: The ultrasonic sensor module. The back of the module
(bottom) has connection terminals at the bottom.

If there is an object for the signal to bounce off, the microphone picks
up the reflected signal. The Arduino marks the exact time the signal is sent
out and the time it is received and then calculates the delay.

The HC-SR04 module is more than a speaker and microphone, though.
The module includes transducers—a loudspeaker and mic—and a lot of
electronics, including at least three integrated circuits, a crystal, and sev-
eral passive components. These components simplify its interface to the
Arduino: the 25 kHz tone is actually generated by the module and turned
on and off with the microcontroller. Some of the components also enhance
the receiver’s, or the microphone’s, sensitivity, which gives it a better range.

The range of the HC-SR04 ultrasonic transducer is approximately
10 to 12 feet. The returning signal is always a lot weaker than the transmit-
ted signal because some of the sound wave’s energy dissipates in the air
(see the dotted lines in Figure 5-4).

136 Chapter 5

Distance r

Reflected wave

Original wave

Sender/
receiver

Object

Figure 5-4: In this project, sound is transmitted from a sender, bounces off an object,
and is received.

The arithmetic to calculate the distance between the sender and the
object is not difficult. You take the number of microseconds it takes for the
signal to return, divide by the 73.746 microseconds it takes sound to travel
an inch, and then divide by two because the signal is going out and coming
back. The full arithmetic for this appears later in “Determining Distance”
on page 141.

The sketch provides a response in inches or centimeters depending on
your preference. We’ll use inches for setting up the distance for the alarm,
but converting to centimeters simply requires a remapping of the analog
input and setting the numbers a bit differently. The sketch also does the
basic arithmetic for determining the centimeter measurement for you.

With the high-level overview out of the way, let’s dig in to how you’ll
wire the Garage Sentry.

The Breadboard
The entire Garage Sentry fits on a small breadboard, so you can set it up,
program it, power it with a battery, and walk around to test it out. As you
play with it, I’m sure other applications of ultrasonic technology will come
to mind.

The breadboard I assembled, shown in Figure 5-5, is powered by a 9V
battery. Usually, you could wire the battery directly to the VIN of the Nano
and use the Nano’s built-in voltage regulator. But you’ll power the Nano
with a USB cable when you program and test it for the first time, so on the
breadboard, you’ll set up the positive and negative rails for 5V for both the
Nano and the ultrasonic module. To avoid risking damage to the Nano or
the module and avoid overcomplicating the build, I included a single-chip
external voltage regulator (LM78L05) so the entire breadboard runs on 5V.
Take a look at Figure 5-6 to see how it’s wired up.

The Garage Sentry Parking Assistant 137

Figure 5-5: Here’s the breadboard wired up. I used a 9V battery so I could experiment in
different environments. Both LEDs look illuminated because of the length of the exposure
of the camera.

Figure 5-6: This is how the LM78L05 TO-92 regulator is wired up on the breadboard.
Bypass/filter capacitors are not required.

Here’s a blow-by-blow list of the steps to wire the breadboard:

1.	 First, put the ultrasonic module at the lower end of the breadboard fac-
ing out, and plug the Nano in to the breadboard, leaving four rows of
connections above it.

2.	 Make sure the positive and negative rails (red and blue stripes) on the
left and right are connected properly—red to red, blue to blue. If you
connect red to blue, it will cause a major problem.

3.	 Connect the red positive rail to the 5V power supply (pin 27 of the
Nano, labeled 5V). This is necessary if you are operating from the USB
connector.

4.	 Connect pin 4 of the Nano (labeled GND) to the breadboard’s blue
negative rail.

5.	 Connect VCC of the HC-SR04 transducer to the red positive rail.

6.	 Connect GND of the HC-SR04 transducer to the blue negative rail.

138 Chapter 5

7.	 Connect TRIG of the HC-SR04 transducer to pin 15 (D12) of the Nano.

8.	 Connect ECHO of the HC-SR04 transducer to pin 14 (D11) of the Nano.

9.	 Insert two ZTX649 transistors into the breadboard. Select an area
where all three pins of each transistor can have their own row.

10.	 Connect pin 12 (D9) of the Nano to the base of transistor Q1.

11.	 Connect pin 13 (D10) of the Nano to the base of transistor Q2.

12.	 Connect the collectors of both transistors to the red positive rail.

13.	 Connect the emitter of transistor Q1 to one end of a 270-ohm resistor.

14.	 Connect the other end of the 270-ohm resistor connected to the emit-
ter of transistor Q1 to a blank row on the breadboard.

15.	 Connect the emitter of transistor Q2 to one end of another 270-ohm
resistor. Connect the other end of the 270-ohm resistor connected to
the emitter of transistor Q2 to another blank row on the breadboard.

16.	 Connect the + (long end) of LED (D1) to the 270-ohm resistor and the
other end to the blue negative rail.

17.	 Connect the + (long end) of LED (D2) to the
second 270-ohm resistor and the other end to
the blue negative rail.

18.	 Connect one end of the 20-ohm potentiometer
to the red positive rail.

19.	 Connect the opposite end of the potentiometer
to the blue negative rail.

20.	 Connect the wiper (center) of the potentiometer
to analog pin A0 (26) of the Nano.

You should be good to go! If you use the AC
connection, simply connect it to the VCC connection
of the Nano.

To add a battery connection, include the 78L05
with its center pin to ground (negative rail), the
input to the positive side of the battery, and the out-
put to the positive rail (see Figure 5-7). Connect the
negative terminal of the battery to the negative rail.

The Sketch
Once the breadboard is complete, the sketch can be loaded onto the
Nano. Download the GarageSentry.ino file from https://www.nostarch.com/
arduinoplayground/. To load the file onto the Nano, follow the instruc-
tions outlined in “Uploading Sketches to Your Arduino” on page 5.
Remember to select the correct board type. Once it’s loaded, the unit
is ready for experimentation.

InputOutput
Ground

Figure 5-7: Pinout of
the 78L05 regulator

The Garage Sentry Parking Assistant 139

The sketch for the Garage Sentry serves several functions. It tells the
ultrasonic sensor to generate a wave and detects how long it takes the echo
to return. It then calculates the distance based on that time and, if neces-
sary, alerts you to stop by turning on the LEDs. Here’s the sketch in full; I’ll
walk you through it next.

/* Garage Sentry
*/

int ledPin = 10;
int ledPin1 = 9;
int count;
int analogPin = A0;
int val;
int y;

void setup() {
 Serial.begin(9600);
 pinMode(ledPin, OUTPUT);
 pinMode(ledPin1, OUTPUT);
 pinMode(analogPin, INPUT);
}

void loop() {
 val = analogRead(analogPin);
 long duration, inches, cm;
 //Give a short LOW pulse beforehand to ensure a clean HIGH pulse:

u pinMode(12, OUTPUT); //Attach pin 12 to TRIG
 digitalWrite(12, LOW);
 delayMicroseconds(2);
 digitalWrite(12, HIGH);
 delayMicroseconds(5);
 digitalWrite(12, LOW);

 pinMode(11, INPUT); //Pin 11 to receive ECHO
 duration = pulseIn(11, HIGH);

 //Convert the time into a distance
 inches = microsecondsToInches(duration);
 cm = microsecondsToCentimeters(duration);
 val = map(val, 0, 1023, 0, 100);
 if(inches == 0)
 digitalWrite(ledPin, LOW);

 if(count == 0 && inches > 0 && inches < val) {
v for(y = 0; y < 200; y++)

 {
 digitalWrite(ledPin, HIGH);
 digitalWrite(ledPin1, LOW);
 delay(100);
 digitalWrite(ledPin, LOW);
 digitalWrite(ledPin1, HIGH);
 delay(100);
 }

140 Chapter 5

 count = count + 1;
 }

 digitalWrite(ledPin1, LOW);
 if(inches > 10) {
 //delay(1000);
 count = 0;
 }
 Serial.print(inches);
 Serial.print(" inches ");
 Serial.print(count);
 Serial.print(" count ");
 Serial.println();
 Serial.print(" Val ");
 Serial.println (val);
 delay(100);
}
long microsecondsToInches(long microseconds) {
 return microseconds / 74 / 2;
}
long microsecondsToCentimeters(long microseconds) {
 return microseconds / 29 / 2;
}

First, we define several variables, establish parameters, and load libraries
(if any). In this case, define ledPin and ledPin1, which will serve as the alarm.
Other definitions (int) include cm and count (a variable that will be used inter-
nally), analogPin (as A0), val (to hold the limit information), and y (used in
the loop).

Inside the setup() Function
Next is the setup() function. Here, you set up Arduino features that you
might want to use; this sketch includes the serial monitor, which you prob-
ably will not need in the final product but is often useful in debugging
code, particularly if you want to change the code. This sketch sets the rate
of the monitor at 9600 baud, which is standard in many applications. It also
defines the mode of the pins you’ll use as either input or output. You could
set the pinMode values at almost any point in the code, including before or
inside the setup; they’re also often defined within the main loop, particu-
larly if the definitions are expected to change.

Inside the loop() Function
The loop() function is where everything really happens. The loop continu-
ally executes unless it’s delayed or halted by a command. So even when it
appears that nothing is happening, the controller is continually cycling

The Garage Sentry Parking Assistant 141

through the code. In this application, one of the first tasks the controller
performs in the loop is to set the variable val to store the input from the
potentiometer connected to the analog pin (analogPin).

In order to initiate the ultrasonic module’s transmit/receive function,
the sketch first calls for a low signal to be sent to the transmitter (TRIG) to
purge the module to assure that the following high signal will be clean. You
can see this in the lines starting at .

Next, there’s a delay to let things settle before the sketch writes a high
to the transmit pin, which orders the transmitter to transmit an ultrasonic
signal. This is followed by another delay, and then the sketch drives digital
pin 12 low to turn off the transmitter and activates the receiver by calling
the pulseIn() method.

Determining Distance
If there’s no echo—that is, if inches == 0 or inches approaches infinity—
the controller continues to run the code until it reaches the end and
then starts again at the beginning. If it detects an echo, the number of
microseconds between turning the transmitter on and receiving signal
(duration) is then converted to both inches and centimeters. This gives
us a measurement of how far the transceiver is from the object. Note that
throughout this explanation, I will refer to inches, but you could follow
along in centimeters, too.

The microsecondsToInches() and microsecondsToCentimeters() commands
convert the time measurement to inches and centimeters, respectively,
according to the arithmetic discussed in “How the Garage Sentry Works”
on page 134. The data type long is used, as opposed to int, because it pro-
vides 4 bytes of data storage instead of just 2, and the number of microsec-
onds could exceed the 2-byte limit of 32,767 bits. So far, so good.

In a regular formula, the distance arithmetic looks like this:

in
time s

in

cm
time s

cm

= ÷

= ÷

2
74

2
29

µ

µ

In either case, we first divide by 2 because the signal travels from the
transducer to the target and back, as previously discussed. In the inches
function, we then divide the halved number of microseconds by 74, and
in the centimeters function, we divide by 29. (It takes 74 microseconds for
the signal to travel 1 inch, and 29 microseconds for it to travel 1 centime-
ter; I arrived at those numbers by following the arithmetic in “Time-to-
Distance Conversion Factors” on page 142.)

142 Chapter 5

Triggering the Alarm
The sketch is not done yet. Now we have to look at the number of inches (or
centimeters) measured and compare it to the predetermined value—val,
in this case—to see whether the alarm should be activated. To establish the
variable val as a numeric value, take a potentiometer (R2) straddling the
power supply on either end and tie the wiper to pin A0 (see Figure 5-2).
Because A0 is the input to a 10-bit analog-to-digital converter, it converts
that voltage (between 0V and 5V) to a numeric digital value between 0 and
1,023. Reading that value with an analogRead() command results in a value
between 0 and 1,023 depending on the position of the potentiometer.

That value is then used to establish the trigger point for the alarm. But
allowing all 1,024 values would essentially allow the distance to be set from
0 to 1,023 inches. Because the control rotates only 270 degrees, to adjust
between, say, 40 and 42 inches would represent a very minuscule rotation—
beyond the granularity of most potentiometers.

To scale this for the potentiometer, the sketch maps the value so the
entire rotation of the potentiometer represents a distance of only about
100 inches with the following line of code:

val = map(val, 0, 1023, 0, 100);

Mapping the potentiometer value changes the maximum distance from
1,023 inches down to 100 inches while leaving the minimum distance of
0 inches unchanged. You can map any set of values so the Garage Sentry’s
target distance can be from X to Y, with full rotation of the potentiometer,

Time -to -Dis tance Con v er sion Fac tors

You could simply trust my math and copy the time-to-distance conversion code,
but you can apply this arithmetic to any project using a similar ultrasonic mod-
ule or other sensor, so I encourage you to work through the math yourself.

As I describe in “How the Garage Sentry Works” on page 134, the
speed of sound is roughly 1,125 feet per second. Multiply that by 12 inches
per foot to get 13,500 inches per second.

To get the number of seconds per inch, you simply divide this value by
13,500 inches:

1
13 500

0 000074 s
in

s
in,

 .=

It takes about 74 microseconds, or 0.000074 seconds, for sound to travel
an inch. To determine the distance in centimeters, go through the same exercise,
but use 343 meters per second for the speed of sound, multiply it by 100 centi-
meters per meter, and take the reciprocal.

The Garage Sentry Parking Assistant 143

so when you set up your Garage Sentry, you may want to test it and this
range until it’s right for your garage.

A conditional control structure sets the limit for the alarm. This struc-
ture makes sure that the LED is turned off when the measured distance is
0, regardless of whether the sketch is using inches or centimeters. First, the
value inches is compared to val in the following expression:

count == 0 && inches > 0 && inches < val

If this statement is true, the alarm is set off and the for loop at  is acti-
vated (see page 139), which alternately blinks the LEDs 200 times before
timing out and turning the LEDs off.

The for loop just counts from 0 to 200, but that can be easily changed.
After each count, it turns on an LED, delays briefly and turns off the same
LED, delays slightly and turns on a second LED, delays slightly and turns
off the LED, and then goes to the next count. At the end of the 200 count,
the system turns off the LEDs and the program continues to the next line
where it is reset. That is, the program starts again at the beginning.

Construction
Figure 5-8 shows the enclosure for the Garage Sentry.

Figure 5-8: The basic Garage Sentry uses wire wrap for the final connections.

Arduino Nano

Ultrasonic module

Perforated
circuit board

Distance target control3.5 mm
power jack

144 Chapter 5

The trickiest part of the Garage Sentry is mounting the ultrasonic mod-
ule on the enclosure. Because the module can send out sound waves only in
a straight line, you need to be able to adjust its direction so that the ultra-
sonic sensor can hit its target and receive the echo. But the module includes
only two mounting holes, diagonally opposed from each other, so there’s no
easy way to fasten it to a flexible mounting. We’ll tackle that first.

Drilling Holes for the Electronics
To solve this problem, I mounted the transceiver directly to the enclo-
sure and just aimed the enclosure as required. To mount the module,
drill 5/8-inch holes in the enclosure and use standoffs to hold the board
securely. See the template in Figure 5-9 for drilling measurements. A PDF
of the template is available in this book’s online resources at https://www​
.nostarch.com/arduinoplayground/, in case you want to print it and lay it over
your enclosure as a guide. The enclosure I recommend is made of polycar-
bonate plastic and is less likely to crack than styrene or acrylic; however, it
tends to catch the drill, so be careful.

0.75 in

1 in
1.5 in

4 in

Figure 5-9: Template for drilling transducer holes

There are several ways to drill the 5/8-inch holes. If you are good
at drilling, you could simply use a 5/8-inch drill bit and bore the holes
directly. But I discovered that the holes can be bored safely and easily by
first drilling a hole about 1/4 to 3/8 inches in diameter and then enlarging
it with a tapered reamer, available from Amazon for under $15. The larger
reamer in the Amazon set will ream a hole up to 7/8 inches in diameter,
and it is handy to have around for other projects. Use a 1/8-inch drill to
drill the holes for the standoffs, as shown in the drawing, which you can
use as a template.

If you ream out the hole, make sure to ream from both sides. Enlarge
the hole to a size that holds the transducer elements tightly—but not too
tightly. While this is not the most precise way to bore a hole and would
probably be frowned upon by professional machinists, it works well
enough here.

The Garage Sentry Parking Assistant 145

Warning 	 Regardless of the size of the hole, do not hold your work piece with your hand when
drilling. Always clamp it securely. If the drill binds, the work will want to spin or
climb up the drill. Drill at a slow speed and go gently.

Next, drill the holes for the potentiometer, power jack, and two LEDs.
Select a drill size based on the particular power jack and potentiometer you
have. I used a 9/32-inch drill for the potentiometer, a 1/4-inch drill for the
3.5 mm jack, and a bit of approximately 25/64 inches for the LEDs. The size
of the 10 mm LEDs tends to vary a bit from manufacturer to manufacturer,
so I would recommend that you select a smaller drill bit, say 3/8 inches, and
ream until the LED fits tightly. Because the LED is tapered, ream from the
rear of the enclosure so that the LED will fit better.

The location of both the potentiometer and power jack is not impor-
tant, but make sure that neither crowds the transducer or Nano. You want
them to be on the bottom of the enclosure so that they are accessible after
the enclosure is mounted (see Figure 5-12).

Mounting Options
Before you stuff the Arduino, ultrasonic sensor, and perforated board
circuit into your enclosure, figure out how you want to mount the Garage
Sentry. There are several ways to mount the enclosure onto whatever sur-
face you need.

Velcro Strips

If you have a good flat surface to mount the assembly to, you could simply
affix the enclosure with adhesive Velcro (see Figure 5-10). Two sentries have
been in place in my garage that way for several months, with no sign of slip-
page or deterioration.

Figure 5-10: Adhesive Velcro mounting strips used to mount
the Garage Sentry enclosure

146 Chapter 5

A U Bracket That Can Be Aimed

If you don’t have a good surface and need to aim the module at an angle,
mounting it on a U bracket that lets the sensors swing up and down or left
and right will work. In this section, I’ll describe how to build the U bracket
mount shown in Figure 5-11.

1.75 or
2.0 in

0.25 in hole Bend here Center mounting hole

2×4-in or 2.2×4.4-in enclosure

0.25 in nut0.25 in bolt

U clamp
1.75 in for 2×4-in enclosure

1.50 or
1.75 in

Same on
other side

2.0 in for 2.2×4.4-in enclosure

0.75 in

Figure 5-11: This drawing illustrates the size and shape of the optional U bracket handle
and how it connects to the enclosure. Where you see two measurements for a single
dimension, the smaller applies to the basic Garage Sentry, while the larger applies to the
deluxe version.

To make the U bracket for the basic Garage Sentry with the 1591 ATCL
2×4-inch enclosure, take a strip of 3/4-inch × 0.080-inch × 5 1/2-inch long
aluminum (available at Ace Hardware, Home Depot, or Lowe’s), and drill
1/4-inch holes 5/16 inches from the ends of the aluminum strip. Drill cor-
responding holes with a No. 7 or 15/64 drill in the side of the enclosure
centered on the ends, and thread the holes with a 1/4-inch-20 tap. Bend
the aluminum strip 1.5 inches from each end for the standard version and
2 inches for the deluxe version (see Figure 5-11). Using a vise is the easi-
est way to bend the metal, but if that’s not convenient, you can sandwich it
between a bench and piece of metal, clamp it down, and bend it by hand.

To make the U bracket for the Deluxe Garage Sentry with the 1591 BTCL
2.2×4.4-inch enclosure, use a 6 3/8-inch long strip of the same material, and
drill the 1/4-inch holes 1/2 inches from the ends. Then, bend the aluminum
at right angles at 3/4 inches from either end for the standard version and
1 inch from each end for the deluxe version.

To fasten the U bracket to either enclosure, you can start by drilling
a hole in the center of each end of the enclosure. It’s simplest to drill a
No. 7—15/64 is close enough—hole at either end of the enclosure. The
easiest way to center the holes is to draw a line along each diagonal on
both ends. Where the lines intersect is the center. Thread the holes with a
1/4-inch-20 tap, and you’ll be able to fasten the enclosure to the U bracket
directly. The threads in the thin ABS plastic will not be very strong, so be
careful not to overtighten the bolts.

The Garage Sentry Parking Assistant 147

When you’re finished attaching the bracket to your enclosure, it should
look like Figure 5-12.

Figure 5-12: The enclosure for the basic Garage Sentry can
be mounted with the bracket so it can be tilted or rotated to
point the transducers in the correct direction.

Soldering the Transistors and Current-Limiting Resistors
After testing your circuit on a breadboard and deciding how to mount the
Garage Sentry, solder the driver transistors and current-limiting resistors to a
small section of perforated phenolic or FR-4 predrilled board. Use the sche-
matic in Figure 5-2 or the instructions in “The Breadboard” on page 136 as
a guide to wiring and soldering the components in the perforated board.

Make the connections in the schematic, but otherwise, there is no right
or wrong way to assemble the perf board. I do recommend using perforated
board with copper pads for each hole to simplify soldering. Solder all the
hookup wires for the power, potentiometer, Nano, ultrasonic module, and
LEDs before attempting to mount the board on the inside of the enclosure.

When you’re done soldering, mount the perforated board anywhere in
the enclosure where you can find room. I used double-sided foam adhesive,
and it worked well. Mount the Nano, LEDs, and ultrasonic module next.

Wiring the Pieces Together
Finally, use 30-gauge hookup wire to connect the Nano, ultrasonic sen-
sor, perforated board circuit, and LEDs according to the schematic in
Figure 5-2. Optionally, you can use wire-wrap wire and a wire-wrap tool
to wire up the sections, but it is not necessary and can be expensive if you
don’t already have the tool and wire. Wiring the components and fitting
them in the enclosure may be a little messy, but it saves building a shield.

148 Chapter 5

The Deluxe Garage Sentry
That’s it! Or is it?

I have been using the standard model in my garage for several months;
it does what it’s supposed to do and does it well. But it seems like some-
thing’s missing. The alarm goes off when you reach the desired spot in the
garage, but why not have it give you a little warning before you get there so
you can slow down as you approach the stopping point?

The idea is to have the system warn you at some pre-established dis-
tance from the stopping point so you don’t have to stop suddenly. It isn’t
much extra effort to add two more LEDs to go off at different distances.
Figure 5-13 shows the Deluxe Garage Sentry.

Red and blue LEDsGreen LED Amber LED

Sockets for Arduino Nano

Green LEDAmber LED

Figure 5-13: The Deluxe Garage Sentry sets off three stages of alarms.

Now, let’s discuss how to assemble the Deluxe Garage Sentry.

The Deluxe Schematic
Hand-wiring everything in the standard version is tedious. So for the
deluxe version, I developed a shield (PCB) that holds the LEDs, potentiom-
eter, Nano, transistors, and current-limiting resistors. Adding the LEDs and
extra transistors required some changes in the circuitry. Figure 5-14 shows
the revised schematic.

Note that this circuit drives the transistors as emitter followers. As
such, the base shows a high resistance, and therefore no resistor is required
between the Arduino and the resistors Q1 through Q4. If you were driving
using a common emitter, however, you would need a resistor, as current
would flow through the base-emitter junction, short out the driver, and
burn out the transistor.

The Garage Sentry Parking Assistant 149

Figure 5-14: The deluxe schematic has additional LEDs, driver transistors, and current-
limiting resistors on the right-hand side.

N o t e 	 To improve the Garage Sentry further, you could also conceivably double or otherwise
increase the range using special transducers and electronics, but in this application,
the 10-foot operating range is more than enough.

The Deluxe Sketch
Before you build the Deluxe Garage Sentry, download GarageSentryDeluxe.ino
from this book’s resource files at https://www.nostarch.com/arduinoplayground/,
and upload it onto your Arduino Nano according to the instructions pro-
vided in “Uploading Sketches to Your Arduino” on page 5. The sketch
is basically the same as the basic Garage Sentry sketch, but it’s updated to
include the new LEDs.

/* Deluxe Garage Sentry: goes with the shield PCB
*/

int ledPin = 8;
int ledPin1 = 7;
int ledPin2 = 10;
int ledPin3 = 9;
int count;
int analogPin = A0;
int val;
int y;

http://www.urltbd.com

150 Chapter 5

void setup() {
 //Initialize serial communication:
 Serial.begin(9600);
 pinMode(ledPin, OUTPUT);
 pinMode(ledPin1, OUTPUT);
 pinMode(ledPin2,OUTPUT);
 pinMode(ledPin3,OUTPUT);
 pinMode(analogPin, INPUT);
}

void loop() {
 val = analogRead(analogPin);

 long duration, inches, cm;

 pinMode(12, OUTPUT);
 digitalWrite(12, LOW);
 delayMicroseconds(2);
 digitalWrite(12, HIGH);
 delayMicroseconds(5);
 digitalWrite(12, LOW);

 pinMode(11, INPUT); //Attached to ECHO
 duration = pulseIn(11, HIGH);

 //Convert the time into a distance
 inches = microsecondsToInches(duration);
 cm = microsecondsToCentimeters(duration);

 val = map(val, 0, 1023, 0, 100);
 //Map the value of the potentiometer to 0 to 100

 if(inches == 0)
 digitalWrite(ledPin, LOW);

u if(count == 0 && inches > 0 && inches < val + 15)
 digitalWrite(ledPin2, HIGH);
 else digitalWrite(ledPin2, LOW);

v if(count == 0 && inches > 0 && inches < val + 7.5)
 digitalWrite(ledPin3, HIGH);
 else digitalWrite(ledPin3, LOW);

 if(count == 0 && inches > 0 && inches < val) {
w for(y = 0; y < 200; y++) { //Repeating blink sequence

 digitalWrite(ledPin, HIGH);
 digitalWrite(ledPin1, LOW);
 delay(100);
 digitalWrite(ledPin, LOW);
 digitalWrite(ledPin1, HIGH);
 delay(100);
 }
 count = count + 1; //Turn off instruction
 }

The Garage Sentry Parking Assistant 151

 digitalWrite(ledPin1, LOW);

 if(inches > 10) { //Reset if inches > 10
 delay(1000);
 count = 0;
 }

 Serial.print(inches);
 Serial.print(" inches ");
 Serial.print(count);
 Serial.print(" count ");
 Serial.println();
 Serial.print(" val ");
 Serial.println(val);
 delay(100);
}

long microsecondsToInches(long microseconds) {
 return microseconds / 74 / 2;
}

long microsecondsToCentimeters(long microseconds) {
 return microseconds / 29 / 2;
}

The most notable difference between the deluxe sketch and the stan-
dard sketch is that in the two if-else statements at  and v, the green
and amber LEDs are activated at different distances, based on the stop-
ping point. For example, if the stopping point is set to 36 inches, or Val in
the sketch, then the green LED turns on at VAL + 15, or 52 inches, and the
amber LED turns on at VAL + 7.5, or 43.5 inches. This way the green LEDs
will turn on when the car is 15 inches from the final stopping point, and
the amber LEDs will turn on when the car is 7.5 inches from the stopping
point. These numbers were selected arbitrarily, and you can change them.

The red and blue LEDs start flashing when the car has reached the
stopping point. You can see how the LEDs are flashed at w.

The Deluxe Shield
Figure 5-15 shows the shield for the Deluxe Garage Sentry. If you want
to build this shield, download this book’s resource files, look for the file
GarageSentryDeluxe.pcb, follow the etching instructions in “Making Your
Own PCBs” on page 13, and solder your components to the board. You
can also take the file and send it out to one of the service bureaus to have
the board made for you.

The potentiometer is soldered directly to the shield, though you’ll still
have to solder wires to the power jack and to the ultrasonic module. As you
can see in Figure 5-15, the connections for the ultrasonic sensor are located
on the left-hand side.

152 Chapter 5

Figure 5-15: This is the shield for the Deluxe Garage Sentry, which simplifies the individual
wires that had to be soldered to complete the earlier version.

The green LEDs are on the outermost edges, the amber LEDs are next,
and the flashing red and blue LEDs are in the middle. The connections
for the potentiometer are on the lower right-hand side, next to the first two
connections, which are ground and VIN (from left to right). The potenti-
ometer helps hold the shield in place in the enclosure.

This version uses high-power LEDs that draw a fair amount of current.
Because the sentry uses the 5V voltage regulator on the Nano, the transis-
tors driving the LEDs are wired directly to the 9V input voltage, allowing
the unit to function without a separate voltage regulator. The LEDs are
configured with the driver transistors as emitter followers, so the voltage
to the LEDs will “follow” the voltage on the base of the transistor—that is,
5V—and not present LEDs with 9V.

There are several jumpers required on this shield, including the jumper
for the power, which connects to the collectors of the transistors and con-
nects the raw input to the (VIN) Nano. There are also jumpers to connect
the ground to the LEDs.

I mounted the transistors and current-limiting resistors under the Nano
to save some space. Also, note that the connections for the ultrasonic mod-
ule in the standard version call for a right-angle female header, but doing
that in the deluxe version means the length of the male part gets in the way
of the LEDs, so I simply soldered the connections to the PC board and to
the ultrasonic module to keep the wires out of the way.

A Bigger Box
Both the green and amber LEDs operate as pairs, so only a single driver
transistor is required for each pair. But with all this new circuitry, the deluxe
board does not easily fit in the same enclosure as the standard version.

You’ll need to find a larger enclosure for the deluxe version, which pro-
vides you with some other benefits. With a larger, clear polycarbonate enclo-
sure, like Hammond 1591 BTCL, the LEDs can stay inside the enclosure

The Garage Sentry Parking Assistant 153

and still be visible so you won’t have to drill holes to mate with the LEDs in
the PC board. You’ll have to drill only four holes: the two large holes for the
ultrasonic sensor, a hole for the power jack, and one for the potentiometer.
These holes make it possible to mount the ultrasonic sensor on top of the
Nano board with double-sided foam tape, which is in turn mounted to the
shield (see Figure 5-16). In other words, you create a sandwich with the
Nano in the middle, the shield on the bottom, and the ultrasonic module
on the top. This design eliminates the need for the mounting screws used
in the first version.

Figure 5-16: Compared to the basic Garage Sentry, there is virtually
no hand wiring in the deluxe version. The driver transistors and current-
limiting resistors for the LEDs are located under the Nano board.

Simply use the same template you used in the standard version, and
drill (and/or ream) the two 5/8-inch holes for the two ultrasonic elements.
The shield itself can be fastened to the bottom of the enclosure with small
flathead screws and nuts or with more double-sided foam tape. When you
affix the potentiometer to the enclosure, it should hold the board in place,
as its leads are soldered to the shield. Figure 5-16 shows the deluxe version;
note how much neater it is than the basic version from Figure 5-8.

Before drilling the hole for the potentiometer, carefully measure the
height of the potentiometer hole and drill the hole slightly oversized so that
the shaft and screw can be inserted at an angle into the enclosure. You’ll
also note in Figure 5-16 that the corners of the printed circuit board have
been clipped off so as not to get in the way of the studs used for the top
screws of the enclosure.

I suggest mounting the power connection on the same surface of the
enclosure as the potentiometer—that is, the bottom. Here, the power con-
nection and potentiometer will be accessible after mounting, leaving the
top free to fit snugly against a shelf. The unit can just as easily be mounted
upside down with the adjustment and power jack on the top.

154 Chapter 5

Figure 5-17 shows the completed Deluxe Garage Sentry mounted on my
garage workbench with the car in place.

Figure 5-17: Completed Deluxe Garage Sentry mounted on my garage workbench with
the car in place

The completed sentry unit works flawlessly. Depending on your particu-
lar garage and where you place the unit, you might want to adjust the sketch
to make the green and amber lights turn on at different distances. The unit
pictured has been working perfectly for almost six months now, and I don’t
know how I’d be able to pull my car in the garage without it.

Mounted and functioning
Deluxe Garage Sentry

6
T h e B a t t ery Sa v er

This project was actually born back in the
1970s, when I built a very similar device

for the first time. Its purpose is to discon-
nect a vehicle’s battery when an inadvertent

drain would discharge the battery to the point where
the vehicle would not start. Before the advent of com-
puterized automobiles, it was common for drivers
to park and leave the lights turned on only to come back to find a dead
battery. Then, they had to find a way to call a service station (cell phones
weren’t available) and get a boost. Worse, if the battery died and the car
was left sitting long enough, the battery would become useless and have
to be replaced. After remaining in a discharged state between 12 and
18 hours, most lead-acid batteries would go totally dead and could not
be rejuvenated.

But that was then. Now, many vehicles—particularly those equipped
with automatic lighting systems—protect against such inconveniences with
automatic (often delayed) shutoff for electrical systems. However, several

156 Chapter 6

types of vehicles still don’t have automatic shutdown systems or alarms to
warn you that the lights are on. This project, shown in Figure 6-1, is particu-
larly useful for those vehicles.

Figure 6-1: The finished Battery Saver, boxed and ready to go (top), as well as a look
inside (bottom)

The Battery Saver 157

Boats, Tractors, and Other Vehicles
Many road-worthy vehicles could benefit from the Battery Saver, but this
project is targeted at other systems where an accidental discharge of a
battery could be annoying—and expensive. Boats are particularly vulner-
able. Even my small runabout has experienced problems. On more than
one occasion, the running lights were left on during the day, and I did not
notice until a couple of days later. The battery was totally dead, and it had
to be replaced.

Leaving the running lights on isn’t the only way to accidentally drain
a boat battery. Most inboard boats have a blower system designed to safely
expel potentially explosive gases and fuel vapors from the bilge. Conventional
wisdom (and the Coast Guard) says to keep the bilge blowers on before
starting the engines, the entire time the boat is in service, and for at least
10 minutes after shutdown. It’s very easy to forget the blowers are on and
then find you need to replace the battery or batteries the next time you use
the boat.

N o t e 	 Before building the Battery Saver for a safety system like the blowers on a boat, read
“Notes of Caution” on page 158. There are some considerations to keep in mind that
may require some minor wiring changes to the electrical system.

Boats aren’t the only vulnerable vehicles, though. Riding mowers and
tractors are also at risk for three reasons:

•	 They are usually used only intermittently.

•	 Parking and/or headlight switches are often placed where it’s easy
to accidentally bump them when getting on or off the vehicle. The
switches can also be damaged by flying debris or rough terrain.

•	 They are usually used in daylight hours, so it can be hard to tell when
the lights are on.

The Battery Saver can also protect powered tools, like tow-behind
sprayers. It’s easy to leave these tools turned on when finished, and while
most sprayer pumps don’t take too much current, leaving one on for, say, a
day or two, will likely drain the battery.

Required Tools
Drill and drill bits

Center punch

4-40 tap

Hacksaw

400-grit sandpaper

Countersink (Almost any 82° countersink will do. The material being
formed is relatively soft, so no special materials are required.)

158 Chapter 6

Needle files (See Figure 6-20. While only one is required, they usually
come in sets.)

Triangle file

Not e s of C au t ion

If you create the Battery Saver as described in this chapter, it should work well.
However, it is always possible for Murphy’s Law to cause a problem, so here
are a few points to consider before you build.

Should the Battery Saver fail, it can be reset, but in the meantime, it will
remove all power to the vehicle’s electrical system. Do not use the Battery Saver
on any system where an electrical failure could cause catastrophic problems
(such as on an aircraft) or result in bodily harm or property damage. That said,
I have used the following unit in a car, on three agricultural tractors, and on
two boats for well over a year (and earlier versions for several years) with no
failures.

The Battery Saver includes a very high-current switch. It is possible that,
under certain conditions, a resistance could develop such that when current
is applied, the switch becomes extremely hot—perhaps hot enough to be a
fire hazard. (For what it’s worth, this has never happened even on prototype
versions.) All efforts have been made to eliminate problems like this—for
example, the block that holds the Battery Saver’s copper contacts is made of a
fire- and melt-resistant phenolic material—but overheating remains a hazard.
Always check the heat of the Battery Saver before you touch it to make certain
that it is not hot enough to burn you. Even the reset plunger could become
warm enough to burn if the vehicle or Battery Saver malfunctions.

This last warning is specific to mariners. If you keep your boat in the
water, chances are it has a built-in bilge pump and automatic float switch to
keep it afloat when you’re not aboard. If you have multiple batteries, make
sure the bilge pump is wired to a battery that isn’t in the circuit with the Battery
Saver, as in Figure 6-2. Otherwise, find the wire that provides current to the
bilge pump/switch, and simply bypass the Battery Saver.

Figure 6-2: Wiring the Battery Saver on a boat

The Battery Saver 159

Parts List
This parts list might look somewhat like a scavenger hunt, but everything
can be found easily from a variety of sources. Getting the particular size
or quantity, however, may be challenging, so read the list carefully to make
sure you have everything before you start. And before shopping, look ahead
to Figure 6-13 on page 170 to see some of the more unusual parts, like the
copper contacts.

One Deek-Robot Pro Mini Arduino clone
microcontroller board (There are several
available, and some have different pin-
outs—particularly for pins A4 and A5.
Figure 6-3 shows the pinout for the one I
used. Other units with different pinouts
should work, but the connections on the
shield must be changed.)

One LM7805 voltage regulator

12V solenoid (This project uses an
Electronic Goldmine G19852.)

One 10-kilohm resistor

One 5.6-kilohm resistor

One 4.7-kilohm resistor

One 470-ohm resistor

One 4.7V Zener diode

One 1N4002 diode or equivalent

Two ZTX649 transistors

One 1/2-inch phenolic sheet

One 6×3/4×3/16–inch copper bar, which is part of a high-current switch
(This is actually a piece of copper bus bar that is generally used in large
electrical installations. See Figure 6-4 for an example. To find this, you
may need to do a little digging with an online search for copper bus bar. I
bought a piece that was 3 feet long.)

Figure 6-4: A copper bus bar, drilled out for the Battery Saver

Figure 6-3: Pinout of the
Deek-Robot Pro Mini
Arduino clone

160 Chapter 6

One ABS plastic enclosure, like the Hammond 1591 STCL

Two 1/4-inch brass rounds (You’ll use one of these as the pylon.)

A small piece of sheet metal to use as the release

One e-clip

Four 1/2-inch, 4-40 flathead screws

One 3/8-inch, 4-40 roundhead screw

3 oz of Permatex Silicone RTV sealant

One matching pair of inline connectors (You can buy simple, cheap,
inline connectors online, or you can make your own. I used Pololu’s
1×2 connector housing and male and female crimp pins, shown in
Figure 6-5. See “Connectors Used in This Book” on page 18 for
crimping techniques. You can also use telephone-style chicklets if
you can find them.)

Figure 6-5: A pair of mating connectors used to connect the solenoid

28-gauge hookup wire

One solder lug (If you can’t find one, you can work around it by taking
the power wire from the Arduino and wrapping it under the head of
the screw, as shown in Figure 6-7.)

One battery cable to fit your storage battery on one side and a lug to
attach to the Battery Saver on the other

Downloads
Sketch  BatterySaver.ino

Templates  ReleaseLever.pdf, BatterySaverEnclosure.pdf

Shield  BatterySaver.pcb

The Schematic
While the circuit is relatively simple, as shown in Figure 6-6, there are a
couple of key design elements to be aware of.

The Battery Saver 161

Figure 6-6: Schematic for the Battery Saver

Notice that the circuit uses an LM7805 voltage regulator. In theory, the
small regulator included in the Pro Mini board would be more than satis-
factory because the load is relatively light. But under the hood of a car and
around high-current systems and high-voltage electronics, there is a lot of
stray electromagnetic energy bouncing around. While it’s improbable that
this energy would cause a problem for the Battery Saver, it is well within the
realm of possibility. The more robust 1.5 A LM7805 regulator offers the Pro
Mini another level of protection. In addition, capacitors C1 and C2 have
been included to bypass any AC sneaking into the circuit and to prevent
unwanted oscillation. Similarly, the 4.7V Zener diode (D1) protects the
input of the Arduino from a voltage spike—which is very likely—on the
12V supply. It limits the voltage to A0 to only 4.7V.

The configuration of resistors R1 and R2 may look familiar from other
projects. They comprise a voltage divider to lower the 12V supply to a level
below the 5V maximum the Arduino input can tolerate. To be on the safe
side, I selected a value of 10 kilohms for R1 and 5.6 kilohms for R2. Both
are standard values. This design should allow the battery voltage to jump
to 14V before reaching the point where the Zener diode kicks in.

Diode D2 (1N4002 or equivalent) provides yet another level of defense:
it protects against an inverse current that could be created when the mag-
netic field in the solenoid collapses. This is a standard protection device in
inductors with an iron core, which can store magnetic energy and release
it rapidly into the coil. The reverse voltage can reach relatively high levels
and create significant currents, which could, in this case, damage the driver
transistor and other components in the system.

162 Chapter 6

Transistors Q1 and Q2 are both ZTX649 silicon NPN transistors. I
chose these transistors because they have sufficient drive capability and
are inexpensive and readily available. I used the same model as in other
projects. The high side of Q2 is brought to the red positive rail (VCC), as
the LM7805 regulator supplies plenty of current. (You could just as easily
connect the high side, or collector, of Q2 to the 12V supply, because Q2 is
wired as an emitter follower and the voltage at the emitter will follow only
the voltage at the base.) R4, a 470-ohm resistor, limits the current to LED 1.

LED1 indicates when the unit is operating. The circuit containing Q2
and LED1 provides a blinking LED with a very short on cycle, which is con-
sistent with this volume’s goal of blinking LEDs as often as possible.

N o t e 	 The Deek-Robot Pro Mini also has a red LED that indicates when it is turned on.
This additional, although very small, constant current drain could contribute to the
discharge of the battery. In the units that I installed, I unsoldered one end of the Pro
Mini’s LED, which is kind of a delicate operation.

Transistor Q1, wired as a common emitter circuit, provides the drive for
the solenoid. Resistor R3 (4.7 kilohms) drives the transistor and also pro-
tects it—a direct connection would allow too much current to flow in the
base-emitter junction, resulting in potential damage. The high side of the
solenoid is connected to positive 12V to allow maximum voltage and cur-
rent to flow through the solenoid coil without taxing the voltage regulator.

How the Battery Saver Prevents Draining
The Battery Saver comprises a very high-current switch that can be electri-
cally turned off and a sensor circuit to detect when the battery is in jeop-
ardy of dying. The high-current switch is required because it interrupts the
main power from the battery, which includes the feed to a starter motor
that can draw up to several hundred amps.

The high-current switch—which could also be considered a relay—is
made of the three pieces of copper bus bar: a release bar, a solenoid, and a
release lever. When the pieces of copper bus bar are connected, the battery
is connected to its circuit as normal. When the solenoid is pulled in, the
power is disconnected.

The sensor circuit uses the power of the Arduino microcontroller. The
Arduino continually monitors the battery, and if it senses that the power is
diminishing, it calls for the high-current switch (relay) to be thrown. There
are many ways to determine when a battery is reaching exhaustion, and this
project simply looks at the voltage left in the battery. Table 6-1 shows the
voltage versus the remaining charge in a standard 12V, lead-acid storage
battery.

The Battery Saver 163

Table 6-1: Battery Charge State Versus Voltage

Battery charge level Battery voltage

100% 12.7V

90% 12.5V

80% 12.4V

70% 12.3V

60% 12.2V

50% 12.1V

40% 11.9V

30% 11.8V

20% 11.6V

<10% 11.3V

The battery charge level quickly deteriorates with only a minimal
reduction in voltage. In order to have at least 40 to 50 percent of the
charge remaining, the drain on the battery must be stopped somewhere
between 11.9V and 12.2V (shaded in Table 6-1), a voltage I will refer to
from now on as the trigger point. In practical applications, empirical evi-
dence shows that there is still plenty of juice left, even when battery volt-
age drops to 12.0V, 11.90V, or even below. A battery in good condition
under ideal circumstances could perform with perhaps as little as 30 per-
cent of its capacity, but that would depend on the load, ambient tempera-
ture, and other factors, so I’m taking a very conservative view of about
12+V. Newer design batteries tend to do better.

While the state of charge is a good indication of remaining capacity
in a battery, other factors—like internal resistance, battery discharge rate,
and so on—could impact the usable state of charge remaining in a bat-
tery. A more accurate measurement of the capacity remaining in a fully
charged battery might be current used, which can be calculated if the total
energy in the battery is known. For example, if a battery has a capacity of
1,100 ampere-hours (A·h), you could calculate the point where 550 A·h
remain and disconnect the battery then. However, because this project
targets systems with batteries that range widely in capacity, I decided that
measuring the battery voltage would be more than adequate.

Arduino to the Rescue
The Arduino microcontroller steps up to the task of measuring the battery
voltage and throwing the disconnect switch at the appropriate voltage, but
if that’s all it did, you could be in trouble. When turning on a vehicle, the
starting motor uses a lot of current. Depending on the state of the battery
(internal resistance and so on) and ambient conditions (temperature, for

164 Chapter 6

example) during the cranking process, the battery voltage can conceivably
fall well below the critical shut-off voltage. The Battery Saver depends on
the Arduino to give the vehicle enough time to start the motor.

Further, should the system shut down due to an inadvertent drain,
you’ll need to ensure that when the Battery Saver is reset, it doesn’t imme-
diately sense a critical battery voltage and shut down again. All of these
functions are handled by the microcontroller, under orders from the
sketch. While there are probably several different ways of handling it,
the sketch implements timing sequences—rules to follow for when to take
certain actions—to allow for the voltage drop during engine cranking.
Similar timing rules give the user time to restart the engine after the
Battery Saver is reset.

The Breadboard
Even though this project doesn’t require a lot of extra components and
peripheral equipment, I still believe it’s useful to go through the exercise
of wiring a breadboard. A working prototype gives a definitive proof of
concept, and it allows you to play with the hardware and software prior to
committing to the finished version. When working with the breadboard,
I tested the circuit with a solenoid similar to the one used in the finished
product (see Figure 6-7).

Figure 6-7: The breadboard I used to test the Battery Saver concept and put
the software together. Testing your circuit with a solenoid is not required.

Figure 6-8 shows the breadboard operating the high-current switch;
“Construction” on page 170 describes how to build that switch. To test the
circuit without making the high-current switch first, or to use a solenoid by

The Battery Saver 165

itself (see Figure 6-7), you can connect a lamp, LED, relay, or some other
component in place of the switch. Remember: if you use an LED or other
polarized device, make certain to get the polarity correct.

Figure 6-8: The breadboard circuit operating the solenoid after the high-current switch
has been assembled. Note the use of clip leads to hook up the Battery Saver to the
breadboard. Diodes D1 and D2 and capacitors C1 and C2 were not included in
the breadboard primarily because they are needed only when the project is in use.

The basic breadboard is fairly straightforward. Just follow these instruc-
tions to assemble it:

1.	 Connect the breadboard’s red positive rails together, and connect the
blue negative rails together. Do not connect the positive rails to the
negative rails as that will result in a direct short circuit.

2.	 Insert the LM7805 voltage regulator so that the three terminals span
three different rows. (See “The Schematic” on page 160 for why an
external voltage regulator was used rather than the Pro Mini’s onboard
regulator.)

3.	 Connect the input of the regulator to a positive 12V source. (See
Figure 6-9 for the pinout of the LM7805.)

Output

Ground
Input

Figure 6-9: Pinout of the LM7805 regulator

166 Chapter 6

4.	 Connect the center pin of the regulator to blue negative rail and the
output pin to the red positive rail. When you power the circuit, the pos-
itive rail should have 5V coming from the output of the regulator.

5.	 Insert the Pro Mini microcontroller board in the breadboard. Its posi-
tion is not critical; anywhere in the general vicinity of where it is in
Figure 6-7 is fine.

6.	 Insert resistors R1 (10 kilohm) and R2 (5.6 kilohm) into the bread-
board. It’s easiest to insert them near the regulator. Then, connect one
side of R1 directly to the regulator (input pin). The joining point of R1
and R2 should be located in an independent place on the board, and
the other side of R2 goes directly to ground.

7.	 Connect a jumper from the point where R1 and R2 join to pin A0 of the
Pro Mini.

8.	 Insert transistor Q1 (ZTX649) into the bread-
board in an area with three open rows (see
Figure 6-10 for the pinout).

9.	 Connect resistor R3 from the base of Q1 to
pin D9 of the Pro Mini.

10.	 Connect the emitter of Q1 to ground.

11.	 Connect the collector of Q1 to the load
(solenoid or other).

12.	 Connect the other side of the load to
positive 12V.

13.	 Insert transistor Q2 into the breadboard.
Connect its collector to one of the red
positive rails.

14.	 Connect the base of Q2 to pin D12 of the
Pro Mini.

15.	 Connect the emitter of Q2 to the positive side of LED1.

16.	 Connect the negative side of LED1 to R4 (470 ohms).

17.	 Connect the other end of R4 directly to the blue negative rail.

18.	 Connect the negative side of the 12V supply to the blue negative rail.

Now, load the sketch onto the Pro Mini (see “Connecting and
Programming an Arduino Pro Mini” on page 8), and take it for a test
run. If you have a variable power supply with a voltage readout, setting
the voltage will be easy; if you don’t have a variable power supply, I suggest
building the Regulated Power Supply in Chapter 3. If you use a variable
supply without a readout, just use your multimeter to monitor the voltage
and observe the trigger point.

Start the power supply at 13V (12.7V is normal for a charged 12V lead-
acid storage battery), and the monitor LED should blink slowly. Gradually
lower the voltage, and write down the voltage when the flashing goes from
slow to rapid. That voltage is the trigger point, and it should be around
11.9V to 12V.

Emitter
Collector Base

Figure 6-10: Pinout of
the ZTX649 transistor

The Battery Saver 167

The Sketch
In developing the Battery Saver sketch, I went through several iterations to
assure reliable functionality. One difficulty was avoiding false triggers when
the sensed voltage jumped around because an engine or an accessory, such
as a hydraulic tilt, was activated.

I used functions to adjust various sequences of operation independent
of the main program. This isn’t a complex sketch, but writing simple func-
tions is a useful technique when you want to avoid repeating code. I could
have avoided functions in the final sketch, but I let them remain because
they work well, and writing the sketch this way provides a good lesson in the
use of functions.

/*The Battery Saver sketch, which uses multiple functions
 to create timing sequences */

int led = 12;
int Battin = A0;
int Relay = 9;
int volts = 0;
int volts2 = 0;
int volts3 = 0;
int B = 387; //Threshold trigger set point

void timer3() { //Shut off timer function
 delay(200);
 volts = analogRead(Battin); //Reset trigger point
 volts3 = map(volts, 0, 1023, 0, 500);
 if(volts3 > B) {
 digitalWrite(Relay, LOW);
 }
 else {
 digitalWrite(Relay, HIGH);
 }
}

void timer2() { //Fast blink timer function -- low voltage
 if(volts2 < B) {
 for(int j = 1; j < 1800; j++) {
 digitalWrite(led, HIGH);
 delay(10);
 digitalWrite(led, LOW);
 delay(90);
 }
 }
}

void timer() { //First timer function -- high voltage
 if(volts2 > B) {
 digitalWrite(led, HIGH);
 delay(200);

168 Chapter 6

 digitalWrite(led, LOW);
 delay(1000);
 }
}
void setup() {
 Serial.begin(9600);
 pinMode(Relay, OUTPUT);
}
void loop() {
 delay(1000);
 volts = analogRead(Battin);
 volts2 = map(volts, 0, 1023, 0, 500);

 timer();
 if(volts2 < B) { //Set trigger point
 timer2();
 }
 if(volts2 < B) {
 timer3();
 }
}

In this sketch, timer(), timer2(), and timer3() are the three functions
used. The timer() function is for normal operation when the battery volt-
age is above the trigger point. The trigger point is the voltage at which the
Battery Saver goes into timeout mode prior to shutting down. The timer2()
function sets off a rapid flashing sequence once the trip threshold is reached
and provides the timing—the fast LED sequence—prior to shutoff. Once
timer2() has finished, timer3() is invoked, provided the voltage remains below
the threshold; this disconnects the battery by activating the solenoid. If the
voltage increases above the trigger point at any time during the timeout
period, the Battery Saver returns to normal operation after timer3() times
out. Many of the variables in this sketch can also be changed to vary blink-
ing and delay sequences and threshold; they’re addressed in “Operating the
Battery Saver” on page 180.

The Shield
As you might guess from the breadboard, the shield is straightforward, too.
Compared with handwiring, however, I believe it’s a lot easier and faster.

The PCB Layout
Figure 6-11 shows my finished PCB, and Figure 6-12 shows the layout
image with silkscreen indicating the placement of the components. You
can download a PCB layout for the shield at https://www.nostarch.com/
arduinoplayground/.

http://www.nostarch.com/arduinoplayground
http://www.nostarch.com/arduinoplayground

The Battery Saver 169

Figure 6-11: The unpopulated Battery
Saver board. The RLY connection is
where you would connect the solenoid.

Figure 6-12: The foil pattern for the shield
on the Battery Saver. The silkscreen image
is in gray.

Most of the components are located under the Pro Mini to save space.
Other than that, there is nothing special about populating the shield. As
in other projects, it’s not necessary to include headers for all the Pro Mini
pins. Use all the pins that have connections with board traces and enough
other pins to add mechanical stability. I always try to use at least one header
for the very first pin, to aid in aligning the board while plugging it in.

The LED can be mounted directly to the board or can be mounted
somewhere remotely with long wires. Just be sure to observe polarity. The
Battery Saver may be located in an area where the operator can’t see the
LED, so placing it in a remote location is a practical solution.

Preparing the Shield and Pro Mini Controller
If you want to use a PCB, you can make the shield according to the layout
provided with this book’s resource files, whether you etch that yourself or
send it off to be professionally manufactured. You could also design your
own shield PCB if you’re feeling ambitious or just solder everything to the
prototyping board, but if you are using everything else from the parts list,
just make sure your board has the same dimensions as the provided shield
layout.

If you etch the PCB design I provide, drill the component holes next.
I usually use a #66 drill. Solder a 2-inch wire to the plus 12V side of the
shield, and solder the other side of the wire to a small solder lug. Solder a
15-inch wire to the ground terminal and then connect two wires to the sole-
noid connections. I used a small inline connector—made with Pololu #1950
crimp connector housings, #1931 male crimp pins, and #1215 female crimp
pins—so I could remove the board easily if necessary. Almost any connector
can be used.

Both transistors are located under the shield, so when you solder them,
make sure to push them down enough that they clear the bottom of the Pro
Mini. See Figures 6-11 and 6-12 for the transistor placement on the PCB.

170 Chapter 6

I soldered the monitor LED directly to the board so it could be seen
through the enclosure. However, you could also solder wires to the board
and place the monitor LED in a location where it might be more visible out-
side your vehicle.

Construction
Building the rest of the Battery Saver involves a few mechanical challenges
and requires the wits of a scavenger. Figure 6-13 shows all the parts of the
Battery Saver laid out. There is nothing complex about any of the parts.

Screws

Phenolic block

Groove for e-clip

E-clip

Hold spring

Release spring

Copper
contacts

Main switch
contact

Solenoid
connector

Solenoid

Case

Arduino
Pro Mini
and shield

Pylon
Release
lever

Release
groove

Figure 6-13: The components of the Battery Saver, completely disassembled. The cover of
the enclosure is under the clear box. Note the short screws for fastening the spacer to the
solenoid, so they don’t damage the solenoid coil.

There are only a handful of components in the Battery Saver: the enclo-
sure, the phenolic contact support, the shield and Pro Mini controller, the
copper contact assembly, the solenoid and mounting, the release lever and
pylon, the release rod, and the springs and e-clip. The assembly instructions
that follow are a little involved, but if you get stuck, just use Figure 6-13 to
keep things in perspective. When you’re done, the Battery Saver should
look like Figure 6-14.

The Battery Saver 171

E-clip

High-current
contact

Ground
wire

Solenoid

Release
lever

Pylon

Reset plunger

Spring

Copper
contact

Phenolic
mount

Arduino
Pro Mini

Shield

Release
groove

Figure 6-14: The completed Battery Saver with the cover off and the switch
in the operating position. In this iteration, grooves were carved in the phenolic
block for the positive and ground wires.

Preparing the Enclosure
Because the enclosure, a Hammond 1591 STCL, is an integral part of
the design, I suggest starting there. Beyond a couple of holes and slots
machined into the enclosure, there is very little else to do. Figure 6-15
shows the holes I cut in detail; a template is included in this project’s
resource files. There are only a few holes to cut, though, so you should
be fine without the template if you follow these instructions carefully.

On the long sides of the enclosure, measure approximately 1 1/8 inches
from the top—that is the side where the reset plunger will protrude through.
This should locate you roughly at the fourth mounting rib. In the center
of that rib, drill two #30—approximately 1/8-inch—holes 3/8 inches from
either edge, and countersink both for a 4-40 screw. Do this on both sides of
the enclosure.

On each side, at the top of the next rib (going toward the top of the
enclosure), cut a 1-inch-deep groove for the copper contact assembly. The
shaded part of the side view in Figure 6-15 shows where the groove should go
on each side. The ABS plastic enclosure cuts easily with a hacksaw. Remove
the cover and cut from the opening of the enclosure toward the back. For
each groove, make two cuts so that when you remove the material between
them, you will have a 3/16-inch-wide channel in both sides of the enclosure.
A little over 1 inch from the edge at the opening will do, but it’s not necessary
to cut down to the back of the enclosure. You can even cut both sides at once,
but just make sure the channels are directly opposite each other. Don’t worry

172 Chapter 6

if your cuts are a little off; that can be corrected later with a file. After you
make the cuts, break off the material in the center and clean up the chan-
nel with a small triangle or flat file.

Back

Cover
0.1875 in slot

1.08 in

0.125 in

1.09 in

0.87 in

1.125 in

0.6875 in

1 in
0.375 in

1 in

0.25 in

Top

Side

Figure 6-15: The holes and slot in the Battery Saver enclosure

Now, drill a 1/4-inch hole in the top of the enclosure, where the reset
button will go, exactly centered on the top surface. Draw lines along that
side’s diagonals from corner to corner, as illustrated in Figure 6-15, and
drill where the lines intersect. This hole is where the brass release rod for
the reset plunger will go.

The Contact Support
The contact support is perhaps the easiest part to make. First, cut the phe-
nolic sheet to a 3×1 3/8–inch block. The phenolic material cuts easily with
a hacksaw. Insert the block in the enclosure so the two holes you drilled
through the ribs are in the center of the block. Mark the holes on both
sides, drill them with a #43 drill bit, and tap them for a 4-40 screw. While
you are working on the phenolic contact support, you can cut two grooves,
or channels, for the power and ground wires on either side (shown later in
Figure 6-18). The location is not critical as these are used only to run the
positive and negative wires for the shield. I used the small Dremel tool in

The Battery Saver 173

Figure 6-16 to cut the grooves. Use two 4-40×3/8-inch flathead screws on
each side to screw the phenolic piece in place.

Figure 6-16: Dremel tool with small circular saw blade attached

With the phenolic contact support screwed in place, hold the drill as
close to vertical as possible in the center of the largest face of the contact
block. Drill a 1/4-inch hole that lines up with the 1/4-inch hole you previ-
ously drilled in the top of the enclosure. The easiest way to do this is to
mount the contact support block and then use the hole in the top of the
enclosure as a guide to drill the hole in the block. After drilling, put the
contact support aside until you’re ready for the copper contact assembly.

N o t e 	 The enclosure is not a perfect rectangle because some relief is included to allow it to
come out of the mold easily. Factor this in as you line up to drill the center hole. When
I drilled the hole, I held the enclosure in a vise to eliminate the effect of the relief.

Preparing the Copper Contact Assembly
The copper contact assembly requires only a handful of holes. Cut a 4 3/4-
inch section of the 3/16×3/4–inch copper bar, and drill the holes along the
center of the 3/4-inch dimension, as outlined in Figure 6-17.

A B C D E F G

1 1/16" 3/4" 1/2" 1/2" 3/4" 1 1/16"

Figure 6-17: The base of the copper contact assembly, showing holes and spacing

174 Chapter 6

For holes A and G, use a 9/32-inch bit. Holes B, C, E, and F should be
drilled with a #30 bit; make sure to countersink them deeply enough for
a 4-40 flathead screw. Finally, drill hole D with a 1/2-inch bit. Tap holes A
and G for a 5/16×18×3/4–inch bolt, which will hold the battery cables.

C au t ion 	 While copper is not hard, it tends to grab a drill bit and climb up the bit. Always hold
the copper piece in a vise, in a clamp, or with pliers when drilling. Never attempt to
hold the copper with unprotected hands.

When all seven holes are drilled, set the base of the copper contact
on the phenolic contact support so that the 1/2-inch center hole in the
copper is centered as closely as possible on the 1/4-inch center hole in the
phenolic support and the bar is centered along the entire length of the
contact support. Make sure the bar is equidistant from both sides of the
support, hold the two pieces together firmly, and mark holes B, C, E, and
F. Center punch the marks you just made in the contact support, drill
them with a #43 drill, tap them for a 4-40 screw, and set the contact sup-
port aside again.

Now, mark the exact center of the copper contact, which should per-
fectly bisect the 1/2-inch hole. Cut the piece in two at this marker; a hacksaw
should work well for this. Then, cut a 3/4×3/4–inch square of your leftover
3/16×3/4–inch copper bar, and mark the center by making diagonal lines
from corner to corner. Center punch and drill a 1/4-inch hole where those
lines intersect. This copper square will become the actual contact.

The final hole to make in the copper contact assembly is somewhere
between holes E and F, on the outer edge of the bar; look for the little screw
sticking out of the contact bar in Figure 6-18 (circled). Drill a #43 hole and
tap for a 4-40 screw. This is where the switched positive voltage to the Pro
Mini comes from. Figure 6-18 shows all the contact and mounting hardware
drilled.

Figure 6-18: The contact and support hardware ready for assembly

The Battery Saver 175

Mounting Supplies for the Solenoid
Depending on your solenoid, the mounting process may vary slightly from
the one described here. The frame of the solenoid I used had two holes
tapped for a 4-40 screw in the bottom. However, there was precious little
room between the frame and the coil, so I elected to look for an alternative
mounting approach—a very aggressive double-sided adhesive. If you still
want to mount the solenoid with screws, judge the screw length carefully.
With either mounting approach, the solenoid was not high enough to line
up with the release mechanism, so I had to add a platform.

Preparing the Release Rod, Springs, and E-Clip
As with the other mechanical compo-
nents of the Battery Saver, the release
rod to reset the contacts just needs
a little TLC. Begin with a section of
1/4-inch brass rod, and cut it to 4 1/4
inches in length. Measure 1 1/8 inches
down from one end, and make a groove
for the spring retaining clip to fit into,
as shown in Figure 6-19.

In order to cut the groove, I
mounted the bar in the chuck of an
electric drill that I clamped to my
workbench and used a hacksaw blade
to carefully groove the piece, guiding
the hacksaw blade with my fingers.
The set on the hacksaw blade is a little
wide, but the depth of the groove, not
the width, is the important part. That
said, the groove doesn’t have to be very
deep. I recommend you cut the groove
in small increments and keep trying
the retaining clip until it fits snuggly.

Figure 6-19 also shows the configu-
ration of the springs. The bottommost
spring will rest on the phenolic block
and keep the copper contact off the
contact areas until the release rod is depressed. It should be small enough
that it does not touch either side of the copper contacts. (Remember, the hole
in the square contact is 1/2-inch wide, so the spring needs to be smaller than
that.) When depressed, the top spring overrides the lower spring and keeps
the upper part of the switch in firm contact with the lower sections. You can
make fine adjustments of the spring length on a small grinder, or you can use
a Dremel tool or a hand whetstone.

Now, measure 4 inches from the same end, and file the release groove
in the lower half of the 1/4-inch release bar using a small needle file.

Groove for spring
retaining clip

Figure 6-19: The upper section of the
release bar. There are two grooves in
the bar; the lower one was made in
error. The springs used on the release
rod were selected from a standard
spring assortment from Ace Hardware
and cut down to fit the project

176 Chapter 6

Figure 6-20 shows both the needle file used and the shape of the release
groove. (You might want to use a hacksaw first to make the groove, and
shape the upper side with a file.)

Figure 6-20: A close up of the release groove in the bottom
of the release rod (top) and the small needle file used to
make the groove (bottom)

The shape of the release groove is not overly critical, but make sure
there is a slight bevel on the top side. The swirls you see on the shaft were
made with 400-grit sandpaper I used to smooth the rod so it slides smoothly
through the phenolic block and hole in the case and contact piece.

Making the Release Lever and Pylon
The release lever is made of a small piece of light-gauge steel sheet metal,
approximately 0.060 inches thick. Use the pattern in Figure 6-21 to cut
the lever. In this book’s online resource files, you can find a PDF file of the
lever template. Because the template is pretty small, you might try bonding
the template to a blank piece of similarly sized stock, holding it in a pair of
pliers (vise grips work well), and shaping the piece on a grindstone. Once
you’ve bonded the template to the stock, you can also use a file to shape it.

0.25 in

0.6875 in

0.375 in

0.5 in

0.8125 in
1.01 in

Figure 6-21: The release lever template

The Battery Saver 177

With a pair of tin snips, I cut a rectangle first and then cut the shape of
the release lever. I firmly clamped the piece in place with a vise so I could
finish shaping it with a file. Mild steel files easily with a satisfying feel. (You
could also shape the lever with a small grinding wheel or a Dremel tool with
an abrasive wheel.) Make the piece a little oversized at first, as indicated
in the template, as it may require some adjustment in the final assembly.
The lever should be under pressure from the tension spring, and should
securely hold the release rod so that the square copper piece is firmly in
contact with the both sides of the bottom copper contact assembly. Both
pivot holes in the lever—one to attach to the solenoid and one to attach to
the release pylon—are drilled with a #30 drill.

The pylon is for mounting the release lever to the enclosure, and it can
be made of any scrap brass or aluminum you may have around. The pylon
in Figure 6-22 was made from a 3/8-inch diameter brass rod. I reduced the
top section’s diameter because I didn’t want the pylon to rub on the release
rod, but that probably was not necessary.

Figure 6-22: The release lever, the pylon, and two screws

Cut the pylon to about 0.61 inches long so that when mounted inside
the enclosure, the end attached to the release lever hits the release rod
just below the center of its diameter. This dimension is dependent on how
precisely the release rod hole is drilled into the center of the top of the
enclosure. Run the release rod through the hole, and measure how far
from the back of the enclosure its center is. The pylon should be a little
shorter than that.

You can make the top of the pylon smaller by chucking it into a drill
like a bit and spinning it on a file. When you finally assemble the Battery
Saver, you may also have to adjust the height of the pylon slightly to accom-
modate the thickness of the release lever and altitude of the release rod if
the hole was not drilled perfectly straight.

Drill a #43-sized hole near the center of the pylon all the way through,
and tap for a 4-40 screw from both sides. One side will mount to the back
of the enclosure, and the other will hold the release lever. To make sure
the screw doesn’t go down too far and tighten against the release lever,
I tapped down only about 3/16 inches so the screw bottomed out and
jammed. Figure 6-23 illustrates what the tapped pylon should look like.

178 Chapter 6

0.1875 in

0.25 in

4-40 thread screw
to release lever
goes here

Narrowed

Screw will
jam here

Figure 6-23: Inside the pylon

You can adjust either the length of the tapped hole or the length
of the screw to make sure the release lever is free to move but secure,
using the screw head as a bearing surface. For fastening both the release-
lever bearing screw and the pylon mounting screw, I recommend using an
anaerobic adhesive (such as Loctite Threadlocker) to secure the threads.

Assembling All the Parts
Now, we’re ready to start putting all the parts from Figure 6-13 together
and fastening them where they belong. The order of assembly is not overly
critical, but more a matter of common sense. I’ll go through it step-by-step:

1.	 Start by screwing the copper contact pieces into the phenolic support.
Make sure the screw heads are below the surface of the copper. This is
critical to assure good contact with the contact bar. Prior to assembly,
as an added measure to improve the contact area, I sanded both the
contact pieces and contact cap with a 400-grit sandpaper. To assure flat-
ness, I put the sandpaper on a flat surface and rubbed the copper on it.

2.	 Slide the phenolic support into the enclosure, and fasten it with the
four 4-40×1/2-inch screws.

3.	 Insert the release rod through the enclosure, and then thread it
through the pressure spring, then through the copper contact, and
finally through the release spring and down through the phenolic
base. Insert the e-clip. This may be a little tricky. You’ll have to hold
the clip with a pair of needle-nose pliers.

4.	 Measure for the location of the pylon, and mount it to the enclosure
with a 4-40×1/2-inch flathead screw. The pylon should be inside the
enclosure, and the screw should be threaded in from the outside.

The Battery Saver 179

5.	 Screw the release lever to the pylon, and check by hand that it engages
the release groove and secures the release rod. This is a little tricky, and
you may have to adjust the release lever by grinding or filing it a little
to fit in the release rod’s groove. Once you have the lever in place, you
can operate it with your fingers and assure that it locks tightly to the
release-rod groove.

6.	 Install the spacer on the solenoid.

7.	 Temporarily mount the solenoid to the enclosure, and screw the release
lever to the solenoid. To do this, I first unfastened the release lever
from the pylon and fastened the other end to the solenoid plunger. I
then applied double-sided tape to the bottom of the spacer, juggled
everything in place, and loosely placed the screw through the release
lever and into the pylon.

8.	 Exercise the release mechanism with the solenoid held in place. Once
the release rod holds the top switch contact firmly down, mark the
holes for the solenoid spacer.

9.	 Drill and tap holes in the enclosure to securely mount the solenoid and
spacer to the enclosure. Alternatively, fasten the solenoid with double-
sided adhesive, such as 3M outdoor double-sided adhesive.

10.	 Run the wires that will connect the solenoid to the Pro Mini circuit
under the release rod, and connect them to the solenoid using the
connectors.

11.	 Run the ground wire from the Pro Mini circuit under the release rod
and out through the slotted opening for the copper bar. (It’s the dark
wire sticking out of the enclosure on the left in Figure 6-14.) You may
want to either drill small holes in the phenolic for the wires or carve
small grooves to run the wire through, using a Dremel tool and a small
circular saw blade like the one shown in Figure 6-16. You can also make
a groove with a file or hacksaw.

12.	 Attach the red positive voltage wire with the lug to the copper switch
pole at the last hole you tapped in “Preparing the Copper Contact
Assembly” on page 173. Use a 4-40×3/8-inch roundhead screw.

13.	 Mount the shield using small spacers. If you can’t find a solder lug, you
can solder-tin the wire, form it so it fits around the screw snugly, and
then tighten the screw.

Compare your Battery Saver to the finished device in Figure 6-14 to
make sure everything looks right. When the battery voltage reaches the
trigger point, the Arduino triggers the solenoid, which releases the lever.
Freed from the release lever, the rod pops up from the spring tension
of the lower spring. The lower spring holds the contact piece above the
copper mounted to the phenolic block, opening the circuit. To reset the
Battery Saver, just push the rod back down again. Before doing a final
test, check the latching of the release lever and rod several times.

180 Chapter 6

Installing the Battery Saver into a Vehicle
Connecting your Battery Saver to your vehicle takes only minutes. First,
disconnect both the positive and negative terminals from your battery.
Then, connect a short battery cable from the positive side of the battery
to the input side of the Battery Saver. Take the output side of the Battery
Saver and connect it to the cable that originally connected to the battery.
Connect the black wire to the negative terminal that will be reconnected
to the battery.

Mounting the entire enclosure will depend on where and how your
vehicle’s battery and/or battery box are located. In many cases, the Battery
Saver can simply hang from the battery cables. In other applications, I’ve
used a heavy-duty cable tie to wrap around the entire battery and Battery
Saver to hold it in place. In some cases, double-sided Velcro works well.

Operating the Battery Saver
In operation, once the Battery Saver is installed (see Figure 6-24), restore the
ground connection to the battery and hook that ground connection to the
Battery Saver. Then, set the Battery Saver by depressing the reset button—
that is, the top of the release bar—until the unit is armed. You should hear
or feel a click as you depress the reset button and the release lever engages.

Figure 6-24: The Battery Saver installed in my Boston Whaler runabout. The battery hooks
up to the battery post and to the positive connection for the motor and accesssories. The
ground lead of the battery was fed through the back of the battery box. The reset plunger
is readily accessible.

Normal Operation
As long as the battery is fully charged and above the threshold voltage,
the “on” indicator will blink at the rate established in the timer() function,
which is approximately once every 2.2 seconds. When the battery voltage
drops below the threshold level, which is set at approximately 11.9V via

The Battery Saver 181

variable B in the sketch, the indicator LED begins flashing rapidly. When
the LED sequence finishes, which is after about 3 minutes, the voltage will
be checked once again. If the voltage is still below the threshold, the battery
is disconnected; otherwise, it just returns to normal operation.

When you reset the Battery Saver after it has shut off, it will resume oper-
ation. After reset, if the battery voltage is above the threshold, the indicator
will blink at the usual rate of once every 2.2 seconds. Often when the drain is
removed from a battery discharged to some level, the battery recovers some-
what on its own after a relatively short time. If, however, the voltage is below
the threshold level, the indicator will blink rapidly for the timeout period, as
indicated earlier, to allow for the operator to start the boat, tractor, or other
vehicle. You can set the timeout period by changing the value of j in the
timer2() function.

The maximum value of the j variable is set at 1,800 in the initial sketch,
and incrementing or decrementing j will add or subtract 100 milliseconds
from the total timeout period. Thus, to set the timeout period to 5 minutes,
you would set the maximum value of j to 3,000.

Setting the Threshold Voltage
The threshold voltage is established by resistors R1 and R2 with values of
10,000 and 5,600 ohms, respectively (see the schematic in Figure 6-6).
These are set up as a voltage divider. According to the voltage divider calcu-
lation, whether you use a calculator or work it out with the formula, the volt-
age will be approximately 4.31V for a 12V input. Thus, you can calculate the
exact threshold voltage at which you want the device to shut off the battery
current by setting the threshold trigger point, which is B in the sketch, to
whatever value you wish. While I calculated the theoretical value of the
threshold, I experimented and found that a value of 387 establishes the
shutoff threshold point at about 11.9V.

On Bat t ery Type s

I experimented with several batteries and loads and found setting B to 387
consistently leaves at least half the energy in the battery after shutdown to
restart the engine. On several different batteries, ranging from the small bat-
tery on a portable generator to large-capacity batteries for starting a truck, the
same value seemed to work well.

That said, I have little experience with deep-cycle batteries and know that
they have very different discharge parameters. If you want to attempt to use the
Battery Saver for such batteries, take a look at their discharge rates and volt-
ages, and set the threshold accordingly.

182 Chapter 6

Protection from the Environment
Unfortunately, the Battery Saver is not weatherproof, and most applications
call for it to be used in somewhat hostile environments. There are, however,
a couple of possible solutions. On a variety of vehicles, including boats and
tractors, I have wrapped the device in a plastic bag and tightly wrapped
wire ties around the cables where they enter and exit the device.

But that’s not terribly attractive, and I took some abuse from the distaff
side of the family, so I applied Permatex silicon RTV sealant around all the
openings where the copper bar comes through—but not where the reset
(brass) rod comes through—and sealed all the screws.

For the reset button, I had difficulty finding a protective covering nipple
(you would be surprised at what I found on the web), so I settled for affix-
ing the top of an eye dropper to the enclosure with the silicone sealant.
This also keeps the reset bar—which is hot to 12V when depressed—from
shorting out.

Applying Cool Amp
While the copper-on-copper contacts work well, I burnished them with
very fine sandpaper (400 grit) before assembly. Even though the untreated
contacts have been used on a number of versions of the Battery Saver and
have never failed, I decided to use Cool Amp, a simple-to-use silver-plating
compound, for this version.

For very little cost, I was able to silver-plate the contact area of the con-
tact bar and plate and thus reduce their resistance. Figures 6-25 and 6-26
show the difference between unplated and plated copper.

While this additional lowering of resistance is probably not necessary,
all the current for the vehicle passes through this contact, so I figured
it wouldn’t hurt to be on the safe side. Further, I have used the Battery
Saver in marine applications around saltwater, and the copper parts have
acquired a green patina while the silver-plated areas have not.

Figure 6-25: Battery Saver contacts after burnish-
ing but before treatment with Cool Amp

Figure 6-26: Battery Saver contacts after silver
plating with Cool Amp

The Battery Saver 183

I have used Cool Amp on a number of contacts, from motor-starting
contacts to heavy-duty relay contacts, and it works well. You can learn more
about Cool Amp at http://www.coolamp.com/.

N o t e 	 Copper does not oxidize too rapidly and the most common oxide of copper is highly
conductive, which is one reason it is commonly used for current switching. Silver has
the same properties—only better.

M y Original Idea

I hold a US patent (4,149,093, now expired) on a device similar to the Battery
Saver. The patent drawing is shown in Figure 6-27. Notice how similar it is to
this project, despite being made decades earlier. It had essentially the same
function, even though microcontrollers hadn’t been invented yet!

Figure 6-27: A patent drawing of the Battery Saver’s
predecessor

http://www.coolamp.com

7
A C u s t om pH M e t er

Microcontrollers are used in many, if not
most, commercial and scientific instru-

ments. They are accurate and versatile,
which makes them a relatively low-cost solu-

tion to a variety of measurement requirements. This
project combines an Arduino microcontroller with a
commercial probe and some analog circuitry to con-
struct an accurate meter that measures pH, the rela-
tive acidity or alkalinity of a solution.

There are three basic ways of measuring pH. This project involves using
a pH meter and probe. The other approaches are litmus paper indicators,
which you might remember from high school chemistry, and colorimeters,
the traditional swimming pool maintenance kit. The latter is usually a
kit of chemical reagents with a comparison color chart. Of the three, a pH
meter is by far the most accurate.

186 Chapter 7

But what does pH measure, exactly? The pH value describes the activity
of hydrogen ions in aqueous solutions. The higher the activity of hydrogen
ions, the more acidic the solution is and the lower the pH is. Less activity of
hydrogen ions (and greater activity of hydroxide ions) results in a higher pH.

The pH scale is logarithmic. A difference of one pH measurement unit
represents a tenfold increase or reduction of hydrogen-ion activity in the
solution. This explains how a solution’s aggressiveness rapidly increases with
the distance from the neutral point on the pH scale.

Figure 7-1 shows the finished Custom pH Meter, and if you wonder why
measuring pH is useful, “Why Measure pH?” on page 187 discusses several
answers to that question.

Figure 7-1: The Custom pH Meter in an actual measurement environment

Why Build Your Own pH Meter?
Commercial pH meters run the gamut of prices from low-cost portable
units under $60 to full-fledged laboratory instruments costing several hun-
dred or several thousand dollars. Relatively low-cost pH meters can do the
job, but all have drawbacks, such as marginal accuracy, relatively short life-
time, calibration issues, and consistency.

A variety of pH meter kits are also available, including many stamps,
some designed for the Arduino. (A stamp is a small circuit board with the
critical circuitry to perform some function, minus the processor.) I have not
had a chance to sample these kits, but they tend to be pricey, running close
to or over $100. And they still require a power supply and packaging.

While this project doesn’t propose to offer a full-scale laboratory instru-
ment, it provides a good, workable pH meter and gives a lot of insight into
what actually comprises a pH meter. I’ve made every attempt to tune the cir-
cuit for optimal performance, but you may find further adjustment helpful,
so if you want to try something different after seeing the circuit, go for it.

A Custom pH Meter 187

W h y Mea sure pH?

In the past, pH was a relatively obscure measurement, confined to the labora-
tory bench and industrial environments (for quality control, process control,
measuring and controlling waste effluents, and so on). However, more people
have started using scientific measurement in areas that have traditionally relied
on rote instructions or trial-and-error experimentation, like home winemaking
and beer brewing, hydroponics, home agriculture, hydroculture, and baking.
All of these applications can benefit from accurate pH measurement, and they
don’t even include the more mundane task of managing the chemistry of your
swimming pool, koi pond, fountain, or aquarium.

For example, in baking, dough needs a low pH to rise. The pH of foods
also impacts two of the four tastes: low-pH, or acidic, foods tend to taste sour,
while higher-pH, or more alkaline, foods taste bitter. Lemon juice is an example
of sour, and broccoli rabe or dark chocolate can be considered bitter. In home
gardening, pH is an important soil characteristic for particular crops. Simple
adjustments in pH can make aquarium water clear and reduce scum deposits
on the glass sides, and a balanced pH in ponds keeps fish healthy and reduces
algae. And the list goes on.

Required Tools
Soldering iron and solder

Drill and drill bits

Keyhole saw

Center punch

File

2-56 tap

Heat gun or hair dryer (for heat-shrink tubing)

Parts List
You’ll need the following parts to build your Custom pH meter:

One Deek-Robot Pro Mini Arduino clone (Other Arduinos should
work with the project in general, but not with the shield template pro-
vided for this book. I used an Arduino Nano clone for the breadboard
because of the built-in USB interface. In the completed unit, I switched
to the Pro Mini to conserve space.)

One LM35 (D) temperature sensor

One Texas Instruments TL072 dual op-amp (The pinout is shown in
Figure 7-2.)

188 Chapter 7

Output A

Invert i/p A

Non-invert i/p A

V−

V+

Output B

Invert i/p B

Non-invert i/p B

TL072

1

2

3

4

8

7

6

5

+

+

−

−

Figure 7-2: TL072 pinout

One 10-turn, 1-megaohm trimmer (R7)

One 10-turn, 10-kilohm trimmer (R4)

One BNC male connector

One LM7805 voltage regulator

One LMC7660 power inverter (The pinout is shown in Figure 7-3.)

LMC766010 µF

1

2

3

4

8

7

6

5

Cp

Cosc

V+

Cr

Vout

10 µF
+

−

+

−

Figure 7-3: LMC7660 pinout

One 16×2 LCD

One I2C adapter, if not included with the LCD

One 5.1V Zener diode

One 1 µF ceramic capacitor (C2)

Five 0.1 µF ceramic capacitors (C1, C6, C7, C8, C9)

One 0.01 µF ceramic capacitor (C5)

One 22 µF tantalum capacitor (C10)

Two 10 µF tantalum capacitors (C3, C4)

One 10-kilohm, 1/8 W resistor (R5)

Three 10-kilohm, 1/8 W resistors (R1, R2, R10)

A Custom pH Meter 189

Two 1-kilohm, 1/8 W resistors (R8, R9)

One pH probe

Four 4-40×1/2-inch screws

Eight 4-40 nuts and washers

Four 2-56×1/2-inch screws

28- or 30-gauge hookup wire

One Hammond 1591 BTCL plastic enclosure

Heat-shrink tubing

Downloads
Sketch  pHMeter.ino

Cover template  pHCover.pdf

Side template  pHBoxSide.pdf

Shield  pHMeter.pcb

About the pH Probe
At the heart of the Custom pH Meter is a pH probe. This measures the
activity of hydrogen ions in a solution, which in turn determines the acidity
or alkalinity of that solution. A basic pH probe, like the one in Figure 7-4,
comprises two elements: a reference electrode and a measurement elec-
trode. I won’t go into the chemistry of the probe or the exact mechanism
of a pH probe’s operation, but I will describe its output and interface to the
circuitry that provides the readout.

A pH probe produces a voltage proportional to the pH of the solu-
tion the probe is immersed in. The pH range starts at 0, which is the most
acidic, and goes up to 14, which is the most alkaline. The probe delivers an
output voltage from approximately –420mV to +420mV, representing an
increment of roughly 60mV per unit of pH. A neutral pH of 7.0, at mid-scale
from 0 to 14, is represented by 0.0mV.

The nature of the probe’s output makes the Custom pH Meter’s basic
function in this project relatively straightforward: it needs to read and display
a voltage. But there are a few other things the Custom pH Meter circuit has to
account for. First, while commercial probes are built to the highest standards,
they can be off by some nominal amount and require adjustment. Second,
we’re dealing with relatively small values, so to maintain accuracy, compo-
nents and circuits have to be carefully selected. Further, as probes are used
and age, they tend to change slightly, requiring recalibration.

190 Chapter 7

Filling hole

Junction

Ag/AgCl reference electrode

Reference electrode internal solution

Wires to pH Meter

Glass electrode internal solution

AgCl covered silver wire

Figure 7-4: A simplified drawing of a pH probe

Finally, the pH probe has a very high electrical impedance—perhaps 10
to 100 megaohms or higher. Practically speaking, a high impedance means
that despite the voltage level, there is very little energy available to change
the state or condition of another device, so the circuit needs to amplify that
signal. This requires a specialized input circuit involving an op-amp, which
is designed to minimize noise while handling the high-impedance signal.
Today’s semiconductors are up to the task, and as I discuss in “Some Notes on
IC Selection” on page 196, I checked out several op-amps to find one that
seemed to offer the best combination of performance and price. Of course,
while a good op-amp is important, the circuitry feeding input to the op-amp
must also be as efficient as possible to achieve an accurate reading without
introducing noise that could affect the sensitive output of the pH probe.

Ta king C are of Your pH Probe

While your pH probe probably came with instructions, there are a couple of
things you can do to increase its useful life. First, of course, follow the manufac-
turer’s instructions. Second, unless the manufacturer specifies differently, when
storing your probe, immerse the business end in a 3-molar solution of potas-
sium chloride (KCl), as shown in Figure 7-5. You should be able to buy such a
solution wherever you purchase your pH buffer solutions at a very modest cost.
(A buffer solution is a mix of relatively weak acidic and alkaline chemicals that
produces a specific pH.) You can also compound your own by dissolving about
22 g of KCl in 100 mL of distilled water.

A Custom pH Meter 191

Figure 7-5: The pH probe I used for this project. The tip is protected in a
small vial of KCl solution with a rubber seal.

Even for relatively short storage times, it is best to keep the probe in a
pH 7 buffer solution rather than in air or water. Between samples or when
moving the probe to a different buffer solution, make sure to rinse the probe
carefully. Most manufacturers suggest rinsing with distilled water. You can
gently blot the excess water off the probe, but most manufacturers caution
against rubbing or wiping the electrode bulb for fear of creating an error due
to polarization.

When calibrating your probe prior to a measurement, the manufacturers
of even top-of-the-line pH meters suggest calibrating with a buffer closest to the
expected pH of the sample. For example, if you suspect the pH value of the
sample to be around 9, use a pH 10 buffer solution to calibrate the instrument.

The Schematic
The Custom pH Meter circuits shown in Figures 7-6 and 7-7 comprises a
dual op-amp, a voltage inverter to supply ±5V to the op-amp, a voltage regu-
lator, a temperature IC, an Arduino, and an I2C LCD. You have the option
to build your Custom pH Meter with an Arduino Nano or an Arduino Pro
Mini. I had an easier time building the breadboard with a Nano, but my
final product (and therefore, the shield PCB file provided for this chapter)
uses the Pro Mini to conserve space.

The rest of this section describes the reasoning behind the design deci-
sions made in creating this schematic.

192 Chapter 7

Figure 7-6: The basic schematic for the Custom pH Meter, using an Arduino Nano

Figure 7-7: The basic schematic for the Custom pH Meter, using a Deek-Robot Pro Mini

A Custom pH Meter 193

Integrating the High-Impedance Probe
Recall that the pH probe delivers a DC output voltage that swings from
–420mV to +420mV, giving approximately 60mV per unit of pH. This out-
put is delivered at very high impedance, and the circuit must accept the
probe’s high-impedance input without adding spurious signals, reduce the
impedance to a manageable level, and amplify the input so it can be read
by the analog inputs of the Arduino. The circuit also has to provide a way
to adjust the voltage that goes to the display in order to calibrate the probe
in terms of both offset and gain (see “Offset and Gain” on page 194 for a
crash course).

To handle the high-impedance probe output, the input of the op-amp
must have a very high impedance, typically in the teraohm (1×1012 ohms)
range, to read any voltage at all. The input of the op-amp must also have a
low input current (the two go together); this is typically around 10 picoamps
(1×10−12 amps), though some op-amps offer input current below 25 femto
amps (1×10−15 amps). It’s also good if the op-amp has very low drift (that is,
tendency to change output with no change in input).

General Design Notes
The Custom pH Meter is designed to work from a power supply of 9V,
selectable between a battery and a plug-in module via a power switch (see
the schematics in Figures 7-6 and 7-7). Because the input from the AC
source could be suspect, the Custom pH Meter uses an external voltage
regulator rather than the regulator built into the Pro Mini. An LM7805
with bypass capacitors at both the input and output worked well in previ-
ous projects, and this project uses the same regulator. This regulator sup-
plies positive 5V to the inverter, the op-amp circuitry, and the Arduino.
The power switch is a three-position switch, where the center is off, one
position selects the battery, and the other selects AC power.

Because the pH probe provides an output of ±420mV, this circuit has to
be able to handle a bipolar (above and below ground) voltage. The simplest
way to achieve that is to use an op-amp with positive and negative supplies
and a ground in the middle, which in turn requires a power supply that
can provide those voltages. The LMC7660 voltage inverter is the solution:
it converts the positive 5V from the voltage regulator to +5V and –5V, with
ground in the middle. Thus, the op-amp can handle the input signal as
long as it doesn’t go above +5V or below –5V.

N o t e 	 Most voltage inverters are very similar to the LMC7660 and require minimal exter-
nal components—in this case, only two capacitors. This circuit uses tantalum
capacitors because of their compact size and reliability, but electrolytic capacitors
could be used.

194 Chapter 7

Of f se t and G ain

To demonstrate how offset and gain work, Figure 7-8 illustrates the continuum
of voltage used in this project, from –5V to +5V.

+5V

−5V

0V

Gain

Gain

Offset

Offset

Buffer

Buffer

A

A2

B

Figure 7-8: An illustration of what happens to the voltage
when changing the gain and offset on the Custom pH Meter

Imagine that when the voltage from the pH probe is amplified, there is a
voltage range A. In this illustration, voltage A represents half the supply volt-
age, ranging from –2.5V to +2.5V for a total of 5V. If the gain is adjusted,
the voltage range will still center on 0V but will increase or decrease to some
voltage range B. Adjusting the gain will always increase or decrease the lower
and higher ends of the selected voltage sector equally, provided the original
sector is within the total voltage range.

The entire voltage sector can also be shifted within the continuum by
adjusting the offset, as illustrated in Figure 7-8. The range of voltage A2 still
encompasses the same total voltage as range A, but its minimum and maximum
voltages are different. In this instance, the center of the voltage range is shifted
from 0V to 2.5V, such that voltage A2 swings from 0V to 5V.

This offset can be any voltage within the supply range, but in practice, it’s
best not to run the voltage to the voltage rails (the maximum and minimum of
the supply voltage). Instead, leave some buffer between the rails and the volt-
age range a project needs.

“The Sketch” on page 205 shows that the Custom pH Meter maps the
voltage within the limits of the supply to the Pro Mini (0V to +5V) to be an aver-
age of the gain selected. The final gain and offset adjustments for this project are
made using the prepared buffer solutions and the potentiometers in the circuit.

A Custom pH Meter 195

The Custom pH Meter uses a Deek-Robot Pro Mini Arduino clone
because this clone is small and inexpensive; however, a Nano could work if
you make your own shield-printed circuit board. While the Pro Mini does
not include a USB interface, there are a variety of ways to program it with
little effort. See “Connecting and Programming an Arduino Pro Mini” on
page 8 if you’ve never used this particular Arduino before.

The I2C interface for the display comprises only two wires—clock and
data—in addition to power and ground. The I2C protocol can also be used
with several I2C devices at the same time, if required.

The Op-Amp Circuit in Detail
In the op-amp circuit, there are resistors and capacitors to minimize the
effect of spurious signals and to couple the circuits. The amplifier circuit
has two stages, which are both included in the single package of the op-
amp: the first handles the high impedance from the probe and offers gain
adjustment, while the second is a buffer that provides the offset, both for
calibration and to accommodate the 0 to +5V analog input required by the
Arduino. Each stage has a 10-turn trimmer potentiometer. The trimmer in
the first stage is 1 megaohm, and it sets the gain; the trimmer in the buffer
stage is 10 kilohms, and it is used for the offset.

The first stage provides most of the gain (the output is roughly six times
the value of the input), which is adjustable via a negative feedback resistor
(R2) and a potentiometer (R3). The adjustment range is a bit wider than
required, but it works out quite well. Initially, I tightened up on the range
but found that for some probes, a smaller range makes calibration difficult.

The second stage op-amp circuit uses a fixed feedback resistor of
10 kilohms (R5), while the noninverting input uses a combination of two
resistors of 10 kilohms each (R1 and R2) and a 10-kilohm potentiometer
(R4) to provide the offset adjustment. This stage provides a small amount
of gain in addition to the offset adjustment to allow the pH probe voltage
to center on 0mV (pH of 7) and swing between –420mV (pH of 0) and
+420mV (pH of 14). In addition, this buffer stage changes the scale from a
negative and positive voltage to a positive-only voltage for the Arduino.

Using the buffer stage to both provide the calibration offset and convert
the plus-minus voltage swing works out conveniently with little, if any, discern-
able downside. Optionally, a separate reference voltage could be generated,
but that would add additional components and offers little advantage over
offsetting the voltage from the buffer stage and referencing the voltage to
ground.

At the output end of the buffer, a Zener diode (D1) and resistor (R9) are
added to protect the Pro Mini from any overvoltage condition. No protection
was added to protect against a negative voltage to the analog input pin; how-
ever, during initial setup and experimentation, the analog pin accidentally
received a negative voltage many times with no adverse effects.

196 Chapter 7

Some Notes on IC Selection
Before settling on an IC for any project, it is a good idea to test multiple ICs
to see which works best in your situation. When sampling chips, I suggest
keeping notes on the pros and cons of each chip. For example, these are my
notes on op-amp possibilities for the Custom pH Meter:

TL072  Worked well; a good all-around solution

TLC2262  A good all-around solution; a toss-up between this and
the TL072

OPA129  Worked well, but not available in DIP

LMC6001  Worked well, but a little pricey for no advantage, at
around $20

LMC6042  Probably would have worked, but was difficult to set up

LMP7702  Probably would have worked, but a little pricey and was
difficult to set up

After trying several op-amp circuits in the public domain with mostly dis-
appointing results, I used a generalized circuit to test each of these op-amps
in turn, and for each test, the circuit required a certain amount of tuning
to work. This tuning included changing the circuitry to stabilize gain and
minimize spurious signals and stray voltages. The Texas Instruments TL072P
op-amp proved the best option, and once I made that selection, I adjusted the
circuit further to optimize it for the Custom pH Meter. The TLC2262 also
would have worked well; I used it in some prototype samples.

The other op-amps I sampled might have worked as well, or almost
as well, if optimized like the TL072; however, that would have been time
consuming for a marginal or zero gain. The final Custom pH Meter circuit
represents a best effort within self-imposed limitations, like budget. For
example, a top-shelf op-amp, like the Texas Instruments OPA627/637, prob-
ably would have worked well, but the chip alone had a price tag between
$25 and $50, depending on the version. That would have brought the total
budget for the project to well over $100, a self-imposed limit. The decision
to continue the project itself was already problematic because of the probe’s
cost ($36 at the time of writing); however, I believe the probe’s capabilities
warrant the expense.

Preparing the LCD
Before you build the circuit on a breadboard, make sure the LCD is prepared
for prototyping. Though the LCD used in this project can be purchased with
the I2C adapter board, I have often had to buy the LCD and the adapter
board separately, as was the case this time. When you buy them separately,
the adapter board usually comes with header pins installed, and all you
should have to do is insert them into the display and solder them. “Affixing
the I2C Board to the LCD” on page 3 describes this process.

A Custom pH Meter 197

On LCD Backlig h t s

When I initially wired the I2C board to the display board for the Custom pH
Meter, I cut off the cathode (K) header terminal on the display board. The
anode and cathode headers allow you to provide a voltage to power the
display’s backlight. The idea behind severing the connection was to include
a separate switch to turn the backlight on and off to preserve battery current.
It turned out the display was not readable without the backlight except in
extremely bright light, so I abandoned that effort and manually rewired the
backlight. You can experiment with other displays to try to find an ambient-light
readable display.

The Breadboard
Like most of my Arduino projects, the Custom pH Meter began with a
breadboard (see Figure 7-9). Despite the somewhat ragged appearance,
the breadboard iteration worked well.

Buffer solutions Potassium chloride

Arduino NanoTest voltage
circuit

LCD

pH probe
BNC connector

Figure 7-9: This circuit on a breadboard served as a proof of concept for the
Custom pH Meter.

In addition to the basic Custom pH Meter circuit, I added a separate
circuit (visible in the upper-left area of the breadboard in Figure 7-9) to
supply a continuous, variable ±500mV test voltage so I could check the cir-
cuit and do some preliminary calibration prior to testing with the probe
itself. This test circuit, shown in Figure 7-10, comprises a separate voltage
inverter, a pair of voltage dividers, and a potentiometer to vary the voltage.
You may want to set up this small circuit on a separate breadboard and use
it to do the preliminary adjustment of the finished unit.

198 Chapter 7

Figure 7-10: This circuit provided the test voltage for the
Custom pH Meter.

In Figure 7-9, the pH probe is held by an inexpensive burette clamp
attached to an old machinist’s magnetic gauge holder. The probe was too
thin to fit in the holder, so I wrapped some foam around the probe to
clamp it.

Preparing this breadboard turned out to be a little messier and more
convoluted than usual because there’s a lot on the board. As shown in
Figure 7-9, I used a large breadboard that included four vertical bread-
boards and a strip across the top for positive and negative rails. Initially,
I used an Arduino Nano clone to build the Custom pH Meter on the
breadboard. In the finished version, however, I suggest using a Deek-
Robot Pro Mini board to reduce the size. Both Arduinos use the same 5V,
16 MHz Atmel 328 processor and other components. In keeping with the
requirement to have the shortest possible connection to the input of the
op-amp, the BNC connector is situated to provide a relatively direct con-
nection to the noninverting input of the op-amp. The voltage regulator,
an LM7805, is located in the upper right of the breadboard and is pow-
ered with either a 9V alkaline battery or a 7.5V to 12V wall adapter.

Here are the steps I took to construct the breadboard:

1.	 Connect all vertically oriented positive and negative rails (marked by
red and blue stripes, respectively) to the horizontal positive and nega-
tive rails across the top of the breadboard.

2.	 Mount the power inverter chip (LMC7660) on the upper-left side.

3.	 Mount capacitor C3 (10 µF) between pins 2 and 4 of the LMC7660.
(Make sure to observe polarity: connect the positive side to pin 2 and
the negative side to pin 4.)

4.	 Mount capacitor C4 (10 µF) between pin 5 of the LMC7660 and the blue
negative rail. (Make sure to observe polarity: the plus side of the cap goes
to the blue negative rail.)

5.	 Connect pin 3 of the LMC7660 to the blue negative rail.

6.	 Connect pin 8 of the LMC7660 to the red positive rail.

A Custom pH Meter 199

7.	 Insert the voltage regulator (LM7805) into the right-hand section of
the breadboard.

8.	 Connect pin 1 of the LM7805 to a blank row that will accept the incom-
ing 9V or 7.5V voltage. (It can accept from +7V to +12V, as shown in the
schematic.)

9.	 Connect pin 2 of the LM7805 to the blue negative rail.

10.	 Connect pin 3 of the LM7805 to the red positive rail.

11.	 Connect capacitor C2 (1 µF) from pin 1 of the LM7805 to the blue
negative rail.

12.	 Connect capacitor C1 (0.1 µF) from pin 3 to the blue negative rail.

13.	 Insert the TL072 IC in the breadboard; I placed it in the second vertical
section. Observe all antistatic precautions while handling the chip.

14.	 Make the connections to the TL072 as short as possible to eliminate
possible spurious signals.

15.	 Connect capacitor C5 (0.01 µF) from pin 8 of the TL072 to the blue
negative rail. Make the connection as close to the chip as possible to
minimize effects of spurious signals.

16.	 Connect pin 8 of the TL072 to the red positive rail (once again, using
as short a jumper as possible).

17.	 Connect resistor R5 (47 kilohms) from pin 2 of the TL072 to the blue
negative rail.

18.	 Connect the center lead of the BNC input jack to pin 3 of the TL072
with as short a wire as possible.

19.	 Connect the ground of the BNC to the closest spot available on the
blue negative rail. (I used a panel-mount BNC connector and screwed
a piece of stiff wire to the flange so I could mount it very close.)

20.	 Connect pin 4 of the TL072 to the negative voltage of the LMC7660
(pin 5).

21.	 Insert one lead of capacitor C6 (0.1 µF) to pin 4 of the TL072, as close
to the chip as possible.

22.	 Insert the other end of capacitor C6 to the closest spot available on the
blue negative rail.

23.	 Insert the outside pins of potentiometer R7 (1 megaohm) between pins
1 and 2 on the TL072.

24.	 Insert a short jumper from pin 2 to pin 3 of potentiometer R7. The
potentiometer will work with only the two pins (center and one end)
used. For convention and stability, I usually connect the center to the
pin not being varied.

25.	 Insert capacitor C7 (0.1 µF) from pin 1 to pin 2 of the TL072.

26.	 Insert resistor R8 (1 kilohm) from pin 1 to pin 6 of the TL072.

27.	 Connect one lead of capacitor C8 (0.1 µF) to pin 6 of the TL072 and
the other lead of capacitor C8 to ground.

28.	 Connect resistor R10 (10 kilohms) between pins 6 and 7 of the TL072.

200 Chapter 7

29.	 In an open area of the breadboard (as close to the TL072 as possible),
insert potentiometer R4 (10 kilohms).

30.	 Connect one side of resistor R2 (10 kilohms) to pin 1 of
potentiometer R4.

31.	 Connect the other side of resistor R2 to negative 5V (pin 5 of the
LMC7660).

32.	 Connect one side of resistor R1 (10 kilohms) to pin 3 of
potentiometer R4.

33.	 Connect the other side of resistor R1 to the red positive rail.

34.	 Connect pin 2 (the center pin or slider) of potentiometer R4 to pin 5 of
the TL072.

35.	 Connect one lead of capacitor C9 (0.1 µF) to pin 5 of the TL072 (as
close to the pin as possible) and the other lead to the blue negative rail.

36.	 Insert the Arduino Nano into the breadboard. I placed it in the second
row from the left toward the bottom of the board so the USB connec-
tion would be easily available.

37.	 Connect 5V from the Nano (pin 27) to the red positive rail.

38.	 Connect the ground of the Nano (pin 29) to the blue negative rail.

39.	 Connect one side of resistor R9 (1 kilohm) to pin 7 of the TL072.

40.	 Connect the other side of resistor R9 to A0 (pin 26) of the Nano. You
may have to identify a blank space on the breadboard and then use a
jumper wire.

41.	 Connect the anode of the Zener diode (D1) to pin A0 on the Nano.

42.	 Connect the cathode of the Zener diode to the blue negative rail.

43.	 Connect the positive lead of capacitor C10 (22 µF) to A0 of the Nano.

44.	 Connect the other lead of capacitor C10 to the blue negative rail.

45.	 Make a four-wire cable for the LCD with wires for plus, minus, SDA,
and SCL. (See “Connectors Used in This Book” on page 18 if you’ve
never made a cable.)

46.	 Connect the positive and negative wires of the LCD harness to the red
positive and blue negative rails, respectively.

47.	 Connect the SDA pin from the LCD to A4 (pin 22) of the Nano.

48.	 Connect the SCL pin from the LCD to A5 (pin 21) of the Nano.

In Figure 7-9, at the upper left of the board, you will see four resistors
and a potentiometer on three wires. That’s the probe voltage simulator
circuit in Figure 7-10. To wire up the simulator circuit, make the following
connections:

1.	 Connect the open end of resistor R5 (10 kilohms) to negative 5V (pin 5
of the LMC7660).

2.	 Connect the open end of resistor R1 (10 kilohms) to the red positive rail.

A Custom pH Meter 201

3.	 At the juncture of resistor R1 (10 kilohms) and resistor R2 (1 kilohm),
connect pin 1 of potentiometer R3 (20 kilohms).

4.	 At the juncture of trimmer R4 (1 kilohm) and resistor R5 (10 kilohms),
connect pin 3 of the potentiometer R3 (20 kilohms).

5.	 Connect the center lead (pin 2) of potentiometer R3 (20 kilohms) to
pin 3 of the TL072.

The temperature sensor is not included in the breadboard.
Finally, calibrate the Custom pH Meter. I suggest calibrating first with

the simulator circuit and then with the actual probe, as described in the
next section.

Calibrating the Custom pH Meter
Calibrating the Custom pH Meter for the first time may be a little try-
ing, but it shouldn’t take long to get the hang of it, and it should work
well afterward. First, set both the scale and offset potentiometers as close
to the middle of their ranges as possible. Because pH 7 is neutral, start
there, put the probe in the pH 7 solution, and adjust the offset until the
display reads 7.00.

Next, clean the probe, place it in the pH 4 solution, and adjust the scale
trimmer until the display reads 4.00. After that, clean the probe again, and
try the pH 7 solution again; the reading should remain close to center. If it
is off center, then adjust the offset to exactly 7.0 again, and repeat the pro-
cess. This time, it should require only a small adjustment to set the scale to
pH 4.0. Now, check the display with the probe in the pH 10 buffer solution,
see how far off the reading is, and adjust the scale trimmer accordingly.
Repeat this process until the readings match all three buffer solutions.
(After about three or four tries, adjusting both scale and offset, I got it to
line up perfectly.)

When you know the meter works, I suggest resetting it and calibrating it
again for practice. I was able to do it quite a bit faster the second time, with
only two repetitions. I rechecked my pH meter several times over a period
of about three weeks, and it seemed to stay in calibration; you should have
similar results.

N o t e 	 As a preliminary test, I also used the test voltage circuit in Figure 7-10 to perform
initial calibration. You will also need a digital voltmeter. I started with 0V and
adjusted the offset potentiometer until the LCD showed a pH of 7. Next, I adjusted
the test voltage circuit to output 180mV on my digital voltmeter and turned the
scale potentiometer until the LCD showed a pH of 10. I then adjusted the test volt-
age to –180mV and adjusted the scale until the LCD showed a pH of 4. After only
a couple of tries, I had good results, so I disconnected the test supply and replaced it
with the probe. This time, I was able to calibrate the meter in only a single try.

202 Chapter 7

When your meter is built and calibrated, try testing it on some common
household products, like these:

•	 Coca-Cola Classic: pH 2.5

•	 Orange juice: pH 2.8

•	 Coffee: pH 5.0

•	 5 percent ammonia solution: pH 11

•	 Clorox bleach: pH 11.9

In an A nalog Frame of Mind

Some of us dinosaurs still like analog readouts, and for those holdouts mired
in the 20th century, I have included provisions in the schematics in Figures 7-6
and 7-7, the sketch, and the final shield PCB file for using an analog readout.
This was a bit of an afterthought and it’s optional, so the series resistor for the
meter is not included in the shield; however, the Pro Mini pin connections to
the readout are. The single required resistor can be mounted on the rear of the
meter movement. In Figure 7-11, I simply connected the meter to the bread-
board circuit.

Figure 7-11: The Custom pH Meter breadboard circuit, with both the
digital display and a 20 mA meter movement

I’ve collected analog meters and movements over the years; the meter
pictured is a Simpson 20 mA meter movement. To drive the meter, I simply
used the PWM (pulse-width modulation) output from pins 5 and 6 on the Pro
Mini, hooked directly to the meter with a resistor in series. In the sketch, I cen-
tered the meter on 0V so it uses a positive and negative voltage.

A Custom pH Meter 203

About the Effects of Temperature
Thus far, I have not addressed the issue of temperature, but a solution’s pH
value is temperature-dependent, as illustrated in Figure 7-12.

100°C (74.04mV/pH)

25°C (59.16mV/pH)

0°C (54.20mV/pH)

600

500

400

300

200

100

0

100

200

300

400

500

600

1 2 3 4 5 6

8 9 10 11 12 13 14

mV

pH

7

Figure 7-12: How pH varies with temperature

The effect of temperature on pH at or around room temperature
(25°C) is nominal. In fact, according to the chart, the difference in pH
from 25°C to 0°C would measure as little as half a pH unit at both pH
extremes. At 100°C, however, the difference is more pronounced and
could be as much as 1.5 pH units.

Given that information, the question becomes exactly how to handle
the effect of temperature on pH.

I ended up using a variable resistor to set the analog meter’s minimum
and maximum to –420mV and +420mV, respectively. This eliminated the
problem of attempting to set the gain and offset to match the digital readout.
However, that in no way affects the accuracy of either readout, and the digi-
tal and analog readouts match. They also track identically through the entire
pH range.

For many meters, the case can be removed to easily place a different
scale, as has been done in Figure 7-11. The face on this project’s meter was
prepared with a laser printer to make the scale reflect pH value and show an
mV scale for reference. A nice scale can be made using a drawing program
such as Corel Draw or Adobe Illustrator, and you can purchase full sheets of
adhesive-backed label stock to adhere it to the original meter plate. Just be
careful not to damage the needle or movement in the process.

204 Chapter 7

Adding a Temperature Sensor
The first step to address the effects of temperature is to include a temper-
ature sensor in the circuit so the Custom pH Meter knows what the tem-
perature is. One of the easiest and most widely used temperature sensors
in Arduino land is the LM35, which according to the data sheet outputs a
linear 10mV/°C at 25°C, with half-degree accuracy. You can see this sen-
sor in the schematics in Figures 7-6 and 7-7.

I hooked up the chip and included it in the sketch, but I was somewhat
concerned about the accuracy. Unfortunately, I didn’t have a National
Institute of Standards and Technology (NIST) temperature standard to
go by, so I compared the Arduino sensor readings to a glass scientific ther-
mometer, a bimetal dial thermometer, and a Radio Shack digital thermom-
eter. None of these agreed with each other or the Arduino.

Checking Accuracy
The obvious way to calibrate the temperature sensor was to check it
against two temperature values I really knew: the freezing and boiling
point (at sea level) of distilled water. Because I live about 12 feet above sea
level, the altitude would not be a problem. The result of my ice water and
boiling tests indicated that the sensor was indeed off by about 2 percent.
This was probably due to something in the external circuitry, such as the
reference voltage, and is compensated for in the sketch. The temperature
IC and connections were protected in a heat-shrink tube to eliminate any
moisture getting to the connections, as described in “Construction” on
page 211.

According to the manufacturer for the glass electrode I used in this
project, the error caused by temperature can be calculated as follows:

Error in pH = 0.003 × (Calibrated temperature − Current temperature)
× (Neutral pH − Actual pH)

For example, if the electrode is calibrated at room temperature (25°C)
and is measuring a sample around pH 4 at around 5°C, you would calculate
the error as follows:

1.	 Calculate the temperature difference: 25°C – 5°C = 20°C

2.	 Calculate how far away from neutral the pH is: 7 pH – 4 pH = 3 pH

3.	 The total error is: 0.003 × 20 × 3 = 0.18 pH.

As of this writing, I have not attempted to integrate the temperature
reading into the sketch to adjust the pH automatically. The Custom pH
Meter does, however, display the temperature on the LCD, so you can
decide whether or not it’s worth adjusting. As you can see in Figure 7-12,
the effect is minimal and can easily be approximated from the chart or
calculated with tests similar to mine.

Chances are that most of your measurements will be at or near room
temperature. Temperature compensation is generally required only in

A Custom pH Meter 205

severe environmental and industrial environments. If you are taking pH
readings at extreme temperatures, you may want to include the formula in
your sketch.

N o t e 	 If you’re curious, you can read more about how to compensate for pH probe read-
ing errors due to temperature at http://www.qclscientific.com/electrochem/
phtemp%20comp.html.

The Sketch
The Custom pH Meter sketch, like many others in this book, comprises
parts of other sketches and examples. I’ve included comments throughout
that describe how the most significant pieces work. This unit was tested on
and used with the Arduino IDE version 1.0.5-r2.

//Custom pH Meter Sketch
//Smoothes both temperature and pH

#include <Wire.h>
#include <LiquidCrystal_I2C.h>
/* Visit http://playground.arduino.cc/Main/I2cScanner for code
 you can run to figure out your LCD's I2C address if 0x27 doesn't work. */
LiquidCrystal_I2C lcd(0x27, 16, 2); //16x2 display
//There are a couple of libraries out there. The one I used was
//simply Liquid Crystal_I2C for a generic type display.
const int numReadings = 10;
const int numReadings2 = 20;
const int meterOut1 = 5;
const int meterOut2 = 6;

float readings[numReadings]; //The readings from the analog input
float readings2[numReadings2];

int index = 0; //The index of the current reading
int index2 = 0;
float total = 0; //The running total
float total2 = 0;

float average = 0; //The average
float average2 = 0;

int pHpin = A0;
int tempPin = A1;
int meterdrive1;
int meterdrive2;

int pHvalue = 0;
float val;
float val2;
float tempC;
float temp2;

http://www.qclscientific.com/electrochem/phtemp comp.html
http://www.qclscientific.com/electrochem/phtemp comp.html

206 Chapter 7

void setup() {
 lcd.init(); //You may have to use a different command, depending on the
 //library you use
 lcd.backlight();
 pinMode(meterOut1, OUTPUT);
 pinMode(meterOut2, OUTPUT);

 //Initialize serial communication with computer:
 Serial.begin(9600);

 //Initialize all the pH and temperature readings to 0:
 for(int thisReading = 0; thisReading < numReadings; thisReading++) {
 readings[thisReading] = 0;
 }
 for(int thisReading2 = 0; thisReading2 < numReadings2; thisReading2++) {
 readings2[thisReading2] = 0;
 }

 //Configure the reference voltage used for analog input to 1.1V
 analogReference(INTERNAL);
}

void loop() {

 tempC = analogRead(tempPin);
 temp2 = tempC/9.31; //My calibration factor was 9.31, as determined
 //by the boiling water and ice tests

 pHvalue = analogRead(pHpin);

 val = map(pHvalue, 0, 1023, 0, 1400);
 val = constrain(val, 0, 1400);

 val2 = val/100;

 meterdrive1 = map(average, 0, 14, 0, 255);
 meterdrive2 = map(average, 14, 0, 0, 255);

 analogWrite(meterOut1, meterdrive1);
 analogWrite(meterOut2, meterdrive2);

 //Subtract the last reading:
 total = total - readings[index];

 //Read from the sensor:
 readings [index] = val2;

 //Add the new reading to the total:
 total = total + readings[index];

 //Advance to the next position in the array:
 index = index + 1;

 //If we're at the end of the array...
 if(index >= numReadings)

A Custom pH Meter 207

 //...wrap around to the beginning:
 index = 0;

 //Calculate the average:
 average = total / numReadings;

 //Subtract the last reading:
 total2 = total2 - readings2[index2];

 //Get readings from the temperature sensor:
 readings2 [index2] = temp2;

 //Add the temperature reading to the total:
 total2 = total2 + readings2[index2];

 //Advance to the next position in the array:
 index2 = index2 + 1;

 //If we're at the end of the array...
 if(index2 >= numReadings2)
 //...wrap around to the beginning:
 index2 = 0;

 //Calculate the average:

 average2 = total2 / numReadings2;

 delay(1); //Delay between reads for stability

 lcd.setCursor(0,0);
 lcd.print("pH");
 lcd.setCursor(4,0);
 lcd.print(" ");
 lcd.setCursor(7,0);
 lcd.print(average,2); //Truncate to two decimal places
 lcd.setCursor(0,1);

 lcd.print("Temp ");
 lcd.print(average2*.98,1); //Error calculated from empirical measurement
 lcd.print((char)223); //Print the degree symbol
/* This may vary depending on display. One display used ((char)178) for the
degree symbol.*/
 lcd.print(" C");

 delay(600);

}

The basic pH measurement functionality is straightforward: it reads
an analog value from the analog output of the op-amp circuitry and feeds
that value to an analog input pin of the Pro Mini. The pH and tempera-
ture are read every time the main loop runs and then stored in pHvalue
and tempC, respectively. My first version of the sketch printed these directly
to the LCD.

208 Chapter 7

But when I laid out the circuit on the breadboard and adjusted the
components, I noticed that the output was a little jumpy. The pH value
jumped around by two or three tenths of a pH unit, plus or minus some
core value. For example, the reading might fluctuate from a pH of 4 to 4.1,
then to 3.9 and back to 4.

Smoothing the pH and Temperature Output
I went back to the drawing board. I played with the circuit, trying to find
where the jumpiness was coming from, and failed to nail it down. Then,
because the pH was unlikely to change quickly, I decided to average a few
readings. While that stabilized the reading, the drawback was that the more
samples I took, the slower the reading.

However, I didn’t think that was a problem, as some expensive commer-
cial pH meters I’ve used took some time to stabilize, very likely for the same
reason. But there was still room for improvement.

Fortunately, there is a useful sketch on the Arduino website written
by David Mellis and subsequently modified by Tom Igoe that uses an array
to smooth a signal. (You can see the original sketch in full at https://www
.arduino.cc/en/Tutorial/Smoothing/.) I used this example as a model to
smooth out the pH voltage in this project’s sketch. I experimented with sev-
eral different values and found that somewhere between 5 and 10 samples
worked well. I set numReadings equal to 10, and that resulted in a minimal
drag on stabilization period, smoothing things out fairly well. The sketch
shown in this book stores the result after smoothing in the average vari-
able, which is printed to the LCD at the end of the main loop. In addition,
I continued to fine-tune the circuit, so the sketch required less and less
averaging.

Notice that the same smoothing technique has been employed in the
part of the sketch that handles input from the temperature-sensing circuit.
(The average2 variable contains the smoothed temperature reading result.)
This was necessary for the same reason smoothing was needed for the pH
voltage: even the temperature sensor output was a bit jittery. My first sus-
picion was that perhaps the Arduino Pro Mini and its voltage reference
was causing hiccups in both the pH and temperature voltages. However, I
hooked the temperature sensor directly up to my multimeter with a well-
filtered power supply and experienced the same disruptions. In the end,
the smoothing approach solved the problem.

N o t e 	 While the smoothing approach used in this sketch worked well, that isn’t the only
approach you could take. For example, a moving average approach could also
work well.

Centering an Analog Meter
If you choose to use an analog meter, the Arduino will need to drive the
positive and negative sides of the meter. The sketch maps the meter drive to
reverse the PWM values on two pins as follows.

A Custom pH Meter 209

 meterdrive1 = map(average, 0, 14, 0, 255);
 meterdrive2 = map(average, 14, 0, 0, 255);

To obtain meterdrive1, the average value (the average of pH values
measured) is mapped from 0 to 14, while meterdrive2 is the same average
value mapped from 14 to 0. Both mappings use the map() function from
Arduino’s preloaded libraries.

The map() function is a useful tool that lets you map a number from one
range to another. The syntax is as follows:

map(value, fromLow, fromHigh, toLow, toHigh)

The map() function can be used to shift a set of values or, as in this case,
to reverse the values going from 0, 14 and from 14, 0. If you want to use an
analog meter and don’t want to reset the indicator to the center, you can
simply use either output pin 5 or pin 6 (leave the one you don’t use open)
and change the value of the resistor to result in a correct reading.

A Not e on Signif ican t Figure s

The following line of code prints the pH to the LCD, showing two decimal places:

 lcd.print(average,2); //Truncate to two decimal places

An earlier draft of the sketch called lcd.print(average,1) instead, show-
ing only one decimal place, but when I was trying to minimize the jitter on the
Custom pH Meter, I changed the display code to include two decimal places
for finer granulation. For the most part, the pH reading remained extremely
stable even to the second decimal place.

In the final sketch, I kept two decimal places, but to be honest, I’m not
sure how meaningful or accurate the second decimal place is. It has a slight
tendency to drift as the probe sits in the solution, which I believe is normal.
I dutifully researched and learned a lot more about significant figures (the
digits in a measurement that actually have meaning) than I ever wanted to
know, but I was still left without a definitive answer.

Here’s the bottom line: all of the literature I perused regarding pH dis-
cussed pH in terms of integers—or at best, to the tenths position. Only in some
references to scientific and industrial applications was the hundredths position
even used at all.

For most practical applications, you can change the sketch to use a single
significant digit if you prefer. I do also strongly recommend that you use only
a single significant digit during preliminary calibration, as the additional digit
could be confusing. If you must (as much for ego as anything), you can put the
second significant digit back, but know that its accuracy is suspect and, in my
experience, it doesn’t really buy you anything.

210 Chapter 7

The Shield
The Custom pH Meter shield, shown in Figure 7-13, is designed to minimize
noise from the pH probe to the input. The Pro Mini and the LCD in this
project can generate a little electrical noise; thus, all of the active analog
input components are at one end of the PCB, while the Pro Mini and inter-
face to the display are at the opposite end of the board. The inverter IC and
associated components are located under the Pro Mini to conserve space.

Figure 7-13: The shield PCB has headers soldered in place only for the pins this project
uses on the Pro Mini. The voltage inverter and capacitors are located under where the
Pro Mini will plug in.

For this project, I decided to use a double-sided circuit board. This
made the PCB layout a lot simpler than trying to squeeze everything on one
side, and it allowed the amplifier, buffer stage IC, and associated compo-
nents to be arranged in close proximity. You can see the layout file for this
shield, which you can download with the rest of this book’s resource files, in
Figure 7-14.

Figure 7-14: The top traces in the shield layout are the darkest, the bottom traces are sec-
ond darkest, and the silkscreen layer is the lightest. Notice that the silkscreen layer shows
boxes around various components.

Figure 7-15 shows the completed printed circuit board before and after
population. When populating this board, make sure to take precautions to
prevent static electricity damage to the TL072. Because of this chip’s very
high input impedance, it is particularly sensitive to static discharge from
handling. I used a socket to hold the op-amp so in case it got damaged,
replacing it would not be a major job.

A Custom pH Meter 211

Figure 7-15: The shield PCB before and after population. The voltage inverter and associ-
ated components are under the Pro Mini. The populated version is shown with the display
connected.

Also note that many resistors on this PCB are mounted vertically to save
space and reduce lead length and circuit-board-trace lengths. I used 0.100-
inch female headers to mount the Pro Mini, which leaves plenty of room for
the components underneath. It is not necessary to fully populate the board
with headers to fit all the Pro Mini’s pins; you just need enough to mechani-
cally support the Pro Mini and provide the necessary electrical connec-
tions. I found it helpful to place headers at the very end of at least one side
to align the pins and simplify my aim when plugging in the Pro Mini board.

Construction
Be sure the sketch is loaded onto the Arduino, and solder all components
to your PCB now, including wires for power and ground and for the jack for
the (optional) temperature sensor. Place the op-amp into its socket now as
well, but bend pin 3 of the op-amp so that it sticks out. You will need to be
able to access pin 3 in a later stage of the construction process.

When the Custom pH Meter circuit is soldered and the sketch is loaded
onto the Arduino, only one step remains in terms of actual construction:
putting everything inside a protective box. This section describes some sug-
gestions for an enclosure and for how to mount the circuit board inside.
Figure 7-16 shows the finished enclosure.

212 Chapter 7

Figure 7-16: The finished Custom pH Meter in the enclosure. This close-up
illustrates the positioning of the holes for the offset (labeled Ofst) and gain
(labeled Scale) calibration adjustments.

The Custom pH Meter Enclosure
Your choice of enclosure will depend on how you want to use the Custom pH
Meter, whether or not you elect to include an analog meter, and the level of
portability required. I selected a standard ABS clear plastic box with outside
measurements of approximately 1.3×2.45×4.4 inches. The space was some-
what tighter than I planned, but I was able to squeeze in the printed circuit
board, display, switch, connectors, and battery.

Making Room for the Display

This project’s enclosure is a Hammond Manufacturing case, model 1591
BTCL. Figure 7-17 shows a drawing of the top of the plastic box, marked
with lines for cutting the display hole and drilling the mounting holes.

1.0 in

2.64 in

0.5 in

0.078 in

0.172 in

0.156 in

0.956 in

Top

Figure 7-17: Template for the cover of the enclosure, showing an opening for the
16×2 display (shaded area) and where to drill mounting holes

A Custom pH Meter 213

You can download this drawing with this book’s resource files (see
https://www.nostarch.com/arduinoplayground/) and use it as a template for
center punching the holes.

I needed as much vertical room as possible inside the enclosure to
accommodate the battery, so cutting out the top of the enclosure was neces-
sary. Be careful, though: some displays have slightly different footprints, so
measure yours and check it against the drawing first. If there’s a discrep-
ancy, adjust the measurements.

The ABS plastic the enclosure is made of cuts easily, so cutting out the
display hole shouldn’t pose any major problems. Before you get started,
clamp the enclosure securely to a piece of scrap wood attached to a work-
bench or table.

w arning 	 When you use a relatively large bit to drill into a thin layer of ABS plastic, the bit will
tend to grab the plastic. Do not hold the enclosure by hand.

To follow this template, first drill the two big holes in the opposing
corners of the display area, using the punch marks as centers. I found
1/2 inches to be a good size for these holes, but just make them big enough
to accommodate the saw blade you’re going to use to make the cutout. You
may want to drill the centers of the 1/2-inch holes with a smaller drill first
to make sure they are on center. Then, use a keyhole saw to cut out the
smaller rectangle.

To make sure there is enough room for the battery, I suggest mounting
the display off center, as shown in Figure 7-16, with the measurements indi-
cated in Figure 7-17. When your display hole is cut, drill the smaller holes
for mounting the LCD with a #30 or 1/8-inch drill to accommodate the
4-40 screws.

Drilling Holes for Other Hardware

Once the top is prepared, drill holes for the BNC connector (A), on/off
switch (B), power input switch (C), and optional temperature jack (D) in
the two smaller sides of the main body of the case, according to the tem-
plate in Figure 7-18. The hole for the BNC connector is 3/8 inches, while
the holes for the switches and the temperature jack are all 1/4 inches.

0.625 in

0.75 in

0.375 in

Left

A

0.5 in 0.6875 in
1.125 in

0.625 in

B C D0.25 in

Right

Figure 7-18: Approximate layout for the holes for the BNC connector (A) on the left side of the enclosure, and
the on/off switch (B), battery/AC switch (C), and optional 3.5 mm temperature sensor input jack (D) on the
right side.

214 Chapter 7

Mounting the Circuit Board
Finally, choose where to mount the printed circuit board to the inside of
the case. For both pH meters that I made, I held a nonpopulated shield
PCB inside the case and marked the locations of the four mounting holes
on the plastic; you can use a printout of the board layout in this book’s
resource files as a pattern if you prefer. With your four holes marked, gently
center punch and drill them. Be careful not to crack the plastic enclosure,
and make sure they line up with the mounting holes indicated on the PCB.
I suggest using a #41 drill bit (about 3/32 inches) to drill these holes.

If you use the shield design included with this book, you may also need
to drill the circuit board’s mounting holes to the correct size. Conventional
manufacturing practice would advise using a spacer, screw, and nut to hold
the board inside the enclosure, but instead, I drilled and tapped the circuit
board itself. I used a #50 bit to drill the circuit board in all four corners
and tapped it with a 2-56 tap. I then used 2-56 screws to fasten the board in
place. While this may not be a recommended practice for all applications,
the board was light enough that it worked out well.

Furthermore, I would not expect a finished pH meter to be subjected
to much physical punishment. With that in mind, I just put a strip of foam
on the noncomponent side of the board and screwed the board to the side
of the case—but not too hard. If you expect the unit to experience repeated
and extreme vibration, you can put a dab of Thread-Lok or another anaero-
bic adhesive on the screw threads before assembly.

Once the board is mounted, mark the access holes for the gain and off-
set trimmers. Place the cover on the enclosure, look straight down through
the cover, and use a Sharpie marker to mark the locations of the two trim-
mer access holes. Remove the top from the enclosure, and drill 1/4-inch
holes corresponding to the screw heads on the trimmers (see Figure 7-16).

Installing the Other Hardware
Now you can install the BNC connector, on/off switch, power switch, and
(optional) temperature jack. I found it easiest to mount the switches and
jack inside the enclosure first and solder the wires to them later. The same
technique works well with the BNC connector, though you may wish to
solder the ground wire beforehand. I took a piece of 22-gauge solid wire,
wrapped it three-quarters of a turn around the base of the connector, tight-
ened it with the retaining nut, and soldered it to a ground tap on the PCB
(see Figure 7-13).

N o t e 	 While I did not bring out the signals for the analog meter for my personal build,
if you build the shield, you’ll see the two connections marked with a small box
around them.

Connecting the Probe to the Op-Amp

“Integrating the High-Impedance Probe” on page 193 describes special
considerations required for using the pH probe as an input to the Custom

A Custom pH Meter 215

pH Meter. It turns out that even high-quality FR-4 circuit board material
can cause some current leakage, from dirt or moisture on the surface or
other contamination. To minimize leakage, connect the input from the
IC directly to the probe. In order to do this, place the IC in close physical
proximity to the BNC connector inside the case. Then, instead of soldering
pin 3 of the op-amp to the board or plugging that pin into a socket, bend it
out and wire it directly to the BNC connector (see Figure 7-19).

Figure 7-19: To minimize spurious signals, the connection from
the BNC connector to the IC pin is soldered directly.

Because this is the only high-impedance part of the circuit, some other
precautions mentioned in the op-amp’s data sheet (such as ground-isolation
rings around the other inputs) are not required. However, this project’s
shield PCB does keep critical traces as short as possible and places compo-
nents in close proximity.

Connecting the Temperature Sensor

For the optional temperature sensor,
you will need to mount a 3.5 mm three-
conductor jack inside the enclosure;
the drilling hole for this is marked D in
Figure 7-18. Wire this jack to the tem-
perature IC connections on the PCB,
which are the three holes between the
display connections and regulator IC in
Figure 7-20. The sleeve of the connector is
ground, the ring is positive, and the tip is
the output of the temperature-sensing IC.

You can protect the IC itself from
liquid immersion by encapsulating it in
a short length of heat-shrink tubing with

Figure 7-20: The three connections
for the temperature sensing IC are
just above the word Therm.

216 Chapter 7

sealant, as shown in Figure 7-21. This heat-shrink tubing is readily available
online. The sealant on the inside of the tubing should make a completely
waterproof seal for the IC. To seal the IC, just insert it into the tubing and
heat with a heat gun or a hair dryer on high heat until it is completely
sealed.

Figure 7-21: This LM35 temperature IC is completely encapsulated in a short length of
heat-shrink tubing with a sealant thermal gel. The thermal gel can barely be seen where
the wires enter the tubing.

Once all hardware is mounted inside the enclosure and all components
are soldered to the PCB, screw the LCD to the cover and close it all up to
finish. You might also want to label your potentiometers and switches, as
shown in Figure 7-16, for ease of operation later.

8
T w o B alli s t ic C h ronograp h s

This project is a device for measuring
the velocity of a projectile. It originally

measured the velocity of pellets from air-
soft and paintball guns, and it evolved to be

capable of measuring projectile velocities from BB
and pellet guns before finally measuring velocities of
over 3,000 feet per second (fps) from higher-powered weapons. The main
intention of this project is not to measure the velocities of traditional fire-
arms, but this project does have that capability, and the end of this chapter
describes how to use it to measure the velocity of a 9 mm bullet.

The Ballistic Chronograph was meant to be simple, but it turned out a
little more complex than originally planned. The result is two projects: the
Full Ballistic Chronograph and a more diminutive and simpler device I call
the Chronograph Lite (see Figure 8-1).

218 Chapter 8

Figure 8-1: The Chronograph Lite with a projectile-acceleration channel attached to a
0.177 caliber pellet gun

I’ve attempted to make each Ballistic Chronograph system both flexible
and accurate. The flexibility comes from separating the sensor elements
from the readout and permitting different types of sensors to measure dif-
ferent devices—and producing different readouts with the same accelera-
tion channel.

In this project, you will use some components not too frequently
encountered in Arduino projects, such as a crystal oscillator to provide
precise timing (outside of the crystal oscillator used in the Nano), infrared
LEDs, phototransistors, logic gates, a 12-stage digital counter, and a digital-
to-analog converter (DAC) to help perform the counting function.

A word of Warning

With deference to Jean Shepherd’s A Christmas Story (in which everyone warns
Ralphie, “You’re going to shoot your eye out!”), remember that any firearm is
inherently dangerous, and many air-powered weapons can fire at lethal force.
Whether you test an air-powered device or a weapon using high-powered bul-
lets, use extreme caution. The Full Ballistic Chronograph and the Lite version
were developed, tested, and made primarily for lower-powered weapons using
CO2 and air power to accelerate projectiles. Though the device is capable of
measuring bullets from traditional firearms, such as the 9 mm pistol mentioned
earlier, it was not developed or tested for that application. I strongly recom-
mend that you not attempt to use the device you build in this chapter in such
applications.

Two Ballistic Chronographs 219

What Is a Ballistic Chronograph?
A device for measuring the velocity of a high-speed projectile exiting a
firearm is generally known as a ballistic chronograph. The term chronograph
was co-opted from the horological community and is now widely used to
describe instruments for measuring the speed of bullets, arrows, darts, and
so on.

This chapter proposes two versions of the Ballistic Chronograph: one
offering the ability to accurately measure very high-speed projectiles and a
Lite version offering a little less precision but a far simpler implementation.
Though I refer to the simpler build as the “Lite” version, it is by no means
unsophisticated.

Commercial Chronographs
There are several commercially available chronographs, most of which
are intended for high-powered pistols and rifles. Chronographs are usu-
ally placed on the ground or a table in front of the shooter. Most of the
popular commercial devices depend on ambient sunlight for operation
and, therefore, don’t work indoors or on overcast days. And while they
are modestly priced, they are not really cheap.

Chronographs vary from simple two-wire devices (still in use and
believed by some to be the most accurate) to relatively elaborate units with
digital memory, average velocity calculations, and other features. The two-
wire approach simply uses two thin strands of wire (36- or 40-gauge wire
will do) stretched between two pairs of contacts accurately spaced apart.
The projectile is shot and breaks the first wire to start a timer, and then,
if you have good aim, breaks the second wire to stop the timer. The time
between breakages is calculated to provide a speed value in feet or meters
per second. The very early chronographs were built with a clock, which had
readouts of ones and zeros displayed in a bank of LEDs. The binary num-
ber had to be translated to a decimal number and then calculated with the
distance between the wires to get the velocity.

Measuring Muzzle Velocity
Now that you know what types of prebuilt chronographs are out there,
let’s take a look at the physics of the device. A projectile leaving the muzzle
of a weapon has a velocity imparted to it by some propellant, such as air,
CO2, or the gas created by the rapid oxidation of the fuel in gunpowder.
The projectile travels down the barrel and exits the muzzle. The speed of
the projectile as it exits is called muzzle velocity.

The muzzle velocity of air-powered guns tends to vary depending on
several factors, including the charge of the propellant, cleanliness of the
barrel, and projectile-to-barrel matchup. Some air rifles can be pumped to
almost 3,000 psi (pounds per square inch) to fire larger projectiles at rela-
tively significant velocities. These larger air guns have relatively low muzzle
velocities in the sub-1,000 fps range, but they pack a real punch. Compared

220 Chapter 8

to conventional air rifles, which shoot 0.177-inch pellets that pack between
15 and 25 ft-lbs (foot-pounds) of power, these larger-bore rifles offer
between 500 and 700 ft-lbs of power.

Ideally, you would want to measure the velocity as close to the end of
the barrel as possible. However, this can be difficult, and some chrono-
graph makers claim that the velocity is not attenuated much in the first sev-
eral feet (or even yards) of travel. On the other hand, there is little doubt
that air resistance is a significant factor, and the projectile will slow at least
somewhat in the first few feet—especially in the case of larger projectiles.

This Project’s Approach
As in the two-wire ballistic chronograph systems, we’re trying to measure
the time it takes for a projectile to travel a fixed distance. But instead of
breaking thin wires, this project takes advantage of an infrared light source
and light-sensitive receiver, as illustrated in Figure 8-2.

LED LED

Detector Detector

Sensor channel

Light beam Light beam
Start clock Stop clockProjectile

3 inches

Figure 8-2: The basic principle in measuring the speed of the projectile is to have it break
a beam of light to start a clock and then break another beam of light to stop the clock.

Two pairs of LEDs and IR sensors are arranged so that the IR sensor
normally detects the light source. But when the projectile breaks the light
beam of the first pair, the sensor goes dark and changes its electrical state.
The processor senses this change and starts a timer. When the projectile
interrupts a second source/receiver pair, the timer stops. The two sets of
light sources and receivers are set an accurate distance apart so the time of
travel can be relatively easily calculated into projectile speed.

For a simple example, say the beams of light are set a foot apart. A pro-
jectile interrupts a beam of light and starts the clock; when the projectile
interrupts the second beam of light, the clock stops. If the microcontroller’s
timer measured 1 second, the velocity would be 1 foot in 1 second, or 1 fps.

This system can be used with a variety of projectiles and provide a digi-
tal readout on an LCD. Unlike other approaches, this device separates out
the sensor bank from the electronics such that, if desired, different sensors
can be swapped in and out for different firearms or even different applica-
tions. For instance, you could set up a sensor channel and do some basic
physics experiments by dropping small objects through it and recording
their velocity.

Two Ballistic Chronographs 221

The Chronograph Lite
First, we’ll take a look at the Chronograph Lite, which is simple to construct
and has only a handful of parts.

Required Tools
Soldering iron and solder

Drill and drill bits (1/2, 1/4, and 1/8 inches)

Philips head and slotted screwdrivers

Saw (keyhole or saber saw)

Parts List
One Arduino Pro Mini or clone

Two IR LEDs, about 650–850 nm

Two IR photosensors (I used the Honeywell Optoschmitt SA5600.)

N o t e 	 Some users have had trouble matching the IR LEDs with the Optoschmitt photo
sensors. If you run into this problem, try the Honeywell SE3450/5450 or equivalent.
Another option is to use two Adafruit IR Break Beams (part #2167) instead of the
separate LEDs and sensors. The IR Break Beams will work for the Chronograph Lite,
but the output must be inverted for the full version.)

One 270-ohm, 1/8 W resistor

(Optional) Two 10-kilohm, 1/8 W resistors (if using phototransistors
rather than Optoschmitt photosensors)

One channel holding two LED/sensor pairs

One 16×2 LCD

One I2C adapter, if not included with the LCD

One x4 adapter housing (see “Connectors Used in This Book” on
page 18)

Four female pins for housing (see “Connectors Used in This Book” on
page 18)

One SPST switch

One momentary NO switch

One 9V battery connector

One 9V battery

One Hammond 1591 BTCL enclosure or equivalent

Two 7 1/2 × 1 1/2 × 0.06–inch aluminum pieces

One 1 3/8 × 7 1/2–inch piece of 1 3/8-inch acrylic sheet

Two #10-24×1-inch nylon screws

Two #10×24 nylon nuts

222 Chapter 8

Four 4-40×1/2-inch screws

Eight 4-40 nuts

Four 4-40 washers

Assorted 28-gauge hookup wire

Downloads
Sketch  ChronographLite.ino

Templates  PanelCutoutLite.pdf, PanelCutout.pdf, AccelerationChannel.pdf

The Schematic
Outside the Arduino board, the circuitry for this project is not very com-
plex. The schematic in Figure 8-3 uses the I2C bus to power the LCD, two
connections for the photosensors, and two connections for the clear switch.

Figure 8-3: The schematic of the Chronograph Lite. The primary schematic shows the phototransistors and
the alternate section shows the Honeywell Optoschmitt sensors (bottom left).

Building a Test Bed
Figure 8-4 shows the test bed that was used to prove the concept and
develop the sketch. I suggest you build your own and install your LEDs
and photosensors into it before building the breadboard.

Figure 8-4: The test bed I initially
used to check out the chronograph
concept

Two Ballistic Chronographs 223

For this test bed, I cut two pieces of
cardboard approximately 2×6 inches
and punched them to fit two pairs of
IR LEDs and phototransistors that were
spaced 3 inches apart. I then screwed
the cardboard to a 1-inch-thick piece of
wood, though you could glue or staple
it if you prefer. When you build yours,
be sure that each phototransistor is
directly opposite an IR LED in the
channel.

After installing the IR LEDs and
phototransistors into the test bed, I
recommend preparing them for the
breadboard as follows:

1.	 Connect the two IR LED anodes
with a piece of wire by soldering or
wire-wrapping.

2.	 Solder one 24-inch length of wire
to the combined LED anodes. If
you’re using solid-core wire that fits
in a breadboard, you can just strip
the other end of the 24-inch wire.
If you’re using stranded-core wire,
attach a male crimp pin to the end
of the wire.

3.	 Connect the two IR LED cathodes
with a piece of wire by soldering or
wire-wrapping.

4.	 Connect the two phototransistor emitters with a wire by soldering or
wire-wrapping.

5.	 Connect the combined IR LED cathodes to the combined phototransis-
tor emitters; I suggest soldering a long wire.

6.	 Solder a 24-inch length of wire to the combined LED cathodes and
phototransistor emitters, and finish the other end of the wire with a
male crimp pin, as you did in step 2.

7.	 Solder a 24-inch length of wire to each phototransistor’s collector, and
finish the other end of the wire with a male crimp pin, as you did in
step 2.

In Figure 8-4, the LEDs and light sensors (these will be phototransis-
tors or Honeywell Optoschmitt sensors depending on your choice) are
placed in holes punched in the cardboard of the acceleration channel.
I used a relatively small hole punch so that friction would hold them in

Four 4-40×1/2-inch screws

Eight 4-40 nuts

Four 4-40 washers

Assorted 28-gauge hookup wire

Downloads
Sketch  ChronographLite.ino

Templates  PanelCutoutLite.pdf, PanelCutout.pdf, AccelerationChannel.pdf

The Schematic
Outside the Arduino board, the circuitry for this project is not very com-
plex. The schematic in Figure 8-3 uses the I2C bus to power the LCD, two
connections for the photosensors, and two connections for the clear switch.

Figure 8-3: The schematic of the Chronograph Lite. The primary schematic shows the phototransistors and
the alternate section shows the Honeywell Optoschmitt sensors (bottom left).

Building a Test Bed
Figure 8-4 shows the test bed that was used to prove the concept and
develop the sketch. I suggest you build your own and install your LEDs
and photosensors into it before building the breadboard.

Figure 8-4: The test bed I initially
used to check out the chronograph
concept

224 Chapter 8

place. You could instead glue them with hot glue or contact cement. I
used a 24-inch length of four-conductor telephone wire to connect the
channel to the breadboard, but any wire will do. In the completed version
and in other prototypes, I just used four lengths of 30-gauge twisted wire
because it was more flexible. Alternatively, you could build the final sen-
sor channel now.

The LEDs and phototransistors will need to be wired to the Arduino, as
indicated in the schematic diagram in Figure 8-3. I wired the LED anodes
to the power supply through a 270-ohm resistor (R3). In the case of the
phototransistors, I set them up so that the emitters were grounded and each
collector went through a 10-kilohm resistor (R1 and R2) to the positive of
the power supply for an open-collector configuration. Thus, if the beam of
light were interrupted, the phototransistor would conduct, and the voltage
at the collector would drop.

N o t e 	 If you use the Honeywell Optoschmitt SA5600/5610, the 10-kilohm resistors (R1 and
R2) are not required, as they are included in the SA5600/5610 chip. The wiring of
the Optoschmitt sensors is shown in the lower left of the schematic in Figure 8-3.

Rather than shooting up the office with live paintballs, BBs, or pellets,
I set up the gig vertically so a projectile could be dropped through the light
beams to test the system. This method meant that the velocities measured
didn’t approach those of a projectile leaving a weapon’s barrel, but it was
good enough for an initial proof-of-concept experiment. The higher the
target was dropped from, the higher the recorded velocity—that is, if your
aim is good. (Remember s = (1/2)at2, where s is displacement or distance,
a is acceleration due to gravity, t is time, and initial velocity is zero.)

If ambient light causes problems in testing, an additional piece of
cardboard can be taped to the top (side) of the two pieces of cardboard
to shade the sensor, though I didn’t find this was a problem in any of the
experiments I conducted.

The Breadboard
The next step is to build a breadboard, as shown in Figure 8-5. For this,
we’ll use the Chronograph Lite schematic in Figure 8-3. The most compli-
cated part of the circuit is wiring up the photosensors and LEDs, which are
not plugged directly into the breadboard but rather need to be installed in
the sensor channel, as described in the previous section.

Whether you have already made the finished channel or are using the
cardboard prototype, you will need to connect the sensors and LEDs in the
channel to the breadboard—or, for that matter, to the completed unit—
with four wires: positive, ground, first sensor, and second sensor.

Two Ballistic Chronographs 225

Figure 8-5: Photosensors and LEDs in the early prototype
attached to the breadboard via discrete wires. To test the
unit, a coin was dropped through the channel.

Here’s how to wire the breadboard:

1.	 Connect the red positive rails together and the blue negative rails
together. Do not connect the red positive rail and blue negative rail to
each other under any circumstances—it will result in a short circuit and
damage to components.

2.	 Insert the Arduino Pro Mini or clone in the breadboard, leaving a fair
amount of room—about four or five rows—at one end.

226 Chapter 8

3.	 Connect the Vcc pin on the Mini to the red positive rail.

4.	 Connect the GND pin on the Mini to the blue negative rail.

5.	 Take two 10-kilohm resistors (R1 and R2) and connect one end of each
to the red positive rail. (Note that these are not required if you are using
the Optoschmitt SA5600 photosensor.)

6.	 Connect the other end of resistor R1 to pin D4 on the Mini via a
jumper wire.

7.	 Connect the other end of resistor R2 to pin D2 on the Mini via a
jumper wire. (If you use the Optoschmitt photosensor, you can con-
nect pins D2 and D4 directly to the output pins on the photosensors,
as shown in the bottom left of Figure 8-3.)

8.	 Connect the collector pin of phototransistor Q1 to pin D2 on the Nano
using the attached 24-inch wire.

9.	 Connect the collector pin of phototransistor Q2 to pin D4 on the Nano
using the attached 24-inch wire.

10.	 Connect one end of the 270-ohm resistor R3 to the red positive rail.

11.	 Connect the other end of resistor R3 through one of the 24-inch
lengths of wire to an empty row on the breadboard.

12.	 Connect the combined anodes of LED 1 and LED 2 to the row where
you connected resistor R3 in step 9 via the attached 24-inch wire.
Refer to Figure 8-3 to see how the LEDs are wired together and to the
breadboard.

13.	 Connect the 5V pin and the GND pin on the Mini to Vcc and GND on
the LCD, respectively.

14.	 Connect pin A4 on the Mini to the SDA connection on the LCD.

15.	 Connect pin A5 on the Mini to the SCL connection on the LCD.

Now you’re ready to enter the sketch.

The Sketch
Now to write the sketch to make things work. Here is the sketch for the
Chronograph Lite:

//Lite version of chronograph, using Optoschmitt sensors

#include <Wire.h>
#include <LiquidCrystal_I2C.h>

unsigned long start_time = 0;
unsigned long stop_time = 0;
unsigned long time_of_flight = 0;
float velocity = 0;

Two Ballistic Chronographs 227

LiquidCrystal_I2C lcd(0x3F, 20, 4);

void setup() {
 Serial.begin(9600);
 pinMode(2, INPUT);
 pinMode(4, INPUT);
 lcd.init();
 lcd.backlight();
}

void loop() {

u while(digitalRead(2) == 1) {
 //Waiting for first sensor to trip
 }

v start_time = micros();

w while(digitalRead(4) == 1) {
 }

x stop_time = micros();

y time_of_flight = stop_time - start_time;

 Serial.print(" time of flight ");
 Serial.println(time_of_flight);

 velocity = 1000000*.25/(time_of_flight);

 lcd.clear();
 lcd.print("tm of flt ");
 lcd.print(time_of_flight);
 lcd.print(" us");
 lcd.setCursor(0, 2);
 lcd.print("Speed FPS ");
 lcd.print(velocity);
}

The sketch is pretty straightforward. After setting up the variables and
inputs, a while loop waits for the first sensor to be interrupted by checking
the condition digitalRead(2) == 1 u. When tripped, the clock is started with
start_time = micros(); v, and another while loop counts until the second
sensor is activated (because the second sensor is plugged into pin D4, this
while loop checks whether digitalRead(4) == 1 w). When the second sensor
is activated, the clock is stopped with stop_time = micros() x.

The sketch then calculates the time that lapsed between the first sensor
and the second with time_of_flight = stop_time – start_time at y. Once the
sketch makes its calculations, it provides instructions to display the results
on the LCD screen.

228 Chapter 8

All you need to do now is load the sketch, stand the test channel up as
in Figure 8-4, and drop a projectile like a marble through the cardboard
channel. To begin, power the Mini with the programmer. Alternatively, you
can use a separate regulated 5V power supply connected to the 5V terminal
on the Mini, or you can connect a battery to the VIN port of the Mini and
use the Mini’s on-board regulator. Do not connect a 9V battery to the 5V
supply rails—it could burn everything out.

When you’re satisfied that the sensors are working, you can attach your
temporary sensor channel to a real air pistol if you’d like to test the circuit
further (see Figure 8-6).

Figure 8-6: Photoelectric sensors in an early prototype, attached to a Crossman 0.177
caliber air pistol. The setup was obviously primitive, using a C-clamp to hold the channel
to the weapon. Because the test channel was so simple, I set it up on my desk.

If this is enough for your needs, you can package this up and skip every-
thing in “The Full Ballistic Chronograph” on page 233. The Chronograph
Lite should work well for games and low- and medium-velocity weapons (less
than 600 fps), such as pellet guns, BB guns, airsoft weapons, and so on.

Despite satisfactory performance, however, I was bothered by the fact
that, while the Arduino can count microseconds, it can deliver results only
as multiples of four, so in reality the resolution is only 4 microseconds. That
is why I developed the Full Ballistic Chronograph project. If this bothers
you, too, and you don’t plan to package up the Chronograph Lite, you can
skip to “The Full Ballistic Chronograph” on page 233 now.

Te s t ing t he Chronograp h L i t e w i t h a

Projec t ile Simula tor

To test the Chronograph Lite or Full Ballistic Chronograph for errors, I made a
simulator to simulate the effect of a projectile traveling through the two sensors
rather than shooting up my work area with pellets or paintballs. I primarily used
the simulator in development—it is not necessary for the completion or use of
either chronograph in this chapter—but it provides some insight into how to turn
on and off relatively high-speed signals.

I used a square-wave generator (see Chapter 9 if you want to create your
own) and made a very simple breadboard simulator. The schematic of the simu-
lator, shown in Figure 8-7, includes only the turn-on and turn-off functions and is
driven by the square-wave generator.

Figure 8-7: Schematic of the simulator used to simulate the sequential
firing of the Optoschmitt sensors. It is used in conjunction with a square-
wave generator. Resistor R1 and capacitor C1 can be adjusted for
satisfactory debounce, but the values shown worked well.

Two Ballistic Chronographs 229

All you need to do now is load the sketch, stand the test channel up as
in Figure 8-4, and drop a projectile like a marble through the cardboard
channel. To begin, power the Mini with the programmer. Alternatively, you
can use a separate regulated 5V power supply connected to the 5V terminal
on the Mini, or you can connect a battery to the VIN port of the Mini and
use the Mini’s on-board regulator. Do not connect a 9V battery to the 5V
supply rails—it could burn everything out.

When you’re satisfied that the sensors are working, you can attach your
temporary sensor channel to a real air pistol if you’d like to test the circuit
further (see Figure 8-6).

Figure 8-6: Photoelectric sensors in an early prototype, attached to a Crossman 0.177
caliber air pistol. The setup was obviously primitive, using a C-clamp to hold the channel
to the weapon. Because the test channel was so simple, I set it up on my desk.

If this is enough for your needs, you can package this up and skip every-
thing in “The Full Ballistic Chronograph” on page 233. The Chronograph
Lite should work well for games and low- and medium-velocity weapons (less
than 600 fps), such as pellet guns, BB guns, airsoft weapons, and so on.

Despite satisfactory performance, however, I was bothered by the fact
that, while the Arduino can count microseconds, it can deliver results only
as multiples of four, so in reality the resolution is only 4 microseconds. That
is why I developed the Full Ballistic Chronograph project. If this bothers
you, too, and you don’t plan to package up the Chronograph Lite, you can
skip to “The Full Ballistic Chronograph” on page 233 now.

Te s t ing t he Chronograp h L i t e w i t h a

Projec t ile Simula tor

To test the Chronograph Lite or Full Ballistic Chronograph for errors, I made a
simulator to simulate the effect of a projectile traveling through the two sensors
rather than shooting up my work area with pellets or paintballs. I primarily used
the simulator in development—it is not necessary for the completion or use of
either chronograph in this chapter—but it provides some insight into how to turn
on and off relatively high-speed signals.

I used a square-wave generator (see Chapter 9 if you want to create your
own) and made a very simple breadboard simulator. The schematic of the simu-
lator, shown in Figure 8-7, includes only the turn-on and turn-off functions and is
driven by the square-wave generator.

Figure 8-7: Schematic of the simulator used to simulate the sequential
firing of the Optoschmitt sensors. It is used in conjunction with a square-
wave generator. Resistor R1 and capacitor C1 can be adjusted for
satisfactory debounce, but the values shown worked well.

(continued)

230 Chapter 8

Construction
To complete the Chronograph Lite project, all you have left to do is to
package the Mini, display, battery, and appropriate switches in an enclo-
sure, leaving a connector exposed to connect the unit to the sensor chan-
nel. Unlike most of the other projects in this book, I did not use a shield
for the Chronograph Lite, because the wiring to the Mini was sufficiently

The simulator receives a clock signal from the square-wave generator.
On initiation, depressing the switch (labeled SW in Figure 8-7) on the simu
lator begins the sequence of start and stop signals from the CD4017 decade
counter. A manual switch (SW) fires the simulator after a debounce from a
NE 555 timer. The function of the simulator is to turn the connections to the
photosensors on and off just as if a projectile were traveling through the start
and stop LED/photosensor pair. Figure 8-8 shows a breadboard for the simu-
lator with the finished board and square-wave generator.

Chronograph
module

DAC

Simulator
firing switch

Reset
switch

Clock module
and NAND gate

Simulator
board

Figure 8-8: The simulator breadboard and the square-wave generator hooked
up to the finished prototype board for the Full Ballistic Chronograph. The simu-
lator works equally well with either the Chronograph Lite or the Full Ballistic
Chronograph.

Two Ballistic Chronographs 231

straightforward that it did not require one. I used a Hammond ABS plastic
enclosure 1591 BTCL, as indicated in the parts list. See Figure 8-9 for the
completed Chronograph Lite.

Figure 8-9: Front view of completed Chronograph Lite. A hole is cut into the enclosure
to the right of the screen to allow space for the backlight protrusion.

Figure 8-10 shows the template for the enclosure. You can download a
PDF of this drawing from https://www.nostarch.com/arduinoplayground/ and
use it to mark and center punch the enclosure for the holes.

A

1 in

B

C

D

0.5 in

0.956 in

0.078125 in

0.15625 in

0.171875 in

2.64 in
B

B

B

A

Figure 8-10: Template for holes and display for the Chronograph Lite

232 Chapter 8

I prepared the enclosure for the Chronograph Lite as follows:

1.	 Carefully mark, center punch, and drill 1/2-inch holes for the corners
of the display (A), 1/8-inch holes for the mounting holes for the display
(B), 1/4-inch holes for the on/off switch (C), and 1/4-inch holes for
the clear switch (D).

2.	 For the LCD screen, mark the edges of the 1/2-inch holes (A). Draw
lines connecting the edges so you have a rectangle to cut out. (You can
use a Sharpie marker and clean excess markings later with alcohol.)
Drill the holes and cut the opening along those lines using a keyhole or
saber saw.

3.	 There’s a slight protrusion in the middle of the LCD on the right-
hand side (facing up); this is part of the backlight assembly. You can
cut a hole to accommodate for this, as I did in Figure 8-10, or you can
leave the edge straight and use spacers to keep the protrusion from
hitting the enclosure.

4.	 Mount the display and fasten it in with 1/2-inch-long 4-40 mounting
screws and nuts. If you made a cut out for the LCD backlight protru-
sion, you can mount the display directly. If you did not, use extra
4-40 nuts to space the display back from the face of the enclosure. If
needed, add additional washers; 4-40 nuts can vary in thickness.

5.	 Mount the on and clr switches as indicated in Figure 8-9.

Now to wire up the Pro Mini. There is no shield, so we will solder
directly to the Pro Mini board as follows:

1.	 Solder the wires for the I2C connection. To make your life easier, use
colored wire and create a code for yourself. Solder connections to the
5V (some clone boards may say VCC) and GND pins on the Nano.
Then, solder 3-inch wires to pins A4 and A5 on the Nano. Connect
the other end of these wires to a four-pin female connector. (See
“Connectors Used in This Book” on page 18 for details on making
Pololu connectors.) Connect the 5V and GND pins on the Nano to 5V
and GND on the LCD. Connect pin A4 on the Nano to SDA on the I2C
board, and A5 on the Nano to SDL on the I2C.

2.	 Connect the positive (red) wire of the battery connector to one side of
the SPST switch. Connect the other side of the switch to the VIN termi-
nal on the Nano (some clone boards may say RAW).

3.	 Solder the black (negative) wire from the battery connector to the
GND pin on the Nano.

Finally, connect the Nano to the sensor channel as follows:

1.	 Prepare a four-conductor female Pololu connector with four color-coded
wires approximately 3.5 inches long. Attach two wires (I suggest red and
black) from this connector to the VCC and GND pins on the Nano.

Two Ballistic Chronographs 233

2.	 Connect the remaining two connectors to pins 2 (D2) and 4 (D4) on
the Nano.

3.	 Make a slot or hole in the side of the enclosure, and run the Pololu
connector with the sensor channel connections through it (see
Figure 8-11).

Figure 8-11: A slot in the enclosure for threading the four-pin sensor channel connec-
tor through. The connector is mounted with double-sided adhesive

4.	 Connect one side of the clr pushbutton to GND and the other side to
the RST (reset) pin on the Nano.

5.	 Finally, connect the battery, screw on the top of the enclosure, plug in
the sensor channel, and flip the switch to turn on the device.

You should be all set to use your Chronograph Lite. Go to “Final Setup
and Operation” on page 252 for instructions on using the Chronograph
Lite.

The Full Ballistic Chronograph
While the Chronograph Lite worked well and I used it to successfully mea-
sure projectile speeds, I had a nagging feeling that it could be better. If
you’re using the device for slow-speed projectiles—that is, 600 fps or less—
the accuracy of the Chronograph Lite is more than enough. But the restric-
tion to 4 microseconds of resolution resulted in what I perceived to be a fair
amount of error in feet-per-second (fps) at higher speeds, so I decided to
construct the Full Ballistic Chronograph.

234 Chapter 8

Required Tools
Soldering iron and solder

Drill and drill bits (1/2, 1/4, and 1/8 inches)

Philips head and slotted screwdrivers

Saw (keyhole or saber saw)

Parts List
Assembling the Full Ballistic Chronograph is relatively simple. Here’s what
you’ll need:

One Arduino Nano or clone

One 16×4 LCD

One I2C adapter, if not included with the LCD

One PCB shield

One enclosure (Hammond 1591 BTCL)

Four 1/2-inch×4-40 screws

Four 4-40 nuts

One 3PDT toggle switch

Two momentary pushbutton switches

Four 0.100×4 female headers

Four female X4 shells

Sixteen (eight male, eight female) adapter pins

One 4 MHz crystal

One TI SN 74LVC1GX04 crystal-oscillator driver

One SOT23 adapter board

One HCT 4011 4-input NAND gate

One CD4013 dual D flip-flop

One CD4040 12-stage binary counter

One ADC DAC8562 digital-to-analog converter

One LM7805 voltage regulator

One NPN transistor 2N5172 (or equivalent)

Four 5-kilohm, 1/8 W resistors

One 1-megaohm, 1/8 W resistor

One 1-kilohm, 1/8 W resistor

One 1.5-kilohm, 1/8 W resistor

One 270-kilohm, 1/8 W resistor

One 4.7 MFD tantalum capacitor

Two 33 pF capacitors

Two Ballistic Chronographs 235

One 0.01 µF capacitor

One 5 mm LED

Two IR detectors (I used the Honeywell Optoschmitt SD5610.)

Two IR LEDS, about 850–950 nm

28- or 30-gauge hookup wire

N o t e 	 For the Full Ballistic Chronograph, you will have to use the inverted version of
the chip, the SA5610, or externally invert the signals. See the note at the bottom of
Figure 8-3.

Downloads
Sketch  FullBallisticChronograph.ino

Templates  ChronoCover.pdf, AccelerationChannel.pdf

PCBs  ChronoPCB.pcb, LEDHolder.pcb, SensorHolder.pcb

Improving the Accuracy
There are several possible solutions for improving the accuracy of the chro-
nograph. The Arduino Nano uses a 16 MHz clock, yet when configured using
the Arduino Nano platform and IDE, it results in a 1 microsecond resolution
(±2 microseconds), even though the period—the time between cycles—of
a 16 MHz clock is 1/16,000,000 of a second, or 0.063 microseconds. While a
processor could never resolve down to its own clock speed, it’s probably capa-
ble of much better than 1 microsecond. Clearly there is some overhead in the
current project—perhaps part hardware (the components in the Arduino
board) and part software (the compiler and firmware part of the IDE)—
that limits performance. Here are some ideas I had to improve accuracy,
starting with one that didn’t make it into the final project but that I think is
educational.

Digging into Machine Code

One possible solution is to dig into the basic Atmel machine and AVR code.
Without going into excruciating detail, AVR assembly is the functional
language of the Atmel chip. The Arduino community has surrounded that
with special code that lets the AVR run in the Arduino environment.

According to the ATmega328 data sheets, it’s possible to directly address
the individual timers on the ATmega328 and get the resolution required.
However, looking into it, I saw that this method could prove overly complex
and figured there had to be another way.

Creating a High-Speed Window

The time of flight of a projectile that we want to look at covers a range
of roughly 90 microseconds (about 3,000 fps in a 3-inch distance) to

236 Chapter 8

950 microseconds (about 260 fps in the same 3-inch distance) from fastest to
slowest. Relative to the higher frequencies of some clocks, such as the 16 MHz
clock of the processor, 90 microseconds is a fair amount of time.

One method for measuring the velocity is to open a timing window
when the first beam of light is interrupted that lets a stream of high-speed
signal through until the second beam is interrupted. While the window is
open, the pulses in that signal will be counted; when the window is closed,
the count will represent the time the window was open.

As an example, say the window opens and a signal of 10 cycles per sec-
ond (cps) passes through until the window closes; 100 cycles are counted.
For this illustration, the Arduino’s clock is the high-speed signal. When you
know the distance the projectile traveled, you can use some simple arithmetic
to determine the time of travel and the speed: 100 cycles at 10 cps gives us
10 seconds. If the distance were 1 meter and 100 cycles were counted while
the window was open, the speed would be 1 meter per 10 seconds or 0.1 m/s.

A single NAND logic gate can be used to make a window that can be
opened and closed. A logic gate is simply an electronically controlled switch
that outputs a voltage only under certain conditions, corresponding to a
Boolean logic equation. NAND is the Boolean expression for “not AND,”
and a NAND gate outputs a voltage when its two inputs are not the same.

I sampled both a 74HC00 high-speed NAND gate and a standard
CD4011BC gate, and the standard part works fine. There are several other
parts that will work, too—what you’re looking for is a part with a propaga-
tion delay (TPD) under 100 nanoseconds.

Selecting a Counter

After deciding to take the window approach, the next thing to consider
is how high you need to count. If you were to count in integers from 1 to
100, for example, you would need a counter that could count to 100, which
would provide a resolution of 100. If you scaled that up, the counter could
provide a range from 10 to 1,000 or from 100 to 10,000. If that range were
the result of the calculation for fps, you would then have a resolution of
only 1,000 fps (each increment would equal 100 fps) plus any included
error, which we’ll go into later.

So where should you go from here? To the parts bin, of course, to see
what counters are available to count the signal passing through that win-
dow. When selecting a counter, you need to consider how fast it needs to
be and how many pulses you want it to count. The tried-and-true CD4040,
12-bit, serial-in, parallel-out, digital counter seemed capable of doing the
job. (The CD4040 worked at the 4 MHz frequency, but you could always use
a faster one, like the 74HC4040 or 74HCT4040.) The CD4040 will provide a
digital count from 0 to 4095, or 212.

Selecting a Clock Speed

Next, consider what signal frequency is needed in order to suit the range of
projectile speeds. I started with the assumption that I wanted to achieve a

Two Ballistic Chronographs 237

range of roughly 300 fps to 2,500 fps with as much latitude on both ends as
possible.

Further, while the counter will ideally count from zero to the maximum
4,095 counts, there is the possibility of some error. So rather arbitrarily, I
chose to look at the total digital count between 400 and 4,000 to account
for the possibility of error.

Given the number of cycles counted, the signal frequency, and the dis-
tance traveled, the velocity of a projectile can be found with the following
calculations:

1
Frequency

Time per Cycle=

Time per Cycle Total Cycles Time of Flight × =

Distance Traveled
Time of Flight

Velocity =

Let’s go through the arithmetic for a projectile that travels 0.25 feet
(3 inches) within 4,000 cycles of a 2 MHz signal:

1
2

0 0000005
 MHz

s per cycle = .

 ×0 0000005 4 000 002. , .s per cycle cycles = s in flight

.
.
25

0 002
125

 ft
 s

 s in flight =

For a 4 MHz clock, a full 4,000 cycle count will amount to about 281 fps
for the low end of the speed range. At the high end, given 400 cycles counted
and a 2 MHz clock signal, you will measure 1,250 fps, and at 4 MHz, you can
measure up to 2,500 fps.

You can be creative with your frequency. If you elect to use a 2 MHz
clock, it will provide maximum resolution in the very low-speed range. If,
on the other hand, you select a 4 MHz clock, you will be in the middle of
the resolution range. An 8 MHz clock will provide a very good resolution
in the fast range (faster than any conventional weapon) but will curtail per-
formance at the lower-speed range.

Because I anticipated that the bulk of speeds I needed to measure
would fall in the middle of the counting range, a clock around 4 MHz
sounded good. I was not anticipating many occasions when velocities
would be in the sub-300 fps range, and at the high end, it looked like
accuracy could be maintained to well over 5,000 fps (a digital count of

238 Chapter 8

just under 200, which might be stretching it a little but seemed to work
well in simulations).

If your projectiles remain in the sub-300 fps range, I suggest revisiting
the Chronograph Lite. If, for some reason, you want to stay in the lower fps
range but require maximum accuracy with perhaps multiple digits, build
the Full Ballistic Chronograph with the slower clock rate. You can simply
swap out the 4 MHz crystal for a 2 MHz crystal and adjust the sketch to slide
the range down to the lower area.

Adjusting the Clock Speed

To address the speed of the clock (the signal that is gated to the counter),
the most accurate method by far is to use a crystal-controlled oscillator,
which generally has errors only in the sub-50 parts per million range. I
configured a 4 MHz crystal with the TI SN 74LVC1GX04 crystal-oscillator
driver experimentally and it worked well, so I used one in the final project.

While I did look at, review, and test single-chip oscillators, such as the
Maximum stand-alone oscillator (7375), it was not quite as stable as the
crystal-controlled version.

Designing the Full Ballistic Chronograph
Now, we have the means to clock the signal into the 4040 counter, but we
need to figure out how to display the velocity on the LCD. One method
would be to use a different counter with a serial output that would be
clocked directly into the Nano. Another possibility would be to take the
parallel data from the CD4040, serialize it with a shift register, and feed
the result to the Nano.

However, I took a different direction, as illustrated in the block dia-
gram in Figure 8-12. I decided to use a 12-bit digital-to-analog converter
(DAC) to accept the parallel digital signals and convert them to a single
analog value. DACs and their counterpart, analog-to-digital converters
(ADCs), are used in digital music, TVs, and a host of other areas where an
analog input needs to be digitized, manipulated, transferred, stored, and
eventually output to return an analog signal. I thought this would be a good
opportunity to introduce the capabilities of digital-to-analog converters.

Simulator

Square-wave
generator

Timer
firing switch

Flip-flop

Turn on and
off gate

Start

Stop

Gate Binary counter

DACOscillator

Arduino
Nano LCD

T
B

1 2 12

A

(...)

Figure 8-12: Block diagram of the Full Ballistic Chronograph

Two Ballistic Chronographs 239

The process in Figure 8-12 depicts the operation of the chronograph
using a simulator. In actual operation, the simulator would be replaced with
the two LED-sensor pairs. The simulator, under control of the firing switch,
initiates a start signal that remains active until the second stop switch is acti-
vated after a period determined by the square-wave generator. This essen-
tially simulates the projectile passing through the first and then the second
pair of sensors.

When the start switch is activated initially, it turns on the flip-flop—a bi-
state device that turns on with the activation of the start switch and remains
on until the stop switch is activated. The flip-flop feeds the trigger of the
gate. When the trigger (T) is inactive—that is, when it’s set to a logical 0—
the signal from the oscillator at input (A) cannot go through the gate to
output (B). When the trigger is activated (set to a logical 1), the gate allows
the signal from the oscillator (A) to travel through the gate to output (B) and
eventually to the input of the binary counter. The binary counter counts the
number of pulses that pass from the oscillator through the gate and stops
counting when the gate closes.

The outputs of the binary counter are fed to the DAC. They represent
binary numbers from 0 through 4,095—that is, 0 through 212 – 1. The DAC
converts these digital values to a single analog value. The technique of this
conversion depends on the type of DAC used; for example, in the DAC8562
used here, an R-2R resistor ladder is switched, and a transistor is used to
yield the output. (For complete information, look up the data sheet from
Analog Devices on the DAC8562.)

The output of the DAC has a scale of 0V to 4.095V corresponding to
the digital inputs. This output is then directed to one of the analog inputs
on the Arduino Nano, which provides the inverse function of the DAC
and converts the analog signal back into a digital format that the Nano
can handle. The Nano takes that signal and, following instruction from
the sketch, adjusts the value to represent the velocity in fps for the time it
takes the projectile to travel the 3 inches. The Nano finally sends that data
to the LCD, which displays the velocity of the projectile and travel time.

The Schematic
Figures 8-13 and 8-14 show the schematic diagrams for the completed Full
Ballistic Chronograph. Note the extra gates at the bottom. I included these
in the schematic because they are available to you in the NAND gate and
flip-flop IC packages suggested for this project, but my design does not use
them. If you want to add functionality, they are available.

240 Chapter 8

Figure 8-13: Schematic of the Full Ballistic Chronograph

Another thing included in the schematic that we haven’t covered is
the reset button. In the Full Ballistic Chronograph, I included a button to
trigger the reset rather than having it reset automatically. I could have set
it so that the result was displayed on the LCD for a fixed period of time
before the system reset, but it might have turned out that the number was
erased before users had time to record it, or users may have found them-
selves sitting idle while it timed out. I decided a reset button would be more
convenient.

Because resetting the microcontroller wasn’t going to upset the
sequence of things, I chose to use a hard reset on the controller through
transistor Q1. To reset the CD4040 and the DAC, I used the reset signal and
then inverted it using one of the CD4011’s four NAND gates with the two
inputs tied together. SW2 manually closes the second set of sensors in case
the first pair of sensors fires and not the second, and SW3 is the power and
battery switch.

Two Ballistic Chronographs 241

Figure 8-14: Inverters for Optoschmitt or Adafruit sensors if you use the SA5600
instead of the SA5610. This circuit uses the previously unused gates of the CD4011
NAND gate as logic inverters. They are not accommodated for in the PCB, so you
will have to wire them by hand.

The Sketch
The sketch for the Full Ballistic Chronograph is relatively straightforward:

//Full Ballistic Chronograph

#include <Wire.h>
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27, 16, 2);
int DACpin = A0;
float DACvalue = 0;
float FPS;
float Time;

void setup() {
 lcd.init();
 lcd.backlight();
}

242 Chapter 8

void loop() {
u DACvalue = analogRead(DACpin);

 Time = DACvalue*5/1023/4*1000;
 FPS = .25/Time*1000000;
 lcd.setCursor(0,0);
 lcd.print("Speed ");
 lcd.print(FPS,0);
 lcd.setCursor(11,0);
 lcd.setCursor(0,1);
 lcd.print("Time ");
 lcd.print(Time);

 lcd.setCursor(11,1);
 lcd.print(char(0XE4)); //To display the mu symbol, use 228 or 0XE4
 lcd.print("s");
}

In this sketch, the software receives an analog signal from the DAC at u
and converts it to a digital value. It then goes through a couple of quick
mathematical operations to come up with the time of flight (Time), calcu-
lates the speed in feet per second (FPS), and finally exports those values to
the LCD.

In designing electronic circuits, there are always tradeoffs between
hardware and software. Many of these have to do with timing issues and
built-in latencies in software-based approaches. In this instance, the trade
off is the need for greater accuracy not available with the straight Arduino
IDE approach without dropping to some level of native code. To avoid
native code, the Full Ballistic Chronograph has more complex hardware
than the Chronograph Lite.

The Shield
Unlike the Chronograph Lite, the Full Ballistic Chronograph is best built
on a shield. The shield is a little more involved than some of the others in
this book, but don’t be intimidated. Figure 8-15 shows the actual traces
of the shield, while Figure 8-16 shows the silkscreen image with the part
placements and hole configuration. For this project, I opted for a double-
sided board because the circuit was a little more complex than some of
the others and because it allowed me to minimize the space required. The
complete PCB file is available for download at https://www.nostarch.com/
arduinoplayground/.

I attempted to keep the shield footprint to a minimum to make it
possible for the user to squeeze the system into a small portable enclosure.
As is, the finished Full Ballistic Chronograph fits easily in a 11×8×4 cm box.

http://www.nostarch.com/arduinoplayground/
http://www.nostarch.com/arduinoplayground/

Two Ballistic Chronographs 243

Figure 8-15: Trace patterns for the shield. The darker gray is the upper
copper layer, and lighter gray is the lower layer.

Figure 8-16: The component placement on the shield

244 Chapter 8

This is another case where I opted to outsource the PCB construction
after I had made and refined the first sample myself and made sure all criti-
cal connections could be soldered on both sides of the board. Figure 8-17
shows the raw board as it was received from the service bureau.

Figure 8-17: The Full Ballistic Chronograph circuit board before population

Soldering the Full Ballistic Chronograph
Once you have all your parts, follow this guide to build the Full Ballistic
Chronograph:

1.	 Prepare the oscillator adapter board by soldering the headers in place.
Solder the chip to the adapter using one of the approaches suggested in
“Using SOICs” on page 20.

2.	 Begin populating the PCB. I usually like to start with the components
that go under the Nano—in this case, the oscillator adapter board,
resistors, crystal, and CD4011. Place them in the PCB, as indicated in
Figure 8-15. Next, I like to include the headers that the Nano plugs
into. Once again, it’s not necessary to fully populate all the headers for
the Nano. While on occasion I do use a full complement of headers, I
tend to populate only those with connections, as well as a pair at the
very top, in order to simplify alignment when plugging in the Nano.
Additionally, there should be enough to mechanically support the
Nano. Solder these headers in place now.

Two Ballistic Chronographs 245

3.	 Populate the balance of the board, including the headers for the I2C
display and the sensor channel. Solder wire pigtails to the connections
on the board for the reset and clear switches, LED, and positive and
negative power supply. The lead sensor—the one that is interrupted by
the projectile first—should be the one wired to pin 6 of the 4013, with
or without the inverter circuit; the other sensor should be connected to
pin 4.

Construction
Figure 8-18 shows the positions for the holes and cutout in the enclosure.
You can download a copy of Figure 8-18 from https://www.nostarch.com/
arduinoplayground/ and use it as a template.

0.956 in

2.64 in

0.15625 in

0.171875 in

0.078125 in

0.5 in
1.0 in

A A

B B

BB

C

D EF

2.00 in
1.00 in

0.62 in

0.37 in

1.25 in

Figure 8-18: The holes and LCD cutout on the cover of the enclosure

Prepare the enclosure for the Full Ballistic Chronograph as follows:

1.	 Prepare the cover of the enclosure, as shown in Figure 8-18, by drilling
1/2-inch holes for cutting out the LCD (A); 1/8-inch holes for mounting
the LCD (B); 1/8-inch holes enlarged with a reamer for a tight fit for the
5 mm LED (F); and 1/4-inch holes for the momentary clear switch (D),
momentary reset switch (E), and on/off switch (C).

2.	 Mark the edges of the 1/2-inch holes (A) and connect lines tangent to
the holes—you can use a Sharpie marker and clean excess marks later
with alcohol.

3.	 Cut the opening for the display using a keyhole or saber saw.

246 Chapter 8

4.	 There’s a slight protrusion in the middle of the LCD on the right-hand
side (facing up). This is part of the backlight assembly. You can cut a hole
to accommodate this, as I did on both the Full Ballistic Chronograph
and Chronograph Lite, or you can leave the edge straight and use spacers
to keep the protrusion from hitting the enclosure. Even though I cut a
space for the protrusion, I used a one-nut spacer anyway to space the
connections on the top of the screen away from the front of the enclo-
sure (see Figure 8-19).

Figure 8-19: The four-conductor female connector is mounted to the side of the
enclosure using double-sided adhesive.

5.	 Mount the LCD’s I2C assembly to the front of the enclosure.

6.	 Mount the switches to the enclosure. Connect the switches and LED as
shown in the schematic in Figure 8-13. Use pigtailed wires as indicated
in step 3 of “Soldering the Full Ballistic Chronograph” on page 244.

7.	 Prepare cable assemblies to connect the shield to the I2C adapter and the
4-pin female connector that connects the Full Ballistic Chronograph to
the sensor channel. (See “Connectors Used in This Book” on page 18
if you’ve never built a connector yourself.)

8.	 Stick the shield to the bottom of the enclosure using double-sided
adhesive.

9.	 Mount the battery holder using a 4-40 flathead screw or double-sided
adhesive.

Two Ballistic Chronographs 247

10.	 Make a cut in the side of the enclosure to feed the wires through to
the connector for the sensor channel connection. The width of a single
hacksaw blade is sufficient for 28-gauge wire.

11.	 Mount the connector for the sensor channel to the enclosure with
double-sided adhesive, as shown in Figure 8-19.

The Sensor Channel
We built a sensor channel test bed earlier in the chapter, but now we’ll build
a more permanent sensor channel and look at the sensor and LED pair
we’ll use inside.

Building the Sensor Channel
The sensor channel is a U-shaped tunnel that fastens to the muzzle of a
weapon and holds the photo detector/LED pairs that handle the switching.
This channel can be constructed out of a variety of materials. I used a 3/8-
inch section of acrylic and two pieces of 0.060-inch thick aluminum (see
Figure 8-20).

Figure 8-20: The completed sensor channel shown from the top (right side up). Note the feed-through holes
in the acrylic for the positive and negative power supply connections to the LEDs (boxed). Also note the
current-limiting resistor on the PCB holding the LEDs (circled). The cross-hatch area is foam taped to protect
the weapon’s slide from being scratched.

You could just as easily use mild sheet steel for the side pieces. The
top piece, shown in Figure 8-20, could be any lightweight material, such as
phenolic, Lexan, or another plastic to support the side pieces. I chose clear
acrylic because it allowed me to see the gun without having to look down
the barrel. You can get a wider look at the whole channel, including the sen-
sor cable, in Figure 8-21.

248 Chapter 8

Figure 8-21: The channel with the cable attached and the PCB mounted so that the con-
nector faces toward the back (where the weapon attaches)

There are two PCBs, attached to either side of the channel with
double-sided tape, to hold the LEDs and photosensors. These PCBs are
slightly different from each other, as shown in Figures 8-22 and 8-23. PCB
files for these boards are available to download at https://www.nostarch.com/
arduinoplayground/.

Figure 8-22: The pattern for the PCB that holds the LEDs and mounts to the
sensor channel. Note the current-limiting resistor.

Figure 8-23: The PCB pattern for the phototransistor side of the sensor channel.
Note the three pins for each phototransistor. The edge fingers are for soldering to
headers that connect to the main processing and display board via an umbilical
cable.

The acrylic top of the sensor channel measured 1 3/8 × 7 5/8 inches. I
used a straight wooden dowel to line the barrel up with the sensors/LEDs.
Note that there is a slight indentation, made with a 1/2-inch drill bit, in the
top of the acrylic to allow for the optical sight of the Crossman T4 air pistol.

Two Ballistic Chronographs 249

The aluminum sheets used for the sides measured 1 3/8 × 7 5/8 inches.
I drilled the holes to fasten the aluminum sides to the acrylic top with a
#30 drill bit and spaced the holes 1 inch apart. The acrylic was drilled with
a #43 drill bit and tapped for 4-40 screws. See Figure 8-24 for drilling speci-
fications for both the acrylic and aluminum pieces. The holes for the acrylic
are drilled through the width.

1.00 in 1.00 in 1.00 in 1.00 in 1.00 in 1.00 in

3.00 in

0.75 in

0.5 in

0.625 in

Aluminum side 1

Aluminum side 2

Acrylic

A B

0.625 in

1.875 in

0.1875 in

0.1875 in

Figure 8-24: Dimensions for holes in the acrylic top and aluminum sides of the sensor
channel. This template can be downloaded and used as a stencil for marking and center-
punching holes.

In addition, as a feed-through for the wires from the LED side to the
photo detector side, I drilled two #43 holes on either side of the fourth
mounting holes on both the acrylic and aluminum pieces. The exact loca-
tion of these holes is not critical.

In addition to the holes for fastening the acrylic, the aluminum
required two holes on each side for the LEDs and photo detector pairs,
and another two holes on one side for mounting to the barrel (slide) of
the gun (A and B in Figure 8-24), drilled with a #25 drill and tapped for
a 10-24 screw. Check out how big the IR LEDs are. Most are 5 mm, and a
3/16-inch hole is generally a close fit. The Optoschmitt sensor also fits
snugly in a 3/16-inch hole. The holes for the LEDs and photosensors can
be measured exactly 3 inches apart, or you can measure them yourself to
match with the PCBs mounted on the side.

Depending on the weapon(s) you intend to use, you may want to adjust
the positioning of holes A and B in Figure 8-24. The sensor channel can
also accommodate more tapped holes for multiple weapons. To mount the
sensor channel to the top of the gun, I used nylon screws with locking nuts.
The nylon screws were able to tighten against the blued-steel finish of the
pistol without marring it.

250 Chapter 8

The screws for mounting the gun worked well with the Crossman T4 as
well as on an older Crossman pellet gun (see Figure 8-25).

Figure 8-25: The sensor channel mounted on an older Crossman pellet gun. This angle shows the top (acrylic)
side of the channel.

On the inside of the channel, I placed some double-sided adhesive
foam tape (if you can find a single-sided adhesive foam tape, all the better)
to give it a more snug fit and protect the weapon from damage. I left the
protective covering on the other side of the foam so it would not adhere to
the weapon or mar the finish.

Depending on the weapon you are using, you might want to add an
extra layer of foam to pad the channel so the center of the barrel is closer
to the center of the channel. But as long as the barrel is not so far on either
side that the projectile could strike either the LED or photo detector, cen-
tering the barrel perfectly is not critical.

It is critical, however, to center the vertical adjustment so the LED/
detector pairs line up with the trajectory of the projectile. To set this align-
ment, I used a straight wooden dowel of the same diameter as the bore
of the barrel, inserted it partially into the barrel of the weapon, and then
adjusted the position so it lined up with the LED/detector pairs. Once it’s
aligned, tighten the nylon screws to secure the channel to the weapon.

Optoschmitt Light Sensors and UV LEDs
In preparing the sensor channel, I sampled several different types of
LEDs and detectors to see which offered the best price and performance.
Units purchased on eBay (UV LED and phototransistor pairs) worked
well, and I used them in early prototype versions. However, I continued to
search for a sensor that I was sure would be fast enough and provide good
sensitivity in a narrow field, which helps to exclude ambient light. After
reviewing several samples, I chose the Optoschmitt SD5610 detector from
Honeywell—so named, I guess, because it includes Schmitt-trigger circuitry
(see Figure 8-26).

Two Ballistic Chronographs 251

Voltage
regulator

LA

GND

VCC

10 kilohms

V0

Figure 8-26: Schematic for the Optoschmitt SD5610 detector I used in the chronograph.
Note that the 10-kilohm pull-up resistor is included, but the inverter function is not
included in the schematic.

The Optoschmitt SD5610 sensor is a little pricey, but it features a
6-degree acceptance angle, which worked well for projectiles of all sizes,
including very small and large ones. It also reduced the effects of ambient
light.

According to the manufacturer, the photodetector consists of a photo
diode, amplifier, voltage regulator, Schmitt trigger, and an NPN output
transistor with a 10-kilohm (nominal) pull-up resistor (see Figure 8-26). The
internal pull-up resistor eliminates the need for an external resistor in the
circuit. Note that there are two versions of this device: the SD5600 and the
SD5610. The SD5610 includes an inverter so that the output is low when the
ambient light is above the turn-on threshold. Because I required the inverted
output, I used the SD5610. The spectral sensitivity is greatest in the 800 to
850 nm wavelength—the area of most common IR LEDs. Additional informa-
tion on the SD5600 series can be obtained at Honeywell’s website.

For the LEDs, I just used regular IR LEDs that claimed output in the
850–950 nm range. I simply bought a bag of 50 units on eBay, and they
work fine. Alternatively, SparkFun offers single units very cheaply.

The LEDs and photosensors should be soldered on the PCBs made for
them and should fit snuggly into the holes. I fastened the PCB to the sides
of the acceleration channel using some standard 3M double-sided adhe-
sive tape.

Sensor Umbilical Cable
The cable I used to connect the sensor channel to the Full Ballistic
Chronograph’s PCB is made from four lengths of 30-gauge wire twisted
together, fastened with masking tape, and connected to a female

252 Chapter 8

four-conductor Pololu connector at each end. These connectors are
not polarized and do not have a detent, so they can be relatively easily
unplugged or plugged in the other way. Before you plug them in, make
sure to line up the color-coded wire.

N o t e 	 I initially attempted to use a length of four-conductor telephone cable, but it was too
stiff and caused problems.

The channel and completed chronograph can be connected easily.
If you used colored wire, you’ll know that the plug is connected correctly
because it is not polarized.

Final Setup and Operation
Once you’ve finished assembling the unit and sensor channel, it’s time to
take it out on the range and give it a try. Both the Chronograph Lite and
the Full Ballistic Chronograph have been designed to operate from bat-
tery power, so you don’t need to plug them in. Set up the umbilical cable to
connect the sensor channel to the chronograph unit, and then mount the
channel to the weapon securely (see Figure 8-27).

Figure 8-27: The completed Full Ballistic Chronograph with the acceleration channel
mounted to a Crossman 0.177 caliber pellet gun

Once the channel is attached to the weapon, carefully align the barrel
of the weapon with the LED/detectors in the channel by using a straight
dowel the same diameter as the bore of the barrel or by making a simple
adapter that uses a straight length of tubing (see Figure 8-28).

Two Ballistic Chronographs 253

Figure 8-28: Using a small diameter brass rod with a Teflon end to set up proper align-
ment between the barrel of a Crossman T-4 CO2 pistol and the sensor/detectors in the
sensor channel

Warning 	 Always use caution when handling a weapon. Do not look down the length of the
barrel to align it. Look through the clear acrylic top of the sensor channel.

Using the Full Ballistic Chronograph
After aligning the barrel as best as possible, turn on the Full Ballistic
Chronograph and press the reset button. Aim carefully at your target and
fire the weapon. The velocity of the projectile in feet per second and the
time it took to travel the 3 inches between sensors should appear on the
LCD screen. To make another measurement, simply press the reset switch
and fire again.

If by any chance you fail to align the weapon in the channel correctly,
there is a possibility that the projectile will interrupt the first set of photo-
sensors and not the second. In this case, you can press the clear switch and
then the reset switch to try again. The clear switch simply closes the connec-
tion for the second photosensor set.

The Full Ballistic Chronograph should give accurate readings from
about 300 fps to well over 2,000 fps.

Using the Chronograph Lite
The Chronograph Lite operates in much the same way, only it automati-
cally resets so no reset button is required. However, should the projectile
fail to interrupt the second set of sensors/detectors, it will be necessary to
clear the display by pressing the clear button. Essentially, this does the same
thing as interrupting the second sensor/LED pair, but you should always
use the clear button and never attempt to interrupt the second sensor/detec-
tor pair with an external object—especially your finger. Should the weapon

254 Chapter 8

accidentally fire, you could sustain a severe injury. The Chronograph Lite will
provide accurate measurements from about 200 fps to well over 1,000 fps, but
its accuracy tends to roll off as it approaches 700 fps.

High-Pow ered Weapon Te s t ing

Unless you are experienced with firearms, I strongly recommend against using
the Chronograph to measure high-powered weapons. That said, I did test the
Full Ballistic Chronograph on a few of them.

Figure 8-29 shows the sensor channel mounted to a Smithfield XP/M 9 mm
semiautomatic pistol. I tested the Chronograph with a number of cartridges,
and the measurements came within a couple fps of the manufacturer’s speci-
fication of the bullet. For example, the Remington JHP claims the bullet travels
at 1,155 fps, and I measured about 1,152 fps. Other weapons also measured
close to the published velocities.

Figure 8-29: A Smithfield XP/M 9 mm pistol set up with the sensor channel for
the Full Ballistic Chronograph. The magazine is intentionally inserted backward
for safety reasons.

9
T h e S q uare - Wa v e G enera t or

Signal generators, also called waveform gen-
erators or function generators, create an

alternating current (AC) voltage that can
be used in a variety of electronic tests and

diagnostic procedures. A square-wave generator like the
one you will build in this chapter (shown in Figure 9-1)
is an electronic lab instrument that creates a continuous sequence of
equally spaced pulses of electricity that are on for a certain amount
of time, switch off for an equal duration, and switch back on again,
repeatedly.

256 Chapter 9

Figure 9-1: The completed Square-Wave Generator

Why Build a Square-Wave Generator?
Signal generators like this one are frequently used to perform diagnostic
jobs, from evaluating the frequency response of components and sub
systems to providing stimulus to systems under development. Some spe-
cific uses for signal generators include:

•	 Observing the integrity of an amplifier, attenuator, or other device

•	 Measuring timing characteristics of a circuit

•	 Simulating real-world on/off events

The signal generator part of this project is primarily a square-wave
generator.

What Is a Square Wave?
What’s a square wave and what’s it good for, you ask? A square wave is an
electrical signal that starts at zero voltage, rises to some level (its amplitude),
stays at that level for some duration, returns to zero, and then repeats the
process in a symmetric pattern.

The square wave is one of the fundamental wave forms in electronics,
and it is in many respects the most useful, in part because it has both a
DC component and an AC component. The DC component is the fact that

The Square-Wave Generator 257

it stays at a certain voltage for a period of time and then almost instanta-
neously transitions to a different level. The AC component is that it repeats
this transition at a regular period. Figure 9-2 shows a square wave.

Period

A
m

pl
itu

de

Figure 9-2: A typical square wave

The square wave has an amplitude and a period. The period of the
wave is the duration of a complete cycle, and it could be in seconds, min-
utes, milliseconds, microseconds, and so on. The frequency is how many
cycles occur in a certain period of time (one second is the accepted stan-
dard) and is therefore the reciprocal of the period. For a period of T, the
formula to determine the frequency is f = 1/T.

Why Square Waves Are Useful
Square waves are particularly useful when developing and testing electronic
products. For example, the clock in a microcontroller system is essentially a
square wave. In some diagnostic and test procedures, the microcontroller’s
internal clock can be disconnected and replaced by an external signal gen-
erated by a signal generator—in this case, a square wave or sine wave work
equally well. You can then test the microcontroller at different frequencies.
For certain processors, it’s often valuable to slow a processor clock during
testing to see exactly where software glitches occur.

Other uses include sending a signal into a device being tested in order
to tune the circuit to the proper value or checking a device’s frequency
response or integrity. A square-wave generator can also act as a pulse gen-
erator to test a variety of digital circuits. You will find this application useful
in the Ballistic Chronograph in Chapter 8.

Because a square wave’s voltage starts at zero and rises almost instantly,
it can also be used as a switching voltage to turn circuits off and on at the
frequency of the square wave. The frequency of the Square-Wave Generator
in this chapter ranges from 1 kHz to around 30 MHz (with the divider
switch included, it can go down to 100 Hz). This frequency range can be
varied via a potentiometer, so you can turn things on and off at different
rates. This allows the Square-Wave Generator to simulate almost any repeti-
tive switching action, which is useful for cycling things on and off for life-
test applications, too.

258 Chapter 9

A Frequency Counter
In addition to providing a signal generator, this project includes a frequency
counter, which reads wave frequencies, so you can display the generator’s
output frequency on a digital readout. You can also use the frequency coun-
ter as a separate instrument on its own to measure frequency from an out-
side source and display it. This project also displays the period, or impulse
time, of the wave.

Ot her Use f ul Wav e form s

A square wave is only one common type of waveform, though. Probably the
most common is the sine wave, or sinusoidal wave, in which the wave is a con-
tinuous curve and one cycle represents 360 degrees. Yet another wave type
frequently encountered in electronics is the triangle wave. Both are depicted in
Figure 9-3. The amplitude and period of a sine wave and a triangle wave are
measured the same way as for a square wave.

Period

A
m

pl
itu

de

Period

A
m

pl
itu

de

Figure 9-3: A sine wave (top) and a triangle wave (bottom)

Each of these waveforms has specific characteristics that make them useful
in different applications. Sine waves and triangle waves are both important in
electronic music projects, for example. This project, however, focuses on the
square wave, and as you progress through this chapter, you will see it can be
applied in a variety of ways.

The Square-Wave Generator 259

In operation, the frequency counter receives an AC input signal and
counts each pulse. After a certain number of pulses have been counted, the
counter compares this against a clock signal, sometimes referred to as a time
base, and displays the number of pulses per unit time—for example, pulses
or cycles per second.

To assure accuracy, the counter compares the pulses against a clock,
usually one that is crystal-based. For instruments that require the utmost
accuracy, the crystal-clock assembly is a precision subsystem often placed
in a temperature-controlled environment. The frequency counter in this
project uses the 16 MHz crystal on the Arduino Pro Mini. In fact, the Pro
Mini has most of the circuitry to implement a complete frequency counter
with few additional components. It includes the clock registers for counting
and just about everything else a frequency counter needs with no external
components.

N o t e 	 Professional laboratory and desktop instruments selling for hundreds (or thousands)
of dollars often provide a very wide frequency range, from under 1 Hz to several GHz,
and offer anywhere from 6- to 10-digit precision. Their displays can be switched to
read frequency or time (the time between pulses), too.

To do all of this, the Square-Wave Generator takes advantage of the
Arduino AT328 16 MHz, 5V Pro Mini, which is a smaller, lower-priced ver-
sion of the Arduino Nano. The generator also includes special circuitry to
divide a signal’s frequency, allowing you to provide an output of very low
frequencies at one end and allowing the frequency counter to read very
high frequencies—above what the Pro Mini can normally handle—at the
other.

Shortcomings of the Square-Wave Generator
While this project produces a square-wave generator and a frequency counter
that perform well in many applications, it has shortcomings compared with
professional laboratory and bench instruments. The generator has a less than
1 percent frequency error, which is good for hobby projects but doesn’t match
the tolerances of laboratory-grade and direct-digital-synthesizer (DDS) gen-
erator units. Those units often have errors measured in the part-per million
(PPM) range. And the frequency counter uses the time base of the Arduino,
which, while accurate, doesn’t match higher-priced units with crystal ovens
and other special circuitry.

This generator also doesn’t offer the resolution of multiple digits.
Many lab and bench instruments have resolutions that go into as many
as 10 digits. That said, the instrument has worked well for me in a broad
variety of Arduino and other projects, where a greater resolution wasn’t
required.

260 Chapter 9

Required Tools
Drill and drill bits

Keyhole saw

Soldering iron and solder

File

Parts List
In addition to the Arduino Pro Mini, you’ll need a Linear Technology oscil-
lator chip and a small handful of other components. Here’s the complete
parts list:

One Arduino Pro Mini or clone (There are several available, and some
have different pinouts—particularly for pins A4 and A5. Figure 9-4
shows the pinout for the particular clone that I used. Other units with
different pinouts will work, but the connections on the shield may have
to be changed.)

Figure 9-4: Pinout of the Deek-Robot
Pro Mini Arduino clone

One LTC1799 oscillator chip and breadboard-compatible adapter
board, like the 5-SOT-23 adapter board shown in Figure 9-5 (See
“Using SOICs” on page 20 for tips on how to use a surface mount
chip like this.)

The Square-Wave Generator 261

5

4

1

2

3

OUT

Set DIV

GND

V+

Figure 9-5: This adapter board
has a complete variable frequency
oscillator (1 KHz to 30 KHz) and
CMOS buffer circuit.

One 250-kilohm carbon potentiometer

Two 0.1 µF ceramic capacitors

One LM7805 voltage regulator

Two SPDT center-off toggle switches

Two SPDT toggle switches

One HCT4017 decade counter IC, like the CD4017 B shown in
Figure 9-6

16

15

14

13

12

11

10

 9

1

2

3

4

5

6

7

8

VDD

Reset

Clock

Carry-out

VSS

Decoded output “5”

Decoded output “1”

Decoded output “0”

Decoded output “2”

Decoded output “6”

Decoded output “7”

Decoded output “3”

Clock enable

Decoded output “9”

Decoded output “4”

Decoded output “8”

Figure 9-6: The CD4017 B is a CMOS counter/divider
comprising a 5-stage Johnson counter with 10 decoded
outputs. It is used here as a divide-by-10 counter.

One 1 µF electrolytic capacitor

One 10 µF electrolytic capacitor

One 20×4 LCD

One I2C adapter, if not included with the LCD

One PCB shield (See “Downloads” on page 262 if you don’t want to
design your own.)

One Hammond 1595C sloped front enclosure (or equivalent)

One battery holder

One knob

Four 4-40×1/2-inch screws and washers

262 Chapter 9

Eight 4-40 nuts

One piece of double-sided foam tape

One 9V battery

Assorted 28- or 30-gauge hook-up wires

(Optional) Four banana plug jacks or three BNC connectors

(Optional) One 3.5 mm jack

(Optional) One 9V, 100 mA, 110V wall power supply (for more informa-
tion see “Battery Power” on page 278)

Note that I elected to use banana plug jacks for the I/O on the front
panel, though this is a bit old fashioned and probably not the best prac-
tice. You could replace the two output connectors with a BNC connector
as is used in the pH meter project, which is a little more pricey and elimi-
nates the need for a ground, as the BNC connector has a center conductor
and a shielded ground surrounding it. The banana jacks have only one
conductor each.

Downloads
Sketch  SquareWave.ino

Front panel template  SquareWaveEnclosure.pdf

PCB foil pattern  Generator.pcb

The Schematic
The Square-Wave Generator circuit in Figure 9-7 doesn’t call for a lot of
different components. However, before you start building, note that the
Arduino Pro Mini has a very different pin configuration than the Nano.
It is also worth noting that there are many versions of the Pro Mini avail-
able, so check the pinout of the version you buy. The particular Arduino
I suggest in the parts list has the pinout detailed in Figure 9-4. Read
“Important Notes on the Pro Mini” on page 263 for a description of key
differences.

In the schematic, notice the switches: SW1, SW2, SW3, and SW4. SW2
provides the divide-by-10 display. SW3 allows you to use the frequency
counter with an external source instead of the signal generator. SW1 con-
nects the 1, 10, 100 divider for the master clock (the switch has a center-off
position that doesn’t have a connection) for the LTC1799 oscillator. SW4 is
the power switch; its center is off, and the other two positions are for either
external supply or battery.

The Square-Wave Generator 263

Figure 9-7: Schematic of the Square-Wave Generator

Important Notes on the Pro Mini
Before you build the breadboard, note that one major pinout difference
among Pro Mini boards is the placement of pins A4, A5, A6, and A7. Some
versions locate all four analog inputs on the short side of the board, while
the Deek-Robot used in this project splits them (see Figure 9-8). It places
A4 and A5 near the other analog pins, but not in line with them, and A6
and A7 are on the short side of the board. Pins A4 and A5 are used to drive
the I2C bus for the display.

There are some other minor differences between the Pro Mini and
the Arduino Nano, but one of the most prominent is that the Pro Mini
does not include a USB interface, so you have to program it using an
external serial interface of some kind. There are several serial adapters
on the market using FTDI technology. (FTDI is an abbreviation for Future
Technology Devices International, a privately held Scottish semiconductor
device company specializing in USB technology.)

An alternative to using FTDI-based, purpose-built serial adapters is
to use another microprocessor board to program the Pro Mini. I use an
Arduino Uno clone to program my Pro Mini because it’s inexpensive, it
allows me to remove the processor chip so I don’t end up programming

264 Chapter 9

both boards, and it’s easy to use. I use a simple breadboard setup to do the
programming. Go to “Uploading Sketches to Your Arduino” on page 5
for connection details.

A4A5

A7

A6

Figure 9-8: The Deek-Robot Pro Mini next to a centimeter ruler. The pinout is a
little different from similar Arduino clones. For example, pin A4 is the unmarked
pad between A2 and A3, while A5 is the one between A3 and VCC.

How the Square-Wave Generator Was Developed
This project was developed to solve a need that emerged when creating the
Ballistic Chronograph in Chapter 8. While developing the chronograph,
I needed some way to test it to assure it worked properly without using a
weapon with live ammunition and shooting holes in my shop.

The Square-Wave Generator was my solution to the problem. With it
and a small handful of other parts, I was able to simulate the signal the
chronograph should receive as a projectile breaks a sequence of light
beams. I decided to start with the time it took a projectile to travel an
arbitrary distance of 3 inches, which turned out to be somewhere between
50 and 1,000 microseconds, depending on the speed of the projectile. I
then used the Square-Wave Generator to generate a signal at frequencies
between 20,000 Hz and 1,000 Hz, the reciprocals of those times. Once I
figured out what I needed for the chronograph, the Square-Wave Generator
project took on a life of its own, and the final version is what you see in this
chapter.

The Square-Wave Generator 265

Deciding How to Generate Signals
First, I looked for an easy way to satisfy my timing requirements. There
were several DDS (direct digital synthesis) products and boards that would
have easily solved the problem, but all of the solutions I found were a little
pricier than I was hoping, and many had other shortcomings. Abandoning
the DDS, I looked at several alternatives, some bringing me back to my old
Radio Amateur days. One solution was to use a crystal oscillator and divide
a fundamental frequency to achieve frequencies near the ones I needed.
This presented several problems, not the least of which being that the cir-
cuit would likely need several divider chips.

Another solution was to create my own variable frequency oscillator
(VFO) from scratch. While a possibility, that solution entailed more design
work than I was prepared to do at the time, so I went back to the data
sheets.

I found that Linear Technology’s LTC1799 single-chip precision oscil-
lator had just about what the doctor ordered—and more. According to the
data sheet, this chip provides a square-wave signal from 1 KHz to 33 MHz
with a single variable resistor and a switch to divide the fundamental oscil-
lator frequency by 1, 10, or 100. It boasts good stability, too: nominally, it
has less than 1 percent error. And it was a lot less pricey than the DDS solu-
tions at just under $4.00.

The final part of the problem was to see what frequency the generator
was creating. Without an external frequency counter or a calibrated oscil-
loscope, it would be extremely difficult to get even a close approximation of
the frequency generated. So the project mushroomed to include a built-in
frequency counter. Because the counter was there anyway, I included a switch
to allow me to use the frequency counter as a stand-alone instrument.

Planning How to Display the Frequency
Now I could generate square waves, but there were still some other prob-
lems to be addressed. For example, how would I read the frequency from
the outside? I could mark the potentiometer positions with calibrations—as
many generators of yore have done—but that is at best a clumsy and inaccu-
rate approach in today’s digital age. A built-in frequency counter and bright
display seemed most practical.

I went back to the drawing board—and to the Arduino Library. I found
several approaches to Arduino frequency counters online, including at least
two separate frequency counter libraries. The simplest and most convenient
library for this application was FreqCount.h, developed by Paul Stoffregen.
How I used this library is discussed more under “The Sketch” on page 271.
For more information on the library itself or to get the latest updates, you can
go to https://github.com/PaulStoffregen/FreqCount/.

A preliminary breadboard prototype indicated that the frequency
counter worked well. I put the breadboard together using a 20×4 LCD

https://github.com/PaulStoffregen/FreqCount

266 Chapter 9

display using the I2C interconnect. After labeling the display with the word
Frequency and displaying the frequency in Hz under that, I still had two lines
of 20 characters left (see Figure 9-9).

Figure 9-9: The display of the Square-Wave Generator, showing the frequency
and the impulse time

Waste not, I always say. Because at least two of the projects I planned to
use the Square-Wave Generator with required evenly spaced pulses (more
or less a pulse generator), I decided to use the second two lines of the dis-
play to indicate the time of the impulse. Calculating the time in the sketch
would be relatively easy, as the time (in seconds) is a function of the fre-
quency (T = 1/f ).

Signal Integrity
Without getting involved with the higher math of signal composition, a
square wave can be thought of as an infinite series of sine wave harmonics
added together. As the frequency increases, so does the complexity and
fragility of the waveform. If you connect your breadboard circuit to an oscil-
loscope, you can observe this yourself.

This project was initially developed as a square-wave generator/fre-
quency counter that could operate in the area of 1,000 Hz to 1 MHz. This
generator does its job with panache, but the fundamental oscillator chip
has a range far in excess of that.

In developing the project, I had two options. The first was to intention-
ally limit the device’s performance to the area that was initially proposed
or to extend it closer to the limits of the oscillator and suffer some degra-
dation at the higher end. I selected the latter. While the square wave starts
rounding off at around 15 MHz or so, the performance at the lower—and
intended—frequencies is not impacted whatsoever. Figure 9-10 shows four
oscilloscope traces at different frequencies to demonstrate.

At 1 kHz, the wave pattern is close to perfect, as you can see from the
display on my older analog oscilloscope (see Figure 9-10A). In Figure 9-10B,
at 5 MHz, the edges of the square wave are compromised a very small
amount, showing a slight overshoot on the rising edge. When the frequency

The Square-Wave Generator 267

is increased to 12 MHz, the signal begins to look a little ragged, with even
more distortion (see Figure 9-10C). Some of the distortions of the wave
are a result of tuning, or stray capacitive and inductive effects, by certain
components used in the construction. This is an avoidable phenomenon,
and I mention it primarily so you’re aware of the shape of the waveform. I
suspect that most of your applications for the generator will be in the lower-
frequency area, at less than 1 MHz, where the wave pattern produced is as
good as it gets. Further, I have used the generator in higher frequencies,
and the slightly distorted waveform had virtually no effect on the result.

A B

C D

Figure 9-10: Four oscilloscope traces showing the output of the Square-Wave Generator at 1 kHz (A),
5 MHz (B), 12 MHz (C), and 20 MHz (D). It quickly becomes apparent that the square-wave signal
starts to lose integrity at around 12 MHz.

While the waves continue to distort at frequencies above 20 MHz (see
Figure 9-10D), they are fully recognizable as square waves and remain use-
ful. At 30 MHz—the extent of the range of the Square-Wave Generator as
built—the signal trace looks increasingly like a sine wave, but for most test
purposes, it is still totally valid.

268 Chapter 9

Fine-tuning with a Decade Counter
In designing the system, there were a couple final additions I settled on
to add utility and improve performance. The frequency counter, as put
together, had a frequency range of about 100 Hz to around 10 MHz tops.
The LTC1799 oscillator offered a frequency range from 1 kHz to about
30 MHz, and for most applications, that would be far more than adequate.
But there were some applications I had in mind that would need an AC
source down to about 100 Hz.

Well, there turned out to be a way to kill both birds, so to speak, with
one chip: a divide-by-10 counter—in this case, an HCT4017 or CD4017
decade counter and a couple of switches.

The decade counter accepts an AC signal, counts to 10, and then starts
over. By looking at one of the counter outputs, it essentially divides by 10.
It was possible to feed the output of the oscillator through the divide-by-10
counter and show output frequency on the LCD, while the actual output
frequency would be 10 times the frequency shown. This workaround lets
the Square-Wave Generator show frequencies well above 10 MHz on the
LCD as long as you can mentally move the decimal point over one place.
On the flip side, the switch (SW2) could be moved to take the output of the
oscillator divided by 10 directly so that it could output a minimum output
frequency as low as 100 Hz, or 1 kHz/10.

The Oscillator in Detail
The oscillator part of this project is pretty much self-contained in the
LTC1799 and requires only an external variable resistor, a bypass capacitor,
and a switch used to divide the fundamental oscillator frequency by 1, 10,
or 100 times. The value that the frequency is divided by depends on what
you’re connecting to pin 4. When you connect pin 4, or the DIV pin, of the
LTC1799 to GND, the frequency is divided by 1; when pin 4 is left floating
or open, the frequency is divided by 10; and when pin 4 is connected to 5V,
the frequency is divided by 100. This allows the unit to cover a range of fre-
quencies from 1 kHz to 30 MHz.

L is t ening to Square Wav e s

An interesting experiment that will provide you with some idea of the harmonics
present in a square wave is to set the Square-Wave Generator to the audible
range of the frequency spectrum and plug its output into the input of an ampli-
fier and loudspeaker. Listen to the quality of the sound. The “fuzz” you hear is
a result of rich harmonics produced by the square wave, which essentially com-
prises a composite of all other sine waves within the frequency limit.

The Square-Wave Generator 269

Also, while I have chosen to use a 250-kilohm potentiometer between
pins 1 and 3 of the LTC1799, any potentiometer between 3 kilohms and
1 megaohm is acceptable. The frequency decreases as this resistor value
increases, and vice versa.

According to the manufacturer, the LTC1799 outputs a fairly crisp
square wave throughout its frequency range. As frequencies increase, how-
ever, there are a variety of considerations that impact the integrity of the
wave. These include stray capacitances and inductances due to the layout of
the circuit, such as the output position, the hookup of the variable potenti-
ometer, the switch, and other components. Because most applications I had
in mind were in the lower end of the frequency spectrum offered by the
LTC1799, I did not pay strict attention to the layout and thus probably have
somewhat compromised integrity at the higher frequencies. See Figure 9-10
for actual signal traces.

The Breadboard
As in virtually all of my Arduino projects, somewhere during the design
process, I end up making a breadboard layout. Figure 9-11 shows the proto-
type for the Square-Wave Generator.

Oscillator module

Arduino Pro Mini

Decade counter

Figure 9-11: The breadboard for the Square-Wave Generator

Wiring the breadboards for testing posed no difficulty, with the excep-
tion that the oscillator became a little squirrely at the higher frequencies
when using longer interconnect leads.

270 Chapter 9

Here are the connections:

1.	 Connect all of the red positive
rails together and blue negative
rails together. Be careful not to
connect the red and blue rails
under any circumstances.

2.	 Insert the LTC1799 oscillator
module as close as possible to
one end of the breadboard.
See the far left-hand side of
Figure 9-11. The oscillator has
to be mounted on an adapter
board so it will fit in the 0.100
centers of the breadboard, as
shown in Figure 9-12.

3.	 Insert the Arduino Pro Mini
into the breadboard. Connect
the 5V terminal of the Pro
Mini to the red positive rails
of the breadboard.

4.	 Connect the GND of the Pro
Mini to the blue negative rails.

5.	 Insert the HCT4017 decade
counter into the breadboard.
(It’s immediately to the left of
the LCD in Figure 9-11.)

6.	 Insert the LTC1799 on its adapter board into the breadboard.

7.	 Connect one end of the three-position (center-off) switch SW1 to
ground. Connect the other end to VCC, and connect the center pin of
the switch to pin 4 of the LTC1799.

8.	 Connect one end of switch SW2 to pin 6 of the LTC1799 adapter board
(or pin 5 of the LTC1799).

9.	 Connect one end of the potentiometer R1 to pin 3 of the LTC1799.
Connect pin 1 of the LTC1799 to the red positive rail along with the
other side of the potentiometer and the wiper, or the center pin of the
potentiometer.

10.	 Pin 6 of the LTC1799 will be the output of the oscillator, which will go
to pin 14 of the HCT4017 and to one leg of switch SW2.

11.	 Capacitor C1 should have been installed on the adapter board as
described.

12.	 Connect pins 13 and 15 of the HCT4017 to ground.

13.	 Connect the other end of switch SW2 to pin 12 of the HCT4017
(CD4017).

Figure 9-12: The SOIC has been soldered
to an adaptor board, which will fit into
the 0.100-inch centers of the breadboard.
The chip includes only 5 pins, but I used
a 6-pin adapter.

The Square-Wave Generator 271

14.	 Connect the center of switch SW2 to an empty row on the breadboard.
(I used one between the Pro Mini and the HCT4017).

15.	 Connect one end of switch SW3 to the same empty row you used in
step 8, which should be connected to the center of switch SW2.

16.	 Connect the center of switch SW3 to digital pin 5 (D5) on the Pro Mini.

17.	 Pin 3 of switch SW3 will serve as the input if you use the breadboard in
the frequency-counter-only mode.

N o t e 	 SW4, the AC/battery on/off switch, does not need to be configured in the breadboard,
as the circuit can receive power from the computer while programming the Arduino.
The LM7805 is not used in the breadboard configuration for the same reason.

18.	 Check your LCD. If it includes the I2C subassembly board soldered to it,
you’re okay to continue. Otherwise, solder the I2C board to the display
as described in “Affixing the I2C Board to the LCD” on page 3.

19.	 When your LCD is ready, you will need four male-to-female connector
wires to hook it up. (In the finished version, you can make a small wire
harness for it, including wires for VCC, GND, SCL, and SDA.) I usually
color code these with red and black for positive and ground, green for
SCL, and yellow for SDA. Plug the VCC wire into the red positive rail,
the negative into the blue negative rail, SDA to A4 on the Pro Mini, and
SCL to A5 on the Pro Mini.

Finally, build your programming circuit or plug in your FTDI adapter,
load the sketch onto the Pro Mini, and you’re all set to go.

The Sketch
The Square-Wave Generator sketch simplified somewhat as I iterated on the
project. The result is a mercifully compact program, thanks to the integra-
tion of the LTC1799 and the FreqCount.h library (available from the Library
Manager section of the Arduino IDE).

/* Square Wave Generator Sketch. Gives a proper reading with multiplier.
 * Parts of this sketch are derived from Paul Stoffregen’s public domain
 * example code.
 */
#include <FreqCount.h>
#include <LiquidCrystal_I2C.h>
#include <Wire.h>

unsigned long freq = 0;
float impulse;

LiquidCrystal_I2C lcd(0x27,20,4);

272 Chapter 9

void setup() {
 lcd.init();
 lcd.backlight();
 FreqCount.begin(1000);
}

void loop() {
 if(FreqCount.available()) {
 freq = FreqCount.read();
 lcd.clear();
 lcd.setCursor(1,0);
 lcd.print(" Frequency");
 lcd.setCursor(0, 1);
 lcd.print(freq);
 lcd.setCursor(10, 1);
 lcd.print("Hz");
 lcd.setCursor(0, 2);
 lcd.print("Impulse");
 lcd.setCursor(0,3);

 impulse = ((1/(float)freq)* 1000000);
 lcd.print(impulse);
 lcd.print(" uS ");
 }
}

The sketch starts by including three libraries: FreqCount.h for the fre-
quency counter and two others for working with the LCD. To add FreqCount.h
to your Arduino IDE, go to Sketch4Include Library4Manage Libraries…
and install the FreqCount library from the Library Manager. The setup() sec-
tion prepares the LCD and starts the frequency counter. The loop() section
fetches the frequency, calculates the impulse width, and displays both.

The Arduino doesn’t actually have anything to do with generating the
signal—that’s all done at the oscillator and subsequently in the divider. The
Arduino’s function is to look at the signal and read out the frequency.

N o t e 	 Although pin 5 on the Arduino is connected to the LTC1799 oscillator, I do not set it
as an analog input in this sketch. That is apparently taken care of in the FreqCount
library. See “Frequency Input Pin” at https://www.pjrc.com/teensy/td_libs_
FreqCount.html for various Arduino models. Incidentally, using this library ren-
ders analog pins 3, 9, 10, and 11 unusable as analog outputs (PWM).

The Shield
For this project, I developed a small PCB shield to hold the various compo-
nents. Although the shield could probably have been designed to use only a
single layer, I elected to use a two-layer board. First, it greatly reduced layout
time, and second, because I was producing another two-layer board at the

https://www.pjrc.com/teensy/td_libs_FreqCount.html
https://www.pjrc.com/teensy/td_libs_FreqCount.html

The Square-Wave Generator 273

same time, I could expose and etch them both at once with little additional
effort. (It’s more efficient to etch multiple boards simultaneously, when you
can.) Figure 9-13 shows the top and bottom foil patterns of the shield.

Figure 9-13: Top (left) and bottom (right) foil pattern for the Square-Wave Generator’s PCB shield

Assembling the components on the shield requires special attention
to the bypass capacitor. The shorter the leads of the 0.1 μF capacitor from
pin 1 of the LTC1799 oscillator to ground, the better the oscillator works. I
actually soldered the capacitor directly to the chip-mounting board.

Figure 9-13 shows the component placement on the shield. Notice
that the HCT4017 (CD 4017)is located beneath the Pro Mini; the PCB was
designed this way to conserve space and hold high-frequency traces to a
minimum length.

As in other projects, it’s necessary to populate the headers for the Pro
Mini only where they actually connect to the board, in addition to a header
at pin 1 to simplify aligning the Pro Mini on the shield. The LM7805 volt-
age regulator requires no heat sink.

Construction
Building the Square-Wave Generator was relatively straightforward,
but note that I did not take particular care with wiring the leads for
switch SW1, which provided the divider for the oscillator, or with the
placing and wiring of the potentiometer. Shortening these wires—and
perhaps adjusting the placement of the parts themselves—probably
would have improved the integrity of the waveform somewhat at higher
frequencies. Figure 9-14 shows the inside of my Square-Wave Generator;
if you look carefully, you can see my hand-scribbled notations as to where
things are located.

274 Chapter 9

Figure 9-14: Everything fit easily in the slope-panel enclosure. The LCD was held in place
with four screws, and the shield was mounted on top of the LCD with double-sided foam
adhesive. The switches, I/O jacks, and potentiometer were soldered by hand.

Preparing the Enclosure
First, mark the front of the enclosure for the following holes:

•	 Two to aid in cutting out the space for the LCD

•	 Four for mounting holes for the LCD

•	 Four for the banana jacks

•	 Four for the switches

•	 One for the potentiometer

If you’re using the Hammond 1595C sloped-front enclosure I recom-
mend in “Parts List” on page 260 or an equivalent, you can follow the
template in Figure 9-15. Just locate the PDF of the drawing in this book’s
resource files, print it out, lay it over the front of the enclosure, and care-
fully center punch for the holes. I also use a fine-tip Sharpie marker to indi-
cate locations and to draw on the enclosure. Excess marker can be easily
cleaned with isopropyl alcohol.

Figure 9-16 shows how to use the radius of the enclosure to determine
the measurement for the display.

The Square-Wave Generator 275

3.84 in

1.57 in

3.64 in

2.16 in

1.17 in

0.55 in

1.41 in

0.66 in

1.02 in

0.65 in

0.47 in

0.75 in AA

B B B B

C C

D

0.91 in
Curve at top of case

C C

A A

Figure 9-15: The drilling template for the Square-Wave Generator

1.17 in

Figure 9-16: The LCD is placed using the radius of the enclosure.

276 Chapter 9

I drilled the holes in the following order:

1.	 Carefully drill 1/2-inch holes at the corners of the cutout for the LCD.
If you mark the centers of the holes correctly, the edge of the display
will be tangential to the outer diameter of the hole. You can then draw
lines connecting the edges of the holes to use as a guide to cut out the
display.

2.	 Cut out the display using a keyhole saw or saber saw. The enclosure is
made of a relatively soft ABS plastic, so you should have no difficulty
making the cut.

3.	 Clean debris from the cutout with a file if necessary, and check that the
display fits.

4.	 Drill the four mounting holes (labeled A in Figure 9-15) for the display.

5.	 Drill four 5/16-inch holes for the banana jacks (labeled B).

6.	 Drill four 1/4-inch holes for the switches (labeled C). It’s a good idea to
identify the switch locations with a permanent marker on the inside of
the enclosure to simplify wiring them.

7.	 Drill a 9/32-inch hole for the potentiometer (labeled D).

8.	 Locate a position you like for the 3.5 mm power jack that is 3/4 inches
from the edge of the enclosure and 1/2 inches from the bottom. Drill a
1/4-inch hole for a 3.5 mm jack there.

9.	 Mount the LCD with four 4-40 screws. Some LCDs have a protrusion on
one side for the backlight. If yours does, you will have to raise the LCD
off the surface of the enclosure to accommodate the backlight section
on the right-hand edge (when looking at the LCD with the connections
at the top). I simply put 4-40 nuts on the back of the screws to leave
space. If a single nut is not enough (4-40 nuts can have different thick-
nesses), include a washer. Then, fasten the display to the enclosure. If
your display does not include the protrusion, then just fasten the dis-
play to the case.

10.	 Mount the banana plug jacks and switches in the enclosure. It is some-
times easier to solder wires onto the switches and jacks to minimize dam-
age to the enclosure from accidental contact with the soldering iron.

Wiring the Electronics
Before mounting the PCB shield in the enclosure, solder the components to
it, and solder all the wires for the LCD, the potentiometer, the switches, the
power jack, and the banana jacks. You may find it helpful to solder the wires
to the switches and jacks first. When in doubt, leave some extra length on
the wires, but abide by the axiom, “If it’s too short, you can always splice it;
if it’s too long, you won’t know what to do with it.” I suggest using male and
female headers for the LCD to make hookup easier.

I mounted the shield directly to the rear of the LCD using double-sided
foam tape. This, however, could have contributed to the distortion of the

The Square-Wave Generator 277

waveform at higher frequencies. You might prefer to mount the module as
far from the display as possible. The front of the enclosure needs no special
treatment other than the placement of the labels at your discretion.

Design Notes and Mods
I toyed with several iterations of the Square-Wave Generator before arriv-
ing at the version described in this chapter. Along the way, I tweaked some
aspects and considered other changes. While the ideas in this section didn’t
make it into this project, you may enjoy trying them yourself.

Displaying Frequency in Other Units
The sketch displays the square-wave frequency in Hz, as most of the appli-
cations I have planned are in the area of 100 Hz to 10 kHz. But if you find
yourself using the device a lot in higher frequencies, looking at six or seven
integers can be confusing. Never fear: it’s easily possible to change the sketch
to show the frequency in kHz or even MHz by simply truncating the display.

To truncate the display, simply add a comma and the number of digits
you want it to show. For example, to change from Hz to kHz, change these
lines in the sketch:

 lcd.print(freq);
 lcd.setCursor(10, 1);
 lcd.print("Hz");

to these lines:

 lcd.print(freq/1000);
 lcd.setCursor(10, 1);
 lcd.print("kHz");

If you want to reduce the number of digits appearing in the readout,
change this line:

 lcd.print(freq/1000);

to this:

 lcd.print(freq/1000,3);

You can change 3 to the number of digits you want.

Reading External Input Frequencies
The schematic and the finished project include a switch to change from
generating pulses to reading the frequency of an external input. The switch
(SW3) brings the input jack directly to the input (pin 5) of the Arduino,

278 Chapter 9

where the oscillator would normally connect. I have used this very success-
fully for a variety of applications, particularly when I wanted a quick fre-
quency reading somewhere outside my shop.

There is no circuitry to protect the processor, so just be careful. The
unit is meant to use inputs that are standard TTL levels—0 to 5V. The
Arduino is relatively sensitive and can detect signals at somewhat lower
levels. If you plan, however, to use it with very low-level inputs—that is,
less than 0.5V—then you should build some kind of prescaler or preamp
circuit.

If you plan to use the Square-Wave Generator as an independent fre-
quency counter, you might want to consider using a preamp to provide the
amplification and prevent damage to the processor. A simple one appears
in Figure 9-17, using one-sixth of a 74HC14 Hex Schmitt-trigger inverter.

Figure 9-17: Optional preamp/buffer for input
to frequency counter

Using a preamp will help protect the input of the Arduino because the
output of the preamp will be limited to the supply voltage.

Battery Power
While this project was initially designed for use with an external power sup-
ply, it can be easily converted to battery power. The total current drain with
the LCD backlight lit is just under 100 mA. The capacity of a zinc manga-
nese battery is approximately 500 mA hours. Thus, you can expect a life of
about 5 hours. Alkaline batteries will tend to do better.

To accommodate the battery power, I simply replaced the power switch
with one that had a center-off position. I wired one outer terminal to the
AC-based power jack, the other outer terminal to the positive terminal of
the battery, and the center terminal to the positive rail on the PCB shield.
The negative terminal of the battery goes to ground. That configuration is
shown in the current schematic. If you use the enclosure I suggest, a battery
should fit conveniently. You can use double-sided adhesive to attach a bat-
tery holder.

10
T h e C h roma t ic T h ermome t er

This project was initially created to pro-
vide a quick visual indication of local

temperature. At its simplest, it is a ther-
mometer that displays the temperature by

turning on a sequence of LEDs of different colors.
During development, however, the project gained
more features, including an LCD readout to supplement the basic color
readout. And while experimenting, I came across an IC that provides
extremely accurate measurement without special calibration, which
improved the device greatly.

The Chromatic Thermometer includes 10 different colored LEDs, each
of which lights up when the sensor detects a particular temperature. The
original version was designed to measure from 68 to 78°F, and each LED rep-
resented a 1-degree Fahrenheit change in temperature. I subsequently varied
that for different applications. The finished project shown in Figure 10-1 can
measure a wide range of temperatures. It also includes a waterproof probe
for measuring the temperature in liquids, which is useful for fish tanks,

280 Chapter 10

swimming pools, and so forth, and can be constructed in a variety of physi-
cal configurations. In the version that appears in the sketch, the tempera-
ture ranges from 76 to 86°F in 1-degree increments.

Figure 10-1: The finished Chromatic Thermometer

You could also program an alarm by flashing a lamp at a specific tem-
perature, or with a minor hardware addition, you could add an audible
alarm. I am sure you can think of even more hardware or software modifi-
cations to make this thermometer a very practical device.

Choosing a Temperature Sensor
The key ingredient in any electronic thermometer is the temperature sen-
sor. There are many kinds of temperature sensors available to choose from.

Thermistors change resistance with temperature and range from
inexpensive to very pricey, depending on how they are made and tested.
Resistance temperature detectors (RTDs) employ a coil of pure wire, such as
silver, platinum, or copper, wrapped around a glass core. Combined in a
resistance bridge, RTDs can be extremely accurate, but they’re somewhat
expensive. Thermocouples are still an industry-standard sensing technology,
particularly at higher temperatures (that is, greater than 500°C). At lower
temperatures, thermocouples are being replaced by RTDs because of accu-
racy, precision, consistency, and linearity.

The Chromatic Thermometer 281

Semiconductor temperature sensors—that is, dedicated integrated silicon
sensor circuits—continue to gain popularity because of their accuracy,
precision, ruggedness, and convenience. In preparing for this project, I
looked at virtually all the approaches and elected to use a semiconductor
sensor, as it provided sufficient accuracy with a relatively simple hookup
and a modest price.

With any thermometer, accuracy and precision are issues. Consider accu-
racy the ability to measure temperature as close to some standard value
established by the NIST, with some deviation. For this casual definition,
precision can be referred to as repeatability—that is, the ability to read the
same temperature consistently in the same environment.

The Custom pH Meter in Chapter 7 used the temperature of boil-
ing water and ice in solution to set boundaries of 100°C and 0°C, respec-
tively, to calibrate a thermometer. I checked the Chromatic Thermometer
with the same approach, but I used the high-accuracy MCP9808 module
described here as a standard because it was extremely close.

Accuracy and precision are ultimately a system—not necessarily a
sensor—issue. This project discusses two different sensors with essentially
the same accuracy and precision. The simplest sensor, an LM35 analog tem-
perature sensor, depends on other parts of the system for its accuracy and
precision. The second sensor, an MCP9808 IC, provides accurate results
with or without the associated breakout board because it includes the other
variable components as an on-chip subsystem.

Both the LM35 and the MCP9808 boast a maximum accuracy of
0.25°C and a precision of 0.0625°C. To achieve this kind of accuracy, they
use a silicon band-gap temperature sensor, which takes advantage of the forward
voltage of a silicon diode. However, in addition to the sensor, the MCP9808
includes its own on-chip ADC, voltage reference, and other internal cir-
cuitry to assure accuracy.

N o t e 	 If you want to dig deeper on the band-gap sensor technology, there is a wealth of infor-
mation on the web, including background on Bob Widler, who is largely credited with
discovering the phenomenon.

In this project, the LM35 depends on the ADC and voltage refer-
ence of the Arduino, which, while pretty good, does not match that of the
MCP9808’s monolithic system and thus can require calibration, as illus-
trated in “Sketch for the LM35 System” on page 289. When I built a ver-
sion with the MCP9808 instead, I used an Adafruit breakout board for the
chip because it significantly simplified assembly—no need to fuss with the
MicroSMT package’s tiny leads.

While the MCP9808 does cost more than the LM35D, it’s worked out
well. I included traces in the project’s PCB shield for the chip itself, if you
elect to solder it using one of the techniques suggested in “Using SOICs” on
page 20.

282 Chapter 10

Required Tools
Soldering iron and solder

(Optional) Electric drill with bits for 1/4 inches (used to drill a hole for
the jack in order to connect a remote temperature sensor or to make a
hole for a power adapter)

Parts List
First, decide which temperature sensor you want to use: the LM35 or the
MCP9808. If you just want to use an LM35, here’s what you’ll need to make
a basic Chromatic Thermometer:

One Arduino Nano or clone

One LM35 temperature sensor

Ten different colored LEDs (see “Mod: Try Different LEDs” on
page 300)

Ten ZTX649 transistors

Ten 470-ohm resistors

One 7.5 to 9V wall adapter, or equivalent (or 9V battery)

One plastic enclosure (see “Construction” on page 298)

28- or 30-gauge hookup wire

One printed circuit board (Use the provided shield template, design
your own shield, or use any other prototyping board you feel comfort-
able working with.)

I also describe several variations on the Chromatic Thermometer in
this chapter. Give the project a skim before you go shopping, and if you
want to make one of the variations, also buy the following:

If you plan to use the temperature sensor as described in “Design
Decision: Remote the Temperature Sensor,” get one 3.5 mm stereo jack.

For a Chromatic Thermometer with a digital readout, also buy one
16×2 I2C LCD.

For a high-accuracy Chromatic Thermometer, replace the LM35 with
either one MCP9808 Adafruit Breakout Board or one Microchip
MCP9808 IC with a 100 nF capacitor and two 10-kilohm resistors.

For the breadboard prototype, make sure you have one large bread-
board (as opposed to the smaller ones used in much of this book) and
at least 30 jumper wires.

De sign Decision: R emo t e t he Tempera t ure Sen sor

If your application takes you in another direction, you can modify the shield
to remote the chip. That is, you can connect long wires directly to the chip
(you’d need only four wires) and place the chip in a location separate from the
readout. If you remote the chip, just include a small capacitor (around 100 nF)
between pins 4 and 8, very close to the chip, as shown in Figure 10-2.

Figure 10-2: The MCP9808 with wires soldered directly

However, remember that I2C stands for inter-integrated circuit and is
intended for chip-to-chip communications. Therefore, the MCP9808 can be
moved only a limited distance from the Arduino. While some hobbyists online
claim success with wires as long as 100 cm, the longest that I have been able to
do reliably is about 50 cm. The LM35, on the other hand, can be remoted and
made waterproof for longer distances with only three wires and without needing
miniature hands and the dexterity of a watchmaker. (If you can tolerate only two
wires, there’s a solution to that; check the data sheet for the LM35.)

The MCP9808 could likely be encapsulated as I did with the LM35 in
the Custom pH Meter from Chapter 7, though I have not tried that. Trying to
insulate the connections from each other and keep the delicate pins of the chip
from breaking off can be a problem when making a remote sensor with the
MCP9808.

This is a design decision to make before you build the final Chromatic
Thermometer, so I suggest reading through the full chapter to decide before you
put the device together.

The Chromatic Thermometer 283

Required Tools
Soldering iron and solder

(Optional) Electric drill with bits for 1/4 inches (used to drill a hole for
the jack in order to connect a remote temperature sensor or to make a
hole for a power adapter)

Parts List
First, decide which temperature sensor you want to use: the LM35 or the
MCP9808. If you just want to use an LM35, here’s what you’ll need to make
a basic Chromatic Thermometer:

One Arduino Nano or clone

One LM35 temperature sensor

Ten different colored LEDs (see “Mod: Try Different LEDs” on
page 300)

Ten ZTX649 transistors

Ten 470-ohm resistors

One 7.5 to 9V wall adapter, or equivalent (or 9V battery)

One plastic enclosure (see “Construction” on page 298)

28- or 30-gauge hookup wire

One printed circuit board (Use the provided shield template, design
your own shield, or use any other prototyping board you feel comfort-
able working with.)

I also describe several variations on the Chromatic Thermometer in
this chapter. Give the project a skim before you go shopping, and if you
want to make one of the variations, also buy the following:

If you plan to use the temperature sensor as described in “Design
Decision: Remote the Temperature Sensor,” get one 3.5 mm stereo jack.

For a Chromatic Thermometer with a digital readout, also buy one
16×2 I2C LCD.

For a high-accuracy Chromatic Thermometer, replace the LM35 with
either one MCP9808 Adafruit Breakout Board or one Microchip
MCP9808 IC with a 100 nF capacitor and two 10-kilohm resistors.

For the breadboard prototype, make sure you have one large bread-
board (as opposed to the smaller ones used in much of this book) and
at least 30 jumper wires.

De sign Decision: R emo t e t he Tempera t ure Sen sor

If your application takes you in another direction, you can modify the shield
to remote the chip. That is, you can connect long wires directly to the chip
(you’d need only four wires) and place the chip in a location separate from the
readout. If you remote the chip, just include a small capacitor (around 100 nF)
between pins 4 and 8, very close to the chip, as shown in Figure 10-2.

Figure 10-2: The MCP9808 with wires soldered directly

However, remember that I2C stands for inter-integrated circuit and is
intended for chip-to-chip communications. Therefore, the MCP9808 can be
moved only a limited distance from the Arduino. While some hobbyists online
claim success with wires as long as 100 cm, the longest that I have been able to
do reliably is about 50 cm. The LM35, on the other hand, can be remoted and
made waterproof for longer distances with only three wires and without needing
miniature hands and the dexterity of a watchmaker. (If you can tolerate only two
wires, there’s a solution to that; check the data sheet for the LM35.)

The MCP9808 could likely be encapsulated as I did with the LM35 in
the Custom pH Meter from Chapter 7, though I have not tried that. Trying to
insulate the connections from each other and keep the delicate pins of the chip
from breaking off can be a problem when making a remote sensor with the
MCP9808.

This is a design decision to make before you build the final Chromatic
Thermometer, so I suggest reading through the full chapter to decide before you
put the device together.

284 Chapter 10

Downloads

Sketch for the LM35 version  LM35Thermo.ino

Sketch for the MCP9808 version  9808Thermo.ino

Adafruit_MCP9808 library  https://www.adafruit.com/product/1782 (for
the MCP9808 temperature sensor only)

PCB pattern for the shield  Thermo.pcb

How the Chromatic Thermometer Works
In operation, the Chromatic Thermometer is quite straightforward. For
starters, let’s look at the basic configuration using the LM35 sensor.

The sensor generates a voltage of 10mV/°C. For example, at 28°C
(around 82°F), the chip outputs 0.280V. You can easily check that with
your multimeter. To make a usable Arduino thermometer, all you have to
do is change that voltage to something the Arduino can understand and
then have the Arduino translate it to something you want to see on the
LEDs or LCD.

The first step is to convert the analog voltage to a digital value so the
Arduino can work with it. To do that, connect the output of the sensor to
one of the Nano’s analog inputs. (I tend to use A0, but any analog input
can be used. Just don’t use analog pins A4 or A5, which are used for the I2C
portion of this project.) The output voltage of the LM35 is pretty low com-
pared with the 5V the Nano is working with, and the ADC divides the 5V
of the supply into 1,024 parts (range = 0 to 1,023) to determine the analog
value of an incoming voltage. If you use the LM35 output as is, each degree
Celsius change in temperature will change the output voltage by 0.010V and
therefore change the result of the ADC by 2.046 parts (units) out of the
1,024 total.

That works, but small increments of the ADC at the very low end of the
reference voltage are subject to random amounts of error. There is also sig-
nificant error from rounding, as the Nano’s ADC outputs only whole digits.

To reduce the impact of error, you’ll change the reference voltage of
the ADC from 5V, where each increment in the 1,024 represents 0.004882V,
to 1.1V, where each increment represents only 0.00107V. A single degree
Celsius change will then represent only 9.345 of the 1,024 units. Thus, the
0.280V the LM35 outputs at 28°C will correspond to about 261 of the 1,024
units, rather than only 52.

The Schematic
Figure 10-3 shows the schematic for this project.

The Chromatic Thermometer 285

Figure 10-3: Schematic for the Chromatic Thermometer

Note that both the LM35 and the MCP9808 sensors are wired up in this
sketch. That is not a problem, as you can select which one to use in software
by changing the code that you upload to the Arduino. You can wire up either
one or both. This schematic also shows the Chromatic Thermometer with an
LCD, though that is optional if you just want to read the temperature based
on the LEDs.

The Arduino processor could probably drive the LEDs unaided, but I
elected to use transistor drivers for each LED. This assures that if you elect
to use higher-output LEDs—or even incandescent lamps—there will be no
problem driving them. The transistors used are capable of sinking as much
as 1 A.

An 11th LED-transistor-resistor group (Q11) is shown connected to
pin D12 on the Nano, though the final Chromatic Thermometer uses only
10 LEDs. I show this extra pair and even include it in the shield PCB file to
give you a built-in customization option. You can add another temperature
digit, a buzzer alarm, or any other output you like.

286 Chapter 10

The Breadboard
As in the other projects in this book, I suggest starting with a breadboard
to sound out the design and exercise the sketch before committing to the
final assembly. Because the project uses 10 LEDs and 10 driver transistors, I
used a large-format breadboard to comfortably fit all the components (see
Figure 10-4).

Figure 10-4: The Chromatic Thermometer’s completed breadboard

The LEDs are along the middle of the breadboard, and one is shown
lit. I assembled a wire harness for the LCD. The LM35 temperature sensor
(left) is on a tether and held in heat shrink tubing so it is waterproof.

These are the steps I used to assemble the breadboard:

1.	 Place the Arduino Nano toward the top left of the breadboard.

2.	 Connect VIN (pin 30) of the Nano to where the 9V input from the bat-
tery or other power source will go.

3.	 Connect the 5V pin of the Nano to the red positive rail.

The Chromatic Thermometer 287

4.	 Connect GND (pin 4) of the Nano to the blue negative rail on the
breadboard.

5.	 Identify locations for the 10 driver transistors (Q1 to Q10), and place
them on the breadboard. I placed them so the beveled edge of the tran-
sistor faced right when looking from the bottom
of the board.

6.	 Connect the collector of all the transistors to
where the 9V input will go (VIN of the Nano).
See Figure 10-5 for the pinout of the transistor.

7.	 Connect the base of Q1 to D2 (pin 5) on
the Nano.

8.	 Connect the base of Q2 to D3 (pin 6) on
the Nano.

9.	 Connect the base of Q3 to D4 (pin 7) on
the Nano.

10.	 Connect the base of Q4 to D5 (pin 8) on
the Nano.

11.	 Connect the base of Q5 to D6 (pin 9) on
the Nano.

12.	 Connect the base of Q6 to D7 (pin 10) on
the Nano.

13.	 Connect the base of Q7 to D8 (pin 11) on
the Nano.

14.	 Connect the base of Q8 to D9 (pin 12) on
the Nano.

15.	 Connect the base of Q9 to D10 (pin 13) on
the Nano.

16.	 Connect the base of Q10 to D11 (pin 14) on
the Nano.

17.	 Connect each of the emitters for all the transis-
tors Q1 through Q10 to the positive lead of each
colored LED.

18.	 Connect the negative lead of the LEDs to an
empty location on the breadboard.

19.	 Connect one side of the 470-ohm resistors to the
negative leads of each LED.

20.	 Connect the other side of the 470-ohm resistors to
ground (the blue negative rail).

21.	 Connect pin 1 (4–20V) of the LM35 to the red positive rail. (See
Figure 10-6 for the pinout of the LM35.)

22.	 Connect pin 3 (GND) of the LM35 to the blue negative rail.

23.	 Connect the output pin (center) of the LM35 to pin A0 (26) on
the Nano.

Emitter
Collector Base

Figure 10-5: Pinout of
the ZTX649 transistor

Ground
4-20V Out

Figure 10-6: Pinout
of the LM35 tem-
perature sensor

288 Chapter 10

24.	 Connect power and ground to the respective red positive and blue
negative rails.

Now, you’re all set to go with the most basic configuration. To add the
digital display:

1.	 Connect the power and ground of the LCD’s I2C adapter to the respec-
tive red positive and blue negative rails.

2.	 Connect the SDA pin of the LCD’s I2C adapter to A4 (22) on the Nano.

3.	 Connect the SCL pin of the LCD’s I2C adapter to A5 (21) of the Nano.

4.	 Upload the appropriate software code to the Nano.

If you want to play with the high-accuracy temperature sensor:

1.	 Remove the LM35 from the circuit (or you can leave it in—it will not
affect anything).

2.	 Place the high-accuracy sensor in a location where the pins will not be
affected by anything.

3.	 Connect the power pins of the I2C connection on the MCP9808 sensor
to the blue negative rail and 5V—pin 27, or the red positive rail—on
the Nano, respectively.

4.	 Connect the SDA pin of the I2C connection on the MCP9808 sensor to
A4 (22) on the Nano.

5.	 Connect the SCL pin of the I2C connection on the MCP9808 sensor to
A5 (21) on the Nano.

6.	 Upload the software to the Nano with the high-accuracy sensor version
of code.

Now you’re all set to go.

N o t e 	 This particular breadboard’s positive and negative power rails are not continu-
ous. The first 15 are connected, the next 20 are connected, and the last 15 are con-
nected—but not to each other. I used jumpers to connect the rails as needed.

The Sketches
There are two versions of the sketch: one for the LM35 version of this proj-
ect and one for the MCP9808 version. You can pick a sketch to use based on
which version of the Chromatic Thermometer you’d like to build, but both
sketches comprise three basic sections.

After the boilerplate section of loading libraries and preliminary setup,
the first component of each sketch deals with the temperature sensor itself.
The second section deals with setting up the temperature and LCD readout
(if used). The final element of each sketch details the conditions to turn
the LEDs on and off to indicate the temperature. I have annotated the code
with comments where appropriate.

The Chromatic Thermometer 289

Sketch for the LM35 System
Here is the sketch for the Chromatic Thermometer with the LM35 sensor,
including the digital LCD readout.

//Chromatic Thermometer sketch for the LM35, with an alarm
//around 78 to 79 degrees Fahrenheit (26 degrees Celsius)

#include <Wire.h> //Set up Comm wire library
#include <LiquidCrystal_I2C.h> //Set up LCD library with I2C

LiquidCrystal_I2C lcd(0x27, 16, 2); //16x2 display I2C address 0x27

//Establish the number of readings to average at 10
u const int numReadings = 10;

float readings[numReadings]; //The readings from the analog input
int index = 0; //The index of the current reading

float total = 0; //The running total
float average = 0; //The average
int tempPin = A0;
float TempC;
float tempF;

void setup() {
 lcd.init(); //Initialize LCD and turn on backlight
 lcd.backlight();

 //Initialize serial communication with computer:
 Serial.begin(9600);

 //Initialize all the readings to 0:
 for(int thisReading = 0; thisReading < numReadings; thisReading++)
 readings[thisReading] = 0;

 analogReference(INTERNAL); //Set voltageReference = 1.1V
}

void loop() {
 total = total - readings[index]; //Subtract the last reading
 readings[index] = analogRead(tempPin); //Read from the sensor
 total = total + readings[index]; //Add the reading to the total

 //Advance to the next position in the array:
 index = index + 1;

 if(index >= numReadings) //If we're at the end of the array...
 index = 0; //...wrap around to the beginning

 average = total / numReadings; //Calculate the average temperature
 TempC = average / 9.81; //Adjust/calibrate average
 //based on empirical measurement
 tempF = (TempC * 9 / 5) + 32; //Convert to Fahrenheit

290 Chapter 10

 //Set up serial readout if desired
 Serial.println();
 Serial.print("TempC ");
 Serial.println(TempC);
 Serial.print("TempF ");
 Serial.println(tempF);
 Serial.print("Average ");
 Serial.println(average);
 delay(10); //Delay in between reads for stability

 //Set up for LCD
 lcd.setCursor(0, 0);
 lcd.print("Temp ");
 lcd.setCursor(7, 0);
 lcd.print(TempC, 1);
 lcd.print((char)223); //Degree symbol see below
 lcd.print(" C");
 lcd.setCursor(0, 1);
 lcd.print("Temp ");
 lcd.setCursor(7, 1);
 lcd.print(tempF, 1); //Truncate second decimal place
 lcd.print((char)223);
/*May need to use (char) 178 if LCD displays the greek alpha character.
Different LCDs display different special characters*/

 lcd.print(" F");
 delay(50);

 //Beginning of conditional statements for display
 if((tempF > 85.00) && (tempF < 200)) {
 //85 degrees and 200 degrees are arbitrary.
 digitalWrite(2, HIGH);
 }
 else {
 digitalWrite(2, LOW);
 }

 if((tempF > 84) && (tempF < 85)) {
 digitalWrite(3, HIGH);
 }
 else {
 digitalWrite(3, LOW);
 }

 if((tempF > 83.00) && (tempF < 84)) {
 digitalWrite(4, HIGH);
 }
 else {
 digitalWrite(4, LOW);
 }

 if((tempF > 82) && (tempF < 83)) {
 digitalWrite(5, HIGH);
 }

The Chromatic Thermometer 291

 else {
 digitalWrite(5, LOW);
 }

 if((tempF > 81.00) && (tempF < 82)) {
 digitalWrite(6, HIGH);
 }
 else {
 digitalWrite(6, LOW);
 }

 if((tempF > 80) && (tempF < 81)) {
 digitalWrite(7, HIGH);
 }
 else {
 digitalWrite(7, LOW);
 }

 if((tempF > 79.00) && (tempF < 80)) {
 digitalWrite(8, HIGH);
 }
 else {
 digitalWrite(8, LOW);
 }

 if((tempF > 78) && (tempF < 79)) {
 //Code for blinking LED as an alarm
 digitalWrite(9, HIGH);
 delay(50);
 digitalWrite(9, LOW);
 delay(50);
 }
 else {
 digitalWrite(9, LOW);
 }

 if((tempF > 77.00) && (tempF < 78)) {
 digitalWrite(10, HIGH);
 }
 else {
 digitalWrite(10, LOW);
 }

 if(tempF < 76) {
 digitalWrite(11, HIGH);
 }
 else {
 digitalWrite(11, LOW);
 }
}

After including libraries, the LM35 sketch defines the number of samples
to keep track of at u. The higher the number, the more the readings will be

292 Chapter 10

smoothed, but the longer it will take to settle. Using a constant rather than
a normal variable for the number of samples allows this value to determine
the size of the readings array.

The setup() code initializes the LCD, turns on serial communication for
debugging, initializes the readings array with all zeros (because the sketch
hasn’t read anything yet), and sets the ADC reference voltage to 1.1V. The
loop() code stores sensor data in the readings array and averages the read-
ings to calculate a temperature to display. If you have an LCD, the sketch
shows the temperature on it, and then it checks various temperature ranges
with if statements to see which LEDs to turn on.

The big difference between this sketch and the next is that the LM35
version sets up the system to accept the analog voltage from the sensor and
direct it to an analog input. It also establishes a reference voltage of 1.1V
with the analogReference(INTERNAL) command.

Sketch for the MCP9808 System
The sketch for the version with the high-accuracy MCP9808 chip (or the
board from Adafruit) uses much of the same code; the conditional state-
ments that turn on the LEDs are identical. The only part that differs is how
the Arduino gets the temperature information from the sensor. Here is the
full sketch:

/*Sketch for MCP9808 version of Chromatic Thermometer

 This version of the Chromatic Thermometer uses the Adafruit MCP9808 breakout
 Board (or Microchip MCP9808 chip) and the Adafruit_MCP9808 library
 available from Adafruit ----> https://www.adafruit.com/product/1782

 The averaging may not be necessary. It tends to slow the
 response a little, but smoothes out the display.

 The result is truncated to a single decimal for both Celsius and Fahrenheit.
 This version includes the code to turn on and off 10 LEDs.
*/

#include <Wire.h> //Set up wire/serial library
#include "Adafruit_MCP9808.h" //Set up MCP9808 library
#include <LiquidCrystal_I2C.h> //Set up library for LCD

LiquidCrystal_I2C lcd(0x27, 16, 2); //16x2 display; define LCD

// Create the MCP9808 temperature sensor object
Adafruit_MCP9808 tempsensor = Adafruit_MCP9808();

const int numReadings = 10; //Once again averaging 10 readings
float readings[numReadings]; //The readings from the analog input
int index = 0; //The index of the current reading
float TempC = 0;
float tempF = 0;
float total = 0; //The running total
float average = 0; //The average

The Chromatic Thermometer 293

void setup() {
 Serial.begin(9600);

 lcd.init(); //Initiate LCD and backlight
 lcd.backlight();

/*Make sure the sensor is found. You can also pass a different I2C address
from the default, as in tempsensor.begin(0x19).*/
 if(!tempsensor.begin()) {
 Serial.println("Couldn't find MCP9808!");
 while(1);
 }
}
void loop() {
 //Read and print out the temperature; then convert to Fahrenheit
 float c = tempsensor.readTempC();
 total = total - readings[index];
 //Read from the sensor
 readings[index] = c;
 //Add the reading to the total
 total = total + readings[index];
 //Advance to the next position in the array
 index = index + 1;
 if(index >= numReadings) //If we're at the end of the array...
 index = 0; //...wrap around to the beginning:
 //Calculate the average
 average = total / numReadings;

 TempC = average;
 tempF = (TempC * 9 / 5) + 32;
 delay(100);

 //Set up LCD to print out temperatures
 lcd.setCursor(0, 0);
 lcd.print("Temp ");
 lcd.setCursor(6, 0);
 lcd.print(TempC, 1); //Truncate to one decimal place
 lcd.print((char)223);
 lcd.print(" C");
 lcd.setCursor(0, 1);
 lcd.print("Temp ");
 lcd.setCursor(6, 1);
 lcd.print(tempF, 1); //Truncate to one decimal place
 lcd.print((char)223);
/*May need to use (char) 178 if LCD displays the greek alpha character.
Different LCDs display different special characters*/

lcd.print(" F");
 delay(100);

 //Beginning of conditional statements for display
 if((tempF > 85.00) && (tempF < 100)) {
 digitalWrite(2, HIGH);
 }

294 Chapter 10

 else {
 digitalWrite(2, LOW);
 }

 if((tempF > 84) && (tempF < 85)) {
 digitalWrite(3, HIGH);
 }
 else {
 digitalWrite(3, LOW);
 }

 if((tempF > 83.00) && (tempF < 84)) {
 digitalWrite(4, HIGH);
 }
 else {
 digitalWrite(4, LOW);
 }

 if((tempF > 82) && (tempF < 83)) {
 digitalWrite(5, HIGH);
 }
 else {
 digitalWrite(5, LOW);
 }

 if((tempF > 81.00) && (tempF < 82)) {
 digitalWrite(6, HIGH);
 }
 else {
 digitalWrite(6, LOW);
 }

 if((tempF > 80) && (tempF < 81)) {
 digitalWrite(7, HIGH);
 }
 else {
 digitalWrite(7, LOW);
 }

 if((tempF > 79.00) && (tempF < 80)) {
 digitalWrite(8, HIGH);
 }
 else {
 digitalWrite(8, LOW);
 }

 if((tempF > 78) && (tempF < 79)) { //Code for blinking LED
 digitalWrite(9, HIGH);
 delay(50);
 digitalWrite(9, LOW);
 delay(50);
 }
 else {
 digitalWrite(9, LOW);
 }

The Chromatic Thermometer 295

 if((tempF > 77.00) && (tempF < 78)) {
 digitalWrite(10, HIGH);
 }
 else {
 digitalWrite(10, LOW);
 }

 if(tempF < 76) {
 digitalWrite(11, HIGH);
 }
 else {
 digitalWrite(11, LOW);
 }
}

The MCP9808 sketch’s version of the setup() code checks to make sure
you have the MCP9808 temperature sensor plugged in. In the loop() section,
it calls the readTempC() function from the Adafruit_MCP9808 library to fetch
the current temperature, instead of calling analogRead() directly, as the LM35
code does. Unlike the LM35 code, this sketch doesn’t need to set up an exter-
nal voltage reference: one advantage of using the MCP9808 is that the chip
contains its own internal reference. Otherwise, apart from a few differences
in variable names, the rest of the sketch is the same as the LM35 code.

How the Temperature Readouts Work
In both sketches, the basic temperature readout comprises a series of 10 dif-
ferent colored LEDs with transistors driven in an emitter-follower configu-
ration from outputs D2 through D11 on the Nano.

The outputs of the Nano are activated by the sketch, and each out-
put corresponds to a conditional statement of the form, “If temperature
is between X degrees and Y degrees, turn on an LED. If not, turn off the
LED.” The if statements for these commands are the same in both the
LM35 and the MCP9808 high-accuracy version.

When I first completed the project, I used it in a saltwater fish tank,
where I wanted to accurately view the temperature at a glance and at a
distance. I set up the LEDs to blink at unacceptable temperature extremes
to get my attention so I could take corrective action. The blinking effect
required only turning the LED off and on with a delay in between. I modi-
fied the sketch to read as follows for the warning condition:

 if((tempF > 78) && (tempF < 79)) {
 digitalWrite(9, HIGH);
 delay(50);
 digitalWrite(9, LOW);
 delay(50);
 }
 else {
 digitalWrite(9, LOW);
 }

296 Chapter 10

This example blinks the display when, and only when, the temperature
is between 78 and 79°F, as indicated in the full sketch. The length of the
delay, combined with any further delays you might add, determines the
blinking rate.

The general readout system and this simple, silent alarm worked
extremely well together. I could set alarms to make sure that the tempera-
ture was above or below the threshold temperature.

I also thought it might be valuable to have a digital readout, however,
for two reasons:

1.	 I wanted the option to see exactly what the temperature was.

2.	 Should the temperature go out of range and the “blink” alarm execute,
I wanted to see how far from the limit the temperature was.

Adding the digital display was relatively easy, as I used a standard
16×2 LCD with I2C interface requiring only four wires. I bought an LCD
with a built-in I2C adapter this time. It was larger than I had hoped for, but
I was unable to find a smaller display easily. If you can find one, go for it.

The Shield
The PCB shield for this project was
designed with two copper layers
rather than a single layer. The extra
layer makes fabricating the board a
little more difficult, but it saves a lot
of effort in identifying and wiring
jumpers. I initially etched the board
in-house, but I had the finished board
produced by Express PCB. The plated
through-holes on the profession-
ally finished board made assembly a
lot easier. The layers of the PCB are
shown in Figure 10-7.

Notice that the LED driver tran-
sistors are located below the Nano
board to save on surface area. The
only penalty to this is that the Nano
sits a little higher on the board. You
can see the transistors in Figure 10-8,
which shows the populated PCB with
the Nano board next to it.

The shield also includes provi-
sions for two I2C devices—one at
either end of the board. Because I
thought this board might find its way
into many different projects, I made
it as flexible as possible. The I2C

Figure 10-7: The top layer of the PCB
shield with silkscreen image. You can
see the pattern for the MCP9808 in
the bottom left.

The Chromatic Thermometer 297

connections make it easy to hook up both the high-accuracy Adafruit break-
out board as well as a digital display. You can either wire them in directly or
solder a straight or right-angle female header into the board for use with a
crimped-connector housing with cable (see Figure 10-9).

Figure 10-8: Populated shield next to an Arduino Nano. Notice
that I used full-length female headers for the Nano. Also note the
holes and traces for an 11th LED in the top right.

Figure 10-9: The assembled thermometer using the MCP9808 chip
soldered directly to the shield (lower right). One I2C connector is
above and to the right of the MCP9808 chip; connections for
another I2C connector are at the lower left.

298 Chapter 10

The shield includes pads for the MCP9808 chip (installed in Figure 10-9)
if you elect to solder the chip directly to the board. If you use the MCP9808
chip rather than the breakout board without another connection to the I2C
interface, you will have to provide 10-kilohm pull-up resistors to the SDA and
SCL lines. These are not included in the shield layout but can easily be added
to the I2C port connections since they would be unused. In the implementa-
tion in Figure 10-9, the 10-kilohm resistors are on the LCD adapter because
there will be an LCD adapter plugged into the I2C port, eliminating the need
for the pull-up resistors.

While the shield files included for this project provide for direct attach-
ment of the LEDs to the PCB, there are many instances where you may
want to separate the PCB from the LEDs. For example, I made one version
where I spaced out high-intensity, 10 mm LEDs an inch apart on a decorative
piece of wood to create a more dramatic look. To do something like that,
you’d want to solder long wires to the LED leads and then solder those to
the PCB. The cathodes of all the LEDs can be wired together, and only the
anodes need be connected to the board individually.

Construction
If you haven’t soldered your components to the shield PCB or a prototyping
board, do so now, and remember to assemble the LEDs with the correct
polarity. The final configuration of the Chromatic Thermometer depends
very much on your final application, so I will not go into a lot of specific
detail on constructing this project.

For example, if you want to use a remote temperature sensor, you will
want a jack or another appropriate connector. You may also want to cut a slit
in the enclosure to accommodate a wire for the sensor, as well as another
for a long power connection. And if you are going to build the Chromatic
Thermometer with only the LEDs and no LCD, you would probably mount
the electronics inside the enclosure differently. Similarly, if you build the
high-accuracy version, you may need to adjust how you fit your parts into
the enclosure. The Chromatic Thermometer shown in Figure 10-10 uses the
LM35 sensor with the 16×2 LCD.

I used a small box I found on Amazon (originally sold to hold baseball
cards) to enclose the whole thing and mounted the sensor directly to the
shield in the three holes to accommodate it in the PCB. If you don’t want
the LED on the Nano to show, you can unsolder it, or simply cover it with a
small piece of black electrical tape.

Whether you use the 3 mm LEDs or the heftier, high-output 5 mm
LEDs, using some kind of spacer works well for making sure the LEDs are
lined up at the height you like. When I mounted the readout LEDs to the
shield, I placed a sliver of unused PCB material to hold all of the LEDs at a
uniform height (see Figure 10-11). You could use cardboard just as easily,
and if you want a different height, just use a taller or shorter spacer.

The Chromatic Thermometer 299

Figure 10-10: The completed Chromatic Thermometer in an acrylic
enclosure, monitoring the temperature of medicine in a cooler when
traveling. This version uses a 9V battery, which is inside the enclosure.
I used a display with a backlight, but the battery will last a lot longer
without the backlight. Turn on/off thresholds for LEDs were modified
for cold temperature use.

Figure 10-11: I used a discarded strip of PCB material to hold LEDs at uniform height

If you use 5 mm LEDs, you may have difficulty fitting them through the
holes in a standard PCB, as some 5 mm LEDs have wider leads. I expanded
the holes with a drill to fit the larger LEDs; because there were no connec-
tions on the other side of the PCB, the plate-through was not needed.

300 Chapter 10

Mod: Try Dif f eren t L E Ds

The Chromatic Thermometer shown in Figure 10-8 uses 3 mm LEDs. I ordered
3 mm LEDs on eBay in 10 different colors, but the leads were a little short.
Subsequently, I ordered 200 5 mm LEDs in a selection of 10 different colors.
These also had short leads, but they were brighter and worked well. I did have
to file the edges of some of the LEDs where there was a little extra flashing from
the mold so they would fit within the 0.200-inch spacing (a little more than
5 mm) on the PCB. However, I could not find enough different-colored high-
output 5 mm LEDs.

For one experimental version, I used six different-colored high-output
5 mm LEDs, repeated the colors at the extremes, and went back to the sketch
to create blinking patterns to differentiate the similar colors. That version of the
Chromatic Thermometer worked well, and the high-output LEDs made it quite
noticeable.

To attract even more attention, you can use high-output 10 mm LEDs. They
will not fit on the shield PCB shown here, however, as I only spaced the LEDs
out by 0.200 inches. That spacing allows for most 3 mm and 5 mm LEDs, but
not 10 mm ones. See Figure 10-12 for a size comparison.

Figure 10-12: From left to right, 10 mm, 5 mm,
and 3 mm LEDs shown next to a metric ruler

To use 10 mm LEDs, you will have to mount them elsewhere and connect
them to the PCB with wires. For inspiration, look at the lightbar for the Watch
Winder in Chapter 4.

The Chromatic Thermometer 301

Using the Chromatic Thermometer
How you place the thermometer in the environment you want to monitor is
limited only by your imagination. The version I use on my fish tank had no
LCD at first, so I simply attached a couple of wire hooks to the bare board
and hung it from the edge of the tank with the LEDs facing out. (I could
have mounted the entire thing in a small acrylic box, but I had difficulty
finding a box with the right dimensions.) This configuration worked well.

I eventually replaced that Chromatic Thermometer with a version
including an LCD that I enclosed in an acrylic box. I’m thinking of modify-
ing it again to use high-intensity LEDs that shine through the tank. That
should create an interesting effect!

A
Ace Hardware, 64
acrylic sheet, 93–94
Adafruit_MCP9808 library, 295
ADC DAC8562 digital-to-analog

converter, 234, 239
ADCs (analog-to-digital converters),

46–47, 73, 238
alarm trigger, Garage Sentry, 142–143
Amico H7EC-BCM counter, 95
ammonium persulfate, 14
amplitude, 256
analog meters, 202–203, 208–209
analog-to-digital converters (ADCs),

46–47, 73, 238
Arduino boards

clones, 2, 5. See also Deek-Robot
Pro Mini

Nano, 2
vs. Arduino Pro Mini, 263
in Automated Agitator for PCB

Etching, 43, 45, 51–52, 57,
58, 60, 64

in Chromatic Thermometer,
282, 284–288, 295–298

in Chronograph Lite, 232–233,
234–236

connecting, 6–8
in Custom pH Meter, 192, 195,

197, 198
in Full Ballistic Chronograph,

234–236, 238–239, 244
in Garage Sentry, 136–138, 143,

147–149, 152–153
programming, 6–8
in Reaction-Time Machine,

28–31, 36, 38, 39
time measurement with, 28–29
in Watch Winder, 94, 97–101,

108–109, 123–125

preparing, 2–3
Pro Mini, 2

vs. Arduino Nano, 263
in Chronograph Lite, 221,

225, 232
connecting, 8–11
connecting Uno to, 9–10
programming, 8–11
in Regulated Power Supply, 70,

74, 76–79, 81–82
in Square-Wave Generator, 259,

260, 262–264, 269–271, 273
Uno, connecting Pro Mini to, 8–10
uploading sketches onto, 5–11

Arduino IDE
compiling routine in, 32
installing, 5
using, 5–6

ATmega328 microcontroller, 59, 97,
235, 259

Automated Agitator for PCB Etching
automatic motor reversal in, 44–45
breadboard, 50–53
construction of

crank bushing in, 63–64
limit wires in, 62
packaging, 64–66

downloads, 44
etching process, 66–67
H-bridge, 48–49
parts list, 43
required tools, 43
reversal threshold, 46–48
schematic, 45–46
shield

design notes, 58–60
PCB layout, 57

sketch, 53–56
automatic watches, 90, 92

I nde x

304 Index

B
ballistic chronographs. See also

Chronograph Lite; Full
Ballistic Chronograph

muzzle velocity measurement,
219–220

purpose of, 217
Battery Saver

battery types, 181
breadboard, 164–166
construction of

assembling all the parts,
178–179

contact support, 172–173
copper contact assembly,

173–174
e-clips, 175–176
enclosure preparation, 171–172
mounting supplies for the

solenoid, 175
pylon, 177–178
release lever, 176–177
release rod, 175–176
springs, 175–176

downloads, 160
high-current switch, 162
how it works, 162–163
installing into a vehicle, 180
notes of caution, 158
operation of

Cool Amp application, 182–183
normal, 180–181
protection from

environment, 182
threshold voltage, setting, 181

parts list, 159–160
patent, 183
required tools, 157–158
schematic, 160–164
shield, 168–170
sketch, 167–168
timing sequences, 164
trigger point, 163
uses of, 156
wiring on boat, 158

bearing box acrylic, Watch Winder,
110–114

bipolar voltage, 193
BNC connector, 188, 213, 262
boats, Battery Saver for, 157

breadboard
Automated Agitator for PCB

Etching, 50–53
Battery Saver, 164–166
Chromatic Thermometer, 286–288
Chronograph Lite, 224–226
Custom pH Meter, 197–201
Garage Sentry, 136–138
inserting pins into, 3
Reaction-Time Machine, 30–32
Regulated Power Supply, 76–79
Square-Wave Generator, 269–271
Watch Winder, 98–102
wiring up, 99–102

buffer solution, 190
Bulova, 92

C
capacitors, 188–189, 198, 200,

234–235, 261
carbon tetrachloride, 14
CD4011BC NAND gate, 236, 240
CD4013 dual D flip-flop, 234
CD4017 decade counter, 230
CD4017 B decade counter, 261
CD4040 12-stage binary counter, 234,

236, 240
ceramic capacitors, 94, 188, 261
Chip Quik, xxiv, 22
Chromatic Thermometer

breadboard, 286–288
construction of, 298–299
downloads, 284
how it works, 284
LEDs, 279, 285, 298–300
parts list, 282
required tools, 282
schematic, 284–285
shield, 296–298
sketches

for LM35 system, 289–292
for MCP9808 system, 292–295
temperature readout, 295–296

temperature sensor, 280–281, 283
using, 301

Chronograph Lite. See also Full Ballistic
Chronograph

breadboard, 224–226
construction of, 230–232

sensor channel, 232–233
wiring up the Pro Mini, 232

Index 305

downloads, 222
parts list, 221–22
required tools, 221
schematic, 222
sketch, 226–228
test bed, 222–224
testing with projectile simulator,

229–230
using, 253–254

clock speed, 236–238
colorimeters, 185
compiling, 32
connectors, 18–20
contact support, Battery Saver, 172–173
Cool Amp, 182–183
copper bus bar, Battery Saver, 159
copper contact assembly, Battery Saver,

173–174
copper salts, 15
counter, 236
crank bushing, Automated Agitator for

PCB Etching, 63–64
crimp connectors, 18–20
crimping tools, 18–19
Crossman pellet gun, 250
Crossman T4, 250
current drain, 48
current-limiting resistors, 147
Custom pH Meter

analog, 202–203
breadboard, 197–201
calibrating, 201–202
vs. colorimeters, 185
construction of

circuit board, mounting, 213
enclosure, 212–213
installing other hardware,

214–216
downloads, 189
function of, 186
LCD, 188, 196–197
vs. litmus paper indicators, 185
offset and gain, 194
parts list, 187–189
precautions, 210–211
probe, 189–191
required tools, 187
schematic

design notes, 193–195
IC selection, 196

integration of high-impedance
probe, 193

op-amp circuit, 195
shield, 210–211
significant figures, 209
simulator circuit, wiring up,

200–201
sketch, 205–209

centering analog meter,
208–209

smoothing the pH and
temperature output, 208

temperature effects, 202
temperature sensor, 204–205,

215–216

D
DACs (digital-to-analog converters),

238–239
DDS (direct digital synthesis), 259, 265
debounce, 97
decade counter, 267
Deek-Robot Pro Mini

in Battery Saver, 159, 161–162,
165–166, 169–174, 179

in Custom pH Meter, 187, 192, 193,
195, 198, 207, 210–211

in Square-Wave Generator, 263–264
Deluxe Garage Sentry

construction of, 152–154
LEDs in, 151, 152
parts, 132
schematic, 148–149
shield, 151–152
sketch, 149–151

diagonal cutters, 2
Digi-Key, xxv, 18
digital multimeter (DMM), 75
digital quartz electronic watch, 92
digital-to-analog converters (DACs),

238–239
DIP (dual inline package), 49
direct digital synthesis (DDS), 259, 265
distance calculation, 133–134
downloads, xxv

Automated Agitator for PCB
Etching, 44

Battery Saver, 160
Chromatic Thermometer, 284
Chronograph Lite, 222

306 Index

downloads (continued)
Custom pH Meter, 189
Full Ballistic Chronograph, 235
Garage Sentry, 132
Reaction-Time Machine, 27
Regulated Power Supply, 71
Square-Wave Generator, 262
Watch Winder, 95

Dremel tool, xxiii, 17, 172–173
drill, xxiii, 17–18
driveshaft, Watch Winder, 116–119
dropping resistor, 55
dual inline package (DIP), 49

E
e-clips, 160, 175–176
electrolytic capacitor, 261
Electro-Mechano drill press, 17
Electronic Goldmine G19852, 159
enclosure

Battery Saver, 171–172
Custom pH Meter, 212–213
Full Ballistic Chronograph, 245–247
Regulated Power Supply, 83–85
Square-Wave Generator, 274–276

etchant, 13, 15
etching PCBs, 15–17, 66–67
ExpressPCB software, 11–13, 57

F
ferric chloride, 14
flexible voltage regulator circuit, 72–74
flip-flop, 239
FreqCount.h library, 271–272
frequency, 257
frequency counter, 258–259
FTDI-based serial adapters, 263
Full Ballistic Chronograph. See also

Chronograph Lite
accuracy, 235
clock speed

adjusting, 238
selecting, 236–238

construction of, 245–247
counter, selecting, 236
designing, 238–239
downloads, 235
high-speed window, 235–236
machine code, 235

parts list, 234–235
required tools, 234
schematic, 239–241
sensor channel

building, 247–250
cable, 251–252
LEDs, 249
Optoschmitt photosensors, 235,

241, 248, 250–251
PCBs, 248
UV LEDs, 250–251

shield, 242–244
sketch, 241–242
soldering, 244–245
using, 253

function generators, 255
Futurlec, 23
Futurlec TO220SMAL heat sink, 71
Futurlec TO220ST heat sink, 71

G
Garage Sentry

breadboard, 136–138
construction of

mounting options, 145–147
potentiometer holes,

drilling, 145
soldering transistors

and current-limiting
resistors, 147

transducer holes, drilling, 144
wiring pieces together, 147

Deluxe
construction of, 152–154
LEDs in, 151, 152
parts, 132
schematic, 148–149
shield, 151–152
sketch, 149–151

distance calculation, 133–134
downloads, 132
how it works, 134–136
inspiration behind, 130
LEDs in, 132–133, 143, 145
parts list, 130–132
required tools, 130
schematic, 132–133
sketch, 138–140

alarm trigger, 142–143
distance measurement, 141

Index 307

loop() function, 140–141
setup() function, 140

time-to-distance conversion
factors, 142

GBC laminator, 14
grounding, 58

H
Hall effect sensor, 96–97, 100, 108–109,

122–123
Hammond 1591 ATBU, 131
Hammond 1591 BTCL, 152–154, 189,

212–213, 221, 231
Hammond 1591 STCL, 160, 171–172
Hammond 1595C, 261, 274–276
H-bridge, 48–49, 96, 100
HC-SR04 ultrasonic sensor, 130,

134–135, 137–138
HCT 4011 4-input NAND gate, 234
HCT4017 decade counter IC, 261,

270–271, 273
header pins, 3
heat sink, 58
Honeywell Optoschmitt SA5600, 221,

224, 226, 250–251
Honeywell Optoschmitt SD5610, 235,

250–251
hydrogen peroxide, 15

I
I2C (inter-integrated circuit) board

address, 36
affixing to LCD, 3–5
Chromatic Thermometer, 288
Chronograph Lite, 232
Full Ballistic Chronograph, 234
Square-Wave Generator, 261

Igoe, Tom, 208
#include, 35
inline connectors, 160

J
Jameco, xxiv, xxv, 18
jigsaws, xxiii

K
Klean Strip, 115

L
LCD

affixing I2C board to, 3–5
Chronograph Lite, 232
Custom pH Meter, 188, 196–197
Reaction-Time Machine, 28–29
Regulated Power Supply, 76–77, 80
Square-Wave Generator, 276

LEDs
Automated Agitator for PCB

Etching, 52, 64–65
Chromatic Thermometer, 279, 285,

298–300
Chronograph Lite, 222–223, 249
Deluxe Garage Sentry, 151, 152
Garage Sentry, 132–133, 143, 145
Watch Winder, 101, 102, 108

adding, 122–123
number of, 125–126
placement of, 125–126

limit wires, 62
LiquidCrystal library, 35, 36
litmus paper, 185
LM317 regulator chip, 70, 72–74, 77,

81–82
LM35 temperature sensor

Chromatic Thermometer, 281, 282,
283, 284, 285, 287, 289–292

Custom pH Meter, 187, 215–216
LM7805 regulator

Battery Saver, 159, 161, 165–166
Custom pH Meter, 188, 193, 199
Full Ballistic Chronograph, 234
Garage Sentry, 131
Regulated Power Supply, 77–78,

81–82
Square-Wave Generator, 273
Watch Winder, 97, 99, 108, 109

LMC6001 op-amp, 196
LMC6042 op-amp, 196
LMC7660 power inverter, 188, 193, 198
LMP7702 op-amp, 196
logic gate, 236
loop() function, 108, 140–141
LTC1799 oscillator, 260, 262, 265,

268–270, 273

M
machine code, 235
Magnavox AC adapter, 131

308 Index

male crimp connects, 71
map() function, 209
MCP9808 sensor, 281, 282, 283, 285,

292–295, 297, 298
mechatronics, xxii
Melexis US5881LUA, 94
Mellis, David, 208
methyl chloride, 115
microcontrollers, 185
MiniBoard service, ExpressPCB, 13
mini-USB, 6
motor assembly, Watch Winder, 110,

116–119
motor bushing, Watch Winder, 117–118
motor mount, Watch Winder, 110–114
Mouser, xxv, 18
multimeters, 47
muriatic acid, 15
muzzle velocity, 219–220

N
NAND logic gate, 234, 236
negative feedback resistor, 195
Newark Electronics, xxv, 18
NIST (National Institute of Standards

and Technology), 204, 281
NPN transistors, 98, 162

2N5172, 234
ZTX649, 131

O
Ohm’s law, 46, 74
OPA129 op-amp, 196
OPA627/637 op-amp, 196
op-amp circuit, 195–196
Optoschmitt photosensors

Chronograph Lite, 221, 223, 226
Full Ballistic Chronograph,

235, 241, 248, 250–251
oscillators, 260, 262, 265, 268–270, 273

P
paint stripper, 115
parking assistant. See Garage Sentry
PBC Fab-in-a-Box, 14
PCBs (printed circuit boards), 10

drilling, 17–18
etching, 15–16
layout, 57, 168–169

making, 13–18
patterns, applying, 14–15

period, 257
Permatex silicon RTV sealant, 182
pH

measurement of, 187
temperature effects, 203

pH probe
calibration, 189, 191
electrical impedance, 190
high-impedance, 193
integration of, 193
output voltage, 189
simplified drawing of, 190
taking care of, 190–191

phototransistors, 221, 222–224
pliers, xxiii
Pololu Robotics and Electronics, xxv, 18
potentiometer, 109, 142, 195, 201, 261
printed circuit boards (PCBs). See PCBs

(printed circuit boards)
printed wiring board, 10
projectile simulator, ballistic

chronographs, 229–230
projects

Automated Agitator for PCB
Etching, 41–67

Battery Saver, 155–183
Chromatic Thermometer, 279–301
Chronograph Lite, 221–233
Custom pH Meter, 185–216
Full Ballistic Chronograph, 233–254
Garage Sentry, 129–154
Reaction-Time Machine, 25–40
Regulated Power Supply, 69–87
Square-Wave Generator, 255–278
Watch Winder, 89–127

PulsarProFX, 14
pulseIn() method, 141
pylon, 177–178

R
R1-R9 voltage divider, 73
R4A-2RS bearing, 110
reactions, 27–28
Reaction-Time Machine

breadboard, 30–32
construction of

hardware mounting, 38–39
sturdy case for, preparing,

37–38

Index 309

customizing, 40
downloads, 27
history of reaction-time devices, 28
how it works

speed ranges, expected, 29
time measurement, 28–29

parts list, 26–27
reaction vs. reflex, 27–28
required tools, 26
schematic, 29–30
sketch, 32–35

custom commentary, 35
loop, 36–37

reflexes, 27–28
Regulated Power Supply

breadboard
Arduino Pro Mini, preparing, 76
building, 77–79
LCD, preparing, 76–77

construction of, 82
circuit board, mounting, 85–87
enclosure, 83–85

downloads, 71
flexible voltage regulator circuit,

72–75
parts list, 70–71
required tools, 70
schematic, 75
shield, 80–82
sketch, 79–80
uses of, 72

release lever, Battery Saver, 177–178
release rod, Battery Saver, 175–176
resistance temperature detectors

(RTDs), 280
resistors

Automated Agitator for PCB
Etching, 60

Battery Saver, 159
Chromatic Thermometer, 282
Chronograph Lite, 221
Custom pH Meter, 199–201
current-limiting, 147
dropping, 55
Full Ballistic Chronograph, 234
voltage divider, 74

retailers, xxv
reversal threshold, Automated Agitator

for PCB Etching, 46–48
riding mowers, Battery Saver for, 157
RTDs (resistance temperature

detectors), 280

S
saws, xxiii
schematics

Automated Agitator for PCB
Etching, 45–46

Battery Saver, 160–164
Chromatic Thermometer, 284–285
Chronograph Lite, 222
Custom pH Meter, 191–196
Deluxe Garage Sentry, 148–149
Full Ballistic Chronograph, 239–241
Garage Sentry, 132–133
Reaction-Time Machine, 29–30
Regulated Power Supply, 75
Square-Wave Generator, 262–263
Watch Winder, 97–98

Schmitt trigger, 97, 250–251
screwdrivers, xxiii
semiconductor temperature sensors, 281
sensor channel, Full Ballistic

Chronograph
building, 247–250
cable, 251–252
LEDs, 249
Optoschmitt photosensors, 235,

241, 248, 250–251
PCBs, 248
UV LEDs, 250–251

serial adapters, 263
serial COM port, 6
setting up

affixing I2C board to LCD, 3–5
Arduino board, preparing, 2–3
making own PCBs, 13–18
uploading sketches to Arduino,

5–11
using PCB software, 11–13
using SOICs, 20–24

setup() function, 108, 140
Shepherd, Jean, 218
shield

Automated Agitator for PCB
Etching, 57–60

Battery Saver, 168–170
Chromatic Thermometer, 296–298
Custom pH Meter, 210–211
Deluxe Garage Sentry, 151–152
Full Ballistic Chronograph,

242–244
Regulated Power Supply, 80–82
Square-Wave Generator, 272–273
Watch Winder, 108–109

310 Index

signal generators, 255
significant figures, 209
silicon band-gap temperature

sensor, 281
Simpson analog meter, 202
sine wave, 258
sketches, xix

Automated Agitator for PCB
Etching, 53–56

Battery Saver, 167–168
Chromatic Thermometer

LM35 system, 289–292
MCP9808 system, 292–295
temperature readout, 295–296

Chronograph Lite, 226–228
creating, 5
Custom pH Meter, 205–209
Deluxe Garage Sentry, 149–151
Full Ballistic Chronograph,

241–242
Garage Sentry, 138–140

alarm trigger, 142–143
distance measurement, 141
loop() function, 140–141
setup() function, 140

Reaction-Time Machine, 32–35
custom commentary, 35
loop, 36–37

Regulated Power Supply, 79–80
saving, 5
Square-Wave Generator, 271–272
uploading to Arduino, 5–11
verifying, 5–6
Watch Winder, 102–108

SMT (surface-mount technology)
devices, 21

SN754410 H-bridge, 94, 99
solder lug, 64
SOICs (small-outline integrated

circuits), 20
solder paste method, 21–23
soldering directly, 23–24

solenoid, 159, 164, 175
SOT23 adapter board, 234
SPDT toggle switches, 261
SPST switch, 64, 71, 232
square wave, 256–257

listening to, 268
uses of, 257

Square-Wave Generator
breadboard, 269–271
construction of, 273

enclosure preparation, 274–276
wiring the electronics, 276–277

definition of, 255
design notes and mods

battery power, 278
displaying frequency in other

units, 277
reading external input

frequencies, 277–278
development, 264

frequency display, 265–266
signal generation, 265

downloads, 262
oscillator, 268–269
parts list, 260–262
Pro Mini boards, 263–264
projectile simulator and, 229
reasons for building, 256–257
required tools, 260
schematic, 262–263
shield, 272–273
shortcomings of, 259
signal integrity, 266–267
sketch, 271–272

stamp, 186
Stoffregen, Paul, 265
surface-mount technology (SMT)

devices, 21
switches, 262

T
tantalum capacitors, 94, 188–189, 234
tap and die sets, xxiv
tapered reamer, xxiv
temperature sensor

accuracy of, 204–205
adding, 204
Chromatic Thermometer,

choosing, 280–281
connecting, 215–216
remote, 283
semiconductor, 281
silicon band-gap, 281

thermal ink, 15
thermistors, 280
thermocouples, 280
threaded shaft, Watch Winder, 116–117
3PDT toggle switch, 234
threshold voltage, Battery Saver, 181
TI SN 74LVC1GX04 crystal-oscillator

driver, 234, 238

Index 311

time base, 259
time measurement, with Nano, 28–29
time of flight, 237
time per cycle, 237
time pulse, 259
TL072 dual op-amp, 187, 196, 199
TLC2262 op-amp, 196
TO-220 heat sink, 71
TO220SMAL heat sink, 71
TO220ST heat sink, 71
tools, xxiii–xxiv
tractors, Battery Saver for, 157
transistors

NPN, 98, 162
soldering, 147
ZTX649. See ZTX649 transistors

transistor-transistor logic (TTL), 8
trichloroethylene, 14
trimmer, 188, 201

U
U bracket, 146–147
ultrasonic sound, 134
ultrasonic transceiver module, 130, 134
USB adapter, 11
USB cable, 6, 8
USB-to-TTL devices, 10
UV LEDs, 250–251

V
variable frequency oscillator (VFO), 265
Velcro, 145
velocity, 237
VIN port, 228
voltage, 47
voltage divider, 73, 74–75
voltage regulator, 58, 261

W
Watch Winder

breadboard, 98–102
construction of

bearing box acrylic, preparing,
110–114

bonding the acrylic for the
bearing box, 114–115

driveshaft, 116–119
keeping the watches in

basket, 124

leaving the components on
display, 123–124

motor assembly, 110, 118–119
motor bushing, 117–118
motor mount, preparing,

110–114
piano wire pins, cutting,

118–119
stand, building, 115–116
threaded shaft, trimming,

116–117
watch basket, 120–122

controlling revolutions with
Arduino, 96

design notes, 124
motor voltage, 126
rotation counter, 126–127
total rotation adjustment,

124–125
downloads, 95
LEDs, 101, 102, 108

adding, 122–123
number of, 125–126
placement of, 125–126

monitoring rotations with Hall
effect, 96–97

parts list
acrylic parts, 93–94
hardware and circuit

components, 94–95
reasons for building, 90
required tools, 93
requirements, 95–96
schematic, 97–98
shield, 108–109
sketch, 102–108

waveform generators, 255
Weld-On, 115
while loop, 56, 227
Wire.h library, 35

Z
Zener diode, 159, 161, 188, 195, 200
ZLazr, 93
ZTX649 transistors

Battery Saver, 159, 162, 166
Chromatic Thermometer, 282
Garage Sentry, 131, 138
Watch Winder, 94, 101, 109

Arduino Playground is set in New Baskerville, Futura, Dogma, and TheSans
Mono Condensed. The book was printed and bound by Sheridan Books,
Inc. in Chelsea, Michigan. The paper is 60# Finch Offset, which is certified
by the Forest Stewardship Council (FSC).

The book uses a layflat binding, in which the pages are bound together
with a cold-set, flexible glue and the first and last pages of the resulting book
block are attached to the cover. The cover is not actually glued to the book’s
spine, and when open, the book lies flat and the spine doesn’t crack.

RESOURCES
Visit https://www.nostarch.com/arduinoplayground/ for resources, errata, and more
information.

phone:
1.800.420.7240 or

1.415.863.9900

email:
sales@nostarch.com

web:
www.nostarch.com

The Hardware Hacker
Adventures in Making and
Breaking Hardware
by andrew “bunnie” huang

march 2017, 416 pp., $29.95
isbn 978-1-59327-758-1
hardcover

The Maker’s Guide to the
Zombie Apocalypse
Defend Your Base with Simple Circuits,
Arduino, and Raspberry Pi
by simon monk

october 2015, 296 pp., $24.95
isbn 978-1-59327-667-6

Python Crash Course
A Hands-On, Project-Based
Introduction to Programming
by eric matthes

november 2015, 560 pp., $39.95
isbn 978-1-59327-603-4

Arduino Workshop
A Hands-On Introduction
with 65 Projects
by john boxall

may 2013, 392 pp., $29.95
isbn 978-1-59327-448-1

Electronics for Kids
Play with Simple Circuits and
Experiment with Electricity!
by øyvind nydal dahl

july 2016, 328 pp., $24.95
isbn 978-1-59327-725-3
full color

Arduino Project Handbook
25 Practical Projects to Get You Started
by mark geddes

june 2016, 272 pp., $24.95
isbn 978-1-59327-690-4
full color

More no-nonsense books from No Starch Press

	Cover
	Title
	Copyright
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents
	Acknowledgements
	Introduction
	Who This Book Is For
	How This Book Is Organized
	About the Parts Lists
	Tools and Supplies
	Drilling, Cutting, and Assembling
	Prototyping, Soldering, and Testing
	Online Retailers

	About the Online Resources

	0: Setting Up and Useful Skills
	Preparing the Arduino Board
	Affixing the I2C Board to the LCD
	Uploading Sketches to Your Arduino
	Installing the Arduino IDE
	Using the Arduino IDE
	Connecting and Programming an Arduino Nano
	Connecting and Programming an Arduino Pro Mini

	Using PCB Software
	Making Your Own PCBs
	Applying the Pattern
	Etching the Board
	Drilling the Board

	Connectors Used in This Book
	Using SOICs
	What Are SMT Devices?
	The Solder Paste Method
	Soldering Directly

	Closing Thoughts

	1: The Reaction-Time Machine
	Required Tools
	Parts List
	Downloads
	Reaction vs. Reflex
	How Does the Game Work?
	Measuring Time with the Arduino Nano
	Expected Speed Ranges

	The Schematic
	The Breadboard
	The Sketch
	Customized Reaction Commentary
	What Happens in the Loop

	Construction
	Preparing a Sturdy Case
	Mounting the Hardware

	Ideas for Customization

	2: An Automated Agitator for PCB Etching
	Required Tools
	Parts List
	Downloads
	How Automatic Motor Reversal Works
	The Schematic
	Determining the Reversal Threshold
	Using an H-Bridge
	The Breadboard
	The Sketch
	The Shield
	PCB Layout
	Shield Design Notes

	Construction
	The Limit Wires
	The Crank Bushing
	Packaging

	The Etching Process

	3: The Regulated Power Supply
	Required Tools
	Parts List
	Downloads
	A Flexible Voltage Regulator Circuit
	How the Circuit Works
	The Schematic
	The Breadboard
	Preparing the Arduino Pro Mini and LCD
	Building the Breadboard

	The Sketch
	The Shield
	Construction
	Preparing the Enclosure
	Mounting the Circuit Board

	4: A Watch Winder
	Why a Watch Winder?
	Required Tools
	Parts List
	Acrylic
	Other Hardware and Circuit Components

	Downloads
	Basic Watch Winder Requirements
	Using an Arduino to Control Winder Revolutions
	Using a Hall Effect Sensor to Monitor Rotations
	The Schematic
	The Breadboard
	The Sketch
	The Shield
	Overview of the Motor Assembly
	Construction
	Preparing the Motor Mount and Bearing Box Acrylic
	Bonding the Acrylic for the Bearing Box
	Building the Stand
	Preparing the Motor and the Driveshaft
	Making the Watch Basket
	Adding the LEDs
	Leaving the Components on Display
	Keeping the Watches in the Basket

	Design Notes
	Total Rotation Adjustment
	How Many LEDs to Use and Where to Put Them
	Motor Voltage
	How Many Rotations Does the Watch Winder Make?

	5: The Garage Sentry Parking Assistant
	Required Tools
	Parts List
	Deluxe Parts
	Downloads
	The Schematic
	Basics of Calculating Distance
	How the Garage Sentry Works
	The Breadboard
	The Sketch
	Inside the setup() Function
	Inside the loop() Function
	Determining Distance
	Triggering the Alarm

	Construction
	Drilling Holes for the Electronics
	Mounting Options
	Soldering the Transistors and Current-Limiting Resistors
	Wiring the Pieces Together

	The Deluxe Garage Sentry
	The Deluxe Schematic
	The Deluxe Sketch
	The Deluxe Shield
	A Bigger Box

	6: The Battery Saver
	Boats, Tractors, and Other Vehicles
	Required Tools
	Parts List
	Downloads
	The Schematic
	How the Battery Saver Prevents Draining
	Arduino to the Rescue

	The Breadboard
	The Sketch
	The Shield
	The PCB Layout
	Preparing the Shield and Pro Mini Controller

	Construction
	Preparing the Enclosure
	The Contact Support
	Preparing the Copper Contact Assembly
	Mounting Supplies for the Solenoid
	Preparing the Release Rod, Springs, and E-Clip
	Making the Release Lever and Pylon
	Assembling All the Parts

	Installing the Battery Saver into a Vehicle
	Operating the Battery Saver
	Normal Operation
	Setting the Threshold Voltage
	Protection from the Environment
	Applying Cool Amp

	7: A Custom pH Meter
	Why Build Your Own pH Meter?
	Required Tools
	Parts List
	Downloads
	About the pH Probe
	The Schematic
	Integrating the High-Impedance Probe
	General Design Notes
	The Op-Amp Circuit in Detail
	Some Notes on IC Selection

	Preparing the LCD
	The Breadboard
	Calibrating the Custom pH Meter
	About the Effects of Temperature
	Adding a Temperature Sensor
	Checking Accuracy

	The Sketch
	Smoothing the pH and Temperature Output
	Centering an Analog Meter

	The Shield
	Construction
	The Custom pH Meter Enclosure
	Mounting the Circuit Board
	Installing the Other Hardware

	8: Two Ballistic Chronographs
	What Is a Ballistic Chronograph?
	Commercial Chronographs
	Measuring Muzzle Velocity
	This Project’s Approach

	The Chronograph Lite
	Required Tools
	Parts List
	Downloads
	The Schematic
	Building a Test Bed
	The Breadboard
	The Sketch
	Construction

	The Full Ballistic Chronograph
	Required Tools
	Parts List
	Downloads
	Improving the Accuracy
	Designing the Full Ballistic Chronograph
	The Schematic
	The Sketch
	The Shield
	Soldering the Full Ballistic Chronograph
	Construction

	The Sensor Channel
	Building the Sensor Channel
	Optoschmitt Light Sensors and UV LEDs
	Sensor Umbilical Cable

	Final Setup and Operation
	Using the Full Ballistic Chronograph
	Using the Chronograph Lite

	9: The Square-Wave Generator
	Why Build a Square-Wave Generator?
	What Is a Square Wave?
	Why Square Waves Are Useful
	A Frequency Counter

	Shortcomings of the Square-Wave Generator
	Required Tools
	Parts List
	Downloads
	The Schematic
	Important Notes on the Pro Mini
	How the Square-Wave Generator Was Developed
	Deciding How to Generate Signals
	Planning How to Display the Frequency

	Signal Integrity
	Fine-Tuning with a Decade Counter
	The Oscillator in Detail
	The Breadboard
	The Sketch
	The Shield
	Construction
	Preparing the Enclosure
	Wiring the Electronics

	Design Notes and Mods
	Displaying Frequency in Other Units
	Reading External Input Frequencies
	Battery Power

	10: The Chromatic Thermometer
	Choosing a Temperature Sensor
	Required Tools
	Parts List
	Downloads
	How the Chromatic Thermometer Works
	The Schematic
	The Breadboard
	The Sketches
	Sketch for the LM35 System
	Sketch for the MCP9808 System
	How the Temperature Readouts Work

	The Shield
	Construction
	Using the Chromatic Thermometer

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

	Back Cover

