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I n t roduc     t ion 

Welcome to Arduino Playground! This book 
provides a broad spectrum of projects 

demonstrating the flexibility and versatil-
ity of the Arduino family of microcontroller 

boards. Each project contains everything you need to 
know to build it, including a schematic, a component 
list, and any sketches (that’s what Arduino folks call programs). I also endeav-
ored to provide all information about the mechanical parts of each project, 
including a list of supplies, so you can complete any enclosures, moving 
parts, skeletons, and so on. Any special tools required are also described in 
the projects.  

I have tried to make the projects more than just recipes for assembling 
the parts by including some background explanations of how I came up 
with the projects and how the technology works. I hope that the projects 
can be useful end products by themselves and, with some ingenuity, per-
haps even serve as a launching pad for you to create projects of your own. 
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Who This Book Is For
Building the projects in this book does not require an engineering degree, 
advanced mechanical aptitude, or programming expertise. That said, there 
are some basic requirements you should have to get the most out of the book:

•	 An understanding of basic electronics, including the ability to read 
a schematic diagram and recognize elements such as resistors and 
capacitors

•	 An understanding of how to use computers and write software (Von 
Neumann architecture if you want to be snobby); knowledge of 
Arduino or other microcontroller architectures helps

•	 Experience soldering connections and wires

•	 Limited mechanical skills, such as how to operate an electric drill, vari-
ous saws, and so on

My hope is that both beginner and experienced Arduino users will 
learn something new about electronics in these projects. 

How This Book Is Organized
Each chapter focuses on one project and describes how to prototype it on 
a breadboard for testing, briefly discusses how the sketch works, and finally 
shows how to construct the final product. 

•	 Chapter 0: Setting Up and Useful Skills provides you with some basic 
knowledge that you’ll use throughout the book, including how to pre-
pare Arduino boards, how to program them, and how to use PCB soft-
ware and make your own PCBs.

•	 In Chapter 1: The Reaction-Time Machine, you take advantage of the 
real-time capabilities of the Arduino microcontroller by measuring a 
user’s reaction to a stimulus. This project is quick and easy to build, 
and you’ll learn some of the fundamentals of using a controller for 
timing—with lots of opportunity to experiment with the sketch. The 
finished unit will provide hours of fun and entertainment for you and 
your friends and family. 

•	 Chapter 2: An Automated Agitator for PCB Etching shows how you can 
use a change in current drain to make things happen in a circuit. In 
this case, the change reverses the direction of a motor so that it can be 
used to agitate printed-circuit boards in an etchant solution. Etching 
PCBs is but one application for the technology, as explained in the 
chapter. 

•	 The project in Chapter 3: The Regulated Power Supply may well turn 
out to be one of the most frequently used products on your workbench. 
It’s a regulated variable-voltage power supply with a digital readout for 
voltage and current. The design is simple yet effective, and it’s fun to 
build.
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•	 The project in Chapter 4: A Watch Winder is one of my favorites. It 
serves the utilitarian function of keeping automatic (self-winding) 
watches wound when not being worn, but the cool design also makes 
it a great kinetic sculpture. The Watch Winder uses an Arduino Nano 
to handle all the timing functions for keeping the watches wound and 
includes a multi-colored LED light display. Some of the assembly tech-
niques may challenge a beginner, but the effort is more than worth it. 

•	 The project in Chapter 5: The Garage Sentry Parking Assistant is a 
high-tech device designed to help you park your vehicle in your garage. 
It’s the electronic version of a tennis-ball-on-a-string contraption that’s 
designed to measure the distance you want to pull into your garage. 
It introduces ultrasonic transmitters and receivers and illustrates how 
they can be integrated with the Arduino controller. While this is a very 
practical application of the technology, other applications (such as liq-
uid measurement) are limited only by your imagination. 

•	 In Chapter 6: The Battery Saver, you make a device to help keep lead-
acid storage batteries from being ruined by accidental discharge. The 
design is basically a high-current switch in series with a battery that 
disconnects when the battery reaches a dangerous level. While most 
automobiles today incorporate such circuitry, I have found this project 
particularly useful on boats and utility vehicles (tractors, mowers, and 
so on), and it can save you from having to replace these expensive bat-
teries needlessly.  

•	 In Chapter 7: A Custom pH Meter, you build a precision instrument 
for measuring pH in a variety of liquids. While the Custom pH Meter 
uses a professional probe, the electronics and readout are based on the 
Arduino processor. If you’re into home brewing, winemaking, hydro-
ponics, or aquariums, or if you’re just managing the chemistry in your 
pool, the Custom pH Meter will be a welcome tool.

•	 The project in Chapter 8: Two Ballistic Chronographs is designed to 
measure the muzzle velocity of various guns from Airsoft pistols and 
rifles to BB guns and pellet guns. While not intended for conventional 
firearms, it boasts capability of measuring velocities over 2,500 feet per 
second. It also introduces some new technology to the stage, including 
some stand-alone logic, a counter, and a DAC. Two versions of the chro-
nograph are described; the smaller one, Chronograph Lite, measures 
projectiles with velocities up to about 700 feet per second. 

•	 In Chapter 9: The Square-Wave Generator, you build a low cost instru-
ment for generating electronic waveforms. The genesis of the project 
was to provide a simulator for the Ballistic Chronograph in Chapter 8, 
but it worked so well that I made a separate project of it. While it falls 
short of the resolution and flexibility of regular laboratory instruments, 
you’ll find it useful in designing and testing various products—and at a 
fraction of the price.  
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•	 In Chapter 10: The Chromatic Thermometer, you create a handy gad-
get that tells the temperature using a sequence of colored LEDs. While 
the initial design is simple, the project led to variations that are more 
complex. You can add a digital readout, a high-accuracy sensor, and a 
variety of mechanical variants for everything from monitoring a fish 
tank to a wall decoration.

This book does not cover the basic engineering or programming 
concepts behind every project in depth, as it assumes you have enough 
background knowledge to understand those concepts based on a brief 
explanation. But for the curious reader, the text does provide references 
where extra information can be found about the design and technology. It 
also gives background into the history of the project: why I built the project 
(and why you might want to build it). In all cases, there has been an effort 
to provide a learning experience at a level the user can appreciate and 
understand.

Where possible, the projects also suggest alternative approaches that 
advanced readers can try. To demonstrate why I selected a particular 
approach, I illustrate how some alternative ways of doing things solve cer-
tain problems and cause others. There’s a lot of room to personalize, and 
perhaps even improve on, each project, whether it be packaging, construc-
tion technique, or the sketch itself. For example, the Watch Winder can be 
a utilitarian device or an upscale kinetic sculpture.

About the Parts Lists
In the design phase of this book, the selection of parts for projects was 
often determined by what I might have had lying around the shop. For 
example, the bearings in the Watch Winder from Chapter 4 were originally 
bearings I had in my junk bin, but I eventually replaced them with the ones 

W h at is Mech at ronics?

During the course of writing this book, I ran across the term mechatronics sev-
eral times. Being kind of a traditionalist (or just an old fuddy-duddy), I ignored 
the first several references. However, I eventually took the time to look up the 
term, and it sure sounds a lot like what we’re doing in this book.

Put simply, mechatronics is the process of designing with electronics and 
mechanical engineering. Tetsuro Mori, the senior engineer of the Japanese 
company Yaskawa in 1969, coined the term to describe the process of building 
industrial robots, which requires electrical, mechanical, and computer engineer-
ing. A mechatronics engineer unites the principles of mechanics, electronics, 
and computing to generate a simpler, more economical, and more reliable 
system. 

http://en.wikipedia.org/wiki/Economy_of_Japan
http://en.wikipedia.org/wiki/Yaskawa
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mentioned in the parts list. I have made every effort to make the projects 
with the tools and materials as described, but I encourage you to use what 
you have handy.

N o t e 	 Almost everyone I know who has programmed an Arduino started with the simple 
“blink” sketch. As a result, many see Arduino as inextricably entwined with LEDs 
turning on and off. Throughout the book, I attempt to reinforce this association by 
including LEDs in as many projects as possible. While blinking an LED doesn’t even 
scratch the surface of the Arduino’s capabilities, LEDs make the projects more fun and 
visually interactive.

Tools and Supplies
Before you begin working through this book, review the following lists 
of tools and supplies, and note any items you don’t have. Not all of these 
are required for every project, so when you want to build a project, read 
the required tools and supplies lists for that particular chapter to see if 
you are missing anything essential. You can purchase most of these items 
at your local hardware store, but I will indicate where buying online might 
be a better option.

Drilling, Cutting, and Assembling 
Screwdrivers  You’ll want both Philips and slotted, in multiple sizes. 

Dremel tool (or equivalent)  A small drill or rotary tool can be very 
useful for a variety of tasks, from drilling and cutting to etching and 
polishing. An inexpensive bench attachment turns the Dremel tool into 
a small drill press, which is really handy, especially for drilling PCBs. 

Electric drill  Battery operated is preferable. If possible, I suggest a 
chuck with 3/8-inch or 1/2-inch capacity—the bigger the better. 

Drill bit set  I recommend purchasing a numbered drill set (that is, 
with bits labeled #1 through #60) in addition to a fractional drill set. 

Pliers  I find that a pair of vise-grip pliers, about 6 to 8 inches long, 
fills many needs for clamping, holding things in place, and tightening. 
I also recommend getting a good pair of needle-nose pliers.

Saws  A simple hacksaw is handy for a variety of tasks. For cutting 
plastic, there are many options: a keyhole saw works well, or if you don’t 
mind spending some more money, a small variable-speed, hand-held 
jigsaw (or saber saw) is handy for making a variety of cuts. I use my jig-
saw almost exclusively with hacksaw blades. (Practice sawing on some 
scrap wood if you’ve never used a jigsaw before. Once you understand 
how to use it, a jigsaw can be one of the handiest tools in the shop.)

Sharp knife and scissors

Screws and nuts   I suggest trying to get a small assortment of both 
English and metric screws and nuts. There are many such assortments 
on eBay, if your local hardware store doesn’t have a good selection.
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Tap and die set  A set isn’t required for most projects, as individual 
taps and dies are available, but a set is cheap and handy to have around.

Tapered reamer  A tapered reamer is useful in many of the book’s 
projects, and it’s a tool I heartily recommend having. I use a set of two 
inexpensive reamers that I purchased on Amazon, and they work very 
well on plastic, aluminum, and mild steel. I suggest getting reamers that 
can create holes up to 7/8 inches in diameter. 

Tape  I suggest keeping masking tape, double-sided foam tape, and 
rugged outdoor double-sided tape (3M brand works well) on hand.

Prototyping, Soldering, and Testing 
Alligator clips or clip-lead set  There are many alligator clips avail-
able, and they are very handy when putting together breadboards. 
Sets are available from multiple sources, including RadioShack and 
Amazon.

Breadboard and jumper wires  These are available from multiple 
sources, including Pololu and Amazon.

Digital multimeter  A broad spectrum of multimeter units is available. 
You can pay anywhere from under $5 to hundreds of dollars, but low-
priced portable units work fine. You will find a multimeter a welcome 
addition to your household tool collection. 

Resistor assortment  I suggest checking eBay or Amazon, where 
you can buy resistors in bulk easily. Some assortments might include 
10 units each of 20 or 30 values, while others contain 100 or more resis-
tors per value. These are very economically priced. 

Soldering iron and solder  Soldering irons are readily available at 
hardware stores, often for less than $10. Jameco even has an online sol-
dering tutorial (http://www.jameco.com/Jameco/workshop/learning-center/
soldering-basics.html) that might be worth reading if you’re a beginner. 

Solder paste  This is needed only if you have trouble soldering surface-
mount components. While these projects use only a small handful of 
surface-mount components, you may use more in the future as manufac-
turers make fewer through-hole versions of newer integrated circuits. I 
use a lead-free solder paste called Chip Quik. Don’t despair, though: you 
can solder surface-mount components with regular rosin-core solder and 
a soldering iron as described in “Using SOICs” on page 20.

Solder wick  While none of us would ever be careless enough to make 
a solder bridge across connections, sometimes a gremlin sneaks in and 
does it anyway. For those occasions, solder wick (a copper braid with a 
little rosin on it to soaks up solder) lets you remove solder cleanly. 

If you like building complete Arduino projects, consider filling out your 
tool collection with any missing items. Everything described here will surely 
be useful at some point.
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Online Retailers
If you can’t find an electronic component or tool at your local hardware 
store, check one of these online retailers:

•	 Adafruit (https://www.adafruit.com/)

•	 Amazon (http://www.amazon.com/)

•	 Bitsbox (good in the UK; http://bitsbox.co.uk/)

•	 Digi-Key (http://www.digikey.com/)

•	 eBay (has almost anything you need for this book at low costs; http://
www.ebay.com/)

•	 Electronic Goldmine (http://www.goldmine-elec-products.com/)

•	 Farnell (ships globally; http://www.farnell.com/)

•	 Harbor Freight (http://www.harborfreight.com/)

•	 Jameco (http://www.jameco.com/)

•	 MCM Electronics (http://www.mcmelectronics.com/)

•	 Mouser (http://www.mouser.com/)

•	 Newark Electronics (http://www.newark.com/)

•	 Newegg (https://www.newegg.com/)

•	 Pololu Robotics and Electronics (https://www.pololu.com/)

•	 SparkFun (https://www.sparkfun.com/)

About the Online Resources
Each project has a Downloads section that lists any sketch, PCB, or tem-
plate files provided online. Using those files is optional—you can copy the 
sketch from the book by hand, design your own PCB, and decide where 
to make holes for components yourself if you prefer. But if you want a 
place to start, download the resource files from https://www.nostarch.com/
arduinoplayground/.

http://www.amazon.com
http://bitsbox.co.uk/
http://www.ebay.com
http://www.ebay.com
http://www.goldmine-elec-products.com/
http://www.farnell.com/
http://www.harborfreight.com/
http://www.mouser.com
https://www.sparkfun.com/
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Se  t t ing    U p  and    U s e f ul   S k ill   s

This book assumes you have some previ-
ous hardware experience, so the projects 

in it won’t hold your hand. That said, if you 
need a refresher on some basic skills, such 

as wiring and programming Arduino boards, keep on 
reading.

This chapter also covers some skills that you will find helpful but that 
you don’t necessarily need to build the projects. For example, in most 
projects, I provide PCB files that you can use to manufacture a shield PCB, 
but if you want to make a PCB rather than solder the circuits to proto-
typing board, read the “Making Your Own PCBs” on page 13. And if 
you’ve never assembled a connector yourself or need guidance on working 
with small-outline integrated circuits, you will find information on that in 
“Using SOICs” on page 20.
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Preparing the Arduino Board
Whether you use an Arduino Nano, a Pro Mini, or one of their clones, there 
is a good chance your board will arrive with the header pins separate and 
unsoldered. All of the boards I’ve purchased came that way (see Figure 0-1).

Figure 0-1: An Arduino Nano clone board with headers and a breadboard, which I use 
as an aid to soldering. 

Before you can use an Arduino or clone, you need to solder the header 
pins. The strips of headers that come with a processor board usually have 
more pins than required, and the first step is to trim them to the number 
you need. The black plastic retainers are grooved to make cutting easy. I 
use a simple set of diagonal cutters to cut the plastic (see Figure 0-2). 

Figure 0-2: The Arduino Pro Mini clone, with the header pins trimmed to length.  
The 5-pin strip fits on the end of the board.
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The next step is to insert the header pins into a breadboard, spaced so 
the holes in the processor board will fit over the pins. Insert the long end 
of the header pins into the breadboard, as shown in Figure 0-3. There are 
four rows of holes left empty between the two rows of header pins—that 
is, three rows plus the space in the center divide—so the processor board 
will fit.

The final step is to place the processor board over the short end of the 
header pins, as shown in Figure 0-4, and solder. 

Now your board has all its pins and is ready to be wired up.

Affixing the I2C Board to the LCD 
Many projects in this book also use a liquid crystal display (LCD) with an 
inter-integrated circuit (I2C) interface (see Figure 0-5). The LCDs used in 
this book can be purchased with or without the I2C adapter board, though 
I have often had to buy the LCD and the adapter board separately. 

If the adapter board isn’t already attached to the LCD, connecting the 
two is about the same as preparing the Arduino board. The adapter board 
usually comes with header pins installed, so all you have to do is insert them 
into the display and solder them.  

Connecting the display and the adapter usually works without any prob-
lems, but in some cases the adapters may have circuitry that almost touches 
the display board. To avoid connections shorting out, I suggest putting elec-
trical tape on the back of the LCD to insulate it from the connections on 
the I2C adapter board. 

Figure 0-3: The header pins have been 
inserted into the breadboard in prepara-
tion for soldering the Nano clone. 

Figure 0-4: The Nano clone in place on the bread-
board and ready for soldering
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Figure 0-5: A 16×2 LCD and an FTDI module 

You may also find that the pins of the header on the I2C board protrude 
through the LCD board enough that it causes a problem when mounting 
the display in a case. Try to solder the I2C board as far from the LCD board 
as possible to minimize the amount that the pins protrude through the 
board. Figure 0-6 shows an adapter board ready to have the pins inserted 
into the LCD base board. 

Figure 0-6: The I2C board in place, ready for soldering
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If soldering the adapter board in such a position proves too awkward, 
you can insert pins to their limit, solder them, and then trim them with a 
wire cutter to make them as flush as possible with the LCD board. 

Depending on your LCD and adapter board, the I2C address you need 
to enter into the sketch may be different. There is a very simple scanner 
available at http://playground.arduino.cc/Main/I2cScanner/. Just follow the 
instructions to figure out your LCD’s I2C address. 0x27 and 0x30 are com-
mon addresses.

Uploading Sketches to Your Arduino
After you’ve assembled a project’s circuit on a breadboard, it’s time to 
load your sketch onto the microcontroller and give it a whirl. I suggest an 
Arduino Nano, Pro Mini, or clones of those for most projects in this book. 

Installing the Arduino IDE
You may already have the free Arduino integrated development environ-
ment (IDE) installed on your computer; if not, download the program and 
install it now. Just visit https://www.arduino.cc/, click Download, and down-
load the appropriate version of the Arduino IDE for your operating system. 
The latest version is 1.6.x. Then, go to the Getting Started with Arduino 
page at https://www.arduino.cc/en/Guide/HomePage/, and follow the corre-
sponding official installation instructions. 

N o t e 	 If you’re not familiar with the IDE, there are a number of tutorials and sample code 
files on the Arduino website. I strongly recommend that you read them to familiarize 
yourself with the software. 

Using the Arduino IDE
After installation, open the Arduino IDE. A blank sketch will appear with 
a name in this format: sketch_<date>. To save your sketch, select File4Save 
As. In the dialog that opens, choose where you want to save your sketch and 
what you want to name it. 

You have a choice when creating a new sketch for a project in this 
book: you can type the sketch into the sketch window, or you can down-
load the sketch file from the resource files at https://www.nostarch.com/
arduinoplayground/ and then copy and paste the code into the sketch 
window. 

I usually like to verify the sketch—that is, compile it—before attempt-
ing to upload it to the board to make sure no errors crept in as the sketch 
was typed into the IDE. Verification is easily accomplished by clicking the 
checkmark in the upper-left corner (see Figure 0-7). The word Verify will 
appear to the right of the five icons on that line when you hover the mouse 
over the checkmark button.
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Figure 0-7: The sketch window with the Verify icon clicked at the  
beginning of the list of icons 

If your code compiles correctly, it’s ready to upload to your board.

Connecting and Programming an Arduino Nano
After verifying your sketch, you have to connect the Arduino board to your 
computer. Of the Arduino boards used in this book, the Nano is the easiest 
to hook up and program, as it includes a built-in USB interface. 

For a Nano, find a cable with a USB plug (type A) on one end and 
a mini-B USB plug on the other; your board probably came with one. 
Connect the USB end to the computer, and connect the mini-B USB end 
to the Nano. Select Tools4Board, and then select the correct board and 
microcontroller (see Figure 0-8). 

You may also need to select the correct serial COM port for your 
Arduino, though some versions of the IDE will automatically find a free 
port and connect to it. Go to Tools4Port and select a serial port from the 
menu that appears. If you have any issues, consult the individual operating 
system guides at https://www.arduino.cc/en/Guide/HomePage/.
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Figure 0-8: The sketch window, with the Tools menu open. I selected Arduino Nano  
with the ATmega328.

The last step in programming the Nano is to upload the code. First, 
make sure the board is still plugged into the computer via the USB cable. 
Then, click the Upload button, which looks like an arrow pointing to the 
right (see Figure 0-9). When you hover the mouse over the Upload button, 
the word Upload should appear to the right of the five main icons.

Uploading code to the Arduino shouldn’t take too long, but it depends 
on the length of the sketch. Afterward, you should be set to power and test 
your circuit. (Don’t forget to unplug the USB before powering it with an 
external power source.) 
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Figure 0-9: The sketch window with the Upload button clicked

Connecting and Programming an Arduino Pro Mini
The Arduino Pro Mini (or clone) works much the same as the Arduino 
Nano, but it doesn’t have a built-in USB interface, opting instead for a 
transistor-transistor logic (TTL) connection. The easiest way I found 
to upload code to the Pro Mini was to remove the processor chip from 
an Arduino Uno, as shown in Figure 0-10, and use the Uno board as a 
programmer. 

The processor-free Uno can be connected to the computer directly 
via USB, so it can provide power as well as programming signals to a 
Pro Mini board connected to it. The USB cable for an Arduino Uno is a 
standard USB cable with a regular (type A) USB connector on one end 
and a square (type B) USB on the other (see Figure 0-10). More informa-
tion about USB cables can be found at https://www.sparkfun.com/pages/
USB_Guide/.

https://www.sparkfun.com/pages/USB_Guide/
https://www.sparkfun.com/pages/USB_Guide/
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Figure 0-10: An Arduino Uno clone with the processor removed (to the right of the board), a USB cable, the 
programming cable assembly, and a loose reset wire

Connect the Uno to the Pro Mini as follows:

•	 Rx on the Pro Mini to Rx on the Uno

•	 Tx on the Pro Mini to Tx on the Uno

•	 VCC on the Pro Mini to 5.0V on the Uno 

•	 GND on the Pro Mini to GND on the Uno

•	 RST on the Pro Mini to RST on the Uno

I made a simple cable to connect the positive and negative voltage sup-
plies as well as the receive (Rx) and transmit (Tx) signals (see Figure 0-11). 
The individual wires on one end plug directly into headers on the Uno, 
and a 4-pin plug attaches to the edge headers on the Pro Mini. You could 
also use separate jumper wires, like those you would use for a breadboard. 
I have found it easiest to plug the Pro Mini into a breadboard so I can con-
nect the RST signal with a jumper wire, as shown in Figure 0-11.
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Figure 0-11: The Arduino Pro Mini clone ready for programming with the Arduino Uno 
clone serving as programmer. The Arduino Uno’s USB connection supplies the power.

Make sure that all connections line up correctly before plugging the 
UNO’s USB cable into your computer. When you program the Pro Mini, 
select the proper board from the Board section of the Tools menu; even 
though you are plugging an Arduino Uno into the computer, you are still 
programming a Pro Mini. Once this setup is done, you can upload sketches 
to the Pro Mini just as you would the Nano.

While using an Arduino Uno intermediary is the easiest way to pro-
gram the Pro Mini, you can also purchase USB-to-TTL devices like the one 
in Figure 0-12. I purchased several on eBay in the $5 to $12 range, and with 
a little tinkering (the terminals are sometimes marked differently), they all 
worked well. 

Programming the Arduino is only part of the battle, though. To build 
a truly permanent project, you need to solder your working Arduino circuit 
to a board. A custom printed circuit board (PCB), also sometimes called a 
printed wiring board, is the best way to keep your project clean and neat—if 
you are willing to put in the extra work to make one. 
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Figure 0-12: A USB adapter for programming the Pro Mini and other controller boards 
without their own USB interface. This adapter uses a male USB (type A) plug and has a 
Data Terminal Ready (DTR) pin instead of a reset pin (RST). Most USB-to-TTL devices can 
be powered with 3.3V as well as 5V, but check before you power them, as some devices 
operate at 3.3V only. 

Using PCB Software
There are many PCB design programs out there, and they vary in complex-
ity and cost. Many are free in order to attract customers to use the com-
pany’s facilities to make boards. Therefore, there are some hang-ups when 
trying to use those free tools for DIY boards—for example, the software 
might have some features locked in the free version. I use ExpressPCB 
(https://www.expresspcb.com/) for both single- and double-sided boards. 

N o t e 	 For double-sided DIY boards, I’ve had to reverse the image manually. The trick to 
making double-sided boards is properly aligning the two sides. To greatly simplify the 
alignment process for many projects, you can make alignment marks and drill align-
ment holes on the blank copper board before transferring the image. I have also, from 
time to time, used a drawing program called TurboCAD (similar to AutoCAD) to 
produce double-sided boards. 

ExpressPCB offers the least expensive solution for making boards that 
I’ve been able to find. The company has a MiniBoard service that offers a 
standard-size board with no frills for a relatively low cost. Further, as the 
industry creates newer packages, using a software package that includes the 
newer IC footprints is essential. I have used ExpressPCB to make adapter 
boards—from SOIC to DIP—and to integrate SOICs into a finished board, 
as the software works well with the smaller geometries. Even if I want to 
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make a “purpose-built” microcontroller board, which will likely require 
multiple layers, a ground, and VCC plane, ExpressPCB will probably fill the 
requirements. 

To use the program, simply go to the ExpressPCB website, download 
the free software, and install it. The ExpressPCB website has several tuto-
rials on using the software, which I recommend you take advantage of. 
There is a companion free software program, ExpressSCH, which is a sche-
matic capture program for writing your own schematic diagrams. While 
the features are not as well integrated as they could be, using the programs 
together has helped with circuit design.

N o t e 	 All the PCB designs in this book have been prepared using ExpressPCB design software, 
and they are all available at https://www.nostarch.com/arduinoplayground/. To 
view or change the PCB drawings, you will have to download the software. 

Another advantage of using ExpressPCB is that you can take the same 
file you develop for making the circuit board yourself and send it out to 
the company’s factory for finishing. I did that for a few of the projects in 
this book—in most cases, after making my own and wanting to clean up 
the board. I found the results more than satisfactory. The factory-prepared 
boards offer plated-through holes—if you build your own double-sided 
boards, soldering on both sides of the board is necessary. They also include 
a solder-plate finish and can be made with a solder-resistant coating and 
silkscreen image printed on the board. Figure 0-13 shows a board I made 
using ExpressPCB.

Figure 0-13: A professionally finished PCB, with solder-resistant coating and  
silkscreening. I used this board to make the Ballistic Chronograph in Chapter 8.

A Tip  for M anu fac t uring  Mult iple  Dif f eren    t Board  s

You can use ExpressPCB’s MiniBoard service to make more than one board for 
very little cost. The mandatory size for a board to qualify as a MiniBoard—
and thus, to get the discount—is 3.8×2.5 inches, and when you bring up the 
program, a yellow guide box automatically displays an area of that size. In 
preparing PCBs such as the one in Figure 0-14, I combined several smaller 
boards into one large “board” by copying and pasting the small boards into 
the maximum size for the MiniBoard price. 

Figure 0-14: Three different boards for one MiniBoard order. The board for 
the Ballistic Chronograph is on the top left, and the pH Meter’s is on the bot-
tom. The top right is for an optical tachometer, which didn’t make it into the 
book. For one price, you get three copies of each board. All you have to do 
is cut them apart. 
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Making Your Own PCBs
There are a number of techniques for making PCBs after you design one. 
As I’ll discuss in Chapter 2, the most common method is a subtractive 
approach, in which copper is selectively removed from a foil-clad phenolic 
or epoxy/glass board to leave a pattern on the board. The copper can be 
mechanically milled off, but if you want to make a PCB at home, the most 
common—and least expensive—approach is to chemically etch the pattern.

When chemically etching a PCB, a circuit pattern is printed on the 
blank board with a resist, a chemical that prevents the copper from being 
removed by the etchant in treated areas. The etchant is an acid that attacks 
the untreated copper on the clad board. Figure 0-15 shows a copper board’s 
transition into a PCB.
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book. For one price, you get three copies of each board. All you have to do 
is cut them apart. 
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Figure 0-15: From left to right: an untreated, scrubbed copper-clad board; the board with resist printed on it; 
and the etched board without its holes drilled

In the old days, making a PCB was a tedious and messy job—particularly 
for a hobbyist. First, you would have to lay out the PCB pattern, which until 
not long ago, was done with tape on an acetate sheet with a light table. 
Then, you’d clean the copper-clad board and whirl on the photo resist. 
This needed to be exposed to UV light and developed with carbon tetra-
chloride (CCl4), which is not so good for you, or trichloroethylene (C2HCl3), 
which is not much better. After that, you’d begin the messy etching process 
with ferric chloride (FeCl3) or ammonium persulfate [(NH4)2S2O8]. With all 
those steps, you could usually count on spending a good part of a day produc-
ing one board. 

Today, that’s all changed. With today’s contemporary PCB software, you 
can frequently lay out a pattern for a relatively simple single-sided or even 
double-sided board in less than an hour, depending on its complexity. From 
there, the process gets even easier. 

Applying the Pattern
If you want to learn to etch your own PCBs, go to the PulsarProFX website 
(http://www.pcbfx.com/), which has the tools you need to put an image on a 
copper-clad board easily. Pulsar’s PCB Fab-in-a-Box product is a complete 
kit that contains all you need to get going and make several boards. One 
key ingredient is a special paper that you print on with a laser printer and 
that uses heat to transfer the image to the copper-clad board. The whole 
fabrication process—before drilling the holes—almost never takes more 
than an hour, unless you’re running low on etchant, which slows the etch-
ing time. 

Apart from the items in the Pulsar kit, the only tools needed are: 

•	 A laser printer

•	 A plastic laminator (Pulsar suggests using a GBC laminator, but I’ve 
used an Office Depot brand unit for years, and it works fine.)

•	 A water bath 
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The procedure for applying a PCB pattern to a copper-clad board is 
relatively simple: 

1.	 Design the pattern on a computer using a PCB layout program, such as 
ExpressPCB. 

2.	 Print the image on the special paper provided by Pulsar with a laser 
printer, not an inkjet. The laser ink is a polymer compound that melts 
when heated and partially bonds to the paper, leaving your image on 
the paper. The paper, when reheated on the blank PC board, allows for 
easy transfer of the image. 

3.	 Transfer the image from the paper directly to a clean copper-clad 
board, using an inexpensive office laminating machine. 

The thermal ink on the paper becomes the resist on the copper-clad 
board. Pulsar provides an additional, thin film layer thermally bonded to 
the laser-jet ink, but the ink alone will resist the etchant. 

Etching the Board
While copper is not a highly active metal, there are several replacement 
reactions that etch it effectively. However, many of the resulting byproducts 
are somewhat toxic, and almost all of them result in materials that have to 
be discarded or recycled in a special way because they are extremely harm-
ful to the environment. Most copper salts are strong poisons for a variety of 
plants and animals, including humans. 

For a better etching method, I recommend an Instructables page called 
“Stop Using Ferric Chloride Etchant (A Better Solution),” which you can find 
at https://www.instructables.com/id/Stop-using-Ferric-Chloride-etchant!--A-better-etc/. 
Read the environmental and personal safety warnings in this tutorial care-
fully before mixing your etchant.

The system described in this tutorial uses standard household chemi-
cals: hydrogen peroxide (H2O2) and muriatic acid (essentially hydrochloric 
acid, HCl). The process is far more environmentally friendly than the old 
ferric chloride or ammonium persulfate techniques. You can also regenerate 
the described solution without having to discard the old solution because it 
actually uses copper—that is, copper chloride in aqueous hydrochloric acid 
solution—to dissolve the copper. 

In addition to the etchant, you will need a vessel or container to etch 
the board in. For very small- and medium-sized boards, it’s possible to use a 
cylindrical container, such as the beaker in Figure 0-16. 

With your etchant in a safe container, all that’s left is to put the PCB 
in the etchant and take the PCB out when the unwanted copper is gone. In 
the scenario in Figure 0-16, the circuit board is dipped in and out of the 
etching solution. Note that the beaker is sitting on a hot plate. Heating the 
solution accelerates the etching process, but be sure to keep the tempera-
ture between 100 and 120°F. 

For larger boards, some kind of pan can be used. If you tip the pan, the 
etchant flows over the board, as illustrated in Figure 0-17. 

http://www.instructables.com/id/Stop-using-Ferric-Chloride-etchant!--A-better-etc/
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Figure 0-16: Etching a small board in a beaker agitated with  
the Automated Agitator for PCB Etching from Chapter 2. The  
board is held using a plastic wire tie. 

Figure 0-17: Etching larger boards in a container that is tipped by  
the Automated Agitator for PCB Etching 
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The pan can be glass or plastic. In the past, I’ve use a glass baking pan, 
but the container in Figure 0-17 is plastic. Just be careful with the heat if 
you use a plastic container. Temperatures in the recommended area should 
be safe. 

In both the etching situations shown, an Arduino-based agitator (see 
Chapter 2 to build the project) makes etching go even faster. The agitator 
provides a simple, mechanical way to agitate the etchant and speed up the 
process. 

Drilling the Board
Etching only removes copper, so unless you are making a single-sided, all 
surface-mount board, you will have to manually drill holes for your compo-
nents. Drilling the PCB can be tedious depending on your equipment and 
the number of holes. 

In my early days making 
boards, I used a Dremel tool free-
hand with a #66 drill. For small 
projects, hand-drilling is fine, but 
it’s easier to use a drill press for 
larger ones. 

If you already own a Dremel 
tool, then you’re in luck. For 
under $40, depending on where 
you buy it, a Dremel drill press 
accessory works well for circuit 
boards, as well as hundreds of 
other tasks. If you don’t already 
have a Dremel tool, you can get 
one of those for around $30 or 
less if you shop around. There are 
a variety of other high-speed drill 
and drill press combinations avail-
able at relatively low prices, too. 
Check with Harbor Freight and 
other suppliers of imported prod-
ucts on the web.

If you plan to produce a num-
ber of PCBs, I suggest a dedicated 
drill press rather than a drill press 
attachment. There are inexpen-
sive units that run on low-voltage 
supplies as well as high-priced 
units, such as the Electro-Mechano 
pictured in Figure 0-18, which is 
designed exclusively for drilling 
small holes in jewelry and PCBs. 
Just pick one that suits your needs.

Figure 0-18: The small Electro-Mechano drill 
press I use for drilling PCBs
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You’ll need small drill bits to drill the PCB. I recommend an assortment of 
10 tungsten-carbide drills with 1/8-inch shanks, which are available from 
Electronic Goldmine (part #G15421). A similar assortment is available from 
Amazon, and I have purchased several sets of these at very modest prices. 

Connectors Used in This Book
Throughout this book, I’ve tried to simplify the use of connectors and mini-
mize the number of different connectors used. But whether you make your 
own PCBs or not, you will always need some way to interconnect modules 
like LCDs, I2C adaptors, sensors, and so on; and sometimes you will have to 
assemble your own connectors. 

The connectors I use quite frequently are a family of connectors on 
0.100-inch centers, a standard that works both for male and female headers 
on PCBs and for stand-alone connectors for some cable assemblies. While the 
units I use in this book were purchased from Pololu Robotics and Electronics 
(https://www.pololu.com/), the same or similar units are available from many 
other suppliers, including Jameco, Newark, Mouser, Digi-Key, and so on. 

Figure 0-19 shows a few basic connector configurations I’ve used. 

Male crimp pins Female crimp pins

15-pin female header

4-pin right-angle 
header

Single connector housing

Quad connector housing 4-pin male header

Figure 0-19: A few basic connectors

The male and female crimp connectors are the workhorses in most 
cables I make. However, these connectors must be crimped onto the wire 
they connect. To crimp a pin, you can use a professional crimping tool (see 
Figure 0-20), which results in a nicely finished crimp (see Figure 0-21). 
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Figure 0-20: Crimping tool used to crimp 0.100 crimp connectors to 26-,  
28-, and 30-gauge wire

Figure 0-21: A male crimp connector properly crimped using the crimping tool 

The crimper that Pololu sells for its crimp connectors is relatively easy 
to use and makes a nice solid crimp, but it is a bit pricey at around $30. If 
you don’t want to buy a crimping tool, you can crimp the connectors with 
a small pair of pliers. The resulting connection may not be as pretty, but it 
should work just as well. Figure 0-22 shows a cable I crimped using pliers.

Figure 0-22: A male connector identical to the one in Figure 0-21 that was crimped by 
hand with a pair of pliers. Both fit snugly in the connector housing and work well. 
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You can create cables that plug into male headers with female crimp 
pins. These are useful for connecting parts of a PCB with a cable and for 
connecting an Arduino board to a shield. 

Headers and housings are available in sizes from a single-pin wide up to 
10 pins, 15 pins, and beyond. Most projects in this book that involve hand-
made connectors use 2- and 4-pin connectors. 

Using SOICs
Making connectors for through-hole headers is fine, but through-hole inte-
grated circuits with pins on 0.100-inch centers are becoming harder to get. 
While manufacturers continue to make many ICs in the older format, new 
designs are often available only as surface-mount components. These new 
packages are known as small-outline integrated circuits (SOICs). Figure 0-23 
shows two SOIC components next to an 8-pin DIP IC, for a size comparison. 

Figure 0-23: A standard DIP package (top) compared to two tiny SMD ICs, a 5-pin Linear 
Technology LTC1799 in a TSOT-23 package (middle) and a 3-pin Maxim MAX7375AUR 
in a SOT-23 package (bottom), next to a dime for scale
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What Are SMT Devices?
The two non-DIP ICs shown in Figure 0-23 are surface-mount technology 
(SMT) devices. SMT devices are soldered directly to the surface of a PCB 
instead of with their pins protruding through holes in the bottom. The 
advantage of SMT is that the devices can be made a lot smaller and placed 
in close proximity to each other, resulting in a more compact device. Many 
SMT components have 0.95 mm (0.0374-inch) centers or smaller, which 
doesn’t match up to the 0.100-inch centered parts discussed so far. 

Using SMT components also reduces wiring lengths, which can be criti-
cal at high frequencies. Many circuit boards have multiple layers (projects 
in this book have a maximum of two layers), and connections between 
layers were formerly made with holes for the pins on the ICs. These con-
nections are now more commonly made with vias, which are small, plated-
through holes in the board. Automated pick-and-place equipment is now 
concentrating on SMT devices, too. One day, resistors, capacitors, induc-
tors, LEDs, fuses, and so on will likely be available only in surface-mount 
configurations, but it will probably take a while.

The SMT packages that I talk about in this book are leaded—that is, 
the package itself has leads protruding from it, even though the leads are 
not designed to go through holes in the PCB. Leaded ICs come in a vari-
ety of configurations with pins at different spacing, from relatively sparse 
leads—like the two SMT components in Figure 0-23—to ICs with hundreds 
of leads. 

N o t e 	 This book avoids certain SMT packages, such as the ultra-small packages with direct-
connect patches, where the chip connects directly to the PCB (called chip-on-board), 
and ball-grid arrays, where the connection is a controlled-collapse solder bump on the 
bottom of the package.

The Solder Paste Method
Using leaded SMT chips leaves you a couple of options. One is to design 
a PCB with the correct pads for the SOIC footprint and solder the IC 
directly to the PCB. Soldering an SOIC component involves applying sol-
der paste and heating the board itself. While this is a viable approach (and 
a fair amount of tutorials on the web cover it), populating the board can 
be difficult—particularly if the board has both through-hole and SMT 
devices. Unless you have a stencil for depositing the solder paste, the paste 
has to be applied manually, usually with a syringe and sometimes with a 
sharp toothpick or dental pick. Figure 0-24 shows a set of tools I have used 
for this process. 

Several online suppliers offer solder paste in syringes at reasonable 
prices. Most of the solder paste compounds have a melting point between 
300 and 470°F (some less), so boards can be soldered in a toaster oven or 
in a container on a hot plate. 
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SOIC

Adapter
board

Figure 0-24: Chip Quik solder, a head-mounted magnifier, a dental pick, tweezers, an 
adapter board, and an SOIC (the speck next to the tweezers), ready for mounting

The solder paste that I use is Chip Quik. It’s relatively inexpensive, comes 
in its own syringe with a tip, and has a melting point of only 138°C, or 281°F. 
While the tip could be a little smaller, it has worked for most applications. 
Chip Quik’s low melting point makes soldering the board in a toaster oven 
or on a hot plate easy but could conceivably be a problem otherwise: in a 
high-current application, a solder joint could heat up enough to melt the 
solder. But with the voltage, current, and signal levels in this book, I don’t 
expect this to be a problem. 

After the solder paste is applied, the components can be carefully 
placed on the paste with a pair of tweezers and a steady hand. I also use a 
head-mounted magnifier so I can see the connections. When the chip is set 
in place, all that remains is heating the assembly to the melting point of the 
solder, and voilà—the chore is done. 

If you opt to heat the board in a standard toaster oven rather than buy-
ing a specialized SMT oven, just don’t use the same toaster oven you use to 
cook food. Many solders still contain lead, which has been deemed not-so-
good for you. Flux materials (present in the solder paste to make the solder 
flow more easily) and binders also contain certain volatile compounds that 
may be unhealthy if ingested. 

You can also put smaller boards in a small, clean metal can. Then, place 
the can on a hot plate, and set a small scrap piece of steel (aluminum will 
also work) on top of the can to hold the heat in. When the solder paste has 
melted, remove the heat. The process usually takes only a few minutes.

For someone like me with fat fingers, 0.95 mm is pretty small, whether 
applying solder paste, placing a component, or soldering a leaded SMT 
component directly. The process has, on occasion, taken me several tries. 
If you’re not quite ready to try the solder paste solution directly on your 
main PCB, consider buying an adapter board to convert SMTs to conven-
tional 0.100-inch center through-hole mounting. 
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Several vendors offer small adapter boards that convert from an SOIC 
package to DIPs with 0.100-inch centers. The adapter board in Figure 0-25 
is from Futurlec (http://www.futurlec.com/). Futurlec adapter boards go for 
all of $0.28 each, so I ordered a variety, including those for 8-, 14-, 16-, and 
18-pin SOICs. 

Figure 0-25: Futurlec 6PINSO23 adapter board 

The best soldering solution, even with the adapter, is to use solder paste 
and an oven (or a can, as I just described). But if you don’t have access to 
the materials for that technique, you can always solder the SOIC compo-
nent directly.

Soldering Directly
Soldering an SOIC component directly is a little tricky. Doing so requires a 
soldering iron with a fine tip, though I used the tip I use for everything else. 
(I believe mine is 0.7 mm.) Here’s how this approach works: 

1.	 First, place male headers in a breadboard with the adapter on top, and 
solder them to make a stable platform (see Figure 0-26). 

Figure 0-26: Adapter board with stakes installed and plugged into a bread
board for soldering the IC. The particles shown are residue from the solder 
and flux, which I later removed using alcohol and a Q-tip swab.
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2.	 Even though the adapter has solder plate on the copper, it’s not thick 
enough to secure the leads of the IC. More solder is needed, so care-
fully melt a thin layer of solder on only one pad. (Often, I place too 
big a blob of solder and have to remove it with solder wick, but that too 
works out fine, as it still leaves a thin coating of solder on the pad itself.) 

3.	 Place the component on the adapter board, hold it down securely (I 
apply pressure with a dental pick), and put the hot iron on the lead that 
has the solder under it. 

4.	 Once the first leg is secure, it holds the device in place, and you can 
carefully solder the other terminals with the iron. 

Figure 0-27 shows a board I soldered this way. It may not look real 
pretty, but it works. 

Figure 0-27: A completed adapter board with the  
male headers installed, the chip soldered, and a  
decoupling capacitor soldered across two of the  
pins. This is the cleaned-up version of Figure 0-26.

A completed adapter board like the one in Figure 0-27 can then be 
mounted on a conventional through-hole board with holes on 0.100-inch 
centers. I used this technique on the Ballistic Chronograph (Chapter 8) 
and Square-Wave Generator (Chapter 9) projects in this book. 

Closing Thoughts
With the knowledge in this chapter and some previous electronics experi-
ence, you are ready to tackle any project in this book. I will cover other 
important techniques and information on an as-needed basis throughout.



1
T h e  R eac   t ion   - Time     M ac  h ine 

In this chapter, I will show you how to 
build a time machine—that is, a Reaction-

Time Machine. I’d love to say that this 
project will bring you “back to the future,” 

but alas, it won’t. The “time” it’s looking at is the time 
it takes you to react to a stimulus, which makes for a 
fun game. This project is designed to accurately mea-
sure an individual’s reaction time and provide an area 
for comments on the level of the individual’s perfor-
mance (see Figure 1-1). There is also plenty of room 
to personalize the game to make it even more fun for 
you, your friends, and your family. 
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Figure 1-1: Completed Reaction-Time Machine

Required Tools
Soldering iron and solder

Drill and drill bits

Mounting tape

Wire cutters

Parts List
This project has one of the smallest parts counts of all the projects in this 
book, but don’t let that attenuate its value for you. My family and friends 
have enjoyed playing the game repeatedly, and it’s portable, so you can take 
it with you to get-togethers and other events.  

Here’s what you’ll need:

One Arduino Nano or clone

Two SPST momentary switches (preferably one with a red button and 
one with a button of a different color)

One SPST toggle switch

One red LED 

Stop button
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Two 10-kilohm resistors

One 470-ohm resistor

(Optional) One audible annunciator, Mallory Sonalert or similar

One 4×20 LCD

One I2C adapter, if not included with the LCD (see “Affixing the I2C 
Board to the LCD” on page 3)

N o t e 	 I purchased a 16×2 LCD and its external I 2C board separately and soldered the 
two together. However, many online vendors offer the same display and I 2C adapter 
already soldered for about the same price or less than the two boards separately. Check 
eBay in particular. 

One 9V battery

One 9V battery clip

One 3.5 mm jack (if remote switch is used)

One Hammond 1591 BTCL enclosure

28-or 30-gauge hookup wire

22-gauge solid conductor wire

Downloads
Before you start this project, check the following resource files for this book 
at https://www.nostarch.com/arduinoplayground/:

Sketch file  Reaction.ino

Drilling template for case  ReactionEnclosure.pdf

Reaction vs. Reflex
People often confuse reactions and reflexes, so I will start by defining both. 
Reflexes are involuntary, automatic responses to a stimulus. In a reflex action, 
the stimulus bypasses the brain and travels from the source of the stimulus 
to the spinal cord and back to the receptor that controls the response, with-
out any cognitive acknowledgment. (Though I know many people for whom 
almost all stimuli—and information—seem to bypass the brain, often just 
getting lost instead.) Think of the doctor hitting your knee with a patellar 
hammer to trigger your knee-jerk reflex.

Reactions, on the other hand, take the stimulus to the brain to be pro-
cessed, and then a return reaction travels to a receptor to result in some 
motor action. This process takes somewhat longer than a typical reflex, 
though some athletes are said to have reaction times so fast that it’s possible 
their response is more similar to a reflex than a reaction. 
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N O T E 	 Sports Illustrated has done interesting work in this area, with eye-opening articles 
on baseball players and other athletes who have what appear to be exceptional reac-
tion times. 

How Does the Game Work?
The Reaction-Time Machine game measures how long it takes an individual 
to press a button in response to a visual stimulus—in this case an LED. With 
a minor modification, you can add an auditory stimulus to the game: simply 
replace the LED with an audible annunciator, such as a Mallory Sonalert. 
Reaction time is measured in milliseconds or seconds (your choice), and it 
is the time between the moment the stimulus is activated and the moment 
the participant presses the button.  

Measuring Time with the Arduino Nano
While there are many ways to measure elapsed time, this project takes advan-
tage of the Arduino Nano’s ability to keep accurate time. Microcontrollers 
keep time exceptionally well, and they measure the time that elapses between 
one input and another with a minimum latency. In addition to timing your 
reactions, the Nano shows the result on an LCD. 

The Nano does almost all of the work in this project; the other compo-
nents are basically passive. After testing some early builds, I added features to 
the sketch to make the game more interesting and accurate. For example, I 
initially used a simple pushbutton to reset the Nano and start a counter. The 
participant would press the red stop button as soon as the LCD indicated so, 
and the Nano measured the time between pressing the reset and stop but-
tons. I found, however, that the player could anticipate the reset button being 
pushed and come up with some amazing reaction times. 

His tory of R eac  t ion-Time  De v ice s

Over the years, there have been many devices to measure reaction time. One 
of the simplest I remember from years ago required you to keep your fingers 
on either side of a ruler held by another person in mid-air. When the ruler was 
dropped, you would see how far it traveled before you could grasp it. The dis-
tance was translated to time using the algebraic equation

S AT=
1
2

2,
 

where S is the distance traveled, A is the acceleration due to gravity, and T 
is the reaction time. After you build this project, try both the ruler test and the 
Reaction-Time Machine to see how close your times are between devices.
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To prevent the player from anticipating when the stimulus is about to 
occur, I had the Nano start the timer on a delay instead. The version in this 
book generates a random delay from when the reset button is depressed, 
activates the stimulus after the random delay, and counts the time from the 
stimulus to the moment the participant responds by depressing the stop 
button. That solved one problem. 

Then, one of the participants tried to jump the gun and get an early 
start by holding down the stop button. I solved this problem by setting 
a minimum reaction time in the sketch. Any time under that minimum 
throws an error, and the LCD displays “Jumped the Gun” to indicate that 
the player pressed the button too soon. 

I used a relatively large display—4 lines with 20 characters each—so 
there would be enough room to display the reflex time and some commen-
tary on the relative prowess of the player. You can make your commentary as 
funny or serious as you want, but it must not exceed 60 characters in length—
that is, three lines of 20 characters each. While I leave the commentary up to 
you, the sketch for this project includes some ideas that I used when putting it 
together. You can always edit the commentary and reload the sketch to show 
comments specific to a set of users, like friends or relatives.

Expected Speed Ranges
Most individuals’ reaction times seem to vary greatly, based on the small 
sample I tested. Interestingly, age doesn’t seem to be a factor. The average 
reaction time was around 200 milliseconds, and that is the average reaction 
time identified by many researchers. 

The fastest response of anyone I sampled was 105 milliseconds; how-
ever, the individual was not able to repeat that performance. Several indi-
viduals scored between 105 and 125 milliseconds, but not consistently. 
Significantly lower reaction times may well be anomalous or the result 
of an individual actually anticipating the stimulus. My players’ failure to 
repeat extremely fast reaction times would tend to bolster that idea. (I 
wouldn’t want to accuse anyone of successfully pre-guessing the release 
moment.) 

The Schematic
While the display could have been wired directly, using the I2C inter
connect made it a lot simpler and reduced the interface to only four wires: 
positive, ground, data, and clock (see Figure 1-2). 

The only components needed are the Nano, three switches (one toggle 
switch for power and two momentary pushbutton switches for activate and 
reset), an LED, the display, and three resistors. Despite the relatively sparse 
parts count, the project performs elegantly.
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Figure 1-2: Schematic diagram of the Reaction-Time Machine

The Breadboard
As is the case for most of my Arduino projects, the first step is to prepare a 
breadboard to prove the concept and test the sketch. Here’s how to wire up 
the breadboard:

1.	 Connect the red positive rails on the breadboard together.

2.	 Connect the blue negative rails on the breadboard together.

3.	 Insert the Arduino Nano (or clone) in the breadboard, leaving two rows 
on one side and three on the other. (If the Nano does not come with 
stakes soldered in, see “Preparing the Arduino Board” on page 2.)

4.	 Connect the 5V terminal on the Nano to the red positive rail on the 
breadboard.
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5.	 Connect the GND terminal on the Nano to the blue negative rail on 
the breadboard.

6.	 Connect the negative wire from the battery connector to the blue nega-
tive rail. Remember that the breadboard has no switch, so you must 
disconnect the battery to turn it off. 

7.	 Connect the positive lead from the battery connector to VIN on the 
Nano. (Do not connect the positive terminal of the battery to the red 
positive rail—it could permanently damage the Nano.)

8.	 Attach 5-inch wires to two normally open momentary pushbutton 
switches. (I use 22-gauge solid conductor wire so it can plug in to the 
breadboard directly.) 

9.	 Prepare a wire harness for the LCD (see “Affixing the I2C Board to the 
LCD” on page 3).

10.	 Connect the red wire from the LCD to the red positive rail on the 
breadboard (5V) and the black wire from the LCD to the blue nega-
tive rail. 

11.	 Insert the yellow wire from the display (SDA) to pin A4 on the Nano.

12.	 Insert the green wire from the display (SCL) to pin A5 on the Nano.

13.	 Connect one side of each pushbutton switch to the blue negative rail.

14.	 Connect the other side of the red reaction switch (SW2) to pin D7 on 
the Nano.

15.	 Connect the other side of the yellow reset switch (SW1) to pin D2 on 
the Nano.

16.	 Connect a 10-kilohm resistor from pin D7 on the Nano to the red posi-
tive rail.

17.	 Connect a 10-kilohm resistor from pin D2 on the Nano to the red posi-
tive rail.

18.	 Connect the anode side of the LED (the longer leg) to the red positive 
rail and the cathode side to an empty row on the breadboard.

19.	 Connect a 470-ohm resistor from the cathode side of the LED to pin D4 
on the Nano. 

Upload the Reaction.ino sketch to the Arduino Nano (see “Uploading 
Sketches to Your Arduino” on page 5), and you should now be ready to 
go. Figure 1-3 shows the breadboard laid out with the switches dangling 
from their wires. 
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Figure 1-3: The breadboard setup for the Reaction-Time Machine. Because there is no  
on/off switch, you have to disconnect the battery to shut it off. 

The Sketch
The sketch is the actual computer program that tells the Arduino what to do 
and when to do it. It is written in a language of its own that comprises struc-
tures, variables, arrays, functions, and so on, which represent a recipe for the 
microcontroller to follow. This language is converted into a sequence of zeros 
and ones that are routed to various parts of the controller and can perform 
storage, timing, comparison, arithmetic functions, and more. 

The process of converting a computer language to a sequence of zeros 
and ones is called compiling. The compiling routine in the Arduino Integrated 
Development Environment (IDE) is activated when you click the Verify and 
Compile buttons in the upper-left side of the Sketch window.

The sketch gets pretty long because of all the messages that can be 
inserted when it checks the score; however, the basic operation uses only a 
handful of code lines. You can use the scoring function as is, modify it, or 
copy and paste it to make a new scoring function. As you’ll see in my mes-
sages options, I’ve had fun with it. 

The following code has been truncated to minimize the number of lines. 
However, you can simply go to https://www.nostarch.com/arduinoplayground/ to 
download the entire sketch, which includes a number of messages.

/*
Includes score function, random number generation, false start  
"jump the gun" indicator, and multiple messages spaced 10 ms apart 

Mod for "jump the gun" gives response if time <70 ms
*/



The Reaction-Time Machine   33

#include <Wire.h> //Libraries included
#include <LiquidCrystal_I2C.h>

int start_time = 0;
int stop_time = 0;
int reacttime = 0;
int x;
int R;
int randnumber1;
int z;

LiquidCrystal_I2C lcd (0x3F, 20, 4); //Initiate LCD

void setup() {
  Serial.begin (9600);
  pinMode(2, INPUT);
  pinMode(4, OUTPUT);
  pinMode(7, INPUT); 
  lcd.init();
  lcd.backlight();
}
//Begin function "score"
void score() {
  lcd.clear();
  lcd.print("Reaction Time ");
  lcd.print(reacttime);
  lcd.print(" ms");
  lcd.setCursor(0, 1);

  if((reacttime >= 105) && (reacttime < 135)) {
    lcd.print("Approaching Superman");
    lcd.setCursor(0, 2);
    lcd.print("but you can still do");
    lcd.setCursor(0, 3);
    lcd.print("a lot better");
  }

  if((reacttime >= 135) && (reacttime < 180)) {
    lcd.print("Superhero Status");
    lcd.setCursor(0, 2);
    lcd.print("but not yet");
    lcd.setCursor(0, 3);
    lcd.print("Superman");
  }

  if((reacttime >= 180) && (reacttime < 225)) {
    lcd.print("You are trying ??");
    lcd.setCursor(0, 2);
    lcd.print("but not hard enough");
    lcd.setCursor(0, 3);
    lcd.print("still a loser");
  }



34   Chapter 1

  if(reacttime > 225) {
    lcd.print("Lost your touch");
    lcd.setCursor(0, 2);
    lcd.print("If you ever had it");
    lcd.setCursor(0, 3);
    lcd.print("on the border of wimpy");
  }
}

//Begin main program
void loop() {
  digitalWrite(4, HIGH);  
  lcd.clear();
  lcd.print("System is Armed");
  delay(1000);
  lcd.setCursor(0, 1);
  lcd.print("      READY   ");
  lcd.setCursor(0, 2);
  lcd.print(" Push Red Button");
  lcd.setCursor(0, 3);
  lcd.print("When Red lamp lights");

  randnumber1 = random(5, 25); //Generate random number between 5 and 25
  R = randnumber1; 
  for(x = 0; x < R; x++);
  delay(5000); 
  if(x == R) {
    digitalWrite(4, LOW); //Turn on start lamp  
    start_time = millis(); //Initiate timer
    lcd.clear();
    lcd.print("Mash React Button");
    lcd.setCursor(0, 1);
    lcd.print("          ");
    lcd.setCursor(0, 2);
    lcd.print("          ");
    lcd.setCursor(0, 3);
    lcd.print("          ");
 
    while(digitalRead(7) == 1); //Wait for response

    stop_time = millis(); //Complete timing cycle
  }

  reacttime = stop_time - start_time;
  
  if(reacttime < 70) { //Jump the gun indicator
    lcd.clear();
    lcd.setCursor(0, 0);
    lcd.print("Too anxious. You");
    lcd.setCursor(0, 1);
    lcd.print("(Jumped the Gun)");
    lcd.setCursor(0, 3);
    lcd.print("Could be Fatal!");
  }
  score();
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  Halt:
  while(digitalRead(2) == 1);
}

The #include lines initiate the libraries: the I2C library, Wire.h, establishes 
the rules for I2C communications, and the LiquidCrystal library allows the 
Arduino to control LCDs. Then, we define the seven variables used to calcu-
late reaction time. Next, setup() sets up the serial communication—in case 
you want to adjust the code and view it on the serial monitor—and defines 
various pins as inputs and outputs. Inputs are required for the reset and 
stop buttons, and an output pin is defined for the LED that tells the player 
when to press the stop button. 

Customized Reaction Commentary
One of the most entertaining aspects of this project is the chance to get 
creative when displaying the player’s reaction time. After setup(), the sketch 
shows a function called score(), which lists different comments that could 
be displayed on the LCD based on the participant’s response speed. A func-
tion may not necessarily be the most efficient approach (a look-up table or 
other approach could also have been used), but it works well enough. I used 
only a single scoring function in this iteration; however, you could easily 
define as many as you like and change your sketch to select one. For example, 
you might write a second function called score1() that could include a dif-
ferent set of comments and timing. Then, to switch from one function 
to the other, you’d have to change only the line that calls score() to call 
score1() instead. 

To customize the sketch to include comments that could refer to your 
own friends or family members, you can simply enter your comments in 
place of the ones that are in my sketch. Don’t forget to keep the text you 
want to print to the LCD in quotes so the Arduino recognizes the printable 
characters. 

A word on the reaction time itself: each comment is for a range of 
reaction times of either 5 or 10 milliseconds. I selected these ranges arbi-
trarily. After you play with the Reaction-Time Machine for a bit, you may 
wish to change these ranges based on the fact that users’ responses may 
cluster around a particular area, such as from 195 to 225 milliseconds. I 
found that many reaction times were in the 190 to 250 milliseconds range, 
but your friends and family may be different. In that case, you can sepa-
rate the comments by as little as 1 or 2 milliseconds so players don’t keep 
getting the same comment.

You can add as many comments as you wish, up to one comment per 
millisecond. If you accidentally overlap the times, the sketch may not compile.

N O T E 	 You can find reaction-time measurement tools on the web if you want to see how 
your game’s measurements compare. However, their accuracy is suspect because of 
the latency in the PC itself. 
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What Happens in the Loop
Now let’s look at the sketch’s loop. After void loop() initiates the start of the 
program, the program calls digitalWrite(4, HIGH) to turn off the active light. 
Then, the LCD screen is cleared, and text is written to the LCD to indicate 
that the system is armed and ready for a player to push the reaction button as 
soon as the red LED illuminates.

Next, a random number between 5 and 25 is generated, and the pro-
gram calls delay(5000) to count every five seconds from zero to the random 
number. As soon as the random number is reached, three things happen: 
first, the annunciator lamp illuminates; second, an internal timer is started 
in the Nano; and third, the display then changes to read “Mash the React 
Button.”

N O T E 	 A wider range of random numbers might make this game even more interesting for 
players. You can easily experiment by changing the random number count, the delay, 
or both.

The Nano is then instructed by while(digitalRead(7) == 1); to wait until 
the reaction button is depressed. After the button is depressed, the Nano 
calculates the reaction time with reacttime = stop_time - start_time. This 
time will be displayed on the LCD and used to select the appropriate com-
ment in the score() function. Also, if the player’s reaction time is less than 

On Wri   t ing Code to Se t Up LCDs

There are a few points to note about the setup of the LCD. The sketch uses a 
LiquidCrystal library, LiquidCrystal_I2C.h. If this library is not included in your 
Arduino IDE, you can easily download it using the instructions provided in the 
reference section on the Arduino website (http://www.arduino​.cc/reference/). 

In addition, each I2C device comes with its own I2C address. This allows 
several I2C devices to be used on a single serial line. Usually the device docu-
mentation provides the address—in the case of the I2C LCD I used, the address 
was 0x3F. Thus, when the sketch initiates the LCD, the code looks like this:

LiquidCrystal_I2C lcd (0x3F, 20, 4);

However, different displays come with different addresses. If you have an 
I2C device that you do not have an address for, you can easily find the address 
by hooking up the device to an Arduino, downloading a scanner sketch from 
http://playground.arduino.cc/Main/i2cScanner/, and running the sketch. The 
scanner sketch should display the I2C address on the serial monitor.

Many projects in this book use similar code to work with an LCD, so refer 
to this box any time you need a refresher on how that code works.

http://playground.arduino.cc/Main/I2cScanner


The Reaction-Time Machine   37

70 milliseconds at this point, then the conditional statement looking for a 
participant to be “ jumping the gun” displays appropriate wording for the 
LCD. The system is then halted and ready to be reset. 

Otherwise, the serial print block is included in case you want to 
adjust the code and view it on a serial monitor. It also helps for debugging 
purposes.

Finally, the score() function is invoked, followed by the Halt command, 
and the system is ready to have the reset button depressed. 

Construction
Building the Reaction-Time Machine can be as simple or as complex as 
you want. Initially, I placed all the components in the vinyl package that 
a flexible wrist brace came in. I cut a hole for the display connectors with 
an X-ACTO knife and punched the holes for the switches and LED with a 
paper punch, followed by a tapered reamer. The result was somewhat crude, 
as shown in Figure 1-4.

Figure 1-4: This was the Reaction-Time Machine’s original, primitive package, which 
worked but turned out to be too flimsy. The vinyl was only 0.018 inches thick.

Preparing a Sturdy Case
Of course, a real case makes the game much sturdier, which is important 
when you have competitive players mashing those buttons. To keep things 
as simple as possible, I employed one of the clear ABS plastic cases from 
Hammond (1591 BTCL). The clear top of the case allowed me to place the 
display behind the cover rather than machining out a hole for the display to 
protrude through. To mount the components, I simply drilled holes in the 
cover according to the drawing in Figure 1-5. 
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0.75 in

0.25 in 0.375 in

0.25 in

0.25 in

0.25 in

0.75 in

Figure 1-5: Drilling template for the Reaction-Time Machine

Quarter-inch holes work well for the momentary pushbutton switches, 
as well as for the toggle switch and 3.5 mm jack. For the 10 mm LED, I used 
a 3/8-inch drill and then reamed the hole out to make a tight fit. No other 
mounting hardware for the LED was necessary. 

N O T E 	 The 3.5 mm jack is wired in parallel to the execute switch. If you want to use an 
external stand-alone switch, it can simply plug in to the jack. I abandoned the effort, 
however, as most participants preferred to hold the box in their hands. 

Mounting the Hardware
To mount the display to the case, I used two-sided 3M Indoor/Outdoor 
Super Heavy Duty mounting tape. I cut two sections the size of the LCD 
display’s end bezel sections and bonded the display directly to the cover. 
The tape is difficult to remove, so make sure to place it right the first time. 
I used the same tape to mount the Nano and the battery holder to the 
back of the display. When mounting the display, I also used wire cutters 
to carefully cut off the corners of the display circuit board so it would fit 
far enough into the case without hitting the cover mounting pylons. See 
Figure 1-6 for the finished product, viewed from the underside. 

Once all the components are in place, all that remains is to solder the 
components together, inserting the resistors where required. Take par-
ticular note of the I2C adapter, which is the black paddleboard just below 
the switches and LED. While I could have bent the connectors and used a 
header to wire that up, the case may not have closed, depending on how 
carefully I crimped the connectors. Instead, I elected to solder the wires 
directly. It was only four wires, and it worked without much trouble. Finally, 
I printed out and attached labels from a Brother label maker. Figure 1-7 
shows the completed unit. 
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Figure 1-6: This is the rear of the unit mounted in the ABS plastic enclosure. Notice that 
the corners of the display (lower left and right) have been clipped off to fit around the 
top mounting pylons. The 3.5 mm jack is not wired, as I decided not to use it in this 
implementation. 

Figure 1-7: The completed Reaction-Time Machine mounted in the Hammond 1591 
BTCL clear plastic enclosure

Battery Arduino NanoLCD

I2C adapterPushbuttons LEDToggle3.5 mm jack
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Ideas for Customization
There are many variations you could implement to increase the versatility 
and enjoyment of the Reaction-Time Machine. For example, as I developed 
it, I connected a Hall effect switch to one of the analog inputs and modi-
fied the sketch to automatically decrease the reaction time by a percentage 
when the Hall effect switch is activated. Then, I taped a small magnet to my 
finger that sat opposite the Hall effect switch so as I grabbed the box, it acti-
vated the switch. When I played, my reaction time was reduced by around 
20 percent, while others had an actual reading. Far be it from me to suggest 
that readers try to hoodwink their adversaries, of course! 

There are other modifications that can be made, such as incorporating 
a tone sound, or beep, as the sketch counts up to the random number. This 
can easily be accomplished with the addition of an annunciator and a few 
lines of code. If you’re ingenious, there are other sound effects you could 
add, such as a vulgar sound that plays when poor scores are achieved. 

You can also exercise your brain and add code to the sketch that will 
average scores after, for example, three tries before you reset it. I experi-
mented with many variations as I played with the device, but I would cau-
tion that you can spend a great deal of time for minimal advantage. Put the 
game together and enjoy.  



2
A n  A u t oma   t ed   A gi  t a t or  

f or    P C B  E t c h ing 

This project uses the Arduino micro
controller to sense change in a motor’s 

current drain (the rate at which the motor 
uses electricity) and then reverse the direction 

of the motor. There are numerous applications for the 
measurement and use of current drain, and this project 
provides an example method that can prove useful in 
the development of future electronics projects. 

“Making Your Own PCBs” on page 13 illustrates different ways to 
design and make circuit boards at home for a very modest cost using read-
ily available and environmentally safe household products. Part of this 
process includes etching the copper off a clad board. The process is more 
efficient when the board is agitated in the etching solution, resulting in a 
laminar flow of liquid across the surface of the board in both directions. 
Depending on the chemical activity of the etchant and thickness of copper 
to be etched, this process can take anywhere from 10 or 15 minutes to well 
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over half an hour! Standing there stirring the pot is pretty boring, but you 
can create a device that dunks the board in and out of the solution for you 
(see Figure 2-1). 

Etchant Etchant

Circuit board Circuit board

Line

Motor

Crank

Limit

Screw holding crank
Set screw

Hub to hold crank

Etching vessel

Line

Crank

Rotation

Limit Limit

Motor

Figure 2-1: Illustration of the motor, crank, and etching vessels set up to dip a circuit board 
in and out of the etchant. While there are many ways to agitate a circuit board, dipping it 
into and out of the etching solution works well, especially for small boards. 

In this project, the Arduino is measuring the current from the motor. 
When the motor’s rotation reaches the limit pin, it begins to stall, increas-
ing the current drain. The Arduino reacts to the increase in current by 
reversing the motor.

Inspira t ion Be hind t he  

Au toma t ic Motor R e v er s al  Projec t

This project has its roots in a problem my friend had with a model train set 
accessory. The accessory included a tramway to take make-believe skiers up 
and down a miniature mountain. The original mechanism failed, so I created 
a little circuit to drive a DC motor that moved the skiers up and down. My 
idea was that when the tramcar reached either the top or bottom of its run, the 
motor would slow down or stall, resulting in an increase in current drain. That 
excessive current drain would reverse the motor by changing the polarity and 
thereby send the car back the other way. To date, the skiers are still at the bot-
tom of the mountain because my friend and I never installed the board, but the 
core circuit works well and promises other interesting applications. 
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The ability to receive an input, process the information, and produce 
an output is the fundamental function of any microcontroller. In this case, 
the Arduino starts the motor turning, waits until it detects the motor draw-
ing more current than usual, and then reverses the motor’s rotational direc-
tion. This simple function has a number of different applications: you could 
use the voltage drop to provide a safety turn-off for an overloaded motor, 
create a system to limit motion, and more.

Required Tools
One 6-32 tap

Drill and drill bits

Needle-nose pliers

Parts List
One Arduino Nano or clone

One SN754410 quad H-bridge IC, with socket if desired (Note that if you 
use the socket, you lose whatever value the PCB offers as a heat sink.)

One printed circuit board (PCB) or perf board

One current-limiting resistor (You should have a selection available for 
experimentation, from 1 ohm to 10 ohm. A 1/8 W resistor will work for 
smaller motors, but get a 1/4 or 1/2 W resistor for larger loads.) 

Two 330-ohm, 1/8 W resistors

Two LEDs, one red, one green

One LM7805 voltage regulator

One plastic enclosure (I recommend the Hammond 1591 XXATBU.)

Two 2-pin female headers to connect the motor to the shield

Four 4-pin female headers to plug the Nano into 

One small solder lug 

One 3.5 mm, 2-conductor jack and plug 

One SPST toggle switch 

One plug-in wall adapter with an output of 5 to 12V at 200 mA or better

One gear head motor (I used a 6V motor, the Amico 20 RPM 6VDC.)

Two M3×0.5 mm screws with threaded spacers

Limit wires, preferably 0.039 piano wire or spring wire

Scrap brass or aluminum

One 4-40 or 6-32 screw
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Downloads
Before you start this project, check the following resource files for this book 
at https://www.nostarch.com/arduinoplayground/:

Sketch  Reverse.ino

Shield  Reverse.pcb

Template  MotorMount.pdf

How Automatic Motor Reversal Works
The Arduino is perfect for this project because it can control the whole 
system, and it simplifies the problem of accommodating different motors 
with different current requirements. Implementing the project in discrete 
components would require several more components than the equivalent 
Arduino circuit. Further, changing values for different motors or differ-
ent reversal thresholds would mean changing a lot of hardware, but with 
Arduino, you just have to make a simple program change. The Arduino also 
provides the flexibility to add delays at each end of the run if desired. 

The motor circuit you’ll connect to the Arduino uses a resistor between 
the power supply and the motor (see Figure 2-2). When the motor slows or 
stalls, the current increases, creating a voltage drop across the resistor. 

Motor

R
Voltage drop 

measured here

Figure 2-2: A voltage is created across the resistor  
between the positive supply and the input to the  
motor. It is this voltage that triggers the operation  
of the circuit.
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The voltage drop across resistor R is the real-world input to the micro-
controller. In this project, that voltage drop is fed to the Arduino Nano’s two 
analog input pins that straddle the dropping resistor. The microcontroller 
digests this input and creates an output designated by your program.

N O T E 	 You could implement the circuit with only a single analog input, but that would 
curtail some of the flexibility of the circuit—particularly if you use motors that run 
at different voltages.

The Schematic
The agitator circuit feeds the voltage that appears across resistor R1 into 
two of the Arduino’s analog input pins, A0 and A1, setting up the real-world 
input (see Figure 2-3). 

Figure 2-3: The completed schematic for this project shows the 5.6-ohm voltage-drop resistor (R1), the two 
LEDs (D), the 330-ohm current-limiting resistors (R2 and R3), and the quad H-bridge (SN754410), of which 
half is used.

All grounds in this circuit are connected together, and the voltage 
across pins A0 and A1 is the voltage your program will use to decide 
when to reverse the motor’s direction. Note that this voltage is not refer-
enced to either the positive or negative rail, but it must be between 0 and 
5V to prevent damage to the microcontroller. If you get stuck on wiring the 
H-Bridge, see “Using an H-Bridge” on page 48.
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The analog-to-digital converter (ADC) behind each analog pin pro-
vides 10 bits of resolution, which means the converter can deliver up to 
1,024—that is, 210—different values, from 0 to 1,023, depending on the 
input. 

Thus, if the power supply is 5V, each increment is roughly 

5 1023 0 0048V V÷ ≈ . .

Determining the Reversal Threshold
In order to write a program that tells the Arduino when to reverse your 
motor, you have to determine that point yourself, with some math and a 
little bit of faith. 

First, determine the current drain of the motor you’re using. It’s usually 
printed on the motor’s label. The motor I used has a current drain of about 
40 milliamps (mA), or 40 thousandths of an ampere (see Figure 2-4). Now 
we get into the heavy math. You’re going to have to use a formula known as 
Ohm’s law to determine the voltage threshold to set in the sketch. 

Figure 2-4: I used an Asian import motor, shown here with  
one limit pin installed, that has demonstrated reliability and  
performance. The screws are M3×0.05.

I used a 5.6-ohm resistor in series with my motor circuit. Using Ohm’s 
law, which states that voltage equals current times resistance (V = IR, with 
voltage in volts, current in amperes, and resistance in ohms), we’re able to 
calculate that 40 mA times the resistance of 5.6 ohm is about 0.224V:

40
1000

5 6 0 224
 A

 V. .× =Ω

Now, go back to the ADC. It has 1,024 units to represent 5V, so each 
unit represents 0.0049V. A little arithmetic reveals that the 0.224V dropped 
represents about 46 units out of the 1,024: 

0 224
0 0049

45 71
.

.
.

V
V per unit

units=
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There are some estimates you have to take on faith—at least until you 
confirm with a test. This is one. As a motor is slowed or stalled, the current 
drain increases. Depending on the motor, the increase in current is typi-
cally somewhere between two and four times the normal current drain, but 
possibly more. 

N O T E 	 With no load (or minimal load), current drain on the motor is minimal. With a 
usual running load, current can be four to five times the no-load current. With a 
heavy load, current can be as much as 10 times that, depending on the motor design. 

So according to our good-faith model, a good place to start setting the 
threshold for reversing the motor would be in the area of 90 to 100 units of 
the ADC’s 1,024 units. 

Alternatively, you could use a digital multimeter to measure the exact 
current drain first (see Figure 2-5). To use a multimeter to measure current 
drain, set its indicator to 200 mA to start; you may need to set it as high as 
10 A if the motor doesn’t move when you build the circuit described here. 

 

Figure 2-5: Multimeters are handy for 
many projects and useful to have around 
the house. They’re available from a variety 
of sources at a range of prices. I use this 
cheap one from Electronic Goldmine, but 
if you plan to do high-voltage experiments, 
invest in a really good multimeter. 

Build the circuit as shown in Figure 2-6, and then connect the red 
lead of the multimeter to the power supply. Connect the black lead of the 
multimeter to the motor lead to complete the circuit. If the reading is nega-
tive, reverse the red and black leads of the multimeter. Depending on your 
power supply voltage and the motor’s voltage requirement, you may also 
need to connect the motor to power through a voltage regulator circuit, as 
described in “The Voltage Regulator” on page 58.
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Motor Digital multimeter
200 mA scale

Power supply/battery

Black lead Red lead

Positive terminalNegative terminal

Figure 2-6: Connection diagram for measuring the current drain of the motor

To check the current drain, hold the shaft of the motor to slow it, and 
watch the readout on the multimeter. You can get an accurate indication of 
the number of ADC steps by plugging your readout in to Ohm’s law, calcu-
lating the voltage, and converting into steps, as I did. 

N O T E 	 In the sketch, I use a value of 100 as the threshold for reversing. You could also calcu-
late the absolute value of the voltage drop by multiplying 100 by 0.0049V:

100 0 0049 0 49steps V per step V× =. .

Remember, the exact threshold depends on the type of motor you 
use. Different motors will have different current capabilities and may even 
require a different value resistor. Also, note that the value of current drain 
is not precise. The nature of permanent magnet motors is such that the cur-
rent drain under load will be a range, not an exact number. 

As the current increases, the voltage drop increases until it reaches 
the point where the microcontroller is instructed to do something. At that 
point, the difference in analog voltage that appears between A0 and A1 is 
above the preset threshold, which will set the Arduino into action. Once the 
threshold is reached, the Arduino tells the H-bridge to reverse the current 
to the motor. 

Using an H-Bridge
You’ll likely encounter an H-bridge driver in future projects because it’s a 
very versatile part and can serve numerous functions. There is quite a selec-
tion of H-bridge chips available, but I’ve been using the Texas Instruments 
SN754410 quad H-bridge. It’s popular because it operates over a wide volt-
age range and is extremely flexible—and inexpensive. The logic operates at 
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a 5V level, while the drive can be as much as 36V with a continuous output 
of 1 A (and a peak output of 2 A), making it capable of driving a wide variety 
of hobby motors, solenoids, and even relays. It comes in a standard 16-pin 
dual inline package (DIP). The DIP package was a longtime standard but is 
slowly being replaced by newer types (see “Using SOICs” on page 20). It’s 
the conventional centipede-looking circuit. 

Figure 2-7 shows the pinout for the SN754410 H-bridge, and Table 2-1 
shows its function table. You’ll find more information in Texas Instruments’ 
data sheet at http://www.ti.com/lit/ds/slrs007b/slrs007b.pdf.
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Heat sink 
and ground

Heat sink 
and ground

VCC1

4A

4Y

3Y

3A

3,4ENVCC2

2A

2Y

1Y
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1,2EN

Figure 2-7: The pinout for the SN754410 quad H-bridge chip 
used in this project. Note that pin 1 is in the top-left corner of 
the chip when viewed from the top with the notch pointing up. 

Table 2-1: Function Table for the SN754410

Inputs Output (Y)

A EN

H H H

L H L

X L Z

According to the data sheet, in this function table, H stands for high 
level, L stands for low level, X means the level is irrelevant to the circuit 
behavior, and Z indicates high impedance, which turns the motor off. 

The H-bridge is an elegant motor-control solution for several reasons. 
It allows you to reverse the polarity from a single supply, and it provides for 
different logic and control voltages. In addition, if both inputs of the dual 
H-bridge are either high or low, there will be no output. The sketch takes 
advantage of that in a function written to stop the motor. Other projects in 
this volume also use this capability.
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The Breadboard 
For most Arduino projects, I suggest building the circuit on a breadboard 
first to make sure you’re going in the right direction and to prove your ini-
tial hypothesis. Use a standard breadboard and the plug-in wires that are 
sold as accessories for the breadboard (see Figure 2-8).

Figure 2-8: Typical small breadboard and plug-in wires

Before you begin building the circuit on the breadboard, look over 
your Arduino. Many Arduino boards come complete with the male headers 
already soldered in place. However, that’s not always the case; some Asian 
suppliers include the headers loose with the processor board. If your board 
lacks headers, see “Preparing the Arduino Board” on page 2 for complete 
instructions on attaching them.

Most breadboards include a red and blue stripe on the entire length of 
each side of the board; the holes next to these stripes are used for power (+) 
and ground (−), respectively. Before you hook up the circuit, use a wire to 
connect the red column on the right to the red column on the left. Connect 
the blue columns to each other, too.

Warning       	 Do not connect the red column to the blue column! This will cause a short circuit and 
will burn out the electronics.

Figure 2-9 shows my breadboard for this project, and the schematic 
from Figure 2-3 lays out the connections. 
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Figure 2-9: This is the breadboard I used as a proof-of-concept to make sure every-
thing worked as anticipated.

Warning       	 Don’t plug the Arduino in to the computer while it is actually receiving power from 
the voltage regulator. This could burn out the Arduino.

I suggest prototyping your circuit as follows:

1.	 Insert the Nano board into the breadboard, leaving a couple of rows of 
holes at one end. 

2.	 Place a wire from the pin labeled 5V on the Nano (pin 27) to the red 
positive rail on the breadboard.

3.	 Place a wire from GND on the Nano (pin 29) to the blue negative rail 
on the breadboard.

4.	 Find three consecutive holes on the board where they will not connect 
to anything and insert the three leads of the LM7805 into them. 

5.	 The input lead of the LM7805 will go to the 9V power supply, the 
ground of the LM7805 will go to the blue negative rail, and the out-
put of the chip will go to the red positive rail. (See Figure 2-10 for the 
LM7805 pinout.)

Output

Ground
Input

Figure 2-10: Pinout of the LM7805 regulator

6.	 Insert the H-bridge into the breadboard with the notch facing the 
Nano, and leave a couple of rows between the H-bridge and the Nano. 
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7.	 Use a wire to connect pin 1 and pin 16 of the H-bridge together (see 
Figure 2-7). Then, use another wire to connect pin 1 to the positive 
connection on the breadboard. This connection from pins 1 and 16 
provides the voltage to run the logic on the H-bridge and also to enable 
the section of the H-bridge used.

8.	 Use a wire to connect pins 4 and 5 of the H-bridge, and then connect 
them to the negative terminal on the breadboard. Running a wire from 
either pin 4 or pin 5 to ground will do the trick.

9.	 Similarly, connect pins 12 and 13 of the H-bridge together, and connect 
them to ground. 

10.	 Use a wire to connect one side of the motor (it doesn’t matter which) to 
pin 3 of the H-bridge, and connect pin 6 of the H-bridge to the other 
side of the motor.

11.	 Connect digital pin D12 of the Nano to pin 2 of the H-bridge.

12.	 Connect digital pin D13 of the Nano to pin 7 of the H-bridge.

13.	 Connect one side of the 5.6-ohm resistor (R1) to pin 8 of the H-bridge.

14.	 Connect the other side of resistor R1 to the red positive rail on the 
breadboard.

15.	 Insert a wire from pin 8 of the H-bridge to analog pin A0 of the Nano.

16.	 Insert a wire from the positive (red) connector to analog pin A1 of 
the Nano.

17.	 Insert the positive side (long lead) of one LED to D12 of the Nano.

18.	 Insert the negative side of the LED into an empty row on the 
breadboard.

19.	 From that row with the negative side of the LED, connect a 300-ohm 
resistor (R2) to the blue negative rail.

20.	 Insert the positive side (long lead) of the second LED to D13 of 
the Nano.

21.	 Insert the negative side of the second LED into an empty row on the 
breadboard.

22.	 From that row with the negative side of the second LED, connect a 330-
ohm resistor (R3) to the blue negative rail.

The VCC2 supply drives the output to the motor. It goes from the posi-
tive side of the supply—the output pin of the regulator in the schematic—
through resistor R1 to pin 8 of the H-bridge. VCC2 becomes the low-voltage 
side of resistor R1; it will have a lower voltage as the load on the motor 
increases because the other end of the resistor is attached to the positive of 
the power supply. The VCC2 supply voltage can be anywhere from the 5V 
that the logic uses to the 36V limit of the H-bridge. For this project, I simply 
tied the voltage-drop resistor directly to the 5V supply, which worked well 
with a 6V motor.

The Nano’s D12 and D13 output pins drive the A inputs of the 
H-bridge, while A0 and A1 inputs straddle the voltage-drop resistor, R1. 
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It’s this voltage-drop value that tells the Arduino to change the outputs 
to instruct the H-bridge to reverse the motor. When output D13 is high 
and D12 is low, output pin 2Y on the H-bridge becomes positive while 1Y 
remains negative. When D12 is high and D13 is low, the reverse happens, 
and 1Y becomes positive while 2Y stays negative. When both pins have high 
or low output, they are at the same potential (or voltage), and the motor is 
not driven. (Refer to the function table in the H-bridge chip’s data sheet, or 
see Table 2-1.) 

The Sketch
The following sketch is written so that when the motor reaches its limits 
in one direction, both outputs go low, and when it reaches its limits in the 
other direction, both outputs go high. When both outputs are either high 
or low, there is no potential across the motor and it is stopped for a speci-
fied delay time. After the delay is satisfied, the motor starts in the other 
direction. Because LEDs are wired to pins D12 and D13, you’ll also get a 
visual indication. Both LEDs are illuminated when the motor pauses in 
one direction, and both LEDs are off whe the motor pauses in the other 
direction.

/* Sketch for the Automatic Motor Reversal Project 
*/

//Identify pins that will not change
const int ledPin1 = 12; //LED1 in schematic
const int ledPin2 = 13; //LED2 in schematic
const int analog0 = A0; 
const int analog1 = A1;
int analogValue0 = 0; //Identify variables for analog inputs
int analogValue1 = 0;
int analogdifference = 0;
int threshold = 100; //The threshold value calculated to stop the motor

int reading;
int state;
int previous = LOW;
int count = 0;
int numberstops = 250;
int time = 0; //The last time the motor reversed

//Amount of time to wait to get rid of the jitters when the motor reverses
int debounce = 400;  

u void setup() { //This is the setup routine
//Initializes pins as input or output
  pinMode(analog0, INPUT);  
  pinMode(analog1, INPUT);
  pinMode(ledPin1, OUTPUT);
  pinMode(ledPin2, OUTPUT);
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  Serial.begin(9600); //Was used in setting up the parameters
}
 

v void loop() { //This begins the processing section
  //Enter an endless do-nothing loop after the counter reaches the limit
  while(count > numberstops) {
    digitalWrite(ledPin1, LOW);
    digitalWrite(ledPin2, LOW); 
  }
  
  analogValue0 = (analogRead(analog0)); //Read the analog values
  analogValue1 = (analogRead(analog1));

   //Setting up the analog difference 
  analogdifference = analogValue1 - analogValue0; //This is the voltage drop  
  //analogValue1 will be greater than analogValue0
 
  //These were added to view what was happening on the serial monitor
  Serial.print("count =    "); 
  Serial.println(count);
  Serial.print("analogdifference =      ");
  Serial.println(analogdifference);
  Serial.println();
  Serial.print("numberstops =     ");
  Serial.println(numberstops);

  //This comparator looks at the difference or drop across the resistor
   if(analogdifference > threshold) {  

    reading = HIGH;
  }
  else {
    reading = LOW;
  }
  
  //Toggles the output and includes the debounce

y   if(reading == HIGH && previous == LOW && millis() - time > debounce) { 
    if(state == HIGH) {
      state = LOW;
    }
    else {
      state = HIGH;
    }
    //Increments the counter each time the motor reverses

z     count++;
    time = millis();    
  }
     
  //Writes the state to the output pins that drive the H-Bridge
  digitalWrite(ledPin1, state);
  digitalWrite(ledPin2, !state);
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  previous = reading;
 
}

This sketch sets up human-understandable aliases for the pins the proj-
ect uses and adds convenient constants and variables for referencing analog 
inputs and other key values. After the sketch defines and initializes the input 
and output pins at , it starts the main loop at .  

Inside the main loop, the sketch finds the voltage drop across the resis-
tor in terms of analog steps . At , the sketch determines whether the 
reading was high or low. Threshold values from 100 to 120 work reliably for 
the 6V, 20 RPM motor I used, but you may need to experiment to find the 
right value for your motor. See “Determining the Reversal Threshold” on 
page 46 for more on how to estimate the threshold value. The reading 
at  dictates whether to reverse the motor.

When the sketch checks reading to see whether the motor needs revers-
ing, it also uses the debounce value to assure that a high reading wasn’t caused 
by electrical noise created by the motor’s commutator or brushes during a 
legitimate reversal. I set debounce to 400, but you may have to adjust that for 
different motors. For larger motors specifically, this may need to be set a 
little higher.

This sketch also includes a few functions that aren’t strictly necessary to 
reversing the motor but are helpful when using the motor as a PCB agitator. 
These aspects of the project may appeal to you in other applications, too, so 
let’s look at them in more detail. 

One of the things that I added was a counter to track the number of 
times that the motor reversed. In the sketch, the count increment appears 
at z as count++. In the project, when a certain value of count is reached, the 

T he Dropping R e sis tor is Key  to Sen sing Curren    t

I’ve tried this reversing circuit with several similar motors, and I’ve only ever 
needed to make a slight adjustment to the threshold value in the sketch. But 
for a motor with extremely high or low current drain, you may need to antici-
pate a much different value for analogdifference and/or use a different drop-
ping resistor, which was R1 in the schematic. You might need to reduce the 
value of the dropping resistor to something like 2.2 ohms, which then requires 
a reduction in the value you compare analogdifference to. 

For most small motors, the lower the value of the dropping resistor—which 
is usually between 1 and 10 ohms—the better, as the analog difference tends 
to be more stable. For other motors, experiment to find the resistor value that 
works best. 
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motor stops (if count = numberstops). If you wanted to set off an alarm, such 
as an audible noisemaker, to tell you it’s finished, that can easily be accom-
plished by adding a line to write to one of the digital outputs. I set a maxi-
mum count value in the sketch, using numberstops = 250, so the motor will 
reverse 250 times and then stop. That provides a little more than 15 min-
utes of etching time with the motor I’ve selected running at 5V, which 
should be enough to etch most circuit boards.  

When the maximum count is reached, the sketch enters the while loop 
at the beginning, stopping the agitation. This basically stalls the processor, 
and you have to hit the power switch to restart, or reset, the agitator. The 
placement of this loop near the beginning of the software is just a reminder 
that it’s there. 

The thinking behind the count, optional alarm, and stop capabilities 
is that a reminder to check on your board is helpful. If the board has com-
pleted etching, continued agitation would speed undercutting of the traces, 
which is not a good thing because it weakens (and can break!) small copper 
traces. On the other hand, if it fails to etch in a reasonable time, you might 
need to refresh the etchant. 

Mod: A djus table   S top A moun t

If setting a fixed stop maximum in a sketch doesn’t leave you satisfied, try 
connecting a potentiometer between power and ground with the adjust pin, 
which is usually the center pin on the potentiometer, to the A2 input pin of the 
Arduino. Then, set numberstops equal to the value of A2, which should range 
from 0 to 1,023, depending on the position of the potentiometer wiper. 

Here’s how the sketch would differ. First, change 

int numberstops = 250; 

to 

int numberstops = setNumber;

Then, add the following:

int setNumber;
int analogPin2 = A2;
int analogValue2;
setNumber = analogRead(analogPin2);

Because the timing is relative, you could use a 270-degree rotation linear 
potentiometer and make some rough markings on the enclosure to indicate the 
number of counts. 



An Automated Agitator for PCB Etching   57

The Shield
For this project, I recommend making a small PCB shield, which is basically 
a host board designed to plug into the Arduino Nano. With a shield, your 
motor reversal project can remain compact, and you can design and build it 
with a minimum of effort. 

PCB Layout
You could just solder the parts for your project directly to a piece of perfo-
rated project board, but I believe creating and populating the shield takes 
less time than putting the parts on a perforated board and wiring them by 
hand. You’ll also gain invaluable experience by preparing, etching, drill-
ing, and assembling your own PCB. And in the end, some projects are com-
plex enough that wiring by hand just won’t be an attractive option. (See 
Figure 5-13 on page 148 for an example.)  

To make my printed circuit layouts, I use a free software program 
called ExpressPCB. Figure 2-11 shows my layout of the PCB.

Figure 2-11: This is the actual PCB pattern I used in the 
project. The Arduino Nano can be soldered directly to 
the board or can plug in if you use header connectors. 

If you don’t want to lay out your own PCB but still want to make 
the board, download the Reverse.pcb file from https://www.nostarch.com/
arduinoplayground/ and follow the directions in “Making Your Own PCBs” 
on page 13. When you’ve made your PCB, just solder all the components 
to it in the right places, and you’ll be done with the shield. 
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Shield Design Notes
If you lay out your own shield, there are a few design factors you should 
definitely keep in mind. 

Analog Inputs

Be certain to connect the A1 and A0 inputs to the correct sides of resis-
tor R1, according to the schematic in Figure 2-3. A1 should attach to the 
power supply side and A0 to the H-bridge side. In the sketch, to compare 
the analog values, we take the difference as analogdifference = analogValue1 – 
analogValue0, with analogValue1 as the input at the high end of the resistor. In 
this case, analogValue0 is A0, and analogValue1 is A1. 

Grounding and Heat Sink 

Pins 4, 5, 12, and 13 are ground on the H-bridge, and they are also a heat 
sink to keep the chip from overheating. A small area on the proposed shield 
is included to increase the heat sink area. If you’re using a relatively small 
motor—such as the 6V, 20 mA unit—no more heat sinking is required. If 
you’re using a much larger motor or driving a heavy load, consider using 
the second side of the PCB as a heat sink.

The Voltage Regulator 

This project uses its own 5V regulator to supply power to the Nano. A 9V, 
200 mA plug-in wall adapter is connected to the voltage regulator LM7805 
on the shield, which reduces the voltage from about 9V to 5V. An external 
regulator is included so a more powerful regulator than the one built into 
the Nano can be used. Make sure to connect the pins of the regulator cor-
rectly (see Figure 2-10). 

You could feed a 7.5V DC or 9V DC wall supply directly to the VIN pin 
of the Nano and use the onboard regulator, which worked with my motor. 
But if you use a larger motor—or higher-current LEDs—it might tax the 
onboard regulator and could conceivably burn it out. 

The higher the voltage of the power supply, the more work the regula-
tor has to do to bring it down to 5V. Overtaxing the regulator could cause 
it to heat up and fail. For example, feeding the regulator 12V is probably 
at the high end for 5V regulation. A 9V input is better, and a 7.5V input 
is better yet. If the regulator chip gets warm, add a heat sink to the tab. A 
small piece of aluminum is often sufficient, but a regular heat sink can be 
used. And while it’s good to have the supply voltage as close to the output 
voltage as possible, remember that the regulator needs at least 1V above 
the regulated output to work, so it must be fed with at least 6V, which is a 
5V-regulated output plus 1V. Input voltages above 12V are feasible, too, but 
just be sure not to exceed the limits of the device.  
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Mod: Using a Higher  Voltage

If you use a higher-voltage motor for this project, it will turn faster, have more 
torque, and so on. But you can’t simply connect the higher voltage to the high 
end of the dropping resistor connected to pin 8 of the H-bridge. That would 
cause the voltage between both A0 and A1 and ground to exceed 5V, which 
is hazardous to the health of the ATmega328 microcontroller on the Arduino. 
(This is the only time that the voltage referenced to ground is important.) Thus, 
a modification is required. Look at R1 in the schematic in Figure 2-12. The sup-
ply first goes to resistor R2; R2 joins with resistor R3, which goes to ground.

Figure 2-12: If you elect to use a higher voltage and drive  
a faster motor, you will have to modify the circuit by adding  
voltage dividers in front of both the A0 and A1 inputs. 

To avoid damage to the Nano processor, you will want to keep the volt-
age that appears at that joining point under 5V, referenced to ground. The 
easiest way to do this is to use a voltage divider. Two resistor pairs divide the 
higher voltage: the first pair is R2 and R3; the second is R4 and R5. The value 
of these resistors should be such that the output at the joining of each pair—R1 
and R2, and R4 and R5—is somewhat less than 5V for whatever value of input 
voltage you use.  

(continued)
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Directional LEDs

Of course, what Arduino project would be complete without blinking 
LEDs? As you’ll see in the schematic and on the shield PCB, I included 
two LEDs: a red one for clockwise rotation and a green one for counter
clockwise rotation. But which direction belongs to which LED is your 
choice: simply reverse the motor leads to change the LED status. 

Construction
For this project, you’ll use the motor-reverse technique to create an agitator 
that accelerates the etching of PCBs. To do this, you’ll suspend a PCB from 
an Arduino-driven motor over etching solution, as shown in Figure 2-1. A 
small enclosure will contain the Arduino Nano, the shield, the motor with 
limit wires, direction LEDs, a power switch, and the power jack. 

Use this formula:

V Vout in
R

R
= ×

+ R
2

1 2

and the schematic in Figure 2-13 to determine the values of the resistors to use 
in a voltage-divider circuit.

For example, if you start with 9V and arbitrarily 
select a 10-kilohm resistor in series, you would have to 
shunt it with a 12.5-kilohm resistor to ground, accord-
ing to the calculator. The closest resistor I had was 
12 kilohm, and it worked fine. If you can’t find a stan-
dard resistor to fit your needs, you can also combine 
two standard values in parallel to achieve the value 
you want with this formula:

R total R R
R R

=
×
+

1 2
1 2

If you don’t want to do the algebra yourself, you 
could use one of the convenient online voltage-divider 
calculators such as http://www.sengpielaudio.com/
calculator-paralresist.htm or http://www.raltron.com/
cust/tools/voltage_divider.asp. SparkFun also has an 
excellent tutorial on voltage dividing, with a calcula-
tor of its own: http://learn.sparkfun.com/tutorials/
voltage-dividers/. 

Ground

Vout

Vin

R1

R2

Figure 2-13: A 
basic voltage 
divider. To find 
the resistors you 
should use, plug 
the values from 
your own divider 
into the formula 
as if your divider 
were this circuit.
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After assembling the box, you just have to mount it somewhere above 
your etching setup and attach the reverser, either directly to the PCB or to 
a tray. I clamped my box to a cabinet door above my workspace, with a place 
for the etching vessel below (see Figure 2-14). The entire system can be 
assembled and disassembled quickly. 

Figure 2-14: For larger PCBs, try etching in a tray for a more conventional 
approach. Just attach the motor reverser to your tray to agitate the board 
rather than using the reverser to dip the board in and out of the solution.

Construction of the rest of this project takes a little bit of patience and 
perhaps some ingenuity in scavenging some of the parts required. You will 
need a couple of M3 screws to mount the motor to the motor plate—in 
this case, a small aluminum L bracket—and some limit wires, preferably 
made of 0.039 piano or spring wire. You’ll also need a small block of scrap 
brass or aluminum—round or rectangular, doesn’t matter—to attach to 
the motor shaft and crank, a long 4-40 or 6-32 screw to act as the crank, 
and an M3 spacer and solder lug to attach the agitator line to the crank. 
Figure 2-15 shows the nearly-finished, unmounted product.
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Figure 2-15: Wire up your components and lay them out for a final test before  
you put them in an enclosure. For the test, I held the motor in a clamp so the  
crank was free to move. The regulator heat sink obscures much of the shield. 

The Limit Wires 
The limit wires will create resistance to the motor’s rotation by essentially 
bumping into the motor crank. The point in the rotation where they strike 
the crank is the limit of rotation. When the crank runs up against the limit 
wire, the wires prevent the motor from turning and initiate the reversal. 

I recommend piano or spring wire to provide a little spring as the crank 
hits it at the extent of rotation. Use a pair of needle-nose pliers to bend two 
pieces of the limit wire into shape (see Figure 2-16). These wires will fit on 
the motor mount screws outside of the motor mounting bracket. You can 
change the limit of rotation by loosening the screw and rotating the wire. 

Figure 2-16: This is how the limit pins are formed.  
A good pair of needle-nose pliers does the trick. 
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The Crank Bushing 
The crank bushing is simply what transfers the rotation of the motor to the 
crank. Figure 2-17 details the construction of the bushing, the spacer, and 
the solder lug. 

Drill with #36 and tap with 6-32 tap

Drill hole for motor shaft

Rectangular solid optional

Crank screw

Locks against motor shaft

Motor shaft

Locking nut
Drill with #36 drill and tap 6-32

Thread onto crank
M3 threaded spacer

M3 screw binds to crank

Bushing

Solder lugM3 threaded
spacer installed 

Figure 2-17: The detail of the drive mechanism that transfers the rotation of the motor to 
the lifting motion of the agitator

While there can be a number of different variations in your approach 
to assembling this part of the project, here’s the sequence I used to put it 
together: 

1.	 Drill a hole for the motor shaft through the center of the bushing, 
which can be a small piece of brass or aluminum round stock about 
0.5 inches in diameter and 0.75 inches long. A rectangular piece will 
work just as well. Use a drill that is as close to the size of the motor shaft 
as possible. For example, if your motor shaft is 0.157 inches in diameter 
like the one I used, then a 11/64-inch drill bit is close enough. It isn’t 
important to get the hole exactly on center—just close. 

2.	 In the bushing, perpendicular to the motor shaft hole, use a #36 drill 
to drill a hole. Then, tap the hole you drilled so a long 6-32 screw can 
serve double duty as a setscrew and crank. You can also use a sepa-
rate setscrew to move the crank farther from the motor, as I did in 
Figure 2-18.

3.	 Thread the crank screw into the bushing so it bears tightly against 
the motor shaft, and use a locking nut to hold the screw in place (see 
Figure 2-18). 
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Figure 2-18: A photograph detailing the head of the crank. Note the solder 
lug used to hold the wire and the alligator stop clip on the left side.

4.	 At the end of the crank, you are ultimately 
going to attach the line that will pull the PCB 
in and out of the etchant. This fitting can be 
just a nut, or even an alligator clip, attached 
to the crank. However, in the detail, I used an 
M3 hex female-female spacer that was 7 mm 
long. I drilled clean through the spacer to 
one side, starting on one of the flat surfaces 
with the same #36 drill. I then tapped the 
hole with the 6-32 tap and threaded it onto 
the crank.

5.	 Take an M3×0.5 mm machine screw and put it 
through the solder lug (see Figure 2-19 for the 
lug itself and Figure 2-18 for the lug in place). 
Screw it into the standoff all the way so it binds 
on the crank screw.

My local Ace Hardware store had all of the 
accessories I needed, with the exception of the 
M3 spacer, which I got from eBay. You should be 
able to find the same items at Home Depot or 
Lowe’s. 

Packaging
The shield and Nano fit in a standard plastic enclosure (see Figure 2-20). 
Drill holes in the enclosure for the 3.5 mm power jack, the SPST switch 
that serves as a power switch and reset, the indicator LEDs, and the motor 
wires.

Threaded bushing Setscrew

Limit wire

Solder lug

Figure 2-19: The solder 
lug used to hold the 
wire that holds the 
etching board. If you 
can’t purchase some-
thing similar, you can 
easily make one with 
a piece of scrap metal 
or plastic.
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Figure 2-20: Completed enclosure with motor, limit wires, direction LEDs, power switch 
(reset), and power jack. The LEDs light up, with one for each direction. When the motor 
pauses in one direction, both LEDs turn on; when it pauses in the other direction, both LEDs 
turn off.

Most 3.5 mm jacks use approximately a 1/4-inch hole, which is the 
same sized hole as the switch. If you want a tight fit, 15/64 inches is closer. 
Whether you use a 5 mm or 10 mm LED will dictate the size of the holes 
required for those. It’s been my experience that different brands tend to 
have slightly different diameters, so you might want to try a smaller drill 
first and test whether the LED fits. The arbitrary English-sized drill bits for 
the 5 mm and 10 mm LEDs are 3/8 inches and 3/16 inches, respectively. 
If you have a set of tapered reamers, you can start with a smaller hole and 
ream it out to make a tight fit for the LEDs.

Mount the motor on a small piece 
of aluminum angle, readily available 
at most hardware stores. I purchased a 
1-inch section of 1.5×1.5–inch alumi-
num angle and cut it down to size with a 
hacksaw. If you’re using the motor I use, 
you can copy the template in Figure 2-21 
or download and print it from https://
www.nostarch.com/arduinoplayground/, cut 
it out, tape it to the aluminum angle 

17.50 mm

6.75 mm

6.95 mm

Figure 2-21: Template for the 
motor mount
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bracket, and carefully mark the hole positions on the bracket with a center 
punch or nail. Now, drill the holes—1/8 inches for the motor mount and 
5/16 inches for the center hole. If you use a different motor, you will have to 
measure and mark out the mounting holes. 

Just use some double-sided foam tape to secure the shield to the enclo-
sure if you think you’ll want to use it in another project. Otherwise, attach it 
to the inside with standoffs and screws in any size you like.

The Etching Process
There are a number of techniques for making PCBs. The most common is 
a subtractive approach, which involves starting with a copper clad board, 
or a copper foil bonded to an electrically insulating substrate, from which 
the copper is selectively removed to leave a pattern on the board. While the 
copper can be mechanically milled off, the most common approach is to 
selectively etch the pattern on the board chemically.

In the chemical etching process, the circuit pattern is printed on the 
blank board with a chemical resist so that the copper is removed by the 
etchant in the areas not treated with the resist. The etchant is a chemi-
cally active material that attacks the untreated copper on the clad board, 
leaving you with only the copper you need for your circuit. I describe how 
to etch circuits step-by-step in “Making Your Own PCBs” on page 13, 
and this project makes that process easier.

Our goal is to suspend an unetched circuit board over the etchant in 
the vessel and keep it in the etchant for the maximum time as the agitator 
goes up and down, resulting in a laminar flow of etchant across the surface 
of the circuit board. I suggest using a nylon cable tie to hold the circuit 
board during the etching process, as nylon is relatively impervious to the 
etchant. You could attach the tie, in turn, to the motor shaft with an alliga-
tor clip so the board is easy to remove (see Figure 2-22).

I used a 250 mL beaker as an etching vessel. For very small boards, this 
works extremely well. For larger boards, I recommend a large measuring 
cup, such as a 2 qt Pyrex cup. A 600 mL beaker works for intermediate-
sized boards. For even larger boards, you can use a tray, as illustrated in 
Figure 2-14.

The switch and power input are located on the left-hand side of the 
enclosure. To hold the board being etched, I suspended a wire through the 
solder lug and attached that wire to the board with a small alligator clip. 
On the back of the lug, you can either tie a small knot in the wire or attach 
a clip of some sort to make sure the wire doesn’t fall through the lug and 
into the acid. In my setup, a clamp (behind the motor in the photo) holds 
the enclosure to an overhanging door.
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Figure 2-22: This Arduino-based etcher-agitator etches a board. The etchant 
should turn emerald as the copper is etched. The board is held by a wire tie 
that is attached to a wire by an alligator clip. The wire goes through a hole 
on the crank and is held in place with another alligator clip. One of the LEDs 
is lit. 

Note that the etching vessel is sitting on a hot plate. Though etching 
will occur at room temperature, it’s accelerated somewhat by heating. Be 
careful not to get the etchant too hot: if you set the hot plate on low to keep 
the liquid at about 100 to 120°F, it will speed etching without softening the 
resist.





3
T h e  R egula     t ed   P o w er   Supply   

Whether you use a standard bench power 
supply or run your Arduino off the USB 

port of your computer, sooner or later 
you’re going to need a stand-alone, regu-

lated power supply capable of providing a variable volt-
age. This project shows you how to make exactly that, 
using only a handful of inexpensive parts. A variable power supply is one of 
the most frequently used tools in many workshops. This one is easy and fun 
to build, and you will find that you end up using it over and over again.

When set for 5V or 3.3V, the Regulated Power Supply can power 
most Arduino projects with ease. You can also use it to power some ancil-
lary piece of equipment, to vary a particular voltage in a system while 
the main power is fixed, or simply to test a lamp circuit, LED, motor, or 
other device. 
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The circuit uses the extremely versatile LM317 regulator chip. If 
you ever find yourself in need of a precision voltage regulator with some 
unusual demands, look up the LM317 on the web. The JavaScript Electronic 
Notebook has a particularly good article titled “LM 317 Voltage Regulator 
Designer” by Martin E. Meserve, which can be found at http://www.k7mem​
.com/Electronic_Notebook/power_supplies/lm317.html.

Required Tools 
Soldering iron and solder

Drill and drill bits (3/8 and 1/4 inches)

Hacksaw or keyhole saw (nibbler or other)

Phillips head screwdriver

(Optional) Tapered reamer set 

(Optional) Crimping tool 

Parts List
The Regulated Power Supply is capable of providing an adjustable voltage 
from 1.25V to about 12V at up to 1.5 A, depending on the fundamental 
power you use. It uses the LM317 single-chip voltage regulator to set the 
voltage. To build this project, you will need the following parts:

One Arduino Pro Mini or clone

One LM317 voltage regulator

One LM7805 voltage regulator

Two 2.2-ohm, 5 W resistors 

Three 10-kilohm, 1/8 W resistors

Three 6.8-kilohm, 1/8 W resistors

One 68 µF tantalum capacitor

Three 0.1 µF ceramic capacitors

One 1 µF tantalum capacitor 

One 16×2 LCD

One I2C adapter, if not included with the LCD

Four 4-40 screws

Eight 4-40 nuts

http://www.k7mem.com/Electronic_Notebook/power_supplies/lm317.html
http://www.k7mem.com/Electronic_Notebook/power_supplies/lm317.html
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One 5 mm LED (for power indicator)

One SPST switch

One 470-ohm, 1/8 W resistor

One 10-kilohm, 1/8 W potentiometer

One Hammond panel/case (#1456CE3WHBU) 

Two banana plug jacks 

One 3.5 mm jack

One 12V 2 A AC adapter 

One power adapter jack

One PCB/shield

Six 1×4 headers

Four 1×4 housings

Four 1×2 headers

One heavy-duty TO-220 heat sink

One medium-duty TO-220 heat sink

Four male crimp connectors

Four female crimp connectors

30-gauge hookup wire

One knob to cover the potentiometer shaft

Double-sided foam tape

A note on heat-sink selection: there are a wide variety of heat sinks 
available. The one pictured in Figure 3-2 is the Futurlec TO220ST, which 
works okay but runs pretty warm as you approach the 1 A range. A larger 
one that will still fit in an enclosure may be better. Futurlec TO220SMAL, 
the heat sink for the LM7805, is sufficient for the job.

Downloads
You will find the following files in this book’s online resources to help you 
complete this project:

Templates  PowerSupplyFront.dxf, PowerSupplyFrontBottom.dxf

Sketch  PowerSupply.ino

Shield file  VoltageRegulator.pcb
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W h at t he R egula t ed  Pow er  Supply Is and  Isn’t 

The power supply in this project is not intended to replace a regular bench 
power supply. It does not provide any current limiting and is rated up to 
1.5 A, due to the current capacity of the LM317. However, for a wide variety 
of applications—including all of the projects in this book—it works very well. If 
you’re new to Arduino, it will provide a solid power supply and save you a lot 
of batteries, if that’s how you’ve been powering your projects. If you already 
have a full-sized bench supply, this project will be indispensable as a second 
supply. The Regulated Power Supply can be used for several projects in this 
book that require a secondary power supply.

I have used the Regulated Power Supply in other applications, and at the 
end of this project, I’ll illustrate a more simplified version that can be used as 
a remote supply. There are times when you just don’t have the proper voltage 
supply for a project, and this build fits the bill. 

A Flexible Voltage Regulator Circuit
The basic LM317 regulator circuit in Figure 3-1 is the heart of this voltage 
regulator. Though it is relatively rudimentary, the chip’s simplicity belies 
what a powerful and versatile tool it can be. 

Figure 3-1: This is the schematic diagram for the regulator  
component of the Regulated Power Supply. The complete  
schematic with the display is shown in Figure 3-4. 

I have used some variation of this circuit for many applications, from a 
stand-alone variable supply to an integrated part of a larger system, always 
with good results. 

In the shop, I sometimes use kind of a “hair-wired” version, shown in 
Figure 3-2 (left), for testing LEDs and controlling things like motor speed 
and lamp intensity. I’ve also used a breadboard version, shown in Figure 3-2 
(right), to implement the regulator circuit. In both cases, I used a trimmer 
potentiometer, which requires an alignment tool or screwdriver to make 
adjustments. 
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Figure 3-2: The “hair-wired” version of the voltage regulator circuit with a heat sink 
screwed to the LM317 (left) and a breadboard version of the regulator (right). I used this 
in an application with minimal power requirements and thus did not include the heat sink. 

While those regulator circuits worked, one reason for using the more 
refined Regulated Power Supply format in Figure 3-1 was to eliminate the 
awkward trimmer potentiometer and instead use a standard 270-degree 
potentiometer and knob so that I could make adjustments quickly, easily, 
and repeatedly. But the main reason I built it was to have a secondary 
variable-voltage power supply with digital readout readily available on the 
bench.

How the Circuit Works
The circuit for this project is not overly complex. In essence, it measures the 
voltage at the output of the LM317 regulator using the onboard analog-to-
digital converter (ADC) and compares it to an internal reference voltage. 
The result is sent to the LCD screen. However, the Arduino Pro Mini 5V 
version can accept a maximum of only 5V at the analog inputs. We there-
fore use a voltage divider to make sure that the voltage at the analog input 
pin doesn’t exceed 5V. (Make sure voltage supplied to the LM317 is no 
greater than 12V.)

In this case, a voltage divider comprises two resistors connected in 
series, straddling the output of the LM317 and the ground rail of the 
breadboard (see the schematic in Figure 3-4). The voltage coming from 
the LM317 gets divided across the two resistors, R2 and R3. As you will 
note in the sketch, converting from the divided voltage back to the origi-
nal levels for the display is simply a matter of reversing the arithmetic. 

As shown in the schematic in Figure 3-4, the output of the LM317 con-
nects to both the R2-R3 voltage divider and to resistor R1. Together, resistor 
R1 in parallel with R9 and the load, or whatever you want to power with 
the power supply, can be seen as another voltage divider. The R1-R9 volt-
age divider has a resistance of only 1.1 ohms, so the voltage drop across it 
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is going to be relatively small. According to Ohm’s law (I = V/R) the voltage 
across R1 and R9 is going to be 1.65V for a maximum current drain of 1.5 A 
(the maximum supported by the regulator IC): 1.5 A = 1.65V/1.1 Ω. 

This means that when the LM317 provides about 12V and the load 
draws 1.5 A, there will be a 1.65V voltage drop across R1 and R9, leaving 
10.45V at the power supply’s output. 

Looking at the schematic in Figure 3-4, we are comparing the voltage 
at analog inputs A0 and A2 of the Pro Mini. If you use the same values for 
the voltage divider for A0 and A1, you can eliminate one of the sets of resis-
tors and simply connect A0 to A1. 

Voltage Di v ider  R e sis tor Value  s

The values of the resistors needed to achieve a certain voltage are determined 
using this formula: 

Vout = Vin ×
R2

R1 + R2

The schematic of a typical voltage divider circuit is shown in Figure 3-3.

R1

Vin

R2

Vout

Figure 3-3: A typical voltage divider circuit

You can do the algebra if you’d like, but it’s easiest to use an online 
calculator, such as the one at http://www.daycounter.com/Calculators/
VoltageDivider-Calculator.phtml. In this project, the objective is to achieve 
an output of around 5V. We’ll start with a 12V input and a 10-kilohm resistor, 
represented by R1 in the formula and marked R2 in the schematic. Fill in the 
calculator fields with this information, and the formula will give you a resistor 
value of 7.1-kilohm for R2 in the schematic and R1 in the formula. The closest 
standard resistor value is 6.8 kilohm, so the project uses that along with the 
10-kilohm resistor in its voltage divider. 

But why start with a 10-kilohm resistor? The first reason is to avoid draw-
ing too much current. Even if the entire 12V dropped across the 10-kilohm resis-
tor, it would result only in a nominal drain of 1.2 mA. Second, I have a lot of 
10-kilohm resistors in the parts bin, and I am sure you do, too. 

http://www.daycounter.com/Calculators/Voltage-Divider-Calculator.phtml
http://www.daycounter.com/Calculators/Voltage-Divider-Calculator.phtml
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The Schematic
While I wanted the Regulated Power Supply to be relatively robust, I didn’t 
want it to be overly complex or hard to build. The hair-wired and bread-
board versions did well in temporary or emergency applications when used 
with a digital multimeter (DMM), but I sought to build something more per-
manent that would have its own voltage and current readout, and that would 
stay on the workbench or sit on my desk as a regular addition to the tool set. 
Figure 3-4 shows the full schematic for the Regulated Power Supply. 

Arduino Pro Mini
16-2 LCD/I2C display
U1: LM317
U2: LM7805 
R1: 1.2-ohm, 5 W resistor (two 2.2-ohm resistors in parallel)
R2, R4, R7: 10-kilohm, 1/8 W resistor
R3, R5, R8: 6.8-kilohm, 1/8 W resistor
R6: 470-ohm, 1/8 W resistor

R7: 10-kilohm, 1/8 W potentiometer
C1: 68 µF tantalum capacitor
C2: 1 µF tantalum capacitor
C3, C4, C5: 0.1 µF ceramic capacitor
SW: SPST switch
D1: LED
R11: 470-ohm, 1/8 W resistor

Figure 3-4: Schematic for the Regulated Power Supply 

I use three sets of voltage dividers in this circuit. The first looks at the volt-
age at the output of the regulator, which is ultimately displayed on the LCD. The 
other two divide the voltage in front of and behind the voltage-dropping resis-
tor so that the amperage can be measured according to the formula I = V/R, 
where V is the voltage drop across resistors R1 and R9, and R is the value 
of those two resistors combined. Could I have eliminated one set of voltage 
dividers? Yes, by joining A0 and A1 together. I thought, however, that I might 
want to change those values at some point to increase the accuracy of the 
ammeter by bringing the value closer to the Arduino reference voltage, so I 
did not join them in my version of the project. 
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The Breadboard
As in all of my Arduino projects, I began with the standard breadboard. 
To make life easy, I used a standard potentiometer with pins that would fit 
into the 0.100-inch-spaced breadboard holes. With a little effort, a standard 
16 mm rotary potentiometer (R7 in the schematic) with printed circuit 
board connectors will just about fit into every other hole in a breadboard. 
Figure 3-5 shows an overhead view of the finished breadboard before you 
power it.

R1
LM317

R6
R2

R4

LM7805

R5R3

Figure 3-5: The breadboard for the Regulated Power Supply. The capacitors in the 
schematic—C1, C2, and C3—are not included in the breadboard but should be 
included in the completed unit.

Preparing the Arduino Pro Mini and LCD
The Arduino Pro Mini may or may not come with the male headers attached. 
If it doesn’t, you’ll have to solder them yourself (see “Preparing the Arduino 
Board” on page 2). Make sure the number of header pins in your strip 
matches the corresponding holes in the Pro Mini; you may have to cut the 
strip to the proper number of pins if the included strip is too long. Trim two 
strips of headers to size and place the long ends of the two header strips into 
a breadboard, spaced so that the Pro Mini board will fit over them. Put the 
Pro Mini in place, and solder all the header pins. Then, take two header pins 
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(use the surplus from the longer header or purchase these separately), insert 
them in the A4 and A5 holes in the Pro Mini, and solder. These are the pins 
used for the LCD.

Finally, install five header pins on the edge of the board (at the TX0 and 
RXI end). Some boards come with straight headers, others with the long pins 
bent at a 90 degree angle. In most of the applications, I have found it easier 
to work with straight headers. You can use right-angle headers, but it may 
be more difficult to plug in the connector for programming the board, so I 
recommend replacing any right-angle pins with straight ones. You also might 
want to take a 1/2-inch length of 22-gauge wire and solder it to the short end 
of the RST pin so it sticks up. A female header connector will connect to this 
during programming. 

You will now have to get the LCD/I2C assembly ready. If you purchased 
the display and adapter separately, you will have to assemble them. Go to 
“Affixing the I2C Board to the LCD” on page 3 for instructions. If you 
purchased the display with the I2C adapter, it’s ready for assembly. 

Building the Breadboard
Here’s the step-by-step guide to putting together the breadboard: 

1.	 Insert wires to connect the two positive (red) rails together. 

2.	 Insert wires to connect the two negative (blue) rails together. 

W A R N I N G 	 Be careful not to cross the two and connect the positive rails to negative rails. That 
could cause a short circuit and damage the hardware. 

3.	 Insert the 10-kilohm rotary potentiometer into the breadboard.

4.	 Insert the LM317, with or without heat sink attached, near the poten-
tiometer, as shown in Figure 3-5. (See Figure 3-6 for the pinout of the 
LM317.)

Input

Output
Adjust

Figure 3-6: Pinout of the LM317 regulator

5.	 With the potentiometer shaft facing you, connect the leftmost pin and 
center pin of the potentiometer together, and then connect both to the 
adjustment (ADJ) pin of the LM317.

6.	 With the potentiometer in the same orientation, connect the rightmost 
pin to the blue negative rail (ground). 

7.	 Connect a 470-ohm resistor from the output pin to the ADJ pin on the 
LM317.
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8.	 Connect a 1.2-ohm resistor (R1 in Figure 3-4—I used two 2.2-ohm 
resistors in parallel) from the output pin of the LM317 to a load of your 
choosing. For test purposes, I used a 1/8 W resistor and connected a 5V, 
30 mA incandescent indicator lamp for the load. (You may want to use 
the actual R1 and R9 resistors that you will use in the finished unit, so 
you can adjust the sketch before completing the unit.)

9.	 Connect the input pin of the LM317 to the 12V system input voltage. 
This is the wire going from the LM317 to the upper alligator clip in 
Figure 3-5.

10.	 Connect the blue negative rails to the negative side of the input power 
(probably a wall plug).

11.	 Insert the LM7805 into the breadboard, as shown in Figure 3-5. (See 
Figure 3-7 for the pinout of the LM7805.)

Output

Ground
Input

Figure 3-7: Pinout of the LM7805 regulator

12.	 Connect the output pin of the LM7805 to the red positive rail of the 
breadboard.

13.	 Connect the input pin of the LM317 to the input pin of the LM7805. 
This is the point at which the input voltage from the power source will 
be connected.

14.	 Connect the ground pin of the LM7805 to the blue negative rail of the 
breadboard.

15.	 Insert a 6.8-kilohm resistor, and connect one side to the blue negative 
rail. This is resistor R3; the other side will connect to resistor R2. See 
Figure 3-5 for a top view of the breadboard.

16.	 Insert a 10-kilohm resistor (R2) into the breadboard with one side con-
nected to the LM317 output pin and the other side connected to resis-
tor R3 from step 15. 

17.	 Connect resistor R1 from step 8 from the output pin of the LM317 
to a blank hole in the breadboard. This row will be the output of the 
regulator. 

18.	 Connect the voltage divider: first, insert a 10-kilohm resistor (R4) into 
the breadboard. Then, connect one side of resistor R4 to the same row 
as R1 (you’ll have to use a jumper wire) and the other side to an empty 
row on the breadboard.

19.	 Insert a 6.8-kilohm resistor (R5) into the board with one side con-
nected to the open side of R4 and the other side of R5 connected to the 
blue negative rail.

20.	 Insert the Arduino Pro Mini in the breadboard so that it straddles the 
center break, as shown in Figures 3-4 and 3-5.
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21.	 Use a jumper to connect the VCC terminal of the Pro Mini to the red 
positive rail.

22.	 Use a jumper to connect the GND pins of the Arduino Pro Mini to 
the blue negative rail. (There are at least two to choose from—one is 
located between RST and D2, and the other is located between RAW 
and RST on the other side. Take your pick.)

23.	 Use a jumper wire to connect the joining point of R4 and R5 to pins A1 
and A0 on the Arduino Pro Mini.

24.	 Find the junction point of R2 and R3, and use a jumper to connect that 
junction point to the A2 terminal on the Arduino Pro Mini. 

25.	 Load the sketch onto the Arduino Pro Mini. (I often remove the 
Pro Mini from the circuit completely to program it. It’s a little less 
confusing.)

26.	 Connect the LCD/I2C display by connecting VCC and GND to the red 
positive and blue negative rails on the breadboard, respectively.

27.	 Connect the SDA to analog pin A4 on the Arduino Pro Mini and SCL 
to analog pin A5. 

28.	 Connect the input of the LM7805 voltage regulator to some pin where 
the +12V will be attached. 

29.	 Connect the output of the LM7805 to the red positive rail, and connect 
the ground to the blue negative rail. 

Once all of those connections are in place, you’re set to go. Upload the 
sketch and test the circuit.

The Sketch
The Regulated Power Supply sketch is about as simple as I could make it. The 
only difficulty is that although I use 1% tolerance resistors throughout, I’ve 
found some variation in resistance value. So be aware that you may need to 
make an adjustment to the sketch to accommodate for this. 

Here is the sketch: 

// Regulated Power Supply with volt and current read

#include <Wire.h>
#include <LiquidCrystal_I2C.h>

LiquidCrystal_I2C lcd(0x27, 16, 2); //Check your library for specific LCD 
                                    //code both here and in setup.

float low_side_res = A0;
float volt_two;
float volt_three;
float volt_disp;
float low_side_res_2 = A1;
float hi_side_res = A2;
float volt_drop_1;
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float amp;
float amp_3;
float amp_4;
float amp_disp;

void setup() {
  lcd.init();
  lcd.backlight();
}

void loop() {
  volt_two = analogRead(low_side_res);
  volt_three = (volt_two*5)/1024.0;
  volt_disp = volt_three*(10000+6800)/6800; //Actual voltage reading
  amp_3 = analogRead(low_side_res_2);
  amp_4 = analogRead(hi_side_res);
  amp = amp_3 - amp_4;
  amp_disp = amp *5/1024*(10+6.8)/6.8/1.22*.9; //Calculation of amperage I=V/R
  //*0.9 = adjustment for random error in ref voltage in pro mini

  lcd.setCursor(1,0);
  lcd.print("Volt    ");
  lcd.setCursor(12, 0);
  lcd.print(volt_disp);
  lcd.setCursor(1, 1);
  lcd.print("mA     ");
  lcd.setCursor(11, 1);
  lcd.print(amp_disp*1000,2);
}

First, this sketch imports some libraries and sets up the LCD (see “On 
Writing Code to Set Up LCDs” on page 36). It then defines a series of 
variables, all floats, to use when setting the voltage, reading from the ana-
log pins, calculating values to display on the LCD, and so on. The setup() 
loop is very short: it has only two lines for initializing the LCD. The main 
loop() reads the battery voltage and current, and performs the necessary 
calculations to display on the LCD. The volt_disp value is the voltage to be 
displayed on the LCD. 

The Shield
While the circuitry is not overly complex, using a shield will simplify many 
of the connections for driving the LCD and constructing the voltage dividers, 
and it will make the assembly of the Regulated Power Supply easier than 
point-to-point wiring. Figure 3-8 shows the shield I designed, though you 
could also design your own, of course. The PCB file is available at https://
www.nostarch.com/arduinoplayground/. 

While I used two layers to construct the shield, with a little effort and 
a slightly larger board, the circuitry could be accommodated on a single 
layer. 
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Figure 3-8: The PCB shield used in the Regulated Power Supply. Black is the top 
layer, dark gray is the bottom layer, and light gray is the silkscreen layer. 

The shield doesn’t need to be populated in any particular sequence, 
but some components will be easier to fit before others. I suggest soldering 
in this order: 

1.	 First, insert 2.2-ohm, 5 W resistors R1 and R9 into the PCB. These 
are voltage-dropping resistors that create the voltage for the amme-
ter (mA), which provide a total resistance (R1 in the schematic) of 
1.1 ohms at 10 W. The resistors are a little longer than the configura-
tion on the board, so you’ll have to bend the leads to make them fit. 
When the Regulated Power Supply is running close to its maximum rat-
ing, expect these resistors—and the LM317 itself—to get a little warm.

2.	 Capacitor C1, a 68 µF tantalum capacitor, will be a tight fit for the 
holes. To make sure it doesn’t interfere with the LM317, install the 
capacitor first. Then, install the LM317, making sure to leave room for 
the heat sink. Remember that the heat sink is likely to get pretty warm.

3.	 Make sure to install the LM317 with the pins correctly oriented accord-
ing to the pinout in Figure 3-6 and the schematic in Figure 3-4. If you 
use the provided shield files, the thick line on the LM317 silkscreen 
corresponds to the metal tab on the IC. If you insert the part the wrong 
way, the system won’t work, and the part could burn out. It would also 
be a pain to remove. 

4.	 Install the LM7805 regulator in the upper-right section of the PCB, 
and make sure it matches the pinout in Figure 3-7 and the schematic 
in Figure 3-4. You can use the heavy line in the silkscreen image of the 
PCB as a guide. 
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5.	 Try both voltage regulator ICs in the shield with the heat sinks installed 
(at least temporarily) to make sure they can fit without touching any 
active components. Remember that the heat sinks are active: the heat 
sink (tab) of the LM7805 is at ground potential, and the heat sink (tab) 
of the LM317 is at the output potential.

6.	 Install resistors R2, R3, R4, and R5. It’s easier to place those before 
installing the female headers for the Arduino Pro Mini. 

7.	 Then, solder in C1, C2, and the wires that will connect the Arduino Pro 
Mini to potentiometer R6, which you will mount on the chassis. You 
can leave the wires a little long and trim them when you install the 
shield in the enclosure. Install capacitors C4 and C5 as indicated in the 
schematic in Figure 3-4. 

8.	 Next, solder the female headers that comprise the mount for the Pro 
Mini and the connector for the LCD. The LCD connections are the 
SDA, SCL, –, and + connections in the bottom right of the PCB. I used 
male stakes and a female-to-female connector cable to connect from 
the LCD to the shield. (To learn how to make the custom connector, 
see “Connectors Used in This Book” on page 18.)

For the LCD and Arduino Pro Mini, I usually insert the headers into 
the board, solder just one pin, and then, with my finger on the top, heat 
that one pin and push on the connector to make sure it fits flush against 
the board. For the pins of the Pro Mini, I use only female headers for those 
that are active—that is, that have copper traces going to them. I also like to 
place one pin (I usually use a 1×4 pin header) right at the last pin on the 
Pro Mini to make alignment easy. This would translate to pins RAW, GND, 
RST, and VCC. In addition, I like to place at least two headers diagonally 
for mechanical stability. This would correspond to pins D8 and D9 on the 
Pro Mini. The male headers on the Pro Mini for A4 and A5 are located just 
above pins A2, A3, and VCC on the main row of connections. 

Construction
When the Regulated Power Supply is all soldered together, you will need to 
prepare an enclosure and mount the circuit inside. I selected a nice-looking, 
powder-coated metal enclosure, approximately 2 1/4 × 3 1/4 × 4 3/4 inches. 
Figure 3-9 shows the completed unit driving a couple of incandescent panel 
lamps.
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Figure 3-9: The completed Regulated Power Supply

Bear in mind, though, that while the case is not delicate, the paint is 
easy to scratch, so be careful. It’s also a little pricey—coming in around 
$20—but as I will have it on my workbench all the time, I thought it was 
worth it. Of course, you could also use a different enclosure of your choos-
ing and modify the templates provided with this book accordingly.

Preparing the Enclosure
If the front panel of the enclosure is sloped, you will need to put a piece 
of scrap wood behind the areas you need to center punch and drill to 
help hold it in place. Make sure to measure, center punch, and drill holes 
carefully. 

The templates for this project are shown in Figures 3-10 and 3-11, and 
they can be downloaded from https://www.nostarch.com/arduinoplayground/. 

https://www.nostarch.com/arduinoplayground/
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Here is how I suggest you prepare the enclosure:

1.	 Center punch and drill holes for the potentiometer, on-off switch 
(1/4 inches), and power indicator LED. See Figure 3-10 for the front 
panel dimensions. 

2.	 Center punch and drill the hole for the power input jack in the rear of 
the panel (see Figure 3-10).

3.	 Drill holes for the output binders and 3.5 mm jack on the front of the 
case, as shown in Figure 3-11.

4.	 Carefully measure and mark the cutout for the LCD, as shown in 
Figure 3-10. Center punch and drill 1/2-inch holes in the corners of 
the LCD screen area to help initiate saw cutting. You can eyeball this 
based on the diagram in Figure 3-10 or download a PDF file of the 
template. Either trace the image onto your enclosure with carbon 
paper or simply mark the corners with a center punch and connect 
the punch marks. 

5.	 Carefully cut out a hole for the LCD. There are a variety of tools you 
can use to do this. I first drilled holes A and B and then used a keyhole 
saw with a fine hacksaw blade (available at local hardware stores) to cut 
between the holes. Remember that the cutting occurs on the outward 
thrust, so you needn’t keep pressure on the blade on the return stroke. 
You can clean up the burrs with a file. 

6.	 Carefully fit the display into the window, and file where necessary to 
get a secure fit. The backlight protrudes on one side of the display, so 
in order to avoid crushing the backlight, you can use nuts as spacers to 
keep it separated from the panel. 

7.	 Drill holes F, G, H, and I, and fasten the display in place. As you do so, 
check carefully that the spacer nuts are wide enough (4-40 nuts come 
in different dimensions), and, if necessary, use two nuts or a nut and a 
washer to space out for the backlight. 

Mounting the Circuit Board
Once you have assembled and tested the shield and mounted the LCD, 
install the potentiometer, on-off switch, LED, and power jack. Then it’s 
time to mount the shield in the enclosure. Originally, I drilled four holes 
in the board so that I could screw it into the enclosure, but I’ve found that 
3M double-sided mounting tape also does the trick. I mounted the entire 
board, heat sinks and all, with a 1 1/4-inch length of the 3/4-inch wide 
double-sided adhesive. (The manufacturer claims it will hold 2 pounds.)

The adhesive is relatively aggressive, so before applying it, make sure 
you plan carefully where you want to mount the board so it will not be in 
the way of other components. I mounted the board upside down on the top 
section of the case so all components and connections were on the same 
platform (see Figure 3-12). 
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Figure 3-12: The completed (upside-down) assembly with the board,  
LCD, output connectors, potentiometer, on-off switch, LED, and output  
power jack all mounted on the inside of the top of the enclosure.

The final step is to connect the on-off switch, LED pilot lamp, LED cur-
rent-limiting resistor, potentiometer, power input jack, and output connec-
tors to the PCB according to the project schematic. I used 28-gauge hookup 
wire to tie everything. The two binding posts/banana plug jacks and the 
3.5 mm jacks are wired in parallel. Figure 3-12 illustrates how I mounted 
the shield. Note that I used small wire ties, which are optional, to keep the 
wires neat.

Before closing up the enclosure, make sure there are no areas that 
might result in a short circuit. For example, I placed a small piece of 
insulating tape between the LCD screen and the shield. They might not 
be touching at the time of assembly but could touch when you close the 
enclosure. You can apply insulating tape to prevent this kind of short. 

After testing for short circuits, all that remains is to put the two 
halves of the case together. The connections for the output—the binding 
terminal/banana jack and 3.5 mm jack—are in parallel. The final step is to 
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screw the two pieces together, and you’re off and running. I put a pointer 
knob on the potentiometer even though there are no markings on the case. 
You can add a dial if you want, but I find the digital readout sufficient.

And, the coup de grâce: remove the protective paper from the adhesive 
on some rubber feet, and install them on the bottom of the enclosure. Voilà! 

The full Regulated Power Supply project will take up a decent amount 
of space on your workbench, but you will find the digital readout and 
banana jacks invaluable. If you’re feeling adventurous, however, you can 
build a smaller version of the same circuit, minus the jacks and LCD, 
shown in Figure 3-13.

Figure 3-13: This is the quick-and-dirty power supply with the top off. I made it before 
biting the bullet and making the full-fledged Regulated Power Supply. 

You can find instructions on how to build the Mini Regulated Power 
Supply at https://www.nostarch.com/arduinoplayground/. 





4
A  Wa  t c h  Winder    

If you’re a collector of automatic, or self-
winding, watches, you’re probably famil-

iar with watch winders and what they do. 
But why have a watch winder in a book on 

Arduino microcontroller projects? The answer to 
that will become increasingly clear as we look at the
technology in this project. Further, over the course of this project, we’ll 
take a quick look at some automatic watch lore and how these seemingly 
anachronistic devices have survived and prospered in the digital age. Even 
if you do not collect such treasured timepieces, this project may just inspire 
you to start your own collection.
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Why a Watch Winder? 
Because, as a collector, you own more than a single automatic watch, you 
might want to think about keeping the watches that aren’t currently on your 
wrist wound. If you read up on mechanical watches and winders, you will 
find many pros and cons (probably more pros) of using a watch winder. 
One big pro is that multifunction watches can take a long time to set if 
they run down. There are also arguments that if a mechanical watch sits 
in one position and doesn’t run, the lubricant tends to migrate to a low 
point. Regular motion from a watch winder or from being worn keeps the 
lubricant distributed and in the bearings where it belongs. While many sub-
scribe to this viewpoint, there is no real evidence either way. 

There is yet another compelling argument for a watch winder. As a col-
lector, it’s nice to be able to display more of your collection than just one-at-
a-time on your wrist. Many of the commercial winders available come inside 
exotic wood cases to show off the watches. But inexpensive winders tend not 
to be reliable, and the expensive ones are, well, expensive. 

I took a chance and bought one of the more economical models and 
put two of my mechanical watches—a real and a faux Rolex—in it and fig-
ured I was done. But after less than six months, the winder failed. I took 
it apart, and it appeared to be very poorly designed and made. Even if I 
replaced the failed motor, the rest of the mechanism would probably not 
be reliable. While using the winder, the faux Rolex did not wind all the way 
and did not keep good time. 

At that point, the question was whether to dig deep in my pockets for 
the $400 or $500 winder (there are even models that sell well in excess of 
$1,500, $2,000, or more) that promises reliability or to try to do better. 
So the gauntlet was, metaphorically, thrown down. The challenge was to 
design and build a reliable watch winder that would provide both a show-
case for my watches and have the flexibility and control over timing that 
I wanted in a robust mechanical format. Arduino was the obvious choice 
for controlling the frequency of watch turns, and the mechanics went 
around that.

As you build your Watch Winder, you will find a lot of room for per-
sonalization both in the mechanical construction and the sketch. While 
a watch winder is a utilitarian device made to keep your watches wound, 
this version provides an elegant display platform for your timepieces—and 
it is itself a work of art, a kinetic sculpture. You can see the final result in 
Figure 4-1.

Because I selected Arduino as the logical timing element, I had to plan 
the other electronics and software around that. We will revisit the H-bridge 
circuit from the PCB Etcher (see “Using an H-Bridge” on page 48) to drive 
the motor in both directions, and we’ll use transistors for increased drive 
for the high-output LEDs. We’ll also use a Hall effect sensor to measure the 
rotation of the watches. 
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Figure 4-1: The finished Watch Winder. Unfortunately the black and white image doesn’t 
do it justice: the brightly colored LEDs illuminate the device using the acrylic as a light 
guide to transport the various colored LEDs. 

The sketch developed for this project uses functions and arrays to flash 
the LEDs in repeating patterns. The sketch also instructs the controller to 
read the state of the Hall effect sensor, which is either zero or one. Knowing 
this state allows the controller to decide when to wind the watches and to 
keep count of the number of turns to ensure that the watches don’t get 
over- or underwound. 
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T he M ys t ique of t he Au toma t ic Watch

The automatic watch was invented in the early 1920s and was commercial-
ized several years later. Over the next several years, many improvements 
were made until it reached the level of sophistication of today’s instruments. 
Automatic watches operate by using a pendulum attached to a ratchet assembly: 
the ratchet assembly winds the watch’s mainspring as the pendulum swings. A 
built in slip-clutch mechanism prevents overwinding. See Figure 4-2 for a look 
inside one of these watches.

Figure 4-2: An automatic watch with the back removed,  
exposing the pendulum and the fulcrum (the screw in the  
center), which combine with a ratchet assembly to wind  
the watch’s mainspring

Automatic watches from just about all watch manufacturers enjoyed broad 
success for several decades. However, in the early 1960s, Bulova developed 
its Accutron tuning-fork electronic watch, and the digital quartz electronic 
watch from Pulsar followed shortly after.1

Despite the influx of electronic watches (and now smart watches), leading 
makers of mechanical watches have survived—and even prospered—in this 
age. Today, automatic watches are sold anywhere from under $100 to tens or 
even hundreds of thousands of dollars.

Why would someone pay a premium for a watch that is not particularly 
accurate, is heavy, is often bulky, and has to be kept wound when not in use? 
I’m sure the answer is different for every collector, but I’d guess that they, like 
me, enjoy the elegance, prestige, sophistication, sense of history, and fine 
mechanical machinery that can’t be achieved with its electronic counterparts—
though the iWatch comes close in some respects. And like any collectible, one 
automatic watch is never enough—which brings us to the Watch Winder. 

1. The transition from mechanical to electronic watches has been described as a prime 
example of Thomas Kuhn’s concept of a paradigm shift, which he describes in his 1962 
book The Structure of Scientific Revolution. 
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Required Tools
Drill and drill bits 

Tapered reamer set 

Small vise-grip pliers

Center punch

Weld-On 4 and Weld-On 16 acrylic bonding fluid 

Assorted sandpaper, including grades from 220 to 600 and grade 1500 
for final polish

Jewelers rouge or other liquid plastic polish

(Optional) Circular saw

(Optional) Thread-locking fluid

(Optional) Wire-wrap tool

(Optional) Rotary tool (For example, you could get a Dremel tool with 
an abrasive cutoff wheel.) 

Parts List
If you want to build a Watch Winder like the one pictured, you will need 
several pieces of acrylic and some other hardware, which I detail in this 
section. 

Acrylic 
The following acrylic parts can easily be cut from a standard sheet of 
acrylic. Without the disks, which I recommend you purchase separately, 
everything can be cut from two 12×12-inch acrylic sheets (one 3/8-inch 
thick, one 1/4-inch thick). If you prefer, you can find vendors that will laser-
cut acrylic to your dimensions. (ZLazr, among many others, is equipped to 
do that.) It will cost a little more than doing it yourself but will make it both 
cutting and finishing easier. 

Four pieces with dimensions 1/4 × 2 × 1 1/2 inches (long sides of the 
watch basket; can be 3/8 inches)

Four pieces with dimensions 1/4 × 1 × 2 inches (short sides of the watch 
basket; can be 3/8 inches)

Two pieces with dimensions 3/8 × 3 × 2 inches (bearing holders of bear-
ing box)

Two pieces with dimensions 3/8 × 2 × 1 1/2 inches (mounting side of 
bearing box)

One piece with dimensions 1/4 × 1 × 2 inches (motor mount)

Two round pieces, 3/8 inches thick and 5 inches in diameter (watch 
basket ends)
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Two pieces with dimensions 1 1/2 × 5 × 1/4 inches (side supports for 
stand)

One piece with dimensions 3/8 × 3 × 5 1/2 inches (base for stand)

One piece with dimensions 3 × 1 1/2 × 3/8 inches (lightbar)

One piece with dimensions 2 1/2 × 2 1/2 × 3/8 inches (shield 
mounting)

Two 3.5 mm standoffs with M/F M3-05 threads (motor mounts)

Three 1.5 mm standoffs with M/F M3-05 threads (shield mount)

There are several online vendors you could purchase the acrylic for this 
project from; just search for acrylic sheet on Google to find one near you. In 
the United States, http://www.zlazr.com/ seems to be good. At the time of this 
writing, I talked with the owner personally, and he said he can handle the 
kind of cutting required for this project with no problem. 

Other Hardware and Circuit Components
One Arduino Nano or clone 

One Hall effect switch, such as Melexis US5881LUA (Dimensions for 
side supports should be 1 1/2 × 5 × 1/4. See “Building the Stand” on 
page 115.)

One driveshaft, 8 inches long and 1/4 inches in diameter with 28 threads 
per inch (I suggest brass because it’s easy to work.)

Two ball bearings (R4A-2RS)

Six jam nuts, 1/4-inch-28

Two decorative bolts, 1/4-inch-28, 1 inch long (I used chromed Allen 
bolts.)

Ten ZTX649 transistors

One SN754410 quad H-bridge 

Ten 470-ohm resistors

One 10-kilohm, 1/8 W resistor

One 0.1 µF ceramic capacitor (C1)

One 10 µF tantalum capacitor (C2)

One custom shield as described in “The Shield” on page 108, or 
perf board (You can also have the shield custom fabricated from 
ExpressPCB; see “Making Your Own PCBs” on page 13.)

One gear head motor (I used a 6V, 20 RPM motor called the Amico 20 
RPM 6VDC 0.45 A.) 

One LM7805 voltage regulator

Fourteen LEDs, in assorted colors (I purchased both clear and frosted 
versions. The higher-output units tended to be clear.)

Assorted hookup wire and wire-wrap wire 
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Ten stakes for LED wire wrap or soldering (Try Pololu item #966 or 
Electronic Goldmine item #G19870.)

One length brass round that’s 3/8 or 1/2 inches in diameter and 
approximately 3/4 inches long (I used one with a 3/8-inch diameter. 
Brass stock is readily available in 6- and 12-inch lengths, which can be 
cut to size with a hacksaw.)

One 6-inch length of piano wire that’s 0.39 inches in diameter

One niobium, or neodymium, magnet, approximately 3/8 inches round 
and 1/8 inches thick

One flat-head 4-40 screw

Six M3×3/8-inch screws

Seven M3-05×1/2-inch screws

(Optional) One Amico H7EC-BCM counter

(Optional) Eight 270-ohm resistors (Use these when you build the 
breadboard prototype if you choose to follow my exact instructions in 
“The Breadboard” on page 98.)

Downloads
Before you start building, go to https://www.nostarch.com/arduinoplayground/, 
download the resource files for this book, and look for the following files 
for Chapter 4:

Templates  MotorMountAndBearingBox.pdf, BaseAndLightbar.pdf, 
WatchBasket.pdf

Mechanical drawing  MotorAssembly.pdf

Shield  WatchWinder.pcb

Sketch  WatchWinder.ino

Basic Watch Winder Requirements
Some initial research suggested that a watch winder should rotate a watch 
between 600 and 1,200 revolutions per day to keep it in top shape. But that 
is not completely correct. I subsequently discovered that the range was actu-
ally much wider, and according to at least two websites of leading automatic 
watches, watches cannot be overwound because they have a built-in protec-
tion system. I also learned that watches should be rotated both clockwise 
and counterclockwise to keep lubricant in the right places and to avoid 
possible uneven wear over a very long period of time. There is a wealth of 
information about this subject on the web, both on sites for individual watch 
manufacturers as well as on sites for watch winders.
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Apparently the total number of turns is the important part, not neces-
sarily the sequencing of the turns or getting exactly the same number of 
turns in each direction. (There is a possible downside to winding, if a watch 
is wound too much over an extended period.) That doesn’t sound so daunt-
ing, right? I thought so, too. 

Using an Arduino to Control Winder Revolutions
A purely utilitarian watch winder just has to serve its function, rotating the 
watches so the pendulums swing. But it’s more interesting to have a winder 
with extra features. As mentioned in “Why a Watch Winder?” on page 90, 
some winders are dressed up with fancy exotic wood boxes to display the 
watches. 

However, this is an Arduino project, and extra technical features and 
LEDs should reflect the flexibility and versatility of the platform. In a devel-
opmental model, the original sketch instructed the electronics to turn a 
motor first in one direction and then the other, using delays to ensure that 
the requisite 600 to 1,200 revolutions occurred each day.

But it turns out that some watches need more than the minimum 
number of revolutions, and some can get away with less. The easiest way to 
change the number of revolutions is by adjusting the various delays in the 
sketch as needed. You could even add hardware to the circuit to allow you 
to adjust the number of turns per day with a potentiometer, as I describe in 
“Design Notes” on page 124. 

To drive the motor itself, I used an H-bridge IC. It accepts control logic 
from the Arduino and lets you reverse the polarity to the motor from a 
single power supply to allow the motor to rotate in both directions. 

N o t e 	 For more information on H-bridges, see “Using an H-Bridge” on page 48.

Using a Hall Effect Sensor to Monitor Rotations
Then, there was the matter of how to meter the number of turns the device 
made to assist the timing and give some more information to the sketch. 
The number of turns per unit time is a function of the motor, and while the 
timing I provided for the motor specified could conceivably work, it might 
not be consistent for all motors. 

For example, I sampled three motors of the same model at the same 
voltage, and each ran at a slightly different speed. Further, if you elect to 
substitute another motor with a different rotational speed, the rotation 
count would be different. And, in beta testing, one user experienced dif-
ficulty running a 6V motor on 5V. (See “Motor Voltage” on page 126.) 
Because the number of turns per unit time is a function of the motor, 
these inconsistencies could present a problem if timing alone determined 
the total number of rotations; some mechanism to monitor the number of 
revolutions is needed. 
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To assure consistent timing, I decided to meter the number of turns 
the device made. Thus, I attached a small magnet to the rotating shaft that 
turns the watches and mounted a Hall effect device, or a sensor that detects 
a magnetic field, in line with the magnet. A small reed switch could be sub-
stituted for the Hall effect sensor if you wanted.

When the watch and the magnet rotate, the Hall effect switch turns on 
only when in close proximity to the magnet, causing the switch to turn on 
and off once per rotation. Each time the Hall effect switch changes state, 
the Arduino increments an internal counter. Combined with the sketch, 
this ensures the proper number of turns per day is made in all cases, regard-
less of the speed of the motor. Unlike the reed switch, the Hall effect switch 
does not require any buffering or debounce, as discussed in “The Sketch” 
on page 102, because a Schmitt Trigger is included in the device’s circuit. 
If you elect to use a reed switch, you may have to add the debounce into the 
sketch.

When using a Hall effect switch with a permanent magnet, you just 
have to be careful how you move the magnet around. Some mechanical 
watches are damaged by close proximity to a strong magnetic field because 
the hairspring becomes magnetized, resulting in a change in physical char-
acteristics that cause timing to be off. While the magnet specified is small 
and unlikely to cause a problem, I strongly recommend you keep any mag-
net at least an inch away from any watch—mechanical or electronic.

The Schematic
Figure 4-3 shows the schematic diagram of the circuit used for the Watch 
Winder. Notice that the output from the Hall effect device has a pull-up 
resistor tied to the positive supply. This holds the input to Arduino pin A0 
high until the Hall effect switch, or reed switch, encounters a strong enough 
magnetic field, which closes the switch and brings the pin low. The Hall 
effect device uses what is essentially an open collector on its output, so with-
out the pull-up resistor, the collector would be left floating and could give a 
false trigger.

The two capacitors prevent the LM7805 regulator from oscillating on 
its own and drawing excessive power. Although I looked at both the input 
and the output of the regulator with an oscilloscope and saw no oscillation, 
I decided to add the capacitors as a preventative measure. I selected them 
based on previous projects, and they work well. 

I was trying to develop a spectacular look for the Watch Winder, as befits 
some of the timepieces it holds, so I used higher-power LEDs, as described in 
the “Parts List” on page 93. These LEDs have a light output of as much as 
100,000 to 200,000 or more millicandela (MCD). But that raised yet another 
problem. The Arduino Nano’s processor chip, an ATmega328, can source 
or sink only 40 mA per output pin. Further, the entire chip is rated at only 
200 to 300 mA for its entire current drain. Because the 100,000+ MCD LEDs 
draw around 30 to 60 mA each, something had to be done. 
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Figure 4-3: The Watch Winder circuit. The transistors connect to the digital outputs of the Nano, while A0 is 
tied high through the 10-kilohm resistor. 

One 1 A transistor per LED is included in the schematic to pick up the 
load. The collectors of the NPN transistors—the positive side—go to VIN 
rather than the 5V that powers the Nano and H-bridge, so the LEDs take 
no toll on the voltage regulator, even though the emitters follow the base 
and send 5V to the LEDs. 

The Breadboard
Just like other projects we’ve discussed, the Watch Winder started out as a 
breadboard, shown in Figure 4-4. This allowed me to sound out the tech-
nology and do the preliminary tuning of the sketch.
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Figure 4-4: The Watch Winder breadboard was used as a proof-of-concept for the proj-
ect. Here, I powered it with the Regulated Power Supply from Chapter 3. 

I suggest building a breadboard for this project first so you can see 
where everything goes and why. With a breadboard, you also get to play with 
the sketch and LEDs without having to unsolder and resolder with each 
change. I used a 6.5-inch long breadboard to hold everything. I did take a 
couple of shortcuts on the breadboard, which are noted in the instructions; 
you can also just build straight from the schematic, instead. 

To wire up the breadboard, take the following steps: 

1.	 Connect the red stripe on the right side of the breadboard to the corre-
sponding red stripe on the left. These are your positive rails.

2.	 Connect the blue stripe on the right side of the breadboard to the 
corresponding blue stripe on the left. These are your negative rails 
(ground connections).

3.	 Insert the Arduino Nano at one end.

4.	 Connect the 5V pin of the Nano to the red positive rail.

5.	 Connect the GND pin of the Nano to the blue negative rail.

6.	 Insert the LM7805 regulator, and connect the output pin to the red posi-
tive rail. (Figure 4-5 shows the regulator pinout.)

Output

Ground
Input

Figure 4-5: LM7805 regulator pinout in a TO-220 package

Hall effect 
sensor

Magnet

Arduino 
Nano

H-bridge
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7.	 Connect the ground terminal of the regulator to the blue negative rail.

8.	 The input terminal of the regulator will connect to a blank row in the 
breadboard, which will connect to the +7.5V to 9V supply.

9.	 Connect capacitor C1 from the input of the regulator to ground.

10.	 Connect capacitor C2 from the output of the regulator to ground.

11.	 Insert the SN754410 H-bridge several rows away from the Nano, strad-
dling the gutter in the middle of the breadboard. (Figure 4-6 shows the 
H-bridge pinout.)
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Figure 4-6: SN754410 H-bridge pinout in a  
DIP form factor

12.	 Connect pins 4, 5, 12, and 13 of the H-bridge to ground.

13.	 Connect pins 8, 9, and 16 of the H-bridge to the red positive rail.

14.	 Attach pins 14 and 11 of the H-bridge to the motor with leads at least 
10 to 12 inches long. The connections to the motor will have to be 
soldered unless you use alligator clips or clip leads. 

15.	 Attach approximately 8-inch wires to all three leads of the Hall effect 
sensor. Connect the leads attached to the positive and negative leads 
of the Hall effect sensor to the red positive rail and blue negative rail, 
respectively. 

16.	 Connect the wire attached to the third pin of the Hall effect sensor to 
pin A0 on the Nano. The Hall effect sensor will be taped (I used mask-
ing tape) to the motor body (this works because the leads are insulated) 
in such a position that the active part of the device will be close to the 
magnet attached to the shaft as it goes around.

17.	 Connect a 10-kilohm resistor from pin A0 on the Nano to the red posi-
tive rail.

18.	 Connect pin 10 of the H-bridge to pin D13 on the Nano.

19.	 Connect pin 15 of the H-bridge to pin D12 on the Nano.

Emitter
Collector Base

Figure 4-7: ZTX649 
transistor pinout in a 
TO-92 package
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20.	 Insert five ZTX649 transistors, each using three 
rows, on one side of the breadboard. (Figure 4-7 
shows the transistor pinout.)

21.	 Connect the collector of each transistor to the 
red positive rail. 

N O T E 	 These transistor connections differ from the final schematic, 
where the collectors will be tied to the 9V input voltage.

22.	 Take five LEDs, and connect the positive termi-
nal of an LED to the emitter of each transistor.

23.	 Connect the negative terminal of each LED to 
ground through a 270-ohm resistor.

24.	 Connect three additional transistors, LEDs, 
and 270-ohm resistors on the opposite side of 
the breadboard in a similar manner to the five 
groups connected in steps 20–23.

N O T E 	 Steps 20–25 are different than the schematic, as the LEDs are driven directly from the 
Nano, for ease of experimentation. In the schematic, they are connected using a tran-
sistor. Using the 470-ohm resistor instead of the 270-ohm resistor limits the current to 
the Nano. 

25.	 Connect the positive terminal of another LED to pin D12 of the Nano.

26.	 Connect the negative terminal of the pin D12 LED to an empty row on 
the breadboard.

27.	 Connect one end of a 470-ohm resistor to the negative terminal of the 
pin D12 LED, and connect the other end of the resistor to ground.

28.	 Connect the positive terminal of another new LED to pin 13 of the Nano.

29.	 Connect the negative terminal of the pin 13 LED to an empty row on 
the breadboard.

30.	 Connect one end of a 470-ohm resistor to the negative terminal of the 
pin 13 LED, and connect the other end of the resistor to ground.

31.	 Connect pins D4, D5, D6, D7, D8, D9, D10, and D11 on the Nano to the 
bases of the transistors feeding the LEDs. 

Because the breadboard is for illustration only, the order that the con-
nections are made in doesn’t matter unless you want to reprogram the 
Arduino while the circuit is on the breadboard. 

The magnet was mounted to a plug on the motor shaft using double-
sided adhesive foam tape. For the plug, you can use almost anything—a 
cork, a rubber stopper, and so on—as long as it puts the magnet in a posi-
tion so it will be about 3/8 inches from the sensor as the magnet rotates. 

7.	 Connect the ground terminal of the regulator to the blue negative rail.

8.	 The input terminal of the regulator will connect to a blank row in the 
breadboard, which will connect to the +7.5V to 9V supply.

9.	 Connect capacitor C1 from the input of the regulator to ground.

10.	 Connect capacitor C2 from the output of the regulator to ground.

11.	 Insert the SN754410 H-bridge several rows away from the Nano, strad-
dling the gutter in the middle of the breadboard. (Figure 4-6 shows the 
H-bridge pinout.)
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12.	 Connect pins 4, 5, 12, and 13 of the H-bridge to ground.

13.	 Connect pins 8, 9, and 16 of the H-bridge to the red positive rail.

14.	 Attach pins 14 and 11 of the H-bridge to the motor with leads at least 
10 to 12 inches long. The connections to the motor will have to be 
soldered unless you use alligator clips or clip leads. 

15.	 Attach approximately 8-inch wires to all three leads of the Hall effect 
sensor. Connect the leads attached to the positive and negative leads 
of the Hall effect sensor to the red positive rail and blue negative rail, 
respectively. 

16.	 Connect the wire attached to the third pin of the Hall effect sensor to 
pin A0 on the Nano. The Hall effect sensor will be taped (I used mask-
ing tape) to the motor body (this works because the leads are insulated) 
in such a position that the active part of the device will be close to the 
magnet attached to the shaft as it goes around.

17.	 Connect a 10-kilohm resistor from pin A0 on the Nano to the red posi-
tive rail.

18.	 Connect pin 10 of the H-bridge to pin D13 on the Nano.

19.	 Connect pin 15 of the H-bridge to pin D12 on the Nano.

Emitter
Collector Base

Figure 4-7: ZTX649 
transistor pinout in a 
TO-92 package
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After you complete the breadboard, upload the WatchWinder.ino sketch 
to the Arduino. Just follow the instructions in “Uploading Sketches to Your 
Arduino” on page 5.

The Sketch
The Watch Winder employs functions and arrays to show different flashing 
sequences on the LEDs without rewriting the sequence each time. There 
are also some excruciatingly long delays: about 829 rotations in 24 hours 
translates to a motor at 20 RPM being on for approximately 32.5 minutes 
out of 1,400 minutes in the day. This means that if the sketch were to han-
dle an entire day of turning, it would be idle for 1,367.5 minutes a day. 

But you can divvy up the rotations so that the sketch can be repeated 
and need only some fraction of the 24 hours to complete. For example, if 
an hour is selected as the length of time it takes for the sketch loop to com-
plete, the motor has to do some 24 turns. It could do 12 each way or some 
other combination. 

In the following sketch, I also made an effort to make the lights and 
motor movements as visually interesting as possible, leaving very little time 
when nothing is happening—but that’s an artistic choice. 

/*This gives about 829 revs/day*/
 
const int HallPin = A0; //Identify those things that will not change
const int CWpin = 12;
const int CCWpin = 13;

const int LED11 = 11;
const int LED10 = 10;
const int LED9 = 9;
const int LED8 = 8;
const int LED7 = 7;
const int LED6 = 6;
const int LED5 = 5;
const int LED4 = 4;

int autoDelay = 1000;
int timer = 500;
int timer2 = 3000;
int repeats = 10;

int previous;
int HallValue = 1; //Response from the Hall effect sensor
int time = 0;
int state;
int count = 0;
int q = 0;
int i;
int j;
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int ledPins[] = {
  11, 4, 7, 6, 8, 10, 5, 9,
};
int pinCount = 8;

void blinkIt() {
  //Initiate rapid blink sequence
  for(int thisPin = 0; thisPin < pinCount; thisPin++) {
    //Turn the pin on:
    digitalWrite(ledPins[thisPin], HIGH);
    delay(timer2);
    //Turn the pin off:
    digitalWrite(ledPins[thisPin], LOW);
    delay(timer2);
  }

  //Loop from the highest pin to the lowest:
  for(int thisPin = pinCount - 1; thisPin >= 0; thisPin--) {
    //Turn the pin on:
    digitalWrite(ledPins[thisPin], HIGH);
    delay(timer2);
    //Turn the pin off:
    digitalWrite(ledPins[thisPin], LOW);
    delay(timer2);
  }
}

void flashIt() { 
  //Initiate rapid blink sequence
  for(int thisPin = 0; thisPin < pinCount; thisPin++) {
    //Turn the pin on:
    digitalWrite(ledPins[thisPin], HIGH);
    delay(timer2);
    //Turn the pin off:
    digitalWrite(ledPins[thisPin], LOW);
  }

  //Loop from the highest pin to the lowest:
  for(int thisPin = pinCount - 1; thisPin >= 0; thisPin--) {
    //Turn the pin on:
    digitalWrite(ledPins[thisPin], HIGH);
    delay(timer2);
    //Turn the pin off:
    digitalWrite(ledPins[thisPin], LOW);
  }
}

void allatOncefast() {
  {
    digitalWrite(LED4, HIGH);
    digitalWrite(LED5, HIGH);
    digitalWrite(LED6, HIGH);
    digitalWrite(LED7, HIGH);
    digitalWrite(LED8, HIGH);
    digitalWrite(LED9, HIGH);
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    digitalWrite(LED10, HIGH);
    digitalWrite(LED11, HIGH);

    delay(500);

    digitalWrite(LED4, LOW);
    digitalWrite(LED5, LOW);
    digitalWrite(LED6, LOW);
    digitalWrite(LED7, LOW);
    digitalWrite(LED8, LOW);
    digitalWrite(LED9, LOW);
    digitalWrite(LED10, LOW);
    digitalWrite(LED11, LOW);

    delay(500);
  }
}

void allatOnce() {
  {
    digitalWrite(LED4, HIGH);
    digitalWrite(LED5, HIGH);
    digitalWrite(LED6, HIGH);
    digitalWrite(LED7, HIGH);
    digitalWrite(LED8, HIGH);
    digitalWrite(LED9, HIGH);
    digitalWrite(LED10, HIGH);
    digitalWrite(LED11, HIGH);

    delay(4000);

    digitalWrite(LED4, LOW);
    digitalWrite(LED5, LOW);
    digitalWrite(LED6, LOW);
    digitalWrite(LED7, LOW);
    digitalWrite(LED8, LOW);
    digitalWrite(LED9, LOW);
    digitalWrite(LED10, LOW);
    digitalWrite(LED11, LOW);

    delay(2000);
  }
}

void setup() {
  pinMode(HallPin, INPUT);  //Identifies inputs and outputs
  pinMode(CWpin, OUTPUT);
  pinMode(CCWpin, OUTPUT);

  Serial.begin(9600);

  for(int thisPin = 0; thisPin < pinCount; thisPin++)  {
    pinMode(ledPins [thisPin], OUTPUT);
  }
}
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void loop() {
  int HallValue = (digitalRead(HallPin)); //Sets value of initial Hall effect

  if(HallValue == HIGH && previous == LOW) {
    if(state == HIGH)
      state = LOW;
    else
      state = HIGH;

    //Increments counter each time the Hall effect sensor passes the magnet
u     count++;

  }

  /* The "Serial.print" line was used in development. I left it in so that 
     you can experiment and look at some of the values on a serial 
     monitor. You might even want to change the parameters of what you 
     are looking at in the monitor.
  */
  Serial.print("HallValue      ");
  Serial.println(HallValue);
  Serial.print("count                ");
  Serial.println(count);
  Serial.print("CCW                     ");
  Serial.println(" ");

  if(count == 1) {
    digitalWrite(CCWpin, HIGH);
    digitalWrite(CWpin, LOW);
  }

  if(count == 3) {
    digitalWrite(CWpin, HIGH);
    digitalWrite(CCWpin, HIGH);
  }

  if(count == 3) {
    for(i = 0; i < repeats; i++) {
      allatOncefast();
    }
    count = count + 1;
  }

  if(count == 3) {
    digitalWrite(CWpin, LOW);
    digitalWrite(CCWpin, HIGH);
  }

  if(count == 4) {
    digitalWrite(CWpin, HIGH);
    digitalWrite(CCWpin, HIGH);
  }
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  if(count == 4) {
    for(q = 0; q < repeats; q++) {
      blinkIt();
    }
    count = count + 1;
  }

  if(count == 5) {
    for(j = 0; j < repeats; j++) {
      allatOnce();
    }
    delay(50);
    count = count + 1;
  }

  if(count == 6) {
    digitalWrite(CCWpin, LOW);
    digitalWrite(CWpin, HIGH);
  }

  if(count == 7) {
    digitalWrite(CWpin, LOW);
    digitalWrite(CCWpin, LOW);
  }

  if(count == 7) {
    for(i = 0; i < repeats; i++) {
      flashIt();
    }
    count = count + 1;
  }

  if(count == 8) {
    digitalWrite(CCWpin, HIGH);
    digitalWrite(CWpin, LOW);
  }

  if(count == 10) {
    for(i = 0; i < repeats; i++) {
      allatOncefast();
    }
    count = count + 1;
  }

  if(count == 11) {
    digitalWrite(CCWpin, LOW);
    digitalWrite(CWpin, LOW);
  }

  if(count == 11) {
    for(i = 0; i < repeats; i++) {
      blinkIt();
    }
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    delay(2000);
    count = count + 1;
  }

  if(count == 12) {
    digitalWrite(CCWpin, LOW);
    digitalWrite(CWpin, HIGH);
  }

  if(count == 13) {
    digitalWrite(CCWpin, HIGH);
    digitalWrite(CWpin, HIGH);
  }

  if(count == 13) {
    for(i = 0; i < repeats; i++) {
      flashIt();
    }
    count = count + 1;
  }

  if(count == 14) {
    for(i = 0; i < repeats; i++) {
      allatOnce();
    }
  }

  if(count == 14) {
    digitalWrite(CWpin, LOW);
    digitalWrite(CCWpin, HIGH);
    delay(autoDelay);
  }

  if(count == 17) {
    digitalWrite(CWpin, HIGH);
    digitalWrite(CCWpin, HIGH);
  }

  if(count == 17) {
    for(i = 0; i < 20; i++) {
      blinkIt();
    }
  }

  {
    for(i = 0; i < repeats; i++) {
      allatOncefast();
    }
    count = count + 1;
  }
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  if(count == 18) {
    digitalWrite(CCWpin, HIGH);
    digitalWrite(CWpin, LOW);
    delay(2000);
    digitalWrite(CCWpin, LOW);
    digitalWrite(CWpin, HIGH);
    delay(2000);
  }

  if(count > 20) {
v     count = 0;

  }
  previous = HallValue;
} 

First, the sketch creates several constants, integers, and arrays, which 
assist with timing turns by reading from the Hall effect sensor and counting 
the turns. Next, come a few function definitions: blinkIt() and flashIt() blink 
the LEDs in different patterns, while allatOnceFast() and allatOnce() blink the 
LEDs all at the same time with different delays. 

As usual, the setup() function tells the Arduino which pins are inputs 
and outputs. At the start of the loop() function, the Hall effect sensor is 
read, and the sketch increments the counter at u as needed, printing a few 
useful debugging values to the serial monitor along the way. This sketch 
uses the count value to turn different sequences on or off and limit the rep-
etitions. However, because count is reset at the end of the sequence at v, it 
cannot be used as a totalizer. 

Finally, for various counts, the sketch uses if statements to hard-code 
different patterns for turning the watches and flashing the LEDs; I show a 
few here, but I encourage you to set up your own. The sketch is written with 
many functions you can use as-is or repeat in a for loop to give multiple 
iterations. 

The Shield
As in some of the other Arduino projects, the shield is not terribly complex, 
but it looks a little busy. For simplicity, this shield is a single-sided board. 
The circuit uses an LM7805 voltage regulator to handle excess current that 
could result from using a different motor. The on-board regulator built into 
the Nano is intended only for currents less than 300 mA.

N O T E 	 I have used the regulator in this project at up to 500 mA, but the regulator tends to 
get pretty warm, and I don’t feel comfortable using it at that level. 

You may be able to leave the regulator out; the collectors of the transis-
tors feeding the high-output LEDs are configured as emitter-followers and 
wired directly to the positive 9V supply, so they are not contributing to the 
load on the regulated 5V. 
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Figure 4-8 shows the foil pattern for the shield (left), and the silk-
screen layer (right).

           

Figure 4-8: The foil pattern of the shield (left) and the silk-screen layer (right). The Watch Winder shield’s silk-
screen layer shows the approximate placement of the Nano, H-bridge, contacts for the external counter, Hall 
effect sensor, potentiometer, LED connections, jumpers, input voltage (VIN), and ground (GND). The PCB 
Express file is available to download from https://www.nostarch.com/arduinoplayground/.

Notice the contacts for the Hall effect switch at the top of the board, 
labeled Hall. I soldered wires that connected the Hall effect device directly 
to the PCB, though you could use a connector if you prefer. 

In the center of the board, I left connections for a potentiometer (POT) 
for external adjustment of the period, an option I describe in “Total Rotation 
Adjustment” on page 124. The numbers of the digital outputs are labeled at 
the left-hand side.

If you choose to assemble the Watch Winder shield, note that the Nano 
is meant to be plugged into female headers soldered onto the shield and 
that the transistors are underneath the Nano board. Push the transistors 
down far enough before you solder them so they will not be in the way of 
the Nano when it’s plugged in. I had to place the transistors fairly close 
to fit all the connections into the PCB layout. The ZTX649 transistors I 
selected fit well enough within the 0.100-inch spacing allowed by the foot-
print of the Nano. 

You will also have to add a few jumper wires to complete the con-
nections on the shield. They are marked on the silk-screen pattern. In 
Figure 4-8, those appear as five black lines. Don’t forget to include them 
when wiring up the board. I also left out the capacitors from the LM7805 
regulator’s input and output to ground; in the finished board, they are 
soldered on externally. If you want those capacitors, simply solder a 10.0 µF 
tantalum and a 0.1 µF ceramic capacitor directly to the pins of the regula-
tor, as shown in the schematic in Figure 4-3. 

http://www.nostarch.com/arduinoplayground
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Overview of the Motor Assembly
When you’ve had enough fun watching the LEDs blink on the breadboard, 
watching the motor start and stop, and playing with the sketch, it’s time 
to address the mechanical side of this project, which offers a few special 
challenges. This winder won’t be functional until the motor has something 
to turn; see Figure 4-9 for a detailed diagram of the motor, motor mount, 
transmission, bearing box, and driveshaft, which comprise the turning 
assembly. 

Jam nut

Ball bearing

Vinyl tubing

Piano wire

Motor shaft

Bushing
Set screw

Piano wire

Motor

Figure 4-9: The construction entails making a small box that retains the bearings through 
which the driveshaft is mounted and held in place by jam nuts. The motor, mounted on 
standoffs, is connected to the driveshaft, and the watch basket will be attached to the 
other end of the driveshaft. 

The driveshaft will need to be mounted through the bearings, and the 
two can be held together with jam nuts. I chose a fairly standard R4A-2RS 
bearing, which is a relatively common part and has a 3/4-inch outer diameter, 
a 1/4-inch inner diameter, and a 9/16-inch thickness. I suggest ball bear-
ings because the prebuilt winder I bought used the brass bushing of the 
motor as the only bearing, and that’s what failed. Because the inside diam-
eter of the bearing was 1/4 inches, I decided to use a standard threaded 
rod at a 1/4-inch × 20 tpi (turns per inch) or 1/4-inch × 28 tpi rather than 
attempt to press-fit a 1/4-inch bar into the bearing. 

N O T E 	 I used jam nuts to fasten the rod to the bearings because they were thinner and less 
obtrusive looking than regular nuts, but you could also use standard nuts. 

Construction 
Construction of the winder provided a number of challenges, particularly 
working with the acrylic material—which was unfamiliar to me before this 
project. Though there were some rough spots to get over, I learned by trial 
and error some ways to get the job done. Figure 4-10 shows the completed 
Watch Winder on its side.
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Figure 4-10: The completed Watch Winder on its side, showing the base fabrication, 
bearing box, motor mount, and watch basket

The toughest part was cutting the acrylic and drilling the holes for the 
ball bearings. There are several ways to cut acrylic, and none of them is 
particularly easy. If you use a supplier that will laser-cut the acrylic parts for 
you, this will be a lot easier. Several companies offer that service for a little 
more than the price of the raw materials. I mentioned one of them, ZLazr, 
earlier. 

If you have access to a circular saw, that’s about one of the easiest DIY 
approaches. Otherwise, just about any saw will do. I’ve used a hacksaw, 
which works better than most if you take your time. (If you go too fast, the 
acrylic will heat up and start to melt, causing the saw to bind.) I even know 
some people who have had success scoring and snapping the acrylic sheet. 
Just use whichever approach works best for you. 

See “Acrylic” on page 93 for a list of acrylic shapes needed for the bear-
ing box, the watch basket, and the stand. Cut these pieces now, if you’ve not 
done so already, and take the following steps to build the pieces. 

Preparing the Motor Mount and Bearing Box Acrylic
First, print the motor mount template from this chapter’s folder (see 
Figure 4-11), cut it out, and align it on the acrylic for the motor mount 
using the centerline. 
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Figure 4-11: Templates for motor mount and bearing 
box. You can download the templates at https://
www​.nostarch.com/arduinoplayground/.

Tape the template to the acrylic, lining up the centerline on the center 
of the acrylic piece, and mark the drill centers for holes A, B, D, E, and F. 
To mark the holes, just punch the centers with a center punch or nail. Now, 
drill them; use a 1/8-inch bit for A, B, D, and E and a 3/8-inch bit for F. 

Then, set this piece aside, and gather the acrylic for the bearing box. 
The final bearing box will look like Figure 4-12 once we put it all together.

Figure 4-12: Completed bearing box, before final trim  
and polish. One bearing is temporarily in place. 

Use the bearing box template to mark the drill centers for holes A, B, 
and C on one of the bearing mount pieces. C will be the bearing hole, and 
A and B will be for the motor mount’s standoffs. Center punch and drill 
one of the bearing plate’s two smaller holes with a 2.5 mm (or #39) drill 
and tap the hole with a M3-05 tap. These holes will accept the standoffs for 
mounting the motor. Use the same template to mark only the bearing hole 
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(C) on the acrylic for the opposite side of the bearing box. Then, take the 
two pieces of bearing box acrylic that won’t hold bearings, and mark the 
center by drawing lines from corner to corner. Center punch them, and drill 
1/4-inch holes for mounting to the stand. 

W A R N I N G 	 When drilling any size hole in the acrylic, securely clamp the piece, as shown in 
Figure 4-13. Do not hold it manually. If the drill or hole saw binds, the acrylic will 
want to spin. In any case, keep the drill at a slow speed and advance it very gradu-
ally into the work. 

Figure 4-13: Drilling a large hole in the acrylic. Note that the acrylic piece is  
securely clamped down. 

The best solution I found to make the holes for the bearing and other 
large holes in the acrylic is to drill a relatively small hole—perhaps 1/4 
or 3/8 inches—and ream them out with a tapered reamer to the finished 
dimension (see Figure 4-14). This is, by far, the safest and easiest approach 
and the one I strongly recommend. 

When you ream out the bearing hole, make sure to ream from both 
sides. This will result in the center of the hole being a slightly smaller diam-
eter than the outsides. Ream until the bearing is a tight fit and then, if nec-
essary, you can use an anaerobic bonding agent to fill in around the edges.

The final prep stage for the acrylic is to sand and finish it. How you 
cut the acrylic originally will determine how much finishing it will take to 
get the edges ready. If you had the pieces laser cut, little finishing will be 
required. For all finishing, I used ascending grades of sandpaper, starting 
with 220 grit and going up to 1500—that is, 220, 320, 400, 600, and then 
1500. Automatic sanders—orbital, belt, vibratory, and so forth—often are 
too rough, and without special care, they will melt the acrylic. If you use one, 
try it on a scrap piece first. The sanding process worked well even though 
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some extra sanding was required on roughly cut sections. Additional sand-
ing was required on the opposing piece to make everything fit together as a 
rectangle—or as a cube in the case of the bearing box. 

Figure 4-14: Using a tapered reamer to enlarge the bearing hole  
to the finished dimension 

Use a liquid polish or jewelers rouge to achieve the final polish. Make 
sure to remove all the wax from the polish from the surface before bond-
ing. Try not to round the edges of the sections so the thinner bonding 
agent (Weld-On 4) will work well. You want to assure that you have suffi-
cient bonding surface in contact to make a secure bond.

Bonding the Acrylic for the Bearing Box
Now, it’s time to use a bonding agent to connect the pieces of your bearing 
box. Fortunately, bonding the acrylic actually turned out to be somewhat 
easier than I anticipated.

Where the edges are smooth but not too badly rounded, Weld-On 4 
thin bonding fluid should work quite satisfactorily. It partially dissolves 
the acrylic and forms an actual weld. The most difficult part is keeping the 
fluid from running where it shouldn’t go. If you have larger gaps, or have 
rounded the edges, try Weld-On 16, which has a higher viscosity and a clear 
acrylic filler, to fill gaps and voids where necessary. 

In both cases, you should follow the instructions on the product, but 
here’s how the acrylic weld works in general: just clamp the dry pieces of 
acrylic together, and then, using a needle applicator included with the 
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bonding agent, apply a thin layer of acrylic cement to each joint. Capillary 
action will draw the cement into the joint. For joints where the surfaces are 
a little more uneven, you can apply the thicker Weld-On 16 to one surface 
and then attach it to the other surface. Clamping is required for only a few 
minutes, but allow several hours for final curing.

The system doesn’t need a lot of strength, but it should not fall apart 
when touched. For the parsimonious, a paint stripper like Klean Strip also 
works well to bond the acrylic. (The chemical behind the bonding agent in 
Weld-On is methyl chloride, which is the key ingredient in the paint strip-
per.) Klean Strip is less than one-fourth the price of Weld-On. 

N O T E 	 There are several tutorials on bonding acrylic on the web, too. If in doubt, look one 
up, and experiment with a few scrap pieces of acrylic first before trying it out on the 
pieces you worked so hard on. 

After bonding the bearing box, as shown in Figure 4-9, and bonding 
the side pieces to the bottom, check the alignment. Run the threaded 
rod through the bearings, and put the jam nuts in place without over-
tightening them. Make sure the bearings don’t bind. If they are not well 
centered, this can happen, but usually, they will align themselves as you 
tighten the jam nuts a little. If your alignment is off, you may need to 
adjust the holes a little with the reamer and touch up with some acrylic 
cement, but I never ran into that problem. For now, remove the driveshaft 
from the bearing box.

Building the Stand
The stand is the least complex part of the project. It comprises the two 
side supports, 1 1/2 × 5 × 1/4 inches, and the base, 3/8 × 3 × 5 1/2 inches. 
I included the lightbar, 3 × 1 1/4 × 3/8 inches, and the shield mounting, 
2 1/2 × 2 1/2 × 3/8 inches, with the stand (see Figure 4-15).

First, drill 1/4-inch holes in each side support a 1/2 inch from the 
top, centered left to right. Then, bond the two side supports to the base 
1 1/2 inches in from the edge of the base that will be the back. Next, drill 
the holes for the LEDs in the lightbar. I used five LEDs (red, blue, white, 
yellow, and green) that were 10 mm in size. You can use whatever color 
combination you choose. 

Finally, drill and mount the shield. To find the center of the piece, mark 
from corner to corner. Then, in the center, drill a #43 hole and tap for a 4-40 
screw. Drill a corresponding hole, centered and 2 inches from the rear edge, 
in the base. Next, use the shield itself, or the drawing from the ExpressPCB 
print, as a template to drill a hole for the three mounting screws. In design-
ing the board, I failed to leave room for a fourth screw. However, three are 
more than sufficient, as there is no mechanical force on the board. I used a 



116   Chapter 4

2.5 mm (#39) drill and tap for a M3-05 screw that the standoffs will fit into. 
Figure 4-15 shows the dimensions of the parts and the partially assembled 
base, including supports, the lightbar, and the shield mount. 

2.5 in

1.5 in

Side supports

Base

2.5 in 5 in

5.5 in

0.375 in

0.375 in

1.25 in

Drill #43
Tap 4-40

Use shield as template
to drill mounting holes

Lightbar

3 in

1.5 in

0.5 in

Figure 4-15: The components and configuration of the base and lightbar for the Watch Winder

Preparing the Motor and the Driveshaft
Despite a concerted effort to mark and drill the holes accurately, you may 
still end up with misalignment between the motor and driveshaft, so this 
build aims to keep the coupling flexible. My solution might not be on the 
hit parade of industrial engineers, but I used a length of vinyl tubing to 
couple the motor to the driveshaft. This coupling has been working for 
more than a year with no sign of deterioration or problems. 

A 1-inch length of heavy-wall vinyl tubing with an outside diameter of 
7/16 inches and an inside diameter of 3/16 inches should do the job.

It won’t fit the motor shaft or the 1/4-inch threaded shaft without a 
bit of work, though. (I drove the sales clerk at Lowe’s batty buying six of 
each size they had in stock.) We simply need to reduce the diameter of the 
threaded shaft and craft a small bushing for the motor shaft.

Trimming the Threaded Shaft

First, trim the diameter of the threaded shaft. Clamp a hand-held electric 
drill in a vise or parallel clamp, using a folded towel to keep from damag-
ing the drill, and place the shaft where the drill bit would normally go 
(see Figure 4-16). Then, turn on the drill, and use a sharp file to trim the 
shaft.
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Figure 4-16: Reducing the diameter of the threaded shaft 

It should take only a minute or two to reduce the shaft diameter to a 
little over 3/16 inches for a tight fit on the vinyl tubing. 

Creating the Motor Bushing

Next, take a small piece of round stock approximately 3/4 inches long and 
3/8 to 1/2 inches in diameter. (I used a 3/8-inch diameter, as it required 
less work.) Drill a 11/64-inch (#21) hole in the end approximately 3/8 inches 
deep. The bushing hole needs to be as close to the center as possible, so you 
might want to mark it with a center punch first (see Figure 4-17). 

Figure 4-17: Clamp the shaft of the piece used as the bushing in a vise 
or pair of vise-grip pliers, and center punch a mark before drilling the 
hole. Get as close to the center as possible.
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Then, place the short piece of stock you cut in the drill as you did the 
threaded shaft with the center hole toward the drill. File the end without 
the hole in it. Reduce the diameter by about 1/4 inches to approximately 
equal the filed end of the driveshaft. 

Next, drill a 0.041-inch hole through the bushing, about 3/8 inches 
from the edge of the bushing. 

While you’re at it, drill a corresponding hole in the driveshaft. To center 
punch and drill the driveshaft and the bushing holes, file the end flat so the 
center punch can find a purchase (see Figure 4-18). These are the holes that 
will accept the piano wire through the vinyl tubing.

Figure 4-18: The easiest way to drill the holes in the threaded rod and bushing is to  
file a small flat on the shaft and center punch. 

Finally, drill a 2.5 mm (#39) hole and tap an M3-05 hole in the bush-
ing, perpendicular to the hole drilled for the motor shaft. This will accept a 
set screw for the motor shaft. If you prefer, you can drill a #43 hole and tap 
for a 4-40 set screw. This set screw holds the bushing in place on the motor 
shaft, and the two 0.041-inch holes drilled in the driveshaft and motor 
bushing, respectively, will pin the vinyl tubing in place with piano wire. 

Cutting Piano Wire Pins and Completing the Motor Assembly

Cut two pieces of 0.039-inch wide piano wire, 1/2 to 5/8 inches long. This 
can be a bit of a job. I used an abrasive cutoff wheel on a Dremel tool. Using 
the corner of a small grinding wheel attached to the drill should work to 
put a groove in the wire. Once you have a groove in the wire, you can snap 
it by hand. You can also use any sharpening stone to score the wire, and it 
should easily snap. 

Flat-filed

Center 
punch
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Once that’s done, the rest of the assembly should go easily. First, mount 
the bushing to the motor; put a drop of thread-lock liquid on the set screw 
before tightening. Then, fit one end of the vinyl tubing over the bushing, 
and run the piano wire through the 0.041-inch hole in the bushing. Hold 
one end of the wire tightly in a pair of pliers (small vise-grip pliers work 
well), and force it through the vinyl, into the hole in the motor bushing, 
and into the vinyl on the other side. If this proves difficult, try heating 
the piano wire with a small flame, and then it should go through easily. 
Figure 4-19 shows the tubing over the motor bushing.

Figure 4-19: The motor shaft with the bushing comprises half of the transmission to the 
winder. The other half is the reduced driveshaft that goes through the bearing and holds 
the watch basket. 

Attach the motor mount to the motor using M3×3/8-inch screws. 
Next, screw the motor standoffs into the bearing cage; see Figure 4-20 for 
how to place them. Take the motor assembly—that is, the motor, mount-
ing plate, bushing, and vinyl—and fit it to the bearing cage standoffs 
using M3-05×1/2-inch screws. 

To make the holes in the vinyl for the driveshaft, just install the 
driveshaft into the bearing box without the jam nuts, push the vinyl tub-
ing onto it, and install the piano-wire pin as I described in the previous 
section. If you are concerned about the piano-wire pins coming out, you 
can wrap a wire tie over them or cover them with a piece of tape. (I never 
had a problem.) For now, remove the piano-wire pin from the driveshaft 
and remove the driveshaft from the bearing box until you’re ready for the 
final assembly.

Motor shaft
Bushing

Set screw
Reduced diameter 
of bushing with 
vinyl tubing

Piano wire

Motor
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Standoffs

Figure 4-20: Motor and motor mount connected to bearing box with stand-
offs. The standoffs are threaded into the bearing box while the motor mount 
is fastened with 3 mm × 1/2-inch screws and washers. The bearing box is 
mounted to stand with 1-inch-long, 1/4-inch × 28 screws and nuts.

Making the Watch Basket
There are many ways to construct the part of the project that holds the 
watches. I chose to make my watch basket from acrylic. The construction is 
relatively straightforward, though it does require some patience. First, take 
two 5×3/8-inch acrylic disks and carefully mark the center on each. Drill 
1/4-inch holes in the center of each. Then, on what will be the top disk, 
mark the rectangles shown in Figure 4-21 (left). 

If you’ve not done so already, cut the rectangular acrylic pieces I 
described in the “Parts List” on page 93 for the watch boxes and assemble 
them following the same instructions given under “Bonding the Acrylic for 
the Bearing Box” on page 114. (In most of the samples I’ve made, I used 
1/4-inch acrylic; however, 3/8-inch acrylic works fine.) Then, carefully mark 
out the openings on the disk (see Figure 4-21). Now, bond the watch baskets 
to one disk, as shown in Figure 4-22. Then, cut the openings to match up 
with the inside of the watch baskets. 



A Watch Winder   121

3 in

0.25 in

0.25 in

2 in
1 in

1 in

Figure 4-21: Cut out dimensions for the watch holder basket. This pattern can be down-
loaded as a PDF file from http://www.nostarch.com/arduinoplayground/.

Figure 4-22: The watch holder baskets mounted to the acrylic disk. 
Above them is the fully assembled motor, bearing box, and driveshaft. 

The simplest way to cut the rectangles out is to drill a hole at the cor-
ners, being careful not to drill into the watch basket, and use a keyhole 
or coping saw (or if you’re careful, a saber saw) to cut the openings. They 
have to be cut only on one disk, which will be the top. You can clean up the 
edges of the cuts a little with a file or sandpaper, but don’t spend too much 
time as it will not be noticeable with the watches and cushions in place. 
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Finally, mount the basket on the driveshaft. First, thread two nuts onto 
the driveshaft and lock them against each other—that is, tighten one nut 
against the other. Then, add a washer, followed by the lower disk of the bas-
ket, the top assembly with the watch baskets, a washer, and a nut at the top. 
If you desire, go to the hardware store to search for a decorative nut to cap 
off the project. 

N O T E 	 Bonding the bottom disk isn’t necessary if you use locking nuts as I described and 
tighten the basket securely. I didn’t bond the boxes to the lower disk, and it has not 
been a problem.

At this point, you can mount the finished assembly to the stand using 
the two decorative 1/4 inch × 28 bolts and nuts. You can also bond the light-
bar to the base using acrylic cement and drill the hole for mounting the 
shield mounting plate. 

Adding the LEDs
You’re just about done. Locate and mount the LEDs on the acrylic any-
where you like, and wire them up to the shield. You can see where I placed 
mine in Figure 4-1. (The way the acrylic conducts the light produces some 
neat effects.) You may want to drill some blind holes to mount the LEDs 
in. Simply drill a hole the diameter of the LED but not completely through 
the acrylic. If you’re careful, you can probably do a neat job in running the 
wires so they can barely be seen.

Because the LEDs are critical to the ultimate appearance of the winder, 
their placement and mounting is an important component of the finished 
product. Drilling the holes for mounting the LEDs can be a little tricky 
because if you bought a variety, they may have slightly different diameters. 
As a starting point, try 3/16-inch holes for 5 mm LEDs and 25/64-inch 
holes for 10 mm LEDs. I found the best way to get the right size was to drill 
a sample hole in a scrap piece of stock and try it before venturing to drill 
into a finished piece. If the hole is a bit small, a simple touch up with the 
tapered reamer should fix that. If a hole ends up a little large, try filling it 
in with some acrylic cement, such as Weld-On 16. 

If you have some wire-wrap wire and a wire-wrap tool, you can wire-
wrap the LEDs to the shield instead of soldering. This makes a neat con-
nection to the back of the LEDs and is relatively inconspicuous because of 
the small diameter of the wire. It also lets you connect the wire close to the 
LED, as in shown Figure 4-23. If you soldered it, you might risk overheating 
the junction of the LED. 

Wire-wrap or solder the leads from the LEDs to the shield. I soldered a 
header to the shield so that it was easy to wire-wrap or solder the leads from 
the LEDs to the shield directly. You do have to solder leads from the motor 
to the other end of the shield, but it should not be a problem.

The wires from the Hall effect sensor can be soldered to the shield and 
to the leads of the sensor. Measure the wires so they fit neatly where you 
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plan to mount the Hall effect sensor. You can use a connector, but let’s keep 
it simple. The sensor itself and the magnet are mechanically mounted using 
double-sided foam tape.

Figure 4-23: Wire-wrap wire on an LED. These wires are very fine 
(30 gauge) with thin insulation, so they are unobtrusive. Small wire 
ties can neaten up the wiring. I suggest marking the LED’s positive 
terminal ahead of time, as I’ve done here, and wiping it off later.

Leaving the Components on Display
Now, what to do with the shield and Nano? The theme of this project has 
been transparency, so I suggest letting everything hang out: mount the bare 
board on standoffs right out in the open with the switch and power jack at 
the back (see Figure 4-24). 

Figure 4-24: The Nano and shield mounted on the completed Watch Winder. 
Only three standoffs were used on the shield.
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I placed the electronics directly under the bearing box, between the 
uprights holding the entire assembly to the base. Then, I mounted the 
board on a separate piece of acrylic screwed to the base with a flat-head 
4-40 screw. 

Keeping the Watches in the Basket
To hold the watches in the watch basket, I simply cut a block of fine foam 
sponge, and it worked well. If you want something a little dressier than 
a sponge, you can sew small pillows that you put the watch band around. 
I don’t have any sewing ability, so I stuck with the sponge. 

N O T E 	 The open frame works well overall, but it could collect dust. If you have a fastidious 
streak, you could build an acrylic box to cover the entire winder from 3/16-inch-thick 
acrylic sheet. Or you could just buy a can of dust spray, as I did. Some have also sug-
gested to me that the entire winder could be mounted on a piece of hardwood, such as 
walnut or some other decorative hardwood, to add a finishing touch. 

Design Notes 
Now that you’ve seen how I built the Watch Winder, I’ll walk you through 
some key design decisions I made that you might want to do differently. 

Total Rotation Adjustment
It’s possible to vary the total number of turns the Watch Winder makes 
without changing the sketch, though I chose not to do this. 

You can use a potentiometer to create a variable voltage and input it 
to one of the analog inputs of the Arduino. Then, you can substitute that 
value for one of the delays in the sketch to vary the number of revolutions 
per day. Here’s how to install the potentiometer and the tweaks you’d need 
to make to the sketch.

Hardware Changes

Connect the upper and lower terminals of a potentiometer to the positive 
and negative rails of the system. Solder pads have been included on the 
shield for this purpose. You needn’t use a full-size potentiometer; a small 
trimmer (10 turn is best) will do nicely, and it saves a lot of space. Connect 
the potentiometer’s center pin (in the shield) to an analog pin of the Nano. 
Because the Hall effect switch uses pin A0, I suggest using analog input A1. 
Solder points have been provided in the shield.

Software Changes

On the sketch, there are several things you must do. First, tell the Nano that 
input A1 is in play. Go to the top of the sketch to add the following: 

const int revSet = A1;
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Then, a little further, identify the value the potentiometer is set at as 
follows:

int revNumber = 0;

revSet is the arbitrary name I gave to the input A1, and revNumber is the 
arbitrary name I gave to the number you will substitute in the sketch for 
one of the delays. 

The potentiometer will give values from 0 to 5 volts. Because the analog 
input, A1, is connected to a 10-bit ADC, it will generate 1,024 digital values 
between 0 and 1,023. In other applications, it’s been necessary to map these 
1,024 values to some other set of values. However, in this particular situa-
tion, it’s easiest to use the values as is. 

In the sketch file, move to the line after void loop() { and assign the 
value of A1 to revNumber as follows:

revNumber = analogRead(revSet);

Go back to where we define some of the delays in the sketch. Change 

int timer = 500;

to

int timer = 0;

Finally, go back to where you entered revNumber = analogRead(revSet); 
and after that, enter the following:

timer == revNumber;

Now, each time the sketch calls for the timer value, the revNumber value 
should be used automatically, which will give you a wide variation in delay. 
The resulting variation runs from 200 to 1,200 revolutions per day. 

How Many LEDs to Use and Where to Put Them
I originally imagined the Watch Winder having only two LEDs to indicate 
the direction of rotation. The first version used LEDs attached to the motor-
direction pins, D12 and D13, of the Nano (see Figure 4-2). One pin was on 
for the duration of rotation in one direction, and vice versa. Red and green 
LEDs were used to indicate which direction the winder was going in, like run-
ning lights on a boat.

But that’s still pretty boring, and there were all those pins sitting there 
not doing anything. Furthermore, if you invited a friend over to see your 
winder, it would sit there, doing nothing most of the time—and so would 
your visitor. So I decided to spice up the project with several more deco-
rative LEDs. I also decided to add more variability by having the sketch 
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provide some animation, calling for the watches to turn a varying number 
of times—sometimes shorter but more often. I even added a “ping-pong 
effect.” 

Because the half of my brain dealing with artistic matters apparently 
never developed, I’ll leave the placement of the LEDs to you. On the unit 
in Figure 4-1, there are four in the bearing box and five in a lightbar, but 
you could place them anywhere. 

I arbitrarily chose nine LED channels, and in some cases, I used two 
LEDs per channel. I used two LEDs for each direction of the motor—the 
two channels, D12 and D13, that serve double duty driving the LEDs as well 
as driving the motor. D2 and D13 power two LEDs each. D4 through D10 
power the other LEDs, the two behind the watch basket—D9 and D10, each 
with two LEDs—and the five out in front in the lightbar—D4–D8. D11 is 
reserved for future developments you may want to include. 

Motor Voltage
One beta tester of the Watch Winder experienced difficulty running a 6V 
motor from the 5V supply. The complaint was insufficient torque. The solu-
tion, should you run into this problem, is to run the second supply (VCC2) 
of the H-bridge directly from the 9V supply. To do this, you are either 
going to have to cut the traces to pin 8 or remove that pin and solder it 
separately to the 9V supply. Because the motor runs so intermittently, there 
is little risk of burning it out. It may not be an elegant solution, but it works. 
Incidentally, out of about 20 different motors sampled, that was the only 
one that experienced that problem. And as addressed earlier, the higher 
speed of the motor at the higher voltage will have no, or little, effect on the 
number of rotations. 

How Many Rotations Does the Watch Winder Make?
If you really have to know how many rotations the Watch Winder makes, 
here’s a solution. The internal counter serves to sequence the sketch but 
does not accurately reflect the total number of revolutions the motor makes. 
While we could have counted the rotations internally, it would have required 
a separate readout or being hooked up to the serial monitor. But if you need 
to keep count, you can add a small external counter. Because you will need it 
only on rare occasions when changing the revolution count, you can plug it 
in—a provision is made in the shield—when you need it and save it for other 
projects when you don’t. The external counter in Figure 4-25 is self-powered 
and costs under $8. See the “Parts List” on page 93 for details.

The external counter is not required; however, it could be a nice acces-
sory to include for this and other projects. It is not included in the design 
because it is used only on occasion and can be plugged in. I used a two-pin 
female header on the shield—the connections are labeled GND and X-ctr 
on the screen layer of the shield—and included a two-pin plug on wires 
from the counter. The count connection goes from ground to pin 4 of the 
counter and from the Hall effect sensor to pin 1. You can add a reset button 
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from ground to pin 3 of the counter. The counter comes from the manufac-
turer with little information, so Figure 4-25 shows a view from the back with 
the pushbutton reset on the counter on your right. 

                                     

Figure 4-25: An external hardware counter with a reset button added

Even if this Watch Winder didn’t keep my watches wound, I think it 
would still be a great sculpture. And when you are done with this project, 
perhaps your next Arduino build will be just that: a kinetic, blinking, mov-
ing piece of art.

Pin 1

Pin 4
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T h e  G arage      Sen   t ry  
P ar  k ing     A s s i s t an  t

This project is a reliable electronic device 
to gauge the distance you need to pull 

your car into your garage. If you park in 
a garage, you’re probably familiar with the 

problem: how far do you pull your car into the garage 
to make sure there’s room in front for whatever is 
there and enough space behind so the garage door 
will close? Some people suspend a tennis ball on a string from the ceiling 
and stop at the point when the ball meets the windshield. That works fine, 
but the ball is a pain to set up and adjust, and it often gets in the way if you 
want to use the garage for something other than parking the car.

Arduino offers a better solution. This Garage Sentry project is the elec-
tronic version of the classic tennis-ball-on-a-string device, only better. The 
Garage Sentry accurately detects when your car reaches exactly the right 
position in the garage and sets off an alarm that blinks so you know when 
to hit the brakes. 
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In addition, at the end of the chapter, I’ll show you how to modify the 
basic Garage Sentry into a deluxe version that alerts you when you’re get-
ting close to the perfect stopping point.

Required Tools 
This project doesn’t require many tools or materials, but you will need the 
following tools for both the standard and deluxe versions: 

Drill with a 3/8-inch or 1/2-inch chuck (powered by battery or with 
110/220V from the wall)

Drill bits for potentiometer (9/32 inches), power input (1/4 inches), 
and LED (3/8 inches)

Soldering iron and solder

Tapered reamer set

Philips head and slotted screwdrivers

Pliers (I recommend needle nose.)

(Optional) 1/4-inch tap

Parts List
You’ll need the following parts to build the basic Garage Sentry:

One Arduino Nano (or clone)

One HC-SR04 ultrasonic sensor 

Two high-intensity LEDs (>12,000 MCD)

Inspira t ion Be hind t he G arage   Sen  t ry

This project evolved out of playing with an ultrasonic transceiver module, a 
device that emits sound waves and then detects them after they travel to an 
object, reflect off that object, and travel back to the module. The output of the 
module allows a microcontroller to measure the time it takes to travel to and 
from the object and, knowing the speed of sound, determine the distance. To 
test the ultrasonic transceiver’s sensitivity and limits, I used the battery-operated 
breadboard version in my garage, which had enough space to move objects 
around for different distances. It turns out cars are great reflectors for ultrasonic 
energy. From this experimentation, I was inspired to turn my test apparatus into 
a Garage Sentry.
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Two 270-ohm, 1/4 W (or more) resistors (to limit current to the LEDs)

One 20-ohm, 1/8 W potentiometer

Two NPN-signal transistors rated for a collector current of at least 1.5 A 
(I used ZTX649 transistors.) 

One enclosure (I recommend a blue Hammond 1591 ATBU, clear 1591 
ATCL, or something similar.)

(Optional) One 0.80-inch aluminum strip for mounting bracket

(Optional) Two 1/4-inch × 20-inch × 3/4-inch bolts with nuts

One section (approximately 1×1 inch) perforated board (can include 
copper-foil rings on one side)

One 3.5 mm jack

Two 2-56×3/8-inch screws and nuts

Two additional 2-56 nuts to use as spacers

One 9V, 100 mA plug-in wall adapter power supply (Anything from 
7.5V to 12V DC at 100 mA or upward should work well.)

One piece of double-sided foam tape about 3-inches long

One LM78L05 (TO-92 package) regulator (for the breadboard 
build only)

28- or 30-gauge hookup wire

(Optional) Wire-wrap tool and wire

Because the basic version doesn’t require a lot of additional compo-
nents, I suggest building the circuit on a standard perforated circuit board 
instead of a shield. To power your circuit, you can use a 9V, 100 mA wall 
adapter plugged into a 3.5 mm jack (see Figure 5-1). You shouldn’t need an 
on/off switch.

Figure 5-1: I used a Magnavox AC adapter, but any similar power supply with a DC out-
put from 7.5V to 12V should work. These are readily available online and cost from under 
$1.00 to about $3.00.
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Be sure to use two bright LEDs that are clearly visible, even when a car’s 
headlights are on. Bright LEDs range from 10,000 MCD (millicandela) 
to more than 200,000 MCD. The brighter, the better; just remember that 
brighter LEDs require more power, so the current-limiting resistor will 
need a higher power rating for the brighter lamps. The 270-ohm current-
limiting resistors result in a current drain of about 30–40 mA each with the 
12,000 MCD LEDs I used at 5V. (Power equals volts times amps, or P = VI, 
so at 40 mA and 5V, you’d have 0.20 W.) It’s best to use a 1/2 W or greater 
resistor even though you can easily get by with a smaller value—as I did 
with 1/4 W—because the LEDs are on only intermittently.

Deluxe Parts
In addition to the components for the basic Garage Sentry, you’ll need the 
following extra components if you want to build the deluxe version:

Two high-intensity green LEDs

Two high-intensity amber LEDs

Two additional 270-ohm, 1/4 W resistors

Two additional NPN-signal transistors

One Hammond 1591 BTCL enclosure (to replace the 1591 ATCL)

One PCB (shield)

Downloads
Sketches  GarageSentry.ino and GarageSentryDeluxe.ino

Drilling template  Transducer.pdf

Mechanical drawing  Handle.pdf

Shield file for Deluxe Garage Sentry  GarageSentryDeluxe.pcb

The Schematic
Figure 5-2 shows the schematic for the Garage Sentry. R1 and R3 are the 
270-ohm resistors for the LEDs and should be 1/4 W or larger. If a higher 
wattage resistor is not available, you could place several resistors in parallel 
to gain the required wattage. First, find the right resistor value with the 
formula: 

1 1 1 1 1

1 2 3R R R R Rntotal

= + + +…+

You can also use an automatic calculator, such as the one at http://
www.1728.org/resistrs.htm, which is a lot easier than doing the math yourself.
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Figure 5-2: Schematic diagram of the Garage Sentry

To avoid extra calculations, select resistors of the same value. This way, 
the same amount of current flows through each one. For example, two 
1/8 W resistors in parallel will give you a 1/4 W value. 

If you do use resistors of different values, you will have to calculate the 
current flowing through each and the total dissipation. 

This schematic also leaves you with room to customize your alarm. 
While this version of the project uses LEDs to create a visual alarm, with a 
slight modification, you can easily create an audible alarm as well. Simply 
replace either the red or blue LED with an audible device, such as a 
Sonotone Sonalert, and the alarm will sound. To replace an LED, you 
would need to connect the Sonalert across that LED’s connections; just 
make sure to get the polarity correct. Alternatively, you could keep both 
LEDs and add an audible device for a third warning.

N o t e 	 In this project, the Nano takes advantage of its on-board voltage regulator, which is 
why there’s no external regulator in the schematic.

Basics of Calculating Distance
This project measures the time it takes for a sound to originate, bounce off 
an object, and be received back at the point of origin, and it uses that time 
to calculate the distance between the object and the sensor. 
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The basic distance calculation is not much different from determining 
the distance of a storm by counting the seconds between a lightning flash 
and a thunderclap. Each second represents a distance of 1,125 feet, or about 
0.2 miles. Given that sound travels at 1,125 feet per second in air at sea level, 
if there’s a five-second delay between a lightning flash and the thunderclap, 
you can determine that the storm is roughly a mile away. In the case of the 
Garage Sentry, once you know how long it takes for the sound to make a 
round trip and know the speed of sound, you can calculate the distance 
according to the time-speed-distance formula:  

Distance = Speed × Time

How the Garage Sentry Works
This project takes advantage of ultrasonic sound, which, unlike thunder, is 
above the hearing range of most individuals. If your hearing is good, you 
can detect sound ranging from about 30 Hz to close to 20 kHz, although 
hearing attenuates quickly above 10 kHz or 15 kHz. 

N o t e 	 For reference, middle C on the piano is 261.6 Hz. Young children (and most dogs) 
can often hear high frequencies, but hearing, especially in the upper registers, deterio-
rates quickly with age.

The ultrasonic transceiver module used in this project sends out pulses 
at a frequency of about 25 kHz and listens for an echo with a microphone. 
If there is something for the signal to bounce off, the system receives the 
return echo and tells the microcontroller a signal has been received and 
to calculate the distance. For the Garage Sentry, the unit is placed in the 
front of the garage, and the signal is sent out to bounce off the front—or 
rear if you are backing in—of your vehicle. To calculate your car’s distance 
from the ultrasonic transceiver, the Arduino measures the time it takes 
for the signal’s round trip from the transceiver to the target and back. For 
example, if the Arduino measures a time of 10 milliseconds (0.010 sec-
onds), you might calculate the distance as:

Distance
ft
s

 s  ft= × =1125 0 010 11 25. .

Ah, but not so fast. Remember the signal is traveling to the car and 
then back to the microphone. To get the correct distance to the vehicle, 
we will have to divide by two. If the controller measures 10 milliseconds, 
then the distance to your car would be:

Distance

ft
s

 s
ft=

×
=

1 125 0 010

2
5 625

, .
.
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The HC-SR04 ultrasonic module sends out a signal at the instruction of 
the Arduino (see Figure 5-3). Then, the sketch instructs the transmitter to 
shut down, and the microphone listens for an echo. 

 

Figure 5-3: The ultrasonic sensor module. The back of the module  
(bottom) has connection terminals at the bottom.

If there is an object for the signal to bounce off, the microphone picks 
up the reflected signal. The Arduino marks the exact time the signal is sent 
out and the time it is received and then calculates the delay. 

The HC-SR04 module is more than a speaker and microphone, though. 
The module includes transducers—a loudspeaker and mic—and a lot of 
electronics, including at least three integrated circuits, a crystal, and sev-
eral passive components. These components simplify its interface to the 
Arduino: the 25 kHz tone is actually generated by the module and turned 
on and off with the microcontroller. Some of the components also enhance 
the receiver’s, or the microphone’s, sensitivity, which gives it a better range.

The range of the HC-SR04 ultrasonic transducer is approximately 
10 to 12 feet. The returning signal is always a lot weaker than the transmit-
ted signal because some of the sound wave’s energy dissipates in the air 
(see the dotted lines in Figure 5-4).  



136   Chapter 5

Distance r

Reflected wave

Original wave

Sender/
receiver

Object

Figure 5-4: In this project, sound is transmitted from a sender, bounces off an object, 
and is received. 

The arithmetic to calculate the distance between the sender and the 
object is not difficult. You take the number of microseconds it takes for the 
signal to return, divide by the 73.746 microseconds it takes sound to travel 
an inch, and then divide by two because the signal is going out and coming 
back. The full arithmetic for this appears later in “Determining Distance” 
on page 141.

The sketch provides a response in inches or centimeters depending on 
your preference. We’ll use inches for setting up the distance for the alarm, 
but converting to centimeters simply requires a remapping of the analog 
input and setting the numbers a bit differently. The sketch also does the 
basic arithmetic for determining the centimeter measurement for you.

With the high-level overview out of the way, let’s dig in to how you’ll 
wire the Garage Sentry.

The Breadboard
The entire Garage Sentry fits on a small breadboard, so you can set it up, 
program it, power it with a battery, and walk around to test it out. As you 
play with it, I’m sure other applications of ultrasonic technology will come 
to mind.  

The breadboard I assembled, shown in Figure 5-5, is powered by a 9V 
battery. Usually, you could wire the battery directly to the VIN of the Nano 
and use the Nano’s built-in voltage regulator. But you’ll power the Nano 
with a USB cable when you program and test it for the first time, so on the 
breadboard, you’ll set up the positive and negative rails for 5V for both the 
Nano and the ultrasonic module. To avoid risking damage to the Nano or 
the module and avoid overcomplicating the build, I included a single-chip 
external voltage regulator (LM78L05) so the entire breadboard runs on 5V. 
Take a look at Figure 5-6 to see how it’s wired up. 
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Figure 5-5: Here’s the breadboard wired up. I used a 9V battery so I could experiment in 
different environments. Both LEDs look illuminated because of the length of the exposure 
of the camera. 

Figure 5-6: This is how the LM78L05 TO-92 regulator is wired up on the breadboard. 
Bypass/filter capacitors are not required. 

Here’s a blow-by-blow list of the steps to wire the breadboard: 

1.	 First, put the ultrasonic module at the lower end of the breadboard fac-
ing out, and plug the Nano in to the breadboard, leaving four rows of 
connections above it. 

2.	 Make sure the positive and negative rails (red and blue stripes) on the 
left and right are connected properly—red to red, blue to blue. If you 
connect red to blue, it will cause a major problem.

3.	 Connect the red positive rail to the 5V power supply (pin 27 of the 
Nano, labeled 5V). This is necessary if you are operating from the USB 
connector. 

4.	 Connect pin 4 of the Nano (labeled GND) to the breadboard’s blue 
negative rail.

5.	 Connect VCC of the HC-SR04 transducer to the red positive rail. 

6.	 Connect GND of the HC-SR04 transducer to the blue negative rail.
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7.	 Connect TRIG of the HC-SR04 transducer to pin 15 (D12) of the Nano.

8.	 Connect ECHO of the HC-SR04 transducer to pin 14 (D11) of the Nano.

9.	 Insert two ZTX649 transistors into the breadboard. Select an area 
where all three pins of each transistor can have their own row. 

10.	 Connect pin 12 (D9) of the Nano to the base of transistor Q1.

11.	 Connect pin 13 (D10) of the Nano to the base of transistor Q2.

12.	 Connect the collectors of both transistors to the red positive rail.

13.	 Connect the emitter of transistor Q1 to one end of a 270-ohm resistor.

14.	 Connect the other end of the 270-ohm resistor connected to the emit-
ter of transistor Q1 to a blank row on the breadboard.

15.	 Connect the emitter of transistor Q2 to one end of another 270-ohm 
resistor. Connect the other end of the 270-ohm resistor connected to 
the emitter of transistor Q2 to another blank row on the breadboard.

16.	 Connect the + (long end) of LED (D1) to the 270-ohm resistor and the 
other end to the blue negative rail.

17.	 Connect the + (long end) of LED (D2) to the 
second 270-ohm resistor and the other end to 
the blue negative rail.

18.	 Connect one end of the 20-ohm potentiometer 
to the red positive rail.

19.	 Connect the opposite end of the potentiometer 
to the blue negative rail.

20.	 Connect the wiper (center) of the potentiometer 
to analog pin A0 (26) of the Nano.

You should be good to go! If you use the AC 
connection, simply connect it to the VCC connection 
of the Nano. 

To add a battery connection, include the 78L05 
with its center pin to ground (negative rail), the 
input to the positive side of the battery, and the out-
put to the positive rail (see Figure 5-7). Connect the 
negative terminal of the battery to the negative rail. 

The Sketch
Once the breadboard is complete, the sketch can be loaded onto the 
Nano. Download the GarageSentry.ino file from https://www.nostarch.com/
arduinoplayground/. To load the file onto the Nano, follow the instruc-
tions outlined in “Uploading Sketches to Your Arduino” on page 5. 
Remember to select the correct board type. Once it’s loaded, the unit 
is ready for experimentation.

InputOutput
Ground

Figure 5-7: Pinout of 
the 78L05 regulator  
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The sketch for the Garage Sentry serves several functions. It tells the 
ultrasonic sensor to generate a wave and detects how long it takes the echo 
to return. It then calculates the distance based on that time and, if neces-
sary, alerts you to stop by turning on the LEDs. Here’s the sketch in full; I’ll 
walk you through it next.

/* Garage Sentry
*/

int ledPin = 10;
int ledPin1 = 9;
int count;
int analogPin = A0;
int val;
int y;

void setup() {
  Serial.begin(9600);
  pinMode(ledPin, OUTPUT);
  pinMode(ledPin1, OUTPUT);
  pinMode(analogPin, INPUT);
}

void loop() {
  val = analogRead(analogPin);
  long duration, inches, cm;
  //Give a short LOW pulse beforehand to ensure a clean HIGH pulse:

u   pinMode(12, OUTPUT);  //Attach pin 12 to TRIG
  digitalWrite(12, LOW);
  delayMicroseconds(2);
  digitalWrite(12, HIGH);
  delayMicroseconds(5);
  digitalWrite(12, LOW);

  pinMode(11, INPUT);  //Pin 11 to receive ECHO
  duration = pulseIn(11, HIGH);

  //Convert the time into a distance
  inches = microsecondsToInches(duration);
  cm = microsecondsToCentimeters(duration);
  val = map(val, 0, 1023, 0, 100);
  if(inches == 0)
    digitalWrite(ledPin, LOW);

  if(count == 0 && inches > 0 && inches < val) {
v     for(y = 0; y < 200; y++)

    {
      digitalWrite(ledPin, HIGH);
      digitalWrite(ledPin1, LOW);
      delay(100);
      digitalWrite(ledPin, LOW);
      digitalWrite(ledPin1, HIGH);
      delay(100);
    }
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    count = count + 1;
  }

  digitalWrite(ledPin1, LOW);
  if(inches > 10) {
    //delay(1000);
    count = 0;
  }
  Serial.print(inches);
  Serial.print("   inches ");
  Serial.print(count);
  Serial.print(" count   ");
  Serial.println();
  Serial.print(" Val       ");
  Serial.println (val);
  delay(100);
}
long microsecondsToInches(long microseconds) {
  return microseconds / 74 / 2;
}
long microsecondsToCentimeters(long microseconds) {
  return microseconds / 29 / 2;
}

First, we define several variables, establish parameters, and load libraries 
(if any). In this case, define ledPin and ledPin1, which will serve as the alarm. 
Other definitions (int) include cm and count (a variable that will be used inter-
nally), analogPin (as A0), val (to hold the limit information), and y (used in 
the loop).  

Inside the setup() Function
Next is the setup() function. Here, you set up Arduino features that you 
might want to use; this sketch includes the serial monitor, which you prob-
ably will not need in the final product but is often useful in debugging 
code, particularly if you want to change the code. This sketch sets the rate 
of the monitor at 9600 baud, which is standard in many applications. It also 
defines the mode of the pins you’ll use as either input or output. You could 
set the pinMode values at almost any point in the code, including before or 
inside the setup; they’re also often defined within the main loop, particu-
larly if the definitions are expected to change.

Inside the loop() Function
The loop() function is where everything really happens. The loop continu-
ally executes unless it’s delayed or halted by a command. So even when it 
appears that nothing is happening, the controller is continually cycling 
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through the code. In this application, one of the first tasks the controller 
performs in the loop is to set the variable val to store the input from the 
potentiometer connected to the analog pin (analogPin). 

In order to initiate the ultrasonic module’s transmit/receive function, 
the sketch first calls for a low signal to be sent to the transmitter (TRIG) to 
purge the module to assure that the following high signal will be clean. You 
can see this in the lines starting at . 

Next, there’s a delay to let things settle before the sketch writes a high 
to the transmit pin, which orders the transmitter to transmit an ultrasonic 
signal. This is followed by another delay, and then the sketch drives digital 
pin 12 low to turn off the transmitter and activates the receiver by calling 
the pulseIn() method. 

Determining Distance
If there’s no echo—that is, if inches == 0 or inches approaches infinity—
the controller continues to run the code until it reaches the end and 
then starts again at the beginning. If it detects an echo, the number of 
microseconds between turning the transmitter on and receiving signal 
(duration) is then converted to both inches and centimeters. This gives 
us a measurement of how far the transceiver is from the object. Note that 
throughout this explanation, I will refer to inches, but you could follow 
along in centimeters, too. 

The microsecondsToInches() and microsecondsToCentimeters() commands 
convert the time measurement to inches and centimeters, respectively, 
according to the arithmetic discussed in “How the Garage Sentry Works” 
on page 134. The data type long is used, as opposed to int, because it pro-
vides 4 bytes of data storage instead of just 2, and the number of microsec-
onds could exceed the 2-byte limit of 32,767 bits. So far, so good. 

In a regular formula, the distance arithmetic looks like this: 

in
time s

in

cm
time s

cm

= ÷

= ÷

2
74

2
29

µ

µ

In either case, we first divide by 2 because the signal travels from the 
transducer to the target and back, as previously discussed. In the inches 
function, we then divide the halved number of microseconds by 74, and 
in the centimeters function, we divide by 29. (It takes 74 microseconds for 
the signal to travel 1 inch, and 29 microseconds for it to travel 1 centime-
ter; I arrived at those numbers by following the arithmetic in “Time-to-
Distance Conversion Factors” on page 142.)
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Triggering the Alarm
The sketch is not done yet. Now we have to look at the number of inches (or 
centimeters) measured and compare it to the predetermined value—val, 
in this case—to see whether the alarm should be activated. To establish the 
variable val as a numeric value, take a potentiometer (R2) straddling the 
power supply on either end and tie the wiper to pin A0 (see Figure 5-2). 
Because A0 is the input to a 10-bit analog-to-digital converter, it converts 
that voltage (between 0V and 5V) to a numeric digital value between 0 and 
1,023. Reading that value with an analogRead() command results in a value 
between 0 and 1,023 depending on the position of the potentiometer. 

That value is then used to establish the trigger point for the alarm. But 
allowing all 1,024 values would essentially allow the distance to be set from 
0 to 1,023 inches. Because the control rotates only 270 degrees, to adjust 
between, say, 40 and 42 inches would represent a very minuscule rotation—
beyond the granularity of most potentiometers. 

To scale this for the potentiometer, the sketch maps the value so the 
entire rotation of the potentiometer represents a distance of only about 
100 inches with the following line of code: 

val = map(val, 0, 1023, 0, 100);

Mapping the potentiometer value changes the maximum distance from 
1,023 inches down to 100 inches while leaving the minimum distance of 
0 inches unchanged. You can map any set of values so the Garage Sentry’s 
target distance can be from X to Y, with full rotation of the potentiometer, 

Time -to -Dis tance  Con v er sion Fac tors

You could simply trust my math and copy the time-to-distance conversion code, 
but you can apply this arithmetic to any project using a similar ultrasonic mod-
ule or other sensor, so I encourage you to work through the math yourself.

As I describe in “How the Garage Sentry Works” on page 134, the 
speed of sound is roughly 1,125 feet per second. Multiply that by 12 inches 
per foot to get 13,500 inches per second. 

To get the number of seconds per inch, you simply divide this value by 
13,500 inches:

1
13 500

0 000074 s
in

s
in,

 .=

It takes about 74 microseconds, or 0.000074 seconds, for sound to travel 
an inch. To determine the distance in centimeters, go through the same exercise, 
but use 343 meters per second for the speed of sound, multiply it by 100 centi-
meters per meter, and take the reciprocal.
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so when you set up your Garage Sentry, you may want to test it and this 
range until it’s right for your garage. 

A conditional control structure sets the limit for the alarm. This struc-
ture makes sure that the LED is turned off when the measured distance is 
0, regardless of whether the sketch is using inches or centimeters. First, the 
value inches is compared to val in the following expression: 

count == 0 && inches > 0 && inches < val

If this statement is true, the alarm is set off and the for loop at  is acti-
vated (see page 139), which alternately blinks the LEDs 200 times before 
timing out and turning the LEDs off. 

The for loop just counts from 0 to 200, but that can be easily changed. 
After each count, it turns on an LED, delays briefly and turns off the same 
LED, delays slightly and turns on a second LED, delays slightly and turns 
off the LED, and then goes to the next count. At the end of the 200 count, 
the system turns off the LEDs and the program continues to the next line 
where it is reset. That is, the program starts again at the beginning.

Construction
Figure 5-8 shows the enclosure for the Garage Sentry. 

Figure 5-8: The basic Garage Sentry uses wire wrap for the final connections. 

Arduino Nano

Ultrasonic module

Perforated 
circuit board

Distance target control3.5 mm 
power jack
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The trickiest part of the Garage Sentry is mounting the ultrasonic mod-
ule on the enclosure. Because the module can send out sound waves only in 
a straight line, you need to be able to adjust its direction so that the ultra-
sonic sensor can hit its target and receive the echo. But the module includes 
only two mounting holes, diagonally opposed from each other, so there’s no 
easy way to fasten it to a flexible mounting. We’ll tackle that first. 

Drilling Holes for the Electronics
To solve this problem, I mounted the transceiver directly to the enclo-
sure and just aimed the enclosure as required. To mount the module, 
drill 5/8-inch holes in the enclosure and use standoffs to hold the board 
securely. See the template in Figure 5-9 for drilling measurements. A PDF 
of the template is available in this book’s online resources at https://www​
.nostarch.com/arduinoplayground/, in case you want to print it and lay it over 
your enclosure as a guide. The enclosure I recommend is made of polycar-
bonate plastic and is less likely to crack than styrene or acrylic; however, it 
tends to catch the drill, so be careful. 

0.75 in

1 in
1.5 in

4 in

Figure 5-9: Template for drilling transducer holes 

There are several ways to drill the 5/8-inch holes. If you are good 
at drilling, you could simply use a 5/8-inch drill bit and bore the holes 
directly. But I discovered that the holes can be bored safely and easily by 
first drilling a hole about 1/4 to 3/8 inches in diameter and then enlarging 
it with a tapered reamer, available from Amazon for under $15. The larger 
reamer in the Amazon set will ream a hole up to 7/8 inches in diameter, 
and it is handy to have around for other projects. Use a 1/8-inch drill to 
drill the holes for the standoffs, as shown in the drawing, which you can 
use as a template. 

If you ream out the hole, make sure to ream from both sides. Enlarge 
the hole to a size that holds the transducer elements tightly—but not too 
tightly. While this is not the most precise way to bore a hole and would 
probably be frowned upon by professional machinists, it works well 
enough here.
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Warning       	 Regardless of the size of the hole, do not hold your work piece with your hand when 
drilling. Always clamp it securely. If the drill binds, the work will want to spin or 
climb up the drill. Drill at a slow speed and go gently.

Next, drill the holes for the potentiometer, power jack, and two LEDs. 
Select a drill size based on the particular power jack and potentiometer you 
have. I used a 9/32-inch drill for the potentiometer, a 1/4-inch drill for the 
3.5 mm jack, and a bit of approximately 25/64 inches for the LEDs. The size 
of the 10 mm LEDs tends to vary a bit from manufacturer to manufacturer, 
so I would recommend that you select a smaller drill bit, say 3/8 inches, and 
ream until the LED fits tightly. Because the LED is tapered, ream from the 
rear of the enclosure so that the LED will fit better. 

The location of both the potentiometer and power jack is not impor-
tant, but make sure that neither crowds the transducer or Nano. You want 
them to be on the bottom of the enclosure so that they are accessible after 
the enclosure is mounted (see Figure 5-12). 

Mounting Options
Before you stuff the Arduino, ultrasonic sensor, and perforated board 
circuit into your enclosure, figure out how you want to mount the Garage 
Sentry. There are several ways to mount the enclosure onto whatever sur-
face you need. 

Velcro Strips

If you have a good flat surface to mount the assembly to, you could simply 
affix the enclosure with adhesive Velcro (see Figure 5-10). Two sentries have 
been in place in my garage that way for several months, with no sign of slip-
page or deterioration. 

Figure 5-10: Adhesive Velcro mounting strips used to mount  
the Garage Sentry enclosure 
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A U Bracket That Can Be Aimed

If you don’t have a good surface and need to aim the module at an angle, 
mounting it on a U bracket that lets the sensors swing up and down or left 
and right will work. In this section, I’ll describe how to build the U bracket 
mount shown in Figure 5-11.

1.75 or
2.0 in

0.25 in hole Bend here Center mounting hole

2×4-in or 2.2×4.4-in enclosure

0.25 in nut0.25 in bolt

U clamp
1.75 in for 2×4-in enclosure

1.50 or
1.75 in

Same on
other side 

2.0 in for 2.2×4.4-in enclosure

0.75 in

Figure 5-11: This drawing illustrates the size and shape of the optional U bracket handle 
and how it connects to the enclosure. Where you see two measurements for a single 
dimension, the smaller applies to the basic Garage Sentry, while the larger applies to the 
deluxe version.

To make the U bracket for the basic Garage Sentry with the 1591 ATCL 
2×4-inch enclosure, take a strip of 3/4-inch × 0.080-inch × 5 1/2-inch long 
aluminum (available at Ace Hardware, Home Depot, or Lowe’s), and drill 
1/4-inch holes 5/16 inches from the ends of the aluminum strip. Drill cor-
responding holes with a No. 7 or 15/64 drill in the side of the enclosure 
centered on the ends, and thread the holes with a 1/4-inch-20 tap. Bend 
the aluminum strip 1.5 inches from each end for the standard version and 
2 inches for the deluxe version (see Figure 5-11). Using a vise is the easi-
est way to bend the metal, but if that’s not convenient, you can sandwich it 
between a bench and piece of metal, clamp it down, and bend it by hand.

To make the U bracket for the Deluxe Garage Sentry with the 1591 BTCL 
2.2×4.4-inch enclosure, use a 6 3/8-inch long strip of the same material, and 
drill the 1/4-inch holes 1/2 inches from the ends. Then, bend the aluminum 
at right angles at 3/4 inches from either end for the standard version and 
1 inch from each end for the deluxe version. 

To fasten the U bracket to either enclosure, you can start by drilling 
a hole in the center of each end of the enclosure. It’s simplest to drill a 
No. 7—15/64 is close enough—hole at either end of the enclosure. The 
easiest way to center the holes is to draw a line along each diagonal on 
both ends. Where the lines intersect is the center. Thread the holes with a 
1/4-inch-20 tap, and you’ll be able to fasten the enclosure to the U bracket 
directly. The threads in the thin ABS plastic will not be very strong, so be 
careful not to overtighten the bolts. 
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When you’re finished attaching the bracket to your enclosure, it should 
look like Figure 5-12.

Figure 5-12: The enclosure for the basic Garage Sentry can  
be mounted with the bracket so it can be tilted or rotated to  
point the transducers in the correct direction.

Soldering the Transistors and Current-Limiting Resistors
After testing your circuit on a breadboard and deciding how to mount the 
Garage Sentry, solder the driver transistors and current-limiting resistors to a 
small section of perforated phenolic or FR-4 predrilled board. Use the sche-
matic in Figure 5-2 or the instructions in “The Breadboard” on page 136 as 
a guide to wiring and soldering the components in the perforated board. 

Make the connections in the schematic, but otherwise, there is no right 
or wrong way to assemble the perf board. I do recommend using perforated 
board with copper pads for each hole to simplify soldering. Solder all the 
hookup wires for the power, potentiometer, Nano, ultrasonic module, and 
LEDs before attempting to mount the board on the inside of the enclosure. 

When you’re done soldering, mount the perforated board anywhere in 
the enclosure where you can find room. I used double-sided foam adhesive, 
and it worked well. Mount the Nano, LEDs, and ultrasonic module next. 

Wiring the Pieces Together
Finally, use 30-gauge hookup wire to connect the Nano, ultrasonic sen-
sor, perforated board circuit, and LEDs according to the schematic in 
Figure 5-2. Optionally, you can use wire-wrap wire and a wire-wrap tool 
to wire up the sections, but it is not necessary and can be expensive if you 
don’t already have the tool and wire. Wiring the components and fitting 
them in the enclosure may be a little messy, but it saves building a shield.



148   Chapter 5

The Deluxe Garage Sentry
That’s it! Or is it? 

I have been using the standard model in my garage for several months; 
it does what it’s supposed to do and does it well. But it seems like some-
thing’s missing. The alarm goes off when you reach the desired spot in the 
garage, but why not have it give you a little warning before you get there so 
you can slow down as you approach the stopping point? 

The idea is to have the system warn you at some pre-established dis-
tance from the stopping point so you don’t have to stop suddenly. It isn’t 
much extra effort to add two more LEDs to go off at different distances. 
Figure 5-13 shows the Deluxe Garage Sentry.

Red and blue LEDsGreen LED Amber LED

Sockets for Arduino Nano

Green LEDAmber LED

Figure 5-13: The Deluxe Garage Sentry sets off three stages of alarms.  

Now, let’s discuss how to assemble the Deluxe Garage Sentry.

The Deluxe Schematic
Hand-wiring everything in the standard version is tedious. So for the 
deluxe version, I developed a shield (PCB) that holds the LEDs, potentiom-
eter, Nano, transistors, and current-limiting resistors. Adding the LEDs and 
extra transistors required some changes in the circuitry. Figure 5-14 shows 
the revised schematic.

Note that this circuit drives the transistors as emitter followers. As 
such, the base shows a high resistance, and therefore no resistor is required 
between the Arduino and the resistors Q1 through Q4. If you were driving 
using a common emitter, however, you would need a resistor, as current 
would flow through the base-emitter junction, short out the driver, and 
burn out the transistor.
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Figure 5-14: The deluxe schematic has additional LEDs, driver transistors, and current-
limiting resistors on the right-hand side.

N o t e 	 To improve the Garage Sentry further, you could also conceivably double or otherwise 
increase the range using special transducers and electronics, but in this application, 
the 10-foot operating range is more than enough. 

The Deluxe Sketch
Before you build the Deluxe Garage Sentry, download GarageSentryDeluxe.ino 
from this book’s resource files at https://www.nostarch.com/arduinoplayground/, 
and upload it onto your Arduino Nano according to the instructions pro-
vided in “Uploading Sketches to Your Arduino” on page 5. The sketch 
is basically the same as the basic Garage Sentry sketch, but it’s updated to 
include the new LEDs.

/* Deluxe Garage Sentry: goes with the shield PCB
*/

int ledPin = 8;
int ledPin1 = 7;
int ledPin2 = 10;
int ledPin3 = 9;
int count;
int analogPin = A0;
int val;
int y;

http://www.urltbd.com
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void setup() {
  //Initialize serial communication:
  Serial.begin(9600);
  pinMode(ledPin, OUTPUT);
  pinMode(ledPin1, OUTPUT);
  pinMode(ledPin2,OUTPUT);
  pinMode(ledPin3,OUTPUT);
  pinMode(analogPin, INPUT);
}

void loop() {
  val = analogRead(analogPin);

  long duration, inches, cm;

  pinMode(12, OUTPUT);
  digitalWrite(12, LOW);
  delayMicroseconds(2);
  digitalWrite(12, HIGH);
  delayMicroseconds(5);
  digitalWrite(12, LOW);

  pinMode(11, INPUT);   //Attached to ECHO
  duration = pulseIn(11, HIGH);

  //Convert the time into a distance
  inches = microsecondsToInches(duration);
  cm = microsecondsToCentimeters(duration);

  val = map(val, 0, 1023, 0, 100);
  //Map the value of the potentiometer to 0 to 100

  if(inches == 0)
    digitalWrite(ledPin, LOW);

u   if(count == 0 && inches > 0 && inches < val + 15) 
    digitalWrite(ledPin2, HIGH);
  else digitalWrite(ledPin2, LOW);

v   if(count == 0 && inches > 0 && inches < val + 7.5)
    digitalWrite(ledPin3, HIGH);
  else digitalWrite(ledPin3, LOW);

  if(count == 0 && inches > 0 && inches < val) {
w     for(y = 0; y < 200; y++) { //Repeating blink sequence

      digitalWrite(ledPin, HIGH);
      digitalWrite(ledPin1, LOW);
      delay(100);
      digitalWrite(ledPin, LOW);
      digitalWrite(ledPin1, HIGH);
      delay(100);
    }
    count = count + 1; //Turn off instruction
  }
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  digitalWrite(ledPin1, LOW);

  if(inches > 10) { //Reset if inches > 10
    delay(1000);
    count = 0;
  }

  Serial.print(inches);
  Serial.print("   inches ");
  Serial.print(count);
  Serial.print(" count   ");
  Serial.println();
  Serial.print(" val       ");
  Serial.println(val);
  delay(100);
}

long microsecondsToInches(long microseconds) {
  return microseconds / 74 / 2;
}

long microsecondsToCentimeters(long microseconds) {
  return microseconds / 29 / 2;
}

The most notable difference between the deluxe sketch and the stan-
dard sketch is that in the two if-else statements at  and v, the green 
and amber LEDs are activated at different distances, based on the stop-
ping point. For example, if the stopping point is set to 36 inches, or Val in 
the sketch, then the green LED turns on at VAL + 15, or 52 inches, and the 
amber LED turns on at VAL + 7.5, or 43.5 inches. This way the green LEDs 
will turn on when the car is 15 inches from the final stopping point, and 
the amber LEDs will turn on when the car is 7.5 inches from the stopping 
point. These numbers were selected arbitrarily, and you can change them. 

The red and blue LEDs start flashing when the car has reached the 
stopping point. You can see how the LEDs are flashed at w. 

The Deluxe Shield
Figure 5-15 shows the shield for the Deluxe Garage Sentry. If you want 
to build this shield, download this book’s resource files, look for the file 
GarageSentryDeluxe.pcb, follow the etching instructions in “Making Your 
Own PCBs” on page 13, and solder your components to the board. You 
can also take the file and send it out to one of the service bureaus to have 
the board made for you. 

The potentiometer is soldered directly to the shield, though you’ll still 
have to solder wires to the power jack and to the ultrasonic module. As you 
can see in Figure 5-15, the connections for the ultrasonic sensor are located 
on the left-hand side. 
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Figure 5-15: This is the shield for the Deluxe Garage Sentry, which simplifies the individual 
wires that had to be soldered to complete the earlier version.

The green LEDs are on the outermost edges, the amber LEDs are next, 
and the flashing red and blue LEDs are in the middle. The connections 
for the potentiometer are on the lower right-hand side, next to the first two 
connections, which are ground and VIN (from left to right). The potenti-
ometer helps hold the shield in place in the enclosure.

This version uses high-power LEDs that draw a fair amount of current. 
Because the sentry uses the 5V voltage regulator on the Nano, the transis-
tors driving the LEDs are wired directly to the 9V input voltage, allowing 
the unit to function without a separate voltage regulator. The LEDs are 
configured with the driver transistors as emitter followers, so the voltage 
to the LEDs will “follow” the voltage on the base of the transistor—that is, 
5V—and not present LEDs with 9V. 

There are several jumpers required on this shield, including the jumper 
for the power, which connects to the collectors of the transistors and con-
nects the raw input to the (VIN) Nano. There are also jumpers to connect 
the ground to the LEDs.

I mounted the transistors and current-limiting resistors under the Nano 
to save some space. Also, note that the connections for the ultrasonic mod-
ule in the standard version call for a right-angle female header, but doing 
that in the deluxe version means the length of the male part gets in the way 
of the LEDs, so I simply soldered the connections to the PC board and to 
the ultrasonic module to keep the wires out of the way. 

A Bigger Box
Both the green and amber LEDs operate as pairs, so only a single driver 
transistor is required for each pair. But with all this new circuitry, the deluxe 
board does not easily fit in the same enclosure as the standard version.

You’ll need to find a larger enclosure for the deluxe version, which pro-
vides you with some other benefits. With a larger, clear polycarbonate enclo-
sure, like Hammond 1591 BTCL, the LEDs can stay inside the enclosure 
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and still be visible so you won’t have to drill holes to mate with the LEDs in 
the PC board. You’ll have to drill only four holes: the two large holes for the 
ultrasonic sensor, a hole for the power jack, and one for the potentiometer. 
These holes make it possible to mount the ultrasonic sensor on top of the 
Nano board with double-sided foam tape, which is in turn mounted to the 
shield (see Figure 5-16). In other words, you create a sandwich with the 
Nano in the middle, the shield on the bottom, and the ultrasonic module 
on the top. This design eliminates the need for the mounting screws used 
in the first version. 

Figure 5-16: Compared to the basic Garage Sentry, there is virtually  
no hand wiring in the deluxe version. The driver transistors and current- 
limiting resistors for the LEDs are located under the Nano board. 

Simply use the same template you used in the standard version, and 
drill (and/or ream) the two 5/8-inch holes for the two ultrasonic elements. 
The shield itself can be fastened to the bottom of the enclosure with small 
flathead screws and nuts or with more double-sided foam tape. When you 
affix the potentiometer to the enclosure, it should hold the board in place, 
as its leads are soldered to the shield. Figure 5-16 shows the deluxe version; 
note how much neater it is than the basic version from Figure 5-8.

Before drilling the hole for the potentiometer, carefully measure the 
height of the potentiometer hole and drill the hole slightly oversized so that 
the shaft and screw can be inserted at an angle into the enclosure. You’ll 
also note in Figure 5-16 that the corners of the printed circuit board have 
been clipped off so as not to get in the way of the studs used for the top 
screws of the enclosure. 

I suggest mounting the power connection on the same surface of the 
enclosure as the potentiometer—that is, the bottom. Here, the power con-
nection and potentiometer will be accessible after mounting, leaving the 
top free to fit snugly against a shelf. The unit can just as easily be mounted 
upside down with the adjustment and power jack on the top.
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Figure 5-17 shows the completed Deluxe Garage Sentry mounted on my 
garage workbench with the car in place. 

Figure 5-17: Completed Deluxe Garage Sentry mounted on my garage workbench with 
the car in place 

The completed sentry unit works flawlessly. Depending on your particu-
lar garage and where you place the unit, you might want to adjust the sketch 
to make the green and amber lights turn on at different distances. The unit 
pictured has been working perfectly for almost six months now, and I don’t 
know how I’d be able to pull my car in the garage without it.

Mounted and functioning 
Deluxe Garage Sentry
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T h e  B a t t ery    Sa  v er

This project was actually born back in the 
1970s, when I built a very similar device 

for the first time. Its purpose is to discon-
nect a vehicle’s battery when an inadvertent 

drain would discharge the battery to the point where 
the vehicle would not start. Before the advent of com-
puterized automobiles, it was common for drivers 
to park and leave the lights turned on only to come back to find a dead 
battery. Then, they had to find a way to call a service station (cell phones 
weren’t available) and get a boost. Worse, if the battery died and the car 
was left sitting long enough, the battery would become useless and have 
to be replaced. After remaining in a discharged state between 12 and 
18 hours, most lead-acid batteries would go totally dead and could not 
be rejuvenated. 

But that was then. Now, many vehicles—particularly those equipped 
with automatic lighting systems—protect against such inconveniences with 
automatic (often delayed) shutoff for electrical systems. However, several 
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types of vehicles still don’t have automatic shutdown systems or alarms to 
warn you that the lights are on. This project, shown in Figure 6-1, is particu-
larly useful for those vehicles. 

Figure 6-1: The finished Battery Saver, boxed and ready to go (top), as well as a look 
inside (bottom)
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Boats, Tractors, and Other Vehicles
Many road-worthy vehicles could benefit from the Battery Saver, but this 
project is targeted at other systems where an accidental discharge of a 
battery could be annoying—and expensive. Boats are particularly vulner-
able. Even my small runabout has experienced problems. On more than 
one occasion, the running lights were left on during the day, and I did not 
notice until a couple of days later. The battery was totally dead, and it had 
to be replaced. 

Leaving the running lights on isn’t the only way to accidentally drain 
a boat battery. Most inboard boats have a blower system designed to safely 
expel potentially explosive gases and fuel vapors from the bilge. Conventional 
wisdom (and the Coast Guard) says to keep the bilge blowers on before 
starting the engines, the entire time the boat is in service, and for at least 
10 minutes after shutdown. It’s very easy to forget the blowers are on and 
then find you need to replace the battery or batteries the next time you use 
the boat. 

N o t e 	 Before building the Battery Saver for a safety system like the blowers on a boat, read 
“Notes of Caution” on page 158. There are some considerations to keep in mind that 
may require some minor wiring changes to the electrical system. 

Boats aren’t the only vulnerable vehicles, though. Riding mowers and 
tractors are also at risk for three reasons: 

•	 They are usually used only intermittently. 

•	 Parking and/or headlight switches are often placed where it’s easy 
to accidentally bump them when getting on or off the vehicle. The 
switches can also be damaged by flying debris or rough terrain. 

•	 They are usually used in daylight hours, so it can be hard to tell when 
the lights are on. 

The Battery Saver can also protect powered tools, like tow-behind 
sprayers. It’s easy to leave these tools turned on when finished, and while 
most sprayer pumps don’t take too much current, leaving one on for, say, a 
day or two, will likely drain the battery. 

Required Tools
Drill and drill bits

Center punch

4-40 tap

Hacksaw

400-grit sandpaper

Countersink (Almost any 82° countersink will do. The material being 
formed is relatively soft, so no special materials are required.) 



158   Chapter 6

Needle files (See Figure 6-20. While only one is required, they usually 
come in sets.)

Triangle file 

Not e s of C au t ion

If you create the Battery Saver as described in this chapter, it should work well. 
However, it is always possible for Murphy’s Law to cause a problem, so here 
are a few points to consider before you build. 

Should the Battery Saver fail, it can be reset, but in the meantime, it will 
remove all power to the vehicle’s electrical system. Do not use the Battery Saver 
on any system where an electrical failure could cause catastrophic problems 
(such as on an aircraft) or result in bodily harm or property damage. That said, 
I have used the following unit in a car, on three agricultural tractors, and on 
two boats for well over a year (and earlier versions for several years) with no 
failures.

The Battery Saver includes a very high-current switch. It is possible that, 
under certain conditions, a resistance could develop such that when current 
is applied, the switch becomes extremely hot—perhaps hot enough to be a 
fire hazard. (For what it’s worth, this has never happened even on prototype 
versions.) All efforts have been made to eliminate problems like this—for 
example, the block that holds the Battery Saver’s copper contacts is made of a 
fire- and melt-resistant phenolic material—but overheating remains a hazard. 
Always check the heat of the Battery Saver before you touch it to make certain 
that it is not hot enough to burn you. Even the reset plunger could become 
warm enough to burn if the vehicle or Battery Saver malfunctions. 

This last warning is specific to mariners. If you keep your boat in the 
water, chances are it has a built-in bilge pump and automatic float switch to 
keep it afloat when you’re not aboard. If you have multiple batteries, make 
sure the bilge pump is wired to a battery that isn’t in the circuit with the Battery 
Saver, as in Figure 6-2. Otherwise, find the wire that provides current to the 
bilge pump/switch, and simply bypass the Battery Saver. 

Figure 6-2: Wiring the Battery Saver on a boat
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Parts List
This parts list might look somewhat like a scavenger hunt, but everything 
can be found easily from a variety of sources. Getting the particular size 
or quantity, however, may be challenging, so read the list carefully to make 
sure you have everything before you start. And before shopping, look ahead 
to Figure 6-13 on page 170 to see some of the more unusual parts, like the 
copper contacts.

One Deek-Robot Pro Mini Arduino clone 
microcontroller board (There are several 
available, and some have different pin-
outs—particularly for pins A4 and A5. 
Figure 6-3 shows the pinout for the one I 
used. Other units with different pinouts 
should work, but the connections on the 
shield must be changed.)

One LM7805 voltage regulator

12V solenoid (This project uses an 
Electronic Goldmine G19852.) 

One 10-kilohm resistor

One 5.6-kilohm resistor

One 4.7-kilohm resistor

One 470-ohm resistor

One 4.7V Zener diode

One 1N4002 diode or equivalent

Two ZTX649 transistors

One 1/2-inch phenolic sheet

One 6×3/4×3/16–inch copper bar, which is part of a high-current switch 
(This is actually a piece of copper bus bar that is generally used in large 
electrical installations. See Figure 6-4 for an example. To find this, you 
may need to do a little digging with an online search for copper bus bar. I 
bought a piece that was 3 feet long.)

Figure 6-4: A copper bus bar, drilled out for the Battery Saver

Figure 6-3: Pinout of the 
Deek-Robot Pro Mini 
Arduino clone
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One ABS plastic enclosure, like the Hammond 1591 STCL

Two 1/4-inch brass rounds (You’ll use one of these as the pylon.)

A small piece of sheet metal to use as the release

One e-clip 

Four 1/2-inch, 4-40 flathead screws 

One 3/8-inch, 4-40 roundhead screw

3 oz of Permatex Silicone RTV sealant

One matching pair of inline connectors (You can buy simple, cheap, 
inline connectors online, or you can make your own. I used Pololu’s 
1×2 connector housing and male and female crimp pins, shown in 
Figure 6-5. See “Connectors Used in This Book” on page 18 for 
crimping techniques. You can also use telephone-style chicklets if 
you can find them.) 

Figure 6-5: A pair of mating connectors used to connect the solenoid 

28-gauge hookup wire

One solder lug (If you can’t find one, you can work around it by taking 
the power wire from the Arduino and wrapping it under the head of 
the screw, as shown in Figure 6-7.)

One battery cable to fit your storage battery on one side and a lug to 
attach to the Battery Saver on the other 

Downloads
Sketch  BatterySaver.ino

Templates  ReleaseLever.pdf, BatterySaverEnclosure.pdf

Shield  BatterySaver.pcb

The Schematic
While the circuit is relatively simple, as shown in Figure 6-6, there are a 
couple of key design elements to be aware of. 
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Figure 6-6: Schematic for the Battery Saver 

Notice that the circuit uses an LM7805 voltage regulator. In theory, the 
small regulator included in the Pro Mini board would be more than satis-
factory because the load is relatively light. But under the hood of a car and 
around high-current systems and high-voltage electronics, there is a lot of 
stray electromagnetic energy bouncing around. While it’s improbable that 
this energy would cause a problem for the Battery Saver, it is well within the 
realm of possibility. The more robust 1.5 A LM7805 regulator offers the Pro 
Mini another level of protection. In addition, capacitors C1 and C2 have 
been included to bypass any AC sneaking into the circuit and to prevent 
unwanted oscillation. Similarly, the 4.7V Zener diode (D1) protects the 
input of the Arduino from a voltage spike—which is very likely—on the 
12V supply. It limits the voltage to A0 to only 4.7V.

The configuration of resistors R1 and R2 may look familiar from other 
projects. They comprise a voltage divider to lower the 12V supply to a level 
below the 5V maximum the Arduino input can tolerate. To be on the safe 
side, I selected a value of 10 kilohms for R1 and 5.6 kilohms for R2. Both 
are standard values. This design should allow the battery voltage to jump 
to 14V before reaching the point where the Zener diode kicks in. 

Diode D2 (1N4002 or equivalent) provides yet another level of defense: 
it protects against an inverse current that could be created when the mag-
netic field in the solenoid collapses. This is a standard protection device in 
inductors with an iron core, which can store magnetic energy and release 
it rapidly into the coil. The reverse voltage can reach relatively high levels 
and create significant currents, which could, in this case, damage the driver 
transistor and other components in the system.
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Transistors Q1 and Q2 are both ZTX649 silicon NPN transistors. I 
chose these transistors because they have sufficient drive capability and 
are inexpensive and readily available. I used the same model as in other 
projects. The high side of Q2 is brought to the red positive rail (VCC), as 
the LM7805 regulator supplies plenty of current. (You could just as easily 
connect the high side, or collector, of Q2 to the 12V supply, because Q2 is 
wired as an emitter follower and the voltage at the emitter will follow only 
the voltage at the base.) R4, a 470-ohm resistor, limits the current to LED 1.

LED1 indicates when the unit is operating. The circuit containing Q2 
and LED1 provides a blinking LED with a very short on cycle, which is con-
sistent with this volume’s goal of blinking LEDs as often as possible. 

N o t e 	 The Deek-Robot Pro Mini also has a red LED that indicates when it is turned on. 
This additional, although very small, constant current drain could contribute to the 
discharge of the battery. In the units that I installed, I unsoldered one end of the Pro 
Mini’s LED, which is kind of a delicate operation.

Transistor Q1, wired as a common emitter circuit, provides the drive for 
the solenoid. Resistor R3 (4.7 kilohms) drives the transistor and also pro-
tects it—a direct connection would allow too much current to flow in the 
base-emitter junction, resulting in potential damage. The high side of the 
solenoid is connected to positive 12V to allow maximum voltage and cur-
rent to flow through the solenoid coil without taxing the voltage regulator. 

How the Battery Saver Prevents Draining
The Battery Saver comprises a very high-current switch that can be electri-
cally turned off and a sensor circuit to detect when the battery is in jeop-
ardy of dying. The high-current switch is required because it interrupts the 
main power from the battery, which includes the feed to a starter motor 
that can draw up to several hundred amps. 

The high-current switch—which could also be considered a relay—is 
made of the three pieces of copper bus bar: a release bar, a solenoid, and a 
release lever. When the pieces of copper bus bar are connected, the battery 
is connected to its circuit as normal. When the solenoid is pulled in, the 
power is disconnected.

The sensor circuit uses the power of the Arduino microcontroller. The 
Arduino continually monitors the battery, and if it senses that the power is 
diminishing, it calls for the high-current switch (relay) to be thrown. There 
are many ways to determine when a battery is reaching exhaustion, and this 
project simply looks at the voltage left in the battery. Table 6-1 shows the 
voltage versus the remaining charge in a standard 12V, lead-acid storage 
battery. 
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Table 6-1: Battery Charge State Versus Voltage

Battery charge level Battery voltage

100% 12.7V

90% 12.5V

80% 12.4V

70% 12.3V

60% 12.2V

50% 12.1V

40% 11.9V

30% 11.8V

20% 11.6V

<10% 11.3V

The battery charge level quickly deteriorates with only a minimal 
reduction in voltage. In order to have at least 40 to 50 percent of the 
charge remaining, the drain on the battery must be stopped somewhere 
between 11.9V and 12.2V (shaded in Table 6-1), a voltage I will refer to 
from now on as the trigger point. In practical applications, empirical evi-
dence shows that there is still plenty of juice left, even when battery volt-
age drops to 12.0V, 11.90V, or even below. A battery in good condition 
under ideal circumstances could perform with perhaps as little as 30 per-
cent of its capacity, but that would depend on the load, ambient tempera-
ture, and other factors, so I’m taking a very conservative view of about 
12+V. Newer design batteries tend to do better. 

While the state of charge is a good indication of remaining capacity 
in a battery, other factors—like internal resistance, battery discharge rate, 
and so on—could impact the usable state of charge remaining in a bat-
tery. A more accurate measurement of the capacity remaining in a fully 
charged battery might be current used, which can be calculated if the total 
energy in the battery is known. For example, if a battery has a capacity of 
1,100 ampere-hours (A·h), you could calculate the point where 550 A·h 
remain and disconnect the battery then. However, because this project 
targets systems with batteries that range widely in capacity, I decided that 
measuring the battery voltage would be more than adequate. 

Arduino to the Rescue
The Arduino microcontroller steps up to the task of measuring the battery 
voltage and throwing the disconnect switch at the appropriate voltage, but 
if that’s all it did, you could be in trouble. When turning on a vehicle, the 
starting motor uses a lot of current. Depending on the state of the battery 
(internal resistance and so on) and ambient conditions (temperature, for 
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example) during the cranking process, the battery voltage can conceivably 
fall well below the critical shut-off voltage. The Battery Saver depends on 
the Arduino to give the vehicle enough time to start the motor. 

Further, should the system shut down due to an inadvertent drain, 
you’ll need to ensure that when the Battery Saver is reset, it doesn’t imme-
diately sense a critical battery voltage and shut down again. All of these 
functions are handled by the microcontroller, under orders from the 
sketch. While there are probably several different ways of handling it, 
the sketch implements timing sequences—rules to follow for when to take 
certain actions—to allow for the voltage drop during engine cranking. 
Similar timing rules give the user time to restart the engine after the 
Battery Saver is reset. 

The Breadboard
Even though this project doesn’t require a lot of extra components and 
peripheral equipment, I still believe it’s useful to go through the exercise 
of wiring a breadboard. A working prototype gives a definitive proof of 
concept, and it allows you to play with the hardware and software prior to 
committing to the finished version. When working with the breadboard, 
I tested the circuit with a solenoid similar to the one used in the finished 
product (see Figure 6-7). 

Figure 6-7: The breadboard I used to test the Battery Saver concept and put 
the software together. Testing your circuit with a solenoid is not required. 

Figure 6-8 shows the breadboard operating the high-current switch; 
“Construction” on page 170 describes how to build that switch. To test the 
circuit without making the high-current switch first, or to use a solenoid by 
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itself (see Figure 6-7), you can connect a lamp, LED, relay, or some other 
component in place of the switch. Remember: if you use an LED or other 
polarized device, make certain to get the polarity correct. 

Figure 6-8: The breadboard circuit operating the solenoid after the high-current switch 
has been assembled. Note the use of clip leads to hook up the Battery Saver to the 
breadboard. Diodes D1 and D2 and capacitors C1 and C2 were not included in 
the breadboard primarily because they are needed only when the project is in use.  

The basic breadboard is fairly straightforward. Just follow these instruc-
tions to assemble it:

1.	 Connect the breadboard’s red positive rails together, and connect the 
blue negative rails together. Do not connect the positive rails to the 
negative rails as that will result in a direct short circuit.  

2.	 Insert the LM7805 voltage regulator so that the three terminals span 
three different rows. (See “The Schematic” on page 160 for why an 
external voltage regulator was used rather than the Pro Mini’s onboard 
regulator.)

3.	 Connect the input of the regulator to a positive 12V source. (See 
Figure 6-9 for the pinout of the LM7805.) 

Output

Ground
Input

Figure 6-9: Pinout of the LM7805 regulator
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4.	 Connect the center pin of the regulator to blue negative rail and the 
output pin to the red positive rail. When you power the circuit, the pos-
itive rail should have 5V coming from the output of the regulator.

5.	 Insert the Pro Mini microcontroller board in the breadboard. Its posi-
tion is not critical; anywhere in the general vicinity of where it is in 
Figure 6-7 is fine. 

6.	 Insert resistors R1 (10 kilohm) and R2 (5.6 kilohm) into the bread-
board. It’s easiest to insert them near the regulator. Then, connect one 
side of R1 directly to the regulator (input pin). The joining point of R1 
and R2 should be located in an independent place on the board, and 
the other side of R2 goes directly to ground.  

7.	 Connect a jumper from the point where R1 and R2 join to pin A0 of the 
Pro Mini.

8.	 Insert transistor Q1 (ZTX649) into the bread-
board in an area with three open rows (see 
Figure 6-10 for the pinout).

9.	 Connect resistor R3 from the base of Q1 to 
pin D9 of the Pro Mini.

10.	 Connect the emitter of Q1 to ground.

11.	 Connect the collector of Q1 to the load 
(solenoid or other).

12.	 Connect the other side of the load to 
positive 12V.

13.	 Insert transistor Q2 into the breadboard. 
Connect its collector to one of the red 
positive rails.

14.	 Connect the base of Q2 to pin D12 of the 
Pro Mini.

15.	 Connect the emitter of Q2 to the positive side of LED1.

16.	 Connect the negative side of LED1 to R4 (470 ohms).

17.	 Connect the other end of R4 directly to the blue negative rail.

18.	 Connect the negative side of the 12V supply to the blue negative rail.

Now, load the sketch onto the Pro Mini (see “Connecting and 
Programming an Arduino Pro Mini” on page 8), and take it for a test 
run. If you have a variable power supply with a voltage readout, setting 
the voltage will be easy; if you don’t have a variable power supply, I suggest 
building the Regulated Power Supply in Chapter 3. If you use a variable 
supply without a readout, just use your multimeter to monitor the voltage 
and observe the trigger point.

Start the power supply at 13V (12.7V is normal for a charged 12V lead-
acid storage battery), and the monitor LED should blink slowly. Gradually 
lower the voltage, and write down the voltage when the flashing goes from 
slow to rapid. That voltage is the trigger point, and it should be around 
11.9V to 12V.

Emitter
Collector Base

Figure 6-10: Pinout of 
the ZTX649 transistor
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The Sketch
In developing the Battery Saver sketch, I went through several iterations to 
assure reliable functionality. One difficulty was avoiding false triggers when 
the sensed voltage jumped around because an engine or an accessory, such 
as a hydraulic tilt, was activated. 

I used functions to adjust various sequences of operation independent 
of the main program. This isn’t a complex sketch, but writing simple func-
tions is a useful technique when you want to avoid repeating code. I could 
have avoided functions in the final sketch, but I let them remain because 
they work well, and writing the sketch this way provides a good lesson in the 
use of functions. 

/*The Battery Saver sketch, which uses multiple functions 
  to create timing sequences */

int led = 12;
int Battin = A0;
int Relay = 9;
int volts = 0;
int volts2 = 0;
int volts3 = 0;
int B = 387;  //Threshold trigger set point

void timer3() {  //Shut off timer function
  delay(200);
  volts = analogRead(Battin);  //Reset trigger point
  volts3 = map(volts, 0, 1023, 0, 500);
  if(volts3 > B) {
    digitalWrite(Relay, LOW);
  }
  else {
    digitalWrite(Relay, HIGH);
  }
}

void timer2() {  //Fast blink timer function -- low voltage
  if(volts2 < B) {
    for(int j = 1; j < 1800; j++) {
      digitalWrite(led, HIGH);
      delay(10);
      digitalWrite(led, LOW);
      delay(90);
    }
  }
}

void timer() {   //First timer function -- high voltage
  if(volts2 > B) {
    digitalWrite(led, HIGH);
    delay(200);
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    digitalWrite(led, LOW);
    delay(1000);
  }
}
void setup() {
  Serial.begin(9600);
  pinMode(Relay, OUTPUT);
}
void loop() {
  delay(1000);
  volts = analogRead(Battin);
  volts2 = map(volts, 0, 1023, 0, 500);

  timer();
  if(volts2 < B) { //Set trigger point
    timer2();
  }
  if(volts2 < B) {
    timer3();
  }
}

In this sketch, timer(), timer2(), and timer3() are the three functions 
used. The timer() function is for normal operation when the battery volt-
age is above the trigger point. The trigger point is the voltage at which the 
Battery Saver goes into timeout mode prior to shutting down. The timer2() 
function sets off a rapid flashing sequence once the trip threshold is reached 
and provides the timing—the fast LED sequence—prior to shutoff. Once 
timer2() has finished, timer3() is invoked, provided the voltage remains below 
the threshold; this disconnects the battery by activating the solenoid. If the 
voltage increases above the trigger point at any time during the timeout 
period, the Battery Saver returns to normal operation after timer3() times 
out. Many of the variables in this sketch can also be changed to vary blink-
ing and delay sequences and threshold; they’re addressed in “Operating the 
Battery Saver” on page 180.

The Shield
As you might guess from the breadboard, the shield is straightforward, too. 
Compared with handwiring, however, I believe it’s a lot easier and faster. 

The PCB Layout
Figure 6-11 shows my finished PCB, and Figure 6-12 shows the layout 
image with silkscreen indicating the placement of the components. You 
can download a PCB layout for the shield at https://www.nostarch.com/
arduinoplayground/.

http://www.nostarch.com/arduinoplayground
http://www.nostarch.com/arduinoplayground
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Figure 6-11: The unpopulated Battery 
Saver board. The RLY connection is 
where you would connect the solenoid.

Figure 6-12: The foil pattern for the shield 
on the Battery Saver. The silkscreen image 
is in gray.

Most of the components are located under the Pro Mini to save space. 
Other than that, there is nothing special about populating the shield. As 
in other projects, it’s not necessary to include headers for all the Pro Mini 
pins. Use all the pins that have connections with board traces and enough 
other pins to add mechanical stability. I always try to use at least one header 
for the very first pin, to aid in aligning the board while plugging it in. 

The LED can be mounted directly to the board or can be mounted 
somewhere remotely with long wires. Just be sure to observe polarity. The 
Battery Saver may be located in an area where the operator can’t see the 
LED, so placing it in a remote location is a practical solution. 

Preparing the Shield and Pro Mini Controller
If you want to use a PCB, you can make the shield according to the layout 
provided with this book’s resource files, whether you etch that yourself or 
send it off to be professionally manufactured. You could also design your 
own shield PCB if you’re feeling ambitious or just solder everything to the 
prototyping board, but if you are using everything else from the parts list, 
just make sure your board has the same dimensions as the provided shield 
layout. 

If you etch the PCB design I provide, drill the component holes next. 
I usually use a #66 drill. Solder a 2-inch wire to the plus 12V side of the 
shield, and solder the other side of the wire to a small solder lug. Solder a 
15-inch wire to the ground terminal and then connect two wires to the sole-
noid connections. I used a small inline connector—made with Pololu #1950 
crimp connector housings, #1931 male crimp pins, and #1215 female crimp 
pins—so I could remove the board easily if necessary. Almost any connector 
can be used.

Both transistors are located under the shield, so when you solder them, 
make sure to push them down enough that they clear the bottom of the Pro 
Mini. See Figures 6-11 and 6-12 for the transistor placement on the PCB. 
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I soldered the monitor LED directly to the board so it could be seen 
through the enclosure. However, you could also solder wires to the board 
and place the monitor LED in a location where it might be more visible out-
side your vehicle. 

Construction
Building the rest of the Battery Saver involves a few mechanical challenges 
and requires the wits of a scavenger. Figure 6-13 shows all the parts of the 
Battery Saver laid out. There is nothing complex about any of the parts. 

Screws

Phenolic block

Groove for e-clip

E-clip

Hold spring

Release spring

Copper
contacts

Main switch 
contact

Solenoid
connector

Solenoid

Case

Arduino
Pro Mini
and shield

Pylon
Release 
lever

Release
groove

Figure 6-13: The components of the Battery Saver, completely disassembled. The cover of 
the enclosure is under the clear box. Note the short screws for fastening the spacer to the 
solenoid, so they don’t damage the solenoid coil. 

There are only a handful of components in the Battery Saver: the enclo-
sure, the phenolic contact support, the shield and Pro Mini controller, the 
copper contact assembly, the solenoid and mounting, the release lever and 
pylon, the release rod, and the springs and e-clip. The assembly instructions 
that follow are a little involved, but if you get stuck, just use Figure 6-13 to 
keep things in perspective. When you’re done, the Battery Saver should 
look like Figure 6-14.
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E-clip

High-current
contact

Ground
wire

Solenoid

Release
lever

Pylon

Reset plunger

Spring

Copper
contact

Phenolic
mount

Arduino
Pro Mini

Shield

Release
groove

Figure 6-14: The completed Battery Saver with the cover off and the switch  
in the operating position. In this iteration, grooves were carved in the phenolic  
block for the positive and ground wires.

Preparing the Enclosure
Because the enclosure, a Hammond 1591 STCL, is an integral part of 
the design, I suggest starting there. Beyond a couple of holes and slots 
machined into the enclosure, there is very little else to do. Figure 6-15 
shows the holes I cut in detail; a template is included in this project’s 
resource files. There are only a few holes to cut, though, so you should 
be fine without the template if you follow these instructions carefully. 

On the long sides of the enclosure, measure approximately 1 1/8 inches 
from the top—that is the side where the reset plunger will protrude through. 
This should locate you roughly at the fourth mounting rib. In the center 
of that rib, drill two #30—approximately 1/8-inch—holes 3/8 inches from 
either edge, and countersink both for a 4-40 screw. Do this on both sides of 
the enclosure.

On each side, at the top of the next rib (going toward the top of the 
enclosure), cut a 1-inch-deep groove for the copper contact assembly. The 
shaded part of the side view in Figure 6-15 shows where the groove should go 
on each side. The ABS plastic enclosure cuts easily with a hacksaw. Remove 
the cover and cut from the opening of the enclosure toward the back. For 
each groove, make two cuts so that when you remove the material between 
them, you will have a 3/16-inch-wide channel in both sides of the enclosure. 
A little over 1 inch from the edge at the opening will do, but it’s not necessary 
to cut down to the back of the enclosure. You can even cut both sides at once, 
but just make sure the channels are directly opposite each other. Don’t worry 
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if your cuts are a little off; that can be corrected later with a file. After you 
make the cuts, break off the material in the center and clean up the chan-
nel with a small triangle or flat file. 

Back

Cover
0.1875 in slot

1.08 in

0.125 in

1.09 in

0.87 in

1.125 in

0.6875 in

1 in
0.375 in

1 in

0.25 in

Top

Side

Figure 6-15: The holes and slot in the Battery Saver enclosure

Now, drill a 1/4-inch hole in the top of the enclosure, where the reset 
button will go, exactly centered on the top surface. Draw lines along that 
side’s diagonals from corner to corner, as illustrated in Figure 6-15, and 
drill where the lines intersect. This hole is where the brass release rod for 
the reset plunger will go.

The Contact Support
The contact support is perhaps the easiest part to make. First, cut the phe-
nolic sheet to a 3×1 3/8–inch block. The phenolic material cuts easily with 
a hacksaw. Insert the block in the enclosure so the two holes you drilled 
through the ribs are in the center of the block. Mark the holes on both 
sides, drill them with a #43 drill bit, and tap them for a 4-40 screw. While 
you are working on the phenolic contact support, you can cut two grooves, 
or channels, for the power and ground wires on either side (shown later in 
Figure 6-18). The location is not critical as these are used only to run the 
positive and negative wires for the shield. I used the small Dremel tool in 
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Figure 6-16 to cut the grooves. Use two 4-40×3/8-inch flathead screws on 
each side to screw the phenolic piece in place. 

Figure 6-16: Dremel tool with small circular saw blade attached

With the phenolic contact support screwed in place, hold the drill as 
close to vertical as possible in the center of the largest face of the contact 
block. Drill a 1/4-inch hole that lines up with the 1/4-inch hole you previ-
ously drilled in the top of the enclosure. The easiest way to do this is to 
mount the contact support block and then use the hole in the top of the 
enclosure as a guide to drill the hole in the block. After drilling, put the 
contact support aside until you’re ready for the copper contact assembly.

N o t e 	 The enclosure is not a perfect rectangle because some relief is included to allow it to 
come out of the mold easily. Factor this in as you line up to drill the center hole. When 
I drilled the hole, I held the enclosure in a vise to eliminate the effect of the relief. 

Preparing the Copper Contact Assembly
The copper contact assembly requires only a handful of holes. Cut a 4 3/4-
inch section of the 3/16×3/4–inch copper bar, and drill the holes along the 
center of the 3/4-inch dimension, as outlined in Figure 6-17. 

A B C D E F G

1 1/16" 3/4" 1/2" 1/2" 3/4" 1 1/16"

Figure 6-17: The base of the copper contact assembly, showing holes and spacing
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For holes A and G, use a 9/32-inch bit. Holes B, C, E, and F should be 
drilled with a #30 bit; make sure to countersink them deeply enough for 
a 4-40 flathead screw. Finally, drill hole D with a 1/2-inch bit. Tap holes A 
and G for a 5/16×18×3/4–inch bolt, which will hold the battery cables.

C au  t ion   	 While copper is not hard, it tends to grab a drill bit and climb up the bit. Always hold 
the copper piece in a vise, in a clamp, or with pliers when drilling. Never attempt to 
hold the copper with unprotected hands.

When all seven holes are drilled, set the base of the copper contact 
on the phenolic contact support so that the 1/2-inch center hole in the 
copper is centered as closely as possible on the 1/4-inch center hole in the 
phenolic support and the bar is centered along the entire length of the 
contact support. Make sure the bar is equidistant from both sides of the 
support, hold the two pieces together firmly, and mark holes B, C, E, and 
F. Center punch the marks you just made in the contact support, drill 
them with a #43 drill, tap them for a 4-40 screw, and set the contact sup-
port aside again. 

Now, mark the exact center of the copper contact, which should per-
fectly bisect the 1/2-inch hole. Cut the piece in two at this marker; a hacksaw 
should work well for this. Then, cut a 3/4×3/4–inch square of your leftover 
3/16×3/4–inch copper bar, and mark the center by making diagonal lines 
from corner to corner. Center punch and drill a 1/4-inch hole where those 
lines intersect. This copper square will become the actual contact. 

The final hole to make in the copper contact assembly is somewhere 
between holes E and F, on the outer edge of the bar; look for the little screw 
sticking out of the contact bar in Figure 6-18 (circled). Drill a #43 hole and 
tap for a 4-40 screw. This is where the switched positive voltage to the Pro 
Mini comes from. Figure 6-18 shows all the contact and mounting hardware 
drilled. 

Figure 6-18: The contact and support hardware ready for assembly 
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Mounting Supplies for the Solenoid
Depending on your solenoid, the mounting process may vary slightly from 
the one described here. The frame of the solenoid I used had two holes 
tapped for a 4-40 screw in the bottom. However, there was precious little 
room between the frame and the coil, so I elected to look for an alternative 
mounting approach—a very aggressive double-sided adhesive. If you still 
want to mount the solenoid with screws, judge the screw length carefully. 
With either mounting approach, the solenoid was not high enough to line 
up with the release mechanism, so I had to add a platform. 

Preparing the Release Rod, Springs, and E-Clip
As with the other mechanical compo-
nents of the Battery Saver, the release 
rod to reset the contacts just needs 
a little TLC. Begin with a section of 
1/4-inch brass rod, and cut it to 4 1/4 
inches in length. Measure 1 1/8 inches 
down from one end, and make a groove 
for the spring retaining clip to fit into, 
as shown in Figure 6-19. 

In order to cut the groove, I 
mounted the bar in the chuck of an 
electric drill that I clamped to my 
workbench and used a hacksaw blade 
to carefully groove the piece, guiding 
the hacksaw blade with my fingers. 
The set on the hacksaw blade is a little 
wide, but the depth of the groove, not 
the width, is the important part. That 
said, the groove doesn’t have to be very 
deep. I recommend you cut the groove 
in small increments and keep trying 
the retaining clip until it fits snuggly. 

Figure 6-19 also shows the configu- 
ration of the springs. The bottommost 
spring will rest on the phenolic block 
and keep the copper contact off the 
contact areas until the release rod is depressed. It should be small enough 
that it does not touch either side of the copper contacts. (Remember, the hole 
in the square contact is 1/2-inch wide, so the spring needs to be smaller than 
that.) When depressed, the top spring overrides the lower spring and keeps 
the upper part of the switch in firm contact with the lower sections. You can 
make fine adjustments of the spring length on a small grinder, or you can use 
a Dremel tool or a hand whetstone. 

Now, measure 4 inches from the same end, and file the release groove 
in the lower half of the 1/4-inch release bar using a small needle file. 

Groove for spring
retaining clip

Figure 6-19: The upper section of the 
release bar. There are two grooves in 
the bar; the lower one was made in 
error. The springs used on the release 
rod were selected from a standard 
spring assortment from Ace Hardware 
and cut down to fit the project
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Figure 6-20 shows both the needle file used and the shape of the release 
groove. (You might want to use a hacksaw first to make the groove, and 
shape the upper side with a file.)

Figure 6-20: A close up of the release groove in the bottom  
of the release rod (top) and the small needle file used to  
make the groove (bottom)

The shape of the release groove is not overly critical, but make sure 
there is a slight bevel on the top side. The swirls you see on the shaft were 
made with 400-grit sandpaper I used to smooth the rod so it slides smoothly 
through the phenolic block and hole in the case and contact piece. 

Making the Release Lever and Pylon
The release lever is made of a small piece of light-gauge steel sheet metal, 
approximately 0.060 inches thick. Use the pattern in Figure 6-21 to cut 
the lever. In this book’s online resource files, you can find a PDF file of the 
lever template. Because the template is pretty small, you might try bonding 
the template to a blank piece of similarly sized stock, holding it in a pair of 
pliers (vise grips work well), and shaping the piece on a grindstone. Once 
you’ve bonded the template to the stock, you can also use a file to shape it. 

0.25 in 

0.6875 in 

0.375 in 

0.5 in

0.8125 in 
1.01 in

Figure 6-21: The release lever template 
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With a pair of tin snips, I cut a rectangle first and then cut the shape of 
the release lever. I firmly clamped the piece in place with a vise so I could 
finish shaping it with a file. Mild steel files easily with a satisfying feel. (You 
could also shape the lever with a small grinding wheel or a Dremel tool with 
an abrasive wheel.) Make the piece a little oversized at first, as indicated 
in the template, as it may require some adjustment in the final assembly. 
The lever should be under pressure from the tension spring, and should 
securely hold the release rod so that the square copper piece is firmly in 
contact with the both sides of the bottom copper contact assembly. Both 
pivot holes in the lever—one to attach to the solenoid and one to attach to 
the release pylon—are drilled with a #30 drill. 

The pylon is for mounting the release lever to the enclosure, and it can 
be made of any scrap brass or aluminum you may have around. The pylon 
in Figure 6-22 was made from a 3/8-inch diameter brass rod. I reduced the 
top section’s diameter because I didn’t want the pylon to rub on the release 
rod, but that probably was not necessary. 

Figure 6-22: The release lever, the pylon, and two screws

Cut the pylon to about 0.61 inches long so that when mounted inside 
the enclosure, the end attached to the release lever hits the release rod 
just below the center of its diameter. This dimension is dependent on how 
precisely the release rod hole is drilled into the center of the top of the 
enclosure. Run the release rod through the hole, and measure how far 
from the back of the enclosure its center is. The pylon should be a little 
shorter than that.

You can make the top of the pylon smaller by chucking it into a drill 
like a bit and spinning it on a file. When you finally assemble the Battery 
Saver, you may also have to adjust the height of the pylon slightly to accom-
modate the thickness of the release lever and altitude of the release rod if 
the hole was not drilled perfectly straight.

Drill a #43-sized hole near the center of the pylon all the way through, 
and tap for a 4-40 screw from both sides. One side will mount to the back 
of the enclosure, and the other will hold the release lever. To make sure 
the screw doesn’t go down too far and tighten against the release lever, 
I tapped down only about 3/16 inches so the screw bottomed out and 
jammed. Figure 6-23 illustrates what the tapped pylon should look like.
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0.1875 in

0.25 in

4-40 thread screw
to release lever 
goes here 

Narrowed

Screw will
jam here 

Figure 6-23: Inside the pylon

You can adjust either the length of the tapped hole or the length 
of the screw to make sure the release lever is free to move but secure, 
using the screw head as a bearing surface. For fastening both the release-
lever bearing screw and the pylon mounting screw, I recommend using an 
anaerobic adhesive (such as Loctite Threadlocker) to secure the threads.

Assembling All the Parts
Now, we’re ready to start putting all the parts from Figure 6-13 together 
and fastening them where they belong. The order of assembly is not overly 
critical, but more a matter of common sense. I’ll go through it step-by-step:

1.	 Start by screwing the copper contact pieces into the phenolic support. 
Make sure the screw heads are below the surface of the copper. This is 
critical to assure good contact with the contact bar. Prior to assembly, 
as an added measure to improve the contact area, I sanded both the 
contact pieces and contact cap with a 400-grit sandpaper. To assure flat-
ness, I put the sandpaper on a flat surface and rubbed the copper on it. 

2.	 Slide the phenolic support into the enclosure, and fasten it with the 
four 4-40×1/2-inch screws.

3.	 Insert the release rod through the enclosure, and then thread it 
through the pressure spring, then through the copper contact, and 
finally through the release spring and down through the phenolic 
base. Insert the e-clip. This may be a little tricky. You’ll have to hold 
the clip with a pair of needle-nose pliers.

4.	 Measure for the location of the pylon, and mount it to the enclosure 
with a 4-40×1/2-inch flathead screw. The pylon should be inside the 
enclosure, and the screw should be threaded in from the outside.
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5.	 Screw the release lever to the pylon, and check by hand that it engages 
the release groove and secures the release rod. This is a little tricky, and 
you may have to adjust the release lever by grinding or filing it a little 
to fit in the release rod’s groove. Once you have the lever in place, you 
can operate it with your fingers and assure that it locks tightly to the 
release-rod groove. 

6.	 Install the spacer on the solenoid. 

7.	 Temporarily mount the solenoid to the enclosure, and screw the release 
lever to the solenoid. To do this, I first unfastened the release lever 
from the pylon and fastened the other end to the solenoid plunger. I 
then applied double-sided tape to the bottom of the spacer, juggled 
everything in place, and loosely placed the screw through the release 
lever and into the pylon. 

8.	 Exercise the release mechanism with the solenoid held in place. Once 
the release rod holds the top switch contact firmly down, mark the 
holes for the solenoid spacer. 

9.	 Drill and tap holes in the enclosure to securely mount the solenoid and 
spacer to the enclosure. Alternatively, fasten the solenoid with double-
sided adhesive, such as 3M outdoor double-sided adhesive. 

10.	 Run the wires that will connect the solenoid to the Pro Mini circuit 
under the release rod, and connect them to the solenoid using the 
connectors.

11.	 Run the ground wire from the Pro Mini circuit under the release rod 
and out through the slotted opening for the copper bar. (It’s the dark 
wire sticking out of the enclosure on the left in Figure 6-14.) You may 
want to either drill small holes in the phenolic for the wires or carve 
small grooves to run the wire through, using a Dremel tool and a small 
circular saw blade like the one shown in Figure 6-16. You can also make 
a groove with a file or hacksaw.  

12.	 Attach the red positive voltage wire with the lug to the copper switch 
pole at the last hole you tapped in “Preparing the Copper Contact 
Assembly” on page 173. Use a 4-40×3/8-inch roundhead screw.

13.	 Mount the shield using small spacers. If you can’t find a solder lug, you 
can solder-tin the wire, form it so it fits around the screw snugly, and 
then tighten the screw.  

Compare your Battery Saver to the finished device in Figure 6-14 to 
make sure everything looks right. When the battery voltage reaches the 
trigger point, the Arduino triggers the solenoid, which releases the lever. 
Freed from the release lever, the rod pops up from the spring tension 
of the lower spring. The lower spring holds the contact piece above the 
copper mounted to the phenolic block, opening the circuit. To reset the 
Battery Saver, just push the rod back down again. Before doing a final 
test, check the latching of the release lever and rod several times. 
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Installing the Battery Saver into a Vehicle
Connecting your Battery Saver to your vehicle takes only minutes. First, 
disconnect both the positive and negative terminals from your battery. 
Then, connect a short battery cable from the positive side of the battery 
to the input side of the Battery Saver. Take the output side of the Battery 
Saver and connect it to the cable that originally connected to the battery. 
Connect the black wire to the negative terminal that will be reconnected 
to the battery. 

Mounting the entire enclosure will depend on where and how your 
vehicle’s battery and/or battery box are located. In many cases, the Battery 
Saver can simply hang from the battery cables. In other applications, I’ve 
used a heavy-duty cable tie to wrap around the entire battery and Battery 
Saver to hold it in place. In some cases, double-sided Velcro works well. 

Operating the Battery Saver
In operation, once the Battery Saver is installed (see Figure 6-24), restore the 
ground connection to the battery and hook that ground connection to the 
Battery Saver. Then, set the Battery Saver by depressing the reset button—
that is, the top of the release bar—until the unit is armed. You should hear 
or feel a click as you depress the reset button and the release lever engages. 

Figure 6-24: The Battery Saver installed in my Boston Whaler runabout. The battery hooks 
up to the battery post and to the positive connection for the motor and accesssories. The 
ground lead of the battery was fed through the back of the battery box. The reset plunger 
is readily accessible.

Normal Operation
As long as the battery is fully charged and above the threshold voltage, 
the “on” indicator will blink at the rate established in the timer() function, 
which is approximately once every 2.2 seconds. When the battery voltage 
drops below the threshold level, which is set at approximately 11.9V via 
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variable B in the sketch, the indicator LED begins flashing rapidly. When 
the LED sequence finishes, which is after about 3 minutes, the voltage will 
be checked once again. If the voltage is still below the threshold, the battery 
is disconnected; otherwise, it just returns to normal operation.

When you reset the Battery Saver after it has shut off, it will resume oper-
ation. After reset, if the battery voltage is above the threshold, the indicator 
will blink at the usual rate of once every 2.2 seconds. Often when the drain is 
removed from a battery discharged to some level, the battery recovers some-
what on its own after a relatively short time. If, however, the voltage is below 
the threshold level, the indicator will blink rapidly for the timeout period, as 
indicated earlier, to allow for the operator to start the boat, tractor, or other 
vehicle. You can set the timeout period by changing the value of j in the 
timer2() function. 

The maximum value of the j variable is set at 1,800 in the initial sketch, 
and incrementing or decrementing j will add or subtract 100 milliseconds 
from the total timeout period. Thus, to set the timeout period to 5 minutes, 
you would set the maximum value of j to 3,000. 

Setting the Threshold Voltage
The threshold voltage is established by resistors R1 and R2 with values of 
10,000 and 5,600 ohms, respectively (see the schematic in Figure 6-6). 
These are set up as a voltage divider. According to the voltage divider calcu-
lation, whether you use a calculator or work it out with the formula, the volt-
age will be approximately 4.31V for a 12V input. Thus, you can calculate the 
exact threshold voltage at which you want the device to shut off the battery 
current by setting the threshold trigger point, which is B in the sketch, to 
whatever value you wish. While I calculated the theoretical value of the 
threshold, I experimented and found that a value of 387 establishes the 
shutoff threshold point at about 11.9V. 

On Bat t ery  Type   s

I experimented with several batteries and loads and found setting B to 387 
consistently leaves at least half the energy in the battery after shutdown to 
restart the engine. On several different batteries, ranging from the small bat-
tery on a portable generator to large-capacity batteries for starting a truck, the 
same value seemed to work well. 

That said, I have little experience with deep-cycle batteries and know that 
they have very different discharge parameters. If you want to attempt to use the 
Battery Saver for such batteries, take a look at their discharge rates and volt-
ages, and set the threshold accordingly. 
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Protection from the Environment
Unfortunately, the Battery Saver is not weatherproof, and most applications 
call for it to be used in somewhat hostile environments. There are, however, 
a couple of possible solutions. On a variety of vehicles, including boats and 
tractors, I have wrapped the device in a plastic bag and tightly wrapped 
wire ties around the cables where they enter and exit the device. 

But that’s not terribly attractive, and I took some abuse from the distaff 
side of the family, so I applied Permatex silicon RTV sealant around all the 
openings where the copper bar comes through—but not where the reset 
(brass) rod comes through—and sealed all the screws. 

For the reset button, I had difficulty finding a protective covering nipple 
(you would be surprised at what I found on the web), so I settled for affix-
ing the top of an eye dropper to the enclosure with the silicone sealant. 
This also keeps the reset bar—which is hot to 12V when depressed—from 
shorting out.

Applying Cool Amp
While the copper-on-copper contacts work well, I burnished them with 
very fine sandpaper (400 grit) before assembly. Even though the untreated 
contacts have been used on a number of versions of the Battery Saver and 
have never failed, I decided to use Cool Amp, a simple-to-use silver-plating 
compound, for this version.

For very little cost, I was able to silver-plate the contact area of the con-
tact bar and plate and thus reduce their resistance. Figures 6-25 and 6-26 
show the difference between unplated and plated copper.

While this additional lowering of resistance is probably not necessary, 
all the current for the vehicle passes through this contact, so I figured 
it wouldn’t hurt to be on the safe side. Further, I have used the Battery 
Saver in marine applications around saltwater, and the copper parts have 
acquired a green patina while the silver-plated areas have not. 

Figure 6-25: Battery Saver contacts after burnish-
ing but before treatment with Cool Amp

Figure 6-26: Battery Saver contacts after silver 
plating with Cool Amp 
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I have used Cool Amp on a number of contacts, from motor-starting 
contacts to heavy-duty relay contacts, and it works well. You can learn more 
about Cool Amp at http://www.coolamp.com/. 

N o t e 	 Copper does not oxidize too rapidly and the most common oxide of copper is highly 
conductive, which is one reason it is commonly used for current switching. Silver has 
the same properties—only better. 

M y Original    Idea

I hold a US patent (4,149,093, now expired) on a device similar to the Battery 
Saver. The patent drawing is shown in Figure 6-27. Notice how similar it is to 
this project, despite being made decades earlier. It had essentially the same 
function, even though microcontrollers hadn’t been invented yet!

Figure 6-27: A patent drawing of the Battery Saver’s  
predecessor

http://www.coolamp.com




7
A  C u s t om   pH   M e t er

Microcontrollers are used in many, if not 
most, commercial and scientific instru-

ments. They are accurate and versatile, 
which makes them a relatively low-cost solu-

tion to a variety of measurement requirements. This 
project combines an Arduino microcontroller with a 
commercial probe and some analog circuitry to con-
struct an accurate meter that measures pH, the rela-
tive acidity or alkalinity of a solution. 

There are three basic ways of measuring pH. This project involves using 
a pH meter and probe. The other approaches are litmus paper indicators, 
which you might remember from high school chemistry, and colorimeters, 
the traditional swimming pool maintenance kit. The latter is usually a 
kit of chemical reagents with a comparison color chart. Of the three, a pH 
meter is by far the most accurate. 
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But what does pH measure, exactly? The pH value describes the activity 
of hydrogen ions in aqueous solutions. The higher the activity of hydrogen 
ions, the more acidic the solution is and the lower the pH is. Less activity of 
hydrogen ions (and greater activity of hydroxide ions) results in a higher pH. 

The pH scale is logarithmic. A difference of one pH measurement unit 
represents a tenfold increase or reduction of hydrogen-ion activity in the 
solution. This explains how a solution’s aggressiveness rapidly increases with 
the distance from the neutral point on the pH scale. 

Figure 7-1 shows the finished Custom pH Meter, and if you wonder why 
measuring pH is useful, “Why Measure pH?” on page 187 discusses several 
answers to that question. 

Figure 7-1: The Custom pH Meter in an actual measurement environment

Why Build Your Own pH Meter?
Commercial pH meters run the gamut of prices from low-cost portable 
units under $60 to full-fledged laboratory instruments costing several hun-
dred or several thousand dollars. Relatively low-cost pH meters can do the 
job, but all have drawbacks, such as marginal accuracy, relatively short life-
time, calibration issues, and consistency. 

A variety of pH meter kits are also available, including many stamps, 
some designed for the Arduino. (A stamp is a small circuit board with the 
critical circuitry to perform some function, minus the processor.) I have not 
had a chance to sample these kits, but they tend to be pricey, running close 
to or over $100. And they still require a power supply and packaging. 

While this project doesn’t propose to offer a full-scale laboratory instru-
ment, it provides a good, workable pH meter and gives a lot of insight into 
what actually comprises a pH meter. I’ve made every attempt to tune the cir-
cuit for optimal performance, but you may find further adjustment helpful, 
so if you want to try something different after seeing the circuit, go for it. 
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W h y Mea  sure  pH?

In the past, pH was a relatively obscure measurement, confined to the labora-
tory bench and industrial environments (for quality control, process control, 
measuring and controlling waste effluents, and so on). However, more people 
have started using scientific measurement in areas that have traditionally relied 
on rote instructions or trial-and-error experimentation, like home winemaking 
and beer brewing, hydroponics, home agriculture, hydroculture, and baking. 
All of these applications can benefit from accurate pH measurement, and they 
don’t even include the more mundane task of managing the chemistry of your 
swimming pool, koi pond, fountain, or aquarium. 

For example, in baking, dough needs a low pH to rise. The pH of foods 
also impacts two of the four tastes: low-pH, or acidic, foods tend to taste sour, 
while higher-pH, or more alkaline, foods taste bitter. Lemon juice is an example 
of sour, and broccoli rabe or dark chocolate can be considered bitter. In home 
gardening, pH is an important soil characteristic for particular crops. Simple 
adjustments in pH can make aquarium water clear and reduce scum deposits 
on the glass sides, and a balanced pH in ponds keeps fish healthy and reduces 
algae. And the list goes on. 

Required Tools 
Soldering iron and solder

Drill and drill bits

Keyhole saw 

Center punch

File

2-56 tap

Heat gun or hair dryer (for heat-shrink tubing)

Parts List
You’ll need the following parts to build your Custom pH meter:

One Deek-Robot Pro Mini Arduino clone (Other Arduinos should 
work with the project in general, but not with the shield template pro-
vided for this book. I used an Arduino Nano clone for the breadboard 
because of the built-in USB interface. In the completed unit, I switched 
to the Pro Mini to conserve space.)  

One LM35 (D) temperature sensor

One Texas Instruments TL072 dual op-amp (The pinout is shown in 
Figure 7-2.)
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Output A

Invert i/p A

Non-invert i/p A

V−

V+

Output B

Invert i/p B

Non-invert i/p B

TL072

1

2

3

4

8

7

6

5

+

+

−

−

Figure 7-2: TL072 pinout

One 10-turn, 1-megaohm trimmer (R7)

One 10-turn, 10-kilohm trimmer (R4)

One BNC male connector

One LM7805 voltage regulator

One LMC7660 power inverter (The pinout is shown in Figure 7-3.)

LMC766010 µF

1

2

3

4

8

7

6

5

Cp

Cosc

V+

Cr

Vout

10 µF
+

−

+

−

Figure 7-3: LMC7660 pinout

One 16×2 LCD

One I2C adapter, if not included with the LCD

One 5.1V Zener diode

One 1 µF ceramic capacitor (C2)

Five 0.1 µF ceramic capacitors (C1, C6, C7, C8, C9)

One 0.01 µF ceramic capacitor (C5)

One 22 µF tantalum capacitor (C10)

Two 10 µF tantalum capacitors (C3, C4)

One 10-kilohm, 1/8 W resistor (R5)

Three 10-kilohm, 1/8 W resistors (R1, R2, R10)
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Two 1-kilohm, 1/8 W resistors (R8, R9)

One pH probe

Four 4-40×1/2-inch screws

Eight 4-40 nuts and washers

Four 2-56×1/2-inch screws

28- or 30-gauge hookup wire 

One Hammond 1591 BTCL plastic enclosure

Heat-shrink tubing 

Downloads
Sketch  pHMeter.ino

Cover template  pHCover.pdf

Side template  pHBoxSide.pdf

Shield  pHMeter.pcb

About the pH Probe
At the heart of the Custom pH Meter is a pH probe. This measures the 
activity of hydrogen ions in a solution, which in turn determines the acidity 
or alkalinity of that solution. A basic pH probe, like the one in Figure 7-4, 
comprises two elements: a reference electrode and a measurement elec-
trode. I won’t go into the chemistry of the probe or the exact mechanism 
of a pH probe’s operation, but I will describe its output and interface to the 
circuitry that provides the readout. 

A pH probe produces a voltage proportional to the pH of the solu-
tion the probe is immersed in. The pH range starts at 0, which is the most 
acidic, and goes up to 14, which is the most alkaline. The probe delivers an 
output voltage from approximately –420mV to +420mV, representing an 
increment of roughly 60mV per unit of pH. A neutral pH of 7.0, at mid-scale 
from 0 to 14, is represented by 0.0mV.

The nature of the probe’s output makes the Custom pH Meter’s basic 
function in this project relatively straightforward: it needs to read and display 
a voltage. But there are a few other things the Custom pH Meter circuit has to 
account for. First, while commercial probes are built to the highest standards, 
they can be off by some nominal amount and require adjustment. Second, 
we’re dealing with relatively small values, so to maintain accuracy, compo-
nents and circuits have to be carefully selected. Further, as probes are used 
and age, they tend to change slightly, requiring recalibration. 
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Filling hole

Junction

Ag/AgCl reference electrode

Reference electrode internal solution

Wires to pH Meter

Glass electrode internal solution

AgCl covered silver wire

Figure 7-4: A simplified drawing of a pH probe 

Finally, the pH probe has a very high electrical impedance—perhaps 10 
to 100 megaohms or higher. Practically speaking, a high impedance means 
that despite the voltage level, there is very little energy available to change 
the state or condition of another device, so the circuit needs to amplify that 
signal. This requires a specialized input circuit involving an op-amp, which 
is designed to minimize noise while handling the high-impedance signal. 
Today’s semiconductors are up to the task, and as I discuss in “Some Notes on 
IC Selection” on page 196, I checked out several op-amps to find one that 
seemed to offer the best combination of performance and price. Of course, 
while a good op-amp is important, the circuitry feeding input to the op-amp 
must also be as efficient as possible to achieve an accurate reading without 
introducing noise that could affect the sensitive output of the pH probe.

Ta king C are   of Your pH Probe

While your pH probe probably came with instructions, there are a couple of 
things you can do to increase its useful life. First, of course, follow the manufac-
turer’s instructions. Second, unless the manufacturer specifies differently, when 
storing your probe, immerse the business end in a 3-molar solution of potas-
sium chloride (KCl), as shown in Figure 7-5. You should be able to buy such a 
solution wherever you purchase your pH buffer solutions at a very modest cost. 
(A buffer solution is a mix of relatively weak acidic and alkaline chemicals that 
produces a specific pH.) You can also compound your own by dissolving about 
22 g of KCl in 100 mL of distilled water. 
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Figure 7-5: The pH probe I used for this project. The tip is protected in a 
small vial of KCl solution with a rubber seal. 

Even for relatively short storage times, it is best to keep the probe in a 
pH 7 buffer solution rather than in air or water. Between samples or when 
moving the probe to a different buffer solution, make sure to rinse the probe 
carefully. Most manufacturers suggest rinsing with distilled water. You can 
gently blot the excess water off the probe, but most manufacturers caution 
against rubbing or wiping the electrode bulb for fear of creating an error due 
to polarization.

When calibrating your probe prior to a measurement, the manufacturers 
of even top-of-the-line pH meters suggest calibrating with a buffer closest to the 
expected pH of the sample. For example, if you suspect the pH value of the 
sample to be around 9, use a pH 10 buffer solution to calibrate the instrument. 

The Schematic
The Custom pH Meter circuits shown in Figures 7-6 and 7-7 comprises a 
dual op-amp, a voltage inverter to supply ±5V to the op-amp, a voltage regu-
lator, a temperature IC, an Arduino, and an I2C LCD. You have the option 
to build your Custom pH Meter with an Arduino Nano or an Arduino Pro 
Mini. I had an easier time building the breadboard with a Nano, but my 
final product (and therefore, the shield PCB file provided for this chapter) 
uses the Pro Mini to conserve space. 

The rest of this section describes the reasoning behind the design deci-
sions made in creating this schematic.
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Figure 7-6: The basic schematic for the Custom pH Meter, using an Arduino Nano

Figure 7-7: The basic schematic for the Custom pH Meter, using a Deek-Robot Pro Mini
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Integrating the High-Impedance Probe
Recall that the pH probe delivers a DC output voltage that swings from 
–420mV to +420mV, giving approximately 60mV per unit of pH. This out-
put is delivered at very high impedance, and the circuit must accept the 
probe’s high-impedance input without adding spurious signals, reduce the 
impedance to a manageable level, and amplify the input so it can be read 
by the analog inputs of the Arduino. The circuit also has to provide a way 
to adjust the voltage that goes to the display in order to calibrate the probe 
in terms of both offset and gain (see “Offset and Gain” on page 194 for a 
crash course).

To handle the high-impedance probe output, the input of the op-amp 
must have a very high impedance, typically in the teraohm (1×1012 ohms) 
range, to read any voltage at all. The input of the op-amp must also have a 
low input current (the two go together); this is typically around 10 picoamps 
(1×10−12 amps), though some op-amps offer input current below 25 femto
amps (1×10−15 amps). It’s also good if the op-amp has very low drift (that is, 
tendency to change output with no change in input). 

General Design Notes
The Custom pH Meter is designed to work from a power supply of 9V, 
selectable between a battery and a plug-in module via a power switch (see 
the schematics in Figures 7-6 and 7-7). Because the input from the AC 
source could be suspect, the Custom pH Meter uses an external voltage 
regulator rather than the regulator built into the Pro Mini. An LM7805 
with bypass capacitors at both the input and output worked well in previ-
ous projects, and this project uses the same regulator. This regulator sup-
plies positive 5V to the inverter, the op-amp circuitry, and the Arduino. 
The power switch is a three-position switch, where the center is off, one 
position selects the battery, and the other selects AC power. 

Because the pH probe provides an output of ±420mV, this circuit has to 
be able to handle a bipolar (above and below ground) voltage. The simplest 
way to achieve that is to use an op-amp with positive and negative supplies 
and a ground in the middle, which in turn requires a power supply that 
can provide those voltages. The LMC7660 voltage inverter is the solution: 
it converts the positive 5V from the voltage regulator to +5V and –5V, with 
ground in the middle. Thus, the op-amp can handle the input signal as 
long as it doesn’t go above +5V or below –5V. 

N o t e 	 Most voltage inverters are very similar to the LMC7660 and require minimal exter-
nal components—in this case, only two capacitors. This circuit uses tantalum 
capacitors because of their compact size and reliability, but electrolytic capacitors 
could be used.
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Of f se t and  G ain

To demonstrate how offset and gain work, Figure 7-8 illustrates the continuum 
of voltage used in this project, from –5V to +5V. 

+5V

−5V

0V

Gain

Gain

Offset

Offset

Buffer

Buffer

A

A2

B

Figure 7-8: An illustration of what happens to the voltage  
when changing the gain and offset on the Custom pH Meter

Imagine that when the voltage from the pH probe is amplified, there is a 
voltage range A. In this illustration, voltage A represents half the supply volt-
age, ranging from –2.5V to +2.5V for a total of 5V. If the gain is adjusted, 
the voltage range will still center on 0V but will increase or decrease to some 
voltage range B. Adjusting the gain will always increase or decrease the lower 
and higher ends of the selected voltage sector equally, provided the original 
sector is within the total voltage range. 

The entire voltage sector can also be shifted within the continuum by 
adjusting the offset, as illustrated in Figure 7-8. The range of voltage A2 still 
encompasses the same total voltage as range A, but its minimum and maximum 
voltages are different. In this instance, the center of the voltage range is shifted 
from 0V to 2.5V, such that voltage A2 swings from 0V to 5V. 

This offset can be any voltage within the supply range, but in practice, it’s 
best not to run the voltage to the voltage rails (the maximum and minimum of 
the supply voltage). Instead, leave some buffer between the rails and the volt-
age range a project needs. 

“The Sketch” on page 205 shows that the Custom pH Meter maps the 
voltage within the limits of the supply to the Pro Mini (0V to +5V) to be an aver-
age of the gain selected. The final gain and offset adjustments for this project are 
made using the prepared buffer solutions and the potentiometers in the circuit.
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The Custom pH Meter uses a Deek-Robot Pro Mini Arduino clone 
because this clone is small and inexpensive; however, a Nano could work if 
you make your own shield-printed circuit board. While the Pro Mini does 
not include a USB interface, there are a variety of ways to program it with 
little effort. See “Connecting and Programming an Arduino Pro Mini” on 
page 8 if you’ve never used this particular Arduino before.

The I2C interface for the display comprises only two wires—clock and 
data—in addition to power and ground. The I2C protocol can also be used 
with several I2C devices at the same time, if required. 

The Op-Amp Circuit in Detail
In the op-amp circuit, there are resistors and capacitors to minimize the 
effect of spurious signals and to couple the circuits. The amplifier circuit 
has two stages, which are both included in the single package of the op-
amp: the first handles the high impedance from the probe and offers gain 
adjustment, while the second is a buffer that provides the offset, both for 
calibration and to accommodate the 0 to +5V analog input required by the 
Arduino. Each stage has a 10-turn trimmer potentiometer. The trimmer in 
the first stage is 1 megaohm, and it sets the gain; the trimmer in the buffer 
stage is 10 kilohms, and it is used for the offset.

The first stage provides most of the gain (the output is roughly six times 
the value of the input), which is adjustable via a negative feedback resistor 
(R2) and a potentiometer (R3). The adjustment range is a bit wider than 
required, but it works out quite well. Initially, I tightened up on the range 
but found that for some probes, a smaller range makes calibration difficult. 

The second stage op-amp circuit uses a fixed feedback resistor of 
10 kilohms (R5), while the noninverting input uses a combination of two 
resistors of 10 kilohms each (R1 and R2) and a 10-kilohm potentiometer 
(R4) to provide the offset adjustment. This stage provides a small amount 
of gain in addition to the offset adjustment to allow the pH probe voltage 
to center on 0mV (pH of 7) and swing between –420mV (pH of 0) and 
+420mV (pH of 14). In addition, this buffer stage changes the scale from a 
negative and positive voltage to a positive-only voltage for the Arduino.  

Using the buffer stage to both provide the calibration offset and convert 
the plus-minus voltage swing works out conveniently with little, if any, discern-
able downside. Optionally, a separate reference voltage could be generated, 
but that would add additional components and offers little advantage over 
offsetting the voltage from the buffer stage and referencing the voltage to 
ground. 

At the output end of the buffer, a Zener diode (D1) and resistor (R9) are 
added to protect the Pro Mini from any overvoltage condition. No protection 
was added to protect against a negative voltage to the analog input pin; how-
ever, during initial setup and experimentation, the analog pin accidentally 
received a negative voltage many times with no adverse effects. 
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Some Notes on IC Selection
Before settling on an IC for any project, it is a good idea to test multiple ICs 
to see which works best in your situation. When sampling chips, I suggest 
keeping notes on the pros and cons of each chip. For example, these are my 
notes on op-amp possibilities for the Custom pH Meter:

TL072  Worked well; a good all-around solution

TLC2262  A good all-around solution; a toss-up between this and 
the TL072 

OPA129  Worked well, but not available in DIP

LMC6001  Worked well, but a little pricey for no advantage, at 
around $20

LMC6042  Probably would have worked, but was difficult to set up

LMP7702  Probably would have worked, but a little pricey and was 
difficult to set up

After trying several op-amp circuits in the public domain with mostly dis-
appointing results, I used a generalized circuit to test each of these op-amps 
in turn, and for each test, the circuit required a certain amount of tuning 
to work. This tuning included changing the circuitry to stabilize gain and 
minimize spurious signals and stray voltages. The Texas Instruments TL072P 
op-amp proved the best option, and once I made that selection, I adjusted the 
circuit further to optimize it for the Custom pH Meter. The TLC2262 also 
would have worked well; I used it in some prototype samples. 

The other op-amps I sampled might have worked as well, or almost 
as well, if optimized like the TL072; however, that would have been time 
consuming for a marginal or zero gain. The final Custom pH Meter circuit 
represents a best effort within self-imposed limitations, like budget. For 
example, a top-shelf op-amp, like the Texas Instruments OPA627/637, prob-
ably would have worked well, but the chip alone had a price tag between 
$25 and $50, depending on the version. That would have brought the total 
budget for the project to well over $100, a self-imposed limit. The decision 
to continue the project itself was already problematic because of the probe’s 
cost ($36 at the time of writing); however, I believe the probe’s capabilities 
warrant the expense.

Preparing the LCD
Before you build the circuit on a breadboard, make sure the LCD is prepared 
for prototyping. Though the LCD used in this project can be purchased with 
the I2C adapter board, I have often had to buy the LCD and the adapter 
board separately, as was the case this time. When you buy them separately, 
the adapter board usually comes with header pins installed, and all you 
should have to do is insert them into the display and solder them. “Affixing 
the I2C Board to the LCD” on page 3 describes this process.
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On LCD Backlig h t s

When I initially wired the I2C board to the display board for the Custom pH 
Meter, I cut off the cathode (K) header terminal on the display board. The 
anode and cathode headers allow you to provide a voltage to power the 
display’s backlight. The idea behind severing the connection was to include 
a separate switch to turn the backlight on and off to preserve battery current. 
It turned out the display was not readable without the backlight except in 
extremely bright light, so I abandoned that effort and manually rewired the 
backlight. You can experiment with other displays to try to find an ambient-light 
readable display.

The Breadboard
Like most of my Arduino projects, the Custom pH Meter began with a 
breadboard (see Figure 7-9). Despite the somewhat ragged appearance, 
the breadboard iteration worked well. 

Buffer solutions Potassium chloride

Arduino NanoTest voltage
circuit

LCD

pH probe
BNC connector

Figure 7-9: This circuit on a breadboard served as a proof of concept for the 
Custom pH Meter. 

In addition to the basic Custom pH Meter circuit, I added a separate 
circuit (visible in the upper-left area of the breadboard in Figure 7-9) to 
supply a continuous, variable ±500mV test voltage so I could check the cir-
cuit and do some preliminary calibration prior to testing with the probe 
itself. This test circuit, shown in Figure 7-10, comprises a separate voltage 
inverter, a pair of voltage dividers, and a potentiometer to vary the voltage. 
You may want to set up this small circuit on a separate breadboard and use 
it to do the preliminary adjustment of the finished unit. 
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Figure 7-10: This circuit provided the test voltage for the  
Custom pH Meter. 

In Figure 7-9, the pH probe is held by an inexpensive burette clamp 
attached to an old machinist’s magnetic gauge holder. The probe was too 
thin to fit in the holder, so I wrapped some foam around the probe to 
clamp it. 

Preparing this breadboard turned out to be a little messier and more 
convoluted than usual because there’s a lot on the board. As shown in 
Figure 7-9, I used a large breadboard that included four vertical bread-
boards and a strip across the top for positive and negative rails. Initially, 
I used an Arduino Nano clone to build the Custom pH Meter on the 
breadboard. In the finished version, however, I suggest using a Deek-
Robot Pro Mini board to reduce the size. Both Arduinos use the same 5V, 
16 MHz Atmel 328 processor and other components. In keeping with the 
requirement to have the shortest possible connection to the input of the 
op-amp, the BNC connector is situated to provide a relatively direct con-
nection to the noninverting input of the op-amp. The voltage regulator, 
an LM7805, is located in the upper right of the breadboard and is pow-
ered with either a 9V alkaline battery or a 7.5V to 12V wall adapter.

Here are the steps I took to construct the breadboard: 

1.	 Connect all vertically oriented positive and negative rails (marked by 
red and blue stripes, respectively) to the horizontal positive and nega-
tive rails across the top of the breadboard. 

2.	 Mount the power inverter chip (LMC7660) on the upper-left side. 

3.	 Mount capacitor C3 (10 µF) between pins 2 and 4 of the LMC7660. 
(Make sure to observe polarity: connect the positive side to pin 2 and 
the negative side to pin 4.)

4.	 Mount capacitor C4 (10 µF) between pin 5 of the LMC7660 and the blue 
negative rail. (Make sure to observe polarity: the plus side of the cap goes 
to the blue negative rail.) 

5.	 Connect pin 3 of the LMC7660 to the blue negative rail.

6.	 Connect pin 8 of the LMC7660 to the red positive rail.
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7.	 Insert the voltage regulator (LM7805) into the right-hand section of 
the breadboard.

8.	 Connect pin 1 of the LM7805 to a blank row that will accept the incom-
ing 9V or 7.5V voltage. (It can accept from +7V to +12V, as shown in the 
schematic.)

9.	 Connect pin 2 of the LM7805 to the blue negative rail.

10.	 Connect pin 3 of the LM7805 to the red positive rail.

11.	 Connect capacitor C2 (1 µF) from pin 1 of the LM7805 to the blue 
negative rail.

12.	 Connect capacitor C1 (0.1 µF) from pin 3 to the blue negative rail.

13.	 Insert the TL072 IC in the breadboard; I placed it in the second vertical 
section. Observe all antistatic precautions while handling the chip. 

14.	 Make the connections to the TL072 as short as possible to eliminate 
possible spurious signals.

15.	 Connect capacitor C5 (0.01 µF) from pin 8 of the TL072 to the blue 
negative rail. Make the connection as close to the chip as possible to 
minimize effects of spurious signals.

16.	 Connect pin 8 of the TL072 to the red positive rail (once again, using 
as short a jumper as possible).

17.	 Connect resistor R5 (47 kilohms) from pin 2 of the TL072 to the blue 
negative rail.

18.	 Connect the center lead of the BNC input jack to pin 3 of the TL072 
with as short a wire as possible.

19.	 Connect the ground of the BNC to the closest spot available on the 
blue negative rail. (I used a panel-mount BNC connector and screwed 
a piece of stiff wire to the flange so I could mount it very close.)

20.	 Connect pin 4 of the TL072 to the negative voltage of the LMC7660 
(pin 5). 

21.	 Insert one lead of capacitor C6 (0.1 µF) to pin 4 of the TL072, as close 
to the chip as possible.

22.	 Insert the other end of capacitor C6 to the closest spot available on the 
blue negative rail. 

23.	 Insert the outside pins of potentiometer R7 (1 megaohm) between pins 
1 and 2 on the TL072. 

24.	 Insert a short jumper from pin 2 to pin 3 of potentiometer R7. The 
potentiometer will work with only the two pins (center and one end) 
used. For convention and stability, I usually connect the center to the 
pin not being varied. 

25.	 Insert capacitor C7 (0.1 µF) from pin 1 to pin 2 of the TL072.

26.	 Insert resistor R8 (1 kilohm) from pin 1 to pin 6 of the TL072.

27.	 Connect one lead of capacitor C8 (0.1 µF) to pin 6 of the TL072 and 
the other lead of capacitor C8 to ground.

28.	 Connect resistor R10 (10 kilohms) between pins 6 and 7 of the TL072.
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29.	 In an open area of the breadboard (as close to the TL072 as possible), 
insert potentiometer R4 (10 kilohms).

30.	 Connect one side of resistor R2 (10 kilohms) to pin 1 of 
potentiometer R4. 

31.	 Connect the other side of resistor R2 to negative 5V (pin 5 of the 
LMC7660).

32.	 Connect one side of resistor R1 (10 kilohms) to pin 3 of 
potentiometer R4.

33.	 Connect the other side of resistor R1 to the red positive rail.

34.	 Connect pin 2 (the center pin or slider) of potentiometer R4 to pin 5 of 
the TL072.

35.	 Connect one lead of capacitor C9 (0.1 µF) to pin 5 of the TL072 (as 
close to the pin as possible) and the other lead to the blue negative rail.

36.	 Insert the Arduino Nano into the breadboard. I placed it in the second 
row from the left toward the bottom of the board so the USB connec-
tion would be easily available. 

37.	 Connect 5V from the Nano (pin 27) to the red positive rail.

38.	 Connect the ground of the Nano (pin 29) to the blue negative rail.

39.	 Connect one side of resistor R9 (1 kilohm) to pin 7 of the TL072.

40.	 Connect the other side of resistor R9 to A0 (pin 26) of the Nano. You 
may have to identify a blank space on the breadboard and then use a 
jumper wire.

41.	 Connect the anode of the Zener diode (D1) to pin A0 on the Nano.

42.	 Connect the cathode of the Zener diode to the blue negative rail.

43.	 Connect the positive lead of capacitor C10 (22 µF) to A0 of the Nano.

44.	 Connect the other lead of capacitor C10 to the blue negative rail.

45.	 Make a four-wire cable for the LCD with wires for plus, minus, SDA, 
and SCL. (See “Connectors Used in This Book” on page 18 if you’ve 
never made a cable.)

46.	 Connect the positive and negative wires of the LCD harness to the red 
positive and blue negative rails, respectively.

47.	 Connect the SDA pin from the LCD to A4 (pin 22) of the Nano.

48.	 Connect the SCL pin from the LCD to A5 (pin 21) of the Nano.

In Figure 7-9, at the upper left of the board, you will see four resistors 
and a potentiometer on three wires. That’s the probe voltage simulator 
circuit in Figure 7-10. To wire up the simulator circuit, make the following 
connections:

1.	 Connect the open end of resistor R5 (10 kilohms) to negative 5V (pin 5 
of the LMC7660).

2.	 Connect the open end of resistor R1 (10 kilohms) to the red positive rail.
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3.	 At the juncture of resistor R1 (10 kilohms) and resistor R2 (1 kilohm), 
connect pin 1 of potentiometer R3 (20 kilohms).

4.	 At the juncture of trimmer R4 (1 kilohm) and resistor R5 (10 kilohms), 
connect pin 3 of the potentiometer R3 (20 kilohms).

5.	 Connect the center lead (pin 2) of potentiometer R3 (20 kilohms) to 
pin 3 of the TL072.

The temperature sensor is not included in the breadboard. 
Finally, calibrate the Custom pH Meter. I suggest calibrating first with 

the simulator circuit and then with the actual probe, as described in the 
next section.

Calibrating the Custom pH Meter
Calibrating the Custom pH Meter for the first time may be a little try-
ing, but it shouldn’t take long to get the hang of it, and it should work 
well afterward. First, set both the scale and offset potentiometers as close 
to the middle of their ranges as possible. Because pH 7 is neutral, start 
there, put the probe in the pH 7 solution, and adjust the offset until the 
display reads 7.00. 

Next, clean the probe, place it in the pH 4 solution, and adjust the scale 
trimmer until the display reads 4.00. After that, clean the probe again, and 
try the pH 7 solution again; the reading should remain close to center. If it 
is off center, then adjust the offset to exactly 7.0 again, and repeat the pro-
cess. This time, it should require only a small adjustment to set the scale to 
pH 4.0. Now, check the display with the probe in the pH 10 buffer solution, 
see how far off the reading is, and adjust the scale trimmer accordingly. 
Repeat this process until the readings match all three buffer solutions. 
(After about three or four tries, adjusting both scale and offset, I got it to 
line up perfectly.) 

When you know the meter works, I suggest resetting it and calibrating it 
again for practice. I was able to do it quite a bit faster the second time, with 
only two repetitions. I rechecked my pH meter several times over a period 
of about three weeks, and it seemed to stay in calibration; you should have 
similar results.

N o t e 	 As a preliminary test, I also used the test voltage circuit in Figure 7-10 to perform 
initial calibration. You will also need a digital voltmeter. I started with 0V and 
adjusted the offset potentiometer until the LCD showed a pH of 7. Next, I adjusted 
the test voltage circuit to output 180mV on my digital voltmeter and turned the 
scale potentiometer until the LCD showed a pH of 10. I then adjusted the test volt-
age to –180mV and adjusted the scale until the LCD showed a pH of 4. After only 
a couple of tries, I had good results, so I disconnected the test supply and replaced it 
with the probe. This time, I was able to calibrate the meter in only a single try. 
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When your meter is built and calibrated, try testing it on some common 
household products, like these: 

•	 Coca-Cola Classic: pH 2.5

•	 Orange juice: pH 2.8

•	 Coffee: pH 5.0

•	 5 percent ammonia solution: pH 11

•	 Clorox bleach: pH 11.9

In an  A nalog   Frame    of Mind

Some of us dinosaurs still like analog readouts, and for those holdouts mired 
in the 20th century, I have included provisions in the schematics in Figures 7-6 
and 7-7, the sketch, and the final shield PCB file for using an analog readout. 
This was a bit of an afterthought and it’s optional, so the series resistor for the 
meter is not included in the shield; however, the Pro Mini pin connections to 
the readout are. The single required resistor can be mounted on the rear of the 
meter movement. In Figure 7-11, I simply connected the meter to the bread-
board circuit.

Figure 7-11: The Custom pH Meter breadboard circuit, with both the  
digital display and a 20 mA meter movement

I’ve collected analog meters and movements over the years; the meter 
pictured is a Simpson 20 mA meter movement. To drive the meter, I simply 
used the PWM (pulse-width modulation) output from pins 5 and 6 on the Pro 
Mini, hooked directly to the meter with a resistor in series. In the sketch, I cen-
tered the meter on 0V so it uses a positive and negative voltage.  
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About the Effects of Temperature
Thus far, I have not addressed the issue of temperature, but a solution’s pH 
value is temperature-dependent, as illustrated in Figure 7-12. 

100°C (74.04mV/pH)
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600

500

400

300

200

100

0

100

200

300

400

500

600

1 2 3 4 5 6

8 9 10 11 12 13 14

mV

pH

7

Figure 7-12: How pH varies with temperature

The effect of temperature on pH at or around room temperature 
(25°C) is nominal. In fact, according to the chart, the difference in pH 
from 25°C to 0°C would measure as little as half a pH unit at both pH 
extremes. At 100°C, however, the difference is more pronounced and 
could be as much as 1.5 pH units. 

Given that information, the question becomes exactly how to handle 
the effect of temperature on pH.

I ended up using a variable resistor to set the analog meter’s minimum 
and maximum to –420mV and +420mV, respectively. This eliminated the 
problem of attempting to set the gain and offset to match the digital readout. 
However, that in no way affects the accuracy of either readout, and the digi-
tal and analog readouts match. They also track identically through the entire 
pH range. 

For many meters, the case can be removed to easily place a different 
scale, as has been done in Figure 7-11. The face on this project’s meter was 
prepared with a laser printer to make the scale reflect pH value and show an 
mV scale for reference. A nice scale can be made using a drawing program 
such as Corel Draw or Adobe Illustrator, and you can purchase full sheets of 
adhesive-backed label stock to adhere it to the original meter plate. Just be 
careful not to damage the needle or movement in the process.
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Adding a Temperature Sensor
The first step to address the effects of temperature is to include a temper-
ature sensor in the circuit so the Custom pH Meter knows what the tem-
perature is. One of the easiest and most widely used temperature sensors 
in Arduino land is the LM35, which according to the data sheet outputs a 
linear 10mV/°C at 25°C, with half-degree accuracy. You can see this sen-
sor in the schematics in Figures 7-6 and 7-7.

I hooked up the chip and included it in the sketch, but I was somewhat 
concerned about the accuracy. Unfortunately, I didn’t have a National 
Institute of Standards and Technology (NIST) temperature standard to 
go by, so I compared the Arduino sensor readings to a glass scientific ther-
mometer, a bimetal dial thermometer, and a Radio Shack digital thermom-
eter. None of these agreed with each other or the Arduino. 

Checking Accuracy
The obvious way to calibrate the temperature sensor was to check it 
against two temperature values I really knew: the freezing and boiling 
point (at sea level) of distilled water. Because I live about 12 feet above sea 
level, the altitude would not be a problem. The result of my ice water and 
boiling tests indicated that the sensor was indeed off by about 2 percent. 
This was probably due to something in the external circuitry, such as the 
reference voltage, and is compensated for in the sketch. The temperature 
IC and connections were protected in a heat-shrink tube to eliminate any 
moisture getting to the connections, as described in “Construction” on 
page 211.

According to the manufacturer for the glass electrode I used in this 
project, the error caused by temperature can be calculated as follows: 

Error in pH = 0.003 × (Calibrated temperature − Current temperature)
× (Neutral pH − Actual pH)

For example, if the electrode is calibrated at room temperature (25°C) 
and is measuring a sample around pH 4 at around 5°C, you would calculate 
the error as follows:

1.	 Calculate the temperature difference: 25°C – 5°C = 20°C

2.	 Calculate how far away from neutral the pH is: 7 pH – 4 pH = 3 pH

3.	 The total error is: 0.003 × 20 × 3 = 0.18 pH.

As of this writing, I have not attempted to integrate the temperature 
reading into the sketch to adjust the pH automatically. The Custom pH 
Meter does, however, display the temperature on the LCD, so you can 
decide whether or not it’s worth adjusting. As you can see in Figure 7-12, 
the effect is minimal and can easily be approximated from the chart or 
calculated with tests similar to mine. 

Chances are that most of your measurements will be at or near room 
temperature. Temperature compensation is generally required only in 
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severe environmental and industrial environments. If you are taking pH 
readings at extreme temperatures, you may want to include the formula in 
your sketch.

N o t e 	 If you’re curious, you can read more about how to compensate for pH probe read-
ing errors due to temperature at http://www.qclscientific.com/electrochem/
phtemp%20comp.html.

The Sketch
The Custom pH Meter sketch, like many others in this book, comprises 
parts of other sketches and examples. I’ve included comments throughout 
that describe how the most significant pieces work. This unit was tested on 
and used with the Arduino IDE version 1.0.5-r2. 

//Custom pH Meter Sketch
//Smoothes both temperature and pH

#include <Wire.h>
#include <LiquidCrystal_I2C.h>
/* Visit http://playground.arduino.cc/Main/I2cScanner for code 
   you can run to figure out your LCD's I2C address if 0x27 doesn't work. */
LiquidCrystal_I2C lcd(0x27, 16, 2); //16x2 display
//There are a couple of libraries out there. The one I used was 
//simply Liquid Crystal_I2C for a generic type display.
const int numReadings = 10;
const int numReadings2 = 20;
const int meterOut1 = 5;  
const int meterOut2 = 6;  

float readings[numReadings];      //The readings from the analog input
float readings2[numReadings2];

int index = 0;                    //The index of the current reading
int index2 = 0;
float total = 0;                  //The running total
float total2 = 0;

float average = 0;                //The average
float average2 = 0;

int pHpin = A0;
int tempPin = A1;
int meterdrive1;
int meterdrive2;

int pHvalue = 0;
float val;
float val2;
float tempC;
float temp2;

http://www.qclscientific.com/electrochem/phtemp comp.html
http://www.qclscientific.com/electrochem/phtemp comp.html
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void setup() {
  lcd.init(); //You may have to use a different command, depending on the 
              //library you use
  lcd.backlight();
  pinMode(meterOut1, OUTPUT); 
  pinMode(meterOut2, OUTPUT); 
  
  //Initialize serial communication with computer:
  Serial.begin(9600);
                   
  //Initialize all the pH and temperature readings to 0: 
  for(int thisReading = 0; thisReading < numReadings; thisReading++) {
    readings[thisReading] = 0;
  } 
  for(int thisReading2 = 0; thisReading2 < numReadings2; thisReading2++) {
    readings2[thisReading2] = 0;
  } 

  //Configure the reference voltage used for analog input to 1.1V
  analogReference(INTERNAL);
}

void loop() {
  
  tempC = analogRead(tempPin);
  temp2 = tempC/9.31; //My calibration factor was 9.31, as determined 
                      //by the boiling water and ice tests
  
  pHvalue = analogRead(pHpin);
   
  val = map(pHvalue, 0, 1023, 0, 1400);
  val = constrain(val, 0, 1400);

  val2 = val/100; 

  meterdrive1 = map(average, 0, 14, 0, 255);
  meterdrive2 = map(average, 14, 0, 0, 255);
 
  analogWrite(meterOut1, meterdrive1);
  analogWrite(meterOut2, meterdrive2);

  //Subtract the last reading:
  total = total - readings[index];

  //Read from the sensor:  
  readings [index] = val2;

  //Add the new reading to the total:
  total = total + readings[index];       

  //Advance to the next position in the array:  
  index = index + 1;                    

  //If we're at the end of the array...
  if(index >= numReadings)              
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    //...wrap around to the beginning: 
    index = 0;                           

  //Calculate the average:
  average = total / numReadings;         

  //Subtract the last reading:
  total2 = total2 - readings2[index2];         

  //Get readings from the temperature sensor:  
  readings2 [index2] = temp2;

  //Add the temperature reading to the total:
  total2 = total2 + readings2[index2];       

  //Advance to the next position in the array:  
  index2 = index2 + 1;                    

  //If we're at the end of the array...
  if(index2 >= numReadings2)              
    //...wrap around to the beginning: 
    index2 = 0;                           

  //Calculate the average:

  average2 = total2 / numReadings2;     
  
  delay(1);               //Delay between reads for stability  
 
  lcd.setCursor(0,0);
  lcd.print("pH");
  lcd.setCursor(4,0);
  lcd.print("           ");
  lcd.setCursor(7,0);
  lcd.print(average,2);  //Truncate to two decimal places
  lcd.setCursor(0,1);

  lcd.print("Temp  ");
  lcd.print(average2*.98,1); //Error calculated from empirical measurement
  lcd.print((char)223);      //Print the degree symbol 
/* This may vary depending on display. One display used ((char)178) for the 
degree symbol.*/
  lcd.print("  C");
 
  delay(600);
  
}

The basic pH measurement functionality is straightforward: it reads 
an analog value from the analog output of the op-amp circuitry and feeds 
that value to an analog input pin of the Pro Mini. The pH and tempera-
ture are read every time the main loop runs and then stored in pHvalue 
and tempC, respectively. My first version of the sketch printed these directly 
to the LCD. 
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But when I laid out the circuit on the breadboard and adjusted the 
components, I noticed that the output was a little jumpy. The pH value 
jumped around by two or three tenths of a pH unit, plus or minus some 
core value. For example, the reading might fluctuate from a pH of 4 to 4.1, 
then to 3.9 and back to 4. 

Smoothing the pH and Temperature Output
I went back to the drawing board. I played with the circuit, trying to find 
where the jumpiness was coming from, and failed to nail it down. Then, 
because the pH was unlikely to change quickly, I decided to average a few 
readings. While that stabilized the reading, the drawback was that the more 
samples I took, the slower the reading. 

However, I didn’t think that was a problem, as some expensive commer-
cial pH meters I’ve used took some time to stabilize, very likely for the same 
reason. But there was still room for improvement.

Fortunately, there is a useful sketch on the Arduino website written 
by David Mellis and subsequently modified by Tom Igoe that uses an array 
to smooth a signal. (You can see the original sketch in full at https://www 
.arduino.cc/en/Tutorial/Smoothing/.) I used this example as a model to 
smooth out the pH voltage in this project’s sketch. I experimented with sev-
eral different values and found that somewhere between 5 and 10 samples 
worked well. I set numReadings equal to 10, and that resulted in a minimal 
drag on stabilization period, smoothing things out fairly well. The sketch 
shown in this book stores the result after smoothing in the average vari-
able, which is printed to the LCD at the end of the main loop. In addition, 
I continued to fine-tune the circuit, so the sketch required less and less 
averaging.

Notice that the same smoothing technique has been employed in the 
part of the sketch that handles input from the temperature-sensing circuit. 
(The average2 variable contains the smoothed temperature reading result.) 
This was necessary for the same reason smoothing was needed for the pH 
voltage: even the temperature sensor output was a bit jittery. My first sus-
picion was that perhaps the Arduino Pro Mini and its voltage reference 
was causing hiccups in both the pH and temperature voltages. However, I 
hooked the temperature sensor directly up to my multimeter with a well-
filtered power supply and experienced the same disruptions. In the end, 
the smoothing approach solved the problem. 

N o t e 	 While the smoothing approach used in this sketch worked well, that isn’t the only 
approach you could take. For example, a moving average approach could also 
work well.

Centering an Analog Meter 
If you choose to use an analog meter, the Arduino will need to drive the 
positive and negative sides of the meter. The sketch maps the meter drive to 
reverse the PWM values on two pins as follows. 
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  meterdrive1 = map(average, 0, 14, 0, 255);
  meterdrive2 = map(average, 14, 0, 0, 255);

To obtain meterdrive1, the average value (the average of pH values 
measured) is mapped from 0 to 14, while meterdrive2 is the same average 
value mapped from 14 to 0. Both mappings use the map() function from 
Arduino’s preloaded libraries.

The map() function is a useful tool that lets you map a number from one 
range to another. The syntax is as follows: 

map(value, fromLow, fromHigh, toLow, toHigh)

The map() function can be used to shift a set of values or, as in this case, 
to reverse the values going from 0, 14 and from 14, 0. If you want to use an 
analog meter and don’t want to reset the indicator to the center, you can 
simply use either output pin 5 or pin 6 (leave the one you don’t use open) 
and change the value of the resistor to result in a correct reading. 

A Not e on Signif ican   t Figure   s

The following line of code prints the pH to the LCD, showing two decimal places:

  lcd.print(average,2);  //Truncate to two decimal places

An earlier draft of the sketch called lcd.print(average,1) instead, show-
ing only one decimal place, but when I was trying to minimize the jitter on the 
Custom pH Meter, I changed the display code to include two decimal places 
for finer granulation. For the most part, the pH reading remained extremely 
stable even to the second decimal place. 

In the final sketch, I kept two decimal places, but to be honest, I’m not 
sure how meaningful or accurate the second decimal place is. It has a slight 
tendency to drift as the probe sits in the solution, which I believe is normal. 
I dutifully researched and learned a lot more about significant figures (the 
digits in a measurement that actually have meaning) than I ever wanted to 
know, but I was still left without a definitive answer. 

Here’s the bottom line: all of the literature I perused regarding pH dis-
cussed pH in terms of integers—or at best, to the tenths position. Only in some 
references to scientific and industrial applications was the hundredths position 
even used at all. 

For most practical applications, you can change the sketch to use a single 
significant digit if you prefer. I do also strongly recommend that you use only 
a single significant digit during preliminary calibration, as the additional digit 
could be confusing. If you must (as much for ego as anything), you can put the 
second significant digit back, but know that its accuracy is suspect and, in my 
experience, it doesn’t really buy you anything. 
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The Shield
The Custom pH Meter shield, shown in Figure 7-13, is designed to minimize 
noise from the pH probe to the input. The Pro Mini and the LCD in this 
project can generate a little electrical noise; thus, all of the active analog 
input components are at one end of the PCB, while the Pro Mini and inter-
face to the display are at the opposite end of the board. The inverter IC and 
associated components are located under the Pro Mini to conserve space.

Figure 7-13: The shield PCB has headers soldered in place only for the pins this project 
uses on the Pro Mini. The voltage inverter and capacitors are located under where the 
Pro Mini will plug in. 

For this project, I decided to use a double-sided circuit board. This 
made the PCB layout a lot simpler than trying to squeeze everything on one 
side, and it allowed the amplifier, buffer stage IC, and associated compo-
nents to be arranged in close proximity. You can see the layout file for this 
shield, which you can download with the rest of this book’s resource files, in 
Figure 7-14.

Figure 7-14: The top traces in the shield layout are the darkest, the bottom traces are sec-
ond darkest, and the silkscreen layer is the lightest. Notice that the silkscreen layer shows 
boxes around various components.

Figure 7-15 shows the completed printed circuit board before and after 
population. When populating this board, make sure to take precautions to 
prevent static electricity damage to the TL072. Because of this chip’s very 
high input impedance, it is particularly sensitive to static discharge from 
handling. I used a socket to hold the op-amp so in case it got damaged, 
replacing it would not be a major job. 



A Custom pH Meter   211

Figure 7-15: The shield PCB before and after population. The voltage inverter and associ-
ated components are under the Pro Mini. The populated version is shown with the display 
connected. 

Also note that many resistors on this PCB are mounted vertically to save 
space and reduce lead length and circuit-board-trace lengths. I used 0.100-
inch female headers to mount the Pro Mini, which leaves plenty of room for 
the components underneath. It is not necessary to fully populate the board 
with headers to fit all the Pro Mini’s pins; you just need enough to mechani-
cally support the Pro Mini and provide the necessary electrical connec-
tions. I found it helpful to place headers at the very end of at least one side 
to align the pins and simplify my aim when plugging in the Pro Mini board. 

Construction
Be sure the sketch is loaded onto the Arduino, and solder all components 
to your PCB now, including wires for power and ground and for the jack for 
the (optional) temperature sensor. Place the op-amp into its socket now as 
well, but bend pin 3 of the op-amp so that it sticks out. You will need to be 
able to access pin 3 in a later stage of the construction process. 

When the Custom pH Meter circuit is soldered and the sketch is loaded 
onto the Arduino, only one step remains in terms of actual construction: 
putting everything inside a protective box. This section describes some sug-
gestions for an enclosure and for how to mount the circuit board inside. 
Figure 7-16 shows the finished enclosure.
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Figure 7-16: The finished Custom pH Meter in the enclosure. This close-up  
illustrates the positioning of the holes for the offset (labeled Ofst) and gain  
(labeled Scale) calibration adjustments.

The Custom pH Meter Enclosure
Your choice of enclosure will depend on how you want to use the Custom pH 
Meter, whether or not you elect to include an analog meter, and the level of 
portability required. I selected a standard ABS clear plastic box with outside 
measurements of approximately 1.3×2.45×4.4 inches. The space was some-
what tighter than I planned, but I was able to squeeze in the printed circuit 
board, display, switch, connectors, and battery. 

Making Room for the Display

This project’s enclosure is a Hammond Manufacturing case, model 1591 
BTCL. Figure 7-17 shows a drawing of the top of the plastic box, marked 
with lines for cutting the display hole and drilling the mounting holes. 

1.0 in

2.64 in

0.5 in

0.078 in

0.172 in

0.156 in

0.956 in

Top

Figure 7-17: Template for the cover of the enclosure, showing an opening for the 
16×2 display (shaded area) and where to drill mounting holes
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You can download this drawing with this book’s resource files (see 
https://www.nostarch.com/arduinoplayground/) and use it as a template for 
center punching the holes. 

I needed as much vertical room as possible inside the enclosure to 
accommodate the battery, so cutting out the top of the enclosure was neces-
sary. Be careful, though: some displays have slightly different footprints, so 
measure yours and check it against the drawing first. If there’s a discrep-
ancy, adjust the measurements.

The ABS plastic the enclosure is made of cuts easily, so cutting out the 
display hole shouldn’t pose any major problems. Before you get started, 
clamp the enclosure securely to a piece of scrap wood attached to a work-
bench or table. 

w arning      	 When you use a relatively large bit to drill into a thin layer of ABS plastic, the bit will 
tend to grab the plastic. Do not hold the enclosure by hand. 

To follow this template, first drill the two big holes in the opposing 
corners of the display area, using the punch marks as centers. I found 
1/2 inches to be a good size for these holes, but just make them big enough 
to accommodate the saw blade you’re going to use to make the cutout. You 
may want to drill the centers of the 1/2-inch holes with a smaller drill first 
to make sure they are on center. Then, use a keyhole saw to cut out the 
smaller rectangle. 

To make sure there is enough room for the battery, I suggest mounting 
the display off center, as shown in Figure 7-16, with the measurements indi-
cated in Figure 7-17. When your display hole is cut, drill the smaller holes 
for mounting the LCD with a #30 or 1/8-inch drill to accommodate the 
4-40 screws. 

Drilling Holes for Other Hardware

Once the top is prepared, drill holes for the BNC connector (A), on/off 
switch (B), power input switch (C), and optional temperature jack (D) in 
the two smaller sides of the main body of the case, according to the tem-
plate in Figure 7-18. The hole for the BNC connector is 3/8 inches, while 
the holes for the switches and the temperature jack are all 1/4 inches.

0.625 in

0.75 in

0.375 in

Left

A

0.5 in 0.6875 in
1.125 in

0.625 in

B C D0.25 in

Right

Figure 7-18: Approximate layout for the holes for the BNC connector (A) on the left side of the enclosure, and  
the on/off switch (B), battery/AC switch (C), and optional 3.5 mm temperature sensor input jack (D) on the 
right side. 
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Mounting the Circuit Board
Finally, choose where to mount the printed circuit board to the inside of 
the case. For both pH meters that I made, I held a nonpopulated shield 
PCB inside the case and marked the locations of the four mounting holes 
on the plastic; you can use a printout of the board layout in this book’s 
resource files as a pattern if you prefer. With your four holes marked, gently 
center punch and drill them. Be careful not to crack the plastic enclosure, 
and make sure they line up with the mounting holes indicated on the PCB. 
I suggest using a #41 drill bit (about 3/32 inches) to drill these holes.

If you use the shield design included with this book, you may also need 
to drill the circuit board’s mounting holes to the correct size. Conventional 
manufacturing practice would advise using a spacer, screw, and nut to hold 
the board inside the enclosure, but instead, I drilled and tapped the circuit 
board itself. I used a #50 bit to drill the circuit board in all four corners 
and tapped it with a 2-56 tap. I then used 2-56 screws to fasten the board in 
place. While this may not be a recommended practice for all applications, 
the board was light enough that it worked out well. 

Furthermore, I would not expect a finished pH meter to be subjected 
to much physical punishment. With that in mind, I just put a strip of foam 
on the noncomponent side of the board and screwed the board to the side 
of the case—but not too hard. If you expect the unit to experience repeated 
and extreme vibration, you can put a dab of Thread-Lok or another anaero-
bic adhesive on the screw threads before assembly. 

Once the board is mounted, mark the access holes for the gain and off-
set trimmers. Place the cover on the enclosure, look straight down through 
the cover, and use a Sharpie marker to mark the locations of the two trim-
mer access holes. Remove the top from the enclosure, and drill 1/4-inch 
holes corresponding to the screw heads on the trimmers (see Figure 7-16). 

Installing the Other Hardware
Now you can install the BNC connector, on/off switch, power switch, and 
(optional) temperature jack. I found it easiest to mount the switches and 
jack inside the enclosure first and solder the wires to them later. The same 
technique works well with the BNC connector, though you may wish to 
solder the ground wire beforehand. I took a piece of 22-gauge solid wire, 
wrapped it three-quarters of a turn around the base of the connector, tight-
ened it with the retaining nut, and soldered it to a ground tap on the PCB 
(see Figure 7-13). 

N o t e 	 While I did not bring out the signals for the analog meter for my personal build, 
if you build the shield, you’ll see the two connections marked with a small box 
around them. 

Connecting the Probe to the Op-Amp 

“Integrating the High-Impedance Probe” on page 193 describes special 
considerations required for using the pH probe as an input to the Custom 
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pH Meter. It turns out that even high-quality FR-4 circuit board material 
can cause some current leakage, from dirt or moisture on the surface or 
other contamination. To minimize leakage, connect the input from the 
IC directly to the probe. In order to do this, place the IC in close physical 
proximity to the BNC connector inside the case. Then, instead of soldering 
pin 3 of the op-amp to the board or plugging that pin into a socket, bend it 
out and wire it directly to the BNC connector (see Figure 7-19). 

Figure 7-19: To minimize spurious signals, the connection from  
the BNC connector to the IC pin is soldered directly.

Because this is the only high-impedance part of the circuit, some other 
precautions mentioned in the op-amp’s data sheet (such as ground-isolation 
rings around the other inputs) are not required. However, this project’s 
shield PCB does keep critical traces as short as possible and places compo-
nents in close proximity. 

Connecting the Temperature Sensor

For the optional temperature sensor, 
you will need to mount a 3.5 mm three-
conductor jack inside the enclosure; 
the drilling hole for this is marked D in 
Figure 7-18. Wire this jack to the tem-
perature IC connections on the PCB, 
which are the three holes between the 
display connections and regulator IC in 
Figure 7-20. The sleeve of the connector is 
ground, the ring is positive, and the tip is 
the output of the temperature-sensing IC. 

You can protect the IC itself from 
liquid immersion by encapsulating it in 
a short length of heat-shrink tubing with 

Figure 7-20: The three connections  
for the temperature sensing IC are  
just above the word Therm. 
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sealant, as shown in Figure 7-21. This heat-shrink tubing is readily available 
online. The sealant on the inside of the tubing should make a completely 
waterproof seal for the IC. To seal the IC, just insert it into the tubing and 
heat with a heat gun or a hair dryer on high heat until it is completely 
sealed. 

Figure 7-21: This LM35 temperature IC is completely encapsulated in a short length of 
heat-shrink tubing with a sealant thermal gel. The thermal gel can barely be seen where 
the wires enter the tubing. 

Once all hardware is mounted inside the enclosure and all components 
are soldered to the PCB, screw the LCD to the cover and close it all up to 
finish. You might also want to label your potentiometers and switches, as 
shown in Figure 7-16, for ease of operation later. 



8
T w o  B alli    s t ic   C h ronograp        h s

This project is a device for measuring 
the velocity of a projectile. It originally 

measured the velocity of pellets from air-
soft and paintball guns, and it evolved to be 

capable of measuring projectile velocities from BB 
and pellet guns before finally measuring velocities of 
over 3,000 feet per second (fps) from higher-powered weapons. The main 
intention of this project is not to measure the velocities of traditional fire-
arms, but this project does have that capability, and the end of this chapter 
describes how to use it to measure the velocity of a 9 mm bullet. 

The Ballistic Chronograph was meant to be simple, but it turned out a 
little more complex than originally planned. The result is two projects: the 
Full Ballistic Chronograph and a more diminutive and simpler device I call 
the Chronograph Lite (see Figure 8-1). 



218   Chapter 8

Figure 8-1: The Chronograph Lite with a projectile-acceleration channel attached to a 
0.177 caliber pellet gun

I’ve attempted to make each Ballistic Chronograph system both flexible 
and accurate. The flexibility comes from separating the sensor elements 
from the readout and permitting different types of sensors to measure dif-
ferent devices—and producing different readouts with the same accelera-
tion channel. 

In this project, you will use some components not too frequently 
encountered in Arduino projects, such as a crystal oscillator to provide 
precise timing (outside of the crystal oscillator used in the Nano), infrared 
LEDs, phototransistors, logic gates, a 12-stage digital counter, and a digital-
to-analog converter (DAC) to help perform the counting function. 

A word  of Warning 

With deference to Jean Shepherd’s A Christmas Story (in which everyone warns 
Ralphie, “You’re going to shoot your eye out!”), remember that any firearm is 
inherently dangerous, and many air-powered weapons can fire at lethal force. 
Whether you test an air-powered device or a weapon using high-powered bul-
lets, use extreme caution. The Full Ballistic Chronograph and the Lite version 
were developed, tested, and made primarily for lower-powered weapons using 
CO2 and air power to accelerate projectiles. Though the device is capable of 
measuring bullets from traditional firearms, such as the 9 mm pistol mentioned 
earlier, it was not developed or tested for that application. I strongly recom-
mend that you not attempt to use the device you build in this chapter in such 
applications. 
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What Is a Ballistic Chronograph?
A device for measuring the velocity of a high-speed projectile exiting a 
firearm is generally known as a ballistic chronograph. The term chronograph 
was co-opted from the horological community and is now widely used to 
describe instruments for measuring the speed of bullets, arrows, darts, and 
so on.

This chapter proposes two versions of the Ballistic Chronograph: one 
offering the ability to accurately measure very high-speed projectiles and a 
Lite version offering a little less precision but a far simpler implementation. 
Though I refer to the simpler build as the “Lite” version, it is by no means 
unsophisticated. 

Commercial Chronographs
There are several commercially available chronographs, most of which 
are intended for high-powered pistols and rifles. Chronographs are usu-
ally placed on the ground or a table in front of the shooter. Most of the 
popular commercial devices depend on ambient sunlight for operation 
and, therefore, don’t work indoors or on overcast days. And while they 
are modestly priced, they are not really cheap.

Chronographs vary from simple two-wire devices (still in use and 
believed by some to be the most accurate) to relatively elaborate units with 
digital memory, average velocity calculations, and other features. The two-
wire approach simply uses two thin strands of wire (36- or 40-gauge wire 
will do) stretched between two pairs of contacts accurately spaced apart. 
The projectile is shot and breaks the first wire to start a timer, and then, 
if you have good aim, breaks the second wire to stop the timer. The time 
between breakages is calculated to provide a speed value in feet or meters 
per second. The very early chronographs were built with a clock, which had 
readouts of ones and zeros displayed in a bank of LEDs. The binary num-
ber had to be translated to a decimal number and then calculated with the 
distance between the wires to get the velocity.

Measuring Muzzle Velocity
Now that you know what types of prebuilt chronographs are out there, 
let’s take a look at the physics of the device. A projectile leaving the muzzle 
of a weapon has a velocity imparted to it by some propellant, such as air, 
CO2, or the gas created by the rapid oxidation of the fuel in gunpowder. 
The projectile travels down the barrel and exits the muzzle. The speed of 
the projectile as it exits is called muzzle velocity. 

The muzzle velocity of air-powered guns tends to vary depending on 
several factors, including the charge of the propellant, cleanliness of the 
barrel, and projectile-to-barrel matchup. Some air rifles can be pumped to 
almost 3,000 psi (pounds per square inch) to fire larger projectiles at rela-
tively significant velocities. These larger air guns have relatively low muzzle 
velocities in the sub-1,000 fps range, but they pack a real punch. Compared 
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to conventional air rifles, which shoot 0.177-inch pellets that pack between 
15 and 25 ft-lbs (foot-pounds) of power, these larger-bore rifles offer 
between 500 and 700 ft-lbs of power. 

Ideally, you would want to measure the velocity as close to the end of 
the barrel as possible. However, this can be difficult, and some chrono-
graph makers claim that the velocity is not attenuated much in the first sev-
eral feet (or even yards) of travel. On the other hand, there is little doubt 
that air resistance is a significant factor, and the projectile will slow at least 
somewhat in the first few feet—especially in the case of larger projectiles. 

This Project’s Approach
As in the two-wire ballistic chronograph systems, we’re trying to measure 
the time it takes for a projectile to travel a fixed distance. But instead of 
breaking thin wires, this project takes advantage of an infrared light source 
and light-sensitive receiver, as illustrated in Figure 8-2. 

LED LED

Detector Detector

Sensor channel

Light beam Light beam
Start clock Stop clockProjectile

3 inches

Figure 8-2: The basic principle in measuring the speed of the projectile is to have it break 
a beam of light to start a clock and then break another beam of light to stop the clock. 

Two pairs of LEDs and IR sensors are arranged so that the IR sensor 
normally detects the light source. But when the projectile breaks the light 
beam of the first pair, the sensor goes dark and changes its electrical state. 
The processor senses this change and starts a timer. When the projectile 
interrupts a second source/receiver pair, the timer stops. The two sets of 
light sources and receivers are set an accurate distance apart so the time of 
travel can be relatively easily calculated into projectile speed. 

For a simple example, say the beams of light are set a foot apart. A pro-
jectile interrupts a beam of light and starts the clock; when the projectile 
interrupts the second beam of light, the clock stops. If the microcontroller’s 
timer measured 1 second, the velocity would be 1 foot in 1 second, or 1 fps. 

This system can be used with a variety of projectiles and provide a digi-
tal readout on an LCD. Unlike other approaches, this device separates out 
the sensor bank from the electronics such that, if desired, different sensors 
can be swapped in and out for different firearms or even different applica-
tions. For instance, you could set up a sensor channel and do some basic 
physics experiments by dropping small objects through it and recording 
their velocity.
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The Chronograph Lite
First, we’ll take a look at the Chronograph Lite, which is simple to construct 
and has only a handful of parts.

Required Tools 
Soldering iron and solder

Drill and drill bits (1/2, 1/4, and 1/8 inches)

Philips head and slotted screwdrivers

Saw (keyhole or saber saw)

Parts List
One Arduino Pro Mini or clone

Two IR LEDs, about 650–850 nm 

Two IR photosensors (I used the Honeywell Optoschmitt SA5600.) 

N o t e 	 Some users have had trouble matching the IR LEDs with the Optoschmitt photo
sensors. If you run into this problem, try the Honeywell SE3450/5450 or equivalent. 
Another option is to use two Adafruit IR Break Beams (part #2167) instead of the 
separate LEDs and sensors. The IR Break Beams will work for the Chronograph Lite, 
but the output must be inverted for the full version.)

One 270-ohm, 1/8 W resistor 

(Optional) Two 10-kilohm, 1/8 W resistors (if using phototransistors 
rather than Optoschmitt photosensors)

One channel holding two LED/sensor pairs

One 16×2 LCD

One I2C adapter, if not included with the LCD

One x4 adapter housing (see “Connectors Used in This Book” on 
page 18)

Four female pins for housing (see “Connectors Used in This Book” on 
page 18)

One SPST switch

One momentary NO switch

One 9V battery connector 

One 9V battery

One Hammond 1591 BTCL enclosure or equivalent

Two 7 1/2 × 1 1/2 × 0.06–inch aluminum pieces

One 1 3/8 × 7 1/2–inch piece of 1 3/8-inch acrylic sheet

Two #10-24×1-inch nylon screws

Two #10×24 nylon nuts
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Four 4-40×1/2-inch screws

Eight 4-40 nuts

Four 4-40 washers

Assorted 28-gauge hookup wire

Downloads
Sketch  ChronographLite.ino 

Templates  PanelCutoutLite.pdf, PanelCutout.pdf, AccelerationChannel.pdf

The Schematic
Outside the Arduino board, the circuitry for this project is not very com-
plex. The schematic in Figure 8-3 uses the I2C bus to power the LCD, two 
connections for the photosensors, and two connections for the clear switch. 

Figure 8-3: The schematic of the Chronograph Lite. The primary schematic shows the phototransistors and 
the alternate section shows the Honeywell Optoschmitt sensors (bottom left). 

Building a Test Bed
Figure 8-4 shows the test bed that was used to prove the concept and 
develop the sketch. I suggest you build your own and install your LEDs 
and photosensors into it before building the breadboard. 

Figure 8-4: The test bed I initially 
used to check out the chronograph 
concept
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For this test bed, I cut two pieces of 
cardboard approximately 2×6 inches 
and punched them to fit two pairs of 
IR LEDs and phototransistors that were 
spaced 3 inches apart. I then screwed 
the cardboard to a 1-inch-thick piece of 
wood, though you could glue or staple 
it if you prefer. When you build yours, 
be sure that each phototransistor is 
directly opposite an IR LED in the 
channel.

After installing the IR LEDs and 
phototransistors into the test bed, I 
recommend preparing them for the 
breadboard as follows:

1.	 Connect the two IR LED anodes 
with a piece of wire by soldering or 
wire-wrapping. 

2.	 Solder one 24-inch length of wire 
to the combined LED anodes. If 
you’re using solid-core wire that fits 
in a breadboard, you can just strip 
the other end of the 24-inch wire. 
If you’re using stranded-core wire, 
attach a male crimp pin to the end 
of the wire. 

3.	 Connect the two IR LED cathodes 
with a piece of wire by soldering or 
wire-wrapping.

4.	 Connect the two phototransistor emitters with a wire by soldering or 
wire-wrapping. 

5.	 Connect the combined IR LED cathodes to the combined phototransis-
tor emitters; I suggest soldering a long wire.

6.	 Solder a 24-inch length of wire to the combined LED cathodes and 
phototransistor emitters, and finish the other end of the wire with a 
male crimp pin, as you did in step 2.

7.	 Solder a 24-inch length of wire to each phototransistor’s collector, and 
finish the other end of the wire with a male crimp pin, as you did in 
step 2.

In Figure 8-4, the LEDs and light sensors (these will be phototransis-
tors or Honeywell Optoschmitt sensors depending on your choice) are 
placed in holes punched in the cardboard of the acceleration channel. 
I used a relatively small hole punch so that friction would hold them in 
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place. You could instead glue them with hot glue or contact cement. I 
used a 24-inch length of four-conductor telephone wire to connect the 
channel to the breadboard, but any wire will do. In the completed version 
and in other prototypes, I just used four lengths of 30-gauge twisted wire 
because it was more flexible. Alternatively, you could build the final sen-
sor channel now. 

The LEDs and phototransistors will need to be wired to the Arduino, as 
indicated in the schematic diagram in Figure 8-3. I wired the LED anodes 
to the power supply through a 270-ohm resistor (R3). In the case of the 
phototransistors, I set them up so that the emitters were grounded and each 
collector went through a 10-kilohm resistor (R1 and R2) to the positive of 
the power supply for an open-collector configuration. Thus, if the beam of 
light were interrupted, the phototransistor would conduct, and the voltage 
at the collector would drop.

N o t e 	 If you use the Honeywell Optoschmitt SA5600/5610, the 10-kilohm resistors (R1 and 
R2) are not required, as they are included in the SA5600/5610 chip. The wiring of 
the Optoschmitt sensors is shown in the lower left of the schematic in Figure 8-3.  

Rather than shooting up the office with live paintballs, BBs, or pellets, 
I set up the gig vertically so a projectile could be dropped through the light 
beams to test the system. This method meant that the velocities measured 
didn’t approach those of a projectile leaving a weapon’s barrel, but it was 
good enough for an initial proof-of-concept experiment. The higher the 
target was dropped from, the higher the recorded velocity—that is, if your 
aim is good. (Remember s = (1/2)at2, where s is displacement or distance, 
a is acceleration due to gravity, t is time, and initial velocity is zero.)

If ambient light causes problems in testing, an additional piece of 
cardboard can be taped to the top (side) of the two pieces of cardboard 
to shade the sensor, though I didn’t find this was a problem in any of the 
experiments I conducted.

The Breadboard
The next step is to build a breadboard, as shown in Figure 8-5. For this, 
we’ll use the Chronograph Lite schematic in Figure 8-3. The most compli-
cated part of the circuit is wiring up the photosensors and LEDs, which are 
not plugged directly into the breadboard but rather need to be installed in 
the sensor channel, as described in the previous section. 

Whether you have already made the finished channel or are using the 
cardboard prototype, you will need to connect the sensors and LEDs in the 
channel to the breadboard—or, for that matter, to the completed unit—
with four wires: positive, ground, first sensor, and second sensor.
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Figure 8-5: Photosensors and LEDs in the early prototype  
attached to the breadboard via discrete wires. To test the  
unit, a coin was dropped through the channel.

Here’s how to wire the breadboard: 

1.	 Connect the red positive rails together and the blue negative rails 
together. Do not connect the red positive rail and blue negative rail to 
each other under any circumstances—it will result in a short circuit and 
damage to components.

2.	 Insert the Arduino Pro Mini or clone in the breadboard, leaving a fair 
amount of room—about four or five rows—at one end.
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3.	 Connect the Vcc pin on the Mini to the red positive rail.

4.	 Connect the GND pin on the Mini to the blue negative rail. 

5.	 Take two 10-kilohm resistors (R1 and R2) and connect one end of each 
to the red positive rail. (Note that these are not required if you are using 
the Optoschmitt SA5600 photosensor.)

6.	 Connect the other end of resistor R1 to pin D4 on the Mini via a 
jumper wire. 

7.	 Connect the other end of resistor R2 to pin D2 on the Mini via a 
jumper wire. (If you use the Optoschmitt photosensor, you can con-
nect pins D2 and D4 directly to the output pins on the photosensors, 
as shown in the bottom left of Figure 8-3.)

8.	 Connect the collector pin of phototransistor Q1 to pin D2 on the Nano 
using the attached 24-inch wire.

9.	 Connect the collector pin of phototransistor Q2 to pin D4 on the Nano 
using the attached 24-inch wire.

10.	 Connect one end of the 270-ohm resistor R3 to the red positive rail.

11.	 Connect the other end of resistor R3 through one of the 24-inch 
lengths of wire to an empty row on the breadboard.

12.	 Connect the combined anodes of LED 1 and LED 2 to the row where 
you connected resistor R3 in step 9 via the attached 24-inch wire. 
Refer to Figure 8-3 to see how the LEDs are wired together and to the 
breadboard. 

13.	 Connect the 5V pin and the GND pin on the Mini to Vcc and GND on 
the LCD, respectively.

14.	 Connect pin A4 on the Mini to the SDA connection on the LCD.

15.	 Connect pin A5 on the Mini to the SCL connection on the LCD.

Now you’re ready to enter the sketch.

The Sketch 
Now to write the sketch to make things work. Here is the sketch for the 
Chronograph Lite:

//Lite version of chronograph, using Optoschmitt sensors

#include <Wire.h>
#include <LiquidCrystal_I2C.h>

unsigned long start_time = 0;
unsigned long stop_time = 0;
unsigned long time_of_flight = 0;
float velocity = 0;
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LiquidCrystal_I2C lcd(0x3F, 20, 4);

void setup() {
  Serial.begin(9600);
  pinMode(2, INPUT);
  pinMode(4, INPUT);
  lcd.init();
  lcd.backlight();
}

void loop() {

u   while(digitalRead(2) == 1) {
    //Waiting for first sensor to trip
  }

v   start_time = micros();

w   while(digitalRead(4) == 1) {
  }

x   stop_time = micros();

y   time_of_flight = stop_time - start_time;

  Serial.print("  time of flight         ");
  Serial.println(time_of_flight);

  velocity = 1000000*.25/(time_of_flight);

  lcd.clear();
  lcd.print("tm of flt ");
  lcd.print(time_of_flight);
  lcd.print(" us");
  lcd.setCursor(0, 2);
  lcd.print("Speed FPS    ");
  lcd.print(velocity);
}

The sketch is pretty straightforward. After setting up the variables and 
inputs, a while loop waits for the first sensor to be interrupted by checking 
the condition digitalRead(2) == 1 u. When tripped, the clock is started with 
start_time = micros(); v, and another while loop counts until the second 
sensor is activated (because the second sensor is plugged into pin D4, this 
while loop checks whether digitalRead(4) == 1 w). When the second sensor 
is activated, the clock is stopped with stop_time = micros() x. 

The sketch then calculates the time that lapsed between the first sensor 
and the second with time_of_flight = stop_time – start_time at y. Once the 
sketch makes its calculations, it provides instructions to display the results 
on the LCD screen. 
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All you need to do now is load the sketch, stand the test channel up as 
in Figure 8-4, and drop a projectile like a marble through the cardboard 
channel. To begin, power the Mini with the programmer. Alternatively, you 
can use a separate regulated 5V power supply connected to the 5V terminal 
on the Mini, or you can connect a battery to the VIN port of the Mini and 
use the Mini’s on-board regulator. Do not connect a 9V battery to the 5V 
supply rails—it could burn everything out. 

When you’re satisfied that the sensors are working, you can attach your 
temporary sensor channel to a real air pistol if you’d like to test the circuit 
further (see Figure 8-6).

Figure 8-6: Photoelectric sensors in an early prototype, attached to a Crossman 0.177 
caliber air pistol. The setup was obviously primitive, using a C-clamp to hold the channel 
to the weapon. Because the test channel was so simple, I set it up on my desk. 

If this is enough for your needs, you can package this up and skip every-
thing in “The Full Ballistic Chronograph” on page 233. The Chronograph 
Lite should work well for games and low- and medium-velocity weapons (less 
than 600 fps), such as pellet guns, BB guns, airsoft weapons, and so on.

Despite satisfactory performance, however, I was bothered by the fact 
that, while the Arduino can count microseconds, it can deliver results only 
as multiples of four, so in reality the resolution is only 4 microseconds. That 
is why I developed the Full Ballistic Chronograph project. If this bothers 
you, too, and you don’t plan to package up the Chronograph Lite, you can 
skip to “The Full Ballistic Chronograph” on page 233 now. 

Te  s t ing t he Chronograp  h L i t e w i t h a  

Projec t ile  Simula tor

To test the Chronograph Lite or Full Ballistic Chronograph for errors, I made a 
simulator to simulate the effect of a projectile traveling through the two sensors 
rather than shooting up my work area with pellets or paintballs. I primarily used 
the simulator in development—it is not necessary for the completion or use of 
either chronograph in this chapter—but it provides some insight into how to turn 
on and off relatively high-speed signals. 

I used a square-wave generator (see Chapter 9 if you want to create your 
own) and made a very simple breadboard simulator. The schematic of the simu-
lator, shown in Figure 8-7, includes only the turn-on and turn-off functions and is 
driven by the square-wave generator. 

Figure 8-7: Schematic of the simulator used to simulate the sequential  
firing of the Optoschmitt sensors. It is used in conjunction with a square- 
wave generator. Resistor R1 and capacitor C1 can be adjusted for  
satisfactory debounce, but the values shown worked well. 
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I used a square-wave generator (see Chapter 9 if you want to create your 
own) and made a very simple breadboard simulator. The schematic of the simu-
lator, shown in Figure 8-7, includes only the turn-on and turn-off functions and is 
driven by the square-wave generator. 
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firing of the Optoschmitt sensors. It is used in conjunction with a square- 
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satisfactory debounce, but the values shown worked well. 

(continued)



230   Chapter 8

Construction
To complete the Chronograph Lite project, all you have left to do is to 
package the Mini, display, battery, and appropriate switches in an enclo-
sure, leaving a connector exposed to connect the unit to the sensor chan-
nel. Unlike most of the other projects in this book, I did not use a shield 
for the Chronograph Lite, because the wiring to the Mini was sufficiently 

The simulator receives a clock signal from the square-wave generator. 
On initiation, depressing the switch (labeled SW in Figure 8-7) on the simu
lator begins the sequence of start and stop signals from the CD4017 decade 
counter. A manual switch (SW) fires the simulator after a debounce from a 
NE 555 timer. The function of the simulator is to turn the connections to the 
photosensors on and off just as if a projectile were traveling through the start 
and stop LED/photosensor pair. Figure 8-8 shows a breadboard for the simu-
lator with the finished board and square-wave generator.

Chronograph
module

DAC

Simulator
firing switch

Reset
switch

Clock module
and NAND gate

Simulator
board

Figure 8-8: The simulator breadboard and the square-wave generator hooked 
up to the finished prototype board for the Full Ballistic Chronograph. The simu-
lator works equally well with either the Chronograph Lite or the Full Ballistic 
Chronograph. 
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straightforward that it did not require one. I used a Hammond ABS plastic 
enclosure 1591 BTCL, as indicated in the parts list. See Figure 8-9 for the 
completed Chronograph Lite.

Figure 8-9: Front view of completed Chronograph Lite. A hole is cut into the enclosure 
to the right of the screen to allow space for the backlight protrusion. 

Figure 8-10 shows the template for the enclosure. You can download a 
PDF of this drawing from https://www.nostarch.com/arduinoplayground/ and 
use it to mark and center punch the enclosure for the holes.

A

1 in

B

C

D

0.5 in

0.956 in

0.078125 in

0.15625 in

0.171875 in

2.64 in
B

B

B

A

Figure 8-10: Template for holes and display for the Chronograph Lite 
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I prepared the enclosure for the Chronograph Lite as follows: 

1.	 Carefully mark, center punch, and drill 1/2-inch holes for the corners 
of the display (A), 1/8-inch holes for the mounting holes for the display 
(B), 1/4-inch holes for the on/off switch (C), and 1/4-inch holes for 
the clear switch (D). 

2.	 For the LCD screen, mark the edges of the 1/2-inch holes (A). Draw 
lines connecting the edges so you have a rectangle to cut out. (You can 
use a Sharpie marker and clean excess markings later with alcohol.) 
Drill the holes and cut the opening along those lines using a keyhole or 
saber saw.

3.	 There’s a slight protrusion in the middle of the LCD on the right-
hand side (facing up); this is part of the backlight assembly. You can 
cut a hole to accommodate for this, as I did in Figure 8-10, or you can 
leave the edge straight and use spacers to keep the protrusion from 
hitting the enclosure.

4.	 Mount the display and fasten it in with 1/2-inch-long 4-40 mounting 
screws and nuts. If you made a cut out for the LCD backlight protru-
sion, you can mount the display directly. If you did not, use extra 
4-40 nuts to space the display back from the face of the enclosure. If 
needed, add additional washers; 4-40 nuts can vary in thickness. 

5.	 Mount the on and clr switches as indicated in Figure 8-9.

Now to wire up the Pro Mini. There is no shield, so we will solder 
directly to the Pro Mini board as follows:

1.	 Solder the wires for the I2C connection. To make your life easier, use 
colored wire and create a code for yourself. Solder connections to the 
5V (some clone boards may say VCC) and GND pins on the Nano. 
Then, solder 3-inch wires to pins A4 and A5 on the Nano. Connect 
the other end of these wires to a four-pin female connector. (See 
“Connectors Used in This Book” on page 18 for details on making 
Pololu connectors.) Connect the 5V and GND pins on the Nano to 5V 
and GND on the LCD. Connect pin A4 on the Nano to SDA on the I2C 
board, and A5 on the Nano to SDL on the I2C. 

2.	 Connect the positive (red) wire of the battery connector to one side of 
the SPST switch. Connect the other side of the switch to the VIN termi-
nal on the Nano (some clone boards may say RAW). 

3.	 Solder the black (negative) wire from the battery connector to the 
GND pin on the Nano. 

Finally, connect the Nano to the sensor channel as follows: 

1.	 Prepare a four-conductor female Pololu connector with four color-coded 
wires approximately 3.5 inches long. Attach two wires (I suggest red and 
black) from this connector to the VCC and GND pins on the Nano.
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2.	 Connect the remaining two connectors to pins 2 (D2) and 4 (D4) on 
the Nano. 

3.	 Make a slot or hole in the side of the enclosure, and run the Pololu 
connector with the sensor channel connections through it (see 
Figure 8-11).

Figure 8-11: A slot in the enclosure for threading the four-pin sensor channel connec-
tor through. The connector is mounted with double-sided adhesive

4.	 Connect one side of the clr pushbutton to GND and the other side to 
the RST (reset) pin on the Nano.

5.	 Finally, connect the battery, screw on the top of the enclosure, plug in 
the sensor channel, and flip the switch to turn on the device. 

You should be all set to use your Chronograph Lite. Go to “Final Setup 
and Operation” on page 252 for instructions on using the Chronograph 
Lite. 

The Full Ballistic Chronograph
While the Chronograph Lite worked well and I used it to successfully mea-
sure projectile speeds, I had a nagging feeling that it could be better. If 
you’re using the device for slow-speed projectiles—that is, 600 fps or less—
the accuracy of the Chronograph Lite is more than enough. But the restric-
tion to 4 microseconds of resolution resulted in what I perceived to be a fair 
amount of error in feet-per-second (fps) at higher speeds, so I decided to 
construct the Full Ballistic Chronograph.
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Required Tools 
Soldering iron and solder

Drill and drill bits (1/2, 1/4, and 1/8 inches)

Philips head and slotted screwdrivers

Saw (keyhole or saber saw)

Parts List
Assembling the Full Ballistic Chronograph is relatively simple. Here’s what 
you’ll need:

One Arduino Nano or clone

One 16×4 LCD 

One I2C adapter, if not included with the LCD

One PCB shield

One enclosure (Hammond 1591 BTCL)

Four 1/2-inch×4-40 screws

Four 4-40 nuts

One 3PDT toggle switch

Two momentary pushbutton switches

Four 0.100×4 female headers

Four female X4 shells

Sixteen (eight male, eight female) adapter pins

One 4 MHz crystal

One TI SN 74LVC1GX04 crystal-oscillator driver

One SOT23 adapter board

One HCT 4011 4-input NAND gate

One CD4013 dual D flip-flop

One CD4040 12-stage binary counter

One ADC DAC8562 digital-to-analog converter

One LM7805 voltage regulator

One NPN transistor 2N5172 (or equivalent)

Four 5-kilohm, 1/8 W resistors

One 1-megaohm, 1/8 W resistor 

One 1-kilohm, 1/8 W resistor

One 1.5-kilohm, 1/8 W resistor

One 270-kilohm, 1/8 W resistor

One 4.7 MFD tantalum capacitor 

Two 33 pF capacitors
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One 0.01 µF capacitor 

One 5 mm LED

Two IR detectors (I used the Honeywell Optoschmitt SD5610.)

Two IR LEDS, about 850–950 nm

28- or 30-gauge hookup wire

N o t e 	 For the Full Ballistic Chronograph, you will have to use the inverted version of 
the chip, the SA5610, or externally invert the signals. See the note at the bottom of 
Figure 8-3. 

Downloads 
Sketch  FullBallisticChronograph.ino

Templates  ChronoCover.pdf, AccelerationChannel.pdf 

PCBs  ChronoPCB.pcb, LEDHolder.pcb, SensorHolder.pcb

Improving the Accuracy
There are several possible solutions for improving the accuracy of the chro-
nograph. The Arduino Nano uses a 16 MHz clock, yet when configured using 
the Arduino Nano platform and IDE, it results in a 1 microsecond resolution 
(±2 microseconds), even though the period—the time between cycles—of 
a 16 MHz clock is 1/16,000,000 of a second, or 0.063 microseconds. While a 
processor could never resolve down to its own clock speed, it’s probably capa-
ble of much better than 1 microsecond. Clearly there is some overhead in the 
current project—perhaps part hardware (the components in the Arduino 
board) and part software (the compiler and firmware part of the IDE)—
that limits performance. Here are some ideas I had to improve accuracy, 
starting with one that didn’t make it into the final project but that I think is 
educational.

Digging into Machine Code

One possible solution is to dig into the basic Atmel machine and AVR code. 
Without going into excruciating detail, AVR assembly is the functional 
language of the Atmel chip. The Arduino community has surrounded that 
with special code that lets the AVR run in the Arduino environment. 

According to the ATmega328 data sheets, it’s possible to directly address 
the individual timers on the ATmega328 and get the resolution required. 
However, looking into it, I saw that this method could prove overly complex 
and figured there had to be another way. 

Creating a High-Speed Window

The time of flight of a projectile that we want to look at covers a range 
of roughly 90 microseconds (about 3,000 fps in a 3-inch distance) to 
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950 microseconds (about 260 fps in the same 3-inch distance) from fastest to 
slowest. Relative to the higher frequencies of some clocks, such as the 16 MHz 
clock of the processor, 90 microseconds is a fair amount of time. 

One method for measuring the velocity is to open a timing window 
when the first beam of light is interrupted that lets a stream of high-speed 
signal through until the second beam is interrupted. While the window is 
open, the pulses in that signal will be counted; when the window is closed, 
the count will represent the time the window was open. 

As an example, say the window opens and a signal of 10 cycles per sec-
ond (cps) passes through until the window closes; 100 cycles are counted. 
For this illustration, the Arduino’s clock is the high-speed signal.  When you 
know the distance the projectile traveled, you can use some simple arithmetic 
to determine the time of travel and the speed: 100 cycles at 10 cps gives us 
10 seconds. If the distance were 1 meter and 100 cycles were counted while 
the window was open, the speed would be 1 meter per 10 seconds or 0.1 m/s.

A single NAND logic gate can be used to make a window that can be 
opened and closed. A logic gate is simply an electronically controlled switch 
that outputs a voltage only under certain conditions, corresponding to a 
Boolean logic equation. NAND is the Boolean expression for “not AND,” 
and a NAND gate outputs a voltage when its two inputs are not the same. 

I sampled both a 74HC00 high-speed NAND gate and a standard 
CD4011BC gate, and the standard part works fine. There are several other 
parts that will work, too—what you’re looking for is a part with a propaga-
tion delay (TPD) under 100 nanoseconds. 

Selecting a Counter

After deciding to take the window approach, the next thing to consider 
is how high you need to count. If you were to count in integers from 1 to 
100, for example, you would need a counter that could count to 100, which 
would provide a resolution of 100. If you scaled that up, the counter could 
provide a range from 10 to 1,000 or from 100 to 10,000. If that range were 
the result of the calculation for fps, you would then have a resolution of 
only 1,000 fps (each increment would equal 100 fps) plus any included 
error, which we’ll go into later. 

So where should you go from here? To the parts bin, of course, to see 
what counters are available to count the signal passing through that win-
dow. When selecting a counter, you need to consider how fast it needs to 
be and how many pulses you want it to count. The tried-and-true CD4040, 
12-bit, serial-in, parallel-out, digital counter seemed capable of doing the 
job. (The CD4040 worked at the 4 MHz frequency, but you could always use 
a faster one, like the 74HC4040 or 74HCT4040.) The CD4040 will provide a 
digital count from 0 to 4095, or 212. 

Selecting a Clock Speed

Next, consider what signal frequency is needed in order to suit the range of 
projectile speeds. I started with the assumption that I wanted to achieve a 
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range of roughly 300 fps to 2,500 fps with as much latitude on both ends as 
possible.  

Further, while the counter will ideally count from zero to the maximum 
4,095 counts, there is the possibility of some error. So rather arbitrarily, I 
chose to look at the total digital count between 400 and 4,000 to account 
for the possibility of error. 

Given the number of cycles counted, the signal frequency, and the dis-
tance traveled, the velocity of a projectile can be found with the following 
calculations:

1
Frequency

Time per Cycle=

Time per Cycle Total Cycles Time of Flight    ×  =  

Distance Traveled
Time of Flight

Velocity  =  

Let’s go through the arithmetic for a projectile that travels 0.25 feet 
(3 inches) within 4,000 cycles of a 2 MHz signal:

1
2

0 0000005
 MHz

s per cycle     = .

  ×0 0000005 4 000 002. , .s per cycle  cycles =  s in flight    

.
.
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0 002
125

 ft
 s

 s in flight  =  

For a 4 MHz clock, a full 4,000 cycle count will amount to about 281 fps 
for the low end of the speed range. At the high end, given 400 cycles counted 
and a 2 MHz clock signal, you will measure 1,250 fps, and at 4 MHz, you can 
measure up to 2,500 fps.

You can be creative with your frequency. If you elect to use a 2 MHz 
clock, it will provide maximum resolution in the very low-speed range. If, 
on the other hand, you select a 4 MHz clock, you will be in the middle of 
the resolution range. An 8 MHz clock will provide a very good resolution 
in the fast range (faster than any conventional weapon) but will curtail per-
formance at the lower-speed range. 

Because I anticipated that the bulk of speeds I needed to measure 
would fall in the middle of the counting range, a clock around 4 MHz 
sounded good. I was not anticipating many occasions when velocities 
would be in the sub-300 fps range, and at the high end, it looked like 
accuracy could be maintained to well over 5,000 fps (a digital count of 



238   Chapter 8

just under 200, which might be stretching it a little but seemed to work 
well in simulations). 

If your projectiles remain in the sub-300 fps range, I suggest revisiting 
the Chronograph Lite. If, for some reason, you want to stay in the lower fps 
range but require maximum accuracy with perhaps multiple digits, build 
the Full Ballistic Chronograph with the slower clock rate. You can simply 
swap out the 4 MHz crystal for a 2 MHz crystal and adjust the sketch to slide 
the range down to the lower area.

Adjusting the Clock Speed 

To address the speed of the clock (the signal that is gated to the counter), 
the most accurate method by far is to use a crystal-controlled oscillator, 
which generally has errors only in the sub-50 parts per million range. I 
configured a 4 MHz crystal with the TI SN 74LVC1GX04 crystal-oscillator 
driver experimentally and it worked well, so I used one in the final project.

While I did look at, review, and test single-chip oscillators, such as the 
Maximum stand-alone oscillator (7375), it was not quite as stable as the 
crystal-controlled version. 

Designing the Full Ballistic Chronograph
Now, we have the means to clock the signal into the 4040 counter, but we 
need to figure out how to display the velocity on the LCD. One method 
would be to use a different counter with a serial output that would be 
clocked directly into the Nano. Another possibility would be to take the 
parallel data from the CD4040, serialize it with a shift register, and feed 
the result to the Nano. 

However, I took a different direction, as illustrated in the block dia-
gram in Figure 8-12. I decided to use a 12-bit digital-to-analog converter 
(DAC) to accept the parallel digital signals and convert them to a single 
analog value. DACs and their counterpart, analog-to-digital converters 
(ADCs), are used in digital music, TVs, and a host of other areas where an 
analog input needs to be digitized, manipulated, transferred, stored, and 
eventually output to return an analog signal. I thought this would be a good 
opportunity to introduce the capabilities of digital-to-analog converters.

Simulator

Square-wave
generator

Timer
firing switch

Flip-flop

Turn on and
off gate

Start

Stop

Gate Binary counter

DACOscillator

Arduino
Nano LCD

T
B

1 2 12

A

(...)

Figure 8-12: Block diagram of the Full Ballistic Chronograph
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The process in Figure 8-12 depicts the operation of the chronograph 
using a simulator. In actual operation, the simulator would be replaced with 
the two LED-sensor pairs. The simulator, under control of the firing switch, 
initiates a start signal that remains active until the second stop switch is acti-
vated after a period determined by the square-wave generator. This essen-
tially simulates the projectile passing through the first and then the second 
pair of sensors.

When the start switch is activated initially, it turns on the flip-flop—a bi-
state device that turns on with the activation of the start switch and remains 
on until the stop switch is activated. The flip-flop feeds the trigger of the 
gate. When the trigger (T) is inactive—that is, when it’s set to a logical 0—
the signal from the oscillator at input (A) cannot go through the gate to 
output (B). When the trigger is activated (set to a logical 1), the gate allows 
the signal from the oscillator (A) to travel through the gate to output (B) and 
eventually to the input of the binary counter. The binary counter counts the 
number of pulses that pass from the oscillator through the gate and stops 
counting when the gate closes. 

The outputs of the binary counter are fed to the DAC. They represent 
binary numbers from 0 through 4,095—that is, 0 through 212 – 1. The DAC 
converts these digital values to a single analog value. The technique of this 
conversion depends on the type of DAC used; for example, in the DAC8562 
used here, an R-2R resistor ladder is switched, and a transistor is used to 
yield the output. (For complete information, look up the data sheet from 
Analog Devices on the DAC8562.)

The output of the DAC has a scale of 0V to 4.095V corresponding to 
the digital inputs. This output is then directed to one of the analog inputs 
on the Arduino Nano, which provides the inverse function of the DAC 
and converts the analog signal back into a digital format that the Nano 
can handle. The Nano takes that signal and, following instruction from 
the sketch, adjusts the value to represent the velocity in fps for the time it 
takes the projectile to travel the 3 inches. The Nano finally sends that data 
to the LCD, which displays the velocity of the projectile and travel time. 

The Schematic
Figures 8-13 and 8-14 show the schematic diagrams for the completed Full 
Ballistic Chronograph. Note the extra gates at the bottom. I included these 
in the schematic because they are available to you in the NAND gate and 
flip-flop IC packages suggested for this project, but my design does not use 
them. If you want to add functionality, they are available.
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Figure 8-13: Schematic of the Full Ballistic Chronograph

Another thing included in the schematic that we haven’t covered is 
the reset button. In the Full Ballistic Chronograph, I included a button to 
trigger the reset rather than having it reset automatically. I could have set 
it so that the result was displayed on the LCD for a fixed period of time 
before the system reset, but it might have turned out that the number was 
erased before users had time to record it, or users may have found them-
selves sitting idle while it timed out. I decided a reset button would be more 
convenient.

Because resetting the microcontroller wasn’t going to upset the 
sequence of things, I chose to use a hard reset on the controller through 
transistor Q1. To reset the CD4040 and the DAC, I used the reset signal and 
then inverted it using one of the CD4011’s four NAND gates with the two 
inputs tied together. SW2 manually closes the second set of sensors in case 
the first pair of sensors fires and not the second, and SW3 is the power and 
battery switch. 
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Figure 8-14: Inverters for Optoschmitt or Adafruit sensors if you use the SA5600  
instead of the SA5610. This circuit uses the previously unused gates of the CD4011 
NAND gate as logic inverters. They are not accommodated for in the PCB, so you  
will have to wire them by hand.

The Sketch
The sketch for the Full Ballistic Chronograph is relatively straightforward:

//Full Ballistic Chronograph

#include <Wire.h>
#include <LiquidCrystal_I2C.h>
LiquidCrystal_I2C lcd(0x27, 16, 2);
int DACpin = A0;
float DACvalue = 0;
float FPS;
float Time;

void setup() {
  lcd.init();
  lcd.backlight();
}
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void loop() {
u   DACvalue = analogRead(DACpin);

  Time = DACvalue*5/1023/4*1000;
  FPS = .25/Time*1000000;
  lcd.setCursor(0,0);
  lcd.print("Speed  ");
  lcd.print(FPS,0);
  lcd.setCursor(11,0);
  lcd.setCursor(0,1);
  lcd.print("Time   ");
  lcd.print(Time);

  lcd.setCursor(11,1);   
  lcd.print(char(0XE4)); //To display the mu symbol, use 228 or 0XE4
  lcd.print("s");
}

In this sketch, the software receives an analog signal from the DAC at u 
and converts it to a digital value. It then goes through a couple of quick 
mathematical operations to come up with the time of flight (Time), calcu-
lates the speed in feet per second (FPS), and finally exports those values to 
the LCD.

In designing electronic circuits, there are always tradeoffs between 
hardware and software. Many of these have to do with timing issues and 
built-in latencies in software-based approaches. In this instance, the trade
off is the need for greater accuracy not available with the straight Arduino 
IDE approach without dropping to some level of native code. To avoid 
native code, the Full Ballistic Chronograph has more complex hardware 
than the Chronograph Lite.

The Shield
Unlike the Chronograph Lite, the Full Ballistic Chronograph is best built 
on a shield. The shield is a little more involved than some of the others in 
this book, but don’t be intimidated. Figure 8-15 shows the actual traces 
of the shield, while Figure 8-16 shows the silkscreen image with the part 
placements and hole configuration. For this project, I opted for a double-
sided board because the circuit was a little more complex than some of 
the others and because it allowed me to minimize the space required. The 
complete PCB file is available for download at https://www.nostarch.com/
arduinoplayground/.

I attempted to keep the shield footprint to a minimum to make it 
possible for the user to squeeze the system into a small portable enclosure. 
As is, the finished Full Ballistic Chronograph fits easily in a 11×8×4 cm box. 

http://www.nostarch.com/arduinoplayground/
http://www.nostarch.com/arduinoplayground/
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Figure 8-15: Trace patterns for the shield. The darker gray is the upper  
copper layer, and lighter gray is the lower layer.

Figure 8-16: The component placement on the shield
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This is another case where I opted to outsource the PCB construction 
after I had made and refined the first sample myself and made sure all criti-
cal connections could be soldered on both sides of the board. Figure 8-17 
shows the raw board as it was received from the service bureau. 

Figure 8-17: The Full Ballistic Chronograph circuit board before population

Soldering the Full Ballistic Chronograph
Once you have all your parts, follow this guide to build the Full Ballistic 
Chronograph:

1.	 Prepare the oscillator adapter board by soldering the headers in place. 
Solder the chip to the adapter using one of the approaches suggested in 
“Using SOICs” on page 20.

2.	 Begin populating the PCB. I usually like to start with the components 
that go under the Nano—in this case, the oscillator adapter board, 
resistors, crystal, and CD4011. Place them in the PCB, as indicated in 
Figure 8-15. Next, I like to include the headers that the Nano plugs 
into. Once again, it’s not necessary to fully populate all the headers for 
the Nano. While on occasion I do use a full complement of headers, I 
tend to populate only those with connections, as well as a pair at the 
very top, in order to simplify alignment when plugging in the Nano. 
Additionally, there should be enough to mechanically support the 
Nano. Solder these headers in place now.
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3.	 Populate the balance of the board, including the headers for the I2C 
display and the sensor channel. Solder wire pigtails to the connections 
on the board for the reset and clear switches, LED, and positive and 
negative power supply. The lead sensor—the one that is interrupted by 
the projectile first—should be the one wired to pin 6 of the 4013, with 
or without the inverter circuit; the other sensor should be connected to 
pin 4. 

Construction
Figure 8-18 shows the positions for the holes and cutout in the enclosure. 
You can download a copy of Figure 8-18 from https://www.nostarch.com/
arduinoplayground/ and use it as a template.

0.956 in

2.64 in

0.15625 in

0.171875 in

0.078125 in

0.5 in
1.0 in

A A

B B

BB

C

D EF

2.00 in
1.00 in

0.62 in

0.37 in

1.25 in

Figure 8-18: The holes and LCD cutout on the cover of the enclosure

Prepare the enclosure for the Full Ballistic Chronograph as follows:

1.	 Prepare the cover of the enclosure, as shown in Figure 8-18, by drilling 
1/2-inch holes for cutting out the LCD (A); 1/8-inch holes for mounting 
the LCD (B); 1/8-inch holes enlarged with a reamer for a tight fit for the 
5 mm LED (F); and 1/4-inch holes for the momentary clear switch (D), 
momentary reset switch (E), and on/off switch (C). 

2.	 Mark the edges of the 1/2-inch holes (A) and connect lines tangent to 
the holes—you can use a Sharpie marker and clean excess marks later 
with alcohol. 

3.	 Cut the opening for the display using a keyhole or saber saw. 
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4.	 There’s a slight protrusion in the middle of the LCD on the right-hand 
side (facing up). This is part of the backlight assembly. You can cut a hole 
to accommodate this, as I did on both the Full Ballistic Chronograph 
and Chronograph Lite, or you can leave the edge straight and use spacers 
to keep the protrusion from hitting the enclosure. Even though I cut a 
space for the protrusion, I used a one-nut spacer anyway to space the 
connections on the top of the screen away from the front of the enclo-
sure (see Figure 8-19).

Figure 8-19: The four-conductor female connector is mounted to the side of the  
enclosure using double-sided adhesive.

5.	 Mount the LCD’s I2C assembly to the front of the enclosure.

6.	 Mount the switches to the enclosure. Connect the switches and LED as 
shown in the schematic in Figure 8-13. Use pigtailed wires as indicated 
in step 3 of “Soldering the Full Ballistic Chronograph” on page 244.

7.	 Prepare cable assemblies to connect the shield to the I2C adapter and the 
4-pin female connector that connects the Full Ballistic Chronograph to 
the sensor channel. (See “Connectors Used in This Book” on page 18 
if you’ve never built a connector yourself.)

8.	 Stick the shield to the bottom of the enclosure using double-sided 
adhesive. 

9.	 Mount the battery holder using a 4-40 flathead screw or double-sided 
adhesive. 
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10.	 Make a cut in the side of the enclosure to feed the wires through to 
the connector for the sensor channel connection. The width of a single 
hacksaw blade is sufficient for 28-gauge wire. 

11.	 Mount the connector for the sensor channel to the enclosure with 
double-sided adhesive, as shown in Figure 8-19.

The Sensor Channel
We built a sensor channel test bed earlier in the chapter, but now we’ll build 
a more permanent sensor channel and look at the sensor and LED pair 
we’ll use inside.

Building the Sensor Channel
The sensor channel is a U-shaped tunnel that fastens to the muzzle of a 
weapon and holds the photo detector/LED pairs that handle the switching. 
This channel can be constructed out of a variety of materials. I used a 3/8-
inch section of acrylic and two pieces of 0.060-inch thick aluminum (see 
Figure 8-20).

Figure 8-20: The completed sensor channel shown from the top (right side up). Note the feed-through holes 
in the acrylic for the positive and negative power supply connections to the LEDs (boxed). Also note the 
current-limiting resistor on the PCB holding the LEDs (circled). The cross-hatch area is foam taped to protect 
the weapon’s slide from being scratched. 

You could just as easily use mild sheet steel for the side pieces. The 
top piece, shown in Figure 8-20, could be any lightweight material, such as 
phenolic, Lexan, or another plastic to support the side pieces. I chose clear 
acrylic because it allowed me to see the gun without having to look down 
the barrel. You can get a wider look at the whole channel, including the sen-
sor cable, in Figure 8-21.
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Figure 8-21: The channel with the cable attached and the PCB mounted so that the con-
nector faces toward the back (where the weapon attaches) 

There are two PCBs, attached to either side of the channel with 
double-sided tape, to hold the LEDs and photosensors. These PCBs are 
slightly different from each other, as shown in Figures 8-22 and 8-23. PCB 
files for these boards are available to download at https://www.nostarch.com/
arduinoplayground/. 

Figure 8-22: The pattern for the PCB that holds the LEDs and mounts to the  
sensor channel. Note the current-limiting resistor.

Figure 8-23: The PCB pattern for the phototransistor side of the sensor channel.  
Note the three pins for each phototransistor. The edge fingers are for soldering to  
headers that connect to the main processing and display board via an umbilical  
cable.

The acrylic top of the sensor channel measured 1 3/8 × 7 5/8 inches. I 
used a straight wooden dowel to line the barrel up with the sensors/LEDs. 
Note that there is a slight indentation, made with a 1/2-inch drill bit, in the 
top of the acrylic to allow for the optical sight of the Crossman T4 air pistol.



Two Ballistic Chronographs   249

The aluminum sheets used for the sides measured 1 3/8 × 7 5/8 inches. 
I drilled the holes to fasten the aluminum sides to the acrylic top with a 
#30 drill bit and spaced the holes 1 inch apart. The acrylic was drilled with 
a #43 drill bit and tapped for 4-40 screws. See Figure 8-24 for drilling speci-
fications for both the acrylic and aluminum pieces. The holes for the acrylic 
are drilled through the width. 

1.00 in 1.00 in 1.00 in 1.00 in 1.00 in 1.00 in

3.00 in

0.75 in

0.5 in

0.625 in

Aluminum side 1

Aluminum side 2

Acrylic 

A B

0.625 in

1.875 in

0.1875 in

0.1875 in

Figure 8-24: Dimensions for holes in the acrylic top and aluminum sides of the sensor 
channel. This template can be downloaded and used as a stencil for marking and center-
punching holes.

In addition, as a feed-through for the wires from the LED side to the 
photo detector side, I drilled two #43 holes on either side of the fourth 
mounting holes on both the acrylic and aluminum pieces. The exact loca-
tion of these holes is not critical. 

In addition to the holes for fastening the acrylic, the aluminum 
required two holes on each side for the LEDs and photo detector pairs, 
and another two holes on one side for mounting to the barrel (slide) of 
the gun (A and B in Figure 8-24), drilled with a #25 drill and tapped for 
a 10-24 screw. Check out how big the IR LEDs are. Most are 5 mm, and a 
3/16-inch hole is generally a close fit. The Optoschmitt sensor also fits 
snugly in a 3/16-inch hole. The holes for the LEDs and photosensors can 
be measured exactly 3 inches apart, or you can measure them yourself to 
match with the PCBs mounted on the side. 

Depending on the weapon(s) you intend to use, you may want to adjust 
the positioning of holes A and B in Figure 8-24. The sensor channel can 
also accommodate more tapped holes for multiple weapons. To mount the 
sensor channel to the top of the gun, I used nylon screws with locking nuts. 
The nylon screws were able to tighten against the blued-steel finish of the 
pistol without marring it. 
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The screws for mounting the gun worked well with the Crossman T4 as 
well as on an older Crossman pellet gun (see Figure 8-25).

Figure 8-25: The sensor channel mounted on an older Crossman pellet gun. This angle shows the top (acrylic) 
side of the channel.

On the inside of the channel, I placed some double-sided adhesive 
foam tape (if you can find a single-sided adhesive foam tape, all the better) 
to give it a more snug fit and protect the weapon from damage. I left the 
protective covering on the other side of the foam so it would not adhere to 
the weapon or mar the finish. 

Depending on the weapon you are using, you might want to add an 
extra layer of foam to pad the channel so the center of the barrel is closer 
to the center of the channel. But as long as the barrel is not so far on either 
side that the projectile could strike either the LED or photo detector, cen-
tering the barrel perfectly is not critical. 

It is critical, however, to center the vertical adjustment so the LED/
detector pairs line up with the trajectory of the projectile. To set this align-
ment, I used a straight wooden dowel of the same diameter as the bore 
of the barrel, inserted it partially into the barrel of the weapon, and then 
adjusted the position so it lined up with the LED/detector pairs. Once it’s 
aligned, tighten the nylon screws to secure the channel to the weapon. 

Optoschmitt Light Sensors and UV LEDs
In preparing the sensor channel, I sampled several different types of 
LEDs and detectors to see which offered the best price and performance. 
Units purchased on eBay (UV LED and phototransistor pairs) worked 
well, and I used them in early prototype versions. However, I continued to 
search for a sensor that I was sure would be fast enough and provide good 
sensitivity in a narrow field, which helps to exclude ambient light. After 
reviewing several samples, I chose the Optoschmitt SD5610 detector from 
Honeywell—so named, I guess, because it includes Schmitt-trigger circuitry 
(see Figure 8-26).
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Figure 8-26: Schematic for the Optoschmitt SD5610 detector I used in the chronograph. 
Note that the 10-kilohm pull-up resistor is included, but the inverter function is not 
included in the schematic. 

The Optoschmitt SD5610 sensor is a little pricey, but it features a 
6-degree acceptance angle, which worked well for projectiles of all sizes, 
including very small and large ones. It also reduced the effects of ambient 
light. 

According to the manufacturer, the photodetector consists of a photo
diode, amplifier, voltage regulator, Schmitt trigger, and an NPN output 
transistor with a 10-kilohm (nominal) pull-up resistor (see Figure 8-26). The 
internal pull-up resistor eliminates the need for an external resistor in the 
circuit. Note that there are two versions of this device: the SD5600 and the 
SD5610. The SD5610 includes an inverter so that the output is low when the 
ambient light is above the turn-on threshold. Because I required the inverted 
output, I used the SD5610. The spectral sensitivity is greatest in the 800 to 
850 nm wavelength—the area of most common IR LEDs. Additional informa-
tion on the SD5600 series can be obtained at Honeywell’s website. 

For the LEDs, I just used regular IR LEDs that claimed output in the 
850–950 nm range. I simply bought a bag of 50 units on eBay, and they 
work fine. Alternatively, SparkFun offers single units very cheaply. 

The LEDs and photosensors should be soldered on the PCBs made for 
them and should fit snuggly into the holes. I fastened the PCB to the sides 
of the acceleration channel using some standard 3M double-sided adhe-
sive tape. 

Sensor Umbilical Cable
The cable I used to connect the sensor channel to the Full Ballistic 
Chronograph’s PCB is made from four lengths of 30-gauge wire twisted 
together, fastened with masking tape, and connected to a female 
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four-conductor Pololu connector at each end. These connectors are 
not polarized and do not have a detent, so they can be relatively easily 
unplugged or plugged in the other way. Before you plug them in, make 
sure to line up the color-coded wire. 

N o t e 	 I initially attempted to use a length of four-conductor telephone cable, but it was too 
stiff and caused problems.

The channel and completed chronograph can be connected easily. 
If you used colored wire, you’ll know that the plug is connected correctly 
because it is not polarized. 

Final Setup and Operation
Once you’ve finished assembling the unit and sensor channel, it’s time to 
take it out on the range and give it a try. Both the Chronograph Lite and 
the Full Ballistic Chronograph have been designed to operate from bat-
tery power, so you don’t need to plug them in. Set up the umbilical cable to 
connect the sensor channel to the chronograph unit, and then mount the 
channel to the weapon securely (see Figure 8-27). 

Figure 8-27: The completed Full Ballistic Chronograph with the acceleration channel 
mounted to a Crossman 0.177 caliber pellet gun

Once the channel is attached to the weapon, carefully align the barrel 
of the weapon with the LED/detectors in the channel by using a straight 
dowel the same diameter as the bore of the barrel or by making a simple 
adapter that uses a straight length of tubing (see Figure 8-28). 
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Figure 8-28: Using a small diameter brass rod with a Teflon end to set up proper align-
ment between the barrel of a Crossman T-4 CO2 pistol and the sensor/detectors in the 
sensor channel 

Warning       	 Always use caution when handling a weapon. Do not look down the length of the 
barrel to align it. Look through the clear acrylic top of the sensor channel.

Using the Full Ballistic Chronograph 
After aligning the barrel as best as possible, turn on the Full Ballistic 
Chronograph and press the reset button. Aim carefully at your target and 
fire the weapon. The velocity of the projectile in feet per second and the 
time it took to travel the 3 inches between sensors should appear on the 
LCD screen. To make another measurement, simply press the reset switch 
and fire again. 

If by any chance you fail to align the weapon in the channel correctly, 
there is a possibility that the projectile will interrupt the first set of photo-
sensors and not the second. In this case, you can press the clear switch and 
then the reset switch to try again. The clear switch simply closes the connec-
tion for the second photosensor set.

The Full Ballistic Chronograph should give accurate readings from 
about 300 fps to well over 2,000 fps. 

Using the Chronograph Lite
The Chronograph Lite operates in much the same way, only it automati-
cally resets so no reset button is required. However, should the projectile 
fail to interrupt the second set of sensors/detectors, it will be necessary to 
clear the display by pressing the clear button. Essentially, this does the same 
thing as interrupting the second sensor/LED pair, but you should always 
use the clear button and never attempt to interrupt the second sensor/detec-
tor pair with an external object—especially your finger. Should the weapon 
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accidentally fire, you could sustain a severe injury. The Chronograph Lite will 
provide accurate measurements from about 200 fps to well over 1,000 fps, but 
its accuracy tends to roll off as it approaches 700 fps. 

High-Pow ered    Weapon    Te  s t ing

Unless you are experienced with firearms, I strongly recommend against using 
the Chronograph to measure high-powered weapons. That said, I did test the 
Full Ballistic Chronograph on a few of them.

Figure 8-29 shows the sensor channel mounted to a Smithfield XP/M 9 mm 
semiautomatic pistol. I tested the Chronograph with a number of cartridges, 
and the measurements came within a couple fps of the manufacturer’s speci-
fication of the bullet. For example, the Remington JHP claims the bullet travels 
at 1,155 fps, and I measured about 1,152 fps. Other weapons also measured 
close to the published velocities.

Figure 8-29: A Smithfield XP/M 9 mm pistol set up with the sensor channel for 
the Full Ballistic Chronograph. The magazine is intentionally inserted backward 
for safety reasons.



9
T h e  S q uare    - Wa  v e  G enera     t or

Signal generators, also called waveform gen-
erators or function generators, create an 

alternating current (AC) voltage that can 
be used in a variety of electronic tests and 

diagnostic procedures. A square-wave generator like the 
one you will build in this chapter (shown in Figure 9-1) 
is an electronic lab instrument that creates a continuous sequence of 
equally spaced pulses of electricity that are on for a certain amount 
of time, switch off for an equal duration, and switch back on again, 
repeatedly.
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Figure 9-1: The completed Square-Wave Generator

Why Build a Square-Wave Generator?
Signal generators like this one are frequently used to perform diagnostic 
jobs, from evaluating the frequency response of components and sub
systems to providing stimulus to systems under development. Some spe-
cific uses for signal generators include: 

•	 Observing the integrity of an amplifier, attenuator, or other device

•	 Measuring timing characteristics of a circuit

•	 Simulating real-world on/off events 

The signal generator part of this project is primarily a square-wave 
generator. 

What Is a Square Wave?
What’s a square wave and what’s it good for, you ask? A square wave is an 
electrical signal that starts at zero voltage, rises to some level (its amplitude), 
stays at that level for some duration, returns to zero, and then repeats the 
process in a symmetric pattern. 

The square wave is one of the fundamental wave forms in electronics, 
and it is in many respects the most useful, in part because it has both a 
DC component and an AC component. The DC component is the fact that 
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it stays at a certain voltage for a period of time and then almost instanta-
neously transitions to a different level. The AC component is that it repeats 
this transition at a regular period. Figure 9-2 shows a square wave. 

Period

A
m

pl
itu

de

Figure 9-2: A typical square wave

The square wave has an amplitude and a period. The period of the 
wave is the duration of a complete cycle, and it could be in seconds, min-
utes, milliseconds, microseconds, and so on. The frequency is how many 
cycles occur in a certain period of time (one second is the accepted stan-
dard) and is therefore the reciprocal of the period. For a period of T, the 
formula to determine the frequency is f = 1/T.

Why Square Waves Are Useful
Square waves are particularly useful when developing and testing electronic 
products. For example, the clock in a microcontroller system is essentially a 
square wave. In some diagnostic and test procedures, the microcontroller’s 
internal clock can be disconnected and replaced by an external signal gen-
erated by a signal generator—in this case, a square wave or sine wave work 
equally well. You can then test the microcontroller at different frequencies. 
For certain processors, it’s often valuable to slow a processor clock during 
testing to see exactly where software glitches occur.

Other uses include sending a signal into a device being tested in order 
to tune the circuit to the proper value or checking a device’s frequency 
response or integrity. A square-wave generator can also act as a pulse gen-
erator to test a variety of digital circuits. You will find this application useful 
in the Ballistic Chronograph in Chapter 8. 

Because a square wave’s voltage starts at zero and rises almost instantly, 
it can also be used as a switching voltage to turn circuits off and on at the 
frequency of the square wave. The frequency of the Square-Wave Generator 
in this chapter ranges from 1 kHz to around 30 MHz (with the divider 
switch included, it can go down to 100 Hz). This frequency range can be 
varied via a potentiometer, so you can turn things on and off at different 
rates. This allows the Square-Wave Generator to simulate almost any repeti-
tive switching action, which is useful for cycling things on and off for life-
test applications, too.
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A Frequency Counter
In addition to providing a signal generator, this project includes a frequency 
counter, which reads wave frequencies, so you can display the generator’s 
output frequency on a digital readout. You can also use the frequency coun-
ter as a separate instrument on its own to measure frequency from an out-
side source and display it. This project also displays the period, or impulse 
time, of the wave. 

Ot her  Use f ul Wav e form s

A square wave is only one common type of waveform, though. Probably the 
most common is the sine wave, or sinusoidal wave, in which the wave is a con-
tinuous curve and one cycle represents 360 degrees. Yet another wave type 
frequently encountered in electronics is the triangle wave. Both are depicted in 
Figure 9-3. The amplitude and period of a sine wave and a triangle wave are 
measured the same way as for a square wave.
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Figure 9-3: A sine wave (top) and a triangle wave (bottom)

Each of these waveforms has specific characteristics that make them useful 
in different applications. Sine waves and triangle waves are both important in 
electronic music projects, for example. This project, however, focuses on the 
square wave, and as you progress through this chapter, you will see it can be 
applied in a variety of ways.
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In operation, the frequency counter receives an AC input signal and 
counts each pulse. After a certain number of pulses have been counted, the 
counter compares this against a clock signal, sometimes referred to as a time 
base, and displays the number of pulses per unit time—for example, pulses 
or cycles per second. 

To assure accuracy, the counter compares the pulses against a clock, 
usually one that is crystal-based. For instruments that require the utmost 
accuracy, the crystal-clock assembly is a precision subsystem often placed 
in a temperature-controlled environment. The frequency counter in this 
project uses the 16 MHz crystal on the Arduino Pro Mini. In fact, the Pro 
Mini has most of the circuitry to implement a complete frequency counter 
with few additional components. It includes the clock registers for counting 
and just about everything else a frequency counter needs with no external 
components. 

N o t e 	 Professional laboratory and desktop instruments selling for hundreds (or thousands) 
of dollars often provide a very wide frequency range, from under 1 Hz to several GHz, 
and offer anywhere from 6- to 10-digit precision. Their displays can be switched to 
read frequency or time (the time between pulses), too. 

To do all of this, the Square-Wave Generator takes advantage of the 
Arduino AT328 16 MHz, 5V Pro Mini, which is a smaller, lower-priced ver-
sion of the Arduino Nano. The generator also includes special circuitry to 
divide a signal’s frequency, allowing you to provide an output of very low 
frequencies at one end and allowing the frequency counter to read very 
high frequencies—above what the Pro Mini can normally handle—at the 
other.

Shortcomings of the Square-Wave Generator
While this project produces a square-wave generator and a frequency counter 
that perform well in many applications, it has shortcomings compared with 
professional laboratory and bench instruments. The generator has a less than 
1 percent frequency error, which is good for hobby projects but doesn’t match 
the tolerances of laboratory-grade and direct-digital-synthesizer (DDS) gen-
erator units. Those units often have errors measured in the part-per million 
(PPM) range. And the frequency counter uses the time base of the Arduino, 
which, while accurate, doesn’t match higher-priced units with crystal ovens 
and other special circuitry. 

This generator also doesn’t offer the resolution of multiple digits. 
Many lab and bench instruments have resolutions that go into as many 
as 10 digits. That said, the instrument has worked well for me in a broad 
variety of Arduino and other projects, where a greater resolution wasn’t 
required. 
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Required Tools 
Drill and drill bits

Keyhole saw

Soldering iron and solder

File

Parts List
In addition to the Arduino Pro Mini, you’ll need a Linear Technology oscil-
lator chip and a small handful of other components. Here’s the complete 
parts list: 

One Arduino Pro Mini or clone (There are several available, and some 
have different pinouts—particularly for pins A4 and A5. Figure 9-4 
shows the pinout for the particular clone that I used. Other units with 
different pinouts will work, but the connections on the shield may have 
to be changed.)

Figure 9-4: Pinout of the Deek-Robot  
Pro Mini Arduino clone

One LTC1799 oscillator chip and breadboard-compatible adapter 
board, like the 5-SOT-23 adapter board shown in Figure 9-5 (See 
“Using SOICs” on page 20 for tips on how to use a surface mount 
chip like this.)
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Figure 9-5: This adapter board  
has a complete variable frequency  
oscillator (1 KHz to 30 KHz) and  
CMOS buffer circuit. 

One 250-kilohm carbon potentiometer

Two 0.1 µF ceramic capacitors

One LM7805 voltage regulator

Two SPDT center-off toggle switches

Two SPDT toggle switches

One HCT4017 decade counter IC, like the CD4017 B shown in 
Figure 9-6
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Reset
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Decoded output “5”

Decoded output “1”

Decoded output “0”

Decoded output “2”

Decoded output “6”

Decoded output “7”

Decoded output “3”

Clock enable

Decoded output “9”

Decoded output “4”

Decoded output “8”

Figure 9-6: The CD4017 B is a CMOS counter/divider  
comprising a 5-stage Johnson counter with 10 decoded  
outputs. It is used here as a divide-by-10 counter. 

One 1 µF electrolytic capacitor

One 10 µF electrolytic capacitor

One 20×4 LCD

One I2C adapter, if not included with the LCD

One PCB shield (See “Downloads” on page 262 if you don’t want to 
design your own.) 

One Hammond 1595C sloped front enclosure (or equivalent)

One battery holder

One knob

Four 4-40×1/2-inch screws and washers
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Eight 4-40 nuts

One piece of double-sided foam tape

One 9V battery

Assorted 28- or 30-gauge hook-up wires 

(Optional) Four banana plug jacks or three BNC connectors 

(Optional) One 3.5 mm jack 

(Optional) One 9V, 100 mA, 110V wall power supply (for more informa-
tion see “Battery Power” on page 278)

Note that I elected to use banana plug jacks for the I/O on the front 
panel, though this is a bit old fashioned and probably not the best prac-
tice. You could replace the two output connectors with a BNC connector 
as is used in the pH meter project, which is a little more pricey and elimi-
nates the need for a ground, as the BNC connector has a center conductor 
and a shielded ground surrounding it. The banana jacks have only one 
conductor each.  

Downloads 
Sketch  SquareWave.ino

Front panel template  SquareWaveEnclosure.pdf

PCB foil pattern  Generator.pcb

The Schematic
The Square-Wave Generator circuit in Figure 9-7 doesn’t call for a lot of 
different components. However, before you start building, note that the 
Arduino Pro Mini has a very different pin configuration than the Nano. 
It is also worth noting that there are many versions of the Pro Mini avail-
able, so check the pinout of the version you buy. The particular Arduino 
I suggest in the parts list has the pinout detailed in Figure 9-4. Read 
“Important Notes on the Pro Mini” on page 263 for a description of key 
differences. 

In the schematic, notice the switches: SW1, SW2, SW3, and SW4. SW2 
provides the divide-by-10 display. SW3 allows you to use the frequency 
counter with an external source instead of the signal generator. SW1 con-
nects the 1, 10, 100 divider for the master clock (the switch has a center-off 
position that doesn’t have a connection) for the LTC1799 oscillator. SW4 is 
the power switch; its center is off, and the other two positions are for either 
external supply or battery.
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Figure 9-7: Schematic of the Square-Wave Generator 

Important Notes on the Pro Mini
Before you build the breadboard, note that one major pinout difference 
among Pro Mini boards is the placement of pins A4, A5, A6, and A7. Some 
versions locate all four analog inputs on the short side of the board, while 
the Deek-Robot used in this project splits them (see Figure 9-8). It places 
A4 and A5 near the other analog pins, but not in line with them, and A6 
and A7 are on the short side of the board. Pins A4 and A5 are used to drive 
the I2C bus for the display. 

There are some other minor differences between the Pro Mini and 
the Arduino Nano, but one of the most prominent is that the Pro Mini 
does not include a USB interface, so you have to program it using an 
external serial interface of some kind. There are several serial adapters 
on the market using FTDI technology. (FTDI is an abbreviation for Future 
Technology Devices International, a privately held Scottish semiconductor 
device company specializing in USB technology.) 

An alternative to using FTDI-based, purpose-built serial adapters is 
to use another microprocessor board to program the Pro Mini. I use an 
Arduino Uno clone to program my Pro Mini because it’s inexpensive, it 
allows me to remove the processor chip so I don’t end up programming 
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both boards, and it’s easy to use. I use a simple breadboard setup to do the 
programming. Go to “Uploading Sketches to Your Arduino” on page 5 
for connection details. 

A4A5

A7

A6

Figure 9-8: The Deek-Robot Pro Mini next to a centimeter ruler. The pinout is a  
little different from similar Arduino clones. For example, pin A4 is the unmarked  
pad between A2 and A3, while A5 is the one between A3 and VCC. 

How the Square-Wave Generator Was Developed
This project was developed to solve a need that emerged when creating the 
Ballistic Chronograph in Chapter 8. While developing the chronograph, 
I needed some way to test it to assure it worked properly without using a 
weapon with live ammunition and shooting holes in my shop. 

The Square-Wave Generator was my solution to the problem. With it 
and a small handful of other parts, I was able to simulate the signal the 
chronograph should receive as a projectile breaks a sequence of light 
beams. I decided to start with the time it took a projectile to travel an 
arbitrary distance of 3 inches, which turned out to be somewhere between 
50 and 1,000 microseconds, depending on the speed of the projectile. I 
then used the Square-Wave Generator to generate a signal at frequencies 
between 20,000 Hz and 1,000 Hz, the reciprocals of those times. Once I 
figured out what I needed for the chronograph, the Square-Wave Generator 
project took on a life of its own, and the final version is what you see in this 
chapter. 
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Deciding How to Generate Signals
First, I looked for an easy way to satisfy my timing requirements. There 
were several DDS (direct digital synthesis) products and boards that would 
have easily solved the problem, but all of the solutions I found were a little 
pricier than I was hoping, and many had other shortcomings. Abandoning 
the DDS, I looked at several alternatives, some bringing me back to my old 
Radio Amateur days. One solution was to use a crystal oscillator and divide 
a fundamental frequency to achieve frequencies near the ones I needed. 
This presented several problems, not the least of which being that the cir-
cuit would likely need several divider chips. 

Another solution was to create my own variable frequency oscillator 
(VFO) from scratch. While a possibility, that solution entailed more design 
work than I was prepared to do at the time, so I went back to the data 
sheets. 

I found that Linear Technology’s LTC1799 single-chip precision oscil-
lator had just about what the doctor ordered—and more. According to the 
data sheet, this chip provides a square-wave signal from 1 KHz to 33 MHz 
with a single variable resistor and a switch to divide the fundamental oscil-
lator frequency by 1, 10, or 100. It boasts good stability, too: nominally, it 
has less than 1 percent error. And it was a lot less pricey than the DDS solu-
tions at just under $4.00. 

The final part of the problem was to see what frequency the generator 
was creating. Without an external frequency counter or a calibrated oscil-
loscope, it would be extremely difficult to get even a close approximation of 
the frequency generated. So the project mushroomed to include a built-in 
frequency counter. Because the counter was there anyway, I included a switch 
to allow me to use the frequency counter as a stand-alone instrument. 

Planning How to Display the Frequency
Now I could generate square waves, but there were still some other prob-
lems to be addressed. For example, how would I read the frequency from 
the outside? I could mark the potentiometer positions with calibrations—as 
many generators of yore have done—but that is at best a clumsy and inaccu-
rate approach in today’s digital age. A built-in frequency counter and bright 
display seemed most practical.

I went back to the drawing board—and to the Arduino Library. I found 
several approaches to Arduino frequency counters online, including at least 
two separate frequency counter libraries. The simplest and most convenient 
library for this application was FreqCount.h, developed by Paul Stoffregen. 
How I used this library is discussed more under “The Sketch” on page 271. 
For more information on the library itself or to get the latest updates, you can 
go to https://github.com/PaulStoffregen/FreqCount/.

A preliminary breadboard prototype indicated that the frequency 
counter worked well. I put the breadboard together using a 20×4 LCD 

https://github.com/PaulStoffregen/FreqCount
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display using the I2C interconnect. After labeling the display with the word 
Frequency and displaying the frequency in Hz under that, I still had two lines 
of 20 characters left (see Figure 9-9). 

Figure 9-9: The display of the Square-Wave Generator, showing the frequency  
and the impulse time

Waste not, I always say. Because at least two of the projects I planned to 
use the Square-Wave Generator with required evenly spaced pulses (more 
or less a pulse generator), I decided to use the second two lines of the dis-
play to indicate the time of the impulse. Calculating the time in the sketch 
would be relatively easy, as the time (in seconds) is a function of the fre-
quency (T = 1/f ). 

Signal Integrity
Without getting involved with the higher math of signal composition, a 
square wave can be thought of as an infinite series of sine wave harmonics 
added together. As the frequency increases, so does the complexity and 
fragility of the waveform. If you connect your breadboard circuit to an oscil-
loscope, you can observe this yourself.

This project was initially developed as a square-wave generator/fre-
quency counter that could operate in the area of 1,000 Hz to 1 MHz. This 
generator does its job with panache, but the fundamental oscillator chip 
has a range far in excess of that. 

In developing the project, I had two options. The first was to intention-
ally limit the device’s performance to the area that was initially proposed 
or to extend it closer to the limits of the oscillator and suffer some degra-
dation at the higher end. I selected the latter. While the square wave starts 
rounding off at around 15 MHz or so, the performance at the lower—and 
intended—frequencies is not impacted whatsoever. Figure 9-10 shows four 
oscilloscope traces at different frequencies to demonstrate.

At 1 kHz, the wave pattern is close to perfect, as you can see from the 
display on my older analog oscilloscope (see Figure 9-10A). In Figure 9-10B, 
at 5 MHz, the edges of the square wave are compromised a very small 
amount, showing a slight overshoot on the rising edge. When the frequency 
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is increased to 12 MHz, the signal begins to look a little ragged, with even 
more distortion (see Figure 9-10C). Some of the distortions of the wave 
are a result of tuning, or stray capacitive and inductive effects, by certain 
components used in the construction. This is an avoidable phenomenon, 
and I mention it primarily so you’re aware of the shape of the waveform. I 
suspect that most of your applications for the generator will be in the lower-
frequency area, at less than 1 MHz, where the wave pattern produced is as 
good as it gets. Further, I have used the generator in higher frequencies, 
and the slightly distorted waveform had virtually no effect on the result.

A B

C D

Figure 9-10: Four oscilloscope traces showing the output of the Square-Wave Generator at 1 kHz (A),  
5 MHz (B), 12 MHz (C), and 20 MHz (D). It quickly becomes apparent that the square-wave signal  
starts to lose integrity at around 12 MHz. 

While the waves continue to distort at frequencies above 20 MHz (see 
Figure 9-10D), they are fully recognizable as square waves and remain use-
ful. At 30 MHz—the extent of the range of the Square-Wave Generator as 
built—the signal trace looks increasingly like a sine wave, but for most test 
purposes, it is still totally valid.
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Fine-tuning with a Decade Counter
In designing the system, there were a couple final additions I settled on 
to add utility and improve performance. The frequency counter, as put 
together, had a frequency range of about 100 Hz to around 10 MHz tops. 
The LTC1799 oscillator offered a frequency range from 1 kHz to about 
30 MHz, and for most applications, that would be far more than adequate. 
But there were some applications I had in mind that would need an AC 
source down to about 100 Hz. 

Well, there turned out to be a way to kill both birds, so to speak, with 
one chip: a divide-by-10 counter—in this case, an HCT4017 or CD4017 
decade counter and a couple of switches. 

The decade counter accepts an AC signal, counts to 10, and then starts 
over. By looking at one of the counter outputs, it essentially divides by 10. 
It was possible to feed the output of the oscillator through the divide-by-10 
counter and show output frequency on the LCD, while the actual output 
frequency would be 10 times the frequency shown. This workaround lets 
the Square-Wave Generator show frequencies well above 10 MHz on the 
LCD as long as you can mentally move the decimal point over one place. 
On the flip side, the switch (SW2) could be moved to take the output of the 
oscillator divided by 10 directly so that it could output a minimum output 
frequency as low as 100 Hz, or 1 kHz/10.

The Oscillator in Detail
The oscillator part of this project is pretty much self-contained in the 
LTC1799 and requires only an external variable resistor, a bypass capacitor, 
and a switch used to divide the fundamental oscillator frequency by 1, 10, 
or 100 times. The value that the frequency is divided by depends on what 
you’re connecting to pin 4. When you connect pin 4, or the DIV pin, of the 
LTC1799 to GND, the frequency is divided by 1; when pin 4 is left floating 
or open, the frequency is divided by 10; and when pin 4 is connected to 5V, 
the frequency is divided by 100. This allows the unit to cover a range of fre-
quencies from 1 kHz to 30 MHz. 

L is t ening  to Square   Wav e s

An interesting experiment that will provide you with some idea of the harmonics 
present in a square wave is to set the Square-Wave Generator to the audible 
range of the frequency spectrum and plug its output into the input of an ampli-
fier and loudspeaker. Listen to the quality of the sound. The “fuzz” you hear is 
a result of rich harmonics produced by the square wave, which essentially com-
prises a composite of all other sine waves within the frequency limit.
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Also, while I have chosen to use a 250-kilohm potentiometer between 
pins 1 and 3 of the LTC1799, any potentiometer between 3 kilohms and 
1 megaohm is acceptable. The frequency decreases as this resistor value 
increases, and vice versa.

According to the manufacturer, the LTC1799 outputs a fairly crisp 
square wave throughout its frequency range. As frequencies increase, how-
ever, there are a variety of considerations that impact the integrity of the 
wave. These include stray capacitances and inductances due to the layout of 
the circuit, such as the output position, the hookup of the variable potenti-
ometer, the switch, and other components. Because most applications I had 
in mind were in the lower end of the frequency spectrum offered by the 
LTC1799, I did not pay strict attention to the layout and thus probably have 
somewhat compromised integrity at the higher frequencies. See Figure 9-10 
for actual signal traces. 

The Breadboard
As in virtually all of my Arduino projects, somewhere during the design 
process, I end up making a breadboard layout. Figure 9-11 shows the proto-
type for the Square-Wave Generator.

Oscillator module

Arduino Pro Mini

Decade counter

Figure 9-11: The breadboard for the Square-Wave Generator

Wiring the breadboards for testing posed no difficulty, with the excep-
tion that the oscillator became a little squirrely at the higher frequencies 
when using longer interconnect leads. 
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Here are the connections: 

1.	 Connect all of the red positive 
rails together and blue negative 
rails together. Be careful not to 
connect the red and blue rails 
under any circumstances.

2.	 Insert the LTC1799 oscillator 
module as close as possible to 
one end of the breadboard. 
See the far left-hand side of 
Figure 9-11. The oscillator has 
to be mounted on an adapter 
board so it will fit in the 0.100 
centers of the breadboard, as 
shown in Figure 9-12.

3.	 Insert the Arduino Pro Mini 
into the breadboard. Connect 
the 5V terminal of the Pro 
Mini to the red positive rails 
of the breadboard.

4.	 Connect the GND of the Pro 
Mini to the blue negative rails.

5.	 Insert the HCT4017 decade 
counter into the breadboard. 
(It’s immediately to the left of 
the LCD in Figure 9-11.)

6.	 Insert the LTC1799 on its adapter board into the breadboard. 

7.	 Connect one end of the three-position (center-off) switch SW1 to 
ground. Connect the other end to VCC, and connect the center pin of 
the switch to pin 4 of the LTC1799.

8.	 Connect one end of switch SW2 to pin 6 of the LTC1799 adapter board 
(or pin 5 of the LTC1799).

9.	 Connect one end of the potentiometer R1 to pin 3 of the LTC1799. 
Connect pin 1 of the LTC1799 to the red positive rail along with the 
other side of the potentiometer and the wiper, or the center pin of the 
potentiometer. 

10.	 Pin 6 of the LTC1799 will be the output of the oscillator, which will go 
to pin 14 of the HCT4017 and to one leg of switch SW2. 

11.	 Capacitor C1 should have been installed on the adapter board as 
described.  

12.	 Connect pins 13 and 15 of the HCT4017 to ground. 

13.	 Connect the other end of switch SW2 to pin 12 of the HCT4017 
(CD4017).

Figure 9-12: The SOIC has been soldered 
to an adaptor board, which will fit into 
the 0.100-inch centers of the breadboard. 
The chip includes only 5 pins, but I used 
a 6-pin adapter. 
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14.	 Connect the center of switch SW2 to an empty row on the breadboard. 
(I used one between the Pro Mini and the HCT4017).

15.	 Connect one end of switch SW3 to the same empty row you used in 
step 8, which should be connected to the center of switch SW2.

16.	 Connect the center of switch SW3 to digital pin 5 (D5) on the Pro Mini.

17.	 Pin 3 of switch SW3 will serve as the input if you use the breadboard in 
the frequency-counter-only mode.

N o t e 	 SW4, the AC/battery on/off switch, does not need to be configured in the breadboard, 
as the circuit can receive power from the computer while programming the Arduino. 
The LM7805 is not used in the breadboard configuration for the same reason.

18.	 Check your LCD. If it includes the I2C subassembly board soldered to it, 
you’re okay to continue. Otherwise, solder the I2C board to the display 
as described in “Affixing the I2C Board to the LCD” on page 3.

19.	 When your LCD is ready, you will need four male-to-female connector 
wires to hook it up. (In the finished version, you can make a small wire 
harness for it, including wires for VCC, GND, SCL, and SDA.) I usually 
color code these with red and black for positive and ground, green for 
SCL, and yellow for SDA. Plug the VCC wire into the red positive rail, 
the negative into the blue negative rail, SDA to A4 on the Pro Mini, and 
SCL to A5 on the Pro Mini.

Finally, build your programming circuit or plug in your FTDI adapter, 
load the sketch onto the Pro Mini, and you’re all set to go.

The Sketch
The Square-Wave Generator sketch simplified somewhat as I iterated on the 
project. The result is a mercifully compact program, thanks to the integra-
tion of the LTC1799 and the FreqCount.h library (available from the Library 
Manager section of the Arduino IDE). 

/* Square Wave Generator Sketch. Gives a proper reading with multiplier.
 * Parts of this sketch are derived from Paul Stoffregen’s public domain
 * example code.
 */
#include <FreqCount.h>
#include <LiquidCrystal_I2C.h>
#include <Wire.h>

unsigned long freq = 0;
float impulse;

LiquidCrystal_I2C lcd(0x27,20,4);
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void setup() {
  lcd.init();
  lcd.backlight();
  FreqCount.begin(1000);  
}

void loop() {
  if(FreqCount.available()) {
    freq = FreqCount.read();
    lcd.clear();
    lcd.setCursor(1,0);
    lcd.print(" Frequency");
    lcd.setCursor(0, 1);
    lcd.print(freq);
    lcd.setCursor(10, 1);
    lcd.print("Hz");
    lcd.setCursor(0, 2);
    lcd.print("Impulse");
    lcd.setCursor(0,3);
   
    impulse = ((1/(float)freq)* 1000000);
    lcd.print(impulse);    
    lcd.print("   uS         ");
  }
}

The sketch starts by including three libraries: FreqCount.h for the fre-
quency counter and two others for working with the LCD. To add FreqCount.h 
to your Arduino IDE, go to Sketch4Include Library4Manage Libraries… 
and install the FreqCount library from the Library Manager. The setup() sec-
tion prepares the LCD and starts the frequency counter. The loop() section 
fetches the frequency, calculates the impulse width, and displays both.

The Arduino doesn’t actually have anything to do with generating the 
signal—that’s all done at the oscillator and subsequently in the divider. The 
Arduino’s function is to look at the signal and read out the frequency. 

N o t e 	 Although pin 5 on the Arduino is connected to the LTC1799 oscillator, I do not set it 
as an analog input in this sketch. That is apparently taken care of in the FreqCount 
library. See “Frequency Input Pin” at https://www.pjrc.com/teensy/td_libs_
FreqCount.html for various Arduino models. Incidentally, using this library ren-
ders analog pins 3, 9, 10, and 11 unusable as analog outputs (PWM). 

The Shield
For this project, I developed a small PCB shield to hold the various compo-
nents. Although the shield could probably have been designed to use only a 
single layer, I elected to use a two-layer board. First, it greatly reduced layout 
time, and second, because I was producing another two-layer board at the 

https://www.pjrc.com/teensy/td_libs_FreqCount.html
https://www.pjrc.com/teensy/td_libs_FreqCount.html
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same time, I could expose and etch them both at once with little additional 
effort. (It’s more efficient to etch multiple boards simultaneously, when you 
can.) Figure 9-13 shows the top and bottom foil patterns of the shield. 

Figure 9-13: Top (left) and bottom (right) foil pattern for the Square-Wave Generator’s PCB shield

Assembling the components on the shield requires special attention 
to the bypass capacitor. The shorter the leads of the 0.1 μF capacitor from 
pin 1 of the LTC1799 oscillator to ground, the better the oscillator works. I 
actually soldered the capacitor directly to the chip-mounting board. 

Figure 9-13 shows the component placement on the shield. Notice 
that the HCT4017 (CD 4017)is located beneath the Pro Mini; the PCB was 
designed this way to conserve space and hold high-frequency traces to a 
minimum length. 

As in other projects, it’s necessary to populate the headers for the Pro 
Mini only where they actually connect to the board, in addition to a header 
at pin 1 to simplify aligning the Pro Mini on the shield. The LM7805 volt-
age regulator requires no heat sink. 

Construction
Building the Square-Wave Generator was relatively straightforward, 
but note that I did not take particular care with wiring the leads for 
switch SW1, which provided the divider for the oscillator, or with the 
placing and wiring of the potentiometer. Shortening these wires—and 
perhaps adjusting the placement of the parts themselves—probably 
would have improved the integrity of the waveform somewhat at higher 
frequencies. Figure 9-14 shows the inside of my Square-Wave Generator; 
if you look carefully, you can see my hand-scribbled notations as to where 
things are located. 
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Figure 9-14: Everything fit easily in the slope-panel enclosure. The LCD was held in place 
with four screws, and the shield was mounted on top of the LCD with double-sided foam 
adhesive. The switches, I/O jacks, and potentiometer were soldered by hand. 

Preparing the Enclosure
First, mark the front of the enclosure for the following holes:

•	 Two to aid in cutting out the space for the LCD

•	 Four for mounting holes for the LCD

•	 Four for the banana jacks

•	 Four for the switches

•	 One for the potentiometer 

If you’re using the Hammond 1595C sloped-front enclosure I recom-
mend in “Parts List” on page 260 or an equivalent, you can follow the 
template in Figure 9-15. Just locate the PDF of the drawing in this book’s 
resource files, print it out, lay it over the front of the enclosure, and care-
fully center punch for the holes. I also use a fine-tip Sharpie marker to indi-
cate locations and to draw on the enclosure. Excess marker can be easily 
cleaned with isopropyl alcohol. 

Figure 9-16 shows how to use the radius of the enclosure to determine 
the measurement for the display.
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Figure 9-15: The drilling template for the Square-Wave Generator

1.17 in

Figure 9-16: The LCD is placed using the radius of the enclosure.
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I drilled the holes in the following order:

1.	 Carefully drill 1/2-inch holes at the corners of the cutout for the LCD. 
If you mark the centers of the holes correctly, the edge of the display 
will be tangential to the outer diameter of the hole. You can then draw 
lines connecting the edges of the holes to use as a guide to cut out the 
display. 

2.	 Cut out the display using a keyhole saw or saber saw. The enclosure is 
made of a relatively soft ABS plastic, so you should have no difficulty 
making the cut.

3.	 Clean debris from the cutout with a file if necessary, and check that the 
display fits.

4.	 Drill the four mounting holes (labeled A in Figure 9-15) for the display.

5.	 Drill four 5/16-inch holes for the banana jacks (labeled B).

6.	 Drill four 1/4-inch holes for the switches (labeled C). It’s a good idea to 
identify the switch locations with a permanent marker on the inside of 
the enclosure to simplify wiring them.

7.	 Drill a 9/32-inch hole for the potentiometer (labeled D).

8.	 Locate a position you like for the 3.5 mm power jack that is 3/4 inches 
from the edge of the enclosure and 1/2 inches from the bottom. Drill a 
1/4-inch hole for a 3.5 mm jack there.

9.	 Mount the LCD with four 4-40 screws. Some LCDs have a protrusion on 
one side for the backlight. If yours does, you will have to raise the LCD 
off the surface of the enclosure to accommodate the backlight section 
on the right-hand edge (when looking at the LCD with the connections 
at the top). I simply put 4-40 nuts on the back of the screws to leave 
space. If a single nut is not enough (4-40 nuts can have different thick-
nesses), include a washer. Then, fasten the display to the enclosure. If 
your display does not include the protrusion, then just fasten the dis-
play to the case. 

10.	 Mount the banana plug jacks and switches in the enclosure. It is some-
times easier to solder wires onto the switches and jacks to minimize dam-
age to the enclosure from accidental contact with the soldering iron. 

Wiring the Electronics
Before mounting the PCB shield in the enclosure, solder the components to 
it, and solder all the wires for the LCD, the potentiometer, the switches, the 
power jack, and the banana jacks. You may find it helpful to solder the wires 
to the switches and jacks first. When in doubt, leave some extra length on 
the wires, but abide by the axiom, “If it’s too short, you can always splice it; 
if it’s too long, you won’t know what to do with it.” I suggest using male and 
female headers for the LCD to make hookup easier. 

I mounted the shield directly to the rear of the LCD using double-sided 
foam tape. This, however, could have contributed to the distortion of the 
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waveform at higher frequencies. You might prefer to mount the module as 
far from the display as possible. The front of the enclosure needs no special 
treatment other than the placement of the labels at your discretion. 

Design Notes and Mods
I toyed with several iterations of the Square-Wave Generator before arriv-
ing at the version described in this chapter. Along the way, I tweaked some 
aspects and considered other changes. While the ideas in this section didn’t 
make it into this project, you may enjoy trying them yourself.

Displaying Frequency in Other Units
The sketch displays the square-wave frequency in Hz, as most of the appli-
cations I have planned are in the area of 100 Hz to 10 kHz. But if you find 
yourself using the device a lot in higher frequencies, looking at six or seven 
integers can be confusing. Never fear: it’s easily possible to change the sketch 
to show the frequency in kHz or even MHz by simply truncating the display. 

To truncate the display, simply add a comma and the number of digits 
you want it to show. For example, to change from Hz to kHz, change these 
lines in the sketch: 

    lcd.print(freq);
    lcd.setCursor(10, 1);
    lcd.print("Hz");

to these lines:

    lcd.print(freq/1000);
    lcd.setCursor(10, 1);
    lcd.print("kHz");

If you want to reduce the number of digits appearing in the readout, 
change this line:

    lcd.print(freq/1000);

to this:

    lcd.print(freq/1000,3);

You can change 3 to the number of digits you want.

Reading External Input Frequencies
The schematic and the finished project include a switch to change from 
generating pulses to reading the frequency of an external input. The switch 
(SW3) brings the input jack directly to the input (pin 5) of the Arduino, 
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where the oscillator would normally connect. I have used this very success-
fully for a variety of applications, particularly when I wanted a quick fre-
quency reading somewhere outside my shop. 

There is no circuitry to protect the processor, so just be careful. The 
unit is meant to use inputs that are standard TTL levels—0 to 5V. The 
Arduino is relatively sensitive and can detect signals at somewhat lower 
levels. If you plan, however, to use it with very low-level inputs—that is, 
less than 0.5V—then you should build some kind of prescaler or preamp 
circuit. 

If you plan to use the Square-Wave Generator as an independent fre-
quency counter, you might want to consider using a preamp to provide the 
amplification and prevent damage to the processor. A simple one appears 
in Figure 9-17, using one-sixth of a 74HC14 Hex Schmitt-trigger inverter. 

Figure 9-17: Optional preamp/buffer for input  
to frequency counter 

Using a preamp will help protect the input of the Arduino because the 
output of the preamp will be limited to the supply voltage. 

Battery Power
While this project was initially designed for use with an external power sup-
ply, it can be easily converted to battery power. The total current drain with 
the LCD backlight lit is just under 100 mA. The capacity of a zinc manga-
nese battery is approximately 500 mA hours. Thus, you can expect a life of 
about 5 hours. Alkaline batteries will tend to do better. 

To accommodate the battery power, I simply replaced the power switch 
with one that had a center-off position. I wired one outer terminal to the 
AC-based power jack, the other outer terminal to the positive terminal of 
the battery, and the center terminal to the positive rail on the PCB shield. 
The negative terminal of the battery goes to ground. That configuration is 
shown in the current schematic. If you use the enclosure I suggest, a battery 
should fit conveniently. You can use double-sided adhesive to attach a bat-
tery holder.



10 
T h e  C h roma    t ic   T h ermome      t er

This project was initially created to pro-
vide a quick visual indication of local 

temperature. At its simplest, it is a ther-
mometer that displays the temperature by 

turning on a sequence of LEDs of different colors. 
During development, however, the project gained 
more features, including an LCD readout to supplement the basic color 
readout. And while experimenting, I came across an IC that provides 
extremely accurate measurement without special calibration, which 
improved the device greatly. 

The Chromatic Thermometer includes 10 different colored LEDs, each 
of which lights up when the sensor detects a particular temperature. The 
original version was designed to measure from 68 to 78°F, and each LED rep-
resented a 1-degree Fahrenheit change in temperature. I subsequently varied 
that for different applications. The finished project shown in Figure 10-1 can 
measure a wide range of temperatures. It also includes a waterproof probe 
for measuring the temperature in liquids, which is useful for fish tanks, 
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swimming pools, and so forth, and can be constructed in a variety of physi-
cal configurations. In the version that appears in the sketch, the tempera-
ture ranges from 76 to 86°F in 1-degree increments.

Figure 10-1: The finished Chromatic Thermometer

You could also program an alarm by flashing a lamp at a specific tem-
perature, or with a minor hardware addition, you could add an audible 
alarm. I am sure you can think of even more hardware or software modifi-
cations to make this thermometer a very practical device. 

Choosing a Temperature Sensor 
The key ingredient in any electronic thermometer is the temperature sen-
sor. There are many kinds of temperature sensors available to choose from. 

Thermistors change resistance with temperature and range from 
inexpensive to very pricey, depending on how they are made and tested. 
Resistance temperature detectors (RTDs) employ a coil of pure wire, such as 
silver, platinum, or copper, wrapped around a glass core. Combined in a 
resistance bridge, RTDs can be extremely accurate, but they’re somewhat 
expensive. Thermocouples are still an industry-standard sensing technology, 
particularly at higher temperatures (that is, greater than 500°C). At lower 
temperatures, thermocouples are being replaced by RTDs because of accu-
racy, precision, consistency, and linearity. 
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Semiconductor temperature sensors—that is, dedicated integrated silicon 
sensor circuits—continue to gain popularity because of their accuracy, 
precision, ruggedness, and convenience. In preparing for this project, I 
looked at virtually all the approaches and elected to use a semiconductor 
sensor, as it provided sufficient accuracy with a relatively simple hookup 
and a modest price.

With any thermometer, accuracy and precision are issues. Consider accu-
racy the ability to measure temperature as close to some standard value 
established by the NIST, with some deviation. For this casual definition, 
precision can be referred to as repeatability—that is, the ability to read the 
same temperature consistently in the same environment. 

The Custom pH Meter in Chapter 7 used the temperature of boil-
ing water and ice in solution to set boundaries of 100°C and 0°C, respec-
tively, to calibrate a thermometer. I checked the Chromatic Thermometer 
with the same approach, but I used the high-accuracy MCP9808 module 
described here as a standard because it was extremely close. 

Accuracy and precision are ultimately a system—not necessarily a 
sensor—issue. This project discusses two different sensors with essentially 
the same accuracy and precision. The simplest sensor, an LM35 analog tem-
perature sensor, depends on other parts of the system for its accuracy and 
precision. The second sensor, an MCP9808 IC, provides accurate results 
with or without the associated breakout board because it includes the other 
variable components as an on-chip subsystem. 

Both the LM35 and the MCP9808 boast a maximum accuracy of 
0.25°C and a precision of 0.0625°C. To achieve this kind of accuracy, they 
use a silicon band-gap temperature sensor, which takes advantage of the forward 
voltage of a silicon diode. However, in addition to the sensor, the MCP9808 
includes its own on-chip ADC, voltage reference, and other internal cir-
cuitry to assure accuracy. 

N o t e 	 If you want to dig deeper on the band-gap sensor technology, there is a wealth of infor-
mation on the web, including background on Bob Widler, who is largely credited with 
discovering the phenomenon.

In this project, the LM35 depends on the ADC and voltage refer-
ence of the Arduino, which, while pretty good, does not match that of the 
MCP9808’s monolithic system and thus can require calibration, as illus-
trated in “Sketch for the LM35 System” on page 289. When I built a ver-
sion with the MCP9808 instead, I used an Adafruit breakout board for the 
chip because it significantly simplified assembly—no need to fuss with the 
MicroSMT package’s tiny leads. 

While the MCP9808 does cost more than the LM35D, it’s worked out 
well. I included traces in the project’s PCB shield for the chip itself, if you 
elect to solder it using one of the techniques suggested in “Using SOICs” on 
page 20. 
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Required Tools 
Soldering iron and solder

(Optional) Electric drill with bits for 1/4 inches (used to drill a hole for 
the jack in order to connect a remote temperature sensor or to make a 
hole for a power adapter)

Parts List
First, decide which temperature sensor you want to use: the LM35 or the 
MCP9808. If you just want to use an LM35, here’s what you’ll need to make 
a basic Chromatic Thermometer: 

One Arduino Nano or clone

One LM35 temperature sensor

Ten different colored LEDs (see “Mod: Try Different LEDs” on 
page 300)

Ten ZTX649 transistors

Ten 470-ohm resistors

One 7.5 to 9V wall adapter, or equivalent (or 9V battery)

One plastic enclosure (see “Construction” on page 298)

28- or 30-gauge hookup wire

One printed circuit board (Use the provided shield template, design 
your own shield, or use any other prototyping board you feel comfort-
able working with.)

I also describe several variations on the Chromatic Thermometer in 
this chapter. Give the project a skim before you go shopping, and if you 
want to make one of the variations, also buy the following:

If you plan to use the temperature sensor as described in “Design 
Decision: Remote the Temperature Sensor,” get one 3.5 mm stereo jack.

For a Chromatic Thermometer with a digital readout, also buy one 
16×2 I2C LCD.

For a high-accuracy Chromatic Thermometer, replace the LM35 with 
either one MCP9808 Adafruit Breakout Board or one Microchip 
MCP9808 IC with a 100 nF capacitor and two 10-kilohm resistors. 

For the breadboard prototype, make sure you have one large bread-
board (as opposed to the smaller ones used in much of this book) and 
at least 30 jumper wires.

De sign Decision: R emo t e t he Tempera    t ure  Sen sor

If your application takes you in another direction, you can modify the shield 
to remote the chip. That is, you can connect long wires directly to the chip 
(you’d need only four wires) and place the chip in a location separate from the 
readout. If you remote the chip, just include a small capacitor (around 100 nF) 
between pins 4 and 8, very close to the chip, as shown in Figure 10-2.

Figure 10-2: The MCP9808 with wires soldered directly

However, remember that I2C stands for inter-integrated circuit and is 
intended for chip-to-chip communications. Therefore, the MCP9808 can be 
moved only a limited distance from the Arduino. While some hobbyists online 
claim success with wires as long as 100 cm, the longest that I have been able to 
do reliably is about 50 cm. The LM35, on the other hand, can be remoted and 
made waterproof for longer distances with only three wires and without needing 
miniature hands and the dexterity of a watchmaker. (If you can tolerate only two 
wires, there’s a solution to that; check the data sheet for the LM35.) 

The MCP9808 could likely be encapsulated as I did with the LM35 in 
the Custom pH Meter from Chapter 7, though I have not tried that. Trying to 
insulate the connections from each other and keep the delicate pins of the chip 
from breaking off can be a problem when making a remote sensor with the 
MCP9808. 

This is a design decision to make before you build the final Chromatic 
Thermometer, so I suggest reading through the full chapter to decide before you 
put the device together.
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Required Tools 
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One LM35 temperature sensor

Ten different colored LEDs (see “Mod: Try Different LEDs” on 
page 300)

Ten ZTX649 transistors

Ten 470-ohm resistors

One 7.5 to 9V wall adapter, or equivalent (or 9V battery)

One plastic enclosure (see “Construction” on page 298)

28- or 30-gauge hookup wire

One printed circuit board (Use the provided shield template, design 
your own shield, or use any other prototyping board you feel comfort-
able working with.)

I also describe several variations on the Chromatic Thermometer in 
this chapter. Give the project a skim before you go shopping, and if you 
want to make one of the variations, also buy the following:

If you plan to use the temperature sensor as described in “Design 
Decision: Remote the Temperature Sensor,” get one 3.5 mm stereo jack.

For a Chromatic Thermometer with a digital readout, also buy one 
16×2 I2C LCD.

For a high-accuracy Chromatic Thermometer, replace the LM35 with 
either one MCP9808 Adafruit Breakout Board or one Microchip 
MCP9808 IC with a 100 nF capacitor and two 10-kilohm resistors. 

For the breadboard prototype, make sure you have one large bread-
board (as opposed to the smaller ones used in much of this book) and 
at least 30 jumper wires.

De sign Decision: R emo t e t he Tempera    t ure  Sen sor

If your application takes you in another direction, you can modify the shield 
to remote the chip. That is, you can connect long wires directly to the chip 
(you’d need only four wires) and place the chip in a location separate from the 
readout. If you remote the chip, just include a small capacitor (around 100 nF) 
between pins 4 and 8, very close to the chip, as shown in Figure 10-2.

Figure 10-2: The MCP9808 with wires soldered directly

However, remember that I2C stands for inter-integrated circuit and is 
intended for chip-to-chip communications. Therefore, the MCP9808 can be 
moved only a limited distance from the Arduino. While some hobbyists online 
claim success with wires as long as 100 cm, the longest that I have been able to 
do reliably is about 50 cm. The LM35, on the other hand, can be remoted and 
made waterproof for longer distances with only three wires and without needing 
miniature hands and the dexterity of a watchmaker. (If you can tolerate only two 
wires, there’s a solution to that; check the data sheet for the LM35.) 

The MCP9808 could likely be encapsulated as I did with the LM35 in 
the Custom pH Meter from Chapter 7, though I have not tried that. Trying to 
insulate the connections from each other and keep the delicate pins of the chip 
from breaking off can be a problem when making a remote sensor with the 
MCP9808. 

This is a design decision to make before you build the final Chromatic 
Thermometer, so I suggest reading through the full chapter to decide before you 
put the device together.
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Downloads

Sketch for the LM35 version  LM35Thermo.ino

Sketch for the MCP9808 version  9808Thermo.ino

Adafruit_MCP9808 library  https://www.adafruit.com/product/1782 (for 
the MCP9808 temperature sensor only)

PCB pattern for the shield  Thermo.pcb

How the Chromatic Thermometer Works
In operation, the Chromatic Thermometer is quite straightforward. For 
starters, let’s look at the basic configuration using the LM35 sensor. 

The sensor generates a voltage of 10mV/°C. For example, at 28°C 
(around 82°F), the chip outputs 0.280V. You can easily check that with 
your multimeter. To make a usable Arduino thermometer, all you have to 
do is change that voltage to something the Arduino can understand and 
then have the Arduino translate it to something you want to see on the 
LEDs or LCD. 

The first step is to convert the analog voltage to a digital value so the 
Arduino can work with it. To do that, connect the output of the sensor to 
one of the Nano’s analog inputs. (I tend to use A0, but any analog input 
can be used. Just don’t use analog pins A4 or A5, which are used for the I2C 
portion of this project.) The output voltage of the LM35 is pretty low com-
pared with the 5V the Nano is working with, and the ADC divides the 5V 
of the supply into 1,024 parts (range = 0 to 1,023) to determine the analog 
value of an incoming voltage. If you use the LM35 output as is, each degree 
Celsius change in temperature will change the output voltage by 0.010V and 
therefore change the result of the ADC by 2.046 parts (units) out of the 
1,024 total. 

That works, but small increments of the ADC at the very low end of the 
reference voltage are subject to random amounts of error. There is also sig-
nificant error from rounding, as the Nano’s ADC outputs only whole digits. 

To reduce the impact of error, you’ll change the reference voltage of 
the ADC from 5V, where each increment in the 1,024 represents 0.004882V, 
to 1.1V, where each increment represents only 0.00107V. A single degree 
Celsius change will then represent only 9.345 of the 1,024 units. Thus, the 
0.280V the LM35 outputs at 28°C will correspond to about 261 of the 1,024 
units, rather than only 52. 

The Schematic
Figure 10-3 shows the schematic for this project. 
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Figure 10-3: Schematic for the Chromatic Thermometer 

Note that both the LM35 and the MCP9808 sensors are wired up in this 
sketch. That is not a problem, as you can select which one to use in software 
by changing the code that you upload to the Arduino. You can wire up either 
one or both. This schematic also shows the Chromatic Thermometer with an 
LCD, though that is optional if you just want to read the temperature based 
on the LEDs. 

The Arduino processor could probably drive the LEDs unaided, but I 
elected to use transistor drivers for each LED. This assures that if you elect 
to use higher-output LEDs—or even incandescent lamps—there will be no 
problem driving them. The transistors used are capable of sinking as much 
as 1 A. 

An 11th LED-transistor-resistor group (Q11) is shown connected to 
pin D12 on the Nano, though the final Chromatic Thermometer uses only 
10 LEDs. I show this extra pair and even include it in the shield PCB file to 
give you a built-in customization option. You can add another temperature 
digit, a buzzer alarm, or any other output you like. 
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The Breadboard
As in the other projects in this book, I suggest starting with a breadboard 
to sound out the design and exercise the sketch before committing to the 
final assembly. Because the project uses 10 LEDs and 10 driver transistors, I 
used a large-format breadboard to comfortably fit all the components (see 
Figure 10-4). 

Figure 10-4: The Chromatic Thermometer’s completed breadboard

The LEDs are along the middle of the breadboard, and one is shown 
lit. I assembled a wire harness for the LCD. The LM35 temperature sensor 
(left) is on a tether and held in heat shrink tubing so it is waterproof. 

These are the steps I used to assemble the breadboard: 

1.	 Place the Arduino Nano toward the top left of the breadboard.

2.	 Connect VIN (pin 30) of the Nano to where the 9V input from the bat-
tery or other power source will go. 

3.	 Connect the 5V pin of the Nano to the red positive rail. 
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4.	 Connect GND (pin 4) of the Nano to the blue negative rail on the 
breadboard.

5.	 Identify locations for the 10 driver transistors (Q1 to Q10), and place 
them on the breadboard. I placed them so the beveled edge of the tran-
sistor faced right when looking from the bottom 
of the board. 

6.	 Connect the collector of all the transistors to 
where the 9V input will go (VIN of the Nano). 
See Figure 10-5 for the pinout of the transistor.

7.	 Connect the base of Q1 to D2 (pin 5) on 
the Nano.

8.	 Connect the base of Q2 to D3 (pin 6) on 
the Nano.

9.	 Connect the base of Q3 to D4 (pin 7) on 
the Nano.

10.	 Connect the base of Q4 to D5 (pin 8) on 
the Nano.

11.	 Connect the base of Q5 to D6 (pin 9) on 
the Nano.

12.	 Connect the base of Q6 to D7 (pin 10) on 
the Nano.

13.	 Connect the base of Q7 to D8 (pin 11) on 
the Nano.

14.	 Connect the base of Q8 to D9 (pin 12) on 
the Nano.

15.	 Connect the base of Q9 to D10 (pin 13) on 
the Nano.

16.	 Connect the base of Q10 to D11 (pin 14) on 
the Nano.

17.	 Connect each of the emitters for all the transis-
tors Q1 through Q10 to the positive lead of each 
colored LED. 

18.	 Connect the negative lead of the LEDs to an 
empty location on the breadboard.

19.	 Connect one side of the 470-ohm resistors to the 
negative leads of each LED.

20.	 Connect the other side of the 470-ohm resistors to 
ground (the blue negative rail).

21.	 Connect pin 1 (4–20V) of the LM35 to the red positive rail. (See 
Figure 10-6 for the pinout of the LM35.)

22.	 Connect pin 3 (GND) of the LM35 to the blue negative rail.

23.	 Connect the output pin (center) of the LM35 to pin A0 (26) on 
the Nano. 

Emitter
Collector Base

Figure 10-5: Pinout of 
the ZTX649 transistor

Ground
4-20V Out

Figure 10-6: Pinout 
of the LM35 tem-
perature sensor



288   Chapter 10 

24.	 Connect power and ground to the respective red positive and blue 
negative rails.

Now, you’re all set to go with the most basic configuration. To add the 
digital display: 

1.	 Connect the power and ground of the LCD’s I2C adapter to the respec-
tive red positive and blue negative rails.

2.	 Connect the SDA pin of the LCD’s I2C adapter to A4 (22) on the Nano.

3.	 Connect the SCL pin of the LCD’s I2C adapter to A5 (21) of the Nano. 

4.	 Upload the appropriate software code to the Nano. 

If you want to play with the high-accuracy temperature sensor:

1.	 Remove the LM35 from the circuit (or you can leave it in—it will not 
affect anything).

2.	 Place the high-accuracy sensor in a location where the pins will not be 
affected by anything.

3.	 Connect the power pins of the I2C connection on the MCP9808 sensor 
to the blue negative rail and 5V—pin 27, or the red positive rail—on 
the Nano, respectively.

4.	 Connect the SDA pin of the I2C connection on the MCP9808 sensor to 
A4 (22) on the Nano.

5.	 Connect the SCL pin of the I2C connection on the MCP9808 sensor to 
A5 (21) on the Nano.

6.	 Upload the software to the Nano with the high-accuracy sensor version 
of code.

Now you’re all set to go. 

N o t e 	 This particular breadboard’s positive and negative power rails are not continu-
ous. The first 15 are connected, the next 20 are connected, and the last 15 are con-
nected—but not to each other. I used jumpers to connect the rails as needed. 

The Sketches
There are two versions of the sketch: one for the LM35 version of this proj-
ect and one for the MCP9808 version. You can pick a sketch to use based on 
which version of the Chromatic Thermometer you’d like to build, but both 
sketches comprise three basic sections.

After the boilerplate section of loading libraries and preliminary setup, 
the first component of each sketch deals with the temperature sensor itself. 
The second section deals with setting up the temperature and LCD readout 
(if used). The final element of each sketch details the conditions to turn 
the LEDs on and off to indicate the temperature. I have annotated the code 
with comments where appropriate. 
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Sketch for the LM35 System
Here is the sketch for the Chromatic Thermometer with the LM35 sensor, 
including the digital LCD readout.

//Chromatic Thermometer sketch for the LM35, with an alarm 
//around 78 to 79 degrees Fahrenheit (26 degrees Celsius)

#include <Wire.h>                   //Set up Comm wire library
#include <LiquidCrystal_I2C.h>      //Set up LCD library with I2C

LiquidCrystal_I2C lcd(0x27, 16, 2); //16x2 display I2C address 0x27

//Establish the number of readings to average at 10
u const int numReadings = 10;

float readings[numReadings];        //The readings from the analog input
int index = 0;                      //The index of the current reading

float total = 0;                    //The running total
float average = 0;                  //The average
int tempPin = A0;
float TempC;
float tempF;

void setup() {
  lcd.init();                       //Initialize LCD and turn on backlight
  lcd.backlight();

  //Initialize serial communication with computer:
  Serial.begin(9600);

  //Initialize all the readings to 0:
  for(int thisReading = 0; thisReading < numReadings; thisReading++)
    readings[thisReading] = 0;

  analogReference(INTERNAL);        //Set voltageReference = 1.1V 
}

void loop() {
  total = total - readings[index];         //Subtract the last reading
  readings[index] = analogRead(tempPin);   //Read from the sensor
  total = total + readings[index];         //Add the reading to the total

  //Advance to the next position in the array:
  index = index + 1;

  if(index >= numReadings)       //If we're at the end of the array...
    index = 0;                    //...wrap around to the beginning

  average = total / numReadings;  //Calculate the average temperature
  TempC = average / 9.81;         //Adjust/calibrate average 
                                  //based on empirical measurement
  tempF = (TempC * 9 / 5) + 32;   //Convert to Fahrenheit
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  //Set up serial readout if desired
  Serial.println();
  Serial.print("TempC        ");
  Serial.println(TempC);
  Serial.print("TempF       ");
  Serial.println(tempF);
  Serial.print("Average       ");
  Serial.println(average);
  delay(10);               //Delay in between reads for stability

  //Set up for LCD
  lcd.setCursor(0, 0);
  lcd.print("Temp            ");
  lcd.setCursor(7, 0);
  lcd.print(TempC, 1);
  lcd.print((char)223);   //Degree symbol see below
  lcd.print(" C");
  lcd.setCursor(0, 1);
  lcd.print("Temp    ");  
  lcd.setCursor(7, 1);
  lcd.print(tempF, 1);   //Truncate second decimal place
  lcd.print((char)223);
/*May need to use (char) 178 if LCD displays the greek alpha character. 
Different LCDs display different special characters*/

  lcd.print(" F");
  delay(50);

  //Beginning of conditional statements for display
  if((tempF > 85.00 ) && (tempF < 200)) {
    //85 degrees and 200 degrees are arbitrary.
    digitalWrite(2, HIGH);
  }
  else {
    digitalWrite(2, LOW);
  }

  if((tempF > 84) && (tempF < 85)) {
    digitalWrite(3, HIGH);
  }
  else {
    digitalWrite(3, LOW);
  }

  if((tempF > 83.00 ) && (tempF < 84)) {
    digitalWrite(4, HIGH);
  }
  else {
    digitalWrite(4, LOW);
  }

  if((tempF > 82) && (tempF < 83)) {
    digitalWrite(5, HIGH);
  }



The Chromatic Thermometer   291

  else {
    digitalWrite(5, LOW);
  }

  if((tempF > 81.00 ) && (tempF < 82)) {
    digitalWrite(6, HIGH);
  }
  else {
    digitalWrite(6, LOW);
  }

  if((tempF > 80) && (tempF < 81)) {
    digitalWrite(7, HIGH);
  }
  else {
    digitalWrite(7, LOW);
  }

  if((tempF > 79.00 ) && (tempF < 80)) {
    digitalWrite(8, HIGH);
  }
  else {
    digitalWrite(8, LOW);
  }

  if((tempF > 78) && (tempF < 79)) {
    //Code for blinking LED as an alarm
    digitalWrite(9, HIGH);
    delay(50);
    digitalWrite(9, LOW);
    delay(50);
  }
  else {
    digitalWrite(9, LOW);
  }

  if((tempF > 77.00 ) && (tempF < 78)) {
    digitalWrite(10, HIGH);
  }
  else {
    digitalWrite(10, LOW);
  }

  if(tempF < 76) {
    digitalWrite(11, HIGH);
  }
  else {
    digitalWrite(11, LOW);
  }
}

After including libraries, the LM35 sketch defines the number of samples 
to keep track of at u. The higher the number, the more the readings will be 
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smoothed, but the longer it will take to settle. Using a constant rather than 
a normal variable for the number of samples allows this value to determine 
the size of the readings array.

The setup() code initializes the LCD, turns on serial communication for 
debugging, initializes the readings array with all zeros (because the sketch 
hasn’t read anything yet), and sets the ADC reference voltage to 1.1V. The 
loop() code stores sensor data in the readings array and averages the read-
ings to calculate a temperature to display. If you have an LCD, the sketch 
shows the temperature on it, and then it checks various temperature ranges 
with if statements to see which LEDs to turn on. 

The big difference between this sketch and the next is that the LM35 
version sets up the system to accept the analog voltage from the sensor and 
direct it to an analog input. It also establishes a reference voltage of 1.1V 
with the analogReference(INTERNAL) command.

Sketch for the MCP9808 System
The sketch for the version with the high-accuracy MCP9808 chip (or the 
board from Adafruit) uses much of the same code; the conditional state-
ments that turn on the LEDs are identical. The only part that differs is how 
the Arduino gets the temperature information from the sensor. Here is the 
full sketch:

/*Sketch for MCP9808 version of Chromatic Thermometer

 This version of the Chromatic Thermometer uses the Adafruit MCP9808 breakout  
 Board (or Microchip MCP9808 chip) and the Adafruit_MCP9808 library 
 available from Adafruit ----> https://www.adafruit.com/product/1782

 The averaging may not be necessary. It tends to slow the  
 response a little, but smoothes out the display.

 The result is truncated to a single decimal for both Celsius and Fahrenheit.
 This version includes the code to turn on and off 10 LEDs.
*/

#include <Wire.h>                   //Set up wire/serial library
#include "Adafruit_MCP9808.h"       //Set up MCP9808 library
#include <LiquidCrystal_I2C.h>      //Set up library for LCD

LiquidCrystal_I2C lcd(0x27, 16, 2); //16x2 display; define LCD

// Create the MCP9808 temperature sensor object
Adafruit_MCP9808 tempsensor = Adafruit_MCP9808();

const int numReadings = 10;       //Once again averaging 10 readings
float readings[numReadings];      //The readings from the analog input
int index = 0;                    //The index of the current reading
float TempC = 0;
float tempF = 0;
float total = 0;                  //The running total
float average = 0;                //The average



The Chromatic Thermometer   293

void setup() {
  Serial.begin(9600);

  lcd.init();  //Initiate LCD and backlight
  lcd.backlight();

/*Make sure the sensor is found. You can also pass a different I2C address 
from the default, as in tempsensor.begin(0x19).*/
  if(!tempsensor.begin()) {
    Serial.println("Couldn't find MCP9808!");
    while(1);
  }
}
void loop() {
  //Read and print out the temperature; then convert to Fahrenheit
  float c = tempsensor.readTempC();
  total = total - readings[index];
  //Read from the sensor
  readings[index] = c;
  //Add the reading to the total
  total = total + readings[index];
  //Advance to the next position in the array
  index = index + 1;
  if(index >= numReadings)        //If we're at the end of the array... 
    index = 0;                     //...wrap around to the beginning:
  //Calculate the average
  average = total / numReadings;

  TempC = average;
  tempF = (TempC * 9 / 5) + 32;
  delay(100);

  //Set up LCD to print out temperatures
  lcd.setCursor(0, 0);
  lcd.print("Temp           ");
  lcd.setCursor(6, 0);
  lcd.print(TempC, 1);           //Truncate to one decimal place
  lcd.print((char)223);
  lcd.print(" C");
  lcd.setCursor(0, 1);
  lcd.print("Temp   ");           
  lcd.setCursor(6, 1);
  lcd.print(tempF, 1);           //Truncate to one decimal place
  lcd.print((char)223); 
/*May need to use (char) 178 if LCD displays the greek alpha character. 
Different LCDs display different special characters*/
  
lcd.print(" F");
  delay(100);

  //Beginning of conditional statements for display
  if((tempF > 85.00 ) && (tempF < 100)) {
    digitalWrite(2, HIGH);
  }
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  else {
    digitalWrite(2, LOW);
  }

  if((tempF > 84) && (tempF < 85)) {
    digitalWrite(3, HIGH);
  }
  else {
    digitalWrite(3, LOW);
  }

  if((tempF > 83.00 ) && (tempF < 84)) {
    digitalWrite(4, HIGH);
  }
  else {
    digitalWrite(4, LOW);
  }

  if((tempF > 82) && (tempF < 83)) {
    digitalWrite(5, HIGH);
  }
  else {
    digitalWrite(5, LOW);
  }

  if((tempF > 81.00 ) && (tempF < 82)) {
    digitalWrite(6, HIGH);
  }
  else {
    digitalWrite(6, LOW);
  }

  if((tempF > 80) && (tempF < 81)) {
    digitalWrite(7, HIGH);
  }
  else {
    digitalWrite(7, LOW);
  }

  if((tempF > 79.00 ) && (tempF < 80)) {
    digitalWrite(8, HIGH);
  }
  else {
    digitalWrite(8, LOW);
  }

  if((tempF > 78) && (tempF < 79)) {      //Code for blinking LED
    digitalWrite(9, HIGH);
    delay(50);
    digitalWrite(9, LOW);
    delay(50);
  }
  else {
    digitalWrite(9, LOW);
  }
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  if((tempF > 77.00 ) && (tempF < 78)) {
    digitalWrite(10, HIGH);
  }
  else {
    digitalWrite(10, LOW);
  }

  if(tempF < 76) {
    digitalWrite(11, HIGH);
  }
  else {
    digitalWrite(11, LOW);
  }
}

The MCP9808 sketch’s version of the setup() code checks to make sure 
you have the MCP9808 temperature sensor plugged in. In the loop() section, 
it calls the readTempC() function from the Adafruit_MCP9808 library to fetch 
the current temperature, instead of calling analogRead() directly, as the LM35 
code does. Unlike the LM35 code, this sketch doesn’t need to set up an exter-
nal voltage reference: one advantage of using the MCP9808 is that the chip 
contains its own internal reference. Otherwise, apart from a few differences 
in variable names, the rest of the sketch is the same as the LM35 code.

How the Temperature Readouts Work
In both sketches, the basic temperature readout comprises a series of 10 dif-
ferent colored LEDs with transistors driven in an emitter-follower configu-
ration from outputs D2 through D11 on the Nano. 

The outputs of the Nano are activated by the sketch, and each out-
put corresponds to a conditional statement of the form, “If temperature 
is between X degrees and Y degrees, turn on an LED. If not, turn off the 
LED.” The if statements for these commands are the same in both the 
LM35 and the MCP9808 high-accuracy version.

When I first completed the project, I used it in a saltwater fish tank, 
where I wanted to accurately view the temperature at a glance and at a 
distance. I set up the LEDs to blink at unacceptable temperature extremes 
to get my attention so I could take corrective action. The blinking effect 
required only turning the LED off and on with a delay in between. I modi-
fied the sketch to read as follows for the warning condition: 

  if((tempF > 78) && (tempF < 79)) {
    digitalWrite(9, HIGH);
    delay(50);
    digitalWrite(9, LOW);
    delay(50);
  }
  else {
    digitalWrite(9, LOW);
  }
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This example blinks the display when, and only when, the temperature 
is between 78 and 79°F, as indicated in the full sketch. The length of the 
delay, combined with any further delays you might add, determines the 
blinking rate. 

The general readout system and this simple, silent alarm worked 
extremely well together. I could set alarms to make sure that the tempera-
ture was above or below the threshold temperature. 

I also thought it might be valuable to have a digital readout, however, 
for two reasons: 

1.	 I wanted the option to see exactly what the temperature was. 

2.	 Should the temperature go out of range and the “blink” alarm execute, 
I wanted to see how far from the limit the temperature was. 

Adding the digital display was relatively easy, as I used a standard 
16×2 LCD with I2C interface requiring only four wires. I bought an LCD 
with a built-in I2C adapter this time. It was larger than I had hoped for, but 
I was unable to find a smaller display easily. If you can find one, go for it. 

The Shield
The PCB shield for this project was 
designed with two copper layers 
rather than a single layer. The extra 
layer makes fabricating the board a 
little more difficult, but it saves a lot 
of effort in identifying and wiring 
jumpers. I initially etched the board 
in-house, but I had the finished board 
produced by Express PCB. The plated 
through-holes on the profession-
ally finished board made assembly a 
lot easier. The layers of the PCB are 
shown in Figure 10-7. 

Notice that the LED driver tran-
sistors are located below the Nano 
board to save on surface area. The 
only penalty to this is that the Nano 
sits a little higher on the board. You 
can see the transistors in Figure 10-8, 
which shows the populated PCB with 
the Nano board next to it. 

The shield also includes provi-
sions for two I2C devices—one at 
either end of the board. Because I 
thought this board might find its way 
into many different projects, I made 
it as flexible as possible. The I2C 

Figure 10-7: The top layer of the PCB 
shield with silkscreen image. You can 
see the pattern for the MCP9808 in 
the bottom left. 
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connections make it easy to hook up both the high-accuracy Adafruit break-
out board as well as a digital display. You can either wire them in directly or 
solder a straight or right-angle female header into the board for use with a 
crimped-connector housing with cable (see Figure 10-9).

Figure 10-8: Populated shield next to an Arduino Nano. Notice  
that I used full-length female headers for the Nano. Also note the  
holes and traces for an 11th LED in the top right. 

Figure 10-9: The assembled thermometer using the MCP9808 chip  
soldered directly to the shield (lower right). One I2C connector is  
above and to the right of the MCP9808 chip; connections for  
another I2C connector are at the lower left.
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The shield includes pads for the MCP9808 chip (installed in Figure 10-9) 
if you elect to solder the chip directly to the board. If you use the MCP9808 
chip rather than the breakout board without another connection to the I2C 
interface, you will have to provide 10-kilohm pull-up resistors to the SDA and 
SCL lines. These are not included in the shield layout but can easily be added 
to the I2C port connections since they would be unused. In the implementa-
tion in Figure 10-9, the 10-kilohm resistors are on the LCD adapter because 
there will be an LCD adapter plugged into the I2C port, eliminating the need 
for the pull-up resistors. 

While the shield files included for this project provide for direct attach-
ment of the LEDs to the PCB, there are many instances where you may 
want to separate the PCB from the LEDs. For example, I made one version 
where I spaced out high-intensity, 10 mm LEDs an inch apart on a decorative 
piece of wood to create a more dramatic look. To do something like that, 
you’d want to solder long wires to the LED leads and then solder those to 
the PCB. The cathodes of all the LEDs can be wired together, and only the 
anodes need be connected to the board individually. 

Construction
If you haven’t soldered your components to the shield PCB or a prototyping 
board, do so now, and remember to assemble the LEDs with the correct 
polarity. The final configuration of the Chromatic Thermometer depends 
very much on your final application, so I will not go into a lot of specific 
detail on constructing this project. 

For example, if you want to use a remote temperature sensor, you will 
want a jack or another appropriate connector. You may also want to cut a slit 
in the enclosure to accommodate a wire for the sensor, as well as another 
for a long power connection. And if you are going to build the Chromatic 
Thermometer with only the LEDs and no LCD, you would probably mount 
the electronics inside the enclosure differently. Similarly, if you build the 
high-accuracy version, you may need to adjust how you fit your parts into 
the enclosure. The Chromatic Thermometer shown in Figure 10-10 uses the 
LM35 sensor with the 16×2 LCD.

I used a small box I found on Amazon (originally sold to hold baseball 
cards) to enclose the whole thing and mounted the sensor directly to the 
shield in the three holes to accommodate it in the PCB. If you don’t want 
the LED on the Nano to show, you can unsolder it, or simply cover it with a 
small piece of black electrical tape. 

Whether you use the 3 mm LEDs or the heftier, high-output 5 mm 
LEDs, using some kind of spacer works well for making sure the LEDs are 
lined up at the height you like. When I mounted the readout LEDs to the 
shield, I placed a sliver of unused PCB material to hold all of the LEDs at a 
uniform height (see Figure 10-11). You could use cardboard just as easily, 
and if you want a different height, just use a taller or shorter spacer.
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Figure 10-10: The completed Chromatic Thermometer in an acrylic  
enclosure, monitoring the temperature of medicine in a cooler when  
traveling. This version uses a 9V battery, which is inside the enclosure.  
I used a display with a backlight, but the battery will last a lot longer  
without the backlight. Turn on/off thresholds for LEDs were modified  
for cold temperature use. 

Figure 10-11: I used a discarded strip of PCB material to hold LEDs at uniform height

If you use 5 mm LEDs, you may have difficulty fitting them through the 
holes in a standard PCB, as some 5 mm LEDs have wider leads. I expanded 
the holes with a drill to fit the larger LEDs; because there were no connec-
tions on the other side of the PCB, the plate-through was not needed. 
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Mod: Try  Dif f eren    t L E Ds

The Chromatic Thermometer shown in Figure 10-8 uses 3 mm LEDs. I ordered 
3 mm LEDs on eBay in 10 different colors, but the leads were a little short. 
Subsequently, I ordered 200 5 mm LEDs in a selection of 10 different colors. 
These also had short leads, but they were brighter and worked well. I did have 
to file the edges of some of the LEDs where there was a little extra flashing from 
the mold so they would fit within the 0.200-inch spacing (a little more than 
5 mm) on the PCB. However, I could not find enough different-colored high-
output 5 mm LEDs. 

For one experimental version, I used six different-colored high-output 
5 mm LEDs, repeated the colors at the extremes, and went back to the sketch 
to create blinking patterns to differentiate the similar colors. That version of the 
Chromatic Thermometer worked well, and the high-output LEDs made it quite 
noticeable. 

To attract even more attention, you can use high-output 10 mm LEDs. They 
will not fit on the shield PCB shown here, however, as I only spaced the LEDs 
out by 0.200 inches. That spacing allows for most 3 mm and 5 mm LEDs, but 
not 10 mm ones. See Figure 10-12 for a size comparison.

Figure 10-12: From left to right, 10 mm, 5 mm,  
and 3 mm LEDs shown next to a metric ruler

To use 10 mm LEDs, you will have to mount them elsewhere and connect 
them to the PCB with wires. For inspiration, look at the lightbar for the Watch 
Winder in Chapter 4. 
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Using the Chromatic Thermometer
How you place the thermometer in the environment you want to monitor is 
limited only by your imagination. The version I use on my fish tank had no 
LCD at first, so I simply attached a couple of wire hooks to the bare board 
and hung it from the edge of the tank with the LEDs facing out. (I could 
have mounted the entire thing in a small acrylic box, but I had difficulty 
finding a box with the right dimensions.) This configuration worked well. 

I eventually replaced that Chromatic Thermometer with a version 
including an LCD that I enclosed in an acrylic box. I’m thinking of modify-
ing it again to use high-intensity LEDs that shine through the tank. That 
should create an interesting effect! 
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(printed circuit boards)
printed wiring board, 10
projectile simulator, ballistic 

chronographs, 229–230
projects

Automated Agitator for PCB 
Etching, 41–67

Battery Saver, 155–183
Chromatic Thermometer, 279–301
Chronograph Lite, 221–233
Custom pH Meter, 185–216
Full Ballistic Chronograph, 233–254
Garage Sentry, 129–154
Reaction-Time Machine, 25–40
Regulated Power Supply, 69–87
Square-Wave Generator, 255–278
Watch Winder, 89–127

PulsarProFX, 14
pulseIn() method, 141
pylon, 177–178

R
R1-R9 voltage divider, 73
R4A-2RS bearing, 110
reactions, 27–28
Reaction-Time Machine

breadboard, 30–32
construction of

hardware mounting, 38–39
sturdy case for, preparing, 

37–38
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customizing, 40
downloads, 27
history of reaction-time devices, 28
how it works

speed ranges, expected, 29
time measurement, 28–29

parts list, 26–27
reaction vs. reflex, 27–28
required tools, 26
schematic, 29–30
sketch, 32–35

custom commentary, 35
loop, 36–37

reflexes, 27–28
Regulated Power Supply

breadboard
Arduino Pro Mini, preparing, 76
building, 77–79
LCD, preparing, 76–77

construction of, 82
circuit board, mounting, 85–87
enclosure, 83–85

downloads, 71
flexible voltage regulator circuit, 

72–75
parts list, 70–71
required tools, 70
schematic, 75
shield, 80–82
sketch, 79–80
uses of, 72

release lever, Battery Saver, 177–178
release rod, Battery Saver, 175–176
resistance temperature detectors 

(RTDs), 280
resistors

Automated Agitator for PCB 
Etching, 60

Battery Saver, 159
Chromatic Thermometer, 282
Chronograph Lite, 221
Custom pH Meter, 199–201
current-limiting, 147
dropping, 55
Full Ballistic Chronograph, 234
voltage divider, 74

retailers, xxv
reversal threshold, Automated Agitator 

for PCB Etching, 46–48
riding mowers, Battery Saver for, 157
RTDs (resistance temperature 

detectors), 280

S
saws, xxiii
schematics

Automated Agitator for PCB 
Etching, 45–46

Battery Saver, 160–164
Chromatic Thermometer, 284–285
Chronograph Lite, 222
Custom pH Meter, 191–196
Deluxe Garage Sentry, 148–149
Full Ballistic Chronograph, 239–241
Garage Sentry, 132–133
Reaction-Time Machine, 29–30
Regulated Power Supply, 75
Square-Wave Generator, 262–263
Watch Winder, 97–98

Schmitt trigger, 97, 250–251
screwdrivers, xxiii
semiconductor temperature sensors, 281
sensor channel, Full Ballistic 

Chronograph
building, 247–250
cable, 251–252
LEDs, 249
Optoschmitt photosensors, 235, 

241, 248, 250–251
PCBs, 248
UV LEDs, 250–251

serial adapters, 263
serial COM port, 6
setting up

affixing I2C board to LCD, 3–5
Arduino board, preparing, 2–3
making own PCBs, 13–18
uploading sketches to Arduino, 

5–11
using PCB software, 11–13
using SOICs, 20–24

setup() function, 108, 140
Shepherd, Jean, 218
shield

Automated Agitator for PCB 
Etching, 57–60

Battery Saver, 168–170
Chromatic Thermometer, 296–298
Custom pH Meter, 210–211
Deluxe Garage Sentry, 151–152
Full Ballistic Chronograph, 

242–244
Regulated Power Supply, 80–82
Square-Wave Generator, 272–273
Watch Winder, 108–109
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signal generators, 255
significant figures, 209
silicon band-gap temperature 

sensor, 281
Simpson analog meter, 202
sine wave, 258
sketches, xix

Automated Agitator for PCB 
Etching, 53–56

Battery Saver, 167–168
Chromatic Thermometer

LM35 system, 289–292
MCP9808 system, 292–295
temperature readout, 295–296

Chronograph Lite, 226–228
creating, 5
Custom pH Meter, 205–209
Deluxe Garage Sentry, 149–151
Full Ballistic Chronograph, 

241–242
Garage Sentry, 138–140

alarm trigger, 142–143
distance measurement, 141
loop() function, 140–141
setup() function, 140

Reaction-Time Machine, 32–35
custom commentary, 35
loop, 36–37

Regulated Power Supply, 79–80
saving, 5
Square-Wave Generator, 271–272
uploading to Arduino, 5–11
verifying, 5–6
Watch Winder, 102–108

SMT (surface-mount technology) 
devices, 21

SN754410 H-bridge, 94, 99
solder lug, 64
SOICs (small-outline integrated 

circuits), 20
solder paste method, 21–23
soldering directly, 23–24

solenoid, 159, 164, 175
SOT23 adapter board, 234
SPDT toggle switches, 261
SPST switch, 64, 71, 232
square wave, 256–257

listening to, 268
uses of, 257

Square-Wave Generator
breadboard, 269–271
construction of, 273

enclosure preparation, 274–276
wiring the electronics, 276–277

definition of, 255
design notes and mods

battery power, 278
displaying frequency in other 

units, 277
reading external input 

frequencies, 277–278
development, 264

frequency display, 265–266
signal generation, 265

downloads, 262
oscillator, 268–269
parts list, 260–262
Pro Mini boards, 263–264
projectile simulator and, 229
reasons for building, 256–257
required tools, 260
schematic, 262–263
shield, 272–273
shortcomings of, 259
signal integrity, 266–267
sketch, 271–272

stamp, 186
Stoffregen, Paul, 265
surface-mount technology (SMT) 

devices, 21
switches, 262

T
tantalum capacitors, 94, 188–189, 234
tap and die sets, xxiv
tapered reamer, xxiv
temperature sensor

accuracy of, 204–205
adding, 204
Chromatic Thermometer, 

choosing, 280–281
connecting, 215–216
remote, 283
semiconductor, 281
silicon band-gap, 281

thermal ink, 15
thermistors, 280
thermocouples, 280
threaded shaft, Watch Winder, 116–117
3PDT toggle switch, 234
threshold voltage, Battery Saver, 181
TI SN 74LVC1GX04 crystal-oscillator 

driver, 234, 238
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time base, 259
time measurement, with Nano, 28–29
time of flight, 237
time per cycle, 237
time pulse, 259
TL072 dual op-amp, 187, 196, 199
TLC2262 op-amp, 196
TO-220 heat sink, 71
TO220SMAL heat sink, 71
TO220ST heat sink, 71
tools, xxiii–xxiv
tractors, Battery Saver for, 157
transistors

NPN, 98, 162
soldering, 147
ZTX649. See ZTX649 transistors

transistor-transistor logic (TTL), 8
trichloroethylene, 14
trimmer, 188, 201

U
U bracket, 146–147
ultrasonic sound, 134
ultrasonic transceiver module, 130, 134
USB adapter, 11
USB cable, 6, 8
USB-to-TTL devices, 10
UV LEDs, 250–251

V
variable frequency oscillator (VFO), 265
Velcro, 145
velocity, 237
VIN port, 228
voltage, 47
voltage divider, 73, 74–75
voltage regulator, 58, 261

W
Watch Winder

breadboard, 98–102
construction of

bearing box acrylic, preparing, 
110–114

bonding the acrylic for the 
bearing box, 114–115

driveshaft, 116–119
keeping the watches in 

basket, 124

leaving the components on 
display, 123–124

motor assembly, 110, 118–119
motor bushing, 117–118
motor mount, preparing, 

110–114
piano wire pins, cutting, 

118–119
stand, building, 115–116
threaded shaft, trimming, 

116–117
watch basket, 120–122

controlling revolutions with 
Arduino, 96

design notes, 124
motor voltage, 126
rotation counter, 126–127
total rotation adjustment, 

124–125
downloads, 95
LEDs, 101, 102, 108

adding, 122–123
number of, 125–126
placement of, 125–126

monitoring rotations with Hall 
effect, 96–97

parts list
acrylic parts, 93–94
hardware and circuit 

components, 94–95
reasons for building, 90
required tools, 93
requirements, 95–96
schematic, 97–98
shield, 108–109
sketch, 102–108

waveform generators, 255
Weld-On, 115
while loop, 56, 227
Wire.h library, 35

Z
Zener diode, 159, 161, 188, 195, 200
ZLazr, 93
ZTX649 transistors

Battery Saver, 159, 162, 166
Chromatic Thermometer, 282
Garage Sentry, 131, 138
Watch Winder, 94, 101, 109
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