

Early Praise for The Ray Tracer Challenge

Following in the footsteps of his book, Mazes for Programmers, Buck once again

takes a challenging concept, presents it in an easy-to-understand format, and

reminds us that programming can be both fun and rewarding.

➤ Dr. Sebastian Raaphorst

Gemini Observatory

This is a problem domain that I’ve always wanted to get into but have struggled

to find anything approachable for someone who doesn’t know or isn’t good at all

with C or C++. This book is a godsend.

➤ Danielle Kefford

Software Engineer

This book is devious. Little by little, a test here and a test there, you’ll create an

incredibly sophisticated ray tracing library. Because each change is so small, your

ray tracer will sneak up on you. That’s the devious part: by the end you’ll have

built an amazingly complex piece of software, but it will never feel difficult!

➤ Cory Forsyth

Founding Partner, 201 Created, Inc.

In The Ray Tracer Challenge Jamis Buck tames a difficult topic using an entertain-

ing, practical approach that even the mathematically averse will enjoy. The test-

driven approach challenges and rewards the reader with experiences and artifacts

that remind even the grizzled software curmudgeon of the joyful moments in

software development that inspired us to pursue engineering in the first place.

➤ Justin Ball

CTO, Atomic Jolt

Creating a ray tracer is a rite of passage that I recommend all developers endeavor

to complete. Jamis does a great job presenting complex topics simply and allowing

the reader to focus on the most interesting parts of the project. Working through

this book is almost guaranteed to bring your programming skills up a notch.

➤ Jason Pike

Director, Software Engineering, Atlas RFID Solutions

The Ray Tracer Challenge is a delightful introduction to 3D lighting and rendering

through ray tracing. Yes, there is math, but Jamis provides great examples, and

the exercises illustrate concepts in a style that is way more fun than any math

class I took in college!

➤ Matthew Margolis

Director, Software Engineering

Taking the Ray Tracer Challenge was so much fun. Starting with some short tests,

you’ll create beautifully rendered images with just a little bit of math and code.

➤ Justin Weiss

Senior Software Engineer, Aha!

With this book, I can use what I learned at the university thirteen years ago, and

it’s now fun! The Ray Tracer Challenge gave me back my joy for pet projects. I

recommend it to everyone!

➤ Gábor László Hajba

Senior IT Consultant

One of the tricks to avoiding programmer burnout is to find a passion project. In

this book, you’ll find exactly that: an awesome personal project that you can

tackle regardless of your language background. Jamis’s The Ray Tracer Challenge

shows us that the best passion projects are shared.

➤ Kevin Gisi

Senior UX Engineer

We've left this page blank to

make the page numbers the

same in the electronic and

paper books.

We tried just leaving it out,

but then people wrote us to

ask about the missing pages.

Anyway, Eddy the Gerbil

wanted to say “hello.”

The Ray Tracer Challenge
A Test-Driven Guide to Your First 3D Renderer

Jamis Buck

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products

are claimed as trademarks. Where those designations appear in this book, and The Pragmatic

Programmers, LLC was aware of a trademark claim, the designations have been printed in

initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,

Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-

marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes

no responsibility for errors or omissions, or for damages that may result from the use of

information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create

better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow

Managing Editor: Susan Conant

Development Editor: Brian P. Hogan

Copy Editor: L. Sakhi MacMillan

Indexing: Potomac Indexing, LLC

Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2019 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-271-8

Book version: P1.0—February 2019

Contents

Acknowledgments xi

Foreword xiii

Getting Started xv

1. Tuples, Points, and Vectors 1

Tuples 2

Operations 5

Putting It Together 12

2. Drawing on a Canvas 15

Representing Colors 15

Implementing Color Operations 16

Creating a Canvas 19

Saving a Canvas 19

Putting It Together 22

3. Matrices 25

Creating a Matrix 26

Multiplying Matrices 28

The Identity Matrix 31

Transposing Matrices 32

Inverting Matrices 33

Putting It Together 42

4. Matrix Transformations 43

Translation 44

Scaling 46

Rotation 47

Shearing 51

Chaining Transformations 53

Putting It Together 54

5. Ray-Sphere Intersections 57

Creating Rays 57

Intersecting Rays with Spheres 59

Tracking Intersections 63

Identifying Hits 64

Transforming Rays and Spheres 66

Putting It Together 70

6. Light and Shading 75

Surface Normals 76

Reflecting Vectors 82

The Phong Reflection Model 83

Putting It Together 89

7. Making a Scene 91

Building a World 92

Defining a View Transformation 97

Implementing a Camera 100

Putting It Together 105

8. Shadows 109

Lighting in Shadows 110

Testing for Shadows 111

Rendering Shadows 113

Putting It Together 116

9. Planes 117

Refactoring Shapes 117

Implementing a Plane 122

Putting It Together 124

10. Patterns 127

Making a Striped Pattern 128

Transforming Patterns 130

Generalizing Patterns 132

Making a Gradient Pattern 134

Making a Ring Pattern 135

Making a 3D Checker Pattern 136

Putting It Together 138

11. Reflection and Refraction 141

Reflection 142

Contents • viii

Transparency and Refraction 149

Fresnel Effect 160

Putting It Together 165

12. Cubes 167

Intersecting a Ray with a Cube 168

Finding the Normal on a Cube 173

Putting It Together 175

13. Cylinders 177

Intersecting a Ray with a Cylinder 178

Finding the Normal on a Cylinder 180

Truncating Cylinders 181

Capped Cylinders 184

Cones 188

Putting It Together 191

14. Groups 193

Implementing Groups 194

Finding the Normal on a Child Object 197

Using Bounding Boxes to Optimize Large Scenes 200

Putting It Together 203

15. Triangles 207

Triangles 208

Wavefront OBJ Files 212

Smooth Triangles 218

Smooth Triangles in OBJ Files 223

Putting It Together 225

16. Constructive Solid Geometry (CSG) 227

Implementing CSG 229

Coloring CSG Shapes 236

Putting It Together 237

17. Next Steps 239

Area Lights and Soft Shadows 239

Spotlights 240

Focal Blur 241

Motion Blur 242

Anti-aliasing 243

Texture Maps 244

Contents • ix

Normal Perturbation 245

Torus Primitive 246

Wrapping It Up 247

A1. Rendering the Cover Image 249

Index 255

Contents • x

Acknowledgments

This book exists because my son wanted to learn how to write software. I’d

tinkered with ray tracers years ago, hacking on POV-Ray and writing my

own simple renderers, so when he asked for my help, my first thought was

to walk him through writing one of his own. From that experiment was born

an idea, which became an outline, which became a book proposal, which

became this book.

So—thank you, Nathaniel!

Enormous thanks go to my wife, Tessa. She not only endured this project but

actively encouraged me in it, even while she was neck-deep in her own journey

toward a second bachelor’s degree. There’s no way I could have written this

book without her support.

Thanks also go to the small army of reviewers who sacrificed their time (and

maybe sanity!) to double-checking my prose, tests, and pseudocode. Specifi-

cally: Nathan Anderson, Justin Ball, David Buck (who also graciously provided

the foreword!), Cory Forsyth, Kevin Gisi, Jeff Holland, Gábor László Hajba,

Javan Makhmali, Matthew Margolis, Bowen Masco, David Owen, Jason Pike,

Sebastian Raaphorst, Lasse Skindstad Ebert, Bruce Williams, and Justin

Weiss. This book would be infinitely poorer without your comments, correc-

tions, and suggestions.

I certainly can’t sign off without thanking my editor, Brian Hogan, who was

tireless (merciless?) in helping me turn my idea into something polished and

presentable. His name deserves its place on the cover of this book every bit

as much as my own.

And finally, thanks go to my publisher, the Pragmatic Bookshelf, for taking

a chance on my idea. They truly are fantastic to write for.

report erratum • discuss

Foreword

My adventures in ray tracing began in 1986. I owned an Amiga computer,

and a friend came over with a floppy disk containing the C source code for a

ray tracer written for Unix. I thought it would be interesting to try it out, so

I got it to compile on my Amiga and rendered my first picture. It produced a

black and white image of spheres over a flat plane. I was instantly mesmerized.

The thought that a computer program was able to draw such a realistic picture

was amazing to me. I adapted the program to render color images instead of

just black and white and I found the result even more spectacular.

My journey into ray tracing led me to write my own ray tracing program called

DKBTrace, which I released as freeware. I figured that I’d had fun writing it

and I wanted other people to have fun using it. DKBTrace started to become

report erratum • discuss

quite popular in the late 1980s, so I worked with a group of developers to

transform it into a ray tracer called POV-Ray. POV-Ray is now the most pop-

ular freeware ray tracing program available today. Although I haven’t done

any development on POV-Ray since the early 1990s, the POV-Ray team has

transformed it into a top-notch ray tracer capable of producing truly stunning

images.

Now, Jamis Buck (no relation) has written a book showing how to write a ray

tracing program of your own. His explanations are clear and fun to follow.

He leads you through the development by writing tests first, then getting the

tests to run. The book is programming language agnostic so you can write

the ray tracer in any programming language you like. In fact, I wrote all of

the exercises in Smalltalk—my favorite programming language. I was able to

relive the excitement and the joy of building up a ray tracing program from

scratch and viewing images I’d created by my software. This isn’t a book that

you just read through. It’s a book that guides you to write your own programs.

It takes you on a fun journey and gives you the satisfaction of creating your

own stunning images.

Now I invite you to follow us on the journey. Along the way, you’ll learn about

computer graphics and software development. You’ll learn the basic techniques

used to render movies like Ice Age and Cars. Most important, though, you’ll

enjoy the satisfaction of writing your own software that can amaze you. This

book lays out the path and leads you along. Now it’s time for you to take the

first steps. Enjoy the journey.

David Buck

Author of DKBTrace and Coauthor of POV-Ray

Foreword • xiv

report erratum • discuss

Getting Started

Okay. You are officially awesome. You’re one of those programmers, the ones

who actively seek out new ways to apply their craft and tackle challenges for

the thrill of it. You’re in good company!

With this book, you’re going to build a 3D renderer from scratch. Specifically,

you’ll build a ray tracer, casting rays of light backward into a scene and fol-

lowing their paths as they bounce around toward a light source. It’s generally

not a very fast technique (and so isn’t well-suited for real-time rendering) but

it can produce very realistic results. By the end of this book, you’ll be able to

render scenes like this one:

And you don’t have to be a mathematician or computer scientist to do it!

Beginning at the bottom, you’ll build a foundation of basic routines and tools.

You’ll use those to bootstrap other routines, making light rays, shapes, and

functions to predict how they’ll interact. Then things start moving quickly,

and within a few chapters you’ll be producing realistic images of 3D spheres.

You’ll add shadows and visual effects like geometric patterns, mirror reflec-

tions, and glass. Other shapes follow—planes, cubes, cylinders, and more.

report erratum • discuss

By the end of the book, you’ll be taking these primitive shapes and combining

them in complex ways using set operations. There’ll be no stopping you!

The specific algorithm you’ll implement is called Whitted ray tracing,1 named

for Turner Whitted, the researcher who described it in 1979. It’s often referred

to as recursive ray tracing, because it works by recursively spawning rays

(lines representing rays of light) and bouncing them around the scene to

discover what color each pixel of the final image should be. In a nutshell, the

algorithm works like this for each of the image’s pixels:

1. Cast a ray into the scene, and find where it strikes a surface.

2. Cast a ray from that point toward each light source to determine which

lights illuminate that point.

3. If the surface is reflective, cast a new ray in the direction of reflection and

recursively determine what color is reflected there.

4. If the surface is transparent, do the same thing in the direction of refrac-

tion.

5. Combine all colors that contribute to the point (the color of the surface,

the reflection, and refraction) and return that as the color of the pixel.

Over the course of this book, you’ll implement each of those steps, learning

how to compute reflection vectors, how to approximate refraction, how to

intersect rays with various primitive shapes, and more. Sooner than you

might think, you’ll be rendering awesome 3D scenes!

Who This Book Is For

Ultimately, this book is for anyone who loves writing code, but you’ll get the

most out of it if:

• You have prior experience writing software (perhaps a year or more).

• You’ve written unit tests before.

• You like tinkering and experimenting with code and algorithms.

It really doesn’t matter what programming environment or operating system

you prefer. The only code in this book is pseudocode. Admittedly, the expla-

nations do tend toward imperative, procedural, and object-oriented languages,

but the concepts and tests themselves are translatable to any environment

you wish.

1. en.wikipedia.org/wiki/Ray_tracing_(graphics)#Recursive_ray_tracing_algorithm

Getting Started • xvi

report erratum • discuss

How to Read This Book

Each chapter is presented as a series of tests covering a small piece of the

overall ray tracer. Since each one builds on previous chapters, you’ll be most

successful if you read them in sequence.

You’ll implement your ray tracer in test-first style, writing a few tests at a

time and making them pass by implementing the corresponding functions

and features in code. The first half of the book is structured to take you

smoothly from test to test, but as you get into the second half of the book,

the pace picks up. With greater experience comes greater responsibility! You’ll

still be given the tests, but there will be less hand-holding, and the tests will

be presented in a more linear fashion, almost like a checklist.

Each chapter introduces one or more new features, discusses how the feature

works at a high level, and then walks you through the tests and how to make

them pass. The tests are posed as Cucumber scenarios,2 but it is absolutely

not necessary to use Cucumber to implement them. Please feel free to use

whatever system you prefer to write your tests!

Typically, Cucumber is used to describe high-level interactions between a

user and an application, but the tests in this book use it differently. Here,

you’ll see it used to describe lower-level interactions, like how various inputs

to a specific function might affect the function’s output. This lets the book

walk you through the construction of an API, step by step, rather than just

showing you the high-level behavior that you need to try to emulate. For

example, consider the following hypothetical specification which describes

the behavior of concatenating two arrays.

Scenario: Concatenating two arrays should create a new array
Given a ← array(1, 2, 3)
And b ← array(3, 4, 5)

When c ← a + b
Then c = array(1, 2, 3, 3, 4, 5)

It’s structured like any Cucumber scenario, but describes low-level API

interactions:

• It begins with two assumptions (“Given…And”), which must be true to start.

These use left arrows (←) to assign two arrays to two variables, a and b.

2. Technically, the tests are written in Gherkin, which is the language in which Cucumber

specs are written. See cucumber.io.

report erratum • discuss

How to Read This Book • xvii

• After everything has been initialized, an action occurs (“When”). The result

of this action is what is to be tested. Note that this also uses the left arrow,

assigning the result of concatenating a and b to another variable, c.

• Finally, an assertion is made (“Then”), which must be true. This uses the

equals operator (=) to assert that the variable c is equal to the given array.

Your job as the reader is to implement each test, and then make each pass.

You’re welcome to do so in Cucumber if you like—in fact, the Cucumber tests

may be downloaded from the publisher,3 to save you the effort of keying them

all in by hand. But if Cucumber isn’t your thing, you can be just as successful

by translating the Cucumber scenarios into whatever testing system you

prefer. Honestly, part of the puzzle—part of the fun!—is translating each

specification into a working unit test. The scenario tells you what the behavior

should be. You get to decide how to make it happen.

While working through this book, you’re going to discover that an implemen-

tation that worked for one test might not work well (or at all) for a later test.

You’ll need to be flexible and willing to refactor as you discover new require-

ments. That, or read the entire book through before beginning your implemen-

tation so you know what’s coming up.

Also, be aware that I’ve made many of the architectural decisions in this book

with the goal of being easy to explain. Often, there will be more efficient ways

to implement a function, or to architect a feature. You may disagree with the

book at times, and that’s okay! This book is a roadmap, describing just one

of many possible ways to get to the goal. Follow your own aesthetic sense.

Make your code your own.

Lastly, at the end of each chapter is a section called “Putting It Together.”

This is where you’ll find a description of something that builds on the code

you wrote for that chapter and gives you a chance to play and experiment

with your new code. Sometimes it will be a small project, and other times a

list of possible things to try or directions to explore. It’s certainly possible to

skip those sections if you’re in a hurry, but if you do you’ll be missing one of

the most enjoyable parts of the journey.

Things to Watch Out For

A ray tracer is math-heavy. There’s no getting around it. It works its magic

by crunching numbers, finding intersections between lines and shapes,

computing reflections and refractions, and blending colors. So, yes, there will

3. pragprog.com/book/jbtracer/the-ray-tracer-challenge

Getting Started • xviii

report erratum • discuss

be a great deal of math here, but I will mostly give it to you, ready to imple-

ment. You’ll find little or no focus on where the math comes from, no deriva-

tions of formulas, no explanations of why an equation does what it does.

You’ll see the formulas and, where necessary, walk through how to implement

them, but you won’t wade through proofs and derivations. If the proofs and

derivations are what you particularly enjoy, you can always find a great deal

of information about them online.

Also, number-crunching tends to be fairly CPU-intensive. A ray tracer offers

a lot of opportunities to optimize code, but that’s not the focus of this book.

If you follow along and implement just what is described, your code will

probably not be very efficient or very fast—but it will work. Think of optimiza-

tion as a bonus exercise!

Other things to watch out for, in no particular order, are these:

Comparing floating-point numbers

Especially in tests, you’ll need to be able to compare two floating-point

numbers to determine if they are approximately equal. The specifications

in the book represent this loose comparison with a simple equals sign.

In practice, you’ll need to be more explicit and test that the two numbers

are within an error value that the book refers to as EPSILON, something

like this: |a - b| < EPSILON. In practice, using a tiny value like 0.0001

for EPSILON is generally fine.

Comparing data structures

As with comparing numbers, it’s also assumed that you’ll need to compare

data structures to see if they are equal. For example, you’ll need to be

able to see whether two points are the same. These comparison routines

aren’t explicitly described in the book, but you’ll need to implement them

all the same. It wouldn’t hurt to add tests for these routines, too, despite

them not being given in the book.

Representing infinity

In later chapters, like Chapter 12, Cubes, on page 167, and Chapter 13,

Cylinders, on page 177, you’ll need to be able to compare numbers with

infinity. If your programming language can represent infinity natively,

that’s great! Otherwise, you can usually fake it by using a very large

number instead. (Something like 1×1010 is usually plenty. In many pro-

gramming languages, you can write that as 1e10.)

Use your own names and architecture!

The names of functions and variables given in the book are just recom-

mendations. The functions are designed so that the first argument is the

report erratum • discuss

Things to Watch Out For • xix

“responsible party,” or the entity with responsibility for the domain in

question. In object-oriented terms, the first argument would be the self
object. But don’t let this stop you from reassigning those responsibilities

if you prefer. You should always feel free to choose names more appropriate

to your own architecture.

Also, the ray tracer will be described imperatively, but you should look

for ways to adapt these descriptions to the strengths and idioms of your

programming environment. Embrace your classes, modules, namespaces,

actors, and monads, and make this ray tracer your own!

A lot of work has gone into making sure everything in this book is accurate

and error-free, but nobody’s perfect. If you happen to find a mistake some-

where, please let me know about it. You can report errata on the book’s web

site.4 And be sure to visit the book’s discussion forum,5 where you can ask

questions, share tips and tricks, and post eye candy you’ve rendered with

your ray tracer. This forum is purely my own and is not affiliated with the

Pragmatic Bookshelf in any way.

With all that out of the way, brace yourself—we’re going to jump right in and

get started. This is going to be fun!

4. pragprog.com/book/jbtracer/the-ray-tracer-challenge
5. forum.raytracerchallenge.com

Getting Started • xx

report erratum • discuss

CHAPTER 1

Tuples, Points, and Vectors

A sphere sits alone in a room with checkered walls and floor. It reflects light

from a bulb somewhere above it. In fact, it reflects just about everything: the

checkered wall behind the camera, the ceiling above, and even (if you look

closely) its own shadow.

Mmmm. Isn’t that gorgeous? Don’t you just want to touch that sphere? Well,

step in close and let me tell you a little secret. You ready?

You’ll be rendering scenes like this with software you wrote yourself before

you’re half done with this book.

report erratum • discuss

It’s the truth. Cross my heart. It’s all just modeling light and objects and how

they interact.

But before you can model things like light and objects, you need to be able

to represent fundamental concepts like position and direction and distance.

For example, that sphere must be located somewhere in a scene before your

renderer can draw it. Realistic shading relies heavily on the direction from a

surface to the light source, and reflections are all about following the change

of direction of a ray of light.

Fortunately, these concepts—position, direction, and distance—are neatly

encapsulated in a little thing called a tuple.

Let the first chapter begin!

Tuples

A tuple is just an ordered list of things, like numbers. That’s pretty abstract,

though, so let’s use the concept of position to illustrate it.

Let’s say that you’re walking in a park one day. You go forward four meters,

and suddenly the ground falls out from beneath you. Down you go, landing

four meters later. There you discover a mysterious tunnel to the left, which

you crawl along for three more meters. At that point, you discover a chest

full of gold coins, and you celebrate. Yay!

Let’s say your first four meters were in the x direction, the second four (when

you fell), in the negative (downward) y direction, and the last three (in the

tunnel) in the z direction. Those three distances, then, can represent the

position of the treasure, in which case we would write them like (4, -4, 3). This

Chapter 1. Tuples, Points, and Vectors • 2

report erratum • discuss

is a tuple, and this specific tuple is also called a point (because it represents

a point in space).

Left-Handed vs. Right-Handed Coordinates

With the y axis pointing up, and the x axis pointing to the right, the z axis can be

defined to point either toward you, or away from you.

This book uses a left-handed coordinate system. If you take the thumb of your left

hand and point it in the +x direction, and then point the fingers of the hand in the

direction of +y, you’ll find that if you curl your fingers toward your palm, they’ll curl

away from you. That’s the direction of the z axis for the purposes of this book.

Many sites, documents, articles, books, and APIs use a right-handed coordinate sys-

tem, in which the z axis points toward you. There’s nothing wrong with either

approach. I’ve chosen to stick with the left-handed system because it’s used in some

popular renderers, including Pixar’s RenderMan system,a the Unityb game engine,

and the open-source POV-Ray ray tracer.c

a. renderman.pixar.com
b. unity3d.com
c. www.povray.org

Directions work the same way. Let’s say you’re standing next to the (now-

empty) treasure chest, getting your bearings. You take a moment and mentally

draw an arrow pointing from your current position, to where you started. This

line will point negative four meters in the x direction, positive four meters in

the y direction, and negative three meters in the z direction, or (-4, 4, -3). This

tuple—a vector now—tells us not only the direction in which to look, but also

how far to go in that direction. Pretty cool!

But looking at (4, -4, 3) and (-4, 4, -3), it’s impossible to know that one is a point

and the other is a vector. Let’s add a fourth component to these (x, y, z) tuples,

called w, to help us tell them apart. Set w to 1 for points, and 0 for vectors.

Thus, your point becomes (4, -4, 3, 1), and your vector becomes (-4, 4, -3, 0).

Now, the choice of 0 or 1 for w probably seems arbitrary just now, but sit

tight! It’ll make more sense when you get to Chapter 3, Matrices, on page 25,

where it turns out to be rather important for multiplying matrices and tuples.

report erratum • discuss

Tuples • 3

This is all pretty fundamental stuff, so it’s important that it work correctly.

To that end, you’re going to write some tests—preferably before you write any

actual code—to make sure it comes out right.

Avoid complex data types as much as possible as you implement

your tuples. For instance, you should prefer native floating point

numbers over arbitrary-precision abstractions. These tuples are

going to be some of your ray tracer’s workhorses, so you’ll want

them to be lean and fast!

Use the following two specifications to guide your tests. The first one shows

that a tuple is a point when w is 1, and a second shows that a tuple is a vector

when w is 0. Use these tests to demonstrate how your implementation

accesses the individual components of the tuple, as well.

features/tuples.feature

Scenario: A tuple with w=1.0 is a point
Given a ← tuple(4.3, -4.2, 3.1, 1.0)
Then a.x = 4.3
And a.y = -4.2
And a.z = 3.1
And a.w = 1.0
And a is a point
And a is not a vector

Scenario: A tuple with w=0 is a vector
Given a ← tuple(4.3, -4.2, 3.1, 0.0)
Then a.x = 4.3
And a.y = -4.2
And a.z = 3.1
And a.w = 0.0
And a is not a point
And a is a vector

You’ll use this distinction a lot, so it might make sense to have some factory

functions to make it easier to create these two types of tuples. Write two more

tests, one to show that a function point(x,y,z) creates points, and another to

show that a function vector(x,y,z) creates vectors.

features/tuples.feature

Scenario: point() creates tuples with w=1
Given p ← point(4, -4, 3)
Then p = tuple(4, -4, 3, 1)

Scenario: vector() creates tuples with w=0
Given v ← vector(4, -4, 3)
Then v = tuple(4, -4, 3, 0)

Chapter 1. Tuples, Points, and Vectors • 4

report erratum • discuss

Nice! That gives you a solid foundation for creating tuples, points, and vectors.

Next, let’s look at some of the things you can do with them.

Comparing Floating Point Numbers

Beware of comparing floating point values using simple equivalency. Round-off error

can make two numbers that should be equivalent instead be slightly different.

When you need to test two floating point numbers for equivalence, compare their

difference. If the absolute value of their difference is less than some value (called

EPSILON), you can consider them equal. Pseudocode for this comparison looks like this:

constant EPSILON ← 0.00001

function equal(a, b)
if abs(a - b) < EPSILON

return true
else

return false
end if

end function

Operations

Now that you have these tuples, you’re faced with the question of how to use

them. Ultimately, these will be the bedrock of your ray tracer—they’ll crop

up in calculations everywhere, from computing the intersection of a ray with

objects in your scene to figuring out how a particular point on a surface ought

to be shaded. But to plug these vectors and points into your calculations,

you need to implement a few basic operations on them.

Let’s start with some familiar operations from arithmetic.

If you haven’t already, take a minute to write a function that will

compare two tuples for equality. It’ll save you some duplication!

As you do so, keep in mind the comments on floating point com-

parisons in Comparing Floating Point Numbers, on page 5.

Adding Tuples

Imagine that you have a point (3,-2,5,1) and a vector (-2,3,1,0), and you want to

know where you would be if you followed the vector from that point. The

answer comes via addition—adding the two tuples together. Go ahead and

write a test that demonstrates this, like the following:

report erratum • discuss

Operations • 5

features/tuples.feature

Scenario: Adding two tuples
Given a1 ← tuple(3, -2, 5, 1)
And a2 ← tuple(-2, 3, 1, 0)

Then a1 + a2 = tuple(1, 1, 6, 1)

You make a new tuple by adding the corresponding components of each of

the operands—the x’s sum to produce the new x, y’s to produce a new y, and

so forth.

And check out how that w coordinate cooperates. You add a point (w of 1) and

a vector (w of 0), and the result has a w of 1—another point! Similarly, you

could add two vectors (w of 0) and get a vector, because the w’s sum to 0.

However, adding a point to a point doesn’t really make sense. Try it. You’ll

see that you get a tuple with a w of 2, which is neither a vector nor a point!

Subtracting Tuples

Subtracting tuples is useful, too. It’ll come in handy when you get to Chapter

6, Light and Shading, on page 75, when you need to find the vector that points

to your light source.

Add the following test to show that subtracting tuples works by subtracting

corresponding elements of the tuples.

features/tuples.feature

Scenario: Subtracting two points
Given p1 ← point(3, 2, 1)
And p2 ← point(5, 6, 7)

Then p1 - p2 = vector(-2, -4, -6)

Isn’t that cool? The two w components (both equal to 1) cancel each other out,

and the resulting tuple has a w of 0—a vector! Specifically, it’s the vector

pointing from p2 to p1: (-2, -4, -6).

Similarly, you can subtract a vector (w of 0) from a point (w of 1) and get

another tuple with a w of 1—a point. Conceptually, this is just moving back-

ward by the given vector. Add this next test to demonstrate this.

features/tuples.feature

Scenario: Subtracting a vector from a point
Given p ← point(3, 2, 1)
And v ← vector(5, 6, 7)

Then p - v = point(-2, -4, -6)

Lastly, subtracting two vectors gives us a tuple with a w of 0—another vector,

representing the change in direction between the two. Write another test to

show that this works.

Chapter 1. Tuples, Points, and Vectors • 6

report erratum • discuss

features/tuples.feature

Scenario: Subtracting two vectors
Given v1 ← vector(3, 2, 1)
And v2 ← vector(5, 6, 7)

Then v1 - v2 = vector(-2, -4, -6)

As with addition, though, not every combination makes sense. For instance,

if you subtract a point (w=1) from a vector (w=0), you’ll end up with a negative

w component, which is neither point nor vector. Let’s look at a counterpart

to subtraction next.

Negating Tuples

Sometimes you’ll want to know what the opposite of some vector is. That is

to say, given a vector that points from a surface toward a light source, what

vector points from the light source back to the surface? (You’ll run into this

specific case in Chapter 6, Light and Shading, on page 75, as well.) Mathemat-

ically, you can get it by subtracting the vector from the tuple (0, 0, 0, 0). Go

ahead and write a test like the following, to demonstrate this:

features/tuples.feature

Scenario: Subtracting a vector from the zero vector
Given zero ← vector(0, 0, 0)
And v ← vector(1, -2, 3)

Then zero - v = vector(-1, 2, -3)

But (0, 0, 0, 0) is awkward to think about (it’s a vector, but where is it even

pointing?), and the operation itself is cumbersome to write. You can simplify

this by implementing a negate operation, which negates each component of

the tuple. Add the following test showing the effect of negation on a tuple.

features/tuples.feature

Scenario: Negating a tuple
Given a ← tuple(1, -2, 3, -4)
Then -a = tuple(-1, 2, -3, 4)

That’s pretty much how it works: (x, y, z, w) becomes (-x, -y, -z, -w).

If your language supports operator overloading, negation can be

implemented as a unary minus operator (-tuple). Otherwise, a

method (tuple.negate()) or a function (negate(tuple)) works fine. In this

book, it’s assumed that -tuple is the negation operator.

Scalar Multiplication and Division

Now let’s say you have some vector and you want to know what point lies 3.5

times farther in that direction. (This will come up in Chapter 5, Ray-Sphere

report erratum • discuss

Operations • 7

Intersections, on page 57, when you’re finding where a ray intersects a sphere.)

So you lay that vector end-to-end 3.5 times to see just how far the point is

from the start, like in the following illustration.

t = 3.5

It turns out that multiplying the vector by 3.5 does just what you need. The

3.5 here is a scalar value because multiplying by it scales the vector (changes

its length uniformly). To do it, you multiply each component of the tuple by

the scalar. Write these tests to demonstrate the effect:

features/tuples.feature

Scenario: Multiplying a tuple by a scalar
Given a ← tuple(1, -2, 3, -4)
Then a * 3.5 = tuple(3.5, -7, 10.5, -14)

Scenario: Multiplying a tuple by a fraction
Given a ← tuple(1, -2, 3, -4)
Then a * 0.5 = tuple(0.5, -1, 1.5, -2)

Note that last test, where you multiply the tuple by 0.5. This is essentially the

same thing as dividing the tuple by 2, right? You can always implement divi-

sion with multiplication, but sometimes it’s simpler to describe an operation

as division. It works like you’d expect—dividing each component of the tuple

by the scalar. Add the following test to demonstrate this.

features/tuples.feature

Scenario: Dividing a tuple by a scalar
Given a ← tuple(1, -2, 3, -4)
Then a / 2 = tuple(0.5, -1, 1.5, -2)

That’s the last of the familiar arithmetic operators. Next let’s look at some

new ones that will primarily be useful with vectors.

Magnitude

Remember, at the start of this chapter, when you read that a vector was a value

that encoded direction and distance? The distance represented by a vector is

called its magnitude, or length. It’s how far you would travel in a straight line

if you were to walk from one end of the vector to the other. Add some tests

like the following, showing the magnitude of several different vectors.

features/tuples.feature

Scenario: Computing the magnitude of vector(1, 0, 0)
Given v ← vector(1, 0, 0)
Then magnitude(v) = 1

Chapter 1. Tuples, Points, and Vectors • 8

report erratum • discuss

Scenario: Computing the magnitude of vector(0, 1, 0)
Given v ← vector(0, 1, 0)
Then magnitude(v) = 1

Scenario: Computing the magnitude of vector(0, 0, 1)
Given v ← vector(0, 0, 1)
Then magnitude(v) = 1

Scenario: Computing the magnitude of vector(1, 2, 3)
Given v ← vector(1, 2, 3)
Then magnitude(v) = √14

Scenario: Computing the magnitude of vector(-1, -2, -3)
Given v ← vector(-1, -2, -3)
Then magnitude(v) = √14

Pythagoras’ theorem taught us how to compute this, with some squares and

a square root:

magnitude(v) =
√

v
2
x
+ v

2
y
+ v

2
z
+ v

2
w

Vectors with magnitudes of 1 are called a unit vectors, and these will be super

handy. You’ll use them when computing your view matrix in Defining a View

Transformation, on page 97, when determining the direction perpendicular

to a surface (Computing the Normal on a Sphere, on page 77), and even when

generating the rays you want to cast into your scene (Chapter 5, Ray-Sphere

Intersections, on page 57).

You won’t always be able to start with a nice, neat, unit vector though. Very

often, in fact, you’ll be starting with a difference between two points, and

you’ll need to be able to take that and turn it into a unit vector while preserving

its direction.

Normalization to the rescue!

Normalization

Normalization is the process of taking an arbitrary vector and converting it

into a unit vector. It will keep your calculations anchored relative to a common

scale (the unit vector), which is pretty important. If you were to skip normal-

izing your ray vectors or your surface normals, your calculations would be

scaled differently for every ray you cast, and your scenes would look terrible

(if they rendered at all).

Add the following tests to your suite, showing the effect of normalizing a

couple of different vectors and also confirming that the length of a normalized

vector is 1.

report erratum • discuss

Operations • 9

features/tuples.feature

Scenario: Normalizing vector(4, 0, 0) gives (1, 0, 0)
Given v ← vector(4, 0, 0)
Then normalize(v) = vector(1, 0, 0)

Scenario: Normalizing vector(1, 2, 3)
Given v ← vector(1, 2, 3)

vector(1/√14, 2/√14, 3/√14)
Then normalize(v) = approximately vector(0.26726, 0.53452, 0.80178)

Scenario: The magnitude of a normalized vector
Given v ← vector(1, 2, 3)
When norm ← normalize(v)
Then magnitude(norm) = 1

You normalize a tuple by dividing each of its components by its magnitude.

In pseudocode, it looks something like this:

function normalize(v)
return tuple(v.x / magnitude(v),

v.y / magnitude(v),
v.z / magnitude(v),
v.w / magnitude(v))

end function

With that, you can turn any vector (or rather, any vector with a nonzero

magnitude) into a unit vector.

Dot Product

When dealing with vectors, a dot product (also called a scalar product, or inner

product) is going to turn up when you start intersecting rays with objects, as well

as when you compute the shading on a surface. The dot product takes two vectors

and returns a scalar value. Add this test to demonstrate the dot product’s effect.

features/tuples.feature

Scenario: The dot product of two tuples
Given a ← vector(1, 2, 3)
And b ← vector(2, 3, 4)

Then dot(a, b) = 20

Given those two vectors, the dot product is computed as the sum of the

products of the corresponding components of each vector. Here’s pseudocode

showing what that looks like:

function dot(a, b)
return a.x * b.x +

a.y * b.y +
a.z * b.z +
a.w * b.w

end function

Chapter 1. Tuples, Points, and Vectors • 10

report erratum • discuss

The dot product can feel pretty abstract, but here’s one quick way to internalize

it: the smaller the dot product, the larger the angle between the vectors. For

example, given two unit vectors, a dot product of 1 means the vectors are

identical, and a dot product of -1 means they point in opposite directions.

More specifically, and again if the two vectors are unit vectors, the dot product

is actually the cosine of the angle between them, which fact will come in handy

when you get to Chapter 6, Light and Shading, on page 75. If you’d like to

read more about what the dot product means and how to understand it, I

recommend the following article: betterexplained.com/articles/vector-calculus-understanding-
the-dot-product.

You certainly don’t need any deep understanding of the dot product to

implement it, though. (Lucky you!) For now, just make the test pass, and

then move on.

Joe asks:

Does the dot product need the w component?

If you’ve been exposed to dot products before, you might wonder if w belongs in this

computation, since the dot product only makes sense on vectors, and all of our vectors

will have a w of 0.

The answer is: it depends. I’ve chosen to include it here because the dot product

applies to vectors of any dimension, not just three, and because it preserves a certain

symmetry with the other operations. Also, if you happen to use the dot product on

points instead of vectors accidentally, keeping the w in the computation might help

you identify the bug sooner rather than later!

Cross Product

Okay, last one. The cross product is another vector operation, but unlike the

dot product, it returns another vector instead of a scalar, which the following

test demonstrates. Go ahead and add it to your suite.

features/tuples.feature

Scenario: The cross product of two vectors
Given a ← vector(1, 2, 3)
And b ← vector(2, 3, 4)

Then cross(a, b) = vector(-1, 2, -1)
And cross(b, a) = vector(1, -2, 1)

Note that this is specifically testing vectors, not tuples. This is because the

four-dimensional cross product is significantly more complicated than the

report erratum • discuss

Operations • 11

three-dimensional cross product, and your ray tracer really only needs the

three-dimensional version anyway.

Also, note that if you change the order of the operands, you change the

direction of the resulting vector. Keep this in mind as you use the cross

product: order matters!

In pseudocode, the cross product of two three-dimensional vectors comes

together like this:

function cross(a, b)
return vector(a.y * b.z - a.z * b.y,

a.z * b.x - a.x * b.z,
a.x * b.y - a.y * b.x)

end function

You get a new vector that is perpendicular to both of the original vectors.

What does this mean? Consider the following three mutually perpendicular

vectors, X, Y, and Z.

Y = vector(0,1,0)

Z = vector(0,0,1)

X = vector(1,0,0)

If you take the cross product of X and Y, you get Z. Similarly, Y cross Z gets

you X, and Z cross X is Y. The results are always perpendicular to the inputs.

Again, order is important here. X cross Y gives you Z, but Y cross X gives you -Z!

You’ll use this primarily when working with view transformations (in Chapter

7, Making a Scene, on page 91), but it will also pop up when you start render-

ing triangles (in Chapter 15, Triangles, on page 207).

Putting It Together

As far as first steps go, this one wasn’t too bad, and it’s laid the groundwork

for some great things. You’ve got a working implementation of points and

Chapter 1. Tuples, Points, and Vectors • 12

report erratum • discuss

vectors! Those things are going to pop up everywhere. Sadly, you have no ray

tracer yet to plug your code into, but you can still have some fun with it.

Try playing with this little program, firing virtual projectiles and seeing how

far they go. It’ll let you exercise the vector and point routines you’ve written.

Start with the following two data structures:

• A projectile has a position (a point) and a velocity (a vector).

• An environment has gravity (a vector) and wind (a vector).

Then, add a tick(environment, projectile) function which returns a new projectile,

representing the given projectile after one unit of time has passed. (The

actual units here don’t really matter—maybe they’re seconds, or milliseconds.

Whatever. We’ll just call them “ticks.”)

In pseudocode, the tick() function should do the following:

function tick(env, proj)
position ← proj.position + proj.velocity
velocity ← proj.velocity + env.gravity + env.wind
return projectile(position, velocity)

end function

Now, initialize a projectile and an environment. Use whatever values you

want, but these might get you started:

projectile starts one unit above the origin.
velocity is normalized to 1 unit/tick.
p ← projectile(point(0, 1, 0), normalize(vector(1, 1, 0)))

gravity -0.1 unit/tick, and wind is -0.01 unit/tick.
e ← environment(vector(0, -0.1, 0), vector(-0.01, 0, 0))

Then, run tick repeatedly until the projectile’s y position is less than or equal

to 0. Report the projectile’s position after each tick, and the number of ticks

it takes for the projectile to hit the ground. Try multiplying the projectile’s

initial velocity by larger and larger numbers to see how much farther the

projectile goes!

Once you’ve had a chance to play with this virtual cannon a bit, move to the

next chapter. You’re going to implement the visual side of your ray tracer,

the canvas onto which everything will eventually be drawn.

report erratum • discuss

Putting It Together • 13

CHAPTER 2

Drawing on a Canvas

Points and vectors may be fundamental to a ray tracer, but without a way to

turn them into something visual, most folks won’t care. It’s a good thing you’re

about to implement a canvas, then, isn’t it?

A canvas is a kind of virtual drawing board, which your ray tracer will use to

turn your scenes into images you can actually see. In this chapter, you’re

going to create a canvas that supports millions of colors, and which you can

subsequently save as an image file.

To get there, we’ll talk about colors and how to represent them, as well as

some color operations that you’ll need to support. Once you’ve got a handle

on that, you’ll move on to the canvas itself, and you’ll finish up with a small

project to revisualize your projectile launcher from the previous chapter.

Let’s jump right in.

Representing Colors

Each pixel on your computer monitor is a composite of three colors: red,

green, and blue. If you take those three colors and mix them in different

quantities, you get just about every other color you can imagine, from red,

yellow, and green, to cyan, blue, and purple, and everything in between.

If you let red, green, and blue each be a value between 0 and 1 (with 0

meaning the color is entirely absent, and 1 meaning the color is fully present),

then the figure on page 16 shows some possible colors you can get by com-

bining them.

If all components are 1, you get white. If all components are 0, you get black.

And did you catch that? A color is a tuple, just like vectors and points! In

fact, when it comes time to make this real, it may make sense to build your

report erratum • discuss

rgb=(1,0,0)

rgb=(1,0,0)

rgb=(1,1,0)

rgb=(0,1,0)

rgb=(0,1,1) rgb=(1,0,1)

rgb=(0,0,1)

color implementation on top of your tuple implementation, rather than

starting from scratch.

One way or another, you’re going to need to be able to create a color from a

(red, green, blue) tuple. Add the following test, which does just that.

features/tuples.feature

Scenario: Colors are (red, green, blue) tuples
Given c ← color(-0.5, 0.4, 1.7)
Then c.red = -0.5
And c.green = 0.4
And c.blue = 1.7

In practice, you’ll only use numbers between 0 and 1 for those components,

but don’t put any constraints on them just yet. If a color is especially bright

or dark somewhere in your scene, it may go through multiple transformations

before reaching your virtual “eye,” dropping it to less than 0 or increasing it

to greater than 1 at any point along the way. Limiting the color prematurely

can make parts of your scene too bright or dark in the final image.

Once that test is passing, move on. We’ll talk about the different operations

that your color implementation will need to support.

Implementing Color Operations

Colors, as you’ll see, tend to interact with each other. Whether it’s a green

light reflecting on a yellow surface, or a blue surface viewed through a red

glass, or some other combination of transparency and reflection, colors can

affect each other. For example, the figure on page 17 shows how different

colored panes of glass affect the colors viewed through them.

Fortunately, we can handle all of these combinations with just four operations:

adding and subtracting colors, multiplying a color by a scalar, and multiplying

a color by another color.

Chapter 2. Drawing on a Canvas • 16

report erratum • discuss

Here’s where colors especially show their relationship to vectors and points.

Addition, subtraction, and multiplication by a scalar all work exactly like you

saw with tuples in Chapter 1, Tuples, Points, and Vectors, on page 1. Write

the following tests to emphasize this, showing that you expect the same

behavior with colors.

features/tuples.feature

Scenario: Adding colors
Given c1 ← color(0.9, 0.6, 0.75)
And c2 ← color(0.7, 0.1, 0.25)

Then c1 + c2 = color(1.6, 0.7, 1.0)

Scenario: Subtracting colors
Given c1 ← color(0.9, 0.6, 0.75)
And c2 ← color(0.7, 0.1, 0.25)

Then c1 - c2 = color(0.2, 0.5, 0.5)

Scenario: Multiplying a color by a scalar
Given c ← color(0.2, 0.3, 0.4)
Then c * 2 = color(0.4, 0.6, 0.8)

The final color operation, multiplying a color by another color, is used to blend

two colors together. You’ll use it when (for example) you want to know the

visible color of a yellow-green surface when illuminated by a reddish-purple

light. Implement the following test to show what you expect to happen.

features/tuples.feature

Scenario: Multiplying colors
Given c1 ← color(1, 0.2, 0.4)
And c2 ← color(0.9, 1, 0.1)

Then c1 * c2 = color(0.9, 0.2, 0.04)

This method of blending two colors works by multiplying corresponding

components of each color to form a new color. It’s technically called the

Hadamard product (or Schur product), but it doesn’t really matter what you

report erratum • discuss

Implementing Color Operations • 17

call it. It just needs to produce a new color where the new red component is

the product of the red components of the other colors, and so on for blue and

green. In pseudocode, it looks like this:

function hadamard_product(c1, c2)
r ← c1.red * c2.red
g ← c1.green * c2.green
b ← c1.blue * c2.blue
return color(r, g, b)

end function

Consider this test again. It says that if you were to view that yellow-green

surface (c2) under a reddish-purple light (c1), the resulting color will seem red

(because its red component, 0.9, is largest). The following image compares

that yellow-green sphere in white light, versus reddish-purple light, and shows

visually what the test is asserting.

That’s all you need to do with colors for now. Once those tests are passing,

you’ll be ready for the next step: a proper image canvas!

Chapter 2. Drawing on a Canvas • 18

report erratum • discuss

Creating a Canvas

A canvas is just a rectangular grid of pixels—much like your computer screen.

Your implementation will allow its size to be configurable, so you can specify

how wide and high the canvas ought to be.

Add the following test to your suite. It demonstrates how a canvas is created

and shows every pixel in the canvas should be initialized to black (color(0, 0, 0)).

features/canvas.feature

Scenario: Creating a canvas
Given c ← canvas(10, 20)
Then c.width = 10
And c.height = 20
And every pixel of c is color(0, 0, 0)

Pixels are drawn to the canvas by specifying a position and a color. Write the

following test, introducing a function called write_pixel(canvas, x, y, color) and

showing how it is used.

features/canvas.feature

Scenario: Writing pixels to a canvas
Given c ← canvas(10, 20)
And red ← color(1, 0, 0)

When write_pixel(c, 2, 3, red)
Then pixel_at(c, 2, 3) = red

Note that the x and y parameters are assumed to be 0-based in this book.

That is to say, x may be anywhere from 0 to width - 1 (inclusive), and y may be

anywhere from 0 to height - 1 (inclusive).

You won’t need any other methods for writing to your canvas, since your ray

tracer will work pixel-by-pixel over the entire scene. Make those tests all pass,

and then we can talk about how to save this canvas to disk in a format that

will actually be meaningful.

Saving a Canvas

The canvas, by itself, is just an intermediate step. It might represent an image

of your scene, but you can’t look at it directly. You can’t show it to anyone.

You can’t use it to brag about how awesome your 3D-rendered scene looks,

or how amazing your ray tracer is. To do that, you need to be able to take the

information in your canvas and write it out to a file, which could then be

viewed, emailed, tweeted, Instagrammed, or whatever.

report erratum • discuss

Creating a Canvas • 19

Let’s make that happen.

You could choose from a lot of different image formats, but you’re only going

to implement one of them: the Portable Pixmap (PPM) format from the Netpbm

project.1 There are several flavors of the PPM format, but the version you’ll

implement (called “plain” PPM) is straight text.

Joe asks:

How do I view a PPM file?

If you use a Mac, you’re in luck, because Preview.app (which is part of the OS) can

open PPM files. From the finder, just double-click on the PPM file you want to view,

or type open my-image.ppm from the command line.

The story is more complicated for Linux and Windows, but not terribly so. There are

a lot of tools that you can get for either platform that will open PPM files, but you

really can’t go wrong with the GNU Image Manipulation Program (GIMP).a It’s free,

it’s cross-platform, it’s open-source, and it’s well-maintained.

a. www.gimp.org

Every plain PPM file begins with a header consisting of three lines of text. The

following figure shows one possible header.

P3
80 40
255

The first line is the string P3 (which is the identifier, or “magic number,” for

the flavor of PPM we’re using), followed by a new line. The second line consists

of two numbers which describe the image’s width and height in pixels. The

header in the previous figure describes an image that is 80 pixels wide, and

40 tall. The third line (255) specifies the maximum color value, which means

that each red, green, and blue value will be scaled to lie between 0 and 255,

inclusive.

Write the following test. It introduces a function called canvas_to_ppm(canvas)
which returns a PPM-formatted string. This test will help ensure that the

header is created properly.

features/canvas.feature

Scenario: Constructing the PPM header
Given c ← canvas(5, 3)
When ppm ← canvas_to_ppm(c)

1. netpbm.sourceforge.net

Chapter 2. Drawing on a Canvas • 20

report erratum • discuss

Then lines 1-3 of ppm are
"""
P3
5 3
255
"""

Immediately following this header is the pixel data, which contains each pixel

represented as three integers: red, green, and blue. Each component should

be scaled to between 0 and the maximum color value given in the header (for

example, 255), and each value should be separated from its neighbors by a

space.

Add the following test to your suite to show that the PPM pixel data is con-

structed correctly for a canvas where three pixels have been colored. Note

that color components that would be greater than 255 are limited (or clamped)

to 255, and components that would be less than 0 are clamped to 0.

features/canvas.feature

Scenario: Constructing the PPM pixel data
Given c ← canvas(5, 3)
And c1 ← color(1.5, 0, 0)
And c2 ← color(0, 0.5, 0)
And c3 ← color(-0.5, 0, 1)

When write_pixel(c, 0, 0, c1)
And write_pixel(c, 2, 1, c2)
And write_pixel(c, 4, 2, c3)
And ppm ← canvas_to_ppm(c)

Then lines 4-6 of ppm are
"""
255 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 128 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 255
"""

Notice how the first row of pixels comes first, then the second row, and so

forth. Further, each row is terminated by a new line.

In addition, no line in a PPM file should be more than 70 characters long.

Most image programs tend to accept PPM images with lines longer than that,

but it’s a good idea to add new lines as needed to keep the lines shorter. (Just

be careful to put the new line where a space would have gone, so you don’t

split a number in half!)

Implement the following test to ensure that pixel data lines do not exceed 70

characters.

report erratum • discuss

Saving a Canvas • 21

features/canvas.feature

Scenario: Splitting long lines in PPM files
Given c ← canvas(10, 2)
When every pixel of c is set to color(1, 0.8, 0.6)
And ppm ← canvas_to_ppm(c)

Then lines 4-7 of ppm are
"""
255 204 153 255 204 153 255 204 153 255 204 153 255 204 153 255 204
153 255 204 153 255 204 153 255 204 153 255 204 153
255 204 153 255 204 153 255 204 153 255 204 153 255 204 153 255 204
153 255 204 153 255 204 153 255 204 153 255 204 153
"""

One more thing. Some image programs (notably ImageMagick2) won’t process

PPM files correctly unless the files are terminated by a newline character.

Add the following test to satisfy those picky consumers.

features/canvas.feature

Scenario: PPM files are terminated by a newline character
Given c ← canvas(5, 3)
When ppm ← canvas_to_ppm(c)
Then ppm ends with a newline character

That’s really all there is to PPM files. The next step is to wrap it all up with a

bow and do something fun with it! Let’s revisit the program you wrote in the

previous chapter.

Putting It Together

In the previous chapter, you wrote a program to compute the trajectory of a

projectile, using nothing but points and vectors. You’ve got a new tool, now,

though!

For this challenge, you’ll once again compute the trajectory of a projectile,

just as before, but this time you’ll plot its course on your brand-new canvas.

After each tick, take the coordinates of the projectile and color the correspond-

ing pixel on the canvas. When the loop finishes, save your canvas to disk and

view the result. It ought to look something like the figure on page 23. The

pixel sizes have been exaggerated here, plotted as squares instead of single

dots, to make them visible in print.

As you tackle this challenge, note a few things:

1. The canvas y coordinate is upside-down compared to your world coordi-

nates. It’s zero at the top of your canvas, and increases as you move down.

2. www.imagemagick.org

Chapter 2. Drawing on a Canvas • 22

report erratum • discuss

To convert your projectile’s coordinates to canvas coordinates, subtract

the projectile’s y from the canvas’s height.

2. It’s going to be really, really easy to accidentally plot a point that is outside

the bounds of your canvas. Make sure you handle this case, either by

having the canvas ignore points outside its bounds or by preventing your

program from plotting such points in the first place.

3. Your projectile coordinates will be floating point numbers. The pixels on

your canvas, however, are at integer coordinates. Be sure to convert your

projectile’s x and y coordinates to integers before plotting them.

4. After your loop finishes, be sure to save your canvas to a file! That’s the

whole point of this exercise, after all.

You may need to experiment a bit to find a canvas size and projectile velocity

that complement each other. Initially, you’ll probably find that either your

projectile barely makes a blip on your canvas, or it’ll go streaking off the side

at light speed! If it helps, the image above was made with the following settings:

start ← point(0, 1, 0)
velocity ← normalize(vector(1, 1.8, 0)) * 11.25
p ← projectile(start, velocity)

gravity ← vector(0, -0.1, 0)
wind ← vector(-0.01, 0, 0)
e ← environment(gravity, wind)

c ← canvas(900, 550)

report erratum • discuss

Putting It Together • 23

The projectile’s velocity was normalized to a unit vector, and then multiplied

by 11.25 to increase its magnitude. That, and the velocity vector, and the

canvas size, were all determined empirically. Experiment with different

starting vectors and speeds and see what happens!

Once you’ve played with that a bit, move on! We’re going to switch back to

math mode for the next couple of chapters to build out some more fundamen-

tals that you’ll need for your ray tracer.

Chapter 2. Drawing on a Canvas • 24

report erratum • discuss

CHAPTER 3

Matrices

Hey, look. That shiny red sphere from before has company now. Its friends

appear to be a cigar-looking matte blue ovoid, and a squashed green plastic

thing that’s tipped toward us, as if curious to see who’s looking.

Would it surprise you to learn that these are all just spheres? They’ve been

moved around, scaled, and rotated a bit too, but deep down, they’re all still

perfectly spherical. These transformations are all thanks to a little thing called

a matrix.

A matrix is a grid of numbers that you can manipulate as a single unit. For

example, here’s a 2x2 matrix. It has two rows and two columns.
[

3 1

2 7

]

And here’s a 3x5 matrix, with three rows and five columns:




9 1 2 0 3

0 0 2 3 1

8 7 5 4 6





report erratum • discuss

For your ray tracer, you’ll use primarily 4x4 matrices—those with exactly four

rows and four columns, like this:








1 2 0 0

0 1 4 1

0 1 1 3

0 0 0 1









In this chapter, you’ll implement a 4x4 matrix data structure and a few gen-

eral matrix operations. In the chapter after this one, Chapter 4, Matrix

Transformations, on page 43, you’ll build on those operations, adding func-

tionality to make it easier to manipulate points and vectors (and, ultimately,

shapes).

Ready? Let’s do this!

Creating a Matrix

First things first. You need to be able to describe a new matrix. Write a test

like the following, which shows that a matrix is composed of four rows of four

floating point numbers each, for a total of sixteen numbers. It should also

show how to refer to the elements of the matrix.

features/matrices.feature

Scenario: Constructing and inspecting a 4x4 matrix
Given the following 4x4 matrix M:
1	2	3	4
5.5	6.5	7.5	8.5
9	10	11	12
13.5	14.5	15.5	16.5

Then M[0,0] = 1
And M[0,3] = 4
And M[1,0] = 5.5
And M[1,2] = 7.5
And M[2,2] = 11
And M[3,0] = 13.5
And M[3,2] = 15.5

The first thing to notice is when talking about the individual elements of the

matrix, we specify the element’s row first, and then its column. For example,

element M23 is the one at row 2, column 3. Also note in this book, row and

column indices will be zero-based, so row 2 is actually the third row.

Later, in Inverting Matrices, on page 33, you’ll need to be able to instantiate

both 2x2 and 3x3 matrices in addition to 4x4 matrices, so take a moment to

make sure you can create matrices of those sizes as well. Add the following

tests to show that your code supports those dimensions:

Chapter 3. Matrices • 26

report erratum • discuss

features/matrices.feature

Scenario: A 2x2 matrix ought to be representable
Given the following 2x2 matrix M:
| -3 | 5 |
| 1 | -2 |

Then M[0,0] = -3
And M[0,1] = 5
And M[1,0] = 1
And M[1,1] = -2

Scenario: A 3x3 matrix ought to be representable
Given the following 3x3 matrix M:
-3	5	0
1	-2	-7
0	1	1

Then M[0,0] = -3
And M[1,1] = -2
And M[2,2] = 1

Keep your matrix implementation as simple as possible. Prefer

native types wherever you can, and avoid complicated abstractions.

Your matrices will be doing a lot of work!

Another critical part of your matrix implementation is matrix comparison.

You’ll be comparing matrices a lot, especially in this chapter and the next,

so it’s important to get it right. The following two tests are not exhaustive but

ought to point you in the right direction. For example, you’ll want to make

sure that very similar numbers are handled correctly when comparing

matrices, as described in Comparing Floating Point Numbers, on page 5.

features/matrices.feature

Scenario: Matrix equality with identical matrices
Given the following matrix A:

1	2	3	4
5	6	7	8
9	8	7	6
5	4	3	2

And the following matrix B:
1	2	3	4
5	6	7	8
9	8	7	6
5	4	3	2

Then A = B

Scenario: Matrix equality with different matrices
Given the following matrix A:

1	2	3	4
5	6	7	8
9	8	7	6
5	4	3	2

report erratum • discuss

Creating a Matrix • 27

And the following matrix B:
2	3	4	5
6	7	8	9
8	7	6	5
4	3	2	1

Then A != B

Once you’ve got the basic matrix data structure working, linear algebra is

your oyster. We’re going to do some wild things with matrices, but we’ll start

small; let’s talk about multiplying them together.

Multiplying Matrices

Multiplication is the tool you’ll use to perform transformations like scaling,

rotation, and translation. It’s certainly possible to apply them one at a time,

sequentially, but in practice you’ll often want to apply several transformations

at once. Multiplying them together is how you make that happen, as you’ll

see when you get to Chapter 4, Matrix Transformations, on page 43.

So let’s talk about matrix multiplication. It takes two matrices and produces

another matrix by multiplying their component elements together in a specific

way. You’ll see how that works shortly, but start first by writing a test that

describes what you expect to happen when you multiply two 4x4 matrices

together. Don’t worry about 2x2 or 3x3 matrices here; your ray tracer won’t

need to multiply those at all.

features/matrices.feature

Scenario: Multiplying two matrices
Given the following matrix A:

1	2	3	4
5	6	7	8
9	8	7	6
5	4	3	2

And the following matrix B:
-2	1	2	3
3	2	1	-1
4	3	6	5
1	2	7	8

Then A * B is the following 4x4 matrix:
20	22	50	48
44	54	114	108
40	58	110	102
16	26	46	42

Let’s look at how this is done for a single element of a matrix, going step-by-

step to find the product for element C10, highlighted in the figure on page 29.

Chapter 3. Matrices • 28

report erratum • discuss

1

2

3

4

2

3

4

5

3

4

5

6

4

5

6

7

0

1

2

4

1

2

4

8

2

4

8

16

4

8

16

32

× =

A B C

Element C10 is in row 1, column 0, so you need to look at row 1 of the A matrix,

and column 0 of the B matrix, as shown in the following figure.

1

2

3

4

2

3

4

5

3

4

5

6

4

5

6

7

0

1

2

4

1

2

4

8

2

4

8

16

4

8

16

32

× =

A B C

row 1, col 0row 1 column 0

Then, you multiply corresponding pairs of elements together (A10 and B00,

A11 and B10, A12 and B20, and A13 and B30), and add the products. The follow-

ing figure shows how this comes together.

1

2

3

4

2

3

4

5

3

4

5

6

4

5

6

7

0

1

2

4

1

2

4

8

2

4

8

16

4

8

16

32

× =

A B C

A10 B00× = 2 × 0 = 0

A11 B10× = 3 × 1 = 3

A12 B20× = 4 × 2 = 8

A13 B30× = 5 × 4 = 20

31

31

The result, here, is 31, and to find the other elements, you perform this same

process for each row-column combination of the two matrices.

Stated as an algorithm, the multiplication of two 4x4 matrices looks like this:

1. Let A and B be the matrices to be multiplied, and let M be the result.

2. For every row r in A, and every column c in B:

report erratum • discuss

Multiplying Matrices • 29

3. Let Mrc = Ar0 * B0c + Ar1 * B1c + Ar2 * B2c + Ar3 * B3c

As pseudocode, the algorithm might look like this:

function matrix_multiply(A, B)
M ← matrix()

for row ← 0 to 3
for col ← 0 to 3
M[row, col] ← A[row, 0] * B[0, col] +

A[row, 1] * B[1, col] +
A[row, 2] * B[2, col] +
A[row, 3] * B[3, col]

end for
end for

return M
end function

If this all feels kind of familiar, it might be because you’ve already implemented

something very similar—the dot product of two vectors on page 10. Yes, it’s

true. Matrix multiplication computes the dot product of every row-column

combination in the two matrices! Pretty cool.

Now, we’re not done yet. Matrices can actually be multiplied by tuples, in

addition to other matrices. Multiplying a matrix by a tuple produces another

tuple. Start with a test again, like the following, to express what you expect

to happen when multiplying a matrix and a tuple.

features/matrices.feature

Scenario: A matrix multiplied by a tuple
Given the following matrix A:

1	2	3	4
2	4	4	2
8	6	4	1
0	0	0	1

And b ← tuple(1, 2, 3, 1)
Then A * b = tuple(18, 24, 33, 1)

How does it work? The trick begins by treating the tuple as a really skinny

(one column!) matrix, like this:

(1, 2, 3, 1) ⇒









1
2
3
1









Four rows. One column.

It comes together just as it did when multiplying two 4x4 matrices together,

but now you’re only dealing with a single column in the second “matrix.” The

Chapter 3. Matrices • 30

report erratum • discuss

following figure illustrates this, highlighting the row and column used when

computing the value of c10.

1

2

8

0

2

4

6

0

3

4

4

0

4

2

1

1

1

2

3

1

× =

A b c

24

row 1,
col 0

row 1 column 0

To compute the value of c10, you consider only row 1 of matrix A, and column

0 (the only column!) of tuple b. If you think of that row of the matrix as a

tuple, then the answer is found by taking the dot product of that row and the

other tuple:

2× 1 + 4× 2 + 4× 3 + 2× 1 = 24

The other elements of c are computed similarly. It really is the exact same

algorithm used for multiplying two matrices, with the sole difference being

the number of columns in the second “matrix.”

If you’re feeling uncomfortable with how much magic there is in

these algorithms, check out “An Intuitive Guide to Linear Algebra”1

on BetterExplained.com. It does a good job of making sense of this

stuff!

Pause here to make the tests pass that you’ve written so far. Once you have

them working, carry on! We’re going to look at a very special matrix, and we’ll

use multiplication to understand some of what makes it so special.

The Identity Matrix

You know that you can multiply any number by 1 and get the original number.

The number 1 is called the multiplicative identity for that reason. Well, the

identity matrix is like the number 1, but for matrices. If you multiply any

matrix or tuple by the identity matrix, you get back the matrix or tuple you

started with.

This may sound utterly pointless right now, but consider this: if multiplying

by the identity matrix just returns the original value, it means you can use

it as the default transformation for any object in your scene. You don’t need

1. betterexplained.com/articles/linear-algebra-guide

report erratum • discuss

The Identity Matrix • 31

any special cases to tell the difference between a shape with a transformation

and a shape without. This is, in fact, exactly what you’ll use it for when you

get to Chapter 5, Ray-Sphere Intersections, on page 57.

Add the following tests to illustrate the (non-)effect of multiplying by the

identity matrix.

features/matrices.feature

Scenario: Multiplying a matrix by the identity matrix
Given the following matrix A:
0	1	2	4
1	2	4	8
2	4	8	16
4	8	16	32

Then A * identity_matrix = A

Scenario: Multiplying the identity matrix by a tuple
Given a ← tuple(1, 2, 3, 4)
Then identity_matrix * a = a

The identity matrix is all zeros, except for those elements along the diagonal,

which are each set to 1:

identity =









1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1









Again, you only need to worry about the 4x4 identity matrix for your ray

tracer. Next up, let’s look at another matrix operation.

Transposing Matrices

Matrix transposition will come in handy when you get to Chapter 6, Light and

Shading, on page 75. You’ll use it when translating certain vectors (called

normal vectors) between object space and world space. This may sound like

science fiction, but is crucial to shading your objects correctly.

When you transpose a matrix, you turn its rows into columns and its columns

into rows:

transpose









0 9 3 0

9 8 0 8

1 8 5 3

0 0 5 8









=









0 9 1 0

9 8 8 0

3 0 5 5

0 8 3 8









Transposing a matrix turns the first row into the first column, the second row

into the second column, and so forth. Here’s a test that demonstrates this.

Chapter 3. Matrices • 32

report erratum • discuss

features/matrices.feature

Scenario: Transposing a matrix
Given the following matrix A:
0	9	3	0
9	8	0	8
1	8	5	3
0	0	5	8

Then transpose(A) is the following matrix:
0	9	1	0
9	8	8	0
3	0	5	5
0	8	3	8

And interestingly, the transpose of the identity matrix always gives you the

identity matrix. Implement the following test to show that this is true.

features/matrices.feature

Scenario: Transposing the identity matrix
Given A ← transpose(identity_matrix)
Then A = identity_matrix

See? Good, clean fun. Make those tests pass, and then move on. It’s time to

talk about matrix inversion.

Inverting Matrices

If you multiply 5 by 4, you get 20. If you later decide to undo that operation,

you can multiply 20 by the inverse of 4 (or 1⁄4) and get 5 again.

That’s pretty much the idea for matrices, too. If you multiply some matrix A
by another matrix B, producing C, you can multiply C by the inverse of B to
get A again. You’ll use this approach a lot, starting in Chapter 5, Ray-Sphere

Intersections, on page 57, because inverting matrices is the key to transform-

ing and deforming shapes in a ray tracer.

Inverting matrices is a bit more complicated than inverting numbers, though.

You’ll employ a method known as cofactor expansion. If that sounds intimi-

dating, take heart! We’ll approach it nice and slow, one step at a time. Starting

with routines to compute the determinant of a 2x2 matrix, we’ll move incre-

mentally through arcane-sounding things like submatrices, minors, and

cofactors, and then come back to determinants again. Finally, we’ll wrap up

this chapter with the algorithm for matrix inversion itself.

Let’s begin with the determinant.

report erratum • discuss

Inverting Matrices • 33

Determining Determinants

The determinant is a number that is derived from the elements of a matrix.

The name comes from the use of matrices to solve systems of equations, where

it’s used to determine whether or not the system has a solution. If the deter-

minant is zero, then the corresponding system of equations has no solution.

You won’t be using matrices to solve equations here, though. For you, the

determinant is just one of the pieces that you’ll use to compute the inverse

of a matrix.

We’ll start small, building the algorithm from the bottom up. Here’s where

those 2x2 matrices come in handy, because inverting larger matrices begins

by finding the determinants of 2x2 matrices. Add the following test to your

suite, to show that your code can do just that.

features/matrices.feature

Scenario: Calculating the determinant of a 2x2 matrix
Given the following 2x2 matrix A:
| 1 | 5 |
| -3 | 2 |

Then determinant(A) = 17

It works like this:

determinant

[

a b

c d

]

= ad− bc

Isn’t that lovely? That’s all the magic you need to find the determinant of a

2x2 matrix! That right there is the seed for everything else involved in

inverting matrices.

You need a few more tools before you can find the determinant of a larger

matrix, though. Be patient! Make that new test pass, and then read on. The

next concept you need to implement is that of submatrices, which will be used

to help reduce larger matrices to sizes that you know how to work with.

Spotting Submatrices

A submatrix is what is left when you delete a single row and column from a

matrix. Because you’re always removing one row and one column, it effectively

reduces the size of the matrix by one. The submatrix of a 4x4 matrix is 3x3,

and the submatrix of a 3x3 matrix is 2x2. And guess what? You know how

to find the determinant of 2x2 matrices! Submatrices are the very tools you’ll

use to divide and conquer those larger beasts.

Chapter 3. Matrices • 34

report erratum • discuss

Add the following two tests that show what you get when extracting a subma-

trix from a matrix. They introduce a new function, submatrix(matrix, row, column),
which returns a copy of the given matrix with the given row and column

removed.

features/matrices.feature

Scenario: A submatrix of a 3x3 matrix is a 2x2 matrix
Given the following 3x3 matrix A:
1	5	0
-3	2	7
0	6	-3

Then submatrix(A, 0, 2) is the following 2x2 matrix:
| -3 | 2 |
| 0 | 6 |

Scenario: A submatrix of a 4x4 matrix is a 3x3 matrix
Given the following 4x4 matrix A:
-6	1	1	6
-8	5	8	6
-1	0	8	2
-7	1	-1	1

Then submatrix(A, 2, 1) is the following 3x3 matrix:
-6	1	6
-8	8	6
-7	-1	1

There’s no magic there, and, really, no math. Didn’t I tell you we were going

to take this nice and slow? Go ahead and make those tests pass. Next up are

minors.

Manipulating Minors

Okay, so you’re now acquainted with determinants and submatrices. This is

perfect, because now you have all the tools you need to compute the minors

of a 3x3 matrix. (Not quite 4x4 yet, but you’re getting closer!)

The minor of an element at row i and column j is the determinant of the sub-

matrix at (i,j). Implement the following test, which introduces a new function,

minor(matrix, row, column).

features/matrices.feature

Scenario: Calculating a minor of a 3x3 matrix
Given the following 3x3 matrix A:

3	5	0
2	-1	-7
6	-1	5

And B ← submatrix(A, 1, 0)
Then determinant(B) = 25
And minor(A, 1, 0) = 25

report erratum • discuss

Inverting Matrices • 35

See that? You find the submatrix at the given location, and then compute the

determinant of that submatrix. The answer is the minor. (You have to admit:

“minor” is easier to say than “determinant of the submatrix.”)

Make that test pass, and then we’ll look at the last concept we need to start

putting this matrix inversion puzzle together.

Computing Cofactors

Cofactors are the last tool you’ll need to compute the determinants of larger

matrices. They’re minors that have (possibly) had their sign changed. Add

the following test to demonstrate what’s expected from the cofactor. It intro-

duces a new function, cofactor(matrix, row, column).

features/matrices.feature

Scenario: Calculating a cofactor of a 3x3 matrix
Given the following 3x3 matrix A:

3	5	0
2	-1	-7
6	-1	5

Then minor(A, 0, 0) = -12
And cofactor(A, 0, 0) = -12
And minor(A, 1, 0) = 25
And cofactor(A, 1, 0) = -25

So how’s that work? Well, first you compute the minor at the given row and

column. Then you consider that row and column to determine whether or not

to negate the result. The following figure is helpful:




+ − +

− + −

+ − +





If the row and column identifies a spot with a +, then the minor’s sign doesn’t

change. If the row and column identifies a spot with a ➖, then you negate the

minor.

Of course, you can do this without looking at a figure, too: if row + column is
an odd number, then you negate the minor. Otherwise, you just return the

minor as is. Make that test pass and then read on!

Determining Determinants of Larger Matrices

Now that you have those three ideas ready—determinants, minors, and

cofactors—you can finally implement the determinant of 3x3 and 4x4 matrices.

(In fact, the idea generalizes to arbitrarily large matrices, too, but for your

purposes here, you don’t need to go any higher than 4x4.)

Chapter 3. Matrices • 36

report erratum • discuss

First, set the stage by writing the following two tests, showing the determinant

and some of the cofactors of a 3x3 and a 4x4 matrix. (Why the cofactors? Sit

tight. All will be clear shortly!)

features/matrices.feature

Scenario: Calculating the determinant of a 3x3 matrix
Given the following 3x3 matrix A:
1	2	6
-5	8	-4
2	6	4

Then cofactor(A, 0, 0) = 56
And cofactor(A, 0, 1) = 12
And cofactor(A, 0, 2) = -46
And determinant(A) = -196

Scenario: Calculating the determinant of a 4x4 matrix
Given the following 4x4 matrix A:
-2	-8	3	5
-3	1	7	3
1	2	-9	6
-6	7	7	-9

Then cofactor(A, 0, 0) = 690
And cofactor(A, 0, 1) = 447
And cofactor(A, 0, 2) = 210
And cofactor(A, 0, 3) = 51
And determinant(A) = -4071

Those tests shouldn’t be passing yet. Let’s fix that.

Finding the determinant of matrices larger than 2x2 works recursively. Con-

sider the 3x3 matrix from the previous tests.




1 2 6

−5 8 −4

2 6 4





To find the determinant, look at any one of the rows or columns. It really

doesn’t matter which, so let’s just choose the first row.




1 2 6

. . .

. . .





Then, for each of those elements, you’ll multiply the element by its cofactor,

and add the products together.

1 · 56 + 2 · 12 + 6 · −46 = −196

And that’s the determinant! The magical thing is that it doesn’t matter which

row or column you choose. It just works.

report erratum • discuss

Inverting Matrices • 37

And it works for 4x4 matrices, too. Here, consider the matrix from the test

you wrote:








−2 −8 3 5

−3 1 7 3

1 2 −9 6

−6 7 7 −9









Once again, you only need to look at a single row or column, so let’s choose

the first row.








−2 −8 3 5

. . . .

. . . .

. . . .









Then, multiply each element by its cofactor, and add the results.

−2 · 690 +−8 · 447 + 3 · 210 + 5 · 51 = −4071

Voilà! The determinant!

There’s no denying that it’s a lot to process, though. To give you a leg up,

here’s a bit of pseudocode for that algorithm:

function determinant(M)
det ← 0

if M.size = 2
det ← M[0, 0] * M[1, 1] - M[0, 1] * M[1, 0]

else
for column ← 0 to M.size - 1
det ← det + M[0, column] * cofactor(M, 0, column)

end for
end if

return det
end function

Go ahead and make those tests pass. You’re on the home stretch now. With

a fully functional determinant, you’re ready to tackle inversion.

Implementing Inversion

Okay, you’re to the culmination of this whole process now. Here’s where it

all comes together! Remember, inversion is the operation that allows you to

reverse the effect of multiplying by a matrix. It’ll be crucial to the transforma-

tion of shapes in your ray tracer, allowing you to move shapes around, make

them bigger or smaller, rotate them, and more. It’s no overstatement to say

that without inversion, there’s no point in building anything else!

Chapter 3. Matrices • 38

report erratum • discuss

Now, one of the tricky things about matrix inversion is that not every matrix

is invertible. Before you dive headlong into inverting matrices, you ought to

first be able to identify whether such a task is even possible!

Add the following tests to show that your code can tell invertible matrices

from noninvertible ones.

features/matrices.feature

Scenario: Testing an invertible matrix for invertibility
Given the following 4x4 matrix A:
6	4	4	4
5	5	7	6
4	-9	3	-7
9	1	7	-6

Then determinant(A) = -2120
And A is invertible

Scenario: Testing a noninvertible matrix for invertibility
Given the following 4x4 matrix A:
-4	2	-2	-3
9	6	2	6
0	-5	1	-5
0	0	0	0

Then determinant(A) = 0
And A is not invertible

And just as the tests suggest, the determinant is the key. If the determinant

is ever 0, the matrix is not invertible. Anything else is okay.

Once that’s working, add the following test. It exercises a new function called

inverse(matrix), which produces the inverse of the given matrix.

features/matrices.feature

Scenario: Calculating the inverse of a matrix
Given the following 4x4 matrix A:

-5	2	6	-8
1	-5	1	8
7	7	-6	-7
1	-3	7	4

And B ← inverse(A)
Then determinant(A) = 532
And cofactor(A, 2, 3) = -160
And B[3,2] = -160/532
And cofactor(A, 3, 2) = 105
And B[2,3] = 105/532
And B is the following 4x4 matrix:
0.21805	0.45113	0.24060	-0.04511
-0.80827	-1.45677	-0.44361	0.52068
-0.07895	-0.22368	-0.05263	0.19737
-0.52256	-0.81391	-0.30075	0.30639

report erratum • discuss

Inverting Matrices • 39

It’s no accident that the test also calculates some cofactors and determi-

nants—it all relates to the algorithm for inversion itself. That algorithm con-

sists of several steps, starting with the construction of a matrix of cofactors.

That is, you create a matrix that consists of the cofactors of each of the original

elements:








−5 2 6 −8

1 −5 1 8

7 7 −6 −7

1 −3 7 4









⇒









116 −430 −42 −278

240 −775 −119 −433

128 −236 −28 −160

−24 277 105 163









Then, transpose that cofactor matrix:








116 −430 −42 −278

240 −775 −119 −433

128 −236 −28 −160

−24 277 105 163









⇒









116 240 128 −24

−430 −775 −236 277

−42 −119 −28 105

−278 −433 −160 163









Finally, divide each of the resulting elements by the determinant of the original

matrix.








116 240 128 −24

−430 −775 −236 277

−42 −119 −28 105

−278 −433 −160 163









÷ 532 ⇒









0.21805 0.45113 0.24060 −0.04511

−0.80827 −1.45677 −0.44361 0.52068

−0.07895 −0.22368 −0.05263 0.19737

−0.52256 −0.81391 −0.30075 0.30639









Whew! And that’s the inverse. What a ride!

While it’s certainly possible to implement this by doing exactly what the pre-

ceding examples suggest (finding the matrix of cofactors, and then transposing

it, and so forth) you can actually do it a bit more efficiently by combining the

operations. Here’s some pseudocode demonstrating what I mean:

function inverse(M)
fail if M is not invertible

M2 ← new matrix of same size as M

for row ← 0 to M.size - 1
for col ← 0 to M.size - 1
c ← cofactor(M, row, col)

note that "col, row" here, instead of "row, col",
accomplishes the transpose operation!
M2[col, row] ← c / determinant(M)

end for
end for

return M2
end function

Chapter 3. Matrices • 40

report erratum • discuss

It’s important that this all be correct. Any bugs in this code will cause you

no end of headaches down the road. Add the following two tests to give a little

more coverage for your matrix routines.

features/matrices.feature

Scenario: Calculating the inverse of another matrix
Given the following 4x4 matrix A:
8	-5	9	2
7	5	6	1
-6	0	9	6
-3	0	-9	-4

Then inverse(A) is the following 4x4 matrix:
-0.15385	-0.15385	-0.28205	-0.53846
-0.07692	0.12308	0.02564	0.03077
0.35897	0.35897	0.43590	0.92308
-0.69231	-0.69231	-0.76923	-1.92308

Scenario: Calculating the inverse of a third matrix
Given the following 4x4 matrix A:
9	3	0	9
-5	-2	-6	-3
-4	9	6	4
-7	6	6	2

Then inverse(A) is the following 4x4 matrix:
-0.04074	-0.07778	0.14444	-0.22222
-0.07778	0.03333	0.36667	-0.33333
-0.02901	-0.14630	-0.10926	0.12963
0.17778	0.06667	-0.26667	0.33333

One last thing to note about the inverse: at the beginning of this section, you

read that “if you multiply some matrix A by another matrix B, producing C,
you can multiply C by the inverse of B to get A again.” Well, we can’t let such

a statement slide by unproven! Add one more test to show that the inverse

does, in truth, behave as described.

features/matrices.feature

Scenario: Multiplying a product by its inverse
Given the following 4x4 matrix A:

3	-9	7	3
3	-8	2	-9
-4	4	4	1
-6	5	-1	1

And the following 4x4 matrix B:
8	2	2	2
3	-1	7	0
7	0	5	4
6	-2	0	5

And C ← A * B
Then C * inverse(B) = A

report erratum • discuss

Inverting Matrices • 41

Make sure all of your tests are passing now. Once everything’s green, take a

deep breath and give yourself a solid pat on the back. You just implemented

one of the pillars of linear algebra—with tests, even!

Putting It Together

You now have 4x4 matrices with support for multiplication, transposition,

and inversion. Not bad!

Sadly, there’s not a lot related to ray tracing that you can do with those rou-

tines just yet, but you’ll take care of that little problem in the next chapter,

Chapter 4, Matrix Transformations, on page 43. However, there’s always room

for a bit of experimentation. Before moving on, take a few minutes to explore

a little more.

1. What happens when you invert the identity matrix?

2. What do you get when you multiply a matrix by its inverse?

3. Is there any difference between the inverse of the transpose of a matrix,

and the transpose of the inverse?

4. Remember how multiplying the identity matrix by a tuple gives you the

tuple, unchanged? Now, try changing any single element of the identity

matrix to a different number, and then multiplying it by a tuple. What

happens to the tuple?

When you’re ready, turn the page! In the next chapter you’ll use your matrices

to implement transformations, entities that will help you position and orient

the objects in your scenes.

Chapter 3. Matrices • 42

report erratum • discuss

CHAPTER 4

Matrix Transformations

Awesomesauce! You’re about to take the foundation of matrix operations you

implemented in the previous chapter and start doing some practical things,

like transformations, which your ray tracer will (eventually) use to move and

deform objects. Consider the following scene.

Your ray tracer won’t be able to render those reflections until Chapter 11,

Reflection and Refraction, on page 141, but the scene itself is not really too

complicated—a few colored spheres, some checkered planes. The relevant bit

here, though, is how each of those spheres is sized and positioned. Without

transformations, you’d have to explicitly describe each sphere’s radius and

location, which would be tedious (in a decidedly trigonometric sense) to get

report erratum • discuss

correct. Perhaps surprisingly, this would also increase the complexity of your

ray tracer, as you’ll see in Chapter 5, Ray-Sphere Intersections, on page 57.

With transformations, though, you add each of those smaller spheres to the

scene at the origin, and then apply a series of transformations to them: scaling,

translation, and a couple of rotations. No hairy math or tedious computations

involved!

Best of all, these transformations use the matrix operations you just polished

off. We’ll take a look at how to construct a matrix to represent each of these

transformations, as well as how to chain several of them together as a single

matrix.

Ready? Let’s start with translation.

Translation

Translation is a transformation that moves a point, like so.

It changes the coordinates of the point by adding to or subtracting from them.

For example, if the point had an x coordinate of 3, and you moved it 4 units

in x, it would wind up with an x coordinate of 7.

Joe asks:

Can’t we just use vectors to translate points?

Well, yes, as a matter of fact, we can. You saw in Tuples, Points, and Vectors how to

add a vector to a point and thus translate the point in the direction of the vector.

This works well.

The problem with it is that it can only do translation—we can’t use the same operation

(that is, adding a vector) and get rotation, or scaling, or shearing. What we want is a

single operation that can produce any of these transformations and concatenate them

in arbitrary order.

Matrix multiplication happens to be just such a tool.

The workhorse here will be a new translation(x,y,z) function which should return

a 4x4 translation matrix. Implement the following test to show it in action.

Don’t worry about making these next few tests pass yet, though; I’ll show you

the secret sauce shortly.

Chapter 4. Matrix Transformations • 44

report erratum • discuss

features/transformations.feature

Scenario: Multiplying by a translation matrix
Given transform ← translation(5, -3, 2)
And p ← point(-3, 4, 5)

Then transform * p = point(2, 1, 7)

Further, if you take the inverse of a translation matrix, you get another

translation matrix that moves points in reverse. Add the following test to your

suite to demonstrate this.

features/transformations.feature

Scenario: Multiplying by the inverse of a translation matrix
Given transform ← translation(5, -3, 2)
And inv ← inverse(transform)
And p ← point(-3, 4, 5)

Then inv * p = point(-8, 7, 3)

Now let’s throw a wrench into things: multiplying a translation matrix by a

vector should not change the vector! Remember, a vector is just an arrow.

Moving it around in space does not change the direction it points. Add the

following test to show that vectors are not changed by translation:

features/transformations.feature

Scenario: Translation does not affect vectors
Given transform ← translation(5, -3, 2)
And v ← vector(-3, 4, 5)

Then transform * v = v

You might wonder how you’re going to pull that off. A matrix that affects

points but not vectors? Can it really be so?

Gather round!

In Tuples, Points, and Vectors, you read that the difference between a point

and a vector was just that a vector had a 0 in its w component. This is where

that feature pays dividends. It turns out that the way a translation matrix is

constructed makes it so that a 0 in the w component of a tuple will cause the

translation to be ignored.

Let’s look at this mysterious (spoiler: not really mysterious) translation matrix

and see just how it is structured. Start with an identity matrix t, and then

add the desired x, y, and z values to (respectively) the t03, t13, and t23 elements,

as shown in the following figure.

translation(x,y, z) =









1 0 0 x

0 1 0 y

0 0 1 z

0 0 0 1









report erratum • discuss

Translation • 45

You will find that, when multiplied by a vector, the 0 in w causes those

translation values to disappear, like magic. With a point, though, the 1 in w
has the desired effect, and causes the point to move.

Slick!

So that’s translation. Make those tests pass, and we’ll look at scaling next.

Scaling

Where translation moves a point by adding

to it, scaling moves it by multiplication.

When applied to an object centered at the

origin, this transformation scales all points

on the object, effectively making it larger

(if the scale value is greater than 1) or

smaller (if the scale value is less than 1),

as shown in the figure.

You’ll need a new function, called scaling(x,y,z), that returns a 4x4 translation

matrix. Add the following test to demonstrate how it’s used to scale a point.

features/transformations.feature

Scenario: A scaling matrix applied to a point
Given transform ← scaling(2, 3, 4)
And p ← point(-4, 6, 8)

Then transform * p = point(-8, 18, 32)

Now, unlike translation, scaling applies to vectors as well, changing their

length. Add the following test to show how vectors are affected by scaling.

features/transformations.feature

Scenario: A scaling matrix applied to a vector
Given transform ← scaling(2, 3, 4)
And v ← vector(-4, 6, 8)

Then transform * v = vector(-8, 18, 32)

And as you might expect, multiplying a tuple by the inverse of a scaling matrix

will scale the tuple in the opposite way (shrinking instead of growing, or vice

versa). Add the following test to show that this is so.

features/transformations.feature

Scenario: Multiplying by the inverse of a scaling matrix
Given transform ← scaling(2, 3, 4)
And inv ← inverse(transform)
And v ← vector(-4, 6, 8)

Then inv * v = vector(-2, 2, 2)

Chapter 4. Matrix Transformations • 46

report erratum • discuss

To construct a scaling matrix, take an identity matrix t and change the values

at t00, t11, and t22 to be (respectively) the x, y, and z scaling values.

scaling(x,y, z) =









x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1









While we’re on the subject of scaling, let’s take a moment and discuss its near

cousin: reflection. Reflection is a transformation that takes a point and reflects

it—moving it to the other side of an axis. It can be useful when you have an

object in your scene that you want to flip (or mirror) in some direction. Maybe

the model is leaning the wrong way, facing the wrong direction. Maybe it’s a

face that’s looking to the right when you want it looking to the left. Rather

than breaking out a 3D modeler and editing the model, you can simply reflect

the model across the appropriate axis.

Reflection is essentially the same thing as scaling by a negative value.

Implement the following test, which shows how a point can be reflected across

the x axis by scaling the x component by -1.

features/transformations.feature

Scenario: Reflection is scaling by a negative value
Given transform ← scaling(-1, 1, 1)
And p ← point(2, 3, 4)

Then transform * p = point(-2, 3, 4)

Just like that, the point was moved from the positive side of the x axis, to the

negative.

Make your tests pass, and then let’s move on to rotation.

Rotation

Multiplying a tuple by a rotation matrix will rotate that tuple around an axis.

This can get complicated if you’re trying to rotate around an arbitrary line,

so we’re not going to take that route. We’re only going to deal with the simplest

rotations here—rotating around the x, y, and z axes.

Trigonometric Functions

Rotation matrices depend on the sine and cosine functions from

trigonometry. Don’t worry about dredging your high school math

memories, though. Check your implementation language for a Math
namespace, where you will usually find the functions named sin
and cos.

report erratum • discuss

Rotation • 47

The rotation will appear to be clockwise around the corresponding axis when

viewed along that axis, toward the negative end. So, if you’re rotating around

the x axis, it will rotate as depicted in the following figure.

Another way to describe this is to say that rotations in your ray tracer will

obey the left-hand rule, which harks back to Left-Handed vs. Right-Handed

Coordinates, on page 3: if you point the thumb of your left hand in the

direction of the axis of rotation, then the rotation itself will follow the direction

of your remaining fingers as you curl them toward the palm of your hand.

Each of the three axes requires a different matrix to implement the rotation,

so we’ll look at them each in turn. Angles will be given in radians, so if your

math library prefers other units (like degrees), you’ll need to adapt accordingly.

Joe asks:

What are radians?

A full circle (360 degrees) consists of 2π radians, which means a half circle (180

degrees) is π radians, and a quarter circle (90 degrees) is π⁄2 radians. If you’re not

used to thinking in terms of radians, it may be helpful to write a function to convert

them from degrees. The formula looks like this:

radians(deg) =
deg

180
π

Rotation Around the X Axis

This first rotation matrix rotates a tuple some number of radians around the

x axis, and will be created by introducing a new rotation_x(radians) function. Prove

it works by adding the following test, which shows off rotating a point around

the x axis.

features/transformations.feature

Scenario: Rotating a point around the x axis
Given p ← point(0, 1, 0)
And half_quarter ← rotation_x(π / 4)
And full_quarter ← rotation_x(π / 2)

Then half_quarter * p = point(0, √2/2, √2/2)
And full_quarter * p = point(0, 0, 1)

Chapter 4. Matrix Transformations • 48

report erratum • discuss

Visually, the test performs the following two rotations:

Next, add another test showing that the inverse of this rotation matrix simply

rotates in the opposite direction.

features/transformations.feature

Scenario: The inverse of an x-rotation rotates in the opposite direction
Given p ← point(0, 1, 0)
And half_quarter ← rotation_x(π / 4)
And inv ← inverse(half_quarter)

Then inv * p = point(0, √2/2, -√2/2)

The transformation matrix for rotating r radians around the x axis is con-

structed like this:

rotationx(r) =









1 0 0 0
0 cos r − sin r 0
0 sin r cos r 0
0 0 0 1









Very nice. Now, on to the next axis.

Rotation Around the Y Axis

The y axis rotation works just like the x axis rotation, only changing the axis.

Add the following test to demonstrate the difference.

features/transformations.feature

Scenario: Rotating a point around the y axis
Given p ← point(0, 0, 1)
And half_quarter ← rotation_y(π / 4)
And full_quarter ← rotation_y(π / 2)

Then half_quarter * p = point(√2/2, 0, √2/2)
And full_quarter * p = point(1, 0, 0)

report erratum • discuss

Rotation • 49

Again, visually, that rotation looks like this:

The transformation matrix for rotating r radians around the y axis is con-

structed like this:

rotationy(r) =









cos r 0 sin r 0
0 1 0 0

− sin r 0 cos r 0
0 0 0 1









Just so. One more axis to go!

Rotation Around the Z Axis

And last, but not least: the z axis rotation. Show that it works just like the

other rotations, by implementing the following test.

features/transformations.feature

Scenario: Rotating a point around the z axis
Given p ← point(0, 1, 0)
And half_quarter ← rotation_z(π / 4)
And full_quarter ← rotation_z(π / 2)

Then half_quarter * p = point(-√2/2, √2/2, 0)
And full_quarter * p = point(-1, 0, 0)

And here’s the corresponding visualization:

Chapter 4. Matrix Transformations • 50

report erratum • discuss

This rotation may seem backward, but break out the left-hand

rule and check it out. Point your left thumb along the positive

z axis, and then curl your fingers. They curl toward the negative

x axis, just as illustrated!

Finally, the transformation matrix itself is this:

rotationz(r) =









cos r − sin r 0 0
sin r cos r 0 0
0 0 1 0
0 0 0 1









That takes care of rotating a point or vector around any of our three primary

axes. Make those tests pass, and then move on. We’re going to look at one

more transformation.

Shearing

A shearing (or skew) transformation has the effect of making straight lines

slanted. It’s probably the most (visually) complex transformation that we’ll

implement, though the implementation is no more complicated than any of

the others.

When applied to a tuple, a shearing transformation changes each component

of the tuple in proportion to the other two components. So the x component

changes in proportion to y and z, y changes in proportion to x and z, and z
changes in proportion to x and y.

The following illustration shows how this works in two dimensions. Specifically,

note how differently the same transformation affects each point in x as the y
component changes.

report erratum • discuss

Shearing • 51

This is what “changing in proportion” means: the farther the y coordinate is

from zero, the more the x value changes.

In three dimensions each component may be affected by either of the other

two components, so there are a total of six parameters that may be used to

define the shear transformation:

• x in proportion to y
• x in proportion to z
• y in proportion to x
• y in proportion to z
• z in proportion to x
• z in proportion to y

Write the following tests, demonstrating how a point is affected by each of

these parameters. In each, notice how the coordinate being moved moves by

the amount of the other coordinate. For instance, in this first test x is initially

2, but moving x in proportion to y adds 1 times y (or 3) to x (2) and produces a

new x of 5.

features/transformations.feature

Scenario: A shearing transformation moves x in proportion to y
Given transform ← shearing(1, 0, 0, 0, 0, 0)
And p ← point(2, 3, 4)

Then transform * p = point(5, 3, 4)

The remaining tests work similarly, adding the two components together to

get the new component value.

features/transformations.feature

Scenario: A shearing transformation moves x in proportion to z
Given transform ← shearing(0, 1, 0, 0, 0, 0)
And p ← point(2, 3, 4)

Then transform * p = point(6, 3, 4)

Scenario: A shearing transformation moves y in proportion to x
Given transform ← shearing(0, 0, 1, 0, 0, 0)
And p ← point(2, 3, 4)

Then transform * p = point(2, 5, 4)

Scenario: A shearing transformation moves y in proportion to z
Given transform ← shearing(0, 0, 0, 1, 0, 0)
And p ← point(2, 3, 4)

Then transform * p = point(2, 7, 4)

Scenario: A shearing transformation moves z in proportion to x
Given transform ← shearing(0, 0, 0, 0, 1, 0)
And p ← point(2, 3, 4)

Then transform * p = point(2, 3, 6)

Chapter 4. Matrix Transformations • 52

report erratum • discuss

Scenario: A shearing transformation moves z in proportion to y
Given transform ← shearing(0, 0, 0, 0, 0, 1)
And p ← point(2, 3, 4)

Then transform * p = point(2, 3, 7)

The transformation matrix for a shear transformation is given in the following

figure, where (for instance) xy means “x moved in proportion to y,” and repre-

sents the amount by which to multiply y before adding it to x.

shearing(xy,xz,yx,yz, zx, zy) =









1 xy xz 0
yx 1 yz 0
zx zy 1 0
0 0 0 1









That’s the last of the transformation matrices that we’ll cover here. Take some

time now to make sure your tests are all passing before moving on. Once

you’re ready, let’s talk about how you can combine these matrices to create

more complex transformations.

Chaining Transformations

As you’ve seen, you can create transformation matrices to translate, scale,

rotate, and skew. But what if you want to do more than one at a time?

It’s a completely reasonable expectation. Let’s say that you are (eventually)

going to render a teapot. The model you’re rendering is at the origin and is

small relative to the rest of the scene. The model is also tipped on its side.

You’d like to rotate it so it’s right-side up, scale it to a reasonable size, and

then translate it so it’s sitting on a table, instead of the floor.

You could apply each transformation in sequence, like this:

rotate the teapot to be right-side up
A ← rotation_x(π / 2)
teapot ← A * teapot

next, make the teapot 5x larger
B ← scaling(5, 5, 5)
teapot ← B * teapot

finally, move the teapot onto a table
C ← translation(10, 5, 7)
teapot ← C * teapot

But that’s just the same as this:

A ← rotation_x(π / 2)
B ← scaling(5, 5, 5)
C ← translation(10, 5, 7)

teapot ← C * (B * (A * teapot))

report erratum • discuss

Chaining Transformations • 53

Or, since matrix multiplication is associative:

teapot ← (C * B * A) * teapot

Note that the order of the multiplications is important! Matrix multiplication

is associative, but not commutative. When it comes to matrices, A × B is not

guaranteed to be the same as B × A.

So, if you want a single matrix that rotates, and then scales, and then

translates, you can multiply the translation matrix by the scaling matrix,

and then by the rotation matrix. That is to say, you must concatenate the

transformations in reverse order to have them applied in the order you want!

Add the following tests to demonstrate this (particularly counterintuitive)

result.

features/transformations.feature

Scenario: Individual transformations are applied in sequence
Given p ← point(1, 0, 1)
And A ← rotation_x(π / 2)
And B ← scaling(5, 5, 5)
And C ← translation(10, 5, 7)

apply rotation first
When p2 ← A * p
Then p2 = point(1, -1, 0)
then apply scaling
When p3 ← B * p2
Then p3 = point(5, -5, 0)
then apply translation
When p4 ← C * p3
Then p4 = point(15, 0, 7)

Scenario: Chained transformations must be applied in reverse order
Given p ← point(1, 0, 1)
And A ← rotation_x(π / 2)
And B ← scaling(5, 5, 5)
And C ← translation(10, 5, 7)

When T ← C * B * A
Then T * p = point(15, 0, 7)

Awesome! You now have vectors and points, and matrix transformations.

This is a fantastic foundation for the rest of your ray tracer! Let’s find some-

thing to do with those pieces before moving on.

Putting It Together

Here’s a program for you to write. Picture an analog clock. There are (typically)

twelve positions around the edge, representing the hours. Got it? Okay. Your

Chapter 4. Matrix Transformations • 54

report erratum • discuss

Fluent APIs

Depending on your implementation language, you may be able to present a more

intuitive interface for concatenating transformation matrices. A fluent API, for instance,

could let you declare your transformations in a natural order like this:

transform ← identity().
rotate_x(π / 2).
scale(5, 5, 5).
translate(10, 5, 7)

The call to identity() returns the identity matrix, and rotate_x(π/2) is then invoked on it.

This multiplies the corresponding rotation matrix by the caller, “rotation” times

“identity,” effectively flipping the order of operations around. Each subsequent call

in this chain multiplies its matrix by the result of the previous call, eventually turning

the whole chain “inside out.”

challenge is to write a program that uses a rotation matrix to compute the

positions of those hours on the clock face, and draw a pixel onto a canvas for

each of them. The result ought to look something like this:

Here are four hints to get you started. (Feel free to stop reading now if you

want to see if you can make it work with no hints at all!)

Hint #1

First, assume the clock is centered at the origin, point(0,0,0). Let the origin be

in the middle of your canvas.

report erratum • discuss

Putting It Together • 55

Hint #2

Next, choose an axis to orient the clock. If, for example, it’s oriented along

the y axis and you’re looking at it face-on, then you’re looking toward the

negative end of the y axis. The following figure shows this orientation.

This means twelve o’clock is on the +z axis at point(0,0,1), and three o’clock is

on the +x axis at point(1,0,0).

Hint #3

Now, rotate the twelve o’clock point around the y axis to find the other hour

positions. There are 2π radians in a circle, so each hour is rotated 2π⁄12 (or π⁄6)
radians. In pseudocode, then, it would look something like this:

compute y-axis rotation for hour #3
r ← rotation_y(3 * π/6)

given: position of twelve o'clock
twelve ← point(0,0,1)

compute position of three o'clock by rotating twelve o'clock
three ← r * twelve

In this case, you should find that three o’clock is at point(1,0,0).

Hint #4

Decide how large the clock is to be drawn on your canvas. For example, if your

canvas is square, you might let the clock’s radius be 3⁄8 the canvas’s width.

For each point that you compute, multiply the x and z components by this

radius, and then move them to the center of your canvas by adding the

coordinates of the center point. Let x be the x coordinate of the pixel, and z
be the y coordinate.

Don’t forget to save your canvas as a PPM file when you’re done!

Once you’ve got that nailed down, move on. It’s time to start intersecting rays

and spheres!

Chapter 4. Matrix Transformations • 56

report erratum • discuss

CHAPTER 5

Ray-Sphere Intersections

Awesome news! You’re all done with the foundational work, and now you get

to start on the meat of an actual ray tracer. From here on out, each chapter

will culminate in something concrete, something visual, which will add to

your growing store of eye candy.

For this chapter, that visual bit won’t be particularly impressive. It’ll just be

a humble filled circle drawn to your canvas, like this:

Primitive? Undoubtedly! But you’ll draw it by exercising the most basic

muscle in the body of a ray tracer: ray casting.

Ray casting is the process of creating a ray, or line, and finding the intersec-

tions of that ray with the objects in a scene. We’ll cover all of that in this

chapter, using material from the previous chapters as we go.

Let’s do this!

Creating Rays

Each ray created by your ray tracer will have a starting point called the origin,

and a vector called the direction which says where it points. Write the following

test, showing how you create a ray and what its primary attributes should be:

report erratum • discuss

features/rays.feature

Scenario: Creating and querying a ray
Given origin ← point(1, 2, 3)
And direction ← vector(4, 5, 6)

When r ← ray(origin, direction)
Then r.origin = origin
And r.direction = direction

Armed with a ray’s origin and direction, you can find points that lie any dis-

tance t along the ray. Why t? Blame the mathematicians! It stands for time,

which only makes sense once you think of the ray’s direction vector as its

speed. For example, if the ray moves one unit every second, then the following

figure from Scalar Multiplication and Division, on page 7, shows how far the

ray travels in 3.5 seconds.

t = 3.5

Perform the following test, which introduces a new function called position(ray, t).
This function should compute the point at the given distance t along the ray.

features/rays.feature

Scenario: Computing a point from a distance
Given r ← ray(point(2, 3, 4), vector(1, 0, 0))
Then position(r, 0) = point(2, 3, 4)
And position(r, 1) = point(3, 3, 4)
And position(r, -1) = point(1, 3, 4)
And position(r, 2.5) = point(4.5, 3, 4)

To find the position, you multiply the ray’s direction by t to find the total

distance traveled, and then add that to the ray’s origin. In pseudocode, it

looks like this:

function position(ray, t)
return ray.origin + ray.direction * t

end function

You’ll make good use of this in Chapter 6, Light and Shading, on page 75,

when you start turning intersections into actual surface information. It’s part

of the process of computing realistic shading for your scenes.

Make sure your tests are passing before moving on. In the next section we’ll

look at intersecting those rays with spheres.

Chapter 5. Ray-Sphere Intersections • 58

report erratum • discuss

Intersecting Rays with Spheres

We’re going to make your life as simple as possible by assuming every sphere’s

origin (its center point) is situated at the world origin (that’s point(0, 0, 0)). We’ll

also assume that these are all unit spheres, with radii of 1.

If you were to cast a ray through the center of one of these spheres, you would

see the ray intersect in two places, like this:

More specifically, if the ray originates at (0, 0, -5), and passes directly through

the origin, it should intersect the sphere at (0, 0, -1) and (0, 0, 1), 4 and 6 units

(respectively) away from the ray’s origin, like the following figure shows.

Add the following test to demonstrate this. It introduces two new functions:

sphere(), which returns a new sphere object, and intersect(sphere, ray), which

returns the collection of t values where the ray intersects the sphere.

features/spheres.feature

Scenario: A ray intersects a sphere at two points
Given r ← ray(point(0, 0, -5), vector(0, 0, 1))
And s ← sphere()

When xs ← intersect(s, r)
Then xs.count = 2
And xs[0] = 4.0
And xs[1] = 6.0

The sphere() function should return a unique value each time it is invoked.

Depending on your programming language, you might need to pass something

report erratum • discuss

Intersecting Rays with Spheres • 59

unique (an integer, or a string) to the function as the new sphere’s id. You’ll

add some attributes to the sphere later in this chapter (when you start

incorporating matrix transformations), but for now it has no associated data.

Just make sure that no two invocations of sphere() return the same value.

Now, if you move your ray’s starting point 1 unit in the positive y direction,

the ray will be tangent to the sphere. It will intersect at one point, just

glancing off the edge, like this:

Implement the following test, which corresponds to this scenario. It should

instantiate a ray 1 unit farther in the y direction, and intersect it with the

same unit sphere. Even though it truly intersects at only a single point, for

simplicity’s sake you’ll have your code return two intersections, with the same

point at each. (This will help later when determining object overlaps, in

Chapter 16, Constructive Solid Geometry (CSG), on page 227.) Assert that both

intersections are at the same point.

features/spheres.feature

Scenario: A ray intersects a sphere at a tangent
Given r ← ray(point(0, 1, -5), vector(0, 0, 1))
And s ← sphere()

When xs ← intersect(s, r)
Then xs.count = 2
And xs[0] = 5.0
And xs[1] = 5.0

Now move your ray’s starting point just a bit more along the positive y direc-

tion. The ray should miss the sphere entirely, passing above the sphere and

not intersecting it at all. Write the following test to show that this is true.

features/spheres.feature

Scenario: A ray misses a sphere
Given r ← ray(point(0, 2, -5), vector(0, 0, 1))
And s ← sphere()

When xs ← intersect(s, r)
Then xs.count = 0

Chapter 5. Ray-Sphere Intersections • 60

report erratum • discuss

Before making these tests pass, there are a few edge cases to consider. For

example, what happens if your ray originates inside the sphere? Well, there

should be one intersection in front of the ray, and another behind it, as the

following figure illustrates.

Yes, the ray actually extends behind the starting point, but let’s not get dis-

tracted by definitions! Go ahead and write the following test, showing that

when the ray starts at the center of a sphere, the first intersection is behind

the ray’s origin, and the second is in front of it.

features/spheres.feature

Scenario: A ray originates inside a sphere
Given r ← ray(point(0, 0, 0), vector(0, 0, 1))
And s ← sphere()

When xs ← intersect(s, r)
Then xs.count = 2
And xs[0] = -1.0
And xs[1] = 1.0

Lastly, if the sphere is completely behind the ray, you should still see two

intersections—both with a negative t value. The following figure shows what

this looks like.

The following test shows that this is so, with both intersections occurring

behind the ray’s origin.

report erratum • discuss

Intersecting Rays with Spheres • 61

features/spheres.feature

Scenario: A sphere is behind a ray
Given r ← ray(point(0, 0, 5), vector(0, 0, 1))
And s ← sphere()

When xs ← intersect(s, r)
Then xs.count = 2
And xs[0] = -6.0
And xs[1] = -4.0

Let’s take a look now at what needs to happen to make these tests pass. To

compute the intersection of a ray and a sphere you’ll need those routines

you’ve implemented up to this point, including tuple arithmetic, the dot

product, and even (later in this chapter) matrix inversion and transformations.

It’s a good thing you’ve already got those working, isn’t it?

The math behind intersecting a ray and a sphere is really quite elegant, but for

the sake of brevity we’ll skip the derivations and jump straight to the implemen-

tation. If you really want to dig into the math, you’ll find plenty of resources

online. Check out the “Line-sphere intersection” article on Wikipedia,1 the “Ray-

Sphere Intersection” tutorial at Lighthouse3d,2 or the “Ray-Sphere Intersection”

post from Scratchapixel’s series on “A Minimal Ray-Tracer.”3

Begin the algorithm by computing the discriminant—a number that tells you

whether the ray intersects the sphere at all. In pseudocode, the calculations

look like this:

the vector from the sphere's center, to the ray origin
remember: the sphere is centered at the world origin
sphere_to_ray ← ray.origin - point(0, 0, 0)

a ← dot(ray.direction, ray.direction)
b ← 2 * dot(ray.direction, sphere_to_ray)
c ← dot(sphere_to_ray, sphere_to_ray) - 1

discriminant ← b² - 4 * a * c

That discriminant value is the key. If it’s negative, then the ray misses and no

intersections occur between the sphere and the ray.

if discriminant < 0 then
return ()

end if

1. en.wikipedia.org/wiki/Line–sphere_intersection
2. www.lighthouse3d.com/tutorials/maths/ray-sphere-intersection
3. www.scratchapixel.com/lessons/3d-basic-rendering/minimal-ray-tracer-rendering-simple-shapes/ray-sphere-

intersection

Chapter 5. Ray-Sphere Intersections • 62

report erratum • discuss

Otherwise, you’ll see either one (for rays that hit the sphere at a perfect tan-

gent) or two intersections, but your function should always return two in

either case. For the tangent case, both intersections will have the same t value,

as mentioned earlier. Also, make sure the intersections are returned in

increasing order, to make it easier to determine which intersections are sig-

nificant, later.

t1 ← (-b - √(discriminant)) / (2 * a)
t2 ← (-b + √(discriminant)) / (2 * a)

return (t1, t2)

At this point, your tests should all be passing. Yay! Pat yourself on the back,

and exult in the fact you’ve implemented the heart of an actual ray tracer!

This is only part of the solution, though. Your ray tracer will eventually need

to know more than the t values at each intersection. Let’s look at how to keep

track of that additional information next.

Tracking Intersections

Currently, your intersect function returns a set of t values, but imagine for a

moment a beautifully complex scene, full of spheres, cubes, cylinders, cones

and dozens of creative combinations. You cast your ray into that scene and get

back a double handful of intersections. You now know where the intersections

occurred (thanks to the t values), but you have no idea how to draw them. What

object was intersected at that point? What color is it? What are its material

properties? Should there be a reflection or not? You just don’t know.

With the addition of one more property, you’ll have the foundation of what

you need to answer those questions. You’re going to create a new data

structure, called an intersection, which will (for now) aggregate two things:

1. The t value of the intersection, and

2. The object that was intersected.

You’ll add additional properties in later chapters, but these will suffice for

now. Go ahead and add the following test to show both how to create an

intersection and how its properties are accessed.

features/intersections.feature

Scenario: An intersection encapsulates t and object
Given s ← sphere()
When i ← intersection(3.5, s)
Then i.t = 3.5
And i.object = s

report erratum • discuss

Tracking Intersections • 63

You’ll also need a way to aggregate these intersection objects so you can work

with multiple intersections at once. (Consider your sphere intersection routine,

which can return zero, one, or two intersections.) Write the following test,

which introduces a new function called intersections(i1, i2, ...). This should return

a new collection of the given intersection objects.

features/intersections.feature

Scenario: Aggregating intersections
Given s ← sphere()
And i1 ← intersection(1, s)
And i2 ← intersection(2, s)

When xs ← intersections(i1, i2)
Then xs.count = 2
And xs[0].t = 1
And xs[1].t = 2

This list of intersections could just be an array primitive in your implementa-

tion language, but note that you’ll be adding a function shortly (in Identifying

Hits, on page 64) that operates on these lists of intersections.

Now it’s time to break some code! Modify your existing tests so that they

assume your intersect function returns a list of these intersection records,

instead of bare t values. Also, add the following test, which will show that the

object property is being set by intersect.

features/spheres.feature

Scenario: Intersect sets the object on the intersection
Given r ← ray(point(0, 0, -5), vector(0, 0, 1))
And s ← sphere()

When xs ← intersect(s, r)
Then xs.count = 2
And xs[0].object = s
And xs[1].object = s

Make your tests pass again by modifying your intersect function so it creates

a record for each intersection, instead of returning the t values directly. All

you need now is to be able to decide which of all those intersections you

actually care about, which introduces the hit.

Identifying Hits

When rendering your scene, you’ll need to be able to identify which one of all

the intersections is actually visible from the ray’s origin. Some may be behind

the ray, and others may be hidden behind (or occluded by) other objects. For

the sake of discussion, we’ll call the visible intersection the hit. This is really

the only intersection that matters for most things.

Chapter 5. Ray-Sphere Intersections • 64

report erratum • discuss

The hit will never be behind the ray’s origin, since that’s effectively behind

the camera, so you can ignore all intersections with negative t values when

determining the hit. In fact, the hit will always be the intersection with the

lowest nonnegative t value.

Joe asks:

Why do I have to keep all the intersections?

You just read that you can ignore all intersections with negative t values when

determining the hit. So why keep them around at all? Wouldn’t it be easier to just

not return them from the intersect() function in the first place?

Certainly. It’s a fair optimization, right up until you get to Chapter 11, Reflection and

Refraction, on page 141. At that point, these seemingly irrelevant intersections suddenly

become important! They’ll be used to help determine which shapes contain other

shapes. This will be also useful in Chapter 16, Constructive Solid Geometry (CSG),

on page 227, to inform how to render collections of objects related by boolean opera-

tions.

So, hang onto those negative t values for now! Your future self will thank you.

Write the following tests, which introduce a function called hit(intersections).
This function returns the hit from a collection of intersection records. Writing

these tests will show how hit should behave in a few different situations.

features/intersections.feature

Scenario: The hit, when all intersections have positive t
Given s ← sphere()
And i1 ← intersection(1, s)
And i2 ← intersection(2, s)
And xs ← intersections(i2, i1)

When i ← hit(xs)
Then i = i1

Scenario: The hit, when some intersections have negative t
Given s ← sphere()
And i1 ← intersection(-1, s)
And i2 ← intersection(1, s)
And xs ← intersections(i2, i1)

When i ← hit(xs)
Then i = i2

Scenario: The hit, when all intersections have negative t
Given s ← sphere()
And i1 ← intersection(-2, s)
And i2 ← intersection(-1, s)
And xs ← intersections(i2, i1)

When i ← hit(xs)

report erratum • discuss

Identifying Hits • 65

Then i is nothing

Scenario: The hit is always the lowest nonnegative intersection
Given s ← sphere()
And i1 ← intersection(5, s)
And i2 ← intersection(7, s)
And i3 ← intersection(-3, s)
And i4 ← intersection(2, s)
And xs ← intersections(i1, i2, i3, i4)

When i ← hit(xs)
Then i = i4

Don’t let that last test trip you up! The intersections are intentionally given

in random order; it’s up to your intersections() function to maintain a sorted list

or, at the very least, sort the list on demand. This will be important down the

road when you have more complicated scenes with multiple objects. It won’t

be feasible for each shape to manually preserve the sort order of that intersec-

tion list.

That rounds out your suite of intersection-related functionality. Make those

tests all pass, and then let’s take a look at how to move, resize, rotate, and

deform your spheres.

Transforming Rays and Spheres

A unit sphere fixed at the origin is (at best) barely useful. You certainly couldn’t

have more than one, which makes it hard to make any kind of scene out of

them. What you want is to be able to transform this sphere—scale it larger

or smaller, move it around, and maybe (if one side were textured differently)

rotate it a bit.

If you allow moving the sphere, though, your beautiful ray-sphere intersection

algorithm has to change, because it assumes the sphere is always at the origin

and always has a radius of 1. It would be lovely if you could keep that

assumption, while still allowing spheres to be resized and repositioned. It

would make your implementation so much cleaner and simpler.

Well, let’s consider this. You say you want to move the sphere, but what you

really want, fundamentally, is for the distance between the sphere and the

ray’s origin to increase or decrease, or the relationship between the ray’s

direction and the sphere’s position to change, like the two pictures shown on

page 67.

In the one on the left, the ray’s origin and the sphere are separated by 2 units.

In the one on the right, they’ve moved further apart. But contemplate this for

a moment: did the sphere move, or the ray? Does it even matter? Regardless

Chapter 5. Ray-Sphere Intersections • 66

report erratum • discuss

of which one moved, the distance between them increased, right? So, here’s

a crazy idea. What if, instead of moving the sphere, you move the ray?

(I know. It’s pretty wild.)

Want to translate your sphere away from the ray? That’s just the same as

translating the ray away from the sphere, in the opposite direction, as the

following figures show.

In the figure on the left, the sphere is moved away from the dot (perhaps the

origin of a ray). On the right, the dot is moved away from the sphere. In both

cases, the sphere and the dot wind up 5 units apart.

But what about scaling? What if you want to make your sphere bigger? It

turns out that this is just the same as shrinking the distance between the ray

and the sphere. It’s an inverse relationship. You scale the ray by the inverse

of how you were wanting to scale the sphere, as in the following figure:

report erratum • discuss

Transforming Rays and Spheres • 67

Okay, but what about rotation? Surely it can’t be that simple for something

like rotation? Oh, but it can! Consider the following figure. On the left, you

see that rotating an object exposes a different side of that object to the ray.

On the right, the same result is accomplished by rotating the ray around the

object.

If you want to rotate your sphere, you rotate the ray by the inverse of the

rotation you wanted to apply to the sphere.

In other words: whatever transformation you want to apply to the sphere,

apply the inverse of that transformation to the ray, instead. Crazy, right? But

it works!

World Space vs. Object Space

Another way to think about transformation matrices is to think of them as converting

points between two different coordinate systems. At the scene level, everything is in

world space coordinates, relative to the overall world. But at the object level, everything

is in object space coordinates, relative to the object itself.

Multiplying a point in object space by a transformation matrix converts that point to

world space—scaling it, translating, rotating it, or whatever. Multiplying a point in

world space by the inverse of the transformation matrix converts that point back to

object space.

Want to intersect a ray in world space with a sphere in object space? Just convert

the ray’s origin and direction to that same object space, and you’re golden.

So, first, make sure your ray is transformable. Add the following tests to your

suite, introducing a transform(ray, matrix) function which applies the given

transformation matrix to the given ray, and returns a new ray with trans-

formed origin and direction. Make sure it returns a new ray, rather than

modifying the ray in place! You need to keep the original, untransformed ray,

so that you can use it to calculate locations in world space later.

Chapter 5. Ray-Sphere Intersections • 68

report erratum • discuss

features/rays.feature

Scenario: Translating a ray
Given r ← ray(point(1, 2, 3), vector(0, 1, 0))
And m ← translation(3, 4, 5)

When r2 ← transform(r, m)
Then r2.origin = point(4, 6, 8)
And r2.direction = vector(0, 1, 0)

Scenario: Scaling a ray
Given r ← ray(point(1, 2, 3), vector(0, 1, 0))
And m ← scaling(2, 3, 4)

When r2 ← transform(r, m)
Then r2.origin = point(2, 6, 12)
And r2.direction = vector(0, 3, 0)

Notice how, in the second test, the ray’s direction vector is left unnormalized.

This is intentional, and important! Transforming a ray has the effect of

(potentially) stretching or shrinking its direction vector. You have to leave

that vector with its new length, so that when the t value is eventually comput-

ed, it represents an intersection at the correct distance (in world space!) from

the ray’s origin.

Pause here and make those tests pass by implementing the transform(ray, matrix)
function.

Once your rays can be transformed, the next step is to allow a transformation

to be assigned to a sphere. Implement the following tests to demonstrate both

that a sphere has a default transformation and that its transformation can

be assigned.

features/spheres.feature

Scenario: A sphere's default transformation
Given s ← sphere()
Then s.transform = identity_matrix

Scenario: Changing a sphere's transformation
Given s ← sphere()
And t ← translation(2, 3, 4)

When set_transform(s, t)
Then s.transform = t

Finally, make it so that your intersect function transforms the ray before doing

the calculation. Add the following tests to illustrate two possible scenarios.

features/spheres.feature

Scenario: Intersecting a scaled sphere with a ray
Given r ← ray(point(0, 0, -5), vector(0, 0, 1))
And s ← sphere()

When set_transform(s, scaling(2, 2, 2))
And xs ← intersect(s, r)

report erratum • discuss

Transforming Rays and Spheres • 69

Then xs.count = 2
And xs[0].t = 3
And xs[1].t = 7

Scenario: Intersecting a translated sphere with a ray
Given r ← ray(point(0, 0, -5), vector(0, 0, 1))
And s ← sphere()

When set_transform(s, translation(5, 0, 0))
And xs ← intersect(s, r)

Then xs.count = 0

Now go and make those tests pass. You’ll need to make sure the ray passed

to intersect is transformed by the inverse of the sphere’s transformation matrix.

In pseudocode, it means adding a line at the top of the function, like this:

function intersect(sphere, ray)
ray2 ← transform(ray, inverse(sphere.transform))

...
end function

Make sure you use the new ray in the function’s other calculations, as well.

Once everything is working, pat yourself on the back! Isn’t it beautiful? You

get to keep your lovely unit sphere, and still deform it in all kinds of ways.

You can turn it into an ellipsoid by scaling it nonuniformly, skew it with a

shear transformation, and translate it wherever you want in a scene—all by

applying the inverse of the transformation to the ray.

It’s magical!

You still can’t render a 3D scene, but you’re closer than you were. In fact,

you’re getting really close. It’s time to put some of these concepts together

into something concrete, and show just how close you are.

Putting It Together

Your final task in this chapter is to write a program that casts rays at a sphere

and draws the picture to a canvas. Any ray that hits the sphere should result

in a colored pixel (red, for example), and any miss should be drawn in black.

The result will be a silhouette of the sphere—not three-dimensional, but def-

initely round!

Here are a few hints to help you along. Stop reading at any time if you feel

like you’ve got a handle on the solution!

Chapter 5. Ray-Sphere Intersections • 70

report erratum • discuss

Hint #1

Think as if you’re trying to cast the shadow of your object onto some wall

behind it, as in the following figure.

You cast each ray from some starting point toward some point on the wall

that corresponds to a position on your canvas. If the ray intersects the sphere,

a shadow is cast, which you’ll mark with a colored pixel.

Hint #2

Figure out how far your ray’s origin is from the sphere. Also, decide where

your wall will be. Moving the ray origin closer to the sphere will make the

sphere in the drawing larger. Moving it farther away will make the sphere

smaller. Moving the wall will do similarly. For the sake of a place to start, try

these values:

start the ray at z = -5
ray_origin ← point(0, 0, -5)

put the wall at z = 10
wall_z ← 10

Then decide how large your wall needs to be. Because you’re using unit

spheres, the maximum y value for the sphere is going to be 1. With that, you

can extrapolate between the ray origin and the wall to see how large the wall

should be, as shown in the figure on page 72.

report erratum • discuss

Putting It Together • 71

So, with the wall at z = 10, it needs to be at least 6 units across in order to

capture the sphere’s entire shadow. Give yourself a bit of margin, and call it

7. (Just assume the wall is a square.)

wall_size ← 7.0

Hint #3

Decide how large you want your canvas to be (in pixels). A canvas 100 pixels

on a side is probably good for starting with. (Larger images will take exponen-

tially longer to render.)

canvas_pixels ← 100

Once you know how many pixels fit along each side of the wall, you can divide

the wall size by the number of pixels to get the size of a single pixel (in world

space units).

pixel_size ← wall_size / canvas_pixels

Then, assume you’re looking directly at the center of the sphere. Half of the

wall will be to the left of that, and half to the right. Compute that size.

half ← wall_size / 2

Since the wall is centered around the origin (because the sphere is at the

origin), this means that this half variable describes the minimum and maximum

x and y coordinates of your wall.

Hint #4

Now that you know the origin of every ray, the dimensions of your canvas,

and the size of your wall, you can compute, cast, and intersect rays. The fol-

lowing is one possible way to approach it, in pseudocode:

canvas ← canvas(canvas_pixels, canvas_pixels)
color ← color(1, 0, 0) # red
shape ← sphere()

for each row of pixels in the canvas
for y ← 0 to canvas_pixels - 1

Chapter 5. Ray-Sphere Intersections • 72

report erratum • discuss

compute the world y coordinate (top = +half, bottom = -half)➤

world_y ← half - pixel_size * y➤

for each pixel in the row
for x ← 0 to canvas_pixels - 1

compute the world x coordinate (left = -half, right = half)
world_x ← -half + pixel_size * x

describe the point on the wall that the ray will target
position ← point(world_x, world_y, wall_z)

r ← ray(ray_origin, normalize(position - ray_origin))
xs ← intersect(shape, r)

if hit(xs) is defined
write_pixel(canvas, x, y, color)

end if

end for

end for

Don’t forget to save the canvas to a file at the end!

Note the highlighted lines, where the world y coordinate is calculated. In world

space, the y coordinate increases as you go up, and decreases as you go down.

But on the canvas, the top is at y = 0, and y increases as you go down. Thus,

to render the circle correctly, you have to flip the y coordinate, which is

accomplished by subtracting it from its maximum value (the top of the wall,

or half).

If all goes well, you should see a circle, much like the following:

Congratulations! This is the silhouette of your sphere, drawn to your canvas

one ray at a time.

report erratum • discuss

Putting It Together • 73

Once you’ve got that much working, try deforming the sphere with some

transformations and see what happens. Here are some ideas:

shrink it along the y axis
shape.transform ← scaling(1, 0.5, 1)

shrink it along the x axis
shape.transform ← scaling(0.5, 1, 1)

shrink it, and rotate it!
shape.transform ← rotation_z(pi / 4) * scaling(0.5, 1, 1)

shrink it, and skew it!
shape.transform ← shearing(1, 0, 0, 0, 0, 0) * scaling(0.5, 1, 1)

When you’ve had about as much fun as you can stand with this, move on. A

silhouette is effective, but you can do much better. In the next chapter, you’ll

add lighting and shading to make that sphere look three-dimensional!

Chapter 5. Ray-Sphere Intersections • 74

report erratum • discuss

CHAPTER 6

Light and Shading

Hot diggity! You are unstoppable. You just drew the silhouette of a three-

dimensional sphere with nothing but some code and math! That’s, like, level-

10 wizard stuff.

Still—sad, but true!—the results are not quite what most people think of as

“3D rendered.” Time to fix that.

In this chapter, you’ll implement a model to simulate the reflection of light

from a surface, which will finally allow you to draw that sphere and make it

look three dimensional. In fact, by the end of the chapter, you’ll have rendered

an image very much like this one:

To do this, you’ll add a source of light, and then implement a shading algo-

rithm to approximate how brightly that light illuminates the surfaces it shines

on. It might sound complicated, but it’s not. The truth is that most ray tracers

favor approximations over physically accurate simulations, so that to shade

any point, you only need to know four vectors. These are illustrated in the

figure on page 76.

report erratum • discuss

If P is where your ray intersects an object, these four vectors are defined as:

• E is the eye vector, pointing from P to the origin of the ray (usually, where

the eye exists that is looking at the scene).

• L is the light vector, pointing from P to the position of the light source.

• N is the surface normal, a vector that is perpendicular to the surface at P.

• R is the reflection vector, pointing in the direction that incoming light would

bounce, or reflect.

You already have the tools to compute the first two vectors:

• To find E, you can negate the ray’s direction vector, turning it around to

point back at its origin.

• To find L, you subtract P from the position of the light source, giving you

the vector pointing toward the light.

The surface normal and reflection vector, though…those are new. Before you

can use those, we need to pause and talk about how to compute them.

Surface Normals

A surface normal (or just normal) is a vector that points perpendicular to a

surface at a given point. Consider a table, as shown in the following figure.

Chapter 6. Light and Shading • 76

report erratum • discuss

A flat surface like a table will have the same normal at every point on its

surface, as shown by the vectors labeled N. If the table is level, the normals

will be the same as “up,” but even if we tilt the table, they’ll still be perpendic-

ular to the table’s surface, like the following figure shows.

Things get a little trickier when we start talking about nonplanar surfaces

(those that aren’t uniformly flat). Take the planetoid in the following figure

for example.

The three normal vectors certainly aren’t all pointing the same direction! But

each is perpendicular to the surface of the sphere at the point where it lives.

Let’s look at how to actually compute those normal vectors.

Computing the Normal on a Sphere

Start by writing the following tests to demonstrate computing the normal at

various points on a sphere. Introduce a new function, normal_at(sphere, point),
which will return the normal on the given sphere, at the given point. You may

assume that the point will always be on the surface of the sphere.

report erratum • discuss

Surface Normals • 77

features/spheres.feature

Scenario: The normal on a sphere at a point on the x axis
Given s ← sphere()
When n ← normal_at(s, point(1, 0, 0))
Then n = vector(1, 0, 0)

Scenario: The normal on a sphere at a point on the y axis
Given s ← sphere()
When n ← normal_at(s, point(0, 1, 0))
Then n = vector(0, 1, 0)

Scenario: The normal on a sphere at a point on the z axis
Given s ← sphere()
When n ← normal_at(s, point(0, 0, 1))
Then n = vector(0, 0, 1)

Scenario: The normal on a sphere at a nonaxial point
Given s ← sphere()
When n ← normal_at(s, point(√3/3, √3/3, √3/3))
Then n = vector(√3/3, √3/3, √3/3)

One other feature of these normal vectors is hiding in plain sight: they’re

normalized. Add the following test to your suite, which shows that a surface

normal should always be normalized.

features/spheres.feature

Scenario: The normal is a normalized vector
Given s ← sphere()
When n ← normal_at(s, point(√3/3, √3/3, √3/3))
Then n = normalize(n)

Now, let’s make those tests pass by implementing that normal_at() function. To

understand how it will work its magic, take a look at the unit circle in the

following figure. It’s centered on the origin, and a point (presumably a point

of intersection) has been highlighted on its circumference.

Chapter 6. Light and Shading • 78

report erratum • discuss

Let’s say you want to find the normal at that highlighted point. Draw an arrow

from the origin of the circle to that point, as in the following figure.

It turns out that this arrow—this vector!—is perpendicular to the surface of

the circle at the point where it intersects. It’s the normal! Algorithmically

speaking, you find the normal by taking the point in question and subtracting

the origin of the sphere ((0,0,0) in your case). Here it is in pseudocode:

function normal_at(sphere, p)
return normalize(p - point(0, 0, 0))

end function

(Note that, because this is a unit sphere, the vector will be normalized by

default for any point on its surface, so it’s not strictly necessary to explicitly

normalize it here.)

If only that were all there were to it! Sadly, the sphere’s transformation matrix

is going to throw a (small) wrench into how the normal is computed. Let’s

take a look at what needs to happen for the normal calculation to compensate

for a transformation matrix.

Transforming Normals

Imagine you have a sphere that has been translated some distance from the

world origin. If you were to naively apply the algorithm above to find the

normal at almost any point on that sphere, you’d find that it no longer works

correctly. The figure on page 80 shows how it goes wrong in this case. On the

left, the normal for a sphere at the origin is computed. On the right, the normal

is computed for a sphere that has been moved away from the origin.

report erratum • discuss

Surface Normals • 79

The “normal” on the right is not remotely normalized, and is not even pointing

in the correct direction. Why? The problem is that your most basic assumption

has been broken: the sphere’s origin is no longer at the world origin.

Write the following tests to show what ought to happen. They demonstrate

computing the normal first on a translated sphere and then on a scaled and

rotated sphere.

features/spheres.feature

Scenario: Computing the normal on a translated sphere
Given s ← sphere()
And set_transform(s, translation(0, 1, 0))

When n ← normal_at(s, point(0, 1.70711, -0.70711))
Then n = vector(0, 0.70711, -0.70711)

Scenario: Computing the normal on a transformed sphere
Given s ← sphere()
And m ← scaling(1, 0.5, 1) * rotation_z(π/5)
And set_transform(s, m)

When n ← normal_at(s, point(0, √2/2, -√2/2))
Then n = vector(0, 0.97014, -0.24254)

These won’t pass yet, but you’ll turn them green in just a moment.

Remember back when we talked about World Space vs. Object Space, on

page 68? It turns out that this distinction between world and object space is

part of the solution to this conundrum, too. You have a point in world space,

and you want to know the normal on the corresponding surface in object

space. What to do? Well, first you have to convert the point from world space

to object space by multiplying the point by the inverse of the transformation

matrix, thus:

object_point ← inverse(transform) * world_point

With that point now in object space, you can compute the normal as before,

because in object space, the sphere’s origin is at the world’s origin. However!

The normal vector you get will also be in object space…and to draw anything

useful with it you’re going to need to convert it back to world space somehow.

Chapter 6. Light and Shading • 80

report erratum • discuss

Now, if the normal were a point you could transform it by multiplying it by

the transformation matrix. After all, that’s what the transformation matrix

does: it transforms points from object space to world space. And in truth,

this almost works here, too. Consider the following two images of a squashed

sphere, which has been scaled smaller in y. The normal vectors of the one on

the left have been multiplied by the transformation matrix. The one on the

right is how the sphere is supposed to look.

The one on the left definitely looks…off. It’s as if someone took a picture of a

regular, untransformed sphere, and squashed that, rather than squashing

the sphere itself. What’s the difference?

It all comes down to how the normal vectors are being transformed. The fol-

lowing illustration shows what happens. The sphere is scaled in y, squashing

it vertically, and the normals are multiplied by the transformation matrix.

As you can see, multiplying by the transformation matrix doesn’t preserve

one of the fundamental properties of normal vectors in this case: the normal

is not necessarily going to be perpendicular to the surface after being trans-

formed!

So how do you go about keeping the normals perpendicular to their surface?

The answer is to multiply the normal by the inverse transpose matrix instead.

So you take your transformation matrix, invert it, and then transpose the

result. This is what you need to multiply the normal by.

world_normal ← transpose(inverse(transform)) * object_normal

report erratum • discuss

Surface Normals • 81

Be aware of two additional things here:

1. Technically, you should be finding submatrix(transform, 3, 3) (from Spotting

Submatrices, on page 34) first, and multiplying by the inverse and transpose

of that. Otherwise, if your transform includes any kind of translation, then

multiplying by its transpose will wind up mucking with the w coordinate in

your vector, which will wreak all kinds of havoc in later computations. But

if you don’t mind a bit of a hack, you can avoid all that by just setting

world_normal.w to 0 after multiplying by the 4x4 inverse transpose matrix.

2. The inverse transpose matrix may change the length of your vector, so if

you feed it a vector of length 1 (a normalized vector), you may not get a

normalized vector out! It’s best to be safe, and always normalize the result.

In pseudocode, then, your normal_at() function should look something like the

following.

function normal_at(sphere, world_point)
object_point ← inverse(sphere.transform) * world_point
object_normal ← object_point - point(0, 0, 0)
world_normal ← transpose(inverse(sphere.transform)) * object_normal
world_normal.w ← 0
return normalize(world_normal)

end function

Go ahead and pause here while you get things working to this point. Once

your tests are all green, let’s talk about how to compute the reflection vector.

Reflecting Vectors

Imagine bouncing a ball to your dog. You toss the ball to the ground at a

point halfway between the two of you, the ball bounces up, and your dog (if

she is well trained) catches it, like the following figure illustrates.

Chapter 6. Light and Shading • 82

report erratum • discuss

The ball’s velocity is reflected around the normal at the point where it hits

the ground. That is to say, it keeps moving forward, but instead of falling as

it does so, now it is rising. Anyone that has ever played with a ball will know

intuitively what that means. We all know from experience which direction the

ball is likely to bounce.

Write the following two tests to reinforce that intuition. You’ll introduce a

function called reflect(in, normal), which returns the result of reflecting the in
vector around the normal vector.

This first test shows the case where a vector approaches a normal at a 45°

angle, moving at equal speed in both x and y. It should emerge at a 45° angle,

with its y component reversed.

features/tuples.feature

Scenario: Reflecting a vector approaching at 45°
Given v ← vector(1, -1, 0)
And n ← vector(0, 1, 0)

When r ← reflect(v, n)
Then r = vector(1, 1, 0)

This should work regardless of the orientation of the normal vector. For

instance, if the ground were slanted at 45°, and the ball were to fall straight

down onto it, it ought to bounce away horizontally, as the following test

demonstrates.

features/tuples.feature

Scenario: Reflecting a vector off a slanted surface
Given v ← vector(0, -1, 0)
And n ← vector(√2/2, √2/2, 0)

When r ← reflect(v, n)
Then r = vector(1, 0, 0)

As you might expect, mathematics is the magic that makes this work. Given

two vectors in and normal, the following pseudocode is the incantation that

you need.

function reflect(in, normal)
return in - normal * 2 * dot(in, normal)

end function

Go ahead and make your tests all pass. Once you’re ready, it’s time to start

shading things!

The Phong Reflection Model

Many different algorithms can simulate the reflection of light, but the one

you’ll implement here is called the Phong reflection model (named for Bui

report erratum • discuss

The Phong Reflection Model • 83

Tuong Phong, the researcher who developed it). It simulates the interaction

between three different types of lighting:

• Ambient reflection is background lighting, or light reflected from other

objects in the environment. The Phong model treats this as a constant,

coloring all points on the surface equally.

• Diffuse reflection is light reflected from a matte surface. It depends only

on the angle between the light source and the surface normal.

• Specular reflection is the reflection of the light source itself and results in

what is called a specular highlight—the bright spot on a curved surface.

It depends only on the angle between the reflection vector and the eye

vector and is controlled by a parameter that we’ll call shininess. The

higher the shininess, the smaller and tighter the specular highlight.

The following illustration shows the effects of each of these attributes. The

first sphere is rendered using only ambient reflection, the second sphere uses

only diffuse reflection, and the third sphere uses only specular reflection. The

last sphere combines all three.

As you can see, by themselves they don’t do a whole lot. But when you com-

bine them, you get something with a lot more potential!

The first thing you’re going to need for this is a light source. You’re going to

implement what is called a point light—a light source with no size, existing

at a single point in space. It is also defined by its intensity, or how bright it

is. This intensity also describes the color of the light source.

Add the following test to demonstrate the attributes of a point light.

features/lights.feature

Scenario: A point light has a position and intensity
Given intensity ← color(1, 1, 1)
And position ← point(0, 0, 0)

When light ← point_light(position, intensity)
Then light.position = position
And light.intensity = intensity

Chapter 6. Light and Shading • 84

report erratum • discuss

The next thing you need is a structure called material that encapsulates not

just the surface color, but also the four new attributes from the Phong reflec-

tion model: ambient, diffuse, specular, and shininess. Each should accept a nonneg-

ative floating point number. For ambient, diffuse, and specular, the typical values

are between 0 and 1. For shininess, values between 10 (very large highlight)

and 200 (very small highlight) seem to work best, though there is no actual

upper bound.

Add the following test, which introduces a material() function and shows the

default values of each of the material’s attributes.

features/materials.feature

Scenario: The default material
Given m ← material()
Then m.color = color(1, 1, 1)
And m.ambient = 0.1
And m.diffuse = 0.9
And m.specular = 0.9
And m.shininess = 200.0

Next, add a material property to your sphere, along with the following tests.

These show how that property is used and what its default value should be.

features/spheres.feature

Scenario: A sphere has a default material
Given s ← sphere()
When m ← s.material
Then m = material()

Scenario: A sphere may be assigned a material
Given s ← sphere()
And m ← material()
And m.ambient ← 1

When s.material ← m
Then s.material = m

Make your tests pass by implementing the point light, the material() function,

and the sphere’s material property. Once you’ve got that, we’ll bring it all

together with one more function: lighting().

This lighting() function is what will shade your objects so that they appear

three-dimensional. It expects five arguments: the material itself, the point

being illuminated, the light source, and the eye and normal vectors from the

Phong reflection model. While the function is not especially complicated by

itself, several cases for the tests to consider will make sure everything checks

out. Begin by writing the following series of tests, which will move the eye and

light source around to exercise the lighting function in different configurations.

report erratum • discuss

The Phong Reflection Model • 85

You can assume that each of these tests shares the following setup:

features/materials.feature

Background:
Given m ← material()
And position ← point(0, 0, 0)

For the first test, the eye is positioned directly between the light and the surface,

with the normal pointing at the eye, like this:

In this case, you expect ambient, diffuse, and specular to all be at full strength.

This means that the total intensity should be 0.1 (the ambient value) + 0.9 (the

diffuse value) + 0.9 (the specular value), or 1.9.

features/materials.feature

Scenario: Lighting with the eye between the light and the surface
Given eyev ← vector(0, 0, -1)
And normalv ← vector(0, 0, -1)
And light ← point_light(point(0, 0, -10), color(1, 1, 1))

When result ← lighting(m, light, position, eyev, normalv)
Then result = color(1.9, 1.9, 1.9)

In this next test, the surface and the light remain the same as before, but you’ll

move the eye to a point 45° off of the normal, as shown in the next illustration.

Here, the ambient and diffuse components should be unchanged (because

the angle between the light and normal vectors will not have changed), but

the specular value should have fallen off to (effectively) 0. Thus, the intensity

should be 0.1 + 0.9 + 0, or 1.0.

features/materials.feature

Scenario: Lighting with the eye between light and surface, eye offset 45°
Given eyev ← vector(0, √2/2, -√2/2)
And normalv ← vector(0, 0, -1)
And light ← point_light(point(0, 0, -10), color(1, 1, 1))

When result ← lighting(m, light, position, eyev, normalv)
Then result = color(1.0, 1.0, 1.0)

Chapter 6. Light and Shading • 86

report erratum • discuss

Next, the eye is back to being directly opposite the surface, but the light is moved

to a position 45° off of the normal. The following figure shows how this looks.

Because the angle between the light and normal vectors has changed, the

diffuse component becomes 0.9 × √2⁄2. The specular component again falls off

to 0, so the total intensity should be 0.1 + 0.9 × √2⁄2 + 0, or approximately 0.7364.

features/materials.feature

Scenario: Lighting with eye opposite surface, light offset 45°
Given eyev ← vector(0, 0, -1)
And normalv ← vector(0, 0, -1)
And light ← point_light(point(0, 10, -10), color(1, 1, 1))

When result ← lighting(m, light, position, eyev, normalv)
Then result = color(0.7364, 0.7364, 0.7364)

For this next test, the light and normal vectors are the same as the previous test,

but you’ll move the eye directly into the path of the reflection vector, like this:

This should cause the specular component to be at full strength, with ambient

and diffuse the same as the previous test. The total intensity should therefore

be 0.1 + 0.9 × √2⁄2 + 0.9, or approximately 1.6364.

features/materials.feature

Scenario: Lighting with eye in the path of the reflection vector
Given eyev ← vector(0, -√2/2, -√2/2)
And normalv ← vector(0, 0, -1)
And light ← point_light(point(0, 10, -10), color(1, 1, 1))

When result ← lighting(m, light, position, eyev, normalv)
Then result = color(1.6364, 1.6364, 1.6364)

report erratum • discuss

The Phong Reflection Model • 87

For the final test, you move the light behind the surface, like this:

As the light no longer illuminates the surface, the diffuse and specular com-

ponents go to 0. The total intensity should thus be the same as the ambient

component, or 0.1.

features/materials.feature

Scenario: Lighting with the light behind the surface
Given eyev ← vector(0, 0, -1)
And normalv ← vector(0, 0, -1)
And light ← point_light(point(0, 0, 10), color(1, 1, 1))

When result ← lighting(m, light, position, eyev, normalv)
Then result = color(0.1, 0.1, 0.1)

So, those are the tests! Make them pass now by implementing the lighting()
function. In a nutshell, it will add together the material’s ambient, diffuse,

and specular components, weighted by the angles between the different vec-

tors. In (annotated) pseudocode, it looks something like this:

function lighting(material, light, point, eyev, normalv)
combine the surface color with the light's color/intensity
effective_color ← material.color * light.intensity

find the direction to the light source
lightv ← normalize(light.position - point)

compute the ambient contribution
ambient ← effective_color * material.ambient

light_dot_normal represents the cosine of the angle between the
light vector and the normal vector. A negative number means the
light is on the other side of the surface.
light_dot_normal ← dot(lightv, normalv)
if light_dot_normal < 0

diffuse ← black
specular ← black

else
compute the diffuse contribution
diffuse ← effective_color * material.diffuse * light_dot_normal

reflect_dot_eye represents the cosine of the angle between the
reflection vector and the eye vector. A negative number means the
light reflects away from the eye.
reflectv ← reflect(-lightv, normalv)
reflect_dot_eye ← dot(reflectv, eyev)

Chapter 6. Light and Shading • 88

report erratum • discuss

if reflect_dot_eye <= 0
specular ← black

else
compute the specular contribution
factor ← pow(reflect_dot_eye, material.shininess)
specular ← light.intensity * material.specular * factor

end if
end if

Add the three contributions together to get the final shading
return ambient + diffuse + specular

end function

Go ahead and make those tests all pass. Once they’re all green, you can be

confident your shading routines are working as they should, and you can move

on to the final part of this chapter: rendering a sphere with realistic lighting!

Putting It Together

Okay. Take a look at the program you wrote at the end of the previous chapter,

the one where you drew the silhouette of a sphere on a canvas. It’s time to

revisit that and turn the silhouette into a full-on 3D rendering. Make the fol-

lowing changes to that program:

1. Assign a material to your sphere. The following material will give you a

sphere that looks like the illustrations in this chapter.

sphere.material ← material()
sphere.material.color ← color(1, 0.2, 1)

2. Add a light source. Here’s one possible configuration, with a white light

behind, above and to the left of the eye:

light_position ← point(-10, 10, -10)
light_color ← color(1, 1, 1)
light ← point_light(light_position, light_color)

3. In the loop where you cast your rays, make sure you’re normalizing the

ray direction. It didn’t matter before, but it does now! Also, once you’ve

got an intersection, find the normal vector at the hit (the closest intersec-

tion), and calculate the eye vector.

point ← position(ray, hit.t)
normal ← normal_at(hit.object, point)
eye ← -ray.direction

4. Finally, calculate the color with your lighting() function before applying it

to the canvas.

color ← lighting(hit.object.material, light, point, eye, normal)

report erratum • discuss

Putting It Together • 89

The result, once you’re done, should look something like the following figure.

From there, experiment with different transformations of the sphere. Squash

it, rotate it, scale it. Try different colors, and different material parameters.

What happens when you increase the ambient value? What if the diffuse and

specular are both low? What happens when you move the light source, or

change its intensity?

Once you’ve had all the fun you can stand with that, go ahead and turn the

page. Next up, it’s cameras and worlds, which will set the stage for more

complex scenes!

Chapter 6. Light and Shading • 90

report erratum • discuss

CHAPTER 7

Making a Scene

Think about this for a second. You’ve written a program from scratch, with

tests, that draws a three-dimensional object by simulating the behavior of

light. That’s awesome.

And it’s still only the beginning! More complex scenes are just around the

corner. By the end of this chapter you’ll be creating worlds with multiple

objects and using a virtual camera to capture views of those objects from

different viewpoints. Just a few more pages and you’ll be rendering images

like those in Pierre’s gallery, here:

To get there, you’ll first implement a world—a collection of all objects in a

scene—as well as routines for intersecting that world with a ray and computing

the colors for intersections. Then you’ll build a new matrix transformation,

called the view transformation, which you’ll use to orient the view. Lastly,

you’ll implement the camera, which encapsulates the view and provides an

interface for rendering the world onto a canvas.

Ready? Go!

report erratum • discuss

Building a World

The first step is to implement the world object. Think of how much work it

was to render a single sphere, and then multiply that by dozens of objects.

You begin to see what you gain by having something that will keep track of

all of those things for you.

Initially, a world is empty, containing no objects and no light source. Write a

test like the following, demonstrating a world() function that returns just such

a data structure.

features/world.feature

Scenario: Creating a world
Given w ← world()
Then w contains no objects
And w has no light source

Some of the tests you’ll write in this chapter assume a default world exists

with a light source at (-10, 10, -10). This world contains two concentric spheres,

where the outermost is a unit sphere and the innermost has a radius of 0.5.

Both lie at the origin. Add the following test to ensure that this default world

is configured correctly.

features/world.feature

Scenario: The default world
Given light ← point_light(point(-10, 10, -10), color(1, 1, 1))
And s1 ← sphere() with:
material.color	(0.8, 1.0, 0.6)
material.diffuse	0.7
material.specular	0.2

And s2 ← sphere() with:
| transform | scaling(0.5, 0.5, 0.5) |

When w ← default_world()
Then w.light = light
And w contains s1
And w contains s2

Using that default world, write a test describing the behavior of a new inter-
sect_world(world, ray) function, which accepts a world and a ray, and returns the

intersections. In this case, since the ray passes through the origin (where

both spheres are centered) it should intersect each sphere twice, for a total

of four intersections.

features/world.feature

Scenario: Intersect a world with a ray
Given w ← default_world()
And r ← ray(point(0, 0, -5), vector(0, 0, 1))

When xs ← intersect_world(w, r)

Chapter 7. Making a Scene • 92

report erratum • discuss

Then xs.count = 4
And xs[0].t = 4
And xs[1].t = 4.5
And xs[2].t = 5.5
And xs[3].t = 6

Make that test pass. The intersect_world() function should iterate over all of the

objects that have been added to the world, intersecting each of them with the

ray, and aggregating the intersections into a single collection. Note that for

the test to pass, intersect_world() must return the intersections in sorted order.

Joe asks:

Why do I have to sort the intersections?

All you’re doing with the intersections at this point is finding the hit, or the intersection

with the minimum positive t value. The list doesn’t need to be sorted just to accomplish

that, but sorting the intersections has a few benefits. The first is that it simplifies the

tests, since it allows you to depend on the order of the returned intersections. The

second is that when you get to Chapter 11, Reflection and Refraction, on page 141,

and Chapter 16, Constructive Solid Geometry (CSG), on page 227, you’ll need to be

able to iterate over the intersections in ascending order, and having that list already

sorted will save you some effort.

Once your suite is passing again, it’s time to figure out the shading for the

nearest intersection (the “hit,” from Identifying Hits, on page 64). To help with

this, you’ll introduce a new function, called prepare_computations(intersection, ray),
which will return a new data structure encapsulating some precomputed

information relating to the intersection. This will help you in later chapters

(like Chapter 11, Reflection and Refraction, on page 141) by making it easier

to reuse these computations in different calculations.

Write the following test, showing that prepare_computations() precomputes the

point (in world space) where the intersection occurred, the eye vector (pointing

back toward the eye, or camera), and the normal vector.

features/intersections.feature

Scenario: Precomputing the state of an intersection
Given r ← ray(point(0, 0, -5), vector(0, 0, 1))
And shape ← sphere()
And i ← intersection(4, shape)

When comps ← prepare_computations(i, r)
Then comps.t = i.t
And comps.object = i.object
And comps.point = point(0, 0, -1)
And comps.eyev = vector(0, 0, -1)
And comps.normalv = vector(0, 0, -1)

report erratum • discuss

Building a World • 93

The implementation should look familiar, using functions you’ve already

written and used elsewhere. In pseudocode, it’ll look something like this:

function prepare_computations(intersection, ray)
instantiate a data structure for storing some precomputed values
comps ← new computations data structure

copy the intersection's properties, for convenience
comps.t ← intersection.t
comps.object ← intersection.object

precompute some useful values
comps.point ← position(ray, comps.t)
comps.eyev ← -ray.direction
comps.normalv ← normal_at(comps.object, comps.point)

return comps
end function

One other case that prepare_computations() should handle for this chapter is where

the hit occurs on the inside of a shape. Consider the following illustration,

where the ray originates inside of a sphere.

In this case, the surface normal (as currently computed) points away from

the eye. But if the normal is pointing away from the eye, the shading algorithm

from the previous chapter will color the surface far darker than it ought to

be. What to do?

Add the following two tests, which show that prepare_computations() sets a fourth

attribute, inside, which will be true if the hit occurs inside the object, and false

otherwise. Notice, too, that the normal is inverted when the intersection is

inside an object, so that the surface may be illuminated properly.

features/intersections.feature

Scenario: The hit, when an intersection occurs on the outside
Given r ← ray(point(0, 0, -5), vector(0, 0, 1))
And shape ← sphere()
And i ← intersection(4, shape)

When comps ← prepare_computations(i, r)
Then comps.inside = false

Chapter 7. Making a Scene • 94

report erratum • discuss

Scenario: The hit, when an intersection occurs on the inside
Given r ← ray(point(0, 0, 0), vector(0, 0, 1))
And shape ← sphere()
And i ← intersection(1, shape)

When comps ← prepare_computations(i, r)
Then comps.point = point(0, 0, 1)
And comps.eyev = vector(0, 0, -1)
And comps.inside = true

normal would have been (0, 0, 1), but is inverted!
And comps.normalv = vector(0, 0, -1)

So, how can you know—mathematically—if the normal points away from the

eye vector? Take the dot product of the two vectors, and if the result is nega-

tive, they’re pointing in (roughly) opposite directions.

if dot(comps.normalv, comps.eyev) < 0
comps.inside ← true
comps.normalv ← -comps.normalv

else
comps.inside ← false

end if

Once those tests are passing, you can move on to implementing the actual

shading logic. Write the following two tests which call a new function,

shade_hit(world, comps). The function ought to return the color at the intersection

encapsulated by comps, in the given world.

features/world.feature

Scenario: Shading an intersection
Given w ← default_world()
And r ← ray(point(0, 0, -5), vector(0, 0, 1))
And shape ← the first object in w
And i ← intersection(4, shape)

When comps ← prepare_computations(i, r)
And c ← shade_hit(w, comps)

Then c = color(0.38066, 0.47583, 0.2855)

Scenario: Shading an intersection from the inside
Given w ← default_world()
And w.light ← point_light(point(0, 0.25, 0), color(1, 1, 1))
And r ← ray(point(0, 0, 0), vector(0, 0, 1))
And shape ← the second object in w
And i ← intersection(0.5, shape)

When comps ← prepare_computations(i, r)
And c ← shade_hit(w, comps)

Then c = color(0.90498, 0.90498, 0.90498)

To pass both of these tests, your shade_hit() function needs to call the lighting()
(from The Phong Reflection Model, on page 83) function with the intersected

object’s material and the prepared computations.

report erratum • discuss

Building a World • 95

In pseudocode, it should come together something like this:

function shade_hit(world, comps)
return lighting(comps.object.material,

world.light,
comps.point, comps.eyev, comps.normalv)

end function

Supporting Multiple Light Sources

The world object described here supports only a single light source, but it’s not terribly

difficult to support more than one. You would need to make sure your shade_hit()
function iterates over all of the light sources, calling lighting() for each one and adding

the colors together.

Be warned, though: adding multiple light sources will slow your renderer down,

especially when you get to Chapter 8, Shadows, on page 109. But if you have CPU

cycles to burn, having more than one light can make some neat effects possible, like

overlapping shadows.

Now, for convenience’s sake, tie up the intersect(), prepare_computations(), and

shade_hit() functions with a bow and call the resulting function color_at(world, ray).
It will intersect the world with the given ray and then return the color at the

resulting intersection.

Add the following tests to demonstrate three important cases. The first test

shows that when the ray fails to intersect anything, the color that is returned

should be black.

features/world.feature

Scenario: The color when a ray misses
Given w ← default_world()
And r ← ray(point(0, 0, -5), vector(0, 1, 0))

When c ← color_at(w, r)
Then c = color(0, 0, 0)

This second test shows that the shading should be computed appropriately

when the ray intersects an object—in this case, the outermost sphere in the

default world.

features/world.feature

Scenario: The color when a ray hits
Given w ← default_world()
And r ← ray(point(0, 0, -5), vector(0, 0, 1))

When c ← color_at(w, r)
Then c = color(0.38066, 0.47583, 0.2855)

Chapter 7. Making a Scene • 96

report erratum • discuss

The third test shows that we expect color_at() to use the hit when computing

the color. Here, we put the ray inside the outer sphere, but outside the inner

sphere, and pointing at the inner sphere. We expect the hit to be on the inner

sphere, and thus return its color.

features/world.feature

Scenario: The color with an intersection behind the ray
Given w ← default_world()
And outer ← the first object in w
And outer.material.ambient ← 1
And inner ← the second object in w
And inner.material.ambient ← 1
And r ← ray(point(0, 0, 0.75), vector(0, 0, -1))

When c ← color_at(w, r)
Then c = inner.material.color

Your color_at() function should do the following:

1. Call intersect_world to find the intersections of the given ray with the given

world.

2. Find the hit from the resulting intersections.

3. Return the color black if there is no such intersection.

4. Otherwise, precompute the necessary values with prepare_computations.
5. Finally, call shade_hit to find the color at the hit.

That’s all that’s needed—for now!—for the world. Make your tests pass. Once

everything is green, we’ll start talking about how to actually make pictures

from these worlds you’re constructing. The first step is a matrix called the

view transformation.

Defining a View Transformation

Right now, all of your rendered images have been painted on a fixed “screen”

that you’ve cast rays at. This works, as you’ve seen, but it’s very difficult to

move that screen around. Suppose you wanted to render a picture from some

point above and to the right of an object. How would you orient the screen

so you could still look at that object?

This is what a view transformation will do for you. It’s a transformation

matrix—like scaling, rotation, and translation—that orients the world relative

to your eye, thus allowing you to line everything up and get exactly the shot

that you need.

Now, although the transformation actually orients the world, it’s often far

easier to imagine that it moves the eye. Moving a camera around is more

intuitive than moving the world around in front of the camera! For that reason,

report erratum • discuss

Defining a View Transformation • 97

in this section you’ll introduce a new function, called view_transform(from, to, up),
which pretends the eye moves instead of the world. You specify where you

want the eye to be in the scene (the from parameter), the point in the scene at

which you want to look (the to parameter), and a vector indicating which

direction is up. The function then returns to you the corresponding transfor-

mation matrix.

Start by writing a test using this new function to describe the world’s default

orientation. The default orientation is the matrix you get if your view parame-

ters (from, to, and up) don’t require anything to be scaled, rotated, or translated.

In other words, the default orientation is the identity matrix! The following

test demonstrates this and shows that the orientation looks from the origin

along the z axis in the negative direction, with up in the positive y direction.

features/transformations.feature

Scenario: The transformation matrix for the default orientation
Given from ← point(0, 0, 0)
And to ← point(0, 0, -1)
And up ← vector(0, 1, 0)

When t ← view_transform(from, to, up)
Then t = identity_matrix

This means that turning around and looking in the positive z direction is like

looking in a mirror: front and back are swapped, and left and right are

swapped. The view transformation in this case should be exactly the same

as reflecting across the z (front-to-back) and x (left-to-right) axes. As you saw

in Scaling, on page 46, reflection is the same as scaling by a negative value,

so you would expect the view transformation here to be the same as scaling

by (-1, 1, -1), which is just what the following test demonstrates.

features/transformations.feature

Scenario: A view transformation matrix looking in positive z direction
Given from ← point(0, 0, 0)
And to ← point(0, 0, 1)
And up ← vector(0, 1, 0)

When t ← view_transform(from, to, up)
Then t = scaling(-1, 1, -1)

Next, add the following test, which shows that the view transformation really

does move the world and not the eye. The test positions the eye at a point 8

units along the z axis, and points the eye back at the origin.

Chapter 7. Making a Scene • 98

report erratum • discuss

features/transformations.feature

Scenario: The view transformation moves the world
Given from ← point(0, 0, 8)
And to ← point(0, 0, 0)
And up ← vector(0, 1, 0)

When t ← view_transform(from, to, up)
Then t = translation(0, 0, -8)

As you can see, the resulting translation moves everything backward 8 units

along the z axis, effectively pushing the world away from an eye positioned at

the origin! Wild.

Write one more test for the view transformation, this time looking in some

arbitrary direction. It should produce a matrix that is a combination of

shearing, scaling, and translation.

features/transformations.feature

Scenario: An arbitrary view transformation
Given from ← point(1, 3, 2)
And to ← point(4, -2, 8)
And up ← vector(1, 1, 0)

When t ← view_transform(from, to, up)
Then t is the following 4x4 matrix:

-0.50709	0.50709	0.67612	-2.36643
0.76772	0.60609	0.12122	-2.82843
-0.35857	0.59761	-0.71714	0.00000
0.00000	0.00000	0.00000	1.00000

Note that the up vector doesn’t need to be normalized. In fact, it doesn’t even

need to be exactly perpendicular to the viewing direction. As you’ll see

shortly, the view_transform() function will tidy that up vector, so you only have

to point vaguely in the direction you want. Isn’t that convenient?

So, how does this black magic work? Given three inputs, from, to, and up, the

algorithm goes like this:

1. Compute the forward vector by subtracting from from to. Normalize the result.

2. Compute the left vector by taking the cross product of forward and the

normalized up vector.

3. Compute the true_up vector by taking the cross product of left and forward.
This allows your original up vector to be only approximately up, which

makes framing scenes a lot easier, since you don’t need to personally

break out a calculator to figure out the precise upward direction.

report erratum • discuss

Defining a View Transformation • 99

4. With these left, true_up, and forward vectors, you can now construct a matrix

that represents the orientation transformation:

orientation =









leftx lefty leftz 0

true upx true upy true upz 0

−forwardx −forwardy −forwardz 0

0 0 0 1









5. All that’s left is to append a translation to that transformation to move the

scene into place before orienting it. Multiply orientation by translation(-from.x,
-from.y, -from.z), and you’re golden!

Described as pseudocode, your view_transform() function might look like this:

function view_transform(from, to, up)
forward ← normalize(to - from)
upn ← normalize(up)
left ← cross(forward, upn)
true_up ← cross(left, forward)

orientation ← matrix(left.x, left.y, left.z, 0,
true_up.x, true_up.y, true_up.z, 0,

-forward.x, -forward.y, -forward.z, 0,
0, 0, 0, 1)

return orientation * translation(-from.x, -from.y, -from.z)
end function

Once you’ve implemented that and made your tests pass, read on! You’re

ready to plug this view transformation into a virtual camera, giving you a

simpler way to look at your scenes.

Implementing a Camera

Just like a real camera, your virtual camera will let you “take pictures” of

your scene. You can move it around, zoom in and out, and even rotate the

camera upside down if that’s the shot you want. The camera is defined by

the following four attributes:

• hsize is the horizontal size (in pixels) of the canvas that the picture will be

rendered to.

• vsize is the canvas’s vertical size (in pixels).

• field_of_view is an angle that describes how much the camera can see. When

the field of view is small, the view will be “zoomed in,” magnifying a

smaller area of the scene.

Chapter 7. Making a Scene • 100

report erratum • discuss

• transform is a matrix describing how the world should be oriented relative

to the camera. This is usually a view transformation like you implemented

in the previous section.

Write the following test, showing how a camera is constructed using a new

camera(hsize, vsize, field_of_view) function. It also shows that the default transform

for a camera is the identity matrix.

features/camera.feature

Scenario: Constructing a camera
Given hsize ← 160
And vsize ← 120
And field_of_view ← π/2

When c ← camera(hsize, vsize, field_of_view)
Then c.hsize = 160
And c.vsize = 120
And c.field_of_view = π/2
And c.transform = identity_matrix

One of the primary responsibilities of the camera is to map the three-dimen-

sional scene onto a two-dimensional canvas. To do this, you’ll make the

camera do just what you’ve done in previous exercises and place the canvas

somewhere in the scene so that rays can be projected through it. But contrary

to what you’ve done before, the camera’s canvas will always be exactly one

unit in front of the camera. As you’ll see shortly, this makes the math a bit

cleaner.

The first step is to make sure the camera knows the size (in world-space units)

of the pixels on the canvas. Add the following two tests to show that the pixel

size is calculated correctly for a canvas with a horizontal aspect (hsize > vsize),
and one with a vertical aspect (vsize > hsize).

features/camera.feature

Scenario: The pixel size for a horizontal canvas
Given c ← camera(200, 125, π/2)
Then c.pixel_size = 0.01

Scenario: The pixel size for a vertical canvas
Given c ← camera(125, 200, π/2)
Then c.pixel_size = 0.01

The algorithm for computing this value goes like this:

1. You know the canvas is one unit away, and you know the angle of the

field of view. By cutting the field of view in half, you create a right triangle,

as shown in the figure on page 102.

report erratum • discuss

Implementing a Camera • 101

The width of that half of the canvas, then, can be computed by taking the

tangent of half of the field of view. Call that value half_view, as in the follow-

ing formula.

half view = tan
field of view

2

2. The aspect ratio is the ratio of the horizontal size of the canvas, to its

vertical size. Compute that with the following formula.

aspect =
hsize

vsize

3. Now, if the horizontal size is greater than or equal to the vertical size

(aspect ≥ 1), then half_view is half the width of the canvas, and half_view⁄aspect is
half the canvas’s height.

If the vertical size is greater than the horizontal size (aspect < 1), then

half_view is instead half the height of the canvas, and half the canvas’s

width is half_view × aspect.

Call these two values half_width and half_height, respectively.

(Hang on to these half_width and half_height variables, by the way. You’ll need

them again soon ...)

4. Finally, compute the size of a single pixel on the canvas by dividing the

full width the canvas (half_width × 2) by the horizontal size (in pixels) of the

canvas (hsize). Call this pixel_size.

(Note that the assumption here is that the pixels are square, so you don’t

actually need to compute the vertical size of the pixel—it’s going to be the

same as the horizontal size.)

In pseudocode, it should look something like this:

half_view ← tan(camera.field_of_view / 2)
aspect ← camera.hsize / camera.vsize

Chapter 7. Making a Scene • 102

report erratum • discuss

if aspect >= 1 then
camera.half_width ← half_view
camera.half_height ← half_view / aspect

else
camera.half_width ← half_view * aspect
camera.half_height ← half_view

end if

camera.pixel_size ← (camera.half_width * 2) / camera.hsize

You’ll use the pixel_size and those half_width and half_height values you computed

to create rays that can pass through any given pixel on the canvas. Implement

the following three tests to ensure this works. These introduce a new function,

ray_for_pixel(camera, x, y), which returns a new ray that starts at the camera and

passes through the indicated (x, y) pixel on the canvas. The first two tests use

an untransformed camera to cast rays through the center and corner of the

canvas, and the third tries a ray with a camera that has been translated and

rotated.

features/camera.feature

Scenario: Constructing a ray through the center of the canvas
Given c ← camera(201, 101, π/2)
When r ← ray_for_pixel(c, 100, 50)
Then r.origin = point(0, 0, 0)
And r.direction = vector(0, 0, -1)

Scenario: Constructing a ray through a corner of the canvas
Given c ← camera(201, 101, π/2)
When r ← ray_for_pixel(c, 0, 0)
Then r.origin = point(0, 0, 0)
And r.direction = vector(0.66519, 0.33259, -0.66851)

Scenario: Constructing a ray when the camera is transformed
Given c ← camera(201, 101, π/2)
When c.transform ← rotation_y(π/4) * translation(0, -2, 5)
And r ← ray_for_pixel(c, 100, 50)

Then r.origin = point(0, 2, -5)
And r.direction = vector(√2/2, 0, -√2/2)

The Camera Transform vs. the World

Note that in the last test, the ray’s origin winds up at (0, 2, -5),
despite the camera’s transformation including a translation of

(0, -2, 5). That’s not a typo! Remember that the camera’s transfor-

mation describes how the world is moved relative to the camera.

Further, you’re transforming everything by the inverse of that

transformation, so moving the world (0, -2, 5) is effectively the same

as moving the ray’s origin in the opposite direction: (0, 2, -5).

report erratum • discuss

Implementing a Camera • 103

Now, make those tests pass. The ray_for_pixel() function must compute the world

coordinates at the center of the given pixel, and then construct a ray that

passes through that point. Assuming two inputs, px (the x position of the

pixel) and py (the y position of the pixel), the pseudocode for the algorithm

looks like this:

function ray_for_pixel(camera, px, py)
the offset from the edge of the canvas to the pixel's center
xoffset ← (px + 0.5) * camera.pixel_size
yoffset ← (py + 0.5) * camera.pixel_size

the untransformed coordinates of the pixel in world space.
(remember that the camera looks toward -z, so +x is to the *left*.)
world_x ← camera.half_width - xoffset
world_y ← camera.half_height - yoffset

using the camera matrix, transform the canvas point and the origin,
and then compute the ray's direction vector.
(remember that the canvas is at z=-1)
pixel ← inverse(camera.transform) * point(world_x, world_y, -1)
origin ← inverse(camera.transform) * point(0, 0, 0)
direction ← normalize(pixel - origin)

return ray(origin, direction)
end function

Okay, one more function and you’ll be finished with the camera. The last bit

to implement is the render(camera, world) function, which uses the camera to

render an image of the given world.

Add the following test to your suite. It’s a nonrigorous demonstration of how

the render() function ought to work. It renders the default world with a camera

and then makes sure that the pixel in the very middle of the resulting canvas

is the expected color.

features/camera.feature

Scenario: Rendering a world with a camera
Given w ← default_world()
And c ← camera(11, 11, π/2)
And from ← point(0, 0, -5)
And to ← point(0, 0, 0)
And up ← vector(0, 1, 0)
And c.transform ← view_transform(from, to, up)

When image ← render(c, w)
Then pixel_at(image, 5, 5) = color(0.38066, 0.47583, 0.2855)

You’ll probably find that the implementation of this function looks a lot like

code you’ve already written. When you rendered an image at the end of

Chapter 5, Ray-Sphere Intersections, on page 57, you created a canvas and

Chapter 7. Making a Scene • 104

report erratum • discuss

cast a ray through each of its pixels, coloring the pixels with the colors of the

corresponding intersections. That’s exactly what this function will do, except

instead of computing the location of each pixel, you’ll let your new ray_for_pixel()
function do the work.

In pseudocode, it looks like this:

function render(camera, world)
image ← canvas(camera.hsize, camera.vsize)

for y ← 0 to camera.vsize - 1
for x ← 0 to camera.hsize - 1
ray ← ray_for_pixel(camera, x, y)
color ← color_at(world, ray)
write_pixel(image, x, y, color)

end for
end for

return image
end function

Go ahead and make sure all of your tests are passing. Once everything works,

let’s wrap up this chapter with a small project that uses your new world and

camera code.

Putting It Together

Look back at the program you wrote at the end of the previous chapter. It’s time

to clean that up, taking advantage of the world and camera that you’ve just

written and adding a few more spheres to make the scene more interesting.

Here’s one example of what you might build:

report erratum • discuss

Putting It Together • 105

This was constructed from six spheres, arranged as follows:

1. The floor is an extremely flattened sphere with a matte texture.

floor ← sphere()
floor.transform ← scaling(10, 0.01, 10)
floor.material ← material()
floor.material.color ← color(1, 0.9, 0.9)
floor.material.specular ← 0

2. The wall on the left has the same scale and color as the floor, but is also

rotated and translated into place.

left_wall ← sphere()
left_wall.transform ← translation(0, 0, 5) *

rotation_y(-π/4) * rotation_x(π/2) *
scaling(10, 0.01, 10)

left_wall.material ← floor.material

Note the order in which the transformations are multiplied: the wall needs

to be scaled, then rotated in x, then rotated in y, and lastly translated, so

the transformations are multiplied in the reverse order!

3. The wall on the right is identical to the left wall, but is rotated the opposite

direction in y.

right_wall ← sphere()
right_wall.transform ← translation(0, 0, 5) *

rotation_y(π/4) * rotation_x(π/2) *
scaling(10, 0.01, 10)

right_wall.material ← floor.material

4. The large sphere in the middle is a unit sphere, translated upward

slightly and colored green.

middle ← sphere()
middle.transform ← translation(-0.5, 1, 0.5)
middle.material ← material()
middle.material.color ← color(0.1, 1, 0.5)
middle.material.diffuse ← 0.7
middle.material.specular ← 0.3

5. The smaller green sphere on the right is scaled in half.

right ← sphere()
right.transform ← translation(1.5, 0.5, -0.5) * scaling(0.5, 0.5, 0.5)
right.material ← material()
right.material.color ← color(0.5, 1, 0.1)
right.material.diffuse ← 0.7
right.material.specular ← 0.3

Chapter 7. Making a Scene • 106

report erratum • discuss

6. The smallest sphere is scaled by a third, before being translated.

left ← sphere()
left.transform ← translation(-1.5, 0.33, -0.75) * scaling(0.33, 0.33, 0.33)
left.material ← material()
left.material.color ← color(1, 0.8, 0.1)
left.material.diffuse ← 0.7
left.material.specular ← 0.3

The light source is white, shining from above and to the left:

world.light_source ← point_light(point(-10, 10, -10), color(1, 1, 1))

And the camera is configured like so:

camera ← camera(100, 50, π/3)
camera.transform ← view_transform(point(0, 1.5, -5),

point(0, 1, 0),
vector(0, 1, 0))

render the result to a canvas.
canvas ← render(camera, world)

Experiment with other colors and material properties. Try deforming the

spheres with scaling, rotation, and shearing transforms. Add more spheres.

Move the camera around, try different fields of view, and see what happens

when you change the direction of the up vector!

You’ll probably find that your renderer is slow, so stick with

smaller resolutions while experimenting. Save the high-resolution

renders for final versions of your scene, when you’ve got everything

arranged and lit just how you want it, and can afford to wait ten

or fifteen minutes (or more!) for your program to slog through a

million pixels or so.

Once you’re done playing with that, though, turn the page. You’re about to

add support for shadows to your renderer, which will do wonders for the

realism of your scenes.

report erratum • discuss

Putting It Together • 107

CHAPTER 8

Shadows

Your ray tracer is really starting to come together. Just look at it! You’ve got

spheres, realistic shading, a powerful camera, and a world that supports

scenes with many objects.

It’s a pity those objects don’t cast shadows, though. Shadows add a delightful

dash of realism to a scene. Check out the following figure which shows the

same scene both with and without shadows:

Your brain uses those shadows as cues for depth perception. Without shadows,

the image looks artificial and shallow, and that will never do.

Thus, the time has come to add shadows, and the best part is that you’ve

already written most of the infrastructure to support this. The first step is to

adjust your lighting() function to handle the case where a point is in shadow.

Then you’ll implement a new method for determining whether a point is in

shadow or not, and last you’ll tie those pieces together so your ray tracer

actually renders the shadows.

Let’s dig into it!

report erratum • discuss

Lighting in Shadows

Given some point, you can know that it lies in shadow if there is another

object sitting between it and the light source, as shown in the following figure.

The light source is unable to contribute anything to that point. Take a moment

and recall how your lighting() function works, from The Phong Reflection Model,

on page 83. The diffuse component relies on the vector to the light source, and

the specular component depends on the reflection vector. Since both components

have a dependency on the light source, the lighting() function should ignore them

when the point is in shadow and use only the ambient component.

Add the following test to the others you wrote for the lighting() function. It’s

identical to the one titled “Lighting with the eye between the light and the

surface” on page 86, where the specular and diffuse components were both

at their maximum values, but this time you’re going to pass a new argument

to the lighting() function indicating that the point is in shadow. It should cause

the diffuse and specular components to be ignored, resulting in the ambient

value alone contributing to the lighting.

(Recall that the m and position variables being passed to the lighting() function

are defined in the “Background” block on page 86.)

features/materials.feature

Scenario: Lighting with the surface in shadow
Given eyev ← vector(0, 0, -1)
And normalv ← vector(0, 0, -1)
And light ← point_light(point(0, 0, -10), color(1, 1, 1))
And in_shadow ← true

When result ← lighting(m, light, position, eyev, normalv, in_shadow)
Then result = color(0.1, 0.1, 0.1)

You may need to fix your other tests to accommodate the addition of that new

parameter. Go ahead and address that, and then make this new test pass as

well by making your lighting() function ignore the specular and diffuse compo-

nents when in_shadow is true.

Chapter 8. Shadows • 110

report erratum • discuss

Once things are all passing again, let’s teach your ray tracer how to tell when

a point is in shadow.

Testing for Shadows

A ray tracer computes shadows by casting a ray, called a shadow ray, from each

point of intersection toward the light source. If something intersects that shadow

ray between the point and the light source, then the point is considered to be

in shadow. You’re going to write a new function, is_shadowed(world, point), which will

do just this.

Implement the following four tests, which demonstrate four different scenarios.

Each assumes the existence of the default world that was defined in Building

a World, on page 92.

In the first test, the world is set up like the following figure.

Nothing at all lies along the line connecting the point and the light source,

and the point should therefore not be in shadow.

features/world.feature

Scenario: There is no shadow when nothing is collinear with point and light
Given w ← default_world()
And p ← point(0, 10, 0)

Then is_shadowed(w, p) is false

In the second test, the point is placed on the far side of the default world’s

spheres, putting them between it and the light source, like this:

report erratum • discuss

Testing for Shadows • 111

The point should be in the shadow cast by the spheres.

features/world.feature

Scenario: The shadow when an object is between the point and the light
Given w ← default_world()
And p ← point(10, -10, 10)

Then is_shadowed(w, p) is true

The next test positions the point so the light lies between it and the spheres.

Once again, the point should not be in shadow, because nothing lies between

the point and the light.

features/world.feature

Scenario: There is no shadow when an object is behind the light
Given w ← default_world()
And p ← point(-20, 20, -20)

Then is_shadowed(w, p) is false

The last test is similar, but it positions the point to lie between the light and

the spheres, like this:

And again, even in this configuration nothing lies between the light and the

point, so the point is still not shadowed.

features/world.feature

Scenario: There is no shadow when an object is behind the point
Given w ← default_world()
And p ← point(-2, 2, -2)

Then is_shadowed(w, p) is false

Chapter 8. Shadows • 112

report erratum • discuss

The algorithm for is_shadowed() goes like this:

1. Measure the distance from point to the light source by subtracting point
from the light position, and taking the magnitude of the resulting vector.

Call this distance.
2. Create a ray from point toward the light source by normalizing the vector

from step 1.

3. Intersect the world with that ray.

4. Check to see if there was a hit, and if so, whether t is less than distance. If
so, the hit lies between the point and the light source, and the point is in

shadow.

In pseudocode it might look like this:

function is_shadowed(world, point)
v ← world.light.position - point
distance ← magnitude(v)
direction ← normalize(v)

r ← ray(point, direction)
intersections ← intersect_world(world, r)

h ← hit(intersections)
if h is present and h.t < distance
return true

else
return false

end if
end function

Recall from Identifying Hits, on page 64, that the hit() function returns the

intersection with the lowest nonnegative t value. Thus, the hit’s t will never

be negative, so you don’t need to worry about checking for intersections that

occur behind the point.

Implement that function, make those tests pass, and then move on. Just one

more thing needs changing to actually render those shadows!

Rendering Shadows

The final bit to actually render the shadows requires a small change to your

shade_hit() function from Building a World, on page 92. You need to check

whether the point is in shadow or not, and then pass that state to your lighting()
function.

Add the following test to those that you wrote for the shade_hit() function. To

demonstrate the case where some object is shadowing the point of intersection,

it creates a world and two spheres, and positions a light so that the second

report erratum • discuss

Rendering Shadows • 113

sphere is in the shadow of the first. Then, a ray and an intersection are cre-

ated such that the point of intersection is in the shadow. The shade_hit() function

should return only the ambient color of the second sphere in this case.

features/world.feature

Scenario: shade_hit() is given an intersection in shadow
Given w ← world()
And w.light ← point_light(point(0, 0, -10), color(1, 1, 1))
And s1 ← sphere()
And s1 is added to w
And s2 ← sphere() with:
| transform | translation(0, 0, 10) |

And s2 is added to w
And r ← ray(point(0, 0, 5), vector(0, 0, 1))
And i ← intersection(4, s2)

When comps ← prepare_computations(i, r)
And c ← shade_hit(w, comps)

Then c = color(0.1, 0.1, 0.1)

Now, making this test pass may seem to be merely a matter of taking the

point of intersection and sending it directly to the is_shadowed() function. But

if you do this, you’re liable to wind up with a rendered picture that looks like

it’s been attacked by fleas, as in the following figure.

This effect is called acne, and it happens because computers cannot represent

floating point numbers very precisely. In general they do okay, but because

of rounding errors, it will be impossible to say exactly where a ray intersects

a surface. The answer you get will be close—generally within a tiny margin

of error—but that wiggle is sometimes just enough to cause the calculated

point of intersection to lie beneath the actual surface of the sphere.

Chapter 8. Shadows • 114

report erratum • discuss

As a result, the shadow ray intersects the sphere itself, causing the sphere

to cast a shadow on its own point of intersection. This is obviously not ideal.

The solution is to adjust the point just slightly in the direction of the normal,

before you test for shadows. This will bump it above the surface and prevent

self-shadowing.

Add the following test, which sets up a sphere and an intersection such that

the intersection occurs at z=0. After calling the prepare_computations() function

you wrote in Chapter 7, Making a Scene, on page 91, there should be a new

attribute, over_point, which will be almost identical to point, with the z component

slightly less than z=0.

features/intersections.feature

Scenario: The hit should offset the point
Given r ← ray(point(0, 0, -5), vector(0, 0, 1))
And shape ← sphere() with:

| transform | translation(0, 0, 1) |
And i ← intersection(5, shape)

When comps ← prepare_computations(i, r)
Then comps.over_point.z < -EPSILON/2
And comps.point.z > comps.over_point.z

Note that the test compares the over_point’s z component to half of -EPSILON to

make sure the point has been adjusted in the correct direction.

In pseudocode, your prepare_computations() function will need to do something

like this:

after computing and (if appropriate) negating
the normal vector...
comps.over_point ← comps.point + comps.normalv * EPSILON

EPSILON is the tiny number discussed in Comparing Floating Point Numbers,

on page 5, and is used here to bump the point just a bit in the direction of

the normal.

Next, modify your shade_hit() function so that it invokes is_shadowed() with the

hit’s newly offset over_point attribute, and then call the lighting() function (again

with over_point) with the result. It’ll look like this in pseudocode:

function shade_hit(world, comps)
shadowed ← is_shadowed(world, comps.over_point)

return lighting(comps.object.material,
world.light,
comps.over_point, comps.eyev, comps.normalv,
shadowed)

end function

report erratum • discuss

Rendering Shadows • 115

Go ahead and make that change to your shade_hit() function and make sure

your tests are all passing. Once they are, it’ll be time to wrap this chapter up

and render some shadows!

Putting It Together

Your code is written. Your tests are passing. It’s time to see how these shadows

look in practice.

Start with the program you wrote at the end of the last chapter. If you set it

up to duplicate the scene in the book, you should see each of those colored

spheres casting shadows now! If you designed your own scene, you may or

may not need to move things around so that shadows are being cast on other

objects; make the changes necessary until you can demonstrate that shadows

are truly being rendered.

Then, start playing! Deform your spheres and watch the shadows deform

accordingly. Simulate an eclipse by positioning a smaller sphere between a

larger one and the light source. If you’re feeling particularly ambitious, see if

you can make some shadow puppets by deforming and translating spheres!

Once you’ve wrung all the fun you can out of casting shadows, move on! It’s

time to add another graphics primitive to join your spheres: the plane.

Chapter 8. Shadows • 116

report erratum • discuss

CHAPTER 9

Planes

You’ve been able to accomplish quite a bit so far using nothing but spheres

as graphic primitives, which is pretty amazing. The world consists of a lot

more than just spheres, though—even cleverly transformed spheres. In this

chapter you’ll add a new graphics primitive—the plane—which will be perfect

for modeling floors, walls, and backgrounds.

The biggest initial hurdle will probably be refactoring your code to support

different types of graphics primitives. We’ll begin the chapter by talking about

how you might go about this refactoring, and identify the functionality that

all primitives will have in common. Once the common functionality has been

factored out and you’ve got your test suite updated, we’ll move on to the

actual implementation of planes.

First, refactoring!

Refactoring Shapes

You may or may not have used an object-oriented programming language thus

far to build your ray tracer. Honestly, it really doesn’t matter! But since we need

some kind of common vocabulary to describe the upcoming refactoring, let’s

just agree to use terms like “classes,” “objects,” “parents,” and “inheritance.”

Translate these concepts into your own environments accordingly.

report erratum • discuss

The goal of this next step is to take your Sphere implementation, identify the

functionality that will be common to all shapes, and refactor those bits into

an abstract parent that all other shapes will inherit from. Once the common

bits have been moved into the abstract parent, you’ll simplify your Sphere
implementation by inheriting it from that parent.

So, what will all shapes have in common? Here’s a list that you can start with:

• All shapes have a transformation matrix. Unless explicitly set, this will

be the identity matrix as described in Chapter 5, Ray-Sphere Intersections,

on page 57.

• All shapes have a material, which should default to the one described in

The Phong Reflection Model, on page 83.

• When intersecting the shape with a ray, all shapes need to first convert

the ray into object space, transforming it by the inverse of the shape’s

transformation matrix.

• When computing the normal vector, all shapes need to first convert the

point to object space, multiplying it by the inverse of the shape’s transfor-

mation matrix. Then, after computing the normal they must transform it

by the inverse of the transpose of the transformation matrix, and then

normalize the resulting vector before returning it.

Later chapters, like Chapter 14, Groups, on page 193, and Chapter 16, Con-

structive Solid Geometry (CSG), on page 227, will add to that list, but those

four items are all you need to worry about for now.

Begin by writing some tests that describe what this refactoring should look

like when it’s done. Because this will depend heavily on your programming

language and how you’ve architected things so far, consider the following

tests to be guidelines—ideas for how to build your own tests.

Each of the following tests assumes there is a function called test_shape(), which

exists solely to demonstrate the abstract behaviors of the Shape class. As Shape
itself is abstract, the test_shape() function instantiates and returns a special

subclass of Shape we’ll call TestShape, which implements just enough behavior

to be concrete. (We’ll talk about what that means, specifically, in a moment.)

First, write a couple of tests that show that a shape has a default transfor-

mation and that the transformation is assignable. These replace the tests

named “A sphere’s default transformation” and “Changing a sphere’s default

transformation” (from the sphere scenarios on page 69) and are essentially

identical to them, merely calling test_shape() instead of sphere().

Chapter 9. Planes • 118

report erratum • discuss

features/shapes.feature

Scenario: The default transformation
Given s ← test_shape()
Then s.transform = identity_matrix

Scenario: Assigning a transformation
Given s ← test_shape()
When set_transform(s, translation(2, 3, 4))
Then s.transform = translation(2, 3, 4)

Add a couple more tests now, showing that a shape has a default material

and that the material may be assigned as well. These replace the tests named

“A sphere has a default material” and “A sphere may be assigned a material”

(from the sphere scenarios on page 85).

features/shapes.feature

Scenario: The default material
Given s ← test_shape()
When m ← s.material
Then m = material()

Scenario: Assigning a material
Given s ← test_shape()
And m ← material()
And m.ambient ← 1

When s.material ← m
Then s.material = m

Next, test the behavior of the intersect(ray, shape) function, which is now abstract,

meaning it relies on a separate concrete implementation to flesh out the

behavior and actually perform the intersection. All you really need to check

here, though, is that the ray is transformed before being passed on to the

concrete implementation.

One possible way to implement this (and which the following tests assume)

is to declare a local_intersect(shape, local_ray) function for each concrete subclass

of Shape. The abstract intersect() function transforms the ray and then calls

local_intersect() with that transformed ray, returning the resulting collection of

intersections. The following pseudocode shows how it might look:

function intersect(shape, ray)
local_ray ← transform(ray, inverse(shape.transform))
return local_intersect(shape, local_ray)

end function

For the purposes of these tests, you really don’t care whether any intersections

occur or not, since the test shape has no real existence. All you need to know

is whether the local_ray parameter to local_intersect() has been transformed

appropriately. One way to do this is to have the test shape’s implementation

report erratum • discuss

Refactoring Shapes • 119

of local_intersect() assign local_ray to a variable somewhere (perhaps as an instance

variable, or a global variable), which your tests can then inspect.

The following two tests assume the existence of a new property on the test

shape, saved_ray, which the test shape’s local_intersect() function should set to

the ray parameter. These tests are both based on (and replace) the tests called

“Intersecting a scaled sphere with a ray” and “Intersecting a translated sphere

with a ray” (from the sphere scenarios on page 69).

features/shapes.feature

Scenario: Intersecting a scaled shape with a ray
Given r ← ray(point(0, 0, -5), vector(0, 0, 1))
And s ← test_shape()

When set_transform(s, scaling(2, 2, 2))
And xs ← intersect(s, r)

Then s.saved_ray.origin = point(0, 0, -2.5)
And s.saved_ray.direction = vector(0, 0, 0.5)

Scenario: Intersecting a translated shape with a ray
Given r ← ray(point(0, 0, -5), vector(0, 0, 1))
And s ← test_shape()

When set_transform(s, translation(5, 0, 0))
And xs ← intersect(s, r)

Then s.saved_ray.origin = point(-5, 0, -5)
And s.saved_ray.direction = vector(0, 0, 1)

The last bit of common logic is in the normal_at(sphere, point) function, from

Computing the Normal on a Sphere, on page 77. The goal here is to make it

so that individual concrete shapes don’t have to worry about transforming

points or normals—all they have to do is compute the normal itself.

Borrowing the same strategy as was presented for the intersect() function, you

might consider creating a local_normal_at(shape, local_point) function for each concrete

subclass, which accepts a point in local (object) space, and returns the normal

in the same space. The normal_at(shape, point) becomes generalized, so that it

transforms the point, invokes the appropriate local_normal_at() function, transforms

the resulting normal, and returns it. In pseudocode, it might look like this:

function normal_at(shape, point)
local_point ← inverse(shape.transform) * point
local_normal ← local_normal_at(shape, local_point)
world_normal ← transpose(inverse(shape.transform)) * local_normal
world_normal.w ← 0

return normalize(world_normal)
end function

The following two tests replace the ones called “Computing the normal on a

translated sphere” and “Computing the normal on a transformed sphere”

Chapter 9. Planes • 120

report erratum • discuss

(from the sphere scenarios on page 80). These demonstrate that translation

doesn’t affect the normal but that scaling and rotation do. For the test shape’s

local_normal_at() function, make it convert the point in question to a vector:

local normal at(p) = vector(px, py, pz)

This will be enough for you to test that the behavior is correct.

features/shapes.feature

Scenario: Computing the normal on a translated shape
Given s ← test_shape()
When set_transform(s, translation(0, 1, 0))
And n ← normal_at(s, point(0, 1.70711, -0.70711))

Then n = vector(0, 0.70711, -0.70711)

Scenario: Computing the normal on a transformed shape
Given s ← test_shape()
And m ← scaling(1, 0.5, 1) * rotation_z(π/5)

When set_transform(s, m)
And n ← normal_at(s, point(0, √2/2, -√2/2))

Then n = vector(0, 0.97014, -0.24254)

That’s the last of the common behavior that needs to be shuffled around! All

that’s left to finish the refactoring is to tidy up your sphere implementation

so that it uses this new shape abstraction.

The following checklist may help you here:

1. If possible, consider writing a test to check that a Sphere is a Shape. This

tells you in one stroke that every sphere will have the common behaviors

of all shapes.

2. Remove the transformation and material tests from your sphere suite. Those

are now being checked in the tests belonging to the abstract parent class.

3. Change your sphere’s existing intersect() tests to invoke the sphere’s

local_intersect() instead. You don’t need to test the intersect() function, because

you’ve already demonstrated that intersect() calls local_intersect() and that the

ray is appropriately transformed.

4. Similarly, change your sphere’s existing normal_at() tests so that they call

local_normal_at().
5. Write your sphere’s local_intersect() and local_normal_at() functions.

You’ll probably find that you get to remove quite a bit of code from your sphere

tests and from the sphere implementation itself. This is a cause for celebration!

Once your tests are all passing, you should totally take a moment to do a little

victory dance. Or buy yourself some ice cream. Whichever makes you happiest.

Regardless of how you celebrate, once you’re ready, read on! It’s time to use

this refactored foundation to describe a plane.

report erratum • discuss

Refactoring Shapes • 121

Implementing a Plane

A plane is a perfectly flat surface that extends infinitely in two dimensions.

For simplicity, your ray tracer will implement a plane in xz—that is, extending

infinitely far in both x and z dimensions, passing through the origin. Using

transformation matrices, though, you’ll be able to rotate and translate your

planes into any orientation you like.

Because a plane has no curvature, its normal vector is constant everywhere—it

doesn’t change. Every single point on the plane has the same normal: vector(0,
1, 0). This means that implementing the local_normal_at() function for the plane

is rather uninteresting! Add the following test to check the expected normal

vector for a few arbitrary points on the plane. It assumes that the plane()
function returns a new plane.

features/planes.feature

Scenario: The normal of a plane is constant everywhere
Given p ← plane()
When n1 ← local_normal_at(p, point(0, 0, 0))
And n2 ← local_normal_at(p, point(10, 0, -10))
And n3 ← local_normal_at(p, point(-5, 0, 150))

Then n1 = vector(0, 1, 0)
And n2 = vector(0, 1, 0)
And n3 = vector(0, 1, 0)

The logic to intersect a ray with a plane is the only other bit that needs

implementing, and it has four cases to consider:

1. The ray is parallel to the plane, and will thus never intersect it.

2. The ray is coplanar with the plane, which is to say that the ray’s origin is

on the plane, and the ray’s direction is parallel to the plane. You’re viewing

the plane edge-on. In this case, every point on the ray intersects the plane,

resulting in an infinite number of intersections. That’s unwieldy! But

since a plane is infinitely thin, it’s invisible when viewed like this, so we’ll

assume the ray misses in this case.

3. The ray origin is above the plane.

4. The ray origin is below the plane.

Test the first two cases by writing the following two tests. Each sets up a plane

and a ray with a direction parallel to the plane. In both cases, local_intersect()
should return an empty set of intersections.

features/planes.feature

Scenario: Intersect with a ray parallel to the plane
Given p ← plane()
And r ← ray(point(0, 10, 0), vector(0, 0, 1))

Chapter 9. Planes • 122

report erratum • discuss

When xs ← local_intersect(p, r)
Then xs is empty

Scenario: Intersect with a coplanar ray
Given p ← plane()
And r ← ray(point(0, 0, 0), vector(0, 0, 1))

When xs ← local_intersect(p, r)
Then xs is empty

To know if a ray is parallel to the plane, you need to note that the plane is in

xz—it has no slope in y at all. Thus, if your ray’s direction vector also has no

slope in y (its y component is 0), it is parallel to the plane. In practice, you’ll

want to treat any tiny number as 0 for this comparison, as the following

pseudocode shows (using EPSILON as the threshold for “tiny number”):

function local_intersect(plane, ray)
if abs(ray.direction.y) < EPSILON
return () # empty set -- no intersections

end if

remaining intersection logic goes here
end function

Implement the next two tests to flesh out the behavior of the local_intersect()
function, specifically testing the remaining intersection logic. The first checks

the case of a ray intersecting a plane from above, and the second checks an

intersection from below.

features/planes.feature

Scenario: A ray intersecting a plane from above
Given p ← plane()
And r ← ray(point(0, 1, 0), vector(0, -1, 0))

When xs ← local_intersect(p, r)
Then xs.count = 1
And xs[0].t = 1
And xs[0].object = p

Scenario: A ray intersecting a plane from below
Given p ← plane()
And r ← ray(point(0, -1, 0), vector(0, 1, 0))

When xs ← local_intersect(p, r)
Then xs.count = 1
And xs[0].t = 1
And xs[0].object = p

report erratum • discuss

Implementing a Plane • 123

To make these pass, you’ll need to implement the following formula for com-

puting the intersection of a ray with a plane. Note that this formula only works

if the plane is as described above—in xz, with the normal pointing in the

positive y direction.

t =
−origin

y

directiony

The variable origin is the ray’s origin, and direction is the ray’s direction vector.

The following pseudocode shows how the complete local_intersect() function

might look.

function local_intersect(ray, plane)
if abs(ray.direction.y) < EPSILON
return () # empty set -- no intersections

end if

t ← -ray.origin.y / ray.direction.y
return (intersection(t, plane))

end function

Go ahead and make your tests pass, now. Once you’ve got things stable again,

wrap it up with the following short project to test your newest graphic primitive.

Putting It Together

Write a small scene consisting of a single plane as the floor, and a sphere or

two sitting atop it. For example, here are the same three spheres from the

previous chapters, sitting on a plane:

Chapter 9. Planes • 124

report erratum • discuss

Other things you might try:

• Add a wall as a backdrop by rotating it π⁄2 radians around the x axis and

translating it a few units in the positive z direction.

• Make a hexagonal-shaped room by carefully rotating and translating

planes, and then position the camera from above, looking down, so you

can see the geometry in action.

• Add a ceiling by translating another plane vertically, in y. (Be careful to

position your light source below the ceiling!)

• Instead of displaying an entire sphere atop the plane, translate the sphere

so it is partially embedded in the plane.

See what else you can come up with! Once you’re done experimenting, read

on. Next, you’re going to see how to decorate these planes and spheres with

geometric patterns of colors, which will make your scenes even more interesting.

report erratum • discuss

Putting It Together • 125

CHAPTER 10

Patterns

Your ray tracer is really coming together now. Planes and spheres, shading,

ray-traced shadows—yeah, seriously. This is some lovely stuff.

It gets even better, though! In this next chapter, you’re going to add yet more

lickable eye candy in the form of patterns, like this:

Yeah! Instead of rendering an entire shape with the same boring color, you’re

going to implement geometric rules that define how any given point in space

ought to be colored. We’ll cover four of these patterns: stripes, gradients,

rings, and checkers. Then you’ll be set loose to experiment and invent a few

of your own!

Here we go.

report erratum • discuss

Making a Striped Pattern

A pattern is a function that accepts a point in space and returns a color. For

example, consider the following stripe pattern:

As the x coordinate changes, the pattern alternates between the two colors.

The other two dimensions, y and z, have no effect on it. In other words, the

function looks like this:

color(point, ca, cb) =

{

ca, if floor(pointx) mod 2 = 0

cb, otherwise

That is to say, if the x coordinate is between 0 and 1, return the first color. If

between 1 and 2, return the second, and so forth, alternating between the two.

Add this pattern in your program. To do so, you’ll create a data structure that

encapsulates the colors used by the pattern, as well as a function that will

choose the appropriate color for some point.

To begin, most of the tests in this chapter will assume the existence of the

following two color constants, black and white:

features/patterns.feature

Background:
Given black ← color(0, 0, 0)
And white ← color(1, 1, 1)

With those defined, you can write the following test introducing a new function,

stripe_pattern(a, b), which returns a pattern instance encapsulating the two colors

a and b.

features/patterns.feature

Scenario: Creating a stripe pattern
Given pattern ← stripe_pattern(white, black)
Then pattern.a = white
And pattern.b = black

Now, write a couple of tests for another new function, stripe_at(pattern, point),
which should return the appropriate color for the given pattern and point.

Chapter 10. Patterns • 128

report erratum • discuss

features/patterns.feature

Scenario: A stripe pattern is constant in y
Given pattern ← stripe_pattern(white, black)
Then stripe_at(pattern, point(0, 0, 0)) = white
And stripe_at(pattern, point(0, 1, 0)) = white
And stripe_at(pattern, point(0, 2, 0)) = white

Scenario: A stripe pattern is constant in z
Given pattern ← stripe_pattern(white, black)
Then stripe_at(pattern, point(0, 0, 0)) = white
And stripe_at(pattern, point(0, 0, 1)) = white
And stripe_at(pattern, point(0, 0, 2)) = white

Scenario: A stripe pattern alternates in x
Given pattern ← stripe_pattern(white, black)
Then stripe_at(pattern, point(0, 0, 0)) = white
And stripe_at(pattern, point(0.9, 0, 0)) = white
And stripe_at(pattern, point(1, 0, 0)) = black
And stripe_at(pattern, point(-0.1, 0, 0)) = black
And stripe_at(pattern, point(-1, 0, 0)) = black
And stripe_at(pattern, point(-1.1, 0, 0)) = white

Make those two tests pass by implementing the stripe_pattern() and stripe_at()
functions. Remember: stripe_pattern() returns a new instance of the data struc-

ture, and stripe_at() implements the function that chooses the color at a given

point. Once these tests are passing, read on!

The next step is to add this stripe pattern to your material. Start by writing

another test to show that the lighting() function (from The Phong Reflection

Model, on page 83) returns the color from the pattern.

features/materials.feature

Scenario: Lighting with a pattern applied
Given m.pattern ← stripe_pattern(color(1, 1, 1), color(0, 0, 0))
And m.ambient ← 1
And m.diffuse ← 0
And m.specular ← 0
And eyev ← vector(0, 0, -1)
And normalv ← vector(0, 0, -1)
And light ← point_light(point(0, 0, -10), color(1, 1, 1))

When c1 ← lighting(m, light, point(0.9, 0, 0), eyev, normalv, false)
And c2 ← lighting(m, light, point(1.1, 0, 0), eyev, normalv, false)

Then c1 = color(1, 1, 1)
And c2 = color(0, 0, 0)

Note that the test uses a material with only ambient illumination. This is a

handy trick for making sure the lighting() function returns an easily predictable

color, since the color won’t be affected by angles, normals, or lights.

report erratum • discuss

Making a Striped Pattern • 129

Make this test pass by modifying your lighting() function, adding some code to

get the color from the pattern (via stripe_at()) if the material has a pattern set.

In pseudocode, your change might look something like this:

function lighting(material, light, point, eyev, normalv, in_shadow)
if material has a pattern

color ← stripe_at(material.pattern, point)
else
color ← material.color

end if

then, compute the lighting as usual, using `color`
instead of `material.color`

...
end function

With that change, your test suite should be passing again. Yay! What is more,

you can now (kind of) render a scene containing a striped texture. Give it a

try, but don’t be disappointed if it doesn’t behave entirely as expected yet…

Whenever you’re ready, read on. We’ll talk about how to transform patterns

next, which is how you’ll finally whip this feature into shape.

Transforming Patterns

Right now, your stripes implementation has one small problem. If you’ve

played around with it at all, you may have seen it: the stripes are completely

fixed, frozen in place. It’s as if you were to shine a flashlight on your scene,

with a stripe filter over the bulb. You’d find that every object that has a stripe

pattern is covered with stripes of exactly the same size and orientation,

regardless of how the objects themselves are arranged, as in this scene:

Chapter 10. Patterns • 130

report erratum • discuss

Because the point being passed to the stripe_at() function is in world space,

the patterns completely ignore the transformations of the objects to which

they are applied.

This is unfortunate, because we expect a pattern to move when its object

moves. If you make an object bigger or smaller, the pattern on it should get

bigger or smaller. Rotating an object ought to rotate the pattern, too.

Further, it makes sense to be able to transform the patterns themselves,

independently of the object. Want your stripes closer together or farther apart?

Scale them. Want to change how they are oriented on the object? Rotate them.

What to change their phase? Translate them to shift them to one side or the

other.

Write the following three tests to sketch out how this behavior should look,

and introduce a new method called stripe_at_object(pattern, object, point). It should

return the color for the given pattern, on the given object, at the given world-

space point, and it should respect the transformations on both the pattern

and the object while doing so.

features/patterns.feature

Scenario: Stripes with an object transformation
Given object ← sphere()
And set_transform(object, scaling(2, 2, 2))
And pattern ← stripe_pattern(white, black)

When c ← stripe_at_object(pattern, object, point(1.5, 0, 0))
Then c = white

Scenario: Stripes with a pattern transformation
Given object ← sphere()
And pattern ← stripe_pattern(white, black)
And set_pattern_transform(pattern, scaling(2, 2, 2))

When c ← stripe_at_object(pattern, object, point(1.5, 0, 0))
Then c = white

Scenario: Stripes with both an object and a pattern transformation
Given object ← sphere()
And set_transform(object, scaling(2, 2, 2))
And pattern ← stripe_pattern(white, black)
And set_pattern_transform(pattern, translation(0.5, 0, 0))

When c ← stripe_at_object(pattern, object, point(2.5, 0, 0))
Then c = white

Make these tests pass by implementing the stripe_at_object() function. It should

do the following:

1. Multiply the given world-space point by the inverse of the object’s trans-

formation matrix, to convert the point to object space.

report erratum • discuss

Transforming Patterns • 131

2. Then, multiply the object-space point by the inverse of the pattern’s

transformation matrix to convert that point to pattern space.

3. Pass the resulting point to your original stripe_at() function, and return the

result.

It’ll look like this in pseudocode:

function stripe_at_object(pattern, object, world_point)
object_point ← inverse(object.transform) * world_point
pattern_point ← inverse(pattern.transform) * object_point

return stripe_at(pattern, pattern_point)
end function

Almost there! Now make your program actually use this new function by

changing your lighting() and shade_hit() functions as follows:

1. Add object as yet another parameter for your lighting() function. The tests and

pseudocode in this book assume the new function signature is lighting(material,
object, light, point, eyev, normalv, in_shadow).

2. Modify the implementation of the lighting() function so that it calls

stripe_at_object() instead of stripe_at().
3. Modify shade_hit() so that it passes the hit’s object property to lighting().
4. Fix your lighting() tests so that they create an object (a sphere is fine—it’s

just a placeholder for those tests, anyway) and pass it to lighting().

All of your tests should be passing now. Celebrate by giving the stripes pattern

another try! See what happens if you rotate the stripes, or scale them, or

transform the object they’re attached to.

When you’re ready, let’s talk about how to generalize all of this, in preparation

for adding more patterns.

Generalizing Patterns

The idea now is to modify your code so that a material can be assigned any

pattern, not just stripes. The process for accomplishing this will look a lot

like the refactoring you did in Refactoring Shapes, on page 117, when you were

preparing to support planes as primitives. Specifically, you’ll tackle this in

five steps:

1. Identify the pieces that every pattern will have in common.

2. Implement an abstract pattern that encapsulates these common pieces

and delegates to concrete patterns for their specific bits.

3. Modify the stripes pattern to extend this abstract pattern.

4. Modify your material implementation to depend on the abstract pattern.

Chapter 10. Patterns • 132

report erratum • discuss

5. Make all existing tests pass.

So, the common bits. The good news is that every pattern will be essentially

the same, differentiated only by the function that converts points into colors.

Besides that function, every pattern will have a transformation matrix, and

every pattern will need to use it to help transform a given point from world

space to pattern space before producing a color.

As with the shapes refactoring, the way forward here is going to depend a lot

on how you’ve architected your program so far. One way is to follow a similar

strategy to that proposed for the shapes, where the base abstraction performs

the common functionality and delegates the specific functionality to the con-

crete implementations.

If you take this route, use the following tests as guidelines for writing your

own. These tests assume that the abstract function (the one that transforms

the point and delegates to the concrete function) is called pattern_at_shape(pattern,
shape, point). The concrete function (to be implemented by each pattern) is here

simply called pattern_at(pattern, point).

The tests also assume that there is a function called test_pattern(), which is

similar to the test_shape() function from Refactoring Shapes, on page 117. Its

job will be to help you test the behaviors of the abstract pattern superclass

by returning a special implementation used only for the tests.

First, show that this test pattern has a transformation matrix and that the

transformation is (by default) the identity matrix.

features/patterns.feature

Scenario: The default pattern transformation
Given pattern ← test_pattern()
Then pattern.transform = identity_matrix

Next, show that the pattern’s transformation can be assigned.

features/patterns.feature

Scenario: Assigning a transformation
Given pattern ← test_pattern()
When set_pattern_transform(pattern, translation(1, 2, 3))
Then pattern.transform = translation(1, 2, 3)

Next, test the pattern_at_shape() function to see that it correctly transforms the

points before calling the concrete function. The following tests replace the ones

you wrote earlier in the chapter, testing the stripe pattern’s transformations.

features/patterns.feature

Scenario: A pattern with an object transformation
Given shape ← sphere()

report erratum • discuss

Generalizing Patterns • 133

And set_transform(shape, scaling(2, 2, 2))
And pattern ← test_pattern()

When c ← pattern_at_shape(pattern, shape, point(2, 3, 4))
Then c = color(1, 1.5, 2)

Scenario: A pattern with a pattern transformation
Given shape ← sphere()
And pattern ← test_pattern()
And set_pattern_transform(pattern, scaling(2, 2, 2))

When c ← pattern_at_shape(pattern, shape, point(2, 3, 4))
Then c = color(1, 1.5, 2)

Scenario: A pattern with both an object and a pattern transformation
Given shape ← sphere()
And set_transform(shape, scaling(2, 2, 2))
And pattern ← test_pattern()
And set_pattern_transform(pattern, translation(0.5, 1, 1.5))

When c ← pattern_at_shape(pattern, shape, point(2.5, 3, 3.5))
Then c = color(0.75, 0.5, 0.25)

These tests assume the test pattern’s concrete function is defined like this:

pattern at(pattern, point) = color(pointx, pointy, pointz)

In other words, it takes the given point and returns a new color where the

color’s red/green/blue components are set to the point’s x/y/z components.

You can then use the color to see that the point was transformed!

Once those are passing, update your stripe_pattern() implementation so that it

inherits from this abstract pattern. You can remove the code that transforms

the points, since that’s now taken care of by the abstract pattern_at_shape()
function.

Lastly, update your material data structure, so that it references the abstract

pattern instead of the stripe pattern, and make lighting() call the pattern_at_shape()
function.

Whew! Tidy things up by making sure your tests all pass, and then move on.

With this abstract pattern as a foundation, you’re ready to start implementing

more patterns.

Making a Gradient Pattern

A gradient pattern is like stripes, but instead of discrete steps from one color

to the next, the function returns a blend of the two colors, linearly interpolating

from one to the other as the x coordinate changes. If the first color is red, and

the second is blue, the resulting gradient will look like this:

Chapter 10. Patterns • 134

report erratum • discuss

Add the following test to show how a basic linear gradient pattern ought to work.

features/patterns.feature

Scenario: A gradient linearly interpolates between colors
Given pattern ← gradient_pattern(white, black)
Then pattern_at(pattern, point(0, 0, 0)) = white
And pattern_at(pattern, point(0.25, 0, 0)) = color(0.75, 0.75, 0.75)
And pattern_at(pattern, point(0.5, 0, 0)) = color(0.5, 0.5, 0.5)
And pattern_at(pattern, point(0.75, 0, 0)) = color(0.25, 0.25, 0.25)

To make this pass, your gradient_pattern() implementation should use a blending

function. This is a function that takes two values and interpolates the values

between them. A basic linear interpolation looks like this:

color(p, ca, cb) = ca + (cb − ca) ∗ (px − floor(px))

This takes the distance between the two colors, multiplies it by the fractional

portion of the x coordinate, and adds the product to the first color. The result

is a smooth, linear transition from the first color to the second.

In pseudocode, your gradient’s color function should look something like this:

function pattern_at(gradient, point)
distance ← gradient.b - gradient.a
fraction ← point.x - floor(point.x)

return gradient.a + distance * fraction
end

Once that test is passing, let’s have a look at ring patterns.

Making a Ring Pattern

A ring pattern depends on two dimensions, x and z, to decide which color to

return. It works similarly to stripes, but instead of testing the distance of the

point in just x, it tests the distance of the point in both x and z, which results

in this pattern of concentric circles as shown in the figure on page 136.

Write the following test for this. You’re checking to make sure that these rings

extend in both x and z.

report erratum • discuss

Making a Ring Pattern • 135

features/patterns.feature

Scenario: A ring should extend in both x and z
Given pattern ← ring_pattern(white, black)
Then pattern_at(pattern, point(0, 0, 0)) = white
And pattern_at(pattern, point(1, 0, 0)) = black
And pattern_at(pattern, point(0, 0, 1)) = black
0.708 = just slightly more than √2/2
And pattern_at(pattern, point(0.708, 0, 0.708)) = black

To make that pass, you’ll implement the function for a ring pattern, something

like this:

color(p, ca, cb) =

{

ca, if floor(
√

p2
x
+ p2

z
) mod 2 = 0

cb, otherwise

Make that test pass, and then we’ll look at one more pattern: checkers.

Making a 3D Checker Pattern

A two-dimensional checker pattern is a repeating pattern of squares, where

two squares of the same color are never adjacent, like this:

Chapter 10. Patterns • 136

report erratum • discuss

What’s cool is that this idea can extend to three dimensions, too, like this:

You get a pattern of alternating cubes, where two cubes of the same color are

never adjacent. This three-dimensional checker pattern is the one you’ll

implement here.

Go ahead and write the following tests for these 3D checkers, showing that

the pattern does indeed repeat in all three dimensions.

features/patterns.feature

Scenario: Checkers should repeat in x
Given pattern ← checkers_pattern(white, black)
Then pattern_at(pattern, point(0, 0, 0)) = white
And pattern_at(pattern, point(0.99, 0, 0)) = white
And pattern_at(pattern, point(1.01, 0, 0)) = black

Scenario: Checkers should repeat in y
Given pattern ← checkers_pattern(white, black)
Then pattern_at(pattern, point(0, 0, 0)) = white
And pattern_at(pattern, point(0, 0.99, 0)) = white
And pattern_at(pattern, point(0, 1.01, 0)) = black

Scenario: Checkers should repeat in z
Given pattern ← checkers_pattern(white, black)
Then pattern_at(pattern, point(0, 0, 0)) = white
And pattern_at(pattern, point(0, 0, 0.99)) = white
And pattern_at(pattern, point(0, 0, 1.01)) = black

The function for this pattern is very much like that for stripes, but instead

of relying on a single dimension, it relies on the sum of all three dimensions,

x, y, and z, like this. (Note that ⌊x⌋ is the same as floor(x).)

color(p, ca, cb) =

{

ca, if (⌊px⌋+ ⌊py⌋+ ⌊pz⌋) mod 2 = 0

cb, otherwise

Once your tests are all passing, read on. We’ll wrap this chapter up with some

ideas for you to experiment with.

report erratum • discuss

Making a 3D Checker Pattern • 137

Joe asks:

Why does my checkered sphere look weird?

If you try applying this checker pattern to a sphere, you’ll get something like this:

If you were instead expecting the pattern to cover the surface of the sphere in a regular

grid pattern, this may have left you scratching your head and wondering what you did

wrong. Well, good news! You did nothing wrong. The pattern is working exactly right.

Because patterns convert points in space to colors, it’s as if you’re carving that sphere

out of a checker-patterned block, rather than neatly painting the pattern onto the

surface of the sphere.

To apply a two-dimensional texture (like checkers) to the surface of an object, you

need to implement something called UV mapping, which converts a three-dimensional

point of intersection (x, y, z) into a two-dimensional surface coordinate (u, v). You’d

then map that surface coordinate to a color. It’s fun to do, but sadly beyond the scope

of this book. Tutorial-style resources are hard to find, but with a bit of reading between

the lines and some experimentation, searching for topics like “spherical texture

mapping” can bear fruit.

Putting It Together

Okay! You have working implementations of four different patterns: stripes,

gradients, rings, and checkers. Your first order of business, then, should be

to take them all for a spin! Try them each on planes and spheres, scale them,

rotate them, experiment with different colors, and get a feel for how these

patterns behave in practice.

Once you feel like you’re getting a handle on them, try some deeper experi-

ments. Here are a few ideas to get you started:

Radial gradient pattern

Consider your ring pattern, which creates a radial pattern of concentric

circles. Then, consider your gradient pattern, which interpolates between

Chapter 10. Patterns • 138

report erratum • discuss

two colors. How would you combine those two concepts to create a new

“radial gradient” pattern that interpolates between two colors, radially?

Nested patterns

Instead of specifying a pair of colors when instantiating a pattern, what

if you instead specified other patterns? So instead of a checker pattern in

black and white, make one where the checkers contain alternating patterns

of stripes in different orientations, like this:

One way to make this work is to add a new pattern, called solid_pattern(color),
which returns the same color for every point. Patterns can then be nested,

with the innermost pattern always being one of these solid color patterns.

Blended patterns

This adds a new pattern, blended_pattern(a, b), where a and b are other patterns,

rather than colors. The blend pattern will then evaluate both of its patterns

at each point, and blend the resulting colors together. (Blending a color can

be as simple as averaging them, if you want, but you could get creative with

that formula, too!) For example, here’s a blending of two green/white stripe

patterns, crossing at ninety-degree angles to one another:

report erratum • discuss

Putting It Together • 139

Perturbed patterns

This is another fun one! It’s a way to add organic-looking textures to your

scenes. The way it works is you use a 3D noise function to “jitter” the

point before the pattern consumes it. Look for an implementation of Perlin

noise, or Simplex noise. Then, create a new pattern, called perturb(pattern),
which uses that noise to jitter each point before delegating it to the given

pattern.

“Jittering” a point means moving it by some small amount. With most

implementations of Perlin noise, for instance, you can request a range of

values for a given three-dimensional point. You scale those numbers by

some fraction (maybe 20% or less), and then take the first of those values

and add it to the x coordinate. Then, add the second value to the y coordi-

nate, and the third value to the z coordinate. Finally, you treat that as a

new point, and pass it to the subpattern.

The result is that each pattern looks perturbed, as if someone had stuck

their finger in wet paint and swirled it around. Here’s an example of per-

turbed versions of each of the patterns from this chapter:

Implementations of Perlin noise exist for many programming languages.

For example, you can review Ken Perlin’s original reference implementa-

tion, written in Java.1

The sky’s the limit! Play around with patterns and see what you can come

up with. When you’re ready to move on, in the next chapter we’ll be taking

the realism of your scenes up a notch, with reflection and refraction.

1. https://mrl.nyu.edu/~perlin/noise/

Chapter 10. Patterns • 140

report erratum • discuss

CHAPTER 11

Reflection and Refraction

All right. Hang on to your passenger assist handle, because you’re about to

add another bit of material finesse to your ray tracer. Check out this sneak

preview:

That’s right, boys and girls. You’re going to make objects reflective and

transparent. Mirrors and glass marbles will be your oyster.

Both of these work through similar means: spawning an additional ray at the

point of intersection and recursively following it to determine the color at that

point. You’ll tackle them one at a time: reflection first, and then transparency

and refraction.

Are you ready? Here goes!

report erratum • discuss

Reflection

Look around you. Odds are you’ll find something in your vicinity that is

reflective to one degree or another. Maybe it’s your phone’s screen, or a pol-

ished table, or a window, or a pair of sunglasses. Whatever it is, that reflection

gives you all kinds of clues about what to expect from that surface and helps

convince your brain that what you’re seeing is real.

This works in rendered scenes, too. Adding even just a subtle bit of reflection

can make your scene bloom with photorealism. Consider the following two

images:

Both depict the same scene, from the same angle and with the same lighting,

but the floor on the right is just slightly reflective, making it appear more

glossy than the other.

You’ll add this feature to your ray tracer with seven tests:

1. Add a reflective attribute to your material data structure.

2. Update prepare_computations() to compute the ray’s reflection vector, reflectv.
3. Handle the case where the ray strikes a nonreflective surface.

4. Handle the case where the ray strikes a reflective surface.

5. Make sure shade_hit() calls the function for computing reflections.

6. Make sure your ray tracer can avoid infinite recursion, as when a ray

bounces between two parallel mirrors.

7. Show that your code can set a limit to how deeply recursion is allowed to go.

Note that from here on out, the chapters will be a bit more streamlined. Up

to this point, you saw tests introduced with a bit of fanfare and discussion.

But now the training wheels are coming off. You know the drill by now. You

will see the tests, you will get a bit of explanation, and (where necessary) you

will walk through the algorithms and perhaps a smattering of pseudocode.

You’ve got this!

Here we go, one test at a time.

Chapter 11. Reflection and Refraction • 142

report erratum • discuss

Test #1: Add the reflective Material Attribute

Show that your material structure contains a new attribute, called reflective.

When reflective is 0, the surface is completely nonreflective, whereas setting it

to 1 produces a perfect mirror. Numbers in between produce partial reflections.

features/materials.feature

Scenario: Reflectivity for the default material
Given m ← material()
Then m.reflective = 0.0

Make sure the new attribute is a floating point value, so that you can imple-

ment partial reflection.

Test #2: Compute the reflectv Vector

Show that the prepare_computations() function precomputes the reflectv vector.

Create a plane and position a ray above it, slanting downward at a 45° angle.

Position the intersection on the plane, and have prepare_computations() compute

the reflection vector.

features/intersections.feature

Scenario: Precomputing the reflection vectorLine 1

Given shape ← plane()2

And r ← ray(point(0, 1, -1), vector(0, -√2/2, √2/2))3

And i ← intersection(√2, shape)4

When comps ← prepare_computations(i, r)5

Then comps.reflectv = vector(0, √2/2, √2/2)6

Line 3 creates and orients the ray, and line 4 places the hit √2 units away,

courtesy of the Pythagorean theorem. Lastly, line 6 asserts that the reflect

vector bounces up from the plane at another 45° angle.

Compute reflectv in prepare_computations() by reflecting the ray’s direction vector

around the object’s normal vector, like this:

after negating the normal, if necessary
comps.reflectv ← reflect(ray.direction, comps.normalv)

It’s just like you did in your lighting() function, in The Phong Reflection Model,

on page 83, when you computed the light’s reflection vector. Here, though,

you’re reflecting the ray, and not the light.

Test #3: Strike a Nonreflective Surface

Show that when a ray strikes a nonreflective surface, the reflected_color() function

returns the color black.

report erratum • discuss

Reflection • 143

You’re getting to the meat of the reflection algorithm itself, now. This test

introduces a new function, reflected_color(world, comps), which will be the core of

how your ray tracer computes reflections.

Place a ray inside at the origin of the default world, inside both of the world’s

spheres. Bounce the ray off the innermost sphere. By setting the sphere’s

ambient property to 1, you can guarantee that any reflection will have something

to reflect—but because the innermost sphere is not reflective, reflected_color()
should simply return black.

features/world.feature

Scenario: The reflected color for a nonreflective material
Given w ← default_world()
And r ← ray(point(0, 0, 0), vector(0, 0, 1))
And shape ← the second object in w
And shape.material.ambient ← 1
And i ← intersection(1, shape)

When comps ← prepare_computations(i, r)
And color ← reflected_color(w, comps)

Then color = color(0, 0, 0)

For this test, make your reflected_color() function return black when the material’s

reflective attribute is 0. The next test will flesh that function out a bit more.

Test #4: Strike a Reflective Surface

Show that reflected_color() returns the color via reflection when the struck surface

is reflective.

Add a reflective plane to the default scene, just below the spheres, and orient

a ray so it strikes the plane, reflects upward, and hits the outermost sphere.

features/world.feature

Scenario: The reflected color for a reflective materialLine 1

Given w ← default_world()-

And shape ← plane() with:-

| material.reflective | 0.5 |-

| transform | translation(0, -1, 0) |5

And shape is added to w-

And r ← ray(point(0, 0, -3), vector(0, -√2/2, √2/2))-

And i ← intersection(√2, shape)-

When comps ← prepare_computations(i, r)-

And color ← reflected_color(w, comps)10

Then color = color(0.19032, 0.2379, 0.14274)-

Lines 3–5 configure the (semi)reflective plane and position it at y = -1. After

preparing the hit, the reflected color will be a darker version of the sphere’s

shade of green, because the plane will only reflect half of the light from the

sphere.

Chapter 11. Reflection and Refraction • 144

report erratum • discuss

Implement reflected_color() by creating a new ray, originating at the hit’s location

and pointing in the direction of reflectv. Find the color of the new ray via color_at(),
and then multiply the result by the reflective value. If reflective is set to something

between 0 and 1, this will give you partial reflection.

In pseudocode, it goes like this:

function reflected_color(world, comps)
if comps.object.material.reflective = 0
return color(0, 0, 0)

end if

reflect_ray ← ray(comps.over_point, comps.reflectv)
color ← color_at(world, reflect_ray)

return color * comps.object.material.reflective
end function

Spawning these secondary rays is how ray tracers can produce such realistic

reflections. Just make sure to use the comps.over_point attribute (and not

comps.point) when constructing the new ray. Otherwise, floating point rounding

errors will make some rays originate just below the surface, causing them to

intersect the same surface they should be reflecting from.

Test #5: Update the shade_hit Function

Show that shade_hit() incorporates the reflected color into the final color.

Recycle the previous test, but this time call shade_hit() instead of calling reflect-
ed_color() directly. The resulting color should combine the white of the plane

with the reflected green of the sphere.

features/world.feature

Scenario: shade_hit() with a reflective material
Given w ← default_world()
And shape ← plane() with:
| material.reflective | 0.5 |
| transform | translation(0, -1, 0) |

And shape is added to w
And r ← ray(point(0, 0, -3), vector(0, -√2/2, √2/2))
And i ← intersection(√2, shape)

When comps ← prepare_computations(i, r)
And color ← shade_hit(w, comps)

Then color = color(0.87677, 0.92436, 0.82918)

Implement this by making the shade_hit() function call reflected_color(), and adding

the color it returns to the surface color. In pseudocode:

function shade_hit(world, comps)
shadowed ← is_shadowed(world, comps.over_point)

report erratum • discuss

Reflection • 145

surface ← lighting(comps.object.material,
comps.object,
world.light,
comps.over_point, comps.eyev, comps.normalv,
shadowed)

reflected ← reflected_color(world, comps)➤

➤

return surface + reflected➤

end function

By adding the reflected color to the surface color, the two blend together and

produce a believable reflection. However, there’s a gotcha hiding here. The

shade_hit() function now calls reflected_color(), which calls color_at(), which calls

shade_hit()… That’s a recursive loop, with the potential to cause some problems.

Let’s address that next.

Test #6: Avoid Infinite Recursion

Show that your code safely handles infinite recursion caused by two objects

that mutually reflect rays between themselves.

Create two parallel mirrors by positioning one plane above another and

making them both reflective. Orient a ray so that it strikes one plane and

bounces to the other. What will happen?

features/world.feature

Scenario: color_at() with mutually reflective surfaces
Given w ← world()
And w.light ← point_light(point(0, 0, 0), color(1, 1, 1))
And lower ← plane() with:
| material.reflective | 1 |
| transform | translation(0, -1, 0) |

And lower is added to w
And upper ← plane() with:
| material.reflective | 1 |
| transform | translation(0, 1, 0) |

And upper is added to w
And r ← ray(point(0, 0, 0), vector(0, 1, 0))

Then color_at(w, r) should terminate successfully

Your ray tracer will probably not handle this well. Because of that recursive

loop you made for the previous test, your reflections will bounce back and

forth between those two mirrors, right up until your stack explodes.

Infinite recursion is the pits.

Chapter 11. Reflection and Refraction • 146

report erratum • discuss

Joe asks:

How can I test “should terminate successfully”?

Testing “should terminate successfully” can be tricky. Rather than trying to determine

whether your program will actually terminate (because good luck with thata), it might

be better to check for the opposite. Look for what happens when the program doesn’t

terminate. Mostly likely, under infinite recursion, your program will eventually run

out of memory. Does your environment raise an exception when this happens? Test

for that, if you can. Or, if that’s not an option, you might instead assert that the

function terminates in some finite amount of time.

a. See Wikipedia’s entry on the Halting problem: en.wikipedia.org/wiki/Halting_problem

Still, the tests must pass. One way to accomplish this is to limit how deeply

the recursion is allowed to go. After all, if a ray can only bounce four or five

times, it is unlikely to blow up your call stack. You can implement this con-

straint by declaring some threshold and then requiring the reflected_color()
function to return immediately if the recursion goes deeper than that.

For now, allow this test to fail. The next test will point you in the right direction

and will help you get them both passing.

Test #7: Limit Recursion

Show that reflected_color() returns without effect when invoked at the limit of its

recursive threshold.

Duplicate the scenario in Test #5: Update the shade_hit Function, on page

145. The difference, though, is that here you’ll invoke reflected_color(world, comps,
remaining) with a new, additional parameter—remaining—which tells the function

how many more recursive calls it is allowed to make.

features/world.feature

Scenario: The reflected color at the maximum recursive depthLine 1

Given w ← default_world()-

And shape ← plane() with:-

| material.reflective | 0.5 |-

| transform | translation(0, -1, 0) |5

And shape is added to w-

And r ← ray(point(0, 0, -3), vector(0, -√2/2, √2/2))-

And i ← intersection(√2, shape)-

When comps ← prepare_computations(i, r)-

And color ← reflected_color(w, comps, 0)10

Then color = color(0, 0, 0)-

report erratum • discuss

Reflection • 147

Line 10 sets the remaining parameter to 0, telling the function that it is not

allowed to make any more recursive calls. It should return black instead.

Make this pass by adding another condition to the top of your reflected_color()
function. It should return black if remaining is less than 1.

To make this useful, though, you next need to pass that number back and

forth between color_at(), shade_hit(), and reflected_color(). Perform the following

refactoring:

1. Add a third parameter to color_at(world, ray, remaining).
2. Add a third parameter to shade_hit(world, hit, remaining).
3. Make color_at() pass the remaining value to shade_hit().
4. Make it so that when reflected_color() calls color_at(), it decrements the remaining

value before passing it on.

In other words, use something like this:

function color_at(world, ray, remaining)
...
color ← shade_hit(world, comps, remaining)
...

end function

function shade_hit(world, comps, remaining)
...
reflected ← reflected_color(world, comps, remaining)
...

end function

function reflected_color(world, comps, remaining)
if remaining <= 0
return color(0, 0, 0)

end if

...
color ← color_at(world, reflect_ray, remaining - 1)
...

end function

In this way, your code keeps track of how deep the recursion is allowed to go

and avoids nastiness when things get a little carried away.

Be sure to change all existing calls of color_at() and shade_hit() to pass in the

maximum recursive depth via the new remaining parameter. If your programming

language supports default parameter values, this is a great place for it. Setting

remaining’s default value to 4 or 5 is empirically pretty safe. Larger numbers

will slow down your renderer on scenes with lots of reflective objects.

Chapter 11. Reflection and Refraction • 148

report erratum • discuss

Once that’s done, you should find that all your previous tests are now passing

again, including Test #6: Avoid Infinite Recursion, on page 146.

Whew!

Take a moment and celebrate with a simple scene. Populate it with spheres,

and make some of them reflective. See how the color of a surface affects

reflection. Do some colors work better than others? What happens when you

vary the ambient, diffuse, and specular parameters on a reflective surface?

When you’ve got that working to your satisfaction, read on. It’s time to talk

about transparency and refraction.

Transparency and Refraction

Refraction describes how light bends when it passes from one transparent

medium to another. With this added to your ray tracer, you’ll be able to render

pretty convincing glass, water, and other transparent materials. The following

figure is one example, showing how a glass sphere distorts the image of the

scene behind it.

Refraction is governed by a property called the refractive index (or index of

refraction). It’s a number that determines the degree to which light will bend

when entering or exiting the material, compared to other materials. The

larger the number, the more strongly light will bend when encountering that

material.

You can find various lists online of materials and their corresponding indices

of refraction.1 To save you the search, here are some of the more common

materials and their refractive indices:

1. Here’s one such list: hyperphysics.phy-astr.gsu.edu/hbase/Tables/indrf.html

report erratum • discuss

Transparency and Refraction • 149

• Vacuum: 1

• Air: 1.00029

• Water: 1.333

• Glass: 1.52

• Diamond: 2.417

Once again, the key to making this work in your ray tracer is to spawn a

secondary ray every time your ray encounters a transparent material, just

like you did for reflection. The difference here is really just the math that

determines which direction the new ray should go.

You’ll implement this in eight tests:

1. Add transparency and refractive_index to material as new attributes.

2. For a given intersection, find the refractive index of the material that the

ray is passing from, and the refractive index of the material that the ray

is passing to. We typically refer to these as n1 and n2.

3. Add a new attribute in prepare_computations(), called under_point, which deter-

mines where the refracted ray will originate.

4. Handle refraction when the surface is opaque.

5. Handle refraction when the maximum recursive depth is reached.

6. Handle refraction under total internal reflection. (More on that in a bit!)

7. Handle refraction in the general case, when the surface is transparent.

8. Combine the reflected and refracted colors with the material color to find

the final surface color.

You’ve got this!

Test #1: Add the Material Attributes for transparency and refractive_

index

Show that your material structure contains two new attributes, called transparency
and refractive_index. transparency defaults to 0, and refractive_index defaults to 1.

features/materials.feature

Scenario: Transparency and Refractive Index for the default material
Given m ← material()
Then m.transparency = 0.0
And m.refractive_index = 1.0

Chapter 11. Reflection and Refraction • 150

report erratum • discuss

Defaulting transparency to 0 makes all surfaces opaque by default, and using 1
as the default for refractive_index makes all objects empty, vacuum-filled shells.

With the addition of those two attributes, you can also implement a helper

function, glass_sphere(), that creates a sphere with a glassy texture. Add the

following test to make sure it works as expected.

features/spheres.feature

Scenario: A helper for producing a sphere with a glassy material
Given s ← glass_sphere()
Then s.transform = identity_matrix
And s.material.transparency = 1.0
And s.material.refractive_index = 1.5

This will come in handy for later tests, including the very next one.

Test #2: Determining n1 and n2

Show that prepare_computations() determines n1 and n2 correctly at six different

points of intersection.

As mentioned, n1 and n2 are the names given to the refractive indices of the

materials on either side of a ray-object intersection, with n1 belonging to the

material being exited, and n2 belonging to the material being entered.

For this test, construct a scene which looks something like this in cross-section:

A, B, and C are three glass spheres, with B and C contained by A and overlapping

each other slightly. A ray is cast through the center of all three, and your test

must check that prepare_computations() can correctly determine n1 and n2 at each

of the numbered intersections.

This test is presented as a scenario outline with certain variable names between

angle brackets, like <this>. A table below the scenario, called "Examples,"

report erratum • discuss

Transparency and Refraction • 151

shows what values should be plugged into the test for each variable, with the

rows representing separate invocations of the test.

features/intersections.feature

Scenario Outline: Finding n1 and n2 at various intersectionsLine 1

Given A ← glass_sphere() with:-

| transform | scaling(2, 2, 2) |-

| material.refractive_index | 1.5 |-

And B ← glass_sphere() with:5

| transform | translation(0, 0, -0.25) |-

| material.refractive_index | 2.0 |-

And C ← glass_sphere() with:-

| transform | translation(0, 0, 0.25) |-

| material.refractive_index | 2.5 |10

And r ← ray(point(0, 0, -4), vector(0, 0, 1))-

And xs ← intersections(2:A, 2.75:B, 3.25:C, 4.75:B, 5.25:C, 6:A)-

When comps ← prepare_computations(xs[<index>], r, xs)-

Then comps.n1 = <n1>-

And comps.n2 = <n2>15

-

Examples:-

| index | n1 | n2 |-

| 0 | 1.0 | 1.5 |-

| 1 | 1.5 | 2.0 |20

| 2 | 2.0 | 2.5 |-

| 3 | 2.5 | 2.5 |-

| 4 | 2.5 | 1.5 |-

| 5 | 1.5 | 1.0 |-

Here, the examples correspond to the intersections to be tested. For instance,

the example on line 19 says that when looking at the intersection at index 0,
n1 should be 1.0 and n2 should be 1.5. Those values are substituted on lines

13–15, replacing the variables <index>, <n1>, and <n2>, and then the test runs.

This repeats for each row in the Examples table.

Note in particular the behavior at intersection #3, where n1 and n2 are both

2.5. This is a consequence of how spheres B and C overlap. Sphere C is entered

at intersection #2, so when sphere B is exited at #3, it turns out that C, with

a refractive index of 2.5, is effectively on both sides of the intersection. This

won’t happen often, but that’s why it makes a good test case!

Now, you may have noticed already the new argument being passed to pre-
pare_computations(intersection, ray, xs). The third argument, xs, is the collection of

all intersections, which can tell you where the hit is relative to the rest of the

intersections. With that, you can decide which object, if any, contains the

intersected object.

Chapter 11. Reflection and Refraction • 152

report erratum • discuss

Adding a new parameter to prepare_computations() will affect any test

you’ve written so far that calls this function, which is more than a

few. If that gives you grief, and if your programming language sup-

ports optional parameters, consider making the xs parameter

optional. If not given, it can default to a collection of one value, the

intersection. Just make sure you update (at least) your color_at() function

so it sends the actual list of intersections to prepare_computations()!

The algorithm works like this: start with an empty list, called containers, that

will record which objects have been encountered but not yet exited. These

objects must contain the subsequent intersection. Then, iterating over the

collection of intersections, do the following at each intersection.

1. If the intersection is the hit, set n1 to the refractive index of the last object

in the containers list. If that list is empty, then there is no containing object,

and n1 should be set to 1.
2. If the intersection’s object is already in the containers list, then this inter-

section must be exiting the object. Remove the object from the containers
list in this case. Otherwise, the intersection is entering the object, and

the object should be added to the end of the list.

3. If the intersection is the hit, set n2 to the refractive index of the last object

in the containers list. If that list is empty, then again, there is no containing

object and n2 should be set to 1.
4. If the intersection is the hit, terminate the loop here.

As pseudocode, it looks something like this:

containers ← empty list

for i ← each intersection in xs
if i = hit then

if containers is empty
comps.n1 ← 1.0

else
comps.n1 ← last(containers).material.refractive_index

end if
end if

if containers includes i.object then
remove i.object from containers

else
append i.object onto containers

end if

report erratum • discuss

Transparency and Refraction • 153

if i = hit then
if containers is empty

comps.n2 ← 1.0
else

comps.n2 ← last(containers).material.refractive_index
end if

terminate loop
end if

end for

Add that logic to prepare_computations(), and get that test passing.

Test #3: Computing under_point

Show that prepare_computations() computes a new attribute, under_point, which lies

just beneath the intersected surface.

Construct an intersection between a ray and a glass sphere such that the

intersection occurs at z=0. After preparing the computations, the under_point
attribute should describe a point just beneath the surface of the sphere,

barely more than z=0.

features/intersections.feature

Scenario: The under point is offset below the surface
Given r ← ray(point(0, 0, -5), vector(0, 0, 1))
And shape ← glass_sphere() with:

| transform | translation(0, 0, 1) |
And i ← intersection(5, shape)
And xs ← intersections(i)

When comps ← prepare_computations(i, r, xs)
Then comps.under_point.z > EPSILON/2
And comps.point.z < comps.under_point.z

Note that the result is compared against half of EPSILON to make sure that it

has been adjusted in the correct direction.

The purpose of this new attribute is to describe where the refracted rays will

originate. Remember in Rendering Shadows, on page 113, how you computed

the over_point attribute so it was offset just a fraction above the surface to

prevent objects from shadowing themselves? It’s the same thing here, only

instead of lifting the point above the surface, you push the point below the

surface.

Compute that attribute exactly as you did for comps.over_point, but instead of

adding a fraction of the surface normal vector, you’ll subtract it. In pseu-

docode, it’ll look like this:

Chapter 11. Reflection and Refraction • 154

report erratum • discuss

comps.point ← position(ray, comps.t)

and then, after computing and possibly negating
the normal vector...

comps.over_point ← comps.point + comps.normalv * EPSILON
comps.under_point ← comps.point - comps.normalv * EPSILON

Test #4: Finding the Refracted Color of an Opaque Object

Introduce a new function, refracted_color(world, comps, remaining), and show that it

returns the color black when the hit applies to an opaque object.

Intersect a ray with the first sphere of the default world. After preparing the

hit, calling refracted_color(world, comps, remaining) should return black, because the

sphere is not transparent at all.

features/world.feature

Scenario: The refracted color with an opaque surface
Given w ← default_world()
And shape ← the first object in w
And r ← ray(point(0, 0, -5), vector(0, 0, 1))
And xs ← intersections(4:shape, 6:shape)

When comps ← prepare_computations(xs[0], r, xs)
And c ← refracted_color(w, comps, 5)

Then c = color(0, 0, 0)

Making this pass requires refracted_color() to check the material of the hit object,

returning black if transparency is 0 . For now, be sure and return some other

color (like white) when transparency is not 0, like this:

function refracted_color(world, comps, remaining)
if comps.object.material.transparency = 0
return color(0, 0, 0)

end if

return color(1, 1, 1)
end function

That helps ensure that the test fails if you get the logic wrong in your code,

while you incrementally build out the rest of the refracted_color() function.

Test #5: Finding the Refracted Color at the Maximum Recursive Depth

Show that refracted_color() returns the color black when invoked at the maximum

recursive depth, when there are no remaining recursive calls available.

Intersect a ray again with the first sphere of the default world, but this time

give the sphere a glassy material. Then, invoke refracted_color() with the remaining
parameter set to 0. It should return the color black.

report erratum • discuss

Transparency and Refraction • 155

features/world.feature

Scenario: The refracted color at the maximum recursive depth
Given w ← default_world()
And shape ← the first object in w
And shape has:
| material.transparency | 1.0 |
| material.refractive_index | 1.5 |

And r ← ray(point(0, 0, -5), vector(0, 0, 1))
And xs ← intersections(4:shape, 6:shape)

When comps ← prepare_computations(xs[0], r, xs)
And c ← refracted_color(w, comps, 0)

Then c = color(0, 0, 0)

To pass this test, your function must return black if remaining is 0.

Test #6: Finding the Refracted Color under Total Internal Reflection

Show that refracted_color() returns the color black when the conditions are right

for total internal reflection.

This case deals with total internal reflection. No, it’s not the name of a metal

band. This is a phenomenon that occurs when light enters a new medium at

a sufficiently acute angle, and the new medium has a lower refractive index

than the old. For example, a ray of light moving from water to air could

experience total internal reflection if it strikes the interface between them at

a small enough angle.

When these conditions are true, the ray will reflect off the interface, instead

of passing through it, as the following illustration shows.

This, incidentally, is what allows things like fiber optic cable to work.

Under total internal reflection, light is not propagated across the interface

between the two media. This means that your ray tracer should return the

color black when total internal reflection occurs.

Construct a scene where the ray starts inside the first sphere of the default

world and strikes that sphere at a sufficiently acute angle. Total internal

reflection should result, and the function should return black.

Chapter 11. Reflection and Refraction • 156

report erratum • discuss

features/world.feature

Scenario: The refracted color under total internal reflection
Given w ← default_world()
And shape ← the first object in w
And shape has:
| material.transparency | 1.0 |
| material.refractive_index | 1.5 |

And r ← ray(point(0, 0, √2/2), vector(0, 1, 0))
And xs ← intersections(-√2/2:shape, √2/2:shape)

NOTE: this time you're inside the sphere, so you need
to look at the second intersection, xs[1], not xs[0]
When comps ← prepare_computations(xs[1], r, xs)
And c ← refracted_color(w, comps, 5)

Then c = color(0, 0, 0)

The implementation of this depends on a little thing called Snell’s Law, which

describes the relationship between the angle of the incoming ray and the

angle of the refracted ray. Given those two angles, θi and θt (say, “theta i” and

“theta t”), Snell’s Law declares:

sin θi

sin θt
=

η2

η1

Now it’s a matter of applying a few trigonometric identities to turn this into

information you can use in your ray tracer, but don’t panic! What you need

to do is find θi, given θt, which goes like this in pseudocode:

Find the ratio of first index of refraction to the second.
(Yup, this is inverted from the definition of Snell's Law.)
n_ratio ← comps.n1 / comps.n2

cos(theta_i) is the same as the dot product of the two vectors
cos_i ← dot(comps.eyev, comps.normalv)

Find sin(theta_t)^2 via trigonometric identity
sin2_t ← n_ratio^2 * (1 - cos_i^2)

If sin2_t is greater than 1, then you’ve got some total internal reflection going

on. Go ahead and update your refracted_color() function to check for this case,

and return the color black when it does.

Test #7: Finding the Refracted Color

Show that refracted_color() in all other cases will spawn a secondary ray in the

correct direction, and return its color.

Start with the default world, but make the first, outermost sphere fully

ambient, so that it shows up regardless of lighting. Apply the test pattern

from Generalizing Patterns, on page 132, to it. The second, innermost sphere

report erratum • discuss

Transparency and Refraction • 157

is given a glassy material. Then spawn a ray inside the innermost sphere,

pointing straight up.

Remember that the test pattern will return a color based on the point of

intersection, which means the test can inspect the returned color to determine

whether or not the ray was refracted. Sneaky!

features/world.feature

Scenario: The refracted color with a refracted ray
Given w ← default_world()
And A ← the first object in w
And A has:
| material.ambient | 1.0 |
| material.pattern | test_pattern() |

And B ← the second object in w
And B has:
| material.transparency | 1.0 |
| material.refractive_index | 1.5 |

And r ← ray(point(0, 0, 0.1), vector(0, 1, 0))
And xs ← intersections(-0.9899:A, -0.4899:B, 0.4899:B, 0.9899:A)

When comps ← prepare_computations(xs[2], r, xs)
And c ← refracted_color(w, comps, 5)

Then c = color(0, 0.99888, 0.04725)

To make this test pass, update your refracted_color() function again. It needs to do

a few more computations to figure out which direction the ray is refracted and

then spawn and evaluate that refracted ray. In pseudocode, it goes like this:

Find cos(theta_t) via trigonometric identity
cos_t ← sqrt(1.0 - sin2_t)

Compute the direction of the refracted ray
direction ← comps.normalv * (n_ratio * cos_i - cos_t) -

comps.eyev * n_ratio

Create the refracted ray
refract_ray ← ray(comps.under_point, direction)

Find the color of the refracted ray, making sure to multiply
by the transparency value to account for any opacity
color ← color_at(world, refract_ray, remaining - 1) *

comps.object.material.transparency

Just so.

Test #8: Handling Refraction in shade_hit

Show that your shade_hit() function handles refraction.

Add a glass floor to the default world, positioned just below the two default

spheres, and add a new, colored sphere below the floor. Cast a ray diagonally

Chapter 11. Reflection and Refraction • 158

report erratum • discuss

toward the floor, with the expectation that it will refract and eventually strike

the colored ball. Because the plane is only semitransparent, the resulting

color should combine the refracted color of the ball and the color of the plane.

features/world.feature

Scenario: shade_hit() with a transparent material
Given w ← default_world()
And floor ← plane() with:
transform	translation(0, -1, 0)
material.transparency	0.5
material.refractive_index	1.5

And floor is added to w
And ball ← sphere() with:
material.color	(1, 0, 0)
material.ambient	0.5
transform	translation(0, -3.5, -0.5)

And ball is added to w
And r ← ray(point(0, 0, -3), vector(0, -√2/2, √2/2))
And xs ← intersections(√2:floor)

When comps ← prepare_computations(xs[0], r, xs)
And color ← shade_hit(w, comps, 5)

Then color = color(0.93642, 0.68642, 0.68642)

Make this pass by calling refracted_color() from shade_hit() and adding its result

to the sum of the reflected and surface colors.

At this point things look pretty good. Your renderer can produce lovely

refraction effects, but be careful: the results will be unpleasant when total

internal reflection comes into play. Consider the following two images. Each

depicts a glass sphere, with an air bubble in the middle of it.

The sphere on the left is what your ray tracer will currently produce, adding

the refracted color to the surface color. Sadly, total internal reflection causes

the interaction between the glass and the pocket of air to render that black

band. The sphere on the right, though, uses a more realistic algorithm that

blends reflection and refraction together, mitigating the band. Kind of “night

and day,” right?

report erratum • discuss

Transparency and Refraction • 159

The secret sauce here is the Fresnel effect, and the good news is that it’s not

much more work to add to your ray tracer. Read on to see how it comes

together.

Fresnel Effect

The Fresnel effect (that’s a silent “s,” by the way—thank the French for that) is

the name for how light behaves on transparent surfaces. If you’ve ever stood

beside a lake, you’ll be familiar with it. Looking straight down into the water,

you see the rocks and fish below the surface. But as you look up toward the far

shore, the water becomes more opaque and reflects more and more of the

scenery. The following figure demonstrates this, with a brown/green checkered

plane for the bottom of the lake, and a second, transparent plane as the water.

A white/gray checkered wall in the far distance stands in for the scenery.

Notice specifically how the “water” strongly reflects the white/gray checkered

wall when far away and more weakly close-up. Similarly, the water is strongly

transparent close-up, but less so at a distance.

The formulas that describe this behavior were first deduced in the early 1800s

by Augustin-Jean Fresnel, a French physicist. The basic idea is this: when

the angle between the eye and the surface is large (“looking straight down

into the water”), the amount of light reflected is small relative to the amount

transmitted through the surface, and when the angle is small (“looking toward

the far shore”), the amount of light reflected is larger.

This inverse relationship between reflection and refraction is what fixes that

“black out” caused by total internal reflection. It gets filled in by reflec-

tions—the refracted and reflected rays complement each other, balancing

things out nicely.

The bad news? Fresnel’s equations deal with more than our simulation cares

about, like the polarization of light. While it’s certainly possible to model all

of this in software, to do so would be slow.

Chapter 11. Reflection and Refraction • 160

report erratum • discuss

The good news? Another fellow, Christophe Schlick, came up with an

approximation to Fresnel’s equations that is much faster, and plenty accurate

besides. Hurray for Schlick!

To make this work, you’ll implement a new function, schlick(comps), which

returns a number between 0 and 1, inclusive. This number is called the

reflectance and represents what fraction of the light is reflected, given the

surface information at the hit.

You’ll implement the schlick() function with four tests:

1. Reflectance when total internal reflection occurs.

2. Reflectance when a ray strikes a surface at a 90° angle.

3. Reflectance when n2 is greater than n1, and the angle is small.

4. Reflectance always used by shade_hit() when a surface is both reflective and

transparent.

Here goes! You’re on the final stretch.

Test #1: Determine Reflectance under Total Internal Reflection

Show that schlick() returns a 1 when conditions are right for total internal

reflection.

Position a ray inside a glass sphere, offset from the center and pointing straight

up. The ray is offset sufficiently to trigger total internal reflection, resulting

in schlick() returning 1.

features/intersections.feature

Scenario: The Schlick approximation under total internal reflection
Given shape ← glass_sphere()
And r ← ray(point(0, 0, √2/2), vector(0, 1, 0))
And xs ← intersections(-√2/2:shape, √2/2:shape)

When comps ← prepare_computations(xs[1], r, xs)
And reflectance ← schlick(comps)

Then reflectance = 1.0

Intuitively, “total internal reflection” means all the light is reflected and none

is refracted. The fraction of light that is reflected must be 1 in this case. This

is called the reflectance.

Make that test pass by implementing a check for total internal reflection. The

following pseudocode describes how it works:

report erratum • discuss

Fresnel Effect • 161

function schlick(comps)
find the cosine of the angle between the eye and normal vectors
cos ← dot(comps.eyev, comps.normalv)

total internal reflection can only occur if n1 > n2
if comps.n1 > comps.n2

n ← comps.n1 / comps.n2
sin2_t = n^2 * (1.0 - cos^2)
return 1.0 if sin2_t > 1.0

end if

return anything but 1.0 here, so that the test will fail
appropriately if something goes wrong.
return 0.0

end function

Remember that total internal reflection can only happen when n1 is greater

than n2, so the check itself is guarded by that condition. The cos variable,

though, will be used later in the function and should be initialized regardless

of whether or not total internal reflection occurs.

Test #2: Determine Reflectance of a Perpendicular Ray

Show that reflectance (via schlick()) is small when a ray strikes the surface at a

perpendicular angle.

Create a glass sphere and a ray that intersects it. The ray should strike the

sphere perpendicular to its surface. The reflectance in this case will be slight.

features/intersections.feature

Scenario: The Schlick approximation with a perpendicular viewing angle
Given shape ← glass_sphere()
And r ← ray(point(0, 0, 0), vector(0, 1, 0))
And xs ← intersections(-1:shape, 1:shape)

When comps ← prepare_computations(xs[1], r, xs)
And reflectance ← schlick(comps)

Then reflectance = 0.04

Don’t worry about making this one pass just now; we’ll discuss the implemen-

tation at the end of the following test, and you’ll make them both pass in one

fell swoop!

Test #3: Determine Reflectance when n2 > n1

Show that reflectance (via schlick()) is significant when n2 > n1 and the ray strikes

the surface at a small angle.

This is the “looking across the lake to the far shore” scenario, and a significant

amount of light should be reflected. The test mimics this by preparing a ray

so that it glances off a sphere, almost tangent to it.

Chapter 11. Reflection and Refraction • 162

report erratum • discuss

features/intersections.feature

Scenario: The Schlick approximation with small angle and n2 > n1
Given shape ← glass_sphere()
And r ← ray(point(0, 0.99, -2), vector(0, 0, 1))
And xs ← intersections(1.8589:shape)

When comps ← prepare_computations(xs[0], r, xs)
And reflectance ← schlick(comps)

Then reflectance = 0.48873

Make this test and the previous test pass by adding a few more computations

to your schlick() function. The following pseudocode finishes it off by adding

the indicated lines:

function schlick(comps)
find the cosine of the angle between the eye and normal vectors
cos ← dot(comps.eyev, comps.normalv)

total internal reflection can only occur if n1 > n2
if comps.n1 > comps.n2

n ← comps.n1 / comps.n2
sin2_t = n^2 * (1.0 - cos^2)
return 1.0 if sin2_t > 1.0

compute cosine of theta_t using trig identity➤

cos_t ← sqrt(1.0 - sin2_t)➤

➤

when n1 > n2, use cos(theta_t) instead➤

cos ← cos_t➤

end if

r0 ← ((comps.n1 - comps.n2) / (comps.n1 + comps.n2))^2➤

return r0 + (1 - r0) * (1 - cos)^5➤

end function

This probably all seems like magic, but I promise it’s grounded in reality! An

excellent paper called “Reflections and Refractions in Ray Tracing,” by Bram

de Greve,2 isn’t long and is well worth the read if you’re curious about the

math behind all of this.

Test #4: Employ Reflectance When Combining Reflection and Refraction

Show that the schlick() reflectance value is used by shade_hit() when a material is

both transparent and reflective.

This is essentially the same test as Test #8: Handling Refraction in shade_

hit, on page 158, but the plane is made both transparent and reflective. This

will cause the color at the point of intersection to incorporate both the

2. Many online sites have a copy. Here’s one: graphics.stanford.edu/courses/cs148-10-summer/docs/
2006--degreve--reflection_refraction.pdf.

report erratum • discuss

Fresnel Effect • 163

reflected and refracted colors, combining those of the default world’s spheres

with the sphere that was added below the plane.

features/world.feature

Scenario: shade_hit() with a reflective, transparent material
Given w ← default_world()
And r ← ray(point(0, 0, -3), vector(0, -√2/2, √2/2))
And floor ← plane() with:
transform	translation(0, -1, 0)
material.reflective	0.5
material.transparency	0.5
material.refractive_index	1.5

And floor is added to w
And ball ← sphere() with:
material.color	(1, 0, 0)
material.ambient	0.5
transform	translation(0, -3.5, -0.5)

And ball is added to w
And xs ← intersections(√2:floor)

When comps ← prepare_computations(xs[0], r, xs)
And color ← shade_hit(w, comps, 5)

Then color = color(0.93391, 0.69643, 0.69243)

Make this work by changing your shade_hit() function, so that instead of

naively returning the sum of the surface, reflected, and refracted colors, you’ll

first check to see if the surface material is both transparent and reflective. If

it is, you’ll use the Schlick approximation to combine them. The following

pseudocode demonstrates:

function shade_hit(world, comps, remaining)
shadowed ← is_shadowed(world, comps.over_point)

surface ← lighting(comps.object.material,
comps.object,
world.light,
comps.over_point, comps.eyev, comps.normalv,
shadowed)

reflected ← reflected_color(world, comps, remaining)➤

refracted ← refracted_color(world, comps, remaining)➤

➤

material ← comps.object.material➤

if material.reflective > 0 && material.transparency > 0➤

reflectance ← schlick(comps)➤

return surface + reflected * reflectance +➤

refracted * (1 - reflectance)➤

else➤

return surface + reflected + refracted➤

end➤

end function

Chapter 11. Reflection and Refraction • 164

report erratum • discuss

There! That ought to do it. Once your tests are all passing, you’re set to render

bona fide reflections and refractions, complete with Fresnel effects. Impressive!

Putting It Together

Ray tracers are best known for mirrors and glass. Take some time and

experiment, to see why. Here are a few tips for figuring out how to employ

reflection and refraction effectively in your scenes.

1. We tend to think of glass as exclusively transparent, but no one is sur-

prised to look in a window and see their own ghostly reflection superim-

posed over the scene. When rendering glass or any similar material, set

both transparency and reflectivity to high values, 0.9 or even 1. This allows

the Fresnel effect to kick in, and gives your material an added touch of

realism!

2. Because the reflected and refracted colors are added to the surface color,

they’ll tend to make such objects brighter. You can tone down the mate-

rial’s diffuse and ambient properties to compensate. The more transparent

or reflective the surface, the smaller the diffuse property should be. This

way, more of the color comes from the secondary rays, and less from the

object’s surface.

3. If you’d like a subtly colored mirror, or slightly tinted glass, use a very

dark color, instead of a very light one. Red glass, for instance, should use

a very dark red, almost black, instead of a very bright red. In general, the

more reflective or transparent the surface, the darker its surface color

should be. Note that if you add color, make sure that you have some diffuse
and possibly ambient contribution, too; otherwise, your surface will render

as black regardless of what color you give to it.

4. Reflective and transparent surfaces pair nicely with tight specular high-

lights. Set specular to 1 and bump shininess to 300 or more to get a highlight

that really shines.

Also, here’s a closing challenge for you: suppose you wanted to render a scene

where you were looking through the surface of a pond at some rocks beneath

it. In terms of implementation, that would be a transparent plane, with some

spheres scattered below it. As your ray tracer is currently implemented, the

plane is going to cast a shadow on anything beneath it, which leaves everything

under the water in darkness, ruining the effect. You could add a light source

beneath the plane, but that will introduce odd shadows and highlights—not

a good solution either.

report erratum • discuss

Putting It Together • 165

What you really want is for some objects to “opt out” of the shadow calculation.

The surface of the pond, for instance, should be ignored when calculating

shadows.

How would you go about changing your ray tracer to support that? What

would you need to do to allow objects to individually declare that they cast

no shadow?

Chew on that one for a bit. When you’re ready to move on, turn the page! Next

up, you’ll add another primitive shape to your ray tracer: the humble cube.

Chapter 11. Reflection and Refraction • 166

report erratum • discuss

CHAPTER 12

Cubes

Reflections and refractions were huge, and you totally nailed them! Your scenes

are looking more realistic than ever. In this chapter, you’re going to increase

the scope of what’s possible by adding a new primitive shape: the cube.

Check it out. Here’s a scene rendered entirely with cubes.

True, most of the cubes have been stretched and squashed in various ways,

but—cross my heart—they all started life as perfect cubes.

In fact, they all started life as a very specific kind of cube, called an axis-

aligned bounding box. In this chapter, you’ll add support for them by imple-

menting a new ray intersection algorithm, as well as the algorithm for finding

the normal on the surface of a cube.

An axis-aligned bounding box, or AABB, is a box with a special property: its

sides are all aligned with the scene’s axes. Two are aligned with the x axis,

two with the y axis, and two with the z axis, like the figure on page 168.

report erratum • discuss

This particular constraint makes the intersection math much less complex,

which makes the computer happier and ought to make you happier as well.

The cube logic in your ray tracer will implement these AABBs, so your cubes

will always begin centered at the origin and extend from -1 to +1 along each

axis. From there, you can use transformation matrices to scale, rotate, and

translate them into any orientation you like.

You’ve already done most of the hard work in previous chapters, building a

framework for supporting, transforming, and intersecting primitive shapes.

That’s awesome! That means this chapter only needs to focus on two things:

the ray-cube intersection algorithm, and the algorithm for finding the normal

on the cube.

Let’s start with the intersection algorithm.

Intersecting a Ray with a Cube

The intersection algorithm must decide whether a given ray intersects any of

the cube’s six faces or whether the ray misses the cube altogether. Treat those

two cases as tests, starting with the first one: a ray intersecting a cube.

Test #1: A Ray Intersects a Cube

Show that the local_intersect() function for a cube correctly identifies intersections

on any face.

This test creates a single cube and then casts a ray at each of its faces to

show that the algorithm works correctly from all six directions.

features/cubes.feature

Scenario Outline: A ray intersects a cube
Given c ← cube()
And r ← ray(<origin>, <direction>)

When xs ← local_intersect(c, r)
Then xs.count = 2
And xs[0].t = <t1>
And xs[1].t = <t2>

Chapter 12. Cubes • 168

report erratum • discuss

Examples:
	origin	direction	t1	t2
+x	point(5, 0.5, 0)	vector(-1, 0, 0)	4	6
-x	point(-5, 0.5, 0)	vector(1, 0, 0)	4	6
+y	point(0.5, 5, 0)	vector(0, -1, 0)	4	6
-y	point(0.5, -5, 0)	vector(0, 1, 0)	4	6
+z	point(0.5, 0, 5)	vector(0, 0, -1)	4	6
-z	point(0.5, 0, -5)	vector(0, 0, 1)	4	6
inside	point(0, 0.5, 0)	vector(0, 0, 1)	-1	1

The test also casts a ray from inside the cube, to show that the algorithm

handles that case as well.

This works by treating a cube as it were composed of six planes, one for each

face of the cube. Intersecting a ray with that cube involves testing it against

each of the planes, and if the ray intersects them in just the right way, it

means that the ray intersects the cube, as well. Let’s consider the algorithm

at a simpler level, first, to build some intuition about how it works. Start by

looking at the following figure. It shows a ray intersecting a 2D square.

The first step is to find the t values of all the places where the ray intersects

those lines, like this:

report erratum • discuss

Intersecting a Ray with a Cube • 169

Next, consider them in parallel pairs. The following figure highlights the

pairings with two blue intersections on two parallel blue lines, and two yellow

intersections on two parallel yellow lines:

For each pair of lines, there will be a minimum t closest to the ray origin, and

a maximum t farther away. Focus on the largest of all the minimum t values

and the smallest of all the maximum t values, like so:

The intersection of the ray with that square will always be those two points:

the largest minimum t value and the smallest maximum t value. This works

for any number of dimensions, too. In three dimensions, you intersect planes

instead of lines, but you still consider them in parallel pairs.

In pseudocode, the intersection routine itself looks like this:

function local_intersect(cube, ray)
xtmin, xtmax ← check_axis(ray.origin.x, ray.direction.x)
ytmin, ytmax ← check_axis(ray.origin.y, ray.direction.y)
ztmin, ztmax ← check_axis(ray.origin.z, ray.direction.z)

tmin ← max(xtmin, ytmin, ztmin)
tmax ← min(xtmax, ytmax, ztmax)

return (intersection(tmin, cube), intersection(tmax, cube))
end function

Chapter 12. Cubes • 170

report erratum • discuss

For each of the x, y, and z axes, you’ll check to see where the ray intersects

the corresponding planes and return the minimum and maximum t values

for each. Once you’ve found those points of intersection, you find the actual

points of intersection by taking the largest of the minimum t values and the

smallest of the maximum t values.

The helper function, check_axis(), looks like this in pseudocode:

function check_axis(origin, direction)
tmin_numerator = (-1 - origin)
tmax_numerator = (1 - origin)

if abs(direction) >= EPSILON
tmin ← tmin_numerator / direction
tmax ← tmax_numerator / direction

else
tmin ← tmin_numerator * INFINITY
tmax ← tmax_numerator * INFINITY

end if

if tmin > tmax then swap(tmin, tmax)

return tmin, tmax
end function

This takes the ray-plane intersection formula that you used in Chapter 9,

Planes, on page 117, and generalizes it to support planes that are offset from

the origin. Specifically, each pair of planes is offset 1 unit in opposing direc-

tions, hence -1 - origin and 1 - origin.

If the denominator (direction) is effectively zero, though, you don’t want to be

dividing by it. The previous pseudocode handles this case by multiplying the

numerators by infinity, which makes sure tmin and tmax—while both being

infinity—have the correct sign (positive or negative).

If your programming language natively handles infinity and float-

ing-point division by zero, you can avoid most of the song and

dance in check_axis() and just divide the numerators by the denom-

inator. No special case needed when direction is zero!

Implement this, and make that first test pass. Once you’ve got it working,

move on to the next test!

Test #2: A Ray Misses a Cube

Show that the local_intersect() function for a cube handles the case where the ray

misses the cube.

report erratum • discuss

Intersecting a Ray with a Cube • 171

Once again, the test creates a single cube, but this time the rays are cast in

such a way that they miss the cube. Some are cast parallel to different faces,

others are just cast diagonally away from the cube.

features/cubes.feature

Scenario Outline: A ray misses a cube
Given c ← cube()
And r ← ray(<origin>, <direction>)

When xs ← local_intersect(c, r)
Then xs.count = 0

Examples:
origin	direction
point(-2, 0, 0)	vector(0.2673, 0.5345, 0.8018)
point(0, -2, 0)	vector(0.8018, 0.2673, 0.5345)
point(0, 0, -2)	vector(0.5345, 0.8018, 0.2673)
point(2, 0, 2)	vector(0, 0, -1)
point(0, 2, 2)	vector(0, -1, 0)
point(2, 2, 0)	vector(-1, 0, 0)

In each case, though, the ray should miss the cube, resulting in zero inter-

sections.

Consider it from a two-dimensional perspective again. In the following config-

uration, the ray misses the square:

Once again, find the points of intersection with the two pairs of lines, and

then find the largest of the minimum t values and the smallest of the maximum

t values, like this:

Chapter 12. Cubes • 172

report erratum • discuss

Look closely: the minimum t is farther from the ray origin than the maximum

t! Well, that clearly makes no sense, and the contradiction is your clue that

the ray misses the square.

The following pseudocode adds one line to the previous implementation,

testing for that case.

function local_intersect(cube, ray)
xtmin, xtmax ← check_axis(ray.origin.x, ray.direction.x)
ytmin, ytmax ← check_axis(ray.origin.y, ray.direction.y)
ztmin, ztmax ← check_axis(ray.origin.z, ray.direction.z)

tmin ← max(xtmin, ytmin, ztmin)
tmax ← min(xtmax, ytmax, ztmax)

return () if tmin > tmax➤

return (intersection(tmin, cube), intersection(tmax, cube))
end function

Once you’ve got that test passing, you’re ready to implement the last bit for

cubes: calculating the normal vector.

Finding the Normal on a Cube

Recall that the normal is the vector that points outward perpendicularly from

a surface. Your ray tracer uses it to compute a variety of effects, including

shading, reflection, and refraction. Fortunately, the algorithm for finding the

normal on a cube is elegant and short—two delightful attributes!

Let’s jump right into the test.

Test #3: The Normal on a Cube

Show that the local_normal_at() function correctly computes the normal at various

points on a cube.

Now, each face of a cube is a plane with its own normal. This normal will be

the same at every point on the corresponding face. The following test

demonstrates this by finding the normal at various points on a cube.

features/cubes.feature

Scenario Outline: The normal on the surface of a cube
Given c ← cube()
And p ← <point>

When normal ← local_normal_at(c, p)
Then normal = <normal>

report erratum • discuss

Finding the Normal on a Cube • 173

Examples:
point	normal
point(1, 0.5, -0.8)	vector(1, 0, 0)
point(-1, -0.2, 0.9)	vector(-1, 0, 0)
point(-0.4, 1, -0.1)	vector(0, 1, 0)
point(0.3, -1, -0.7)	vector(0, -1, 0)
point(-0.6, 0.3, 1)	vector(0, 0, 1)
point(0.4, 0.4, -1)	vector(0, 0, -1)
point(1, 1, 1)	vector(1, 0, 0)
point(-1, -1, -1)	vector(-1, 0, 0)

Note that this test also demonstrates the normal at two of the cube’s corners,

to make sure that case is handled consistently. Specifically, it assumes that

the corners are treated as positions on either the +x or -x faces, and returns

the normal for that face.

To understand how the algorithm for this will work, note that all the points

on the +x face have a normal pointing in the +x direction, like this:

Picking a few points at random from that face gives us the following list:

• (1.0, 0.0, -0.4)
• (1.0, -0.5, 0.6)
• (1.0, 0.1, 0.9)
• (1.0, -0.9, 0.7)

What do you notice here? Perhaps you see that the x component is not only

1, but is also always greater than any of the other components? Hold that

thought!

Consider the following list of points on the -y face of a cube:

• (-0.2, -1.0, 0.5)
• (0.1, -1.0, -0.9)
• (0.8, -1.0, 0.9)
• (-0.7, -1.0, 0.0)

Chapter 12. Cubes • 174

report erratum • discuss

Here, the y component is always -1.0, and is less than any of the other com-

ponents.

One more list. Try and figure out which face of a cube each of the following

points is from:

• (-1.0, 0.3, -0.5)
• (0.3, -0.9, 1.0)
• (-0.6, 1.0, 0.7)
• (0.4, -1.0, 0.2)

The face is always the one matching the component whose absolute value

is a 1!

Now, in practice, you can’t trust that the points you get will have components

that exactly equal 1.0 (curse you, floating point rounding!), but you can make

it work by choosing the component with the largest absolute value. The fol-

lowing pseudocode illustrates how your local_normal_at() function should work

for cubes.

function local_normal_at(cube, point)
maxc ← max(abs(point.x), abs(point.y), abs(point.z))

if maxc = abs(point.x) then
return vector(point.x, 0, 0)

else if maxc = abs(point.y) then
return vector(0, point.y, 0)

end if

return vector(0, 0, point.z)
end function

In other words, find the component with the largest absolute value. If that’s

x, return a vector pointing in that direction. If it’s y, return a vector pointing

in that direction, and so forth.

Make that test pass, and your cube is done!

Putting It Together

Your ray tracer now supports spheres, planes, and cubes. How awesome is

that? By all means, experiment and see what you can make by combining

the three primitives, but first: what can you make using only cubes?

Try it out. Form a room out of a large cube. Make a table out of five cubes:

four for the legs, and one for the table’s surface. Put a box on the table.

Scatter some boxes on the floor.

report erratum • discuss

Putting It Together • 175

Here’s another challenge: using only two cubes, can you make a room whose

floor and ceiling have a different texture than the walls?

You can also make these algorithms faster. For example, when comparing a

ray with the cube’s sides, the algorithm insists on checking all six planes,

even if it’s clear by the first or second comparison that the ray misses. In a

production-quality ray tracer, this kind of wastefulness would be unacceptable.

How might you optimize it? What can you do to minimize the number of

comparisons it makes?

Ponder that for a bit, if you like. When you’re ready, read on. In the next

chapter you’ll add two more primitives: cylinders and cones.

Chapter 12. Cubes • 176

report erratum • discuss

CHAPTER 13

Cylinders

Next up is the mighty cylinder. It plays nicely with your existing suite of

graphics primitives, and it’s fantastic for representing all sorts of things: arms,

legs, necks, fingers, and torsos, as well as columns, pipes, and table legs.

Here’s an example of cylinders in various configurations to give you a taste

of how versatile this shape can be:

As with all your other shapes, you’ll use cylinders by instantiating them at

the origin and then transforming them into the size and position you need.

For convenience, you’ll give the cylinders a default radius of 1, but the way

the math works out they’ll all be infinitely long, extending to infinity in both

+y and -y. Since trying to do anything useful with an infinitely long cylinder

is tricky, you’ll also implement controls to allow your cylinders to be truncated

at one or both ends, and to be either open or capped.

report erratum • discuss

You’ll tackle all of this in a few steps:

1. Implement the basic intersection algorithm for an infinite cylinder of

radius 1.
2. Compute the normal vector for a cylinder.

3. Add support for truncating the cylinder. By default, a truncated cylinder

is open, or hollow.

4. Add support for end caps, to allow the cylinder to be closed, or solid.

5. Compute the normal vector on the end caps.

Lastly, as a bonus, you’ll see, briefly, how to intersect a ray with a cone, the

algorithm for which just happens to be very similar to that of a cylinder.

Are you ready for this? Here goes!

Intersecting a Ray with a Cylinder

Either the ray misses the cylinder or it hits the cylinder. Right? This

dichotomy neatly describes the tests you’ll write first. You’ll start by confirming

that a ray misses a cylinder. Such tests can be made to pass trivially, but

rather than passing them by making your local_intersect method do nothing,

this provides a good opportunity to start actually implementing the intersection

routines.

Test #1: A Ray Misses a Cylinder

Show that the local_intersect() function correctly identifies when a ray misses a

cylinder.

This test creates a cylinder and casts three different rays at it. The first ray

is positioned on the surface and points along the +y axis, parallel to the

cylinder. The second is inside the cylinder and also points along the +y axis.

The third ray is positioned outside the cylinder and oriented askew from all

axes. All three should miss the cylinder.

features/cylinders.feature

Scenario Outline: A ray misses a cylinder
Given cyl ← cylinder()
And direction ← normalize(<direction>)
And r ← ray(<origin>, direction)

When xs ← local_intersect(cyl, r)
Then xs.count = 0

Chapter 13. Cylinders • 178

report erratum • discuss

Examples:
origin	direction
point(1, 0, 0)	vector(0, 1, 0)
point(0, 0, 0)	vector(0, 1, 0)
point(0, 0, -5)	vector(1, 1, 1)

The algorithm that implements this shares some features with the ray-sphere

intersection algorithm on page 57. As with the sphere algorithm, you’ll com-

pute a discriminant value, which will be negative if the ray does not intersect.

Here’s some pseudocode:

function local_intersect(cylinder, ray)
a ← ray.direction.x² + ray.direction.z²

ray is parallel to the y axis
return () if a is approximately zero

b ← 2 * ray.origin.x * ray.direction.x +
2 * ray.origin.z * ray.direction.z

c ← ray.origin.x² + ray.origin.z² - 1

disc ← b² - 4 * a * c

ray does not intersect the cylinder
return () if disc < 0

this is just a placeholder, to ensure the tests
pass that expect the ray to miss.
return (intersection(1, cylinder))

end function

Note that the last line of the function, returning a single intersection at t=1,
ensures that the tests pass because the ray truly misses the cylinder and not

simply because the function wasn’t doing anything else. You’ll flesh that bit

out next, in test #2.

Test #2: A Ray Hits a Cylinder

Show that the local_intersect() function correctly identifies when a ray hits a

cylinder.

Once again, the scenario outline creates three different rays, each of which

is expected to intersect the cylinder. The first is configured to strike the

cylinder on a tangent, but even though the actual intersection is at a single

point, you’ll still make your code return two intersections, both at t=5. (This

mimics how you handled tangent intersections in Chapter 5, Ray-Sphere

Intersections, on page 57, and will help with determining object overlaps in

Chapter 16, Constructive Solid Geometry (CSG), on page 227.) The second ray

report erratum • discuss

Intersecting a Ray with a Cylinder • 179

intersects the cylinder perpendicularly through the middle and results in two

intersections at 4 and 6. The last ray is skewed so that it strikes the cylinder

at an angle.

features/cylinders.feature

Scenario Outline: A ray strikes a cylinder
Given cyl ← cylinder()
And direction ← normalize(<direction>)
And r ← ray(<origin>, direction)

When xs ← local_intersect(cyl, r)
Then xs.count = 2
And xs[0].t = <t0>
And xs[1].t = <t1>

Examples:
origin	direction	t0	t1
point(1, 0, -5)	vector(0, 0, 1)	5	5
point(0, 0, -5)	vector(0, 0, 1)	4	6
point(0.5, 0, -5)	vector(0.1, 1, 1)	6.80798	7.08872

Make this pass by using the discriminant to find the t values for the points

of intersection. The highlighted lines in the following pseudocode demonstrate

the calculation you need:

function local_intersect(cylinder, ray)
a ← ray.direction.x² + ray.direction.z²

ray is parallel to the y axis
return () if a is approximately zero

b ← 2 * ray.origin.x * ray.direction.x +
2 * ray.origin.z * ray.direction.z

c ← ray.origin.x² + ray.origin.z² - 1

disc ← b² - 4 * a * c

ray does not intersect the cylinder
return () if disc < 0

t0 ← (-b - √(disc)) / (2 * a)➤

t1 ← (-b + √(disc)) / (2 * a)➤

➤

return (intersection(t0, cylinder), intersection(t1, cylinder))➤

end function

All that’s left before you can actually render this cylinder is to compute the

normal vector.

Finding the Normal on a Cylinder

Once you know the points of intersection, the normal vector is used to help

shade the surface appropriately. You’ll only need one scenario to cover this bit.

Chapter 13. Cylinders • 180

report erratum • discuss

Test #3: Normal Vector on a Cylinder

Show that the normal vector on the surface of a cylinder is computed correctly.

This scenario chooses four points on the surface of the cylinder, one each at

+x, -x, +z and -z, and shows that the normal is the expected value at each

point.

features/cylinders.feature

Scenario Outline: Normal vector on a cylinder
Given cyl ← cylinder()
When n ← local_normal_at(cyl, <point>)
Then n = <normal>

Examples:
point	normal
point(1, 0, 0)	vector(1, 0, 0)
point(0, 5, -1)	vector(0, 0, -1)
point(0, -2, 1)	vector(0, 0, 1)
point(-1, 1, 0)	vector(-1, 0, 0)

To accomplish this, take the point in question and remove the y component.

Treating the result as a vector gives you the normal. In pseudocode, it looks

like this:

function local_normal_at(cylinder, point)
return vector(point.x, 0, point.z)

end function

With those tests passing, your ray tracer can render cylinders! They’ll be

infinitely long, which might be a bit unwieldy, but with a bit of imagination

you can do all kinds of interesting things with them. Give it a try! When you

come back, we will look at truncating those cylinders to make them easier

to use.

Truncating Cylinders

Imagine a world where table legs stretch forever in both directions, where

pencils can never be sharpened because they have no end, and where cars

roll around on wheels that are infinitely wide. What a mess! Perhaps Salvador

Dalí could make something out of that, but for the rest of us, such cylinders

are hard to use well. To make them more useful you can truncate them,

chopping them off at one or both ends.

For your ray tracer, you’ll implement truncated cylinders by permitting a

minimum and a maximum y value to be given for each cylinder. For example,

the cylinder only exists between y=-1 and y=2 as shown in the figure on page 182.

report erratum • discuss

Truncating Cylinders • 181

Note that the extents are exclusive, meaning if the cylinder is truncated at

y=2, the cylinder extends up to—but not including—that limit.

You’ll need just two tests for this feature: one that adds the new attributes

and one that updates the intersection logic to support the truncated cylinders.

Start with the new attributes.

Test #4: Minimum and Maximum Bounds

Demonstrate the default values for a cylinder’s minimum and maximum bounds.

This scenario creates a new cylinder and shows that the minimum defaults

to negative infinity and the maximum defaults to positive infinity.

features/cylinders.feature

Scenario: The default minimum and maximum for a cylinder
Given cyl ← cylinder()
Then cyl.minimum = -infinity
And cyl.maximum = infinity

The minimum and maximum always refer to units on the y axis and are

defined in object space. The next test shows how you use these attributes to

actually truncate a cylinder.

Test #5: Truncated Cylinders

Show that the cylinders in your ray tracer can be truncated at either end.

This scenario sets up a cylinder, truncates it at y=1 and y=2, and then casts

several rays at it in order to make sure that the truncated cylinder is being

intersected correctly.

features/cylinders.feature

Scenario Outline: Intersecting a constrained cylinder
Given cyl ← cylinder()
And cyl.minimum ← 1

Chapter 13. Cylinders • 182

report erratum • discuss

And cyl.maximum ← 2
And direction ← normalize(<direction>)
And r ← ray(<point>, direction)

When xs ← local_intersect(cyl, r)
Then xs.count = <count>

Examples:
	point	direction	count
1	point(0, 1.5, 0)	vector(0.1, 1, 0)	0
2	point(0, 3, -5)	vector(0, 0, 1)	0
3	point(0, 0, -5)	vector(0, 0, 1)	0
4	point(0, 2, -5)	vector(0, 0, 1)	0
5	point(0, 1, -5)	vector(0, 0, 1)	0
6	point(0, 1.5, -2)	vector(0, 0, 1)	2

Specifically, the examples cast the following rays:

• Example 1 casts a ray diagonally from inside the cylinder, with the ray

escaping without intersecting the cylinder.

• Examples 2 and 3 cast rays perpendicularly to the y axis, but from above

and below the cylinder, and also miss.

• Examples 4 and 5 are edge cases, showing that the minimum and maxi-

mum y values are themselves outside the bounds of the cylinder.

• The final example casts a ray perpendicularly through the middle of the

cylinder and produces two intersections.

The following figure shows how the scene is configured, with the correspond-

ing rays:

To make this work, change your local_intersect method so that it computes the

y coordinate at each point of intersection. If the y coordinate is between the

minimum and maxmium values, then the intersection is valid. The following

pseudocode shows how this comes together:

report erratum • discuss

Truncating Cylinders • 183

t0 ← (-b - √(disc)) / (2 * a)
t1 ← (-b + √(disc)) / (2 * a)
if t0 > t1 then swap(t0, t1)

xs = ()➤

➤

y0 ← ray.origin.y + t0 * ray.direction.y➤

if cylinder.minimum < y0 and y0 < cylinder.maximum➤

add intersection(t0, cylinder) to xs➤

end if➤

➤

y1 ← ray.origin.y + t1 * ray.direction.y➤

if cylinder.minimum < y1 and y1 < cylinder.maximum➤

add intersection(t1, cylinder) to xs➤

end if➤

➤

return xs➤

With that change, your tests should all be passing. Next up: solid cylinders!

Capped Cylinders

If you’ve played with your new truncated cylinders at all, you’ll have noticed

that they’re hollow, like lengths of PVC pipe or empty toilet paper rolls. This

can be exactly the effect you need sometimes, but at other times you really

want the cylinders to be capped, or closed at each end. To do that, you need

to add end caps—discs that exactly cover each end of the cylinder.

These discs are planes that are constrained to the cylinder’s cross-section—and

you implemented planes way back in Chapter 9, Planes, on page 117. While

you can’t exactly reuse your plane code for this, the concepts will (hopefully!)

look familiar.

You’ll add end caps to your cylinders in three steps:

1. Add a closed attribute to your cylinders, indicating that the cylinders should

be capped.

2. Update your cylinder’s local_intersect method to add checks for the top and

bottom end caps (if closed is true).
3. Update your cylinder’s local_normal_at method to compute the normal on

the end caps (again, if closed is true).

First, the closed attribute.

Test #6: Closed Cylinders

Show that your cylinders possess a closed attribute, which defaults to false.

Set up a new cylinder and show that the closed attribute is false, by default.

Chapter 13. Cylinders • 184

report erratum • discuss

features/cylinders.feature

Scenario: The default closed value for a cylinder
Given cyl ← cylinder()
Then cyl.closed = false

Make that pass, and then you can move on to updating the intersection

algorithm.

Test #7: Intersecting a Cylinder’s End Caps

Show that your intersection routine correctly finds the points of intersection

between a ray and a cylinder’s end caps.

This scenario outline sets up the same truncated cylinder as before, between

y=1 and y=2, but also makes the cylinder closed before throwing rays at it.

features/cylinders.feature

Scenario Outline: Intersecting the caps of a closed cylinder
Given cyl ← cylinder()
And cyl.minimum ← 1
And cyl.maximum ← 2
And cyl.closed ← true
And direction ← normalize(<direction>)
And r ← ray(<point>, direction)

When xs ← local_intersect(cyl, r)
Then xs.count = <count>

Examples:
	point	direction	count
1	point(0, 3, 0)	vector(0, -1, 0)	2
2	point(0, 3, -2)	vector(0, -1, 2)	2
3	point(0, 4, -2)	vector(0, -1, 1)	2
4	point(0, 0, -2)	vector(0, 1, 2)	2
5	point(0, -1, -2)	vector(0, 1, 1)	2

The ray in the first example starts above the cylinder and points down through

the cylinder’s middle, along the y axis. It should intersect both end caps,

resulting in two intersections.

Examples 2 and 4 originate (respectively) above and below the cylinder and

cast a ray diagonally through it, intersecting one end cap before exiting out

the far side of the cylinder. This also results in two intersections.

Examples 3 and 5 are corner cases. These also originate (respectively) above

and below the cylinder, intersecting an end cap, but they exit the cylinder at

the point where the other end cap intersects the side of the cylinder. In this

case, there should still be only two intersections: one with the first end cap

and the other where the second end cap meets the cylinder wall.

report erratum • discuss

Capped Cylinders • 185

To implement this, you’ll add a new function, intersect_caps(cyl, ray, xs). It checks

to see if the given ray intersects the end caps of the given cylinder, and adds

the points of intersection (if any) to the xs collection. Here it is in pseudocode:

a helper function to reduce duplication.
checks to see if the intersection at `t` is within a radius
of 1 (the radius of your cylinders) from the y axis.
function check_cap(ray, t)
x ← ray.origin.x + t * ray.direction.x
z ← ray.origin.z + t * ray.direction.z

return (x² + z²) <= 1
end

function intersect_caps(cyl, ray, xs)
caps only matter if the cylinder is closed, and might possibly be
intersected by the ray.
if cyl is not closed or ray.direction.y is close to zero
return

end if

check for an intersection with the lower end cap by intersecting
the ray with the plane at y=cyl.minimum
t ← (cyl.minimum - ray.origin.y) / ray.direction.y
if check_cap(ray, t)

add intersection(t, cyl) to xs
end if

check for an intersection with the upper end cap by intersecting
the ray with the plane at y=cyl.maximum
t ← (cyl.maximum - ray.origin.y) / ray.direction.y
if check_cap(ray, t)

add intersection(t, cyl) to xs
end if

end function

First, the ray is intersected with a plane at the minimum extent. Then, the

point of intersection is tested (via the check_cap() helper function) to see if it

lies within the radius of the cylinder. If it does, the intersection is added to

the collection. The same process follows for the maximum extent.

Make sure your cylinder’s local_intersect function calls this new function after

it checks for intersections with the cylinder’s walls. You’ll also need to change

the logic at the beginning of the function so it doesn’t actually return when

a is zero, otherwise your cap intersection will be skipped and at least one of

your tests will fail. Instead, if a is zero, skip the cylinder intersection logic and

just call intersect_caps().

Chapter 13. Cylinders • 186

report erratum • discuss

You’re almost done, but before you can render these closed cylinders, you

need to update the calculation for the normal vector to account for the end

caps. That’s the very next test.

Test #8: Computing the Normal Vector at the End Caps

Show that the normal vector calculation accounts for closed cylinders, and

returns the correct normal at the end caps.

This scenario outline creates a closed, truncated cylinder and computes the

normal at various points on each end cap:

features/cylinders.feature

Scenario Outline: The normal vector on a cylinder's end caps
Given cyl ← cylinder()
And cyl.minimum ← 1
And cyl.maximum ← 2
And cyl.closed ← true

When n ← local_normal_at(cyl, <point>)
Then n = <normal>

Examples:
point	normal
point(0, 1, 0)	vector(0, -1, 0)
point(0.5, 1, 0)	vector(0, -1, 0)
point(0, 1, 0.5)	vector(0, -1, 0)
point(0, 2, 0)	vector(0, 1, 0)
point(0.5, 2, 0)	vector(0, 1, 0)
point(0, 2, 0.5)	vector(0, 1, 0)

The end caps are planes, which means an end cap has the same normal at

every point on it. The algorithm must check to see which end cap the point

corresponds to, or see if it lies on the cylinder itself, and return the appropriate

normal vector. In pseudocode, it looks like this:

function local_normal_at(cylinder, point)
compute the square of the distance from the y axis
dist ← point.x² + point.z²

if dist < 1 and point.y >= cylinder.maximum - EPSILON
return vector(0, 1, 0)

else if dist < 1 and point.y <= cylinder.minimum + EPSILON
return vector(0, -1, 0)

else
return vector(point.x, 0, point.z)

end if
end function

report erratum • discuss

Capped Cylinders • 187

If the point lies less than 1 unit from the y axis, and it lies within EPSILON (see

Comparing Floating Point Numbers, on page 5) of the minimum or maximum

extent, then it must be on one of the end caps. It’s important that you include

EPSILON here; if you don’t, you’ll wind up with rendering glitches caused by

the wrong normal vector being calculated when floating point round-off

causes the point to be slightly inside an end cap.

That’s it, though. When that passes, you’ll be rendering capped, truncated

cylinders. Give it a shot!

The feature isn’t quite over yet, though. You’re going to wrap it up by imple-

menting the cone primitive.

Cones

Okay. Next you’re going to add cones to your ray tracer, and it turns out that

cones are remarkably similar to cylinders. A true cone has these features:

• It is infinite in length, just like a cylinder.

• It can be truncated, just like a cylinder.

• It can be closed, just like a cylinder.

And I really do mean just like a cylinder. You may be able to reuse a fair bit

of the code you just wrote for cylinders.

Here’s where the challenge ramps up, though—I’m going to take the training

wheels off. No hand-holding. No safety nets. Just a bit of explanation, a few

tests, and a whole heap of confidence in your ability to do just about anything

you put your mind to.

You’re going to implement what is called a double-napped cone, which most

folks would actually call two cones: one upside down, the other right-side up,

with their tips meeting at the origin and extending toward infinity in both

directions, as depicted in the following figure.

Chapter 13. Cylinders • 188

report erratum • discuss

To render this, you’ll need to implement its intersection algorithm and the

algorithm to compute its normal vector.

The intersection algorithm works almost exactly like the cylinder’s, but a, b,
and c are computed differently. Given a ray’s origin o and direction vector d,

the following formulas replace the ones you used for cylinders:

a = d
2

x
− d

2

y
+ d

2

z

b = 2oxdx − 2oydy + 2ozdz

c = o
2

x
− o

2

y
+ o

2

z

When a is zero, it means the ray is parallel to one of the cone’s halves, like so:

As you can see, this still means the ray might intersect the other half of the

cone. In this case the ray will miss when both a and b are zero. If a is zero but

b isn’t, you’ll use the following formula to find the single point of intersection:

t = −c/2b

If a is nonzero, you’ll use the same algorithm, but with the new a, b, and c,
that you used for the cylinders.

Here are two tests to help you double-check your cone intersections:

features/cones.feature

Scenario Outline: Intersecting a cone with a ray
Given shape ← cone()
And direction ← normalize(<direction>)
And r ← ray(<origin>, direction)

When xs ← local_intersect(shape, r)
Then xs.count = 2
And xs[0].t = <t0>
And xs[1].t = <t1>

Examples:
origin	direction	t0	t1
point(0, 0, -5)	vector(0, 0, 1)	5	5
point(0, 0, -5)	vector(1, 1, 1)	8.66025	8.66025
point(1, 1, -5)	vector(-0.5, -1, 1)	4.55006	49.44994

report erratum • discuss

Cones • 189

Scenario: Intersecting a cone with a ray parallel to one of its halves
Given shape ← cone()
And direction ← normalize(vector(0, 1, 1))
And r ← ray(point(0, 0, -1), direction)

When xs ← local_intersect(shape, r)
Then xs.count = 1
And xs[0].t = 0.35355

You’ll implement end caps for cones much as you did for cylinders, but with

one difference: whereas cylinders have the same radius everywhere, the radius

of a cone will change with y. In fact, a cone’s radius at any given y will be the

absolute value of that y. This means the check_cap() function will need to be

adjusted to accept the y coordinate of the plane being tested (cone.minimum or

cone.maximum, respectively) and treat that as the radius within which the point

must lie.

Here’s a test for the cone end caps to help you with your implementation:

features/cones.feature

Scenario Outline: Intersecting a cone's end caps
Given shape ← cone()
And shape.minimum ← -0.5
And shape.maximum ← 0.5
And shape.closed ← true
And direction ← normalize(<direction>)
And r ← ray(<origin>, direction)

When xs ← local_intersect(shape, r)
Then xs.count = <count>

Examples:
origin	direction	count
point(0, 0, -5)	vector(0, 1, 0)	0
point(0, 0, -0.25)	vector(0, 1, 1)	2
point(0, 0, -0.25)	vector(0, 1, 0)	4

Lastly, for the normal vector, compute the end cap normals just as you did

for the cylinder, but change the rest to the following, given in pseudocode:

y ← √(point.x² + point.z²)
y ← -y if point.y > 0

return vector(point.x, y, point.z)

Again, here’s a test to help you out:

features/cones.feature

Scenario Outline: Computing the normal vector on a cone
Given shape ← cone()
When n ← local_normal_at(shape, <point>)
Then n = <normal>

Chapter 13. Cylinders • 190

report erratum • discuss

Examples:
point	normal
point(0, 0, 0)	vector(0, 0, 0)
point(1, 1, 1)	vector(1, -√2, 1)
point(-1, -1, 0)	vector(-1, 1, 0)

As with the infinite cylinder, a double-napped cone is a bit unwieldy, but

thanks to truncation, you can cut off any bits of those double cones that you

don’t want. If you want a traditional unit cone, for example, you can truncate

it at y=-1 and y=0, and then translate it up 1 unit in y.

Putting It Together

You’re now armed with quite a variety of graphics primitives: spheres, planes,

cubes, cylinders, and cones. What can you make with them? Here are some

ideas:

• An ice cream cone with one (or more!) scoops.

• The US Capitol building.

• An arrow.

• A lightbulb.

• Stonehenge.

• A spiral staircase.

• A picture frame.

• The Saturn V rocket.

• A pencil.

If you’re feeling particularly ambitious, you might consider trying a (simplified!)

model of something organic: a tree, a dog, or even a stick-figure person.

When you’re ready, turn the page. You’ll learn an easier way to construct

complex models, as well as an optimization you can use to potentially reduce

the number of intersection tests required to render your scenes.

report erratum • discuss

Putting It Together • 191

CHAPTER 14

Groups

Here you are, just a few more chapters to go before the end of the book. By

now you’ve spent some time playing with your renderer, experimenting with

shapes, patterns, and composition, and you’ve probably figured out that

building a scene with the primitives at your disposal involves a lot of fiddling

with transformations. Add a shape, scale it, translate it, rotate it just so, and

then repeat for every other shape you need in your scene.

As your scenes grow in complexity, so too does the effort needed to model

them. Have you wished for a way to streamline things? Wouldn’t it be nice if

you could group shapes together and transform them as a unit?

Here’s an example that does just that. The following figure shows three differ-

ent views of a complex shape composed of spheres, cylinders, and cones.

With your ray tracer in its current state, each sphere, cylinder, and cone must

be painstakingly transformed into place, requiring careful tracking of each

component and where it needs to end up. But by grouping shapes together,

complex shapes can be constructed at the origin and then transformed as a

unit wherever and however you want.

report erratum • discuss

In this chapter you’ll add support for groups of shapes, allowing them to be

nested as deeply you need, and as a bonus, you’ll also read about how they

can be used to optimize your ray tracer.

Implementing Groups

Groups are abstract shapes with no surface of their own, taking their form

instead from the shapes they contain. This allows you to organize them in

trees, with groups containing both other groups and concrete primitives. The

real killer feature of groups, though, is that groups may be transformed just

like any other shape, and those transforms then apply implicitly to any shapes

contained by the group. You just put shapes in a group, transform the group,

and voilà—it all applies as a single unit.

Let’s make this happen. You’ll tackle this in several steps:

1. Create a new shape subclass called Group.
2. Add a new attribute to Shape, called parent, which refers to the group that

contains the shape (if any).

3. Write a function for adding shapes to a group.

4. Implement the ray-group intersection algorithm.

5. Implement the necessary changes to compute the normal on a shape that

is part of a group.

This section describes a bidirectional tree structure, where parent

nodes reference child nodes and child nodes reference parent

nodes. Not all programming languages make this easy to imple-

ment. If your language makes this challenging, consider reading

through the entire chapter first, and then implement the feature

in your own way. If you get stuck, you can always ask for tips on

the forum.1

Start by creating your new Group class for aggregating shapes.

Test #1: Creating a New Group

A group is a shape, which starts as an empty collection of shapes.

This test introduces a new function, group(), which returns a new Group instance.

The test then shows that the group has its own transformation (unsurprising,

as it ought to be a Shape subclass), and the collection it represents should be

empty.

1. forum.raytracerchallenge.com

Chapter 14. Groups • 194

report erratum • discuss

features/groups.feature

Scenario: Creating a new group
Given g ← group()
Then g.transform = identity_matrix
And g is empty

Make that pass by adding a Group class, making it a container of shapes, and

making it behave like a Shape itself. The next test will address the Shape side

of things by adding a parent attribute.

Test #2: A Shape Has a Parent Attribute

A shape has an optional parent, which is unset by default.

This test requires a new attribute on Shape, called parent, which may be either

unset (the default) or may be set to a Group instance. You’ll see your old

test_shape() function from Refactoring Shapes, on page 117, used here as a

generic shape to demonstrate the addition of the new attribute.

features/shapes.feature

Scenario: A shape has a parent attribute
Given s ← test_shape()
Then s.parent is nothing

Next up, you’ll write a function for adding shapes as children of a group,

linking them together in a kind of tree.

Test #3: Adding a Child to a Group

Adding a child to a group makes the group the child’s parent and adds the

child to the group’s collection.

This test adds a new function, add_child(group, shape) and shows how it is used

to add a child shape to a group.

features/groups.feature

Scenario: Adding a child to a group
Given g ← group()
And s ← test_shape()

When add_child(g, s)
Then g is not empty
And g includes s
And s.parent = g

Make that pass, and you can start moving on to the fun stuff! It’s time to

intersect rays with these groups of shapes.

report erratum • discuss

Implementing Groups • 195

Tests #4 and 5: Intersecting a Ray with a Group

Two tests show that a ray intersects a group if and only if the ray intersects

at least one child shape contained by the group.

The first test is the trivial case—casting a ray and checking to see if it intersects

an empty group. The resulting collection of intersections should be empty.

features/groups.feature

Scenario: Intersecting a ray with an empty group
Given g ← group()
And r ← ray(point(0, 0, 0), vector(0, 0, 1))

When xs ← local_intersect(g, r)
Then xs is empty

The second test builds a group of three spheres and casts a ray at it. The

spheres are arranged inside the group so that the ray will intersect two of the

spheres but miss the third. The resulting collection of intersections should

include those of the two spheres.

features/groups.feature

Scenario: Intersecting a ray with a nonempty group
Given g ← group()
And s1 ← sphere()
And s2 ← sphere()
And set_transform(s2, translation(0, 0, -3))
And s3 ← sphere()
And set_transform(s3, translation(5, 0, 0))
And add_child(g, s1)
And add_child(g, s2)
And add_child(g, s3)

When r ← ray(point(0, 0, -5), vector(0, 0, 1))
And xs ← local_intersect(g, r)

Then xs.count = 4
And xs[0].object = s2
And xs[1].object = s2
And xs[2].object = s1
And xs[3].object = s1

To make both of these tests pass, implement the local_intersect() function for

your Group shape and have it iterate over all of the group’s children, calling

intersect() on each of them in turn. It should aggregate the resulting intersections

into a single collection and sort them all by t.

Test #6: Group Transformations

Demonstrate that group and child transformations are both applied.

Chapter 14. Groups • 196

report erratum • discuss

This test creates a group and adds a single sphere to it. The new group is given

one transformation, and the sphere is given a different transformation. A ray is

then cast in such a way that it should strike the sphere, as long as the sphere

is being transformed by both its own transformation and that of its parent.

features/groups.feature

Scenario: Intersecting a transformed group
Given g ← group()
And set_transform(g, scaling(2, 2, 2))
And s ← sphere()
And set_transform(s, translation(5, 0, 0))
And add_child(g, s)

When r ← ray(point(10, 0, -10), vector(0, 0, 1))
And xs ← intersect(g, r)

Then xs.count = 2

The lovely thing about this test is that it should already pass if your group’s

local_intersect() function calls intersect() on its children. Make sure this is so.

When you’re ready, read on! The next piece of this puzzle requires finding the

normal vector on a child object.

Finding the Normal on a Child Object

Remember back in Transforming Normals, on page 79, when you used the

shape’s transformation matrix to manipulate the normal vector? The same

thing needs to happen when computing the normal on a child object of a

group, but now there’s a complication: when an intersection is found with a

group, the intersection record itself references the intersected child. As your

ray tracer is currently implemented, this means that when you compute the

normal vector on that child object, only the child’s transforms are considered,

and not the transforms of any group the child may belong to.

This is what you’ll work on next, in three steps:

• Write a function that converts a point from world space to object space,

recursively taking into consideration any parent object(s) between the two

spaces.

• Write a function that converts a normal vector from object space to world

space, again recursively taking into consideration any parent object(s)

between the two spaces.

• Update the normal_at() function so that it calls these two new functions to

transform the incoming point and outgoing vector appropriately.

Got it? Here goes!

report erratum • discuss

Finding the Normal on a Child Object • 197

Test #7: Convert a Point from World Space to Object Space

Take a point in world space and transform it to object space, taking into consid-

eration any parent objects between the two spaces.

This test constructs an outer group, which contains an inner group, which in

turn contains a sphere. Each is given its own transformation before calling a new

function, world_to_object(shape, point), to convert a world-space point to object space.

features/shapes.feature

Scenario: Converting a point from world to object space
Given g1 ← group()
And set_transform(g1, rotation_y(π/2))
And g2 ← group()
And set_transform(g2, scaling(2, 2, 2))
And add_child(g1, g2)
And s ← sphere()
And set_transform(s, translation(5, 0, 0))
And add_child(g2, s)

When p ← world_to_object(s, point(-2, 0, -10))
Then p = point(0, 0, -1)

Make this test pass by implementing world_to_object(shape, point). If shape has a

parent, the function should first convert the point to its parent’s space, by

calling world_to_object(parent, point). The result is then multiplied by the inverse

of the shape’s transform. In pseudocode, it looks like this:

function world_to_object(shape, point)
if shape has parent

point ← world_to_object(shape.parent, point)
end if

return inverse(shape.transform) * point
end function

Next up, you’ll convert a vector from object to world space.

Test #8: Convert a Normal Vector from Object Space to World Space

Take a normal vector in object space and transform it to world space, taking

into consideration any parent objects between the two spaces.

This sets up two nested groups like in the previous test. Again, each is given

its own transformation, and then another new function, normal_to_world(shape,
normal), is used to transform a vector to world space.

features/shapes.feature

Scenario: Converting a normal from object to world space
Given g1 ← group()
And set_transform(g1, rotation_y(π/2))

Chapter 14. Groups • 198

report erratum • discuss

And g2 ← group()
And set_transform(g2, scaling(1, 2, 3))
And add_child(g1, g2)
And s ← sphere()
And set_transform(s, translation(5, 0, 0))
And add_child(g2, s)

When n ← normal_to_world(s, vector(√3/3, √3/3, √3/3))
Then n = vector(0.2857, 0.4286, -0.8571)

You can make this test pass by first converting the given normal to the parent

object space using the algorithm you implemented in Transforming Normals,

on page 79. Take the inverse of the shape’s transform, transpose the result,

and multiply it by the vector. Normalize the result. Then, if the shape has a

parent, recursively pass the new vector to normal_to_world(parent, normal). Here’s

the implementation in pseudocode:

function normal_to_world(shape, normal)
normal ← transpose(inverse(shape.transform)) * normal
normal.w ← 0
normal ← normalize(normal)

if shape has parent
normal ← normal_to_world(shape.parent, normal)

end if

return normal
end function

Once those tests are passing, you’re ready to find the normal on a child object.

Test #9: Find the Normal on an Object in a Group

Find the normal on a child object of a group, taking into account transformations

on both the child object and the parent(s).

As with the previous two tests, this one sets up a hierarchy of two groups

and a sphere and assigns them each a transformation. It then find the normal

vector at a point on the sphere (in world space), using the normal_at() function.

features/shapes.feature

Scenario: Finding the normal on a child object
Given g1 ← group()
And set_transform(g1, rotation_y(π/2))
And g2 ← group()
And set_transform(g2, scaling(1, 2, 3))
And add_child(g1, g2)
And s ← sphere()
And set_transform(s, translation(5, 0, 0))
And add_child(g2, s)

When n ← normal_at(s, point(1.7321, 1.1547, -5.5774))
Then n = vector(0.2857, 0.4286, -0.8571)

report erratum • discuss

Finding the Normal on a Child Object • 199

Next, update your normal_at() function to use your new world_to_object() and nor-
mal_to_world() functions, calling the former to convert the world-space point to

object space before calculating the normal, and then calling the latter to

convert the normal back to world space. In pseudocode, your updated normal_at()
function should come together like this:

function normal_at(shape, world_point)
local_point ← world_to_object(shape, world_point)
local_normal ← local_normal_at(shape, local_point)
return normal_to_world(shape, local_normal)

end function

You’re just about done with groups, but there’s one more bit to address. In

Transforming Patterns, on page 130, you allowed patterns to be transformed

by converting points from world space to object space, and from there to

pattern space, before computing the color. For those patterns to behave

nicely when applied to objects in groups, you’ll need to use this new

world_to_object() function when converting points from world space to object

space. Otherwise, the patterns won’t apply the group transformations and

won’t look like you expect. You’re on your own for this one; make it so!

Joe asks:

Where is the group’s local_normal_at function?

Ah, you noticed it was missing! Well done, but it’s not a mistake or oversight. Because

normals are always computed by calling the concrete shape’s local_normal_at() function,

the group itself doesn’t need one. In fact, if your code ever tries to call local_normal_at()
on a group, that means there’s a bug somewhere.

Consider implementing local_normal_at() for groups, but having the implementation

throw an exception or otherwise cause an error. This can help you catch those bugs

earlier and makes it explicit that groups are abstract and don’t have normal vectors.

That should about do it for your implementation of groups. You’ll work through

an exercise shortly to get familiar with how to use them, but first, let’s take

a quick look at how these groups can be used to optimize your ray tracer.

Using Bounding Boxes to Optimize Large Scenes

One of the most computationally expensive things a ray tracer does is find

the intersections between a ray and an object, and what makes things even

worse is that it has to do this repeatedly for every pixel. To render a scene of

ten objects to a small 200×200 canvas, your ray tracer must perform at least

400,000 intersection tests, plus however many additional intersections are

Chapter 14. Groups • 200

report erratum • discuss

needed to generate shadows, reflections, and refraction. Adding insult to

injury, the majority of those rays won’t even come close to most of the objects

in a typical scene.

What a waste, right? If only you could test just the objects that were reason-

ably close to any given ray…

The good news is that there are a variety of different techniques for teaching

your ray tracer how to do this. They’re all a bit beyond the scope of this book,

but let’s take a quick look at one of the least complicated: bounding boxes.

If that term seems familiar, it’s probably because you saw it used back in

Chapter 12, Cubes, on page 167, when the cubes were called axis-aligned

bounding boxes (AABB). The idea behind this optimization is to use these

cubes, or bounding boxes, to contain a group of other objects. Then, when

intersecting the group with a ray, you first test the ray against the bounding

box. If the ray misses, testing anything inside the box is pointless, because

it would have to miss them as well.

The following figure illustrates this with a bounding box that contains three

shapes. Since ray A misses the bounding box, there’s no need to see if it

intersects any of the shapes inside it. However, because ray B does intersect

the box, you’d need to try that ray against the shapes it contains.

I won’t walk you through this one, but give it a try anyway. Although imple-

menting this definitely has some fiddly bits, I have faith in you! Here’s a basic

outline of what you’ll need to do:

1. Create a Bounds structure that describes the minimum and maximum

extents (coordinates) for the box. You can store these as two points, where

one has the minimum x, y, and z coordinates and the other has the

maximum.

2. Make a bounds(shape) function that returns the bounds for the given shape,

in object space. This is the untransformed bounds, so a sphere (for

example) will always extend from -1 to 1 in x, y, and z. Some shapes

report erratum • discuss

Using Bounding Boxes to Optimize Large Scenes • 201

(planes, untruncated cylinders, and others) will extend to infinity in one

or more dimensions, so make sure you can handle that case.

3. Make a bounds(group) function that converts the bounds of all the group’s

children into “group space,” and then combines them into a single

bounding box. This is one of those fiddly bits! Here are two tips, though.

First, to convert a point from object space to its parent space, multiply

the point by the object’s transformation matrix. Second, when transforming

an entire bounding box, first transform all eight of the cube’s corners,

and then find a single bounding box that fits them all. If you can’t quite

see why you’d need to transform all eight points, imagine rotating the box

45° around any axis, and then figure out what the new axis-aligned

bounding box ought to look like.

4. Reuse your cube’s intersection algorithm, changing it so that it accepts

AABBs at arbitrary (but still axis-aligned) locations. To do this, you’ll need

to change the -1 and the 1 in the check_axis() function to be, respectively,

the minimum and maximum value for the axis being tested. So, if you

are testing the z axis, and the bounding box goes from z=-5 to z=3, you’d

use -5 instead of -1, and 3 instead of 1.
5. Make the local_intersect(group, ray) function first test the ray against the group’s

bounding box. Only if the ray intersects the bounding box should the ray

be tested against the children.

As an example of how much this technique can help, I put together the follow-

ing scene of more than 280 marbles with glass and metallic textures:

Rendered without bounding boxes at 1200x600 pixels, this image required

more than 1.8 billion intersection tests, of which only 1% ever actually hit

anything. By using sixteen bounding boxes, though, and arranging them in

Chapter 14. Groups • 202

report erratum • discuss

a 4x4 grid so that all the marbles were covered, the render required only a

bit more than 180 million intersection tests, with 10% hitting something.

That’s an order of magnitude better, just by adding bounding boxes!

Here’s the caveat, though: as with any optimization, it’s not a guaranteed win

in every situation. Not every scene will benefit from bounding boxes, and some

might even see worse performance (depending on the objects in the scene

and how you organize them).

Still, it’s a useful optimization, and it will earn its keep in the next chapter,

Chapter 15, Triangles, on page 207. Give it a shot!

Putting It Together

Let’s wrap this up with an example of how you can use groups in your scenes.

You are going to build a model of a hexagon using cylinders and spheres,

like this:

You’ll build this by first defining a single instance of each component: one

sphere (to become the corners of the hexagon), and one cylinder (to become

the edges). You’ll transform each into place once, and add them to a group.

Then, you’ll create duplicates of that group, rotating each duplicate around

the y axis until the whole hexagon is constructed.

Start by writing a function that creates the prototypical sphere component,

scaling it by 25% and translating it -1 unit in z. The following pseudocode

shows this as a function named hexagon_corner().

function hexagon_corner()

report erratum • discuss

Putting It Together • 203

corner ← sphere()
set_transform(corner, translation(0, 0, -1) *

scaling(0.25, 0.25, 0.25))
return corner

end function

Remember that when you combine matrix transformations, you

do so in reverse order. Thus, though the pseudocode for

hexagon_corner() multiplies the translation by the scaling, the result

is that the sphere is scaled first and then translated.

Next, write a function that creates the prototypical cylinder component.

Limit it to a minimum of y=0 and a maximum of y=1, and scale it by 25% in

x and z. Rotate it -π⁄2 radians in z (to tip it over) and -π⁄6 radians in y (to orient

it as an edge). Then, translate it -1 unit in z. In pseudocode, this hexagon_edge()
function might look like this:

function hexagon_edge()
edge ← cylinder()
edge.minimum ← 0
edge.maximum ← 1
set_transform(edge, translation(0, 0, -1) *

rotation_y(-π/6) *
rotation_z(-π/2) *
scaling(0.25, 1, 0.25))

return edge
end function

The next step is to join those two primitives into a group, forming one side of

the hexagon. The following hexagon_side() function demonstrates this in pseu-

docode.

function hexagon_side()
side ← group()

add_child(side, hexagon_corner())
add_child(side, hexagon_edge())

return side
end function

Once you’ve got a function that can return a single side of the hexagon, you

can write the final function, hexagon(), which calls hexagon_side() six times and

rotates each piece into place, like so:

function hexagon()
hex ← group()

for n ← 0 to 5
side ← hexagon_side()
set_transform(side, rotation_y(n*π/3))

Chapter 14. Groups • 204

report erratum • discuss

add_child(hex, side)
end for

return hex
end function

From there, you can add a light source and a camera, and go nuts with it!

What other composite shapes can you build? Try creating a stick figure or

an automobile. Trees and plants are definitely possible, too, and lend them-

selves well to fractal algorithms like Lindenmayer systems.

Also, you may soon realize that materials applied to a group have no effect

at all on the shapes it contains. What if you wanted the shapes in your ray

tracer to be able to “inherit” materials from their parents? How might you

extend your code to make that happen?

Give it some thought. Then, once you’ve played with this new feature enough,

read on. You’ll add your final primitive in the next chapter: the triangle.

report erratum • discuss

Putting It Together • 205

CHAPTER 15

Triangles

The final primitive in your ray tracer might seem an odd choice: the triangle.

By itself, its utility is perhaps questionable, but where it really shines is when

you use hundreds or thousands of them together to construct a surface.

Here’s an example of a scene composed of more than fifteen thousand triangles:

In the purple teddy bear, you can clearly see the facets and planes that betray

the model’s triangular composition. Even the cow, if you take a magnifying

glass to the image, would show similar (if finer) faceting. But that teapot, now!

Is it truly composed of triangles as well?

Oh, yes, it is. And in this chapter you’ll not only add support for polygonal

models like the teddy bear and the cow, but also normal interpolation to make

models like the teapot appear flawlessly smooth.

Let’s jump into it!

report erratum • discuss

Triangles

While it’s certainly possible to implement a triangle primitive at the origin,

with unit dimensions, and then transform it into place like you’ve done with

every other primitive you’ve implemented, it turns out that it makes these

triangles really difficult to use well. So, your triangle primitive will actually

accept three parameters, describing the location of each of its corners in

object space. You can still transform the triangle as well, if needed.

Your implementation of triangles will follow these steps:

1. Create the triangle shape itself, precomputing several values to optimize

the intersection calculations.

2. Implement the local_normal_at() function to compute the normal vector for

triangles.

3. Implement the Möller–Trumbore ray-triangle intersection algorithm. This

will occupy several tests.

Ready, set, go!

Test #1: Creating a Triangle

A triangle is a shape composed of three points. The constructor ought to precom-

pute two edge vectors and the triangle’s normal.

Given three points, instantiate a triangle. Then show that each point is initial-

ized and that two edge vectors and the normal vector are all precomputed.

features/triangles.feature

Scenario: Constructing a triangle
Given p1 ← point(0, 1, 0)
And p2 ← point(-1, 0, 0)
And p3 ← point(1, 0, 0)
And t ← triangle(p1, p2, p3)

Then t.p1 = p1
And t.p2 = p2
And t.p3 = p3
And t.e1 = vector(-1, -1, 0)
And t.e2 = vector(1, -1, 0)
And t.normal = vector(0, 0, -1)

Your ray tracer will eventually use those two edge vectors, e1 and e2, to

determine if and where the ray intersects the triangle. It will also use that

normal vector as the normal at every point of intersection. While you could

certainly calculate those three values for every hit, they’ll always be the same

everywhere on the triangle. Save your ray tracer some work and precompute

them when the shape is constructed, as follows:

Chapter 15. Triangles • 208

report erratum • discuss

e1 = p2 − p1

e2 = p3 − p1

normal = normalize(cross(e2, e1))

With the normal vector precomputed, the next test almost writes itself.

Test #2: Normal Vector for a Triangle

The triangle’s precomputed normal is used for every point on the triangle.

Once you’ve got your triangle() function precomputing the normal vector, the

local_normal_at(triangle, point) function should simply return that vector for every

point it is given.

features/triangles.feature

Scenario: Finding the normal on a triangle
Given t ← triangle(point(0, 1, 0), point(-1, 0, 0), point(1, 0, 0))
When n1 ← local_normal_at(t, point(0, 0.5, 0))
And n2 ← local_normal_at(t, point(-0.5, 0.75, 0))
And n3 ← local_normal_at(t, point(0.5, 0.25, 0))

Then n1 = t.normal
And n2 = t.normal
And n3 = t.normal

Go ahead and make this pass by implementing local_normal_at() for triangles

and have it return the precomputed normal vector.

The next five tests will all deal with the intersection algorithm.

Tests #3 to 7: Intersecting a Ray with a Triangle

A ray that misses a triangle should not add any intersections to the intersection

list. A ray that strikes a triangle should add exactly one intersection to the list.

These five tests introduce the behavior of the ray-triangle intersection algo-

rithm. The specific algorithm that you’ll implement is the Möller–Trumbore

algorithm,1 which is fast, short, and has the handy side effect of precomputing

a few values that you’ll use later in the chapter for implementing smooth tri-

angles. You’ll build your implementation of this algorithm in pieces, with each

test exercising a bit more of it.

For this first test, start by creating a triangle. Then, position a ray such that it

is cast parallel to the surface of the triangle. The ray should miss the triangle.

features/triangles.feature

Scenario: Intersecting a ray parallel to the triangle
Given t ← triangle(point(0, 1, 0), point(-1, 0, 0), point(1, 0, 0))

1. www.tandfonline.com/doi/abs/10.1080/10867651.1997.10487468

report erratum • discuss

Triangles • 209

And r ← ray(point(0, -1, -2), vector(0, 1, 0))
When xs ← local_intersect(t, r)
Then xs is empty

Make that test pass by crossing the ray direction with e2, and then dotting

the result with e1 to produce the determinant. If the result is close to zero,

then the ray is parallel to the triangle and misses. Here’s some pseudocode

for the first part of the algorithm, handling this specific case.

function local_intersect(triangle, ray)
dir_cross_e2 ← cross(ray.direction, triangle.e2)
det ← dot(triangle.e1, dir_cross_e2)
return () if abs(det) < EPSILON

a bogus intersection to ensure the result isn't a false positive
return (intersection(1, triangle))

end function

Note the bogus intersection being returned at the end; this is purely to prevent

false positives when testing. Without that, if you have an error in your function

and it fails to recognize that the ray misses, it would (at this point) still return

without adding an intersection, which the test would take to mean that the

function is working correctly. Adding the bogus intersection ensures that the

test fails if your implementation is wrong. You’ll remove that bogus line soon,

after you’ve implemented the entire algorithm.

The next three tests set up the same triangle and then configure a ray so that

it misses the triangle over one of its edges. For the first test, the ray passes

beyond the p1-p3 edge.

features/triangles.feature

Scenario: A ray misses the p1-p3 edge
Given t ← triangle(point(0, 1, 0), point(-1, 0, 0), point(1, 0, 0))
And r ← ray(point(1, 1, -2), vector(0, 0, 1))

When xs ← local_intersect(t, r)
Then xs is empty

To make this pass, add the following calculations just before the bogus

intersection in your local_intersect() function.

f ← 1.0 / det

p1_to_origin ← ray.origin - triangle.p1
u ← f * dot(p1_to_origin, dir_cross_e2)
return () if u < 0 or u > 1

If that u value is not between 0 and 1, inclusive, the ray misses.

The next two tests configure the ray to pass beyond the p1-p2 and p2-p3 edges

of the triangle.

Chapter 15. Triangles • 210

report erratum • discuss

features/triangles.feature

Scenario: A ray misses the p1-p2 edge
Given t ← triangle(point(0, 1, 0), point(-1, 0, 0), point(1, 0, 0))
And r ← ray(point(-1, 1, -2), vector(0, 0, 1))

When xs ← local_intersect(t, r)
Then xs is empty

Scenario: A ray misses the p2-p3 edge
Given t ← triangle(point(0, 1, 0), point(-1, 0, 0), point(1, 0, 0))
And r ← ray(point(0, -1, -2), vector(0, 0, 1))

When xs ← local_intersect(t, r)
Then xs is empty

You can make these pass by implementing the following calculations, again

putting them just before the bogus intersection at the end of your function.

origin_cross_e1 ← cross(p1_to_origin, triangle.e1)
v ← f * dot(ray.direction, origin_cross_e1)
return () if v < 0 or (u + v) > 1

Finally, you need to handle the case where the ray actually strikes the triangle.

This last test creates the triangle again, but arranges the ray so that it inter-

sects it, and confirms that an intersection exists at the correct distance.

features/triangles.feature

Scenario: A ray strikes a triangle
Given t ← triangle(point(0, 1, 0), point(-1, 0, 0), point(1, 0, 0))
And r ← ray(point(0, 0.5, -2), vector(0, 0, 1))

When xs ← local_intersect(t, r)
Then xs.count = 1
And xs[0].t = 2

Replace the bogus intersection at the end of the triangle’s local_intersect() function

with the following logic, to produce the actual intersection.

t = f * dot(triangle.e2, origin_cross_e1)
return (intersection(t, triangle))

Once those tests are all passing, you should be able to render some triangles.

Feel free to render them singly if you want, but they become much more

interesting in groups. Think about how you would construct a three- or four-

sided pyramid from triangles. How about an octahedron? Or if you want to

get really ambitious, consider more complex polyhedra, like the dodecahedron

in the image on page 212.

Ultimately, though, arranging triangles by hand is difficult to do well. It’s far

easier to use a 3D modeling tool to construct a shape, and then export it to

a file. The next section will walk you through the process of implementing a

report erratum • discuss

Triangles • 211

parser for one of the most common 3D model file formats, which will allow

you to import more complex models into your scenes.

Wavefront OBJ Files

The Wavefront OBJ file format is a common format for storing and sharing

3D graphics data. Like the PPM image format that you implemented way back

in Chapter 2, Drawing on a Canvas, on page 15, the OBJ format is plain text,

which means you can view, edit, and even create these files in any text editor,

though it’s much easier to model something in a 3D modeling tool and then

export it to OBJ.

The OBJ format consists of statements, each of which occupies a single line.

Each statement is prefaced with a command, followed by a space-delimited

list of arguments. For example, the following OBJ file defines three vertices

(v), and a triangle (f, for “face”) that references those vertices.

v 1.5 2 1.3
v 1.4 -1.2 0.12
v -0.1 0 -1.3

f 1 2 3

There are quite a few other statement types as well, but you only need to

recognize a handful of them in your ray tracer. You’ll implement this parser

in six steps:

1. Begin with a parser that silently ignores all unrecognized statements.

2. Add support for vertices to the parser.

3. Add support for triangles.

4. Implement triangulation of convex polygons, so that your parser can

import those, too.

Chapter 15. Triangles • 212

report erratum • discuss

5. Add support for groups of polygons within a model.

6. Export the entire model as a Group instance, so that you can add it to a

scene to be rendered.

Let me reiterate that you’ll be using Group instances to represent these groups

of triangles. While this technique is straightforward to explain, it’s unfortunately

not the most optimal way to represent this kind of data. If you’re interested in

optimizing your ray tracer, you might investigate a structure called a triangle

mesh, which can be stored and processed a bit more efficiently.

For now, though, groups of triangles will be fine. Let’s get started!

Test #8: OBJ Parser with Gibberish Input

The parser should silently ignore any unrecognized statements.

Since your parser will only handle a subset of the OBJ format, you need to

make sure it doesn’t choke when given a model that contains statements you

haven’t implemented yet. The following test introduces a function called

parse_obj_file(file), which returns a data structure encapsulating the contents of

the (ostensibly OBJ-formatted) file.

features/obj_file.feature

Scenario: Ignoring unrecognized lines
Given gibberish ← a file containing:
"""
There was a young lady named Bright
who traveled much faster than light.
She set out one day
in a relative way,
and came back the previous night.
"""

When parser ← parse_obj_file(gibberish)
Then parser should have ignored 5 lines

In this case, it parses a file containing gibberish, and the resulting parser

notes how many lines were ignored.

Test #9: OBJ File with Vertex Data

The parser should process vertex data from the given input.

Here, the parser is given a file containing four vertex statements. Each vertex

statement starts with a “v,” followed by a space character, and then three

integer or floating point numbers delimited by spaces.

features/obj_file.feature

Scenario: Vertex records
Given file ← a file containing:

report erratum • discuss

Wavefront OBJ Files • 213

"""
v -1 1 0
v -1.0000 0.5000 0.0000
v 1 0 0
v 1 1 0
"""

When parser ← parse_obj_file(file)
Then parser.vertices[1] = point(-1, 1, 0)
And parser.vertices[2] = point(-1, 0.5, 0)
And parser.vertices[3] = point(1, 0, 0)
And parser.vertices[4] = point(1, 1, 0)

The resulting parser should have an array of vertices, each recorded as a

point. Note: it is significant that the array is 1-based, and not 0-based! When

you get to the next test, you’ll see that faces (triangles and polygons) refer to

these vertices by their index, starting with 1.

Test #10: OBJ File with Triangle Data

The parser should process triangle data from the given input.

The parser is now given a file containing four vertex statements and two tri-

angles. The triangles are introduced with the f command (for “face”), followed

by three integers referring to the corresponding vertices. Note that these

indices are 1-based, and not 0-based! That is, vertex number 1 is the first

vertex encountered in the file, not the second.

features/obj_file.feature

Scenario: Parsing triangle faces
Given file ← a file containing:
"""
v -1 1 0
v -1 0 0
v 1 0 0
v 1 1 0

f 1 2 3
f 1 3 4
"""

When parser ← parse_obj_file(file)
And g ← parser.default_group
And t1 ← first child of g
And t2 ← second child of g

Then t1.p1 = parser.vertices[1]
And t1.p2 = parser.vertices[2]
And t1.p3 = parser.vertices[3]
And t2.p1 = parser.vertices[1]
And t2.p2 = parser.vertices[3]
And t2.p3 = parser.vertices[4]

Chapter 15. Triangles • 214

report erratum • discuss

Note also the test references a default_group property on the parser. This Group
instance receives all generated geometry. Your parser should add the two

triangles to this group.

Test #11: OBJ File with Polygon Data

The parser should process and triangulate polygonal data from the given input.

Pushing the envelope a bit now, you’ll give your parser a file containing five

vertex statements and a single pentagonal face consuming them all. Your ray

tracer only knows how to render triangles, though, so it needs to be able to

break that polygon apart into triangles.

features/obj_file.feature

Scenario: Triangulating polygons
Given file ← a file containing:
"""
v -1 1 0
v -1 0 0
v 1 0 0
v 1 1 0
v 0 2 0

f 1 2 3 4 5
"""

When parser ← parse_obj_file(file)
And g ← parser.default_group
And t1 ← first child of g
And t2 ← second child of g
And t3 ← third child of g

Then t1.p1 = parser.vertices[1]
And t1.p2 = parser.vertices[2]
And t1.p3 = parser.vertices[3]
And t2.p1 = parser.vertices[1]
And t2.p2 = parser.vertices[3]
And t2.p3 = parser.vertices[4]
And t3.p1 = parser.vertices[1]
And t3.p2 = parser.vertices[4]
And t3.p3 = parser.vertices[5]

This will come up fairly often in OBJ files, whether found online or exported

yourself. It’s often more efficient (space-wise) to describe a planar polygon

than to describe the same polygon as a series of triangles. This is fine, but it

means you need to explicitly triangulate—convert to triangles—the polygons

before you can render them.

To keep things simple, just assume the incoming data always describes convex

polygons—those whose interior angles are all less than or equal to 180°. When

report erratum • discuss

Wavefront OBJ Files • 215

this is the case you can break them into triangles using a fan triangulation.

Visually, the process looks like this:

The idea is that you pick one starting vertex, a, and then create a triangle by

combining it with the next two vertices in the list, b and c. Then, starting with

a again, create another triangle with c and d. Continue in this fashion, starting

each triangle with vertex a, adding the last vertex of the previous triangle and

the next vertex in the list, and proceeding until all vertices have been used.

In pseudocode, it looks like this:

vertices is a 1-based array of at least three vertices
function fan_triangulation(vertices)

triangles ← empty list

for index ← 2 to length(vertices) - 1
tri ← triangle(vertices[1], vertices[index], vertices[index+1])
add tri to triangles

end for

return triangles
end function

Note that the pseudocode here expects a 1-based array of points, because

that’s what the OBJ file format assumes. If your parser is translating the OBJ

1-based indices to 0-based, then you can feel free to implement your fan tri-

angulation accordingly.

That’s the key to making this test pass—apply a fan triangulation to the list

of vertices and add the resulting triangles to the default group.

Test #12: Named Groups in OBJ Files

The parser should recognize a group statement and add subsequent triangles

to the named group.

Models can get fairly complex, and might be composed of different pieces.

Rather than a single model of a person, for instance, the model might be

Chapter 15. Triangles • 216

report erratum • discuss

composed of groups like “arm,” “leg,” and “head.” These groups are identified

in an OBJ file with the g command.

This test reads an OBJ file, and then shows that the given named groups are

present and contain the expected triangles.

features/obj_file.feature

Scenario: Triangles in groups
Given file ← the file "triangles.obj"
When parser ← parse_obj_file(file)
And g1 ← "FirstGroup" from parser
And g2 ← "SecondGroup" from parser
And t1 ← first child of g1
And t2 ← first child of g2

Then t1.p1 = parser.vertices[1]
And t1.p2 = parser.vertices[2]
And t1.p3 = parser.vertices[3]
And t2.p1 = parser.vertices[1]
And t2.p2 = parser.vertices[3]
And t2.p3 = parser.vertices[4]

Create the following triangles.obj file as well, so you can feed it to the test:

files/triangles.obj

v -1 1 0
v -1 0 0
v 1 0 0
v 1 1 0

g FirstGroup
f 1 2 3
g SecondGroup
f 1 3 4

To make the test pass, you’ll need to keep track of which group was most

recently referenced and add all subsequent triangles to that group.

Test #13: Converting an OBJ Model to a Group

The parser should convert a parsed OBJ model to a Group instance.

Once you’ve parsed the OBJ file, you still need to add the model to your scene.

This test adds a function, obj_to_group(parser), which converts a parsed OBJ file

to a Group instance that you can then add to your scene. It uses the same

triangles.obj file as the previous test, for input.

report erratum • discuss

Wavefront OBJ Files • 217

features/obj_file.feature

Scenario: Converting an OBJ file to a group
Given file ← the file "triangles.obj"
And parser ← parse_obj_file(file)

When g ← obj_to_group(parser)
Then g includes "FirstGroup" from parser
And g includes "SecondGroup" from parser

With that piece done, you should be able to take some simple OBJ files, parse

them, and render them in your scenes! You can find many online, searching

for things like “simple obj file.” One such site is this minimal page from an

MIT computer graphics class: groups.csail.mit.edu/graphics/classes/6.837/F03/models.
Another, which includes both high- and low-resolution versions of the teapot,

is from a computer graphics class at the University of Utah: graphics.cs.utah.edu/
courses/cs6620/fall2013/?prj=5.

Many OBJ models you’ll find online consist of thousands of trian-

gles. Don’t be surprised if your ray tracer bogs down under that

kind of load! To speed things up, consider researching some opti-

mizations, like the bounding box technique mentioned in Chapter

14, Groups, on page 193, and subdividing the triangles in a group

into smaller groups. This can reduce the number of triangles that

need to be intersected by each ray.

Your renders are looking good, now, but they could still look better. Those

models, as rendered, are pretty obviously made up of triangles. It’s time to

teach your ray tracer how to smooth those edges by lying about the normal

vectors.

Smooth Triangles

Assuming everything was successful so far, you’ve got your ray tracer render-

ing complex polygonal models that you’ve imported from OBJ files! A glaringly

obvious drawback, though, is that these models are polygonal. The teapot in

the following figure is probably typical of what you’re seeing:

Chapter 15. Triangles • 218

report erratum • discuss

After the initial thrill of “Oh my gosh! It works!” wears off, you’re left wondering

what you can do to make that chunky teapot look a bit more glossy.

Well, one thing you can do is find a higher resolution model. The first one used

about 240 triangles. The teapot in the following figure uses closer to 6,400.

The difference is striking! It’s much cleaner looking, but it’s still not perfect.

It also takes much, much more work to render, thanks to using twenty-five

times as many triangles.

Fortunately, there’s a handy technique called normal interpolation, which

works by assigning a normal vector to each vertex. Then, those vertex normals

are used to interpolate the normal vector at any given point on the triangle,

basically lying about the normal vector to trick the shading routines! Done

correctly, the result can mimic a flawlessly curved surface. The following figure

shows that high-resolution teapot again, rendered without normal interpolation

on the left, and with it on the right.

Those triangles have been smoothed right over! It works for lower resolution

models, too. Check out the figure on page 220, demonstrating smooth triangles

with the low-resolution teapot.

In this case, though, you can see the weakness of this technique: it doesn’t

change the geometry—only the normal vector at the point of intersection.

report erratum • discuss

Smooth Triangles • 219

Thus, the image silhouette remains blocky and angular, giving the lie to the

smooth appearance of the surface.

To make this work, you’ll do the following things:

1. Add a new primitive, called smooth_triangle(p1, p2, p3, n1, n2, n3).
2. Add u and v properties to the intersection object. They’ll be used to repre-

sent a location on the surface of a triangle, relative to its corners.

3. Populate the u and v properties of the intersection when intersecting a

triangle.

4. Accept an intersection object as a parameter to both normal_at() and

local_normal_at(), and implement the normal calculation for smooth triangles,

with normal interpolation.

5. Pass the hit intersection when calling normal_at() and local_normal_at().

That seems like a lot, but it will come together fairly quickly.

Each of the smooth_triangle() tests assumes that the triangle to test, tri, is pre-

pared by the following setup:

features/smooth-triangles.feature

Background:
Given p1 ← point(0, 1, 0)
And p2 ← point(-1, 0, 0)
And p3 ← point(1, 0, 0)
And n1 ← vector(0, 1, 0)
And n2 ← vector(-1, 0, 0)
And n3 ← vector(1, 0, 0)

When tri ← smooth_triangle(p1, p2, p3, n1, n2, n3)

Once that’s ready, start with making sure it constructs the triangle correctly.

Chapter 15. Triangles • 220

report erratum • discuss

Test #14: Creating a Smooth Triangle

A smooth triangle should store the triangle’s three vertex points, as well as the

normal vector at each of those points.

Assuming the background has already set up the smooth triangle tri, this test

just asserts that each of the properties has been set correctly.

features/smooth-triangles.feature

Scenario: Constructing a smooth triangle
Then tri.p1 = p1
And tri.p2 = p2
And tri.p3 = p3
And tri.n1 = n1
And tri.n2 = n2
And tri.n3 = n3

Next, you’ll enhance your intersection() structure.

Test #15: Adding u and v Properties to Intersections

An intersection record may have u and v properties, to help identify where on

a triangle the intersection occurred, relative to the triangle’s corners.

These u and v properties will be floating point numbers between 0 and 1. They

are specific to triangles, so intersections with any other shape won’t use them.

Still, for triangles—and especially for smooth triangles—they’re relevant. The

following test demonstrates how to construct an intersection record that

encapsulates the u and v properties, using a new intersection_with_uv(t, shape, u, v)
function.

features/intersections.feature

Scenario: An intersection can encapsulate `u` and `v`
Given s ← triangle(point(0, 1, 0), point(-1, 0, 0), point(1, 0, 0))
When i ← intersection_with_uv(3.5, s, 0.2, 0.4)
Then i.u = 0.2
And i.v = 0.4

It’s safe to leave the u and v properties undefined when intersections are

constructed in any other way.

Test #16: Populate u and v on Triangle Intersections

When intersecting triangles, preserve the u and v values in the resulting inter-

section.

Back to smooth triangles, this test shows what happens when you intersect one

with a ray. The resulting intersection should have the u and v properties set.

report erratum • discuss

Smooth Triangles • 221

features/smooth-triangles.feature

Scenario: An intersection with a smooth triangle stores u/v
When r ← ray(point(-0.2, 0.3, -2), vector(0, 0, 1))
And xs ← local_intersect(tri, r)

Then xs[0].u = 0.45
And xs[0].v = 0.25

This is actually really great, because you’ve already computed both u and v!
Remember when I said the Möller–Trumbore algorithm had a feature that would

come in handy later? Well, now it’s later. That triangle intersection routine

defined two variables, u and v. Take those two variables and pass them to the

new intersection_with_uv() function, in place of the existing call to intersection().

For finding the intersection with a ray and a smooth triangle, use the triangle

intersection routine. It really is the same calculation, but with the addition

of storing u and v on the intersection. If this requires some refactoring to

happen in your code, make sure you take care of that now, too.

Once you’ve got those u and v properties being stored in the intersection, read

on. You’re about to put them to use.

Test #17: Normal Interpolation

When computing the normal vector on a smooth triangle, use the intersection’s

u and v properties to interpolate the normal.

This test sets up an intersection with u and v and then passes that intersection

to normal_at(). The point is intentionally set to the origin to reinforce the fact

that it isn’t used here—only u and v should have any effect.

features/smooth-triangles.feature

Scenario: A smooth triangle uses u/v to interpolate the normal
When i ← intersection_with_uv(1, tri, 0.45, 0.25)
And n ← normal_at(tri, point(0, 0, 0), i)

Then n = vector(-0.5547, 0.83205, 0)

Make this pass by adding the intersection object representing the hit as a

parameter to both normal_at() and local_normal_at(). To preserve a consistent API,

add this parameter to the local_normal_at() function for every shape, even though

it’s only actually used for the smooth triangles.

Once you’ve got that parameter passed to the smooth triangle’s local_normal_at()
function, you interpolate the normal by combining the normal vectors of the

triangle’s vertices according to the hit’s u and v properties, as given in the

following pseudocode:

function local_normal_at(tri, point, hit)
return tri.n2 * hit.u +

Chapter 15. Triangles • 222

report erratum • discuss

tri.n3 * hit.v +
tri.n1 * (1 - hit.u - hit.v)

end function

Once that’s passing, the last bit for making this work is to make sure the hit

gets passed to the normal calculation.

Test #18: Pass the Hit to the normal_at Function

The prepare_computations() function should pass the hit itself to the call to normal_at().

Construct an intersection with tri, and some u and v values. When prepare_com-
putations() is called on that intersection, the normal should be calculated

according to the rules for the smooth triangle, which requires that the inter-

section be passed to normal_at().

features/smooth-triangles.feature

Scenario: Preparing the normal on a smooth triangle
When i ← intersection_with_uv(1, tri, 0.45, 0.25)
And r ← ray(point(-0.2, 0.3, -2), vector(0, 0, 1))
And xs ← intersections(i)
And comps ← prepare_computations(i, r, xs)

Then comps.normalv = vector(-0.5547, 0.83205, 0)

Once that’s passing, it’s time to revisit your OBJ parser and plug these smooth

triangles in there.

Smooth Triangles in OBJ Files

Your OBJ parser is already quite close to supporting smooth triangles. All it

needs now is to support the vertex normal (vn) command and to update the

way it parses the f (“face”) command.

Test #19: OBJ File with Vertex Normal Data

Vertex normal data should be correctly imported from an OBJ file.

This test sets up an OBJ file that contains four vertex normal statements

(“vn”), and then shows that each of them is imported as a vector. Note that

the normals collection is 1-based, just as the vertices collection was.

features/obj_file.feature

Scenario: Vertex normal records
Given file ← a file containing:
"""
vn 0 0 1
vn 0.707 0 -0.707
vn 1 2 3
"""

report erratum • discuss

Smooth Triangles in OBJ Files • 223

When parser ← parse_obj_file(file)
Then parser.normals[1] = vector(0, 0, 1)
And parser.normals[2] = vector(0.707, 0, -0.707)
And parser.normals[3] = vector(1, 2, 3)

The normals are imported as is, with no normalization or other processing

done. Once those are imported, it’s just a matter of associating each of those

vertex normals with a vertex, which you’ll do next.

Test #20: Faces with Normal Vectors

Vertex normal data should be correctly associated with face data from an OBJ

file.

The f command that you implemented earlier is only half done, really. The

following test demonstrates a more complete version of the syntax, permitting

the vertices of a face to be associated with normal vectors.

features/obj_file.feature

Scenario: Faces with normals
Given file ← a file containing:
"""
v 0 1 0
v -1 0 0
v 1 0 0

vn -1 0 0
vn 1 0 0
vn 0 1 0

f 1//3 2//1 3//2
f 1/0/3 2/102/1 3/14/2
"""

When parser ← parse_obj_file(file)
And g ← parser.default_group
And t1 ← first child of g
And t2 ← second child of g

Then t1.p1 = parser.vertices[1]
And t1.p2 = parser.vertices[2]
And t1.p3 = parser.vertices[3]
And t1.n1 = parser.normals[3]
And t1.n2 = parser.normals[1]
And t1.n3 = parser.normals[2]
And t2 = t1

It turns out that the f command supports the following variations, the first

of which you’ve already implemented:

f 1 2 3
f 1/2/3 2/3/4 3/4/5
f 1//3 2//4 3//5

Chapter 15. Triangles • 224

report erratum • discuss

The forward slash is used to delimit up to three different kinds of information

per vertex. The first number in each triple is the vertex index itself. The second

is an optional texture vertex (which you won’t implement for this feature and

can be ignored). The third is an optional index into the list of vertex normals,

corresponding to the vn command you just implemented.

To make this test pass, your f command needs to check to see if vertex normals

are present for the vertices, and if they are, the command should call

smooth_triangle() instead of triangle().

Make that test pass. Once everything is good, you’re ready to sign off on this

chapter!

Putting It Together

You can find 3D models to render in a lot of places online by searching for

“free 3D models.” Here are a few of the first hits I found with that search:

• TurboSquid2 (paid, but has a section of free models)

• Free3D3

• cgtrader4 (paid, but has a free section)

• ClaraIO5

NASA has a library of free 3D resources, including models, at nasa3d.arc.nasa.gov.
Many of them are quite large (hundreds of thousands of triangles), but I was

able to find several models with just a few thousand, including this adorable

little guy:

2. www.turbosquid.com/Search/3D-Models/free
3. free3d.com
4. www.cgtrader.com/free-3d-models
5. clara.io/library

report erratum • discuss

Putting It Together • 225

Some caveats apply to any model you find online, though:

• Many of these models are in formats other than OBJ. Online conversion

tools vary (just search for “convert 3D formats” or something similar), but

I can’t vouch for any of them. It’s best, when possible, to find OBJ files

directly, rather than relying on converting. (Still, I converted the previous

astronaut model from a 3DS format to OBJ using the convertor at

www.greentoken.de/onlineconv/.)

• These models are not of uniform size and are rarely centered conveniently

at the origin. My advice is to have your OBJ parser print the minimum

and maximum extents of each model it imports, which you can then use

to translate and scale the model in your scene.

• These models often have the y and z axes swapped from what this book

presents, with z being the “up” axis instead of y. If you find this to be the

case, a quick rotation around x by -π⁄2 should do the trick.

Lastly, you can have a lot of fun if you can get your hands on a 3D modeling

program. Blender6 is a free, cross-platform option which is incredibly powerful

and can export models in OBJ format. Blender has a correspondingly chal-

lenging learning curve, but if you’re up to it, Blender can be wonderful to play

with. You can use it to create your own models or just convert existing models

to OBJ. You can even (with Blender’s “decimate” modifier) simplify existing

models so they use fewer triangles.

Once you’re done having fun with polygonal models, read on. The last feature

awaits: constructive solid geometry.

6. blender.org

Chapter 15. Triangles • 226

report erratum • discuss

CHAPTER 16

Constructive Solid Geometry (CSG)

You’ve made it through matrix transformations, Phong illumination, reflection,

refraction, and ray-object intersections for a variety of primitive shapes. For

this last feature, you’ll implement constructive solid geometry, or CSG—a

method of combining those primitives via set operations. This lets you create

much more complex shapes, like these:

It’s true that any of those shapes could have been assembled in a 3D modeling

app and then exported to an OBJ file, which you could have imported and

rendered. Using CSG is better in this case for two significant reasons:

1. To get per-triangle coloring to work, you’d need to implement a parser for

Wavefront MTL material files, and make your OBJ parser implement vertex

textures to map material definitions to vertices. (Whew!) With CSG, you

can strategically apply textures and colors to different surfaces within

the model, using only what you’ve already implemented.

2. You’d need hundreds or even thousands of triangles to render these

shapes, while CSG lets you use far fewer primitives. The tricylinder on

the left of the previous image required only three cylinders; the carved

cube in the middle is just three cylinders, a cube, and a sphere; and the

report erratum • discuss

hollow sphere on the right is a sphere and twelve cubes. Add the cube

representing the room, and the entire scene consists of just 22 shapes!

CSG works by taking two or more primitive shapes and combining them using

any of three different set operations: union, intersection, and difference.

Union combines the inputs into a single shape, preserving all

external surfaces. Here’s a cube and a sphere, which have been

combined via a union.

Joe asks:

Why use a CSG union instead of a group?

Good question! In many instances, a group is definitely simpler, but when you’re

dealing with transparent and reflective objects, like glass, their interior surfaces can

contribute unwanted reflections. Here’s an example with two overlapping glass spheres.

On the left, they were combined using a group. On the right, a CSG union was used.

The picture doesn’t lie; using a union instead of a group gets rid of those interior

surfaces and gives you a truer transparency.

Intersection preserves the portion of the inputs that share a vol-

ume (where the shapes intersect each other), resulting in a single

shape with those combined surfaces. This is the intersection

between the cube and sphere from the previous image.

Difference preserves only the portion of the first shape where it’s

not overlapped by the others. Here’s the difference between the

original cube and sphere, effectively carving the sphere out of

the cube.

Your implementation of CSG will support all three of these operations, and

you’ll learn how to use them together to generate an enormous variety of dif-

ferent shapes and effects.

Are you ready? Here we go.

Chapter 16. Constructive Solid Geometry (CSG) • 228

report erratum • discuss

Implementing CSG

For simplicity’s sake, your implementation will treat all CSG operations as

strictly binary, meaning that each one takes exactly two shapes as input.

This may seem restrictive, but since a CSG object is itself a shape, you can

build arbitrarily complex CSG operations by combining them in a hierarchy,

like this:

union

unionintersection

difference

You’ll render these shapes by intersecting them with a ray, as you’ve done

with every other shape you’ve implemented. Intersecting a ray with a CSG

shape begins just like intersecting one with a Group: you first intersect the ray

with the shape’s children. Then, you iterate over the resulting intersection

records, tracking which ones are inside which child and filtering out those

that don’t conform to the current operation. The resulting list of intersections

is then returned.

The devil, as ever, is in the details. We’ll walk through this process one bit at

a time, following these steps:

1. Create a CSG shape by providing an operation and two operand shapes,

left and right.
2. Implement the rules for union, intersection, and difference.

3. Filter a list of intersections using the rules from step 2.

4. Demonstrate what happens when a ray misses a CSG object.

report erratum • discuss

Implementing CSG • 229

5. Demonstrate what happens when a ray hits a CSG object.

Begin by creating the CSG shape itself.

Test #1: Creating a CSG Shape

A CSG shape is composed of an operation and two operand shapes.

Instantiate a new CSG shape. For the sake of the test, use the union operation

and give it a sphere and a cube for the two operands.

features/csg.feature

Scenario: CSG is created with an operation and two shapes
Given s1 ← sphere()
And s2 ← cube()

When c ← csg("union", s1, s2)
Then c.operation = "union"
And c.left = s1
And c.right = s2
And s1.parent = c
And s2.parent = c

The operands are referred to as left and right, mirroring the structure of a

binary tree where the two children of a parent are arranged with one on the

left and one on the right. Note that your code should set the parent attribute

of both child shapes to the CSG shape itself, just as if they were part of a

group.

Test #2: Evaluating the Rule for a CSG Union Operation

A CSG union preserves all intersections on the exterior of both shapes.

Consider the following illustration, showing a ray intersecting two overlapping

spheres. If the two spheres represent a union operation, the highlighted

intersections are the ones to be preserved; the rest are ignored.

You’ll encode this rule in a new function, called intersection_allowed(op, lhit, inl, inr).
The arguments are interpreted as follows:

• op is the CSG operation being evaluated.

• lhit is true if the left shape was hit, and false if the right shape was hit.

• inl is true if the hit occurs inside the left shape.

Chapter 16. Constructive Solid Geometry (CSG) • 230

report erratum • discuss

• inr is true if the hit occurs inside the right shape.

Referring to the previous figure, and assuming the ray moves from left to

right, you would evaluate the four intersections with the following calls to

intersection_allowed:

• intersection_allowed("union", true, false, false)—the hit is on the outside of the left
shape.

• intersection_allowed("union", false, true, false)—the hit is on the outside of the right
shape, while inside the left shape.

• intersection_allowed("union", true, true, true)—the hit is on the inside of the left
shape, while inside the right shape.

• intersection_allowed("union", false, false, true)—the hit is on the inside of the right
shape.

You can arrange the arguments in those calls to form a truth table, a method

of showing boolean input values and the expected output of some operation

on them. The following test describes the basic outline you’ll use to exercise

all three operations, as well as a truth table to describe how the intersec-
tion_allowed() function works with the union operation.

features/csg.feature

Scenario Outline: Evaluating the rule for a CSG operation
When result ← intersection_allowed("<op>", <lhit>, <inl>, <inr>)
Then result = <result>

Examples:
op	lhit	inl	inr	result
union	true	true	true	false
union	true	true	false	true
union	true	false	true	false
union	true	false	false	true
union	false	true	true	false
union	false	true	false	false
union	false	false	true	true
union	false	false	false	true

The goal is to implement intersection_allowed in such a way as to make sure it

returns the correct answer for all possible combinations of inputs, thus

allowing only the correct intersections.

To make the test pass, consider what the union operation actually means.

You only want the intersections that are not inside another object. If the hit

is on the left object, it must not also be inside the right, and if it is on the

right, it must not simultaneously be inside the left. In pseudocode, the logic

looks something like this:

report erratum • discuss

Implementing CSG • 231

function intersection_allowed(op, lhit, inl, inr)
if op is "union"
return (lhit and not inr) or (not lhit and not inl)

end if

default answer
return false

end function

Implement that to make the test pass. Next you’ll tackle the rule for the

intersect operation.

Test #3: Evaluating the Rule for a CSG Intersect Operation

A CSG intersect preserves all intersections where both shapes overlap.

Take a look at the next illustration, again showing a ray intersecting two

overlapping spheres. This time, though, the highlights show which intersec-

tions are kept by a CSG intersect operation.

The intersections are chosen in such a way as to preserve the volume that

the shapes have in common. Add the following truth table to the end of the

one you started in the previous test, showing how the intersection_allowed()
function ought to behave in this case.

features/csg.feature

append after the union examples...
intersection	true	true	true	true
intersection	true	true	false	false
intersection	true	false	true	true
intersection	true	false	false	false
intersection	false	true	true	true
intersection	false	true	false	true
intersection	false	false	true	false
intersection	false	false	false	false

To make those examples pass, you want to allow only those intersections that

strike one object while inside the other. If a ray hits the object on the left, the

intersection must be inside the right, and vice versa. In pseudocode, that

logic looks like this:

function intersection_allowed(op, lhit, inl, inr)
if op is "union"
return (lhit and not inr) or (not lhit and not inl)

Chapter 16. Constructive Solid Geometry (CSG) • 232

report erratum • discuss

else if op is "intersect"➤

return (lhit and inr) or (not lhit and inl)➤

end if

return false
end function

Get those new examples passing, and then move on to the third CSG operation:

difference.

Test #4: Evaluating the Rule for a CSG Difference Operation

A CSG difference preserves all intersections not exclusively inside the object

on the right.

Take a look at the following diagram of two overlapping spheres. The intersec-

tions are now highlighted to represent a CSG difference operation.

Add this last truth table to the end of the other two, to show how the difference

operation should work.

features/csg.feature

append after the intersection examples...
difference	true	true	true	false
difference	true	true	false	true
difference	true	false	true	false
difference	true	false	false	true
difference	false	true	true	true
difference	false	true	false	true
difference	false	false	true	false
difference	false	false	false	false

The difference operation will keep every intersection on left that is not inside

right, and every intersection on right that is inside left. Written as pseudocode,

it looks like this:

function intersection_allowed(op, lhit, inl, inr)
if op is "union"
return (lhit and not inr) or (not lhit and not inl)

else if op is "intersect"
return (lhit and inr) or (not lhit and inl)

else if op is "difference"➤

return (lhit and not inr) or (not lhit and inl)➤

end if

report erratum • discuss

Implementing CSG • 233

return false
end function

Great! Once those tests are all passing, you’re ready to start filtering intersec-

tions based on those rules.

Test #5: Filtering a List of Intersections

Given a set of intersections, produce a subset of only those intersections that

conform to the operation of the current CSG object.

Once you have the intersection_allowed() function working, you get to use it in

the next part of your implementation of CSG: intersection filtering. In the big

scheme of things, when your renderer intersects a ray with a CSG object, the

CSG object will produce a list of intersections between that ray and its chil-

dren. This filter_intersections(csg, xs) function accepts that list (xs), evaluates each

intersection with the intersection_allowed() function, and returns a new intersection

list consisting of those that pass.

The following test creates a csg object composed of two shapes. Then it creates

a list of intersections (xs) and calls filter_intersections(). Finally, it checks that the

two result intersections are what is expected for the current operation.

features/csg.feature

Scenario Outline: Filtering a list of intersections
Given s1 ← sphere()
And s2 ← cube()
And c ← csg("<operation>", s1, s2)
And xs ← intersections(1:s1, 2:s2, 3:s1, 4:s2)

When result ← filter_intersections(c, xs)
Then result.count = 2
And result[0] = xs[<x0>]
And result[1] = xs[<x1>]

Examples:
operation	x0	x1
union	0	3
intersection	1	2
difference	0	1

For this to work, your filter_intersections() function needs to loop over each

intersection in xs, keeping track of which child the intersection hits and which

children it is currently inside, and then passing that information to intersec-
tion_allowed(). If the intersection is allowed, it’s added to the list of passing

intersections.

Here it is in pseudocode:

function filter_intersections(csg, xs)

Chapter 16. Constructive Solid Geometry (CSG) • 234

report erratum • discuss

begin outside of both children
inl ← false
inr ← false

prepare a list to receive the filtered intersections
result ← empty intersection list

for each intersection "i" in xs
if i.object is part of the "left" child, then lhit is true
lhit ← csg.left includes i.object

if intersection_allowed(csg.operation, lhit, inl, inr) then
add i to result

end if

depending on which object was hit, toggle either inl or inr
if lhit then

inl ← not inl
else

inr ← not inr
end if

end for

return result
end function

Note the line with csg.left includes i.object, just at the start of the for loop. The imple-

mentation of this will be up to you, but A includes B should behave like this:

• If A is a Group, the includes operator should return true if child includes B for

any child of A.

• If A is a CSG object, the includes operator should return true if either child

of A includes B.

• If A is any other shape, the includes operator should return true if A is
equal to B.

In other words, it should recursively search a subtree, looking for the given

object, to see whether or not the intersection occurred on the left side of the

CSG tree. If it did, then lhit must be true.

Go ahead and make that test pass. Once you do, you can move on to the last

two tests: making sure that the actual intersection routine functions correctly.

Tests #6 and 7: Intersecting a Ray with a CSG Object

A ray should intersect a CSG object if it intersects any of its children.

The following tests set up a CSG object and a ray and check to see whether

or not the ray intersects. The first test makes sure that a ray misses when it

should miss, and the second test makes sure that it hits when it should hit.

report erratum • discuss

Implementing CSG • 235

The second test also applies a transformation to one of the primitives to ensure

that the resulting intersections are being filtered correctly.

features/csg.feature

Scenario: A ray misses a CSG object
Given c ← csg("union", sphere(), cube())
And r ← ray(point(0, 2, -5), vector(0, 0, 1))

When xs ← local_intersect(c, r)
Then xs is empty

Scenario: A ray hits a CSG object
Given s1 ← sphere()
And s2 ← sphere()
And set_transform(s2, translation(0, 0, 0.5))
And c ← csg("union", s1, s2)
And r ← ray(point(0, 0, -5), vector(0, 0, 1))

When xs ← local_intersect(c, r)
Then xs.count = 2
And xs[0].t = 4
And xs[0].object = s1
And xs[1].t = 6.5
And xs[1].object = s2

Make this pass by intersecting the ray with the left and right children and

combining the resulting intersections into a single (sorted!) list. The combined

intersections should be passed to filter_intersections(), and the filtered collection

should then be returned.

In pseudocode, it looks like this:

function local_intersect(csg, ray)
leftxs ← intersect(csg.left, ray)
rightxs ← intersect(csg.right, ray)

xs ← combine leftxs and rightxs
xs ← sort xs by t

return filter_intersections(csg, xs)
end function

And that completes your implementation of CSG shapes! You don’t even need

to compute a normal vector; the intersection records always point to the

primitive object that was hit, and not the parent CSG shape, which means

the primitive shape itself will always perform the normal computation. Neat!

One last thing to talk about is how to apply color to CSG shapes.

Coloring CSG Shapes

You may recall that at the beginning of this chapter I said that it was possible

to strategically color portions of a CSG shape. It’s true—the key is to

Chapter 16. Constructive Solid Geometry (CSG) • 236

report erratum • discuss

remember that intersecting a ray with a CSG shape preserves the original

intersections with the original primitive shapes. Think about how your ray

tracer determines the color to use for a given intersection. In Chapter 6, Light

and Shading, on page 75, you stored a material structure on each object and

used the material from the intersected object to determine what color the

intersection should be.

This still holds true with CSG intersections. Consider again this

illustration of a red sphere subtracted from a yellow cube.

The faces of the cube remain yellow, but the portion that was

subtracted away retains the red of the sphere! This is because

those intersections were from the sphere and not the cube and so keep the

original coloring of the sphere.

This works even with reflective and transparent surfaces, which means you

can make certain faces “disappear” by making their corresponding shape

transparent. By default, transparent surfaces will still cast shadows, but if

you hark back to Putting It Together, on page 165, you’ll see one of the

optional things to consider is for shapes to “opt out” of casting shadows.

Implementing that, and then subtracting transparent shapes from solids, lets

you do nifty things like this sphere with a wedge removed from it:

You can form the wedge by rotating a cube 45 degrees around the y axis and

then making it narrower by scaling it smaller in z. Make the wedge transparent,

position it so it intersects the sphere, and then subtract it from the sphere.

It’s a fun trick!

Putting It Together

Thinking in terms of CSG can be challenging if you’re not used to it. It takes

some practice to learn to see the world around you as unions, intersections,

and differences of primitive shapes. Here are some things you can do with

CSG and some hints for how to construct them.

• A lens. (The intersection of two spheres.)

report erratum • discuss

Putting It Together • 237

• A six-sided die. (A cube, mostly, but using CSG difference operations with

scaled spheres to form the pips.)

• A block letter or number. (Perhaps from a flattened cube, with pieces

shaved off using differences with cubes and cylinders.)

• A flower. (Perhaps form the petals out of spheres, strategically scaled and

shaped by intersecting other spheres.)

• The planet Saturn. (Form each ring by subtracting one cylinder from

another.)

If you’re feeling ambitious, think of how you might increase the realism for

each of these. For example, dice in real life are not perfect cubes, but instead

have rounded edges and corners. How would you create that effect, using

just what you’ve implemented so far in your ray tracer?

What else can you imagine? Furniture? Buildings? Dragons, knights, and

castles? Trains, planes, or automobiles? Might as well make a spaceship or

two, because the sky is the limit!

At this point, you’re as good as done with the Ray Tracer Challenge, but go

ahead and turn the page anyway. Let’s talk about where you might take your

ray tracer next, because like all the best projects, there’s always another

feature you can add.

Chapter 16. Constructive Solid Geometry (CSG) • 238

report erratum • discuss

CHAPTER 17

Next Steps

Here you are at the end. What a ride, eh? From tuples and matrices, you’ve

proceeded all the way through ray-sphere intersections, shading and shadows,

patterns, reflections and refractions, and on up to constructive solid geometry.

You’ve built something to be proud of.

As with any good project, though, the “end” is just a line drawn in the sand.

The book ends here, but you can add so much more to your ray tracer, and

the path you take is entirely up to you. New features are limited only by your

imagination (and, maybe, your perseverance in the face of a bit more math).

Here are some ideas that you might use as jumping-off points for your own

experimentation and research.

Let’s start by casting light on some light source variations.

Area Lights and Soft Shadows

Your ray tracer currently implements point lights, which exist at a single point

and have no size. These lights cast sharp, crisp shadows with perfectly defined

outlines. But in the physical world, a point light doesn’t actually exist. Light

sources have dimension, and the shadows they cast tend to be fuzzy around

the edges as a result.

Consider the illustration on page 240, which compares shadows cast by a point

light (on the left), with shadows cast by an area light (on the right).

Those blurred shadows don’t come cheap. Recall from Chapter 8, Shadows,

on page 109, that your current shadow test casts a single ray from the point

of intersection to the light source. This results in a boolean “yes/no” result,

answering the question of whether the point is in shadow. For an area light,

you must cast multiple shadow rays, and the answer is no longer “yes” or

“no,” but an intensity value telling you how much shadow exists at that point.

report erratum • discuss

To implement an area light, follow these steps:

1. Decide how many shadow rays you want to cast for each area light. The

more you cast, the nicer the shadow looks, but it also means your ray

tracer has to do more work per pixel.

2. Cast each ray from the point of intersection to a different point on your

area light.

3. Compute the light’s intensity as the average number of rays that weren’t

blocked by any intervening surfaces.

Light sources are of many types, though. Read on for another one.

Spotlights

Another feature of point lights is that they shine equally in every direction.

But it can be fun to break that assumption and have your lights focus on a

particular point. The result is a spotlight, like this:

To make this work, assign your light a direction and an angle that describes

the beam’s width. Then, any point that falls outside the light’s cone is consid-

ered to be in shadow. If you want the beam to have a soft boundary, you can

Chapter 17. Next Steps • 240

report erratum • discuss

define a second “fade” angle, inside of which the beam blends from full

intensity to none.

Implementing Spotlights

Remember, the dot product of two unit vectors is the same as the

cosine of the angle between them. If you take the dot product of

the light’s direction vector, and the vector from the point of inter-

section to the light, you’ll end up with the cosine of the angle

between them. Relate that to the angle of the spotlight itself, and

you’ve got the feature half done!

Spotlights are an effective way to focus attention on a specific point in your

scene, but they’re not the only way. Here’s another.

Focal Blur

Focal blur helps bring the viewer’s attention to the subject of the image by

making it appear sharply in focus. Objects that are too far from—or too near

to—the camera will appear out of focus. Here’s an example:

The focus here is on the three balls in the foreground; the smaller balls in

the background and the reflections on the walls are blurred to emphasize

their distance and lack of importance.

To make this work, you need to simulate a camera with a larger aperture—the

hole through which light enters the camera. By default, your ray tracer

mimics a pinhole camera, with a hole exactly large enough for a single ray of

light. This allows the entire scene to appear crisply in focus. By making the

aperture larger, light can arrive from multiple points at once, blurring the

picture at those places.

To implement this you need to specify the size of the aperture and the focal

length of the camera. Anything situated at the camera’s focal length will be

report erratum • discuss

Focal Blur • 241

in focus, so you generally put the subject of the picture there. And the wider

the aperture, the blurrier things get.

In Implementing a Camera, on page 100, you set your canvas 1 unit in front of

the camera. This effectively hard-coded your focal length to 1. Changing the

focal length basically positions your canvas that distance from the camera. Once

you’ve got your canvas situated, you cast multiple rays for each pixel, and the

more, the better. Instead of casting them all from a single point at the origin,

you’ll place your aperture at the origin and choose several points on its surface.

Then, for each of those points, construct a ray that passes from the point through

the current pixel on the canvas and out into the scene. Average the colors for

each of the rays you cast per pixel, and there’s your focal blur!

We can summarize:

1. Choose a size for the aperture.

2. Choose a distance for the canvas.

3. Cast multiple rays from random points on the aperture, through the pixel

on the canvas.

4. Set the pixel to the average of all rays cast through it.

Casting multiple rays per pixel like this is computationally expensive, though,

working a lot harder for each pixel. Still, it’s a versatile technique that can

create a variety of effects. Read on for another one!

Motion Blur

Motion blur is the effect you see in photographs of a quickly moving object, where

it appears blurred because it was in motion while the camera’s shutter was

open. Not only can this draw a viewer’s attention, it can make your scenes more

dynamic by adding a sense of action. A skilled artist can do this with just a few

strokes of a pen, but for the rest of us, there’s motion blur, like this:

Chapter 17. Next Steps • 242

report erratum • discuss

In ray tracing, you could simulate this effect by rendering your scene multiple

times, moving one or more objects a bit in each frame, and then averaging

all the frames together. Here’s another way, though: for each pixel of your

image, cast multiple rays and assign them each a time value. When a ray

intersects a moving object, your ray tracer transforms the object according

to the associated time value before intersecting it with the ray. The resulting

color for each ray is then averaged before being written to your canvas.

You can make optimizations, as well. If you define a bounding box around

the moving object, completely containing it at every point of its motion, then

you only need to cast additional rays if the first ray happens to intersect that

bounding box. This prevents one small moving object from bogging down the

entire scene unnecessarily.

Anti-aliasing

Because pixels are not infinitely small, diagonal lines will tend to be rendered

as stairsteps, or jaggies. The following illustration shows a zoomed-in view:

This phenomenon is called aliasing, and a lot of effort goes into working

around it in production-quality imagery. One such anti-aliasing technique

renders the image at much higher resolution (double, triple, or more), and

then requires a separate image editor to resample the picture to a smaller

resolution. This essentially averages the values of adjacent pixels, and helps

smooth those jagged stairsteps.

You can anti-alias in a single step, though, using a technique called supersam-

pling. Instead of casting a single ray for each pixel, you cast multiple rays, each

passing through a different (and perhaps random) point offset from the center

of the pixel, and average their results. Once again, the more rays you cast, the

higher the quality of the result. The image on page 244 is an anti-aliased example

of the previous image, rendered using this supersampling technique.

report erratum • discuss

Anti-aliasing • 243

More rays equals more work, so don’t expect this technique to come cheaply.

You can optimize it, though. For instance, instead of always casting the same

number of rays per pixel, you can start by casting one at each corner of the

pixel, and one in the pixel’s center. If any of the corners differ from the center

by more than some threshold amount, you can subdivide that quarter of the

pixel and repeat the process, recursively. Even then, because of the time and

energy cost, you’ll want to save this for the end of the production process.

You can do plenty of other things to your ray tracer that don’t require casting

more rays. For instance, you can wallpaper textures and imagery onto shapes

with texture maps.

Texture Maps

In addition to the solid textures (checkers, rings, and so forth) that you’ve

already implemented, it’s possible to apply an external image to an object as

a texture map. Here’s an example using a planar mapping, a cylindrical

mapping, and a spherical mapping:

Chapter 17. Next Steps • 244

report erratum • discuss

For a planar mapping, you take an image and map an (x, y) pair in object space

to a corresponding pixel on the image. You’ll usually need to do some interpola-

tion as well, since the point in question will often lie between adjacent pixels.

The cylindrical mapping is a bit trickier, since you need to convert a point on

the surface of a cylinder to an image, much like the label on a soup can. You

can save yourself a headache if you assume you’re always mapping onto a

unit cylinder between y=0 and y=1.

The spherical mapping is similar to the cylindrical mapping, but with different

behavior at the poles, where an entire row of the image maps to a single point

on the sphere. You’ll need to convert a 3D point in space into a 2D point on

the surface of the sphere, much like finding the latitude and longitude for a

point on the earth’s surface.

You can do other mapping types as well: cubical, toroidal, and so forth. In

each case, target a shape of a constant size (radius of 1, for instance) and

make the math work that way. Then, with a bit of scaling, the result can be

quite convincing!

In fact, mucking with the surface features of your primitives is a tried and

true way to make your scenes shine. Here’s another fun technique, in which

you lie (in a perfectly moral way) to your renderer.

Normal Perturbation

Hark back to Smooth Triangles, on page 218, when you made triangles appear

curved by modifying the normal that was reported to the renderer. It turns out

that this technique can be used in a variety of ways, basically “lying” to the

renderer so that the surface shading is done with modified normals. Check out

the image on page 246, showing this technique applied to spheres and a plane.

By attaching a function to the shape (perhaps directly, or maybe via the

material), you can have your normal_at() function call the attached function to

perturb, or add a small vector to, the normal at the given point. In the preced-

ing image, the red sphere uses a sine function to make the surface appear

wavy, the blue sphere uses another function to give the surface a quilted

appearance, and the green sphere and the plane are both using three-

dimensional noise to make the surface look deformed.

This technique can be applied to glass to make it appear etched or frosted,

too. And you can even combine it with texture mapping to let an image file

define a normal map that describes how the normal should be perturbed at

any given point.

report erratum • discuss

Normal Perturbation • 245

Besides textures, you can also explore new shape primitives, to increase the

variety of your scenes. One such primitive you might try is the torus.

Torus Primitive

A torus is a ring or donut shape, like this:

They make really neat, versatile primitives, but they’re a bit more advanced

than the primitives you’ve implemented so far. Spheres, cylinders, and cones

are called quadric surfaces, which means they can be described by second-

degree equations (those where no variable is raised to a power higher than

2). A torus, though, is a quartic surface, with variables raised to the fourth

power. This means you need a quartic equation solver to find the intersection

between a torus and a ray.

But that just means you get to dig deeper than you have before, right? If you

don’t already have access to a quartic equation solver, you might take a look

at the Durand-Kerner method.1 It’s not the fastest, but is less intimidating

1. en.wikipedia.org/wiki/Durand-Kerner_method

Chapter 17. Next Steps • 246

report erratum • discuss

than some other methods. And Marcin Chwedczuk has written an article called

“Ray tracing a torus”2 that may help cast some light on the topic for you.

See what other primitive shapes you can implement!

Wrapping It Up

As exhaustive as that list might have seemed, it was still just a sampling of

what you can try. You can do so much more, like volumetric effects such as

smoke, fog, clouds, and fire. Or maybe radiosity and photon mapping for

more realistic lighting effects, or parallelization for faster rendering on multi-

processor machines. You’re never truly done, but that’s the wonderful thing

about projects like this!

The rest is up to you. Pursue the features that excite you most. Explore your

own interests. Make this ray tracer your own. But most important of all:

have fun!

2. marcin-chwedczuk.github.io/ray-tracing-torus

report erratum • discuss

Wrapping It Up • 247

APPENDIX 1

Rendering the Cover Image

The cover image for this book was rendered using the very ray tracer that the

book describes, which means that once you’ve implemented the necessary

features, you can render it too!

To render the cover image, your ray tracer must support the features described

up through Chapter 12, Cubes, on page 167. The actual cover image was ren-

dered using two light sources, though the second is optional.

The cover image scene is described here in YAML1 format. If a YAML parser

exists for your programming language, you may be able to build the scene

from this description directly; otherwise, you’ll need to translate this

description into whatever API you’ve built for your own renderer.

If rendered as described, you’ll get something that looks like this:

1. yaml.org

report erratum • discuss

And here’s the scene description itself:

cover.yml

==
the camera
==

- add: camera
width: 100
height: 100
field-of-view: 0.785
from: [-6, 6, -10]
to: [6, 0, 6]
up: [-0.45, 1, 0]

==
light sources
==

- add: light
at: [50, 100, -50]
intensity: [1, 1, 1]

an optional second light for additional illumination
- add: light

at: [-400, 50, -10]
intensity: [0.2, 0.2, 0.2]

==
define some constants to avoid duplication
==

- define: white-material
value:
color: [1, 1, 1]
diffuse: 0.7
ambient: 0.1
specular: 0.0
reflective: 0.1

- define: blue-material
extend: white-material
value:
color: [0.537, 0.831, 0.914]

- define: red-material
extend: white-material
value:
color: [0.941, 0.322, 0.388]

- define: purple-material
extend: white-material
value:
color: [0.373, 0.404, 0.550]

Appendix 1. Rendering the Cover Image • 250

report erratum • discuss

- define: standard-transform
value:

- [translate, 1, -1, 1]
- [scale, 0.5, 0.5, 0.5]

- define: large-object
value:

- standard-transform
- [scale, 3.5, 3.5, 3.5]

- define: medium-object
value:

- standard-transform
- [scale, 3, 3, 3]

- define: small-object
value:

- standard-transform
- [scale, 2, 2, 2]

==
a white backdrop for the scene
==

- add: plane
material:
color: [1, 1, 1]
ambient: 1
diffuse: 0
specular: 0

transform:
- [rotate-x, 1.5707963267948966] # pi/2
- [translate, 0, 0, 500]

==
describe the elements of the scene
==

- add: sphere
material:
color: [0.373, 0.404, 0.550]
diffuse: 0.2
ambient: 0.0
specular: 1.0
shininess: 200
reflective: 0.7
transparency: 0.7
refractive-index: 1.5

transform:
- large-object

report erratum • discuss

Appendix 1. Rendering the Cover Image • 251

- add: cube
material: white-material
transform:
- medium-object
- [translate, 4, 0, 0]

- add: cube
material: blue-material
transform:
- large-object
- [translate, 8.5, 1.5, -0.5]

- add: cube
material: red-material
transform:
- large-object
- [translate, 0, 0, 4]

- add: cube
material: white-material
transform:
- small-object
- [translate, 4, 0, 4]

- add: cube
material: purple-material
transform:
- medium-object
- [translate, 7.5, 0.5, 4]

- add: cube
material: white-material
transform:
- medium-object
- [translate, -0.25, 0.25, 8]

- add: cube
material: blue-material
transform:
- large-object
- [translate, 4, 1, 7.5]

- add: cube
material: red-material
transform:
- medium-object
- [translate, 10, 2, 7.5]

- add: cube
material: white-material
transform:
- small-object
- [translate, 8, 2, 12]

Appendix 1. Rendering the Cover Image • 252

report erratum • discuss

- add: cube
material: white-material
transform:
- small-object
- [translate, 20, 1, 9]

- add: cube
material: blue-material
transform:
- large-object
- [translate, -0.5, -5, 0.25]

- add: cube
material: red-material
transform:
- large-object
- [translate, 4, -4, 0]

- add: cube
material: white-material
transform:
- large-object
- [translate, 8.5, -4, 0]

- add: cube
material: white-material
transform:
- large-object
- [translate, 0, -4, 4]

- add: cube
material: purple-material
transform:
- large-object
- [translate, -0.5, -4.5, 8]

- add: cube
material: white-material
transform:
- large-object
- [translate, 0, -8, 4]

- add: cube
material: white-material
transform:
- large-object
- [translate, -0.5, -8.5, 8]

Give it a try. Experiment with it. Apply different materials, patterns, and lighting.

Try different shapes and perspectives. See what you can come up with!

report erratum • discuss

Appendix 1. Rendering the Cover Image • 253

Index

SYMBOLS
/ (forward slash), delimiting

vertex information, 225

DIGITS
0-base

vertices, 214
x and y parameters, 19

2x2 matrices
creating, 26
determinants, finding,

33–38
example, 25
inverting matrices, 34–42

3D
checker pattern, 136–138
OBJ files, 212–218, 223,

226
resources on modeling,

225
silhouette exercise, 89–90

3x3 matrices
cofactors, 36
creating, 26
minors, 35

4x4 matrices, see also matri-
ces

defined, 26
determinants, finding, 38

A
AABB, see axis-aligned

bounding boxes (AABB)

abstraction, defined, 119

abstractions, limiting, 4

acne, 114

addition
colors, 16
tuples, 5

aliasing, 243

ambient reflection
colored glass, 165
defined, 84
Phong reflection model,

84–89
refraction and transparen-

cy, 165
striking nonreflective

surface, 144
striped pattern, 129

anti-aliasing exercise, 243

aperture, focus blur effect,
241

APIs, fluent, 55

architecture, choosing, xx

area lights exercise, 239

arrays, concatenating exam-
ple of Cucumber scenarios,
xvii

aspect ratio, 102

axis-aligned bounding boxes
(AABB), 167–176

about, 167
calculating normal on a

cube, 173–175
intersecting a ray with a

cube, 168–173
missing a ray with a

cube, 172

B
bidirectional tree structure,

194

blended patterns, 139

Blender, 226

blending functions, 135, 139

bounding boxes
axis-aligned (AABB), 167–

176
calculating normal on a

cube, 173–175
intersecting a ray with a

cube, 168–173
motion blur exercise, 243
optimizing scenes with,

200–203
transformations, 168,

202
untransformed, 202

C
camera

aperture, 241
aspect ratio, 102
attributes, 100
canvas size, 100, 102
field_of_view, 100–103
focal blur exercise, 241–

242
implementing in view

transformations, 100–
105

motion blur exercise, 242
multiple spheres exercise,

107
rendering image, 104
specifying focal length,

241

canvas, 15–24
camera attributes, 100,

102
colors, adding, 15–18

converting world coordi-
nates, 22

creating, 19
exercises, 22–24
saving, 19–22
size, 72, 100, 102

cgtrader, 225

character limits, PPM files, 21

checker pattern, 136–138

children
adding, 195
CSG shapes, 230
filtering CSG intersec-

tions, 234
finding normal, 197–200
transformations, 197

Chwedczuk, Marcin, 246

ClaraIO, 225

clock exercises, 54–56

code, for this book, xviii

cofactors
cofactor expansion, 33,

36–38
defined, 36
determinants, finding,

36–38
inverting matrices, 36–42
matrix of cofactors, 40

colors
3D sphere silhouette exer-

cise, 89
adding to canvas, 15–18
blended pattern, 139
blending, 17, 135, 139
checker pattern, 136–138
clamped, 21
CSG shapes, 227, 236
glass, 165
gradient pattern, 134,

139
maximum color value in

PPM files, 20
mirrors, 165
multiple spheres exercise,

107
nested pattern, 139
operations, 16–18
patterns, generalizing,

132–134
perturbed pattern, 140,

245
point lights, 84
radial gradient pattern,

139
reflection, 144–149, 165
refraction, 150, 155–158,

165

ring pattern, 135, 139
shading in world build-

ing, 96
shadows, rendering, 113
striking nonreflective

surface, 144
striking reflective surface,

144
striped patterns, 128–132
theory, 15
as tuples, 15

columns
specifying when creating

matrices, 26
transposing matrices, 32

comparing
data structures, xix
floating-point numbers,

xix, 5
matrices, 27
tips, xix

cones, 178, 188–191

constructive solid geometry
(CSG), 227–238

advantages, 227
colors, 227, 236
creating shapes, 229
filtering intersections,

234–236
implementing, 229–236
intersections, 229–236
tips, 237

coordinates
converting to integers, 22
converting world coordi-

nates to canvas coordi-
nates, 22

converting world space to
object space, 68, 80,
131, 197–199

flipping y coordinate, 73
left-handed vs. right-

handed, 3

cosine
dot product, 11
rotation, 47
total internal reflection,

162

cover image, rendering, 249–
253

cross product, 11

CSG, see constructive solid
geometry (CSG)

cubes, 167–176, see al-
so bounding boxes

about, 167

casting ray from inside,
169

exercises, 175
intersecting a ray, 168–

173
missing a ray, 172
normal, calculating, 173–

175
performance, 176

Cucumber
about, xvii
resources on, xviii

cylinders, 177–191
about, 177
capped, 178, 184–188
composite shape exercise,

203–205
computing normal, 178,

180, 184, 187
hollow, 181–184
intersecting a ray with,

178–180, 185
missing a ray, 178
radius, 177
solid, 178, 184–188
texture maps, 244
truncating, 177–178,

181–184

cylindrical mapping, 244

D
data types

avoiding complex, 4
comparing, xix

degrees, converting to radi-
ans, 48

determinants
finding for matrices, 34–

38
intersecting rays with a

triangle, 210
inverting matrices, 34–38
noninvertible matrices,

39

difference, comparing float-
ing-point numbers, 5

difference (CSG), 228, 233

diffuse reflection
colored glass, 165
defined, 84
Phong reflection model,

84–89
transparency, 165

direction
determining direction of

normals, 95

Index • 256

order of cross product
operands, 12

rays, 57, 69
understanding tuples, 2

discriminant
computing for ray-sphere

intersections, 62
intersecting rays with a

cylinder, 179

distance
finding points on a ray,

58
understanding tuples, 2

division, tuples, 7

dot product
computing, 10
defined, 10
determining direction of

normals, 95
multiplying matrices, 30
spotlights, 241

double-napped cones, 188–
191

Durand-Kerner method, 246

E
E for eye vector, 76

edge vectors, creating trian-
gles, 208

end caps
computing normal, 184,

187, 190
cones, 190
cylinders, 178, 184–188,

190

EPSILON
bumping points with, 115
comparing floating-point

numbers, xix, 5
computing normals on

end caps, 188
computing under_point, 154

exercises
about, xviii
anti-aliasing, 243
area lights, 239
canvas, 22–24
clock, 54–56
cubes, 175
focal blur, 241–242
groups, 203–205
intersections, 70–74
lights, 89–90, 239–240
matrices, 42, 54–56
motion blur, 242
normal perturbation, 245
patterns, 138–140

planes, 124
points, 12
reflection and refraction,

165
rendering cover image,

249–253
scenes, 105–107
shading, 89–90
shadows, 116, 166, 239
silhouette, 70–74, 89–90
spheres, 70–74, 89–90,

105–107, 124, 203–205
spotlights, 240
texture maps, 244
torus, 246
transformations, 54–56
tuples, 12
vectors, 12
virtual projectile, 13, 22–

24

eye vector
3D sphere silhouette exer-

cise, 89
computing, 76
defined, 76
Phong reflection model,

85–89
shading in world build-

ing, 93–97
view transformations, 97–

100

F
f, OBJ files, 212, 214, 223

faces, OBJ files, 212, 214,
223

fan triangulation, 215

field_of_view, 100–103

filtering, intersections, 234–
236

flipping, see reflection

floating-point numbers
comparing, xix, 5
computing normals on

end caps, 188
converting to integers, 22
partial reflections, 143,

145
using native vs. abstrac-

tions, 4

fluent APIs, 55

focal blur exercise, 241–242

forward slash (/), delimiting
vertex information, 225

forward vector, 99

Free3D, 225

Fresnel effect, 160–165

Fresnel, Augustin-Jean, 160

function, names, xx

G
Gherkin, xvii

GIMP (GNU Image Manipula-
tion Program), 20

glass
color theory, 16
CSG unions, 228
frosted or etched, 245
refractive index, 149
spheres, creating, 151
spheres, reflectance, 161–

165
spheres, refraction, 151–

154
tinting, 165
tips, 165

GNU Image Manipulation
Program (GIMP), 20

gradient pattern, 134, 139

groups, 193–205
about, 193
adding children, 195
adding parents, 194–195
adding shapes to, 194
bounding boxes, 200–203
computing normals for,

194, 197–200
creating, 194
defined, 194
exercises, 203–205
implementing, 194–197
intersections, 194, 196
named, 216
normals, 197–200
patterns, 200
polygons with OBJ files,

213, 215–216
transformations, 194,

197
triangles, 211, 213, 215–

216
vs. unions, 228

H
Hadamard product, 17

Halting problem, 147

hexagon composite exercise,
203–205

highlights, specular, 84, 165

hits
CSG union, 230
identifying, 64–66

Index • 257

occluded, 64
occurring on inside of

shape, 94
setting refraction, 152
shading in world build-

ing, 93–97
smoothing triangles, 223
testing for shadows, 113

hsize, 100, 102

I
identity, multiplicative, 31

identity matrix
as default orientation, 98
as default transformation

for camera, 101
defined, 31
shapes, 118
translation, 45
transposing, 33

ImageMagick, 22

index, vertex, 214, 225

index of refraction, see refrac-
tive index

infinite recursion, 142, 146

infinity
intersecting rays with

cubes, 171
language support, 171
representing, xix

inner product, see dot prod-
uct

intensity
point lights, 84
reflection, 86–87

intersect (CSG), 228, 232

intersections, 57–74, see al-
so shadows

aggregating, 64
bogus, 210
bounding boxes, 168–173
collections, 152
computing, 62
cones, 189–191
CSG, 229–236
cylinder end caps, 185
cylinders, 178–180, 185
exercises, 70–74
filtering, 234–236
groups, 194, 196
identifying hits, 64–66
ignoring negative, 65
missing, 60, 62
occurring on inside of

shape, 94
order of, 63, 66, 93
performance, 200, 202

planes, 118–120, 122–
124

properties, 63
reflectance, 161–162
refraction, 150–154
resources on, 62
routine for world build-

ing, 92
spheres, 59–66, 70–74
tangents, 60
tracking, 63
transforming rays and

spheres, 66–70
triangles, 208–212, 220–

225
triangles, smoothing,

220–225

inverse transpose matrix, 81

inversion
advantages, 38
determining if possible,

39
exercises, 42
matrices, 33–42
rotation, 49
scaling, 46
translation matrices, 45

J
jaggles, 243

jittering, 140

L
L for light vector, 76

left operand, 229

left vector, 99

left-hand rule, 48, 51

left-handed coordinates, 3

length, see magnitude

light, Fresnel effect, 160–165

light vector, 76

lights, 75–90, see also nor-
mals; refraction; reflection;
shading; shadows

exercises, 89–90, 239–
240

eye vector, 76, 85–89
light vector, 76
multiple spheres exercise,

107
point lights, 84
specular highlights, 84,

165
spotlights, 240

striped pattern, 129, 132
using multiple sources,

96

Lindenmayer systems, 205

linear algebra
matrix multiplication, 28–

32
resources on, 31
transposing matrices, 32–

42

Linux systems, viewing PPM
files, 20

M
Mac systems, viewing PPM

files, 20

magnitude
computing, 8
normalizing tuples, 10

materials
3D sphere silhouette exer-

cise, 89
CSG shapes, 227, 237
default, 118
multiple spheres exercise,

107
patterns, generalizing,

132–134
patterns, striped, 129
Phong reflection model,

85–89
reflective, 141–149
refractive indices, 149
textures, 244
transparency, 149–165

mathematics, see also linear
algebra

about, xviii
intersections, 62
tuple operations, 5–8

matrices, 25–42, see also iden-
tity matrix; submatrices;
transformations; transla-
tion

cofactors, matrix of, 40
comparison, 27
creating, 26
defined, 25
determinants, finding,

34–38
exercises, 42, 54–56
inverse transpose matrix,

81
inversion, 33–42
multiplication, 28–32, 54
multiplication by identity

matrix, 31

Index • 258

multiplication by tuples,
30

noninvertible, 39
reflection, 47
rotation, 47–51, 54–56
scaling, 46
shearing, 51–53
simple implementation,

27
transposing, 32, 42

maximum color value, 20

mesh, triangle, 213

minors
computing, 35
determinants, finding,

35–38
inverting matrices, 35–42
negating, 36

mirrors
colors, 165
infinite recursion, 146
tips, 165

Möller–Trumbore algorithm,
208–212

motion blur exercise, 242

MTL material files, 227

multiplication
colors, 16
by identity matrix, 31
by inverse transpose ma-

trix, 81
matrices, 28–32, 54
matrices, by tuples, 30
order, 54, 106
scaling matrices, 46
transformations, 106
translation matrices by

vector, 45
tuples, 7, 31

multiplicative identity, 31

N
N for surface normal vector,

76

n1/n2, 150–154, 161–162

named groups, 216

names, choosing, xx

NASA, 225

negating
minors, 36
tuples, 7

nested patterns, 139

newline character and PPM
files, 22

normal interpolation, 219–
225

normal mapping, 245

normal perturbation, 245

normalization
about, 78, 82
tuples, 10
vectors, 9

normals
3D sphere silhouette exer-

cise, 89
child objects, 197–200
computing, 118, 120
computing for a cone,

189–190
computing for a cube,

173–175
computing for a cylinder,

178, 180, 184, 187
computing for a sphere,

77–82
computing for a triangle,

208
computing for groups,

194, 197–200
converting from object

space to world space,
197–200

CSG shapes, 236
defined, 76
direction of, determining,

95
end caps, 184, 187, 190
finding normal on a child

object, 199
normal interpolation,

219–225
normal mapping, 245
normalization, 78
perturbation, 245
Phong reflection model,

85–89
planes, 122
shading in world build-

ing, 93–97
transforming, 79–82
transposing matrices, 32
understanding, 76–77

O
OBJ format, 212–218, 223,

226

object overlap, 60, 179

object space
converting to, 68, 80,

131, 197–200
converting to parent

space, 202

converting to pattern
space, 132

converting to world
space, 68, 80, 197–199

operand shapes, CSG, 229

order
cross product, 12
intersections, 63, 66, 93
multiplication, 54, 106
transformations, 54,

106, 204

origin
computing normals, 80
rays, 57, 59, 122
spheres, 59, 80
world, 59, 80

over_point, 115, 145, 154

overlapping objects, 60, 179

overlapping shadows, 96

P
parameters

default values, 148
optional, 153

parents
adding, 194–195
converting object space

to parent space, 202
CSG shapes, 230

parsers
OBJ files, 212–218, 223,

227
YAML, 249

partial reflection, 143, 145

patterns, 127–140
blended, 139
checker, 136–138
defined, 128
exercises, 138–140
generalizing, 132–134
gradient, 134, 139
groups, 200
nested, 139
pattern space, 132
perturbed, 140, 245
radial gradient, 139
ring, 135, 139
striped, 128–132
transforming, 130–132

performance
about, xix
anti-aliasing, 244
cubes, 176
focus blur, 242
intersections, 200, 202
motion blur, 243
multiple light sources, 96

Index • 259

OBJ files, 218
optimizing scenes with

bounding boxes, 200–
203

renderer, 107
shadows, 96

Perlin noise, 140

Perlin, Ken, 140

perturbation, normal, 245

perturbed patterns, 140

Phong reflection model, 83–
89

Phong, Bui Tuong, 83

Pixar, 3

pixels
anti-aliasing, 243
calculating size with

camera, 101–103
writing, 19

planar mapping, 244

planes, 117–125
computing normal, 122
computing reflection vec-

tor, 143–144
as cube components, 169
defined, 122
end caps as, 187
exercises, 124
implementing, 122–124
intersections, 118–120,

122–124
refactoring from sphere

example, 117–121
refraction, 159–160
solid cylinders, 184–188

point lights, 84

points, see also tuples
bumping with EPSILON,

115
converting from object

space to parent space,
202

converting from world
space to object space,
68, 80, 131, 197–199

converting into object
space, 118, 120

converting to a vector,
120

creating, 4
defined, 3
distance for rays, 58
exercises, 12
indicating point is in

shadow, 110

intersecting rays with
cubes, 171–172

jittering, 140
origin, 57
out of bounds, 22
position on a ray, 58
reflection, 47
rotation, 47–51
scaling, 46
shadows, rendering, 113–

116
shadows, testing for,

111–113
shearing, 51–53
translation, 44–46
tuples, adding, 6
tuples, subtracting, 6

polygons, see also triangles
about, 207
fan triangulation, 215
grouping, 213, 215–216
hexagon composite exer-

cise, 203–205

Portable Pixmap format,
see PPM files

position
finding points on a ray,

58
understanding tuples, 2

POV-Ray, 3

PPM files, 20–22

prepare_computations
adding reflection, 142–

148, 161–165
adding refraction, 150–

154
rendering shadows, 115
shading in world build-

ing, 93–97
smoothing triangles, 223

projectile exercises, 13, 22–24

Q
quadric surfaces, 246

quartic surfaces, 246

R
R for reflection vector, 76

radial gradient pattern, 139

radians, 48

ray casting, defined, 57, see
also intersections

ray tracers
about, xv

algorithm steps, xvi
mathematics needed for,

xviii

rays, see also intersections;
refraction; reflection

camera, implementing,
103–105

casting from inside a
cube, 169

converting into object
space, 118

coplanar, 122
creating, 57
defined, xvi
direction, 57, 69
identifying hits, 64–66
intersecting with CSG

shapes, 229–236
intersecting with a cube,

168–173
intersecting with a cylin-

der, 178–180, 185
intersecting with a group,

194, 196
intersecting with end

caps, 185
intersecting with planes,

118–120, 122–124
intersecting with spheres,

59–66
intersecting with trian-

gles, 208–212
intersections, 70–74
keeping original, 68
making transformable, 68
missing intersection with

a cube, 172
missing intersection with

a cylinder, 178
missing intersections,

60, 62
missing intersections

with a CSG shape,
229, 235

originating behind
sphere, 61

originating in sphere, 61
rotating with, 68
scaling with, 67, 70, 74
shadow rays, 111–116
smooth triangles, 220–

225
transforming spheres

with, 66–70
world building, 92

recursion
infinite, 142, 146
limiting, 142, 147–150,

155

Index • 260

recursive ray tracing, de-
fined, xvi

reflection, 142, 146–149
refraction, 150, 155

recursive ray tracing, defined,
xvi, see also rays

reflectance, Fresnel effect,
161–165

reflection, see also ambient
reflection

combining with refrac-
tion, 161, 163

CSG shapes, 237
diffuse, 84–89, 165
exercises, 165
Fresnel effect, 160–165
materials, adding to,

141–149
partial, 143, 145
Phong reflection model,

83–89
recursion, 142, 146–149
scaling, 47
setting levels of, 143
specular reflection, 84–89
striking nonreflective

surface, 142, 144
striking reflective surface,

142, 144
striped pattern, 129, 132
tips, 165
total internal reflection,

150, 156, 159, 161
understanding, 82, 142
vector, Phong reflection

model, 87–89
vector, computing, 82–

83, 142–144
vector, defined, 76
view transformations, 98

reflectv, 142–143

refraction
adding, 149–165
colors, 150, 155–158,

165
combining with reflection,

161, 163
computing under_point,

150, 154
defaults, 151
defined, 149
exercises, 165
Fresnel effect, 160–165
opaque surfaces, 150,

155
recursion, 150, 155
refractive index, 149–154
in shade_hit, 158–160

tips, 165
total internal reflection,

150, 156, 159, 161
transparent surfaces, 150

refractive index
defaults, 151
defined, 149
using, 150–154

refractive_index attribute, 150

renderer, performance, 107

RenderMan, 3

resources for this book
3D modeling, 225
Cucumber, xviii
linear algebra, 31
OBJ files, 218, 226
Perlin noise, 140
ray tracers, xx
ray-sphere intersections,

62
refractive indices, 149
torus primitives, 246

right operand, 229

right-handed coordinates, 3

ring pattern, 135, 139

rotation, 47–51, 54–56, 68

rows
specifying when creating

matrices, 26
transposing matrices, 32

S
saving canvas, 19–22

scalar division, tuples, 7

scalar multiplication
colors, 16
tuples, 7

scalar product, see dot prod-
uct

scalar value
defined, 8
dot product, 10

scaling
composite shapes, 204
inverse, 46, 67
matrices, 46
reflection, 47
spheres with rays, 67,

70, 74
tuples, 46
vectors, 46

scenarios
Cucumber, xvii
outline format, 151

scenes, 91–107
camera, implementing,

100–105
exercises, 105–107
optimizing with bounding

boxes, 200–203
view transformations,

defining, 97–100
world object, building,

92–97

schlick(), 161–165

Schlick, Christophe, 161

Schur product, 17

shade_hit()
multiple light sources, 96
reflectance, 142, 145,

148, 161, 163
refraction, 158–160
rendering shadows, 113–

116
striped pattern, 132
world building, 95–97

shading
cylinders, 180
exercises, 89–90
Phong reflection model,

83–89
reflections, computing,

142, 145–149
refraction, 158–160
vectors for, 75
world building, 93–97

shadow rays
defined, 111
rendering shadows, 113–

116
testing for shadows, 111–

113

shadows, 109–116
exercises, 116, 166, 239
indicating point is in

shadow, 110
opting out, 166, 237
overlapping, 96
performance, 96
preventing self-shadow-

ing, 115
rendering, 113–116
soft, 239
testing for, 111–113

shapes, see also constructive
solid geometry (CSG);
cubes; cylinders; polygons;
spheres; triangles

adding to groups, 194
child attribute, 195
common functions, 118

Index • 261

composite shapes, exer-
cise, 203–205

composite shapes, ideas
for, 205

grouping, 193–205
ideas for, 191, 205
parent attribute, 194–195
refactoring from sphere

example, 117–121
rendering cover image,

249–253

shearing, 51–53, 70, 74

shininess
Phong reflection model,

84–89
reflection and transparen-

cy, 165

silhouette exercises, 70–74,
89–90

Simplex noise, 140

sine, rotation, 47

skewing, see shearing

slash (/), delimiting vertex in-
formation, 225

smoothing, triangles, 209,
218–225

Snell’s Law, 157

specular highlights, 84, 165

specular reflection, 84–89

spheres
checker pattern, 138
computing normal, 77–82
deforming, 70, 74
exercises, 70–74, 89–90,

105–107, 124, 203–205
glassy, creating, 151
glassy, reflectance, 161–

165
glassy, refraction, 151–

154
groups, 203–205
intersections, 59–66, 70–

74
making transformable, 69
missing intersections,

60, 62
origin, 59, 80
planes exercise, 124
rays originating behind,

61
rays originating in, 61
refactoring planes from,

117–121
rotating, 68
scaling, 67, 70, 74
shearing, 70, 74

silhouette exercises, 70–
74, 89–90

texture maps, 244
transforming with rays,

66–70
translation, 70
unit spheres, 59, 66, 79
world building, 92

spherical mapping, 244

spotlights exercise, 240

striped patterns, 128–132

submatrices
defined, 34
determinants, finding,

34–38
extracting, 35
inverting matrices, 34–42
multiplying by inverse

transpose matrix, 82

subtraction
colors, 16
tuples, 6

supersampling, 243

surface normal, see normals

T
t for intersections

about, 58
ignoring negative, 65
intersecting cubes with

rays, 170, 172
maximum, 170, 172
minimum, 170, 172
tracking value, 63

tangents, 60, 179

termination, testing success-
ful, 147

test-first style, xvii

textures
CSG shapes, 227
texture maps, 244–245
texture vertex, 225

torus exercise, 246

total internal reflection, 150,
156, 159, 161

transform attribute, 101

transformations, 43–56, see
also reflection; scaling;
translation

advantages, 44
bounding boxes, 168,

202
chaining, 53–54
children, 197
converting points to ob-

ject space, 131

converting points to pat-
tern space, 132

exercises, 54–56
fluent APIs, 55
groups, 194, 197
normals, 79–82
order, 54, 106, 204
patterns, 130–132
rotation, 47–51, 54–56
shapes and identity ma-

trix, 118
shearing, 51–53, 70, 74
spheres with rays, 66–70
view, 97–105
world space vs. object

space, 68, 80

translation
defined, 44
ignoring, 45
inverse transpose matrix,

82
with matrices, 44–46
multiplying by vectors, 45
spheres, 70
with vectors, 44

transparency
adding, 149–165
CSG shapes, 237
defaults, 151
Fresnel effect, 160–165
tips, 165

transparency attribute, 150

transposition
exercises, 42
matrices, 32, 42

triangles, 207–226
computing normal, 208
creating, 208, 221
fan triangulation, 215
grouping, 211, 213, 215–

216
intersections, 208–212,

220–225
meshes, 213
smooth, 209, 218–225
Wavefront OBJ files for

3D data, 212–218, 223

true_up vector, 99

truncating cylinders, 177–
178, 181–184

truth tables
difference, 233
intersect, 232
union, 231

-tuple, negating tuples with, 7

Index • 262

tuples, see also points; vec-
tors

addition, 5
avoiding complex data

types, 4
colors as, 15
creating, 4
defined, 2
division, 7
exercises, 12
magnitude, computing, 8
multiplication, 7, 31
multiplying matrices, 30
negating, 7
normalization, 10
operations, 5–8
rotation, 47–51
scaling, 46
shearing, 51–53
subtraction, 6
understanding, 2–5

TurboSquid, 225

U
u, smoothing with normal in-

terpolation, 220–225

under_point, 150, 154

unions
CSG, 228, 230–236
vs. groups, 228

unit cones, 191

unit spheres
disadvantages, 66
normalization, 79
radius, 59

unit vectors, 9

Unity, 3

up vector, 99

UV mapping, 138

V
v

OBJ files, 212–213, 223
smoothing with normal

interpolation, 220–225

values, default parameter,
148

variables, names, xx

vectors, see also eye vector;
normals; tuples

converting points to, 120
creating, 4
cross product, comput-

ing, 11
dot product, computing,

10

edge, 208
exercises, 12
light, 76
magnitude, computing, 8
multiplying translation

matrices by, 45
normalization, 9
operations, 8–12
reflection, Phong reflec-

tion model, 87–89
reflection, computing,

82–83, 142
reflection, defined, 76
rotation, 47–51
scaling, 46
shading, 75
shearing, 51–53
translation with, 44
translation, ignoring, 45
tuples, adding, 6
tuples, negating, 7
tuples, subtracting, 6
tuples, understanding, 3
unit, 9
view transformations, 99

vertices
delimiting with forward

slash (/), 225
index, 214, 225
OBJ files, 212–213, 223
smooth triangles, 221
texture, 225

view transformations
camera, implementing,

100–105
creating, 97–100
defined, 97

virtual projectile exercises,
13, 22–24

vn, smooth triangles in OBJ
files, 223

vsize, 100, 102

W
w component

dot product, 11
ignoring translation with,

45
transforming normals, 82
tuples, adding, 6
tuples, subtracting, 6
using, 3

Wavefront MTL material files,
227

Wavefront OBJ files, 212–
218, 223, 226

Whitted ray tracing, defined,
xvi, see also rays

Whitted, Turner, xvi

Windows systems, viewing
PPM files, 20

world
building, 92–97
camera transform vs.

world, 103
camera, implementing,

100–105
converting world coordi-

nates to canvas coordi-
nates, 22

converting world space to
object space, 68, 80,
131, 197–199

intersections routine, 92
orientation to camera,

101
orientation, default, 98
origin, 59, 80
patterns and world space,

131
view transformations, 97–

100

X
x axis

axis-aligned bounding
boxes (AABB), 167, 171

intersecting rays with
cubes, 171

rotation, 47

x coordinates
converting to integers, 22
shearing, 51

x parameter, as 0-based, 19

xs, refraction, 152

xz, implementing a plane,
122–124

Y
y axis

3D models, 226
axis-aligned bounding

boxes (AABB), 167, 171
intersecting rays with

cubes, 171
rotation, 47, 49
swapping with z axis, 226

y coordinates
converting to integers, 22
flipping, 73
shearing, 51
truncating cylinders,

181–184

Index • 263

y parameter, as 0-based, 19

YAML format, 249

Z
z axis

3D models, 226
axis-aligned bounding

boxes (AABB), 167, 171

intersecting rays with
cubes, 171

rotation, 47, 50
swapping with y axis, 226

Index • 264

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email

us at support@pragprog.com with your feedback. Tell us your story and you

could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to

https://pragprog.com and use the coupon code BUYANOTHER2019 to save 30%

on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use

ebooks near water. If rash persists, see a doctor. Doesn’t apply to The

Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf

itself. Side effects may include increased knowledge and skill, increased

marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

Andy Hunt, Publisher

SAVE 30%!

Use coupon code

BUYANOTHER2019

The Joy of Mazes and Math
Rediscover the joy and fascinating weirdness of mazes and pure mathematics.

Mazes for Programmers
A book on mazes? Seriously?

Yes!

Not because you spend your day creating mazes, or

because you particularly like solving mazes.

But because it’s fun. Remember when programming

used to be fun? This book takes you back to those days

when you were starting to program, and you wanted

to make your code do things, draw things, and solve

puzzles. It’s fun because it lets you explore and grow

your code, and reminds you how it feels to just think.

Sometimes it feels like you live your life in a maze of

twisty little passages, all alike. Now you can code your

way out.

Jamis Buck

(286 pages) ISBN: 9781680500554. $38

https://pragprog.com/book/jbmaze

Good Math
Mathematics is beautiful—and it can be fun and excit-

ing as well as practical. Good Math is your guide to

some of the most intriguing topics from two thousand

years of mathematics: from Egyptian fractions to Tur-

ing machines; from the real meaning of numbers to

proof trees, group symmetry, and mechanical compu-

tation. If you’ve ever wondered what lay beyond the

proofs you struggled to complete in high school geom-

etry, or what limits the capabilities of the computer on

your desk, this is the book for you.

Mark C. Chu-Carroll

(282 pages) ISBN: 9781937785338. $34

https://pragprog.com/book/mcmath

Level Up
From data structures to architecture and design, we have what you need.

A Common-Sense Guide to Data Structures and Algorithms
If you last saw algorithms in a university course or at

a job interview, you’re missing out on what they can

do for your code. Learn different sorting and searching

techniques, and when to use each. Find out how to

use recursion effectively. Discover structures for spe-

cialized applications, such as trees and graphs. Use

Big O notation to decide which algorithms are best for

your production environment. Beginners will learn how

to use these techniques from the start, and experienced

developers will rediscover approaches they may have

forgotten.

Jay Wengrow

(220 pages) ISBN: 9781680502442. $45.95

https://pragprog.com/book/jwdsal

Design It!
Don’t engineer by coincidence—design it like you mean

it! Grounded by fundamentals and filled with practical

design methods, this is the perfect introduction to

software architecture for programmers who are ready

to grow their design skills. Ask the right stakeholders

the right questions, explore design options, share your

design decisions, and facilitate collaborative workshops

that are fast, effective, and fun. Become a better pro-

grammer, leader, and designer. Use your new skills to

lead your team in implementing software with the right

capabilities—and develop awesome software!

Michael Keeling

(358 pages) ISBN: 9781680502091. $41.95

https://pragprog.com/book/mkdsa

Learn Why, Then Learn How
Help introduce Elixir in your organization where it makes most sense, and learn Elixir on

the web with the Phoenix framework.

Adopting Elixir
Adoption is more than programming. Elixir is an excit-

ing new language, but to successfully get your applica-

tion from start to finish, you’re going to need to know

more than just the language. You need the case studies

and strategies in this book. Learn the best practices

for the whole life of your application, from design and

team-building, to managing stakeholders, to deploy-

ment and monitoring. Go beyond the syntax and the

tools to learn the techniques you need to develop your

Elixir application from concept to production.

Ben Marx, José Valim, Bruce Tate

(242 pages) ISBN: 9781680502527. $42.95

https://pragprog.com/book/tvmelixir

Programming Phoenix 1.4
Don’t accept the compromise between fast and beauti-

ful: you can have it all. Phoenix creator Chris McCord,

Elixir creator José Valim, and award-winning author

Bruce Tate walk you through building an application

that’s fast and reliable. At every step, you’ll learn from

the Phoenix creators not just what to do, but why.

Packed with insider insights and completely updated

for Phoenix 1.4, this definitive guide will be your con-

stant companion in your journey from Phoenix novice

to expert, as you build the next generation of web ap-

plications.

Chris McCord, Bruce Tate and José Valim

(325 pages) ISBN: 9781680502268. $45.95

https://pragprog.com/book/phoenix14

Dive Deep in to OTP and Absinthe
Put it all together with Elixir, OTP, and Phoenix. Dive into GraphQL for better APIs in Elixir.

It’s all here.

Functional Web Development with Elixir, OTP, and Phoenix
Elixir and Phoenix are generating tremendous excite-

ment as an unbeatable platform for building modern

web applications. For decades OTP has helped develop-

ers create incredibly robust, scalable applications with

unparalleled uptime. Make the most of them as you

build a stateful web app with Elixir, OTP, and Phoenix.

Model domain entities without an ORM or a database.

Manage server state and keep your code clean with

OTP Behaviours. Layer on a Phoenix web interface

without coupling it to the business logic. Open doors

to powerful new techniques that will get you thinking

about web development in fundamentally new ways.

Lance Halvorsen

(218 pages) ISBN: 9781680502435. $45.95

https://pragprog.com/book/lhelph

Craft GraphQL APIs in Elixir with Absinthe
Your domain is rich and interconnected, and your API

should be too. Upgrade your web API to GraphQL,

leveraging its flexible queries to empower your users,

and its declarative structure to simplify your code.

Absinthe is the GraphQL toolkit for Elixir, a functional

programming language designed to enable massive

concurrency atop robust application architectures.

Written by the creators of Absinthe, this book will help

you take full advantage of these two groundbreaking

technologies. Build your own flexible, high-performance

APIs using step-by-step guidance and expert advice

you won’t find anywhere else.

Bruce Williams and Ben Wilson

(302 pages) ISBN: 9781680502558. $47.95

https://pragprog.com/book/wwgraphql

Fix Your Hidden Problems
From technical debt to deployment in the very real, very messy world, we’ve got the tools

you need to fix the hidden problems before they become disasters.

Software Design X-Rays
Are you working on a codebase where cost overruns,

death marches, and heroic fights with legacy code

monsters are the norm? Battle these adversaries with

novel ways to identify and prioritize technical debt,

based on behavioral data from how developers work

with code. And that’s just for starters. Because good

code involves social design, as well as technical design,

you can find surprising dependencies between people

and code to resolve coordination bottlenecks among

teams. Best of all, the techniques build on behavioral

data that you already have: your version-control sys-

tem. Join the fight for better code!

Adam Tornhill

(274 pages) ISBN: 9781680502725. $45.95

https://pragprog.com/book/atevol

Release It! Second Edition
A single dramatic software failure can cost a company

millions of dollars—but can be avoided with simple

changes to design and architecture. This new edition

of the best-selling industry standard shows you how

to create systems that run longer, with fewer failures,

and recover better when bad things happen. New cov-

erage includes DevOps, microservices, and cloud-native

architecture. Stability antipatterns have grown to in-

clude systemic problems in large-scale systems. This

is a must-have pragmatic guide to engineering for

production systems.

Michael Nygard

(376 pages) ISBN: 9781680502398. $47.95

https://pragprog.com/book/mnee2

JavaScript and more JavaScript
JavaScript is back and better than ever. Rediscover the latest features and best practices

for this ubiquitous language.

Rediscovering JavaScript
JavaScript is no longer to be feared or loathed—the

world’s most popular and ubiquitous language has

evolved into a respectable language. Whether you’re

writing frontend applications or server-side code, the

phenomenal features from ES6 and beyond—like the

rest operator, generators, destructuring, object literals,

arrow functions, modern classes, promises, async, and

metaprogramming capabilities—will get you excited

and eager to program with JavaScript. You’ve found

the right book to get started quickly and dive deep into

the essence of modern JavaScript. Learn practical tips

to apply the elegant parts of the language and the

gotchas to avoid.

Venkat Subramaniam

(286 pages) ISBN: 9781680505467. $45.95

https://pragprog.com/book/ves6

Simplifying JavaScript
The best modern JavaScript is simple, readable, and

predictable. Learn to write modern JavaScript not by

memorizing a list of new syntax, but with practical

examples of how syntax changes can make code more

expressive. Starting from variable declarations that

communicate intention clearly, see how modern prin-

ciples can improve all parts of code. Incorporate ideas

with curried functions, array methods, classes, and

more to create code that does more with less while

yielding fewer bugs.

Joe Morgan

(282 pages) ISBN: 9781680502886. $47.95

https://pragprog.com/book/es6tips

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers will

be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page

https://pragprog.com/book/jbtracer
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date

https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new

titles, sales, coupons, hot tips, and more.

New and Noteworthy

https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: https://pragprog.com/book/jbtracer

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

	Cover
	Table of Contents
	Acknowledgments
	Foreword
	Getting Started
	Who This Book Is For
	How to Read This Book
	Things to Watch Out For

	1. Tuples, Points, and Vectors
	Tuples
	Operations
	Putting It Together

	2. Drawing on a Canvas
	Representing Colors
	Implementing Color Operations
	Creating a Canvas
	Saving a Canvas
	Putting It Together

	3. Matrices
	Creating a Matrix
	Multiplying Matrices
	The Identity Matrix
	Transposing Matrices
	Inverting Matrices
	Putting It Together

	4. Matrix Transformations
	Translation
	Scaling
	Rotation
	Shearing
	Chaining Transformations
	Putting It Together

	5. Ray-Sphere Intersections
	Creating Rays
	Intersecting Rays with Spheres
	Tracking Intersections
	Identifying Hits
	Transforming Rays and Spheres
	Putting It Together

	6. Light and Shading
	Surface Normals
	Reflecting Vectors
	The Phong Reflection Model
	Putting It Together

	7. Making a Scene
	Building a World
	Defining a View Transformation
	Implementing a Camera
	Putting It Together

	8. Shadows
	Lighting in Shadows
	Testing for Shadows
	Rendering Shadows
	Putting It Together

	9. Planes
	Refactoring Shapes
	Implementing a Plane
	Putting It Together

	10. Patterns
	Making a Striped Pattern
	Transforming Patterns
	Generalizing Patterns
	Making a Gradient Pattern
	Making a Ring Pattern
	Making a 3D Checker Pattern
	Putting It Together

	11. Reflection and Refraction
	Reflection
	Transparency and Refraction
	Fresnel Effect
	Putting It Together

	12. Cubes
	Intersecting a Ray with a Cube
	Finding the Normal on a Cube
	Putting It Together

	13. Cylinders
	Intersecting a Ray with a Cylinder
	Finding the Normal on a Cylinder
	Truncating Cylinders
	Capped Cylinders
	Cones
	Putting It Together

	14. Groups
	Implementing Groups
	Finding the Normal on a Child Object
	Using Bounding Boxes to Optimize Large Scenes
	Putting It Together

	15. Triangles
	Triangles
	Wavefront OBJ Files
	Smooth Triangles
	Smooth Triangles in OBJ Files
	Putting It Together

	16. Constructive Solid Geometry (CSG)
	Implementing CSG
	Coloring CSG Shapes
	Putting It Together

	17. Next Steps
	Area Lights and Soft Shadows
	Spotlights
	Focal Blur
	Motion Blur
	Anti-aliasing
	Texture Maps
	Normal Perturbation
	Torus Primitive
	Wrapping It Up

	A1. Rendering the Cover Image
	Index
	– SYMBOLS –
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– X –
	– Y –
	– Z –

