

Early Praise for Python Brain Teasers

Miki Tebeka’s brain teasers are a delightful and challenging collection of puzzles
that will amuse novice Python developers and challenge experienced developers
to think carefully about their mental model of Python execution.

Beyond amusement, the kind of thinking Miki urges on readers is genuinely im-
portant for all of us who have puzzled for far too long (and far too often) over some
small snippet of code, written in our real codebases, that just “has to” do one
thing, but actually does another.

➤ Dr. David Mertz
Partner and Senior Trainer, KDM Training

Miki is a world-class Python and Go expert and a hands-on professional. This
publication is another evidence that he comes from the field and that he can ar-
ticulate not only the practical benefits and their practice but also the thought and
the meta thinking behind them.

➤ Shlomo Yona
Founder and Chief Scientist, mathematic.ai

I think even the seasoned Pythonista has a lot to learn from Python Brain Teasers
by @tebeka.

➤ David Bordeynik
Software Architect, NVIDIA

I strongly recommended this book to every Python programmer I know.

➤ Mafinar Khan
Pythonista. Dartisan. Alchemist.

We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

Python Brain Teasers
Exercise Your Mind

Miki Tebeka

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Margaret Eldridge
Copy Editor: Jennifer Whipple
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-900-7
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To the Python community, I’m proud to call
myself a member.

Contents

Acknowledgments ix
Preface xi

Foreword by Raymond Hettinger xv

Part I — Python Brain Teasers

Puzzle 1. Ready Player One 3
Puzzle 2. A Slice of π 7
Puzzle 3. When in Kraków 9
Puzzle 4. A Task to Do 13
Puzzle 5. Send It to the Printer 15
Puzzle 6. Spam, Spam, Spam 17
Puzzle 7. User! Identify Yourself 19
Puzzle 8. sorted? reversed? 21
Puzzle 9. A Simple Math 23
Puzzle 10. Will It Fit? 27
Puzzle 11. Click the Button 29
Puzzle 12. Attention Seeker 33
Puzzle 13. Identity Crisis 37
Puzzle 14. The Great Divide 39
Puzzle 15. Where’s Waldo? 41
Puzzle 16. Call Me Maybe 43
Puzzle 17. Endgame 47
Puzzle 18. Round and Round We Go 49
Puzzle 19. TF (Without IDF) 51
Puzzle 20. A Divided Time 53
Puzzle 21. Tell Me the Future 57
Puzzle 22. Loop de Loop 59
Puzzle 23. Path to Nowhere 63
Puzzle 24. 12 Angry Men 65

Puzzle 25. Look at the Pretty Colors 69
Puzzle 26. Let’s Vote 73
Puzzle 27. An Inside Job 75
Puzzle 28. Here Kitty Kitty 79
Puzzle 29. Not My Type 83
Puzzle 30. Highly Valued 87

Index 91

Contents • viii

Acknowledgments
I’m grateful for anyone who helped me write this book. Every contribution,
from finding bugs to fixing grammar to letting me work in peace, was super
helpful.

Here is a list of people who helped; my apologies to anyone I forgot:

• David Bordeynik for his comments and suggestions
• Elad Eyal for his comments
• Iddo Berger for his comments and suggestions
• Raymond Hettinger for lifelong Python education
• Shmuel Amar for his comments
• Yaki Tebeka for his comments
• Yehuda Lavy for his comments

report erratum • discuss

http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Preface
The Python programming language is a simple one, but like all other lan-
guages it has its quirks. This book uses these quirks as a teaching opportu-
nity. By understanding the gaps in your knowledge, you’ll become better at
what you do.

There’s a lot of research showing that people who make mistakes during the
learning process learn better than people who don’t. If you use this approach
when fixing bugs, you’ll find you enjoy bug hunting more and become a better
developer after each bug you fix.

These teasers will help you avoid mistakes. Some of the teasers are from my
own experience shipping bugs to production, and some are from others doing
the same.

Teasers are fun! We geeks love to solve puzzles. You can also use these teasers
to impress your coworkers, have knowledge competitions, and become better
together.

Many of these brain teasers are from quizzes I gave at conferences and
meetups. I’ve found that people highly enjoy them and they tend to liven the
room.

At the beginning of each chapter, I’ll show you a short Python program and
will ask you to guess the output. The following are the possible answers:

• Syntax error
• Exception
• Hang
• Some output (e.g., [1 2 3])

Python Version

I’m using Python version 3.8.2 to run the code. The output might
change in future versions.

report erratum • discuss

http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Before moving on to the answer and the explanation, go ahead and guess the
output. After guessing the output, I encourage you to run the code and see
the output yourself; only then proceed to read the solution and the explana-
tion. I’ve been teaching programming for many years and found this course
of action to be highly effective.

About the Author
Miki Tebeka has a B.Sc. in computer science from Ben Gurion University. He
also studied there toward an M.Sc. in computational linguistics.

Miki has a passion for teaching and mentoring. He teaches many workshops
on various technical subjects all over the world and has mentored many
young developers on their way to success. Miki is involved in open source,
has several projects of his own, and has contributed to several more,
including the Python project. He has been using Python for more than
twenty-three years.

Miki wrote Pandas Brain Teasers, Go Brain Teasers, and Forging Python and
is a LinkedIn Learning author and an organizer of Go Israel Meetup,
GopherCon Israel, and PyData Israel Conference.

About the Code
You can find the brain teasers code at https://pragprog.com/titles/d-pybrain/python-brain-
teasers/.

I’ve tried to keep the code as short as possible and remove anything that is
not related to the teaser. This is not how you’ll normally write code.

About You
I assume you know Python at some level and have experience programming
with it. This book is not for learning how to program in Python. If you don’t
know Python, I’m afraid these brain teasers are not for you.

I recommend learning Python first (it’s also fun). There are many resources
online. Google is your friend.

One More Thing
As you work through the puzzles in this book, it might help to picture yourself
as Nancy Drew, Sherlock Holmes, or any other of your favorite detectives
trying to solve a murder mystery in which you are the murderer. Think of it
like this:

Preface • xii

report erratum • discuss

https://pragprog.com/titles/d-pybrain/python-brain-teasers/
https://pragprog.com/titles/d-pybrain/python-brain-teasers/
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Debugging is like being a detective in a crime movie where you’re also the
murderer.

— Filipe Fortes

With this mindset, I have found that things are easier to understand, and the
work is more enjoyable. So, with that in mind, have fun guessing the brain
teasers in this book—perhaps you might even learn a new trick or two.

If you’d like to learn more, please send an email to info@353solutions.com, and
we’ll tailor a hands-on workshop to meet your needs. There’s also a compre-
hensive offering of hands-on workshops at www.353solutions.com.

Stay curious, and keep hacking!

Miki Tebeka, March 2020

report erratum • discuss

One More Thing • xiii

mailto:info@353solutions.com
http://www.353solutions.com
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Foreword by Raymond Hettinger
In my Python conference talks, I frequently check in with the audience to
ask, “Have you learned something new?” Getting a “yes” over and over again
fills everyone with delight and tells us that our time is being well-spent. Miki’s
collection of brain teasers will give you that immediate gratification, once per
puzzle. Expect to have a lot fun with his stream of “aha!” moments.

Miki and I have worked together three times: once in a trading company, once
at a web services company, and again as Python trainers. Working with him
always gives you that “I learned something new” experience.

As trainers, we’ve found that a key skill is the ability to read code and to know,
really know, what it does. With Miki’s well-chosen examples, you can rapidly
learn this essential skill. He gives you an interesting code fragment, asks you
to make a prediction, and then gently explains the outcome. As icing on the
cake, he also provides links to authoritative references to deepen your knowledge.

Python is not a difficult language, but there is much more to it than meets
the eye. It is easy to assume you know the language well when you really
don’t. The Dunning-Kruger effect is pervasive in the Python world. Miki’s
brain teasers will help you quickly discover what you don’t know, and his
explanations will fill in the missing knowledge to build your expertise.

Here’s an example that I’ve asked during interviews: What does this code do?

for i in range(10):
print(i)
i = 5

print(i)

The answer quickly reveals whether someone understands iterators and
scoping in Python. Miki’s book is full of such gems.

Hope you enjoy the ride,
Raymond Hettinger
Python Core Developer with a PSF Distinguished Service Award

report erratum • discuss

http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Part I

Python Brain Teasers

Puzzle 1

Ready Player One

player.py
class Player:

Number of players in the Game
count = 0

def __init__(self, name):
self.name = name
self.count += 1

p1 = Player('Parzival')
print(Player.count)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/player.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: 0

When you write self.count, you’re doing an attribute lookup. The attribute you’re
looking for, in this case, is count.

Getting an attribute in Python is a complex operation. Almost every Python
object stores its attributes in a dict called __dict__. Python will first try to find
the attribute in the instance dictionary, then in the instance’s class (__class__)
dictionary, and then up the inheritance hierarchy (__mro__). Finally, if the
attribute you’re looking for is not found, Python will raise an AttributeError.

Attribute Lookup

Python’s attribute lookup is actually more complex than the pre-
vious explanation. Some objects such as C extensions and classes
with __slots__ don’t have a __dict__ and there are also descriptors, the
__getattribute__ special methods, and other special cases.

Here’s possible code for this algorithm, which is implemented in Python by
the built-in getattr:

def get_attr(obj, name):
"""Emulate built in getattr"""
if name in obj.__dict__:

print(f'found {name} in obj')
return obj.__dict__[name]

if name in obj.__class__.__dict__:
print(f'found {name} in class')
return obj.__class__.__dict__[name]

for cls in obj.__class__.__mro__:
if name in cls.__dict__:

print(f'found {name} in {cls.__name__}')
return cls.__dict__[name]

raise AttributeError(name)

What happens when you do self.count += 1 in the teaser? Python will translate
it to self.count = self.count + 1. Then it’ll use getattr(self, count) and will get the count
defined in Player with the value of 0. Once Python has the value of self.count + 1
= 1 on the right-hand side of the assignment (=), it’ll call setattr(self, count, 1).
setattr will create a new entry in self.__dict__ that will shadow the count in Player.

Lastly, you print Player.count, which is still 0. If you print p1.count you will get 1.

Python Brain Teasers • 4

report erratum • discuss

http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Further Reading
Class Instances

docs.python.org/3/reference/datamodel.html#index-49

Special Attributes
docs.python.org/3/library/stdtypes.html#special-attributes

Python’s Class Development Toolkit (Video by Raymond Hettinger)
youtube.com/watch?v=HTLu2DFOdTg

Customizing Module Attribute Access
docs.python.org/3/reference/datamodel.html#customizing-module-attribute-access

Variable Shadowing on Wikipedia
en.wikipedia.org/wiki/Variable_shadowing

getattr Documentation
docs.python.org/3/library/functions.html#getattr

report erratum • discuss

Ready Player One • 5

http://docs.python.org/3/reference/datamodel.html#index-49
http://docs.python.org/3/library/stdtypes.html#special-attributes
http://youtube.com/watch?v=HTLu2DFOdTg
http://docs.python.org/3/reference/datamodel.html#customizing-module-attribute-access
http://en.wikipedia.org/wiki/Variable_shadowing
http://docs.python.org/3/library/functions.html#getattr
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 2

A Slice of π

pi.py
π = 355 / 113
print(π)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/pi.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: 3.1415929203539825

There are two surprising things here: one is that π is a valid identifier, and
the second is that 355 / 113 computes to a float.

Let’s start with π (the Greek letter pi). Python 3 changed the default encoding
for source files to UTF-8 and allows Unicode identifiers.

This can be fun to write, but in practice it’ll make your coworkers’ lives
harder. I can easily type π in the Vim editor that I use; however, most editors
and IDEs will require more effort.

One area where I’ve found that Unicode identifiers are helpful is when trans-
lating mathematical formulas to code. Apart from that, stick to plain old
ASCII.

Now for 355 / 113. Python 3 does the right mathematical division. If you try
this code in Python 2, you’ll get 3 since Python 2 shows more of its C origins.
If you want integer division to return an int in Python 3, use the // operator
(e.g., 355 // 113). This is handy when calculating indices, which must be whole
numbers.

Further Reading
Identifiers and Keywords in the Python Reference

docs.python.org/3/reference/lexical_analysis.html#identifiers

PEP 3120: Using UTF-8 as the Default Source Encoding
python.org/dev/peps/pep-3120/

PEP 263: Defining Python Source Code Encodings
python.org/dev/peps/pep-0263/

Vim Editor
vim.org

Python Brain Teasers • 8

report erratum • discuss

http://docs.python.org/3/reference/lexical_analysis.html#identifiers
http://python.org/dev/peps/pep-3120/
http://python.org/dev/peps/pep-0263/
http://vim.org
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 3

When in Kraków

city.py
city = 'Kraków'
print(len(city))

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/city.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: 7

Unicode

If you’re reading this book in electronic format, don’t copy and
paste the code from the book; you’ll probably get a different answer
due to Unicode translation issues. Use the book source code. See
the About the Code section on where to find it.

If you count the number of characters in Kraków, it’ll come out to 6. So why 7?
The reason is ... history.

In the beginning, computers were developed in English-speaking coun-
tries—the UK and the US. When early developers wanted to encode text in
computers that only understand bits, they came out with the following scheme.
Use a byte (8 bits) to represent a character. For example, a is 97 (01100001), b
is 98, and so on. One byte is enough for the English alphabet, containing
twenty-six lowercase letters, twenty-six uppercase letters, and ten digits.
There is even some space left for other special characters (e.g., 9 for tab). This
encoding is called ASCII. (To be precise, ASCII uses only 7 bits, and LATIN-1
extends it to 8 bits.)

After a while, other countries started to use computers and they wanted to
write using their native languages. ASCII wasn’t good enough; a single byte
can’t hold all the numbers needed to represent letters in different languages.
This led to several different encoding schemes; the most common is UTF-8.

Some of the characters in UTF-8 are control characters. In this case we have
the character o at position 4, and after it a control character saying “add an
umlaut to the previous character.” This is why the length of the string is 7.

In Python 3 you have str, which is an immutable sequence of Unicode code
points, and bytes, which is an immutable sequence of bytes. At the edges of
your program when you get bytes, convert it to a str using the decode method.
When you send data, use the str.encode method to convert it to bytes. Internally,
use str in your code.

Further Reading
Unicode HOWTO

docs.python.org/3/howto/unicode.html

Unicode and You
betterexplained.com/articles/unicode/

Python Brain Teasers • 10

report erratum • discuss

http://docs.python.org/3/howto/unicode.html
http://betterexplained.com/articles/unicode/
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Unicode on Wikipedia
en.wikipedia.org/wiki/Unicode

“Pragmatic Unicode, or, How Do I Stop the Pain?” (Video)
youtube.com/watch?v=sgHbC6udIqc

ASCII on Wikipedia
en.wikipedia.org/wiki/ASCII

UTF-8 on Wikipedia
en.wikipedia.org/wiki/UTF-8

bytes.decode in the Python Documentation
docs.python.org/3/library/stdtypes.html#bytes.decode

str.encode in the Python Documentation
docs.python.org/3/library/stdtypes.html#str.encode

report erratum • discuss

When in Kraków • 11

http://en.wikipedia.org/wiki/Unicode
http://youtube.com/watch?v=sgHbC6udIqc
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/UTF-8
http://docs.python.org/3/library/stdtypes.html#bytes.decode
http://docs.python.org/3/library/stdtypes.html#str.encode
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 4

A Task to Do

tasks.py
from heapq import heappush, heappopLine 1

-

tasks = []-

heappush(tasks, (30, 'work out'))-

heappush(tasks, (10, 'wake up'))5

heappush(tasks, (20, 0xCAFFE))-

heappush(tasks, (20, 'feed cat'))-

heappush(tasks, (40, 'write book'))-

-

while tasks:10

_, payload = heappop(tasks)-

print(payload)-

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/tasks.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will raise a TypeError exception.

The built-in heapq module implements min-heap over lists.

It’s common to use a heap for a priority queue. Pushing and deleting from
the heap are log(N) operations, and the first item in the heap (e.g., tasks[0]) is
always the smallest.

To compare items in the heap, heapq uses the comparison defined in the
object’s type (using the < operator, which maps to the specific type’s __lt__
special method). The objects in the tasks heap are tuples. Python orders tuples,
and lists, in a lexicographical order, very much like books are ordered in the
library. Lexicographical order compares the first two items, then the second
two, and so on. Finally, if all of the items are equal, the longer tuple is consid-
ered bigger.

In line 11, you pop the first item from tasks, which is (10, 'wake up'). After this
item is removed from the heap, heapq will move the smallest item to the top
of the heap. There are two candidates (20, 'feed cat') and (20, 0xCAFFE); since the
first items in these tuples are equal, Python will try to compare the second
items.

l33t Code

0xCAFFE is a hexadecimal (base 16) number. Writing "English" this
way is called "leet" (or "l33t").

Comparing 'feed cat' (a str) with 0xCAFFE (an int) will raise an exception.

Further Reading
heapq Module

docs.python.org/3/library/heapq.html

Heap Data Structure on Wikipedia
en.wikipedia.org/wiki/Heap_(data_structure)

Lexicographical Order on Wikipedia
en.wikipedia.org/wiki/Lexicographical_order

Tuples and Sequences
docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences

Python Brain Teasers • 14

report erratum • discuss

http://docs.python.org/3/library/heapq.html
http://en.wikipedia.org/wiki/Heap_(data_structure)
http://en.wikipedia.org/wiki/Lexicographical_order
http://docs.python.org/3/tutorial/datastructures.html#tuples-and-sequences
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 5

Send It to the Printer

printer.py
from threading import ThreadLine 1

from time import sleep-

-
-

def printer():5

for i in range(3):-

print(i, end=' ')-

sleep(0.1)-

-
10

thr = Thread(target=printer, daemon=True)-

thr.start()-

print() # Add newline-

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/printer.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: 0

Output

Due to the unpredictable nature of threads, this code might not
print anything.

In line 11, you start a daemon thread.

The Python documentation says

The entire Python program exits when no alive non-daemon threads are left.

Since after the print() line there are no more non-daemon threads running,
the process will exit. printer will manage to print the first number (0) and then
the program will exit, taking down the thread with it.

If you see that your Python program finished working but seems to be “stuck,”
it’s usually a sign there’s a non-daemon thread running loose somewhere.

If you do want to wait for a thread to terminate, you can use the thread’s join
method.

printer_join.py
from threading import Thread
from time import sleep

def printer():
for i in range(3):

print(i, end=' ')
sleep(0.1)

thr = Thread(target=printer, daemon=True)
thr.start()
thr.join()
print() # Add newline

Further Reading
Threading Module

docs.python.org/3/library/threading.html

Thread.join Documentation
docs.python.org/3/library/threading.html#threading.Thread.join

Python Brain Teasers • 16

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/printer_join.py
http://docs.python.org/3/library/threading.html
http://docs.python.org/3/library/threading.html#threading.Thread.join
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 6

Spam, Spam, Spam

email.py
from email.message import EmailMessage

msg = EmailMessage()
msg['From'] = 'prince@palace.ng'
msg['To'] = 'Scrooge McDuck <scoorge@disney.com>'
msg.set_content('''\
Dear Sir.

I'm a Nigerian prince who came into some misfortune.
...
''')
print(msg)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/email.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will raise a ModuleNotFoundError exception.

When Python looks for a module to import (e.g., email), it’ll go over the directories
in sys.path and try to find a module matching the name. The first value in sys.path
is '' (the empty string). '' stands for the current directory, and in the current
directory you have the teaser file email.py. Python will load this email.py instead of
the one in the standard library and will not find the message submodule in it.

The lesson here: don’t use module names already taken by the standard library. ☺

Python’s import mechanism is pretty complex. Apart from .py files, it can
import the following:

• Built-in modules (e.g., sys is “baked” into Python)
• Directories with __init__.py file in them
• Shared libraries (.so, .dll, .dyld …)
• .pyc byte-compiled files (found in __pycache__ directory)
• And more

You can also add import hooks to import from other locations. There’s a built-
in hook to import from zip files and you can see python38.zip in sys.path.

To allow distributions to customize the import path, Python looks for site.py
and loads it when it starts. You can run python -m site to view the import path.

If you’d like more freedom with package names, you can use relative imports.
If you have a file called email.py in your package, it can import the system email.
Inside your package you can use from .email import send_email to import the
send_email from your package.

Further Reading
Import System

docs.python.org/3/reference/import.html

importlib Module
docs.python.org/3/library/importlib.html

“Modules and Packages: Live and Let Die!” Video by David Beazley
youtube.com/watch?v=0oTh1CXRaQ0

Monty Python “Spam Song”
youtube.com/watch?v=mBcY3W5WgNU

Relative Imports in the Python Documentation
docs.python.org/3/reference/import.html#package-relative-imports

Python Brain Teasers • 18

report erratum • discuss

http://docs.python.org/3/reference/import.html
http://docs.python.org/3/library/importlib.html
http://youtube.com/watch?v=0oTh1CXRaQ0
http://youtube.com/watch?v=mBcY3W5WgNU
http://docs.python.org/3/reference/import.html#package-relative-imports
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 7

User! Identify Yourself

user.py
next_uid = 1

class User:
def __init__(self, name):

global next_uid

self.name = name
self.__id = next_uid
next_uid += 1

u = User('daffy')
print(f'name={u.name}, id={u.__id}')

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/user.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will raise an AttributeError exception.

Python does not have private and protected attributes like other languages (we
joke that Python is a language for consenting adults).

By convention, if you prefix your attributes (or variables) with _ (called
underscore), they are considered an implementation detail. You can still access
them, but the author doesn’t consider them part of the public API and might
rename or remove them in the next version.

Say you choose to use _id in User. Now all the subclasses of User can’t use their
own _id attribute because they might run over the _id the methods in User use.
The solution Python provides is called name mangling.

Let’s have a look at the u’s attributes.

>>> print(vars(u)) # Also print(u.__dict__)
{'name': 'daffy', '_User__id': 0}

__id was transformed into _User__id. Inside a User method, you can use __id and
it’ll work. But from “outside,” including subclasses, this attribute is _User__id.

This approach frees the set of names classes can use for nonpublic attributes
and methods. You can pick a name, add __ before it, and ensure no subclass
will overrun it.

If someone really wants, they can still print(u._User__id) and it’ll work. However,
they are intentionally doing something risky.

Name mangling is not something unique to Python. It’s also used in C, Java,
and other languages. See the following links for more information.

Further Reading
Private Variables on the Python Documentation

docs.python.org/3/tutorial/classes.html#private-variables

Name Mangling on Wikipedia
en.wikipedia.org/wiki/Name_mangling

“Python’s Class Development Toolkit” Video by Raymond Hettinger
youtube.com/watch?v=HTLu2DFOdTg

Python Brain Teasers • 20

report erratum • discuss

http://docs.python.org/3/tutorial/classes.html#private-variables
http://en.wikipedia.org/wiki/Name_mangling
http://youtube.com/watch?v=HTLu2DFOdTg
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 8

sorted? reversed?

sorted.py
nums = [4, 1, 3, 2]
rev = reversed(nums)
print(sorted(rev) == sorted(rev))

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/sorted.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: False

The built-in reversed function returns an iterator.

Python’s iterators can do two things:

• Return the next item (by using a for loop or calling the built-in next function)
• Signal there are no more items by raising StopIteration (we say the iterator

is exhausted)

The first call to sorted(rev) consumes everything from the iterator. When you
call sorted(rev) the second time, the iterator will immediately raise StopIteration
and sorted will assume an empty iterator.

The result of the first sorted(rev) is [1, 2, 3, 4], and the result of the second
sorted(rev) is [] (the empty list). This is why the comparison returns False.

Further Reading
reversed Documentation

docs.python.org/3/library/functions.html#reversed

Iterator on “Functional Programming HOWTO”
docs.python.org/3/howto/functional.html#functional-howto-iterators

Iterator on the Python Wiki
wiki.python.org/moin/Iterator

“Generator Tricks for System Programmers” by David Beazley
dabeaz.com/generators/

“Generators: The Final Frontier” Video by David Beazley
youtube.com/watch?v=D1twn9kLmYg

itertools Module Code Examples
docs.python.org/3/library/itertools.html

next Documentation
docs.python.org/3/library/functions.html#next

Python Brain Teasers • 22

report erratum • discuss

http://docs.python.org/3/library/functions.html#reversed
http://docs.python.org/3/howto/functional.html#functional-howto-iterators
http://wiki.python.org/moin/Iterator
http://dabeaz.com/generators/
http://youtube.com/watch?v=D1twn9kLmYg
http://docs.python.org/3/library/itertools.html
http://docs.python.org/3/library/functions.html#next
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 9

A Simple Math

mul.py
print(1.1 * 1.1)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/mul.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: 1.2100000000000002

You might have expected 1.21, which is the right mathematical answer.

Some new developers, when seeing this or similar output, come to the message
boards and say, “We found a bug in Python!” The usual answer is, “Read the
fine manual” (or RTFM for short).

Floating point is sort of like quantum physics: the closer you look, the messier
it gets.

— Grant Edwards

The basic idea behind this issue is that floating points sacrifice accuracy for
speed (i.e., cheat). Don’t be shocked. It’s a trade-off we do a lot in computer
science.

The result you see conforms with the floating-point specification. If you run
the same code in C, Java, Go … you will see the same output.

See the links in the next section if you’re interested in understanding more
about how floating points work. The main thing you need to remember is that
they are not accurate; and accuracy worsens as the number gets bigger.

One implication is that when testing involves floating points, you need to
check for roughly equal and decide what is an acceptable threshold. The built-
in unittest module has an assertAlmostEqual method for these cases. In the scien-
tific Python world, numpy offers a versatile allclose function.

Floating points have several other oddities. For example, there’s a special nan
value (short for not a number). nan does not equal any number, including itself.

>>> float('nan') == float('nan')
False

To check that a value is nan, you need to use a special function such as
math.isnan.

If you need better accuracy, look into the decimal module, which provides cor-
rectly rounded decimal floating-point arithmetic.

Further Reading
“Floating-Point Arithmetic: Issues and Limitations” in the Python Documentation

docs.python.org/3/tutorial/floatingpoint.html

floating point zine by Julia Evans
twitter.com/b0rk/status/986424989648936960

Python Brain Teasers • 24

report erratum • discuss

http://docs.python.org/3/tutorial/floatingpoint.html
http://twitter.com/b0rk/status/986424989648936960
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

What Every Computer Scientist Should Know About Floating-Point Arithmetic
docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

IEEE 754 on Wikipedia
en.wikipedia.org/wiki/IEEE_754

Built-in decimal Module
docs.python.org/3/library/decimal.html

assertAlmostEqual Documentation
docs.python.org/3/library/unittest.html#unittest.TestCase.assertAlmostEqual

numpy’s allclose
docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html

report erratum • discuss

A Simple Math • 25

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://en.wikipedia.org/wiki/IEEE_754
http://docs.python.org/3/library/decimal.html
http://docs.python.org/3/library/unittest.html#unittest.TestCase.assertAlmostEqual
http://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 10

Will It Fit?

assign.py
a = [1, 2, 3, 4]
a[1:2] = [10, 20, 30]
print(a)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/assign.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: [1, 10, 20, 30, 3, 4]

Python’s slicing operator is half open ([) in math), meaning you’ll get from the
first index up to but not including the last index. a[1:2] is in size 1, yet we
assign a list of size 3 to it.

The assignment documentation is a bit hard to read (see below if you’re
interested). Here’s an excerpt (my clipping and emphasis):

If the target is a slicing: … Finally, the sequence object is asked to replace the
slice with the items of the assigned sequence. The length of the slice may be differ-
ent from the length of the assigned sequence …

In short, when you write a[1:2] = [10, 20, 30] it’s like writing a = a[:1] + [10, 20, 30]
+ a[2:].

Further Reading
Assignment Statements on the Python Reference

docs.python.org/3/reference/simple_stmts.html#assignment-statements

Informal Introduction to Python
docs.python.org/3/tutorial/introduction.html

Slice Type
docs.python.org/3/library/functions.html#slice

Python’s List Type
docs.python.org/3/tutorial/datastructures.html#more-on-lists

Python Brain Teasers • 28

report erratum • discuss

http://docs.python.org/3/reference/simple_stmts.html#assignment-statements
http://docs.python.org/3/tutorial/introduction.html
http://docs.python.org/3/library/functions.html#slice
http://docs.python.org/3/tutorial/datastructures.html#more-on-lists
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 11

Click the Button

buttons.py
display = []Line 1

buttons = []2

for n in range(10):3

A button is a function called when user clicks on it4

buttons.append(lambda: display.append(n))5

6

btn = buttons[3]7

btn()8

print(display)9

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/buttons.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: [9]

You probably expected [3] since each lambda appends its n to display.

However, the n that each lambda uses is the same n defined in line 3. This
type of variable binding is known as a closure.

You have two options to fix this bug. The first, and my preference, is to have
a make_button(n) function.

buttons_make.py
display = []
buttons = []

def make_button(n):
return lambda: display.append(n)

for n in range(10):
A button is a function called when user clicks on it
buttons.append(make_button(n))

btn = buttons[3]
btn()
print(display)

The second solution is to use the fact that default function arguments are
evaluated once at function creation.

buttons_default.py
display = []
buttons = []
for n in range(10):

A button is a function called when user clicks on it
buttons.append(lambda n=n: display.append(n)) # <1>

btn = buttons[3]
btn()
print(display)

The n=n defines a function parameter that shadows the n from the outer scope.

Further Reading
PEP 227: Statically Nested Scopes

python.org/dev/peps/pep-0227/

PEP 3104: Access to Names in Outer Scopes
python.org/dev/peps/pep-3104/

Python Brain Teasers • 30

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/buttons_make.py
http://media.pragprog.com/titles/d-pybrain/code/buttons_default.py
http://python.org/dev/peps/pep-0227/
http://python.org/dev/peps/pep-3104/
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Closure on Wikipedia
en.wikipedia.org/wiki/Closure_(computer_programming)

Variable Shadowing on Wikipedia
en.wikipedia.org/wiki/Variable_shadowing

report erratum • discuss

Click the Button • 31

http://en.wikipedia.org/wiki/Closure_(computer_programming)
http://en.wikipedia.org/wiki/Variable_shadowing
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 12

Attention Seeker

seeker.py
class Seeker:Line 1

def __getattribute__(self, name):2

if name not in self.__dict__:3

return '<not found>'4

return self.__dict__[name]5

6
7

s = Seeker()8

print(s.id)9

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/seeker.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will raise a RecursionError exception.

When you write s.id, Python does an attribute lookup (see puzzle 1, Ready
Player One). Python defines several hooks to bypass the usual attribute lookup
algorithm. The two main options are __getattr__ and __getattribute__.

Other Options

There are several other ways to modify attribute access such as
staticmethod, classmethod, properties, descriptors, and more.

__getattr__ is called when the regular attribute lookup fails, and it’s usually the
one you should use. __getattribute__ bypasses the attribute lookup and gives
you full control.

With great power comes great responsibility.

— Uncle Ben

Since __getattribute__ bypasses the attribute lookup, the code self.__dict__ in line
3 will call __getattribute__ again, and you descend into infinite recursion. Python
has a guard against infinite recursions. Once the call stack size is more than
sys.getrecursionlimit() a RecursionError will be raised. That is what you see in this
teaser.

You can increase the recursion limit with sys.setrecursionlimt. Unless you have
a really good reason, don’t do that.

Dictionaries in Python provide a similar hook to __getattr__ called __missing__.
You can implement collections.defaultdict and the like with __missing__.

Further Reading
Class Instances

docs.python.org/3/reference/datamodel.html#index-49

“Customizing Attribute Access” on the Python Reference
docs.python.org/3/reference/datamodel.html#customizing-attribute-access

“Descriptor HowTo Guide” on the Python Documentation
docs.python.org/3/howto/descriptor.html

__getattr__ Documentation
docs.python.org/3/reference/datamodel.html#object.__getattr__

Python Brain Teasers • 34

report erratum • discuss

http://docs.python.org/3/reference/datamodel.html#index-49
http://docs.python.org/3/reference/datamodel.html#customizing-attribute-access
http://docs.python.org/3/howto/descriptor.html
http://docs.python.org/3/reference/datamodel.html#object.__getattr__
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

__getattribute__ Documentation
docs.python.org/3/reference/datamodel.html#object.__getattribute__)

__missing__ Documentation
docs.python.org/3/reference/datamodel.html#object.__missing__

collections.defaultdict Documentation
docs.python.org/3/library/collections.html#collections.defaultdict

report erratum • discuss

Attention Seeker • 35

http://docs.python.org/3/reference/datamodel.html#object.__getattribute__)
http://docs.python.org/3/reference/datamodel.html#object.__missing__
http://docs.python.org/3/library/collections.html#collections.defaultdict
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 13

Identity Crisis

identity.py
a, b = 12, 3
x = a * b
y = b * a
print(x is y)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/identity.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: True

A Python variable is a name pointing to a Python object. When you have two
variables (such as x and y), you can ask two questions:

Equality
Are the objects these variables point to equal? (the == operator)

Identity
Do these two variables point to the same object? (the is operator)

Since you did two separate calculations for x and y, you’d expect them to be
equal but not identical. In general, you’d be right. Change the value of b to
333 and re-run; you will see False as the output.

The reason you’re seeing True is due to an implementation detail. Since the
small numbers are used a lot, Python is interning them.

Here’s what the documentation says:

The current implementation keeps an array of integer objects for all integers
between -5 and 256; when you create an int in that range you actually just get
back a reference to the existing object.

Meaning there’s only one copy of the number 1 in a Python program. Every
calculation that results in 1 returns the same object.

Further Reading
PyLong_FromLong Documentation

docs.python.org/3/c-api/long.html#c.PyLong_FromLong

String Interning on Wikipedia
en.wikipedia.org/wiki/String_interning

Flyweight Pattern on Wikipedia
en.wikipedia.org/wiki/Flyweight_pattern

Python Brain Teasers • 38

report erratum • discuss

http://docs.python.org/3/c-api/long.html#c.PyLong_FromLong
http://en.wikipedia.org/wiki/String_interning
http://en.wikipedia.org/wiki/Flyweight_pattern
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 14

The Great Divide

div.py
def div(a, b):

return a / b

if div(1, 2) > 0 or div(1, 0) > 0:
print('OK')

else:
print('oopsie')

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/div.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: OK

You probably expected this code to raise ZeroDivisionErro due to div(1, 0).

If you call div(1, 0) by itself, you will see the exception. Yet the logic operators
in Python, and and or, are short-circuit operators.

Here’s what the documentation says on and:

This is a short-circuit operator, so it only evaluates the second argument if the
first one is false.

In contrast, all arguments to a function call are evaluated before calling the
function. This means you can’t write your own my_and function that will behave
like the built-in and.

You can use this to your advantage. Say you’d like to load the current user
from the database (slow operation) only if the user is not in the session.

user = session.get('user') or load_current_user()

load_current_user() will be called only if session.get('user') returns None (which is False
in Python).

If you write

user = session.get('user', load_current_user())

then load_current_user() will be called every time, even if the user is in the session.

Further Reading
“Boolean Operations—and, or, not” in the Python Documentation

docs.python.org/3/library/stdtypes.html#boolean-operations-and-or-not

Short-Circuit Evaluation on Wikipedia
en.wikipedia.org/wiki/Short-circuit_evaluation

Python Brain Teasers • 40

report erratum • discuss

http://docs.python.org/3/library/stdtypes.html#boolean-operations-and-or-not
http://en.wikipedia.org/wiki/Short-circuit_evaluation
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 15

Where’s Waldo?

waldo.py
name = 'Waldo'
text = 'Can you find where Wally is?'

if text.find(name):
print('Found Waldo')

else:
print('Cannot find Waldo')

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/waldo.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: Found Waldo

The str.find documentation says

Return -1 if sub is not found.

We have two Boolean values in Python: True and False. They weren’t always
there; they were added in Python 2.3.

How can you do logical operations without True and False? There are rules!
Everything is True except

• 0 numbers: 0, 0.0, 0+0j, …
• Empty collections: [], {}, '', …
• None
• False

You can test the truth value of a Python object using the built-in bool function.

Going back to the teaser, text.find(name) returns -1, and the Boolean value of -1
is True.

If you want to check whether a string contains another, use the in operator:

if name in text:
print('Found Waldo')

else:
print('Cannot find Waldo')

This will print Cannot find Waldo.

If you want to define a Boolean logic for your object, implement the __bool__
special method.

Further Reading
str.find Documentation

docs.python.org/3/library/stdtypes.html#str.find

PEP 285: Adding a bool Type
python.org/dev/peps/pep-0285/

“Truth Value Testing” in the Python Documentation
docs.python.org/3/library/stdtypes.html#truth-value-testing

__bool__ Documentation
docs.python.org/3/reference/datamodel.html#object.__bool__

Python Brain Teasers • 42

report erratum • discuss

http://docs.python.org/3/library/stdtypes.html#str.find
http://python.org/dev/peps/pep-0285/
http://docs.python.org/3/library/stdtypes.html#truth-value-testing
http://docs.python.org/3/reference/datamodel.html#object.__bool__
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 16

Call Me Maybe

metrics.py
from functools import wraps

def metrics(fn):
ncalls = 0
name = fn.__name__

@wraps(fn)
def wrapper(*args, **kw):

ncalls += 1
print(f'{name} called {ncalls} times')

return wrapper

@metrics
def inc(n):

return n + 1

inc(3)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/metrics.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will raise an UnboundLocalError exception.

When you have a variable (name) in Python (say, cart = ['lamp']), you can do two
operations:

Mutate
Change the object the variable is pointing to (e.g., cart.append('mug'))

Rebind
Have the variable point to another object (e.g., cart = ['carrots'])

When you mutate, the variable can be in any scope. However, when you rebind
a variable, you need to be in the same scope as the variable.

What are these scopes? It’s where the name you’re using currently is defined.
Let’s see an example:

scale = 1.1

def make_mul(n):
def mul(val):

out = val * n * scale
return out

return mul

mul7 = make_mul(7)
print(mul7(3)) # 23.1

• val is local scope, n is enclosing scope, scale is global scope.
• out is from local scope.

When Python sees a name (e.g., ncalls), it looks for it in LEGB order:

• Local
• Enclosing (closure)
• Global
• Builtin

Builtin refers to the builtins module.

Abusing the builtins Module

If you want to define something that can be accessed from any
module, you can stick it in builtins. Don’t do that. ☺

Python Brain Teasers • 44

report erratum • discuss

http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Since integers are immutable in Python, the += operator rebinds the variable
on the left side of it to a new integer object. Since ncalls is from the enclosing
scope, you can’t rebind it without being more specific.

Python 2 has the global keyword for rebinding global variables, and Python 3
added the nonlocal keyword for rebinding enclosing variables. You can use
nonlocal in this teaser.

metrics_nl.py
from functools import wraps

def metrics(fn):
ncalls = 0
name = fn.__name__

@wraps(fn)
def wrapper(*args, **kw):

nonlocal ncalls
ncalls += 1
print(f'{name} called {ncalls} times')

return wrapper

@metrics
def inc(n):

return n + 1

inc(3)

If you’re in Python 2, you do the following trick (called boxing).

metrics_box.py
from functools import wrapsLine 1

-
-

def metrics(fn):-

ncalls = [0]5

name = fn.__name__-

-

@wraps(fn)-

def wrapper(*args, **kw):-

ncalls[0] += 110

print(f'{name} called {ncalls[0]} times')-

-

return wrapper-

-
15

@metrics-

def inc(n):-

return n + 1-

-
20

inc(3)-

report erratum • discuss

Call Me Maybe • 45

http://media.pragprog.com/titles/d-pybrain/code/metrics_nl.py
http://media.pragprog.com/titles/d-pybrain/code/metrics_box.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Now, in line 10, you’re not rebinding ncalls; you’re mutating it and that is OK.

Further Reading
Assignment Statements in the Python Documentation

docs.python.org/3/reference/simple_stmts.html#assignment-statements

PEP 227: Statically Nested Scopes
python.org/dev/peps/pep-0227/

Nonlocal Statement in the Python Documentation
docs.python.org/3/reference/simple_stmts.html#nonlocal

Global Statement in the Python Documentation
docs.python.org/3/reference/simple_stmts.html#global

“What Are the Rules for Local and Global Variables in Python?” in the Python
FAQ

docs.python.org/3/faq/programming.html#what-are-the-rules-for-local-and-global-variables-in-
python

“Why Am I Getting an UnboundLocalError When the Variable Has a Value?” in
the Python FAQ

docs.python.org/3/faq/programming.html#why-am-i-getting-an-unboundlocalerror-when-the-
variable-has-a-value

builtins Module
docs.python.org/3/library/builtins.html#module-builtins

Python Brain Teasers • 46

report erratum • discuss

http://docs.python.org/3/reference/simple_stmts.html#assignment-statements
http://python.org/dev/peps/pep-0227/
http://docs.python.org/3/reference/simple_stmts.html#nonlocal
http://docs.python.org/3/reference/simple_stmts.html#global
http://docs.python.org/3/faq/programming.html#what-are-the-rules-for-local-and-global-variables-in-python
http://docs.python.org/3/faq/programming.html#what-are-the-rules-for-local-and-global-variables-in-python
http://docs.python.org/3/faq/programming.html#why-am-i-getting-an-unboundlocalerror-when-the-variable-has-a-value
http://docs.python.org/3/faq/programming.html#why-am-i-getting-an-unboundlocalerror-when-the-variable-has-a-value
http://docs.python.org/3/library/builtins.html#module-builtins
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 17

Endgame

avengers.py
avengers = ['Bruce', 'Carol', 'Natasha', 'Tony']Line 1

idx = 32

avengers[idx], idx = 'Peter', 23

print(avengers)4

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/avengers.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: ['Bruce', 'Carol', 'Natasha', 'Peter']

You’re doing multiple assignments, also known as unpacking. In line 3, Python
will first evaluate the right side of the = from left to right and then assign to
the left side, again from left to right.

In the line avengers[idx], idx = 'Peter', 2, Python first evaluates avengers[idx] = 'Peter.
Since idx is still 3 here, the fourth item on the list, Tony, is being replaced.
Then Python will evaluate idx = 2.

This is confusing and considered bad practice. Don’t do it.

Further Reading
PEP 3132: Extended Iterable Unpacking

python.org/dev/peps/pep-3132/

PEP 448: Additional Unpacking Generalizations
python.org/dev/peps/pep-0448/

Evaluation Order in the Python Reference
docs.python.org/3/reference/expressions.html#evaluation-order

Python Brain Teasers • 48

report erratum • discuss

http://python.org/dev/peps/pep-3132/
http://python.org/dev/peps/pep-0448/
http://docs.python.org/3/reference/expressions.html#evaluation-order
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 18

Round and Round We Go

round.py
print(round(1.5), round(2.5))

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/round.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: 2 2

Rounding seems easy. round(1.1) evaluates to 1. round(1.8) evaluates to 2. The
question is, how do you round the .5 numbers? Should you round up? Down?
Turns out, there are a lot of ways to do it.

Python 3 uses bankers’ rounding. Odd numbers are rounded up; even numbers
are rounded down. The reasoning behind this method is that if you round a
list of numbers, assuming there’s roughly the same number of odd and even
numbers, the error (rounding) will cancel each other.

Python 2 uses a different method called round away from zero. If you run this
teaser in Python 2, you’ll see (2.0, 3.0) as the output.

Further Reading
Rounding on Wikipedia

en.wikipedia.org/wiki/Rounding

Built-in round Documentation
docs.python.org/3/library/functions.html#round

Floating-Point Arithmetic: Issues and Limitations in the Python Tutorial
docs.python.org/3/tutorial/floatingpoint.html#tut-fp-issues

Python Brain Teasers • 50

report erratum • discuss

http://en.wikipedia.org/wiki/Rounding
http://docs.python.org/3/library/functions.html#round
http://docs.python.org/3/tutorial/floatingpoint.html#tut-fp-issues
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 19

TF (Without IDF)

word_freq.py
import reLine 1

from collections import defaultdict-

-
-

def word_freq(text, freqs=defaultdict(int)):5

"""Calculate word frequency in text. freqs are previous frequencies"""-

for word in [w.lower() for w in re.findall(r'\w+', text)]:-

freqs[word] += 1-

return freqs-

10
-

freqs1 = word_freq('Duck season. Duck!')-

freqs2 = word_freq('Rabbit season. Rabbit!')-

print(freqs1)-

print(freqs2)15

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/word_freq.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print:

defaultdict(<class 'int'>, {'duck': 2, 'season': 2, 'rabbit': 2})
defaultdict(<class 'int'>, {'duck': 2, 'season': 2, 'rabbit': 2})

One of the solutions to the Click the Button puzzle is using the fact that default
arguments to a function are evaluated once when the function is defined.
Here you see the dark side of this aspect.

Mutable default arguments are considered bad practice, and linters such as
flake8 or pylint will mark line 5 in this teaser code as an error.

The solution is to use None as the default value and in the function itself to
create the mutable default.

word_freq_none.py
import re
from collections import defaultdict

def word_freq(text, freqs=None):
"""Calculate word frequency in text. freqs are previous frequencies"""
freqs = defaultdict(int) if freqs is None else freqs
for word in [w.lower() for w in re.findall(r'\w+', text)]:

freqs[word] += 1
return freqs

freqs1 = word_freq('Duck season. Duck!')
freqs2 = word_freq('Rabbit season. Rabbit!')
print(freqs1)
print(freqs2)

Further Reading
flake8 Linter

flake8.pycqa.org

pylint Linter
pylint.org

Default Argument Values in the Python Tutorial
docs.python.org/3/tutorial/controlflow.html#default-argument-values

Common Gotchas in the “Hitchhiker’s Guide to Python”
docs.python-guide.org/writing/gotchas/

tf-idf on Wikipedia
en.wikipedia.org/wiki/Tf%E2%80%93idf

Python Brain Teasers • 52

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/word_freq_none.py
http://flake8.pycqa.org
http://pylint.org
http://docs.python.org/3/tutorial/controlflow.html#default-argument-values
http://docs.python-guide.org/writing/gotchas/
http://en.wikipedia.org/wiki/Tf%E2%80%93idf
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 20

A Divided Time

timer.py
class timer:Line 1

def __init__(self, name):-

self.name = name-

-

def __enter__(self):5

...-

-

def __exit__(self, exc_type, exc_value, traceback):-

result = 'OK' if exc_type is None else 'ERROR'-

print(f'{self.name} - {result}')10

return True-

-
-

with timer('div'):-

1 / 015

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/timer.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: div - ERROR

You might have expected to see a ZeroDivisionError exception.

timer is a context manager. A context manager is used with the with statement
and is usually for managing resources. For example, with open('input.txt') will
make sure that the file is closed after the code inside the context manager is
done, even if the code inside the with raised an exception.

There are several types in the Python standard library that can be used with
a with statement:

• A file will be closed.
• A socket will be closed.
• A threading.Lock will be released.

There’s one resource you don’t need to explicitly manage: the memory. Python
has a garbage collector that manages the memory for you.

All other resources need to be managed manually. For example, if you forget
to close a file, you will reach the operating system limit on the number of
open files. Your server will start failing after a while with too many open files
errors.

Some database packages also support with statements but with different
semantics. If there’s no error, they will issue a COMMIT; otherwise, they will
issue a ROLLBACK.

You can implement context managers either by writing a class with __enter__
and __exit__ methods (like we do in the teaser) or by using the contextlib.contextman-
ager decorator.

The __exit__ method is called when the code inside the with statement is done,
and its arguments will be None if there was no exception. If __exit__ returns a
False value, the exception will propagate; otherwise, the exception is sup-
pressed.

Most __exit__ methods don’t return a value, which in Python means it returns
None, whose Boolean value is False.

In the teaser, __exit__ returns True, suppressing the ZeroDivisionError.

Oh, and the ... in line 6 is called ellipsis; it’s valid Python.

Python Brain Teasers • 54

report erratum • discuss

http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Further Reading
Context Manager Types in the Python Documentation

docs.python.org/3/library/stdtypes.html#typecontextmanager

PEP 343: The “with” Statement
python.org/dev/peps/pep-0343/

contextlib Module
docs.python.org/3/library/contextlib.html

Commit on Wikipedia
en.wikipedia.org/wiki/Commit_(data_management)

Rollback on Wikipedia
en.wikipedia.org/wiki/Rollback_(data_management)

Ellipsis on the Python Documentation
docs.python.org/3/library/constants.html#Ellipsis

report erratum • discuss

A Divided Time • 55

http://docs.python.org/3/library/stdtypes.html#typecontextmanager
http://python.org/dev/peps/pep-0343/
http://docs.python.org/3/library/contextlib.html
http://en.wikipedia.org/wiki/Commit_(data_management)
http://en.wikipedia.org/wiki/Rollback_(data_management)
http://docs.python.org/3/library/constants.html#Ellipsis
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 21

Tell Me the Future

future.py
from datetime import datetime

date = datetime(10_000, 1, 1)
print(f'The party started on {date:%B, %d %Y} and lasted a 10 days')

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/future.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will raise a ValueError.

Computers and time have a complicated relationship. There are daylight
saving time, leap years, time zones, and more details to work out.

Computers store time as the number of seconds that elapsed since January
1, 1970, GMT, known as Unix or epoch time. This means that in 2038, time
will overflow on 32-bit machines. Ouch!

Python has two libraries to work with time:

• The good old time module
• The new and shiny datetime module

This teaser uses datetime, which is written mostly in C and has a fixed amount
of space for storing time information. This means there’s a maximal and
minimal value to datetime.

>>> from datetime import datetime
>>> print(datetime.min, datetime.max)
0001-01-01 00:00:00 9999-12-31 23:59:59.999999

The value provided in the teaser is bigger than the maximal value for datetime,
hence, the ValueError exception.

Further Reading
time Module Documentation

docs.python.org/3/library/time.html

datetime Module Documentation
docs.python.org/3/library/datetime.html

Falsehoods Programmers Believe About Time
infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time

Unix Time on Wikipedia
en.wikipedia.org/wiki/Unix_time

Year 2038 Problem on Wikipedia
en.wikipedia.org/wiki/Year_2038_problem

Python Brain Teasers • 58

report erratum • discuss

http://docs.python.org/3/library/time.html
http://docs.python.org/3/library/datetime.html
http://infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time
http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Year_2038_problem
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 22

Loop de Loop

loop.py
for n in range(5):

print(n, end=' ')
n = 5

print()

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/loop.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: 0 1 2 3 4

Python’s for loop is a “for each.” Iteration in Python involves two types:

Iterable
The object we’re iterating over (e.g., str, list, dict …)

Iterator
Does the actual iteration; can only fetch the next item and signal it’s done
(i.e., exhausted) by raising a StopIteration

Here’s what the for loop looks like under the hood.

loop_internal.py
iterable = range(5) # range is the iterable
iterator = iter(iterable) # extract iterator from iterable
while True:

try:
n = next(iterator)
Code inside "for" loop
print(n, end=' ')
n = 5 # Will be overridden by line 5 in next iteration

except StopIteration: # iterator signaled it's exhausted
break

print() # Code after "for" loop

From this code, it’s clear why n = 5 will not stop the for loop.

You can create iterators for your own type by creating a class that implements
two methods: __next__ and __iter__. Your iterable type should implement __iter__
that returns the iterator.

Or … you can choose the easier path and implement a generator.

Further Reading
__next__ Documentation

docs.python.org/3/library/stdtypes.html#iterator.__next__

__iter__ Documentation
docs.python.org/3/library/stdtypes.html#iterator.__iter__

Iterator Types in the Python Documentation
docs.python.org/3/library/stdtypes.html#iterator-types

Generators on the Python Wiki
wiki.python.org/moin/Generators

Python Brain Teasers • 60

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/loop_internal.py
http://docs.python.org/3/library/stdtypes.html#iterator.__next__
http://docs.python.org/3/library/stdtypes.html#iterator.__iter__
http://docs.python.org/3/library/stdtypes.html#iterator-types
http://wiki.python.org/moin/Generators
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

“Generator Tricks for System Programmers” by David Beazley
dabeaz.com/generators/

itertools Module Code Examples
docs.python.org/3/library/itertools.html

report erratum • discuss

Loop de Loop • 61

http://dabeaz.com/generators/
http://docs.python.org/3/library/itertools.html
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 23

Path to Nowhere

winpath.py
path = 'c:\path\to\nowhere'
print(path)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/winpath.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print:

c:\path o
owhere

The \ in Python strings is used as an escape sequence to write special characters.
\t translates to the tab character, and \n translates to the newline character.

There are several other ways you can escape special characters in strings.

escape.py
s1 = '\x61' # \x - 2 digits
print(s1) # a

s2 = '\u2122' # \u - 4 digits (8482 in hex)
print(s2) # ™

s3 = '\U00002122' # \U - 8 digits
print(s3) # ™

s4 = '\N{trade mark sign}'
print(s4) # ™

What if you want a \ inside your string? You can escape it with another \.

path = 'c:\\path\\to\\nowhere'

The easier approach is to use a raw string. Here’s what the documentation says:

Both string and bytes literals may optionally be prefixed with a letter ‘r’ or ‘R’;
such strings are called raw strings and treat backslashes as literal characters.

In this case

path = r'c:\path\to\nowhere'

The two most common use cases for raw strings are Windows paths (when
you cut and paste from Explorer) and when defining regular expressions that
have special characters that start with \ (e.g., \s for white space).

Further Reading
String and Bytes Literals in the Python Reference

docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals

Find Fun Unicode Characters in the Unicode Table
unicode-table.com/en/

Regular Expression Syntax in the Python Documentation
docs.python.org/3/library/re.html#regular-expression-syntax

Python Brain Teasers • 64

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/escape.py
http://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals
http://unicode-table.com/en/
http://docs.python.org/3/library/re.html#regular-expression-syntax
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 24

12 Angry Men

jury.py
from concurrent.futures import ProcessPoolExecutor
from itertools import repeat

guilty = 0

def juror():
global guilty

guilty += 1

with ProcessPoolExecutor() as pool:
for _ in repeat(None, 12):

pool.submit(juror)

print(guilty)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/jury.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: 0

Both threads and processes are concurrent units of work. The main difference
is that threads share the same memory space and processes don’t.

This means that if you have a global variable (e.g., guilty), all threads in the
same process will be able to access and modify it. Whereas in processes, you
will need to communicate the data between the processes in some way (e.g.,
a socket).

This teaser uses a ProcessPoolExecutor, meaning the code is executed in a different
process. Every juror changes its own copy of guilty.

Threads allow faster access to shared data, but they are more dangerous.
None of the built-in types in Python (e.g., list, dict, …) are thread safe. If you
change (i.e., mutate) a list from two threads at the same time, the behavior is
undefined. You’ll need to use threading.Lock to guard that only one thread
changes the list at a time.

Making all built-in types thread-safe will make them much slower, and most
of the Python code out there still runs in a single thread. This is why the
built-in types will not be thread-safe in the near (or far) future.

When should you use threads and when processes? The rule of thumb is that
if you have CPU-bound code, you should use processes, and if you have an
I/O-bound code you should use threads.

Before moving to threads or processes, remember that there’s a limit on how
much parallelization will help you and that it’s much harder to write such
code than sequential code.

Further Reading
concurrent.futures Module

docs.python.org/3/library/concurrent.futures.html

Amdahl’s Law on Wikipedia
en.wikipedia.org/wiki/Amdahl%27s_law

I/O-bound on Wikipedia
en.wikipedia.org/wiki/I/O_bound

CPU-bound on Wikipedia
en.wikipedia.org/wiki/CPU-bound

Python Brain Teasers • 66

report erratum • discuss

http://docs.python.org/3/library/concurrent.futures.html
http://en.wikipedia.org/wiki/Amdahl%27s_law
http://en.wikipedia.org/wiki/I/O_bound
http://en.wikipedia.org/wiki/CPU-bound
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Lock in the Python Documentation
docs.python.org/3/library/threading.html#lock-objects

“Using repeat Over range” by Raymond Hettinger
twitter.com/raymondh/status/1144527183341375488?lang=en

report erratum • discuss

12 Angry Men • 67

http://docs.python.org/3/library/threading.html#lock-objects
http://twitter.com/raymondh/status/1144527183341375488?lang=en
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 25

Look at the Pretty Colors

colors.py
colors = [

'red',
'green'
'blue'

]

print(colors)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/colors.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: ['red', 'greenblue']

Python’s use of white space is pretty unique in programming languages. Some
people don’t like it. I personally find it makes the code more readable.

The Python documentation says

A logical line is constructed from one or more physical lines by following the
explicit or implicit line joining rules.

And a bit later

Expressions in parentheses, square brackets, or curly braces can be split over
more than one physical line without using backslashes.

Which means

• 'a' 'b' is not valid.
• ('a', 'b') is a tuple ('a', 'b' is also a tuple).
• ('a' 'b') is the string 'ab'.

In the teaser, there is a , missing between 'green' and 'blue'. Python will join
them together as 'greenblue'.

This is why you should have a dangling comma when you write expressions
like colors:

colors = [
'red',
'green',
'blue', # ← A dangling comma

]

Not only will it save you from bugs, in code reviews, if you add another color,
there will be only one line change. Sadly, not every language or format allows
dangling commas. I’m looking at you JSON and SQL.

black

You can use the black code formatter with your IDE. It will format
your code and add dangling commas.

You can use this implicit line joining to make your code clearer. Here’s an
example from the matplotlib documentation:

Python Brain Teasers • 70

report erratum • discuss

http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Turn

plot(x, y, color='green', marker='o', linestyle='dashed', linewidth=2, markersize=12)

into

plot(
x, y,
color='green',
marker='o', markersize=12,
linestyle='dashed', linewidth=2,

)

You can even surround your code with () and do method chaining:

(
df[df['passenger_count'] > 1] # rides with more than 1
['tpep_pickup_datetime'].dt.hour # extract hour
.value_counts() # count hours
.sort_index() # sort by hour
.plot.bar(rot=45, title='11am rides') # plot with 45° axis labels

)

Further Reading
Line Structure in the Python Reference

docs.python.org/3/reference/lexical_analysis.html#line-structure

When to Use Trailing Commas in the “Style Guide for Python” (aka PEP 8)
python.org/dev/peps/pep-0008/#id29

Tuple Syntax on the Python Wiki
wiki.python.org/moin/TupleSyntax

“That Trailing Comma” by Dave Cheney
dave.cheney.net/2014/10/04/that-trailing-comma

Matplotlib Documentation
matplotlib.org

Black Code Formatter
black.readthedocs.io

report erratum • discuss

Look at the Pretty Colors • 71

http://docs.python.org/3/reference/lexical_analysis.html#line-structure
http://python.org/dev/peps/pep-0008/#id29
http://wiki.python.org/moin/TupleSyntax
http://dave.cheney.net/2014/10/04/that-trailing-comma
http://matplotlib.org
http://black.readthedocs.io
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 26

Let’s Vote

vote.py
import re

text = 'The vote was 65 in favour, 43 against and 21 abstentions'
match = re.search(r'(\d+).*(\d+).*(\d+)', text)
print(match.group(1), match.group(2), match.group(3))

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/vote.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: 65 2 1

You might have expected to see 65 43 21. The reason for this output is that the
.* regular expression is greedy, which means it will match as much as it can.
Here’s what happened:

• The first .*(\d+) will match 65.
• The .* after it will match in favour, 43 against and.
• The next .*(\d+) will match 2.
• The .* after it will match the empty string since * means zero or more.
• The final .*(\d+) will match 1.

To make .* nongreedy, add ? at the end. The following will work as expected:

match = re.search(r'(\d+).*?(\d+).*?(\d+)', text)

You can use sites such as www.pyregex.com/ to test your regular expressions.

Further Reading
re Module

docs.python.org/3/library/re.html

“Regular Expression HOWTO” in the Python Documentation
docs.python.org/3/howto/regex.html

Python Brain Teasers • 74

report erratum • discuss

http://www.pyregex.com/
http://docs.python.org/3/library/re.html
http://docs.python.org/3/howto/regex.html
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 27

An Inside Job

inside.py
def add_n(items, n):

items += range(n)

items = [1]
add_n(items, 3)
print(items)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/inside.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: [1, 0, 1, 2]

In the Call Me Maybe puzzle, we talked about rebinding versus mutation. And
most of the time, items += range(n) is translated to items = items + range(n), which
is rebinding.

There is a special optimization for += in some cases. Here’s what the docu-
mentation says (my emphasis):

An augmented assignment expression like x += 1 can be rewritten as x = x + 1 to
achieve a similar, but not exactly equal, effect. In the augmented version, x is
only evaluated once. Also, when possible, the actual operation is performed in
place, meaning that rather than creating a new object and assigning that to the
target, the old object is modified instead.

A type defines how the + operator behaves with the __add__ special method
and can define __iadd__ as a special case for +=. The documentation says

These methods are called to implement the augmented arithmetic assignments
(+=, -=, =, @=, /=, //=, %=, *=, <⇐, >>=, &=, ^=, |=). These methods should attempt to
do the operation in place (modifying self) and return the result (which could be,
but does not have to be, self). If a specific method is not defined, the augmented
assignment falls back to the normal methods.

The built-in list object defines __iadd__, which calls the extend method.

What will happen if you change the code inside add_n to items = items + range(n)?
You will get an exception: TypeError: can only concatenate list (not "range") to list.

In Python 3 the built-in range function returns a range object. Even though it
looks like a list (len, [], and friends will work), you can’t add it to a list.

If you want the rebinding code to work, you’ll need to write items = items +
list(range(n)) and then the output will be [1].

As a general rule, try not to mutate the object passed to your functions. This
style of programming is called functional programming. Functional code is
easier to test and reason about. Give it a try. It’s fun.

Further Reading
Functional Programming on Wikipedia

en.wikipedia.org/wiki/Functional_programming

Built-in range Documentation
docs.python.org/3/library/functions.html#func-range

Python Brain Teasers • 76

report erratum • discuss

http://en.wikipedia.org/wiki/Functional_programming
http://docs.python.org/3/library/functions.html#func-range
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

“Augmented Assignment Statements” in the Python Reference
docs.python.org/3/reference/simple_stmts.html#augmented-assignment-statements

“Functional Programming HOWTO” in the Python Documentation
docs.python.org/3/howto/functional.html

__iadd__ Documentation
docs.python.org/3/reference/datamodel.html#object.__iadd__

“More on Lists” in the Python Documentation
docs.python.org/3/tutorial/datastructures.html#more-on-lists

report erratum • discuss

An Inside Job • 77

http://docs.python.org/3/reference/simple_stmts.html#augmented-assignment-statements
http://docs.python.org/3/howto/functional.html
http://docs.python.org/3/reference/datamodel.html#object.__iadd__
http://docs.python.org/3/tutorial/datastructures.html#more-on-lists
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 28

Here Kitty Kitty

cat.py
pali = 'Was it a cat I saw?'
print(pali[::-1])

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/cat.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: ?was I tac a ti saW

Palindrome

“Was it a cat I saw?” is a palindrome. A palindrome can be read
the same backward and forward.

And no, Officer Ripley, it wasn’t a cat you saw. ☺

This is the best way to reverse a string in Python:

pali[::-1] is a string slice. Slices have start, stop, and step, each of them optional.
start to stop is a half-open range, meaning you’ll get from the first index up to
but not including the last. Additionally, if you specify a negative stop, it’ll be
an offset from the end.

Let’s see some examples:

>>> 'Python'[1:4] # start & stop
'yth'
>>> 'Python'[1:] # only start
'ython'
>>> 'Python'[:4] # only stop
'Pyth'
>>> 'Python'[1:-1] # start & negative stop
'ytho'
>>> 'Python'[::2] # only step
'Pto'

In general, the step must match the direction of stop - start. For example,
'Python'[4:2] will return the empty string, which is what you’ll expect in this
teaser. ::-1 is a special case and will work in reverse.

If you really want to have fun with slices, check out the scientific Python
packages such as numpy and pandas that take slicing to another level.1

Further Reading
Slicings in the Python Reference

docs.python.org/3/reference/expressions.html#slicings

String Slicing in the Python Tutorial
docs.python.org/3/tutorial/introduction.html#strings

slice Class
docs.python.org/3/library/functions.html#slice

1. numpy.org and pandas.pydata.org

Python Brain Teasers • 80

report erratum • discuss

http://docs.python.org/3/reference/expressions.html#slicings
http://docs.python.org/3/tutorial/introduction.html#strings
http://docs.python.org/3/library/functions.html#slice
http://numpy.org
http://pandas.pydata.org
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

“Extended Slices” in Python 2.3 “What’s New”
docs.python.org/3/whatsnew/2.3.html#extended-slices

Scientific Python Documentation
docs.scipy.org/doc/numpy/reference/arrays.indexing.html

report erratum • discuss

Here Kitty Kitty • 81

http://docs.python.org/3/whatsnew/2.3.html#extended-slices
http://docs.scipy.org/doc/numpy/reference/arrays.indexing.html
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 29

Not My Type

add.py
def add(a: int, b: int) -> int:

return a + b

val = add('1', '2')
print(val)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/add.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will print: 12

Python 3 added support for type hints. But as the name suggests, they are
only hints and are not enforced by the Python interpreter. The only thing
Python does with these hints (sometimes called annotations) is to add them
to the function object as the __annotations__ attribute.

>>> add.__annotations__
{'a': int, 'b': int, 'return': int}

Over time, type annotation became more powerful. You can annotate variables
(e.g., answer: int = 42) and attributes. There’s a dedicated typing module and more.

You might wonder why type annotation is so popular. Here are some reasons:

Correctness
There are external tools such as mypy that will check type correctness.
Some teams have mypy as part of the test suite.

Documentation
Seeing a definition like def current_user(session: dict)→ User:, you know what the
input and output types are.

Tooling
Once a tool knows the type of objects, it can be smarter. Most IDEs (such
as PyCharm) use type annotation to help with completion.

Code
Once you have annotations, you can write modules such as dataclasses.

Back to our teaser. You add 'a' and 'b', which are of type str. The + operator,
defined by __add__, in str does concatenation, for example, 'a' + 'b' → 'ab'.

Further Reading
PEP-3107: Function Annotations

python.org/dev/peps/pep-3107/

typing Module
docs.python.org/3/library/typing.html

dataclasses Module for Easy Creation of Classes
docs.python.org/3/library/dataclasses.html

PEP 483: The Theory of Type Hints
python.org/dev/peps/pep-0483/

Python Brain Teasers • 84

report erratum • discuss

http://python.org/dev/peps/pep-3107/
http://docs.python.org/3/library/typing.html
http://docs.python.org/3/library/dataclasses.html
http://python.org/dev/peps/pep-0483/
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

PEP 484: Type Hints
python.org/dev/peps/pep-0484/

mypy Type Checker (which works even for Python 2 code)
mypy-lang.org

report erratum • discuss

Not My Type • 85

http://python.org/dev/peps/pep-0484/
http://mypy-lang.org
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Puzzle 30

Highly Valued

eval.py
a = eval('a = 7')
val = eval('a * 3')
print(val)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pybrain/code/eval.py
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

This code will raise a SyntaxError exception.

The eval built-in function takes a Python expression as a string and returns
its value.

We tend to split the code into two categories:

Expressions
An expression is something that has a value (e.g., 5 / 7, 1 < 3).

Statements
A statement is an operation that does not have a value, mostly with side
effects (e.g., a = 3, import csv).

Some languages only have expressions, and then a = 3 will have some value
(usually 3). In Python we have both expressions and statements.

The built-in eval function only works with expressions, and the parameter
we’re passing (a = 3) is a statement.

If you want to evaluate statements, you’ll need to use the built-in exec function.
exec returns None, so how can you get the new variable from exec? It’ll just
show up:

>>> exec('answer = 42')
>>> answer
42

By default, exec will change the global symbol. You can also pass it a locals
dictionary to work with if you don’t want to contaminate the global namespace.

>>> env = {}
>>> exec('answer = 42', None, env)❶
>>> env
{'answer': 42}
>>> answer❷
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'answer' is not defined

❶ None argument is for the global symbol table and defaults to globals

❷ answer not found in the global symbol table

eval gives you a lot of power but can be very dangerous. If you eval (or exec) a
random string from a user, bad things can happen. Modules such as the
built-in pickle and the external PyYaml use exec under the hood. In short, follow
Agent Mulder’s advice and “trust no one.”

Python Brain Teasers • 88

report erratum • discuss

http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Further Reading
eval Documentation

docs.python.org/3/library/functions.html#eval

exec Documentation
docs.python.org/3/library/functions.html#exec

globals Documentation
docs.python.org/3/library/functions.html#globals

“Expressions” in the Python Documentation
docs.python.org/3/reference/expressions.html#expressions

“Simple Statements” in the Python Documentation
docs.python.org/3/reference/simple_stmts.html

Expression on Wikipedia
en.wikipedia.org/wiki/Expression_(computer_science)

Statement on Wikipedia
en.wikipedia.org/wiki/Statement_(computer_science)

Possible Use for eval and exec
github.com/tebeka/ingress

PyYAML yaml.load(input) Deprecation
github.com/yaml/pyyaml/wiki/PyYAML-yaml.load(input)-Deprecation

Warning in pickle Documentation
docs.python.org/3/library/pickle.html#restricting-globals

XKCD’s Exploits of a Mom
xkcd.com/327/

Agent Mulder
en.wikipedia.org/wiki/Fox_Mulder

report erratum • discuss

Highly Valued • 89

http://docs.python.org/3/library/functions.html#eval
http://docs.python.org/3/library/functions.html#exec
http://docs.python.org/3/library/functions.html#globals
http://docs.python.org/3/reference/expressions.html#expressions
http://docs.python.org/3/reference/simple_stmts.html
http://en.wikipedia.org/wiki/Expression_(computer_science)
http://en.wikipedia.org/wiki/Statement_(computer_science)
http://github.com/tebeka/ingress
http://github.com/yaml/pyyaml/wiki/PyYAML-yaml.load(input)-Deprecation
http://docs.python.org/3/library/pickle.html#restricting-globals
http://xkcd.com/327/
http://en.wikipedia.org/wiki/Fox_Mulder
http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Python Brain Teasers • 90

report erratum • discuss

http://pragprog.com/titles/d-pybrain/errata/add
http://forums.pragprog.com/forums/d-pybrain

Index

SYMBOLS
+= (addition assignment oper-

ator), 75–76

.* (dot asterisk) regular expres-
sion, 73–74

... (ellipsis), 54

== (equality operator), 38

\ (escape character), 63–64

π (pi symbol), as identifier, 7–
8

[] (slicing operator), 27–28,
79–80

_ (underscore), prefixing at-
tributes, 19–20

A
addition assignment operator

(+=), 75–76

allclose function, 24

and operator, 40

annotations, type, 83–84

arguments, default, evalua-
tion of, 30, 51–52

arithmetic
with floating-point val-

ues, 23–24
rounding, 49–50

ASCII encoding, 10

assertAlmostEqual method, 24

assignments
multiple (unpacking), 47–

48
rebinding compared to

mutating, 43–46, 75–
76

attribute lookups, 3–4, 33–34

attributes, prefixed by under-
score (_), 19–20

B
bankers’ rounding, 50

black code formatter, 70

bool function, 42

__bool__ method, 42

Boolean operations, 39–42

boxing, 45

builtins module, 44

bytes.decode function, 10

C
closures, 29–30

code examples
learning from, xi–xii
location of, xii

code formatters, 70

commas, dangling, 70

COMMIT statement, 54

comparisons
of equality and identity,

37–38
of tuples, 14

concurrency
daemon threads, 15–16
memory sharing with,

65–66
when to use, 66

context managers, 53–54

D
daemon threads, not prevent-

ing program exit, 15–16

dangling commas, 70

dataclasses module, 84

datetime module, 57–58

debugging, mindset for, xii

decimal module, 24

default arguments, evaluation
of, 30, 51–52

diacritical marks, 9–10, see
also special characters

division
by zero, 39–40
floating point or integer

results for, 7–8

dot asterisk (.*) regular expres-
sion, 73–74

E
ellipsis (...), 54

enclosing scope, 44–45

__enter__ method, 54

equality comparisons, 37–38

equality operator (==), 38

escape character (\), 63–64

eval function, 87

evaluation order, 47–48

examples
code for, xii
learning from, xi–xii

exec function, 88

__exit__ method, 54

expressions, evaluating, 88

F
files, managing, 54

flake8 linter, 52

floating-point values, accura-
cy of, 23–24

for loop, 59–60

functional programming, 76

functions, default argument
evaluation, 30, 51–52

G
garbage collector, 54

generators, 60

getattr function, 4

__getattr__ function, 34

__getattribute__ function, 34

global keyword, 45

global scope, 44–45

global symbol table, 88

global variables, memory
sharing with, 66

greedy regular expressions,
73–74

H
heapq module, 13–14

heaps, comparing items in,
14

hints, type, 83–84

I
identifiers, Unicode, 7–8

identity comparisons, 37–38

implicit line joining, 70

import path, customizing, 18

importing modules, 17–18

in operator, 42

interning, 38

is operator, 37–38

__iter__ method, 60

iterables, 60

iterators, 21–22, 60

J
join method, threads, 16

L
lambda functions, 29–30

leet (l33t) code, 14

lexicographical order, 14

linters, 52

lists
converting ranges to, 76
slicing, 27–28
sorting, 21–22

local scope, 44–45

logic operators, 39–42

M
math.isnan function, 24

memory
managed by Python, 54
sharing of, with concur-

rency, 65–66

method chaining, 71

__missing__ function, 34

modules, importing, 17–18

mutating variables, 44, 75–76

mypy tool, 84

N
name mangling, 20

nan value, 24

__next__ method, 60

non-daemon threads, pro-
gram exiting when none are
left, 16

nonlocal keyword, 45

numpy module, 24

O
or operator, 39–40

P
palindrome, 80

parallelism, see concurrency

pi symbol (π), as identifier, 7–
8

pickle module, 88

print function, behavior on
program exit, 15–16

processes
memory not shared be-

tween, 65–66
when to use, 66

pylint linter, 52

Python, version used in this
book, xi

PyYaml module, 88

R
“R” or “r,” prefixing raw

strings, 64

range function, 76

raw strings, 64

rebinding variables, 43–46,
75–76

recursion, 34

regular expressions
greedy, 73–74
raw strings for, 64

relative imports, 18

resources, managing, 53–54

reversed function, 21–22

ROLLBACK statement, 54

rounding, 49–50

S
scopes

layers of, 43–46
nested, 30

shadowing variables, 4, 30

short-circuit operators, 40

slicing operator ([]), 27–28,
79–80

sorted function, 21–22

special characters, 63–64, see
also diacritical marks

statements, evaluating, 88

staticmethod function, 34

str.encode function, 10

str.find function, 41–42

strings
concatenating, 83–84
diacritical marks in, 9–10
escape sequences in, 63–

64
length of, 9–10
raw strings, 64
reversing, 80
slicing, 79–80
substrings contained in,

41–42

T
testing floating-point opera-

tions, 24

Thread.join method, 16

threads
built-in types, thread

safety of, 66
daemon threads, 15–16
joining, 16
memory sharing with, 66
non-daemon threads, 16
when to use, 66

time module, 58

tuples, comparisons of, 14

Index • 92

type annotations (hints), 83–
84

typing module, 84

U
underscore (_), prefixing at-

tributes, 19–20

Unicode identifiers, 7–8

Unix time, 58

unpacking, 47–48

UTF-8 encoding, 8, 10

V
variables

equality of, 37–38
global, memory sharing

with, 66
identity of, 37–38
mutating, 44, 75–76

rebinding, 43–46, 75–76
shadowing, 4, 30

W
white space in code, 69–71

Windows paths, raw strings
for, 64

with statement, 53–54

Y
year 2038 problem, 58

Index • 93

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2021 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

The Pragmatic Bookshelf

SAVE 30%!
Use coupon code
BUYANOTHER2021

https://pragprog.com

Go Brain Teasers
This book contains 25 short programs that will chal-
lenge your understanding of Go. Like any big project,
the Go developers had to make some design decisions
that at times seem surprising. This book uses those
quirks as a teaching opportunity. By understanding
the gaps in your knowledge, you’ll become better at
what you do. Some of the teasers are from the author’s
experience shipping bugs to production, and some
from others doing the same. Teasers and puzzles are
fun, and learning how to solve them can teach you to
avoid programming mistakes and maybe even impress
your colleagues and future employers.

Miki Tebeka
(78 pages) ISBN: 9781680508994. $18.95
https://pragprog.com/book/d-gobrain

Pandas Brain Teasers
This book contains 25 short programs that will chal-
lenge your understanding of Pandas. Like any big
project, the Pandas developers had to make some de-
sign decisions that at times seem surprising. This book
uses those quirks as a teaching opportunity. By under-
standing the gaps in your knowledge, you’ll become
better at what you do. Some of the teasers are from
the author’s experience shipping bugs to production,
and some from others doing the same. Teasers and
puzzles are fun, and learning how to solve them can
teach you to avoid programming mistakes and maybe
even impress your colleagues and future employers.

Miki Tebeka
(77 pages) ISBN: 9781680509014. $18.95
https://pragprog.com/book/d-pandas

https://pragprog.com/book/d-gobrain
https://pragprog.com/book/d-pandas

Concurrent Data Processing in Elixir
Learn different ways of writing concurrent code in Elixir
and increase your application’s performance, without
sacrificing scalability or fault-tolerance. Most projects
benefit from running background tasks and processing
data concurrently, but the world of OTP and various
libraries can be challenging. Which Supervisor and
what strategy to use? What about GenServer? Maybe
you need back-pressure, but is GenStage, Flow, or
Broadway a better choice? You will learn everything
you need to know to answer these questions, start
building highly concurrent applications in no time,
and write code that’s not only fast, but also resilient
to errors and easy to scale.

Svilen Gospodinov
(174 pages) ISBN: 9781680508192. $39.95
https://pragprog.com/book/sgdpelixir

Testing Elixir
Elixir offers new paradigms, and challenges you to test
in unconventional ways. Start with ExUnit: almost ev-
erything you need to write tests covering all levels of
detail, from unit to integration, but only if you know
how to use it to the fullest—we’ll show you how. Ex-
plore testing Elixir-specific challenges such as OTP-
based modules, asynchronous code, Ecto-based appli-
cations, and Phoenix applications. Explore new tools
like Mox for mocks and StreamData for property-based
testing. Armed with this knowledge, you can create
test suites that add value to your production cycle and
guard you from regressions.

Andrea Leopardi and Jeffrey Matthias
(262 pages) ISBN: 9781680507829. $45.95
https://pragprog.com/book/lmelixir

https://pragprog.com/book/sgdpelixir
https://pragprog.com/book/lmelixir

Intuitive Python
Developers power their projects with Python because
it emphasizes readability, ease of use, and access to a
meticulously maintained set of packages and tools.
The language itself continues to improve with every
release: writing in Python is full of possibility. But to
maintain a successful Python project, you need to know
more than just the language. You need tooling and in-
stincts to help you make the most out of what’s avail-
able to you. Use this book as your guide to help you
hone your skills and sculpt a Python project that can
stand the test of time.

David Muller
(140 pages) ISBN: 9781680508239. $26.95
https://pragprog.com/book/dmpython

Modern CSS with Tailwind
Tailwind CSS is an exciting new CSS framework that
allows you to design your site by composing simple
utility classes to create complex effects. With Tailwind,
you can style your text, move your items on the page,
design complex page layouts, and adapt your design
for devices from a phone to a wide-screen monitor.
With this book, you’ll learn how to use the Tailwind
for its flexibility and its consistency, from the smallest
detail of your typography to the entire design of your
site.

Noel Rappin
(90 pages) ISBN: 9781680508185. $26.95
https://pragprog.com/book/tailwind

https://pragprog.com/book/dmpython
https://pragprog.com/book/tailwind

Help Your Boss Help You
Develop more productive habits in dealing with your
manager. As a professional in the business world, you
care about doing your job the right way. The quality
of your work matters to you, both as a professional
and as a person. The company you work for cares
about making money and your boss is evaluated on
that basis. Sometimes those goals overlap, but the
different priorities mean conflict is inevitable. Take
concrete steps to build a relationship with your man-
ager that helps both sides succeed.

Ken Kousen
(160 pages) ISBN: 9781680508222. $26.95
https://pragprog.com/book/kkmanage

Web Development with Clojure, Third Edition
Today, developers are increasingly adopting Clojure as
a web-development platform. See for yourself what
makes Clojure so desirable as you create a series of
web apps of growing complexity, exploring the full
process of web development using a modern functional
language. This fully updated third edition reveals the
changes in the rapidly evolving Clojure ecosystem and
provides a practical, complete walkthrough of the Clo-
jure web stack.

Dmitri Sotnikov and Scot Brown
(468 pages) ISBN: 9781680506822. $47.95
https://pragprog.com/book/dswdcloj3

https://pragprog.com/book/kkmanage
https://pragprog.com/book/dswdcloj3

Hands-on Rust
Rust is an exciting new programming language com-
bining the power of C with memory safety, fearless
concurrency, and productivity boosters—and what
better way to learn than by making games. Each
chapter in this book presents hands-on, practical
projects ranging from “Hello, World” to building a full
dungeon crawler game. With this book, you’ll learn
game development skills applicable to other engines,
including Unity and Unreal.

Herbert Wolverson
(342 pages) ISBN: 9781680508161. $47.95
https://pragprog.com/book/hwrust

Modern Front-End Development for Rails
Improve the user experience for your Rails app with
rich, engaging client-side interactions. Learn to use
the Rails 6 tools and simplify the complex JavaScript
ecosystem. It’s easier than ever to build user interac-
tions with Hotwire, Turbo, Stimulus, and Webpacker.
You can add great front-end flair without much extra
complication. Use React to build a more complex set
of client-side features. Structure your code for different
levels of client-side needs with these powerful options.
Add to your toolkit today!

Noel Rappin
(396 pages) ISBN: 9781680507218. $45.95
https://pragprog.com/book/nrclient

https://pragprog.com/book/hwrust
https://pragprog.com/book/nrclient

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/d-pybrain
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/d-pybrain
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Preface
	About the Author
	About the Code
	About You
	One More Thing

	Foreword by Raymond Hettinger
	Part I—Python Brain Teasers
	Puzzle 1. Ready Player One
	Puzzle 2. A Slice of π
	Puzzle 3. When in Kraków
	Puzzle 4. A Task to Do
	Puzzle 5. Send It to the Printer
	Puzzle 6. Spam, Spam, Spam
	Puzzle 7. User! Identify Yourself
	Puzzle 8. sorted? reversed?
	Puzzle 9. A Simple Math
	Puzzle 10. Will It Fit?
	Puzzle 11. Click the Button
	Puzzle 12. Attention Seeker
	Puzzle 13. Identity Crisis
	Puzzle 14. The Great Divide
	Puzzle 15. Where's Waldo?
	Puzzle 16. Call Me Maybe
	Puzzle 17. Endgame
	Puzzle 18. Round and Round We Go
	Puzzle 19. TF (Without IDF)
	Puzzle 20. A Divided Time
	Puzzle 21. Tell Me the Future
	Puzzle 22. Loop de Loop
	Puzzle 23. Path to Nowhere
	Puzzle 24. 12 Angry Men
	Puzzle 25. Look at the Pretty Colors
	Puzzle 26. Let's Vote
	Puzzle 27. An Inside Job
	Puzzle 28. Here Kitty Kitty
	Puzzle 29. Not My Type
	Puzzle 30. Highly Valued

	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– L –
	– M –
	– N –
	– O –
	– P –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Y –

