

Early Praise for Pandas Brain Teasers

Miki is a world-class Python and Go expert and a hands-on professional. This
publication is more evidence that he comes from the field and that he can articulate
not only the practical benefits and their practice but also the thought and the
meta thinking behind them.

➤ Shlomo Yona
Founder and Chief Scientist, mathematic.ai

Even after several years of working with pandas, and thinking I’ve hit every rock
in the road, Pandas Brain Teasers managed to surprise me and teach me about
pandas.

➤ Uri Goren
Recommendation System Expert/Natural Language Processing, argmax

This book is a fun and intellectually stimulating resource for programmers who
wish to gain an in-depth understanding of Python’s Pandas package. It is highly
recommended, especially for data scientists and data analysts, but will undoubt-
edly prove beneficial for any programmer who works with data.

➤ Iddo Berger
CTO, Superfly Insights

A real jam!

➤ Luis Voloch
CTO, Cofounder, Immunai

We've left this page blank to
make the page numbers the
same in the electronic and

paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

Pandas Brain Teasers
Exercise Your Mind

Miki Tebeka

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Margaret Eldridge
Copy Editor: Jennifer Whipple
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-901-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

To all the data nerds out there, you rock!

Contents

Acknowledgments ix
Preface xi

Part I — Pandas Brain Teasers

Puzzle 1. Rectified 3
Puzzle 2. In or Out? 7
Puzzle 3. Month by Month 11
Puzzle 4. Round and Round We Go 15
Puzzle 5. Let’s Get Schwifty 17
Puzzle 6. Full of It 19
Puzzle 7. A Delicious Div Sum 21
Puzzle 8. Once Upon a Time 25
Puzzle 9. A Hefty Bonus 29
Puzzle 10. Free Range 33
Puzzle 11. Phil? Nah!? 37
Puzzle 12. Multiplying 39
Puzzle 13. A 10% Discount 43
Puzzle 14. A Tale of One City 47
Puzzle 15. Free-Range 51
Puzzle 16. Y3K 55
Puzzle 17. Not My Type 57
Puzzle 18. Off with Their NaNs 59
Puzzle 19. Holding out for a Hero 63
Puzzle 20. It’s a Date! 65
Puzzle 21. What’s the Points? 69
Puzzle 22. Find Me a Phone Booth 71
Puzzle 23. Chain of Commands 75
Puzzle 24. Late Addition 79
Puzzle 25. Hit and Run 83

Index 87

Contents • viii

Acknowledgments
I’m grateful for anyone who helped me write this book. Every contribution,
from finding bugs to fixing grammar to letting me work in peace, was super
helpful.

Here is a list of people who helped. My apologies to anyone I forgot:

• Iddo Berger
• Luis Voloch
• Shlomo Yona
• Uri Goren

report erratum • discuss

http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Preface
Pandas is a great library. I have used it in many projects, and it always
delivers. Like any big project, the Pandas developers had to make some design
decisions that at times seem surprising. This book uses these quirks as a
teaching opportunity. By understanding the gaps in your knowledge, you’ll
become better at what you do.

There’s a lot of research showing that people who make mistakes during the
learning process learn better than people who don’t. If you use this approach
when fixing bugs, you’ll find you enjoy bug hunting more and become a better
developer after each bug you fix.

These teasers will help you avoid mistakes. Some of the teasers are from my
own experience shipping bugs to production and some are from others doing
the same.

Teasers are fun! We geeks love to solve puzzles. You can also use these teasers
to impress your coworkers, have knowledge competitions, and become better
together.

Many of these brain teasers are from quizzes I gave at conferences and
meetups. I’ve found that people highly enjoy them, and they tend to liven
up the room.

At the beginning of each chapter, I’ll show you a short Python program with
Pandas code in it and ask you to guess the output. These are the possible
answers:

• Syntax error
• Exception
• Some output (e.g., [1 2 3])

report erratum • discuss

http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Versions

I’m using Python version 3.8.3 and Pandas version 1.0.5. The
output might change in future versions.

Before moving on to the answer and the explanation, go ahead and guess the
output. After guessing, I encourage you to run the code and see the output
yourself; only then proceed to read the solution and the explanation. I’ve been
teaching programming for many years and found this course of action to be
highly effective.

About the Author
Miki Tebeka has a B.Sc. in computer science from Ben Gurion University. He
also studied there toward an M.Sc. in computational linguistics.

Miki has a passion for teaching and mentoring. He teaches many workshops
on various technical subjects all over the world and has mentored many
young developers on their way to success. Miki is involved in open source,
has several projects of his own, and has contributed to several more,
including the Python project. He has been using Python for more than
twenty-three years now.

Miki wrote Python Brain Teasers, Go Brain Teasers, and Forging Python and
is a LinkedIn Learning author and an organizer of Go Israel Meetup,
GopherCon Israel, and PyData Israel Conference.

About the Code
You can find the brain teasers code at https://pragprog.com/titles/d-pandas/pandas-brain-
teasers/.

I’ve tried to keep the code as short as possible and remove anything that is
not related to the teaser. This is not how you’ll normally write code.

Some code examples are shown in the IPython interactive prompt. You should
write the following two imports in your IPython session to follow the examples:

In [1]: import pandas as pd
In [2]: import numpy as np

When referring to a brain teaser, I assume you ran the code with the %run
magic. For example

In [3]: %run sanchez.py

Preface • xii

report erratum • discuss

https://pragprog.com/titles/d-pandas/pandas-brain-teasers/
https://pragprog.com/titles/d-pandas/pandas-brain-teasers/
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This will load all the variables defined in the file into your IPython, even if
there was an exception.

About You
I assume you know Pandas at some level and have experience programming
with it. This book is not for learning how to work with Pandas. If you don’t
know Pandas, I recommend learning it first (it’s fun). There are many resources
online. I recommend the official documentation and the book Python for Data
Analysis by Pandas initial developer Wes McKinney.

One More Thing
As you work through the puzzles in this book, it might help to picture yourself
as Nancy Drew, Sherlock Holmes, or any other of your favorite detectives
trying to solve a murder mystery in which you are the murderer. Think of it
like this:

Debugging is like being a detective in a crime movie where you’re also the
murderer.

— Filipe Fortes

With this mindset, I have found that things are easier to understand, and the
work is more enjoyable. So, with that in mind, have fun guessing the brain
teasers in this book—perhaps you might even learn a new trick or two.

If you’d like to learn more, please send an email to info@353solutions.com, and
we’ll tailor a hands-on workshop to meet your needs. There’s also a compre-
hensive offering of hands-on workshops at https://www.353solutions.com.

Stay curious, and keep hacking!

Miki Tebeka, March 2020

report erratum • discuss

About You • xiii

mailto:info@353solutions.com
https://www.353solutions.com
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Part I

Pandas Brain Teasers

Puzzle 1

Rectified

relu.py
import pandas as pd

def relu(n):
if n < 0:

return 0
return n

arr = pd.Series([-1, 0, 1])
print(relu(arr))

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/relu.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will raise a ValueError.

The problematic line is if n < 0:. n is the result of arr < 0, which is a pandas.Series.

In [1]: import pandas as pd
In [2]: arr = pd.Series([-1, 0, 1])
In [3]: arr < 0
Out[3]:
0 True
1 False
2 False
dtype: bool

Once arr < 0 is computed, you use it in an if statement, which brings us to
how Boolean values work in Python.

Every Python object, not just True and False, has a Boolean value. The docu-
mentation states the rules:

Everything is True except

• 0 numbers: 0, 0.0, 0+0j, …
• Empty collections: [], {}, '', …
• None
• False

You can test the truth value of a Python object using the built-in bool function.

In addition to these rules, any object can state its own Boolean value using
the __bool__ special method. The Boolean logic for a pandas.Series is different from
the one for a list or a tuple; it raises an exception.

In [4]: bool(arr < 0)
...
ValueError: The truth value of a Series is ambiguous.
Use a.empty, a.bool(), a.item(), a.any() or a.all().

The exception tells you the reasoning. It follows “The Zen of Python,” which
states the following:

In the face of ambiguity, refuse the temptation to guess.

So what are your options? You can use all or any but then you’ll need to check
the type of n to see if it’s a plain number of a pandas.Series.

A function that works both on scalar and a pandas.Series (or a numpy array) is
called a ufunc, short for universal function. Most of the functions from numpy
or Pandas, such as min or to_datetime, are ufuncs.

Pandas Brain Teasers • 4

report erratum • discuss

http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

numpy has a vectorize decorator for these cases.

relu_vec.py
import numpy as np
import pandas as pd

@np.vectorize
def relu(n):

if n < 0:
return 0

return n

arr = pd.Series([-1, 0, 1])
print(relu(arr))

Now, relu will work both on scalars (e.g., 7, 2.18, …) and vectors (e.g., numpy
array, pandas.Series, …)

Watch Your Types

The output of relu now is numpy.ndarray, not pandas.Series as well.

Further Reading
Truth Value Testing in the Python Documentation

docs.python.org/3/library/stdtypes.html#truth-value-testing

PEP 285
python.org/dev/peps/pep-0285/

bool Type Documentation
docs.python.org/3/reference/datamodel.html#object.__bool__

Universal Functions on the numpy Docs
numpy.org/doc/stable/reference/ufuncs.html?highlight=ufunc

“The Zen of Python”
python.org/dev/peps/pep-0020/#the-zen-of-python

numpy.vectorize
numpy.org/doc/stable/reference/generated/numpy.vectorize.html#numpy.vectorize

numba.vectorize
numba.pydata.org/numba-doc/latest/user/vectorize.html

report erratum • discuss

Rectified • 5

http://media.pragprog.com/titles/d-pandas/code/relu_vec.py
http://docs.python.org/3/library/stdtypes.html#truth-value-testing
http://python.org/dev/peps/pep-0285/
http://docs.python.org/3/reference/datamodel.html#object.__bool__
http://numpy.org/doc/stable/reference/ufuncs.html?highlight=ufunc
http://python.org/dev/peps/pep-0020/#the-zen-of-python
http://numpy.org/doc/stable/reference/generated/numpy.vectorize.html#numpy.vectorize
http://numba.pydata.org/numba-doc/latest/user/vectorize.html
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 2

In or Out?

simpsons.py
import pandas as pd

simpsons = pd.Series(
['Homer', 'Marge', 'Bart', 'Lisa', 'Maggie'])

print('Bart' in simpsons)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/simpsons.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will print: False

pandas.Series is a sequence type. Most Python sequences are indexed by a range,
meaning the first item is at index 0, the second item is at index 1, and so
forth.

0 vs. 1

Python is a 0-based language. Some languages, such as MATLAB,
are 1-based. The compromise to use ½ as the first index didn’t go
well. :)

pandas.Series (and pandas.DataFrame) indices are more flexible. The default is a
range-based index, but there are other types of indices.

In [1]: import pandas as pd
In [2]: pd.Series([1,2,3,4], index=['a', 'b', 'b', 'c'])
Out[2]:
a 1
b 2
b 3
c 4
dtype: int64

The previous example index has strings as labels. Note that the labels don’t
have to be unique.

In [3]: pd.Series([1,2,3,4], index=pd.date_range('2020', periods=4))
Out[3]:
2020-01-01 1
2020-01-02 2
2020-01-03 3
2020-01-04 4
Freq: D, dtype: int64

This series has a pandas.DatetimeIndex index. Indexing with pandas.DatetimeIndex
enables a lot of time series operations, such as up-sampling, down-sampling,
and more.

These kinds of indices make a pandas.Series behave as a dict as well.

In [4]: s = pd.Series([1,2,3], index=['a', 'b', 'c'])
In [5]: s['c']
Out[5]: 3

This allows two choices for the in operator: either behave like a sequence (e.g.,
list, tuple) or like a dict. The design choice was to have in behave like a dict and
check in the keys that are the index labels.

Pandas Brain Teasers • 8

report erratum • discuss

http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

"in" Performance

The in operator of pandas.Series is very slow compared to the built-
in dict. On my machine it’s about fifteen times slower.

How can you check if a pandas.Series contains a value? Here is one option:

In [6]: 'Bart' in simpsons.values
Out[6]: True

.values returns the underlying numpy array, where the in operator works as
expected.

Further Reading
Sequence Types on the Python Documentation

docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range

Indexing and Selecting Data in the Pandas Documentation
pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html

__contains__ Special Method
docs.python.org/3/reference/datamodel.html#object.__contains__

report erratum • discuss

In or Out? • 9

http://docs.python.org/3/library/stdtypes.html#sequence-types-list-tuple-range
http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html
http://docs.python.org/3/reference/datamodel.html#object.__contains__
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 3

Month by Month

monthly.py
from io import StringIO
import pandas as pd

csv_data = '''\
day,hits
2020-01-01,400
2020-02-02,800
2020-02-03,600
'''

df = pd.read_csv(StringIO(csv_data))
print(df['day'].dt.month.unique())

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/monthly.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will raise an AttributeError.

The comma-separated values (CSV) format does not have a schema. Everything
you read from it is a string. Pandas does a great job of “guessing” the types
of data inside the CSV, but sometimes it needs help.

You can use .dtypes to see what types a DataFrame has:

In [3]: df.dtypes
Out[3]:
day object
hits int64
dtype: object

The object dtype usually means a str (Python’s string). The read_csv function has
many parameters, including parse_dates.

monthly_parse.py
from io import StringIO
import pandas as pd

csv_data = '''\
day,hits
2020-01-01,400
2020-02-02,800
2020-02-03,600
'''

df = pd.read_csv(StringIO(csv_data), parse_dates=['day'])
print(df['day'].dt.month.unique())

parse_dates uses the dateutil parser, which can handle many formats. But it
needs help sometimes: is 1/5/2020 January 5 (US format) or May 1 (EU format)?
You can use the day_first parameter to read_csv, or better, pick a time format
that is unambiguous like RFC 3339 (e.g., 2020-01-05T10:20:30).

I prefer not to use CSV and reach out to other formats (such as SQL, HDF5,
…) whenever possible.

Further Reading
read_csv Documentation

pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html

IO Tools in Pandas Documentation
pandas.pydata.org/pandas-docs/stable/user_guide/io.html

Pandas Brain Teasers • 12

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/monthly_parse.py
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html
http://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Comma-Separated Values on Wikipedia
en.wikipedia.org/wiki/Comma-separated_values

dateutil.parser Documentation
dateutil.readthedocs.io/en/stable/parser.html

RFC 3339
https://www.ietf.org/rfc/rfc3339.txt

report erratum • discuss

Month by Month • 13

http://en.wikipedia.org/wiki/Comma-separated_values
http://dateutil.readthedocs.io/en/stable/parser.html
https://www.ietf.org/rfc/rfc3339.txt
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 4

Round and Round We Go

round.py
import pandas as pd

s = pd.Series([-2.5, -1.5, -0.5, 0.5, 1.5, 2.5])
print(s.round())

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/round.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will print the following:

0 -2.0
1 -2.0
2 -0.0
3 0.0
4 2.0
5 2.0
dtype: float64

Rounding seems easy. round(1.1) evaluates to 1 and round(1.8) evaluates to 2.
The question is, how do you round the .5 numbers? Should you round up?
Down? Turns out, there are a lot of ways to do it.

Python 3 uses bankers’ rounding. Odd numbers are rounded up, even numbers
are rounded down. The reasoning behind this method is that if you round a
list of numbers, assuming there’s roughly the same number of odd and even
numbers, the error (rounding) will cancel each other.

Further Reading
Rounding on Wikipedia

en.wikipedia.org/wiki/Rounding

round Documentation
https://docs.python.org/3/library/functions.html#round

Floating-Point Arithmetic: Issues and Limitations in the Python Tutorial
docs.python.org/3/tutorial/floatingpoint.html#tut-fp-issues

Pandas Brain Teasers • 16

report erratum • discuss

http://en.wikipedia.org/wiki/Rounding
https://docs.python.org/3/library/functions.html#round
http://docs.python.org/3/tutorial/floatingpoint.html#tut-fp-issues
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 5

Let’s Get Schwifty

sanchez.py
import pandas as pd

s = pd.Series(['Rick', 'Morty', 'Summer', 'Beth', 'Jerry'])
print(s.lower())

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/sanchez.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will raise an AttributeError.

The pandas.Series has a lot of methods:

In [1]: import pandas as pd
In [2]: sum(1 for attr in dir(pd.Series) if attr[0] != '_')
Out[2]: 207

But lower is not one of them:

In [3]: hasattr(pd.Series, 'lower')
Out[3]: False

Most of the time, people use Pandas with numerical data. The Pandas
developers decided to move non-numerical methods out of the (already big)
pandas.Series top-level API. To make the teaser code work, use the .str attribute:

sanchez_str.py
import pandas as pd

s = pd.Series(['Rick', 'Morty', 'Summer', 'Beth', 'Jerry'])
print(s.str.lower())

pandas.Series (and pandas.DataFrame) has several such special attribute accessors:

• .str for string methods such as lower, match, …
• .dt to work with datetime/timestamp data (e.g., s.dt.year)
• .cat to work with categorical data
• .sparse to work with sparse data

Further Reading
pandas.Series Documentation

pandas.pydata.org/pandas-docs/stable/reference/series.html

str.lower Documentation
pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.lower.html

Working with Text Data in the Pandas Documentation
pandas.pydata.org/docs/user_guide/text.html

Time Series / Date Functionality in the Pandas Documentation
pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html

Categorical Data in the Pandas Documentation
pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html

Sparse Data in the Pandas Documentation
pandas.pydata.org/docs/user_guide/sparse.html

Pandas Brain Teasers • 18

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/sanchez_str.py
http://pandas.pydata.org/pandas-docs/stable/reference/series.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.lower.html
http://pandas.pydata.org/docs/user_guide/text.html
http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
http://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html
http://pandas.pydata.org/docs/user_guide/sparse.html
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 6

Full of It

empty.py
import pandas as pd

s = pd.Series([], dtype='float64')
print('full' if s.all() else 'empty')

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/empty.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will print: full

The pandas.Series.all documentation says the following:

Return whether all elements are True, potentially over an axis.

Returns True unless there is at least one element within a series or along a
DataFrame axis that is False or equivalent (e.g., zero or empty).

The second paragraph explains what we see. There are no False elements in
the empty series. The built-in all function behaves the same:

In [1]: all([])
Out[1]: True

all is like the mathematical ∀ (for all) symbol. Here’s what Wikipedia says:

By convention, the formula ∀x∈∅,P(x) is always true, regardless of the formula
P(x) …

The any function has the same logic, only reversed. It implies “there exists at
least one element,” which in the case of the empty sequence is always False:

In [1]: import pandas as pd
In [2]: import numpy as np
In [3]: any([])
Out[3]: False
In [5]: pd.Series([], dtype=np.float64).any()
Out[5]: False

Further Reading
pandas.Series.all Documentation

pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.all.html

pandas.Series.any Documentation
pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.any.html

Empty Set on Wikipedia
en.wikipedia.org/wiki/Universal_quantification#The_empty_set

Universal Quantification on Wikipedia
en.wikipedia.org/wiki/Universal_quantification

Existential Quantification on Wikipedia
en.wikipedia.org/wiki/Existential_quantification

Pandas Brain Teasers • 20

report erratum • discuss

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.all.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.any.html
http://en.wikipedia.org/wiki/Universal_quantification#The_empty_set
http://en.wikipedia.org/wiki/Universal_quantification
http://en.wikipedia.org/wiki/Existential_quantification
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 7

A Delicious Div Sum

divsum.py
import pandas as pd

v1 = pd.Series([0, 2, 4])
v2 = pd.Series([0, 1, 2])
out = v1 // v2
print(out.sum())

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/divsum.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will print: 4.0

There are a few things going on in this teaser. The first is the // operator in
out = v1 // v2. This is the floordiv operator in Python. Unlike the regular division,
it returns an int.

In [1]: 7/2
Out[1]: 3.5
In [2]: 7//2
Out[2]: 3

The // operator is useful when you want to calculate indices (e.g., in a binary
search).

The next odd thing is that we managed to divide by 0. If you try to divide by
0 in the Python shell, it’ll fail:

In [3]: 1/0
...
ZeroDivisionError: division by zero

Pandas, and the underlying numpy array, is using different numbers than
Python. The reason is that Python numbers are Python objects and take a
lot of space compared to machine numbers. Python numbers can grow as
much as you want, while Pandas/numpy numbers are limited to their size
in bits.

In [4]: 2<<100
Out[4]: 2535301200456458802993406410752
In [4]: np.int64(2)<<100
Out[4]: 0

<< is the left shift operator.

You can see that the type of v1 and v2 is int64:

In [5]: v1.dtype
Out[5]: dtype('int64')

This gives you a clue why the division by 0 worked:

In [6]: np.int64(0)/np.int64(0)
<ipython-input-62-76db10acbf60>:1: RuntimeWarning: invalid value encountered

in long_scalars np.int64(0)/np.int64(0)
Out[6]: nan

There is a warning but we get a nan. nan is a special float value meaning not
a number. It’s usually used to indicate missing values. Since integers don’t
have a special empty value, Pandas changed the dtype of out to float64.

Pandas Brain Teasers • 22

report erratum • discuss

http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

In [7]: out.dtype
Out[7]: dtype('float64')

Bugs Ahoy

This dtype change can lead to some interesting bugs. Watch out
for it!

In newer versions of Pandas, there’s a new IntegerArray type that can have missing
values. Pandas has several more missing types. For example, there’s NaT for
missing time. You can use the pandas.isnull function to check for missing values.

The last item on the agenda is summing up a series with nan values. If you’re
coming from numpy, you’d expect a nan as a result.

In [8]: out.values
Out[8]: array([nan, 2., 2.])
In [9]: out.values.sum()
Out[9]: nan

In numpy, you need to use nansum to ignore nan values.

In [10]: np.nansum(out.values)
Out[10]: 4.0

Pandas takes a different approach. It sees nan more as a missing value than
not a number and tends to ignore it in most operations.

In [11]: out.sum()
Out[11]: 4.0

Further Reading
floordiv Operator

docs.python.org/3/library/operator.html#operator.floordiv

PEP 238: Division Operator
python.org/dev/peps/pep-0238/

Data Types in the numpy Documentation
numpy.org/devdocs/user/basics.types.html

IntegerArray in the Pandas Documentation
pandas.pydata.org/pandas-docs/stable/reference/api/pandas.arrays.IntegerArray.html

Working with Missing Data in the Pandas Documentation
pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html

Bitwise Operators on the Python Wiki
wiki.python.org/moin/BitwiseOperators

report erratum • discuss

A Delicious Div Sum • 23

http://docs.python.org/3/library/operator.html#operator.floordiv
http://python.org/dev/peps/pep-0238/
http://numpy.org/devdocs/user/basics.types.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.arrays.IntegerArray.html
http://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html
http://wiki.python.org/moin/BitwiseOperators
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 8

Once Upon a Time

times.py
import pandas as pd

s1 = pd.to_datetime([
'2020-01-01T00:00:00+00:00',
'2020-02-02T00:00:00+00:00',
'2020-03-03T00:00:00+00:00',

])
s2 = pd.Series([

pd.Timestamp(2020, 1, 1),
pd.Timestamp(2020, 2, 2),
pd.Timestamp(2020, 3, 3),

])
print(s1 == s2)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/times.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will raise a TypeError.

In Pandas (and Python) there is one Timestamp (or datetime) type. However, it is
divided into two subtypes: naive and tz-aware. The naive type doesn’t have time-
zone information associated with it, while the tz-aware type does.

You cannot compare naive and tz-aware values:

In [1]: t = pd.Timestamp(2020, 5, 23)
In [2]: t
Out[2]: Timestamp('2020-05-23 00:00:00')
In [3]: ut = t.tz_localize('UTC')
In [4]: ut
Out[4]: Timestamp('2020-05-23 00:00:00+0000', tz='UTC')
In [5]: ut == t
...
TypeError: Cannot compare tz-naive and tz-aware timestamps

This is the cause of exception in this teaser.

You must work with tz-aware timestamps if you want to convert from one time
zone to another.

In [6]: t.tz_convert('US/Pacific')
...
TypeError: Cannot convert tz-naive Timestamp, use tz_localize to localize
In [7]: ut.tz_convert('US/Pacific')
Out[7]: Timestamp('2020-05-22 17:00:00-0700', tz='US/Pacific')

Time-Zone Database

As of Python 3.8, Python itself does not come with a time-zone
database. Pandas depends on the "pytz" package that comes with
a time-zone database and updates periodically. Since Python 3.9,
there is a new built-in "zoneinfo" module.

Further Reading
Time-Zone Handling in the Pandas Documentation

pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#time-zone-handling

pandas.Timestamp Documentation
pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html

pytz Package
pythonhosted.org/pytz/

Pandas Brain Teasers • 26

report erratum • discuss

http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#time-zone-handling
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pythonhosted.org/pytz/
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

PEP 615: IANA Time-Zone Database in the Standard Library
python.org/dev/peps/pep-0615/

Time Zone on Wikipedia
en.wikipedia.org/wiki/Time_zone

Falsehoods Programmers Believe About Time
infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time

report erratum • discuss

Once Upon a Time • 27

http://python.org/dev/peps/pep-0615/
http://en.wikipedia.org/wiki/Time_zone
http://infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 9

A Hefty Bonus

grades.py
import pandas as pd

grades = pd.Series([61, 82, 57])
bonuses = pd.Series([10, 5, 10, 10])
out = grades + bonuses
print(out)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/grades.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will print:

0 71.0
1 87.0
2 67.0
3 NaN
dtype: float64</code></pre></td>

pandas.Series and numpy.ndarray are different from Python lists. The + operator
on Python lists does concatenation:

In [1]: [1, 2, 3] + [4, 5]
Out[1]: [1, 2, 3, 4, 5]

numpy.ndarray, and pandas.Series that is built on it, has a different behavior. They
will do element-wise operations and will try to match the dimensions as much
as possible (known as broadcasting).

In [2]: np.array([1,2,3]) + np.array([4,5,6])
Out[2]: array([5, 7, 9])
In [3]: np.array([1,2,3]) + 3
Out[3]: array([4, 5, 6])

If numpy can’t broadcast, it’ll raise an error.

In [4]: np.array([1,2,3]) + np.array([4,5,6,7])
...
ValueError: operands could not be broadcast together with shapes (3,) (4,)

This is where Pandas diverges from numpy. The pandas.Series (and pandas.DataFrame)
uses labels for matching elements (somewhat like SQL join).

In [5]: s1 = pd.Series([1,2,3], index=['a', 'b', 'c'])
In [6]: s2 = pd.Series([10,20,30], index=['c', 'b', 'a'])
In [7]: s1 + s2
Out[7]:
a 31
b 22
c 13
dtype: int64

When Pandas can’t find a matching label, it’ll use nan for a value. This is what
happens in this teaser.

Further Reading
Matching/Broadcasting Behavior in the Pandas Documentation

pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#matching-broadcasting-
behavior

Pandas Brain Teasers • 30

report erratum • discuss

http://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#matching-broadcasting-behavior
http://pandas.pydata.org/pandas-docs/stable/getting_started/basics.html#matching-broadcasting-behavior
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Broadcasting in the numpy Documentation
numpy.org/doc/stable/user/basics.broadcasting.html

“Losing Your Loops” (video demonstration on what you can do with broadcasting)
youtube.com/watch?v=EEUXKG97YRw

SQL Join on Wikipedia
en.wikipedia.org/wiki/Join_(SQL

Emulating Container Types in the Python Documentation
docs.python.org/3/reference/datamodel.html#emulating-container-types

report erratum • discuss

A Hefty Bonus • 31

http://numpy.org/doc/stable/user/basics.broadcasting.html
http://youtube.com/watch?v=EEUXKG97YRw
http://en.wikipedia.org/wiki/Join_(SQL
http://docs.python.org/3/reference/datamodel.html#emulating-container-types
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 10

Free Range

in_range.py
import pandas as pd

nums = pd.Series([1, 2, 3, 4, 5, 6])
print(nums[(nums > 2) and (nums < 5)])

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/in_range.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will raise a ValueError.

The result of nums>2 is a series of Boolean values:

In [1]: nums>2
Out[1]:
0 False
1 False
2 True
3 True
4 True
5 True
dtype: bool

We can use this Boolean series to select parts of a series with the same size,
including, of course, nums.

In [2]: nums[nums>2]
Out[2]:
2 3
3 4
4 5
5 6
dtype: int64

This is known as Boolean indexing.

In some cases, you’d want to combine two or more of these Boolean series to
create a more complex condition. Coming from Python, you’re familiar with
the and, or, and not logical operators. This is what we’re doing in the teaser
(nums > 2) and (nums < 5). However, these Python logical operators will call the
built-in bool function on nums > 2 and nums<5.

As you saw in the puzzle Rectified, this will raise an error. To solve this,
Pandas and numpy use the bitwise operators:

• & instead of and
• | instead of or
• ~ instead of not

For example, the following will pick all the non-nan values in a series:

In [3]: s = pd.Series([1, np.nan, 2])
In [4]: s[~pd.isnull(s)]
Out[4444]:
0 1.0
2 2.0
dtype: float64

Pandas Brain Teasers • 34

report erratum • discuss

http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

To fix our teaser, replace the and with &:

in_range_bitwise.py
import pandas as pd

nums = pd.Series([1, 2, 3, 4, 5, 6])
print(nums[(nums > 2) & (nums < 5)])

Further Reading
Bitwise Operators on the Python Wiki

wiki.python.org/moin/BitwiseOperators

Boolean Indexing in the Pandas Documentation
pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#boolean-indexing

Boolean Array Indexing in the numpy Documentation
numpy.org/devdocs/reference/arrays.indexing.html

report erratum • discuss

Free Range • 35

http://media.pragprog.com/titles/d-pandas/code/in_range_bitwise.py
http://wiki.python.org/moin/BitwiseOperators
http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#boolean-indexing
http://numpy.org/devdocs/reference/arrays.indexing.html
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 11

Phil? Nah!?

fillna.py
import numpy as np
import pandas as pd

s = pd.Series([1, 2, np.nan, 4, 5])
s.fillna(3)
print(s.sum())

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/fillna.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will print: 12.0

The pandas.Series.fillna documentation says the following:

Returns: Series or None
 Object with missing values filled or None if inplace=True.

It’s always a good idea to not change (mutate) an object passed to a function.
On the other hand, Pandas tries to be efficient and not copy data around a lot.

The design decision for fillna, both in pandas.Series and pandas.DataFrame, was not
to change the original object and return a copy. But the user has an option
to pass inplace=True, and then the original object is changed.

When a method changes an object, the common practice in Python is to return
None. Other languages, such as JavaScript, prefer to return the object, allowing
method chaining.

If you change line 5 to s.fillna(3, inplace=True), you’ll see 15.0 as the output.

fillna will work on anything that is considered a missing value: numpy.nan,
pandas.NA, pandas.NaT, None …

Empty strings or collections are not considered missing values.

Further Reading
pandas.Series.fillna Documentation

pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.fillna.html

Working with Missing Data in the Pandas Documentation
pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html

Method Chaining on Wikipedia
en.wikipedia.org/wiki/Method_chaining

Pandas Brain Teasers • 38

report erratum • discuss

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.fillna.html
http://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html
http://en.wikipedia.org/wiki/Method_chaining
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 12

Multiplying

mul.py
import pandas as pd

v = pd.Series([.1, 1., 1.1])
out = v * v
expected = pd.Series([.01, 1., 1.21])
if (out == expected).all():

print('Math rocks!')
else:

print('Please reinstall universe & reboot.')

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/mul.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will print: Please reinstall universe & reboot.

out == expected returns a Boolean pandas.Series. The all method returns True if all
elements are True.

When you look at out and expected, they seem the same:

In [1]: out
Out[1]:
0 0.01
1 1.00
2 1.21
dtype: float64
In [2]: expected
Out[2]:
0 0.01
1 1.00
2 1.21
dtype: float64

But when we compare, we see something strange:

In [2]: out == expected
Out[2]:
0 False
1 True
2 False
dtype: bool

Only the middle value (1.0) is equal.

Looking deeper, we see the problem:

In [3]: print(out[2])
1.2100000000000002

There is a difference between how Pandas is showing the value and how
print does.

String Representation

Always remember that the string representation of an object is
not the object itself. This is beautifully illustrated by the painting
The Treachery of Images.

Some new developers, when seeing this or similar issues, come to the message
boards and say, “We found a bug in Pandas!” The usual answer is, “Read the
fine manual” (RTFM).

Pandas Brain Teasers • 40

report erratum • discuss

http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Floating point is sort of like quantum physics: the closer you look, the messier
it gets.

— Grant Edwards

The basic idea behind this issue is that floating points sacrifice accuracy for
speed (i.e., cheat). Don’t be shocked. It’s a trade-off we do a lot in computer
science.

The result you see conforms with the floating-point specification. If you run
the same code in Go, Rust, C, Java, … you will see the same output.

If you want to learn more about floating points, see the links in the following
section. The main point you need to remember is that they are not accurate,
and accuracy worsens as the number gets bigger.

You’re going to work a lot with floating points and will need to compare pan-
das.Series or pandas.DataFrame. Don’t expect everything to be exactly equal; think
of an acceptable threshold and use the numpy.allclose function.

In [4]: import numpy as np
In [5]: np.allclose(out, expected)
Out[5]: True

numpy.allclose has many options you can tweak. See the documentation.

mul_ac.py
import numpy as np
import pandas as pd

v = pd.Series([.1, 1., 1.1])
out = v * v
expected = pd.Series([.01, 1., 1.21])
if np.allclose(out, expected):

print('Math rocks!')
else:

print('Please reinstall universe & reboot.')

If you need better accuracy, look into the decimal module, which provides cor-
rectly rounded decimal floating-point arithmetic.

Further Reading
Floating-Point Arithmetic: Issues and Limitations in the Python Documentation

docs.python.org/3/tutorial/floatingpoint.html

floating point zine by Julia Evans
twitter.com/b0rk/status/986424989648936960

report erratum • discuss

Multiplying • 41

http://media.pragprog.com/titles/d-pandas/code/mul_ac.py
http://docs.python.org/3/tutorial/floatingpoint.html
http://twitter.com/b0rk/status/986424989648936960
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

What Every Computer Scientist Should Know About Floating-Point Arithmetic
docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

numpy.allclose Documentation
docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html

Built-in decimal Module
docs.python.org/3/library/decimal.html

Pandas Brain Teasers • 42

report erratum • discuss

http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.allclose.html
http://docs.python.org/3/library/decimal.html
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 13

A 10% Discount

discount.py
import pandas as pd

df = pd.DataFrame([
['Bugs', True, 72.3],
['Daffy', False, 30.7],
['Tweety', True, 23.5],
['Elmer', False, 103.9],

], columns=['Customer', 'Member', 'Amount'])

df[df['Member']]['Amount'] *= 0.9
print(df)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/discount.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will print a warning and then

Customer Member Amount
0 Bugs True 72.3
1 Daffy False 30.7
2 Tweety True 23.5
3 Elmer False 103.9</code></pre></td>

The change is not reflected in df. The reason is that Pandas does a lot of work
under the hood to avoid copying data. However, in some cases it can’t, and
then you’ll get a copy of the data.

The warning is very helpful; sadly, a lot of developers ignore it.

discount.py:11: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs...

You have both the solution and a link to more information—got to love the
Pandas developers. It’s also a good indication that many developers face this
issue.

Let’s apply the warning suggestion to our code:

discount_loc.py
import pandas as pd

df = pd.DataFrame([
['Bugs', True, 72.3],
['Daffy', False, 30.7],
['Tweety', True, 23.5],
['Elmer', False, 103.9],

], columns=['Customer', 'Member', 'Amount'])

df.loc[df['Member'], 'Amount'] *= 0.9
print(df)

This will print the expected output without a warning:

Customer Membership Amount
0 Bugs True 65.07
1 Daffy False 30.70
2 Tweety True 21.15
3 Elmer False 103.90

Pandas Brain Teasers • 44

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/discount_loc.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Further Reading
Returning a View Versus a Copy in the Pandas Documentation

pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-
copy

DataFrame.loc Documentation
pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.loc.html

report erratum • discuss

A 10% Discount • 45

http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.loc.html
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 14

A Tale of One City

population.py
import pandas as pd

cities = pd.DataFrame([
('Vienna', 'Austria', 1_899_055),
('Sofia', 'Bulgaria', 1_238_438),
('Tekirdağ', 'Turkey', 1_055_412),

], columns=['City', 'Country', 'Population'])

def population_of(city):
return cities[cities['City'] == city]['Population']

city = 'Tekirdağ'
print(population_of(city))

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/population.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will print: Series([], Name: Population, dtype: int64)

The output means we can’t find Tekirdağ in the cities DataFrame. But … it’s
right there!

Let’s investigate:

In [1]: city
Out[1]: 'Tekirdağ'
In [2]: city2 = cities.loc[2]['City']
In [3]: city2
Out[3]: 'Tekirdağ'
In [4]: city2 == city
Out[4]: False

Hmm …

In [5]: len(city)
Out[5]: 9
In [6]: len(city2)
Out[6]: 8

Hello Unicode, my old friend …

Unicode

The Unicode issue might not render well in the book. Look at the
source code to see exactly what’s going on.

In the beginning, computers were developed in English-speaking countries:
the UK and the US. When early developers wanted to encode text in ways
that computers can understand, they came out with the following scheme.
Use a byte (8 bits) to represent a character. For example, a is 97 (01100001), b
is 98, and so on. One byte is enough for the English alphabet, containing
twenty-six lowercase letters, twenty-six uppercase letters, and ten digits.
There is even some space left for other special characters (e.g., 9 for tab). This
is known as ASCII encoding.

After a while, other countries started to use computers and wanted support
for their native languages. ASCII wasn’t good enough. A single byte can’t hold
all the numbers needed to represent letters in different languages. This led
to several different encoding schemes. The most common one is UTF-8.

Some of the characters in UTF-8 are control characters. In city we have the
character g at position 7, and after it a control character saying “add a breve

Pandas Brain Teasers • 48

report erratum • discuss

http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

to the previous character.” This is why the length of city is 9. city2 from the
cities DataFrame has ğ at location 7.

These are known as Unicode normalization forms. You can use the unicodedata
module to normalize strings to the same format.

On top of that, people might want to do case-insensitive searches for cities.
In some cases, with Unicode, str.lower or str.upper methods won’t do the job you
think. You should use the str.casefold method.

Here’s a solution to this teaser incorporating all of these methods:

population_norm.py
import unicodedata

import pandas as pd

cities = pd.DataFrame([
('Vienna', 'Austria', 1_899_055),
('Sofia', 'Bulgaria', 1_238_438),
('Tekirdağ', 'Turkey', 1_055_412),

], columns=['City', 'Country', 'Population'])

def population_of(city):
city = normalize(city)
return cities[cities['city_norm'] == city]['Population']

def normalize(name):
return unicodedata.normalize('NFKC', name).casefold()

cities['city_norm'] = cities['City'].apply(normalize)

city = 'Tekirdağ'
print(population_of(city))

Further Reading
ASCII on Wikipedia

en.wikipedia.org/wiki/ASCII

UTF-8 on Wikipedia
en.wikipedia.org/wiki/UTF-8

Unicode HOWTO
docs.python.org/3/howto/unicode.html

Unicode and You
betterexplained.com/articles/unicode/

Unicode on Wikipedia
en.wikipedia.org/wiki/Unicode

report erratum • discuss

A Tale of One City • 49

http://media.pragprog.com/titles/d-pandas/code/population_norm.py
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/UTF-8
http://docs.python.org/3/howto/unicode.html
http://betterexplained.com/articles/unicode/
http://en.wikipedia.org/wiki/Unicode
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Unicode Normalization on Wikipedia
en.wikipedia.org/wiki/Unicode_equivalence#Normalization

“A Guide to Unicode”
youtube.com/watch?v=olhKTHFYNxA

str.casefold Documentation
docs.python.org/3/library/stdtypes.html#str.casefold

unicodedata Module
docs.python.org/3/library/unicodedata.html

Pandas Brain Teasers • 50

report erratum • discuss

http://en.wikipedia.org/wiki/Unicode_equivalence#Normalization
http://youtube.com/watch?v=olhKTHFYNxA
http://docs.python.org/3/library/stdtypes.html#str.casefold
http://docs.python.org/3/library/unicodedata.html
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 15

Free-Range

loc.py
import pandas as pd

df = pd.DataFrame([
[1, 1, 1],
[2, 2, 2],
[3, 3, 3],
[4, 4, 4],
[5, 5, 5],

])

print(len(df.loc[1:3]))

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/loc.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will print: 3

Slices in Python are half-open ranges. You get values from the first index, up
to but not including the last index:

In [1]: chars = ['a', 'b', 'c', 'd', 'e']
In [2]: chars[1:3]
Out[2]: ['b', 'c']

And most of the time, Pandas words the same way:

In [3]: s = pd.Series(chars)
In [4]: s[1:3]
Out[4]:
1 b
2 c
dtype: object

There are three ways to slice a pandas.Series or a pandas.DataFrame:

• Using loc, which works by label
• Using iloc, which works by offset
• Using a slice notation (e.g., s[1:3]), which works like iloc

loc works by label and it slices on a closed range, including the last index:

In [5]: df[1:3]
Out[5]:

0 1 2
1 2 2 2
2 3 3 3
In [6]: df.iloc[1:3]
Out[6]:

0 1 2
1 2 2 2
2 3 3 3
In [7]: df.loc[1:3]
Out[7]:

0 1 2
1 2 2 2
2 3 3 3
3 4 4 4

Watch out for this off-by-one error when using .loc.

Further Reading
loc in Pandas Documentation

pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.loc.html

Pandas Brain Teasers • 52

report erratum • discuss

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.loc.html
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

iloc in Pandas Documentation
pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html

Indexing and Selecting Data in the Pandas Documentation
pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html

Off-by-One Error on Wikipedia
en.wikipedia.org/wiki/Off-by-one_error

report erratum • discuss

Free-Range • 53

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.iloc.html
http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html
http://en.wikipedia.org/wiki/Off-by-one_error
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 16

Y3K

future.py
import pandas as pd

y3k = pd.Timestamp(3000, 1, 1)
print(f'They arrived to Earth on {y3k:%B %d}.')

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/future.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will raise an OutOfBoundsDatetime exception.

Computers and time have a complicated relationship. There are daylight
saving time, leap years, time zones, and more details to work out.

Computers store time as the number of seconds since January 1, 1970, GMT.

2038

This means that in 2038, time will overflow on 32-bit machines.
Ouch!

Python’s datetime and pandas.Timestamp, which is based on it, are written mostly
in C and have a fixed amount of space for storing time information. This
means there’s a maximal and minimal value to datetime.

In [1]: pd.Timestamp.min
Out[1]: Timestamp('1677-09-21 00:12:43.145225')
In [2]: pd.Timestamp.max
Out[2]: Timestamp('2262-04-11 23:47:16.854775807')

The date we’re giving in this teaser is more than the maximal pandas.Timestamp
value. This is documented in the “Timestamp Limitations” section in the
Pandas documentation.

Further Reading
pandas.Timestamp Documentation

pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html

“Timeseries Limitations” in the Pandas Documentation
pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timestamp-limitations

Falsehoods Programmers Believe About Time
infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time

Unix Time on Wikipedia
en.wikipedia.org/wiki/Unix_time

Year 2038 Problem on Wikipedia
en.wikipedia.org/wiki/Year_2038_problem

Working with Time Series in the “Python Data Science Handbook” by Jake
VanderPlas

jakevdp.github.io/PythonDataScienceHandbook/03.11-working-with-time-series.html

Pandas Brain Teasers • 56

report erratum • discuss

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timestamp-limitations
http://infiniteundo.com/post/25326999628/falsehoods-programmers-believe-about-time
http://en.wikipedia.org/wiki/Unix_time
http://en.wikipedia.org/wiki/Year_2038_problem
http://jakevdp.github.io/PythonDataScienceHandbook/03.11-working-with-time-series.html
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 17

Not My Type

concat.py
import pandas as pd

df1 = pd.DataFrame([[1, 2], [3, 4]], columns=['a', 'b'])
df2 = pd.DataFrame([[5, 6], [7, 8]], columns=['b', 'c'])
df = pd.concat([df1, df2])
print(df.dtypes)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/concat.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will print:

a float64
b int64
c float64
dtype: object</code></pre></td>

If you look at the dtypes of df1 and df2, you’ll see they are int64:

In [1]: df1.dtypes
Out[1]:
a int64
b int64
dtype: object
In [2]: df2.dtypes
Out[2]:
b int64
c int64
dtype: object

Why did the teaser output show the a and c columns as float64?

pandas.concat can handle frames with different columns. By default it will assume
there are nan values in the missing labels for a specific column. As we saw in
the puzzle A Delicious Div Sum, Pandas will change the dtype of a series to
allow missing values. And that’s what’s happening here.

Further Reading
pandas.concat in the Pandas Documentation

pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html

Merge, Join, and Concatenate in the Pandas Documentation
pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

Working with Missing Data in the Pandas Documentation
pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html

Pandas Brain Teasers • 58

report erratum • discuss

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.concat.html
http://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html
http://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 18

Off with Their NaNs

not_nan.py
import numpy as np
import pandas as pd

s = pd.Series([1, np.nan, 3])
print(s[~(s == np.nan)])

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/not_nan.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will print:

0 1.0
1 NaN
2 3.0
dtype: float64

We covered some of the floating-point oddities in the puzzle Multiplying. NaN
(or np.nan) is another oddity. The name NaN stands for not a number. It serves
two purposes: illegal computation and missing values.

Here’s an example of a bad computation:

In [1]: np.float64(0)/np.float64(0)
RuntimeWarning: invalid value encountered in \
double_scalars np.float64(0)/np.float64(0)

Out[1]: nan

You see a warning but not an exception, and the return value is nan.

nan does not equal any number, including itself.

In [2]: np.nan == np.nan
Out[2]: False

To check that a value is nan, you need to use a special function such as
pandas.isnull:

In [3]: pd.isnull(np.nan)
Out[3]: True

You can use pandas.isnull to fix this teaser.

not_nan_fixed.py
import numpy as np
import pandas as pd

s = pd.Series([1, np.nan, 3])
print(s[~pd.isnull(s)])

pandas.isnull works with all Pandas “missing” values: None, pandas.NaT (not a time),
and the new pandas.NA.

Floating points have several other special “numbers” such as inf (infinity), -inf,
-0, +0, and others. You can learn more about them in the following links.

Further Reading
pandas.isnull in the Pandas Documentation

pandas.pydata.org/pandas-docs/stable/reference/api/pandas.isnull.html

Pandas Brain Teasers • 60

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/not_nan_fixed.py
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.isnull.html
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Experimental NA Scalar to Denote Missing Values in the Pandas Documentation
pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html#missing-data-na

Floating-Point Arithmetic: Issues and Limitations in the Python Documentation
docs.python.org/3/tutorial/floatingpoint.html

floating point zine by Julia Evans
twitter.com/b0rk/status/986424989648936960

What Every Computer Scientist Should Know About Floating-Point Arithmetic
docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html

report erratum • discuss

Off with Their NaNs • 61

http://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html#missing-data-na
http://docs.python.org/3/tutorial/floatingpoint.html
http://twitter.com/b0rk/status/986424989648936960
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 19

Holding out for a Hero

heros.py
import pandas as pd

heros = pd.Series(['Batman', 'Wonder Woman', 'Superman'])
if heros.str.find('Iron Man').any():

print('Wrong universe')
else:

print('DC')

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/heros.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will print: Wrong universe

The str.find documentation says the following:

Return the lowest index in the string where substring sub is found within the
slice s[start:end]. Optional arguments start and end are interpreted as in slice
notation. Return -1 if sub is not found.

In the Rectified puzzle, we saw that, except for zeros, all numbers’ Boolean
values are True.

When you run

In [1]: heros.str.find('Iron Man')
Out[1]:
0 -1
1 -1
2 -1
dtype: int64

the pandas.Series.any method will return True if at least one of the values in the
series is True. Since we have -1 as values, any will return True.

One way to solve this is to use the == operator:

In [2]: (heros == 'Iron Man').any()
Out[2]: False

Further Reading
str.find in the Python Documentation

docs.python.org/3/library/stdtypes.html#str.find

pandas.Series.any in the Pandas Documentation
pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.any.html

Truth Value Testing in the Python Documentation
docs.python.org/3/library/stdtypes.html#truth-value-testing

Pandas Brain Teasers • 64

report erratum • discuss

http://docs.python.org/3/library/stdtypes.html#str.find
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.any.html
http://docs.python.org/3/library/stdtypes.html#truth-value-testing
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 20

It’s a Date!

date_range.py
import pandas as pd

start = pd.Timestamp.fromtimestamp(0).strftime('%Y-%m-%d')
times = pd.date_range(start=start, freq='M', periods=2)
print(times)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/date_range.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will print:

DatetimeIndex(['1970-01-31', '1970-02-28'], dtype='datetime64[ns]', freq='M')

There are two things that are puzzling here:

• M is a month frequency.
• First date is January 31 and not January 1.

Let’s start with M being a month frequency. You’ve probably used the infamous
strftime or its cousin strptime to convert datetime to or from strings. There, M
stands for minute:

In [1]: t = pd.Timestamp(2020, 5, 10, 14, 21, 30)
In [2]: t.strftime('%H:%M')
Out[2]: '14:21'

One of the things I like about Pandas is that it’s one of the best-documented
open source packages out there. But Pandas is a big library, and sometimes
it’s hard to find what you’re looking for.

If you look at the pandas.date_range documentation, you’ll see the following:

freqstr or DateOffset, default ‘D’
 Frequency strings can have multiples, e.g., ‘5H’. See here for a list of frequency
aliases.

When you click “here” on the web page, you’ll see the full list of what’s called
DateOffset and you’ll see that M stands for month end frequency. Minute frequen-
cy is T or min.

This solves one puzzle and also gives us a hint about why we see January 31
and not January 1. Remember that in the puzzle Y3K, we saw that time 0,
or epoch time, is January 1, 1970.

In [3]: pd.Timestamp(0)
Out[3]: Timestamp('1970-01-01 00:00:00')

If you follow the code of pandas.date_range, you’ll see it converts the freq from str
to a pandas.DateOffset. Then date_range will use pandas.DataOffset.apply on start. From
there it’ll add the offset for period times.

Let’s emulate this:

In [4]: from pandas.tseries.frequencies import to_offset
In [5]: start = pd.Timestamp(0)
In [6]: offset = to_offset('M')
In [7]: offset

Pandas Brain Teasers • 66

report erratum • discuss

http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Out[7]: <MonthEnd>
In [8]: t0 = offset.apply(start)
In [9]: t0
Out[9]: Timestamp('1970-01-31 00:00:00')
In [10]: t0 + offset
Out[10]: Timestamp('1970-02-28 00:00:00')

This is what we see in this teaser’s output.

Note that frequencies don’t have to be whole units. The following will give you
a date range in five-minute intervals.

In [11]: pd.date_range(start=pd.Timestamp(0), periods=3, freq='5T')
Out[21]:
DatetimeIndex(['1970-01-01 00:00:00', '1970-01-01 00:05:00',

'1970-01-01 00:10:00'],
dtype='datetime64[ns]', freq='5T')

Further Reading
strftime() and strptime() Behavior in the Python Documentation

docs.python.org/3/library/datetime.html#strftime-strptime-behavior

Offset Aliases in the Pandas Documentation
pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases

DateOffset in the Pandas Documentation
pandas.pydata.org/pandas-docs/stable/reference/api/pandas.tseries.offsets.DateOffset.html

Time Series / Date Functionality in the Pandas Documentation
pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html

report erratum • discuss

It’s a Date! • 67

http://docs.python.org/3/library/datetime.html#strftime-strptime-behavior
http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#timeseries-offset-aliases
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.tseries.offsets.DateOffset.html
http://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 21

What’s the Points?

points.py
import pandas as pd

df = pd.DataFrame([[1, 2], [3, 4]], columns=['x', 'y'])
print(df.to_csv())

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/points.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will print:

,x,y
0,1,2
1,3,4</code></pre></td>

What’s with the unnamed column that has 0 and 1 values?

The pandas.DataFrame documentation says:

Data structure also contains labeled axes (rows and columns). Arithmetic opera-
tions align on both row and column labels. Can be thought of as a dict-like con-
tainer for Series objects. The primary pandas data structure.

The labeled axis for rows is called the index.

When you convert a pandas.DataFrame to another format (e.g., CSV, SQL, …), it
will add the index by default.

Use index=False to omit the index.

In [1]: print(df.to_csv(index=False))
x,y
1,2
3,4

Further Reading
pandas.DataFrame.to_csv in the Pandas Documentation

pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html

IO Tools in the Pandas User Guide
pandas.pydata.org/pandas-docs/stable/user_guide/io.html

Comma-Separated Values on Wikipedia
en.wikipedia.org/wiki/Comma-separated_values

Pandas Brain Teasers • 70

report erratum • discuss

http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_csv.html
http://pandas.pydata.org/pandas-docs/stable/user_guide/io.html
http://en.wikipedia.org/wiki/Comma-separated_values
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 22

Find Me a Phone Booth

identities.py
import pandas as pd

df1 = pd.DataFrame({
'id': [1, 2, 3],
'name': ['Clark Kent', 'Diana Prince', 'Bruce Wayne'],

})

df2 = pd.DataFrame({
'id': [2, 1, 4],
'hero': ['Wonder Woman', 'Superman', 'Aquaman'],

})

df = pd.merge(df1, df2, on='id')
print(df)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/identities.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will print:

id name hero
0 1 Clark Kent Superman
1 2 Diana Prince Wonder Woman</code></pre></td>

Pandas merge1 gets a sequence of pandas.DataFrame to merge and an optional
column to merge on. If the column is not provided, Pandas will use the index
of each DataFrame for merging.

The question is, what happens when one merge column has values that the
other doesn’t? This question is an old one and is rooted in relational
databases and their join2 operator. There are several types of joins. Each type
defines a different behavior. The Pandas merge function mimics these operators
as well.

Looking at pandas.merge documentation, you’ll see a how parameter:

how {‘left’, ‘right’, ‘outer’, ‘inner’}, default ‘inner’

Type of merge to be performed.

• left: Use only keys from left frame, similar to a SQL left outer join; preserve
key order.

• right: Use only keys from right frame, similar to a SQL right outer join; pre-
serve key order.

• outer: Use union of keys from both frames, similar to a SQL full outer join;
sort keys lexicographically.

• inner: Use intersection of keys from both frames, similar to a SQL inner join;
preserve the order of the left keys.

The default merge type is inner, which means only rows that have keys in both
left and right are included in the result.

merge orders the rows by the order of keys on the left frame. The teaser’s output
shows the above behavior.

In the output, you see only Superman and Wonder Woman, which have keys
in both frames. The output is sorted according to the order of the first frame.

If you switch the order of frames passed to merge, you’ll see a different ordering:

1. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html#pandas.merge
2. https://en.wikipedia.org/wiki/Join_(SQL)

Pandas Brain Teasers • 72

report erratum • discuss

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.merge.html#pandas.merge
https://en.wikipedia.org/wiki/Join_(SQL)
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

In [1]: pd.merge(df2, df1)
Out[1]:

id hero name
0 2 Wonder Woman Diana Prince
1 1 Superman Clark Kent

If you want to include all lines, use an outer merge. Pandas will fill missing
values with NaN:

In [2]: pd.merge(df1, df2, on='id', how='outer')
Out[2]:

id name hero
0 1 Clark Kent Superman
1 2 Diana Prince Wonder Woman
2 3 Bruce Wayne NaN
3 4 NaN Aquaman

Pandas merge is very powerful and will let you connect different frames.

A common case from data marts is a star schema where you have one main
frame with data (called a fact) and many other frames that provide auxiliary
data.

For example, the main frame will have sale events with customer ID. If you
want to group by customer age, you need first to merge the main frame with
a customers frame that has customer age for every customer ID. In this case,
you’ll use a left join.

Further Reading
Merge, Join, and Concatenate in the Pandas Documentation

pandas.pydata.org/pandas-docs/stable/user_guide/merging.html

Join (SQL) on Wikipedia
en.wikipedia.org/wiki/Join_(SQL)

Data Mart on Wikipedia
en.wikipedia.org/wiki/Data_mart

Star Schema on Wikipedia
en.wikipedia.org/wiki/Star_schema

report erratum • discuss

Find Me a Phone Booth • 73

http://pandas.pydata.org/pandas-docs/stable/user_guide/merging.html
http://en.wikipedia.org/wiki/Join_(SQL)
http://en.wikipedia.org/wiki/Data_mart
http://en.wikipedia.org/wiki/Star_schema
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 23

Chain of Commands

by_ip.py
import pandas as pd

df = pd.DataFrame([
['133.43.96.45', pd.Timedelta('3s')],
['133.68.18.180', pd.Timedelta('2s')],
['133.43.96.45', pd.NaT],
['133.43.96.45', pd.Timedelta('4s')],
['133.43.96.45', pd.Timedelta('2s')],

], columns=['ip', 'duration'])

by_ip = (
df['duration']
.fillna(pd.Timedelta(seconds=1))
.groupby(df['ip'])
.sum()

)
print(by_ip)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/by_ip.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will print:

ip
133.43.96.45 00:00:10
133.68.18.180 00:00:02
Name: duration, dtype: timedelta64[ns]</code></pre></td>

The surprising fact here is that it’s valid Python code.

Python’s use of white space is pretty unique in programming languages. Some
people don’t like it. I find it makes the code more readable.

The Python documentation says

A logical line is constructed from one or more physical lines by following the
explicit or implicit line joining rules.

And a bit later

Expressions in parentheses, square brackets, or curly braces can be split over
more than one physical line without using backslashes.

Which means

• 'a' 'b' is not valid.
• ('a', 'b') is a tuple (a, b is also a tuple).
• ('a' 'b') is the string 'ab'.

You can use this implicit line joining to make your code clearer and do method
chaining for complex operations. That is what we do in this teaser.

pandas.DataFrame has a pipe method for use in chaining.

When constructing lists or tuples in multiple lines, you should add a dangling
comma (also called trailing comma or final comma).

colors = [
'red',
'green'
'blue', # ← A dangling comma

]

Not only will it save you from bugs, there will be only one line change in code
reviews if you add another color. Sadly, not every language or format allows
dangling commas. I’m looking at you JSON and SQL.

Further Reading
Lexical Analysis in the Python Documentation

docs.python.org/3/reference/lexical_analysis.html

Pandas Brain Teasers • 76

report erratum • discuss

http://docs.python.org/3/reference/lexical_analysis.html
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Method Chaining in Tom Augspurger’s “Modern Pandas”
tomaugspurger.github.io/method-chaining

Line Structure in the Python Reference
docs.python.org/3/reference/lexical_analysis.html#line-structure

When to Use Trailing Commas in Python’s Style Guide (aka PEP 8)
python.org/dev/peps/pep-0008/#when-to-use-trailing-commas

Tuple Syntax on the Python Wiki
wiki.python.org/moin/TupleSyntax

“That Trailing Comma” by Dave Cheney
dave.cheney.net/2014/10/04/that-trailing-comma

report erratum • discuss

Chain of Commands • 77

http://tomaugspurger.github.io/method-chaining
http://docs.python.org/3/reference/lexical_analysis.html#line-structure
http://python.org/dev/peps/pep-0008/#when-to-use-trailing-commas
http://wiki.python.org/moin/TupleSyntax
http://dave.cheney.net/2014/10/04/that-trailing-comma
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 24

Late Addition

archer.py
import pandas as pd

df = pd.DataFrame([
['Sterling', 83.4],
['Cheryl', 97.2],
['Lana', 13.2],

], columns=['name', 'sum'])
df.late_fee = 3.5
print(df)

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/archer.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will print:

name sum
0 Sterling 83.4
1 Cheryl 97.2
2 Lana 13.2

Where did the late_fee column go?

Python’s objects are very dynamic. You can add attributes to most of them
as you please.

In [1]: class Point:
...: def __init__(self, x, y):
...: self.x, self.y = x, y

In [2]: p = Point(1, 2)
In [3]: p.x, p.y
Out[3]: (1, 2)
In [4]: p.z = 3
In [5]: p.z
Out[5]: 3

Pandas lets you access columns both by square brackets (e.g., df[name]) and
by attribute (e.g., df.name). I recommend using square brackets at all times.
One reason is, as we saw, when you add an attribute to a DataFrame, it does
not register as a new column. Another reason is that column names in CSV,
JSON, and other formats can contain spaces or other characters that are not
valid Python identifiers, meaning you won’t be able to access them with
attribute access. df.product id will fail while df['product id'] will work.

And the last reason is that it’s confusing:

In [6]: df.sum
Out[6]:
<bound method DataFrame.sum of name sum
0 Sterling 83.4
1 Cheryl 97.2
2 Lana 13.2>

You get the DataFrame sum method and not the sum column. Also:

In [7]: df.late_fee
Out[7]: 3.5

You probably expected late_fee to be a Series like the other columns.

Sometimes you’d like to add metadata to a DataFrame, say, the name of the
file the data was read from.

Pandas Brain Teasers • 80

report erratum • discuss

http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Instead of adding a new attribute, for example, df.originating_file = '/path/to/sales.db',
there’s an experimental attribute called attrs for storing metadata in a
DataFrame.

In [8]: df.attrs['originating_file'] = '/path/to/sales.db'
In [9]: df.attrs
Out[9]: {'originating_file': '/path/to/sales.db'}

Further Reading
Indexing Basics in the Pandas Documentation

pandas.pydata.org/docs/user_guide/indexing.html#basics

Identifiers and Keywords in the Python Documentation
docs.python.org/3/reference/lexical_analysis.html#identifiers

DataFrame.attrs in the Pandas Documentation
pandas.pydata.org/docs/reference/api/pandas.DataFrame.attrs.html#pandas.DataFrame.attrs

report erratum • discuss

Late Addition • 81

http://pandas.pydata.org/docs/user_guide/indexing.html#basics
http://docs.python.org/3/reference/lexical_analysis.html#identifiers
http://pandas.pydata.org/docs/reference/api/pandas.DataFrame.attrs.html#pandas.DataFrame.attrs
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Puzzle 25

Hit and Run

hits.py
import sqlite3
import pandas as pd

conn = sqlite3.connect(':memory:')
conn.executescript('''
CREATE TABLE visits (day DATE, hits INTEGER);
INSERT INTO visits VALUES

('2020-07-01', 300),
('2020-07-02', 500),
('2020-07-03', 900);

''')

df = pd.read_sql('SELECT * FROM visits', conn)
print('time span:', df['day'].max() - df['day'].min())

Guess the Output

Try to guess what the output is before moving to the next page.

report erratum • discuss

http://media.pragprog.com/titles/d-pandas/code/hits.py
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

This code will raise a TypeError.

I love SQLite3. It’s a great single-file database that I’ve used many times to
transfer data. It is widely used and heavily tested and can handle vast amounts
of data (currently about 140 terabytes).

However, you need to know how to work with it.

In the teaser code, we create a hits table that has two columns:

• day with SQL DATE type
• hits with SQL INTEGER type

The mapping from SQL types to Python (and Pandas) types is defined in the
SQL driver used to access the database. SQLite is a bit different from other
databases. Natively, SQLite has only numbers and strings as types, but it
does support declaring a column as having a DATE, TIME, or TIMESTAMP type.

You can see that if you look at the .dtypes:

In [1]: df.dtypes
Out[1]:
day object
hits int64
dtype: object

The day column has an object dtype, which in most cases means it’s a str. When
you do df['day'].max() - df['day'].min(), you’re subtracting two strings, which is not
a legal operation in Python.

You can convert a column to a Pandas Timestamp either by using the Pandas
to_datetime function or by passing the column names to convert in the parse_dates
parameter of read_sql. However, you somehow need to know what columns are
time.

The better option (IMO) is to use the detect_types parameter in sqlite3.connect.
When you pass PARSE_DECLTYPES to sqlite3.connect, it’ll convert DATE, TIME, and
TIMESTAMP columns to Python’s datetime types. read_sql will convert these
pandas.Timestamp columns.

Pandas Brain Teasers • 84

report erratum • discuss

http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Here’s the solution:

hits_detect.py
import sqlite3
import pandas as pd

conn = sqlite3.connect(
':memory:',
detect_types=sqlite3.PARSE_DECLTYPES,

)
conn.executescript('''
CREATE TABLE visits (day DATE, hits INTEGER);
INSERT INTO visits VALUES

('2020-07-01', 300),
('2020-07-02', 500),
('2020-07-03', 900);

''')

df = pd.read_sql('SELECT * FROM visits', conn)
print('time span:', df['day'].max() - df['day'].min())

Further Reading
SQL Queries in the Pandas Documentation

pandas.pydata.org/pandas-docs/stable/user_guide/io.html#sql-queries

SQLite and Python Types in the Python Documentation
docs.python.org/3.8/library/sqlite3.html#sqlite-and-python-types

How SQLite Is Tested
sqlite.org/testing.html

pandas.to_datetime in the Pandas Documentation
pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html

sqlite3.connect in the Python Documentation
docs.python.org/3.8/library/sqlite3.html#sqlite3.connect

report erratum • discuss

Hit and Run • 85

http://media.pragprog.com/titles/d-pandas/code/hits_detect.py
http://pandas.pydata.org/pandas-docs/stable/user_guide/io.html#sql-queries
http://docs.python.org/3.8/library/sqlite3.html#sqlite-and-python-types
http://sqlite.org/testing.html
http://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_datetime.html
http://docs.python.org/3.8/library/sqlite3.html#sqlite3.connect
http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Pandas Brain Teasers • 86

report erratum • discuss

http://pragprog.com/titles/d-pandas/errata/add
http://forums.pragprog.com/forums/d-pandas

Index

SYMBOLS
+ (addition operator), 29–30

& (bitwise and operator), 34

~ (bitwise not operator), 34

| (bitwise or operator), 34

== (equality operator), 64

// (floordiv operator), 22

[] (slice operator)
with pandas.DataFrame, 43–

44, 51–52
with str.find, 64

A
addition operator (+), 29–30

all function, 20

ambiguity, 4

and operator, 33–35

any function, 20

arithmetic
division, 22–23
on NaN values, 22–23
on floating-point values,

39–41
on numpy.ndarray, 30
on pandas.Series, 21–23,

29–30
rounding, 15–16

B
bankers’ rounding, 16

bitwise and operator (&), 34

bitwise not operator (~), 34

bitwise or operator (|), 34

bool function, 4, 34

__bool__ method, 4

Boolean indexing, 34

Boolean operations, on pan-
das.Series, 3–5, 19–20, 33–35

Boolean values, 4, 63–64

broadcasting, 30

C
code examples

learning from, xi–xii
location of, xii
running, xii

code, formatting, 75–76

comma, dangling, 76

concatenation
with lists, 30
with pandas.DataFrame, 57–

58

CSV (comma-separated val-
ues) format, 11–12

D
dangling comma, 76

data marts, 73

dates and times
dt attribute accessor for,

18
parsing, 11–12
ranges of, 65–67
size limits of, 55–56
in SQLite3, mapping to

Pandas, 83–85
time-zone-aware types,

25–26

datetime type, 26, 56, 66, 84

dateutil parser, 12

debugging, mindset for, xiii

decimal module, 41

diacritical marks, 47–49

dict type, 8

division, 22–23

E
equality operator (==), 64

examples
code for, xii
learning from, xi–xii
running, xii

F
final comma, 76

floating-point values
accuracy of, 39–41
comparing, with toler-

ance, 41
rounding, 15–16, 41

floordiv operator (//), 22

I
implicit line joining, 76

import command, xii

IntegerArray type, 23

IPython interactive prompt,
xii

J
joins, behavior of, 72–73

L
lists, concatenation of, 30

logical operators, 33–35

lowercase, converting strings
to, 17–18

M
method chaining, 76

missing values
arithmetic on, 22–23
checking for, 23, 59–60
criteria for, 38
with Series.fillna, 37–38
type changes caused by,

58

N
NaN (not a number) values

arithmetic on, 22–23
checking for, 23, 59–60
with Series.fillna, 37–38

NaT (not a time) value, 23

numbers, size limits of, 22

numpy
broadcasting, 30
comparing floating points

with tolerance, 41
element-wise addition of

arrays, 30
ignoring NaN values, 23
importing, xii
missing values with, 23
NaN values, checking for,

59–60
numbers, size limits of,

22
vectorizing scalars, 5

numpy.allclose function, 41

numpy.nan value, 38, 59–60

numpy.nansum function, 23

numpy.ndarray type, 30

numpy.vectorize decorator, 5

O
in operator, 7–9

P
Pandas

importing, xii
learning, xiii
version used in this book,

xii

pandas.concat function, 57–58

pandas.DataFrame type
accessing columns of, 80
adding attributes to, 79–

80
adding metadata to, 80
attribute accessors for,

18
attrs attribute, 81
concatenating, 57–58

dtypes property, 12, 57–58
fillna method, 38
iloc property, 52
index for, 69–70
index options for, 8
loc property, 44, 52
merging, 71–73
setting values in slices of,

43–44

pandas.DateOffset type, 66

pandas.date_range method, 65–
67

pandas.DatetimeIndex type, 8, 66

pandas.isnull function, 23, 60

pandas.merge function, 71–73

pandas.read_csv function, 11–12

pandas.Series type
addition operator (+) with,

29–30
all method, 19–20
any method, 20, 63–64
arithmetic on, 21–23
attribute accessors for,

18
Boolean operations on, 3–

5, 33–35
converting to lowercase,

17–18
iloc property, 52
index options for, 8
loc property, 52
in operator with, 7–9
round method, 15–16
values property, 9

pandas.Timestamp type
conversions to, 84
fromtimestamp method, 65–

67
size limits of, 55–56
subtypes of, 25–26
tz_convert method, 26
tz_localize method, 26

pandas.to_datetime function, 25,
84

Python
0-based ranges in, 8
numbers, size limits of,

22
time-zone support, 26
version used in this book,

xii

pytz package, 26

R
ranges, 0-based and 1-based,

8

RFC 3339 format, 12

%run command, xii

S
sequence types, index options

for, 8

Series.fillna method, 37–38

Series.sum method, 21–23

slice operator ([])
with pandas.DataFrame, 43–

44, 51–52
with str.find, 64

SQLite3 database, mapping
types from, 83–85

star schema, 73

str.casefold method, 49

str.find function, 63–64

strftime function, 65–67

strings
case-insensitive searches

of, 49
converting dates and

times to, 65–67
converting to lowercase,

17–18
diacritical marks in, 47–

49
substrings contained in,

63–64

T
trailing comma, 76

tz-aware subtype, 26

tz-naive subtype, 26

U
ufunc (universal function), 4

Unicode normalization forms,
49

unicodedata module, 49

UTF-8 encoding, 48–49

W
white space in code, 75–76

Y
Year 2038 problem, 56

Z
“The Zen of Python,” regard-

ing ambiguity, 4

zoneinfo module, 26

Index • 88

Thank you!
How did you enjoy this book? Please let us know. Take a moment and email
us at support@pragprog.com with your feedback. Tell us your story and you
could win free ebooks. Please use the subject line “Book Feedback.”

Ready for your next great Pragmatic Bookshelf book? Come on over to
https://pragprog.com and use the coupon code BUYANOTHER2021 to save 30%
on your next ebook.

Void where prohibited, restricted, or otherwise unwelcome. Do not use
ebooks near water. If rash persists, see a doctor. Doesn’t apply to The
Pragmatic Programmer ebook because it’s older than the Pragmatic Bookshelf
itself. Side effects may include increased knowledge and skill, increased
marketability, and deep satisfaction. Increase dosage regularly.

And thank you for your continued support,

The Pragmatic Bookshelf

SAVE 30%!
Use coupon code
BUYANOTHER2021

https://pragprog.com

Python Brain Teasers
We geeks love puzzles and solving them. The Python
programming language is a simple one, but like all
other languages it has quirks. This book uses those
quirks as teaching opportunities via 30 simple Python
programs that challenge your understanding of Python.
The teasers will help you avoid mistakes, see gaps in
your knowledge, and become better at what you do.
Use these teasers to impress your co-workers or just
to pass the time in those boring meetings. Teasers are
fun!

Miki Tebeka
(116 pages) ISBN: 9781680509007. $18.95
https://pragprog.com/book/d-pybrain

Go Brain Teasers
This book contains 25 short programs that will chal-
lenge your understanding of Go. Like any big project,
the Go developers had to make some design decisions
that at times seem surprising. This book uses those
quirks as a teaching opportunity. By understanding
the gaps in your knowledge, you’ll become better at
what you do. Some of the teasers are from the author’s
experience shipping bugs to production, and some
from others doing the same. Teasers and puzzles are
fun, and learning how to solve them can teach you to
avoid programming mistakes and maybe even impress
your colleagues and future employers.

Miki Tebeka
(110 pages) ISBN: 9781680508994. $18.95
https://pragprog.com/book/d-gobrain

https://pragprog.com/book/d-pybrain
https://pragprog.com/book/d-gobrain

Complex Network Analysis in Python
Construct, analyze, and visualize networks with net-
workx, a Python language module. Network analysis
is a powerful tool you can apply to a multitude of
datasets and situations. Discover how to work with all
kinds of networks, including social, product, temporal,
spatial, and semantic networks. Convert almost any
real-world data into a complex network—such as rec-
ommendations on co-using cosmetic products, muddy
hedge fund connections, and online friendships. Ana-
lyze and visualize the network, and make business
decisions based on your analysis. If you’re a curious
Python programmer, a data scientist, or a CNA special-
ist interested in mechanizing mundane tasks, you’ll
increase your productivity exponentially.

Dmitry Zinoviev
(260 pages) ISBN: 9781680502695. $35.95
https://pragprog.com/book/dzcnapy

Intuitive Python
Developers power their projects with Python because
it emphasizes readability, ease of use, and access to a
meticulously maintained set of packages and tools.
The language itself continues to improve with every
release: writing in Python is full of possibility. But to
maintain a successful Python project, you need to know
more than just the language. You need tooling and in-
stincts to help you make the most out of what’s avail-
able to you. Use this book as your guide to help you
hone your skills and sculpt a Python project that can
stand the test of time.

David Muller
(140 pages) ISBN: 9781680508239. $26.95
https://pragprog.com/book/dmpython

https://pragprog.com/book/dzcnapy
https://pragprog.com/book/dmpython

Genetic Algorithms and Machine Learning for Programmers
Self-driving cars, natural language recognition, and
online recommendation engines are all possible thanks
to Machine Learning. Now you can create your own
genetic algorithms, nature-inspired swarms, Monte
Carlo simulations, cellular automata, and clusters.
Learn how to test your ML code and dive into even
more advanced topics. If you are a beginner-to-inter-
mediate programmer keen to understand machine
learning, this book is for you.

Frances Buontempo
(234 pages) ISBN: 9781680506204. $45.95
https://pragprog.com/book/fbmach

Programming Machine Learning
You’ve decided to tackle machine learning — because
you’re job hunting, embarking on a new project, or
just think self-driving cars are cool. But where to start?
It’s easy to be intimidated, even as a software develop-
er. The good news is that it doesn’t have to be that
hard. Master machine learning by writing code one
line at a time, from simple learning programs all the
way to a true deep learning system. Tackle the hard
topics by breaking them down so they’re easier to un-
derstand, and build your confidence by getting your
hands dirty.

Paolo Perrotta
(340 pages) ISBN: 9781680506600. $47.95
https://pragprog.com/book/pplearn

https://pragprog.com/book/fbmach
https://pragprog.com/book/pplearn

Hands-on Rust
Rust is an exciting new programming language com-
bining the power of C with memory safety, fearless
concurrency, and productivity boosters—and what
better way to learn than by making games. Each
chapter in this book presents hands-on, practical
projects ranging from “Hello, World” to building a full
dungeon crawler game. With this book, you’ll learn
game development skills applicable to other engines,
including Unity and Unreal.

Herbert Wolverson
(342 pages) ISBN: 9781680508161. $47.95
https://pragprog.com/book/hwrust

Python Testing with pytest, Second Edition
Test applications, packages, and libraries large and
small with pytest, Python’s most powerful testing
framework. pytest helps you write tests quickly and
keep them readable and maintainable. In this fully re-
vised edition, explore pytest’s superpowers—simple
asserts, fixtures, parametrization, markers, and plug-
ins—while creating simple tests and test suites against
a small database application. Using a robust yet simple
fixture model, it’s just as easy to write small tests with
pytest as it is to scale up to complex functional testing.
This book shows you how.

Brian Okken
(250 pages) ISBN: 9781680508604. $45.95
https://pragprog.com/book/bopytest2

https://pragprog.com/book/hwrust
https://pragprog.com/book/bopytest2

Kotlin and Android Development featuring Jetpack
Start building native Android apps the modern way in
Kotlin with Jetpack’s expansive set of tools, libraries,
and best practices. Learn how to create efficient, re-
silient views with Fragments and share data between
the views with ViewModels. Use Room to persist valu-
able data quickly, and avoid NullPointerExceptions
and Java’s verbose expressions with Kotlin. You can
even handle asynchronous web service calls elegantly
with Kotlin coroutines. Achieve all of this and much
more while building two full-featured apps, following
detailed, step-by-step instructions.

Michael Fazio
(444 pages) ISBN: 9781680508154. $49.95
https://pragprog.com/book/mfjetpack

Learn to Program, Third Edition
It’s easier to learn how to program a computer than it
has ever been before. Now everyone can learn to write
programs for themselves—no previous experience is
necessary. Chris Pine takes a thorough, but lightheart-
ed approach that teaches you the fundamentals of
computer programming, with a minimum of fuss or
bother. Whether you are interested in a new hobby or
a new career, this book is your doorway into the world
of programming.

Chris Pine
(230 pages) ISBN: 9781680508178. $45.95
https://pragprog.com/book/ltp3

https://pragprog.com/book/mfjetpack
https://pragprog.com/book/ltp3

Practical Programming, Third Edition
Classroom-tested by tens of thousands of students,
this new edition of the best-selling intro to program-
ming book is for anyone who wants to understand
computer science. Learn about design, algorithms,
testing, and debugging. Discover the fundamentals of
programming with Python 3.6—a language that’s used
in millions of devices. Write programs to solve real-
world problems, and come away with everything you
need to produce quality code. This edition has been
updated to use the new language features in Python
3.6.

Paul Gries, Jennifer Campbell, Jason Montojo
(410 pages) ISBN: 9781680502688. $49.95
https://pragprog.com/book/gwpy3

Modern CSS with Tailwind
Tailwind CSS is an exciting new CSS framework that
allows you to design your site by composing simple
utility classes to create complex effects. With Tailwind,
you can style your text, move your items on the page,
design complex page layouts, and adapt your design
for devices from a phone to a wide-screen monitor.
With this book, you’ll learn how to use the Tailwind
for its flexibility and its consistency, from the smallest
detail of your typography to the entire design of your
site.

Noel Rappin
(90 pages) ISBN: 9781680508185. $26.95
https://pragprog.com/book/tailwind

https://pragprog.com/book/gwpy3
https://pragprog.com/book/tailwind

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional
developers. The titles continue the well-known Pragmatic Programmer style and continue
to garner awards and rave reviews. As development gets more and more difficult, the Prag-
matic Programmers will be there with more titles and products to help you stay on top of
your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/d-pandas
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up to Date
https://pragprog.com
Join our announcement mailing list (low volume) or follow us on twitter @pragprog for new
titles, sales, coupons, hot tips, and more.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are
available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/d-pandas
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Preface
	About the Author
	About the Code
	About You
	One More Thing

	Part I—Pandas Brain Teasers
	Puzzle 1. Rectified
	Puzzle 2. In or Out?
	Puzzle 3. Month by Month
	Puzzle 4. Round and Round We Go
	Puzzle 5. Let's Get Schwifty
	Puzzle 6. Full of It
	Puzzle 7. A Delicious Div Sum
	Puzzle 8. Once Upon a Time
	Puzzle 9. A Hefty Bonus
	Puzzle 10. Free Range
	Puzzle 11. Phil? Nah!?
	Puzzle 12. Multiplying
	Puzzle 13. A 10% Discount
	Puzzle 14. A Tale of One City
	Puzzle 15. Free-Range
	Puzzle 16. Y3K
	Puzzle 17. Not My Type
	Puzzle 18. Off with Their NaNs
	Puzzle 19. Holding out for a Hero
	Puzzle 20. It's a Date!
	Puzzle 21. What's the Points?
	Puzzle 22. Find Me a Phone Booth
	Puzzle 23. Chain of Commands
	Puzzle 24. Late Addition
	Puzzle 25. Hit and Run

	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– I –
	– J –
	– L –
	– M –
	– N –
	– O –
	– P –
	– R –
	– S –
	– T –
	– U –
	– W –
	– Y –
	– Z –

