
 



 



Early praise for Mazes for Programmers

Reading the book Mazes for Programmers is like a fun journey through a maze.
There’s a good mix of simple explanations and working code, combined with ideas
at the end of each chapter to inspire one to expand upon what was presented.

➤ Walter Pullen
Author, “Think Labyrinth!” website

Mazes for Programmers is full of nerdy algorithmic delight and is a really fun read!

➤ Bruce Williams
CTO, CargoSense, Inc.

Jamis Buck’s inspired choice of mazes as a unifying theme allows him to take the
reader on a deeply engaging tour of an impressive array of algorithms and pro-
gramming techniques. Mazes for Programmers is an exemplary book of its kind,
ideal for programmers looking to take a break from tuition in specific programming
languages and learn something of general interest and applicability within their
craft.

➤ David A. Black
Author, The Well-Grounded Rubyist

 



My past 20 years as a software developer have taught me two things. First, I will
probably never need to generate a maze. Second, and more important, pushing
myself in new and unfamiliar ways is the best way for me to level up as a program-
mer. Sure, Mazes for Programmers will teach you how to generate mazes, but it
will also give you one of the clearest step-by-step tours through algorithmic
thinking you can find.

➤ Chad Fowler
CTO, Wunderlist

This is a fun, playful tour of all the concepts and algorithms you’d want to know
for generating and solving mazes. If only this book had existed when I was writing
Maze Crusade!

➤ Amanda Wixted
Owner, Meteor Grove Software

I starting programming because of the fundamental joy of making cool things just
for the sake of making cool things. Jamis’s Mazes for Programmers perfectly recap-
tures that feeling of pure, unadulterated awesomeness for awesomeness’s sake.
This will be a book I come back to again and again.

➤ Corey Haines
CTO, Curious Nation

This book reminded me of a simple fact I sometimes forget: programming is fun.

➤ Jeff Hardy
Programmer, Basecamp
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Introduction
Mazes are everywhere. From psychology experiments where mice scamper in
search of cheese, to robotics demonstrations, to movies (Labyrinth, anyone?)
and video games (Pac-Man? The Legend of Zelda? Doom?), to books and books
of puzzles to be traced by finger or pencil, you’ve almost certainly encountered
them at some point in your life.

What you’re reading now is not a collection of mazes for you to solve. No, this
is something much more exciting. This is a collection of ideas to inspire you.

You’re about to learn how to generate your own mazes. Random mazes, unique,
each one different than the one before. It’s a voyage of discovery where you
never know quite what you’ll find when you crest the next hill.

You’ll take your existing knowledge of software engineering and apply it to
generating these puzzles in a variety of shapes and sizes. You’ll make mazes
out of squares, circles, triangles, and hexagons. You’ll put them on cylinders
and cubes, spheres and even Möbius strips. You’ll stretch them into other
dimensions, squeeze them into arbitrary outlines, weave them, braid them,
print them, and fold them.

You’ll discover yourself brimming with ideas, perhaps the most effective cure
there is for programmer’s block, burnout, and gray days.

About This Book
The chapters here are grouped into four parts, organized roughly around a
simple progression of concepts. You’ll learn about a dozen different ways to
generate mazes, as well as a number of fascinating things to do with them.

Part One will introduce you to some basic techniques and will walk through
the beginnings of a grid implementation that will be used throughout the
book. You’ll learn about Dijkstra’s algorithm and see how it can be used not
only to find solutions to the mazes you’ll generate, but also to gain insight
into the structures and patterns hiding within those mazes. By the end of
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Chapter 5 you’ll have learned a total of six different ways to generate these
twisty little passages.

Part Two takes you to the next step and shows you some exciting ways to
vary what you’ve done to that point. You’ll see how to fit mazes into arbitrary
outlines, and how to build them out radially in circles. You’ll explore different
grid styles based on hexagons and triangles, and even take some tentative
steps toward 3D mazes by building passages that weave over and under one
another.

Part Three introduces the remaining six ways to generate mazes, including
some tricks for varying the algorithms to produce things like particularly
dense weaves, or rooms, or even infinitely long mazes.

Finally, Part Four shows how to build these mazes out in multiple dimensions.
You’ll see how to add passages moving up and down between different levels
of your mazes, and even learn ways to generate them on surfaces of 3D objects,
like cubes and spheres.

What This Book Isn’t
You’re not going to find any mathematical proofs here. While there are defi-
nitely strong mathematical underpinnings beneath mazes and maze algo-
rithms, you don’t need to know any of that to begin enjoying them. You can
do a lot without understanding any of the theory behind it, at all.

I’ve taken great pains to avoid using mathematical terminology in describing
the algorithms in this book. If the math turns out to be your thing, or if you
decide you want to know more about the concepts of graph theory, go for it!
It’ll only help make the topic that much richer.

But you certainly don’t need to know any of that to make random mazes.

Who This Book Is For
If you’ve ever written software before, at all, then this book is for you. You
don’t need to have a degree in computer science, and you don’t even need to
have shipped any large software project before—you only need to be familiar
with simple programming concepts.

Maybe you’re a game designer. Your games might be visually rich and complex,
graphically simplistic, or even purely textual, but mazes can still play a variety
of roles in them. Nintendo’s The Legend of Zelda or id Software’s Doom use
mazes so seamlessly as a setting that often you don’t even consciously realize
you’re navigating one. In others, like Namco’s Pac-Man, the maze is fully visible
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and acts less as a puzzle and more as an obstacle. And Will Crowther’s
Colossal Cave Adventure used mazes to invent an entire genre of interactive
fiction games.

If gaming isn’t your thing, perhaps algorithms are. Programmers—hobbyists
and professionals alike—often take great delight in learning and implementing
processes like random maze algorithms. Understanding these algorithms and
bringing them to life is a kind of grand puzzle, all by itself, with a lot of satis-
faction to be found in the journey.

And even if you don’t identify with either of those categories, you may yet find
value in maze algorithms. I’ve found that they can be very effective against
burnout and “programmer’s block” by providing a moderate level of challenge
and a variety of visually interesting and engaging ways to play with them.
Taking a bit of time each day to tinker with a different algorithm can keep
your mind fresh and limber. It’s great mental exercise!

How to Read This Book
How you read this book depends in large measure on your previous experience
with generating random mazes.

If you’ve never generated mazes before, then you should probably start with
Chapter 1, Your First Random Mazes, on page 3 and read through the book
sequentially. The topics will build on each other, starting with basic concepts
and projects and getting progressively more advanced.

On the other hand, if you’ve built a few random mazes before, you might be
more interested in the things you can actually do with them. You could skim
Chapter 2, Automating and Displaying Your Mazes, on page 17 to get familiar
with the specific grid system that the examples use, and then jump right into
topics like Chapter 6, Fitting Mazes to Shapes, on page 83 and Chapter 8,
Exploring Other Grids, on page 113.

And if you’ve really been around the block a few times, you might want to
skip straight to Appendix 1, Summary of Maze Algorithms, on page 249 to get
an overview of the different algorithms, and then jump into specific chapters
to learn more about those that might be new to you.

Regardless of your level of experience, there’s a “Your Turn” section at the
end of each chapter, with a list of suggested projects for jumping off and
exploring. Take advantage of those, or explore some of your own. See what
you come up with!
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About the Code
The sample code and the examples in this book are all written in Ruby,1 but
the algorithms and techniques used are definitely not Ruby-specific! This
book could have been written just as well in Python, or C, or Java, or C#, or
any other language. I hope the examples are written clearly enough that even
if you aren’t familiar with Ruby, the concepts shine through. There’s plenty
of room for experimentation, whether or not Ruby is your thing.

If you decide to follow along in Ruby, please make sure you’re using at least
Ruby version 2.1, as the examples won’t all run on earlier Ruby versions.

All of the code examples in this book can be downloaded from the book’s
website.2 This can save you a bit of time if you’d rather not rekey an entire
grid framework by hand—although that’s certainly an effective way to learn
something!

Online Resources
The website for this book includes a community forum, where you can post
any questions, comments, or cool maze-type-things you’ve created. You can
also submit errata if you find any errors or have suggestions for future editions
of the book.

If you find this book has whetted your appetite for maze algorithms, you’ll
find a variety of helpful resources online. Walter Pullen’s “Think Labyrinth!”
site3 has a wealth of information about the different algorithms, the psychol-
ogy of mazes, and examples of mazes both large and small. I’ve written a
series of articles on my blog4 about these algorithms, with animations to show
how they work. And if algorithm visualization is your thing, Mike Bostock
has written a beautiful article about the subject5 (including a couple of maze
algorithms). It’s quite mesmerizing!

As with most things, Google will be your friend. See what else you can find!

Jamis Buck

July 2015

1. http://www.ruby-lang.org
2. https://pragprog.com/book/jbmaze/mazes-for-programmers
3. http://www.astrolog.org/labyrnth.htm
4. http://weblog.jamisbuck.org/2011/2/7/maze-generation-algorithm-recap
5. http://bost.ocks.org/mike/algorithms/
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Part I

The Basics

Maze making is probably new territory for most
folks, so we’ll ease into this. We’ll talk about algo-
rithms, learn about a thing called bias, and walk
through some different ways to generate mazes.
We’ll even go a bit beyond merely generating
mazes, and see some neat things we can do with
finding paths through them, too.

 



CHAPTER 1

Your First Random Mazes
Maze-making seems magical when you’re outside looking in, but don’t be
fooled. There is no magic. Starting on this very page, we’ll begin demystifying
the processes that drive maze generation. We’ll see the scaffolding that lies
just beneath their surface. We’ll get specific, talking about what exactly mazes
are, and then we’ll get the ball rolling with two simple ways to create mazes,
walking through them together with paper and pencil.

Eventually, this will take us to some exciting places, but like most beginnings,
ours is quite humble. Here, it all starts with algorithms.

We’re going to focus on those algorithms that produce mazes randomly. Pas-
sage length, the number of dead ends, crossroad frequency, and how often
passages branch will all be determined by randomly choosing from a pre-
scribed list of possibilities.

There is no universally ideal algorithm for generating mazes, so over the
course of this book we’ll explore twelve different ones. You’ll learn how to
choose between them depending on your project’s needs, such as speed,
memory efficiency, or simplicity (or even your own personal sense of aesthet-
ics!). On top of that, most of the algorithms have little idiosyncrasies that
cause the mazes they generate to share some feature, like short, stubby
passages, or maybe the passages all skew a certain direction. We’ll explore
those, too.

But we’ll get to that. By the end of this book you’ll be an expert, able to nimbly
switch between these different algorithms to choose just the right one for the
job. You’ll be pounding these out in code before you know it.

First, though, let’s do it on paper.
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Joe asks:

What’s an Algorithm?
An algorithm is just a description of a process. Like a recipe in a cookbook, it tells
you what steps to take in order to accomplish some task. Any task. Algorithms exist
for everything. If lasagna is your goal, then the steps you take to make lasagna are
your algorithm. Want to make your bed, or drive to work? Both can be described as
a series of steps. More algorithms! Algorithms launch rockets, land airplanes, drive
cars, sort information, and search the Web. Algorithms solve mazes. And if you’re
out to make a maze, like we are, your algorithm consists of the steps you take to
make that maze.

Preparing the Grid
We’re going to start by drawing a grid—just a regular crosshatching of perpen-
dicular lines. This scaffolding will form the skeleton of the maze, the bones
and sinews that will give structure and stability to our final product.

Here’s what I want you to do.

Get out a piece of paper. It doesn’t have to be fancy—a napkin will do in a
pinch. You’ll want something to write with, too, and erasability will be a plus.

On this piece of paper, draw a grid. Four-by-
four ought to be plenty big enough for this
first experiment, and don’t worry about the
lines being all neat. Anything like this figure
should be fine.

This is our starting point. We’ll call the indi-
vidual squares cells, and the grid lines around
them walls. Beginning with this grid, our task
is to erase just the right walls—carve just the
right passages—in order to produce a maze.

Chapter 1. Your First Random Mazes • 4
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That happens to be exactly what the algo-
rithms in this book will do for us. Most of
them create what are called perfect mazes,
where every cell can reach every other cell by
exactly one path. These mazes have no loops,
or paths that intersect themselves. That’s
significant! This figure is an example of one
of these perfect mazes.

Don’t mistake the name for a value judgment,
though. The “perfect” bit simply refers to its
logical and mathematical purity. A maze may
be perfect (mathematically), and yet flawed (for example, aesthetically), at the
same time!

The opposite of a perfect maze is called a braid
maze. These are characterized by few (if any)
dead ends, and passages forming loops. Here’s
an example of a braid maze.

Going from one point to another in these
kinds of mazes can be accomplished by mul-
tiple different paths, or solutions. We’ll see
more of them in Chapter 9, Braiding and
Weaving Your Mazes, on page 129, but for now
we’ll focus just on their counterparts, the
perfect mazes.

Let’s create some!

Labyrinths versus Mazes

Some people prefer “labyrinth.” Others like “maze.” Some even use the word labyrinth
to refer to a particular kind of maze, a single passage that never branches but winds
in a convoluted path from start to finish.

Ultimately, though, it doesn’t matter what they’re called. Labyrinth or maze, they
(mostly) mean the same thing. I’ll be giving preference to the word “maze” in this
book. And while those non-branching versions (technically called unicursal mazes)
are fun to play with, they are sadly beyond the scope of this book. We’ll be focusing
on multicursal mazes—those with branching passages—which will prove to be plenty
all by themselves!
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The Binary Tree Algorithm
The Binary Tree algorithm is, quite possibly, the simplest algorithm around
for generating a maze. As its name suggests, it merely requires you to choose
between two possible options at each step. For each cell in the grid, you decide
whether to carve a passage north or east. By the time you’ve done so for every
cell, you have a maze!

This process of looking at cells is called visiting them. Visiting them in some
order is walking the grid. Some walks might be random, choosing directions
arbitrarily from step to step, like the ones we’ll see in Chapter 4, Avoiding
Bias with Random Walks, on page 53. Others are more predictable. For
Binary Tree, it turns out that we can do it either way. The algorithm really
doesn’t care what order we use to visit the cells.

Let’s walk this together and see how
the Binary Tree comes together in
practice. I’ll flip a coin at each step to
decide which direction we ought to
carve a passage. Also, while the Binary
Tree algorithm itself doesn’t care
where in the grid we begin walking,
for the sake of this example we’ll just go with the cell in the southwest corner.

Our choice is this: do we erase that cell’s northern wall, or its eastern wall?
Let’s see what the coin says. If it comes up heads, we’ll carve north. Tails,
we’ll carve east.

And…heads. Looks like we erase the northern
wall.

Note that although these two cells are now
linked by a connecting passage, we haven’t
technically visited that second cell yet. We
could choose to visit that cell next (because
Binary Tree really doesn’t care which order
we visit the cells) but moving across a row
and visiting its cells in sequence is simpler to
implement. Let’s wait and hit that northern

Chapter 1. Your First Random Mazes • 6
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cell when this row is finished. For now, let’s just hop over to the one immedi-
ately to the east of us.

Flipping the coin here, we get tails. This
means we’ll erase the eastern wall of our cur-
rent cell.

And flipping the coin for the next cell over
gives us tails again.

Moving east again, our current cell becomes
the one in the southeast corner. We could
certainly flip the coin here, too, but consider
what would happen if the coin came up tails.
We’d have to carve a passage through the
outer wall of the maze. This is not generally a
good idea. We’ll talk more in a moment about
adding entrances and exits to your mazes,
but for now we want to avoid tunneling out of bounds. Since that effectively
forbids going east, north becomes our only viable option. No need to flip a
coin—let’s just take care of business and carve north.

In fact, that constraint exists for every cell
along that entire eastern boundary. None of
them can host an east-facing passage. We
might as well just take care of those now by
carving north on each one of them. We’ll con-
sider each of them visited as well.
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Now, for the sake of demonstration, let’s jump
all the way to the northwest corner and see
what happens next. (Yeah, this is a bit
unorthodox…but remember, Binary Tree only
needs us to visit all the cells—it doesn’t care
what order we use to do that.)

Once again, we could flip a coin, but consider
what happens if the coin lands heads-up: we’d
have to carve through that northern wall. We
don’t want that. Instead, we’ll forego the coin
flipping and just carve east.

Again, notice how that constraint applies to
every cell along that entire northern boundary.
You can’t carve north from any of them, so
all of them default to going east instead.

One more special case to consider. Let’s jump
to the northeast corner.

We can carve neither north, nor east from
here. Our hands are tied. With nothing to
choose from, we choose nothing. Of all the
cells in our grid, this is the only one for whom
nothing can be done. We shrug our shoulders
and skip it.

Go ahead and grab your own coin, now, and
flesh out the rest of those cells that haven’t
been visited yet. Once a decision has been
made for every cell, you should be left with a
maze that looks something like the figure.

That’s really all there is to it! You just learned
the Binary Tree algorithm for random maze
generation. Painless!

Chapter 1. Your First Random Mazes • 8
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Entrances and Exits
At this point, though, you might be wondering how it can be a maze if there
is no way into or out of that box. Aren’t mazes supposed to have starting
points and ending points? That’s a fair question! The truth of the matter,
honestly, is that it’s entirely up to you.

Earlier we talked a bit about the idea of perfect mazes. It all comes back to
that again. The maze you just drew is a perfect maze, and one of the attributes
of a perfect maze is that there exists exactly one path between any two cells
in it. Any two! You pick them, and there’s guaranteed to be a path between
them.

This means you can choose any two cells in your maze, make one of them
the starting point and the other the ending point, and you can be confident
knowing that there’s a real solution to your maze. Just like that. Want to
enter on one side and exit on the other? Choose two cells on the boundaries
of your maze, erase the outer walls of those cells, and you’re all set.

It depends on what you want your maze to do. The maze in Pac-Man, for
instance, has no exit at all, because the goal is simply to eat all the pellets
before the ghosts get you. Other games, like Zelda, allow you to enter a maze,
but the goal is to reach a point inside it, so you can defeat some boss creature
and obtain the treasure.

So don’t be surprised when the examples in this book omit the “start” and
“finish” points. Those will be up to you and your imagination!

Joe asks:

Why “Binary Tree”?
Perhaps you’ve heard of binary trees, data structures whose values are arranged
hierarchically, each value having zero, one, or two child values of its own. It’s not
chance that this algorithm shares a name with that data structure, because the mazes
it generates are binary trees.

It’s true. Remember that one cell in the northeast corner, the one we couldn’t do
anything with? That’s the root of the tree. It has no parent node, but it has at least
one child, and possibly two, either to the west, or to the south. Follow that outward,
cell to cell, and you’ll see that each subsequent cell is itself either a dead end (that
is, a leaf node), or a parent of up to two more children.

Nifty!
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Understanding Texture
Looking at your maze, you might notice a few little oddities. For instance, the
northern row and the eastern column are both unbroken corridors. These
are completely expected, if you think about it. Remember what happened on
those boundary cells, where erasing a wall would have taken us outside the
bounds of the maze? We always chose the valid direction instead, north or
east, forcing those boundaries to merge into a single passage.

This contributes to what we call the maze’s texture. Texture is a general term
that refers to the style of the passages of a maze, such as how long they tend
to be and which direction they tend to go. Your first impression of a maze is
often strongly influenced by the maze’s texture.

Some algorithms will tend to produce mazes that all have similar textures.
Binary Tree, for example, will always produce mazes with those two unbroken
corridors on the north and east. Don’t believe me? Give it a try. The following
figure represents a bare handful of mazes randomly generated using Binary
Tree, and notice how they all have those same long corridors on the north
and east.

We might say that the Binary Tree algorithm is biased toward mazes with
that particular texture. We’ll dig more into bias and what it means for algo-
rithms in Chapter 4, Avoiding Bias with Random Walks, on page 53, but for
now, when we talk about bias, we’re referring to the algorithm’s tendency to
produce mazes of certain textures.

Chapter 1. Your First Random Mazes • 10
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It has another bias, too. Plant yourself in the southwest corner of your maze,
and try to find your way to the northeast corner. You’ll find your path looks
like one of those in this figure.

Not hard at all, is it? Even aside from the maze being small, the paths them-
selves are trivial. Every cell will have an exit to the north, or to the east, so
you can always move northeast without any obstruction. No dead ends, no
backtracking. Simple. That diagonal texture is evidence of a bias.

Now, we can’t hold that against Binary Tree too much. Most random maze
algorithms will have biases of one sort or another, though many are more
subtle than this. The fact that this one is so blatant is just the price we have
to pay for an algorithm as fast, efficient, and simple as Binary Tree.

Making Lemonade from Binary Lemons
Yes, it’s true. Even with these glaring textures, there’s a bright side. The
Binary Tree algorithm is fast, efficient, and simple.

Think about it. You only have to visit each cell once to know how the maze
will turn out. In computer-sciency terms, that means it is O(n), about as fast
as you can get when you have to visit every item in a collection.

It’s also efficient. It only needs enough memory to represent a single cell at
any given time. We’ll see, later, other algorithms that are much more memory-
hungry than this, some of them requiring memory proportional to the size of
the entire grid. That’s pretty limiting if you’re wanting to deal with very large
mazes, but it’s just not an issue for Binary Tree.

Lastly, it’s simple. You were able to work through it with just paper, pencil,
and a coin for tossing. That can’t be said for all of the algorithms we’ll look
at. Some would be downright painful to work out by hand!

Even the algorithm’s biases aren’t all bad. That diagonal texture? Sure,
walking the maze from southwest to northeast might be trivial, but turn it
around. What if you were to go from northeast to southwest instead?
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Without an omniscient view of the
maze, you now have no clear idea
which direction will take you to the
goal. Sometimes, what seems like a
hopelessly simple maze simply needs
to be turned around. Lemonade,
indeed!

Still, a bias is a bias, and eliminating an algorithm’s bias is rarely simple, or
even possible. If you can’t use the texture that a given algorithm produces,
it’s often easiest to look elsewhere.

So let’s look elsewhere.

The Sidewinder Algorithm
Here’s an algorithm called the Sidewinder, which, though closely related to
the Binary Tree, still manages to dial back the biases a notch. Recall that
Binary Tree chooses between north and east at every cell; Sidewinder, on the
other hand, tries to group adjacent cells together before carving a passage
north from one of them. Go ahead and grab another piece of paper, sketch
another grid on it, and we’ll jump right in.

Now, unlike Binary Tree, the Sidewinder won’t easily let us start carving
anywhere we like. It has a strong preference for beginning in the western
column, so that’s where we’ll start. In fact, we might as well start where we
did before, in the southwest corner. I’ll just flip a coin for both of us, as before.
Once again, tails will mean “carve east,” but we’ll see that heads means
something a little different this time around.

Here goes!

Starting in that southwest corner, our
first flip of the coin yields tails and
tells us to erase the cell’s eastern wall.
We then move to the next cell in that
direction, as in the figure.
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No problem. Once at this new cell, we
flip the coin as before. It comes up
tails again. Go ahead and erase that
eastern wall and move to the next
neighbor, like this.

Once again, we flip our coin and…

Gasp!

Heads.

When the coin comes up heads, we
look back on the path we just made,
at that group of cells that were most
recently joined by carving through
walls. Here, it’s those three cells in a
row that we just visited. We’ll call this
cluster a run of cells. We’re going to randomly choose one cell from that run,
and then erase its northern wall, joining it to its northern neighbor. After
that, we’re done with those three cells, and no further changes will be made
to them. We’ll call this closing out the run. This is shown in the preceding
figure.

Note that the run here involves just those three cells, and not the cell to the
north that we linked to! This is important. That cell to the north has not yet
been visited, and will be fair game when the algorithm moves on to that second
row.

Now, we very intentionally do not
remove the eastern wall (because that
would change those closed-out cells),
and instead just move to the next cell
over. When we’re all comfortable the
process begins again with a new run
of cells, starting at our new position.

In our case, though, we’ve reached the
eastern boundary of our grid, and no
matter how much that coin of ours
insists that we’re supposed to keep
going east, we just can’t. The edge of
our world is pretty immutable. When
you find yourself in that situation, fall
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back to the same strategy we used with Binary Tree: don’t bother flipping the
coin. Treat that eastern boundary as an instant heads, and just close out the
run. (Here, it’s easy: we have only one cell in the run, so we choose it and
erase the northern wall.

After closing out that row, move up to the next row and run the whole thing
again. Flip, flip, flip, one after another, either adding to the run or closing it
out, depending. Remember that so far, no cell in that next row has been vis-
ited. Some have been linked, but not visited, and Sidewinder must visit every
cell in the grid exactly once. In other words, Sidewinder will look at every cell,
even if it’s already been linked to a cell in another row.

Bear with me a moment and let’s jump up to the northwest corner.
(Unorthodox again, yes, but we can do this because Sidewinder only needs
us to start at the beginning of each row—we can actually do the rows them-
selves in any order we want.) For the sake of the demonstration, consider
what would happen if the coin came up heads here, and we had to close out
the run.

Yup. Just as we saw with Binary Tree, we run into an edge case in that
northern row. We need to avoid erasing that northern boundary. The solution
is familiar: just like we did at the eastern boundary, we disallow the direction
that takes us out of bounds. We forbid heads, and force every coin toss to be
tails for the duration of that row. This will have the effect of giving you an
unbroken corridor across the top, just like in the Binary Tree algorithm.

Go ahead and flip your own coin for
the rest, to see how the algorithm
feels. When you’ve visited all the cells
in your grid and closed out every row,
you ought to wind up with something
like the figure.

A bit more involved than Binary Tree,
but not too bad. Still…yup. I’m sure you smell it, too.

A bias.

You could hardly miss it with that unbroken passage across the top. Every
maze generated by Sidewinder will have that unbroken corridor. Not as bad
as the two unbroken corridors of Binary Tree, but still hardly ideal. That’s
evidence of one of Sidewinder’s biases.
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The other is a bit more subtle. Put
yourself in any of the cells along the
southern boundary, and try to find
your way to the northern row, as
shown in the figure.

Sure enough: a nearly trivial solution.
It may wind side-to-side a bit (hence
the name of the algorithm), but
because every horizontal run of cells will have exactly one passage north,
solutions in that direction are not difficult to find.

As with Binary Tree, though, moving against the grain (north-to-south) can
be more challenging.

Your Turn
By this point, you should have a decent grasp of what algorithms are, and
some idea of the role they’re going to play in generating random mazes. You’ve
seen them at work with the Binary Tree and Sidewinder algorithms. You’ve
worked through a couple of mazes on paper, and you’ve learned a little bit
about maze textures and how they relate to algorithm biases.

Not bad!

However, as any good chef will tell you, a recipe—and here let’s say, an algo-
rithm—is only a place to start. Now it’s your turn. Look deeper. Play around
with what you’ve learned. If you need some suggestions to get your own idea
engine running, take a look at the following experiments.

Binary Tree experiments
You’d expect an algorithm that restricts you to choosing between two options
to give you very little flexibility. To some degree, that’s true, but you might
be surprised at what you can do simply by modifying the menu a bit. Shake
up those assumptions and see what happens!

Reorient the Passages
As described, the Binary Tree algorithm produces unbroken corridors
along the north and east boundaries. How might you change the algorithm
to produce unbroken corridors on the south and west boundaries instead?
What about north and west? South and east? What happens to the diag-
onal texture?
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Changing the Bias
How could you change the Binary Tree algorithm to bias it toward longer
horizontal runs? That is to say, how would you make the algorithm pro-
duce mazes with passages that tend to stretch horizontally? What about
vertically?

Sidewinder Experiments
Now try it with Sidewinder. The same experiments apply, but the means will
be a bit different. It all comes down to upsetting assumptions.

Reorient the Passages
As described, Sidewinder has a strong south-to-north texture. How would
you change the algorithm to prefer paths moving east-to-west? What
would happen to the unbroken northern corridor?

Changing the Bias
What could you do to bias Sidewinder toward longer horizontal runs?
What about vertical runs?

You should be feeling pretty confident with both the Binary Tree algorithm,
and Sidewinder. That’s great! In the next chapter, we’ll look at how to turn
those algorithms into code, so the computer can do all the work for you.
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CHAPTER 2

Automating and Displaying Your Mazes
Doodling mazes on paper is fine and all, but if that’s all we had, we’d never
get anything done. We’re computer programmers. Let’s do this right.

Let’s have the computer do it for us.

Since grids are the foundation of most of what comes later, we’ll start there,
exploring the particular implementation used throughout the book. We’ll see
how it works in practice by implementing the Binary Tree and Sidewinder
algorithms on top of it, and we’ll work through two different ways to display
it: textually (think “ASCII art”), and graphically.

Introducing Our Basic Grid
The examples in this and later chapters will all build on one particular grid
implementation, so we’ll spend a few pages on it here. This will be the tool
we’ll use to build out our mazes, either by using this Grid class directly, or by
subclassing it and adding more specific functionality. Seeing how it’s put
together ought to make things clearer. We’ll start simple, and in the next few
chapters we’ll add to it and extend it as needed.

What we want is to be able to instantiate the grid and operate on the cells
that it contains. In pseudocode, something like this:

# instantiate a 10x10 grid
grid = Grid.new(10, 10)

# get the cell at row 1, column 2
cell = grid[1, 2]

# iterate over all the cells in the grid
grid.each_cell do |cell|

# do something to the cell
end
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Right away, we can see that the grid needs to be a container of some sort,
structured—conceptually—like in the following figure.

Figure 1—Grid Organization

The following implementation stays true to that architecture, with the Grid
class acting essentially as a container for individual cells. It instantiates the
Cell class as many times as it needs, to fill out the grid, with the individual
cells each keeping track of which other cells they’re next to, and which cells
they’re linked to via passages.

This implementation is written in Ruby,1 but the concepts are definitely not
Ruby-specific. Everything here can be adapted to your language of choice.
Later examples—also in Ruby—will reuse this code, pulling it in and either
drawing a maze on it (as we did by hand in the previous chapter), or extending
it to add new functionality, as necessary.

Implementing the Cell Class
Since the Cell class is at the heart of this, we’ll start there. Put the following
code in a file named cell.rb. There’s nothing too tricky here, but we’ll walk
through it and introduce the methods, at least.

cell.rb
class Cell

attr_reader :row, :column
attr_accessor :north, :south, :east, :west

1. http://www.ruby-lang.org
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Each cell ought to know where it lives within the grid, so our class records
those coordinates, row and column. It also tracks who the cell’s immediate
neighbors are to the north, south, east, and west.

The constructor, initialize, comes next. It accepts two parameters: the row and
column within the grid where the cell is located. It also initializes a hash table
called @links, which will be used to keep track of which neighboring cells are
linked (joined by a passage) to this cell.

def initialize(row, column)
@row, @column = row, column
@links = {}

end

The next two methods are for manipulating that @links variable. The first,
link(cell), connects the current cell with cell parameter. The second, unlink(cell),
does the reverse and disconnects the two cells. In both cases, though, we
want to make sure the operation occurs bidirectionally, so that the connection
is recorded on both cells. An optional bidi parameter helps ensure that this
happens.

def link(cell, bidi=true)
@links[cell] = true
cell.link(self, false) if bidi
self

end

def unlink(cell, bidi=true)
@links.delete(cell)
cell.unlink(self, false) if bidi
self

end

After those, we have two more methods dealing with cell connections. The
first, links, is used for querying the list of all cells connected to this cell, and
the second, linked?(cell), is for querying whether the current cell is linked to
another given cell.

def links
@links.keys

end

def linked?(cell)
@links.key?(cell)

end

The final method, neighbors, is used to query the list of cells that adjoin this
cell.
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def neighbors
list = []
list << north if north
list << south if south
list << east if east
list << west if west
list

end
end

As we go, we’ll add a few more methods to this class, but what we have here
will be enough to get us started. It’s not particularly useful by itself,
though—we’ll rarely even need to reference it directly. It’s only when these
cells have been bundled into a grid that they really begin to shine. Next let’s
look at how to make that happen.

Implementing the Grid Class
The grid class, as we saw in Figure 1, Grid Organization, on page 18, is
essentially just a wrapper around a two-dimensional array of cells. Let’s toss
the following code into a file named grid.rb, making sure it’s in the same
directory as the cell.rb file we created earlier so the grid can find the Cell class
that it needs. Once again, we’ll walk through this together, one piece at a
time.

First, we require the Cell class that we just wrote, since the grid depends on it.
Note, also, that the grid keeps track of the number of rows and columns it
comprises.

grid.rb
require 'cell'

class Grid
attr_reader :rows, :columns

The constructor takes the dimensions of our desired grid as parameters, and
sets those as attributes. It also initializes the grid by calling prepare_grid and
configure_cells, which we’ll implement next.

def initialize(rows, columns)
@rows = rows
@columns = columns

@grid = prepare_grid
configure_cells

end
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We could inline these next two methods in the constructor, but doing it this
way lets subclasses override the methods later, when we start playing with
different types of grids.

def prepare_grid
Array.new(rows) do |row|

Array.new(columns) do |column|
Cell.new(row, column)

end
end

end

def configure_cells
each_cell do |cell|

row, col = cell.row, cell.column

cell.north = self[row - 1, col]
cell.south = self[row + 1, col]
cell.west = self[row, col - 1]
cell.east = self[row, col + 1]

end
end

For now, prepare_grid just sets up a simple two-dimensional array of Cell
instances, and configure_cells tells each cell who its immediate neighbors are to
the north, south, east, and west.

Note that the boundary cases, like the northern border where cells don’t have
a neighbor to the north, will be handled neatly by our custom array accessor
(the [] method). That array accessor is primarily for granting random access
to arbitrary cells in the grid, but it will also do bounds checking, so that if
the coordinates passed to it are out of bounds, it will return nil. Let’s define
it next.

def [](row, column)
return nil unless row.between?(0, @rows - 1)
return nil unless column.between?(0, @grid[row].count - 1)
@grid[row][column]

end

Subclasses can (and will) override this method to add some really interesting
effects, like cylindrical or toroidal mazes.

While we’re at it, let’s take a minute to add another way to access individual
cells: randomly. We’ll also create a method for reporting the number of cells
in the grid.
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def random_cell
row = rand(@rows)
column = rand(@grid[row].count)

self[row, column]
end

def size
@rows * @columns

end

These both may not seem particularly useful yet, but we’ll see some algorithms
soon that will use them.

Lastly, we’ll implement some iterator methods for looping over the cells of the
grid. Some algorithms, like Sidewinder, want to look at cells a row at a time,
so we’ll have an each_row method for those. Other algorithms, like Binary Tree,
simply want to see the cells one at a time. We’ll cover that case with each_cell.

def each_row
@grid.each do |row|
yield row

end
end

def each_cell
each_row do |row|
row.each do |cell|

yield cell if cell
end

end
end

end

That’s really all there is to it: a simple grid implementation that excels at
demonstrating maze algorithms. Again, this is not the final product—we’ll be
adding to it in later chapters—but it’s enough to start working through the
two algorithms we already know. Let’s see how this grid works in practice.

Implementing the Binary Tree Algorithm
Let’s start with the Binary Tree algorithm. As you’ll recall from The Binary
Tree Algorithm, on page 6, it works simply by visiting each cell in the grid
and choosing to carve a passage either north or east.

The following code does just that. We’re going to put it in its own class so
that we can easily reuse this code whenever we want. Save it to a file named
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binary_tree.rb, and make sure it’s in the same directory as the cell.rb and grid.rb
files we created earlier.

binary_tree.rb
Line 1 class BinaryTree

-

- def self.on(grid)
grid.each_cell do |cell|-

neighbors = []5

neighbors << cell.north if cell.north-

neighbors << cell.east if cell.east-

-

index = rand(neighbors.length)-

neighbor = neighbors[index]10

-

cell.link(neighbor) if neighbor-

end-

-

grid
end

15

-

end
-

-

The on(grid) method accepts a grid and applies the Binary Tree algorithm to it
by iterating over each of its cells. For each cell, we collect the neighboring
cells to its north and east, putting them into a list. Then, we choose one cell
from that list at random, and link it to the current cell. Remember that the
cell in the northeast corner of the grid has no neighbors to the north or east,
so we need to make sure neighbor is valid before we try to link it up.

Not bad! With a bit of code golfing, you could probably simplify that even
more (consider that a challenge, if you’d like), but this makes the point.
Binary Tree is easy.

Choosing Random Elements from Arrays

Look at lines 9 and 10 from the listing of binary_tree.rb, where the program chooses one
of the neighbors at random. That works just fine, but Ruby (at least) has a simpler
way to do it:

neighbor = neighbors.sample

That one line will sample—or choose an element at random from—the neighbors array.
We’ll be using this sample method from now on.

Let’s write a simple program next that we can use to put these pieces all
together. Go ahead and put the following in a new file called binary_tree_demo.rb.
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binary_tree_demo.rb
require 'grid'
require 'binary_tree'

grid = Grid.new(4, 4)
BinaryTree.on(grid)

There’s not much to it. We pull in our Grid and BinaryTree classes, instantiate
a 4×4 grid, and then run the binary tree on it. Simple.

Sadly, running this little program is a bit anticlimactic. Give it a try. (Be sure
to pass -I. to tell Ruby to look in the current directory for dependencies.)

$ ruby -I. binary_tree_demo.rb
$

It runs, and it finishes, but it doesn’t actually show us anything. We kind of
have to take it on faith that our maze was generated.

We could drop everything at this point and haul out a canvas API, or a
graphics library, and start drawing walls and passages, but there’s really no
need just yet. We’ll get there soon enough. Let’s start simpler, with ASCII art.

Displaying a Maze on a Terminal
ASCII art is not necessarily the fanciest way, nor the prettiest, but it is often
the most convenient way to display our mazes. We nearly always have easy
access to a terminal, and we don’t need to worry about bringing out any big
guns (like external libraries or APIs). In short, it’s perfect for what we need
just now. Let’s walk through one possible way to approach drawing our mazes
using only four different characters: space (“ ”) for cells and passages, pipe
(“|”) for vertical walls, hyphen (“-”) for horizontal walls, and plus (“+”) to draw
corners. Here’s an example of a small maze drawn using these characters:

+---+---+---+---+
| |
+ + +---+ +
| | | |
+---+---+ +---+
| |
+ +---+ + +
| | | |
+---+---+---+---+

Be careful not to think of the lines as the passages in these
drawings! The lines are the walls, and the whitespace represents
the corridors.
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As shown, we’re going to have each cell share walls with its neighbors. That
is to say, the eastern wall of a cell will be the same as the western wall of its
neighbor to the east. This simplifies the implementation, because when we
go to draw the maze, we only have to draw the eastern and southern bound-
aries of each cell. We don’t need to worry about a cell’s northern or western
boundaries (in general), because when the neighboring cell to the north or
west is drawn, it will draw its own southern or eastern boundary—which
corresponds to the northern or western boundary of the cell we’re looking at.

The northern and western boundaries of the maze itself still need to be drawn
specially, since there are no cells outside the bounds that could draw those
walls for us. Still, that’s a small price to pay.

Because this is something that will be generally useful, and which we’ll want
to use over and over again, we’re going to make it so that the Grid class knows
how to render itself as text. We’ll put our implementation in the to_s method
of Grid.

Joe asks:

What’s So Special About to_s?
In Ruby, the to_s method is what the runtime calls when it needs to convert an object
into a string. (Hence the name: to_s, or to string.) By implementing a custom to_s
method, we provide a way for an object (like our Grid) to display itself in a sane, human-
readable way.

Other object-oriented languages have similar facilities. In JavaScript, Java, and C#,
for instance, you can override the toString() method. In SmallTalk, it’s asString. In
Objective-C, it’s description. In C++ you actually override the << operator!

So go ahead and open up grid.rb, and add the following method just before the
end keyword at the bottom of the file.

grid.rb
Line 1 def to_s

- output = "+" + "---+" * columns + "\n"
-

- each_row do |row|
top = "|"5

bottom = "+"-

-

row.each do |cell|-

cell = Cell.new(-1, -1) unless cell-

10

body = " " # <-- that's THREE (3) spaces!-

east_boundary = (cell.linked?(cell.east) ? " " : "|")-
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top << body << east_boundary-

-

# three spaces below, too >>-------------->> >...<15

south_boundary = (cell.linked?(cell.south) ? " " : "---")-

corner = "+"-

bottom << south_boundary << corner-

end-

20

output << top << "\n"-

output << bottom << "\n"
end

-

-

-

25

end
output

-

Right off the bat, line 2 initializes the output buffer to be the top boundary of
the grid. This consists of a plus character at each cell corner and three
hyphens for the northern wall of each cell in that first row.

Then, starting at line 4 we begin looping over each row of the grid. As men-
tioned, each cell will simply use the southern wall of the cell above it as its
own northern wall, so we only need to worry about the cell’s body, its eastern
boundary, and its southern boundary. We’ll accumulate the bodies and
eastern walls for each row’s cells into one variable (top), and the southern
boundaries into another (bottom). At the start of each row we’ll prime the pump
by initializing these variables to the western boundary of the grid, using a
vertical pipe for the western wall, and a plus for the row’s southwest corner
(lines 5 and 6).

Once those variables are initialized, we’ll loop over each cell in the row
(starting at line 8), building the output one cell at a time, and then concatenate
the two variables together when the row is done.

Some cells may (eventually) be nil, so line 9 handles that case by instantiating
a dummy Cell object, as needed. Then, we concatenate the body and east wall
of the current cell to the top variable, and the south wall and southeast corner
to the bottom variable. Each row finishes by appending the contents of those
two variables to the output, with newlines, and then we go around again until
every row has been processed.

At that point, we’re done, and line 25 simply returns the contents of the output
buffer. Note that the return keyword is optional in Ruby at the end of a
method—every method will return the value of the last expression that was
evaluated.
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Once we’ve got that new method saved to grid.rb, we can return to the bina-
ry_tree_demo.rb file and add one line to the very bottom, there:

binary_tree_demo.rb
puts grid

The puts method will automatically call the to_s method on our grid, converting
it to a string, and then print it. Running our program again, we ought to see
something a bit more interesting now.

$ ruby -I. binary_tree_demo.rb
+---+---+---+---+
| |
+---+ +---+ +
| | |
+---+---+ + +
| | |
+ +---+---+ +
| | |
+---+---+---+---+
$

It’s no Mona Lisa, but it’ll do in a pinch. We don’t need polish for things like
debugging or prototyping, and even some production applications find this
sort of output plenty sufficient. (Ever played NetHack?)

Now that you’ve got a way to see what you’re building, play around with it a
bit. Change the dimensions of the grid and see how large you can make it
before your terminal window starts garbling it. You might even want to
revisit some of the suggestions from Binary Tree experiments, on page 15 and
see how they come together now.

Whenever you’re ready, though, Sidewinder awaits.

Implementing the Sidewinder Algorithm
The Sidewinder algorithm (from The Sidewinder Algorithm, on page 12) is
similar in many respects to the Binary Tree algorithm. You’ll recall that it has
similar biases, and even a (conceptually) similar approach, randomly choosing
at each step to either carve east from the current cell, or north from the cur-
rent run of cells. In practice, though, Sidewinder feels like a very different
beast.

In code, it looks something like this. Put the following in a file named
sidewinder.rb.
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sidewinder.rb
Line 1 class Sidewinder

-

- def self.on(grid)
grid.each_row do |row|-

run = []5

-

row.each do |cell|-

run << cell-

-

at_eastern_boundary = (cell.east == nil)10

at_northern_boundary = (cell.north == nil)-

-

should_close_out =-

at_eastern_boundary ||-

(!at_northern_boundary && rand(2) == 0)15

-

if should_close_out-

member = run.sample-

member.link(member.north) if member.north-

run.clear20

else-

cell.link(cell.east)-

end-

end-

end25

-

grid
end

-

-

end
-

30

We begin on line 4 by looping over the grid, row by row. At the start of each
row, we create a new array for our run set, and then loop over each cell in
the current row. Lines 10 and 11 check to see if we’re at the eastern or
northern boundaries (if we are, the cell won’t have a neighbor in that direction),
and lines 13–15 use that to see if it’s time to close out the current run. Recall
that we always close the run at the end of a row (at the eastern boundary),
but we also do it randomly within a row (i.e. rand(2) == 0), as long as we’re not
in the northernmost row (to avoid carving through the outer wall of the maze).

Once we’ve got that keyed in, let’s try running it. Create another file,
sidewinder_demo.rb, and put the following in it.

sidewinder_demo.rb
require 'grid'
require 'sidewinder'

grid = Grid.new(4, 4)

Chapter 2. Automating and Displaying Your Mazes • 28

report erratum  •  discuss 

http://media.pragprog.com/titles/jbmaze/code/sidewinder.rb
http://media.pragprog.com/titles/jbmaze/code/sidewinder_demo.rb
http://pragprog.com/titles/jbmaze/errata/add
http://forums.pragprog.com/forums/jbmaze


Sidewinder.on(grid)

puts grid

Running that, we should see something like this:

$ ruby -I. sidewinder_demo.rb
+---+---+---+---+
| |
+ +---+ + +
| | | |
+---+ + + +
| | | |
+ +---+ +---+
| | |
+---+---+---+---+
$

Piece of pie! (as my dad is fond of saying). It might be a bit more involved than
Binary Tree, but that’s not saying much. Play around with it some. Take
another look at some of the ideas mentioned in Sidewinder Experiments, on
page 16 and see how they come together in code.

When you’re ready, we’ll finish off the chapter with a look at how to render
these mazes a tad more professionally.

Rendering a Maze as an Image
ASCII art is undeniably functional, but not necessarily attractive. Often, we
want our products to have a bit more polish. Fortunately, APIs are available
for most languages for either drawing directly to a view, or (at the very least)
rendering to an offscreen canvas and saving it as an image file. We’ll explore
the latter of those techniques with a Ruby library called ChunkyPNG,2 which
will let us write our mazes as PNG images. (The concepts should translate
readily to other UI and graphics APIs.)

If you’re following along in Ruby, you’ll need to install ChunkyPNG to get the
code that follows to work. Fortunately, it’s not hard:

$ gem install chunky_png

Now, then.

Just as we used the to_s method to render the textual representation of the
maze, we’ll introduce a to_png method on Grid to give us the graphical represen-
tation. The first half of it is just setup, computing the dimensions of our image

2. http://chunkypng.com/
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and instantiating our canvas. The second half is where the meat is; it’s really
not too different from what we did to write our maze to a terminal.

Go ahead and open up the grid.rb file again. At the very top of the file, add the
following line to make sure the ChunkyPNG library gets loaded.

require 'chunky_png'

Now, add the following method just before the final end keyword (right after
the to_s method that we added earlier).

Line 1 def to_png(cell_size: 10)
- img_width = cell_size * columns
- img_height = cell_size * rows
-

5 background = ChunkyPNG::Color::WHITE
- wall = ChunkyPNG::Color::BLACK
-

- img = ChunkyPNG::Image.new(img_width + 1, img_height + 1, background)
-

10 each_cell do |cell|
x1 = cell.column * cell_size-

y1 = cell.row * cell_size-

x2 = (cell.column + 1) * cell_size-

y2 = (cell.row + 1) * cell_size-

15

img.line(x1, y1, x2, y1, wall) unless cell.north-

img.line(x1, y1, x1, y2, wall) unless cell.west-

-

img.line(x2, y1, x2, y2, wall) unless cell.linked?(cell.east)-

img.line(x1, y2, x2, y2, wall) unless cell.linked?(cell.south)
end

20

-

-

-

end
img

-

The to_png method accepts a single named parameter, cell_size, which we’ll use
to indicate how large the cells ought to be drawn (10 pixels square, by default).
We’ll use that value to compute the dimensions of our image on line 2. We
then decide on our background color (white) and wall color (black), and
instantiate our canvas (line 8).

Next, we begin iterating over the cells, drawing each one in turn. Lines 11 to
14 compute the coordinates of the northwest (x1,y1) and southeast (x2,y2)
corners, which give us all the information we need to draw any of the four
walls of the current cell.

This happens to be just what we do next. First, we check to see if the cell has
any neighbors to the north or the west, and if not, we draw those walls (lines
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16 and 17). Note that if the cell does have neighbors to the north or west,
that neighbor will draw those walls instead, because every cell will always
draw its own southern and eastern walls, as necessary. Lines 19 and 20 take
care of that.

Then, when all the cells have been visited, we simply return the image object
for the caller to do with as it pleases. It’s trivial, for instance, to save the image
to disk; simply add the following to the end of sidewinder_demo.rb or bina-
ry_tree_demo.rb.

img = grid.to_png
img.save "maze.png"

From there, it’s just a matter of opening maze.png in your favorite image viewer.
Voilà!

Being able to render our mazes as images enables a lot of possibilities. We’ll
be taking advantage of this throughout the book, and especially as we explore
mazes of different shapes (Chapter 6, Fitting Mazes to Shapes, on page 83
and Chapter 7, Going in Circles, on page 97) and forms (Chapter 14, Bending
and Folding Your Mazes, on page 223).

Your Turn
You’re pretty much on the path to world domination now. Not only can you
generate random mazes, you can display them, too! You’ve played with a few
variations and tried some tricks of your own, and you’re feeling pretty confident
about it all.

Now for the fun part. Here’s where you get to explore some on your own,
seeing where your ideas take you. If you’re feeling a bit starved for ideas still,
browse some of the following for inspiration!

Grids
The implementation in this chapter is only one of many possible ways to
represent a grid. Here are two other ways to think about the problem. Perhaps
you can think of a few more as well!
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Bitfield Grids
Instead of an array of Cell objects, what if you went bare metal and simply
used an array of integers? Connections between cells would be represented
by bits set on each element of the array. This gives you a very memory-
efficient grid, but it tends to be fairly limited in what it can represent.

Edges and Nodes
Put on your computer scientist hat! If you’re familiar at all with graph
theory, you’ve no doubt noticed the connection between grids and graphs.
Those perfect mazes we talked about in the last chapter? Yup, trees. Cells
and passages are just other names for nodes and edges. If that connection
works for you, have a go at implementing the grid that way. Each node
has zero or more edges, and each edge has exactly two nodes. This gives
you a more memory-hungry grid, but it can represent nearly any kind of
maze!

Terminal Display
I’m not ashamed to admit that the terminal display demonstrated in this
chapter is really kind of “quick and dirty.” Here are a few possible ways to
clean it up a bit.

Cleaner Characters
The text-based maze would look much cleaner if the plus character was
only used at the junction of three or more wall segments. How might you
change the display routine to be smarter about that?

Unicode Grids
Instead of standard punctuation characters, what if you were to display
the maze using the Unicode box drawing characters? (That’s U+2500 to
U+257F.) Or you could use similar characters in any of the other terminal
character sets.

Graphical Display
ChunkyPNG is a great library, but it’s hardly the only option for this kind of
thing. Here are a few other ways you might consider drawing your mazes, but
see what else you can think of, too.

Other Graphics Platforms
Try your hand at some other graphics platforms. PDF is another great
format for this, with robust support in many languages. Perhaps you’d
rather render your maze to SVG, or even use JavaScript to draw it
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directly to an HTML canvas object! Experiment with different APIs and
see what works best for you.

Thicker Walls
The method shown in this chapter creates mazes with paper-thin walls,
which aren’t always the most practical kind of maze. How would you
render your mazes if the walls had actual thickness? (This becomes a
matter of some practical application when we get to Chapter 9, Braiding
and Weaving Your Mazes, on page 129.)

Using Tiles
Instead of drawing each cell on demand, you can prerender each kind of
cell, and then lay them out like tiles. Look at all the possible combinations
of exits that might exist for a cell, and then draw them all up-front. For
a simple orthogonal (that is, rectangular) maze, there are 15 different cell
types (16, if you include blank cells), ranging from the four-way intersec-
tion, to four distinct three-way intersections, and so on all the way to
dead ends.

Next up, we’re going to make you truly unstoppable. We’re going to see how
to actually solve these mazes you’ve been creating!
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CHAPTER 3

Finding Solutions
As fun as it is to generate maze after maze after maze, eventually someone’s
going to ask you how to actually solve these puzzles. Once or twice is fine,
but the last thing you want to do is perpetually put pencil to paper and
manually work out the solution to each one, case by case. You’d never have
time for making more mazes! Since the computer generated these, surely it
can solve them, too, right?

You bet it can.

It turns out that we can choose from among an entire host of algorithms to
solve mazes—so many, in fact, that this book would turn into at least two
books if we tried to cover them all. Some, like the Pledge or Trémaux algo-
rithms, are useful when you can’t see the entire maze. Others, like dead-end
filling and the shortest-path algorithms, require a more omniscient view.
Seriously, there are far too many to cover here. Instead, we’ll concentrate on
just one, the Swiss Army knife of path-finding algorithms: Dijkstra’s.

Joe asks:

Who Is “Dijkstra?”
Edsger Dijkstra (1930–2002) was a Dutch computer scientist. Aside from inventing
his eponymous algorithm, he was active in many different areas within computer
science, fields like formal verification and distributed computing. He also wrote many
papers and articles, including a well-known letter from the late 1960s called “Go To
Statement Considered Harmful.”

Like any Swiss Army knife, it won’t always be the best fit for the job. Other
algorithms might solve some mazes faster, or more efficiently, but Dijkstra’s
algorithm has a lot going for it in spite of that. First, it’s not picky about the
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mazes you give it. Some algorithms only work on certain kinds of mazes, but
not Dijkstra’s! It’ll solve anything we throw at it. Second, the byproducts of
Dijkstra’s algorithm will let us do some fun things, like increase the difficulty
of our mazes, or give us insight into their textures and the biases of the
algorithms we’re using to generate them.

We’ll look at a simplified version of Dijkstra’s in this chapter, walking through
it step-by-step, and then we’ll see how it’s implemented in code. We’ll also
see some of these byproducts in action when we try to find longer paths
through our mazes, or color them to better visualize textures.

Dijkstra’s Algorithm
Dijkstra’s algorithm measures the shortest distance between some starting
point (which we specify), and every other cell in the maze. In a nutshell, it
works by flooding the maze, starting at that point we chose. The longer it
takes the flood to reach a cell, the farther that cell is from our starting point.

The version of the algorithm that follows is a bit simplified. The full algorithm
can find a shortest path through any configuration of cells and passages,
regardless of how those cells are connected, and we’ll see that version later
in the book. For now, the simplified version is all we need.

0
The algorithm begins when it is given a start-
ing point. This is usually the cell at the start
of the path we want to find, like the entrance
to the maze. The algorithm marks it with a
zero, because the path from that cell to itself
is exactly zero cells long. Dijkstra’s hasn’t yet
figured out the distance between this cell and
every other cell in the grid, so it sets the distance for all other cells to be
blank, or undefined. The figure uses the northwest corner as the starting
point.

10
Next, it looks at all of the unvisited (white,
unnumbered) neighbors linked to that cell.
We’ll call this set of cells the frontier. The
algorithm assigns the value 1 to each of the
cells in the frontier, because they are all
exactly one cell away from the starting point.
Here we see that the first cell has only a single
accessible neighbor, so the new frontier set contains only that cell.
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2
2
10

The algorithm does it all again for that cell in
the new frontier set, the one just marked with
1. It visits each of the cell’s unvisited, accessi-
ble neighbors and makes the distance for each
of them 2, because they are each one step
farther from our starting point. Those cells
now become the new frontier set, as shown.

3
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6
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7
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8 8

2
2
10

This process repeats until every cell in the
maze has been visited (that is, assigned a
distance). The figure gives you an idea of what
we’re left with: a matrix showing the distance
of every cell in the maze relative to that initial
starting cell.

3
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8 8
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10

With this matrix, we can do a lot of really neat
things, not least of which is to find the path
from any cell in the maze, back to the starting
cell. To do so, we position ourselves at the
endpoint of our path—we’ll call it the
goal—and then look at neighboring cells. The
cell whose distance is one less than the cur-
rent cell will be the next stepping stone on our path. We make that cell the
current cell, repeat the process until we reach the initial cell (the one with
distance zero), and we’re done! The figure shows one such path, if the
southeast corner were selected as the goal.

This is always guaranteed to be the shortest path between those two points.
That’s a pretty useful guarantee! Next, let’s look at one way to implement
this.

Implementing Dijkstra’s
To bring this simplified version of Dijkstra’s together, we’re going to lean on
a new class, called Distances, which will keep track of how far each cell is from
the reference cell (the cell where we start counting from). Once we’ve imple-
mented that class, we’ll add our actual implementation of Dijkstra’s to the
Cell class, which will let us apply it pretty much anywhere we need to.

So, first off, let’s add that Distances class. For now, it’s just a simple wrapper
around a Hash instance, but we’ll be making it more useful soon. Create a new
file named distances.rb, and add the following to it.
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distances.rb
class Distances

def initialize(root)
@root = root
@cells = {}
@cells[@root] = 0

end

def [](cell)
@cells[cell]

end

def []=(cell, distance)
@cells[cell] = distance

end

def cells
@cells.keys

end
end

We will use this class to record the distance of each cell from the starting
point, @root, so the initialize constructor simply sets up the hash so that the
distance of the root from itself is 0.

We also add an array accessor method, [](cell), so that we can query the dis-
tance of a given cell from the root, as well as a corresponding setter, []=(cell,
distance), for recording the distance for a given cell.

Finally, we add a cells method to get the list of all of the cells that are present.

Easy enough.

Next, let’s use that new class. We’ll add a distances method to Cell, which will
implement Dijkstra’s algorithm and return a Distances instance containing that
matrix of distances we talked about previously.

First, we need to make sure our new Distances class gets loaded. Add the fol-
lowing line to the very top of cell.rb.

require 'distances'

Now, add the following method at the end of that file, just before the final end
keyword.
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Line 1 def distances
- distances = Distances.new(self)
- frontier = [ self ]
-

5 while frontier.any?
new_frontier = []-

-

frontier.each do |cell|-

cell.links.each do |linked|-

next if distances[linked]10

distances[linked] = distances[cell] + 1-

new_frontier << linked-

end-

end-

15

frontier = new_frontier
end

-

-

-

-

end
distances

20

On line 2 we instantiate our new Distances class, which we’ll use to store all
the distances that we are about to compute. The current cell is the root, since
that’s what all the distances will be relative to. We also initialize our frontier
set to be an array of just one element: this cell, our starting point.

Line 5 begins the loop that drives the algorithm. We’re going to keep looping
until there are no more cells in the frontier set, which will mean that we’ve
measured the distance of every cell to our root cell.

On every pass through that loop, we create a new frontier set (line 6) which
will hold all of the unvisited cells that are linked to cells in the current frontier
set. These will be considered on the next pass through the algorithm. The
current pass will populate that set by iterating over the frontier cells (line 8),
and considering every neighbor that is linked to them (line 9).

Since our map initially returns nil if a cell hasn’t been visited yet, line 10 can
use that to detect cells that have been visited, skipping them. Otherwise, line
11 computes the linked cell’s distance to be one more than the frontier cell’s
distance (because it’s one step further away), and then adds the cell to our
new frontier set (line 12).

After all of the frontier cells have been considered, we make the new frontier
set the real frontier (line 16), and go around again. When the algorithm finish-
es, we return our map of distances, just as promised.

Whew!
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We’re almost ready, but we don’t yet have a way to see what Dijkstra’s algo-
rithm returns. We’d like to be able to display the corresponding distance
value in the cell itself, but our existing Grid#to_s is not very extensible. We’d
either have to change the version in the Grid class directly (not too appealing,
since most grids won’t need this feature), or we’d have to copy and paste most
of it into another class so we could change it.

Instead, let’s take a minute to step back and fix the root problem. Let’s make
Grid#to_s a bit more extensible. We’ll add a method, called contents_of(cell), that
subclasses may override, which will describe what text may be used to label
any given cell. By default, it will just render a space, which is the behavior
of our existing implementation. Open up grid.rb and add this new method just
before the to_s method.

def contents_of(cell)
" "

end

Now, with grid.rb still open, find the to_s method. We’re going to change one
line, the bit that describes the body of the cell, so that it calls our new con-
tents_of(cell) method. The line in question is highlighted in the following snippet.

row.each do |cell|
cell = Cell.new(-1, -1) unless cell

body = " #{contents_of(cell)} "➤

east_boundary = (cell.linked?(cell.east) ? " " : "|")
top << body << east_boundary

south_boundary = (cell.linked?(cell.south) ? " " : "---")
corner = "+"
bottom << south_boundary << corner

end

Thanks to that quick change, we can now throw together a simple subclass
of Grid, which will be able to render itself and show the distance numbers for
each cell.

Create a new file, called distance_grid.rb, and put the following code in it. This
will override the contents_of method to return the distance information for each
cell. Remember that the Grid#to_s method calls contents_of to discover how each
cell should be rendered. By returning the distance information here, we can
insert that information directly into our text-formatted maze! This should give
us some visibility into what’s going on.
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distance_grid.rb
require 'grid'

class DistanceGrid < Grid
attr_accessor :distances

def contents_of(cell)
if distances && distances[cell]
distances[cell].to_s(36)

else
super

end
end

end

Note that because we’re limited to one ASCII character for the body of the
cell, we format the distance as a base-36 integer. That is to say, numbers
from 0 to 9 are represented as usual, but when we reach a decimal number
10, we switch to letters. The number 10 is a, 11 is b, 12 is c, and so forth,
all the way to z for 35. The number 36, then, becomes a 10, and the one’s
place starts all over again. This lets us represent distances up to 35 using a
single character.

Now we can instantiate this DistanceGrid class and see it all come together. Put
the following code in a file named dijkstra.rb.

dijkstra.rb
Line 1 require 'distance_grid'

- require 'binary_tree'
-

- grid = DistanceGrid.new(5, 5)
5 BinaryTree.on(grid)
-

- start = grid[0, 0]
- distances = start.distances
-

10

puts grid
grid.distances = distances

-

There’s nothing special about the Binary Tree algorithm here—feel free to
replace it with whatever algorithm you prefer, especially as we begin to work
through more algorithms. The meat of this really starts on line 7, where we
choose our starting cell. The next line calls our new Cell#distances method to
compute the distances of every cell relative to that starting cell, and then we
assign that to the grid’s distances property on line 10. When we finally display
the grid, it will use that distance information to decorate each cell.

Try running it. You should get something like the following.
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$ ruby -I. dijkstra.rb
+---+---+---+---+---+
| 0 1 2 3 4 |
+ + +---+ + +
| 1 | 2 | 5 4 | 5 |
+---+---+---+---+ +
| a 9 8 7 6 |
+ +---+---+ + +
| b | a 9 8 | 7 |
+---+ + + + +
| c b | a | 9 | 8 |
+---+---+---+---+---+

Voilà! There’s our matrix. Our starting position—in the northwest corner—has
a distance of 0, as anticipated. Other cells count their distances from 1 to 9,
switching to letters at that point (courtesy of those base-36 numbers) to rep-
resent 10, 11, and so on.

Finding the Shortest Path
The whole point of this exercise is to help us find a solution to our maze, a
path between any two arbitrary points, so let’s tackle that next. We’ll imple-
ment more or less what was described previously, walking the path backward
from our goal, looking for neighboring cells with sequentially smaller distances.

We first decide where we want our path to end (let’s make it the southwest
corner), and work backward from there. For each cell along the path, the
neighboring cell with the lowest distance will be the next step of the solution.

Remember how I said we’d be making the Distances class more useful soon?
Here we go. We’ll plug the following method into it. Open distances.rb and add
this method at the end of the definition for the Distances class, just before that
class’s final end keyword.

Line 1 def path_to(goal)
- current = goal
-

- breadcrumbs = Distances.new(@root)
5 breadcrumbs[current] = @cells[current]
-

- until current == @root
current.links.each do |neighbor|-

if @cells[neighbor] < @cells[current]-

breadcrumbs[neighbor] = @cells[neighbor]10

current = neighbor-

break-

end-

end-
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end15

-

-

end
breadcrumbs

-

This method takes a cell and figures out the path to that cell from the original
starting point. Line 2 starts that out by indicating that the given goal is our
current cell, and we’ll work backward from there. Then, the breadcrumbs variable
on line 4 is initialized to a new Distances instance, which will eventually include
only those cells that lie on the path. We start it out with just the reference
cell, @root.

The process now begins a loop, starting on line 7, which continues until we
reach that @root cell. Each iteration of that loop examines all of the linked
neighbors of the current cell (line 8), looking for one that is closer to the root
(line 9). When it finds it, that neighbor is added to the breadcrumbs (line 10),
and then the loop repeats with that neighbor as the current cell.

Notice how it returns a Distances instance (the breadcrumbs object). This means
it’s a cinch to display, because all we have to do is take that new mapping
and hand it off to the grid. Our updated contents_of method will display values
in the cells along the path (because they exist in the new mapping), and render
blank spaces for all the others (because they don’t exist in that mapping).

To run this, we just need to call that new path_to method. Add this to the bottom
of dijkstra.rb.

dijkstra.rb
puts "path from northwest corner to southwest corner:"
grid.distances = distances.path_to(grid[grid.rows - 1, 0])
puts grid.to_s

The result? Running it now, you should see your maze twice—once with the
full matrix of distance values, and once showing only the path between the
northwest and southwest corners, something like the following.

$ ruby -I. dijkstra.rb
+---+---+---+---+---+
| 0 1 2 3 4 |
+ +---+---+---+ +
| 1 | 8 7 6 5 |
+ +---+ +---+ +
| 2 | 9 8 | 7 6 |
+ +---+ + + +
| 3 | a 9 | 8 | 7 |
+---+---+---+ + +
| c b a 9 | 8 |
+---+---+---+---+---+
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path from northwest corner to southwest corner:
+---+---+---+---+---+
| 0 1 2 3 4 |
+ +---+---+---+ +
| | 5 |
+ +---+ +---+ +
| | | 7 6 |
+ +---+ + + +
| | | 8 | |
+---+---+---+ + +
| c b a 9 | |
+---+---+---+---+---+

There you have it! You just used Dijkstra’s algorithm to find the shortest path
between two points in your maze. This is great. Now when your friends ask
you for the solutions to your mazes, you no longer have to act all embarrassed.
You’ll just know.

But we’re not done with Dijkstra’s algorithm yet. I wasn’t kidding when I
called it a Swiss Army knife. Oh, no. All we’ve shown so far is how it helps
solve a maze. It can also be used to make a maze more challenging, and this
is a property that, as maze creators, we ought to know more about. We’ll take
a look at this next.

Making Challenging Mazes
There are lots of ways to make a maze more challenging, but many of them
are highly subjective and difficult to quantify. Walter D. Pullen, author of the
Think Labyrinth! website, lists many of the considerations of a challenging
maze on his Maze Psychology page,1 and the list is not short. We’re going to
focus on just one of them, here—solution length—and we’ll see how Dijkstra’s
algorithm again saves the day.

In general, the longer the path, the more difficult the maze. Ideally, then, if
we want a more challenging maze, we want to identify the longest path through
it. We then put the entrance of our maze at one end of the path, and drop
the goal at the other end, and we’ve upped the ante. Easy as that.

A general solution to the “longest path” problem—one that works for any
arbitrary graph, or grid—is what mathematicians call an NP-hard problem.
Fortunately, we can narrow our requirements a bit. If we’re only looking to
find the longest path through a perfect maze, there happen to be a few different
ways to tackle it, and Dijkstra’s is one of them.

1. http://www.astrolog.org/labyrnth/psych.htm
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It might seem counter-intuitive that an algorithm we just used to find a
shortest path can also be used to find a longest path, but remember: Dijkstra’s
has conveniently labeled each cell with a distance value. All we have to do is
look for the largest one in the maze. That will tell us the longest path from
our starting point to that cell.

Be careful, though! This is not necessarily going to be the longest path in the
maze. If our starting cell happens to be somewhere in the middle of the
actual longest path, then the longest path from that cell will be shorter than
the real one. The trick is to run the algorithm twice. The first time, you find
the most distant cell from some arbitrary starting point. The second time,
you turn it around and use that most distant cell as the starting point, letting
Dijkstra’s tell you the most distant cell from there. We’re basically asking
Dijkstra’s to tell us the most distant point relative to the most distant point.

To make this real, we need to introduce a new method to our Distances class,
to tell us which cell is furthest from the root and just how far away it is. Open
up distances.rb again and add the following method to the Distances class, just
after the path_to method.

def max
max_distance = 0
max_cell = @root

@cells.each do |cell, distance|
if distance > max_distance
max_cell = cell
max_distance = distance

end
end

[max_cell, max_distance]
end

This just loops over each of the cells in the hash, keeping track of which cell
has the greatest distance. When it’s done, it returns an array of what it found.

Now, put the following code in a file named longest_path.rb. Note that it works
up similarly to dijkstra.rb, but instead of simply showing the matrix of distances,
lines 7–15 implement the two passes through Dijkstra’s algorithm, as just
described, in order to find the longest path through the maze.

longest_path.rb
Line 1 require 'distance_grid'

-

grid = DistanceGrid.new(5, 5)

require 'binary_tree'
-

-
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5 BinaryTree.on(grid)
-

- start = grid[0,0]
-

- distances = start.distances
10 new_start, distance = distances.max

-

- new_distances = new_start.distances
- goal, distance = new_distances.max
-

15

puts grid
grid.distances = new_distances.path_to(goal)

-

Line 7 gets the ball rolling by choosing the northwest corner as our starting
cell. Remember, we could choose any cell we want—the northwest corner is
just easy and convenient.

Next, lines 9 and 10 run Dijkstra’s algorithm from that starting point and
discover the most distant cell relative to it, calling it new_start.

Distances#max returns a two-dimensional array, containing the most distant
cell and its distance from the root. Ruby supports parallel assignment so we
can directly assign the elements of that array to separate variables, although
in this case the distance value is not actually used. Still, the method returns
it, so we have to put it somewhere!

Once we have that most distant cell, we do it again, on lines 12 and 13,
finding the most distant cell from that new starting point. We assign that new
distant cell to goal.

Finally, using the new_distances mapping from new_start, we compute the path
to that goal cell (line 15), and assign it to our grid’s distances property.

Running this program now should show you the path it discovered.

$ ruby -I. longest_path.rb
+---+---+---+---+---+
| 8 7 6 |
+ +---+ +---+ +
| | 9 | 5 |
+ +---+ +---+ +
| | b a | 4 |
+---+ + +---+ +
| c | | 2 3 |
+---+ +---+ + +
| e d | 0 1 | |
+---+---+---+---+---+
$
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And there you have it: the longest path! Be aware, though, that this is tech-
nically only a longest path. There may be multiple paths through the maze
that are all equally long, and thus equally longest.

Efficiently Finding the Longest Path

It bears mentioning that Dijkstra’s algorithm is not the most efficient way to find the
longest path through a maze. After all, you have to run the algorithm twice, which
means every cell is going to be visited twice before you find that path.

If you take advantage of a bit of graph theory, though, you can calculate the longest
path more efficiently. The longest path through a tree (exactly what our perfect mazes
are) is called its diameter, or width. Using a depth-first search, you can traverse that
tree and compute the diameter. The details of the algorithm are sadly beyond the
scope of this little aside, but consider it a challenge, if you like!

Before moving on to more maze algorithms, let’s look at one last trick that
Dijkstra’s algorithm can help us with. It turns out that the matrix of numbers
that we get from Dijkstra’s can also be interpreted another way: as colors.
We’ll see how that’s useful next.

Coloring Your Mazes
It turns out that coloring mazes in a particular way acts like an X-ray machine,
letting us peer inside and get a much clearer view of the structure of a maze
and of the algorithm that generated it. Dijkstra’s algorithm is ideal for this,
because of that matrix of numbers it generates. Every cell with the same
distance value has one thing in common: they all are equidistant from the
starting cell. This is just crying for a paint-by-number exercise.

The easiest way to do this is to treat each number as an intensity value, rela-
tive to the length of the longest path. It works even better if we invert the
logic, too, treating the cells with the largest distance values as being darkest,
and the cell that we started with (which has a distance of zero), as being
lightest.

To make this work, we’ll need to dip into our Grid class again, tweaking that
to_png implementation to support coloring the cells. We’ll do like we did for
to_s and generalize it a bit. We’ll add a background_color_for(cell) method, which
will return a color value, and to_png will call that for each cell. Subclasses may
override background_color_for to implement their own coloring rules.
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Open up grid.rb again and we’ll make the following changes, starting with
adding our new background_color_for(cell) method. Put it just after contents_of, since
the two have similar responsibilities.

def background_color_for(cell)
nil

end

By default, it returns nil, meaning that cells should not be colored, but sub-
classes that override it should return a ChunkyPNG::Color instance instead. (We’ll
see how that works shortly.)

For the to_png method, we’re only going to change the each_cell block within
that method, replacing it with the following.

Line 1 [:backgrounds, :walls].each do |mode|
- each_cell do |cell|

x1 = cell.column * cell_size-

y1 = cell.row * cell_size-

x2 = (cell.column + 1) * cell_size5

y2 = (cell.row + 1) * cell_size-

-

if mode == :backgrounds-

color = background_color_for(cell)-

img.rect(x1, y1, x2, y2, color, color) if color10

else-

img.line(x1, y1, x2, y1, wall) unless cell.north-

img.line(x1, y1, x1, y2, wall) unless cell.west-

img.line(x2, y1, x2, y2, wall) unless cell.linked?(cell.east)-

img.line(x1, y2, x2, y2, wall) unless cell.linked?(cell.south)15

end-

-

end
end

-

Line 1 wraps the old each_cell block in another loop, which iterates over two
symbolic constants: :backgrounds, and :walls. The first time through the loop,
we’re coloring cells (line 8) by calling our background_color_for method and drawing
filled rectangles. The second time, we’re drawing the walls, just as we did
before (lines 12–15).

Now we can subclass Grid and create a ColoredGrid class, which will implement
our Dijkstra-based coloring rules.

colored_grid.rb
Line 1 require 'grid'

- require 'chunky_png'
-

-

def distances=(distances)
class ColoredGrid < Grid

5

@distances = distances-
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farthest, @maximum = distances.max
end

-

-

-

10 def background_color_for(cell)
distance = @distances[cell] or return nil-

intensity = (@maximum - distance).to_f / @maximum-

dark = (255 * intensity).round-

bright = 128 + (127 * intensity).round-

ChunkyPNG::Color.rgb(dark, bright, dark)15

-

end
end

-

Our subclass only implements two methods: a writer that we’ll call distances=(dis-
tances) (line 5) and our background_color_for(cell) method (line 10).

The distances= method simply stores the distances mapping, and caches the
mapping’s largest distance value as @maximum (line 7). We’ll use that to compute
the intensity color for each cell, on lines 12–14 of background_color_for, by mea-
suring each cell’s distance value against that maximum distance. We use
that intensity to compute a dark value and a bright value, and compose those
to return a shade of green (line 15) by setting the color’s red and blue compo-
nents to dark, and green to bright. (Feel free to experiment with other colors,
too! For example, setting the red and green components to bright and leaving
blue at dark will give you shades of yellow. See what else you can come up
with!)

Finally, coloring the maze itself becomes super easy. Put the following code
in a new file named coloring.rb.

coloring.rb
Line 1 require 'colored_grid'

- require 'binary_tree'
-

- grid = ColoredGrid.new(25, 25)
5 BinaryTree.on(grid)
-

- start = grid[grid.rows / 2, grid.columns / 2]
-

- grid.distances = start.distances
10

- filename = "colorized.png"
-

puts "saved to #{filename}"
grid.to_png.save(filename)

-

We’re generating a larger maze than before, 25×25, so that the coloring is
more pronounced. (It works fine on a smaller maze, too; it’s just not as
impressive!) Again, we generate a maze using the Binary Tree algorithm, and
then, starting on line 7, we choose our starting cell to be the one right in the
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middle of the grid. (It really doesn’t matter where we start, but beginning in
the middle will usually give us an attractive pattern.) Then we run Dijkstra’s
from that cell, tell the grid about the resulting distances matrix, and draw it
to colorized.png.

Go ahead and run it:

$ ruby -I. coloring.rb
saved to colorized.png
$

Opening up colorized.png, you should see
something like this figure.

It’s certainly pretty, but what is it that we’re
looking at? Recall that we ran Dijkstra’s
algorithm, starting at the center of the grid.
That cell—having the smallest distance val-
ue—will be colored the lightest. As cells grow
more distant from that cell, they are colored
darker and darker, until the cells furthest
away are darkest of all.

Aside from making some rather compelling abstract art, this also happens to
show us something really interesting and potentially very useful. It lets us
see, quite clearly, the structure of the maze. We’re shining Dijkstra-flavored
X-rays at it and seeing what’s inside. It turns out that this works great for
letting us visually (and subjectively) compare all kinds of different maze
algorithms.

For example, the following figure shows three different mazes, all generated
using different algorithms.

Binary 
Tree

Recursive 
Backtracker

Sidewinder

The diagonal texture of the Binary Tree maze, and the vertical texture of the
Sidewinder maze, are both clearly visible. The third algorithm, Recursive
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Backtracker, is not one we’ve covered yet (we’ll get there in Chapter 5, Adding
Constraints to Random Walks, on page 67) but it’s included here to show that
even when you aren’t familiar with how a maze was generated, this coloring
technique can give you useful insight into what to expect from the algorithm.

We’ll see this technique used throughout the book for just that reason. It’s a
great tool for looking into the structure of a maze and understanding the
behavior of the algorithm that generated it.

Your Turn
So, that’s Dijkstra’s algorithm. As mentioned, it’s not the only way—nor even
the fastest way—to solve mazes, but it’s certainly a useful way. We’ve seen
how to use it to find a path between two cells. We’ve also seen how it can be
used to find a longer (and hopefully more challenging) path through a maze.
Finally, we used Dijkstra to color mazes, allowing us to look inside and see
their underlying structures.

There’s a lot of room to explore, here. Take some time to fiddle with Dijkstra’s
algorithm. Get familiar with it. It’s going to be our faithful companion
throughout this book!

If you need some ideas to get started, consider some of these.

Animate Dijkstra’s algorithm.
What if you were to draw the maze at each step of Dijkstra’s algorithm?
You ought to be able to get a good look at how the “flood” spreads out
from the starting point and fills the maze.

Adaptive cell widths.
You might have already tried running your dijkstra.rb program with a large
maze. If you haven’t, you should. Make it 20×20. It looks ugly, with the
grid lines all out of alignment, because the paths are longer than 35 cells
long, causing our base-36 numbers to overflow. The labels that are being
written to each cell are too long! Try making the grid cells wider, as
needed, to account for the longer text in some cells.

Draw solution paths graphically.
We drew the solutions to our mazes using the textual display, but what
would it take to make to_png draw the solution? Consider displaying the
path by drawing the background of each cell in a different color, or by
drawing lines or breadcrumbs along the path.

report erratum  •  discuss

Your Turn • 51

 

http://pragprog.com/titles/jbmaze/errata/add
http://forums.pragprog.com/forums/jbmaze


Other color schemes.
The color scheme presented above is monochromatic, using shades of
only a single color to indicate distance. How else might you do it? Consider
cycling through the RGB color palette in different ways to create rainbow
fills. Or blend different gradients together to create new effects.

Change the starting cell.
What if you start Dijkstra’s at different positions within the maze, before
coloring it? Try starting it at an intersection, or a dead end, and see how
it compares. Or try it from each of the corners, or from the sides. You
could even get ambitious and create an animation, where each frame
shows the maze colored from a different cell along some path!

Now that we’re armed with Dijkstra’s, we’re ready to tackle two new maze
algorithms. With Dijkstra’s help, we’ll see evidence of what makes these
algorithms so special—they have no bias. Read on to see what that means,
and what it costs.
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CHAPTER 4

Avoiding Bias with Random Walks
So far, we’ve looked at two different maze algorithms, and while both were
straightforward to understand and implement, they also had some pretty
significant biases. They could be worked around, sure, but maybe there’s a
better way. In this chapter we’re going to try to balance the scales a bit by
exploring two new algorithms, Aldous-Broder and Wilson’s, both of which are
guaranteed to be absolutely unbiased.

If that sounds too good to be true, that’s because it almost is! Nothing comes
without a price, so we’ll also see where these two algorithms—despite their
mathematical flawlessness—ultimately end up with their own set of disap-
pointments.

To get there, though, we need to have a better understanding of what biases
really are, and what it means for an algorithm to have them. Let’s take a short
step back and look at biases from another angle, so we can see more precisely
what their absence really means.

Understanding Biases
It’s easy to say “this algorithm has a bias” and “that algorithm has no bias,”
but so far we haven’t been very specific about what we mean by that. It’s more
than simply identifying a long passage or a slantwise tendency in a maze. A
visible texture or pattern in a maze—in the output of an algorithm—is only
evidence of an algorithm’s bias if a significant number of mazes generated by
that algorithm exhibit that same texture.

But even that definition doesn’t quite cover it. Unlike Sidewinder and Binary
Tree, biases may not always be blatantly obvious. They may not even produce
visible artifacts at all. To understand how that can be, let’s consider an
example.
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Joe asks:

Can’t Mazes Have Biases, Too?
Walter Pullen, on his “Maze Classification” page,a uses the term “bias” to describe a
specific class of texture involving passage direction. A maze with horizontal bias, for
instance, will have longer east-to-west passages. So, yes, in some contexts, the word
bias may be applied to mazes, as well as algorithms.

However, to avoid confusion, in this book “bias” will refer strictly to algorithms, while
the more general term texture will be used to describe mazes. That is to say, a bias
of the algorithm may produce a texture in the maze.

a. http://www.astrolog.org/labyrnth/algrithm.htm

Let’s say we wanted to generate a perfect 2×2 maze. (Recall that “perfect” here
means one with no loops in it.) The following figure shows all four of the
possible perfect mazes that can fit in a 2×2 grid. By generating a 2×2 maze
randomly, we’re effectively choosing between these four possibilities.

A B C D
This means that, conceptually, randomly generating a maze is the same as
putting all of the possible mazes into a big bag, giving them a good shake
(you know—to make sure they’re well shuffled), and then reaching into that
bag and blindly picking one of them.

The Binary Tree algorithm is one way to do this. It lets us effectively reach
into that big bag full of all possible mazes and pick one at random, but it does
so with bias. In terms of our big bag of mazes, this means that the algorithm
doesn’t actually choose evenly from among all the possibilities. It cheats.

Consider the four perfect mazes in the preceding figure again. Ideally, we’d
like the Binary Tree algorithm to be able to generate all of them, but it can’t.
(Or won’t!) Recall what we know about its biases, revealed in the unbroken
passages it always leaves on the north and east. We see right away that C is
impossible because the eastern passage is broken in half by a wall. Binary
Tree would never give us that one. D is similarly impossible—that passage
across the north is also split by a wall. In other words, Binary Tree flatly

Chapter 4. Avoiding Bias with Random Walks • 54

report erratum  •  discuss 

http://pragprog.com/titles/jbmaze/errata/add
http://forums.pragprog.com/forums/jbmaze


refuses to give us anything but A and B, 50% of the possible 2×2 mazes. It is
biased against those other possibilities.

What about Sidewinder? When we recall that Sidewinder always generates
mazes with an unbroken northern passage, we immediately see that D is out,
because of that wall on the north. That gives us A, B, and C, or 75% of the
possible 2×2 mazes, which is better. But still—what we want is an algorithm
that will choose from all of them!

And as long as we’re making demands, we might as well add that we’d like
to pick them uniformly. That is to say, we want to make sure that every maze
in the bag has an equal chance of being selected. Some algorithms are
nonuniform, which is to say that they might eventually give us every possible
maze but tend to produce certain types more often (perhaps preferring longer
passages, for instance). These may be subtle biases, difficult or impossible
to spot by eye, but we don’t want those kinds, either.

Put simply, we’d like to see what happens when we choose our mazes uniformly
and at random from the set of all possible mazes. The good news is that there
are ways to do it, and they’re pretty straightforward, but, like everything,
there are trade-offs.

One way is called the Aldous-Broder algorithm. Let’s start there.

The Aldous-Broder Algorithm
The Aldous-Broder algorithm was developed independently by both David
Aldous, a professor at UC Berkeley, and Andrei Broder, currently a Distin-
guished Scientist at Google. It is almost as simple to implement as the Binary
Tree algorithm. The idea is just this: Start anywhere in the grid you want,
and choose a random neighbor. Move to that neighbor, and if it hasn’t previ-
ously been visited, link it to the prior cell. Repeat until every cell has been
visited.

Easy, right? It’s that random walk, the aimless, directionless meandering
from cell to cell, that is at the root of this algorithm’s ability to avoid being
biased. Sadly, as we’ll see it also means that it can take a long time to run.

Let’s walk through it once so we can see it in action. We’ll start by picking a
cell at random. We’ll color unvisited cells gray, and our old friend, the smiley
face, will indicate which cell is current.
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We need to pick a random neighbor, so let’s choose east. That neighbor hasn’t
been visited yet, so we link the two cells together, and then we do the process
again from that new cell. The following figure shows three steps in a row,
each taking us to a new, unvisited cell.

Check out this next move, though. We choose a random neighbor, going north
this time, but that cell has already been visited. That’s okay! It’s how the
algorithm works. The only difference is, this time, we don’t link the two cells.
We simply make the neighbor the current cell, and carry on.

The process continues until every cell has been visited, which, for large mazes,
can take a while. Go ahead and finish out this maze yourself. Assuming you’re
picking the neighbors randomly, you’ll see that the random walk will tend to
meander, visiting and revisiting some cells multiple times. By the time you’re
down to just one or two unvisited cells remaining, it can be downright infuri-
ating to watch the algorithm cluelessly walk right past them!
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So, have a go at it. When you’re done, you should have something like this.

Not bad! It certainly takes a bit of time to reach those last few unvisited cells,
but the process itself almost couldn’t be simpler.

Next let’s see how to make it real in code.

Implementing Aldous-Broder
As might be expected, that random walk forms the core of our implementation,
repeatedly visiting neighboring cells until no unvisited cells remain. It comes
together without any surprises, just as described.

Put the following code in a file named aldous_broder.rb. As before, we’ll put the
algorithm in its own class so we can reuse it more easily.

aldous_broder.rb
Line 1 class AldousBroder

-

- def self.on(grid)
cell = grid.random_cell-

unvisited = grid.size - 15

-

while unvisited > 0-

neighbor = cell.neighbors.sample-

-

if neighbor.links.empty?10

cell.link(neighbor)-

unvisited -= 1-

end-

-

cell = neighbor15

end-

-

grid
end

-

-

end
20

-
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Line 4 starts everything off by choosing one of the cells at random. The random
walk will begin at that cell. To make sure the algorithm knows when everything
has been visited, line 5 computes the number of unvisited cells in the grid.
(We subtract one, because we treat the starting cell as having been visited
already.) Each time a new cell is visited, that value will be decremented (line
12), and the loop continues until that value is zero (line 7).

On each pass through the loop, we choose a neighbor of the current cell at
random (line 8) and make it the new current cell (line 15). If that cell hasn’t
yet been linked to any other cells (which implies that it hasn’t been visited
before), we link it to the current cell (line 11) before going around again.

A simple demo program will suffice for testing this. Put the following in
aldous_broder_demo.rb.

aldous_broder_demo.rb
require 'grid'
require 'aldous_broder'

grid = Grid.new(20, 20)
AldousBroder.on(grid)

filename = "aldous_broder.png"
grid.to_png.save(filename)
puts "saved to #{filename}"

Feel free to display the maze using the terminal, if you prefer; this code writes
the maze to a PNG simply so that we can make it larger, to better see the
structure of the finished maze. Running it will save the maze to a file, like
this:

$ ruby -I. aldous_broder_demo.rb
saved to aldous_broder.png
$

Opening up aldous_broder.png, we ought to see
something like this figure.

Very nice. Let’s go one step further and see if
this algorithm produces any kind of texture
that its mazes all have in common. Using our
coloring.rb program from the previous chapter
as a template, let’s modify aldous_broder.rb to
emit a colored version of the maze. In fact,
let’s have it generate and color several mazes
at once, so we can open them all up side-by-
side to compare. Put the following code in aldous_broder_colored.rb.
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aldous_broder_colored.rb
require 'colored_grid'
require 'aldous_broder'

6.times do |n|
grid = ColoredGrid.new(20, 20)
AldousBroder.on(grid)

middle = grid[grid.rows / 2, grid.columns / 2]
grid.distances = middle.distances

filename = "aldous_broder_%02d.png" % n
grid.to_png.save(filename)
puts "saved to #{filename}"

end

When we run it, it will generate six different images.

$ ruby -I. aldous_broder_colored.rb
saved to aldous_broder_00.png
saved to aldous_broder_01.png
saved to aldous_broder_02.png
saved to aldous_broder_03.png
saved to aldous_broder_04.png
saved to aldous_broder_05.png

If we look at those images now, we ought to see something like these.

Remember that in general, any texture that we see is only evidence of a bias
if every maze generated by the algorithm has that texture in common. Looking
at this spread, you may see a few that look like they want to stretch vertically,
and a couple seem to have a horizontal bridge in the middle, but there aren’t
any characteristics that they all seem to share. This definitely supports the
claim that Aldous-Broder has no bias!
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As compelling as it is, though, it doesn’t mask the largest drawback of a
purely random walk. All is not rosy in Aldous-Broder Land. Each individual
step of the algorithm may execute quickly, but the algorithm itself can run
for a long time, especially on large mazes. That aimless meandering over
previously visited cells feels awfully wasteful, but we can’t add a heuristic, or
a way to give the process some intelligence, without taking away the very
property of uniformity that we said we wanted.

So, we can’t change Aldous-Broder itself, but maybe we can try a different
algorithm instead. Let’s see if Wilson’s does any better.

Wilson’s Algorithm
Wilson’s algorithm was developed by David Bruce Wilson, a principle
researcher at Microsoft and an affiliate associate professor of mathematics
at the University of Washington. Like Aldous-Broder, this algorithm depends
on the idea of a random walk, but with a twist. It performs what is called a
loop-erased random walk, which means that as it goes, if the path it is forming
happens to intersect with itself and form a loop, it erases that loop before
continuing on.

The algorithm starts by choosing a point on the grid—any point—and marking
it visited. Then it chooses any unvisited cell in the grid and does one of these
loop-erased random walks until it encounters a visited cell. At that point it
adds the path it followed to the maze, marking as visited each of the cells
along that path, and then it goes again. The process repeats until all the cells
in the grid have been visited.

That’s a mouthful! Let’s walk through it together, choosing some random cell
to start and marking it visited. Here, the northwest corner has been marked.

Next, we choose another cell at random. Our choice here is indicated by the
smiley face. We’ll call this the current cell, and it will be where we begin our
loop-erased random walk. Note that we do not consider this cell visited!
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From here, we choose a random neighbor and make that neighbor the current
cell, repeatedly. The following figure shows our path after four such moves.
Be careful: we are not actually carving passages, or modifying the grid at all,
here. We’re just noting the path we’re taking.

Now, here’s where the “loop-erased” part of “loop-erased random walk” comes
into play. In the next figure, we’ve (randomly) decided to move east, which
causes us to intersect our current path. This creates a loop, so we erase that
loop before moving on.

We continue in this fashion until we stumble upon a cell that has already
been visited. The first time through, this means we have to find the one cell
that started out visited, our needle in this haystack of cells. It can take a
while, but eventually it’ll find it. Our path might look like this.
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Once we have that path, we carve it into the maze by linking all the cells along
that path and marking them visited.

Then we do it all again: pick a random, unvisited cell from the grid, perform
a loop-erased random walk until we hit a visited cell, and carve the resulting
path into the maze, like this.

This repeats until there are no more unvisited cells in the grid. Have a go at
finishing out this maze. You should be left with something like the following
when you’re done.
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Again, not bad. We can see that Wilson’s algorithm eliminates the aimless
wandering at the end of the process, since the problem’s been turned around:
instead of looking for unvisited cells (which will be plentiful to start, and few
at the end), we’re looking for visited cells (which are rare to start, but common
toward the end). Sadly, this also means that it has the opposite problem from
Aldous-Broder. Whereas Aldous-Broder starts fast but takes progressively
longer to reach the last few cells, Wilson’s starts slowly, trying to find that
needle in the haystack at the very beginning. Still, like Aldous-Broder, the
algorithm has no bias, and perhaps that’s enough to justify the price.

Let’s look next at how to implement it in code.

Implementing Wilson’s Algorithm
The following uses an array to keep track of all unvisited cells in the grid.
Besides letting us query whether a cell has been visited or not, this also lets
us quickly choose an unvisited cell from which to start our loop-erased random
walk.

Put the following code in a file named wilsons.rb.

wilsons.rb
Line 1 class Wilsons

-

- def self.on(grid)
unvisited = []-

grid.each_cell { |cell| unvisited << cell }5

-

first = unvisited.sample-

unvisited.delete(first)-

-

while unvisited.any?10

cell = unvisited.sample-

path = [cell]-

-

while unvisited.include?(cell)-

cell = cell.neighbors.sample15

position = path.index(cell)-

report erratum  •  discuss

Implementing Wilson’s Algorithm • 63

 

http://media.pragprog.com/titles/jbmaze/code/wilsons.rb
http://pragprog.com/titles/jbmaze/errata/add
http://forums.pragprog.com/forums/jbmaze


if position-

path = path[0..position]-

else-

path << cell20

end-

end-

-

0.upto(path.length-2) do |index|-

path[index].link(path[index + 1])25

unvisited.delete(path[index])-

end-

end-

-

grid
end

30

-

end
-

-

This implementation really consists of three different parts: the initialization
(lines 4–8), the loop-erased random walk (lines 11–22), and carving passages
(lines 24–27).

In the initialization phase, we set up an empty array (line 4) to hold all of the
unvisited cells. (We could do like we did for Aldous-Broder and just keep a
counter, but using an array like this makes it easier to selected unvisited
cells at random, which we need to do for our random walk phase.) We finish
the initialization by choosing an unvisited cell at random (line 7) and marking
it visited by removing it from the list. This will be our first goal cell, which
our random walk will try to find.

The next two phases, the loop-erased random walk and passage carving,
repeat for as long as our unvisited list contains any cells (as tested on line 10).

The random walk begins by choosing an unvisited cell at random (line 11)
and adding it to our prospective path. This path will eventually lead to one
of the visited cells in the grid, so we keep walking until this is the case (line
14). Each time we take a step on this walk, we choose a neighbor of the current
cell (line 15), and then check to see if we’ve created a loop or not (line 16). If
we’ve created a loop, the cell will already be present in our path, with all the
cells after it forming the loop, so we remove the loop by truncating the path
after that cell (line 18). Otherwise, if the cell doesn’t form a loop, we append
it to the path and continue (line 20).

Once the random walk finds a visited cell, that phase finishes and we move
to the passage carving phase (line 24). We iterate over each cell of the path,
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linking it to its neighbor (line 25), and then marking it visited by removing it
from our unvisited array (line 26).

Test this by creating a new program, wilsons_demo.rb.

wilsons_demo.rb
require 'grid'
require 'wilsons'

grid = Grid.new(20, 20)
Wilsons.on(grid)

filename = "wilsons.png"
grid.to_png.save(filename)
puts "saved to #{filename}"

Run it, as usual, and open up the resulting wilsons.png image. It ought to look
much like what we saw in Aldous-Broder figure on page 58. We’d expect this
if the two algorithms truly are without bias.

In fact, you might even want to do like we did with the Aldous-Broder algo-
rithm and use our ColoredGrid class to colorize a few mazes, to compare. You
should find the same variety as you did with Aldous-Broder—evidence that
Wilson’s algorithm is, indeed, biasless.

Your Turn
We’ve got four maze generation algorithms under our belts now. Two of them,
Binary Tree and Sidewinder, are heavily biased but straightforward to
implement and run very quickly to completion. The other two, Aldous-Broder
and Wilson’s, are perfectly unbiased, but can take much longer to generate
a maze. And even between Aldous-Broder and Wilson’s, we get to choose
either slow-to-start or slow-to-finish. So many choices!

All these choices mean we can start trying some new ideas. We have more
options to experiment with. Try some of the following suggestions, or experi-
ment with your own ideas.

Two-in-One
Try using two algorithms to generate one maze. Instead of using a single
cell to start Wilson’s algorithm, what if you start with Aldous-Broder and
then switch to Wilson’s once it’s visited some portion of the grid? Or what
if you do the top half of the grid with Binary Tree, and Aldous-Broder for
the rest? Be careful, though; not all combinations will work. Can you figure
out why some do and others do not?
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Biasing the Unbiased
We usually choose Aldous-Broder or Wilson’s algorithms specifically
because they are unbiased. But what would happen if you intentionally
added bias to them? How might you take one of them and tweak its ran-
dom walk, making it tend to move horizontally instead of vertically, or to
prefer right turns over left? What other ways can you think of to introduce
bias into those algorithms?

Another Way to Walk
Any change to how Aldous-Broder or Wilson’s walk their paths will
introduce bias. What kind of bias would you get if you were to take Aldous-
Broder and give it a tendency to avoid previously visited cells? Or what if
Wilson’s loop-erased random walk refused to form loops in the first place?

That last experiment, in particular, leads us neatly into the next chapter,
where we’ll see just what happens when we add rules to a random walk. As
you’d expect, it results in bias, but we’ll see that not every bias is undesirable.

Chapter 4. Avoiding Bias with Random Walks • 66

report erratum  •  discuss 

http://pragprog.com/titles/jbmaze/errata/add
http://forums.pragprog.com/forums/jbmaze


CHAPTER 5

Adding Constraints to Random Walks
Aimless random walking may be a good strategy if you absolutely need a
perfectly unbiased algorithm, but for most purposes it’s kind of overkill. An
algorithm with the right kind of bias can often generate mazes that convey
atmosphere, personality, or even challenge in a way that an unbiased algo-
rithm can’t. Biases aren’t automatically a bad thing!

In this chapter we’ll test that thesis. We’ll look at two fairly similar algorithms
that seem to work, superficially, much like Aldous-Broder or Wilson’s, but
that introduce biases by adding constraints to their random walk. These are
the ominously named Hunt-and-Kill algorithm and the Recursive Backtracker.

The Hunt-and-Kill Algorithm
Hunt-and-Kill will seem, at first, very similar to the Aldous-Broder algorithm.
We arbitrarily pick a cell to start, and then perform a random walk from there.
The difference is that whereas Aldous-Broder allows you to step anywhere,
even on cells that you’ve already visited, Hunt-and-Kill requires you to walk
only on unvisited cells.

Let’s go through it.

Since we can start anywhere, we’ll just choose
the southwest corner.

From there, we do a random walk, avoiding
any cell that we’ve already visited. This is on
purpose! Remember that the algorithm itself
disallows revisiting cells during the random
walk.
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But hey, no problem. This works just
fine…right up until the moment we paint
ourselves into a corner, as the figure shows.
We’ve ended at a cell surrounded by visited
cells, and since we’re not allowed to walk on
those, we’re stuck.

This is where we enter hunt mode. Starting
at the top, we scan left-to-right until we
encounter an unvisited cell, bordered by at
least one visited cell. When we find it, make
it our current cell, and link it to any one of
its neighboring visited cells. In the figure,
we’ve picked the first cell we encounter that
fits the bill. Since it only has one visited
neighbor (the cell immediately to the south)
we simply link the two together; If there had been two or more, we’d have
picked one at random.

We walk the random walk again, as far as
we’re able.

Then, once again, we scan row-by-row from
the northwest corner, looking for another
unvisited cell with at least one visited neigh-
bor, and then carve another random walk
from there.
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This process repeats until the hunt phase cannot
find any more unvisited cells, at which point we
know the maze is finished.

Piece of cake. Now let’s code it.

Implementing Hunt-and-Kill
There really aren’t any surprises in the implemen-
tation here. As you’d expect, we start by choosing
a cell at random, and then doing our random walk. In that respect, it looks
a lot like our implementation of the Aldous-Broder algorithm. The similarity
ends, though, when we discover we’ve boxed ourselves in, and there are no
more unvisited neighbor cells. That triggers the hunt phase, where we’ll loop
over the grid, looking for unvisited cells with visited neighbors.

Put the following in hunt_and_kill.rb.

hunt_and_kill.rb
Line 1 class HuntAndKill

- def self.on(grid)
current = grid.random_cell-

-

while current5

unvisited_neighbors = current.neighbors.select { |n| n.links.empty? }-

-

if unvisited_neighbors.any?-

neighbor = unvisited_neighbors.sample-

current.link(neighbor)10

current = neighbor-

else-

current = nil-

-

grid.each_cell do |cell|15

visited_neighbors = cell.neighbors.select { |n| n.links.any? }-

if cell.links.empty? && visited_neighbors.any?-

current = cell-

-

neighbor = visited_neighbors.sample20

current.link(neighbor)-

-

break-

end-

end25

end-

end-

grid-

-

end
end

30

report erratum  •  discuss

Implementing Hunt-and-Kill • 69

 

http://media.pragprog.com/titles/jbmaze/code/hunt_and_kill.rb
http://pragprog.com/titles/jbmaze/errata/add
http://forums.pragprog.com/forums/jbmaze


The code has two parts, corresponding to the two phases of the algorithm:
the random walk (lines 5–11) and the hunt phase (lines 12–25). Both phases
alternate for as long as there is a current cell (line 5), which is initialized at
the beginning by choosing one at random from the grid (line 3).

On each pass through the algorithm, we make a list of all of the unvisited
neighbors of the current cell (line 6). If there are any such neighbors, we
choose one at random (line 9), link it to the current cell (line 10), and then
make it the current cell (line 11).

If the current cell has no unvisited neighbors, we switch to the hunt phase
(line 12). Because there is no current cell during this phase, line 13 sets current
to nil before proceeding. This helps us to know when the algorithm is ready
to terminate, since the loop (line 5) depends on that variable.

With current reset, we now proceed to look at each cell in the grid (line 15),
hunting for a promising cell to begin walking from. Line 17 codifies the criteria
we’re requiring: an unvisited cell (links.empty?) with at least one visited neighbor.
Once we find one that passes muster, it becomes the current cell (line 18),
we link it to one of its visited neighbors at random (lines 20 and 21), and we
break out of hunt mode (line 23), ready to kick off another random walk.

Nice! Let’s test it out. Put the following in hunt_and_kill_demo.rb.

hunt_and_kill_demo.rb
require 'grid'
require 'hunt_and_kill'

grid = Grid.new(20, 20)
HuntAndKill.on(grid)

filename = "hunt_and_kill.png"
grid.to_png.save(filename)
puts "saved to #{filename}"

Running it will render our maze to
hunt_and_kill.png. Open that up, and you should
see something like the figure.

Tracing any of those passages, we quickly see
that the paths tend to wind around quite a
bit.
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We can see this more clearly if we try coloring
it, using the ColoredGrid class as we’ve done in
previous chapters. Go ahead and give it a try.
You ought to see something like the following.

Certainly, beauty is in the eye of the beholder,
but there is just something lovely about the
way those passages meander! That texture is,
as you might have guessed, evidence of one
of this algorithm’s biases (and, depending on
your taste in mazes, might be taken as proof
that not all biases are bad). Another significant characteristic of this style of
maze is that they have relatively fewer dead ends than mazes generated by
other algorithms.

Counting Dead Ends
Let’s show how the frequency of dead ends compare between algorithms. We’ll
add a method to our Grid class that will collect all of the dead-end cells in the
entire grid—those with links to only one other cell—and return them as a list.
Then we can print the size of that list to tell us how many dead ends there
are. (We’ll be able to use this later, too, when we start talking about braid
mazes in Chapter 9, Braiding and Weaving Your Mazes, on page 129.)

Open up grid.rb and put this just before the last end keyword in that file.

grid.rb
def deadends

list = []

each_cell do |cell|
list << cell if cell.links.count == 1

end

list
end

Once you’ve made that change, choose one of your previous programs (for
example, binary_tree_demo.rb or wilsons.rb) and add a line like the following to the
end.

deadends = grid.deadends
puts "#{deadends.count} dead-ends"

That should print the number of dead ends each time a maze is generated.
We could do that to all of the programs we’ve written so far, run them each
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a few dozen times, and then try to do some analysis of the numbers we get,
but that would be more than a bit tedious. Let’s approach this scientifically.

Here’s a program that will run each of the algorithms we’ve covered thus far,
accumulate the number of dead ends from each run, and then display a report
of the averages. Put it in deadend_counts.rb.

deadend_counts.rb
Line 1 require 'grid'

- require 'binary_tree'
- require 'sidewinder'
- require 'aldous_broder'
5 require 'wilsons'
- require 'hunt_and_kill'
-

- algorithms = [BinaryTree, Sidewinder, AldousBroder, Wilsons, HuntAndKill]
-

10 tries = 100
- size = 20
-

- averages = {}
- algorithms.each do |algorithm|

15 puts "running #{algorithm}..."
-

- deadend_counts = []
- tries.times do

grid = Grid.new(size, size)-

algorithm.on(grid)20

deadend_counts << grid.deadends.count
end

-

-

-

- total_deadends = deadend_counts.inject(0) { |s,a| s + a }
25

end
averages[algorithm] = total_deadends / deadend_counts.length

-

-

- total_cells = size * size
- puts

30 puts "Average dead-ends per #{size}x#{size} maze (#{total_cells} cells):"
- puts
-

- sorted_algorithms = algorithms.sort_by { |algorithm| -averages[algorithm] }
-

35 sorted_algorithms.each do |algorithm|
-

puts "%14s : %3d/%d (%d%%)" %
percentage = averages[algorithm] * 100.0 / (size * size)

-

[algorithm, averages[algorithm], total_cells, percentage]
end

-

-

Having our algorithms in their own classes really pays off here! We simply
load each of those classes and put them in an array (line 8). Lines 10 and 11
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configure the number of times each algorithm will be tried and the size that
each maze will be.

Then we loop over each algorithm, repeating each one tries times by instanti-
ating a grid (line 19), applying the algorithm to it (line 20), and then accumu-
lating the number of dead ends into a list (line 21). Once the algorithm has
been run tries times, the dead-end counts are totaled and averaged (lines
24–25).

The rest of the program sorts and displays the results.

Running that ought to give us some rather interesting statistics:

$ ruby -I. deadend_counts.rb
running BinaryTree...
running Sidewinder...
running AldousBroder...
running Wilsons...
running HuntAndKill...

Average dead-ends per 20x20 maze (400 cells):

AldousBroder : 115/400 (28%)
Wilsons : 115/400 (28%)

Sidewinder : 109/400 (27%)
BinaryTree : 101/400 (25%)

HuntAndKill : 40/400 (10%)

How about that Hunt-and-Kill algorithm, eh? On average, only 10% of the
cells in the mazes it generates will be dead ends. It’s essentially trading dead
ends for passage length, allowing the maze to produce more winding, mean-
dering corridors. This particular property is sometimes referred to as river,
and Hunt-and-Kill generates mazes with a lot of it! I rather like that aesthetic,
myself. If it appeals to you as much as it does to me, you might enjoy the
Recursive Backtracker algorithm, too. It behaves very similarly. Let’s talk
about it next.

The Recursive Backtracker Algorithm
The Recursive Backtracker algorithm works very much like Hunt-and-Kill,
relying on a constrained random walk to weave its rivery way across our grid.
The difference is in how it recovers from dead ends; instead of hunting for
another viable cell, it backtracks, retracing its steps until it finds a cell that
has an unvisited neighbor.

Let’s walk through it and see how that works in practice. We’ll use a stack to
keep track of the cells we’ve visited. A stack is simply a list of items, but with
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strict rules about how items are added to or removed from it. Adding something
to the top of a stack is called pushing, and removing the topmost item is called
popping. A stack can only be manipulated via these push and pop operations,
which means it’s great at enforcing the order in which its contents are
accessed. This happens to be just what is needed for certain algorithms, like
the Recursive Backtracker. Here, we’ll push cells onto the stack as we visit
them, and pop them off as we discover they’re dead ends.

A
1
2
3
4

B C D stack
A4

We can start anywhere we want, just
like Hunt-and-Kill, so let’s go ahead
and start in the southwest corner (let’s
call it by its coordinates: A4). We’ll
push that cell onto the stack. Whatev-
er cell is on the top of that stack will
always be considered the current cell.

A
1
2
3
4

B C D stack
A3
A4

Looking at the unvisited neighbors of
our current cell, we choose one at
random (let’s go with A3) and carve a
path to it, pushing it onto our stack
at the same time. Remember, this has
the effect of making A3 our new cur-
rent cell.

A
1
2
3
4

B C D stack

C3
C4

...
A3
A4

The process continues, randomly
walking across the grid, as the figure
demonstrates. The stack will include
every cell we’ve visited thus far.
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A
1
2
3
4

B C D stack

C3
C4
B4

...
A3
A4

Our next random step takes us west,
to B4, but B4 has no unvisited neigh-
bors. We’re boxed in!

A
1
2
3
4

B C D stack

C3
C4
B4

...
A3
A4

At this point, we pop that dead-end
cell off the stack, which has the effect
of making the previous cell—C4—our
current cell again.

A
1
2
3
4

B C D stack

C3
C4
D4

...
A3
A4

This cell has one more unvisited
neighbor (D4), so we pick up our ran-
dom walk by choosing that one.

A
1
2
3
4

B C D stack

B1
A1
A2

...
A3
A4

The process continues in this fashion,
backtracking at every dead end, until
every cell has been visited.
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A
1
2
3
4

B C D stack

B1
A1
A2

...
A3
A4

The final cell to be visited will always
be a dead end, so we backtrack again.
We retrace our steps, popping cells off
the stack, looking for one with an
unvisited neighbor. In this case,
though, there aren’t any more unvisit-
ed cells—everything has been visit-
ed—so we pop cells off the stack until
we’re back to where we started, at A4.
And because that cell doesn’t have any unvisited neighbors either, we pop it
off the stack as well, which leaves the stack empty.

A
1
2
3
4

B C D stackAnd that, gentle reader, is how you
know the algorithm is finished: the
stack is empty. We’re done, and what’s
left is our maze.

Just like that! Let’s implement this in
code next, and you’ll see it comes
together much like Hunt-and-Kill.

Implementing the Recursive
Backtracker
We’re going to implement more or less what was described in the previous
section, using an explicit stack to manage the cells that have been visited.
We’ll use an array to represent the stack (which is easy in Ruby, since Ruby’s
arrays come preloaded with the standard push and pop stack operators). Put
the following code in recursive_backtracker.rb.

recursive_backtracker.rb
Line 1 class RecursiveBacktracker

-

- def self.on(grid, start_at: grid.random_cell)
stack = []-

stack.push start_at5

-

while stack.any?-

current = stack.last-

neighbors = current.neighbors.select { |n| n.links.empty? }-

10

if neighbors.empty?-

stack.pop-

else-

neighbor = neighbors.sample-
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current.link(neighbor)15

stack.push(neighbor)-

end-

end-

-

grid
end

20

-

end
-

-

It all begins with lines 4 and 5, where we initialize our “stack” to be an empty
array, and then push our starting location onto it. By default, that starting
location is a cell chosen at random from the grid, though it can be configured
by passing a different cell via the start_at parameter. The algorithm then con-
tinues for as long as the stack has any items in it (line 7).

Because the topmost cell on the stack is always the current cell, we make
that explicit on line 8. Then, line 9 collects all of the current cell’s unvisited
neighbors into an array. (Remember: if the cell has any links to other cells at
all, we know it’s been visited before.)

If the cell has no unvisited neighbors, we remove that cell from the stack (line
12). This is effectively backtracking, because it makes the previous cell in the
stack the current node.

On the other hand, if the cell does have unvisited neighbors, we choose one
at random (line 14), link it to the current cell (line 15), and then push it onto
the stack (line 16), implicitly making it the new current cell.

Once you’ve got that ready, create a test program for Recursive Backtracker:

recursive_backtracker_demo.rb
require 'recursive_backtracker'
require 'grid'

grid = Grid.new(20, 20)
RecursiveBacktracker.on(grid)

filename = "recursive_backtracker.png"
grid.to_png.save(filename)
puts "saved to #{filename}"

Running it, you should get something that looks remarkably like your Hunt-
and-Kill maze, replete with twisting, meandering corridors, and few dead
ends—something like the following, in fact.
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Given that these two algorithms produce such similar results it might seem
difficult to choose between them, but there are two points that you can con-
sider to help you make that choice.

The first is memory efficiency. The Recursive Backtracker has to maintain a
stack, which can potentially (worst-case) contain every cell in the grid. This
suggests that the Recursive Backtracker can require up to twice as much
memory as Hunt-and-Kill, because Hunt-and-Kill can get by just fine with
nothing more than the grid.

The second is speed. Hunt-and-Kill will visit every cell at least twice—once
while performing its random walk, and again during the hunt phase. The
worst case is even worse, though, because if the hunt phase is executed many
times, some cells may be visited over and over and over. Compare that to the
Recursive Backtracker, which is guaranteed to visit each cell exactly twice
(once while carving, and once while backtracking), and you can see that the
Recursive Backtracker is generally going to be faster.

Memory or speed. Take your pick! Either one will give you a maze with a lot
of river—twisting, meandering passages—which someday might be just the
texture you need.

Your Turn
So we see that it’s true: not all biases are bad! By constraining the selection
of cells during the random walk—forbidding those that have already been
visited, for example—we can produce mazes with a bias toward more river.
We saw how Hunt-and-Kill and Recursive Backtracker both use this technique
to good effect.
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Once again, it’s time to play with what you’ve acquired. What other constraints
can you add to the random walks? What if you change the existing constraints
somehow? The following ideas may help get you started.

Hunting Strategies
We looked at one strategy for finding cells in the hunt phase of the Hunt-
and-Kill algorithm: simply looking at the cells in order until one is located.
What other ways can you think of to hunt for cells? What kind of bias do
they each introduce, if any?

Adding Biases
Binary Tree wants to slant, and Sidewinder wants to reach vertically. Can
you tweak Hunt-and-Kill or the Recursive Backtracker to produce similar
biases? Can you produce a maze with those algorithms where the passages
tend to stretch horizontally?

Analyzing Dead Ends
We implemented the deadends method to help count the number of dead
ends in a maze, but there are other ways to visualize this. What if you
were to color the cells based on the number of cells each one links to?
That is to say, a cell linked to only one other cell might be dark gray,
whereas one linked to all four neighbors could be red. What other ways
can you think of to visualize the dead ends and connections in a maze?

Statistical Analysis
We worked through a short program that computed the average number
of dead ends for each of the algorithms we’ve seen so far. What other stats
could you mine with it? You might look for patterns in the ratio of hori-
zontal passages to vertical passages, or compare the number of four-way
intersections to the number of dead ends.

Solving Mazes with the Recursive Backtracker
Another name for the Recursive Backtracker is depth-first search. This is
a strategy for traversing graphs (which suggests a connection between
mazes and graphs, doesn’t it?). It actually works just as well for finding
solutions to mazes as it does for generating them. Give it a try: instead of
randomly carving passages through an empty grid, take an existing maze
and follow its passages. Push newly visited cells onto a stack and pop
them off again when backtracking, until you reach the goal.

A Recursive Recursive Backtracker
The implementation given here for the Recursive Backtracker uses an
explicit stack, but with a bit of thought it is possible to rewrite it (quite
concisely!) using an implicit stack. In most programming languages, when
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you call a method or a function, the variables in the current scope are
pushed onto a stack, which is then popped to restore those variables
when the function returns. Try reimplementing the Recursive Backtracker
using actual recursion, with a function that calls itself every time a new
neighbor is selected, and which returns when the current cell has no
more unvisited neighbors.

Next up, we’re going to take a break from learning new algorithms and instead
focus on things we can do with the algorithms we have. Specifically, we’re
going to see how we can doctor our grids a bit to get creative with how they’re
shaped!
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Part II

Next Steps

Right. So now we’ve got some algorithms under our
belts. We’ve generated a few mazes, tried a few
variations, and done a few experiments. It’s time
now to look beyond the algorithms themselves to
what sorts of things we can do with them—aside
from simply making mazes, that is. We’ll see how
to fit mazes to shapes, generate them in circles,
and basically challenge every assumption we’ve
made so far about what a grid is and how it’s con-
structed.

 



CHAPTER 6

Fitting Mazes to Shapes
Let’s take a little break from new maze
algorithms and try to get a feel for
what we’ve currently got in our toolbox-
es. At this point, we’re pretty comfort-
able making rectangular mazes.

In this chapter, we’re going to take it
to the next level and learn how to
make mazes that fit into arbitrary
shapes.

The secret is a remarkably simple little
technique called masking, which con-
strains a maze to fit within an arbi-
trary shape. It’s got its own set of
warts, but on the whole it’s a really
useful tool.

We’ll begin by using masks to forbid
certain areas of a grid, causing the
maze algorithm to skip over those
areas you define. Then, we’ll see how to use that to fit a maze into different
geometric designs, and eventually to shape your maze in the form of letters
and words using image templates!

But first, we need to talk about what, exactly, these masks are, and how they
work.
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Introducing Masking
The idea behind masking is really pretty simple. The basic metaphor is that
our grid is essentially a very low-resolution image, where each cell is like a
single pixel. Turning any of these pixels off marks them as off-limits, so our
maze algorithm (whichever one we’re using) will never try to walk there.

In the following figure, the cell in the southeast corner has been turned off.
The resulting maze, then, omits that cell entirely.

Conceptually, that’s really all there is to it! In practice, though, there are some
things to consider, and some consequences that follow from mucking with
the geometry of our grids like this.

Consequences of Masking
Not all maze algorithms can handle the changes that masking can introduce
to a grid. Consider the following, where the cell at row 3, column 4 has been
turned off.

We can show pretty easily that the Binary
Tree algorithm won’t produce a valid maze on
this grid simply by trying to generate a maze
here. Let’s say we start in the southwest cor-
ner again. Remember, the Binary Tree algo-
rithm works by choosing between north and
east at each point. Let’s say that we make the
following sequence of choices:
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We choose north for the first cell, east for the second, and north again for the
third—which brings us to the southeast corner.

Looking at the cell in that corner, we see right away that the algorithm can’t
go north, and it can’t go east. It has no way to connect this cell to its only
valid neighbor to the west—we’ve effectively orphaned it.

You really can’t make a valid maze on this grid using Binary Tree! That algo-
rithm will never create a dead-end cell where the only exit is west or
south—which is exactly what we have in that southeast corner. (If you’re
having trouble believing me—give it a try. See if you can find a sequence of
choices in that bottom row that doesn’t orphan at least one cell!)

The Sidewinder has a similar problem. Because it will never create a dead
end where the only exit is south, you can easily cause it to fail by turning off
one of the cells in the middle of the northern row, creating a north-facing
dead end.

The good news, though, is that any of the other algorithms we’ve covered so
far (and many of those that we’ll cover in subsequent chapters) will be just
fine. The examples in this chapter will all use Recursive Backtracker, but feel
free to experiment with others.

So, with those caveats out of the way, we can begin looking at how to go about
manipulating our grids with masks. We’ll begin in the simplest possible way:
by killing cells.

Killing Cells
We can implement masking, albeit clumsily, with nothing more than the tools
we’ve already written. Cells may be “turned off” by making their neighbors
think that the cell doesn’t exist. We’re basically killing those cells.

The following code does this to the northwest and southeast corners by setting
the appropriate attributes to nil on the neighboring cells. Put it in a file named
killing_cells.rb.

killing_cells.rb
Line 1 require 'grid'

- require 'recursive_backtracker'
-

- grid = Grid.new(5, 5)
5

- # orphan the cell in the northwest corner...
- grid[0, 0].east.west = nil
- grid[0, 0].south.north = nil
-
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10 # ...and the one in the southeast corner
- grid[4, 4].west.east = nil
- grid[4, 4].north.south = nil
-

-

puts grid

RecursiveBacktracker.on(grid, start_at: grid[1,1])
15

-

Lines 7 and 8 orphan the cell in the northwest corner by isolating it, removing
it from its neighbors. We do this by telling the neighbor to the east of the cell
that it has no western neighbor, and telling the neighbor to the south that it
has no northern neighbor. We isolate the cell in the southeast corner similarly,
on lines 11 and 12.

Then we run the Recursive Backtracker algorithm on the resulting grid,
starting with the cell at row 1, column 1. (We can’t reliably let the grid choose
a random starting cell here, because it might choose one of those two cells
we just orphaned…which would fail to generate a maze.) Finally, we dump
the resulting maze to the terminal. Running it, we get something like this:

$ ruby -I. killing_cells.rb
+---+---+---+---+---+
| | | |
+---+---+ +---+ +
| | | |
+ +---+---+ + +
| | | |
+ + +---+---+ +
| | | |
+ + + + +---+
| | | |
+---+---+---+---+---+

It worked! Notice how the northwest and the southeast corners are completely
walled in, disconnected from the rest of the maze, and yet the maze itself is
just fine. Perfect, in fact—in the mathematical sense.

However, having to manually disconnect each cell would rapidly grow tedious.
We can make this easier.

Implementing a Mask
Let’s create a Mask class that will encapsulate the on-off state of each cell in
our grid. That is to say, for each cell in the grid, our mask should be able to
tell us whether or not it should be included in the maze. The following
implementation does this by keeping a separate two-dimensional array of
Boolean values, where false means the corresponding cell is “off the grid.”
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Create a new file named mask.rb, and start it off with the following properties
and constructor.

mask.rb
class Mask

attr_reader :rows, :columns

def initialize(rows, columns)
@rows, @columns = rows, columns
@bits = Array.new(@rows) { Array.new(@columns, true) }

end

The initialize constructor is pretty straightforward, just recording the dimensions
of the mask and creating a two-dimensional array of Boolean values, indicating
which cells are on (enabled) or off (disabled).

The next two methods query and modify that Boolean array.

def [](row, column)
if row.between?(0, @rows - 1) && column.between?(0, @columns - 1)

@bits[row][column]
else

false
end

end

def []=(row, column, is_on)
@bits[row][column] = is_on

end

The array accessor, [], accepts a (row, column) pair and says whether or not
that location is enabled in the grid. The corresponding assignment method,
[]=, is used to indicate whether a given position is enabled or disabled by
recording the value of the is_on parameter to that position in the array.

The next method, count, will tell us how many locations in the mask are
enabled. This is useful for algorithms like Aldous-Broder, where we need to
know how many cells are in the grid.

def count
count = 0

@rows.times do |row|
@columns.times do |col|
count += 1 if @bits[row][col]

end
end

count
end
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And the last method, random_location, simply reports a (row, column) pair corre-
sponding to a random, enabled location in the grid. We’ll use this for algo-
rithms like Hunt-and-Kill or the Recursive Backtracker, which want to start
at a random position.

def random_location
loop do
row = rand(@rows)
col = rand(@columns)

return [row, col] if @bits[row][col]
end

end
end

That’s our Mask class! It’s only half the solution, though. Remember, we’re
trying to make it so that we don’t have to tell the individual cells who their
neighbors are and aren’t. We’d rather simply hand the grid a mask and have
it set up the correct connections automatically.

To make that happen, we’ll subclass our Grid and provide a new constructor
that accepts a Mask instance. The new grid subclass will then use that mask
to determine which cells get instantiated, and which are set to nil. In fact, we
might as well use the mask to inform the size of the grid, too, so that we only
have to specify the dimensions once.

Put the following in masked_grid.rb.

masked_grid.rb
Line 1 require 'grid'

-

- class MaskedGrid < Grid
- attr_reader :mask
5

def initialize(mask)-

@mask = mask-

super(@mask.rows, @mask.columns)
end

-

-

def prepare_grid
10

-

Array.new(rows) do |row|-

Array.new(columns) do |column|-

Cell.new(row, column) if @mask[row, column]-

end15

end
end

-

-

-

- def random_cell
row, col = @mask.random_location20
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self[row, col]
end

-

-

def size
-

-

@mask.count25

-

end
end

-

Notice how the constructor, initialize, no longer accepts dimensions. Instead,
line 8 passes the dimensions of the mask to the superclass, so that our grid’s
size will always match that of the mask used to initialize it.

This class changes three other behaviors: how the grid is prepared, how
random cells are found, and how the size of the grid is computed.

The prepare_grid method is almost identical to the version in the parent Grid
class, but line 14 now relies on the mask to decide whether or not to instan-
tiate a cell. If the mask reports a given location as enabled, a cell will be
instantiated for it. Otherwise, that location will be nil, and the superclass will
simply work around it.

The last two methods are straightforward, just delegating to the mask for the
necessary computations.

With those two classes, now we can simplify our killing_cells.rb program. Put the
following in simple_mask.rb.

simple_mask.rb
Line 1 require 'mask'

- require 'masked_grid'
- require 'recursive_backtracker'
-

5 mask = Mask.new(5, 5)
-

- mask[0, 0] = false
- mask[2, 2] = false
- mask[4, 4] = false

10

- grid = MaskedGrid.new(mask)
-

puts grid

RecursiveBacktracker.on(grid)
-

-

There! Much nicer. We can now instantiate a new mask (line 5), turn off
whichever cells we want (lines 7–9), and then instantiate our new MaskedGrid
using that mask (line 11). Finally, we run the Recursive Backtracker algorithm
on it. (We don’t need to specify the starting cell this time, because we’ve
implemented a smarter random_cell method for MaskedGrid.)
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When we run this, we should get a new maze that omits those three cells that
were masked.

$ ruby -I. simple_mask.rb
+---+---+---+---+---+
| | | |
+---+ +---+---+ +
| | |
+ +---+---+---+ +
| | | | |
+ +---+---+ + +
| | | |
+ + + + +---+
| | | |
+---+---+---+---+---+

Better! But it’s still a bit tedious to have to manually turn cells off in the
mask. Let’s look at how to make that a bit more intuitive.

ASCII Masks
Imagine if we could “draw” our masks in a separate file and feed that file to
our program. We could play with all kinds of designs, without having to change
our program at all! Let’s make that happen, using simple text files as input.
The text files will be formatted something like the following, which shows one
possible definition of a 10×10 grid.

mask.txt
X. ......X
...XX....

...XXXX...
...XX....

X. ......X
X. ......X
...XX....

...XXXX...
...XX....

X. ......X

Every “X” indicates an “off” cell, and anything else (the “.” characters, in this
case) will be an “on” cell.

We’ll implement this by introducing a helper method on our Mask class. Open
mask.rb and add the following just after the start of that class, before the initialize
method.

Line 1 def self.from_txt(file)
-

lines.pop while lines.last.length < 1
lines = File.readlines(file).map { |line| line.strip }

-
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rows = lines.length
-

5

-

mask = Mask.new(rows, columns)
columns = lines.first.length

-

-

- mask.rows.times do |row|
mask.columns.times do |col|10

if lines[row][col] == "X"-

mask[row, col] = false-

else-

mask[row, col] = true-

end15

end
end

-

-

-

-

end
mask

20

This new from_txt method expects you to pass it the name of a file. Line 2 then
reads the contents of that file, line-wise, stripping whitespace from each line
in turn, and then line 3 removes any blank lines from the end of the file.

Now, we’re going to assume that the number of rows of text in the file corre-
sponds to the number of rows in our mask, and the number of columns of
text in the first line corresponds to the number of columns in our mask. Lines
5 and 6 make that assumption real, and then we instantiate our mask.

Finally, line 9 starts looping over each character of each line of the file, setting
the corresponding position in the mask to false if the character is an X or true
if it is anything else. When all is said and done, the method returns the new
Mask instance.

Our program now becomes the following. Put this code in ascii_mask.rb.

ascii_mask.rb
require 'mask'
require 'masked_grid'
require 'recursive_backtracker'

abort "Please specify a text file to use as a template" if ARGV.empty?
mask = Mask.from_txt(ARGV.first)
grid = MaskedGrid.new(mask)
RecursiveBacktracker.on(grid)

filename = "masked.png"
grid.to_png.save(filename)
puts "saved image to #{filename}"
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Note that we’re saving the resulting maze as an image, because our masks
might be any size. Things would get messy if we tried to display large mazes
on the terminal. We’ll run this by passing the name of a file as an argument
on the command line. If we use mask.txt from the beginning of this section,
then we can run our program like this:

$ ruby -I. ascii_mask.rb mask.txt
saved image to masked.png

Opening up masked.png we ought to see something like this figure.

Play around with different templates, and see
what you get! You might even try drawing your
name and generating a maze either around
the letters or inside the letters (depending on
how you set up your template). If you decide
to generate the maze inside the letters of a
word, though, be sure you link the letters
together somehow. Otherwise, the different
pieces of the grid won’t be connected, and the
maze algorithm won’t be able to connect all
of them.

Once you’ve tried a few of these, though, you might realize that it’s pretty
tedious to try to design the larger templates purely in text. Let’s look at a
(potentially) more convenient way to define these templates.

Image Masks
These masks were previously compared to images, where each cell is like a
pixel that you turn on or off. It might make sense, then, to use actual images
for the templates, where pixels of a particular color (say, black) are considered
off and everything else is considered on. This would let us design our templates
using an image editor, which ought to make larger masks a lot easier.

Let’s implement this. We’re going to create a method that will accept an image
in PNG format, so the first thing we’ll need to do is make sure the ChunkyPNG
library is loaded. Open up mask.rb again and add the following line at the very
top of the file:

require 'chunky_png'

Once we have that, we can add our new method, just like we did for defining
a mask from a text file. Let’s call it from_png(file), and add it just after the from_txt
method.
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Line 1 def self.from_png(file)
- image = ChunkyPNG::Image.from_file(file)
- mask = Mask.new(image.height, image.width)
-

5 mask.rows.times do |row|
mask.columns.times do |col|-

if image[col, row] == ChunkyPNG::Color::BLACK-

mask[row, col] = false-

else-

mask[row, col] = true10

end-

end
end

-

-

-

15

end
mask

-

Line 2 loads the named image from disk, and line 3 instantiates a new mask
using the same dimensions as the image. Line 5 then begins looping over
each pixel of the image, setting the corresponding position in the mask to false
(if the pixel is black) or to true (for any other color).

With that new method, we can rework our ascii_mask.rb file to read and use
PNG files as our maze templates. Copy ascii_mask.rb to image_mask.rb, and make
the following changes to it.

image_mask.rb
require 'mask'
require 'masked_grid'
require 'recursive_backtracker'

abort "Please specify a PNG image to use as a template" if ARGV.empty?➤

mask = Mask.from_png(ARGV.first)➤

grid = MaskedGrid.new(mask)
RecursiveBacktracker.on(grid)

filename = "masked.png"
grid.to_png(cell_size: 5).save(filename)➤

puts "saved image to #{filename}"

Note that, at the end, when we save the grid to a PNG image, we set the cell
size to be 5 pixels instead of the default 10, to more easily accommodate
larger mazes.

All that’s left now is to come up with an image to use as a template! If you
aren’t sure what to use to make your own image templates, I’d recommend
the GIMP,1 an excellent, free image manipulation program, available for

1. http://www.gimp.org

report erratum  •  discuss

Image Masks • 93

 

http://media.pragprog.com/titles/jbmaze/code/image_mask.rb
http://pragprog.com/titles/jbmaze/errata/add
http://forums.pragprog.com/forums/jbmaze


Windows, Linux, and Mac OS X. (Be warned, though, you’ll want to give
yourself time to come to grips with the learning curve!) Remember: black is
used for areas where cells should not be created, so if you start with a black
background, you can draw on your canvas in any other color to define areas
where your maze ought to exist.

On the other hand, if image manipulation isn’t your thing, sample images
are available online with the source code used in this book.

Let’s see this in action. We’ll create the following image, calling it maze_text.png.

Then, we fire up our new script much like we did before.

$ ruby -I. image_mask.rb maze_text.png
saved image to masked.png

The result? This!

It’s almost magical!

Your Turn
Masking is a powerful technique that opens up many possibilities. We’ve only
scratched the surface in this chapter. Take some time and experiment with
it, and see what else you can come up with. Here are some ideas to get you
started.
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Geometric Designs
Our mazes so far have all been fit into grids bounded by rectangles.
Experiment with using masks to shoehorn a maze into a triangle or a
circle.

Multi-State Masks
In our Mask class, we used an array of Boolean values to indicate where
cells can and cannot exist. If, instead of Booleans, we use integers, we
end up with the possibility of multi-state masks, allowing us to describe
multiple different regions within the grid. One use for this is to split the
grid into multiple pieces, run different maze algorithms on each piece,
and then link each piece together via passages to create a single maze
with multiple different styles. An example: a hedge maze that surrounds
a courtyard, with another maze at the center of the courtyard.

Mazes with Rooms
Another use for masks is to declare rooms within your mazes. The mask
says where the maze corridors should be drawn, and when all is finished,
you add corridors that link the forbidden areas to the maze itself. These
forbidden regions become the rooms.

Sadly, as useful as these masks are, they do tend to create outlines with a
very jagged, pixelated look, especially if the shapes you’re trying for consist
of any curves or diagonal lines. Circles, especially, suffer from this treatment.
We’ll look at a completely different technique next for generating a maze inside
a circle.
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CHAPTER 7

Going in Circles
At this point, if someone were to ask us for a “circle maze,” we could oblige
them by making a template image of a circle, and then using it as a mask to
generate the corresponding maze. We’d get something like the following:

If we’re perfectly honest with ourselves, though, we have to admit that while
this works, it’s not very attractive. The jagged, pixelated edges of the mask
are merely approximating the circle we want, and are translated one-to-one
onto our grid’s rigid, rectangular cells. This arrangement of perpendicular
rows and columns is called a regular or orthogonal grid, and though it has a
lot going for it—easy to understand, easy to implement—it kind of falls down
when you try to represent non-orthogonal lines like diagonals or curves.

There happens to be a class of grid that works really well for circles, though.
It’s called a polar grid, and the mazes we build with it are called theta, or
circle mazes. In this chapter, you’ll see how to use these grids to turn out
circle mazes that look much like this one:
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To get there, we’ll begin by talking about polar grids and how they differ from
what we’ve done so far. Then we’ll introduce a new Grid subclass where we’ll
rewrite our to_png method to support this new way of thinking about grids,
and finally we’ll look at how to make the cells of the grid as evenly sized as
possible.

Understanding Polar Grids
Whereas the orthogonal grids we’re used to are composed of rows and columns
of cells, polar grids are composed of rings of concentric circles, each divided
into cells like the spokes of a wagon wheel.

There are going to be lots of ways we could represent one of these in code,
but it turns out that we can reuse our existing grid class with just a few
changes. We’ll work through them in stages, starting with what it will take
to draw a polar grid. If we can draw one, we’ve got the problem more than
half licked!

At the beginning, we start with a few given values. These include the height
of each ring (we’ll call it ring_height), and how many cells exist in the ring (or
cell_count). With those, we can then define the geometry of a given cell, like
this:

theta = 2 * Math::PI / cell_count
inner_radius = cell.row * ring_height
outer_radius = (cell.row + 1) * ring_height
theta_ccw = cell.col * theta
theta_cw = (cell.col + 1) * theta
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The theta variable describes the angular size of every cell in the ring. If a
complete circle describes an angle of 2 * Math::PI radians, then we can simply
divide that by the number of cells in the ring to see how many radians are
covered by a single cell.

The inner_radius and outer_radius variables tell us how far the cell is from the origin,
with the inner value describing the distance of the inward wall and the outer
value describing the distance of the outward wall.

The last two variables are used to describe where the counter-clockwise and
clockwise walls of the cell are, in radians. The counter-clockwise wall is
described by theta_ccw, which is simply the angle around the circle to that wall.
Likewise, theta_cw describes the angle to the clockwise wall.

Let’s put these on a diagram and see if they make more sense. The following
diagram zooms in on our polar grid, looking at one arbitrary cell whose corners
are A, B, C, and D.

θ

A

C D

B

inn
er

out
er

counter- 
clockwise 

(ccw)

clockwise 
(cw)

Figure 2—Describing a Cell in Polar Coordinates

We can see that θ (theta) is the angular size of the cell, and the inner and
outer radii are the distances from the origin to the cell’s walls. Further, the
AB wall is the counter-clockwise one, and CD is the clockwise one, both being
some multiple of θ radians around the circle.

Right?

Whew!

The next step, because most image libraries don’t understand polar coordi-
nates, is to convert them to Cartesian coordinates—the x,y pairs that are
typically used to address locations in images. We’re going to resort to triangles
to help us with the conversion, measuring the x and y distances of the point
from the origin of the grid. We’ll need to resort to a bit of trigonometry, but
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don’t worry if it’s been awhile since you’ve stretched those muscles. We’ll walk
through this together.

Here’s a diagram, in case you need a refresher of how the sides of a right tri-
angle relate to the hypotenuse. The hypotenuse is labeled r:

θ
x

r y

x = r⋅cosθ 
y = r⋅sinθ

It’s always helped me to remember that sine and cosine correspond alphabet-
ically to x and y. Just as cosine comes before sine in the dictionary, so x
comes before y, which suggests that we’ll use cosine to compute x, and sine
to compute y. Multiplying the hypotenuse by the cosine or sine of the angle
θ will give us, respectively, the x or y distance from the origin.

Referring back to Figure 2, Describing a Cell in Polar Coordinates, on page 99,
it’s not much of a stretch to imagine a triangle superimposed, with A (or B)
at the upper right and the grid origin in the lower left. If the inner and outer
radii are the hypotenuse, we can use those trig formulas to get us the Carte-
sian coordinates we need.

Thanks to trig, then, we now know everything we need to describe the four
corners of the cell, labeled A, B, C, and D in Figure 2, Describing a Cell in
Polar Coordinates, on page 99. Assuming center_x and center_y are the coordinates
of the origin of our circle, our cell’s coordinates become:

ax = center_x + inner_radius * Math.cos(theta_ccw)
ay = center_y + inner_radius * Math.sin(theta_ccw)
bx = center_x + outer_radius * Math.cos(theta_ccw)
by = center_y + outer_radius * Math.sin(theta_ccw)
cx = center_x + inner_radius * Math.cos(theta_cw)
cy = center_y + inner_radius * Math.sin(theta_cw)
dx = center_x + outer_radius * Math.cos(theta_cw)
dy = center_y + outer_radius * Math.sin(theta_cw)

All that’s left, then, is to draw it.
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Drawing Polar Grids
The to_png method we’ve used to this point isn’t going to help us much with
polar grids, so let’s just subclass Grid and rewrite to_png to be what we need it
to be.

Create a new file, named polar_grid.rb. We’ll start it off with the following Grid
subclass and to_png implementation.

polar_grid.rb
Line 1 require 'grid'

-

- class PolarGrid < Grid
- def to_png(cell_size: 10)

img_size = 2 * @rows * cell_size5

-

background = ChunkyPNG::Color::WHITE-

wall = ChunkyPNG::Color::BLACK-

-

img = ChunkyPNG::Image.new(img_size + 1, img_size + 1, background)10

center = img_size / 2-

-

each_cell do |cell|-

theta = 2 * Math::PI / @grid[cell.row].length-

inner_radius = cell.row * cell_size15

outer_radius = (cell.row + 1) * cell_size-

theta_ccw = cell.column * theta-

theta_cw = (cell.column + 1) * theta-

-

ax = center + (inner_radius * Math.cos(theta_ccw)).to_i20

ay = center + (inner_radius * Math.sin(theta_ccw)).to_i-

bx = center + (outer_radius * Math.cos(theta_ccw)).to_i-

by = center + (outer_radius * Math.sin(theta_ccw)).to_i-

cx = center + (inner_radius * Math.cos(theta_cw)).to_i-

cy = center + (inner_radius * Math.sin(theta_cw)).to_i25

dx = center + (outer_radius * Math.cos(theta_cw)).to_i-

dy = center + (outer_radius * Math.sin(theta_cw)).to_i-

-

img.line(ax, ay, cx, cy, wall) unless cell.linked?(cell.north)-

img.line(cx, cy, dx, dy, wall) unless cell.linked?(cell.east)30

end-

-

img.circle(center, center, @rows * cell_size, wall)-

img-

35

end
end

-

This new to_png method starts much like the old version, computing the size
of our canvas. In this case, though, the canvas width and height will be the
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diameter of our circle, or twice the radius, which is the number of rows, times
the height of each row (line 5). The center of the grid, then, will be the center
of our circle, and is computed to be half the diameter (line 11).

Now, for each cell in the grid, lines 14–18 measure the inner and outer radii,
and the associated angles, which are then used on lines 20–27 to compute
the coordinates of each corner of the cell. (That part should look very familiar,
from the previous section.) Note that we convert each coordinate to an integer,
because ChunkyPNG doesn’t deal well with non-integer arguments.

Once we have those coordinates, lines 29 and 30 use them to draw the inward
and clockwise walls of the cell. (For now, we’ll refer to those directions as
north and east, respectively, since they correspond neatly to the underlying
orthogonal grid. We’ll get fancy soon enough and create a custom Cell subclass.)

Last of all, we draw the outer wall of the grid as a whole circle (line 33), and
then return our image.

Joe asks:

Why Are We Drawing Lines Instead of Arcs?
Good catch! Ideally, we’d draw the inner wall on line 29 with an arc, to follow the
curve of the circle, but as of this writing ChunkyPNG does not provide an API for
drawing arcs. It turns out that straight lines do (mostly) well enough, but if you’re
using a different image library with your own code, maybe check to see if it supports
arc drawing.

Let’s check to see that this is working now. Put the following in a file called
polar_grid_test.rb.

polar_grid_test.rb
require 'polar_grid'

grid = PolarGrid.new(8, 8)

filename = "polar.png"
grid.to_png.save(filename)
puts "saved to #{filename}"

We create a new polar grid with eight rows (or rings), and eight columns (the
spokes of the wheels), and then simply display the result. Since we’re not
trying to generate a maze on it, it should simply save the grid itself. Sure
enough, we get the following:
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It’s not great (the straight lines give it a decidedly cobweb-ish look), but it’s
enough to show us that we’re on the right track. It’s a recognizable polar grid.

At this point we could even run one of our maze algorithms, but I wouldn’t
recommend it—not yet, anyway. For example, here is the same grid with the
Recursive Backtracker applied to it:

It’s an intriguing pattern, but not really what we’re going for here. The outer-
most cells are far too wide compared to the innermost cells, contributing to
a very uneven look, and although it is technically a maze, it lacks the
expected aesthetic of a maze. What we need is a way to keep the cells as
evenly sized as possible, even as the concentric circles of the grid grow larger
and larger.

To solve this, we need to look at a technique for dividing cells when they get
too large, called adaptive subdivision.

Adaptively Subdividing the Grid
In order to use adaptive subdivision to make our cells more uniform in size,
we need to know about what size they ought to be. Squares look pretty good
in an orthogonal grid, but polar grids can’t give us real squares. There are no
parallel lines in a polar grid! But although we can’t have squares, we can
approximate them. We’ll just say we want the length of the inner wall to be
approximately the same as the height of the cell (the distance between the
inner and outer walls).
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With that rule in mind, look at the figure, which
shows one “column” of our polar grid, and take steps
to make it a bit more uniform.

First, we look at the two innermost cells and see that
they both fit the bill. Their inner walls aren’t longer
than the cells are tall. But the next cell…ouch. It’s
quite a bit wider. To fix that, we divide the cell—and
all subsequent cells—into two, like this:

That third row now looks pretty good, and the fourth
row, too (though it’s definitely getting a bit wide). The
fifth row, however, sounds some alarms. Way too
wide. The answer? Subdivide again.

At this point, our original column has branched out to become multiple
columns. The cells look much more regular now, but this comes at a cost:
we’ve added some complexity by splitting the cells, so that some now have
two neighbors in the outward direction, instead of just one.

Fortunately, it’s not too difficult to keep under control, as we’ll see in the next
section when we bring it all together in code.

Implementing a Polar Grid
To implement this improved polar grid, we’re going to introduce a new Cell
subclass, and then walk through how these new cells will be laid out and
subdivided. We’ll finish it all off with one last mostly cosmetic tweak to make
our final maze as tidy as possible.

The PolarCell Class
First, the new Cell subclass. We’ve made do so far with using the existing Cell
class, but it’s getting a bit unwieldy to keep referring to compass directions
when they don’t map very intuitively to a polar grid. Also, with adaptive sub-
division, some cells may now have two neighbors in the outward direction,
and our existing Cell class has no support for that.

So, put the following in polar_cell.rb.
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polar_cell.rb
Line 1 require 'cell'

-

- class PolarCell < Cell
- attr_accessor :cw, :ccw, :inward
5 attr_reader :outward
-

- def initialize(row, column)
super-

@outward = []
end

-

10

-

- def neighbors
list = []-

list << cw if cw-

list << ccw if ccw15

list << inward if inward-

list += outward-

list-

-

end
end

20

Lines 4 and 5 start things off by defining attributes for the polar directions:
clockwise (cw), counter-clockwise (ccw), inward (toward the origin), and outward
(toward the rim).

Refactoring the Cell Class

At this point, you might want to take some time to do a proper refactoring of Cell, so
that subclasses don’t inherit unnecessary baggage (like north, south, and so forth).
Projects that grow organically, like ours, often go through refactoring iterations to
“tidy up” as the code grows and matures. It’s sadly beyond the scope of this book to
do so here, but don’t let that stop you!

Note that line 5 grants outward only a reader, not a writer, because we won’t
be assigning to it directly. Instead, in the constructor on line 9 we initialize
outward to be an empty array, and we’ll just append cells to it as needed.

There. With our new cell class ready, we can return to PolarGrid and start
fleshing that out a bit more.

Revisiting PolarGrid
Our updated polar grid implementation will override several methods of the
base class, including the constructor, prepare_grid, configure, and others. We’ll
open up polar_grid.rb again and make all of the following changes there.
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First, let’s add a dependency on our new PolarCell class.

require 'grid'
require 'polar_cell'➤

Next, we’ll create a new constructor for PolarGrid. Up to this point, we’ve been
telling every grid how many rows and columns it has, but adaptive subdivision
allows us to compute the number of columns per row. All we really need to
tell our grid is the number of rows—we can get everything else from that. Put
this at the top of the PolarGrid class, before the to_png method.

def initialize(rows)
super(rows, 1)

end

The second parameter in the super call is required because the superclass
needs to know how many columns the grid has (arguably a design flaw, but
we’ll live with it).

The next method is meaty. We’re going to override prepare_grid and change it
up so that instead of building a regular grid as it’s been doing, we’re going to
prepare our adaptively subdivided polar grid. Add the following method just
after the initialize method.

Line 1 def prepare_grid
- rows = Array.new(@rows)
-

- row_height = 1.0 / @rows
5 rows[0] = [ PolarCell.new(0, 0) ]
-

- (1...@rows).each do |row|
radius = row.to_f / @rows-

circumference = 2 * Math::PI * radius-

10

previous_count = rows[row - 1].length-

estimated_cell_width = circumference / previous_count-

ratio = (estimated_cell_width / row_height).round-

-

cells = previous_count * ratio15

rows[row] = Array.new(cells) { |col| PolarCell.new(row, col) }
end

-

-

-

-

end
rows

20

Even though it’s a polar grid, we’re still going to use arrays to represent each
row. Line 2 sets that up for us.
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Line 4 then computes the height of each individual row. We don’t know, at
this point, how large the circle will be when it’s rendered, but that’s okay. We
can just assume that we’re working with a unit circle—that is, a circle with
a radius of 1—and the laws of geometry assure us that we can resize it
painlessly later. This lets us simplify many of the calculations.

Next, line 5 treats the origin of our circle—row #0—as a special case. Because
all the radii meet at the origin, splitting that row into more than one cell
means the cells get small, fast. Instead, we’ll force that innermost row to be
a single cell, with coordinates 0, 0.

Now, for each of the remaining rows, we’re going to do some computation to
figure out how to subdivide things. Line 8 computes the inner radius of the
row—the distance from the origin to the row’s inner wall—and then uses that
to compute the circumference of that wall (line 9). Remember, we’re working
with a unit circle, here, so the radius of a given row is just the ratio of the
row’s index to the number of rows. (Isn’t that convenient?) Then, line 12
divides that circumference by the number of cells in the previous row, which
tells us how wide each cell would be in this row if we don’t subdivide. That’s
the ideal condition—we don’t want to subdivide unless we have to!

Recall that our ideal cell width is the same as the height of the row. Line 13
uses that ideal to see how many ideally sized cells could fit into our estimat-
ed_cell_width. This ratio variable essentially tells us how many cells in this row
correspond to each cell in the previous row. If ratio is 1, then the current row
will have the same number of cells as the previous row. If it is 2 (or more),
then we’re subdividing. The ratio will always be either 1 or 2, except for the
row at index 1. The ratio there may be larger because the previous row (at
index 0) always contains only a single cell.

Lastly, we take the ratio and multiply it by the number of cells in the previous
row (line 15). This tells us how many cells should be in the current row, so
we finish the loop off by instantiating a new array with the corresponding
number of PolarCell instances (line 16).

Whew!

At this point, then, we’ve got our grid, but we’re not yet setting up the adja-
cency information for the individual cells. The poor little dears have no idea
who their neighbors are. For this, we need to override the configure_cells method.

Line 1 def configure_cells
- each_cell do |cell|

row, col = cell.row, cell.column-

-
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if row > 05

cell.cw = self[row, col + 1]-

cell.ccw = self[row, col - 1]-

-

ratio = @grid[row].length / @grid[row - 1].length-

parent = @grid[row - 1][col / ratio]10

parent.outward << cell-

cell.inward = parent-

end-

-

end
end

15

Here, we’re going to look at each cell in the grid, ignoring only the cell at the
origin (line 5) because it’s our special case and has no inward or clockwise
neighbors.

For the other cells, we set up their clockwise (line 6) and counter-clockwise
(line 7) neighbors, compute the ratio of cells in this row to the cells in the
previous row (line 9), and then use that to decide which cell in the previous
row is the “parent”—the cell that may or may not have been subdivided to
produce the current cell (line 10). The current cell is then added as one of
the outward neighbors of that parent (line 11), and the parent is set to be the
inward neighbor of the current cell (line 12).

We only need to add one more new method, to help us select a random cell
from the grid. This one is easy, a breath of fresh air after the previous two.

def random_cell
row = rand(@rows)
col = rand(@grid[row].length)
@grid[row][col]

end

And finally, we need to make a few changes to to_png to accommodate our new
neighbor names (cw, ccw, and so forth) as well as the special case around the
cell at the origin. Change (or add to, as necessary) your copy of the to_png to
make it match the highlighted lines in the following code.

each_cell do |cell|
next if cell.row == 0➤

# ...

img.line(ax, ay, cx, cy, wall) unless cell.linked?(cell.inward)➤

img.line(cx, cy, dx, dy, wall) unless cell.linked?(cell.cw)➤

end

Easy enough! We’re almost done.

Chapter 7. Going in Circles • 108

report erratum  •  discuss 

http://pragprog.com/titles/jbmaze/errata/add
http://forums.pragprog.com/forums/jbmaze


Testing and Tweaking
We’re on the final stretch. All that’s left is to test what we’ve got, then tweak
one final thing so the finished product looks as good as we can make it.

Our existing polar_grid_test.rb won’t work right now, because we’re instantiating
the PolarGrid with too many arguments. Go ahead and open that file up and
change it so that we pass only a single argument to the constructor—the
number of rows—and try it all again.

grid = PolarGrid.new(8)

This time around, we should get something
much less cobweb-ish and much more inter-
esting.
Nice! And if we then generate a maze on that
grid, we ought to see a thing of beauty. Put
the following in circle_maze.rb and give it a try.
It uses the Recursive Backtracker algorithm,
but Aldous-Broder or Wilson’s ought to work
equally well if you want to experiment with
other algorithms.

circle_maze.rb
require 'polar_grid'
require 'recursive_backtracker'

grid = PolarGrid.new(8)
RecursiveBacktracker.on(grid)

filename = "circle_maze.png"
grid.to_png.save(filename)
puts "saved to #{filename}"

The result? Behold!
Well…but, wait. It’s almost a thing of beauty.
There’s one little blemish keeping it back from
blissful, circular perfection. Do you see it?
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It’s that radial line, marking the boundary between the clockwise and counter-
clockwise edges of our grid. It may seem like a small thing, but try generating
a few of these mazes. Make them bigger, with 25 rows or more. That little
radial line will rapidly grow tiresome!

To fix it, we simply need to tell the grid that the cells on the clockwise
boundary are adjacent to the cells on the counter-clockwise boundary. We
could do this by further modifying the configure_cells method, but if we took that
route we’d wind up having to perform the same check twice—once for the
clockwise neighbor, and once for the counter-clockwise neighbor. We can
avoid the duplication by moving that check into the array accessor method
itself, as in the following code. Go ahead and add it to the PolarGrid class, just
before the random_cell method.

def [](row, column)
return nil unless row.between?(0, @rows - 1)
@grid[row][column % @grid[row].count]➤

end

The highlighted line is where the magic happens. Notice that we’re no longer
checking the bounds on the column parameter. Instead, we’re using modulus
arithmetic to make sure that the column is always wrapped to fit within those
bounds. In this way, the clockwise boundary and the counter-clockwise
boundary effectively become adjacent.

Go ahead and save that, and try generating a maze again.
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Finally, something to be proud of!

Your Turn
This chapter has been a lot to take in! We’ve looked at a new kind of grid—the
polar grid—and talked about how to represent and display it. We talked about
how to use adaptive subdivision to keep the cells of our new grid evenly sized,
and finally showed how to use modulus arithmetic to remove seams by
making opposite boundaries adjacent.

Even so, we hardly scratched the surface. Here are some things you might
want to try on your own.

Tickling the Subdivision Trigger
In the earlier implementation, a cell gets subdivided when it’s at least 1.5
times wider than the row is tall. (That’s what the use of the round method
was for, on line 13 in PolarGrid#prepare_grid.) Try adding or subtracting
something, like 0.25, inside the parentheses before round gets called, to
see what happens when you pull the trigger at different thresholds.

Masks on a Circle Maze
You might try putting the previous chapter to work here by applying
masks to circle mazes. You’ll need to find a way to map your mask to a
circle, and you’ll also need to make some changes to to_png, because the
implementation given here assumes that every neighbor of a cell exists.
Instead of having each cell draw walls only on the inward and clockwise
edges, you’ll need to check to see if neighbors exist in the other directions
and if not, draw walls there, too.

Growing a Circular Binary Tree
Yes, Binary Tree (and Sidewinder, too) can work on a circle maze! You get
a rather mesmerizing pinwheel effect, actually. You just need to make
sure that your grid has a well-defined clockwise/counter-clockwise
boundary, or those algorithms won’t be guaranteed to produce a valid
maze. Remove our customized array accessor method and give it a try!

Coloring a Circle Maze
Remember a few chapters ago, when we were playing with Dijkstra’s
algorithm? We implemented a method called background_color_for to support
drawing cells in different colors. For clarity, I’ve sacrificed that method
in the polar grid implementation given here, but it’s not terribly hard to
add back in. Give it a try! Colored circle mazes are lovely.
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Once you’re comfortable with the polar grids, hang on, because we’re going
to jump right into some other types of grids next! We’ll explore how to make
grids out of triangles and hexagons, and then point you at some other
intriguing shape combinations.
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CHAPTER 8

Exploring Other Grids
When you take a surface and divide it up into different shapes, with no gaps
between them and no overlaps, you get what is called a tessellation of the
surface. Our standard grid is one such tessellation, where we’ve broken up
a flat area, or plane, into smaller squares. Another way to say this is that
we’ve tiled the plane with squares.

It turns out that squares aren’t the only shape that can do this for us. In this
chapter, we’ll look at two other grids made by tiling other geometric shapes.
We’ll see how hexagons come together in a honeycomb pattern and triangles
form a girder-style lattice. Over the course of the chapter, we’ll use these new
grids to turn out mazes like the following:

Let’s start with the one on the left: a maze on hexagon grid.

Implementing a Hex Grid
So far we’ve made regular grids and circular grids. Our next goal is to create
a grid of hexagons, also called a hex grid for short. We’ll approach this by first
considering a single cell, with an eye to understanding how it relates spatially
to its neighbors. From there, we’ll take that information and implement the
grid itself.
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The cells aren’t difficult to implement. The trickiest part is just understanding
how they all fit together. Let’s look at a simple hex grid here:

From that, we can see that each hexagon neighbors up to six other hexagons,
one for each of north, south, northwest, northeast, southwest, and southeast.
Right off, it’s clear that our existing Cell won’t cut it; it doesn’t include enough
neighbors! Let’s take care of that now by introducing a new Cell subclass.

Put the following in hex_cell.rb.

hex_cell.rb
require 'cell'

class HexCell < Cell
attr_accessor :northeast, :northwest
attr_accessor :southeast, :southwest

def neighbors
list = []
list << northwest if northwest
list << north if north
list << northeast if northeast
list << southwest if southwest
list << south if south
list << southeast if southeast
list

end
end

This simply extends the Cell class, adding new accessors for northwest, northeast,
southwest, and southeast, and then updates the neighbors method to return those
new directions. Note that the west and east accessors inherited from the Cell
class are unused. With the hexagons in our grid oriented the way they are
(flat-topped), they will never have neighbors to the east or west.
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The next step is to figure out how these cells are arranged in the grid. Although
they aren’t necessarily laid out in clear rows, it’s not too hard to find an
arrangement that works well.

Looking at the previous diagram again, we can see that although vertical
columns are clearly present in the grid, horizontal rows are less obvious. It’s
probably no surprise that there are lots of different ways to approach repre-
senting hexagons in a program, nor should it be surprising that each will
have different pros and cons. We’re going to choose a way to do it that maps
most closely to our underlying two-dimensional array, simply because it
requires the fewest changes on our end to implement.

The following figure shows how it will work, treating each row as a zig-zag
path from one side of the grid to the other, whereas columns simply drop
vertically through the grid.
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B2 D2
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1
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B C D
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3
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This choice has consequences for how we set up the grid. Most immediately,
it means that when we set up the adjacency information for cells in some
columns (for example, B and D in the previous illustration), the northwest
and northeast diagonals point to the cell’s same row, whereas southwest and
southeast point to the row below. Conversely, for the other columns (for
example, A and C) northwest and northeast are the ones that point to a dif-
ferent row.

Tricky, but not insurmountable!

Let’s make a new Grid subclass. We’ll override the prepare_grid method so that
it instantiates our new HexCell class for cells, and we’ll override configure_cells to
set up the correct adjacency information for each cell.

Put the following in hex_grid.rb.
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hex_grid.rb
Line 1 require 'grid'

- require 'hex_cell'
-

-

def prepare_grid
class HexGrid < Grid

5

Array.new(rows) do |row|-

Array.new(columns) do |column|-

HexCell.new(row, column)-

end-

end
end

10

-

-

- def configure_cells
each_cell do |cell|-

row, col = cell.row, cell.column15

-

if col.even?-

north_diagonal = row - 1-

south_diagonal = row-

else20

north_diagonal = row-

south_diagonal = row + 1-

end-

-

cell.northwest = self[north_diagonal, col - 1]25

cell.north = self[row - 1, col]-

cell.northeast = self[north_diagonal, col + 1]-

cell.southwest = self[south_diagonal, col - 1]-

cell.south = self[row + 1, col]-

cell.southeast = self[south_diagonal, col + 1]30

end-

-

end
end

-

Lines 17–23 set up some variables to help us deal with those zig-zagging rows.
When the column is even-numbered (col.even?), we make it so the northern
diagonals point to the preceding row, whereas the southern diagonals point
to the current row. When the column is odd-numbered, we swap it so the
northern diagonals point to the current row, and the southern ones point to
the following row.

With those variables, lines 25–30 compute the cells that abut the current
cell.

That will suffice to set up our grid, with all the cells appropriately cozy with
their neighbors. All we lack now is a way to display it, since the to_png method
on Grid itself can’t handle anything but squares.
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Displaying a Hex Grid
To display a hex grid, we need to be able to compute the coordinates of each
of its corners, or vertices. We’ll see how to compute those coordinates relative
to the center of each hexagon, as well as how to compute the overall dimen-
sions of a hex grid, and then we’ll plug that all into a new to_png implementa-
tion.

We’re going to assume that our grid is composed of regular
hexagons—hexagons whose sides are all the same length. With that
assumption, there is a lovely little derivation involving equilateral triangles
(triangles whose sides are all equal) that lets us get the measurements we
need. For the sake of brevity, we’ll skip the derivation itself here, but if you’re
into geometry at all it’s pleasantly straightforward.

Essentially, what we want are the lengths of a1, a2, and b in the following
diagram:

c

s

b

a1 a2

Figure 3—A Dissected Hexagon

If c is the center of our hexagon, and s is the length of a side, then it turns
out that a1 and a2 are identical. (We’ll just keep it simple, then, and call them
both a.) We also find that a is half of s, and the length of b is s√3/2. From
that, it follows that the width of our hexagon (from western point to eastern
point) is exactly 2s, and the height is 2b. In code:

a_size = s / 2.0
b_size = s * Math.sqrt(3) / 2.0
width = s * 2.0
height = b_size * 2.0

With these numbers we can compute the x- and y-coordinates of all six of
the hexagon’s vertices. If cx and cy represent the coordinates of the center
point for some cell, and we call those vertices “far” that are farther from the
center and “near” those that are nearer, we get:
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x_far_west = cx - s
x_near_west = cx - a_size
x_near_east = cx + a_size
x_far_east = cx + s

y_north = cy - b_size
y_mid = cy
y_south = cy + b_size

Now that we have those named coordinates we can say (for instance) that the
vertex at the 3 o’clock position is at (x_far_east,y_mid).

The last bit we need before implementing our new drawing code is a way to
calculate the dimensions of our canvas. It’s not as straightforward as a regular
grid, because adjacent cells are offset from each other. In cases like this, it’s
helpful to take our grid and overlay a regular grid on top of it, like the following
figure.

Figure 4—Measuring a Hex Grid

We know how to compute the dimensions of a regular grid, so if we can figure
out how wide each cell of the overlay is, we can determine the size of our
original grid.

In this case, we’ve got a 4×4 grid of hexagons. If you recall Figure 3, A Dissect-
ed Hexagon, on page 117, you can see that each of the rectangles here are
three a lengths wide, measuring from the western point of one hex to the
western point of the next neighbor. Counting the squares, then, this 4×4
canvas as a whole is as wide as four of those squares, plus one more a length.
In code, it might come together like this:

canvas_width = 3 * columns * a_size + a_size
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The height is much more straightforward. We can easily see that each square
is as tall as one hexagon, and that the canvas as a whole is as tall as four of
those hexes, plus another half-hex (a single b length). In other words:

canvas_height = rows * height + b_size

Putting this all together, we can finally write our new to_png method! Put the
following in hex_grid.rb, somewhere inside the HexGrid class.

hex_grid.rb
Line 1 def to_png(size: 10)

- a_size = size / 2.0
- b_size = size * Math.sqrt(3) / 2.0
- width = size * 2
5 height = b_size * 2
-

- img_width = (3 * a_size * columns + a_size + 0.5).to_i
- img_height = (height * rows + b_size + 0.5).to_i
-

10 background = ChunkyPNG::Color::WHITE
- wall = ChunkyPNG::Color::BLACK
-

- img = ChunkyPNG::Image.new(img_width + 1, img_height + 1, background)
-

15 [:backgrounds, :walls].each do |mode|
each_cell do |cell|-

cx = size + 3 * cell.column * a_size-

cy = b_size + cell.row * height-

cy += b_size if cell.column.odd?-

20

# f/n = far/near-

# n/s/e/w = north/south/east/west-

x_fw = (cx - size).to_i-

x_nw = (cx - a_size).to_i-

x_ne = (cx + a_size).to_i25

x_fe = (cx + size).to_i-

-

# m = middle-

y_n = (cy - b_size).to_i-

y_m = cy.to_i30

y_s = (cy + b_size).to_i-

-

if mode == :backgrounds-

color = background_color_for(cell)-

if color35

points = [[x_fw, y_m], [x_nw, y_n], [x_ne, y_n],-

[x_fe, y_m], [x_ne, y_s], [x_nw, y_s]]-

img.polygon(points, color, color)-

end-

else40
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img.line(x_fw, y_m, x_nw, y_s, wall) unless cell.southwest-

img.line(x_fw, y_m, x_nw, y_n, wall) unless cell.northwest-

img.line(x_nw, y_n, x_ne, y_n, wall) unless cell.north-

img.line(x_ne, y_n, x_fe, y_m, wall) unless cell.linked?(cell.northeast)-

img.line(x_fe, y_m, x_ne, y_s, wall) unless cell.linked?(cell.southeast)45

img.line(x_ne, y_s, x_nw, y_s, wall) unless cell.linked?(cell.south)-

end-

end
end

-

-

50

-

end
img

-

The named size parameter on line 1 is what we’ve called s previously—the size
of a single side of the hexagon. The computations that follow (lines 2–5) use
that value to determine the dimensions of our hexagons, as discussed.

The next two lines (7 and 8) compute the total width of our canvas. The extra
0.5 makes sure we always round to the nearest whole number.

The three lines starting at 17 compute the center point of the current cell,
since that’s what our subsequent calculations will be relative to. It all comes
back to Figure 4, Measuring a Hex Grid, on page 118, except here we’re mea-
suring the distance of that current cell from the center of the first cells in its
corresponding row and column.

Once we know the center point, we can compute the coordinates of the corners
of the current cell, as we talked about earlier. Lines 23–31 take care of that.

The remaining lines work identically to our original to_png method, drawing
the appropriate walls for each cell based on which neighbors exist and have
been linked to the current cell.

That’s it! With our new to_png, we ought to be able to draw hex grids and—by
extension—mazes. Let’s do that next!

Making Hexagon (Sigma) Mazes
A maze made on a hex grid is, for some perverse reason, properly called a
sigma maze. Fortunately, it works the same regardless of what you call it:
just choose a maze algorithm and let it run its course. Let’s use the Recursive
Backtracker algorithm to put our new to_png implementation through its paces.
Put the following in a file named hex_maze.rb.
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hex_maze.rb
require 'recursive_backtracker'
require 'hex_grid'

grid = HexGrid.new(10, 10)
RecursiveBacktracker.on(grid)

grid.to_png.save('hex.png')

Running it, you ought to get some-
thing like this figure. Very nice! It’s
definitely working as we wanted.
Experiment a bit with some other
maze algorithms and see what you get,
but be careful with Binary Tree and
Sidewinder! These two need a bit of
babysitting.

To understand why, recall The Binary Tree Algorithm, on page 6. For each
cell, we choose between north and east to decide which neighbor to link, but
in the case of a hexagon grid, cells have no eastern neighbor. The best we have
are northeast, and southeast. Similarly, Sidewinder wants to choose an
eastern neighbor but will also be foiled by our new geometry. So what do we
do?

Well, neither of those algorithms actually wants “east.” What they really want
is “the cell in the same row, in the next column over.” On a regular grid, that
just happens to be east. For a hex grid, that will be either northeast or
southeast, depending on the current column, but we don’t even need to worry
about that. We took care of the row/column assignments when we set up the
grid. To get the neighbor in the next column over, we can just use our array
accessor, like this:

east = grid[cell.row, cell.column+1]

Give it a try! Implement the Binary Tree and Sidewinder algorithms on a hex
grid, and see what you get. When you’re ready, we’ll move on to another style
of grid: triangles!

Implementing a Triangle Grid
A grid of triangles has a very lattice-like look the following.
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As with the hexagons, there are going to be
lots of ways to implement a grid like this, and
each will have different strengths and weak-
nesses. For simplicity’s sake, we’ll look at one
that most closely approximates the regular
grid, with horizontal rows and vertical
columns. We’ll use equilateral triangles
(mostly because it makes the math easier),
and we’ll start with an examination of the cells and how they fit together.
We’ll see there’s a pattern behind how the cell is oriented on the grid, which
we’ll then implement in code.

Looking at the preceding grid, you can see that some of the triangles are
upright (point facing north) and some are upside-down (point facing south).
In fact, this pattern repeats with every other triangle as you move across a
row horizontally. Further, each row starts with a triangle in alternating orien-
tations.

In other words, a triangle will be upright if its (base-0) row and column sum
to an even number:

upright = (row + column).even?

This property is significant because an upright triangle has no northern
neighbor and an upside-down triangle has no southern neighbor. If we can
indicate which triangles in our grid are upright, we can then use that infor-
mation when we set up the adjacency information.

Our TriangleCell winds up being pretty straightforward:

triangle_cell.rb
require 'cell'

class TriangleCell < Cell
def upright?

(row + column).even?
end

def neighbors
list = []
list << west if west
list << east if east
list << north if !upright? && north
list << south if upright? && south
list

end
end
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We have a method, upright?, which simply tells us whether the given cell ought
to be upright or upside-down, based on the row and column. The neighbors
method then gives us our usual east and west neighbors and uses upright? to
decide whether the cell has a north or a south neighbor.

Let’s see how this plugs into a grid. The following implementation ends up
looking much like that of our hexagon grid, with overridden prepare_grid and
configure_cells methods.

Put the following in triangle_grid.rb.

triangle_grid.rb
Line 1 require 'grid'

- require 'triangle_cell'
-

-

def prepare_grid
class TriangleGrid < Grid

5

Array.new(rows) do |row|-

Array.new(columns) do |column|-

TriangleCell.new(row, column)-

end-

end
end

10

-

-

- def configure_cells
each_cell do |cell|-

row, col = cell.row, cell.column15

-

cell.west = self[row, col - 1]-

cell.east = self[row, col + 1]-

-

if cell.upright?20

cell.south = self[row + 1, col]-

else-

cell.north = self[row - 1, col]-

end-

end25

-

end
end

-

The only part really worth pointing out here is where the north or south
neighbor is configured, on lines 20–24. As we said before, if the cell is upright,
then it has a southern neighbor, otherwise a northern one.

Easy enough. All that’s left is for us to implement a new to_png method so we
can show off our snazzy triangles.
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Displaying a Triangle Grid
Displaying a grid of equilateral triangles turns out to be really straightforward.
If you previously worked through the derivation of the measurements for the
hexagons, then you’ve already worked through most of what we need for the
triangles, too. Again, we won’t go over the derivation itself here, but we’ll walk
through the resulting measurements, and then we’ll implement it all in code.

Because we’re working with equilateral triangles, we know that each of their
sides are the same length (s). Further, geometry tells us that the height of an
equilateral triangle is s√3/2. Our triangle’s dimensions, then, are:

width = s
half_width = width / 2.0

height = s * Math.sqrt(3) / 2
half_height = height / 2.0

We’ll let our center point be at a point halfway between the apex and the base,
and halfway between the east and west vertices. If we base our coordinates
on that point, then our vertices can be defined relative to it using the computed
width and height values:

west_x = cx - half_width
mid_x = cx
east_x = cx + half_width

if upright?
base_y = cy + half_height
apex_y = cy - half_height

else
base_y = cy - half_height
apex_y = cy + half_height

end

In other words, the x-coordinates are the same, regardless of whether or not
the triangle is upright. The only things that change based on our triangle’s
orientation are the y-coordinates. If the triangle is upright, our base is below
the center point; otherwise, it’s above it.

Let’s code this up! Put the following in triangle_grid.rb with the other methods.

Line 1 def to_png(size: 16)
- half_width = size / 2.0
- height = size * Math.sqrt(3) / 2.0
- half_height = height / 2.0
5

-

img_height = (height * rows).to_i
img_width = (size * (columns + 1) / 2.0).to_i

-
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-

- background = ChunkyPNG::Color::WHITE
10 wall = ChunkyPNG::Color::BLACK

-

- img = ChunkyPNG::Image.new(img_width + 1, img_height + 1, background)
-

- [:backgrounds, :walls].each do |mode|
each_cell do |cell|15

cx = half_width + cell.column * half_width-

cy = half_height + cell.row * height-

-

west_x = (cx - half_width).to_i-

mid_x = cx.to_i20

east_x = (cx + half_width).to_i-

-

if cell.upright?-

apex_y = (cy - half_height).to_i-

base_y = (cy + half_height).to_i25

else-

apex_y = (cy + half_height).to_i-

base_y = (cy - half_height).to_i-

end-

30

if mode == :backgrounds-

color = background_color_for(cell)-

if color-

points = [[west_x, base_y], [mid_x, apex_y], [east_x, base_y]]-

img.polygon(points, color, color)35

end-

else-

unless cell.west-

img.line(west_x, base_y, mid_x, apex_y, wall)-

end40

-

unless cell.linked?(cell.east)-

img.line(east_x, base_y, mid_x, apex_y, wall)-

end-

45

no_south = cell.upright? && cell.south.nil?-

not_linked = !cell.upright? && !cell.linked?(cell.north)-

-

if no_south || not_linked-

img.line(east_x, base_y, west_x, base_y, wall)50

end-

end-

end
end

-

-

55

-

end
img

-
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We use the size parameter, again, to describe the length of a single side of a
triangle (line 1). Lines 2–4 then take that size value and use it to compute our
triangles’ dimensions.

Knowing the size of each triangle allows us to measure the size of our canvas
(lines 6 and 7).

Lines 16–29 ought to look familiar—they compute the coordinates of the
current triangle using the formula we described previously.

Next, let’s see if this all works like we want it to.

Making Triangle (Delta) Mazes
Just as hexagon grids produce sigma mazes, so triangle grids produce delta
mazes. (This one at least makes a little sense, since the Greek letter delta, Δ,
is shaped like a triangle.) Again, though, it makes little difference what you
call it, because in the end it’s just another scaffolding for making mazes!

Let’s copy our hex_maze.rb file to delta_maze.rb and change it to refer to our new
triangle grid:

delta_maze.rb
require 'recursive_backtracker'
require 'triangle_grid'➤

grid = TriangleGrid.new(10, 17)➤

RecursiveBacktracker.on(grid)

grid.to_png.save('delta.png')➤

The dimensions for the grid were empirically chosen to produce a roughly
square canvas. Aside from that, it’s just the same old deal—instantiating a
grid, running a Recursive Backtracker on it, and displaying the result:

Very nice! Once again, though, you’ll want to beware of Binary Tree and
Sidewinder. In fact, Binary Tree in particular has real issues with these triangle
grids, because it wants to choose between two perpendicular directions…but
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our triangle grid can only go north 50% of the time. If you aren’t very careful,
you’ll wind up with unreachable areas of the grid. Experiment with it, if you’d
like, to see what happens.

Your Turn
We’ve moved far beyond our early maze-making days of purely rectangular
grids. In this chapter we’ve seen how hexagons and triangles can be tiled to
create suitable settings for mazes, and we’ve glimpsed some of the math
behind drawing these more advanced grids.

This is just the tip of the iceberg, though! There are so many ways to use and
vary what was presented here. The following are just a few ideas to help you
glimpse some of the possibilities when dealing with non-rectangular grids.

Coloring Non-Rectangular Mazes
Coloring mazes always seems to add a lot of per-
sonality to them, and those done on non-rectan-
gular grids are no exception. The to_png methods
given in this chapter include the necessary code
for coloring individual cells. See if you can hook
up the background_color_for methods to specify the
appropriate colors.

Masking
Revisit the techniques from Chapter 6, Fitting Mazes to Shapes, on page
83 and see what it might take to add masks to these different grids. How
do you define a hexagonal mask? Or a triangular mask?

Shaping Grids
What would it take to make your triangle grid
actually triangle-shaped? What about a hexagon-
shaped hex grid?

Irregular Triangles
For simplicity’s sake, we used equilateral triangles for our triangle grid
in this chapter. What kinds of effects would you get if you changed that
assumption? It’ll require a bit of math to derive the measurements, but
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if you’re up to the challenge, see what you can do with other kinds of tri-
angles.

Combining Grid Systems
There’s absolutely no law that says grids must be homogeneous. Imagine
a star-shaped grid, composed of a square-shaped regular grid in the
center with triangular grids on each of its edges. Try putting different
shapes together and see what happens.

Uniform Tilings and Beyond
Squares, triangles, and hexagons all tile quite neatly, but they’re hardly
the only shapes that do. Try researching uniform tilings, or Wythoff’s
construction, or even Voronoi diagrams, and you’ll see there’s an entire
world of other possible grids to play with. You’ll discover words like trun-
cated quadrille and rhombitrihexagonal, which might almost be reason
enough to give them a try.

Upsilon Mazes
Speaking of truncated quadrille, this particular tiling can be used to create
what are called upsilon mazes. You create a tiling of regular octagons and
squares, and then generate a maze on it with your choice of algorithm.
You wind up with something like the following:

How might you approach implementing and displaying such a grid?

Next up, we’re going to see what happens when we (finally!) remove the con-
straint that our mazes must be “perfect,” or without loops. We’ll also start to
touch on the idea of multidimensional mazes with a kind of pseudo-3D effect
that turns out to be pretty straightforward to do.
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CHAPTER 9

Braiding and Weaving Your Mazes
So far, we’ve assumed that all of our mazes are perfect—that is, they have no
loops in them. We’ve said that to get from one point in a maze to any other
point there must be only a single path that is never allowed to intersect itself.

The sad fact is that most real environments are not actually perfect mazes.
Whether you’re navigating the stacks of a library or the streets of a town, you
can generally get from one place to another via multiple possible routes. This
is mirrored in video games: in Pac-Man, for instance, you can take one path
into an area and return by another, cleverly escaping those ghosts on your
tail. Dungeon crawlers (NetHack) and “open world” games (Zelda, Final Fan-
tasy) give you quite a bit of freedom to move between areas using various
paths. First-person shooters like Doom, Quake, and Descent use mazes with
loops to enable all kinds of great tactical scenarios. From a game design per-
spective, allowing paths to intersect themselves can open up exciting new
ways for a game to be played.

So it’s time to shake things up a bit. We’re going to look at two different ways
to relax that “no self-intersections” rule: braiding by removing dead ends and
thus adding loops to our mazes, and weaving, which allows passages to
intersect by moving over and under each other.

Let’s start with braiding.
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Braiding Mazes
A maze with no dead ends is called a braid maze.

There’s no reason this has to be all-or-nothing,
though. Mazes may be heavily braided (with all
or most dead ends removed), or lightly braided
(with only a few dead ends removed), or anything
in-between. The process we’ll consider here, called
dead-end culling, will let us produce a maze with
any level of braiding we desire.

Recall back in Counting Dead Ends, on page 71, we added a method to Grid
called, appropriately, deadends. We made it return a list of all the dead-end
cells in the grid, and used it to compare maze algorithms based on how many
dead ends they generated.

It turns out that we can use that same method here. Once it tells us where
the dead ends are, the process for culling, or removing, them is straightforward:
we just need to link each dead-end cell to one additional neighbor. This
effectively erases one of its walls and adds a loop to the maze. Following that
logic, it also means that a braid maze is not a perfect maze—it will always
have at least one loop in it.

Let’s implement this. Thanks to our deadends method, we’re about halfway
there already. All that’s left is to loop over the cells it returns and link each
one to a random neighbor. We’ll make this the responsibility of a new method
on Grid, so go ahead and open up grid.rb and add the following method to that
class.

Line 1 def braid(p=1.0)
- deadends.shuffle.each do |cell|

next if cell.links.count != 1 || rand > p-

-

neighbors = cell.neighbors.reject { |n| cell.linked?(n) }5

best = neighbors.select { |n| n.links.count == 1 }-

best = neighbors if best.empty?-

-

neighbor = best.sample-

cell.link(neighbor)10

-

end
end

-

It’s refreshingly direct after all that math from the previous chapter! Line 2
starts us out by fetching the list of dead ends, giving it a good shuffle, and
then looping over the result. For each of the cells, we first test (on line 3) to
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see that it’s still a dead end (as an earlier iteration of the loop may have already
linked it to a neighboring dead end). We also allow for partial braid mazes by
generating a random number between 0 and 1 (using the standard rand
method) and comparing it with the p parameter. By default, p is 1.0, ensuring
that all dead ends will be culled, but by making the number smaller (say, 0.5),
fewer will be removed.

Assuming the cell is found acceptable, line 5 finds all of the neighbors to
whom it is not linked. These form the set of potential cells that we will link
to.

The next line, line 6, is a bit of an optimization. We can kill two birds with
one stone and improve the aesthetics of the maze a bit by preferring to link
two dead-end cells together. This line examines the set of potential neighbor
cells and selects out those that are themselves dead ends. If possible, we’ll
choose from this set, but if that set is empty, we’ll just fall back to the set of
all neighbors again (line 7).

Once we’ve finalized our set of possible neighbors, all that’s left is to choose
one (line 9) and link it to the current cell.

Now it’s easy to test. Choose any of the maze programs we’ve written so far,
and add the following line just after running the maze algorithm (and before
displaying the maze):

grid.braid(0.5)

That will cull roughly half the dead ends from
the maze before displaying it. Assuming we
add this to the program we wrote for the
Recursive Backtracker (in recursive_backtrack-
er_demo.rb), we should get something like this
figure.

Just like that. Braided! And what’s more, our
existing implementation of Dijkstra’s algo-
rithm (from Chapter 3, Finding Solutions, on page 35) still works, too.

Let’s give it a try. If we open up dijkstra.rb or longest_path.rb (from Finding Solutions)
and add grid.braid in there, just after the maze is generated, we should find
that the distances are all still computed correctly. The dijkstra.rb program, for
example, will still show us the full distance matrix, as expected.
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$ ruby -I. dijkstra.rb
+---+---+---+---+---+
| 0 1 | a b a |
+ + + +---+ +
| 1 | 2 | 9 8 9 |
+ + +---+ + +
| 2 | 3 4 | 7 | a |
+ +---+ + + +
| 3 4 5 6 | 9 |
+ +---+---+ + +
| 4 5 6 7 8 |
+---+---+---+---+---+

It just works! You can see how Dijkstra’s picks out
the shortest of all possible paths to each cell, like
water flowing around obstacles. Our path_to method
on Distances (again from Finding Solutions) also “just
works,” using the distance matrix from Dijkstra’s
algorithm to find the shortest path to a given cell,
even successfully choosing between multiple
shortest paths! Braided or not, we can still tell our
friends the answers to these mazes.

There is one particular possibility allowed by braid
mazes, though, which sadly also happens to wreak havoc with our simplified
Dijkstra’s algorithm. When you start to ask about the relative cost of one path
versus another, instead of just the distance, things get a little more compli-
cated. Let’s take a look at that next.

Cost versus Distance
Imagine traversing a maze, and you come to a branch in
the passage. Both paths loop around and meet up again
a short distance later, but the passage to the left is
blocked by a pool of molten lava. The passage to the right
has no lava but is much longer than the other. Which
path will get you to the exit faster?

Well, it depends, of course. But for normal people with
no special lava resistance, taking the path without the lava is probably going
to be optimal, even though it’s longer. The path with the lava, though shorter,
is more expensive.

Costs like these are called weights. Distance itself is a form of weight, because
if all other things are equal, a longer path will be more expensive than a
shorter path. Our current implementation of Dijkstra’s algorithm assumes
that all cells are weighted equally, which means that the only cost being
measured is distance. It’d sure be nice to be able to add lava obstacles to our
braid mazes, though, so let’s see what we can do to fix that.

Looking closer at our implementation of Dijkstra’s algorithm, it falls down
when weights are introduced because distance is no longer a reliable indicator
of cost. Consider our lava example again. Our simplified Dijkstra’s implemen-
tation would merrily go skipping step-by-step down both paths, adding costs
along the way. The problem is that the algorithm would reach the exit via the
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shorter (but more expensive) passage first, and would mark its cost accord-
ingly.

0

We need to approach this from an entirely different
direction. Instead of working with a frontier set, simulat-
ing the front of a wave as it moves through the grid, each
iteration of the algorithm needs to pick the cell with the
lowest cost that has not yet been processed. Let’s consider
this visually with our lava example. When we first start,
we mark our starting cell as having cost 0, and add it to
a queue. Everything else is undefined.

0
1

Thus, when the algorithm begins its main loop, it only
has the one cell to choose from. It plucks it out of that
queue, computes the cost of its only neighbor, and adds
that neighbor to the queue.

0
12 2

52

The next time around, there’s still only a single cell in
our queue—the one we just added. The algorithm plucks
that out of the queue and computes the cost of each of
its neighbors. Both neighbors go into the queue, poised
and ready for the next iteration.

0
12 2

52

This time, the algorithm has to choose between the two
cells marked 2. Either would be fine, but let’s say it
chooses the cell adjacent to the lava. Fine: that cell gets
plucked out of the queue, the cost of its neighbor is
computed, and the neighbor is added to the queue. But
hot lava is hot, and crossing that gulf will be expensive.
Let’s say it adds fifty to the cost of that path.

Next time around, the queue consists of one cell marked 2, and one marked
52. It’s clear which cell has the lowest cost! The algorithm picks up the one
marked 2, removes it from the queue, computes the cost of its neighbor (3
now), and adds that neighbor to the queue.
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0
12 2

52

3
4 5

6
7
8
910

11
1214

15
15

16 16

The lava cell is not going to be picked up by the algorithm
anytime soon—that high cost is enough to scare away
even the pluckiest adventurer. Eventually, the algorithm
will find that the least expensive route truly is to bypass
the lava entirely, even though the path is much longer.

At the very end, the only cell left in the queue will be that
lava cell, and the algorithm will eventually choose it. By
that time, though, all of the cells neighboring the lava will already have been
processed, and all will have a lower cost than what the lava would have pro-
duced, so the cell is discarded without being used. After that, the queue is
empty, and the algorithm terminates.

Let’s look at it in code, and tease a few mazes with some lava pits of our own.

Implementing a Cost-Aware Dikstra’s Algorithm
To make this work in code, we need two things: a cell that can be assigned a
weight, and a grid composed of these weighted cells.

The cell is straightforward. We’re just going to subclass Cell and add weight
information to it. Also, since our Dijkstra’s algorithm was implemented on
Cell, we put our updated implementation in the subclass, too, by overriding
the original distances method.

Put the following in weighted_cell.rb.

weighted_cell.rb
Line 1 require 'cell'

-

- class WeightedCell < Cell
- attr_accessor :weight
5

- def initialize(row, column)
super(row, column)-

@weight = 1
end

-

-

10

- def distances
weights = Distances.new(self)-

pending = [ self ]-

-

while pending.any?15

cell = pending.sort_by { |c| weights[c] }.first-

pending.delete(cell)-

-

cell.links.each do |neighbor|-

total_weight = weights[cell] + neighbor.weight20
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if !weights[neighbor] || total_weight < weights[neighbor]-

pending << neighbor-

weights[neighbor] = total_weight-

end-

end25

end-

-

weights-

-

end
end

30

Our constructor just extends the previous one by setting the default cell
weight to 1. It’s the new distances method, though, that is of particular interest
here.

As before, we use our Distances class to track the cost of each cell, but instead
of having a frontier set, we now have a pending set, which tracks which cells
have yet to be processed. We initialize that on line 13 to be an array containing
just self—the cell that we’re asking to compute the distances. We then repeat
the following steps until that array is empty (line 15).

Each pass through the loop will search that pending set, looking for the cell
with the lowest cost (line 16), and then removing the cell that it finds. This
cell is our current cell.

Priority Queues

We’re using an array here for simplicity’s sake, but it’s not a very
efficient way of doing things. We have to search that array on every
iteration, which can get expensive. A much better way to do it uses
a priority queue, which gives you a very efficient way to look up
and store items by weight. It’s a lovely data structure, but sadly
out of scope for this book.

The next loop (line 19) looks at each of the cells that are linked to the current
cell. For each one, we compute the cumulative weight of the path from the
starting cell (line 20), and then check to see if that’s better than any previously
recorded weight for that neighbor (line 21). If so, we add the neighbor to the
pending list, and update its cumulative weight.

We’ll plug this new cell into a new Grid subclass, which we’ll deck out with a
way to actually display these weights, as well as to display the distances we’re
computing. For that, we’ll turn to our background_color_for(cell) method.

Put the following in weighted_grid.rb. It’s going to borrow bits from our colored_grid.rb
implementation, from Chapter 3, Finding Solutions, on page 35, so don’t be
surprised if some of it is already a little familiar.
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weighted_grid.rb
Line 1 require 'chunky_png'

- require 'grid'
- require 'weighted_cell'
-

5 class WeightedGrid < Grid
- attr_reader :distances
-

def distances=(distances)-

@distances = distances-

farthest, @maximum = distances.max
end

10

-

def prepare_grid
-

-

Array.new(rows) do |row|-

Array.new(columns) do |column|15

WeightedCell.new(row, column)-

end-

end
end

-

-

20

- def background_color_for(cell)
if cell.weight > 1-

ChunkyPNG::Color.rgb(255, 0, 0)-

elsif @distances-

distance = @distances[cell] or return nil25

intensity = 64 + 191 * (@maximum - distance) / @maximum-

ChunkyPNG::Color.rgb(intensity, intensity, 0)-

end-

-

end
end

30

The distances= method is used to tell the grid about the active distance matrix,
to be used when coloring the grid, and prepare_grid is almost identical to the
original in Grid, just instantiating our WeightedCell class for each cell (line 16).

The background_color_for(cell) method takes on a little more responsibility than
we’ve given it in the past. We’re going to have it color red any cell with a weight
greater than one (line 23). This will let us see, visually, where those weighted
cells are. For any cell that isn’t weighted specially, we’ll have it fall back to
choosing a color based on the distances map, if one has been set. We’ll color
those distances a shade of yellow (line 27).

That’s it! Now we can put together a simple program to test what we’ve got.
Let’s have it generate a maze on one of these weighted grids, and display the
least expensive path from the northwest corner to the southeast corner. Then,
we’ll add a lava pit (that is, a heavily weighted cell) somewhere along that
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path, and recompute the least expensive path. Hopefully, we’ll see the program
route us around that gaping pit of superheated magma!

Put the following in weighted_maze.rb.

weighted_maze.rb
Line 1 require 'weighted_grid'

- require 'recursive_backtracker'
-

- grid = WeightedGrid.new(10, 10)
5 RecursiveBacktracker.on(grid)
-

- grid.braid 0.5
- start, finish = grid[0, 0], grid[grid.rows - 1, grid.columns - 1]
-

10 grid.distances = start.distances.path_to(finish)
- filename = "original.png"
- grid.to_png.save(filename)
- puts "saved to #{filename}"
-

15 lava = grid.distances.cells.sample
- lava.weight = 50
-

- grid.distances = start.distances.path_to(finish)
- filename = "rerouted.png"

20

puts "saved to #{filename}"
grid.to_png.save(filename)

-

The first half of the program just instantiates our WeightedGrid and performs a
Recursive Backtracker on it. Line 7 removes half of the dead ends, and then
lines 10–13 compute and display the shortest path between our start and finish
cells, drawing the resulting maze to original.png.

Then we go all diabolical and drop some lava on it. The grid.distances property
at that point already contains a map of all of the cells in the shortest (least
expensive) path, so lines 15–16 choose one of those cells and set its weight
to 50. (Lava is hot, remember. It’s got to be worth at least that much.)

We finish the program off by recomputing the shortest path and writing the
resulting maze to rerouted.png (lines 18–21).

Running it should generate those two images, original.png and rerouted.png, which
we can then open and compare. Note, though, that because the program is
blindly choosing any cell in the path, it may occasionally choose a cell (like
the starting point, or the goal) that Dijkstra’s algorithm cannot route around.
If that happens, just run it again until it actually chooses an interesting cell
to place the lava on, something like this:
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These weighted grids have potential. Aside from pits of boiling lava, you might
use doors (locked and otherwise), rockfalls, piranha-filled waters, and any
number of other things to change the cost of individual paths. A discussion
of how best to place them randomly is beyond the scope of this book, sadly,
but it’s an exciting thing to experiment with!

Time’s a-wasting, though. We’ve looked at braiding mazes, changing the
assumptions we had about perfect mazes not having loops. Next, we’ll look
at another way to change those assumptions and allow passages to intersect
by moving over or under each other.

Introducing Weaves and Insets
A weave maze is a maze in which passages weave over and under one
another, like noodles in a bowl of spaghetti.

Figure 5—A Weave Maze

We can’t really draw these with our existing to_png method, because our
existing method does not draw any space between adjacent corridors. Without
that space, there is too much ambiguity—we can’t tell if a passage has dead-
ended, or gone underneath another passage. The following figure shows the
same maze as the previous figure, but without any gaps between corridors.
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Messy! And even worse, it’s not very accurate. Our existing to_png implemen-
tation only draws the east and south walls for each cell, blithely assuming
that neighbors will make up the slack on the other walls. This doesn’t fly with
these over/under mazes. Something’s got to change.

Our first order of business, then, is to level-up our to_png method in order to
support gaps between corridors. Fortunately, it’s not hard—it just requires
a bit of extra measuring. We need to figure out how far each wall is inset from
the original edge of the cell. Once we have this new way to draw mazes, we
can look at what it takes to make the passages weave over and under one
another.

Let’s look at a single cell on our grid drawn using these insets. From this
diagram we’ll be able to infer the measurements we need in order to draw our
mazes this way.

size

si
ze

Here, the cell is linked to its neighbors to the north and east, with correspond-
ing passages in those directions. The insets are highlighted in yellow, and
the dashed lines break the cell into nine distinct regions. We’re not going to
worry about the four regions at the corners—those will always be dead space
when we render cells this way. For the sake of discussion, let’s label the
remaining regions like this:
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Every wall we want to draw will be on those dashed lines (x1–x4 and y1–y4),
so to draw them we’ll need the lines’ coordinates. If the cell is size units on a
side, and the northwest corner is at (x,y), and we use inset to describe the size
of our gap, then the coordinates we want are

x1 = x
x4 = x + size
x2 = x1 + inset
x3 = x4 - inset

y1 = y
y4 = y + size
y2 = y1 + inset
y3 = y4 - inset

Referring to the previous diagram, we can now say (for example) that the
southwest corner of C is at (x2,y3).

Let’s work this up in code next. We’ll keep as much of our existing to_png
implementation as we can, but we’ll break the core of it out into a separate
method, one that will be used specifically when the inset is not specified (or
zero). Then we’ll add another method to compute the inset coordinates, and
a third method which to_png will delegate to when an inset has been specified.

Open up grid.rb, and change to_png to look like the following. The highlighted
lines are the ones in particular that we’re changing.

def to_png(cell_size: 10, inset: 0)➤

img_width = cell_size * columns
img_height = cell_size * rows
inset = (cell_size * inset).to_i➤

background = ChunkyPNG::Color::WHITE
wall = ChunkyPNG::Color::BLACK

img = ChunkyPNG::Image.new(img_width + 1, img_height + 1, background)

[:backgrounds, :walls].each do |mode|
each_cell do |cell|
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x = cell.column * cell_size➤

y = cell.row * cell_size➤

➤

if inset > 0➤

to_png_with_inset(img, cell, mode, cell_size, wall, x, y, inset)➤

else➤

to_png_without_inset(img, cell, mode, cell_size, wall, x, y)➤

end➤

end
end

img
end

On the first highlighted line, we’re computing the size of the inset based on
an option that is passed in. If no inset is specified, it defaults to zero, but
otherwise it is interpreted as the fraction of the total size of the cell that should
be given to each inset. For example, if an inset of 0.25 is given, that would
cause each inset to occupy a quarter of the cell’s margin, leaving half of the
cell’s width and height for the cell itself.

The other major change here has to do with how each cell is processed. In
the second highlighted area we check to see if the computed inset is greater
than zero, and if so we delegate to a new to_png_with_inset method (which will
be defined shortly). Otherwise, flow falls through to the next line which invokes
to_png_without_inset. Let’s look at that one next; it should be added to Grid as well,
below our new to_png method.

def to_png_without_inset(img, cell, mode, cell_size, wall, x, y)
x1, y1 = x, y
x2 = x1 + cell_size
y2 = y1 + cell_size

if mode == :backgrounds
color = background_color_for(cell)
img.rect(x, y, x2, y2, color, color) if color

else
img.line(x1, y1, x2, y1, wall) unless cell.north
img.line(x1, y1, x1, y2, wall) unless cell.west
img.line(x2, y1, x2, y2, wall) unless cell.linked?(cell.east)
img.line(x1, y2, x2, y2, wall) unless cell.linked?(cell.south)

end
end

This ought to be quite familiar—it’s almost verbatim what was originally
within the each_cell block from our old to_png method. It just computes the
northwest and southeast corners of the cell and draws the corresponding
walls.
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Next, we’ll implement our formulas from the previous section to find the x-
and y-coordinates of those dashed horizontal and vertical lines.

Line 1 def cell_coordinates_with_inset(x, y, cell_size, inset)
- x1, x4 = x, x + cell_size
- x2 = x1 + inset
- x3 = x4 - inset
5

- y1, y4 = y, y + cell_size
- y2 = y1 + inset
- y3 = y4 - inset
-

10 [x1, x2, x3, x4,
y1, y2, y3, y4]

end
-

-

We could certainly have inlined this code in the following method
(to_png_with_inset), but making it a separate method turns out to be useful when
we need to draw weave mazes later in the chapter.

Our last method is the bit that will consume those inset coordinates and draw
the walls.

Line 1 def to_png_with_inset(img, cell, mode, cell_size, wall, x, y, inset)
- x1, x2, x3, x4, y1, y2, y3, y4 =

cell_coordinates_with_inset(x, y, cell_size, inset)

if mode == :backgrounds

-

-

5

# ...-

- else
if cell.linked?(cell.north)-

img.line(x2, y1, x2, y2, wall)-

img.line(x3, y1, x3, y2, wall)10

else-

img.line(x2, y2, x3, y2, wall)-

end-

-

if cell.linked?(cell.south)15

img.line(x2, y3, x2, y4, wall)-

img.line(x3, y3, x3, y4, wall)-

else-

img.line(x2, y3, x3, y3, wall)-

end20

-

if cell.linked?(cell.west)-

img.line(x1, y2, x2, y2, wall)-

img.line(x1, y3, x2, y3, wall)-

else25

img.line(x2, y2, x2, y3, wall)-

end-

Chapter 9. Braiding and Weaving Your Mazes • 142

report erratum  •  discuss 

http://pragprog.com/titles/jbmaze/errata/add
http://forums.pragprog.com/forums/jbmaze


-

if cell.linked?(cell.east)-

img.line(x3, y2, x4, y2, wall)30

img.line(x3, y3, x4, y3, wall)-

else-

img.line(x3, y2, x3, y3, wall)-

end-

35

end
end

-

Line 3 calls our cell_coords_with_inset method to get those eight coordinates. Once
armed with those, we can get to work drawing the appropriate walls of the
current cell.

Implementing Background Mode

For brevity’s sake, I’ve not included the implementation of back-
ground mode for to_png_with_inset. It’s not difficult, though: essential-
ly, it requires that you fill a rectangle for each of the labeled regions
from those previous figures (N, S, E, W, and C), depending on
which ones need to be drawn. Consider it an opportunity, if you
like!

Drawing the walls occurs on lines 8–34. For each potential neighbor, we check
to see if the neighbor has been linked, and if so, draw a corridor in that
direction. Otherwise, we draw a wall.

With those changes, we ought to be able to draw a maze with gaps between
the walls. Choose any of the programs we’ve written so far (like recursive_back-
tracker_demo.rb or aldous_broder_demo.rb), and change the invocation of the to_png
method to include the inset specification, something like this:

grid.to_png(inset: 0.1).save("filename.png")

That will cause each gap to occupy a tenth of each cell’s width and height.
Assuming we change the recursive_backtracker_demo.rb program like that, the
output ought to look something like this:
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We’re on the right track! That’s good enough—now let’s get back to talking
about weave mazes.

Generating Weave Mazes
It turns out that generating weave mazes isn’t all that different from generating
normal mazes. The trick is figuring out how to represent those passages that
tunnel underneath the others. Once we’ve got those ironed out, we’ll work on
a new Grid subclass with some more to_png tweaks, so we can draw these new
tunneling passages.

To get an idea of how these new passages work, let’s take a minute and glance
back at Figure 5, A Weave Maze, on page 138. Pay attention to how and when
the passages weave over and under each other. It’s not entirely arbitrary—there
are four important rules that make this work unambiguously.

A passage cannot dead-end over or under another passage.

This prevents confusion that could happen when a passage
seems to disappear beneath another one.

Over- and under-passages must be perpendicular to each other.

A passage is not allowed to move parallel at all to the passage
it is tunneling under. Otherwise, again, there would be
confusion because the passage would seem to disappear.

Passages may not change direction while above or below other passages.
A corridor can’t tunnel under a cell moving north, and then exit the cell
moving east. This is related to the previous rule—over/under passages
must be perfectly perpendicular.

A passage may not tunnel under two consecutive passages at once.

This is more to make things easier for us than out of any
real technical necessity. The implementation is just simpler
this way.

Rather than scrapping all that lovely code we’ve written so far, it would be
nice if we could make this work by extending our existing grid framework.
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Even better, it would be wonderful if we could just drop a new grid subclass
into (for instance) our Recursive Backtracker program and have it generate
weave mazes without further tweaking.

We’ll approach it like this. Let’s imagine that when a passage moves under
another passage, it’s actually moving to an invisible cell at that same location,
beneath the other cell, like this:

For the sake of discussion, we’ll call these phantom cells under-cells, and the
cells above them over-cells. If we can make our grid transparently manage
these under-cells, without exposing anything about them to the outside, most
of the maze algorithms we’ve seen so far should just work, no further changes
necessary. The thing is, relatively few of these under-cells will ever actually
be used in the maze, and there are some strict rules that determine which
over-cells can host under-cells. For these reasons, it turns out to be simplest
to just create them on-demand, when certain conditions are met. These con-
ditions apply when deciding which neighbors exist for a given cell (either over-
cell or under-cell), and are as follows:

• An under-cell cannot be placed beneath another under-cell. (If we start
nesting them like that the maze gets really hard to draw clearly, and at
that point we might as well be making actual 3D mazes. We’ll get to those
in Chapter 13, Extending Mazes into Higher Dimensions, on page 209.)

• When considering the neighbors to the east and west, check to see if either
of those over-cells are already a vertical passage, that is, a passage running
purely north to south. If so, we can potentially create an under-cell
beneath it and tunnel one cell further in that direction.

• Similarly, when considering the neighbors to the north and south, check
to see if either of them is already a horizontal passage, running east to
west. If so, we can possibly create an under-cell there in order to tunnel
that direction.

• In either case, we can only tunnel under the cell if there is actually
another cell on the other side of it. Tunneling should never take us out
of bounds. (We’re not reenacting The Great Escape here!)
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We’ll make this real by subclassing Cell. Eventually we’ll have two different
cell types (one for the over-cells, and one for the under-cells), but we’ll begin
with the over-cells. Let’s start by overriding the neighbors method to include
the preceding logic.

Implementing the OverCell Class
The following is a start on our new OverCell class. Let’s put it in weave_cells.rb.

Line 1 require 'cell'
-

- class OverCell < Cell
- def neighbors

list = super5

list << north.north if can_tunnel_north?-

list << south.south if can_tunnel_south?-

list << east.east if can_tunnel_east?-

list << west.west if can_tunnel_west?-

10

list-

-

end
end

-

Calling super on line 5 gets us the default set of neighbors, as computed by
our original Cell class. We then append to that list, adding potential targets
to tunnel to. For example, on line 6 we add the northern neighbor of this cell’s
northern neighbor, as long as it is possible to tunnel north.

Those helper methods (can_tunnel_north? and friends) need defining next. Add
these after our new neighbors method.

def can_tunnel_north?
north && north.north &&

north.horizontal_passage?
end

def can_tunnel_south?
south && south.south &&

south.horizontal_passage?
end

def can_tunnel_east?
east && east.east &&

east.vertical_passage?
end

def can_tunnel_west?
west && west.west &&

west.vertical_passage?
end
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Here’s where we encode the logic that decides whether or not it’s even possible
to tunnel in a given direction. Look at the the can_tunnel_north? method, for
instance. We can only tunnel north from the current cell if a cell exists to the
north, and that neighbor has a northern neighbor and is a horizontal passage
(east-to-west).

We’ll add those two last helper methods, horizontal_passage? and vertical_passage?,
next.

def horizontal_passage?
linked?(east) && linked?(west) &&

!linked?(north) && !linked?(south)
end

def vertical_passage?
linked?(north) && linked?(south) &&

!linked?(east) && !linked?(west)
end

These aren’t too tricky. A cell is a horizontal passage if it is linked to its east
and west neighbors, but not to its north and south neighbors. A vertical
passage is defined similarly.

There. Our OverCell now reports all potential neighbors, including those that
will need an under-cell to tunnel to them, so algorithms that rely on the
neighbors method (like Recursive Backtracker and Aldous-Broder) will be
automatically clued in.

The next bit is to make sure that when those algorithms try to link a cell to
a neighbor that needs a tunnel, we add the appropriate under-cell.

This will require a few more changes. For one, we need to make the grid itself
in charge of adding the under-cell, since it needs to keep track of all cells in
order to draw them. But to ask the grid to create a new under-cell, the cell
needs to have a reference to the grid!

Let’s give it one. Put this constructor method at the top of our OverCell class.

def initialize(row, column, grid)
super(row, column)
@grid = grid

end

Now that we’ve given the cell a handle on the grid, let’s override the link(cell)
method. This is where we’ll check to see if the cell being linked will require a
tunnel or not, and if necessary, create a new under-cell to act as a link
between the two cells.
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Put the following in weave_cells.rb, right after those helper methods we added.

Line 1 def link(cell, bidi=true)
- if north && north == cell.south

neighbor = north-

- elsif south && south == cell.north
neighbor = south5

- elsif east && east == cell.west
neighbor = east-

- elsif west && west == cell.east
neighbor = west

end
-

10

if neighbor
-

-

@grid.tunnel_under(neighbor)-

- else
super15

-

end
end

-

Don’t let the length of the method fool you—there’s really not much happening
here. Most of it, lines 2–10, simply check if there is a neighbor in common
between the current cell and the target cell. If there is, then the target requires
an under-cell at that location in order to link to it. Take the first if statement
as an example (line 2): if the current cell’s northern neighbor is the same as
the target cell’s southern neighbor, we know the neighbor they have in common
needs to host an under-cell to link them together.

That under-cell will be created by the call to the grid’s tunnel_under(over_cell)
method, on line 13. Sit tight—we’ll get to that method shortly. First we need
to talk about the sister class to OverCell: the much simpler UnderCell!

Implementing the UnderCell Class
The UnderCell doesn’t need to manage nearly as much as the OverCell. We’re only
going to require it to insert itself between the appropriate cells. Everything
else will be handled either by the grid or by OverCell.

Add the following to weave_cells.rb, following the definition of our OverCell class.

Line 1 class UnderCell < Cell
- def initialize(over_cell)

super(over_cell.row, over_cell.column)-

-

if over_cell.horizontal_passage?5

self.north = over_cell.north-

over_cell.north.south = self-

self.south = over_cell.south-

over_cell.south.north = self-
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10

link(north)-

link(south)-

else-

self.east = over_cell.east-

over_cell.east.west = self15

self.west = over_cell.west-

over_cell.west.east = self-

-

link(east)-

link(west)20

end
end

-

-

-

- def horizontal_passage?
east || west

end
25

-

-

- def vertical_passage?
north || south-

30

end
end

-

The constructor takes as input the over-cell that the cell will live beneath,
and passes that over-cell’s coordinates to the original constructor (line 3).
This makes our new under-cell live at that same location in the grid. Then,
depending on whether or not the over-cell is a horizontal passage, the under-
cell inserts itself between the two neighbors that will be linked to it (lines 6–9
for a horizontal over-cell, and lines 14–17 otherwise). Lastly, it links itself
(carving passages, so to speak) to the appropriate neighbors.

The UnderCell class also implements horizontal_passage? and vertical_passage?, so that
our cells don’t have to care if their neighbors are OverCell or UnderCell instances.
(Isn’t polymorphism wonderful?)

Implementing the WeaveGrid Class
All that’s left is to implement our WeaveGrid class, which manages these two
different cell types. We’ll put our new class in weave_grid.rb.

weave_grid.rb
Line 1 require 'grid'

- require 'weave_cells'
-

-

def initialize(rows, columns)
class WeaveGrid < Grid

5

@under_cells = []-

super
end

-

-
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def prepare_grid
-

10

Array.new(rows) do |row|-

Array.new(columns) do |column|-

OverCell.new(row, column, self)-

end-

end
end

15

-

-

- def tunnel_under(over_cell)
under_cell = UnderCell.new(over_cell)-

@under_cells.push under_cell
end

20

-

-

- def each_cell
super-

25

@under_cells.each do |cell|-

yield cell-

end-

-

end
end

30

The constructor doesn’t add much, just initializing a new array (line 6) that
will be used to hold the under-cells that get created. The creation of those
cells is managed by the tunnel_under method, on line 18. We also need to make
sure that our each_cell method doesn’t ignore under-cells (line 26). It needs to
report every cell in the grid, including the under-cells.

That will be sufficient to create a weave maze, but it won’t draw one yet. Our
grid class may know how to render mazes with gaps between passages, but
it doesn’t know how to handle these new under-cells. For that, we’ll override
our to_png_with_inset method. We’ll also make one minor tweak to to_png, so that
these weave mazes are drawn with an inset by default.

Add the following to our WeaveGrid class.

Line 1 def to_png(cell_size: 10, inset: nil)
-

end
super cell_size: cell_size, inset: (inset || 0.1)

-

-

5 def to_png_with_inset(img, cell, mode, cell_size, wall, x, y, inset)
- if cell.is_a?(OverCell)

super
else

-

-

x1, x2, x3, x4, y1, y2, y3, y4 =-

cell_coordinates_with_inset(x, y, cell_size, inset)10

-

if cell.vertical_passage?-
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img.line(x2, y1, x2, y2, wall)-

img.line(x3, y1, x3, y2, wall)-

img.line(x2, y3, x2, y4, wall)15

img.line(x3, y3, x3, y4, wall)-

else-

img.line(x1, y2, x2, y2, wall)-

img.line(x1, y3, x2, y3, wall)-

img.line(x3, y2, x4, y2, wall)20

img.line(x3, y3, x4, y3, wall)-

end-

-

end
end

-

Line 2, in the new to_png method, simply sets the default inset size to 0.1 before
calling the original to_png method on Grid. And the to_png_with_inset method isn’t
too much more involved—it, too, just calls the superclass’s method when the
cell is an OverCell (line 6). When the cell isn’t an OverCell, though, it calls
cell_coordinates_with_inset to get the x- and y-coordinates for the different walls (I
did say that method would be useful later!) before drawing the corridors of
the under-cell.

No sweat! We should now be ready to drop this into one of our other programs
to see how it works. Go ahead and make a copy of recursive_backtracker_demo.rb,
calling it weave_maze.rb. Then change the Grid references to WeaveGrid, like so:

weave_maze.rb
require 'recursive_backtracker'
require 'weave_grid'➤

grid = WeaveGrid.new(20, 20)➤

RecursiveBacktracker.on(grid)

filename = "weave.png"➤

grid.to_png.save(filename)
puts "saved to #{filename}"

Running it now, we should get a real, honest-
to-goodness, spaghetti-rivaling weave maze:

Success! Now I’m hungry for some pasta…

Your Turn
It’s been said that if you stick to the rules, you miss all the fun. When it comes
to mazes, at least, there appears to be some truth to that. Knowing which
rules to bend (or even break!) can open entire floodgates of possibility.
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We focused in this chapter on breaking the rules that forbid self-intersec-
tion—that is, allowing passages to intersect themselves. We worked through
braiding mazes by removing dead ends, and then further complicated things
by dropping pits of molten lava in the middle of our lovely shortest path. We
looked at how Dijkstra’s algorithm can compensate for these traps and
obstacles—these weights—and give you the most efficient (least expensive)
path around them. We implemented weave mazes and a way to draw them
by adding gaps between adjacent cells.

In all, a solid day’s work!

It shouldn’t surprise you to learn, though, that this is once again just
scratching the surface of what’s possible. It’s your turn now. Think about
some of the following suggestions, or try out some of your own.

Tweaking Dead-End Removal
Experiment with different conditions in the braid method. In the version
presented in this chapter, it links to a random neighbor (though it prefers
neighbors who are themselves dead ends). What if you were to make it
prefer the neighbor in the direction of the cell’s dead end? That is to say,
if the cell’s only exit is south, try to link to the cell to the north.

Further, note that by preferring to link one dead end to a neighboring
dead end, this implementation skews the probability curve a bit. Linking
one dead end to another actually removes two dead ends in one shot,
which means if you’re asking to remove half of all dead ends, you might
be getting more than you bargained for! How might you make the braid
method deal with that p parameter more accurately?

Sparse Mazes
A sparse maze is one that doesn’t actually cover the entire grid, like the
following figure.

These can be created by culling dead ends similarly to braid mazes, but
instead of linking those cells to an additional neighbor, you actually
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remove them from the grid entirely. Experiment and see what you come
up with.

Colored Braid Mazes
Here’s a science experiment for you: braid a variety of mazes generated
using different algorithms. Then color the resulting mazes, and compare
them. Does braiding appear affect the algorithm’s bias significantly? What
about a partial braid? Are certain algorithms more affected than others?

Shortest Path Game
In general, braid mazes tend to be easier to solve than perfect mazes
because there are more possible ways to the exit. However, adding some
constraints can restore balance, and even make these braid mazes a
unique challenge. What if the goal was not just to reach the exit, but to
reach the exit via the shortest possible path? Design a game where the
goal is to navigate a braid maze in the fewest possible steps.

Finding a Challenging Path
We’ve seen how to use Dijsktra’s algorithm to find a path between two
cells in a maze, and in this chapter we’ve used that information to ran-
domly place a pit of lava on that path. However, we weren’t very smart
about it, and the result wasn’t always very interesting. Try to do better!
The goal is to take a braid maze and, by strategic placement of obstacles,
create a puzzle where the player’s challenge is to find an efficient path
through it.

Colored Weave Mazes
For this one, you just need to fill in the missing implementation in
to_png_with_inset on Grid and WeaveGrid. It’s really not too hard—just a matter
of drawing the rectangles that correspond to the passages.

Weaving with Different Algorithms
The Recursive Backtracker algorithm works pretty well for weave mazes,
but it’s not the only possibility. Experiment with some of the others that
we’ve covered so far! Note that some won’t work reliably, though: Wilson’s
algorithm, for instance, will require some effort because it generates a
path without linking the cells, which can confuse the tunneling logic in
the framework we’ve written. Also, as they’ve been presented, Binary Tree
and Sidewinder won’t work for weave mazes, since they don’t rely on the
neighbors method. How might you overcome that?

Inset Walls for Other Grids
We’ve implemented inset walls for regular grids here, but what about hex
grids, or triangle grids? For that matter, what about the polar grids from

report erratum  •  discuss

Your Turn • 153

 

http://pragprog.com/titles/jbmaze/errata/add
http://forums.pragprog.com/forums/jbmaze


Chapter 7, Going in Circles, on page 97? Once you’ve got some of those
working, it’s a short step to thinking about actual weave mazes on those
grids!

Tunnel Under Two Consecutive Corridors
One of the constraints we set for ourselves in this chapter was that a
passage may not attempt to tunnel beneath two consecutive corridors at
once. This was done only to keep our implementation simple, not because
it isn’t actually possible. How would you change our implementation to
remove this constraint?

These weave mazes are a great segue to another algorithm, called Kruskal’s
algorithm, that can be used for generating mazes. In the next chapter we’ll
see how it can be used not only to generate random mazes, but also to give
more control over our weave mazes, letting us specify where and how frequent-
ly passages weave.
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Part III

More Algorithms

Now that you’ve had a chance to experiment with
a few different algorithms, and potentially in some
unusual settings, it’s time to look at some other
novel ways to generate mazes. More algorithms!

 



CHAPTER 10

Improving Your Weaving
You might have noticed something odd about the program you wrote in the
last chapter, the one that generates weave mazes. Specifically, and especially
if you were experimenting with smaller mazes, you probably saw that some-
times your program that was supposed to generate weave mazes, didn’t. You
set it up, you ran the program, and all that came out was a boring, old, normal
maze.

The problem is that the technique described in the previous chapter is actu-
ally not very reliable. Don’t get me wrong—the technique is easy to understand,
straightforward to implement, and remarkably intuitive, so it has a lot going
for it! But because of how it depends on random chance to determine when
to tunnel under a passage, it is possible for a maze to be generated that
doesn’t weave at all. How embarrassing, right? That’s not the kind of result
you want, especially if you had just called a friend over to “see something
cool.”

Ideally, if we set out to generate a weave maze, we should be confident of
getting one. Even better, it would be lovely if we could somehow adjust the
frequency of the crossings, making them appear more or less often, and—as
long as we’re on the subject—we might as well mention how nice it would be
if we could specify exactly where the crossings ought to be in the maze.

Wouldn’t that be neat?

It turns out there’s an algorithm for that! Or rather, there’s this random maze
algorithm that just happens to be great at fine-tuning these weave mazes.
It’s based on Kruskal’s algorithm, and we’re about to explore it. First we’ll
look at how Kruskal’s algorithm itself works, and then see how it can be
applied to maze generation. After that, you’ll get to see how it can be used to
make those weave mazes just about as configurable as you’d like.
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Kruskal’s Algorithm
Kruskal’s algorithm was developed by the mathematician and computer sci-
entist Joseph Kruskal in 1956 to construct what are called minimum spanning
trees. Don’t be put off by the crazy vocabulary—spanning tree is really just a
fancy name for these perfect mazes we’ve been generating, and minimum
simply refers to the costs and weights we discussed in the previous chapter.

Basically, Kruskal was trying to solve the following problem. Let’s say you
start with a graph, or grid, where every possible passage that might connect
neighboring cells is given a cost. It might look something like the following
figure.

1
2

2
1

1

3

3
4 6 8

4

4

6 8

26 8
3

5

1 3 5

5

5

Merely constructing a spanning tree (we might say “perfect maze”) from that
is straightforward: you just pick passages in order to connect all of the cells
without forming any loops. The algorithms we’ve looked at so far do essentially
that, and might give you the following maze:

Here’s the puzzle, though. How do you construct a maze from that initial grid
whose passages have costs that sum to the lowest total value? What’s the
cheapest tree that can be built?

Kruskal’s approach to this is quite different from that of the algorithms we’ve
seen thus far. There’s no random walking involved at all—cells are actually
visited nonsequentially. And yet in spite of this, it actually works. Here’s how.
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First, we take that grid with the weighted passages and assign each cell a
unique identifier. In the following figure we’ve given each one a letter of the
alphabet, but simply numbering them would work just as well. These identi-
fiers represent unique sets, each of which contains a single cell—but that’ll
change shortly!
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Once those sets are all identified, the algorithm itself begins a loop in which
it repeatedly chooses and processes neighboring pairs of cells. Pairs are chosen
based on the weight of the passage that connects them, with smaller weights
having preference. Here, all of the passages with a weight of 1 are highlighted:
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In the event of a tie like this we get to pick whichever of those cells we like,
so let’s just choose the G,H pair. We link those two cells together, and then
merge them into a single set. This is done by picking one of the two sets and
moving all cells from the other into that one. The following figure shows that
the cell in H was merged into the G set.
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Then the algorithm goes around again, looking for the next passage with the
lowest weight. There are still several passages left with a weight of 1, so those
will all be processed next, resulting in the following configuration of cells:
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As the next figure shows, the cheapest passages at this point all have weights
of 2.
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Since we get to break ties arbitrarily, let’s say the algorithm picks the passage
connecting the G and L sets, and see what happens. The sets of the two cells
are compared and found to be different, so the cells are linked and the two
sets merged together. The next figure shows that all cells in L have been
merged into G now.
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These merges affect all cells in the given set, regardless of how large that set
might be, or how far from the passage the cells are. They’re essentially iden-
tifying little mazes-in-embryo, subsets of the grid that are linked together!
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This continues a few more times, linking together all of the cells joined by
passages with weight 2, as the following figure shows.
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On the next few iterations, all of the passages weighted 3 will be processed,
continuing to grow those little baby mazes like this:
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Moving on to the next pass, the cheapest passages are now all weighted 4,
and we run into our first little snag. Consider the passage highlighted on the
left in the following figure. If we were to select that passage and join those
two cells, we’d end up connecting two cells that both belong to the same set!
Since each set represents a self-contained little maze, that would mean adding
a loop to that maze, which we don’t want to allow.

(Although this does suggest an interesting way to generate braid mazes,
doesn’t it?)

We narrowly avoid catastrophe by skipping that edge entirely.
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The remaining 4-weighted passages are processed without surprises, giving
us the following figure:
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Almost there! The remaining lowest-cost passages are all 5’s, highlighted in
the following figure:
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We can ignore the one in the southeast corner, as that would connect two
cells that both belong to G. This leaves three more to choose from. Let’s grab
that cell in set D in the northeast corner and merge it into set A:
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And then let’s finish this off by connecting sets A and G via one of those two
remaining 5-weighted passages:
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At this point, every cell in the grid belongs to the same set, A, which means
we’re done! The final result is a perfect maze:

In a nutshell, then, the algorithm is:

1. Assign each cell to its own set.
2. Choose the pair of neighboring cells with the lowest cost passage between

them.
3. If the two cells belong to different sets, merge them.
4. Repeat 2 and 3 until only a single set remains.

We could implement this in code exactly as described—complete with
weighted passages connecting the cells—but it turns out that for our purposes,
we can simplify the algorithm a bit.

While the passage weights are important in some applications (where the
passages are usually referred to as edges and the cells as nodes), they aren’t
usually so critical when making mazes. In fact, to turn a grid into a maze
using Kruskal’s algorithm, we’d have to first assign random weights to all the
possible passages, before we could select them in order of those weights.

That’s kind of redundant. It’s actually far easier to just put all the passages
in a big list and select them randomly from the list. This little change converts
Kruskal’s algorithm into the Randomized Kruskal’s algorithm.

Let’s make it real in code.
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Implementing Randomized Kruskal’s Algorithm
To implement this, we’re going to create a new class to represent the state of
the algorithm—the collection of information that it will use internally. Once
we’ve got this State class written, the rest of Kruskal’s algorithm becomes
almost trivial to implement. Don’t take my word for it, though. Watch and
see!

As you saw in the previous section, Kruskal’s initially requires that each cell
be associated with a unique set. This suggests that, at a minimum, our State
class is going to need to track that association. We’ll need a way to query the
set that a particular cell belongs to, as well as the list of cells that belong to
a given set. Also, the algorithm wants to select random pairs of neighboring
cells on each iteration, so we could probably help things along by keeping a
list of those cell pairs.

Get things started by putting the following in a new file called kruskals.rb.

kruskals.rb
Line 1 class Kruskals

-

- class State
attr_reader :neighbors-

5

def initialize(grid)-

@grid = grid-

@neighbors = []-

@set_for_cell = {}-

@cells_in_set = {}10

-

@grid.each_cell do |cell|-

set = @set_for_cell.length-

-

@set_for_cell[cell] = set15

@cells_in_set[set] = [ cell ]-

-

@neighbors << [cell, cell.south] if cell.south-

@neighbors << [cell, cell.east] if cell.east-

end20

end
end

-

-

end
-

-

We’re nesting the State class within the Kruskals class, since it’s not going to be
particularly useful with any other algorithms. The initialize constructor (line 6)
takes a single argument, the grid to be processed. The @neighbors array on line
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8 will be used to track the pairs of neighboring cells, @set_for_cell (line 9) maps
cells to their corresponding set identifiers, and @cells_in_set (line 10) does the
inverse, mapping set identifiers to the cells belonging to those sets.

Then each cell is assigned to a new set (lines 13–16) and the @neighbors array
is constructed, with each neighbor pair being represented as a simple two-
element array.

Now, recall that the algorithm will try to merge each pair of cells as long as
they aren’t in the same set. To help make that decision, we’ll add a
can_merge?(left, right) method that will compare the sets of the two arguments.
Add this immediately after the State class’s initialize method.

def can_merge?(left, right)
@set_for_cell[left] != @set_for_cell[right]

end

No surprises there—it just queries the @set_for_cell mapping for each cell and
compares them, returning true if they are different (and therefore able to be
merged).

This leads, then, into the merging operation itself. Add this final method to
the State class, just after can_merge?.

Line 1 def merge(left, right)
- left.link(right)
-

- winner = @set_for_cell[left]
5 loser = @set_for_cell[right]
-

losers.each do |cell|

losers = @cells_in_set[loser] || [right]
-

-

@cells_in_set[winner] << cell-

@set_for_cell[cell] = winner
end

10

-

-

-

end
@cells_in_set.delete(loser)

-

This just links the two cells together (line 2), and then loops over the cells in
the loser set (the one that right belongs to). Each cell in that set is moved to the
winner set (the one containing left), and then the loser set is removed (line 13).

Now, here’s the best part. With that class all set to hold and maintain the
state for us, Randomized Kruskal’s algorithm becomes so simple it makes me
giddy. Add the following method just before the final end keyword in kruskals.rb.
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def self.on(grid, state=State.new(grid))
neighbors = state.neighbors.shuffle

while neighbors.any?
left, right = neighbors.pop
state.merge(left, right) if state.can_merge?(left, right)

end

grid
end

Seriously, that’s it! Given a grid and a state object (which defaults to a new
State instance if not otherwise specified), the method simply sets up a random-
ized list of all the neighbor pairs, and then loops over them until the list is
empty. Each pass through the loop removes one pair from the list, checks to
see if they can be merged and—if so—merges them.

Test that now by putting the following in kruskals_demo.rb.

kruskals_demo.rb
require 'kruskals'
require 'grid'

grid = Grid.new(20, 20)
Kruskals.on(grid)

filename = "kruskals.png"
grid.to_png.save(filename)
puts "saved to #{filename}"

Running it and opening the resulting
kruskals.png, you ought to see something like
the figure.

Looks random to me!

Better Weaving with Kruskal
So that’s Randomized Kruskal’s algorithm, and you might be wondering now
what this has to do with weave mazes. That was, after all, how this chapter
began, and I did promise that Kruskal’s would apply. Let me assure you, it
definitely does.

Recall how weave mazes were presented in the previous chapter, where the
algorithm randomly attempts to move over or under passages as opportunities
to do so present themselves. This certainly works, but it’s not very consistent.
Sometimes you may get a maze with a dozen crossing passages, and other
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times you might only get one or two (or none at all!). That’s the nature—and
consequence—of random.

However, what we’d like to be able to do is generate mazes with a consistent,
predictable number of crossings. Different applications have different needs,
so it would be nice to be able to dial back the weave density for a lightly woven
maze, or dial it all the way to eleven to pack the crossings in as tightly as
possible.

So what can we do?

Well, imagine if we could dictate the location
of these crossings. That would let us explicitly
declare how dense the weave will be, and
would also let us fit the crossing passages to
specific patterns and designs. The process
would begin with something like this figure,
where some number of these crossing pas-
sages have been placed (perhaps randomly)
on the grid.

From that, then, we need to somehow generate a complete maze that includes
the crossings at those positions. In other words, we need to take those
unconnected, disjoint passages and somehow merge them into the final maze…

1 2 3 4 5

6 2 6 7 8

9 2 10 11 12

13 14 15 15 15

16 17 18 11 19

Sound familiar? It should. This is exactly the
kind of thing that Kruskal’s algorithm does,
remember. If we were to take that grid with
the crossings in the previous figure and
number every contiguous grouping of cells
with a unique number, we’d get this figure, a
familiar configuration very much like the
starting state of Kruskal’s.

In fact, if we were to apply Kruskal’s algorithm
to that grid, arranging the starting sets as
shown by those numbers, we would actually
get a maze that incorporated those crossings,
as shown.

In other words, just what we wanted! We
could theoretically place those crossings any-
where we wanted, pell-mell across the grid,
and produce a really dense weave maze!
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It turns out, though, that we can’t quite just go nuts with this. Anytime you
try to center a new crossing on a cell that is already linked to another cell,
you have to tread very carefully or risk adding cycles to your maze, or worse,
putting your grid into an inconsistent state. Passages can wind up being
hidden by tunneling under passages moving in the same direction, for
instance.

This is not to say it is impossible to make it work—you just have to go care-
fully. Generally, it’s easiest to simply make sure that any crossing you add
is centered on a cell that hasn’t yet been linked to anything. This is the way
we’ll do it when we implement these Kruskal weave mazes, next.

Implementing Better Weaving
To make this work, we’re going to add a method to our Kruskals::State class so
we can install those crossings in it. That method will be supported by a simple
subclass of our WeaveGrid from the previous chapter. With those changes in
hand, generating the actual maze will be really straightforward.

So, first things first, open up kruskals.rb and add the following method just after
the merge method in Kruskals::State.

Line 1

return false if cell.links.any? ||
def add_crossing(cell)

-

!can_merge?(cell.east, cell.west) ||-

!can_merge?(cell.north, cell.south)-

5

- @neighbors.delete_if { |left,right| left == cell || right == cell }
-

- if rand(2) == 0
merge(cell.west, cell)-

merge(cell, cell.east)10

-

@grid.tunnel_under(cell)-

merge(cell.north, cell.north.south)-

merge(cell.south, cell.south.north)
else

-

15

merge(cell.north, cell)-

merge(cell, cell.south)-

-

@grid.tunnel_under(cell)-

merge(cell.west, cell.west.east)20

merge(cell.east, cell.east.west)
end

-

-

-

-

end
true

25
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This method will attempt to add a new crossing centered on the given cell,
but it won’t do so blindly. Line 2 makes sure that the crossing is not centered
on a cell that’s already been linked (as we talked about), and lines 3–4 ensure
that adding the crossing won’t create a loop in the maze. (This would happen,
for instance, if the east and west cells of the crossing both happened to be
previously connected via a path somehow.)

Once we’re confident that the crossing can be added, the @neighbors list is
checked and all pairs that include the given cell are removed (line 6). This
ensures that when we eventually run our Randomized Kruskal’s algorithm
on the grid, the algorithm won’t try to reprocess this cell that we’ve already
processed by hand.

On line 8, we randomly determine which way the crossing should be oriented.
The center cell can either be a horizontal passage, with the tunnel moving
vertically beneath it, or it can be a vertical passage, with the tunnel moving
horizontally. If we were to always pick just one or the other exclusively, the
resulting maze would look skewed, with overpasses always going one way or
the other.

Once we know how the crossing will be oriented, the cells on either side of
the center cell are merged with it, forming that vertical or horizontal passage,
and then the grid is called on to tunnel under it. Finally, the under-cell is
merged to the two remaining cells in the crossing.

That’s the hardest part of this whole thing! The rest is all downhill, requiring
only two simple subclasses to help us tweak the behavior of WeaveGrid. We
want some of the weave behavior from the previous chapter (like under-cells,
and proper rendering of those tunneling passages), but we don’t want the
maze algorithm itself to try to add new tunnels. We’re adding those explicitly,
before the algorithm runs. To turn off that tunneling behavior, we just need
to override the neighbors method of OverCell, to have it return only the immediate
neighbors of the cell (and not those that can only be reached via tunneling).

Create a new file called kruskals_weave_demo.rb, and start it off with the following
two lines:

kruskals_weave_demo.rb
require 'kruskals'
require 'weave_grid'

This pulls in our implementation of Kruskal’s algorithm, and the WeaveGrid
class (and related cell classes) that we implemented before.
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Next, we’ll subclass OverCell and override the neighbors method, as described.
Add the following class just after those require statements.

class SimpleOverCell < OverCell
def neighbors

list = []
list << north if north
list << south if south
list << east if east
list << west if west
list

end
end

It’s essentially just the original implementation of Cell#neighbors. (Yes, the
duplication is probably indicative of a design smell, and we should really
refactor this all eventually, but let’s just roll with it here.)

Now that we have this cell subclass, we need to tell the grid to use it instead
of the OverCell. To make that happen, we’ll subclass WeaveGrid and override
prepare_grid. Put this subclass in the same file, just after SimpleOverCell.

class PreconfiguredGrid < WeaveGrid
def prepare_grid

Array.new(rows) do |row|
Array.new(columns) do |column|

SimpleOverCell.new(row, column, self)
end

end
end

end

And that’s really the extent of the changes we have to make! Now the fun
begins. We’ll instantiate our grid and the Kruskals::State object, and scatter some
crossings around. Add this just after the definition for PreconfiguredGrid.

grid = PreconfiguredGrid.new(20, 20)
state = Kruskals::State.new(grid)

grid.size.times do |i|
row = 1 + rand(grid.rows - 2)
column = 1 + rand(grid.columns - 2)
state.add_crossing(grid[row, column])

end

This naively picks a random cell from the grid and tries to put a crossing on
it, repeating over and over for as many cells as there are on the grid. In reality
the number of possible crossings will be much, much lower (due to the
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restrictions we’ve placed on where these crossings can go), but grid.size gives
us a convenient upper bound.

Once we’ve packed as many crossings into the grid as we possibly can, we
get to move on to the climax of this show: generating and displaying the maze.
Add this at the very end of that kruskals_weave_demo.rb file:

Kruskals.on(grid, state)

filename = "kruskals.png"
grid.to_png(inset:0.2).save(filename)
puts "saved to #{filename}"

The only bit to notice here is the inset argument passed to to_png. We could fall
back to the default inset size of 0.1, but aesthetically, with weaves as densely
packed as these will be, the maze is easier to see when the inset is slightly
larger.

Go ahead and run that. You ought to get something as gloriously woven as
this:

Now that’s what I call a weave maze!
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Your Turn
You’ve learned a new algorithm, and you’ve already seen one very practical
application of it, in making weave mazes much more reliable and configurable
than they were in the previous chapter. With this technique, you can get a
weave maze every time, regardless of the size of the maze.

Where else can you take the ideas presented in this chapter? Consider the
following possibilities.

Adjusting Weave Density
Now that you know how to pack those weaves in as densely as you wish,
how might you dial it down to something in-between? Given some contin-
uum moving between 0 (no weaves) and 1 (maximum weave density), what
would a maze with a weave density of 0.5 look like?

Exploring Templates
The crossing pattern that we applied to the mazes in this chapter is one
example of a template. Other possible templates include spirals, open
rooms, zig-zags, and any number of other ways of arranging corridors.
The following figure shows an example of a spiral template applied four
times to a maze:

How would you implement a spiral template like this, using the techniques
described in this chapter? What other templates can you think of?

Combining Templates
Once you’ve played with a few different template styles, try combining
them. Mix spirals and rooms with a weave maze and see what kind of
craziness you can come up with.

Applying Different Algorithms
Kruskal’s algorithm was presented in this chapter as a great way to
incorporate templates into a maze, but it certainly isn’t the only way.
Other algorithms can be adapted to this, too, like Aldous-Broder or the
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Recursive Backtracker. How would you adapt those algorithms to this
technique?

Tweaking the Algorithm’s Bias
Kruskal’s, by itself, is not strongly biased. The mazes it generates tend
to have slightly more dead ends than those from the unbiased algorithms
like Aldous-Broder, but it’s not something that would jump out at you if
you were to color the mazes. How could you change that? What could you
do to the neighbor selection criteria, for instance, that would make
Kruskal’s generate mazes with visually obvious textures?

Super-Dense Weaves
Be warned: this one is a bit of a science project! I mentioned in passing
that it’s easiest to build these weave mazes if crossings are centered only
on cells that have not already been linked to other cells. If you disregard
that warning, you’ll find that your weaves will want to overlap, with (for
example) east-to-west tunnels trying to move beneath east-to-west pas-
sages. For the densest possible weave mazes, how might you overcome
that?

With the Randomized Kruskal’s algorithm under your belt, it’s time to look
at another algorithm that started life as a minimum spanning tree algorithm:
Prim’s.
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CHAPTER 11

Growing With Prim’s
The whole “minimum spanning tree” problem turns out to have lots of appli-
cations, like finding optimal ways to build out telephone lines, or the best
way to structure a computer network. Kruskal’s algorithm was one way to
solve it, but it’s not the only way, which means that we ought to be able to
find yet other algorithms that we can bend to our will.

(Mwa-hahahaha!)

Sure enough, there is another algorithm, called Prim’s, and sure enough, it
adapts readily to random maze generation. We’ll take a look at how this
algorithm works, and then we’ll see two ways that it is commonly implemented
for mazes: a simplified version, and a “true” version. Lastly, we’ll take a look
at a closely related algorithm, called the Growing Tree algorithm, which can
actually be configured to behave not only like Prim’s, but even Recursive
Backtracker!

Introducing Prim’s Algorithm
Prim’s algorithm was first developed in 1930 by a Czech mathematician named
Vojtěch Jarník, but it gets its name from Robert C. Prim, a computer scientist
who rediscovered it independently in 1957. It works similarly to Dijkstra’s
algorithm, starting at one point in the grid and then moving outward like
water flowing, but in Prim’s case it does more than just measure distances
and costs. The end result of Prim’s is one of those fancy minimum spanning
trees—or, in our case, a maze.

As with Kruskal’s algorithm, Prim’s works by considering the weights on the
connections between cells—passage costs—rather than on the individual cells
themselves. We’ll look at how this comes together, but then we’ll take a step
back and consider some simplifications that make it easier to implement.
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So, as with Kruskal’s, we start with a grid and indicate all of the costs of the
potential connections between cells. Let’s say our grid is set up like this, with
the given passage costs:
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Prim’s algorithm, like Dijkstra’s, starts at an arbitrary cell and works outward,
so our next step is to pick a starting point. Let’s choose this one:

1
2

2
1

1

3
4 6 8

4

4

6 8

26 8
3

5

1 3 5

5

5

3

We’ll color it yellow here to show that it’s been added to the maze. (The white
cells aren’t yet in the maze—they’re still waiting for their chance. By the time
we’re done, though, they’ll all be colored yellow, too.)

Next, we look at all the possible passages from that starting cell and choose
the one with the lowest cost. In this case, it’s the passage with a cost of 1,
heading west, so we choose that and link the current cell to its western
neighbor, like this:
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Note that we color that neighbor yellow now, too, because it’s been added to
the maze. We’re growing the maze outward, one passage at a time.

Now we do that again, only this time we want to choose the lowest cost passage
attached to any of our visited cells. It’s like a puddle of water started at that
first cell, and it can now flood outward to any cell that it’s touched. It turns
out that the lowest cost cell is the one marked 2, heading south from our first
cell, so we choose it and link those two cells:
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You can probably guess what the next step is—we’re going to do this again,
looking for the lowest cost passage attached to any of those three cells. This
time, though, we’ve got a tie: there are two cells, both worth 3. In this case,
we break the tie by choosing one arbitrarily, so we’ll go with this one:
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The algorithm continues like this, with each pass choosing the next passage
with the lowest cost. A few more iterations and we can see the maze starting
to come together:
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Eventually, though, we’ll probably run into a situation like this one:
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It’s another tie, which is familiar enough, but notice the passage in the
southeast corner. It connects two cells that are both already in the maze. If
that passage were to be selected it would add a cycle, which we don’t want
to allow. The solution is to do like we did for Kruskal’s algorithm and skip
those connections, considering only those that link to a cell that isn’t already
in the maze. In this case, that leaves us with two more possible passages. We
choose one arbitrarily, like this:
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The algorithm repeats until every cell has been added to the maze, at which
point you’re left with something like this:
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Perfect. (Literally!)

Now that we’ve walked through how the full algorithm works, let’s look at two
ways to implement it, beginning with a common variation that we’ll call the
“simplified” Prim’s algorithm.

Simplified Prim’s Algorithm
Simplified versions of Prim’s algorithm are fairly common among maze gener-
ators, and are typically referred to merely as “Prim’s algorithm” by many
sources. However, unlike the real algorithm, these simplified versions do not
actually bother with different costs and weights for passages. In fact, these
algorithms tend to be similar to what you would get if you ran the real Prim’s
algorithm on a grid in which every passage had the same cost.

Recall how the algorithm began, after picking a cell at random as the starting
point: it looked for the lowest cost passage that connected to that starting
cell. But if every passage had the same weight, they’d all tie, and we’d break
the tie by choosing among the candidates at random.

So if every passage in the entire grid had the same weight, Prim’s would
simply choose a connecting passage at random at each step. This happens
to be essentially what these simplified algorithms do, with one notable differ-
ence: instead of choosing passages, they typically choose cells.

There are several possible variations that we could implement, but we’ll stick
with one of the simplest here. Put the following in prims.rb.

prims.rb
Line 1 class SimplifiedPrims

-

- def self.on(grid, start_at: grid.random_cell)
active = []-

active.push(start_at)5

-

while active.any?-

cell = active.sample-
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available_neighbors = cell.neighbors.select { |n| n.links.empty? }-

10

if available_neighbors.any?-

neighbor = available_neighbors.sample-

cell.link(neighbor)-

active.push(neighbor)-

else15

active.delete(cell)-

end-

end-

-

grid
end

20

-

end
-

-

The process starts on line 4 by initializing an array, called active, and then
adding our starting point to it (a random location in the grid, by default).
Then, the rest of the algorithm repeats for as long as there are cells in that
list.

Each time through the loop, the algorithm chooses a random cell from that
active list (line 8), and then finds the neighbors of that cell that haven’t yet
been linked (line 9).

If there aren’t any such neighbors it means the chosen cell is surrounded by
the maze and won’t be able to yield any more passages. In that case, the cell
is removed from the active list (line 16), and the process goes around again.
Otherwise, a random neighbor is selected from those available neighbors
before being linked to the current cell and added to the active list (lines 12–14).

Test the algorithm with the following program:

prims_demo.rb
require 'prims'
require 'grid'

grid = Grid.new(20, 20)
SimplifiedPrims.on(grid)

filename = "prims-simple.png"
grid.to_png.save(filename)
puts "saved to #{filename}"

Running that ought to generate something like the following maze:
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This looks pretty good, but you might detect some hints of the algorithm’s
bias here. This is especially clear if the maze is colored, as in the following
figure. Here, Dijkstra’s algorithm (as described in Coloring Your Mazes, on
page 47) was run from the same cell that Prim’s started on:

That radial texture is a consequence of the evenly weighted passages. With
all other things being equal, the algorithm will try to simply spread evenly
outward from the starting cell, creating that “shattered glass” pattern.

With just a little effort, though, we can do quite a bit better. All it requires is
that we remain truer to the original algorithm and take cost into consideration.

True Prim’s Algorithm
Although the algorithm we’ll implement next is called a “true” Prim’s algorithm,
it’s still slightly modified. Rather than assigning weights to passages, it assigns
weights to cells, and then chooses cells based on those costs. This gives us
mazes very similar to those from a fully passage-weighted Prim’s algorithm,
and for significantly less effort.

Open up prims.rb again and add the following class at the bottom of it:

class TruePrims

def self.on(grid, start_at: grid.random_cell)
active = []
active.push(start_at)
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costs = {}➤

grid.each_cell { |cell| costs[cell] = rand(100) }➤

while active.any?
cell = active.min { |a,b| costs[a] <=> costs[b] }➤

available_neighbors = cell.neighbors.select { |n| n.links.empty? }

if available_neighbors.any?
neighbor = available_neighbors.min { |a,b| costs[a] <=> costs[b] }➤

cell.link(neighbor)
active.push(neighbor)

else
active.delete(cell)

end
end

grid
end

end

It’s nearly identical to the simplified version of the algorithm, except for the
highlighted bits. For one thing, a costs mapping is created that randomly
assigns a cost (0–99) to each cell. That mapping is then used to find the cell
with the lowest cost via the array’s min method. This is actually done up to
twice on each pass through the loop—once on the active list to find the active
cell with the lowest cost, and then again to find which of that cell’s available
neighbors has the lowest cost.

For the sake of simplicity, the preceding code uses Ruby’s Array#min
method to find the cheapest cell. In practical use, though, some-
thing like a priority queue would be far more efficient!

Running that, we get a maze with a noticeably different texture:

Coloring it the same way we did for the simplified algorithm, we can see that
the radial texture is gone:
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In fact, the texture of this maze is quite similar to what you’d get from
Kruskal’s algorithm, which shouldn’t be surprising, since both algorithms
are intended to generate the same kind of maze.

So, there you have two flavors of Prim’s algorithm: the simplified version and
the so-called true version. Each generates mazes with markedly different
textures from the other, and yet the algorithms themselves are nearly identical.
In fact, the only significant difference between them is the way in which cells
were selected from that active list.

This simple observation turns out to be the basis of another maze algorithm,
called Growing Tree. Let’s take a look at it next.

The Growing Tree Algorithm
Let’s rewind a moment and consider again those two versions of Prim’s algo-
rithm that we’ve looked at. Both work by starting at an arbitrary cell, and
both work by then growing outward from that cell by selecting neighboring
cells. In the case of the simplified version, neighboring cells are selected at
random. For the “true” version, cells are selected based on their cost.

But those are hardly the only two ways to select cells from that list. What if
you always tried to select the cell nearest to the starting point? Or the cell
that was most recently added to the list? Or—here’s a good one—what if you
were to combine multiple conditions somehow, picking at random half the
time, and picking based on weight the other half of the time?

What we have here is the basis of the Growing Tree algorithm. It works like
this:

1. Choose a cell at random from the grid. Add it to the active list.
2. Select a cell from the active list.
3. Choose a random, unvisited neighbor of that cell. Link the two together,

and add the neighbor to the active list.
4. Repeat steps 2 and 3 until every cell has been linked.
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The magic happens in step 2, where a cell is selected. By plugging in different
cell selection criteria, vastly different mazes can be constructed. In fact, the
implementations of both the simplified and the true Prim’s algorithms in this
chapter are really just special cases of this Growing Tree algorithm!

Let’s implement this. We’ll use Ruby’s blocks (anonymous functions) to define
the how cells are selected.

Put the following code in growing_tree.rb.

growing_tree.rb
class GrowingTree

def self.on(grid, start_at: grid.random_cell)
active = []
active.push(start_at)

while active.any?
cell = yield active➤

available_neighbors = cell.neighbors.select { |n| n.links.empty? }

if available_neighbors.any?
neighbor = available_neighbors.sample
cell.link(neighbor)
active.push(neighbor)

else
active.delete(cell)

end
end

grid
end

end

Once again, you’ll notice that it is mostly identical to the Prim’s algorithm
implementations we’ve already seen, with one significant difference. The
highlighted line uses Ruby’s yield keyword to invoke whatever anonymous
block of code has been passed to the on(grid) method. The list of active cells is
passed to that anonymous block, which is expected to return one of the cells
in that list.

To see how that works in practice, take a look at the following code.

growing_tree_demo.rb
require 'growing_tree'
require 'grid'

def save(grid, filename)
grid.to_png.save(filename)
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puts "saved to #{filename}"
end

grid = Grid.new(20, 20)
GrowingTree.on(grid) { |list| list.sample }➤

save(grid, "growing-tree-random.png")

grid = Grid.new(20, 20)
GrowingTree.on(grid) { |list| list.last }➤

save(grid, "growing-tree-last.png")

grid = Grid.new(20, 20)
GrowingTree.on(grid) { |list| (rand(2) == 0) ? list.last : list.sample }➤

save(grid, "growing-tree-mix.png")

This is much like all of our previous programs, but a separate method, save,
has been introduced to centralize the saving of grids as images.

The interesting bits are on the highlighted lines, where the Growing Tree
algorithm is applied to a grid. In the first one, a block is provided that simply
returns a random element from the list passed to it (list.sample). The second
one always returns the last element of the list (list.last), and the third gets
tricky, choosing the last element half the time, and a random element the
rest of the time.

Running that program will generate three different images. Open them up
and see what you get. The following figure shows the three different mazes
side-by-side, including coloration to more clearly see the different textures.

Growing Tree 
(random)

Growing Tree 
(last)

Growing Tree 
(mix)

The image on the left is where the cells were picked at random from the active
list on each iteration, and as we would expect it looks exactly like the mazes
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generated by the Simplified Prim’s algorithm. The middle one, though—that
looks familiar, too. By always choosing the last element from the active list,
we generated a maze with long, winding passages…

It’s the Recursive Backtracker!

If you need to, glance back at The Recursive Backtracker Algorithm, on page
73 to refresh your memory of that algorithm. Recall that it always considers
the cell on the top of the stack to be the current cell, and always chooses a
random unvisited neighbor of that current cell at each step.

Compare that to what Growing Tree does when you always select the last
element from the active list. At each step of the algorithm, Growing Tree adds
a new element to the end of the list. By choosing that newly added element
again the next time around, it effectively becomes the same as the current
cell in Recursive Backtracker.

In other words, with a single, ridiculously simple change, the Growing Tree
algorithm can re-create either the Simplified Prim’s algorithm or the Recursive
Backtracker!

It gets better, though. Let’s look at the third image that we generated, the one
that chose the last cell half the time, and a random cell the other half of the
time. Especially if you look at the colored version, you can see a vaguely
radial texture, reminiscent of Simplified Prim’s, but you can also see how the
passages tend to wind around a bit, too. In other words, we’ve taken aspects
of the Simplified Prim’s algorithm and merged them with the Recursive
Backtracker, giving us features of both algorithms.

It’s like we’re playing with the DNA of those two algorithms!

This is every bit as powerful as it sounds. Want more dead ends? Choose
random more often. Want longer passages? Choose the last element more
often. It’s like we’ve been given a slider to control the texture of the resulting
maze!

Your Turn
We added a pretty powerful tool to your toolbox just now. After looking at two
simple variations on Prim’s algorithm, we saw how they could be generalized
into a third algorithm, Growing Tree, and further saw that Growing Tree could
be configured to mimic attributes of different algorithms, simultaneously!
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There are a lot of different places you could take this. If you’re uncertain what
to try next, consider some of the following ideas, but don’t be afraid of jumping
in completely different directions, too!

“Modified” Prim’s Algorithm
As mentioned, there are several “simplified” variants of Prim’s algorithm.
One, usually referred to as a “modified” Prim’s algorithm, gives slightly
better results than the simplified version given in this chapter. It’s a bit
more fiddly to implement, which makes it great for a “Your Turn” challenge!

It works like this:

1. Initialize three sets: in, frontier, and out.

2. Place the starting cell into the in set, and all of its neighbors into the
frontier set. Add all remaining cells to the out set.

3. For as long as there are cells in the frontier set, remove one at random,
add it to the in set, and link it to a random in neighbor. Then move
all of its out neighbors to the frontier set, and repeat.

Give it a try and see what you think!

“Truest” Prim’s Algorithm
Try implementing a proper True Prim’s algorithm by building and using
a list of neighboring pairs, Kruskal-style. Initialize the list to contain just
those pairs that include the starting cell, and at each step of the algorithm
select from (and extend) that list with the pairs that include the new cell.
Once you’ve got it working, think of ways to compare it to the True Prim’s
implementation presented in this chapter. Coloring mazes and counting
dead ends are two ways, but what other ways can you think of to quantify
how different or similar the mazes of those two algorithms are?

Other Cell Selection Methods
Growing Tree was presented in this chapter with three different cell
selection methods: random, last, and a mix of the two. These only scratch
the surface, though. What other cell selection methods can you think of?
Here are a few possibilities to try:

• Oldest—always choose the first cell in the list.

• Median—always choose the cell in the middle of the list.

• Same Cell—choose at random, but once you’ve selected a cell once,
choose it again and again until it has no more unvisited neighbors.
Then choose another random cell, and repeat.
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• Most Distant—always choose the cell furthest from the cell that was
selected previously.

Growing Tree with Cell Costs
What if you were to track cell costs and use those to drive the cell selection
of Growing Tree? What if you do a mix between last- and cost-wise selec-
tion? How does that compare to the mix between last-wise and random?
What happens when you splice Simplified Prim’s with True Prim’s?

Passage-wise Growing Tree
Growing Tree usually keeps a list of cells, as described in this chapter,
but what if you tracked passages instead? You could implement the “real”
Prim’s algorithm with it, for one thing, but do any of the other selection
methods work differently?

Configure Neighbor Selection
Looking closely at the implementation of True Prim’s given in this chapter
and comparing it with the Growing Tree implementation, you might have
noticed that True Prim’s actually chooses neighbor cells based on weight,
whereas Growing Tree just chooses them at random. What if you were to
make that configurable, too? What happens when Growing Tree always
wants to choose the neighbor to the west of the current cell? You could
even add regional variation, where cells in the eastern half tend to go
north and those in the western half prefer east.

Now that you’ve had a chance to explore Growing Tree and friends, we might
as well finish off your repertoire of maze algorithms by exploring two particu-
larly novel specimens. One vaguely resembles Sidewinder, but the other…well.
Read on and see!
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CHAPTER 12

Combining, Dividing
So many algorithms! From the Binary Tree and Sidewinder, to Kruskal’s and
Prim’s and Growing Tree, you’ve learned a lot about the different methods of
generating random mazes. Ten methods, to be precise—and eleven, if we’re
counting Dijkstra’s.

There are only two more left to cover!

The first, called Eller’s algorithm, is a fast, efficient, and clever technique that
seems born of the unlikely union of the Sidewinder algorithm and Kruskal’s.

The second is a unique algorithm called Recursive Division, which operates
very differently from any of the others we’ve covered. Its fractal nature has
some interesting consequences, which we’ll exploit to produce rooms in our
mazes.

But first, Eller’s. Here we go!

Eller’s Algorithm
Eller’s algorithm was invented by Marlin Eller in 1982. It shares some
remarkable similarities with Sidewinder (on page 12), and yet manages to
avoid the striking bias of that algorithm by incorporating some of the features
of Kruskal’s (on page 158) as well.

Like Sidewinder, it works by considering only a single row at a time, while
building up sets (Kruskal-style) to keep track of which cells are reachable
from which other cells. Let’s work through an example.

We’ll start at the top row (for convenience’s sake), and we’ll highlight the
current row in yellow, to keep track of where we’re at.
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The first thing we do is assign each cell in that row a number, effectively
putting each one in a set all by itself, like we did for Kruskal’s (but on a
smaller scale). Like this:

1 2 3 4 5

Then, we randomly link adjacent cells, but only if they aren’t in the same set.
As with Kruskal’s algorithm, when we link adjacent cells, we also merge the
two sets. Let’s say we decide to link cells 1 and 2 (merging both into set 1),
and cells 3 and 4 (merging into set 3). We get something like this:

1 1 3 3 5

The next step is to choose at least one cell at random from each remaining
set, and carve passages south. We can choose more than one cell from any
given set if we want to, but we must choose at least one. After choosing a few
cells and carving south, we might get something like the following:
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1 1
1

3
3

3 5
5

Note that carving south also adds those cells to the set of the cell that linked
them, allowing us to keep track of which cells are ultimately connected
between rows. (This is a key difference between this algorithm and Sidewinder!)

Carving those passages south finishes that row, and we advance to the next
one:

1 3 5

Three cells in this row already belong to a set, because they were linked to
cells in the previous row. The two other cells, though, need to be assigned
new sets. These new sets can be assigned however we like, just so long as
they are unique. Here, we’ve opted to continue counting from where the pre-
vious row left off:

16 73 5

And then we go around again. We:

1. Randomly link adjacent cells (as long as they don’t share a set),
2. Choose at least one cell from each set to carve south, and then
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3. Advance to the next row.

1

1
6
6

7
7 7

1 7

We repeat those three steps for each row, all the way to the bottom. By the
time we reach the last row, our maze looks something like this:

6 69 1011

At this point we do something a bit different. Each of those sets can be thought
of as a loose thread, dangling from the edge of this tapestry that we’ve just
constructed. In order for the maze to be finished neatly, those threads have
to be all tied up. That is to say, those remaining sets need to be merged
together.

We do this by looking at each cell in that last row, and then linking (and
merging) each with its neighbors, as long as those neighbors belong to different
sets. (You never merge two cells that belong to the same set! That would
introduce a loop into the maze.) The final result is this:

Not bad! Next let’s see how it works up in code.
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Implementing Eller’s Algorithm
Eller’s algorithm works strictly one row at a time, so our implementation will
take advantage of that by leaning on a row-centric state object. Once we have
that state object, the rest of the algorithm comes together quickly.

We’ll start with the RowState class, which we’ll place under the namespace of
the Ellers class. It will all go in ellers.rb.

ellers.rb
class Ellers

class RowState
def initialize(starting_set=0)
@cells_in_set = {}
@set_for_cell = []
@next_set = starting_set

end
end

end

It’s certainly not much yet, but it does get us started. The initialize method has
a starting_set parameter (defaulting to 0), which will be used to determine what
value is used for new sets. It then sets up a few instance variables that will
be used for keeping track of sets within the current row.

The next three methods allow us to query and manipulate those sets. Add
these just after that initialize method, within the RowState class.

def record(set, cell)
@set_for_cell[cell.column] = set

@cells_in_set[set] = [] if !@cells_in_set[set]
@cells_in_set[set].push cell

end

def set_for(cell)
if !@set_for_cell[cell.column]

record(@next_set, cell)
@next_set += 1

end

@set_for_cell[cell.column]
end

def merge(winner, loser)
@cells_in_set[loser].each do |cell|

@set_for_cell[cell.column] = winner
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@cells_in_set[winner].push cell
end

@cells_in_set.delete(loser)
end

The record method records a given set for the given cell. The set_for method
checks to see if the given cell belongs to a set yet (if not, it assigns it to one)
and then returns that set. And merge moves all cells from the loser set to the
winner set.

The following two methods finish off the RowState class.

def next
RowState.new(@next_set)

end

def each_set
@cells_in_set.each { |set, cells| yield set, cells }
self

end

The #next method returns a new RowState instance, counting sets from where
the current instance left off. And the each_set method iterates over the sets in
the current row, yielding each set and its collection of cells to the attached
block.

All that’s left, then, is to implement Eller’s algorithm itself. Put the following
method just after the end of the RowState class, but inside the Ellers namespace.

Line 1 def self.on(grid)
- row_state = RowState.new
-

- grid.each_row do |row|
row.each do |cell|5

next unless cell.west-

-

set = row_state.set_for(cell)-

prior_set = row_state.set_for(cell.west)-

10

should_link = set != prior_set &&-

(cell.south.nil? || rand(2) == 0)-

-

if should_link-

cell.link(cell.west)15

row_state.merge(prior_set, set)-

end-

end-

-

if row[0].south20
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next_row = row_state.next-

-

row_state.each_set do |set, list|-

list.shuffle.each_with_index do |cell, index|-

if index == 0 || rand(3) == 025

cell.link(cell.south)-

next_row.record(row_state.set_for(cell), cell.south)-

end-

end-

end30

-

row_state = next_row-

end-

-

end
end

35

The first thing we do is create a RowState object, and then start looping over
every row in the grid. For each row that we’re given, we consider its cells in
sequence (line 5), skipping the west-most cell (line 6) because we’re going to
be trying to link each cell to its western neighbor, and it doesn’t have one.

Lines 8 and 9 query the row state for the sets that the current cell and its
western neighbor belong to, and then we check to see if we ought to link the
two cells together (lines 11–12). Remember, we can only link them if they
belong to different sets! Assuming they are different sets, we will always link
them if we’re in the last row (that is, cell.south.nil?); otherwise we decide random-
ly.

If things work out so that the cells need to be linked, we link them, and then
merge the two sets together (line 16). Here, we’re merging to the west so that
the current cell’s set disappears and is replaced by the previous cell’s set.

Once we finish linking adjacent cells in the current row, we move to the second
phase: choosing which cells to link south. We only do this if there’s actually
a row to the south (line 20). It works by first preparing a new RowState instance
for the next row (line 21), and then looking at each set of cells in the current
row (line 23). For each of those sets, we randomize the associated list of cells
(line 24) and iterate across them.

Because we must carve south from at least one cell in each set, we require
that the cell at index 0 be that lucky winner (line 25). (Remember, we shuffled
the list on the previous line, so the “first” cell here is actually randomly
selected.) If there is more than one cell in the set, subsequent cells are given
a one-in-three chance of being selected as well. (There’s nothing magical about
those odds, by the way. Feel free to experiment with that!)
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If the cell is selected, we carve south from it (line 26), and then put that
southern cell in the same set as the cell we just selected (line 27).

After doing this for each of the sets in the current row, we then replace the
current row state with the new row state (line 32), and do the whole thing
again.

Got all that?

Let’s try it out with our usual demo program. Put the following in ellers_demo.rb.

ellers_demo.rb
require 'ellers'
require 'grid'

grid = Grid.new(20, 20)
Ellers.on(grid)

filename = "ellers.png"
grid.to_png.save(filename)
puts "saved to #{filename}"

Running that will produce something like the following lovely little maze:

To see how this compares to Sidewinder, we can generate and color two mazes,
one using Eller’s algorithm and one using Sidewinder. Putting them side by
side, we get the following:
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On the left is the maze generated using Eller’s algorithm and on the right,
Sidewinder. You can hardly miss that pronounced vertical stripe in the
Sidewinder maze! As they say: you get what you pay for.

Sometimes, though, you can get more than you pay for. Let’s look an algorithm
that really is more than the sum of its parts.

Recursive Division
The Recursive Division algorithm is unique among the algorithms we’ve looked
at, for two reasons. First of all, it treats the maze as a fractal—a shape whose
component parts are all identical (or nearly so) to the whole. Second, instead
of carving passages like the other algorithms have done, this one begins with
a wide open space and adds walls until a maze is produced. Algorithms of
this nature are called wall adders (as opposed to passage carvers).

It works by dividing the grid into two subgrids, adding a wall between them
and a single passage linking them. The algorithm is then repeated on each
side, recursively, until the passages are the desired size.

Let’s walk through it.

We begin with an open grid, with no interior walls. (The grid lines are shown
here in light gray, to make it easier to see where the cells are, but they’re only
for illustration.)

We divide the grid in half, either horizontally or vertically, along any of those
grid lines. Here, we split it vertically, leaving two columns on the west side
and three on the east.

report erratum  •  discuss

Recursive Division • 197

 

http://pragprog.com/titles/jbmaze/errata/add
http://forums.pragprog.com/forums/jbmaze


Next we add a passage through the wall, anywhere along that wall. Let’s say
we put it here:

That completes one iteration of the algorithm. This process now repeats,
recursively, on each of the halves. Let’s process the western side next, dividing
it in half horizontally and leaving a single passage to connect the two areas.

The process repeats again, here dividing the northwestern region in half:
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At this point, the regions that were created by the newest split are too small
to divide further—we don’t want to split individual cells in half—so we jump
over and start processing the remaining regions.

When we’re all done, having processed all the regions down to the size of a
single cell, we have a maze:

Next let’s nail down an implementation.

Implementing Recursive Division
The algorithm really is as simple as described. First, we’ll “blank out” the grid
by linking every cell to its neighbors (effectively removing all interior walls),
and then recursively split the grid in half by adding walls back in.
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Unlike the other algorithms we’ve implemented, we’re going to break this one
into a few different methods to help with the recursion. It’ll all start with our
typical on(grid) method, though. Put the following in recursive_division.rb.

recursive_division.rb
Line 1 class RecursiveDivision

-

def self.on(grid)-

@grid = grid-

5

@grid.each_cell do |cell|-

cell.neighbors.each { |n| cell.link(n, false) }-

end-

-

divide(0, 0, @grid.rows, grid.columns)
end

10

-

end
-

-

Lines 6–8 link every cell to each of its neighbors. (We pass false to the link
method to prevent it from creating a reciprocal connection. We’re already
iterating over every cell, after all.) Then, line 10 triggers the recursion, starting
the process of dividing the grid in half.

Let’s look at divide next. Go ahead and add this immediately after the on method:

Line 1 def self.divide(row, column, height, width)
2 return if height <= 1 || width <= 1
3

4 if height > width
divide_horizontally(row, column, height, width)

else
5

6

divide_vertically(row, column, height, width)7

8

end
end

9

The condition on line 2 tests to see whether the region is too small to subdi-
vide. If it is, then the recursion ends for this particular area. Otherwise, we
decide whether to divide the area horizontally or vertically. Although this
could be done randomly, dividing based on the aspect ratio of the region tends
to give good results, and avoids producing areas with lots of long vertical or
horizontal passages.

The last two methods are very similar to each other. Add these at the end of
the RecursiveDivision class.

Line 1 def self.divide_horizontally(row, column, height, width)
-

passage_at = rand(width)
divide_south_of = rand(height-1)

-
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-

5 width.times do |x|
next if passage_at == x-

-

cell = @grid[row+divide_south_of, column+x]-

cell.unlink(cell.south)
end

-

10

-

- divide(row, column, divide_south_of+1, width)
-

end
divide(row+divide_south_of+1, column, height-divide_south_of-1, width)

-

15

- def self.divide_vertically(row, column, height, width)
- divide_east_of = rand(width-1)
- passage_at = rand(height)
-

20 height.times do |y|
next if passage_at == y-

-

cell = @grid[row+y, column+divide_east_of]-

cell.unlink(cell.east)
end

-

25

-

- divide(row, column, height, divide_east_of+1)
-

end
divide(row, column+divide_east_of+1, height, width-divide_east_of-1)

-

Let’s focus on divide_horizontally. (You’ll see that divide_vertically is very similar.)

The first thing we do, on lines 2 and 3, is decide where to split the area and
where the passage linking the two halves ought to be. We’re dividing horizon-
tally here, so the target grid line will be immediately south of whichever row
is selected.

Then, for each cell along that dividing line (except for where our passage will
be), we’re going to unlink the cell from its southern neighbor (lines 8–9),
effectively building a wall between the two cells.

Once that wall has been built, separating the two halves, lines 12 and 13 call
divide on those new regions, recursing further into the grid.

That’s it!

Let’s put together our demo program so we can test it. Create recursive_divi-
sion_demo.rb, and make it look like the following:
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recursive_division_demo.rb
require 'recursive_division'
require 'grid'

grid = Grid.new(20, 20)
RecursiveDivision.on(grid)

filename = "recursive_division.png"
grid.to_png.save(filename)
puts "saved to #{filename}"

Running that will produce a maze via Recursive Division:

Just so!

The Recursive Division Bias
If you look at that long enough, you might begin to see evidence of one of this
algorithm’s biases—a certain “boxiness” to the texture caused by repeatedly
halving the grid. If it seems a bit subtle, though, that’s okay. We can color
the grid to make the texture much more obvious.

The following figure shows a 100×100 maze generated by the Recursive Divi-
sion algorithm and colored with Dijkstra’s. The walls have been omitted to
make the texture clearer.
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The “pixelated” texture of the maze comes through much more clearly now.
(It’s really kind of beautiful, in a way!) But what are we seeing? What does
this texture really mean?

Well, it suggests that there are regions of the maze that are literally boxed
in—enclosed in these rectangular areas with few passages leading out. Recall
that when we divided an area, we always left exactly one passage open between
the two halves. This created a kind of bottleneck where any path from one
side of the maze to the other must go through that passage.

The result is that boxy texture and a maze that is relatively straightforward
to solve. All you have to do is look for the relevant bottlenecks. After all, the
solution path is going to have to pass through them, one way or another!

Making Rooms with Recursion
So, it’s a novel algorithm, but at this point it seems like it might have pretty
limited usefulness. I mean, that colored version was pretty and all, but unless
you’re going for some Cubist art, it might be hard to see why you would use
this algorithm.

The answer, my friend, is rooms.

Recall the top of our divide method, where we test the width and height of the
region. The purpose there is to see if the region has grown small enough, but
if you randomly force the recursion to halt before that, you can prevent some
of them from ever becoming that small. This results in open areas—rooms,
or courtyards, or parking lots, or whatever makes sense in the context of your
maze.

Let’s try it!

Open up recursive_division.rb again, and find the first line of the divide method,
the one that returns if the height or width is too small. Try replacing that line
with the following:

return if height <= 1 || width <= 1 ||
height < 5 && width < 5 && rand(4) == 0

Running the demo program now, you ought to get a maze like the following:
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Look at that! It’s a floor plan now. All that boxy texture needed was some help
to masquerade as an office block.

Your Turn
There you have it: the last of those dozen algorithms you were promised.
Eller’s algorithm works as if it were the offspring of a marriage between
Sidewinder and Kruskal’s, and Recursive Division…well…Recursive Division
is off doing its own thing, making fractal mazes by cutting things in half.

Play around with these and see where they take you. What ideas did you have
as you read about them? Chase those down and do something about them!
Maybe the following ideas can get you started.

Infinitely Eller’s…
You’ve seen how Eller’s algorithm operates on a single row at a time, clear
to the last row. But what if you never give it a last row? How would you
generate an arbitrarily (infinitely?) long maze using this algorithm?

Eller’s Algorithm Elsewhere
Eller’s, like Sidewinder, really works best on a regular grid of squares.
However, with a bit of creativity it can be made to work on a grid of hexes,
and even a circle grid. How would you do it?

Irregular Divisions
Here’s a challenging one! As you saw, the boxiness of the Recursive Divi-
sion algorithm comes from using horizontal and vertical lines to split the
regions in half. What if the lines used to split those areas didn’t have to
be straight? How would you divide those areas into non-rectangular
regions?

Mixing Algorithms
You saw the rooms that appear when the Recursive Division algorithm is
forced to halt recursion early. What if, instead of leaving those rooms
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empty, you were to run some other maze algorithm in them? Each of those
“rooms” are, after all, little miniature grids!

Wall Adders versus Passage Carvers
Some algorithms work best as passage carvers (like Recursive Backtrack-
er), and some work best as wall adders (like Recursive Division). But some
can be made to work using either technique. Remember that “wall adder”
simply describes a process where the algorithm creates walls instead of
passages. With that in mind, how would you implement the Aldous-Broder
algorithm (on page 55) as a wall adder? What other algorithms can work
when considered that way?

You might think you’re done, now that you’ve learned all twelve maze algo-
rithms. Hold on, though. The most mind-blowing bits are yet to come! We’ll
start by taking your mazes into higher dimensions…
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Part IV

Shapes and Surfaces

That’s all the algorithms, but it’s hardly the end of
what you can do with them. We’ll wrap things up
by looking at how to stretch these mazes into mul-
tiple dimensions, and how to use them to cover the
surfaces of 3D objects like spheres and Möbius
strips.

 



CHAPTER 13

Extending Mazes into Higher Dimensions
All of the mazes we’ve generated to this point have been essentially flat, glued
securely to the surface of a plane. Navigating these mazes, regardless of
whether they are regular, polar, hex, or triangle grids, you only ever have the
option of moving in two dimensions, north or south, east or west, or some
combination of those.

It’s true that weave mazes try to escape that constraint a bit, and do briefly
manage to lift portions of their passages above that plane by moving over or
under other passages. Still, most of a weave maze remains sadly two-dimen-
sional. We might say that, at best, a weave maze is two-and-a-half-dimensional.

Now, these two-dimensional (or two-and-a-half dimensional) mazes are suffi-
cient for many things—games like Pac-Man and Doom (to name just two)
manage just fine with nothing more than two axes to constrain movement,
thank-you-very-much. We’ve done a lot with two-dimensional mazes to this
point in the book.

But there’s so much more we can do once we add a third dimension, or even
a fourth. Cave systems, office blocks, dungeons, and Death Stars, time trav-
eling, and portal jumping are just a few.

In this chapter, we’re going to look at these higher-dimensional mazes and
talk about what exactly that means. We’ll start with three-dimensional regular
grids (those whose cells are rectangular in shape), going over the changes
that need to be made to our Grid class to accommodate a third dimension,
and we’ll talk about how to apply our maze algorithms to these modified grids.
Once we’ve got three dimensions working, we’ll look briefly at what even
higher dimensions do to a maze, blowing minds by considering four-dimen-
sional grids.
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Understanding Dimensions
The word “dimension” in phrases like “two-dimensional” or “three-dimensional”
refers to the number of coordinates needed to specify any point within some
space. In the case of our two-dimensional mazes, we’ve described those points
(or cells) in terms of rows and columns—two coordinates, hence, two dimen-
sions.

If you take away all dimensions, removing all coordinates, you’ve discovered
a zero-dimensional space. Such spaces seem exceedingly Zen-like, having no
sense of location, but only of being. (Whoa. Dude!) In terms of our mazes, a
single cell is a zero-dimensional space because without the context of other
cells, it has no concept of location. You can’t go anywhere from such a free-
standing cell. It’s not very exciting by itself, but if you take a bunch of these
zero-dimensional cells and stack them together, you can make a one-dimen-
sional grid, like this:

You can see that such a grid only lets you move along a single axis, like
north/south or east/west. As a result, each cell in it may be addressed simply
by its distance from one of the ends, like 1 or 3. One coordinate, one dimen-
sion.

A maze on such a grid would be a bit better than one in a zero-dimensional
space, but not by much. There would still be no branching, no winding, and
no dead ends. It would be a single, straight passage. The following figure
shows a one-dimensional maze on the east/west axis.

Start Here

End Here

Again, not too thrilling, but if you take a few of them and stack them together,
you wind up with a two-dimensional grid, like this:
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Which brings back to where we started! Each cell within such a grid must be
addressed by both its row and its column—two coordinates. The grid in the
preceding figure is a regular grid—composed of squares—but it could be a
hex grid, triangle grid, polar grid, or something even more exotic. It doesn’t
matter—if cells are addressed by two coordinates, the grid is two-dimensional.

Let’s take these to the next level. We’ll take a look at grids with a third
dimension.

Introducing 3D Mazes
So, zero-dimensional cells combine to form one-dimensional rows, and one-
dimensional rows stack to form two-dimensional grids. It should follow, then,
that two-dimensional grids may be stacked to form three-dimensional
grids…which is exactly the case, as the following figure shows.

When we think of each of these separate 2D grids as levels within the larger
3D grid, it becomes clear that each cell in such a grid must be addressed by
three coordinates: row, column, and level.

Three coordinates. Three dimensions.

Displayed like that, though, it’s a bit hard to see each of the levels, so instead
of rendering in perspective we generally show it as a set of floor plans, like
this:
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The bottom floor, or level, is on the far left, with progressively higher levels
moving to the right.

So, that gives us a way to describe and display three-dimensional grids. All
we need now is a way to generate a three-dimensional maze using a layout
like this. The simplest way (if not the most flexible way) is to generate a bunch
of two-dimensional mazes, stack them, and then connect adjacent levels at
single point, like this:

This works fine, and as long as each of the levels was originally a perfect maze
the result will also be one. Remember how Kruskal’s algorithm worked by
linking together those little proto-mazes, one at a time? It’s really just the
same thing here. It’s as if Kruskal’s algorithm came along and linked those
adjacent mazes together at that one point.

This approach could suffice for many applications. As long as there is only a
single location that links adjacent levels, you can treat (and generate) each
level as an independent two-dimensional maze.

However, what if you want a maze that goes up and down between levels in
multiple places? What if you want a solution path that takes you all the way
to the top of the tower, and then all the way back to the bottom? If you want
it to remain a perfect maze, you can’t just add ladders at multiple points,
because as soon as you do, you’ve added a loop.

Check it out. Let’s label the two cells in the previous figure that are linked by
the ladder. We’ll call the lower cell A and the upper cell B, like this:

A

B

Chapter 13. Extending Mazes into Higher Dimensions • 212

report erratum  •  discuss 

http://pragprog.com/titles/jbmaze/errata/add
http://forums.pragprog.com/forums/jbmaze


As mentioned before, as long as the two component mazes are perfect, the
resulting bi-level maze is also perfect. But if we now add another link between
the two, we’ve got problems. Let’s say we add another ladder that links the
two mazes as shown in the following figure, connecting point C on the lower
maze to point D on the upper maze.

A

B

CD
Now, because both were—by themselves—perfect mazes, we know for a fact
that there is exactly one path connecting A to C via the lower maze, and
exactly one path from B to D via the upper maze. But because A and B are
linked, and C and D are linked, we now have two ways to go from A to C:
through the lower maze, A to C, and via the upper maze, A to B to D to C.

A loop! We simply cannot get a perfect, three-dimensional maze by adding
multiple connections between perfect two-dimensional mazes. We have to
turn to other means.

Fortunately, those other means turn out to be straightforward. We need to
extend our grid, adding another dimension to it, and then run our maze
algorithm of choice on it.

Adding a Third Dimension
Recall back in Chapter 2, Automating and Displaying Your Mazes, on page
17, when we first worked on the code behind the grid, we implemented the
prepare_grid method using a two-dimensional array. That’s not just coinci-
dence—that’s exactly what determined the geometry of our grid! We’ll add a
third dimension to the grid by adding a third dimension to that array.

If it were that easy, this would be a very short chapter. The good news, though,
is that the other changes are minor collateral damage related to that array
modification. The cells need to be told about their new up/down neighbors,
the grid needs to know how to iterate over cells in the other levels, and so on.

It’s really not too bad, and best of all is that once we’ve made those changes,
most of the algorithms we’ve looked at will automatically work. Even those
that break with these changes can be brought into line with a few simple
modifications. You’ll see.
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Let’s get this implemented. For simplicity’s sake, put everything—grid and
cell—in the same file, called grid3d.rb. Start with the new cell class, like this:

grid3d.rb
require 'grid'

class Cell3D < Cell
attr_reader :level
attr_accessor :up, :down

def initialize(level, row, column)
@level = level
super(row, column)

end

def neighbors
list = super
list << up if up
list << down if down
list

end
end

The Cell3D class simply extends our original Cell class and adds level (the third
dimension, analogous to row and column), as well as accessors for the neighbors
in the up and down directions. The neighbors method is also overridden to include
those two new neighbors.

The grid itself is nearly as straightforward, but we need to reimplement a few
of the other methods that assume the grid is only one level tall. The idea here
is to change our grid so that it can represent not just a single (two-dimension-
al) level, but multiple levels stacked together. Put the following in grid3d.rb as
well, just after the definition of Cell3D.

grid3d.rb
class Grid3D < Grid

attr_reader :levels

def initialize(levels, rows, columns)
@levels = levels
super(rows, columns)

end

def prepare_grid
Array.new(levels) do |level|
Array.new(rows) do |row|

Array.new(columns) do |column|
Cell3D.new(level, row, column)

end
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end
end

end

def configure_cells
each_cell do |cell|
level, row, col = cell.level, cell.row, cell.column

cell.north = self[level, row - 1, col]
cell.south = self[level, row + 1, col]
cell.west = self[level, row, col - 1]
cell.east = self[level, row, col + 1]
cell.down = self[level - 1, row, col]
cell.up = self[level + 1, row, col]

end
end

def [](level, row, column)
return nil unless level.between?(0, @levels - 1)
return nil unless row.between?(0, @grid[level].count - 1)
return nil unless column.between?(0, @grid[level][row].count - 1)
@grid[level][row][column]

end

def random_cell
level = rand(@levels)
row = rand(@grid[level].count)
column = rand(@grid[level][row].count)

@grid[level][row][column]
end

def size
@levels * @rows * @columns

end

def each_level
@grid.each do |level|
yield level

end
end

def each_row
each_level do |rows|
rows.each do |row|

yield row
end

end
end

end
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All we’ve done here is reimplement those methods that assume the grid is
two-dimensional—prepare_grid, configure_cells, the array accessor, and so on—and
make them aware of that third dimension. We’ve also added a new method,
each_level, for iterating over every two-dimensional level of the grid.

That’ll do it! With the grid made aware of the third dimension, and every cell
now updated to include its “up” and “down” neighbors (those on the levels
above and below), most of our algorithms ought to just work. Feel free to give
it a try…but note that we don’t yet have a way to draw these 3D mazes. Our
current to_png requires a bit more attention.

Displaying a 3D Maze
We’ll draw these mazes as sets of floor plans, with lower floors to the left and
higher floors to the right. The up and down passages will be represented by
red arrows drawn in the corresponding cells, indicating which of the adjacent
floors each passage leads to. For example, a 3×3×3 maze might look something
like this:

Figure 6—A 3×3×3 Maze

Arrows pointing to the right are like stairs leading to the level above them,
and arrows pointing to the left are stairs leading down. If we enter the maze
in the northwest corner of the bottom level (the one on the far left), we might
take two steps east to the northeast corner, take the stairs up to the same
corner of the middle level, go one step to the west and then up another flight
of stairs, winding up on the third level.

It’s a bit mind-bending!

But it works, and it’s not too difficult to implement. It comes together like
this. Put the following in grid3d.rb, at the end of the definition of the Grid3D class.

Line 1 def to_png(cell_size: 10, inset: 0, margin: cell_size/2)
-

grid_width = cell_size * columns

inset = (cell_size * inset).to_i
-

-
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5 grid_height = cell_size * rows
-

- img_width = grid_width * levels + (levels - 1) * margin
- img_height = grid_height
-

10 background = ChunkyPNG::Color::WHITE
- wall = ChunkyPNG::Color::BLACK
- arrow = ChunkyPNG::Color.rgb(255, 0, 0)
-

- img = ChunkyPNG::Image.new(img_width + 1, img_height + 1, background)
15

- [:backgrounds, :walls].each do |mode|
each_cell do |cell|-

x = cell.level * (grid_width + margin) + cell.column * cell_size-

y = cell.row * cell_size-

20

if inset > 0-

to_png_with_inset(img, cell, mode, cell_size, wall, x, y, inset)-

else-

to_png_without_inset(img, cell, mode, cell_size, wall, x, y)-

end25

-

if mode == :walls-

mid_x = x + cell_size / 2-

mid_y = y + cell_size / 2-

30

if cell.linked?(cell.down)-

img.line(mid_x-3, mid_y, mid_x-1, mid_y+2, arrow)-

img.line(mid_x-3, mid_y, mid_x-1, mid_y-2, arrow)-

end-

35

if cell.linked?(cell.up)-

img.line(mid_x+3, mid_y, mid_x+1, mid_y+2, arrow)-

img.line(mid_x+3, mid_y, mid_x+1, mid_y-2, arrow)-

end-

end40

end
end

-

-

-

-

end
img

45

This implementation introduces a new parameter, margin, which represents
the spacing between the different levels of the grid. By default, it’ll be half of
one cell width.

Next, we need to figure out just how large our image will be. It’s easy enough
to figure out the size of a single grid—that’s just what we did in our first to_png
implementation, and it’s what we do here on lines 4 and 5. The image itself

report erratum  •  discuss

Displaying a 3D Maze • 217

 

http://pragprog.com/titles/jbmaze/errata/add
http://forums.pragprog.com/forums/jbmaze


is going to remain one grid-height tall, but the width will be one grid-width
wide for each level, plus that margin between adjacent pairs of levels. Line 7
computes that for us.

The last new thing we do before actually drawing the maze is to set the color
for our arrows, on line 12. We’re using a pure red, leaving the green and blue
components of the color at zero.

Then, we do the actual drawing. We can reuse most of what we’d implemented
in previous chapters—all we have to do is compute the correct position of
each cell, and then have our individual cell-drawing methods do the rest.
Line 18 computes the x-coordinate of the cell’s northwest corner, and the
next line does the same for the y-coordinate.

Once the cells are drawn, all that’s left is to draw the arrows for passages
going up or down. This happens on lines 27–40, drawing each arrow relative
to the center of the current cell.

With that bit in place, we can try building and drawing a 3D maze. The
Recursive Backtracker is a pretty safe algorithm here—it’s very forgiving of
changes in the grid geometry—so we’ll use it here. Put the following in
grid3d_demo.rb.

grid3d_demo.rb
require 'grid3d'
require 'recursive_backtracker'

grid = Grid3D.new(3, 3, 3)
RecursiveBacktracker.on(grid)

filename = "3d.png"
grid.to_png(cell_size: 20).save(filename)
puts "saved to #{filename}"

It should all be very familiar by now, though we’re drawing the cells larger
(20 pixels on a side) so that the up/down arrows don’t get so crowded. The
resulting maze ought to look very much like the one in Figure 6, A 3×3×3
Maze, on page 216. Experiment with different dimensions and see what you
get!

You may want to experiment with other algorithms, too—and well you
should!—but not all of those we’ve looked at will work as implemented. The
ones to look out for are Kruskal’s, Binary Tree, and Sidewinder—and the
truth is, even those could be made to work with a 3D grid. In each case, it is
our implementation at fault, and not the algorithm.
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In Kruskal’s case, our implementation of the State class is hard-coded to match
each cell against its south and east neighbors when forming the list of
neighbor pairs. Adding either up or down as an additional neighbor (in the
State#initialize method) fixes that problem.

For Sidewinder, every time a run of cells is closed out, our implementation
chooses one of the cells from that run and adds a passage north. If we were
to change it so that instead of always going north, it chooses between north
and up (or whichever one is available, if one or the other neighbor doesn’t
exist), then we’ll get a 3D-capable Sidewinder.

And for Binary Tree, the trick is to turn it into a trinary tree. At each cell,
instead of choosing only between north and east, try choosing between north,
east, and up (or down). The resulting algorithm is perfectly happy to generate
mazes on a three-dimensional grid.

Give those a try and see how it works out! When you’re ready, we’ll make one
last, brief stop—in the fourth dimension.

Representing Four Dimensions
You’ve now seen how the pattern comes together. Zero-dimensional cells make
one-dimensional rows (or columns), which come together to make two-
dimensional levels, which stack to make three-dimensional worlds.

So what happens when you take those three-dimensional worlds and stack
them along another axis, perpendicular to the three we already have? (Ignore
for the moment that it’s rather difficult to imagine a direction that is simulta-
neously perpendicular to the three axes we’ve already got.) You can probably
guess that we’re going to wind up with a four-dimensional grid, and you’ll be
exactly right.

To illustrate stacking in the fourth dimension, we can take those three-
dimensional grids and line them up vertically on the page, as shown in the
figure on page 220.

This grid is 2×4×4×4—two sets of three-dimensional grids (or worlds), each
of which is composed of four two-dimensional grids (levels), and each of those
two-dimensional grids is a 4×4 grid of cells (rows and columns). Four coordi-
nates, four dimensions. Movement between adjacent three-dimensional grids
is via the hither/yon axis, analogous to up/down but in the fourth dimension.

Adjacency works just as it did with the three-dimensional grids, but also
connects the hither cells (those that are in the 3D grid above the current one)
and yon cells (those that are in the 3D grid below). The following figure shows
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Figure 7—Representing a 4D Stack

a 3×3×3×3 grid with a single cell drawn in green, and all of the cells adjacent
to it in yellow.

Implementing such a grid is as easy as it was for the third dimension—adding
another dimension to the array that holds the cells, adding new neighbor
accessors (hither and yon) to the Cell class, and updating the various Grid methods
to accommodate this new dimension. Once you’ve made those changes, you
can go truly nuts and generate mind-bending four-dimensional mazes, like
Figure 8, A 4D Maze, on page 221.

Movement works just as it did with the three-dimensional mazes, with the
left and right arrows acting as stairs pointing up and down. We’ve also added
arrows pointing hither and yon. If you think of them as portals, warping you
between worlds, the picture might begin to make a little more sense!
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Figure 8—A 4D Maze

Your Turn
So there you have it, a whirlwind tour of the third and (briefly!) fourth
dimensions. We’ve looked at how to modify the Grid and Cell classes to accom-
modate these new dimensions and saw one way to visualize mazes on these
kinds of grids.

Where will you go with this knowledge? If you find yourself lacking a destina-
tion, perhaps consider some of the following:

Changing the Grid Type
The examples and illustrations in this chapter were all based on regular
grids—grids based on square (or cubic) cells. What if you were to stack
hex grids, or triangle grids instead?
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Three-Dimensional Circle Mazes
Try stacking a bunch of polar grids together (from Chapter 7, Going in
Circles, on page 97), to form a cylindrical tower maze! If you’re feeling
particularly adventurous, try varying the radius of the circle as the level
increases, decreasing it to a point to form a cone. Even more adventurous,
make a “Death Star” by changing the radius of each level so that they
form a sphere. (Obi-wan might never have found the off switch for that
tractor beam if you’d been in charge!)

Forcing a Level Bias
Running our maze algorithms on these three-dimensional grids, we wind
up with paths that move between levels very frequently. In real life, though,
a multistory building only moves between floors in a few locations. How
can you modify these algorithms so that they prefer to choose cells that
are adjacent north-to-south or east-to-west, before falling back to up/down
neighbors?

A First-Person Perspective
Using whatever tools you prefer, implement a first-person view from inside
a randomly generated three-dimensional maze. Either allow users to
navigate it themselves, or just animate a fly-through of the longest path.

Cells as Polyhedra
For a real challenge, consider a three-dimensional grid composed of
interlocking polyhedra! Rhombic dodecahedrons, for example, can be
stacked to tile a three-dimensional space. If you go this route, though,
say good-bye to simple floor plans; you’ll need to get creative in order to
visualize the result! A first-person perspective may be ideal for mazes like
this…

Even Higher Dimensions
If you’re feeling particularly devious, try generating a five- or six-dimen-
sional maze! Draw it by taking sets of four-dimensional mazes and lining
them up horizontally and vertically, just as we did with the two-dimen-
sional grids when drawing three- and four-dimensional mazes. You’ll need
to get creative with vocabulary in order to describe neighbors in those
higher dimensions, but that might just be the hardest challenge you’ll
face on this one!

You’re getting pretty handy with these grids now, and quite comfortable
building mazes on them. You can even build them out in three and four
dimensions! It’s time to learn a new trick: building out mazes on non-planar
surfaces.
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CHAPTER 14

Bending and Folding Your Mazes
It’s been a wild ride, but we’re nearly done. Maze algorithms, grids born of
non-rectangular tesselations, circles, weaves, and braids, and even building
those mazes out in three and four dimensions—it’s all brought us to this
point.

Let’s go out with a bang. Let’s blow some minds.

Consider those mazes you’ve generated up to now, all of them neatly built on
flat, predictable surfaces. Even the three-dimensional ones were composed
of neatly planar levels. But what would happen if you were to take one of
those mazes and bend it a bit, warping the surface so that it curves in one
or more dimensions? What if you were to even go so far as to fold it?

Those first-person shooters take on an entirely different feel when the corridors
wrap around the surface of a sphere, or carry you around the inside of a rib-
bon. Picture a game where you can see your goal above you as the maze
arches overhead, or where monsters may be lurking just down the passage,
hidden by a not-so-distant horizon!

These are what are called planair mazes, an unusual name for an unusual
kind of puzzle. Mazes on cylinders, cubes, cones, pyramids, spheres, and
toruses are all examples of these planair mazes, and I’ll be honest: this is a
topic that could easily be an entire book in its own right. We’ve only got time
for a brief taste, but hopefully that’ll be enough to set you exploring some
more on your own.

We’ll look at four different surfaces in this chapter: cylinders, Möbius strips,
cubes, and spheres. In each case, you’ll learn how to generate a maze on that
surface. For the first three, we’ll use simple paper-crafting techniques to
visualize the resulting mazes, and for the last we’ll resort to using a 3D ren-
derer to draw our maze on the surface of a sphere.
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Cylinder Mazes
Cylinder mazes are a good place to start, because they’re actually really,
really easy. You can make a naive one simply by generating a rectangular
maze, printing it out, and wrapping it around a soup can so that the ends
touch, like this:

The problem with this approach is that you wind up with a seam where the
maze’s east and west boundaries meet:

Is this ringing any bells? You may recall that we ran into a similar issue at
the end of our discussion on circle mazes on page 110. We can solve the
problem here using the same trick we used there: overriding the [] method to
ensure that the column parameter wraps smoothly from one side to the other.
In this way, columns on the east and west boundaries are made to think
they’re actually adjacent to one another.

The entirety of our cylinder grid implementation looks like this:
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cylinder_grid.rb
require 'grid'

class CylinderGrid < Grid
def [](row, column)

return nil unless row.between?(0, @rows - 1)
column = column % @grid[row].count
@grid[row][column]

end
end

We’ll do the usual drill here and make a demo program to test it:

cylinder_demo.rb
require 'cylinder_grid'
require 'recursive_backtracker'

grid = CylinderGrid.new(7, 16)
RecursiveBacktracker.on(grid)

filename = "cylinder.png"
grid.to_png.save(filename)
puts "saved to #{filename}"

The resulting maze will look a bit odd:

Keep in mind, though, that this maze is intended to wrap around, so the east
and west edges are actually supposed to be adjacent. The dimensions here
were chosen intentionally to give an aspect ratio similar to that of the label
on a can of soup, so if you wanted, you could scale your image up to
approximately 8.25" by 3.625" (21cm by 9.2cm), print it out, and disguise
your least-favorite can in the pantry with it. With any luck, the chef will be
so hypnotized by the seamlessness of your cylinder maze that you’ll be able
to propose something more palatable as an alternative!

Let’s take things up a notch and consider putting a maze on a Möbius strip.

Möbius Mazes
A Möbius strip (sometimes spelled Moebius, or Mobius) is a novel surface with
only a single side. You can make one easily by taking a strip of paper, giving
one end a 180° twist, and then taping the two ends together. The result
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(assuming you happened to use checkered paper) would look something like
this:

An ant crawling along the surface of this strip of paper would find that it had
traversed both sides before returning to its starting point. Like magic!

This is begging to have a maze on it, and it turns out that we can do so with
very little effort. It’s actually very much like a cylinder maze, but with a
twist—literally! We need to take that cylinder maze and give it a 180° twist.
Therein lies the rub. A cylinder maze only needs to exist on a single side of
the paper, since it has a well-defined inside and outside. Adding that twist
means that our maze needs to exist on both sides, in such a way that when
we twist it and join the ends, the edges and passages all line up correctly.

We could try to do this by generating two images, each corresponding to one
side of the strip, and then attempt to print them back to back, but getting
the printer to line up the two images correctly would be an exceedingly fiddly
undertaking. We can do this much more easily.

First, we generate our maze on a long, thin grid, like the following:

Then, we split that grid in half and generate a single image with the two halves
side-by-side, like this:

After printing the image and cutting away the extraneous paper, we fold the
result in half lengthwise, so that the two halves of the maze wind up back-
to-back:
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This gives us our maze on both sides of the strip, just what we need for the
final act! Not only that, though: folding the paper like this also flips the two
halves top-to-bottom relative to each other, which means that when we
finally give the paper a half-twist and connect the ends, the edges are properly
oriented. Isn’t that ingenious? Go on, admit it. You’re dying to try this out.

Put the following in moebius_grid.rb.

moebius_grid.rb
Line 1 require 'cylinder_grid'

-

- class MoebiusGrid < CylinderGrid
- def initialize(rows, columns)

super(rows, columns*2)
end

5

-

-

- def to_png(cell_size: 10, inset: 0)
grid_height = cell_size * rows-

mid_point = columns / 210

-

img_width = cell_size * mid_point-

img_height = grid_height * 2-

-

inset = (cell_size * inset).to_i15

-

background = ChunkyPNG::Color::WHITE-

wall = ChunkyPNG::Color::BLACK-

-

img = ChunkyPNG::Image.new(img_width + 1, img_height + 1, background)20

-

[:backgrounds, :walls].each do |mode|-

each_cell do |cell|-

x = (cell.column % mid_point) * cell_size-

y = cell.row * cell_size25

-

y += grid_height if cell.column >= mid_point-

-

if inset > 0-

to_png_with_inset(img, cell, mode, cell_size, wall, x, y, inset)30

else-

to_png_without_inset(img, cell, mode, cell_size, wall, x, y)-

end-

end-

end35

-

img-

-

end
end

-
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We subclass our CylinderGrid so that we get the east-to-west wrapping, and then
in the constructor we do something that may seem a bit odd: line 5 tells the
superclass to make our grid twice as wide as we specify. The purpose for this
is that it lets us say how many columns long the strip of paper needs to
be—and then automatically compensates the grid for the other side of the
strip.

The rest of the implementation is just our updated to_png method. It’s essen-
tially what we’ve seen before, but with a few tweaks. On line 10, we compute
the column at which we’ll split the grid. That midpoint is used to determine
the width of the image on line 12, and the next line after that sets the image
height to be the height of the grid, doubled. (Recall that we’re rendering both
halves of the grid, one above the other.)

The midpoint value is also used to compute the position of each cell in the
image. Line 24 uses modulus arithmetic to make sure both halves of the grid
are rendered next to each other, with line 27 moving the second half of the
grid below the first half. Everything else is just as before—calling the appro-
priate method for drawing each cell, and simply passing in the coordinates
to ensure the cells are drawn where they ought to be.

Use the following code to test our new MoebiusGrid.

moebius_demo.rb
require 'moebius_grid'
require 'recursive_backtracker'

grid = MoebiusGrid.new(5, 50)
RecursiveBacktracker.on(grid)

filename = "moebius.png"
grid.to_png.save(filename)
puts "saved to #{filename}"

The dimensions of the grid given here are empirically chosen to give a strip
that twists and joins neatly, but feel free to experiment with different sizes
and see what you get. Remember that the number of columns describes the
width of one side of the strip—the grid itself will actually be twice as long!

Taking the image from that little program and going through the process
described earlier (printing it, cutting it out, folding it, etc.), you ought to wind
up with something more or less like this:
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Take it to your next party! It’ll make a great conversation piece.

Cube Mazes
Next up: cube mazes. We’re not talking about networks of passages inside a
cube; that would give us those 3D mazes that we covered in the previous
chapter. Rather, here we’re considering mazes rendered purely on the surface
of a cube.

Compared to cylindrical mazes, these are definitely a level up. It’s true that
they have some in common with cylinders (an ant on a cube could walk
happily all the way around it, after all), but there’s more to it. To help
understand the difference, we need a simple way to visualize how a cube is
constructed.

Start by picturing a cube, like a big cardboard box. If you were to unfold that
box, taking it apart at the seams and laying it out flat, you’d end up with six
square faces arranged something like the following figure. We’ll label the faces
from zero to five, to make it easier to refer to them later.

0 1 2 3

4

5

Figure 9—An Unfolded Cube

The goal here is to draw a grid on each of those faces and arrange things so
that the cells on the boundaries of each face are adjacent to the cells on the
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shared boundaries of the adjacent faces. In other words, we want the cells
on the east boundary of face #1 to be adjacent to the cells on the west
boundary of face #2, and so forth.

This happens to suggest a way to represent the cube as a whole: as six sepa-
rate faces. We’ll do just that, storing each of those faces as distinct two-
dimensional grids. Each cell will track the face, row, and column to which it
belongs.

Let’s go ahead and implement that much. Put the following in cube_grid.rb.

cube_grid.rb
require 'grid'

class CubeCell < Cell
attr_reader :face

def initialize(face, row, column)
@face = face
super(row, column)

end
end

class CubeGrid < Grid
alias dim rows

def initialize(dim)
super(dim, dim)

end

def prepare_grid
Array.new(6) do |face|
Array.new(dim) do |row|

Array.new(dim) do |column|
CubeCell.new(face, row, column)

end
end

end
end

end

No real surprises here. CubeCell subclasses Cell, just adding the face attribute.

CubeGrid begins nearly as simply. It aliases the rows attribute as dim (as in
“dimension”), and the constructor takes a single parameter to be used as that
value (the number of rows and columns on each face). The prepare_grid method
then uses dim to instantiate a 2D grid for each of those six faces.
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The implementation may look very much like our three-dimensional grid from
the previous chapter, but don’t be fooled—the surface of a cube is actually
two-dimensional! We’ve just added that third coordinate—face—as a conve-
nience for organizing the subgrids.

Next, we’ll override a few more methods to accommodate the six faces of this
cubic geometry. Add these to the CubeGrid class as well, following the prepare_grid
method.

def each_face
@grid.each do |face|

yield face
end

end

def each_row
each_face do |face|

face.each do |row|
yield row

end
end

end

def random_cell
face = rand(6)
row = rand(dim)
column = rand(dim)

@grid[face][row][column]
end

def size
6 * dim * dim

end

These will let us iterate over the faces, rows, and cells of our grid, as well as
choose a cell at random and compute the total number of cells in the grid.

Once we have that much, we reach the hardest part: determining cell adja-
cency. Specifically, we need to identify which cells are adjacent to which
others at the boundaries, and there are some pretty wild edge cases here.
We’ll set the basics up like this, in the configure_cells and [] methods:

def configure_cells
each_cell do |cell|

face, row, column = cell.face, cell.row, cell.column

cell.west = self[face, row, column-1]
cell.east = self[face, row, column+1]
cell.north = self[face, row-1, column]

report erratum  •  discuss

Cube Mazes • 231

 

http://pragprog.com/titles/jbmaze/errata/add
http://forums.pragprog.com/forums/jbmaze


cell.south = self[face, row+1, column]
end

end

def [](face, row, column)
return nil if face < 0 || face >= 6
face, row, column = wrap(face, row, column)➤

@grid[face][row][column]
end

This should all look pretty familiar, with the exception of the highlighted line
in the array accessor. We’re going to add a new method, wrap, which takes
the given face/row/column triple and—if the row or column overflows the
face it’s on—figures out what the actual coordinates are on the face to which
they’ve overflowed. This will allow the configure_cells method to work as intended,
where it simply adds or subtracts one from the row or column to get the correct
neighbor, even if that bleeds over to an adjacent face.

This is where the edge cases come in, but they aren’t all bad. Let’s start with
an easy one. Consider our unfolded cube again (Figure 9, An Unfolded Cube,
on page 229), and imagine moving from face 0, to 1, to 2, to 3, and back to 0.
The transitions there are straightforward—you would go from the last column
of one face, to column 0 of the next face, while remaining on the same row.
Similarly, moving in reverse would take you from the first column of one face
to the last column on the next. The following figure illustrates this:

0 1 2 3

4

5

Easy enough. If only they could all be so straightforward! Let’s look at a
trickier one: what happens when you move east from face #4?

Ah, now things get interesting. Let’s assume that we’re in the last column of
face #4, in some row r, and we want to move east. Mentally folding the cube
back up, you can see that the eastern boundary of face #4 is actually adjacent
to the northern boundary of face #2. This means that in moving to face #2 we
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move from row r to column n-r, and our row becomes 0. (We’ll let n be the
index of the last row or column on each face.) Check it out:

0 1 2 3

4

5

Whoa!

Take a moment and consider other transitions, like moving west from face
#5, or (perhaps hardest of all to visualize) moving north from face #3. These
are the kinds of transitions we need to encapsulate in our new wrap method.
Once you’ve had a chance to give yourself a headache trying to envision these
different connections, go ahead and add the following to the CubeGrid class:

Line 1 def wrap(face, row, column)
- n = dim-1
-

- if row < 0
return [4, column, 0] if face == 05

return [4, n, column] if face == 1-

return [4, n-column, n] if face == 2-

return [4, 0, n-column] if face == 3-

return [3, 0, n-column] if face == 4-

return [1, n, column] if face == 510

- elsif row >= dim
return [5, n-column, 0] if face == 0-

return [5, 0, column] if face == 1-

return [5, column, n] if face == 2-

return [5, n, n-column] if face == 315

return [1, 0, column] if face == 4-

return [3, n, n-column] if face == 5-

- elsif column < 0
return [3, row, n] if face == 0-

return [0, row, n] if face == 120

return [1, row, n] if face == 2-

return [2, row, n] if face == 3-

return [0, 0, row] if face == 4-

return [0, n, n-row] if face == 5
elsif column >= dim

-

25
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return [1, row, 0] if face == 0-

return [2, row, 0] if face == 1-

return [3, row, 0] if face == 2-

return [0, row, 0] if face == 3-

return [2, 0, n-row] if face == 430

return [2, n, row] if face == 5
end

-

-

-

-

end
[face, row, column]

35

Given a face, row, and column, this method will compute and return the
actual face, row, and column the coordinates correspond to. By default—if
the row and column are within the bounds of the current face’s grid—the
method simply returns the parameter values, unaltered (line 34). But if either
the row or column is less than 0, or greater than the dimensions of the grid,
magic happens!

Well, not really magic. For instance, consider our simple case from before.
Let’s say that we’re on the eastern boundary of face #1, and we move east.
Our face is 1, and our column is now equal to dim. (We were in column dim-1—the
last column on the face—and then moved east, which added one.) This means
the wrap method takes the branch at line 25 (column >= dim), and then takes
line 27 (because we’re on face #1). The new coordinates are determined to be
face #2, column 0, with the same row as before.

All that’s left, then, is to implement a means of displaying our cube grid. We’ll
override to_png to generate an image with the cube’s faces splayed out like in
Figure 9, An Unfolded Cube, on page 229, which will allow us to print it, cut
it out, and fold it into a neat little cube! Along with to_png, we’ll also need to
override to_png_without_inset (to make one little change), and we’ll add a simple
method for drawing faint outlines of the cube faces (to aid in folding).

We’ll start with to_png. Go ahead and add the following at the end of CubeGrid.

Line 1 def to_png(cell_size: 10, inset: 0)
- inset = (cell_size * inset).to_i
-

- face_width = cell_size * dim
5 face_height = cell_size * dim
-

- img_width = 4 * face_width
- img_height = 3 * face_height
-

10 offsets = [[0, 1], [1, 1], [2, 1], [3, 1], [1, 0], [1, 2]]
-

-

wall = ChunkyPNG::Color::BLACK
background = ChunkyPNG::Color::WHITE

-
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- outline = ChunkyPNG::Color.rgb(0xd0, 0xd0, 0xd0)
15

- img = ChunkyPNG::Image.new(img_width + 1, img_height + 1, background)
-

- draw_outlines(img, face_width, face_height, outline)
-

20 [:backgrounds, :walls].each do |mode|
each_cell do |cell|-

x = offsets[cell.face][0] * face_width + cell.column * cell_size-

y = offsets[cell.face][1] * face_height + cell.row * cell_size-

-

if inset > 025

to_png_with_inset(img, cell, mode, cell_size, wall, x, y, inset)-

else-

to_png_without_inset(img, cell, mode, cell_size, wall, x, y)-

end-

end
end

30

-

-

-

end
img

-

It’s remarkably similar to our original to_png method, with a few little changes.
Lines 4 and 5 compute the dimensions of a single face, which is then used
on lines 7 and 8 to compute the dimensions of the image as a whole.

Conceptually, we’re aligning the faces to a grid of three rows and four columns,
so we’ll use that to make it easier to position each of the faces. The offsets
variable on line 10 describes each face’s position (column and row) within
that larger grid. Lines 22 and 23 use those offsets to compute the position of
each cell.

Also, note the call to our new draw_outlines method on line 18. Our maze would
be perfectly acceptable without that call, but this will add some faint outlines
around each face, helping us know better where to fold our maze after we’ve
cut it out.

Let’s look at that method next, in fact. Add the following just after our to_png
method.

def draw_outlines(img, height, width, outline)
# face #0
img.rect(0, height, width, height*2, outline)

# faces #2 & #3
img.rect(width*2, height, width*4, height*2, outline)
# line between faces #2 & #3
img.line(width*3, height, width*3, height*2, outline)
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# face #4
img.rect(width, 0, width*2, height, outline)

# face #5
img.rect(width, height*2, width*2, height*3, outline)

end

It’s very simple—just drawing some rectangles and lines in our outline color
(a light gray).

The last bit to look at is just our reimplementation of to_png_without_inset. The
default implementation will only draw a cell’s northern or western walls if the
cell has no neighbors in those directions. That just won’t do for our cube
maze, though! A cell may have a neighbor to the north, but that neighbor
could be on another face. Because of how we’re drawing the maze, those two
neighbors will not be drawn with a shared wall…which means that wall
wouldn’t get drawn. We mustn’t have that!

Go ahead and add the following method just after draw_outlines.

def to_png_without_inset(img, cell, mode, cell_size, wall, x, y)
x1, y1 = x, y
x2 = x1 + cell_size
y2 = y1 + cell_size

if mode == :backgrounds
color = background_color_for(cell)
img.rect(x, y, x2, y2, color, color) if color

else
if cell.north.face != cell.face && !cell.linked?(cell.north)➤

img.line(x1, y1, x2, y1, wall)➤

end➤

➤

if cell.west.face != cell.face && !cell.linked?(cell.west)➤

img.line(x1, y1, x1, y2, wall)➤

end➤

img.line(x2, y1, x2, y2, wall) unless cell.linked?(cell.east)
img.line(x1, y2, x2, y2, wall) unless cell.linked?(cell.south)

end
end

Note the highlighted lines—that’s where our new version differs from the
original, ensuring that walls are drawn even if a cell has neighbors in those
directions, when they happen to be on different faces.

There! Now we ought to be able to test it out by writing a simple demo program,
like the following.
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cube_demo.rb
require 'cube_grid'
require 'recursive_backtracker'

grid = CubeGrid.new(10)
RecursiveBacktracker.on(grid)

filename = "cube.png"
grid.to_png.save(filename)
puts "saved to #{filename}"

Running it should generate an image something like this:

Print it out, and carefully cut along the outside of the maze. Then, fold on all
the gray lines, taping liberally as you go to keep it all together, and when all
is said and done, you might just wind up with something as dazzling as this:

But now it’s time to say farewell to paper-crafting. For our final surface, we’re
going to look at a way to produce an actual 3D rendering of our maze, this
time on the surface of a sphere.
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Sphere Mazes
Creating a maze on the surface of a sphere shares a lot in common with cre-
ating a maze inside of a circle. This shouldn’t be surprising! A hemisphere,
after all, is merely a circle that’s been lifted up by its origin, like this:

We can create a sphere by putting two hemispheres together, which means
we ought to be able to implement a spherical grid by leaning on our polar
grid (from Chapter 7, Going in Circles, on page 97). We’ll need to change a lot
of the calculations behind the measuring of the cells (a hemisphere may be
related to a circle, but that doesn’t mean they wear the same size of shirt),
and our to_png method is going to need rewriting, but it’s a start.

So here’s what we’ll do. We’ll subclass our PolarGrid to make a HemisphereGrid,
and then glue two of those together to make a SphereGrid. We’ll put all these
in the same file, for convenience.

Let’s start with the HemisphereGrid. Put the following in sphere_grid.rb:

sphere_grid.rb
Line 1 require 'polar_grid'

-

- class HemisphereCell < PolarCell
- attr_reader :hemisphere
5

def initialize(hemisphere, row, column)-

@hemisphere = hemisphere-

super(row, column)-

-

end
end

10

-

- class HemisphereGrid < PolarGrid
- attr_reader :id
-

def initialize(id, rows)15

@id = id-

super(rows)
end

-

-

def size(row)
-

20

@grid[row].length
end

-

-
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-

- def prepare_grid
grid = Array.new(@rows)25

-

angular_height = Math::PI / (2 * @rows)-

-

grid[0] = [ HemisphereCell.new(id, 0, 0) ]-

30

(1...@rows).each do |row|-

theta = (row + 1) * angular_height-

radius = Math.sin(theta)-

circumference = 2 * Math::PI * radius-

35

previous_count = grid[row - 1].length-

estimated_cell_width = circumference / previous_count-

ratio = (estimated_cell_width / angular_height).round-

-

cells = previous_count * ratio40

grid[row] = Array.new(cells) { |col| HemisphereCell.new(id, row, col) }-

end-

-

grid-

45

end
end

-

Our HemisphereCell class is simple enough—it just subclasses PolarCell and adds
an attribute for keeping track of which hemisphere the cell belongs to (line
4).

The HemisphereGrid class is fairly straightforward, too—adding an id attribute
to indicate which of the two hemispheres is being represented (line 13), as
well as a simple method for querying the number of cells in a given row (line
20).

Our prepare_grid method is where we start busting out some math. In concept
it is very similar to the same method of PolarGrid, but the computations have
been adapted to a spherical surface. In particular, note the angular_height variable
(line 27), which is the height in radians of each row. (In a curious twist of
mathematical fate, this also happens to be the same as the physical distance
between rows if we’re building this out on a unit sphere.)

That angular_height is then used on lines 32–34 to compute the radius of the
circle described by the given row, to eventually tell us how many cells that
row ought to have.

There! Now that we’ve got a good definition of a hemispherical grid, we can
use that to build our sphere. Add the following to the same file, after Hemisphere-
Grid.
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Line 1 class SphereGrid < Grid
- def initialize(rows)

unless rows.even?-

raise ArgumentError, "argument must be an even number"-

end5

-

@equator = rows / 2-

super(rows, 1)
end

-

-

def prepare_grid
10

-

Array.new(2) { |id| HemisphereGrid.new(id, @equator) }
end

-

-

-

15 def configure_cells
belt = @equator - 1-

size(belt).times do |index|-

a, b = self[0, belt, index], self[1, belt, index]-

a.outward << b-

b.outward << a20

end
end

-

-

def [](hemi, row, column)
-

-

@grid[hemi][row, column]
end

25

-

def size(row)
-

-

@grid[0].size(row)
end

-

30

def each_cell
-

-

@grid.each do |hemi|-

hemi.each_cell { |cell| yield cell }-

end
end

35

-

def random_cell
-

-

@grid.sample.random_cell-

40

end
end

-

First off, the constructor checks to make sure that the number of rows spec-
ified for the grid is an even number (line 3). This is because we’re using two
hemispheres to implement the sphere as a whole, so the total number of rows
needs to be evenly divisible by two. The equator line is computed next (line
7) and is used in the prepare_grid method to initialize the two hemispheres (line
12).
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Remember that those HemisphereGrid instances will have already configured
their own cells, but that’s not quite enough. We need to tell the cells at the
equator of each of those hemispheres that they are adjacent to each other as
well. That’s what configure_cells is doing, on lines 17–21.

The remaining methods are self-explanatory, simply providing means to query
the cells of the grid.

Almost there! We’re still missing the to_png method that will draw our maze,
but we’ve left it for last for a reason. We’re going to do things a bit differently
here.

Instead of trying to implement a 3D renderer ourselves, we’re going to rely
on a third-party tool called the Persistance of Vision Raytracer, or POV-Ray
for short. It excels at drawing photorealistic 3D geometry (like spheres). All
we need to do is give it something to put on that geometry. (A maze, for
instance!)

To understand how this is going to work, consider the following map of the
world.

Looking at that map, you’d think that Antarctica was enormous. Seriously!
It must comprise at least as much land as all the other continents combined!
Of course, this isn’t true. Antarctica is actually comparable in size to North
America. So why, then, is it shown so large on the map?

The answer is that the map distorts it. Because the earth is a sphere, its
surface cannot be drawn—or projected—onto a flat surface very easily, and
definitely not without some amount of distortion. Our map uses what’s called
a cylindrical projection, which takes areas near the poles and stretches them
out to fill a rectangular area.
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Installing POV-Ray

Unless you’ve played with POV-Ray before, you probably won’t have it installed yet.
Fortunately, it’s free, and pretty painless to set up. If you are on a Windows machine,
you can download an installer from http://povray.org/download.

If you are on Mac OS X, you can use Homebrew:a

$ brew install povray

or MacPorts:b

$ sudo port install povray

If you’re on Linux, POV-Ray will be available via your package manager of choice.

a. http://brew.sh
b. https://www.macports.org

We’ll use this same technique to draw our maze, distorting the cells near the
poles in order to fit everything in a rectangular grid. POV-Ray, then, will take
that projection and apply it to a sphere, wrapping it neatly around the globe
like a decal on a model airplane and fixing the distortion in one go. This lets
us render a maze on a 3D surface by drawing a 2D image, a technique we’re
already very familiar with.

Here’s how it comes together. Add the following to_png method to the end of
the SphereGrid class.

Line 1 def to_png(ideal_size: 10)
- img_height = ideal_size * @rows
- img_width = @grid[0].size(@equator - 1) * ideal_size
-

5 background = ChunkyPNG::Color::WHITE
- wall = ChunkyPNG::Color::BLACK
-

- img = ChunkyPNG::Image.new(img_width + 1, img_height + 1, background)
-

10 each_cell do |cell|
row_size = size(cell.row)-

cell_width = img_width.to_f / row_size-

-

x1 = cell.column * cell_width-

x2 = x1 + cell_width15

-

y1 = cell.row * ideal_size-

y2 = y1 + ideal_size-

-

if cell.hemisphere > 020
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y1 = img_height - y1-

y2 = img_height - y2-

end-

-

x1 = x1.round; y1 = y1.round25

x2 = x2.round; y2 = y2.round-

-

if cell.row > 0-

img.line(x2, y1, x2, y2, wall) unless cell.linked?(cell.cw)-

img.line(x1, y1, x2, y1, wall) unless cell.linked?(cell.inward)30

end-

-

if cell.hemisphere == 0 && cell.row == @equator - 1-

img.line(x1, y2, x2, y2, wall) unless cell.linked?(cell.outward[0])-

end
end

35

-

-

-

end
img

-

The ideal_size parameter (line 1) is how tall and wide an ideal cell will be—but
remember the distortion we saw on that map of the world! We’ll see the same
kind of distortion in our maze here. The goal is not for the cells to be drawn
all the same size in our projection, but for them to be roughly similar in size
once we’ve mapped it to a sphere.

That ideal_size parameter is used to compute the size of our image on lines 2
and 3. In particular, note the line that computes the width: it takes the
number of rows at the equator (the row with the greatest number of cells) and
uses that to determine how wide the image ought to be. When we get to
computing how wide a specific cell is (on line 12) that image width is divided
by the actual number of cells in the current row. The result may be signifi-
cantly wider than the ideal size, if there are few cells in the row. (Remember
the poles in particular—they have only a single cell each!)

Once we know our cell’s dimensions, we compute the x- and y-coordinates
for each corner of the rectangle, and then we do something which might be
a bit unexpected. Lines 20–23 flip the y-coordinates for the southern hemi-
sphere.

Huh?

Remember that our sphere consists of two hemispheres, and the way our
HemisphereGrid class is implemented, each hemisphere treats the pole as being
at the top. However, we’ve flipped the southern hemisphere upside down, so
that our computations there are backward. We fix it by simply subtracting
the computed y-coordinate from the height of our image.
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One last gotcha: we draw the “top” (or pole-ward) walls for each cell, assuming
that the next row down will take care of the “bottom” (equator-facing) walls.
However, when it comes to the equator itself, it happens to be the bottom of
both hemispheres, and it would be omitted entirely if we failed to take it into
account specially. Lines 33–35 make sure that the equator gets drawn.

Let’s give it a spin. Our demo app ought to be completely unsurprising by
now:

sphere_demo.rb
require 'sphere_grid'
require 'recursive_backtracker'

grid = SphereGrid.new(20)
RecursiveBacktracker.on(grid)

filename = "sphere-map.png"
grid.to_png.save(filename)
puts "saved to #{filename}"

Running that will generate our maze image and save it to sphere-map.png. Go
ahead and open it up. It should look something like this:

Isn’t that wild? The poles are each a single cell, so those cells are stretched
edge-to-edge, with the distortion growing less and less as the rows approach
the equator.

It’s definitely intriguing but not very useful just yet. We need to apply it to a
sphere to see it in all its glory!

This is where POV-Ray comes in. POV-Ray accepts a text file describing a
scene and creates the corresponding image. To be useful, our scene will need
to include a camera (the location within the scene from which the image will
be drawn), a light source (to illuminate our sphere), and the sphere itself.

Put the following in sphere.pov.
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sphere.pov
#version 3.7;
#include "colors.inc"

background { color White }

camera {
location <0,0,-2.5>
look_at <0,0,0>

}

light_source {
<-50, 50, -50>
color White

}

sphere {
<0,0,0>, 1
texture {

pigment {
image_map {

png "sphere-map.png"
map_type 1

}
}
finish { ambient 0.3 diffuse 0.5 specular 0.2 }

}

rotate z*30
rotate -x*30

}

Without getting too much into POV-Ray’s scene description language, let me
just point out what is (hopefully) obvious: the scene includes a camera, a
light source, and a sphere. It then applies our sphere-map.png image as a texture
to that sphere (along with some material properties, like diffuse and specular
lighting), and finally rotates the sphere at a jaunty angle.

To produce an image of this scene, we just invoke POV-Ray from the command
line, like this:

$ povray +A sphere.pov
...
POV-Ray finished

We pass in the scene file, sphere.pov, as one of the arguments. The other
argument, +A, tells POV-Ray to perform anti-aliasing on the image so that
the edges of the sphere and the lines of the maze are smoothed and made to
look crisp and neat.
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POV-Ray will spit out quite a bit of information while it renders, so don’t be
alarmed—it’s working as expected. When it’s all finished, the final image will
be saved to sphere.png.

Voilà!

Your Turn
So we come to the end of this brief dip into the ocean of planair mazes. You’ve
seen how to build them on surfaces like cylinders, Möbius strips, cubes, and
spheres, and you’ve exercised your paper-crafting and 3D modeling skills by
constructing some of those objects in both real and virtual space. Can you
hear the possibilities calling you yet?

Try your hand at some of the following ideas, or chase some of your own. See
what you come up with!

Rendering Cylinder Mazes
So you’ve seen how to use POV-Ray to draw a sphere with a maze on it.
Doing so for a cylinder is very similar. The POV-Ray documentation1 is
fairly approachable, in spite of the fact that it claims to be “for Unix” (it
actually applies to all platforms). Look it over and see if you can puzzle
out how to take what you’ve got for the sphere maze and do the same for
a cylinder.

Rectangular Prisms
A cube is just a special case of a more general shape called a rectangular
prism. Imagine taking a cube, and stretching it along one or more axis,

1. http://www.povray.org/documentation
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so that the faces are no longer all equal in shape or area. The result is no
longer a cube, but it is still a prism! How would you draw a maze on such
a surface?

Cone Mazes
You’ve done circle mazes, and cylinder mazes. What happens if you
combine the two? You wind up with a cone maze. How would you tackle
implementing a maze on the surface of such a shape?

End Caps
The cylinder maze we looked at in this chapter existed purely on the sides
of the cylinder. That is to say, the cylinder was open, because it had no
cap on the top and bottom. But these caps are circular in shape…and
you just happen to know how to generate circle mazes. How would you
incorporate two circle mazes into a cylinder maze, to act as the top and
bottom caps on the cylinder?

An Odd Number of Rows
Our sphere maze implementation required that you give it an even number
of rows, so that the two hemispheres could equally represent both halves
of the sphere. You can still make that work with an odd number of rows,
but you need to treat the equatorial row as a special case. How would you
tackle that?

Real Walls
Painting the mazes onto these surfaces is definitely intriguing, but it’s
only the first step. How would you go about generating actual geometry
for the walls? It’s not as hard as it might sound, but you’ll need to make
sure you understand the math that was used to derive the measurements
of these grids. It all boils down to two things: being able to map a point
in your maze to a physical point on the surface, and being able to compute
the normal vector at that point—that is, the direction that is perpendicular
to the surface at the given location.

Four-Dimensional Objects
As if this material hadn’t blown your mind enough already, what if we
were to take it up a notch? Just as you can paint a 2D maze onto a 3D
object, you can “paint” a 3D maze onto a 4D object. What does this even
mean? It means you’ve got some research ahead of you! Tesseracts, duo-
cylinders, and glomes are just a few of the crazy names you might
encounter. See what you come up with!
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There you have it, my friend. You dove deep into the sea of random maze
generation, and you’ve come up on the other side. You found no magic
there—only rules, and logic, and a vast ocean of possibility.

You’ve had a taste. You’ve caught glimpses of what might be done with these
tools. Where will you go next?

Wherever it is, I hope there are mazes.
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APPENDIX 1

Summary of Maze Algorithms
Unless you use these algorithms frequently, you’re bound to find your recol-
lection of them fading over time. That’s okay! You’ve learned them once; often
all you need is a little refresher to bring them all sharply back into focus. The
whole point of this appendix is to help you skip the full course and quickly
recall the salient features and gotchas of each algorithm. Browse through
them, skim the analyses in the next appendix, and jump right back into your
own projects!

Aldous-Broder
In a nutshell:  Starting at an arbitrary location in the grid, move randomly

from cell to cell. If moving to a previously unvisited cell, carve a passage
to it. End when all cells have been visited.

Typical features: Starts quickly but can take a very long time to finish. Signif-
icantly, it is unbiased, meaning it is guaranteed to generate mazes perfectly
randomly, without preference to any particular texture or feature. (See
also Wilson’s algorithm.)

More information: The Aldous-Broder Algorithm, on page 55.

Binary Tree
In a nutshell:  For each cell in the grid, randomly carve either north or east.
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Typical features: A strong diagonal texture, tending toward the north-east
corner of the grid. Corridors run the length of the northern row and the
eastern column. Difficult to use with masks and some non-rectangular
grids.

Variations: The texture changes if you choose south instead of north, or west
instead of east. Also, the algorithm is easily adapted to 3D (and higher)
grids by adding either up or down as a choice at each cell.

More information: The Binary Tree Algorithm, on page 6, and Implementing
the Binary Tree Algorithm, on page 22.

Eller’s
In a nutshell:  Consider the grid one row at a time, sequentially. Assign the

unvisited cells in the current row to different sets. Randomly link adjacent
cells that belong to different sets, merging the sets together as you go.
For each remaining set, choose at least one cell and carve south, adding
that southern cell to the set as well. Repeat for every row in the grid. On
the final row, link all adjacent cells that belong to different sets.

Typical features: Final row tends to have fewer walls as a result of needing to
merge multiple sets together. Difficult to use with masks and non-rectan-
gular grids.

Variations: Render an infinitely long maze by keeping only a single row in
memory at a time and never rendering a final row.

More information: Eller’s Algorithm, on page 189.
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Growing Tree
In a nutshell:  This algorithm is a generalization of the Prim’s algorithms. Start

by creating a set and adding an arbitrary cell to it. Then, choose a cell
from the set. If the cell has no unvisited neighbors, remove it from the
set; otherwise choose one of the unvisited neighbors and link the two
together. Add the neighbor to the set. Repeat until the set is empty.

Typical features: Depends heavily on the method used to choose the next cell
from the set. Mazes may be radially textured (like Simplified Prim’s) or
twisted and snaky (like Recursive Backtracker), or anything in-between.

Variations: Alter the way in which cells are selected from the set. Choosing
at random gives you Simplified Prim’s. Choosing the most recently added
cell gives you Recursive Backtracker. Weighting the cells and choosing
the heaviest gives you True Prim’s. Combine different selection methods
for even greater variety, choosing (for example) randomly half the time,
and most recently added the rest of the time.

More information: The Growing Tree Algorithm, on page 183.

Hunt-and-Kill
In a nutshell:  Starting at an arbitrary location, perform a random walk,

avoiding previously visited cells. When no more moves are possible, scan
the grid, looking for an unvisited cell next to a visited cell. If found, connect
the two, and resume the random walk. The algorithm terminates when
it cannot find any unvisited cells.
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Typical features: Long, twisty passages (“high river”), with relatively few dead
ends. Closely related to Recursive Backtracker, but potentially slower since
it may scan every cell many times, though it has much lower memory
requirements.

More information: The Hunt-and-Kill Algorithm, on page 67.

Kruskal’s (Randomized)
In a nutshell:  Begin by assigning each cell to a different set. Randomly link

two adjacent cells, but only if they belong to different sets. Merge the sets
of the two cells. Repeat until only a single set remains.

Typical features: Largely unbiased (see Appendix 2, Comparison of Maze
Algorithms, on page 257, and note how similar Kruskal’s mazes are to those
produced by Aldous-Broder and Wilson’s). Produces very regular, uniform
mazes. Excels at producing mazes that are the union of disjoint subsets,
where the grid is prepopulated with some cells already connected in dif-
ferent areas.

Variations: Template mazes (by applying template designs at different locations
of the grid, and then running Kruskal’s algorithm to fill in the unfinished
areas), with spirals, weaves, and other patterns.

More information: Kruskal’s Algorithm, on page 158.

Prim’s (Simplified)
In a nutshell:  Initialize a set with an arbitrary cell. Randomly choose a cell

from the set. If it has no unvisited neighbors, remove it from the set.
Otherwise, choose one of the cell’s unvisited neighbors, link the two
together, and add the neighbor to the set. Repeat until the set is empty.
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Typical features: A strong radial texture centered on the starting cell. Mazes
tend to have more dead ends than other algorithms, and shorter paths.
Behaves identically to Prim’s (True) if that algorithm is given a grid where
every cell is weighted the same.

More information: Simplified Prim’s Algorithm, on page 179.

Prim’s (True)
In a nutshell:  First, assign every cell a random weight, and initialize a set

with an arbitrary cell. Choose the cell with the greatest weight from the
set. If it has no unvisited neighbors, remove it from the set. Otherwise,
choose one of the cell’s unvisited neighbors, link the two together, and
add the neighbor to the set. Repeat until the set is empty.

Typical features: Many, many dead ends per maze, with relatively shorter
paths in general. Texture-wise, the mazes have a “jigsaw puzzle” appear-
ance.

More information: True Prim’s Algorithm, on page 181.

Recursive Backtracker
In a nutshell:  Starting at an arbitrary location, perform a random walk,

avoiding previously visited cells. When no more moves are possible,
backtrack to the most recently visited cell and resume the random walk
from there. The algorithm ends when it tries to backtrack from the cell
where it started.

Typical features: Long, twisty passages (“high river”), with relatively few dead
ends. Closely related to Hunt-and-Kill, but potentially faster, as it is
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guaranteed to visit every cell only twice, though it needs considerably
more memory to keep track of previously visited cells.

More information: The Recursive Backtracker Algorithm, on page 73.

Recursive Division
In a nutshell:  Begin with an open grid, with no internal walls. Add a wall that

divides the grid in half, with a passage through it linking the two halves.
Repeat on each side of the grid, recursively, until no open areas remain.

Typical features: Tends to have a boxy, rectangular texture. Solution paths
are generally easy to spot due to “bottlenecks”—passages that restrict all
travel between regions of the grid.

Variations: By halting the recursion early, open areas (rooms) can be created
to produce mazes reminiscent of floor plans. More challenging: the grid
may be divided along irregular lines to eliminate the boxy texture.

More information: Recursive Division, on page 197.

Sidewinder
In a nutshell:  Consider the grid one row at a time. For each row, link random

runs of adjacent cells, and then carve north from a random cell in each
run. Treat the northern row specially, linking all cells into a single corridor.

Typical features: A strong vertical texture. One corridor runs the length of the
northern row. Difficult to use with masks and non-rectangular grids.

Variations: The texture changes if you choose south instead of north, or if
you run the algorithm by columns instead of rows and choose east or
west instead of north. Also, the algorithm is easily adapted to 3D (and
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higher) grids by choosing between north, and (for example) up or down
for each run.

More information: The Sidewinder Algorithm, on page 12, and Implementing
the Sidewinder Algorithm, on page 27.

Wilson’s
In a nutshell:  Choose an arbitrary cell and add it to the maze. Starting from

any other cell, perform a loop-erased random walk until you encounter a
cell belonging to the maze, and then add the resulting walk. Repeat until
all cells have been added.

Typical features: Slow to start but accelerates quickly as paths are added to
the maze. As with Aldous-Broder, it is unbiased, meaning it is guaranteed
to generate mazes perfectly randomly, without preference to any particular
texture or feature.

More information: Wilson’s Algorithm, on page 60.
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APPENDIX 2

Comparison of Maze Algorithms
It’s one thing to stare at a maze and try to decide whether the aesthetics of
it work for you or not. It’s much harder to look at the implementation of an
algorithm and compare it quantitatively with other algorithms. How likely is
the algorithm to generate dead ends? How does its average longest path
compare with that of other algorithms? How can we even know these things?

For this, we turn to statistics. It’s really pretty straightforward to do: you run
each algorithm a set number of times, on a grid of fixed size; pick out the
numbers you care about; and analyze them. It’s probably not going to win
you any PhDs, and the numbers by themselves certainly won’t tell you the
whole story, but we can still come away with some useful insights.

The graphs in this appendix were created by running each algorithm a thou-
sand times, on a 32×32 grid. The Growing Tree algorithm was a 50/50 mix
of choosing the most recently added cell and choosing a cell at random. The
following data points were measured and averaged for each grid:

• Number of dead ends
• Length of longest path (the number of cells it contains)
• Number of cells with horizontal or vertical passages (east-to-west, and

north-to-south)
• Number of “elbow” cells (passage enters from one side, then turns either

right or left)
• Number of three-way intersections
• Number of four-way intersections

Each number was then turned into a fraction of the grid as a whole. For
example, if a particular maze had a longest path of 250 cells, that was then
divided by the number of cells in the grid (32×32, or 1024), to produce
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roughly 0.244. In other words, that path would have covered 24.4% of the
cells in the grid.

Aldous-Broder and Wilson’s algorithms being unbiased (and their output
statistically identical to each other), their averages were used as the baseline
by which all the other algorithms were compared. Keep in mind, though, that
an average only tells part of the story! The numbers in these graphs may be
hiding surprising things that could be exposed through more rigorous analysis.
You have been warned.

Dead Ends
A dead end is defined as a cell that is linked to only a single neighbor. Fewer
dead ends and a long path might suggest lengthy side roads that can take
someone far astray.

The following figure shows how the number of dead ends per maze compared
across algorithms.
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Aldous-Broder and Wilson’s tend to produce mazes where around 30% of the
cells are dead ends. True Prim’s produces about 50% more than that, and
Hunt-and-Kill and Recursive Backtracker produce significantly fewer.

Longest Path
The longest path was computed using Dijkstra’s algorithm, as described in
Making Challenging Mazes, on page 44. It is represented in the following figure
as the percentage of cells in a maze that lie on that longest path.
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Recursive Backtracker is far-and-away the champion here, with an average
of 50% of the cells in the grid existing on the longest path. Simplified Prim’s
falls at the other end of the spectrum, with longest paths that cover less than
10% of the grid.

Twistiness
Twistiness is a measure of how often a passage changes direction. It is taken
as the percentage of cells with a passage entering on one side, and exiting to
the left or the right.
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Hunt-and-Kill takes the cake here, followed closely by Recursive Backtracker,
with roughly half the cells in the maze fitting this definition. True Prim’s, on
the other hand, turns only about 10% of the time.
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Directness
Directness is the opposite of twistiness. It is a measure of how many cells in
a grid go straight, either horizontally or vertically.
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This can be broken down a bit more, though, by showing the numbers sepa-
rately for horizontal passages and vertical passages. The following figure
shows the relative number of horizontal passages in each maze.
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And the following gives the corresponding numbers for vertical passages.
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As you would expect, the baseline is pretty much the same for both horizontal
and vertical passages, but two particularly interesting data points here are
the Recursive Division and Eller’s algorithms. Both seem to greatly prefer
vertical passages over horizontal ones! Hunt-and-Kill and Sidewinder show
some similar preference as well.

Intersections
Lastly, intersections give an indication of how often someone traversing the
maze will need to make a decision. The following figure shows the relative
number of three-way intersections for each algorithm.
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As you can see, Recursive Backtracker and Hunt-and-Kill present far fewer
choices than other algorithms! This trend continues even when considering
four-way intersections:
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Once again, Recursive Backtracker and Hunt-and-Kill are toward the end,
although Binary Tree is at the very tip of that tail with exactly zero percent
of passages being four-way intersections. It’s hard to get much lower than
that!

Your Turn
As was pointed out, the statistics presented in this appendix are very super-
ficial. There is a lot more that could be done. If statistics are your thing, you
might want to consider analyzing other aspects of these algorithms. Maybe
some of the following will inspire you!

• An analysis of the path lengths leading away from the longest path. This
could give you a better idea of how far someone might go astray (though
it would be an expensive number to compute!).

• Ratio of dead ends to path length. Many dead ends with a longer average
path length suggests you might get very lost down a side road!

• Ratio of directness to twistiness. An algorithm with a very high ratio would
have relatively few turns. Pac-Man’s maze, for instance, would be more
direct than twisty.

What other measurements would you like to try? See what else you can come
up with!
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