The
matic
Ogrammers

\

Ex
Iro I' IMeErs

\
Challenges to
Develop Your
Coding Skills

ercises for
22

¢
N
)

i
' }i \\

Brian P. Hogan
sdited by Susannah Davidson Pfalzer

/AN, |

Early praise for Exercises for Programmers

If you're looking to pick up a new programming language, you should
also pick up this book. You'll learn how to solve problems from first
principles, developing a stronger foundation to build on top of. I learned
a lot. I expect you will too.
>» Stephen Orr

Senior software engineer, Impact Applications

A wonderful resource for learning new languages using the most effective
method: practice. Because the book is language agnostic, it has almost
endless replay value, which is a rare quality among technical books.
» Jason Pike

Software developer, theswiftlearner.com

This is a wonderful book for anyone who wants to start fresh in a new
language. Programmers new and old will greatly benefit from this repos-
itory of exercises. This book offers comfort for beginners and challenges
for advanced programmers.
» Alex Henry

Software engineer quality assurance, JAMF Software

We've left this page blank to
make the page numbers the
same in the electronic and
paper books.

We tried just leaving it out,
but then people wrote us to
ask about the missing pages.

Anyway, Eddy the Gerbil
wanted to say “hello.”

Exercises for Programmers
57 Challenges to Develop Your Coding Skills

Brian P. Hogan

The Pragmatic Bookshelf

Dallas, Texas « Raleigh, North Carolina

__\\ Pragmatic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their

products are claimed as trademarks. Where those designations appear in this book,
and The Pragmatic Programmers, LLC was aware of a trademark claim, the desig-
nations have been printed in initial capital letters or in all capitals. The Pragmatic
Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic
Bookshelf, PragProg and the linking ¢ device are trademarks of The Pragmatic
Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result
from the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your
team create better software and have more fun. For more information, as well as
the latest Pragmatic titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Linda Recktenwald (copyedit)
Dave Thomas (layout)

Janet Furlow (producer)

Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without the
prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-122-3

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2015

https://pragprog.com
rights@pragprog.com

Contents

Acknowledgments
How to Use This Book

Turning Problems into Code
Understanding the Problem

Discovering Inputs, Processes, and Outputs

Driving Design with Tests

Writing the Algorithm in Pseudocode
Writing the Code

Challenges

Onward!

Input, Processing, and Output .
Exercise 1. Saying Hello

Exercise 2. Counting the Number of Characters

Exercise 3. Printing Quotes
Exercise 4. Mad Lib
Exercise 5. Simple Math

Exercise 6. Retirement Calculator
What You Learned

Calculations . e e
Exercise 7. Area of a Rectangular Room

Exercise 8. Pizza Party

Exercise 9. Paint Calculator
Exercise 10. Self-Checkout
Exercise 11. Currency Conversion

Exercise 12. Computing Simple Interest

Exercise 13. Determining Compound Interest

What You Learned

ix
xi

O G0 0 O\ B W~ =

11
12
13
14
15
16
17
17

19
21
22
23
24
25
26
27
28

Making Decisions

Exercise 14.

Tax Calculator

Exercise 15.

Password Validation

Exercise 16.

Legal Driving Age

Exercise 17.

Blood Alcohol Calculator

Exercise 18.

Temperature Converter

Exercise 19.

BMI Calculator

Exercise 20.

Multistate Sales Tax Calculator

Exercise 21.

Numbers to Names

Exercise 22.

Comparing Numbers

Exercise 23.

Troubleshooting Car Issues

What You Learned

Functions

Exercise 24.

Anagram Checker

Exercise 25.

Password Strength Indicator

Exercise 26.

Months to Pay Off a Credit Card

Exercise 27. Validating Inputs
What You Learned

Repetition
Exercise 28. Adding Numbers
Exercise 29. Handling Bad Input
Exercise 30. Multiplication Table

Exercise 31.

Karvonen Heart Rate

Exercise 32.

Guess the Number Game

What You Learned

Data Structures
Exercise 33.

Magic 8 Ball

Exercise 34.

Employee List Removal

Exercise 35.

Picking a Winner

Exercise 36. Computing Statistics
Exercise 37. Password Generator
Exercise 38. Filtering Values

Exercise 39.

Sorting Records

Exercise 40.

Filtering Records

What You Learned

Working with Files

Exercise 41.

Name Sorter

Exercise 42.

Parsing a Data File

Contents ® vi

29
33
34
35
36
37
38
39
40
41
42
43

45
47
48
49
51
52

53
57
58
59
60
61
62

63
65
66
67
68
70
71
72
73
74

75
76
77

10.

Exercise 43.

Website Generator

Exercise 44. Product Search
Exercise 45. Word Finder

Exercise 46. Word Frequency Finder
What You Learned

Working with External Services

Exercise 47. Who's in Space?
Exercise 48. Grabbing the Weather
Exercise 49. Flickr Photo Search

Exercise 50.

Movie Recommendations

Exercise 51.

Pushing Notes to Firebase

Exercise 52.

Creating Your Own Time Service

What You Learned

Full Programs . .

Exercise 53.

Todo List

Exercise 54.

URL Shortener

Exercise 55.

Text Sharing

Exercise 56.

Tracking Inventory

Exercise 57.

Trivia App

Where to Go Next

Contents ® vii

78
79
80
81
82

83
85
86
87
88
89
90
90

91
92
93
94
95
96
97

Acknowledgments

First, thank you. You're awesome. No, you really are,
because you've picked up this book and made a commitment
to improving your skills as a software developer. I wrote
this book for people just like you, so thank you for reading.

Second, thank you, Dave Thomas, for believing in this idea
and for your guidance over the years. It's been an honor and
a privilege to learn from you. Your encouragement on this
book means a lot, and I appreciate your generosity with your
time as you reviewed the exercises and offered suggestions.
You and Andy continue to make the world better for pro-
grammers, and I'm grateful to be able to contribute to that
in my small way.

A special thank you to Susannah Pfalzer. You always make
my books better than they started out. You seem to catch all
the right details, and you guide me to focus on what really
matters. This is the sixth book you’ve helped me with, and
I'm a better writer because of all your guidance over the
years.

Next, thank you, Andy Hunt, Mike Reilly, Michael Swaine,
Fahmida Rashid, and Bruce Tate, for your encouragement
when I proposed this idea.

The programs in this book are ones I've been using to teach
programming over the last ten years. Thank you to Zachary
Baxter, Jordan Berg, Luke Chase, Dee Dee Dale, Jacob Don-
ahoe, Alex Eckblad, Arrio Farugie, Emily Mikl, Aaron Miller,
Eric Mohr, Zachary Solofra, Darren Sopiarz, Ashley Stevens,
Miah Thalacker, Andrew Walley, and all the other students
who've come through my classes and training sessions over
the years. The feedback you've provided on my approach
to teaching has helped me immensely. And thank you, Kyle

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Acknowledgments ® x

Loewenhagen, Jon Cooley, and George Andrews, for helping
me grow as a teacher with your feedback and insights.

Thank you, Deb Walsh, for your encouragement and
incredible ideas on how to get the best out of students. We
share core beliefs about teaching and learning, and I learn
so much from our conversations. Thank you for sharing your
experience and expertise with me and for your support of
my teaching methods.

This book of exercises flows much better and is clarified by
the fantastic feedback from a great mix of new and veteran
software developers. Each reviewer put an incredible amount
of time and effort into working through these problems in
their favorite programming language, helping me identify
things that didn’t make sense or needed improvement.
Thank you, Chris C., Alex Henry, Jessica Janiuk, Chris
Johnson, Aaron Kalair, Sean Lindsay, Matthew Oldham,
Stephen Orr, Jason Pike, Jessica Stodola, Andrew Vahey,
and Mitchell Volk, for donating your valuable time to test
these exercises and provide suggestions and feedback.

Thank you to my business associates Mitch Bullard, Kevin
Gisi, Chris Johnson, Jeff Holland, Erich Tesky, Myles Stein-
hauser, Chris Warren, and Mike Weber for your support.

Thank you, Carissa, my wonderful wife and best friend.
Your love and support make this all possible. I am forever
grateful for all you do for me and our girls.

Finally, thank you, Ana, for being awesome, and thank you,
Lisa, for all the hugs and text messages while I was writing.
And for keeping me company on the couch while I wrote
this.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

How to Use This Book

Practice makes permanent.

A concert pianist practices many hours a day, learning music,
practicing drills, and honing her skills. She practices the
same piece of music over and over, learning every little detail
to get it just right. Because when she performs, she wants to
deliver a performance she is proud of for the people who
spent their time and money to hear it.

A pro football player spends hours in the gym lifting, run-
ning, jumping, and doing drills over and over until he mas-
ters them. And then he practices the sport. He’ll study plays
and watch old game videos. And, of course, he’ll play
scrimmage and exhibition games to make sure he’s ready
to perform during the real contest.

A practitioner of karate spends a lifetime doing kata, a series
of movements that imitate a fight or battle sequence, learning
how to breathe and flex the right muscles at the right time.
She may do the same series of movements thousands of
times, getting better and better with each repetition.

The best software developers I've ever met approach their
craft the same way. They don’t go to work every day and
practice on the employer’s dime. They invest personal time
in learning new languages and perfecting techniques in
others. Of course they learn new things on the job, but
because they’re getting paid, there’s an expectation that they
are there to perform, not practice.

This book is all about practicing your craft as a programmer.
Flip to a page in this book, crack open your text editor, and
hammer out the program. Make your own variations on it.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

How to Use This Book * xii

Doitin alanguage you've never used before. And get better
and better each time you do it.

Who This Book Is For

This book is targeted at two main groups of programmers.

First, it’s for beginning programming students to get addi-
tional practice beyond the classroom. You can’t hone your
skills just by doing your assignments. Your future employer
will want you to be able to demonstrate critical thinking and
problem-solving skills, and you need practice to develop
those. This book gives you that practice in the form of real-
world problems that many developers face but that are
geared toward your abilities. Each chapter covers a funda-
mental component of programming and is a little more
complex than the previous one, building on what you've
learned and preparing you for the challenges that lie ahead,
both in and out of the classroom.

Many beginning programmers are used to being told exactly
how to solve a problem. They often learn a language by fol-
lowing a written tutorial that has some code they can type.
And this is a great way to start writing code. But these pro-
grammers struggle when faced with open-ended problems
that don’t have the solution available. And as anyone who
has experience can tell you, software development is full of
open-ended problems. The exercises in this book help you
develop those problem-solving skills so that you build the
confidence to attack even larger problems—maybe even
ones that nobody else has solved yet.

But this book is also for experienced programmers looking
to get better at what they do. When I learned Go and Elixir,
Iused programs like the ones in this book. When I tried my
hand at iOS development, I tried to write these programs.
And every once in a while, I do these programs in a language
I already know. I'm fluent in JavaScript and Ruby, and it’s
a great challenge to see if I can tackle one of these programs
in a different way, using a different algorithm or pattern.
When I started teaching Ruby and JavaScript full time, these
programs helped me discover and explain the unique fea-
tures of the languages I knew how to use but didn’t quite

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

How to Use This Book xiii

fully understand. And so if you're an experienced developer,
I encourage you to do the same. Try one of these programs
in Haskell. Or try to write one of these programs in every
language you know and compare the results. Challenge your
coworkers to do one of these exercises a week and compare
your solutions. Or use these programs to mentor the new
junior developer on your team.

If you teach introductory programming at the high school or
college level, you may find the exercises in this book useful in
your class. I don't recommend using these as summative
assessments though; people reading this book are encouraged
to share their solutions with others. But I do recommend using
these as in-class exercises where students can work together.
These exercises work well in a problem-based learning environ-
ment.

U
What’s in This Book (And What’s Not)

This book is written first and foremost to provide beginners
with challenging problems they might face when first
learning to program. Therefore, most of the problems are

relatively simple in the beginning and gradually get more
complex. The progression of exercises in this book makes
practicing the fundamentals of programming challenging
but fun and can accelerate the process of picking up a new
language. In the first section, the programs simply take some
input and manipulate the data into different output, giving
you experience with how computer programs handle input
and output operations. They’re the kind of programs you'd
do in your first week as a beginning programmer.

Next, you'll be challenged by writing programs that have
you do calculations. Some of them are as simple as calculat-
ing the area of a room. But others involve financial and
medical calculations similar to ones you may find on the job.

Then you’ll increase the complexity of your programs by
including decision logic and repetition logic, and you’ll
incorporate functions into them.

report erratum -« discuss

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

How to Use This Book ® xiv

After that you'll find some problems that need to be solved
using data structures like arrays and maps. These programs
also require you to draw on some of the other problems
you’ve solved before.

And, of course, no collection of programs would be complete
without a bit of file input and output, so you'll get to practice
reading data from files, processing it, and writing it back
out.

Modern programs often talk with external services, so you'll
find a few programs that have you work with data using
third-party APIs.

Finally, a few larger programs at the end will require you
to put together all the things you’ve learned.

In addition, each exercise includes some constraints that
you'll have to follow when building the program as well as
some challenges that ask you to build on the program. If
you've never programmed before, you may want to skip the
challenges and revisit them when you improve your skills.
But if you've got some experience under your belt, you may
want to accept these challenges right away if you think the
program is too simple. Some of the challenges will be diffi-
cult depending on the programming language you’'ve cho-
sen. For example, if you're creating these programs with
JavaScript and HTML, making a GUI version of the program
will be easy. If you're doing this with Java, it will be a lot
more work. So feel free to modify the challenges as you see
fit.

However, what you won't find in this book are the solutions
to the programs. If you think hard enough and use all of the
resources at your disposal, you'll be able to figure out how
to solve these problems on your own, which is the point of
this book.

One last thing: you won't find the infamous interview
questions here. There’s no FizzBuzz. You won't need to
invert binary trees, nor will you need to write a quicksort
algorithm (unless you want to as part of a solution). If you're
looking for things like that, you'll have to look elsewhere.
Those kinds of problems have value but are often more dif-

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

How to Use This Book ® xv

ficult to do because it’s not clear why you’re doing them.
That makes them unapproachable, which creates a barrier
to learning.

The problems in this book are simple, real-world problems
that you can easily relate to and that will help you practice
solving problems with code.

What You Need

All you need is your favorite development environment—or
even one you’'ve never used. This book is programming-
language agnostic. Pick a language, grab that language’s
reference guide, and dive in. Be warned though; the program-
ming language you choose will determine how easy, or dif-
ficult, these programs are. For example, if you choose to do
this book with Python or Ruby, then developing graphical
user interfaces won't be easy. And if you choose to use
JavaScript in the browser, then working with external files
and web services will be much more complex than with
other languages. Your approach to problems will be much
different if you choose a functional programming language
over an object-oriented one. But that’s the real value of these
exercises; they’ll help you learn a language and how that
language is different from what you already know.

You should have an Internet connection so you can do some
of the programs that use third-party services and participate
in the community for this book.

Online Resources

The book’s website ' has a discussion forum where you can
discuss the book with other developers. Feel free to post
solutions there in your favorite language and discuss your
solutions with other readers. One of the most fascinating
things about programming is how people approach solving
problems differently and how each developer has his or her
own style.

1. http://pragprog.com/tities/bhwb

http://pragprog.com/titles/bhwb
http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

CHAPTER 1

Turning Problems into Code

If you're new to programming, you may wonder how
experienced developers can look at a problem and turn it
into runnable code. It turns out that writing the actual code
is only a small part of the process. You have to break down
the problem before you can solve it. If you've ever watched
an experienced programmer, it may look like they just
cracked open their code editor and banged out a solution.
But over the years, they’ve broken down hundreds, if not
thousands, of problems, and they can see patterns. If you're
just starting out, you might not know how to do that. So in
this chapter we’ll look at one way to break down problems
and turn them into code. And you can use this approach to
conquer the problems in the rest of this book.

Understanding the Problem

One of the best ways to figure out what you have to do is to
write it down. If I told you that I wanted a tip calculator
application, would that be enough information for you to
just go and build one? Probably not. You'd probably have
to ask me a few questions. This is often called gathering
requirements, but I like to think of it as figuring out what
features the program should have.

Think of a few questions you could ask me that would let
you get a clearer picture of what I want. What do you need
to know to build this application?

Got some questions? Great. Here are some you might ask:

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 1. Turning Problems into Code ® 2

¢ What formula do you want to use? Can you explain how
the tip should be calculated?

* What's the tip percentage? Is it 15% or should the user
be able to modify it?

¢ What should the program display on the screen when
it starts?

e What should the program display for its output? Do
you want to see the tip and the total or just the total?

Once you have the answers to your questions, try writing
out a problem statement that explains exactly what you're
building. Here’s the problem statement for the program
we're going to build:
Create a simple tip calculator. The program should prompt
for a bill amount and a tip rate. The program must compute

the tip and then display both the tip and the total amount of
the bill.

Example output:

What is the bill? $200

What is the tip percentage? 15
The tip is $30.00

The total is $230.00

Break down the large program into smaller features that are
easier to manage. If you do that, you'll have a better chance of

success because each feature can be fleshed out. And most
complex applications out there are composed of many smaller
programs working together. That’s how command-line tools in
Linux work; one program’s output can be another program’s
input.

If you're ready to open your text editor and hammer out the
code, you're jumping way ahead of yourself. You see, if you
don't take the time to carefully design the program, you
might end up with something that works but isn’t good
quality. And unfortunately, it’s very easy for something like
that to get out into the wild. For example, you hammer out

report erratum -« discuss

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 1. Turning Problems into Code ® 3

your program without testing, planning, or documenting it,
and your boss sees it, thinks it's done, and tells you to release
it. Now you have untested, unplanned code in production,
and you’ll probably be asked to make changes to it later.
Code that’s poorly designed is very hard to maintain or
extend. So let’s take this tip calculator example and go
through a simple process that will help you understand what
you're supposed to build.

Discovering Inputs, Processes, and
Outputs

Every program has inputs, processes, and outputs, whether
it's a simple program like this one or a complex application
like Facebook. In fact, large applications are simply a bunch
of smaller programs that communicate. The output of one
program becomes the input of another.

You can ensure that both small and large programs work
well if you take the time to clearly state what these inputs,
processes, and outputs are. An easy way to do that, if you
have a clear problem statement, is to look at the nouns and
verbs in that statement. The nouns end up becoming your
inputs and outputs, and the verbs will be your processes.
Look at the problem statement for our tip calculator:

Create a simple tip calculator. The program should prompt
for a bill amount and a tip rate. The program must compute
the tip and then display both the tip and the total amount of
the bill.

First, look for the nouns. Circle them if you like, or just make
a list. Here’s my list:

¢ bill amount
e tip rate

e tip

e total amount

Now, what about the verbs?

® prompt
* compute
e display

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 1. Turning Problems into Code ® 4

So we know we have to prompt for inputs, do some calcula-
tions, and display some outputs. By looking at the nouns
and verbs, we can get an idea of what we're being asked to
do.

Of course, the problem statement won't always be clear. For
example, the problem statement says we need to calculate
the tip, but it then says we need to display the tip and the
total. It’s implied that we’ll need to also add the tip to the
original bill amount to get that output. And that’s one of the
challenges of building software. It isn't spelled out to you
100% of the time. But as you gain more experience, you’'ll
be able to fill in the gaps and read between the lines.

So with a little bit of sleuthing, we determine that our inputs,
processes, and outputs for this program look like this:

e Inputs: bill amount, tip rate
* Processes: calculate the tip
¢ Outputs: tip amount, total amount

Are we ready to start producing some code? Not just yet.

Driving Design with Tests

One of the best ways to design and develop software is to
think about the result you want to get right from the start.
Many professional software developers do this using a for-
mal process called test-driven development, or TDD. In TDD,
you write bits of code that test the outputs of your program
or the outputs of the individual programs that make up a
larger program. This process of testing as you go guides you
toward good design and helps you think about the issues
your program might have.

TDD does require some knowledge about the language
you're using and a little more experience than the beginning
developer has out of the gate.

However, the essence of TDD is to think about what the
expected result of the program is ahead of time and then
work toward getting there. And if you do that before you
write code, it'll make you think beyond what the initial
requirements say. So if you're not quite comfortable doing
formal TDD, you can still get many of the benefits by creating

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 1. Turning Problems into Code ® 5

simple test plans. A test plan lists the program’s inputs and
its expected result.

Here’s what a test plan looks like:

Inputs:
Expected result:
Actual result:

You list the program inputs and then write out what the
program’s output should be. And then you run your pro-
gram and compare the expected result with the actual result
your program gives out.

Let’s put this into practice by thinking about our tip calcula-
tor. How will we know what the program’s output should
be? How will we know if we calculate it correctly?

Well, let’s define how we want things to work by using some
test plans. We’ll do a very simple test plan first.
Inputs:
bill amount: 10
tip rate: 15
Expected result:
Tip: $1.50
Total: $11.50

That test plan tells us a couple things. First, it tells us that
we’ll take in two inputs: a bill amount of 10 and a tip rate of
15. So we’ll need to handle converting the tip rate from a
whole number to a decimal when we do the math. It also
tells us we'll print out the tip and total formatted as currency.
So we know that we’d better do some conversions in our
program.

Now, one test isn’t enough. What if we used 11.25 as an
input? Using a test plan, what should the output be? Try it
out. Fill in the following plan:

Input:
bill amount: 11.25
tip rate: 15
Expected result:
Tip: ?7?7?
Total: 7?77

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 1. Turning Problems into Code ® 6

I assume you just went and used a calculator to figure out
the tip. If you ran the calculation, your calculator probably
said the tip should be 1.6875.

But is that realistic? Probably not. We would probably round
up to the nearest cent. So our test plan would look like this:
Input:

bill amount: 11.25

tip rate: 15
Expected result:

Tip: $1.69

Total: $12.94

We just used a test to design the functionality of our pro-
gram; we determined that our program will need to round
up the answer.

When you're going through the exercises in this book, take
the time to develop at least four test plans for every program,
and try to think of as many scenarios as you can for how
people might break the program. And as you get into the
more complicated problems, you may need a lot more test
plans.

If you're an experienced software developer who wants to
get started with TDD, you should use the exercises in this
book to get acquainted with the libraries and tools your
favorite language has to offer. You can find a list of testing
frameworks for many programming languages at
Wikipedia.' You can read Kent Beck’s Test-Driven Develop-
ment: By Example to gain more insight into how to design
code with tests, or you can investigate any number of more
language-specific resources on TDD.

So now that we have a clearer picture of the features the
program will have, we can start putting together the algo-
rithm for the program.

Writing the Algorithm in Pseudocode

An algorithm is a step-by-step set of operations that need
to be performed. If you take an algorithm and write code to

1. https://en.wikipedia.org/wiki/List of unit testing frameworks

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks
http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 1. Turning Problems into Code ® 7

perform those operations, you end up with a computer
program.

If you're new to programming and not entirely comfortable
with a programming language’s syntax yet, you should
consider writing out the algorithm using pseudocode, an
English-like syntax that lets you think about the logic without
having to worry about paper. Pseudocode isn't just for
beginners; experienced programmers will occasionally write
some pseudocode on a whiteboard when working with
teammates to solve problems, or even by themselves.

There’s no “right way” to write pseudocode, although there
are some widely used terms. You might use Initialize to state
that you're setting an initial value, Prompt to say that you're
prompting for input, and Display to indicate what you're
displaying on the screen.

Here’s how our tip calculator might look in pseudocode:

TipCalculator
Initialize billAmount to ©
Initialize tip to 0O
Initialize tipRate to 0
Initialize total to ©

Prompt for billAmount with "What is the bill amount?"
Prompt for tipRate with "What is the tip rate?"

convert billAmount to a number
convert tipRate to a number

tip = billAmount * (tipRate / 100)
round tip up to nearest cent
total = billAmount + tip

Display "Tip: $" + tip
Display "Total: $" + total
End

That’s a rough stab at how our program’s algorithm will
look. We’ll have to set up some variables, make some deci-
sions based on the input, do some conversions, and put some
output on the screen. I recommend including details like
variable names and text you'll display on the screen in
pseudocode, because it helps you think more clearly about
the end result of the program.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 1. Turning Problems into Code ® 8

Is this the best way we could write the program? Probably
not. But that’s not the point. By writing pseudocode, we’ve
created something we can show to another developer to get
feedback, and it didn’t take long to throw it together.

Best of all, we can use this as a blueprint to code this up in
any programming language. Notice that our pseudocode
makes no assumptions about the language we might end
up using, but it does guide us as to what the variable names
will be and what the output to the end user will look like.

Once you write your initial version of the program and get
it working, you can start tweaking your code to improve it.
For example, you may split the program into functions, or
you may do the numerical conversions inline instead of as
separate steps. Just think of pseudocode as a planning tool.

Writing the Code

Now it’s your turn. Using what you’ve learned, can you
write the code for this program? Give it a try. Just keep these
constraints in mind as you do so:

Constraints

¢ Enter the tip as a percentage. For example, a 15% tip
would be entered as 15, not 0.15. Your program should
handle the division.

* Round fractions of a cent up to the next cent.

If you can’t figure out how to enforce these constraints, write
the program without them and come back to it later. The
point of these exercises is to practice and improve.

And if this program is too challenging for you right now,
jump ahead and do some of the easier programs in this book
first, and then come back to this one.

Challenges

When you’ve finished writing the basic version of the pro-
gram, try tackling some additional challenges:

¢ Ensure that the user can enter only numbers for the bill
amount and the tip rate. If the user enters non-numeric

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 1. Turning Problems into Code ® 9

values, display an appropriate message and exit the
program. Here’s a test plan as an example:

Input:
bill amount: abcd
tip rate: 15

Expected result: Please enter a valid number for
the bill amount.

* Instead of displaying an error message and exiting the
program, keep asking the user for correct input until it
is provided.

¢ Don’t allow the user to enter a negative number.

* Break the program into functions that do the computa-
tions.

¢ Implement this program as a GUI program that automat-
ically updates the values when any value changes.

¢ Instead of the user entering the value of the tip as a
percentage, have the user drag a slider that rates satis-
faction with the server, using a range between 5% and
20%.

Onward!

Try to tackle each problem in the book using this strategy
to get the most out of the experience. Discover your inputs,
processes, and outputs. Develop some test plans, come up
with some pseudocode, and write the program. Then accept
the various challenges after each program. Or go in your
own direction. Or write the program in as many languages
as you can.

But most of all, have fun and enjoy learning.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

CHAPTER 2

Input, Processing, and Qutput

Getting input from the user and converting it to something
meaningful is one of the fundamental pieces of program-
ming. Software developers are always turning data into
information that can be used to make decisions. That data
may come from the keyboard, a mouse, a touch, a swipe, or
even a game controller. The computer has to react to it,
process it, and do something useful.

The exercises in this chapter will help you get acquainted
with how to get input from the user and process it to produce
output. You'll build up strings, do alittle math, and get your
feet wet with the programming language you're using.
They're simple problems, but they’ll help you build up your
confidence as a programmer; the problems in the later
chapters of the book are more complex.

Each exercise has additional challenges you can do if you
feel up to the task. If you're new to programming, some of
the challenges will ask you to use techniques you might not
be familiar with yet. Feel free to skip them; you can always
come back and do those challenges later.

Ready? Set? Go!

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 2. Input, Processing, and Output ® 12

Saying Hello

The “Hello, World” program is the first program you learn
to write in many languages, but it doesn’t involve any input.

So create a program that prompts for your name and prints
a greeting using your name.

Example Output

What is your name? Brian
Hello, Brian, nice to meet you!

Constraint

* Keep the input, string concatenation, and output sepa-
rate.

Challenges

* Write a new version of the program without using any
variables.

¢ Write a version of the program that displays different
greetings for different people. This would be a good
challenge to try after you’ve completed the exercises in
Chapter 4, Making Decisions, on page 29 and Chapter 7,
Data Structures, on page 63.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Counting the Number of Characters ¢ 13

Counting the Number of Characters

Create a program that prompts for an input string and dis-
plays output that shows the input string and the number of
characters the string contains.

Example Output

What is the input string? Homer
Homer has 5 characters.

Constraints

¢ Be sure the output contains the original string.

* Use a single output statement to construct the output.

® Use a built-in function of the programming language to
determine the length of the string.

Challenges

¢ If the user enters nothing, state that the user must enter
something into the program.

* Implement this program using a graphical user interface
and update the character counter every time a key is
pressed. If your language doesn’t have a particularly
friendly GUI library, try doing this exercise with HTML
and JavaScript instead.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 2. Input, Processing, and Output ® 14

Printing Quotes

Quotation marks are often used to denote the start and end
of a string. But sometimes we need to print out the quotation
marks themselves by using escape characters.

Create a program that prompts for a quote and an author.
Display the quotation and author as shown in the example
output.

Example Output

What is the quote? These aren't the droids you're looking for.
Who said it? Obi-Wan Kenobi

Obi-Wan Kenobi says, "These aren't the droids

you're looking for."

Constraints

* Use a single output statement to produce this output,
using appropriate string-escaping techniques for quotes.

* If your language supports string interpolation or string
substitution, don’t use it for this exercise. Use string
concatenation instead.

Challenge
* In Chapter 7, Data Structures, on page 63, you'll practice

working with lists of data. Modify this program so that
instead of prompting for quotes from the user, you cre-
ate a structure that holds quotes and their associated
attributions and then display all of the quotes using the
format in the example. An array of maps would be a
good choice.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Mad Lib ® 15

Mad Lib

Mad libs are a simple game where you create a story tem-
plate with blanks for words. You, or another player, then
construct a list of words and place them into the story, cre-
ating an often silly or funny story as a result.

Create a simple mad-lib program that prompts for a noun,
a verb, an adverb, and an adjective and injects those into a
story that you create.

Example Output

Enter a noun: dog

Enter a verb: walk

Enter an adjective: blue

Enter an adverb: quickly

Do you walk your blue dog quickly? That's hilarious!

Constraints

¢ Use a single output statement for this program.
e If your language supports string interpolation or string
substitution, use it to build up the output.

Challenges

¢ Add more inputs to the program to expand the story.

e Implement a branching story, where the answers to
questions determine how the story is constructed. You'll
explore this concept more in the problems in Chapter
4, Making Decisions, on page 29.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 2. Input, Processing, and Output ® 16

Simple Math

You'll often write programs that deal with numbers. And
depending on the programming language you use, you'll
have to convert the inputs you get to numerical data types.

Write a program that prompts for two numbers. Print the
sum, difference, product, and quotient of those numbers as
shown in the example output:

Example Output

What is the first number? 10
What is the second number? 5

10 + 5 =15
106 - 5=5
10 * 5 = 50
10 /5=2

Constraints

* Values coming from users will be strings. Ensure that
you convert these values to numbers before doing the
math.

* Keep the inputs and outputs separate from the numerical
conversions and other processing.

* Generate a single output statement with line breaks in
the appropriate spots.

Challenges

¢ Revise the program to ensure that inputs are entered as
numeric values. Don’t allow the user to proceed if the
value entered is not numeric.

¢ Don’t allow the user to enter a negative number.

* Break the program into functions that do the computa-
tions. You'll explore functions in Chapter 5, Functions,

on page 45.
¢ Implement this program as a GUI program that automat-
ically updates the values when any value changes.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Retirement Calculator ® 17

Retirement Calculator

Your computer knows what the current year is, which means
you can incorporate that into your programs. You just have
to figure out how your programming language can provide
you with that information.

Create a program that determines how many years you have
left until retirement and the year you can retire. It should
prompt for your current age and the age you want to retire
and display the output as shown in the example that follows.

Example Output

What is your current age? 25

At what age would you like to retire? 65
You have 40 years left until you can retire.
It's 2015, so you can retire in 2055.

Constraints

* Again, be sure to convert the input to numerical data
before doing any math.

* Don’t hard-code the current year into your program.
Get it from the system time via your programming lan-

guage.

Challenge

* Handle situations where the program returns a negative
number by stating that the user can already retire.

What You Learned

These problems were pretty simple, but hopefully they got
you thinking about keeping input, processing, and output
separate. When programs are simple, it'’s tempting to just
do some math or string concatenation inside the program’s
output statements, but as your programs get more complex,
you'll find you need to break things into reusable compo-
nents. You'll be glad you were disciplined from the start.

Head on over to the next chapter. It’s time to do some more
serious math.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

CHAPTER 3

Calculations

You've done some basic math already, but now it’s time to
dive into more complex math. The exercises in this chapter
are a little more challenging. You'll work with formulas for
numerical conversion and you’ll create some real-world
financial programs, too.

These programs will test your knowledge of the order of
operations. “Please Excuse My Dear Aunt Sally,” or PEM-
DAS, is a common way to remember the order of operations:

e Parentheses

¢ Exponents

* Multiplication
e Division

e Addition

e Subtraction

The computer will always follow these rules, even if you
don’t want it to. So the exercises in this chapter will have
you thinking about adding parentheses to your programs
to ensure the output comes out correctly.

You'll want to make good use of test plans for these exercis-
es, too, because you're going to be dealing with precision
issues. If you work with decimal numbers in many program-
ming languages, you may encounter some interesting, and
unexpected, results. For example, if you add 0.1 and 0.2 in
Ruby, you'll get this:

>0.1+0.2
=> 0.30000000000000004

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 3. Calculations ¢ 20

This happens in JavaScript too. And multiplication can make
things even more interesting. Look at this code:

> 1.25 * 0.055
=> 0.06875

Should that answer be rounded down to 0.06 or up to 0.07?
It depends entirely on your business rules. If your answer
must be a whole number, you may have to round it up.

Things get even messier with currency. One of the most
common issues new programmers face occurs when they
try to use floating-point numbers for currency. This will
result in precision errors.

One common approach is to represent money using whole
numbers. So instead of working with 1.25, work with 125.
Do the math, and then shift the decimal back when finished.
Here’s an example, again in Ruby:
> cents = 1.25 * 100.0

=> 125.0
> tax = cents * 0.055

=> 6.875

> tax = tax.round / 100.0
=> 0.07

You may need to be a lot more precise than this. These
floating-point precision issues exist in many programming
languages, and so there are libraries that make working with
currency much better. For example, Java has the BigDecimal
data type that even lets you specify what type of “banker’s
rounding” you need to do. When you're working on these
problems, think carefully about how you need to handle
precision. When you do problems for real, especially if it’s
some kind of financial work, learn how the business you're
working with rounds numbers.

One last thing before you dive in: the exercises in this chapter
might seem to get a little repetitive toward the end if you're
experienced. But for beginners, repetition builds up confi-
dence quickly. It's the same reason you do practice drills in
sports or practice your scales over and over in music. By
doing several similar problems, you build up your problem-
solving skills and improve your speed at breaking down
problems. And that translates into success on the job.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Area of a Rectangular Room © 21

Area of a Rectangular Room

When working in a global environment, you’ll have to
present information in both metric and Imperial units. And
you'll need to know when to do the conversion to ensure
the most accurate results.

Create a program that calculates the area of a room. Prompt
the user for the length and width of the room in feet. Then
display the area in both square feet and square meters.

Example Output

What is the length of the room in feet? 15
What is the width of the room in feet? 20
You entered dimensions of 15 feet by 20 feet.
The area is

300 square feet

27.871 square meters

The formula for this conversion is

m> = £ % 0.09290304

Constraints

* Keep the calculations separate from the output.
¢ Use a constant to hold the conversion factor.

Challenges

* Revise the program to ensure that inputs are entered as
numeric values. Don’t allow the user to proceed if the
value entered is not numeric.

* Create a new version of the program that allows you to
choose feet or meters for your inputs.

* Implement this program as a GUI program that automat-
ically updates the values when any value changes.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 3. Calculations ® 22

Pizza Party

Division isn't always exact, and sometimes you’ll write
programs that will need to deal with the leftovers as a whole
number instead of a decimal.

Write a program to evenly divide pizzas. Prompt for the
number of people, the number of pizzas, and the number of
slices per pizza. Ensure that the number of pieces comes out
even. Display the number of pieces of pizza each person
should get. If there are leftovers, show the number of leftover
pieces.

Example Output

How many people? 8
How many pizzas do you have? 2

8 people with 2 pizzas
Each person gets 2 pieces of pizza.
There are 0 leftover pieces.

Challenges

* Revise the program to ensure that inputs are entered as
numeric values. Don't allow the user to proceed if the
value entered is not numeric.

* Alter the output so it handles pluralization properly,
for example:

Each person gets 2 pieces of pizza.
or

Each person gets 1 piece of pizza.
Handle the output for leftover pieces appropriately as
well.

* Create a variant of the program that prompts for the
number of people and the number of pieces each person
wants, and calculate how many full pizzas you need to
purchase.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Paint Calculator © 23

Paint Calculator

Sometimes you have to round up to the next number rather
than follow standard rounding rules.

Calculate gallons of paint needed to paint the ceiling of a
room. Prompt for the length and width, and assume one
gallon covers 350 square feet. Display the number of gallons
needed to paint the ceiling as a whole number.

Example Output

You will need to purchase 2 gallons of
paint to cover 360 square feet.

Remember, you can’t buy a partial gallon of paint. You must
round up to the next whole gallon.

Constraints

¢ Use a constant to hold the conversion rate.
¢ Ensure that you round up to the next whole number.

Challenges

* Revise the program to ensure that inputs are entered as
numeric values. Don't allow the user to proceed if the
value entered is not numeric.

¢ Implement support for a round room.

¢ Implement support for an L-shaped room.

* Implement a mobile version of this app so it can be used
at the hardware store.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 3. Calculations ¢ 24

Self-Checkout

Working with multiple inputs and currency can introduce
some tricky precision issues.

Create a simple self-checkout system. Prompt for the prices
and quantities of three items. Calculate the subtotal of the
items. Then calculate the tax using a tax rate of 5.5%. Print
out the line items with the quantity and total, and then print
out the subtotal, tax amount, and total.

Example Output

Enter the price of item 1: 25
Enter the quantity of item 1: 2
Enter the price of item 2: 10
Enter the quantity of item 2: 1
Enter the price of item 3: 4
Enter the quantity of item 3: 1
Subtotal: $64.00

Tax: $3.52

Total: $67.52

Constraints

* Keep the input, processing, and output parts of your
program separate. Collect the input, then do the math
operations and string building, and then print out the
output.

* Be sure you explicitly convert input to numerical data
before doing any calculations.

Challenges

¢ Revise the program to ensure that prices and quantities
are entered as numeric values. Don’t allow the user to
proceed if the value entered is not numeric.

¢ Alter the program so that an indeterminate number of
items can be entered. The tax and total are computed
when there are no more items to be entered.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Currency Conversion ® 25

Currency Conversion

At some point, you might have to deal with currency
exchange rates, and you'll need to ensure your calculations
are as precise as possible.

Write a program that converts currency. Specifically, convert
euros to U.S. dollars. Prompt for the amount of money in
euros you have, and prompt for the current exchange rate
of the euro. Print out the new amount in U.S. dollars. The
formula for currency conversion is

amount X rate
rom from

amount, =
to rate
to

where

* Amount to is the amount in U.S. dollars.

* Amount from is the amount in euros.

¢ rate from is the current exchange rate in euros.

* rate to is the current exchange rate of the U.S. dollar.

Example Output

How many euros are you exchanging? 81
What is the exchange rate? 137.51

81 euros at an exchange rate of 137.51 is
111.38 U.S. dollars.

Constraints

¢ Ensure that fractions of a cent are rounded up to the
next penny.
¢ Use a single output statement.

Challenges

* Build a dictionary of conversion rates and prompt for
the countries instead of the rates.

¢ Wire up your application to an external API' that pro-
vides the current exchange rates.

1. https://openexchangerates.org/ is a good example.

https://openexchangerates.org/
http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 3. Calculations ¢ 26

Computing Simple Interest

Computing simple interest is a great way to quickly figure
out whether an investment has value. It’s also a good way
to get comfortable with explicitly coding the order of opera-
tions in your programs.

Create a program that computes simple interest. Prompt for
the principal amount, the rate as a percentage, and the time,
and display the amount accrued (principal + interest).

The formula for simple interest is A = P(1 + rt), where P is
the principal amount, r is the annual rate of interest, ¢ is the
number of years the amount is invested, and A is the amount
at the end of the investment.

Example Output

Enter the principal: 1500
Enter the rate of interest: 4.3
Enter the number of years: 4

After 4 years at 4.3%, the investment will
be worth $1758.

Constraints

* Prompt for the rate as a percentage (like 15, not .15).
Divide the input by 100 in your program.

¢ Ensure that fractions of a cent are rounded up to the
next penny.

¢ Ensure that the output is formatted as money.

Challenges

* Ensure that the values entered for principal, rate, and
number of years are numeric and that the program will
not let the user proceed without valid inputs.

* Alter the program to use a function called calculateSim-
pleinterest that takes in the rate, principal, and number
of years and returns the amount at the end of the
investment.

* In addition to printing out the final amount, print out
the amount at the end of each year.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Determining Compound Interest ® 27

Determining Compound Interest

Simple interest is something you use only when making a
quick guess. Most investments use a compound interest
formula, which will be much more accurate. And this formu-
la requires you to incorporate exponents into your programs.

Write a program to compute the value of an investment
compounded over time. The program should ask for the
starting amount, the number of years to invest, the interest
rate, and the number of periods per year to compound.

The formula you'll use for this is

r\nt
A=P(1+;)

where

* P is the principal amount.

¢ ris the annual rate of interest.

¢ tis the number of years the amount is invested.

* nis the number of times the interest is compounded per
year.

* Ais the amount at the end of the investment.

Example Output

What is the principal amount? 1500

What is the rate? 4.3

What is the number of years? 6

What is the number of times the interest
is compounded per year? 4

$1500 invested at 4.3% for 6 years
compounded 4 times per year is $1938.84.

Constraints

* Prompt for the rate as a percentage (like 15, not .15).
Divide the input by 100 in your program.

* Ensure that fractions of a cent are rounded up to the
next penny.

* Ensure that the output is formatted as money.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 3. Calculations ¢ 28

Challenges

* Ensure that all of the inputs are numeric and that the
program will not let the user proceed without valid
inputs.

¢ Create a version of the program that works in reverse,
so you can determine the initial amount you’d need to
invest to reach a specific goal.

¢ Implement this program as a GUl app that automatically
updates the values when any value changes.

What You Learned

So much of what we do as programmers involves taking
some formula and turning it into code. You'll write invoices,
reports, tax calculators, currency conversions, and more
complex things like computing the distance between two
points on a map. Taking a written formula and translating
itinto an algorithm is not just something you do when you're
learning how to code.

We do something else every day as programmers: we make
the computer compare values and respond accordingly.
Head to the next chapter to tackle those kinds of problems.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

CHAPTER4

Making Decisions

So far, the programs you’ve worked on have been somewhat
simple. But sometimes you need to make a decision based
on input from a user. And that’s where programming starts
to get more challenging. Programs get longer and more
complex, and testing them becomes more difficult. This is
where test plans become even more important; to ensure
correctness, you have to test all the possible ways the input
can be interpreted.

So how do you make decisions in your programs? Most
programming languages have an if statement where you
compare a value to another value. In JavaScript, an if state-
ment looks like this:

if (userInput === 'Hello') {

// do something
}

If the input is Hello, then the code between the curly braces
runs. This is a simple if statement. If the provided input was
anything else, absolutely nothing would happen. Sometimes
that's what you want. Other times you may want to do
something else, and so you can add an else statement:
if (userInput === 'Hello') {

// do something.
} else {

// do something else.

}

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 4. Making Decisions ® 30

And sometimes you may have more than an either-or situa-

tion:
if (userInput === 'Hello') {
// do something.
} else if (userInput === 'Goodbye') {

// do something different than the first thing.
} else {
// do something else.

}

If you have a lot of possible outcomes, then that might be a
great time to use a switch statement:

switch(userInput) {

case: "Hello"
// do something.
break;

case: "Goodbye"
// do something different than the first thing
break;

case: "How was your day?"
// do something different than the other two things.
break;

default:
// do something else.

}

In a larger program, you may have to do different calcula-
tions in each part, or multiple steps. It's possible to nest if
statements inside other if statements, too, so you may have
to do that from time to time. However, overuse of nested if
statements can lead to code that’s hard to read and even
harder to maintain over time. So as you get more comfort-
able, you’ll want to explore different solutions for decision
processing.

Writing the code is only a small part of the problem. Figuring
out what code to write is more difficult. Flowcharts can help
you visualize the problem you’re solving, and they come in
handy when wrapping your mind around decision logic.

For example, if you had to write a program that prompted
the user for a number greater than 100, and you needed to
display “Thank you” when the number is greater than 100
or “That’s not correct” if it's 100 or less, you could create a
flowchart like this:

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 4. Making Decisions ® 31

Prompt for a number greater
than 100

!

Read user input

Is user input greater

Display "That's not correct." than 1007

Display "Thank you"

End

And that flowchart would then be pretty easy to turn into
pseudocode:

Initialize output to ""
Initialize userInput to ""
Prompt for userInput with "Enter a number greater than 100"

IF userInput is greater than 100 THEN
output = "Thank you."

ELSE
output = "That's not correct."

END

Display output

This approach can help you understand the problem better
and will also help you catch things you missed. Look at the
algorithm here. Do you see anything important that I left
out?

I forgot to convert the user’s input from a string to a number
before I compared the values. Some languages would catch
that by erroring out, but other languages would keep on
going, resulting in a logic error. By writing up a flowchart
and pseudocode, I was able to communicate my intention
to you quickly so you could see if there were any missing
steps or flaws in my logic before I spent any time writing code.

As you work through the exercises in this chapter, try to use
flowcharts and pseudocode to determine the algorithm for
the program, and then turn it into code.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 4. Making Decisions ® 32

You'll start out solving problems by making simple deci-
sions, such as “if this happens, do this.” Next you'll look at
how to handle either-or situations. Then you'll have to solve
problems that get more complex, where the result of one
decision raises another decision. That’s where these planning
tools will come in handy.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Tax Calculator ® 33

Tax Calculator

You don’t always need a complex control structure to solve
simple problems. Sometimes a program requires an extra
step in one case, but in all other cases there’s nothing to do.

Write a simple program to compute the tax on an order
amount. The program should prompt for the order amount
and the state. If the state is “WI,” then the order must be
charged 5.5% tax. The program should display the subtotal,
tax, and total for Wisconsin residents but display just the
total for non-residents.

Example Output

What is the order amount? 10
What is the state? WI

The subtotal is $10.00.

The tax is $0.55.

The total is $10.55.

Or

What is the order amount? 10
What is the state? MN
The total is $10.00

Constraints

¢ Implement this program using only a simple if state-
ment—don’t use an else clause.

¢ Ensure that all money is rounded up to the nearest cent.

* Use a single output statement at the end of the program
to display the program results.

Challenges

¢ Allow the user to enter a state abbreviation in upper,
lower, or mixed case.

* Also allow the user to enter the state’s full name in
upper, lower, or mixed case.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 4. Making Decisions ® 34

Password Validation

Passwords are validated by comparing a user-provided
value with a known value that’s stored. Either it’s correct or
it’s not.

Create a simple program that validates user login credentials.
The program must prompt the user for a username and
password. The program should compare the password given
by the user to a known password. If the password matches,
the program should display “Welcome!” If it doesn’t match,
the program should display “I don’t know you.”

Example Output

What is the password? 12345
I don't know you.

Or

What is the password? abc$123
Welcome!

Constraints

¢ Use an if/else statement for this problem.
* Make sure the program is case sensitive.

Challenges

* Investigate how you can prevent the password from
being displayed on the screen in clear text when typed.

* Create a map of usernames and passwords and ensure
the username and password combinations match.

* Encode the passwords using Berypt and store the
hashes in the map instead of the clear-text passwords.
Then, when you prompt for the password, encrypt the
password using Berypt and compare it with the value
in your map.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Legal Driving Age * 35

Legal Driving Age

You can test for equality, but you may need to test to see
how a number compares to a known value and display a
message if the number is too low or too high.

Write a program that asks the user for their age and compare
it to the legal driving age of sixteen. If the user is sixteen or
older, then the program should display “You are old enough
to legally drive.” If the user is under sixteen, the program
should display “You are not old enough to legally drive.”

Example Output

What is your age? 15
You are not old enough to legally drive.

Or

What is your age? 35
You are old enough to legally drive.

Constraints

* Use a single output statement.

¢ Use a ternary operator to write this program. If your
language doesn’t support a ternary operator, use a reg-
ular if/else statement, and still use a single output state-
ment to display the message.

Challenges

¢ If the user enters a number that’s less than zero or enters
non-numeric data, display an error message that asks
the user to enter a valid age.

¢ Instead of hard-coding the driving age in your program
logic, research driving ages for various countries and
create a lookup table for the driving ages and countries.
Prompt for the age, and display which countries the
user can legally drive in.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 4. Making Decisions ® 36

Blood Alcohol Calculator

Sometimes you have to perform a more complex calculation
based on some provided inputs and then use that result to
make a determination.

Create a program that prompts for your weight, gender,
number of drinks, the amount of alcohol by volume of the
drinks consumed, and the amount of time since your last
drink. Calculate your blood alcohol content (BAC) using this
formula

BAC=(Ax514/Wx 1) -.015x H
where

¢ A is total alcohol consumed, in ounces (0z).
* Wis body weight in pounds.
¢ ris the alcohol distribution ratio:

- 0.73 for men

— 0.66 for women

e H is number of hours since the last drink.
Display whether or not it’s legal to drive by comparing the
blood alcohol content to 0.08.
Example Output

Your BAC is 0.08
It is not legal for you to drive.

Constraint

* Prevent the user from entering non-numeric values.

Challenges

* Handle metric units.

* Look up the legal BAC limit by state and prompt for the
state. Display a message that states whether or not it’s
legal to drive based on the computed BAC.

* Develop this as a mobile application that makes it easy
to record each drink, updating the BAC each time a
drink is entered.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Temperature Converter ® 37

Temperature Converter

You'll often need to determine which part of a program is
run based on user input or other events.

Create a program that converts temperatures from Fahren-
heit to Celsius or from Celsius to Fahrenheit. Prompt for the
starting temperature. The program should prompt for the
type of conversion and then perform the conversion.

The formulas are
C=(F-32)x5/9
and

F=(Cx9/5)+32

Example Output

Press C to convert from Fahrenheit to Celsius.
Press F to convert from Celsius to Fahrenheit.
Your choice: C

Please enter the temperature in Fahrenheit: 32
The temperature in Celsius is 0.

Constraints

* Ensure that you allow upper or lowercase values for C
and F.

* Use as few output statements as possible and avoid
repeating output strings.

Challenges

¢ Revise the program to ensure that inputs are entered as
numeric values. Don’t allow the user to proceed if the
value entered is not numeric.

* Break the program into functions that perform the
computations.

¢ Implement this program as a GUI program that automat-
ically updates the values when any value changes.

* Modify the program so it also supports the Kelvin scale.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 4. Making Decisions ® 38

BMI Calculator

You'll often need to see if one value is within a certain range
and alter the flow of a program as a result.

Create a program to calculate the body mass index (BMI)
for a person using the person’s height in inches and weight
in pounds. The program should prompt the user for weight
and height.

Calculate the BMI by using the following formula:
bmi = (weight/ (height X height)) 703

If the BMI is between 18.5 and 25, display that the person is
at a normal weight. If they are out of that range, tell them if
they are underweight or overweight and tell them to consult
their doctor.

Example Output

Your BMI is 19.5.
You are within the ideal weight range.

or

Your BMI is 32.5.
You are overweight. You should see your doctor.

Constraint

¢ Ensure your program takes only numeric data. Don’t
let the user continue unless the data is valid.

Challenges

* Make the user interface accept height and weight in
Imperial or metric units. You'll need a slightly different
formula for metric units.

* For Imperial measurements, prompt for feet and inches
and convert feet to inches so the user doesn’t have to.

* Use a GUI interface with sliders for height and weight.
Update the user interface on the fly. Use colors as well
as text to indicate health.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Multistate Sales Tax Calculator ¢ 39

Multistate Sales Tax Calculator

More complex programs may have decisions nested in other
decisions, so that when one decision is made, additional
decisions must be made.

Create a tax calculator that handles multiple states and
multiple counties within each state. The program prompts
the user for the order amount and the state where the order
will be shipped.

For Wisconsin residents, prompt for the county of residence.

* For Eau Claire county residents, add an additional 0.005
tax.
¢ For Dunn county residents, add an additional 0.004 tax.

Illinois residents must be charged 8% sales tax with no
additional county-level charge. All other states are not
charged tax. The program then displays the tax and the total
for Wisconsin and Illinois residents but just the total for
everyone else.

Example Output

What is the order amount? 10

What state do you live in? Wisconsin
The tax is $0.50.

The total is $10.50.

Constraints

¢ Ensure that all money is rounded up to the nearest cent.
* Use a single output statement at the end of the program
to display the program results.

Challenges

¢ Add support for your state and county.

* Allow the user to enter a state abbreviation and county
name in upper, lower, or mixed case.

* Allow the user to also enter the state’s full name in
upper, lower, or mixed case.

¢ Implement the program using data structures to avoid
nested if statements.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 4. Making Decisions ® 40

Numbers to Names

Many programs display information to the end user in one
form but use a different form inside the program. For
example, you may show the word Blue on the screen, but
behind the scenes you'll have a numerical value for that
color or an internal value because you may need to represent
the textual description in another language for Spanish-
speaking visitors.

Write a program that converts a number from 1 to 12 to the
corresponding month. Prompt for anumber and display the
corresponding calendar month, with 1 being January and
12 being December. For any value outside that range, display
an appropriate error message.

Example Output

Please enter the number of the month: 3
The name of the month is March.

Constraints

¢ Use a switch or case statement for this program.
* Use a single output statement for this program.

Challenges

¢ Use a map or dictionary to remove the switch statement
from the program.

* Support multiple languages. Prompt for the language
at the beginning of the program.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Comparing Numbers ® 41

Comparing Numbers

Comparing one input to a known value is common enough,
but you'll often need to process a collection of inputs.

Write a program that asks for three numbers. Check first to
see that all numbers are different. If they’re not different,
then exit the program. Otherwise, display the largest number
of the three.

Example Output

Enter the first number: 1
Enter the second number: 51
Enter the third number: 2
The largest number is 51.

Constraint

¢ Write the algorithm manually. Don't use a built-in
function for finding the largest number in a list.

Challenges

* Modify the program so that all entered values are
tracked and the user is prevented from entering a
number that’s already been entered.

* Modify the program so that it asks for ten numbers
instead of three.

* Modify the program so that it asks for an unlimited
number of numbers.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 4. Making Decisions ® 42

Troubleshooting Car Issues

An expert system is a type of artificial intelligence program
that uses a knowledge base and a set of rules to perform a
task that a human expert might do. Many websites are
available that will help you self-diagnose a medical issue by
answering a series of questions. And many hardware and
software companies offer online troubleshooting tools to
help people solve simple technical issues before calling a
human.

Create a program that walks the user through troubleshoot-
ing issues with a car. Use the following decision tree to build

the system:
Is the car silent when
you turn the key?
Are the Does the car
battery make a
terminals clicking
corroded? noise?
Yes / \:lo Yes / Mlo
Clean
. Replace
terminals cables Replace the Does the car
and try and tr batte crank up but
starting ry - fail to start?
" again.
again.
Yei/ \\lio
Does the
Check spark engine start
plug and then
connections. die?
Yes/
Does your
car have fuel
injection?
No / Xes
Check to
ensure the o
opening and)
closing.
Example Output

Is the car silent when you turn the key? y
Are the battery terminals corroded? n

The battery cables may be damaged.

Replace cables and try again.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Troubleshooting Car Issues ® 43

Constraint

¢ Askonly questions that are relevant to the situation and
to the previous answers. Don't ask for all inputs at once.

Challenge

* Investigate rules engines and inference engines. These
are powerful ways to solve complex problems that are
based on rules and facts. Identify a rules engine for your
programming language and use it to solve this problem.

What You Learned

Decision processing is a critical part of software develop-
ment. It’s what drives menu systems. It's what determines
whether the onscreen avatar jumps, runs, or shoots when
you press a key. And, when actually implemented, it's what
translates obscure error codes into error messages that a
human can understand.

But as you worked through these programs, you probably
noticed you had to do a lot more testing than you did with
the previous programs because there were more possible
outputs. The more you branch in your code, the more possi-
ble outcomes you'll have.

Before moving on, double-check the logic in your programs.
Did you cover all the possible outcomes? For that BMI calcu-
lator, what if the BMI ends up right on the line? Did you use
the right comparison operator?

When you're confident that your code is flawless, move on
to the next chapter and start incorporating functions into
your programs.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

CHAPTER 5

Functions

Our programs are getting complex. Even if we try to separate
our input, processing, and output, as programs get more
compley, it gets harder and harder to find things.

But we can use functions to organize our code, and we can
even create reusable components.

Functions act like smaller programs inside our main pro-
gram. Here’s some JavaScript code that defines a function
that adds two numbers:

function addTwoNumbers(firstNumber, secondNumber) {
return(
firstNumber + secondNumber
)
}

The addTwoNumbers function takes in two numbers as its
input, does the calculation, and returns the result to the rest
of the program. Here’s how to use it:

var sum = addTwoNumbers(1,2);
console.log(sum);

Another benefit of functions is that the logic is encapsulated
in the body of the function, and it can be changed without
affecting the programs that use it. For example, our function
takes in two values, but if we called it like this

var sum = addTwoNumbers("1","2");
console.log(sum);

then the program’s output would be 12, because JavaScript
will concatenate strings instead of converting them to num-
bers. But we can modify the addTwoNumbers function to con-

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 5. Functions ® 46

vert the input to numbers automatically so the function will
always work.

Often, we’ll take the result of one function and send it on to
another function. Or we’ll evaluate the result of a function
to make a decision. Some programming languages are based
entirely on functions, like Elixir and Clojure. Those are the
aptly named functional programming languages.

When solving the problems in this chapter, organize your
code into functions. Try to encapsulate the main algorithm
into a function that you invoke from the rest of your pro-
gram. Or go further and create functions that capture the
input and construct the output.

This chapter is intentionally short, because when you finish
these exercises, you should revisit your previous programs
and see how functions can improve the organization of those
programs as well.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Anagram Checker ® 47

Anagram Checker

Using functions to abstract the logic away from the rest of
your code makes it easier to read and easier to maintain.

Create a program that compares two strings and determines
if the two strings are anagrams. The program should prompt
for both input strings and display the output as shown in
the example that follows.

Example Output

Enter two strings and I'll tell you if they
are anagrams:

Enter the first string: note

Enter the second string: tone

"note" and "tone" are anagrams.

Constraints

* Implement the program using a function called isAna-
gram, which takes in two words as its arguments and
returns true or false. Invoke this function from your main
program.

¢ Check that both words are the same length.

Challenge

* Complete this program without using built-in language
features. Use selection or repetition logic instead and
develop your own algorithm.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 5. Functions ® 48

Password Strength Indicator

Functions help you abstract away complex operations, but
they also help you build reusable components.

Create a program that determines the complexity of a given
password based on these rules:

* A very weak password contains only numbers and is
fewer than eight characters.

* A weak password contains only letters and is fewer than
eight characters.

* A strong password contains letters and at least one
number and is at least eight characters.

* A very strong password contains letters, numbers, and
special characters and is at least eight characters.

Example Output

The password '12345' is a very weak password.

The password 'abcdef' is a weak password.

The password 'abcl23xyz' is a strong password.

The password '1337h@xor!' is a very strong password.

Constraints

e Create a passwordValidator function that takes in the
password as its argument and returns a value you can
evaluate to determine the password strength. Do not
have the function return a string—you may need to
support multiple languages in the future.

* Use a single output statement.

Challenge

* Create a GUI application or web application that dis-
plays graphical feedback as well as text feedback in real
time. As someone enters a password, determine its
strength and display the result.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Months to Pay Off a Credit Card ® 49

Months to Pay Off a Credit Card

It can take a lot longer to pay off your credit card balance
than you might realize. And the formula for figuring that
out isn't pretty. Hiding the formula’s complexity with a
function can help you keep your code organized.

Write a program that will help you determine how many
months it will take to pay off a credit card balance. The
program should ask the user to enter the balance of a credit
card and the APR of the card. The program should then
return the number of months needed.

The formula for this is

log(l + }23(1 -1+ 1')30))

X
30 log(1 + 1)
where

¢ 1 is the number of months.

* iis the daily rate (APR divided by 365).
* b is the balance.

* pis the monthly payment.

Example Output

What is your balance? 5000
What is the APR on the card (as a percent)? 12
What is the monthly payment you can make? 100

It will take you 70 months to pay off this card.

Constraints

* Prompt for the card’s APR. Do the division internally.

¢ Prompt for the APR as a percentage, not a decimal.

e Use a function called calculateMonthsUntilPaidOff, which
accepts the balance, the APR, and the monthly payment
as its arguments and returns the number of months.
Don’t access any of these values outside the function.

¢ Round fractions of a cent up to the next cent.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 5. Functions ® 50

Challenge

* Rework the formula so the program can accept the
number of months as an input and compute the
monthly payment. Create a version of the program that
lets the user choose whether to figure out the number
of months until payoff or the amount needed to pay per
month.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Validating Inputs ¢ 51

Validating Inputs

Large functions aren’t very usable or maintainable. It makes
a lot of sense to break down the logic of a program into
smaller functions that do one thing each. The program can
then call these functions in sequence to perform the work.

Write a program that prompts for a first name, last name,
employee ID, and ZIP code. Ensure that the input is valid
according to these rules:

¢ The first name must be filled in.

¢ The last name must be filled in.

¢ The first and last names must be at least two characters
long.

* An employee ID is in the format AA-1234. So, two let-
ters, a hyphen, and four numbers.

¢ The ZIP code must be a number.

Display appropriate error messages on incorrect data.

Example Output

Enter the first name: J

Enter the last name:

Enter the ZIP code: ABCDE

Enter an employee ID: Al1l2-1234

"J" is not a valid first name. It is too short.
The last name must be filled in.

The ZIP code must be numeric.

A12-1234 is not a valid ID.

Or

Enter the first name: Jimmy
Enter the last name: James
Enter the ZIP code: 55555
Enter an employee ID: TK-421
There were no errors found.

Constraints

* Create a function for each type of validation you need
to write. Then create a validatelnput function that takes
in all of the input data and invokes the specific valida-
tion functions.

¢ Use a single output statement to display the outputs.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 5. Functions ® 52

Challenges

* Use regular expressions to validate the input.

¢ Implement this as a GUI application or web application
that gives immediate feedback when the fields lose
focus.

* Repeat the process if the input is not valid.

What You Learned

Now it’s time to go back through the previous chapters and
revisit the exercises there. Locate the main algorithm of the
program and encapsulate it in a function. And see if it’s
helpful to break one function into smaller functions. After
all, nothing says you can’t call one function from another.
Then see if you're repeating some functions in your pro-
grams. Look into ways you can reuse those functions without
copying the code from program to program.

When you're ready to move on, head to the next chapter,
where you’ll find some problems that will require you to
make the computer repeat a process over and over.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

CHAPTER 6

Repetition

How do you make a computer do the same thing over and
over again? Surely you don’t have to type the code multiple
times, right?

According to the structured program theorem, you can use
three basic control structures to solve problems with com-
puter programs: sequencing, selection, and repetition.
Sequencing is a fancy way of saying that you need to process
one step after another in the right order. And selection is
making decisions based on conditions. We’ve done both of
these throughout the book already. Our early programs did
a lot of sequencing, and then we moved into selection when
we had our programs start making decisions based on con-
ditions.

But in order to repeat parts of our programs without dupli-
cating code, we use repetition, where we specify that a set of
instructions should repeat as long as a condition is true.
Think of it as “Keep asking for input while the user wants
to enter more values,” or “Do these five steps over and over
until you have no records left.”

How we do this repetition depends on the result we want.
We may want to repeat a certain number of times, or once

for each item in a list of names, or until the user tells us we’re
finished.

The programming language you use will influence how you
go about solving your problems. For example, in Go, if you
wanted to count from 5 down to 1, you'd write code like
this:

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 6. Repetition ® 54

counter :=5

for counter <=1 {
fmt.Println(counter)
counter--;

}

You start the counter at 5, print it out, and subtract 1. The
code keeps going until the counter is less than or equal to 1.

C-style languages like JavaScript have a for loop that lets you
define the counter variable and the incrementation as part
of the declaration of the loop:

for(var counter = 5; counter <= 1; counter--) {
console.log(counter);

}

A Ruby developer might approach this differently; in Ruby,
integers are objects that support repetition:

5.times do |counter|
counter is 0-based.
puts 5 - counter

end

But some languages, like Elixir, don’t have loops and instead
rely on recursion:

defmodule Recursion do
def loop(n) when n <= 1, do: IO.puts n

def loop(n) do
I0.puts n
loop(n - 1)
end
end

loop(5)

Recursion occurs when a function calls itself, either directly
or indirectly. In the preceding example, the loop function
calls itself, subtracting 1 each time until n is less than 1. Not
every language is optimized for recursion though; if you
make a function call itself too many times in some languages,
it'll make too many copies of itself and fill up the stack,
crashing the program. So once again, the programming
language you choose determines the approach you'll take.

These examples are all counted loops, where you count up
or down to a known value. But other times you may need a

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 6. Repetition ¢ 55

different reason to stop. You might stop when a certain value
is entered:

var value;

var keepGoing = true;

while(keepGoing) {
value = prompt("Enter a number or O to stop.");
keepGoing = value !== 0;
// more stuff

}

Or you might keep going while there are more lines in the
file to process or while there are more records from the
database to display.

The exercises in this chapter will require you to use repetition
to get them to work efficiently. As you read each program’s
problem statement, think carefully about whether you're
being asked to do something a specific number of times or
an unknown number of times. Then pick the most appropri-
ate approach.

You may find that using flowcharts will help you determine
the logic. Remember our program in Chapter 4, Making

Decisions, on page 29 where we used a flowchart to help

with the logic? We had to prompt for a number greater than
100. We ended the program if we didn’t get the input we
wanted. But we could use repetition to keep asking, and we
can use a flowchart to represent that logic:

Prompt for a number greater
than 100

{

Read user input

Is user input greater

Display "That's not correct." than 1007

Display "Thank you"

End

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 6. Repetition ® 56

This flowchart helps clarify that the program contains a
repeating process; when the user enters an incorrect value,
we prompt them again. From here we can determine the
best way to implement that process with our code.

The exercises in this chapter are somewhat simplistic, but
they’ll help you get ready for the chapters that follow, which
will rely heavily on repetition. Work through these to get
the solid grounding you need.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Adding Numbers ® 57

Adding Numbers

In previous programs, you asked the user for repeated input
by writing the input statements multiple times. But it's more
efficient to use loops to deal with repeated input.

Write a program that prompts the user for five numbers and
computes the total of the numbers.

Example Output

Enter a number: 1
Enter a number: 2
Enter a number: 3
Enter a number: 4
Enter a number: 5

The total is 15.

Constraints

¢ The prompting must use repetition, such as a counted
loop, not three separate prompts.
* Create a flowchart before writing the program.

Challenges

* Modify the program to prompt for how many numbers
to add, instead of hard-coding the value. Be sure you
convert the input to a number before doing the compar-
ison.

* Modify the program so that it only adds numbers and
silently rejects non-numeric values. Count these invalid
entries as attempts anyway. In other words, if the
number of numbers to add is 5, your program should
still prompt only five times.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 6. Repetition ® 58

Handling Bad Input

The rule of 72 is a quick method for estimating how long it
will take to double your investment, by taking the number
72 and dividing it by the expected rate of return. It'’s a good
tool that helps you figure out if the stock, bond, or savings
account is right for you. It’s also a good program to write to
test for and prevent bad input because computers can’t
divide by zero. And instead of exiting the program when
the user enters invalid input, you can just keep prompting
for inputs until you get one that’s valid.

Write a quick calculator that prompts for the rate of return
on an investment and calculates how many years it will take
to double your investment.

The formula is
years =72/1

where r is the stated rate of return.

Example Output

What is the rate of return? 0

Sorry. That's not a valid input.

What is the rate of return? ABC

Sorry. That's not a valid input.

What is the rate of return? 4

It will take 18 years to double your initial investment.

Constraints

e Don't allow the user to enter 0.

e Don’t allow non-numeric values.

* Use aloop to trap bad input, so you can ensure that the
user enters valid values.

Challenge

* Display a different error message when the user enters
0.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Multiplication Table ¢ 59

Multiplication Table

Create a program that generates multiplication tables for
the numbers 0 through 12.

Example Output
0X0=0
0X1=0

12 x 11 = 132
12 x 12 = 144

Constraint

¢ Use a nested loop to complete this program.

Challenges

¢ Create a graphical program. Use a drop-down list to
change the base number. Generate or update the table
when the number is selected.

* Generate a single multiplication table like the following;:

5 0 5 10 15 20 25 30 35 40 45 50 55 60

7 0 7 14 21 28 35 42 49 56 63 70 77 84

8 0 8 16 24 32 40 48 56 64 72 80 88 96

10 0 10 20 30 40 50 60 70 80 90 | 100 | 110 | 120

report erratum -

discuss

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 6. Repetition ® 60

Karvonen Heart Rate

When you loop, you can control how much you increment
the counter; you don’t always have to increment by one.

When getting into a fitness program, you may want to figure
out your target heart rate so you don’t overexert yourself.
The Karvonen heart rate formula is one method you can use
to determine your rate. Create a program that prompts for
your age and your resting heart rate. Use the Karvonen for-
mula to determine the target heart rate based on a range of
intensities from 55% to 95%. Generate a table with the results
as shown in the example output. The formula is

TargetHeartRate = (((220 — age) — restingHR) x intensity) + restingHR

Example Output

Resting Pulse: 65 Age: 22

Intensity | Rate

_____________ |________

55% | 138 bpm

60% | 145 bpm

65% | 151 bpm

: : (extra lines omitted)
8 | 178 bpm

90% | 185 bpm

95% | 191 bpm

Constraints

* Don’t hard-code the percentages. Use a loop to incre-
ment the percentages from 55 to 95.

* Ensure that the heart rate and age are entered as num-
bers. Don't allow the user to continue without entering
valid inputs.

¢ Display the results in a tabular format.

Challenge

¢ Implement this as a GUI program that allows the user
to use a slider control for the intensity, and update the
interface in real time as the slider moves.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Guess the Number Game © 61

Guess the Number Game

Write a Guess the Number game that has three levels of
difficulty. The first level of difficulty would be a number
between 1 and 10. The second difficulty set would be
between 1 and 100. The third difficulty set would be between
1 and 1000.

Prompt for the difficulty level, and then start the game. The
computer picks a random number in that range and prompts
the player to guess that number. Each time the player
guesses, the computer should give the player a hint as to
whether the number is too high or too low. The computer
should also keep track of the number of guesses. Once the
player guesses the correct number, the computer should
present the number of guesses and ask if the player would
like to play again.

Example Output

Let's play Guess the Number.

Pick a difficulty level (1, 2, or 3): 1
I have my number. What's your guess? 1
Too low. Guess again: 5

Too high. Guess again: 2

You got it in 3 guesses!

Play again? n

Goodbye!

Constraints

¢ Don’t allow any non-numeric data entry.
* During the game, count non-numeric entries as wrong
guesses.

Challenges

* Map the number of guesses taken to comments:
— 1 guess: “You're a mind reader!”
— 2-4 guesses: “Most impressive.”
— 3-6 guesses: “You can do better than that.”
— 7 or more guesses: “Better luck next time.”

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 6. Repetition ® 62

* Keep track of previous guesses and issue an alert that
the user has already guessed that number. Count this
as a wrong guess.

¢ Implement this as a graphical game with a grid of
numbers. When a number is clicked or tapped, remove
the number from the screen.

What You Learned

At this point you should be pretty confident in your abilities.
You've mastered conditional logic, you know how to use
functions, and now you can make parts of your programs
repeat. You can even trap bad input. Many of the previous
programs in this book can benefit from what you've learned,
so before moving on, modify a few of those programs. Per-
haps start by preventing invalid input on some of the calcu-
lation programs.

This chapter was short because you really can’t do a lot of
real-world problems without first understanding data
structures like arrays. And so that’s what the next chapter
is all about. Let’s go!

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

CHAPTER 7

Data Structures

Only the simplest programs can get away with storing data
in variables. But these next programs will get you to think
about storing data in lists or name/value pairs, or even a
combination of the two.

Depending on the language you choose, you might be
looking for arrays, lists, hashes, hashmaps, dictionaries, associa-
tive arrays, or maps. And while languages have different
names, the concepts are the same. You group data together
using data structures. To keep it simple, I'm going to use
the terms array and map.

An array is a data structure that holds a list of values:

colors = ["Red", "Green", "Blue"l];

Usually, the order of items in the array is preserved. To get
a value out, you access it by its index, which is a reference
to the item’s position in the array. In most languages, the
first item is at index O:

colors = ["Red", "Green", "Blue"];

console.log(colors[0]);
>> IIRedII

A map is a data structure that maps keys to values, and you
retrieve data by the key rather than the position:

person = {name: "Homer", age: 42};
console.log person["name"];

One of the most common uses of data structures is represent-
ing a collection of records from a database. Each record is
represented by a map, with each field being a name/value

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 7. Data Structures ® 64

pair within the map. The collection of records is represented
by an array.

Here’s an example in JavaScript:

var people = [
{name: "Homer", age: 42},
{name: "Barney", age: 41}
1

And here’s the same structure, but written in Elixir:

people = [
%s{name: "Homer", age: 42},
%{name: "Barney", age: 41}
1

While the syntax is different, the concept is the same; you
use data structures to store similar data so you can use it in
your programs.

Data structures are often used in conjunction with loops.
For example, if you had a list of names and you wanted to
print each one, you would iterate over the collection and
sum up the values. Here’s a quick example in JavaScript
using a for loop:

var names = ["Ted", "Barney", "Carl", "Tracy"l;
for(var i = 0, length = names.length; i < length; i++) {
console.log(names[i]);

}

However, many languages offer an alternative approach. In
Ruby, you can write the same code like this:

names = ["Ted", "Barney", "Carl", "Tracy"l
names.each { |name| puts name }

Elixir offers a similar approach:

names = ["Ted", "Barney", "Carl", "Tracy"l]
names
|> Enum.each fn(name) -> I0.puts name end

Java, C#, JavaScript, and many other languages have lots of
features for iterating, sorting, and manipulating lists and
other data structures. So as you work through this chapter,
look up how to work with these concepts and use what you
learn to solve the problems in this chapter.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Magic 8 Ball ® 65

Magic 8 Ball

Arrays are great for storing possible responses from a pro-
gram. If you combine that with a random number generator,
you can pick a random entry from this list, which works
great for games.

Create a Magic 8 Ball game that prompts for a question and
then displays either “Yes,” “No,” “Maybe,” or “Ask again
later.”

Example Output

What's your question? Will I be rich and famous?
Ask again later.

Constraint

* The value should be chosen randomly using a pseudo
random number generator. Store the possible choices
in a list and select one at random.

Challenges

* Implement this as a GUI application.
* If available, use native device libraries to allow you to
“shake” the 8 ball.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 7. Data Structures ® 66

Employee List Removal

Sometimes you have to locate and remove an entry from a
list based on some criteria. You may have a deck of cards
and need to discard one so it’s no longer in play, or you may
need to remove values from a list of valid inputs once they’ve
been used. Storing the values in an array makes this process
easier. Depending on your language, you may find it safer
and more efficient to create a new array instead of modifying
the existing one.

Create a small program that contains a list of employee
names. Print out the list of names when the program runs
the first time. Prompt for an employee name and remove
that specific name from the list of names. Display the
remaining employees, each on its own line.

Example Output

There are 5 employees:
John Smith

Jackie Jackson

Chris Jones

Amanda Cullen

Jeremy Goodwin

Enter an employee name to remove: Chris Jones

There are 4 employees:
John Smith

Jackie Jackson

Amanda Cullen

Jeremy Goodwin

Constraint

¢ Use an array or list to store the names.

Challenges

e If the user enters a name that’s not found, print out an
error message stating that the name does not exist.

* Read in the list of employees from a file, with each
employee on its own line.

¢ Write the output to the same file you read in.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Picking a Winner ® 67

Picking a Winner

Arrays don't have to be hard-coded. You can take user input
and store it in an array and then work with it.

Create a program that picks a winner for a contest or prize
drawing. Prompt for names of contestants until the user
leaves the entry blank. Then randomly select a winner.

Example Output

Enter a name: Homer
Enter a name: Bart
Enter a name: Maggie
Enter a name: Lisa
Enter a name: Moe

Enter a name:

The winner is... Maggie.

Constraints

* Use a loop to capture user input into an array.

¢ Use a random number generator to pluck a value from
the array.

* Don’t include a blank entry in the array.

* Some languages require that you define the length of
the array ahead of time. You may need to find another
data structure, like an ArrayList.

Challenges

e When a winner is chosen, remove the winner from the
list of contestants and allow more winners to be chosen.

¢ Make a GUI program that shows the array of names
being shuffled on the screen before a winner is chosen.

¢ Create a separate contest registration application. Use
this program to pull in all registered users and pick a
winner.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 7. Data Structures ® 68

Computing Statistics

Statistics is important in our field. When measuring response
times or rendering times, it’s helpful to collect data so you
can easily spot abnormalities. For example, the standard
deviation helps you determine which values are outliers and
which values are within normal ranges.

Write a program that prompts for response times from a
website in milliseconds. It should keep asking for values
until the user enters “done.”

The program should print the average time (mean), the
minimum time, the maximum time, and the standard devi-
ation.

To compute the average (mean)

1. Compute the sum of all values.
2. Divide the sum by the number of values.

To compute the standard deviation

1. Calculate the difference from the mean for each number
and square it.

2. Compute the mean of the squared values.

3. Take the square root of the mean.

Example Output

Enter a number: 100
Enter a number: 200
Enter a number: 1000
Enter a number: 300
Enter a number: done

Numbers: 100, 200, 1000, 300

The average is 400.

The minimum is 100.

The maximum is 1000.

The standard deviation is 400.25.

Constraints

* Use loops and arrays to perform the input and mathe-
matical operations.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Computing Statistics ® 69

* Be sure to exclude the “done” entry from the array of
inputs.

* Be sure to properly convert numeric values to strings.

* Keep the input separate from the processing and the
output.

Challenges

¢ Use functions called mean, max, min, and standardDeviation,
which take in an array of numbers and return the results.

* Have the program read in numbers from an external
file instead of prompting for the values.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 7. Data Structures ® 70

Password Generator

Coming up with a password that meets specific requirements
is something your computer can do. And it will give you
practice using random number generators in conjunction
with a list of known values.

Create a program that generates a secure password. Prompt
the user for the minimum length, the number of special
characters, and the number of numbers. Then generate a
password for the user using those inputs.

Example Output

What's the minimum length? 8
How many special characters? 2
How many numbers? 2

Your password is

aurn2$1s#

Constraints

* Use lists to store the characters you'll use to generate
the passwords.
¢ Add some randomness to the password generation.

Challenges

* Randomly convert vowels to numbers, such as 3 for E
and 4 for A.

* Have the program present a few options rather than a
single result.

¢ Place the password on the user’s clipboard when gener-
ated.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Filtering Values ® 71

Filtering Values

Sometimes input you collect will need to be filtered down.
Data structures and loops can make this process easier.

Create a program that prompts for a list of numbers, sepa-
rated by spaces. Have the program print out a new list con-
taining only the even numbers.

Example Output

Enter a list of numbers, separated by spaces: 12345678
The even numbers are 2 4 6 8.

Constraints

¢ Convert the input to an array. Many languages can
easily convert strings to arrays with a built-in function
that splits apart a string based on a specified delimiter.

¢ Write your own algorithm —don’t rely on the language’s
built-in filter or similar enumeration feature.

¢ Use a function called filterEvenNumbers to encapsulate the
logic for this. The function takes in the old array and
returns the new array.

Challenge

¢ Instead of prompting for numbers, read in lines from
any text file and print out only the even-numbered lines.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 7. Data Structures ® 72

Sorting Records

When you're looking at results, you’ll want to be able to sort
them so you can find what you're looking for quickly or do
some quick visual comparisons.

Given the following data set

First Name Last Name Position Separation date
John Johnson Manager 2016-12-31
Tou Xiong Software Engineer 2016-10-05
Michaela Michaelson District Manager 2015-12-19
Jake Jacobson Programmer

Jacquelyn Jackson DBA
Sally Weber Web Developer 2015-12-18

create a program that sorts all employees by last name and
prints them to the screen in a tabular format.

Example Output

Name Position Separation Date
Jacquelyn Jackson DBA
Jake Jacobson Programmer

I I
I I
I I
I I
John Johnson | Manager | 2016-12-31
I I
I I
I I

Michaela Michaelson | District Manager 2015-12-19
Sally Weber Web Developer 2015-12-18
Tou Xiong Software Engineer | 2016-10-05
Constraint

¢ Implement the data using a list of maps.

Challenges

¢ Prompt for how the records should be sorted. Allow
sorting by separation date, position, or last name.

® Use a database such as MySQL, or a key-value store
such as Redis, to store the employee records. Retrieve
the records from the data store.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Filtering Records ® 73

Filtering Records

Sorting records is helpful, but sometimes you need to filter
down the results to find or display only what you're looking
for.

Given the following data set

First Name Last Name Position Separation date
John Johnson Manager 2016-12-31
Tou Xiong Software Engineer 2016-10-05
Michaela Michaelson District Manager 2015-12-19
Jake Jacobson Programmer

Jacquelyn Jackson DBA
Sally Weber Web Developer 2015-12-18

create a program that lets a user locate all records that match
the search string by comparing the search string to the first
or last name field.

Example Output

Enter a search string: Jac

Results:

Name | Position | Separation Date
____________________ e
Jacquelyn Jackson | DBA |

Jake Jacobson | Programmer |

Constraint

* Implement the data using an array of maps or an asso-
ciative array.

Challenges

* Make the search case insensitive.

* Add the option to search by position.

¢ Add the option to find all employees where their sepa-
ration date is six months ago or more.

* Read in the data from a file.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 7. Data Structures ® 74

What You Learned

Data structures help you structure data. You'll find that
arrays and maps are everywhere. When you work with
databases, your records will be returned to you as an array
that you'll have to loop through. When you want to read or
modify configuration files, you're going to work with arrays
and maps. I've lost count of the number of times I've been
asked to take an array of data and sort it somehow. And you
will too.

Lists and maps are a great start, but you can define your
own data structures, too, like a ShoppingCart.

So far we’ve gotten our data from the user, or we’ve coded
it up ourselves. But in the next chapter, you're going to get
your data from files.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

CHAPTER 8

Working with Files

All the programs you’ve worked with so far have taken
input from the end user or used hard-coded values. But
many programs use files to store data. Your operating system
and its programs write logs to files constantly, as do the
websites you visit. And many apps use files to hold config-
uration data. Games use files to store your saved data when
you reach a checkpoint.

Even programming languages, like the one you're using to
work through this book, work with files. You type your
source code into a file, and a compiler or interpreter turns
what you wrote into something the computer can run.

The exercises in this chapter ask you to work with files and
folders, and you'll need to investigate how to do this in your
programming language. Some languages have built-in fea-
tures to read from a file. Others don’t have the features built
in but do have libraries you can use to work with files.

You'll want to investigate different approaches, too. You
might find that your program performs faster if you can
process the file line by line or as a stream of data. Some files
are just too big to load all at once, but some situations may
require you to read the whole file first before you can process
it.

One quick note: if you're using JavaScript inside the web
browser, you won’t be able to do these exercises without
modification because browsers prevent you from reading
and writing to the local file system. You can use Node.js
instead.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 8. Working with Files ® 76

Name Sorter

Alphabetizing the contents of a file, or sorting its contents,
is a great way to get comfortable manipulating a file in your
program.

Create a program that reads in the following list of names:

Ling, Mai
Johnson, Jim
Zarnecki, Sabrina
Jones, Chris
Jones, Aaron
Swift, Geoffrey
Xiong, Fong

Read this program and sort the list alphabetically. Then print
the sorted list to a file that looks like the following example
output.

Example Output

Total of 7 names

Ling, Mai
Johnson, Jim
Jones, Aaron
Jones, Chris
Swift, Geoffrey
Xiong, Fong
Zarnecki, Sabrina

Constraint

¢ Don’t hard-code the number of names.

Challenges

¢ Implement this program by reading in the names from
the user, one at a time, and printing out the sorted
results to a file.

¢ Use the program to sort data from a large data set and
see how well it performs.

¢ Implement this program in a functional programming
language and compare the programs.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Parsing a Data File ® 77

Parsing a Data File

Sometimes data comes in as a structured format that you
have to break down and turn into records so you can process
them. CSV, or comma-separated values, is a common stan-
dard for doing this.

Construct a program that reads in the following data file:

Ling,Mai, 55900
Johnson,Jim, 56500
Jones,Aaron, 46000
Jones,Chris, 34500
Swift,Geoffrey, 14200
Xiong, Fong, 65000
Zarnecki,Sabrina, 51500

Process the records and display the results formatted as a
table, evenly spaced, as shown in the example output.

Example Output

Last First Salary
Ling Mai 55900
Johnson Jim 56500
Jones Aaron 46000
Jones Chris 34500
Swift Geoffrey 14200
Xiong Fong 65000

Zarnecki Sabrina 51500

Constraints

* Write your own code to parse the data. Don’t use a CSV
parser.

* Use spaces to align the columns.

* Make each column one space longer than the longest
value in the column.

Challenges

* Format the salary as currency with dollar signs and
commas.

* Sort the results by salary from highest to lowest.

¢ Rework your program to use a CSV parsing library and
compare the results.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 8. Working with Files ® 78

Website Generator

Programming languages can create files and folders too.

Create a program that generates a website skeleton with the
following specifications:

* Prompt for the name of the site.

* Prompt for the author of the site.

¢ Ask if the user wants a folder for JavaScript files.

* Ask if the user wants a folder for CSS files.

¢ Generate an index.html file that contains the name of the
site inside the <title> tag and the author in a <meta> tag.

Example Output

Site name: awesomeco

Author: Max Power

Do you want a folder for JavaScript? y
Do you want a folder for CSS? y
Created ./awesomeco

Created ./awesomeco/index.html

Created ./awesomeco/js/

Created ./awesomeco/css/

Challenges

¢ Implement this in a scripting language on Windows,
0OSX, and Linux.

* Implement this as a web application that provides the
specified site as a zip file.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Product Search ¢ 79

Product Search

Pulling data from a file into a complex data structure makes
parsing much simpler. Many programming languages sup-
port the JSON format, a popular way of representing data.

Create a program that takes a product name as input and
retrieves the current price and quantity for that product. The
product data is in a data file in the JSON format and looks
like this:

{
"products" : [
{"name": "Widget", "price": 25.00, "quantity": 5 },
{"name": "Thing", "price": 15.00, "quantity": 5 },
{"name": "Doodad", "price": 5.00, "quantity": 10 }
]
}

Print out the product name, price, and quantity if the product
is found. If no product matches the search, state that no
product was found and start over.

Example Output

What is the product name? iPad

Sorry, that product was not found in our inventory.
What is the product name? Widget

Name: Widget

Price: $25.00

Quantity on hand: 5

Constraints

¢ The file is in the JSON format. Use a JSON parser to pull
the values out of the file.
¢ If no record is found, prompt again.

Challenges

* Ensure that the product search is case insensitive.

* When a product is not found, ask if the product should
be added. If yes, ask for the price and the quantity, and
save it in the JSON file. Ensure the newly added product
is immediately available for searching without restarting
the program.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 8. Working with Files ¢ 80

Word Finder

There will be times when you'll need to read in one file,
modify it, and then write a modified version of that file to
a new file.

Given an input file, read the file and look for all occurrences
of the word utilize. Replace each occurrence with use. Write
the modified file to a new file.

Example Output
Given the input file of

One should never utilize the word "utilize" in
writing. Use "use" instead.

The program should generate

One should never use the word "use" in
writing. Use "use" instead.

Constraints

* Prompt for the name of the output file.
¢ Write the output to a new file.

Challenges

* Modify the program to track the number of replacements
and report that to the screen when the program finishes.

¢ Create a configuration file that maps “bad” words to
“good” words and use this file instead of a hard-coded
value.

* Modify the program so it can handle a folder of files
instead of a single file.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Word Frequency Finder ¢ 81

Word Frequency Finder

Knowing how often a word appears in a sentence or block
of text is helpful for creating word clouds and other types
of word analysis. And it's more useful when running it
against lots of text.

Create a program that reads in a file and counts the frequen-
cy of words in the file. Then construct a histogram displaying
the words and the frequency, and display the histogram to
the screen.

Example Output
Given the text file words.txt with this content

badger badger badger badger mushroom mushroom
snake badger badger badger

the program would produce the following output:

badger: 3K 3k >k ok 3k ok ok
mushroom: **
snake: *
Constraint

¢ Ensure that the most used word is at the top of the report
and the least used words are at the bottom.

Challenges

¢ Use a graphical program and generate bar graphs.

* Test the performance of your calculation by providing
a very large input file, such as Shakespeare’s Macbeth.'
Tweak your algorithm so that it performs the word
counting as fast as possible.

¢ Write the program in another language and compare
the processing times of the two implementations.

1. http://shakespeare.mit.edu/macbeth/full.html

http://shakespeare.mit.edu/macbeth/full.html
http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 8. Working with Files ® 82

What You Learned

Understanding how to read, write, and manipulate files
from your programming language is a critical task, and now
you've had a lot more practice. Of course, more practice
helps you sharpen your skills, so consider revisiting the
problems in Chapter 7, Data Structures, on page 63 and
modifying them so you fetch the records from files instead

of in memory.

But in our increasingly interconnected world, we might have
to interact with data from other services located across the
Internet. Let’s look at how.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

CHAPTER 9

Working with
External Services

One of the most important skills a programmer can have is
working with external services that provide data. Twitter,
Flickr, Facebook, Google, and so many others expose their
data through APIs, which is short for application program-
ming interfaces.

Your application makes a request to the API, and the API
responds with some data, which you process in your app.
It may come in as XML data or JSON data, or sometimes
you’ll have to scrape results off the screen yourself.

Some APIs are freely available, but others require you to
obtain access by registering as a developer. That adds some
additional complexity to your programs because you'll need
to come up with a way to securely store the keys. Profession-
al software developers use version control software like Git,
and if the keys are stored in the source code, it’s easy to
accidentally upload those keys to the version control system,
or worse, to a site like GitHub where they become public.
Yes, that’s happened a few times.

If you're working with JavaScript in the browser, you can’t
just put that information in your JavaScript code, because
everyone who runs your program will be able to view all of
your code and steal your keys. So you'll want to consider
using your own server-side proxy to handle the requests.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 9. Working with External Services * 84

To complete the exercises in this chapter, you'll need to fig-
ure out how these third-party APIs work and how to inte-
grate them into your programs. You'll need to read the
documentation for each API to find out how to get the data
and what format the data will be in, and then you’ll have to
look up how to request that data from your program and
process those results.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Who's in Space? ¢ 85

Who's in Space?

Did you know you can find out exactly who’s in space right
now? The Open Notify API provides that information. Visit
http://api.open-notify.org/astros.json to see not only how many

people are currently in space but also their names and which
spacecraft they’re on.

Create a program that pulls in this data and displays the
information from this API in a tabular format.

Example Output

There are 3 people in space right now:

Name | Craft
____________________ [------
Gennady Padalka | ISS
Mikhail Kornienko | ISS
Scott Kelly | ISS

Constraint

* Read the data directly from the API and parse the results
each time the program is run. Don’t download the data
as text and read it in.

Challenges

* Ensure that the width of the header is as long as the
longest value in the column.

* Don’t repeat the name of the craft—group all people by
craft.

¢ Can you reliably sort the results alphabetically by last
name? Be careful —some people have spaces in their
name, like “Mary Sue Van Pelt.”

http://api.open-notify.org/astros.json
http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 9. Working with External Services ® 86

Grabbing the Weather

Is it nice out today? Or should I grab my coat?

Using the OpenWeatherMap API at http://openweathermap.org/

current, create a program that prompts for a city name and
returns the current temperature for the city.

Example Output

Where are you? Chicago IL
Chicago weather:
65 degrees Fahrenheit

Constraint

¢ Keep the processing of the weather feed separate from
the part of your program that displays the results.

Challenges

* The API gives the sunrise and sunset times, as well as
the humidity and a description of the weather. Display
that data in a meaningful way.

¢ The API gives the wind direction in degrees. Convert it
to words such as “North,” “West,” “South,” “South-
west,” or even “South-southwest.”

* Develop a scheme that lets the weather program tell you
what kind of day it is. If it's 70 degrees and clear skies,
say that it’s a nice day out!

* Display the temperature in both Celsius and Fahrenheit.

¢ Based on the information, determine if the person needs
a coat or an umbrella.

http://openweathermap.org/current
http://openweathermap.org/current
http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Flickr Photo Search ¢ 87

n Flickr Photo Search)

Some services provide search features and give you a lot of

control over the results you get back. All you have to do is
construct the right kind of request.

Create a program with a graphical interface that takes in a
search string and displays photographs that match that
search string. Use Flickr’s public photo feed at
https://www.flickr.com/services/feeds/docs/photos_public/ as your
service.

Example Output
Your program should display the photographs like this:

Photos about "nature"

® Because this is a graphical program, you’ll need to dis-
play the pictures from the APL If you're using Java-
Script, do this with HTML and the DOM. Don't use
jQuery or any external frameworks. If you're using Java,
try building a desktop application with Swing or an
Android application. If you're using a language without
a rich GUI toolkit, create an HTML page and open it
with the local browser.

2

Constraints

Challenges

e If you're using JavaScript, implement this program using
Angular, Ember, or React. Or do it once in each one if
you're feeling up to the challenge.

® Use the Twitter API to find tweets associated with the
search term and display them next to the picture.

report erratum -« discuss

https://www.flickr.com/services/feeds/docs/photos_public/
http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 9. Working with External Services ® 88

Movie Recommendations

The data provided by external services can give you a
jumping-off point to create your own application.

Write a program that displays information about a given
movie. Prompt for a search query and display the title, year,
rating, running time, and a synopsis, if one exists. Then, if
the audience score is above 80%, recommend that the user
watch this movie right now. If the score is below 50%, rec-
ommend that the user avoid the movie at all costs.

Example Output

Enter the name of a movie: Guardians of the Galaxy
Title: Guardians of the Galaxy

Year: 2014

Rating: PG-13

Running Time: 121 minutes

Description: From Marvel...

You should watch this movie right now!
Constraint

¢ Use the Rotten Tomatoes AP at http://developer.rottentoma-
toes.com/ and obtain an API key.

Challenges

¢ Create a graphical version of the program. Display the
movie poster image along with the rating information
graphically.

¢ Investigate methods to cache the movie data you've
collected so that you aren’t constantly hitting the exter-
nal API Provide a method to expire the cache.

http://developer.rottentomatoes.com/
http://developer.rottentomatoes.com/
http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Pushing Notes to Firebase ¢ 89

Pushing Notes to Firebase

Some external services allow you to update data, not just
read it. Firebase' is a service that lets you create your own
database so you can save data for web, mobile, and desktop
applications. And you can use it with any programming
language, thanks to its JSON-based API.

Create a simple command-line application that lets you save
and show notes, using Firebase to save the notes. The
application should support the following commands:

e mynotes new Learn how to invert binary trees should save the
note.

¢ Use mynotes show to display all of the existing notes.

Example Output

$ mynotes new Learn how to invert binary trees
Your note was saved.

$ mynotes show
2050-12-31 - Learn how to invert binary trees
2050-12-30 - Notetaking on the command line is cool.

Constraints

* Create a configuration file that stores the API key.
e Use the REST documentation at https://www.firebase.com/

docs/rest/ instead of a premade client library.

Challenges

* Create a more generalized application that lets you
search for and view notes.

* Replace your implementation with one of the client
libraries.

¢ Add the ability to tag notes.

* Revisit a few problems in Chapter 8, Working with Files,
on page 75 and alter them to use Firebase.

1. https://www.firebase.com/

https://www.firebase.com/docs/rest/
https://www.firebase.com/docs/rest/
https://www.firebase.com/
http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 9. Working with External Services ® 90

Creating Your Own Time Service

Consuming external services is one thing, but it’s important
to be able to create and consume your own service that others
can use, so you can support other developers who want to
use services you'll provide.

Create a simple web service that returns the current time as
JSON data, such as: { "currentTime": "2050-01-24 15:06:26" }.

Then create a client application that connects to the web
service, parses the response, and displays the time.

Example Output

The current time is 15:06:26 UTC January 4 2050.

Constraints

* In your server application, be sure to set the content
type to application/ison when you send the response.
¢ Build the server app with as little code as possible.

Challenges

* Build a new server that displays a random quote. Store
quotes in an array and pick one at random to display.

* Write a client-side component that displays the quotes
in a different language than the one you used for the
server.

What You Learned

Modern programs rely on third-party services, so it's good
to know how to consume them, but you'll most likely find
yourself using this pattern in your own work. It's common
to have a native mobile application reading and writing data
to a central back end written in a server-side language. Web
applications routinely use client-side JavaScript to work with
server-side JSON APIs. The experience you gain from these
exercises is in great demand.

Now it’s time to put together everything you've learned by
tackling some more robust programs.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

CcHAPTER 10

Full Programs

If you've completed the other exercises, you're probably
looking for a bigger challenge to flex your programming
muscles. The exercises in this chapter will ask you to pull
together everything you’ve learned. Some of these exercises
will require you to step out of your comfort zone, and you
may have to do a little research into your programming
language’s standard library to solve some of the problems
here.

As you work on these exercises, think about the process we
explored at the beginning of this book. Look at the problem
statements and see how you can break down the problem
into smaller units. Think of how you can write some test
plans to ensure you know that your program will turn out
right.

Also, see if you can identify patterns, or things you've done
before in previous programs. It's common to use the same
approach to solve different problems.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 10. Full Programs ® 92

Todo List

Let’s start with the good-old trusty todo list, the “Hello,
World” of full programs. You're going to write a command-
line todo list program that meets the following specifications:

¢ Prompt the user to enter a chore or task. Store the task
in a permanent location so that the task persists when
the program is restarted.

¢ Allow the user to enter as many tasks as desired but
stop entering tasks by entering a blank task. Do not store
the blank task.

¢ Display all the tasks.

¢ Allow the user to remove a task, to signify it’s been
completed.

Constraints

e Store the data in an external data source.

* If you're using a server-side language, consider persist-
ing the data to Redis.

¢ Consider persisting the database to a third-party service
like Parse or Firebase.

Challenges

* Implement this in a web browser using only front-end
technologies. Investigate using IndexedDB to save the
items.

¢ Implement the front end as an Android or iPhone app,
but connect that front end to your own back end that
you write using a server-side language. Create your
own API for retrieving the list, creating a new item, and
marking an item as complete.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

URL Shortener ® 93

URL Shortener

Write a web application that allows users to take a long URL

and convert it to a shortened URL similar to https://goo.gl/.

The program should have a form that accepts the long
URL.

The program should generate a short local URL like
/abc1234 and store the short URL and the long URL
together in a persistent data store.

The program should redirect visitors to the long URL
when the short URL is visited.

The program should track the number of times the short
URL is visited.

The program should have a statistics page for the short
URL, such as /abcl234/stats. Visiting this URL should
show the short URL, the long URL, and the number of
times the short URL was accessed.

Constraints

This app must use a persistent data store that others can
use. That means a local, in-memory system isn’t appro-
priate.

Don’t allow an invalid URL to be entered into the form.

Challenges

Detect duplicate URLs. Don't create a new short URL if
one already exists.

Use Redis as your data store.

Use RavenDB as your data store.

Record the date and time each short URL was accessed,
and use a graphing library to graph the requests.

https://goo.gl/
http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 10. Full Programs ® 94

Text Sharing

Create a web application that lets users share a snippet of

text, similar to http://pastie.org. The program you write should

follow these specifications:

The user should enter the text into a text area and save
the text.

The text should be stored in a data store.

The program should generate a URL that can be used
to retrieve the saved text.

When a user follows that URL, the text should be dis-
played, along with an invitation to edit the text.

When a user clicks the Edit button, the text should be
copied and placed in the same interface used to create
new text snippets.

Constraint

Use something other than a primary key for the URL,
such as a slug that you generate. Investigate SHA or
MDS5 hashing.

Challenges

Modify the program so that each paste supports Mark-
down formatting.

Modify the program so that the edit functionality edits
the existing node and keeps versions of previous notes.
Implement an API and make a command-line, native,
or mobile application that can add new text snippets or
view snippets.

http://pastie.org
http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Tracking Inventory ® 95

Tracking Inventory

Write a program that tracks your personal inventory. The
program should allow you to enter an item, a serial number,
and estimated value. The program should then be able to
print out a tabular report in both HTML and CSV formats
that looks like this:

Name Serial Number Value
Xbox One AXB124AXY $399.00
Samsung TV S40AZBDE4 $599.99

Constraints

* Store the data in a persistent local data file in JSON,
XML, or YAML format.
* Require numeric data for the value of each item.

Challenges

¢ Alter the program so that it can store photos. If you're
creating this application for a mobile device, allow the
user to take a picture with the camera.

¢ Allow the items to be searchable.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Chapter 10. Full Programs ® 96

Trivia App

Create a multiple-choice trivia application.

* Read questions, answers, and distractors (wrong
answers) from a file.
¢ When a player starts a game

— Choose questions at random.

— Display the answer and distractors in a random
order.

— Track the number of correct answers.

— End the game when the player selects a wrong
answer.

Constraint

¢ Write this file using a file database or local data file
rather than a key-value store or a relational database.

Challenges

* Add a difficulty field for the questions, and present
increasingly difficult questions as the game progresses.

* Expand the program by adding a mode that allows a
parent or teacher to add, edit, or remove questions and
answers.

http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

Trivia App © 97

Where to Go Next

With these programs, you hopefully have some mastery
over the programming language you chose to use and you
can start thinking about some of your own problems you'd
like to solve. One of the best ways to dig deep into a lan-
guage or a framework is to use it to scratch your own itch.
Think about the issues in your life that you'd like to tackle.
Or try to rewrite an existing application. Write your own
calorie-counting app, pomodoro timer, or grocery list app.

Learn the other important tools of the software development
trade. Explore test-driven development and work with the
tools available in your language to write unit and acceptance
tests. Then investigate version control with Git and post
your code to GitHub' so others can see it. Or apply your
new skills toward contributing to an open-source project.
It’s a great way to learn from others and advance your career.

And when it comes time to learn your next language, pick
up this book again and start at the beginning, but incorporate
new ways of thinking to solve these familiar problems.
Happy coding!

1. http://github.com

http://github.com
http://pragprog.com/titles/bhwb/errata/add
http://forums.pragprog.com/forums/bhwb

The Joy of Mazes and Math

Rediscover the joy and fascinating weirdness of mazes and pure mathematics.

Mazes for Programmers

A book on mazes? Seriously?
Yes!

Not because you spend your day creating
mazes, or because you particularly like
solving mazes.

But because it’s fun. Remember when pro-
gramming used to be fun? This book takes
you back to those days when you were
starting to program, and you wanted to make
your code do things, draw things, and solve
puzzles. It’s fun because it lets you explore
and grow your code, and reminds you how
it feels to just think.

Sometimes it feels like you live your life in
a maze of twisty little passages, all alike.
Now you can code your way out.

Jamis Buck
(286 pages) ISBN: 9781680500554. $38
https://pragprog.com/book/jbmaze

Good Math

Mathematics is beautiful —and it can be fun
and exciting as well as practical. Good Math
is your guide to some of the most intriguing
topics from two thousand years of mathemat-
ics: from Egyptian fractions to Turing ma-
chines; from the real meaning of numbers to
proof trees, group symmetry, and mechanical
computation. If you've ever wondered what
lay beyond the proofs you struggled to
complete in high school geometry, or what
limits the capabilities of the computer on
your desk, this is the book for you.

Mark C. Chu-Carroll
(282 pages) ISBN: 9781937785338. $34
https://pragprog.com/book/mcmath

for Progré:mmers

Code Your Own
Twisty Little Passages

Jamis Buck
Plted by Jacquelyn Carter

Good Math

A Geek's Guide to the Beauty of
Numbers, Logic. and Computation

e B: \7}’/"//

Mark C. Chu-Carroll
Edited by John Osborn

o/

https://pragprog.com/book/jbmaze
https://pragprog.com/book/mcmath

Seven in Seven

You need to learn at least one new language every year. Here are fourteen excellent

suggestions to get started.

Seven Languages in Seven Weeks

You should learn a programming language
every year, as recommended by The Pragmat-
ic Programmer. But if one per year is good,
how about Seven Languages in Seven Weeks?
In this book you’ll get a hands-on tour of
Clojure, Haskell, Io, Prolog, Scala, Erlang,
and Ruby. Whether or not your favorite
language is on that list, you’ll broaden your
perspective of programming by examining
these languages side-by-side. You'll learn
something new from each, and best of all,
you’ll learn how to learn a language quickly.

Bruce A. Tate
(330 pages) ISBN: 9781934356593. $34.95
https://pragprog.com/book/btlang

Seven Languages
in Seven Weeks

APragmatic <
Guide to 5

arning
Programming
Languages

Bruce A.Tate

Bdted ty Jaoquelyn Carter

Seven More Languages in Seven Weeks

Great programmers aren’t born—they’re
made. The industry is moving from object-
oriented languages to functional languages,
and you need to commit to radical improve-
ment. New programming languages arm
you with the tools and idioms you need to
refine your craft. While other language
primers take you through basic installation
and “Hello, World,” we aim higher. Each
language in Seven More Languages in Seven
Weeks will take you on a step-by-step journey
through the most important paradigms of
our time. You'll learn seven exciting lan-
guages: Lua, Factor, Elixir, Elm, Julia,
MiniKanren, and Idris.

Bruce Tate, Fred Daoud, Jack Moffitt, Ian
Dees

(318 pages) ISBN: 9781941222157 $38
https://pragprog.com/book/7lang

T

e
natic
rammers

Seven More Languages

in Seven Weeks
Languages That Are
Shaping the Future

Bruce A. Tate, Fred Daoud,
Ian Dees, and Jack Moffitt
Foreword by José Valim

Edited by Jacquelyn Carter

https://pragprog.com/book/btlang
https://pragprog.com/book/7lang

More Seven in Seven

From Web Frameworks to Concurrency Models, see what the rest of the world is doing
with this introduction to seven different approaches.

Seven Web Frameworks in Seven Weeks

The

Whether you need a new tool or just inspira- “Rimers
tion, Seven Web Frameworks in Seven Weeks
explores modern options, giving you a taste
of each with ideas that will help you create
better apps. You'll see frameworks that

Seven Web Frameworks

in Seven Weeks
Adventures in Better Web Apps

leverage modern programming languages, AN W

employ unique architectures, live client-side
instead of server-side, or embrace type sys-
tems. You'll see everything from familiar
Ruby and JavaScript to the more exotic Er-
lang, Haskell, and Clojure.

Jack Moffitt
. and Fred Daoud
Jack Moffitt, Fred Daoud ——

(302 pages) ISBN: 9781937785635. $38 Development etto: Jacquelyn Carter
https://pragprog.com/book/7web

Seven Concurrency Models in Seven Weeks

Your software needs to leverage multiple PRt
cores, handle thousands of users and ter-
abytes of data, and continue working in the

face of both hardware and software failure. eV Coneurtency Medels

in Seven Weeks

Concurrency and parallelism are the keys, When Thireafls Uniavel

and Seven Concurrency Models in Seven Weeks
equips you for this new world. See how
emerging technologies such as actors and
functional programming address issues with
traditional threads and locks development.
Learn how to exploit the parallelism in your
computer’s GPU and leverage clusters of

machines with MapReduce and Stream Pro- Deviopmenteato oo v
cessing. And do it all with the confidence

that comes from using tools that help you

write crystal clear, high-quality code.

WV .
Paul Butcher

Paul Butcher
(296 pages) ISBN: 9781937785659. $38
https://pragprog.com/book/pb7con

https://pragprog.com/book/7web
https://pragprog.com/book/pb7con

The Pragmatic Bookshelf

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-
mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online

This Book’s Home Page
https://pragprog.com/book/bhwb
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

https://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book

If you liked this eBook, perhaps you'd like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/bhwb

Contact Us

Online Orders: https://pragprog.com/catalog
Customer Service: support@pragprog.com
International Rights: translations@pragprog.com
Academic Use: academic@pragprog.com
Write for Us: http://write-for-us.pragprog.com

Or Call: +1 800-699-7764

https://pragprog.com/book/bhwb
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/bhwb
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	How to Use This Book
	Who This Book Is For
	What’s in This Book (And What’s Not)
	What You Need
	Online Resources

	1. Turning Problems into Code
	Understanding the Problem
	Discovering Inputs, Processes, and Outputs
	Driving Design with Tests
	Writing the Algorithm in Pseudocode
	Writing the Code
	Challenges
	Onward!

	2. Input, Processing, and Output
	Exercise 1. Saying Hello
	Exercise 2. Counting the Number of Characters
	Exercise 3. Printing Quotes
	Exercise 4. Mad Lib
	Exercise 5. Simple Math
	Exercise 6. Retirement Calculator
	What You Learned

	3. Calculations
	Exercise 7. Area of a Rectangular Room
	Exercise 8. Pizza Party
	Exercise 9. Paint Calculator
	Exercise 10. Self-Checkout
	Exercise 11. Currency Conversion
	Exercise 12. Computing Simple Interest
	Exercise 13. Determining Compound Interest
	What You Learned

	4. Making Decisions
	Exercise 14. Tax Calculator
	Exercise 15. Password Validation
	Exercise 16. Legal Driving Age
	Exercise 17. Blood Alcohol Calculator
	Exercise 18. Temperature Converter
	Exercise 19. BMI Calculator
	Exercise 20. Multistate Sales Tax Calculator
	Exercise 21. Numbers to Names
	Exercise 22. Comparing Numbers
	Exercise 23. Troubleshooting Car Issues
	What You Learned

	5. Functions
	Exercise 24. Anagram Checker
	Exercise 25. Password Strength Indicator
	Exercise 26. Months to Pay Off a Credit Card
	Exercise 27. Validating Inputs
	What You Learned

	6. Repetition
	Exercise 28. Adding Numbers
	Exercise 29. Handling Bad Input
	Exercise 30. Multiplication Table
	Exercise 31. Karvonen Heart Rate
	Exercise 32. Guess the Number Game
	What You Learned

	7. Data Structures
	Exercise 33. Magic 8 Ball
	Exercise 34. Employee List Removal
	Exercise 35. Picking a Winner
	Exercise 36. Computing Statistics
	Exercise 37. Password Generator
	Exercise 38. Filtering Values
	Exercise 39. Sorting Records
	Exercise 40. Filtering Records
	What You Learned

	8. Working with Files
	Exercise 41. Name Sorter
	Exercise 42. Parsing a Data File
	Exercise 43. Website Generator
	Exercise 44. Product Search
	Exercise 45. Word Finder
	Exercise 46. Word Frequency Finder
	What You Learned

	9. Working with External Services
	Exercise 47. Who's in Space?
	Exercise 48. Grabbing the Weather
	Exercise 49. Flickr Photo Search
	Exercise 50. Movie Recommendations
	Exercise 51. Pushing Notes to Firebase
	Exercise 52. Creating Your Own Time Service
	What You Learned

	10. Full Programs
	Exercise 53. Todo List
	Exercise 54. URL Shortener
	Exercise 55. Text Sharing
	Exercise 56. Tracking Inventory
	Exercise 57. Trivia App
	Where to Go Next

