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Preface 
Dear Reader, 

Please hold on ! I know muny people typically do not read the Preface or a book. But I strongly recommend 
that you read this particular Prefocc. 

The srudy of algorithms and data structures is central to understanding what computer science is all about. 
Learning computer science is not unlike learning any other type of difficult subject matter. The only way to be 
successful is through deliberate and incremental exposure to the fundamental ideas. A beginning computer 
scientist needs practice so thlll there is a thorough understanding before continuing on to the more complex 
parts of the curriculum. In ndclition, a beginner needs lo be given the opportunity to be successful and gain 
conlidencc. This textbook is designed lo serve as n text for 11 lirst course on daln structures irnd a lgorithms. In 
I his book, we cover abstract datn lypes a nd datn slructurcs, writing algorithm:>, and solving problems. We look 
a l o number or data struc tL1rcs uncl solve classic probh;m::i that a rise . The tools nnd techniques that you lcnrn 
hcrc will be a pplied over and over as you continue you r s tudy of computer science. 

It is not the m ain objective of this book to present you with the theorems and proofs on data strnctures and 
ul.qorithms. I have followed a pattern of improving the problem solutions with different complexities (for each 
problem, you will find multiple solutions with different, and reduced, complexities). Basically, it's an 
enumeration of possible solutions. With this approach, even if you get a new question, it will show you o wuy to 
thi11J.: about the possible solutions. You will lind this book useful for interview prepnrution, competitive cxams 
preparation, and campu::; interview preparations. 

As a job seeker, if you reud the com plete book, I am sure you will be able to cha llenge the incerviewcrs. If you 
read it as a n instructor , it will help you to delive r lectures with a n a pproach thal is easy to follow, a nd as a result 
your students will apprec iate the fact that they have opted for Computer Science / Information Technology as 
the ir degree. 

This book is also useful for Rngineering de,qr<!e stude1Hs and Masters degree sL11de11ts during their academic 
preparations. Jn a ll the chapters you will sec that there is more emphasis on problems and their analysis rather 
than on theory. In each chapter, you will lirsl rend about the basic required theory, which is then followed by a 
section on problem sets. In total, there arc approximately 700 algorithmic problems, all with solutions. 

If you read the book as a swdenL preparing for competitive exams for Computer Science I Information 
Technology, the content covers nil the required topics in full detail. While writing this book, my main focus was to 
help students who arc preparing for these exams. 

In o il I he chapters you will sec more emphasis on problems nnd analysis rather thon on theory. In each c hopter, 
you will lirs t see the basic required theory followed by vurious problems. 

ror many problems, 11111/tiple solutions a rc providccl with different lev<.:l::i of complexity. We st.art with tht• 
/Jrute force solution and s lowly m<>vc toward the lwsl .rn/11tic111 possible for thnt problem. Por each problem, we 
endeavor to underslancl how much time the algorithm LHkes and how much memory the a lgorithm uses. 

It is recommended that the reader docs at least one co111p/ece reading of this book to gain a full understanding of 
all the topics that are covered. Then, in subsequent readings you can skip directly to any chapter to refer to a 
specific topic. Even though many readings have been clone for the purpose of correcting errors, there could still 
be some minor typos in the book. If any arc found, they will be updated at www.CareerMonk.com. You can 
monitor this site for any corrections and also for new problems and solutions. Also, please provide your valuable 
suggestions al: /11{o@C11recrM c111k. cm11 . 

I wish you nll the best a nd I am conl1de111 thntyou will find th is book useful. 

- Narasimha Kcir11111w1chi 

M-Tech, /IT Bombay 

Founder, CareerM011k.com 
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Dato StrucLUrc and Algorithmic Thinking with Python 

ORGANIZATION OF 

CHAPTERS 

0.1 What Is This Book About? 

OrganizaLion or Chaplcrs 

0 
rA • 
·;i.,~· 

This book is about the fundomentnls of data structures nncl algorithms - the basic clements from which large 
and complex software projects arc built. To develop a good understanding or a datu structure requires three 
things: first, you must learn how the information is arrnnged in the memory of the computer; second, you must 
become familiar with the algorithms for manipulating the information contained in the du ta structure; and third, 
you must understand the performance characteristics or the data structure so that when ca lled upon to select u 
suitable data structure for a particu lar application, you arc able to make an appropriate decision. 

The algorithms and d::na structures in this book arc presented in the Python progrnmming language. A unique 
feature or this book, when compared to the available book:,; on the subject, is thnl it olTern a balance of theory, 
practical concepts, problem solving, and interview questions. 

Concepts + Problems + Interview Questions 

The book deals with some or the most important and challenging areas of programming and compu tcr science in 
a highly readable manner. It covers both algorithmic theory and programming practice, demonstrating how 
theory is reflected in real Python programs. Well- known a lgorithms and data structures that arc built into the 
Python language arc explained, and the user is shown how to implement and evaluate others. 

The book offers a large number of questions, with dcto ilcd nnswcrs. so you enn prnctic-e and assess your 
knowledge before you take the exa m or arc interviewed. 

Salient rcatures or the book arc: 

• Basic principles of algorithm design 
• How to represent well-known data structures in Python 
• How to implement well-known algorithms in Python 
• How to transform new problems inlO well-known algorithmic problems with efficient solutions 
• I low to analyze algorithms and Python programs using both mathematical tools and basic experiments 

and benchmarks 
• llow lo understand several c lossical a lgorithms and clntn structures in depth, nnd be able lo imple rm~nt 

these efficienUy in Python 

Note Lhat this book does not cover numerical or number- theoretical algorithms, porollel ulgorithms or multi-core 
programming. 

0.2 Should I Buy This Book? 
The book is intended for Python programmers who need to learn about al~or-ithmic problem solving or who m:cd 
o refresher. However, others will also find it useful, including datn and computational scientists employed to do 
big data analytic analysis; game programmers and financial analysts/engineers; ond students of computer 
science or programming-related subjects such as bioinformutics. 

0.1 What Is This Book About? 13 



Data Structure and Algorithmic Thinking with Python Organizalion of Chapters 

Although this book is more precise and analytical than many other data structure and algorithm books, it rarely 
uses mathematical concepts that arc more advanced than those taught in high school. I have made an effort lo 
avoid using any advanced calculus, probability, or stochastic proces s concepts. The book is therefore 
appropriate for undergraduate students preparing for interviews. 

0.3 Organization of Chapters 
Data structures and algorithms arc important aspects of computer science as they form the fundamentnl 
building blocks of developing logical solutions to problems, as well as creating efficient programs that perform 
tasks optimally. This book covers the topics required for a thorough understanding of the subjects such 
concepts as Linked Lists, Stacks, Queues. Trees, Priority Queues, Searching, Sorting, Hashing, Algorithm 
Design Techniques. Greedy, Divide and Conquer, Dynamic Programming and Symbol Tables. 

The chapters arc arranged as follows: 

I. /11trod11 c Lio11: This chapter provides an overview of a lgorithms and their place in modern computinR 
systems. It considers the general motivations fo r a lgorithm ic analysis and the va r ious approaches w 
studying t he pci-formanec character istics of a lgori thms. 

2. Recursion and Backtracking: Uecursion is a programm ing technique that allows the programmer to express 
operations in terms of themselves. In other words, it is the process of defining a function or calculating a 
number by the repeated applicat ion of an algorithm. 

For many real-world problems, the solution process consists of working your way through a sequence of 
decision points in which each choice leads you fu r ther along some path (for example problems in Lhe Trees 
and Graphs domain). If you make the correct set of choices, you end up at the solution. On Lhc other hand, 
if you reach a dead end or 01 herwise discover that you have made a n incorrect c hoice somewhere a long the 
way, you have to backl rack lo a previou s decis ion po int and t ry a differen t pa th. Algorithms tha t use this 
a pproach a rc ca lled bacl<traclc in.<1 a lgorithms , and backtracking is a form of recurs ion. Also, some proble ms 
can be solved by com bin ing recu rs ion with backtracking. 

3. I.inked Usts: A linked l ist is n dynamic data structure. The nu mber of nodes in a list is not fixed and ca n 
grow and shrink on demand. Any application which has to deal with an unknown number of objects will 
need to use a linked list. ll is a very common data structure that is used to create other data structures like 
trees, gmphs, hashing. etc. 

4. Stacks: A stack abstract type is a container of objeccs that arc inserted and removed according to the last-in-
first-out (LIFO) principle. There arc many applications of stacks, including: 

a. Space for function parameters and local variables is created internally using a stack. 
b. Compiler's syntax check for matching braces is implemented by using stack. 
c. Support fo r recu rs ion. 
d. It can act as an auxil inry duta structure for other abstract data types. 

5. Que ues: Queue is also an abstract dttlU structure or a lincor data structure, in which the first clement is 
inserted from one end called us rear (also called tail), and the deletion of the existing clement takes place 
from the other end, callccl as front (also called head). This makes queue as PIFO data structure, which 
means that element inserted first will also be removed first. There are many applications of stacks, 
including: 

a. In operating systems, for controlling access to shared system resources such as printers, files, 
communication lines, disks ;:ind tapes. 

b. Computer systems mL1st often provide a lwlcli11g areu for messages between two processes, two 
program::;, or even lwo systems. This holding area is us ua lly ca lled u /111f fer and is often 
implemented as u queue. 

c. It can act as an uuxiliury duta structure for other abstract data types. 
6. Trees: A tree is an abstracl datn structu re used to organize the data in a tree format sons to make the data 

insertion or dclelion or search faster. Trees a rc one of the most useful data structures in computer science. 
Some of the common applications of trees arc: 

:l. The library database in u library, a student database in a school or college, an employee database in 
a company. a pnlicnl dnwbase in a hospi1 ul, or busica lly any database wou ld be irnple rncntccl using 
trees. 

b. The file system in your compu ter, i.e. folde rs a nd a ll fil es, would be s tored ns n tree. 
c . And a tree ca n act as a n a uxiliar y da ta s tructure fo r other abstrac t data Ly pe::; . 

0.3 O rganization of Chapters 14 
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A tree is an example of a non-linear data structure. There are many variants in trees, classified by the 
number of children and the way of interconnecting them. This chapter focuses on some of these variants, 
including Generic Trees, Binary Trees, Binary Search Trees, Balnnccd Bina ry Trees, etc. 

7. l'riority Queu es: The priority queue abstract da ta type is designed fo r ::;ys le ms th11 l m11intnin a collection of 
prioritized clements, whcr<' c le ments a rc re moved f"rnrn the co llect ion in orde r o f their prio ri ty. Prior ity 
queues turn up in various upplicn tions, fo 1- example, processing jobs, where we process each job based on 
how urgen t it is. F'or example, operating systems often use n prio rity queue for the ready queue of processes 
lo run on the CPU. 

8. Graph Algorithms: Graphs arc a fundamental data structure in the world of programming. A graph abstract 
data type is a collection of nodes called vertices, and the connections between them culled edyes. Graphs arc 
an example of a non-linear data structure. This chapter focuses on represcntalions of graphs (adjacency list 
and maLrix representations), shortest path algorithms, etc. Graphs can be used to model many types of 
relations and processes in physical, biological, socinl und informution systems, and m11ny prnct ical problems 
cnn be represented by gmphs. 

9. Disjoint Set ADT: A disjoint set nbs tract data type rcprescnl s n collection of sets t hn l nrc clisjoinL: tha t is, no 
ilcm is found in more thnn one set. The collection of d isjoint sets is called a pa rt ition, because the items a re 
partitioned among lhc sets. As a n example, suppose t he items in our universe a rc companies that still exist 
today or were acquired by other corporations. Our sets arc compan ies that still exist under their own name. 
For instance, "Motornla," "'Yo11Tu/Je,'" and" Android'" arc all members of the '"Google" set. 

This chapter is limited to two operations. The first is called a union operation, 111 which we merge two sets 
into one. The second is called u /ind query, in which we usk a question like, "What corporation docs Android 
belong to today?'" More gencrnlly, a find query takes nn item and tells us which set it is in. Data structures 
designed to s u pport these operations are called w1io11/ find data structures. Applications of union/ find data 
structu res include mai'.e gcnera tion and KruskaJ's a lgorith m for comput ing the m inimu m spanning tree of a 
gra ph. 

I 0. Sorting Algorillnns : Sorli 11 ,q is a n a lgori thm tha t n rrnnges the elem en ts of <1 I is l in a ccrln in order !e ither 
usccnd ing or desccndingj. The ou tput is a permutution or reordering of the in pL1t , a 11d sorting is one of the 
importan t categories of olgorilhms in computer sdcnce. 8omctimcs sorting significantly reduces the 
complexity of the problem, nnd we can use sorting as u technique to reduce search complexity. Much 
research has gone in to this category of algor ithms becau::;e of its importance. These algorithms are used in 
many computer aJgorithms, for example, searching clements and database algorithms. In this chapter, we 
examine both comparison-based sorting algorithms and linear sorting algorithms. 

1 1. Searching Alg orithms: In computer science, searc/1i11,q is the process of finding an iLcm with specified 
properties from a collection of items. The it1.;m:; muy be stored as 1-ccords in o dntabase, simple data 
clement s in arrays, text in files, nodes in t rees, vert ices nnd edges in g raphs, or e lemen ls o f o ther search 
spnccs. 

Search ing is one of lhe core com puter science ulgoril hms. We know tha t today':; compu ters s to re a lot of 
informalion, and to retrieve th is in fo rmation we need high ly efficient searc hing a lgorithms. The1·e a re cer tain 
ways of organizing the da ta which improves the searching process. That means, if we keep the data in 
proper order , it is easy to search the required clement. Soning is one of the techniques for making the 
clements o rdered. Jn this chapter we will see different searching algorithms. 

12. Selection Alg orithms: J\ se/eclion a/yoritlim is an algorithm for finding the k 1
h smallcst/lnrgcst number in a 

list (also called as k 11' order statist ic). This includes finding the minimum, maximum, and median elements. 
For find ing k 111 order sta l isl k, there a re mu ltip le solutions which provide different complexities, and in this 
chapter we will enumcro lc those possibilities. We will n lso look at a linear algorithm for find ing the k 11

' 

clement in a given list. 
13. Sy m bol Tables (1Jictio11aries): Since childhood, we a ll have used a d ictionary, and many of us have a word 

processor (say, Micrnsoft Word), which comes with a spell checker. The spell checker is also a dictionary but 
limited in scope. There urc ma ny real Lime examples for dictionaries and a few of them arc: 

a. Spelling checker 
b. The data dictionary found in database munagcment applicutions 
c. Symbol tables gcnern tcd by loaders, assemblers, uncl compilers 
d. Routing tables in networking componenls (ONS lookup) 
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In computer science, we generally use the term 'symbol' table rather Lhan dictionary, when referTing to the 
abstract data type (ADT). 

14. /l ushing : /lashing is a technique used for storing a nd retrieving information as fast as possible. It is used to 
pt:rform optimal search and is useful in implementing symbol tables. From Lhe Trees chapter we understand 
that balanced binary search trees support operations such as insert, delete and search in O(lo.1J11) Lime. In 
npplieations, if we need these operations in 0( I), then lwsl1i11y provides a way. Remember that lhe worst 
cnse complexity of hashing is sti ll 0(11), but it gives 0( I) on the overage. In this chapter, we will Utke a 
detailed look at the hashing process and problems which can be solved with this techniqu e. 

15. String Algorithms: To understand the importance of string algorithms, let us consider the case of entering 
the URL (Uniform Resource Locator) in any browser (say, Internet Explorer, Firefox, or Google Chrome). You 
will observe that after typing the prefix of the URL, a list of all possible URLs is displayed. That means, the 
browsers arc doing some internal processing and giving us the list of matching URI~<i. This technique is 
sometimes called auto-completio11. Similarly, consider the case of entering the directory name in a command 
line interface (in both Windows and UNIX). After typing the prefix of the directory name, if we press tab 
button, we then get a lis t of nil matched directory no mes available. This is a not her example of auto 
completion. 

In order to support these kinds of operations, we need a data structure which stores the string data 
efficiently. In this chapter, we will look at the data structures that are useful for implementing string 
algorithms. We start our discussion with Lhe basic problem of strings: given a string, how do we search a 
substring (pattern)? This is culled strin,g matclli11,q !'rob/em. After discussing various string matching 
algorithms, we will sec different dnw structures for storing strings. 

16. Algorithms Desig n Techniques: In the previous chapters, we have seen many a lgorithms for solving 
different kinds of problems. Before solving a new problem, the general tendency is to look for the similarity 
of Lhe current problem to other problems for which we have solutions. This helps us to get the solution 
easily. In this chapter, we sec different ways of classifying the algorithms, and in subsequent chapters we 
will focus on a few of them (e.g., Greedy, Divide and Conquer, and Dynamic Programming). 

17. Gr eedy Alg orithms: A greedy a lgorithm is a lso coiled a si11gic-mi11rled algorithm. A greedy nlgorithm is a 
prnccss tha t looks for s imple, cnsy-to-implcmcnl :-;ol11t ions to complex, multi-step problems by dec iding 
which next step will provide the most obvious benefit. The idea behind u greedy algorithm is Lo perform a 
single procedure in the recipe over and over again until it can't be done any more, und sec what kind of 
results it will produce. ll may not completely solve the problem, or, if it produces a solution, it may not be 
the very best one, but it is one way of approaching the problem and sometimes yields very good (or even the 
best possible) results. Examples of greedy aJgorithms include selection sort, Prim's algorithms, Kruskal's 
algorithms, Dijkstra algorithm, I luff man coding algorithm etc. 

18. Divide Anet Conquer: These nlgorithms work based on the principles described below. 

u. Divide - break the problem into severa l subproblems that ore similar lo the original problem but 
smaller in size 

b. Conquer - solve the subproblems recursively. 
c. Base case: If the subproblem s iw is small enough (i.e., the base case has been reached) then solve 

the subproblem directly without more recursion. 
d. Combine - the soluLions Lo create a solution for the original problem 

l!:xamples of divide and conquer a lgorithms include Binary Search, Merge Sort etc .... 
19. Dynamic Programming: In this chapter we will Lry to solve the problems for which we failed to get the 

optimal solutions using other techniques (say, Divide & Conquer and Greedy methods). Dynamic 
Programming (DP) is a simple Lechmquc but iL can be difficult to master. One easy way to identify and solve 
DP problems is by solving as many problems as possible. The term Programming is not rcloted to coding; it 
is from literature, and it means filling tables (similar to Linear Programming). 

20. Complex ity Classes: In previous chapters we solved problems of different complexities. Some a lgorithms 
huvc lower rates of growth while others have higher roles of growth. The problems with lower rules of growth 
arc called easy problems (or cusy solved problems) and the problems with higher rates of growth are called 
hard problems (or hard solved problems). This classification is done based on tl1e running 1 ime (or memory) 
that an algorithm takes for solving the problem. There arc lots of problems for which we do not know the 
solutions. 

0.3 Organization of Chapters 16 



Data Structure and Algorithmic Thinking with Python Organization of Chapters 

In computer science, in order to understand the problems for whic h solutions arc not there, the problems 
a re divided into c lasses, and we call them complexity classes. In com plt:xity theory, a complexity class is a set 
of problems with related complexity. It is the branc h of theory of computation that studies the resources 
required during computation to solve a given problem. The most common resources nrc time (how much 
lime the algorithm lakes to solve o problem) nnd space (how much memory il takes). This chapter classifies 
the problems into different types ba:;cd on their complexity class. 

2 1. Miscellaneous Concepts: Bit - wise H acki119: The commona li1y or npplicability depends on the problem in 
hand. Some rea l-life projects do benefit from bit-wise operations. 

Some examples: 
• You're selling individual pixels on the screen by directly manipulating the video memory, in which 

every pixel's color is re presented by I or 4 bits. So, in every byte you can have packed 8 or 2 pixe ls 
a nd you need to separate them. Basically, your ha rdware dictntcs the use of bit-wis1.: operations. 

• You're deuling with some kind of file formut (e.g. GIF) or rwtwork protocol thnt uses individua l bits 
or groups or bits lo represent pieces or information. 

• Your data dictates the use of bit-wise operations. You need to compute some kind of checks um 
(µoss ibly, pa riLy or CRC) or hash va lue, a nd some of the most applicable a lgoriLhms do this by 
manipulaling with bits. 

In this chapter , we discuss a few tips a nd tricks with a focus on bitwise operators. Also, it covers a few 
other uncovered and general problems. 

/\l the end of each c hapter, a sl:l of problem s /questions is provided fo r you lo imprnv1.: / e heck your 
understanding of the concept:;. The examples in lhis book arc kept s imple for easy understanding. The objective 
is to enhance the expla nation of each concept with examples for a bellcr undersLanding. 

0.4 Some Prerequisites 
This book is intended for two groups of people: Python programmers who want Lo beef up their algorilhmics, and 
students taking nlgorithm courses who wont a s upple ment lo their algorithms textbook. Even if you belong to 
the lall.er grot1p, I'm m;suming you hnvc o fumi linrily with progrnmrning in gcncrn l and with Python in 
pnrticular. If you don't, the Python web site a lso hos n lol of useful rnnt criul. Pylhon is o ren lly easy lflnguagc lo 
learn. There is some math in the pages ahead, but you don't have lo be n math prodigy lo follow the Lexl. We'll 
be dealing with some simple sums a nd nifty concepts such as polynomials, exponentia ls, and logarithms , bul I'll 
expla in it all as we go along. 

0.4 Some Pre requisites 17 
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(JI-IAPTEl~ 

INTRODUCTION 1 

The objective o f this chapter is to explain the importance of the analysis of algorithms, their notations, 
relationships and solving as many problems us possible. Let us first focus on understanding the basic clements 
of algorithms, the importance of algorithm analysis, and then slowly move toward the other topics as mentioned 
above. After completing t his chapter, you should be able to find the complexity of uny given a lgorithm (especially 
recurs ive functions). 

1.1 Variables 
Before going to t he definition of variables, let us relate them to old mathematical equations. All of us have solved 
many mathematical equations since childhood. As an example, consider the below equation: 

x 2 + 2y- 2 = 1 

We don't have lo worry abou t the use of this equation. The important thing that we need to u nderstand is that 
the equation has names (x and y), whic h hold va lues (da ta ). Thal mean s the nwnes (x and y) a rc p laceholde rs fo r 
representing data. Simila rly, in computer science p rogrammi ng we need something for ho ld ing data, a nd 
variables is the way to do that. 

1.2 Data Types 
In the above- men1ioned equation, the variables x and y can take any values such as integral numbers (10, 20), 
real nu mbers (0.23, 5.5), or just 0 and L. To solve the equation, we need to relate them Lo the kind of va lues they 
can ta ke, and data lype is the name used in compu ter science programm ing for this pu r pose. A data type in a 
programming langu tlgC is a set o f data with prede fined values. Examples o f clala types a re : integer, noating 
point, unit number, character, string, etc. 

Computer memory is all filled with zeros and ones. If we have a problem and we want to code it, it's very di fficult 
to provide the solution in terms of zeros and ones. To help users, programming languages and compilers provide 
us with data types. For example, integer takes 2 bytes (actual value depends on compiler), float takes 4 bytes, 
etc. This says that in memory we are combining 2 bytes (16 bits) and calling it an integer. Similarly, combining 4 
bytes (32 bits) and colling it a float. A data type reduces the coding effort. AL lhc lop level, there arc lwo types of 
data ty pes: 

• System-defined data types (a lso called Primitive data types) 
• User-defined data types 

System-defined data types (Primitive data types) 
Data types that arc defined by system arc called primitive data types. The primitive data types provided by many 
programming languages are: int, noat, char, double, boo!, etc. The number of bits a llocated for each primitive 
datu type depends on the p rogramming lunguagcs, t he compiler and the operating system. ror the same 
p rim itive da ta type, d iffe re nt la nguages may use different s izes. Depend ing on I.he s ize o f the dalu types , the 
toltl l available va lues (domain) will a lso change. 
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For example, "int" may Lake 2 bytes or 4 bytes. If it takes 2 bytes (16 bits ), then the total possible values are 
minus 32,768 to plus 32,767 (-215 to 215-1). If it takes 4 bytes (32 bits), lhen the possible values are between 
- 2,147,483,648 and +2.147,483,647 (-231 to 2:11 - 1 ). The same is t.hc case with other data types. 

User defined data types 
If the system-defined data types arc not enough, then most programming languages a llow the users to define 
their own data types, caUed user - defined data types. Good examples of user dermed data types arc: structures 
in C/C + + and c lasses in Java. For example, in the s nippet below, we a rc combining many system-defined data 
types ru1d calling the user defined data type by the name "newType". This gives more flexibility a nd comfort in 
dealing with computer me mory. 

struct new1'ypc { 
int data 1; 
float duta 2; 

char data; 
}; 

1.3 Data Structures 
Based on the discussion above, once we have data in va riables, we need some mechanism for ma nipulating that 
data lo solve problems . Data structure is a particular way of ::.toring and organizing data in a computer so that it 
cu n be used effic icnlly. A data slTHcture is u special formul for organizing a nd storing data . General d a ta 
structure types inc lude a rrays, files, linked lists, stacks, queues, ln.:cs, gra ph s a nd so on. 

Depending on the o rgan ization of the clements, data structures a rc c lassi fied into two types: 

l) Unear data structures: Elements are accessed in a sequentiaJ order but it is not compubory to store all 
elements sequentially. Examples: Linked Lists, Stacks alld Queues. 

2) Non - linear data structures: Elements of this data structure arc stored /accessed in a non-linear order. 
Examples: Trees and graphs. 

1. 4 Abstract Data Types (AD Ts) 
Before defining abstract data types, le t us consider the different. view of syste m-defined da ta ty pes. We a ll know 
that, by default, a ll primitive data types (int, float, etc.) support. basic operations such as a ddition alld 
subtraction . The system provides the impleme ntations for the primitive data types. For user -defined data types 
we also need to defin e operations. The implementation for these operations can be done when we want to 
actually use them. That means, in general, user defined data types a rc defined along with their o perations. 

To s implify the process of solving proble ms, we com bine the data su-uctures with their operations and we call 
this A/Jstract Data Types (ADTs). An ADT consists of two pnrts: 

I. Declaration of data 
2. Declaration of opera Lions 

Commonly used ADTs include: Linked Lists, Stacks, Queues, Priority Queues, Binary Trees, Dic tionaries, 
Disjoint Sets (Union a nd Find), Hash Tables, Graphs, and many othe rs. For example, stack uses LIFO (Last-ln
First-Out) mechanism while storing the data in dala structures. The last clement inserted into the stack is the 
first clement that gets deleted. Common operaLions of it a rc: creating the stack , pushing an element onto the 
stack, popping an e lement from stack, finding the current top o f the stack, finding number of clements in the 
stack, etc. 

While defining the ADTs do not. worry about the implementation details. They come into the picture o nly when 
we want to use them. Different. kinds of ADTs arc su ited lo different kinds o f a pplications, and some arc highly 
s pecialized to specific tasks. By the end of lhis book, we will go through m a ny of lhcm und you will be in a 
position to relate the data structures to the kind of problems they solve. 

1.5 What is an Algorithm? 
Let us consider the problem of preparing an omelcuc. To prepare an omelette, we follow the st.cps given below: 

I) Get the frying pan. 
2 ) Get the oil. 

a. Do we have oil? 
1. If yes, put it. in the pan . 

1.3 Data Structures 19 



Data Structure and Algorithmic Thinking with Python 

11. If no, do we want lo buy oil? 
I. If yes, t.hen go out and buy. 
2. If no, we can terminate. 

3) Tum on lhc stove, etc ... 

Introduction 

What we arc doing is, for a given problem (preparing an omelcuc), wc arc providing a stcp-by-slcp procedure for 
solving it. The formal definilion of an algorithm can be staled as: 

An algorilhm is lhe step-by-step instructions to solve a given problem. 

Note: We do not have lo prove each step of the algorithm. 

1.6 Why the Analysis of Algorithms? 
To go from c ily "A" to city "8", lhere can be many ways of accomplishing lhis: by night, by bus, by train and also 
by bicycle. Depending on Lhe availabi lity und convenience, we choose the one that suits us. Similarly, in 
computer science, multiple a lgorithms a rc available for solving the same problem (fo r example, a sorting 
problem has many a lgorithms, )jke insertion sort, selection sor t, quick sort and many more). Algorithm analysis 
helps us to dete rmine which algorithm is most efficient in terms of time and space consumed. 

1. 7 Goal of the Analysis of Algorithms 
The goal of the analysis of" algorithms is to compa re a lgorithms (or solutions) mainly in terms of running lime but 
a lso in terms of other factors (e.g., memory, developer effort, elc.) 

1.8 What is Running Time Analysis? 
IL is the process of determining how processing time increases as the size of the problem (input size) increases. 
Input size is the number of elements in the input, and depending on the proble m type, the input may be of 
different types. The following are the common types of inputs. 

• Size of an a rray 
• Polynomial degree 
• Number of clements in a matrix 
• Number of bils in the binary representation of the input 
• Ve1-ticcs and edges in a graph. 

1. 9 How to Compare Algorithms 
To compare algorithms, let us define a few objective measures: 

Executio n times? Not a good measure as cxeculion times are specific lo a particu lar computer. 

Number of statements execute d? Not a good measure, si nce the number of slalcmenls varies wilh the 
programming language as well as the style of the individua l programmer. 

Ideal s olut ion? Let us assume that we express the running time of a given algorithm as a function of the input 
s i:r,e n (i.e., f(n)) and compare these different functions corresponding to running times. This kind of comparison 
is independent of machine Lime, programming style, etc. 

1.10 What is Rate of Growth? 
The rate at whic h Lhe running time inc reases as a function of input is ca lled rate of growth. Let us assume thot 
you go lo a shop to buy a car a nd a bicycle. If your friend secs you lhcre and asks what you arc buying, then in 
general you say lluyl11g a car. This is because the cosl of the car is high compared lo the cost of the bicycle 
(approximating the cost of Lhe bicycle to the cost of the car). 

Total Cost = cost_of_car + cost_of _blcycle 
Total Cost "" cost_of _car (approximation) 

Por the above-mentioned example, we can represent the cost of the car and the cost of the bicycle in terms of 
function, and for a given function ignore the low order terms that a re relatively insignificant (for large value of 
inpul s i;,,e, n). As an exa mple, in the case be low, 11

4
, 211 2 , 100n a nd !iOO a rc the individua l costs of some function 

und approximate to 114 since 114 is the highesl rule of growth. 

Tl
4 + 2n2 + 10011 + 500 "" n4 

1.6 Why the Ana lysis of Algorithms? 20 



Data SLrucLurc and Algorithmic Thinking with Python lntroducLion 

1.11 Commonly Used Rates of Growth 
The diagram below shows lhe relationsh ip between different rates of growth. 
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Below is the list of growth rates you will come across in the following chapters. 

Time Complexity Name Example 
1 Constanl Adding an clement to the front of a linked I isl 

logn LogariLhmic Find ing an element in a sorted array 
n Linear Finding an element in an unsoned a rray 

11/ogn Linear Logarithmic Sorting n items by 'divide-a nd-conquer' - Mer-gcson 
11 7. Quadratic Shortest path between two nodes in a graph 
11 ~ Cubic Matrix Multiplication 
2" Exponential The Towers of Hanoi problem 
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1.12 Types of Analysis 
To una ly~c the given a lgorithm, we need to know with which inputs the algorithm lakes less time (performing 
well) and with which inputs the algorithm takes a long time. We have a lready :;ecn that an algorithm can be 
represented in the form of an expression. That means we represent the algorithm with multiple expressions: one 
for the case where it takes less time and another for the cuse where it Lakes more time. 

In general, the first case is called the /Jest case and the second case is ca lled the worst case for the algorithm. To 
anuly~c an a lgorithm we need some kind of syntax, and that forms the base for usymptotic analysis/notation. 
There arc three types of analysis: 

• Wors t ca se 
o Defines the input for which the algorithm takes a long time. 
o Input is the one for which the algorithm runs the slowest. 

• Best case 
o Defines the input for which the algorithm takes the least time. 
o Input is the one for which the a lgorithm runs the fastest. 

• Average case 
o Provides a predict ion about the ru nning time or the a lgorithm. 
o Assumes that the input is random. 

lower Bound <= Average Time <= Upper Bound 

For a given algorithm, we can represent the best. worst and average cases in the form of expressions. As an 
example, le t [(11) be the function whic h represents the given algorithm. 

f (n) = n2 + 500, for worst case 
f (n) = n + 100n + 500, for best case 

Similarly for the average case. The expression defines Lhc inpuls with which the a lgorithm takes the average 
mnning time (or memory). 

1.13 Asymptotic Notation 
I laving lhc expressions for the bcsl , average and worsl cases, for all Lhree cuscs we need lo identify the upper 
and lower bounds. To represent these upper and lower bounds, we need some kind of syntax, and that is the 
subject of the following discussion. Let us assume that the given algorithm is represented in the form of 
function f(n). 

1.14 Big-0 Notation 
This notation gives Lhe tight upper bound of the given funct ion . Genera lly, it is represented as {(11) = O(g(n)) . 
ThoL means, at larger values of n, the upper bound or {(11) is9(11). For example, if f(n) - 11~ + 100112 + lOn + SO 
is lhe given a lgorithm, then 111 is,1J(11). That means !J(11) gives the maximum rule of growth for /(11) at larger 
vulues of 11. 

Rate of Growth C:.<J(ll) 

f (11) 

Input Size, 11 

Let us sec the 0 - notation with a little more detail. 0 - notution defined as O(g(11)) = {f(n): there exisl positive 
constants c and 110 such that 0 S /(11) S c,q(11) for all 11 ~ 110 ). g(11) is an asymptotic tight upper bound for {(11). 
Our objective is to give Lhe smallest rote of growth 9(11) which is greater than or cqunl to the g iven algorithms' 
rntc or growth /(11). 
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Generally we discard lower values of n. That means the rate of growth at lower values of n is not important. In 
the figure, 110 is lhe point from which we need to consider the rate of growth for a given algorithm. Below n

0
, the 

rate of growth cou ld be different. 110 is called threshold for the given function. 

Big-0 Visualization 
O(g(n)) is lhc set of funclions with smaJle r or the sumc order of growth as g(n). Por examplc; 0(112) includes 
0(1 ), 0(11), O(nlo,qn), etc. 

Note: Ana lyze the algorithms a t la rger values of n only. Whal this means is, below n 0 we do not care about the 
rate of growth . 

Big-0 Examples 

0(1): l 00,1000, 200,1 ,20, etc. 

O(nlo911): S11/0911, 311 - 100, 211 -
1, 100, lOOn, etc. 

Example-1 Find upper bound for f(n) = 3n + 8 

Solution: 311 + 8 $ 411, for aJI 11 ~ 8 
:. 311 + 8 = O(n) with e = 4 and n0 = 8 

Examplc-2 Pind upper bound for /'(11) = 112 + 1 

Solution: 11 2 + 1 $ 2112, for a ll 11 ~ I 
:. n2 + l = O(n2) with c = 2 ::ind 110 = 1 

Example-3 Find upper bound for f(n) = n4 + 100112 + SO 

Solution: 11 4 +100n2 +50$2114 ,forall11~11 
:. n4 + 100112 +SO = O(n4 ) with c = 2 a nd n0 = 11 

Example-4 Pind upper bound for / (n) = 211:1 - 2'11 2 

Solution: 211:1 - 211 2 $ 211:1• for a ll 11 ~ 1 
:. 2n=1 - 2n2 = 0(211:1 ) with c = 2 and 110 = 1 

Example-5 Find upper bound for f(n) = n 

Solution: n $ 11, for all n ~ 1 
:. 11 = 0(11) with c = 1 a nd n0 = 1 

Examplc-6 Find upper bound for /"(11) = 410 

Solution: 410 $ 410, fo r a II 11 ~ l 
:. 4 10 = 0(1 )with c = I and 11 11 = 1 

No Uniqueness? 

O(n):3n + 100, 10011, 211 - 1, 3, et.c. 

O(n2 ) : 11 2 , Sn - 10, 100, 11 2 - 211 + 1, 
5, etc. 

There is no unique set of values for 110 and c in proving the asymptotic bounds. Let us consider, 10011 + 5 = 
0(11). For th is func tion there are multiple n0 and c va lues possible. 

Solution!: 10011 + S $ lOOn + n = I 0 tn $ 10111, for all 11 ~ 5, n0 = 5 and c = 101 is a solul ion. 

Solution2: 10011 + 5 $ 10011 +Sn = 10511 $ 10Sn, for all n ~ l,n 0 = I and c - lOS is also a solution. 

1.14 Big-0 Notation 23 



DaLa Structure and Algorilhmic Thinking with Python In troduction 

1.15 Omega-Q Notation 
Similar lo the O discussion, this notation gives the tigh ter lower bound of the give n a lgori thm a nd we represent 
it as f(n) = O(g(n)). That means, at la rger values of 11, the lighLer lower bound off (n) is g(n). For example, if 
f(n) = 100112 + I On + 50, 9(11) is 0(112). 

l~ate of Growlh 

f (n) cg(n)) 

Input Size, n 

The n notation ca n be defined as fl(g(n)) = (f(n): there exis t positive constants c a nd n0 such that 0 $ cg(n) $ 
{(11) for all n ~ n0 }. g(n) is an asymptotic Light lowe r bound fo r f(n). Our objective is to give the la rgest rate of 

growth g(n) which is less than or equa l to the F;iven a lgorithm's ra te of growth {(11) . 

Q Examples 
Example -1 Find lower bound for f(n) = 5n2. 

Solution: 3 c, n 0 S uc h that: 0::; c11 2 :5: Sn2 =:> cn
2 :5: Sn2 =:> c: = 1 and 110 = l 

:. Sn2 = 0(112) with c = 1 and n0 = I 
Example-2 Prove f(n) = LOOn + S * Q(n2

). 

Solution: 3 c, 110 Such that: 0 .5'cn2 5 10011 + 5 
10011 + 5 .5'10011 + Sn ( trn ~ 1) = 10Sn 
cnz S 1 OSn ;:;> n(c:n - 105) .:>O 
Since n is positive ;:;> en - 105 S O ;:;> n .S-105/c 

;:;> Contradic tion: n cannot be smaller than a constant 

Example-3 2n = n(n), 113 = n(n3). 10911 = Q(lo,qn). 

1.16 Theta-e Notation 

Rate of Growth 

c29(n) 

Input Size, 11 

This notation dec ides whether the upper und lowe1· bound s of a g iven function (a lgorithm) a rc the same. The 
average ru nn ing time of an algorithm is a lways between the lower bound and the u pper bound. If the upper 
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bound (0) and lower bound (n) give the same result, then the 0 notation will also have the same rate of growth. 
As an example, let us assume that {(11) = 1011 + n is the expression. Then, its tight upper bound g(n) is 0(11). 
The rate of growth in the best cusc is 9(11) = 0(11). 

In this casc, the rates of growth in the best casc and won;;t case arc the same. As a result, the average ca:;c will 
also be the same. 17or u given function (a lgorithm), if the rntes of growth (bounds) for 0 and 0 a rc not thc same, 
then the rate of growth for the(-) cnsc mny not be the so me. In this case, we need to consider a lt possible time 
complexities and take the uverugc of those (for example, for a quick sort averagc case, refer to Lhe Sorti11.<1 
chapter). 

Now consider the derinition of 0 notation. It is derincd as 0(g(n)) = {f(n): there exist positive constants 
c1.c2 and n0 such that 0 $ c,9(11) $ f(n) $ c2,q(n) for all 11 ~ n0}. g(n) is an asymptotic tight bound for 
f(n). 0(g(n)) is the set of functions with the same order of growth as g(n). 

0 Examples 
. n' 11 

Example 1 Find 0 bou net for I (n) - 7 - 2 
,. 2 11 2 11 • 

Solution: - < - - - < 112 fc>r ·1lt n > I s-2 2 - ' <- 1 -

n Z II 2 • 
:.z--2=0(11 )with c1 - 1/5,c2 = 1and 11 0 = I 

Example 2 Prove 11 :t- 0(112 ) 

Solution: c, n2 $ n $ cl 11lo only holds for: n $ I /c1 

:. II ~ (-)(11 2) 

Example 3 Prove 6113 i 0(11 2) 

Solution: c1 112 s 611 3 s c2 11 2 > on ly holds for: 11 $ c2 /6 
:. 611~ :;; 0(n2) 

Example 4 Proven .t 0(lo,1J11) 

Solution: c,logn $ n S Cz log 11 

Important Notes 

> r, ;;:::: -
1 

" , 'rl 11 ~ 11 0 - Impossible 
OJ~ft 

For analysis (best case, worst eusc 11nd average), we try to give Lhc upper bound (0) and lower bound (n) and 
average ninning time (0). Prom the above examples, it should also be clear that, for a given function (algorithm). 
getting the upper bound (0) and lower bound (.0) and average running time (0) may not always be possible. Por 
example, if we are discussing the best case of an a lgorithm, we try co give the upper bound (0) and lower bound 
(0) and average running time (0). 

In the remaining chuptern, we genera lly foc us on the upper bound (0) because knowing the lower bound (0) of 
an a lgorithm is of no prncticu l irnporLn ncc, and we use the 0 notation if the uppe r bound (0) and lowe r bound 
(0) arc lhe same. 

1.17 Why is it called Asymptotic Analysis? 
Prom the discussion above (for all Lhrcc nocaLions: worst case, best case, and average case), we can easily 
understand that, in every case for a given function f(n) we arc trying to find another function ,q(n) which 
approximates {(11) at higher values of 11. That means 9(11) is also a curve which approximates {(11) at higher 
values of 11. 

In mathematics we call such a curve an asymptotic curve. In other terms, ,q(11) is the asymptotic curve for {(11) . 
For this reason, we call algorithm 11nn lysis asymptotic mralysis. 

1.18 Guidelines for Asymptotic Analysis 
There arc some general rules to help us determine the running time of an algorithm. 

1) Loops: The ninning time of a loop is, at most, the running time of the staLcmcnts inside the loop 
(including tests) multiplied by the number of iterations. 

# executes n times 
for i in rangc(O,n): 

print 'Current Number:'. i #constant time 

Tota l time = a conslunt c x 11 - c n = O(n). 
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2) Nes ted loops: Ana ly?,c from the inside out. Total running Lime is the product of the sizes of all the loops. 

# outer loop executed n times 
for i in range(O,n): 

II inner loop executes n times 
for j in rangc(O,n): 

print 'i value %.d a nd j value % d' % (i,j) #constan t time 

Total Limt: = c x II x II = cn2 = 0(112 ). 

3) Consec u tive sta tements : Add the time complexities of each statemcnl. 

n = 100 
#executes n times 
for i in range(O,n): 

print 'Current Number:', i 
#outer loop executed n times 
for i in range(O,n): 

ff in ner loop exccu lcs n times 
for j in ra ngc(O,n): 

print 'i value %d and j value o/od ' % (i,j) 

Total time = c0 + c1n + c2 ri 2 = O(n2). 

#constant lime 

#constant time 

4) If-then-e ls e statements : Wors t-case running time: the test, plus either the Llle11 pa rt or the else part 
(whichever is the larger). 

if n I: 
print "Wrong Value" 
print n 

else: 
for i in range(O,n): 

print 'Curren t Number:', i 

Total time = c0 + c1 • 11 - 0(11). 

#constant time 

#n times 
#constant time 

5) Logarithmic complexity: An algorithm is O(/u.<Jn) if it tokes a constant time Lo cut the problem s ize by 
a fraction (usually by Yi ). As an example let us consider the following program: 

clef Logarithms(n): 
i .. I 
while i <= n: 

i= i ~ 2 
print i 

Logarithms(IOO) 

If we observe ca refu lly, the value of i is doubling every lime. Initially i = I, in next s tep i = 2, and in 
s ubsequent s teps i - '1,(J nnd so on. Lcl us assumt: that tht: loop is executing some k limes. Al ku' slep 2" -
11 nnd we come out of loop. Taking logarithm on bolh sides, gives 

ln,q(zk) = 10911 
klog2 = logn 
k = logn //if we assume base-2 

Total time = O(log11). 

Note: Simila rly, for the cast: below, the wor::;l ca::;c ra te of growth is O(/o,qn). Tht: snme disc ussion holds good for 
the ckcreasing sequence as well. 

def Logarithms(n): 
i = n 
while i >= 1: 

i= i // 2 
print i 

Logarithms ( I 00) 

Another examplt:: binary search (finding a word in a dictionary of 11 pages) 

• Look at the center point in tht: d ictionary 
• Is the word towards the le ft o r right of cemer? 
• l~t:pt:at the process wilh the left or right part of the dictionary LmLil the word is found. 
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1.19 Properties of Notations 
• Trnnsitivity: f(n) = 0(9(11)) and 9(11) = 0(11(11)) :::. [(11) = H(ll(11)). Valid for 0 and nus well. 
• lkOexivily: [(11) = 0([(11)). Valid for 0 and n. 
• Symmetry: [(11) = 0(g(n)) if and only if g(11) = (·)([(11)). 
• Transpose symmetry: {(11) = O(.q(11)) if and only if .11(11) = fl(f(11)). 

1.20 Commonly used Logarithms and Summations 
Logarithms 

lo,q xY = y lo9 x 

to.11 xy = logx + logy 

IO.<J logn = log(log11) 

Arithmetic series 

lo,qn = lo9:1o 

to.r/n = (log11)k 

log ;= logx - logy 

l x log~ 
O.<Jb = lnnb 

ua 

" '\"' n(n + 1) 
L.,k = l+2+···+n = 

2 
I\ I 

Geometric series 
" xn+I - 1 

'\"' x" = 1 + x + x 2 ••• 1 x 11 
- (x * I) L, x-1 

k 0 

Harmonic series 
11 

I 1 1 1 
1 = 1 +-

2
+ ... + -:::: logn 

K 11 
k- 1 

Other important formulae 
II 

I log k .. 11lo911 
k I 
II 

Lk'' = 
k I 

1 
tP + 21' + ... + nP "" --nP+I 

p+l 

1.21 Master Theorem for Divide and Conquer 
All divide and conquer algorithms (Also discussed in dctuil in the Divide and Conquer chapter) divid<: the problem 
into sub-problems, each or which is purl of the original probl<:m, and then perform some additional work to 

compute the final answer. As an example, a merge sort algorithm lfor details, refer to Sorting chapter! operates 
on two sub-problems, each of \\hich is half the size of the original. and then performs 0(11) additional work for 
merging. This gives the running time equation: 

T(11) = 2T (i) + 0(11) 

The following theorem can be used Lo determine the running time of divide and conquer algorithms. for u given 
program (nlgorilhm), first we try to find the recurrence relntion for the problem. If the recurrence is of the below 
form then we can directly give the answer without fully solvini.t il. 

If the n:eurrcnce is of the form T(n) = o'J' (*) +(-)(11k/u,c1''11), where a ~ l , b > 1. 1< ~ 0 and 11 is a rea l number, t hen: 

I) If a > J1k, then '/'(11) = El(11 10ll~) 
2) If a = bk 

a. If p > - 1, then T(11) = 6(n10R~ logP+ 111) 

b. If p = -1, then T(n) = 6(n109gfo,qlo911) 

c . If p < - 1, then T(n) = 6(11"'0:) 
3) If a < IJk 

a. If p ~ 0, then 'f(11) - 6(11klogP11) 

b. If p < 0, then '/'(11) = O(nk) 
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1.22 Divide and Conquer Master Theorem: Problems & Solutions 
For each of the fo llowing recurrences, give an expression for the runtime T(n) if the recurrence can be solved 
with 1 he Master Theore m. Otherwise, indicate that the Master Theorem does not apply. 

Problc m -1 1'(11) = 3T (11/2) I· 112 

Solution: T(11) = 3T (n/2) + 112 = > T (11) = 0(n2) (M aster Theore m Case 3 .a ) 

Proble m-2 T(n) = 4T (11/2) + 11 2 

Solution: 'f'(n) = 4T (n/2) + n2 => T (n) = 0 (11210911) (Master Theorem Case 2 .a) 

Problem-3 T(n) = T(n/2) + 11
2 

Solution: '/'(11) = '/'(11/2) + 112 = > <9(112) (Master Theorem Case 3.a) 

Problem -4 T(11) = 211 '/'(11/2) + 11 11 

Solution: '/'(11) = 2"T(n/2) + 11" => Docs not apply (a is not constant) 

Problcm -5 '/' (11) = 167'(11/'1) + n 

Solution: T(n ) = 167' (n/4) + n => T(n) = 0(n2) (Master Theorem Case 1) 

Problem -6 T(n ) = 2'/'(11/2) + 11/0911 

Solution: T(n) = 2T(n/2) + 11/0911 => T(n) = 0(11/og'ln) (M aster Theorem Case 2.a) 

Problem-7 T(n) = 2T(n/2) + 11//0911 

Solut ion: 7'(11) = 27'(n/2) + 11/lo911 = > 7'(11) = S(nlo,qlogn) (Muster Theorem Case 2. b) 

Problem-8 T(n) = 2T (11/4) + no si 

Solution: T(n) = 2T(n/4) + n°·5 1 => 'l' (n) = 8(11°·51 ) (Master Theorem Case 3.b) 

Problem -9 T(n) = O.ST(n/2) + 1/n 

Solution: '/'(11) = O.ST(n/2) + l/11 => Does not apply (n < I) 

Problcm -10 T (11) = 6T (11/3) 1 11 l logn 

Solution: 'f'(n ) = 6T(n/3) 1- 112 10911 => T(11) = <9(112/o,q11) (Ma:>ter Theore m Case 3.a) 

Problem -11 T (11 ) = 64T(n/U) - 11210911 

Solution: T(11) = 64T(n/8) - 11210911 = > Docs not apply (function is not positive) 

Problem-12 T (n) = 7T(n/3) + 11 2 

Solut ion: T(11) = 7T(n/3) + n2 => T(n) = E>(n2) (M aster Theorem Case 3 .as) 

Problem -13 T (11) = 47' (n/2) + logn 

Solut ion: 7'(11) = 47'(n/2) + IO.CJ11 - > 'f(11) = <9(112 ) (Mus ter Theorem Case I) 

Problem -14 7'(n) = 16'/'(n/4)+ 11! 

Solution: T(n) = 16T (n/4) + 11! - > T(n) = 0(11!) (Master Theorem Case 3 .a) 

Problem -15 T (11) = .f2T (n/2) + logn 

Solut ion: '/'(11) = ..fi.T (n/2) + logn => T (n) = E>(..fii) (Master Theorem Case 1) 

Problem -16 T (n) = 3'f' (11/2) + 11 

Solution: T(11 ) = 3T (n/2) + 11 -> T(n) = 0(111"0:1) (M aster Theorem Case 1) 

Problcm-17 T(n) = 3T (11/3) + ..{ii. 

Solution: '/' (11) = 3T (n /3) + Jn = > T(11) = <9(11) (M aster Theorem Case 1) 

Problem-18 T(n) = 4T (n/2) + en 

Solution: '/'(11) = 47' (n/2) + en = > T(n) = 0(n2) (Mas ter Theorem Case l) 

Problem-19 T(n) = 3T (11/4) + 11/0911 

Solution: T(11) = 3T (n/4) + 11/0.qn => T(11) = 0(11/og11) (Muster Theorem Case 3 .a) 

Problem-20 T (11) = 3T (n/3) + 11/2 

Solution: T(11) = 3T (n/3) I- 11/2 = > T (11) = 8(11/o911) (M aster Theorem Cusc 2.a) 
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1.23 Master Theorem for Subtract and Conquer Recurrences 
Let T (n) be a function defined o n positive n, and having the prope rly 

T(n) = (;7.(11 - b) + f(n). 
ifn ::; 1 
ff II > l 

for some consta nts c, a > 0, Ii > 0, k 2!: 0, and func lion {(11). If f(n) is in O(nk), then 

{

O(nk), ifa < 1 

T(n) = O(nk+ '1· if a = 1 

o(nkafi). ifa>1 

1.24 Variant of Subtraction and Conquer Master Theorem 

Introduction 

The solution to the equation T(n) = T(a. n) + '/'((1 - a)n) + {111 , where 0 < a< 1 and fl > 0 arc cons tant:;, is 
O(nlngn). 

1.25 Method of Guessing and Confirming 
Now, Jet us discuss a method whic h can be used to solve any recurre nce . The basic idea behind this method is: 

guess lhc answer; and then prove it con-cct by induction. 

In other words, it add resses the question: Whul if the given rec urrence doesn't seem to mulc h with any of these 
(master theorem) methods? If we guess a solution and then try to verily our guess indu c tive ly, usually e ithe r the 
proof will succeed (in which case we arc done), or lhe proof will fai l (in whic h case the fai lure will help us refine 
our guess). 

As an example, consider the recurrence T(n) =../ii T(v'ii°) + 11. This doesn 't fil into the form required by the Master 
Theorems. Carefully observing the recurrence gives us the impression that it is simila r to the divide and conquer 
method (dividing the problem into Jn subproble ms each with si7,c ../n). As we can see, the size of the 
su bproblcms at the fu·st level of recurs ion is 11. So, let us guess tha t. T(n) = 0(11logn), a nd Lhcn t1y to prove that 
our guess is correct. 

Let's s turt by t1y ing to prove an 11pf1er bound T(n) ::; w /0911: 

T(n) 

= 

v'ii T( vn) + 11 

v'ii. cvn logvn + n 
n. c logvn + rt 

1 l + n.c.2. ogn n 

cnlogn 

The last inequa lity assumes on ly tha t 1 ::; c.;, .10.c111. This is correct if 11 is sufficiently large a nd for any constant c, 

no ma tter how s ma ll. From the nbovc proof, wc ca n see that our guess is correc t for the upper bound. Now, let 
us prove the lower botind for this recu rrence. 

T(n) = Jn T(Vn) + 11 

~ Jn. k Jn Logvn + 11 

= n. k log.Jn+ n 
1 = n.k.2. togn+ n 

2!: lrnlogn 

Th e last inequality assumes only that 1 ~ k.i. tog11. This is incorrect if 11 is s ufficie ntly la rge nnd for any constant 
k. From the above proof, we can see that our g uess is incorrect for lhe lower bound. 

From lhc a bove discussion, we understood that E>(n/0911) is too big. I low a bout E>(n)? The lower bound is easy lo 
prove directly: 

T(nJ Jn T(vn) + n 2!: 11 

Now, let us prove the upper bound for this e>(n). 

T(n) = 

= 

.flt T(Vn) + 11 

v'ii.c. Jn + 11 

11 . c+ II 

11 (c + 1) 
en 

1.23 Maste r Theorem for Subtract and Conquer Recurrences 29 



Data Structure nnd J\JgoriLhmic Thinking wiLh Python Introduction 

From lhe nbove induclion, we unde rstood that 0(11) is loo s mall and 0(nlo9n) is too big. So, we need somelhing 

bigger than n and smaller than nlogn. How about n.Jlogn? 

Proving the upper bound for 11.Jlogn: 

Proving lhe lower bound for n.J logn: 

T(n) = ./ii T(./ii) + 11 

::;; ./ii.c. rnJ109./ii + 11 

11. c. J.z logfii.+ n 

::;; cnlogfii. 

T(nl = ..Jn T(vnl + 11 

~ ./ii.k. liijLogfii. + n 

II. k. ~ {og.,/ii+ 11 
v2 

"J! 1<1110,qvn 

The last step doesn'l work. So, ®(11J io9n) doesn't work. What else is belween 11 and nlogn? How abouL nloglogn? 

Proving upper bound for nloglogn: 

T(n) ../ii T(Vn) + n 
::;; ..Jn.c . .fitloglog.Jn + n 

= n. c. luglogn-c. n + n 
::;; cnloglogn, if c ~ I 

Proving lower bound for nloglogn: 
T(n) = ./ii T( .fit) + n 

~ ..Jn.k . ..Jnloglog.Jn + n 

11. k . loglogn-k. n + n 
~ knloglogn, if k ::;; 1 

From the above proofs, we can sec lhal '1'(11) ::;; cnloglogn, if c ~ 1 and T(n) ~ knloglo_qn, if k ::;; 1. Technically, we're 
s till missing lhe base cases in both proofs, bul we can be fairly confident al this point lhat T(n) = 6(nlo,glo9n). 

1.26 Amortized Analysis 
Amortized analysis refers to determining the time-averaged running Lime for a sequence of operations. It is 
different from average case analysis, because amortized analysis does not make any assumption about the 
distribution of the data values, whereas average case analysis assumes lhc data are not "bad" (e.g., some sorting 
a lgorithms do well 011 average over a ll input orderings but very badly on certain input orderings). Thal is, 
amorli7,ed analysis is a worst-case a nalysis, bul for a sequence of operations rather lhun for individua l 
operations. 

The motivalion for amorti7,ed analysis is to belier understand the running Lime of certain lechniques, where 
standard worst case a nalysis provides an overly pessimistic bound. Amortized analysis generally applies to a 
method chat consists of a sequence of operations, where lhe vast majority of the operations are cheap, but some 
of the operations are expensive. If we can show that Lhe expensive operations are particularly rare we ca n 
change them to the cheap operations, and only bound the cheap operations. 

The general approach is to assign a n a rtificial cost to each operation in Lhc sequence, such lhat the total of t he 
a rtific ial costs for the sequence of opera lions bounds the lolal of the real cosls for the sequence. This artilicial 
cost is called the amortized cost of un operation. To ana lyze the running time, the amortized cost thus is a 
correct way of understanding the overa ll running time - but note that panicular operations can still take longer 
so it is not a way of bounding the running time of any individual operation in the sequence. 

When one event in a sequence affects the cost of later events: 

• One particular task may be expensive. 
• But il may leave data slructure in a state that I he next few operations become easier. 

Example: Let us consider an array of c lements from which we want lo find the kth smallest clement. We can 
solve this problem using sorting. After sorting the given a rray, we jusl need lo return the k'1

' element from it. 
The cost of performing the so1·t (assuming comparison based sorting a lgorithm) is O(nlogn). If we perform 11 such 
selections then the average cost of cach selection is O(nlogtt/n) = 0(10911). This c lea rly indicates thaL so1·ting on<:e 
is reducing the <:omplexily of subsequent operations. 
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1.27 Algorithms Analysis: Problems & Solutions 
Note: rrom the following problems, try to understand the cases which have different complexities 
(0(11), O(log11), O(/oglogn) etc.). 

Problem -2 1 Find the complexity of the below recurrence: 

1'( ) [3T(11 I), i/ 11 > 0, 11 = I, otherwise 
Solution: Let us try solving this function with substitulion. 

T(11) = 3T(n - 1) 

T(11) = 3(3T(n - 2)) - 32T(n - 2) 

T(n) = 32(37'(11 - ::!)) 

'/'(11) = 311 '/'(11 - 11) -"' 311 '/'(0) = 311 

This clearly shows that thc complexity of Lhis function is 0(]'1). 

Note: We can use the Subtraction and Conquer master theorem for this problem. 

Problem-22 Pind the complexity of the below recurrence: 

T(n) = {2T(11 - I) - l,1( rr > 0, 
I, 11Llwnv1se 

Solution: Let us Lry solving this function with substituuon. 

7'(11) = 27'(11 - 1) - I 

T(n) = 2(2T(n - 2) - 1) - 1 = 22r(n - 2) - 2 - 1 

1'(11) = 22 (27'(n - 3) - 2 - 1) - 1 = 23T(n - 4) - 22 - 21 - 2° 

T(n) = 211 1'(11 - 11) - 211 I - 2 11 - 2 - 2n-3 .... 22 - 2 1 - 211 

T(11) = 2" - 211 - 1 - 2" 2 - 2" 3 .... 22 - 21 - 20 

T(11) - 211 
- (2" - 1) l11ote: 2" 1 + 211

-
2 + ···+ 2° - 2") 

1'(11) = I 

:. Time Complexity is 0(1). Note:.: that while the recurrence rclation looks exponential, the solution to the 
rec urrence relation here gives u different result. 

Problcm-23 What is the running Lime of the follow inK func tion? 

def Function(n): 
i = s = I 
while s < n: 

Function(20) 

i = it I 
s = s+i 
print(""") 

Solution: Consider the comments in the below function: 
def Function(n): 

i s .. I 
while s < n: # s is increasing not at rate l bul i 

i = i+l 
s = s+i 
print("*") 

Punction(20) 

We can define the 's' terms according co the relation s1- s, 1 -f 1. The value of 'i' increases by l for each iteration. 
The vuluc contained in 's' ut the 1111 iteration is the sum of the first 'i' positive integers. If k is the total number of 
itenttions taken by the program, then the while loop terminutcs if: 

• k(k I I) ( r. 
I I 2 I- ... + k = -

2
- > 11 '----> k - )(v11). 

Problem-24 Find Lhe complexity o f lhe function give n below. 
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def Punction(n): 
i = l 
count = 0 
while i*i <n: 

count = count+ l 
i = i + I 

prinl(counl) 

Pu nclion(20) 

lnlroduction 

Solution: In the above-mentioned function the loop will end, if i 2 
::;; n => t(n) = 0( ..fii.). This is si mila r to 

Proble m-23. 

Problem-25 What is the complexity of the program given below: 

def Punetion(n): 
cou nt = 0 
for i in rangc(n/2, n): 

j = l 
while j + n/2 <= n: 

k = l 

print (count) 

Pu nc lion(20) 

while k <= n: 

j = j + l 

count= count+ I 
k = k * 2 

Solution: Observe the comments in the following funclion. 
def Punction(n): 

count= 0 
for i in range(n/2, n): #Outer loop execute n/2 times 

j = 1 
whilej + n/2 <= n: #Middle loop executes n/2 times 

k=l 
whjle k <= n: #tinner loop execute lo9n times 

count = count + 1 
k = k * 2 

j = j + l 

print (count) 

Function(20) 

Th e complexity of the above function is 0(112/0.<Jll). 

Problem-26 Whal is the complexity of the progrnm given below: 

de f Punction(n): 
count = 0 
for i in rungc(n/2, n): 

j = 1 
whilcj + n/2 <= n: 

k= l 

print (count) 

Punction(20) 

while k <= n: 

j = j * 2 

count = count ~ 
k = k * 2 

Solution: Consider the comments in the following function. 

dcf Punclion(n): 
count = 0 
for i in range(n/2, n): #Outer loop execute n/2 times 

j = 1 
whilej + n/2 <= n: lfMiddle loop executes logn times 
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k=l 
while k <= n: #Inner loop execute logn times 

count= count+ 1 

print (counl) 

Punction(20) 

j = j .. 2 
k = k. 2 

The complexity of the above function is 0(11lo92 n). 

Problem-27 Find lhc complexity of the program below. 

def Function(n): 
count= 0 
for i in rangc(n/2, n): 

j - I 
while j +- n/2 <= n: 

l>rcak 

print (count) 

Function(20) 

j = j * 2 

Solution: Consider the comments in the function below. 

def F'unction(n): 
count= 0 
for i in range(n/2, n): 

j = 1 
while j + n/2 < .. n: 

break 
j = j .. 2 

print (count) 

F'u nction(20) 

#Outer loop execute n/2 Limes 

#Middle loop has break statement 

In troduction 

The complcxfry of the above function is O(n). Even though the inner loop is bounded by 11, but due to the brctik 
statement it is executing only once. 

Problem-28 Write a recursive function for the runn111g time '/'(11) of the func tion given below. Prove using the 
iterative method that T(n) = 0(n3 ). 

def F'unction(n): 
count = 0 
if n <= 0: 

return 
for i in rangc(O, n): 

for j in r:rn~c(O, n): 
count = count+ I 

Function(n-3) 
print (count) 

Function(20) 

Solution: Consider the comments in the function below: 

def F'unction(n): 
count= 0 
if n <= 0: 

return 
for i in range(O, n): 

for j in range(O, n): 

F'unclion(n-3) 
print (count) 

F'unction(20) 

counl = count + 1 

#Outer loop executes n times 
#Outer loop executes n times 

#Recursive ca ll 

The recurrence for this code is c learly T(n) = '/'(11 - :{) ·I rn1 for some constant c > 0 since cuch ca ll prints oul 
112 asterisks and calls itself rccurnively on 11 - 3. Using the itern tive method we ~t:L: '/'(11) - '/'(11 - 3) + cn2. Using 
the Suhlraction and Conquer mnster theorem, we;; gel T(n) = G>(w1). 

1.27 Algorithms Analysis: Problems & Solutions 33 



Data Structure and Algorithmic Thinking with Python Int.roduction 

Proble m-29 Determine e bounds for Lhe recurrence relation: T(n) = 2T {i) + nlogn. 

Solution: Using Divide and Conquer master theorem, we get: 0(nlog2n). 

Problem-30 Determine e bounds for the recurrence: T(n) = T G) + T G) + T rn) + 11. 

Solution: Substituting in the recurrence equation, we get: T(n) ::; cl • i + c2 • ~ + c3 • * + C11 ::; k • 11 , where k 

is u constant. This clearly suys 0(11). 

Problem-31 Determine e bounds for the recurrence relation: T(n) = T(f 11;21) + 7. 

Solution: Using Master Theorem we get: 8(/ogn). 

Problem -3 2 Prove that the running time of the code below is fi(logn). 

def Rcad(n): 
k = l 
while k < n: 

k = J•k 

Solution: The while loop will terminate o nce the value o f 'k' is greater tha n or equa l Lo Lhe value of '11'. In each 
iteration the value of 'k' is mu llipliccl by 3. If i is the number of iterations, then 'k' has t he value of 3i after i 
iterations. The loop is terminated upon reaching i iterations when 3i~ n +-+ i ~ log3 n, which s hows that i = 
.n (10911) . 

Proble m-33 Solve the following recurrence. 

Solution: By iteration: 

. . {1, if 11 = 1 
7 (II) = T(11 - 1) + 11 (11 - 1),if n ~ 2 

T(11) = T(n - 2) + (n - 1)(11 - 2) I- 11(11 - 1) 

II 

T( n) = T( l ) + L i(i - l ) 
1 .. 1 

l'I " 

T(11) --' T(l) + L i 2 
- LI 

I I 1 I 

11((11+1)(2n ·I 1) 
T(11) - I+ 

6 
'f'(n) = 0(n3 ) 

11(11+1) 

2 

Note: We can use the S11btractio11 and Conquer master theorem for this problem. 

Problem-34 Consider the following program: 

def l'ib(n): 
if n == 0: return 0 
clif n == I: return I 
else: return l"ib(n I )I Fib(n-2) 

print(l"ib(3)) 

Solution: The recurrence relation for the running time of this program is: '/'(11) = T(n - I)+ T(n - 2) + c. Note 
T(n) has two recurrence calls indicating a binary tree. Each step recursively calls the program for n reduced by I 
and 2, so the depth of the recurrence tree is O(n). The number of leaves at depth n is 2" since this is a full 
binary tree, and each leaf Lakes at least 0(1) computations for the constant factor. Running time is clearly 
exponential in 11 and it is 0(2"). 

Problc m-35 Running t ime of fol lowing program? 

dd Fu nction (n): 
count = 0 
if n <= 0: 

return 
for i in rangc(O, n): 

j = I 
whilcj <n: 

pri n t (cou nt) 

Fu nctinn(20) 

j - j .. i 
count count+ I 
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Solution: Consider the comments in the function below: 

def Function(n): 
count= 0 
if n <= 0: 

return 
for i in rangc(O, n): 

j = I 
whiJej <n: 

j j+i 
count .. count + 

print (count) 

Function(20) 

llOuter loop executes n limes 
#Inne r loop executes j increase by the rate of i 

In the above code, inner loop executes n/1 times for each value of i. Its running time is n x (L~ 1 n/i) = O(nlo911). 

Problem-36 What is the complexity of L:' 1 lo,q1 1 

Solution: Using the logorithmic property, logxy = logx t logy, we can sec that this problem is equivalent to 
II 

L logi = log l +log 2 +···+log n = 109(1 x 2 x ... x 11) = log{n!) :::; 109( 1111
) :::; 11logn 

1= 1 
This shows that the time complexity = O(nlogn). 

Problem-37 What is the running time of the following recursive function (specified as a function of the input 
value 11)? First write the recurrence formula and then find its complexity. 

def Function(n): 
if n <= 0: 

return 
for i in rangc(O, 3): 

Function(n/ 3) 
Funclion(20) 

Solution: Consider the comments in the below function: 

def Function(n): 
if n <= 0: 

return 
for i in ra nge(O, 3): llThis loop executes 3 times with recursive value of i va lue 

Fu nction(n / 3) 
Funclion(20) 

We ca n assume that for asymptotico l a na lysis k = r1cl for every integer k ;;::: 1. The recurre nce for this code is 
'/'(11.) = 3'/'(!!) + 0(1). Us ing mus ter I heore rn , we gel 7'(11) = 6(11). 

3 

Problem-38 What is the running time of the fo llowing rec ursive func lion (s pecified usu function of lhe input 
value u)? First write n r('c urrcncc formula, and s how its solulion using induc tion . 

def Function(n): 
if n <= 0: 

return 
for i in range(O, 3): llTh is loop execu tcs 3 times with recursive value of i value 

Function(n- 1) 
Punction(20) 

Solution: Consider the com men Is in I he function below: 

def F'unction(n): 
if n <= 0: 

return 
for i in range(O, 3): llThis loop executes 3 times with recursive value of n - 1 value 

Function(n-1) 
Function(20) 

The if statement requires constant time !0(1 )I. With the f<H" loop, we neglect the loop overhead and only coum 
three times that the function is called recursively. This implies a time complexity recurrence: 

T(11) r, 1/11 ~ I; 

c I '.ff(11 l),1{ 11 > I 

Using the Subtraction and r:cmquer master theorem, we get '/'(11) = 0(3"). 
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Problem -39 Write a recursion formula for the running time '/'(11) of Lhe func tion whose code is below. 

def Function3(n): 
if n <= 0: 

return 
for i in rangc(O, 3): #T h is loop executes 3 limes with recursive vn luc of n/3 va lue 

Func tion3(0.8 * n) 
Fu nclion3(20) 

Solution: Consider the comments in the function below: 

def Function3(n): 
if n <= 0: 

return 
for i in range(O, 3): #This loop executes 3 Limes with recursive value of 0.8n value 

Funclion3(0.8 • n) 
Function3(20) 

The recurre nce for this piece of code is T(n) = '/'(. 811) + 0(11) = T(1/511) + O(n) = 1/5 T(n) I· 0(11). Applying mas te r 
theore m, we get T(n) = O(n). 

Problem-40 Find the complexity of the recurrence: T(n) = 2T(.J11) + lo9n 

Solution: The given recurrence is not in the master theorem formal. Let us try to convert t his to the master 
theorem format by assuming 11 = 2"'. Applying the logarithm on both sides gives, logn - mlog2 = m = /0911 . Now, 
the given function becomes: 

T(n) - T(2"') = 2T( ..ff'")+ 111 ~ 2T ( 27) .. 111. 

To make it s imple we assume S(111) = T(2'") = S(~) = T(2~) ~ S(m) = 2S (~) + m. 

Apply ing the master theorem format would result in S(m) = 0(111/09111). 
If we substitute m = 10911 back, '/'(11) = S(lo9n) = 0((/0911) lo9lo.q11). 

Problem-41 Find the complexity of the recurrence: T(n) = T( ..f1i) + 1 

Solution: Applying the logic of Problem -40 gives S(m) = S (7) + I. Applying the master theorem would res ult in 

S(111) - O(lo9m). Substituting m - lo911, gives T(n) - S(/0911) = O(lo,qlogn). 

Problem-42 Find the complexity of the recurrence: 'f'(n) = 2T(..f1i) + I 

Solut ion: Applying the logic of Problcm-40 gives: S(m) 2S (!f) + 1. Using the master theorem result:; S(m) = 

O(m 10D~) = O(m). Substituting m = lo9n gives T(n) = O(logn). 

Proble m-43 Find the complex ity of the below function. 

import math 
count = 0 
def Function(n): 

global count 
if n <= 2: 

return 
else: 

F'unction(round(math.sqn(n))) 
count = count+ l 
return count 

print(Function(200)) 

Solut ion: Consider the comme nts in the function below: 
import math 
count = 0 
def Funetion(n): 

global count 
if n <= 2: 

return 1 
else: 

F'unction(round(math.s qrt(n))) #R<.'Cursive call with ../Ti value 
count = count -t L 
re turn counl 

print(Function(200)) 
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For the above code, the recurrence function can be given as: T(n) = T(.../Ti) + 1. This is same as that of Problcm-
41. 

Problcm-44 Ana(y7,c Lhc running Lime of the following recursive pseudo-code as u funclion of n. 

def funclion(n): 
if (n < 2): 

return 
else: 

counter 0 
for i in range(0,8): 

function (n/2) 
for i in rangc(O,n**3): 

counter counter+ 
Solution: Consider the comments in below pseudo-code and call running time of function(n) as T(n). 

def function(n): 
if (n < 2): # Constant lime 

return 
else: 

counter= 0 
for i in range(0,8): 

function (n/2) 

II Cons tan L time 
# This loop executes 8 times with n value half in every call 

for i in rangc(O,n**3): #This loop executes n 3 times with constant time loop 
counter - counter + l 

'/'(11) cnn be defined as follows: 
T(n) = I if n < 2, 

II = 87'(2) -I n l -I I otherwise. 

Using Lhe master theorem gives: 'J'(n) = 0>(11109~ /ogn) = E>(n3logn). 

Problem-45 Find the complexity of the below pseudocode. 

count = 0 
def F'unction(n): 

global count 
count .. 1 
if n <"" 0: 

return 
for i in range(O, n): 

count = count+ l 
n = n//2; 
Funetion(n) 
print count 

l~u nction(200) 

Solution: Consider the comments in the pseudocode below: 

count= 0 
def F'unction(n): 

global count 
count = I 
if n <-= 0: 

return 
for i in range(L, n): II This loops executes n times 

count• count + I 
n .. n/ /2; l#lntcgcr Oivison 
FuncLion(n) #Recursive call with i value 
print count 

F'unction(200) 

The recurrence for this function is '1'(11) = '/'(n/2) -I 11. Using master theorem we get '/'(11) = 0(11). 

Problcm-46 Run n in1~ time of the following progro m? 

def' Function(n): 
for i in rnnge( I , n): 

j "' I 
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whilcj <= n: 

Fundion(20) 

j = j * 2 
prinl("*") 

Solution: Conside r the commen ts in lhe below fun cLion: 

def l"unction(n): 
for i in range(l, n): ff This loops executes n limes 

j = 1 
while j <= n: It This loops executes fogn times from our logarithms guideline 

j=j*2 
printr*"l 

Function(20) 

Complexity of above program is: 0(11log11). 

Problem-47 Running time of Lhe following program·,> 

def Punclion(n): 
for i in rangc(O, n/3): 

j = 1 
whilcj <= n: 

Fu nction(20) 

j = j + 4 
print("•") 

Solution: Consider the comments 111 the below function: 

def Punction(n): 
for i in range(O, n/3): 

j = 1 
whilej <= n: 

j = j + 4 
print("*") 

Funclion(20) 

#This loops executes n/3 times 

#This loops executes n/4 times 

The time complexity of this program is: 0(11 i ). 

Problem-48 Find the complexity of the below function: 

def Function(n): 
if n <= 0: 

return 
print("*") 
Funelion(n/ 2) 
runclion(n/ 2) 
print ("*") 

Pu net ion (20) 

Solution: Consider the comments in the below function: 

def Function(n}: 
ifn <= 0: 

return 
print ("*") 
Func tion(n/2) 
FuncLion(n/2) 
print("*") 

Funclion(20) 

#Constant Lime 

#Constant time 
llRccurnion with n/2 value 
tiRecur~ion with n/2 value 

The recurrence for this function is: T(n) = 2T (i) + 1. Using master theorem, we gel T(n) = O(n). 

Problem-49 Find the complexity of the below func tion: 

count = 0 
def Logarilhms(n): 

i = I 
global count 
while i <= n: 
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j =n 
whilej > 0: 

i= i * 2 
return count 

prinl(Logarilhms(l 0)) 

Solution: 

count= 0 
def Logarithms(n): 

i = l 
global count 
while i <= n: 

j = n 
whilej > 0: 

j = j/ /2 
count = count + 1 

j = j/ /2 #This loops executes logn times from our logarithms guideline 
count = counl + l 

i= i * 2 # This loops executes lo,qn times from our logarithms guideline 
return count 

prinl(Logarithms(lO)) 

Time Complexity: 0(10911 * logn) = O(log211). 

Problcm-50 Li sks11 O(n), where O(n) stands for order n is: 
(a) O(n) (b) O(n2

) (c) 0(113) (d) 0(3n2) (e) 0(1.511 2) 

Solut ion: (b). Li sks11 O(n) = O(n) Lisksu 1 = 0(112). 

Problem-51 Which of the following three c laims arc correct? 
I (n + k)"1 = E>(nm), where le and 111 a rc constants II 211+ 1 = 0(2") Ill 2211+ 1 = 0(2") 
(a) I and JI (b) I and Ill (c) II and Ill (d) I, II and Ill 

Solution: (a). (I) (n + k)m = nk + c 1 • 11 1< - I I ... k"' = 0(nlc) and (11) 211 • 1 = 2*2" = 0(2") 

Problcm-52 Consider the following functions: 
f(n) = 211 g(n) = n! h(n) = n1"Y" 

Which of the following statements about the asymptotic behavior of f(n) , g(n), and h(n) is true? 
(A) f(n) = O(g(n)); g(n) = O(h(n)) (B) f(n) = n (g(n)); g(n) = O(h(n)) 

(C) g(11) = O(f(n)); h(n) = O(f(n)) (D) h(11) = O(f(n)); g(n) = n (f(n)) 

Solution: (D). According to lhe rate or growlh: h(n) < f(n) < g(n) (g(n) is asymplolically greater than f(n), and f(n) is 
asymptolica lly g reater than h(n)). We can easily sec the above order by taking logarithms or the given 3 
func lions: lognlogn < n < loy(n!). Nole tha t, log(n!) = O(nloyn). 

Problem-53 Cons ider the following segment of C-coclc: 
j = 1 
whilcj <=n: 

j = j*2 
The number of comparisons made in the execution of the loop for any n > 0 is: 
(A) ceil(lo92')+ l (B) 11 (C) ceil(log~1 ) (D) noor(loyi'l + I 

Solution: (a). Let us assume that the loop exec utes k Limes. After k 11' slep the valu e of j is zk. Taking logarithms 
on both s ides g ives k = log!{ Since we a rc doing one more compariso n for exiting from the loop, the a nswer is 
ceil(log~')+ I. 

Problcm-54 Consider the following C code segment. Let T(n) denote the number of Limes the for loop is 
executed by lhe program on input n. Which of the following is true? 

import math 
de f lsPrime(n): 

for i in range(2, math.sqrt(n)): 
if n%ii == 0: 

rell1rn 1 

print("Nol Prime") 
return 0 

(A) T(n) = O(Ft) and T(n) = Q(vn) 
(C) T(n) = O(n) and T(n) = .Q(vn) 

(B) T(n) = O(vn) and T(n) = Q(l) 
(D) None of the above 
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Solution: (B). Big O notat ion describes the Light u pper bound and Big Omega notation describes the tight lower 
bound for an algorithm . The {or loop in the question is run maximum Jn times and minimum I time. Therefore, 
T(n) O(.fri) ::ind T(n) = D( l ). 

Problem-SS In the following C func tion, le t n ;;:: m. I low mnny recurs ive ca lls u re rnnde by Lhis func tion? 
de f gcd(n,m): 

if n% m ==O: 
return m 

n = n°/om 
return gcd(m,nJ 

(A) 0(/ogf) (B) !l(nJ (DJ 0(n) 

Solution: No option is correc t. Big 0 notation describes Lhe Light upper bound and Big Omega notation 
describes the tight lower bound for on algorithm . For 111 = 2 and for all n = 2', the running time is 0(1 J which 
eontrodicls every option. 

Problem-S6 Suppose T(n) - 2'/'( 11 /2) + 11 , T(O)=T( I)= L. Which one of Lhe following is fnlse? 

(A) T(n) = O(n2) (B) '/'(11) = 0 (nlogn) (CJ '/'(rt) = !l(n2J (D) T(n) = 0 (11log11) 

Solution: (C). Big 0 n ota tion describes the tight upper bound und Big Omega notation describes lhe ligh t lower 
bound for an algori thm . Based on mostcr theorem, we get '/' (11) = 0(11/ognJ . Th is indicates that tigh t lower bound 
and tight upper bound arc the same. That means, 0(11/0911) and !2(11/ogn) are correct for given recurrence. So 
option (CJ is wrong. 

Proble m -S7 Find the complexity of the below function: 

def runclion(nJ: 
for i in range(l, n): 

j = i 
while j <i*i: 

j = j + I 
if j 'X1 i == 0: 

Pu netion( I 0) 

Solution: 

def Function(n): 
for i in range(J, n): 

j = i 
while j <i• i: 

j = j + 

for k in ra ngc(O, j ): 
print(" * "J 

if j % i = 0: 

Funclion(lO) 

Time Complexity: O(n5). 

for k in range(O, j J: 
p rint(" * "J 

# E:xecul~ n limes 

# Executes n*n times 

#IJ;xecu les j times = (n*n) limes 

Proble m -58 To caJculatc 9", give an algorithm and discuss its complexity. 

Solution: Start with 1 and mulliply by 9 until reaching 9". 

Time Complexity: There arc 11 I multiplications and each tokes constant time giving a <=>(11) algorithm. 

Proble m -S9 For Problcm-58, eun we improve the time complexity? 

Solution: l~efer to the Divide and Conquer chapter. 

Problem-60 Find the complexity of the below fu nction: 

def Punction (nJ: 
sum = 0 
for i in range(O, n- 1 J: 

if i > j: 

else: 
sum Slim t I 

fork in rnnge(O, j): 
sum = sum - I 
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print (sum) 

Pu nclion( l 0) 

Solution: Consider the worst - case and we can ignore the vuluc of j. 

def PuncLion(n): 
sum = 0 
for i in range(O, n-1 ): # Executes 11 Limes 

if i > j: 
sum= sum+ I # Executes n Limes 

else: 
for k in range(O, j): # Executes n Limes 

sum = sum - l 
print (sum) 

Pu nclion( I 0) 

Time Complexity: O(n2 ). 

Problem-61 Solve the following recurrence relation using the recursion tree mcthnd: T(n) ;;:;T(~) +T(;')+ 11 2 • 

Solution: How much work do we do in each level of the recursion tree? 

T(n) 

T(.'.!.) T(2") 2 J 
'• t 

_.--------····--- \ I 
T(.!..'.!.) T(!.'.!.) (i)2 ·q.!.~1 

22 .l 2 l :1 

\ f 

T(i 2;•) (~~I) l -
T(.!..'.!.) 

22 
T(!.'.!.) 

32 G/ T(,: 211) 
l I 

T(! 2") 
1 1 (23n) z ·q.!..'.!.) 

l l 
T(!!.'.!.) 

., 1 

In level 0, we take n2 time. At level I, the two subproblems take time: 

(~n f + (~nf = (~ + ~) 112 _ (~!) n2 

I I 2 h fi b bl r . I 11 2 II I 'Z n I I, lll . I Tl I I I k . Al eve L e our su pro ems ure o size 22. i"i •i'J• nnc I! rcspccuvc y. 1csc two su )pro J ems la c llmt': 

(1 )2 (1 )2 
f ~) (4) 625 (25)2 

411 + 3n +\3 n2 + 9 n 2 = 12~6112 = 36 n 2 

k 
Similarly the amount of work at level k is at most C:) n2. 

Let a :;;: *· the total runtime is then: 
"' 

T(n) $ La" 11
2 

I< 0 
I 

--/'1 2 
1- oc 

I 2 
--zgn 
1 - :36 

1 z 
Tfn 

36 
36 l 
-11 
11 
0(111 ) 

That is, the first level provides a constant fracLion of the tow I nintimc . 
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RECURSION AND 2 
BACKTRACKING 

2.1 Introduction 
In this chapter, we will look at one of the important topics, "recursion~, which will be used in almost every 
chapter, and also its rch:nivc "/iacktrackirig~. 

2.2 What is Recursion? 
Any function which calls ilself is called recursive. A recursive method solves a problem by ca ll ing a copy of itsdf 
to work on a smaller problem. This is called the recursion step. The recursion step con result in many more 
such recursive calls. 

It is important to ensure Lhat the recursion terminates. Each time the function calls itself with a slightly simpler 
version of the original problem. The sequence of smaller problems must eventually converge on the base case. 

2.3 Why Recursion? 
Recursion is a useful technique borrowed from mathematics. Recursive code is generally shorter and easier to 
write than iterative code. Generally, loops arc turned into recursive functions when they arc compiled or 
interpreted. 

Recursion is most useful for tasks thnt can be defined in terms of similar subtasks. ror exumple, sort, search, 
and traversal problems often have simple recursive solutions. 

2.4 Format of a Recursive Function 
A recursive function performs a Lask in part by calling itself to perform the subtasks. At some point, the function 
encounters a subtask that it can perform without calling itself. This case, where the function docs not recur, is 
called the base case. The former, where thc function calls itself to pcrform a subtask, is referred to as the cursive 
case. Wc can write all recursive functions using the format: 

if(tcst for the base case) 
return some base case value 

else if(test for anoLher base case) 
return some other base case value 

I I the recursive case 
else 

return (some work and then a recursive call) 

As an example consider the factorial function: n! is the product of all integers between 11 und I. The definition of 
recursive factorial looks like: 

n! = I , ifn = 0 
n! = n • (n - 1)1 if n > o 
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This definilion can easily be converted to recursive implementalion. Here the problem is determining the value of 
n!, and the subproblem is dete rmining the value of (n - /)!. In lhc recursive case, when n is grcalcr than I , the 
function calls itself to determine the value of(n - /)! and multiplies that with n. 

In the base case, when n is 0 or l , the funclion s imply rcLUrns I. This looks like the fo llowi ng: 

I/ calculates factoria l of n positive integer 
def factorial(n): 
if n == 0: return l 
return n*factor ial(n- 1) 

print{factoria1(6)) 

2.5 Recursion and Memory (Visualization) 
Each rec ursive call makes a new copy of tha t me thod (nc tun lly only the variables) in memory. Once a me thod 
ends (tha l is, returns some data), the copy of that rel urning me thod is removed from me mory. The recursive 
solutions look simple but visualization and tracing ta kes time. For better understanding, let us consider the 
following example. 

def Print(n): 
if n == 0: # this is lhe terminating base case 

return 0 
else: 

print n 
return Prinl(n I) 

print(Print(4)) 
# recursive call to itself again 

For this example, if we call the p rint function with n=4, visually our memory assignme nts may loo k like: 

Print(4) 

Print(3) 

Print(2) 

Returns 0 
Print( I) 

Returns 0 Print(O) 

Returns 0 to ma in func tion 
Returns 0 

Returns 0 

Now, let us cons ide r our faewriul function. The visuuli:t,ation of factorial funcLion with n 4 will look like : 

4! 

4* 3! 

4*6=24 is returned 

Returns 24 to 
ma in function 

3•2- 6 is returned 

2.6 Recursion versus Iteration 

3*2! 

2* 1! 

2* I =2 is returned 

Returns l 

While discussing recu r:;ion, the basic quesLion that comes to mind is: which way is better? - iteration or 
recursion? The answer to Lhis question depends on whal we arc trying to do. A recursive approach mirrors the 
problem that we arc Lrying to solve. A recursive approach makes it s impler to solve n problem that may not hnve 
the most obvious of a nswers. But, recurs ion adds ovcrhcncl for each recursiVl' ca ll (needs space o n the slack 
fra me). 
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Recursion 
• Terminates when a base case is reached. 
• Each recursive call require::; extra space on lhc slack frame (memory). 
• If we gel infinile recu rs ion, the program may run out of memory and resu lt i11 stack overllow. 
• Solutions lo some problems ure eusier lo fo rmulate recursively. 

Iteration 
• Terminates when a condition is proven lo be false. 
• Each iteration docs not require extra space. 
• An infinite loop could loop forever since there is no extra memory being created. 
• lleralivc solutions to a problem may not always be as obvious as a recursive solution. 

2. 7 Notes on Recursion 
• Recursive algorithms have two types of cases, recursive cases and base cases. 
• Every recursive function case must terminate at a base cast:. 
• Generally, iterative solutions are more efficient than recursive solulions !due Lo the overhead of function 

calls!. 
• A recursive algorithm can be implemented without recursive function calls using u stack, bul it's 

usually more trouble than its worth. That means any problem that can be solved recursively can also be 
solved iteratively. 

• For some problems, there arc no obvious iterative algorithms. 
• Some problems arc best suited for recursive solutions while others are not. 

2.8 Example Algorithms of Recursion 
• Fibonacci Series, Factorial Finding 
• Merge Sort, Quick Sort 
• Binary Search 
• Tree Traversals and many Tree Problems: lnOrder, PrcOrder PostOrdcr 
• Graph Traversals: DFS !Depth First Search! and BFS !Breadth First Search! 
• Dynamic Programming Examples 
• Divide and Conquer Algorithms 
• Towers of Hanoi 
• Backtracking Algorithms !we will discuss in next scclion] 

2. 9 Recursion: Problems & Solutions 
In this chapter we cover a few problems with recursion and we wiU discuss the rest in other chapters. By the 
Lime you complete reading the entire book, you will encounter many recursion problems. 

Problem-I Discuss Towers of I lanoi puzzle. 

Solution: The Towers of Hanoi is a mathematical pu7.zlc. It consists of three rods (or pegs or towers) and a 
number of disks of different si?.es which can slide onto any rod. The puzzle starts with the disks on one rod in 
ascending order of size, the smallest at the top, thus making a conical shape. The objective of the pu72lc is to 
move the entire stack to another rod, satisfying the following rules: 

• Only one disk may be moved ut a time. 
• Each move consists of taking the upper disk from one of the rods and sliding it onto another rod, on top 

of the other disks that may already be present on that rod. 
• No disk may be placed on top of a smaller disk. 

Algorithm: 

• Move the top n - 1 disks from Source to Auxiliary tower, 
• Move the nth disk from Source to Destination tower, 
• Move the 11 - ldisks from Auxiliary tower to Dest111rH1C111 tower. 
• Transferring the top 11 - I disks from Source to lt11xilwry tower can again be 1 bought of as a fresh 

problem and can be solved in the same manner. Once we solve Towers of llwwi with three disks, we cnn 
solve it with any number of disks with the above a lgorithm. 
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def TowersOfHanoi(numbcrOfDisks, startPcg= l, endPeg=3): 
if numberOfDisks: 

TowersOO-fanoi(numberOfDisks-1, startPeg, 6-startPeg-cndPcg) 
print "Move:: disk %d rrom peg o/od to peg %d" % (numbcrOIDisks, st.artPeg, end Peg) 
TowersOfHanoi(numbcrOIDisks-1, 6-slartPcg-endPcg, cndPeg) 

TowersOflianoi(numberOfDisks=4) 

Problem-2 

Solution: 

Given an array, check whether lhc array is in sorted order with recursion. 

def isArraylnSortedOrder(A): 
#Base case 
if len(A) == I: 

return True 
return AIOI <= All I and isSortcd(A[ I :II 

A= 1127, 220, 246, 277, 321, 454, 534, 565, 9331 
print(isArraylnSortedOrder(A)) 

Time Complexity: O(n). Space Complexity: O(n) for recursive stack space. 

2.10 What is Backtracking? 
Backtracking is a rorm or recursion.The usual scenario is that you ore focecl with a number or options, and you 
must choose one or these. After you make your choice you will get a new set of options; just what set of options 
you gel depends on what choice you made. This procedure is repeated over and over until you reach a final 
state. If you made a good sequence of choices, your final state is a goal state; ir you didn't, it isn't. Backtracking 
is a method of exhaustive search using divide and conquer. 

• Sometimes the best algorithm for a problem is to try all possibilities. 
• This is always s low, but there arc standard tools that can be used to help. 
• Tools: a lgorithms for generating basic objecls, such as binary strings 12" possibilities for 11-bit string], 

permutations 111!1, combinations l1t!/r! (11 - r)! 1. general strings lk - ary strings or lcnglh n has k" 
possibilities!. etc ... 

• Backtracking speeds the exhaustive search by pruning. 

2.11 Example Algorithms of Backtracking 
• Binary Strings: generating all binary strings 
• Generating k -ary Strings 
• The Knapsack Problem 
• Generalized Strings 
• I lamiltonian Cycles jrcfcr r;raphs chapter! 
• Graph Coloring Problem 

2.12 Backtracking: Problems & Solutions 
Problem-3 

Solution: 

Generate a ll the binary strings with n bits. Assume A[O .. n - 1 I is an array of size n. 

def appendAtBcginningFront(x, L): 
return Ix + clcmunt for clement in LI 

clef bitStrings(n): 
if n == 0: return 11 
Lr n == 1: return 1"0", "1 "J 
else: 

return (appcndAtBcginningFront("O", bitStrings(n-1)) + appcndAtBeginningFront(" l", bitStrings(n- 1 ))) 

print bitStrings(4) 

Alternative Approach: 

def bitStrings(n): 
if n == 0: return !I 
ifn == 1: return ["O", "l"J 
return [ digit+bitstring for digit in bitSlrings( 1) 
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for bitslring in bitStrings(n- l)I 
print bitStrings(4) 

Let T(n) be the running lime of /Jinary(n). /\ssumc function print{ lakes Lime 0(1). 

T() - {c. if11<0 11 - 2'/'(11 - I) + cl, otherwise 

Using Subtraction and Conquer Master lheorem we gel: T(11) - 0(2"). This means the a lgorithm for generating 
bil-sllings is optimal. 

Problem-4 Generate aJl the strings of length 11 drawn from 0 ... k - 1. 

Solution: Let us assume we keep current k-ary string in an a rray Al0 .. 11 -1). Call function k-slri119(n, k): 

def rangeToList(k): 
result = II 
for i in rangc(O,k): 

result.append(slr(i)) 
return result 

def baseKStrings(n,k): 
if n == 0: return n 
if n == 1: return rangcToList(k) 
return I digit+bitstring for digit in baseKStrings(l ,k) 

for bitstring in baseKStrings(n-1,k)] 
print baseKStrings('1,3) 

Lcl '/'(n) be the running time of k - string(n). Then, 

T( ) _ {c, if 11 < 0 
n - kT(n - l) + d, otherwise 

Using Subtraction and Conquer Master theorem we get: T(n) = O(k"). 

Note: Por more problems, refer lo String Algohthms chaplcr. 

Problem-5 Solve the recurrence T(n) = 2T(n - I) -1 2'1• 

Solut ion: /\t each level of lhe recurrence lrcc, the number of problems is double from the previous level, while 
the amount of work being done in each problem is half from the previous level. Formally, lhc i 11' level has 2' 
problems, each requiring 211 - 1 work. Thus the ;rh level requires exactly 2" work. The depth of this tree is 11, 

because at lhc ;ch level, the originating call will be T(n - i). Thus the total complexity for T(n) is T(n2"). 

Problem-6 Finding the length of connected cells of l s (regions) in an matrix of Os and ls: Given a 
matrix, each or which moy be I or 0. The filled cells that arc con ncctccl form a region. Two cells arc said lo be 
connected if they arc adjacent to each other horizontally, vcrlicolly o r diagonally. There may be several regions 
in the matrix. I low do you !ind lhe largcsl region (in lerms or number of cells) in the matrix',> 

Sample Input: I I 000 Sample Oulpul: 5 
0 1100 
00 10 1 
10001 
01011 

Solution: The simplest idea is: for each location traverse in all 8 directions and in each of those directions keep 
truck or maximum region round. 

def getval(A, i, j. L, 11): 
if (i< 0 or i >= Lor j< 0 or j >= H): 

return 0 
else: 

return AliJLil 

def findMaxBlock(A. r, c, L, H, size): 
global maxsize 
global cntarr 
if ( r >= Lor c >= H): 

return 
cntarrlrJlcl= I 
size+= 1 
if (size > maxsizc): 
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maxsize =size 
#search in eight direclions 
direction=l[- 1,0),1- 1, -11,(0,- 11,11,- 11,11 ,0J,[l, ll ,(0,lJ,l-l, 111; 
for i in range(O, 7): 

ncwi • r+dircction(iJIOI 
ncwj c "direction Iii II I 
vaJcsgctval (A, ncwi, ncwj, L, H) 
if (val>O and (cntarrlnewillnewj]= O)): 

findMaxBlock(A, ncwi, newj, L, H, size) 

cntarr(rl(cJ=O 

def getMaxOnes(A, rmax, colmax): 
global maxsizc 
global si7.c 
global cntarr 
for i in rangc(O,rmax): 

for j in ra ngc(O,colmax): 
if (A!ilLil == 1): 

findMaxBlock(A, i, j, rmax, colmax, 0) 

return maxsize 

zarr=[l l, 1,0,0,01,10, 1, 1,0, 11,(0,0,0, 1, 11,1 1,0,0, l, 11,(0, 1,0 , l, l 11 
rmax = 5 
colmax = 5 
maxsizcaO 
siu>=O 
cntarr=rmax*Jcolmax*(OJI 
print ("Number of maximum 1 s a re ") 
print getMaxOnes(zarr, rm.ax, colma.x) 

2 . 12 Backtracking: Problems & Solulions 

Recur sion and Backtracking 
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CI IAPT1£1~ 

LINKED LISTS 3 
·¢.· ·¢.· 

3. 1 What is a Linked List? 
A linked List is a data structure used for storing collections of data. A linked list has the following properties. 

• Successive elements a re connect.eel by pointers 
• The last ele ment points to NULL 
• Can grow or shrink in size during execution of a program 
• Can be made just as long as required (until systems memory exhausts) 
• Docs not waste memory space (but takes some extra memory for pointers) 

t 
4 I ~ 1 15 ·I 7 I ~ 1 40 I + NULL 

!lead 

3. 2 Linked Lists ADT 
The following operations make linked lists an ADT: 

Main Linked Lists Operations 

• Insert: inserts an clement into the list 
• Delete: removes and returns the specified position clemen t from the list 

Auxiliary Linked Lists Operations 

• Delete List: removes all clements of the list (dispose of the lisl) 
• Count: returns the number of clements in the list 
• Find 111h node from the end of the list 

3.3 Why Linked Lists? 
There are many other data structures that do the same thing us linked lists. Before discussing Linked lists it is 
important to understand the difference bet.ween linked lists and arrays. Both linked lists and arrays are used lo 
store collections of data, and since both arc used for the same purpose, we need to differentiate their usage. 
Thnt means in which cases arrays arc suitable and in which cases linked lists arc suitable. 

3. 4 Arrays Overview 
One memory block is allocated for the entire array Lo hold the clements of the arTny. The array clements can be 
ncccssed in constant time by w:;ing the index of the parliculnr element as the subscript. 
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3 2 1 2 2 

Index ---•Ill' 0 2 3 4 5 

Why Con stant Time for Accessing Array Elem ents? 
To access an a rray clement, the address of an clement is computed as an offset frorn the base address of the 
array and one multiplication is needed to compute what is supposed to be added to the base address LO get the 
memory address of the clement. 17irst the s ize of an element of that data type is calculated and then it is 
mult iplied with the index of Lhc clement lo get the value to be added to t he base a ddress. 

This process takes one multiplication and one addition. Since these two operations take constant time, we can 
say the array access can be performed in constant time. 

Advantages of Arrays 

• Simple and easy to use 
• Faster access to the elements (constan t access) 

Disadvantages of Arrays 

• Fixed s ize: The si7.c of the array is static (specify the array si;re before using it). 
• One block allocation: To allocate the array itself at the beginning, sometimes it may not be possible to 

get the memory for the complete array (if the array size is big). 
• Complex position-based insertion: To insert an clement at a given position, we may need LO shift the 

existing elements. This will create a position for us to insert the new element ot the desired position. If 
the posilion at which we want to add a n e leme n t is a l 1 he beginning, then the sh ifting operation is more 
expe ns ive . 

Dynamic Arrays 
Dynamic array (also called growable array, resizable array, dyrwmic table, or array /isl) is a random accl·ss, 
variable-size list data structure that allows clements to be added or removed. 

One simple way of implementing dynamic arrays is to initially start with some l"ixcd size array. As soon as that 
array becomes full, create the new array double the size of the original array. Similarly, reduce the array si7,c to 
half if the elements in the array are less than half. 

Note: We will sec the impleme n tation fo r dynam ic arrays in the Stacks, Queues a nd /f ashi11,g c ha p ters. 

Advantages of Linked Lists 

Linked lists have both advantages and disadvantages. The advuntagc of linked lists is that they can be cxpamled 
in constant time. To create an array, we must allocate memory for a certain number of clements. To add more 
clements to the array, we must create a new array and copy the old array into the new array. This can Lake u lot 
of time. 

We can prevent this by allocating lots of spoce initially but then we might a llocate more than we need and waste 
memory. With a linked list, we can sturt with space for just one allocated clement nncl acid on new clements 
cosily withou t the need to do any copying and reallocating. 

Issu es with Linked Li st s (Di sadvantages) 
There arc a number of issues with linked lists. The main disadvantage of linked lists is access time LO individual 
clements. Array is random-access, which means it takes 0( 1) Lo access any clement in the array. Linked lists 
take O(n) for access LO an element in the list in the worst case. Another advantage of arrays in access time is 
spacial locality in memory. Arrays arc defined as contiguous blocks of memory, and so any a rray clement will be 
physically nea1· its neighbors. This greatly benefits from modern CPU cach in g methods. 

Alt hough the dynamic allocation of storage is a grcol advantngc, lhc overhead with storing a nd retrieving data 
con make a big difference. Sometimes linked lists arc hard to 111m111wlate. If the lust it('m is deleted, the last but 
one must then have its pointer changed to hold a NULL reference. This requires that the list is traversed to rind 
the last but one link, nnd its pointer sel to a NULL reference. 

f'"inally, linked lists waste memory in terms of extra reference poin is. 
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3.5 Comparison of Linked Lists with Arrays and Dynamic Arrays 
Parameter Linked list Array Dynamic array 

Indexing 0(11) 0(1) 0(1) 

lnscrlion/dclelion at beginning 0(1) 
O(n). if arruy is not full (for 

0(11) 
shifting Lhe clements) 

Insertion at ending O(n) 0(1), if array is noL full 
0(1 ), if array is not full 
O(n). if array is full 

OcleLion at ending O(n) 0(1) 0(11) 

Insertion in middle O(n) 
O(n), if array is not full (for 

0(11) 
shifting the clements) 

Deletion in middle 0(11) 
0(11), if array is not full (for 

0(11) 
shifting the clements) 

Wasted space O(n) 0 0(11) 

3 . 6 Singly Linked Lists 
Generally "linked list" means a singly linked list. This list consists of a number of nodes in which each node has 
o next pointer to the following element. The link of the last node in the list is NULL, which indicates the end of 
the list. 

f 
4 I --H 15 ~ 1 7 

Head 

f.'o llowing is a type declaration for a linked lis t of integers: 

#Node of a Singly Linked List 
class Node: 

#constructor 
def _ init (sell): 

self.data = None 
self.next s None 

#method for setting the data field of the node 
def selData(self,duta): 

self.data = data 
#method for getting the data field of the node 
def gctData(seln: 

return self.data 
#method for setting the next field of the node 
def setNext(self,ncxt): 

self. next = next 
#method for getting the next field of the node 
def getNext(self): 

return self.next 
#returns trne if the node points to another node 
def hasNcxl(scU): 

return self.next I= None 

Basic Operations on a List 

• Traversing the lisL 
Inserting an item in Lhe list 

• Deleting an item from the list 

Trave rsing the Li nked List 

I ~ 1 40 I + NULL 

Let us assume that the /wad points to Lhe first node or Lhe list. To Lraven;c the list we do the following. 

• follow the pointers. 
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• Display the contents of the nodes (or count) as they arc t raversed. 
• Stop when the next pointer points to NULL. 

f 
5 I -H ·I 17 I ·I 4 I + NULL 

Heu cl 

The ListLcngth() function takes a linked list as input and counts the number of nodes in the list. The function 
given below can be used for printing the list data with extra print function. 

def listLcngth(self) : 
current= self.head 
count"" 0 

while currcn l I= None: 
count = cou nt+ I 
current= cu n-ent.getNcxt() 

return count 

Time Complexity: O(n), for scanning the ljst of size 11. 

Space Complexity: 0(1), for creating a temporary variable. 

Singly Linked List Insertion 

Insertion into a singly-lmked list hus three cases: 

• Inserting a new node before the head (at the beginning) 
• Inserting a new node after the tail (at the end of the list) 
• Inserting a new node al the m idd le of the list (nrndom locution) 

Note: To insert an elcmcnt in the li nked list al i-;orne position Jl , assume thut uflcr inserting Lhe element the 
position of this new node is p. 

Inserting a Node in Singly Linked List a t the Beginning 

In this case, a new node is inserted before the current head node. Only one next pointer needs to be modified (new 
node's next pointer) and it can be done in two steps: 

• Updolc the next po inl e r o f new node, l.o point to the current hend . 

New node 

....__da_ta__,J___,+ ii--1-5 _.___:--•~I _7___.___.I •I~ _4_0 _.__~j NU LL 

head 
• Update head pointer to poin t lo the new nude. 

New node 

I + NULL 

Head 

#method for inserting a new node at the beginning of the Linked List (at the head) 
def inscrtAtBegin ning(sclf,data): 

newNode = NodcO 
ncwNodc.setData(data) 

if self.length == 0: 
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self.head= newNode 
else: 

newNode.setNext(self. head) 
self. head = new Node 

self. length += 1 

Inserting a Node m Sin gly Linked List at the Ending 

In this case, we need to modify two next pointers (last nodes next pointer and new nodes next pointer). 

• New nodes next pointer points to NULL . 
NULL 

f 
4 I -H 15 ·I 7 I 

J' 

1 
Head 

• Last nodes next pointer points to the new node . 

f 
4 I -H 15 ·I 7 1--t--i 

Head 

#method for inserting a new node at the end of a Linked List 
def insertAtEnd(self,data): 

ncwNode "' Node() 
ncwNodc.setOata(data) 

current= self.head 

while current.getNext() !• None: 
current = currenl.getNext() 

currcnl.setNext(ncwNode) 
self.length+= l 

Inserting a Node in Singly Linked List at the Middle 

New node 

data I -t~ NULL 

New node 

40 I + NULL 

Let us assume that we arc given a position where we want to insert the new node. In this case also, we need to 
modify two next pointers. 

• If we want to add an clement at position 3 then we stop al position 2. That means we traverse 2 nodes 
a nd insert the new node. !"or simplicity let us assu me that the second node is called position node. The 
new node points to the next node of the position where we want to add this node. 

Position node 

fl-4 ____.__________I .. , I 5 ---·I...,_ _1 __.____.I ·I 40 
ti; 

Head 
data 

New node 

' ' I 
/ 

I ~ r ~ 

Position nodes next pointer now points to t he new node. 

3 .6 Singly Linked Lists 
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Position node 

40 I+ NU LL 

New node 

Let us write the code for all three cases. We must update the first clement pointer in the calling function, not 
just in the called function. For this reason we need to send a double poin ter. The following code in::;crts a node 
in the singly linked list. 

#Method for inserting a new node a t a ny position in a Linked List 
def inscrlAlPos(sclf,pos,data): 
if pos > self.length o r pos < 0: 

return None 
else: 

if pos == 0: 
self.insertAtBeg(data) 

e lse: 
if pos ==self.length : 

self. insert.A tEnd (data) 
else: 

newNode = Node() 
newNode. setData(data) 
count= 0 
current= self.head 
while count< pos-1: 

count+• I 
current • currcnt.gcLNext() 

ncwNode.sctNcxt(currcnt.geLNcxt()) 
currcnt.sctNcxt(newNode) 
self. length += l 

Note: We can implement the th ree variations of the insert operation separately. 

Time Complexity: O(n), since, in the worst case, we may need to insert the node at the end of the list. 
Space Complexity: O( 1), for creating one temporary variable. 

Singly Linked Lis t Deletion 

Similar to insertion, here we a lso have three cases. 

• Deleting the first node 
• Deleting the last node 
• Deleting an intermediate node. 

Dele ting lhc First Node in Singly Linked Lis t 
First node (current head node) is removed from the list. It can be done in two steps: 

• Create a temporary node which will point to the same node as that of head. 

f 
4 I =H 15 ~ 1 7 I ~ 1 40 I + NU LL 

~, 

' ' ' 
I lead Temp 

• Now, move the head nodes pointer to the next node and dispose of the tcmporw-y node. 
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~ 15 I I ·I 
' r ' ' ' 

Temp lleud 

#method to de lete the first node of the linked list 
def dclctcFromBeginnjng(self): 

if self.length == 0: 
print "The list is empty" 

else: 
self.head = self.head.getNextQ 
self.length -= 1 

7 I 

Deleting the Last Node in Singly Linked List 

Linked Lists 

I ·I 40 I + NULL 

In this cnse, the last node is removed from the list. This operation is a bit trickjcr than removing the first node, 
because the algorithm should find a node, which is previous to the tail. It can be done in three steps: 

• Traverse the list and while traversing mruntain the previous node address also. By the time we reach the 
end of the list, we will have two pointers, one pointing to the tail node and the other pointing to the node 
/Jef ore the trul node. 

f 
4 I -H 15 ·I 7 I ·I 

f 
Node previous to Lai l 

I lead 

• Update previous nodes next pointer with NULL. 

Jlf 

f 
4 I ·I 15 '--~~--'~-~_:-~-.i·l~-1~~~;-;~'I 

f 
I lead 

Node previous to tail 

• Dispose of the ta il node . 

f 
4 I -H 15 

II cad 
Node previous to tail 

II Method to delete the last node of the linked list 
def dclctcLastNodcllromSin~lyLinkedList(self): 

if self.length .... 0: 
print "The list is empty" 

else: 
currentnode = self.head 
previousnode = self. head 

while currcntnode.getNext() I= None: 
previousnode • currcntnodc 
currcntnode • currcntnode.gctNext() 

previousnodc. seNcxt(Nonc) 
self. length -= l 

3.6 S ingly Linked Lists 

40 I 3+ NULL 

f 
Tail 

NULL 

NULL 

Tail 

NULL 

NULL 

Tail 
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Deleting an Intermediate Node in Singly Linked List 
In this case, the node to be removed is always located between two nodes. Head nnd tail links arc not updated in 
this case. Such n removul cun be done in two steps: 

• Similar to the previous case, mnintain the previous node while traversing the lis t. Once we find the node 
lo be de leted, chnnge the previous node's next pointer lo I he ncxl pointe r of the node lo be de le ted . 

• 

------ --,.. ,.. r-1 
f 

4 I ~ 1 15 I ,t 7 

f f 
I !encl Previous node Node lo be dele1ccl 

Dispose of the cu rren t node to be deleted . ---------

f 
,'f 

................. 

4 I -H 15 I ~ ~I 
f 

I lead Previous node 

##Delete with node from linked list 
def dcletcFromLinkcdListWithNodc(self, node): 

if self. length ..... 0: 
raise ValueE1Tor("Lis t is empty") 

else: 
current= self.head 
previous = None 
found = False 

while not found: 
if current node: 

found .. True 
c lif current is None: 

t 
Node to be deleted 

else: 
ra ise ValucError("Nodc not in Linked List") 

previous = current 
current"' currenl.gelNext() 

if previous is None: 

else: 
self.head • current.gclNcxl() 

previous.scNcxt(current.getNextQ) 

self.length -= 1 

#Delete with data from linked list 
def dclctcValuc(sclf, value): 

currcntnodc self.head 
prcviousnodc self.head 

while currentnode.next != None or currentnode.value !•value: 
if currcntnodc. value == value: 

prev1ousnode.next = currentnode.next 
self.length -• l 
return 

else: 
prev10usnode "' currentnodc 
currcnlnodc currentnodc.nexl 

print "The vnluc provided is not present~ 

#Mel hod lo delete a node al a particular position 
def dcleleALPosition(sclf,pos): 

count = 0 

3.6 Singly Linked Lists 
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currentnode =self.head 
previousnode = self. head 

if pos > self.length or pos < 0: 
prinL "The position does not exist. Please enter a valid position" 

else: 
while current node.next I• None or count < pos: 

count .. count + l 
if count== pos: 

previousnodc.ncxt = currenLnode.ncxt 
self.length -= I 
re tum 

else: 
previousnodc = currentnodc 
currcntnodc = currentnodc.ncxt 

Time Complexity: 0(11). In the worst case, we may need to delete the node at the end of the list. 
Space Complexity: 0( 1), for one temporary variable. 

Deleting Singly Linked List 

Python is garbage-collected, so if you reduce the size of your list, it will reclaim memory. 

def clea r( self) : 
self.head .. None 

Time Complex ity: 0(1). Space Com plexity: 0(1) 

3. 7 Doubly Linked Lists 

Linked Lists 

The advantage of a doubly linked list (also called two - way linked list) is that given a node in the list, we can 
navigate in both directions. A node in a singly linked list cannot be removed unless we have the pointer to its 
predecessor. But in a doubly linked list, we can delete a node even if we don't have the previous node's address 
(s ince each node has a left poi mer pointing to the previous node a nd ca n move backward). 

The primary 1/i.rndv1mta9es of doubly linked lisls a rc: 

• Each node requires an extra pointer, requiring more s pace. 
• The inse rtion or deletion of a node takes a bit longer (more pointer opera Lions). 

Similar to a singly linked list, let us implement the operations of a doubly linked list. If you understand the 
singly linked list operation s, then doubly linked list operations a re obvious. Following is a type declaration for a 
doubly linked lis t of integers: 

class Node: 
# If data is not given by user,ils taken as None 
def _ini t_ (self, dataaNone, next=None, prev=Nonc): 

self.data = data 
self.next= next 
self. prev = prev 

#method for setting Lhe data field or I.he node 
def sctData(self,data): 

self.data .. data 
#method for getting the data field of the node 
def gcLData(sclf): 

return self.data 
#method for setting the next fie ld of the node 
def setNext(self,next): 

self.next= next 
#method for getting the next field of the node 
def getNcxt(self): 

return self.next 
#returns true if the node points to another node 
def has Ncxt(seU): 
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return self.next != None 
#method ror setting the next field of the node 
def sctPrev(sclf,prev): 

self. prcv = prev 
#method for getting the next field of the node 
def getPrev(self): 

return self.prev 
#returns true if the node points to another node 
def hasPrev(self): 

return self.prev !-= None 
# str returns string equivalent of Object 
def str (self): 

return "NodelDala = %sl" % (self.data,) 

Doubly Linked List Insertion 
In:;crlion into a doubly-linked lis t has three cases (same tlli a singly linked list): 

• Inserting u new node befo re the head. 
• Inserting a new node after the tail (at the end of the list). 
• Inserting a new node at the middle of the list. 

Inserting a Node in Doubly Linked List at the Beginning 

Linked Lists 

In this case, new node is inserted before t he head node. Previous and next pointers need to be modified nncl it 
can be done in two steps: 

• Update the right pointer of the new node to point lo the current head node (dotted link in below figure) 
a nd a lso make left pointer of new node as NULL. 

New node 
I lead 

I l ldntn I -t-1 i I ' 5 I 14 

NULL NULL 

• Update head node's left pointer to point to the new node and mnke new node as head. 

Head 

I • I du tu I -t; ~.__._' s_..___.l-4 --+-• j 
I 

'f 

NULL 

clef insertAtBeginning(sclf, data): 
newNode Node(data, None, None) 

7 I ~ 140 I j+ NULL 

if (self.hcud "' None): #To imply that if heud None 
self.head - self.Lail ~ ncwNodc 

else: 
newNode.se lPrev(None) 
newNode.sctNext(self. head) 
self.hcad.sclPrev(ncwNodc) 
self.head = newNode 

Inserting a Node in Doubly Linked List at the Ending 
In this case, truverse the list till the end and insert the new node. 

• New node right pointer points to NULL and left pointer points to the end of Lhe list. 
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Head 

NULL 

List end node New node 

7 I i r--- ...____._1-- I _data ...,.___,I : 

T 
NULL 

NULL 

• Update right pointer of last node w point to new node. 

Head Ust end node New node 

7 I -r------~--I data I 

Linked Lists 

I 
I 

T 
NULL NULL 

def inscrtAlEnd(self, dala): 
if (self.head •• None): #To imply that if head ... None 

self. head "" Node( data) 
self.tail= self.head 

else: 
current = self.head 

while(currcnt.geLNe.'Ct() != None): 
current currcnt.gctNcxt() 

currcnt.scLNext(Node(clala, None, current}) 
self. tail = eurrent.gctNcxt() 

Inserting a Node in Doubly Linked List at the Middle 

As discussed in singly linked lists, trnverse the list to the position node and insert lhe new node. 

• New node right pointer points to the next node of the positio11 11ode where we want to insert lhe new 
node. Also, 11ew node left pointer points to the positio11 node. 

NULL 

I lead 

,,. 
I 

Position node 

' ' I 

\' - - -t.____._- I _du ta _.____.I ' ( 

New node 

NULL 

• Position node right pointer points to the new node and the 11cxt node of position node left pointer points 
to new node. 

NULL 

4 

Head 

Position node 

, , 

I data 

New node 

Now, let us write the code for all or these three cases. We must update th<.: first clement pointer in the ca!lin~ 
function , not just in the called function. For this reason we need to send a double poimer. The following code 
inserts a node in the doubly linked list. 
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def getNode(self, index): 
currentNode = self.head 
if currentNodc == None: 

return None 
i = 0 
while i < index a nd currcntNode.getNext() is not None:: 

currcntNodc currentNode.get Ncxt() 
if currentNode == None: 

break 
i += l 

return currenlNode 
def insertAtGivenPosition(self, index, data): 

ncwNode = Node(data) 

if self.head - None or index - 0: 
self.inscrtAtBcginning(datn) 

clif index > 0: 
temp = self.gctNode(indcx) 

if temp == None or temp.gelNcxt() == None: 
self. insert(data) 

else: 
newNodc.setNext(temp.getNext()) 
newNode.setPrev(tcmp) 
temp.gctNext().selPrev(ncwNode) 
tcmp.sotNext(newNoclc) 

Time Complexity: O(n). In the worst ense, we may need to insert the noclt.: ut the end of the list. 
Space Complexity: 0(1), for a temporary variable. 

Doubly Linked List Deletion 

Simila r to s ingly linked list deletion, here we have three euses: 

• Deleting the first node 
Deleting the Inst node 

• Deleting an intermediate node 

Deleting the First Node in Doubly Linked List 

Linked Lists 

In this case, the first node (current head node) is removed from the list. It ca n be done in two steps: 

• Create a tempornry node which wi ll point lo the snmc node w> thot of head. 

NULL 

I lend Temp 

• Now, move th(' head nodes pointer w the next node and changt.: the heads left pointer to NULL. Then, 
dispose of the temporary node. 

NULL 

Temp I lead 
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Deleting the Last Node in Doubly Linked List 
This operation is a bit trickier, than removing the firsl node, because the algori thm shou ld find a node, which is 
previous to the lail firsl. This can be done in three steps: 

• Truverse lhe lis1 a nd while lruversing mainta in the previoL1s node addre:;s a lso. 13y the lime we reach the 
end of lhe list, we will huvc two pointers, one pointing to the tail and the olher poinling to the node 
before the tail. 

NU LL 

fl----t ......._____..! 

4 _..i ·.__._I I __.1 s ___,14 

Previous node to Ta il 

·1 I NULL 

I lead 
Ta il 

• Update the next pointer of previous node to the Lail node with NULL. 

NULL 
NULL 

r 
,, 

I p I 15 14 ·1 I 7 
,/, 

I I 40 I +. NULL 4 

f f 
I lead 

Previous node to Ta il Tail 

• Dispose of lhe tail node . 

NULL 

,, 

f 
Jt=t I is I 14 ., I I ',,I I~ NU LL 4 7 

f 
Previous node 10 Tai l Tail 

I !cud 

Deleting an Intermediate Node in Doubly Linked List 
In this cuse, the node to be removed is always located between two nodes, and the hcud and tail links are not 
updated. The removal can be done in two steps: 

• S imila r to the previous case, mainta in the previous node wh ile a lso traversing the !isl. Upon locating the 
node to be delelecl, change lhe previous node's nexl pointer to the next node of lhe node to be deleted. 

--- --- ... 
,,,,,,,, ----- -.... .... ', 

i 1s l<j:/ 1 '----t-f_.7 1~'1',~' , , 140 I + NULL 

I lead Previous node Node lO be deleted 

IJisp()se of the cu rrcn t node to be deleted. 
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f 
I lend Previous node 

#Deleting element at given position 
def geLNode(self, index): 

currentNode = self.head 
if c urrentNodc ..... None: 

return None 
I 0 
while i <= index: 

currcntNodc - currcnLNodc.gctNext() 
if currentNodc •• None: 

break 
i += 1 

return currentNodc 

def dclteAtGivenPos1tion(self, index): 
temp = self.gctNodc(index) 
if temp: 

lemp.gctPrcv .sctNcxt(temp.gct Next()) 
if tcmp.getNcxtO: 

-------

Node to be deleted 

temp.getNcxt().sctPrev(tcmp.geLPrcv()) 
temp.setPrev(None) 
tcmp.setNcxt(Nonc) 
tcmp.setDalu(None) 

#Deleting with given data 
def dclcteWithData(sclf, data): 

temp .. sclf.h(:ad 
while temp is not None: 

if temp.gctData() == data: 
# if it's not the first clement 
if tcmp.getNext() is not None: 

tcmp.gctNext().setNcxt(temp.getNcxt()) 
temp.getNext().set Prev(temp.getPrev()) 

else: 

Linked Lists 

I 40 I + NULL 

#otherwise we have no prev (it's None), head is the next one, and prev becomes None 
self.head = temp.gelNcxt() 
tcmp.gctNext().sctPrcv(None) 

temp = tcmp.getNext() 

Time Complexity: O(n) , for scanning the complete list of size n . 
Space Complexity: O( I). for crea ting one temporary variable. 

3.8 Circular Linked Lists 
In singly linked lists and doubly Jinlwd lists, the end of lists arc indica ted with NULL value. 13ut ci rculur Jinked 
lists do not have ends. While travers ing the circular linked lists we should be careful; oLhcrwisc we will be 
Lravcrsing lhc list inlinitcly. In circulur linked lists, each node has n successor. Note that unlike singly linked 
lists, there is no node with NULL pointer in a circularly linked list. In some situations, circular linked lists arc 
useful. There is no difference in the node declaration or circular linked lists compared to singly linked lists. 

For example, when sevcru l processes arc using the snme compu ter resou rce (CPU) for the same amount of time, 
we have to assure tha t 110 process Accesses the resource before n il other processes do (round robin a lgorithm). 
The following is a type ckcloralion for 11 cin.:u lar linked list: 

#Node of a Circulur Linked List 
class Node: 

I/constructor 
def _inil_(sel~: 
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self.data= None 
self.next = None 

#melhod for setting the data field of the node 
def scLData(self,data): 

Relf.data= data 
llmclhod for getting the data field of lhc node 
def geLData(seU): 

return self.data 
#melhod for setting the next field of the node 
def seLNext(self,next): 

self.next= next 
#method for getting Lhc next field of the node 
def gclNext(self): 

return self.next 
#returns true if Lhc node points to anolher node 
def hasNext(self): 

return self. next != None 

Linked Lists 

In a circula r lin ked list, we access the elements using the head node (simila r to head node in singly linked list 
a nd doubly linked Lists). 

Counting Nodes in a Circular List 

1 :H __ i s~_::--·_I _7~~' ·I 40 
The circulnr list is accessible through the node marked head. To cou nt the nodes, the list has to be traversed 
from Lhc node marked lwacl , with the help of a dummy node c11rrc:111, a nd stop the counting when current rcnches 
the sta rting node head. If' the list is empty, head will be NULL, und in that case set count = 0. Otherwise, set the 
current pointe r to Lhe firs t node, a nd keep on counting till the current pointe r renehes lhc starling node. 

#This method would be a member of other class (say, CircularList) 
def circularListLength(sclI): 

currcntNode = self.head 
if ourrcntNode ..... None: 

return 0 
count I 
currentNode = currcnLNodc.getNcxt() 
while currentNode I• self.head: 

currentNode = currentNode.gclNcxt.() 
count = count+ 1 

retur count 

Time Complexily: O(n), for scanning the complelc list of size 11. Space Complexity: 0(1), for Lemporory variable. 

Printing the Contents of a Circular List 

1 :H __ is~_::--•I __ 7_~1 ·I 40 

We assume here Lhat Lhc list is being accessed by its hc:acl node. Since a ll the nodes arc arranged in a circular 
fashion, the wil node of the list will be the node previous to the /wad node. Lcl us assume we wnnl to prin t the 
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contents of the nodes starting with the head node. Print its contents, move to the next node and continue 
printing till we reach the head node again. 

def printCircularList(scll): 
currentNodc • self. head 
if currcntNodc None: return 0 
print (currcnLNodc.getData{)) 
currentNode • currentNode.gctNcxl() 
whjlc currentNodc I= self.head: 

c ur rcntNode = cu rrentNode.getNcxt() 
prin t (c urrentNode.gctOata()) 

Time Complexity: 0(11), for scanning the complete list of si:-,c 11. Space Complexity: 0(1), for temporary variuble. 

Inserting a Node at the End of a Circular Linked List 
l.ct us add a node containing data, at the end of a list (circu lar lisl) headed by head. The new node will be placed 
jus t a fter the ta il node (whic h is the Inst node of the lis t), whic h mea ns il will ha ve lo be inser ted in between the 
tail node and the first node. 

• Create a new node and initially keep its next pointer pointing to itself. 

4 15 7 

Head 

40 

, - ..... ' 
~-~-......... '-. ' I data I --l ___ ': 

New node 

• Update the next poi n ter of the new node with the head node nnd a lso traverse the list to the tail. That 
mcnns in a circu lar !isl we should stop at thc node whose next node is head. 

Previous node of head 

15 7 40 

!lead 1 

duta J 

I I 

1 New node • 
l I 

_______________________ __ ___ _______ ______ ________ ____ J 

• Update the next pointer of the previous node to point lo the new node and we get the list as shown 
below. 
,-- ---- ------------------------- -- --------- ----- --- ------ ------ --- --------------
' I 

L_ i_4 _.__.~•I 15 I -I -•._I 17_.__.-•I 40 I -t~ data l -+--: 
I lead 

def insertAtEndlnCLL (self, data): 
current = self. head 
ncwNode = Node() 
ncwNode.sotData(da ta) 
wh ile currcn l.getNcxt !=self.head: 

current = currcnt.gctNcxt() 
newNodc. sctN cxt(ncwNodc) 
1f self.head None: 

self.hcnd "'ncwNodc; 
else: 
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newNode.seLNexl(self. head) 
current.seLNext(newNode) 

Linked Lists 

Time Complexity: O(n), for scanning the complete list of size n. Space Complexity: 0(1), for temporary variable. 

Inserting a Node at the Front of a Circular Linked List 

The only d iffe rence between inserting u node at the beginning und UL the encl is that, a fter inserting the new 
node, wejusl need lo update the pointer. The steps for doing this arc given be low: 

• Create a new node a nd initially keep its next pointer pointing to itself. 

duta I 
4 15 7 40 

New node 

I end 

• Upda te the next pointer of the new node with the head node and also traverse the lii;t until the tai l. Thul 
means in a circular list we s hould stop a t the node whic h is its previous node in the list. 

4 15 7 40 

... 

I cad I 
... ... 

data [ "' I New node 

• Update the previous head node in the list to point to the new node. 

4 I n~_is_~~·.__I _1__.__..I ·I 40 ...... 
f I d•ta(J • 

New node -- ----- -- ---------------------------------

Head 

• Mnke the new node us the hcud. 
r---------------------------------------------------------------------
1 • 
I I 

~_, data I +-~ ·I I •I 15 I I ·I 7 1-H 40 I -H-
I 

l~cud 

def inscrtALBcginlnCLt (self, data): 
current = self.head 
newNode = Node() 
newNode.setData(dnla) 
while current.getNcxt != self.head: 

current = eurrent.getNext() 
newNode.setNext(newNode) 
if self.head= None: 

else: 
self.head - newNode; 

ncwNodc.sct Nt~xl(sclf. head) 
currenl.scl Ncxl(ncwNode) 
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self.head • newNode 

Time Complexity: O(n), for scanning the complete list of size n. Spacl! Complexity: 0(1 ). for temporary v;iriablc. 

Deleting the Last Node in a Circular List 
The lis t has lo be trovcrsed to reach the last but one node. This has to be na med as the tail node, a nd its nexl 
field has to poinL to the first node. Consider the following lisL. To delete the last node 40, the list has lo be 
traversed till you reach 7. The next field of 7 has to be changed to point to 60, and this node must be renamed 
pTail. 

• Traverse the list and find the tail node and its previous node. 

60 4 

I cad 

15 7 

Previous node lo 
deleting node 

• Update the tail node's previous node pointer to point lo head. 

,------------------------------- --------------------, 
I ' 

4 15 

I cad 

• Dispose of the toil node . 

' 
7 

Previous node to 
deleting node 

.. -------------------------------------------------; 
I t 

4 

I end 

def dcletcLastNodeFromCLL (sell): 
temp = self.head 
current = self.head 

if self.head == None: 
print ("List Empty") 
return 

while current.getNext() != self.head: 
temp = current; 
current = currcnl.gctNcxtQ 

tcmp.sctNexl(currcnt.getNext()) 
return 

15 
' 

7 

Previous node lo 
dele ting node 

40 

Node lo be 
deleted 

40 

Node to be 
deleted 

Node lo be 
deleted 

Time Complexity: 0(11), for scanning the complete list of si7,c 11. Space Complexity: 0(1) 

Deleting the First Node in a Circular List 

The first node can be deleted by simply replac ing the next fil'ld of th~· t:lil node with the next fi e ld of the first 
node. 

• !"incl the ta il node of the linked list by traversing t lle lisl. Tail node is lhe previous node lo Lhe head node 
which we want lo delete. 
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60 

Head 

Node to be 
deleted 

4 15 7 40 

Previous node to 
deleting node 

• Create a temporary node which will point to Lhe head. Also, update the tail nodes next pointer to point 
to next node of head (as shown below). 

Temp 1 

60 

Head 

Node to be 
deleted 

.-- --------- ---------------------- ----------------' I 

4 15 7 

I 

40 

Previous node to 
deleting node 

• Now, move the head pointer to next node. Create a temporary node which will point to head. Also, 
update the tail nodes next pointer to point to next node of head (oi:: shown below). 

\ 
\ 

\ Node to be 
deleted Head 

def deleteFrontNodeFromCLL (scln: 
current .. self. head 

if self.head == None: 
print ("List Empty") 
return 

while current.getNext() I= self.head: 
current = current.gulNcxt() 

cu rren t.sctNext(self. head.gclNext()) 
self. head = self.head.getNextQ 
re rum 

Previous node to 
deleting node 

Time Complexity: O(n), for scanning the complete list of size n. Space Complexity: 0(1) 

Applications of Circular List 
Circular linked lists arc used in managing the computing resources of a com puter. We can use circular lists for 
implementing stacks and queues. 

3.9 A Memory-efficient Doubly Linked List 
In conventiona l implementation, we need to keep a forward pointer to the next item on the list and a backward 
pointer to the previous item. That means elements in doubly linked list implementations consist of data, a 
pointer to the next node and a pointer lo the previous node in the list as shown below. 

Conventional Node Definition 

#Node of a Singly Linked List 
class Node: 

#Icon st rue tor 
def _ init_ (self): 

self.da.ta. = None 
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self.next = None 
## method for setting the data field of the node 
def setData(self,data): 

self.data = data 
#method for gelling the data field of lhc node 
def gctData(~;clf): 

return self.data 
#method for selling the ncxl field of the node 
def setNext(self, next): 

self.next = next 
#method for getting the next field of the node 
def getNext(sell): 

return self.next 
#returns true if the node points to another node 
def hasNcxt(scl!): 

return self.next!= None 

Linked Lists 

ReccnLly a journal (Sinha) presented an a lternative implcmenUHion of the doubly linked list /\OT, with insertion, 
traversul and deletion operations. This implementation is based on pointer difference. Each node uses only one.; 
pointer field lo traverse the list back and forth. 

New Node Deflnition 

class Node: 
#constructor 
def init (sell): 

self.data = None 
self.ptrdiff = None 

#method for setting the data field of the node 
def setData(self,dutu): 

self.data "' data 
II method for getting the data field of the node 
def getData(self): 

return self.data 
#method for setting the pointer difference field of the node 
def selPLrDiff(sclf, pn:v, next): 

self.ptrdiff prcv " next 
#method for getting the next field of the node 
def gelPLrDiff(self): 

return selr.ptrdiff 

Pointer differences 

j-+NULL 

The ptrdif f pointer field contains the difference bet\veen the pointer to the next node and the pointer to lhc 
previous node. The pointer difference is calculated by using exclusive-or($) operation. 

ptrdif f = 710i11Ler to previow; node $ pointer to next node. 

The ptrdif f of the start noclc (head node) is the $ of NULL und next node (next node lo hcud). Similarly, thl' 
pLrdif f of end node is the (!) or previous node (previous to c.:nd node) and NULL. /\s an example, consider the.; 
following linked list. 

In the example above, 

• The next pointer of/\ is: NULL Ea B 
• The next pointer of B is: /\ Ea C 
• The next pointer of C is: B ED D 
• The next pointer of D 1s: C ED NULL 

Why does it work? 
To find the answer to this question let us consider the propc.:rties or Ea: 
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XEBX = O 
XEf)O = X 
X EB Y = Y EB X (symmetric) 
(X EB Y) EB Z = X Ea (Y EB Z) (transitive) 

For the example above, let us assume that we arc at C node and want to move lo B. We know that C's ptrdif f is 
defined as B © D. If we want to move to B, performing © on C's µtrdif f with I) would give B. This is due to the 
fact that 

(B Ea D) Ea D = B (since, D EB D=O) 

Similarly, if we want to move to D, then we have to a pply EB to C's ptrdif f with B to give D. 

(8 EB D) Ea B = D (since, B Ea B=O) 

fo'rom the above discussion we can sec that just by using a s ing le pointer, we ca n move back a nd forth. A 
memory-efficient implcmcmntion of a doubly linked list is possible with minimal compromising of Liming 
e fficiency. 

3.10 Unrolled Linked Lists 
One of the biggest advantages of linked lists over a rrays is that inserting a n clement at any location takes only 
0(1) time. However, it takes O(n) to search for an clement in a linked list. There is a si mple variation of the singly 
linked list coiled 1111rolled li11kecl lists. An unrolled linked list stores multiple c lements in each node (let us call it 
n block for our convenie nce). In each block, a c irc ula r linked list is used to connect a ll nodes. 

I.isl llend 
¥"' 

JI blockllcad l r blockHcad ----, ---, ..--JI, .---------.., .------, -
··~711,.~, 

JI blocklicad =i 
91 ., 19 4 " ~ 
~~ 

Assume that the re will b1,; no mui·1,; than 11 cl1,;mcnts in the unrolled linked !isl al a ny lime. To si mplify lliis 

problem, a ll blocks, except the lust one, s hould contain exactly I Jill clements. Thus, lhcrc will be no more thun 

I Jill blocks at any time. 

Searching for an element in Unrolled Linked Lists 

List fi end 

¥ 

JI hlnrkll1•:ul 

10 + I + 30 + 6 

1 1 hlockllcllcl I [ JI liltwk llNui 

11• ,{ ;:_:_ : __ j I 1· t' ~ ~ + 1 

In unrolled li nked lists, we can find the J<tl• clement in O(v1i): 

I. Traverse the lis t of blocks to the one that contains the k 0
' node, i.e., the I l ~ll' h block. ll ta kes O(v'il) s ince 

we may find it by going through no more than Jn blocks. 

2. rind the (k mod lv'ii]l11i node in the circular linked list of this block. It also takes O(Jii) smcc there arc no 

more than lv'iiJ nodes in a single block. 

Inserting an element in Unrolled Linked Lists 
When inserting a node, we have Lo re-arrange the nodes in the unrolled linked list to maintain the properties 
previously mentioned, that each block conta ins f v'iil nodes. Suppose lhat we insert a node x after the i1h node, 
nnd x should be plnccd in the j 1h block. Nodes in the /h block and in the blocks after the /" block have to be 
s hifted toward the tail of the list so that each of them s till ha ve I Jill nodes. In addition, a new block needs 10 be 
added to the tail if the last block of the lisl is out of space, i. e., it has more than I Jill nodes. 
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Liiit llcacl 

r "' blockl11'11cl 

11 10 ~I ] 

List ll<'ncl 

30 i+!" () 
I 

j( blockHeacl 

I I 0 14- I ~ 22 H 30 

~ 

Performing Shift Operation 

I ~ 
block Head 

~o ~ J H .,:, H 2 l 
~: 

' Shifting 1·J,.n1rn1 
I 

L 

Linked Lists 

Note that each shift operation, which include::; removing a node from the tail of the circu lar linked list in a block 
and inserting a node to the head of lhc c ircular linked list in lhe block after, takes only 0(1) . The lota l lime 
complexity of an insertion operation for unrolled linked lists is 1herefore O(vn); there arc al most 0("'1!) blocks 
and therefore al most O(Jil) shift operations. 

l. A temporary poinlcr is needed to store the tail of 11. 
l('111p 

"' A ¥(H "' u .----------, 
1 1 7~ 1·~ 1 --+ 

2. In block 11 , move the next pointer o f lhe heud node to point to the second -to-last node, so that the 
tail node of 11 can be removed. 

_., 

I 

A 

"' 70 + J _____. 
j( n 

1 ·~ 1 1 
3. Let the next pointer of the node, which will be sh ifted (the tail node of 11), point lo the tail node of /J. 

J~~' lµ~I~~ L 
I / <1s 

lemp 

4. Let the next pointer of the head node of B point to the node temp points 10. 

5. Finally, set the head pointer of B to point to the node temp points to. Now the node temp poinls to 
becomes the new head node of B. 

3 .10 Unrolled Linked Lists 

I ] j 
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6. temp pointe r can be thrown away. We have completed the shift operation to move the original tail 
node of A to become the new head node of 8. 

Performance 
With unrolled linked lists, Lhere are a couple of advantages, one in speed and one in space. First, if the number 
of clements in each block is appropriately sized (e.g., al most the s ize of one cache line), we get noticeably better 
cache performance from the improved memory locality. Second, since we have 0(11/111) links, where n is the 
number of cleme nts in the unrolled linked list a nd 111 is the number of elements we cu n store in any bloc k, we 
can also suve an appreciable nrnount of space, which ii:; p11rt ic ulnrly noticeable if coch clement is small. 

Comparing Doubly Linked Lists and Unrolled Linked Lists 
To compare the overhead for nn unrolled list, elements in doubly linked list implementations consist of dala, a 
pointer to the next node, a nd u pointer to the previous node in the list, as shown below. 

class Node: 
# If data is not given by user.its taken as None 
def _ inil_ (self, data None, ncxt=None, prc...-v-Nonc): 

self.data = data 
self.next= n ext 
self.prev = prev 

Assuming we have 4 byte pointeri;, each node is going to lake 8 bytes. But the allocation overhead for the node 
cou ld be anywhere between 8 nnd 16 bytes. Let's go with the best case and assume it will be 8 bytes. So, if we 
wunt to :-;tore 1 K items in this lis t, we arc going to have I 61<B of overhead. 

Now, let's think a bout a n unrolled linked list node (let us call it U11ked8lock). It will look something like this: 

c lass LinkcdBlock: 
def init_ (selr, ncxtBlock• Nonc, blockHead• Nonc): 

self.next = nextBloc k 
self.head= blockHcad 
self.nodeCount = 0 

There fore, allocating a single node (I 2 bytes + 8 bytes of overhead) with an array of I 00 clements (400 bytes+ 8 
bytes of overhead) will now cost 428 bytes, or 4.28 byles per c lement. Thinking about our I K ite ms from ab()vC, 
it would take about 4.2KB of ovc rheucl, which is c lose to 4x bellcr Lhan our origina l lisl. Even if Lhe list becomes 
severely fragmented and lhe item nrrays arc only 1 /2 full on nvcragc, this is still un improvement. Also, nolc 
thnt we can tune the a rray si1,c to whntcvcr gets us lhc best overhead for our application. 

Implementation 
#Node or a Singly Linked List 
class Node: 

#constructor 
def _init_(scl~: 

self.value = None 
selr. ncxl None 

#Node of a Singly Linked Lii;t 
class LinkedBlock: 

##constructor 
def _init_(self): 

self.head = None 
self.next= None 
nodeCount = 0 

blockSize = 2 
blockHcad = None 

#create an empty blot:k 
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def newLinkedBlockQ: 
block=LinkedBlock() 
block.next a None 
block.head- None 
block.nodcCount=O 
rctum block 

#create a node 
def newNode(value): 

lcmp .. Nodc() 
temp.nexl=None 
temp. volue=valuc 
return temp 

def scarch81cmcnls(blockHcad, k): 
#find Lhe block 
j• (k+blockSizc- l)//blockSizc #k- lh node is in Lhcj-lh block 
P"'blockl lend 
j -= l 
whilcU): 

p=p.next 
j _ .. I 

fLinkcdBloci<"'p 

#find the node 
q=p.head 
k=J<O;;, blockSize 
if(k==O): 

k• blockSize 
k = p.nodeCount+l-k 
k -= l 
while (k): 

fNodc- q 

q• q.ncxt 
k I 

return fLinkcdBlock, fNodc 

#start s hift operation from block *p 
def shift(A): 
B=A 
global blockHead 
while(A.nodcCount > blockSize): #if this block still have to shift 

A=B 

if(A.ncxl==Nonc): #reach the end. A lillle different 
A.ncxt• ncwLinkcdBlock() 

else: 

B• A.next 
LCmpaA. head.next 
A.hcad.next=A.hcad.next.next 
B.head=temp 
temp.next=temp 
A.nodeCount -= 1 
B.nodeCou nt += l 

BcaA.ncxt 
tcmp=A.hcad.ncxt 
A.hcad.ncxl=A.head.ncxl.ncxt 
temp.nc.xt=B.head.next 
B. head.next=temp 
B.hcad=temp 
A.nodcCount -= l 
B.nodcCount += I 

def addElcmcnt(k, x): 
global block! lead 
r = ncwLinkcdBlock() 

3. 10 Unrolled Linked Lists 
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p =Node() 

if(blockHead == None): #initial, first node and block 
blockHcad=newLinkedBlockO 

else: 

blockHead. hcad=ncwNode(x) 
blockHead. head. next• blockHead. head 
blockHead.nodcCount +• 1 

if(k==O): ##special case for k=O. 
p=blockHcad.head 
q=p.next 

else: 

p. next=newNode(x) 
p.next.nexl=q 
blockHead.hcad=p.next 
blockHcad.nodeCount + 
shifl(blockHcad) 

r, p = scarchElements(blockHcad, k) 
q=p 
while(q.next != p): 

q=q.next 
q. ncxt=newNode(x) 
q. ncxt.next""p 
r.nodeCounl I-• 1 
shift(r) 

return blockHcad 
def scarchElement(blockHcad, k): 

q, p = scarchElcments(blockHcad, k) 
return p. value 

blockl lead= addElement(O, l l) 
blockl lead = addElement(0,21) 
blockHead = add Element( 1, 19) 
blockHead = addElcment(l ,23) 
blockllcad = addElcment(2, 16) 
blockHead = addElement(2,35) 
searchElemenl(blockHcad, l) 

3.11 Skip Lists 

Linked Lists 

Binary trees can be used for representing abstract data types such as dictionaries and ordered lists. They work 
well when the clements arc inserted in a random order. Some sequences of operations, such as inserting the 
clements in order, produce degenerate data structures that give very poor performance. If it were possible to 
randomly permute the list of items to be inserted, trees would work well with high probability for any input 
sequence. In most cases queries must be answered on-line, so randomly permuting the input is impraclical. 
Balanced tree a lgorithms re-arrange the tree as opera Lions arc performed to maintain certain balance condi1 ions 
and assure good performance. 

Skip list is a data structure that can be used as an alternative LO balanced binary trees (refer to Trees chapter). 
As compared to a binary tree, skip lists a !Jow quick search, insertion and deletion of clements. This is achieved 
by using probabilistic balancing rather than strictly enforce balancing. ll is basically a linked list with additional 
pointers such that intermediate nodes eu n be skipped. ll uses n r~indom number gcncrnwr to moke some 
decisions. 

In an ordinary sorted linked list, scnrch, insert, and delete are in 0(11) because the list must be scanned node
by-node from the head to find the relevant node. If somehow we could scan down the list in bigger steps (skip 
down, as it were), we would reduce the cost of scanning. This is the fundamental idea behind Skip Lists. 

Skip Lists with One Level 
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Skip Lists with Two Levels 

~ -~ § .I ]~ Ll -~ : B ·~ 
Skip Lists with Three Levels 

u .~ ~ .~ ~ a :B ·~ 
This section gives a lgorithms to search for, insert a nd delete c lements in a dictionary or symbol table. The 
Scurch operation returns the conlcnls of the value associnled with the desired key or fai lure if the key is nOL 
present. The Insert opera tion assoc inles a specified key with a new value (inserting the key if it had not u lrendy 
been present). The Delete operation deletes the specified key. It is easy to support aclcliliona l operations such as 
"find the minimum key" or "find the next key". 

Each e lement is represented by a node, the level of which is chosen randomly when the node is inserted without 
regard for the number of elements in the data structure. A level i node has i forward pointers, indexed I through 
i. We do not need to store the level of a node in the node. Levels a re capped n t some appropriate constant 
Max/,cvel. The level of a list is the mnximum level currently in the list (or l if the hst is empty). The header of a 
list has forward pointers at levels one through MaxLcvcl. The forward pointers of the header at levels higher 
tha n the current maximum level of the list point to NULL. 

Initialization 
An clement NIL is a llocated a nd given a key greater Lh::an uny legal key. All levels of a ll skip lists arc te rminated 
with NIL. A new lis t is initialixed so that the level o f the list is equal to I and a ll forward pointers of the list's 
header point to NIL. 

Search for an element 
We search for an clement by trave rsing forward pointers that do not overshoot the node conlaining the clement 
being searched for. When no more progress can be made al the current level of forward poinlcrs, the search 
moves down to the next level. When we ca n make no more progress at level 1, we must be immediately in front 
of the node that contains the des ired c lement (if it is in the lis t). 

Insertion and Deletion Algorithms 
To insert or delete a node, we simply scurch a nd splice. A vector update is ma intnincd so that when the searc h 
is complete (and we are ready to perform Lhc splice}, update[ ii contains a pointer to the rightmost node of level i 
or higher thal is to the left of the location of the insertion/de letion. If an insertion generates a node with a level 
greater than the previous maximum level of the list, we update the maximum level of the list and initialioe the 
appropriate portions of the update vector. After each de letion, we check if we have deleted the maximum clement 
of the list a nd if so, decrease the maximum level of the list. 

Choosing a Random Level 
Initially, we discussed a probability distribution where half of the nodes tha t hove level i pointers also have level 
i+ l pointers. To get away from mu~ic eonstanls, we say thnl a fraction p of the nodes with level i pointers also 
ha ve level i+ I pointers . (for our origi na l discussion, p = I / 2 ). Levels arc generated random ly by a n t1lgo1·ithm. 
Levels arc generated without reference to the number of clements in the list 

Performance 
In a simple linked list that consists of n clements, to perform o search n comparisons arc required in the worst 
case. If a second pointer pointing two nodes ahead is uckkd lO every node, the number of comparisons goes 
down to n/2 + 1 in the worsl case. Adding one more pointer to every fourth node ond making them point to the 
fourlh node a head reduces the number of compa risons lo 111/21 + 2 . If this stratqzy is continued i:;o thut every 
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node with i pointers points to 2 .. i - 1 nodes ahead, 0(/0911) performance is obtained a nd the number of pointers 
has only doubled (11 + n/2 + n/4 + n/8 + 11/16 + .. .. = 211). 

The find, insert, and remove operations on ordinary binary search trees arc efficient, O(logn), when Lhe input 
data is random; but less efficient, 0 (11) , when the input data is ordered. Skip Lis t performance for these same 
opera tions und fo r a ny data set is about as good as that of randomly-built binary search trees - namely 0(/0911). 

Comparing Skip Lists and Unrolled Linked Lists 

In si mple terms, Skip Lists are sorted linked lists with two differences: 

• The nodes in an ordinary list have one next refe rence. The nodes in a Skip List have many next 
references (also called forward references). 

• The number o ff orward references for a given node is determined probabilistically. 

We speak of a Skip List node having levels, one level per forward reference. The number of levels in a node is 
ca lled the size of the node. In an ordinary sorted list, insert, remove, a nd find operations require sequential 
traversul of the list. This resu lts in 0(11) pe rformance pe r opernlion. Skip Lis ts a llow intermediate nodes in Lhc 
list to be skipped during a traversal - res u lling in a n expected performance of O(/ogn) per operation. 

I mplementation 
import random 
import ma th 
class Nodc(object): 

def irul (self, data, levcl•O): 
self.data • data 
self.next= !None] * level 

def slr (sel~ : 

retu rn "Node{°/os,%s)" % (self.data, len(self.next)) 
_ repr s tr_ 

class Sk:ipList(objcct): 
def init (self, max level• 8): 

self.max level .. max leve l 
n = Nodc(Nonc, max level) 
self. head = n 
self.verbose= False 

def randomLcvcl(self, max level): 
num = random. ranclint( l, 2**max_level - 1) 
lognum = math.log(num, 2) 
level .. int(mal.h.floor(lognum)) 
return max_lcvel - level 

def updateList(self, data): 
upda te .. [None] * (self. max level) 
n .. s elf.head 
self. n traverse = 0 

level = self.max_levcl - J 
while level >= 0: 

if self.verbose and \ 
n.next(levelJ != None a nd n.next(lcvcl].dala >- data: 
print 'DROP down from level', level+ l 

while n.ncxtllevcll !• None and n.nextllcvcll.dnta < data: 
sclf._n_travcrsc +,. I 
if self.verbose: 

print 'AT level', level, 'data', n .ncxtllcvcll.data 
n = n.next(levelJ 

updatellevel) = n 
level -= l 

return update 
def find(self, data, updale None): 

if update is None: 
u pdate = setf. updaleLisl(dela) 

iJ len(update) > 0: 
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candidate= update[O].next[O] 
if candidate != None and candidate.data == data: 

return candidate 
return None 

def insertNode(self, data, leve l=None): 
if level is None: 

leve l = seJf.randomLevel(se lf.max.Jevel) 
node = Node(data, level) 

update = self. updateList(data) 
if self.find(data, update) == None: 

for i in range(level): 
node.nextliJ = updatelil.next[ij 
updat:e[i].next[ij =node 

def printLevol(sl, level): 
print 'level 01<,d:' % level, 
node= sl.head.next[levelj 
while node: 

print node.data, '=>', 
node = node.next[levelj 

print 'END' 
x = SkipList(4) 
for i in range(O, 20, 2): 

x.insertNode(i) 

printl.-evel(x, 0) 
printLevel(x, 1) 
printLevel{x, 2) 

3.12 Linked Lists: Problems & Solutions 
Problem-1 Im plement Stack us ing Linked Lisl. 

Solution: Refer t.O Stacks chapte r. 

Problem-2 F'ind nu' node from the end of a Linked List. 

Linked Lists 

Solution: Brute-Force Method: Start with the first node and count the number of nodes present after that 
node. If the number of nodes is < n - 1 then return saying "fewer number of nodes in the list". If the number of 
nodes is> n - 1 then go to next node. Continue this until the numbers of nodes a fter current node a rc n -1. 

Time Complexity: O(n2), for scanning the remaining list (from current node) for each node. 
Space Complexity: 0(1). 

Problem-3 Can we improve the complexity of Problem-2? 

Solution: Yes, u s ing hash table. As a n example consider the following list. 

f 
5 I ·I 1 ·I 17 •I 4 I + NULL 

Head 

In this approach, c reate a hash La ble whose entries a rc< position of' node, node address >. That means, key is the 
position of the node in t he list and value is the address of that node. 

Position in List Address of Node 
1 Address of 5 node 
2 Address of 1 node 
3 Address of 17 node 
4 Address of 4 node 

By lhe t.ime we traverse the complete list (for c reating the hash table), we can find t he lisl length. Let us say Lhe 
list length is M. To find nt:I• from lhc encl of li nked list, we can convert this to M-n+1°1 from the beginning. 
Since we a lready know the length of the list, it is just a matter of returning M - n + 111' key value from the hash 
table. 
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Time Complexity: Time for creating the hash table, T(m) = O(m). 
Space Complexity: Since we need to c reate a hash table of size m, O(m). 

Problem-4 Can we use Problem-3 approach for solving Problem-2 without creating the hash table? 

Solution: Yes. If we observe the Problem-3 solution, wha t we ure actua lly doing is finding the size or the lin ked 
list. Thul means we a rc us ing the hash ta ble to find the s i~e of t he linked lis t. We ca n find the length of the 
lin ked list just by starting at the head node and traversing Lhc list. So, we can rind the length of the lis t without 
creating the hash table. After finding the length, com pute M - 11+1 and with one more scan we can get t he M -
n + 1°1 node from the beginning. This solution needs two scans: one for rinding the length of the list and the 
other for finding M - n +1th node from the beginning. 

Time Complexity: Time for rinding the length + Time for finding the M- n + 1 ch node from the beginning. 
Therefore, T(n = O(n) + O(n) ~ 0(11). 

Space Complexity: 0(1). Hence, no need Lo create the hash tublc. 

Problcm-5 Can we solve Problcm-2 in one sca n? 

Solution: Yes. Efficient Approach: Use two pointers pNthNodc and pTemp. Initia lly, both point to head node of 
the list. pNthNode starts moving on ly a fter pTemp has made n moves. From there both move forwa rd until pTemp 
reaches the end of the list. As a result pNthNode points to ntl• node from the end of the linked list. 

Note: At any point of Lime both move one node at a time. 

def nthNodeFromEnd( self, n ): 
if 0 > n: 

return None 
#count k units from the self.head. 
temp = self.head 
count= 0 
while count < n and None != temp: 

temp = temp. next 
count+= l 

# if the LinkedList docs not contain k clements, return None 
if count < n or None = .. temp: 

return None 

#keeping tab on the nth clement from temp, slide temp until 
# temp equals self. tail. Then return the nth element. 
nth =self.head 
while None != temp.next: 

temp = temp.next 
nth= nth.next 

return nth 

Time Complexity: O(n). Space Complexity: 0(1). 

Problem-6 Check whether the given linked list is either NULL-terminated or ends in a cycle (cyclic). 

Solution: Brute-Force Approach. As an example, consider the following linked list which has a loop in it. The 
difference between this list and the regular list is that, in this list, there are two nodes whose next pointers arc 
the same. In regular singly linked lists (without a loop) each node's next pointer is unique. That means the 
repetition of next pointers ind icates the existence of a loop. 

One s imple and brute force wny of solving Lhis is, start with the first node and sec whcthi.;r therc is any node 
whose nexl pointer is the current node's address. If there is a node with the same address then that. indicates 
that somc other node is pointing to the current node and we ca n say a loop exists. 
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Continue this process for all the nodes of the linked list. 

Does this method work? As per the algorithm, we are checking for the next poinler addresses, but how do we 
find the end of the linked list (otherwise we will end up in an infinite loop)? 

Note: If we start with a node in o loop, this method may work depending on the si7,c of the loop. 

Problem-7 Can we use the hnshing technique for solving Problem -6? 

Solution: Yes. Using Hash Tables we can solve this problem. 

Algorithm: 

• Traverse the linked list nodes one by one. 
• Check if the address of the node is available in the hash table or not. 
• If it is already available in the hash table, that indicates that we are visiting the node that was already 

visited. This is possible only if the given linked list has a loop in it. 
• If the address of the node is not available in the hnsh table, insert that node's address into the hash 

table. 
• Continue this process unt ii we reach the end o r the linked list or we find the loop. 

Time Complexity: 0(11) for scanning the linked list. Note that we are doing a scan of only the input. 
Space Complexity: O(n) for hash table. 

Problcm-8 

Algorithm: 

Can we solv<.: Problcm-6 using the sorting technique? 

• Traverse the linked list nodes one by one and take all the next pointer values into an array. 
• Sort the an-uy that hus the next node pointers. 
• If there is a loop in the lin ked list, definitely two next node pointers will be pointing Lo t he same node. 
• After sorting if there is a loop in the list, the nodes whose next pointers arc the same will end u p 

adjacent in th<.: sorted list. 
• If any such pair exis ts in lhe sorted List then we say the linked list has a loop in it. 

Time Complexity: 0(11/0911) for sorti 11~ the next pointers array. 
Space Complexity: 0(11) for the next pointers array. 

Problem with the above algorithm: The above algorithm works only if we can find the length of the list. Hut if 
the list has a loop then we may end up in an infinite loop. Due to this reason the algorithm fails. 

Problcm-9 Can we solve the Problem-6 in O(n)? 

Solution: Yes. Efficient Approach (Memoryless Approach): This problem was solved by Floyd. The solution is 
named the Ployd cycle finding algorithm. It uses two pointers moving at different speeds to walk the linked list. 
Once they enter the loop they arc expected to meet, which denotes that there is a loop. This works because the 
only wny a faster moving pointer would point to the same location as a s lowe r moving pointer is if somehow the 
entire list or a part of it is circulnr. Think of a tortoise and a hare running on a track. The faster ninning hare 
will catch up with the 1ortoise if they arc running in a loop. 

As an example, consider the following example and trace out the Ployd algorithm. From the diagrams below we 
can sec that after the final step they arc meeting at some point in the loop which may not be the starting point 
of the loop. 

Note: slowPtr (tortoise) moves one pointer at a time and fastPtr (hare) moves two pointers at a time. 

slowPtr 
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def dcteetCycle(sell): 
fastPtr =self.head 
slowPtr =self.head 

while (fastPtr and slowPtr): 
fastPtr = fastPtr.gctNcxt() 
if (fastPtr == slowPtr): 

return True 

if fastPtr == None: 
return False 

fastPtr = fastPlr.gctNcxt() 
if (fastPtr == slowPtr): 

return True 

slowPtr = slowPtr.getNcxtO 

Time Complexity: O(n). Space Complexity: 0(1). 

fastPlr 

slowPlr 

foslPlr 

Linked Lists 

fastPtr 

faslPL 

slow Pl 

slowPtr 

fast Pt 

Proble m-IO We arc given a pointer Lo the first element of a linked list l . There ure two possibilities for L, ii 
l:ithcr ends (snake) or ils Inst clement points back to one of the earlier clements in the list (snail). Give nn 
nlgoril hm lhHt tests whether o given list /. is a snake or u snail. 

Solution: It is I he same as Problem-6. 
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Problem-11 Check whether the given linked list is NULL-terminated or not. If there is a cycle find the start 
node of the loop. 

Solution: The solution is un extension lo the solulion in Problem-9. After finding the loop in the linked list, wc 
initinli!l.e lhe slowPtr- to the hend of the linked list. Prom that point onwurd::i both slowPtr and f astPtr move only 
one node at u time. The poin t nt which they meet is tht· stnrL of the loop. Generu lly we use this ml!lhod for 
rernoving the loops. Le t x and y be t rovelers such lhut y is wulkinr~ twice as fust as x (i. e. y = 2x). Fu rther, let s 
be the place where x and y first s tnrted walking al the same Lime. Then when x and y meet UJ.!.uin, the distance 
from s to the start of the loop is the exact same distance from the present mceling place of x and y to the start of 
the loop. 

def detcctCycleStart( self ) : 
if None== self.bead or None self.head.next: 

return None 

# slow and fast both started nt head arter one step, 
I# slow is at self.head.next and fast is at self.head.next.next 
s low - self.head.next 
fast= slow.next 
I# each keep walking until they meet again. 
while slow!= fast: 

s low = slow. next 
try: 

fast= fast.next.next 
except AttributeError: 

return None # no cycle if NoneType reached 

# from self.head to beginning of loop is same as from fast to beginning of loop 
slow = self. head 
while slow != fast: 

slow= slow.next 
fast = fast.next 

return slow # beginning of loop 

Time Complexity: O(n). Space Complexity: 0(1). 

Problem-12 From the previous discussion and problems we understand that the meeting of tortoise and 
hare concludes the existence of the loop, but how does moving the tortoise to the beginning of the linked list 
while keeping the hare at the meeting place, followed by moving both one step al a lime, make them meet at 
the starting point of the cycle·~ 

Solution: This problem is at the heart of number theory. In the Floyd cycle finding algorithm, notice that the 
tortoise und the hare wiU meet when they arc n x l, where I. is the loop length. Purthermorc, the tortoise is at 
the midpoint between the hare and the beginning of the sequence because of the way they move. Therefore the 
wrtoise is n x L away from the beginning of the sequence as well. 

If we move both one step at a time, from the position of the tortoise und from the start of the sequence, we know 
that they will meet as soon as both arc in the loop, since they arc 11 x L, a multiple of the loop length, apart. 
One of them is already in the loop, so we just move the other one in single step until it emers the loop, keeping 
the other n x L away from it at all times. 

Problem-13 In Floyd cycle finding a lgorithm, does it work if we use steps 2 and 3 instead of I and 2? 

Solution: Yes, bul the complexity might be high. Trace out nn example. 

Problem-14 Check whether the given li nked list is NULL-terminated. If there is a cycle, find the length of the 
loop. 

Solution: This solution is also an extension of the basic cycle deteclion problem. After finding the loop in the 
linked list, keep the s/owPtr as it is. The f astPtr keeps on moving umil it again comes back Lo s/owPLT·. While 
moving f astPtr, use a counter variable which increments at the rate of I. 

def findLoopLength( self): 
if None == self.head or None •• self. head.next: 

return 0 
II alow and fast both started nt head after one step, 
II s low is al self.head.next and fast is at self.head.next.next 
slow = self.head.next 
fast= s low.next 
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# each keep walking until they meet again. 
while slow !=fast: 
slow= slow.next 
try: 
fast= fast.next.next 

except AttribuleError: 
return 0 # no cycle if Nonc'J'ypc reached 

loopLength = 0 
slow ~ s low.next 
while slow != fasl: 

slow= slow.next 
loopLcnglh = loopLength + l 

return loopLength 

Time Complexity: O(n). Space Complexity: 0(1). 

Problem-15 Insert a node in a sorted linked list. 

Solution: Traverse the list and find a posiLion for the clement and insert it. 

def ordercdlnscrt(self, item): 
current =self.head 
previous = None 
stop False 

while current !- None and nol stop: 
if current.gcLData() > item: 

stop= True 
e lse: 

previous= current 
current = current.getNext() 

lemp • Node(itcm) 
if previous •= None: 

temp.set Ncxt(self. head) 
self.head = temp 

e lse: 
Lcmp.sctNext(currenc) 
previous.setNext(lemp) 

Time Complexity: O(n). Space Complexity: 0(1). 

Problcm-16 Reverse a s ingly linked list. 

Linked Lists 

Solution: This a lgorithm reverses this singly linked !isl in pluee, in 0(11). The function uses three pointers to 
wnlk the list and reverse link direction between cnch poir of nodes. 

# Iterative version 
def rcvcrscList(seli): 

last= None 
current= self.head 

whilc(currenl is not None): 
nextNode = current.getNext() 
current.set Nexl(last) 
!~1st= current 
current= nextNode 

self.head = last 

Time Complexity: O(n). Space Complexity: 0(1). 

Recursive version: We can find it easier lo start from the bottom up, by asking and answering tiny questions 
(this is the approach in The Little Lisper): 

• What is the reverse of NULL (the empty list)? NULL. 
• What is the reverse of u one clement list? The clement itself. 

What is the reverse of an 11 clement list':> The reverse of the second element followed by the first e lemen t. 

def rcvcrscRecursivc( self, n ) : 
if None I= n: 
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righl = n.getNext() 

if self.head != n: 
n.sctNcxt(sclf.head) 
self.head n 

else: 
n.sctNcxl(None) 

self. rcverseRecursivc( right) 

Time Complexity: O(n). Space Complcxily: O(n), for recursive sLOck. 

Problem -17 Suppose there arc lwo singly linked lists both of which inlerscct at some point and become a 
single linked list. The head or start pointers of both the lists are known, but the intersecting node is not 
known. Also, the number of nodes in each of the lists before they intersect is unknown and may be different 
in each list. list I may have 11 nodes before it reaches the intersection point, and f.1sl'l. might have 111 nodes 
before it reaches the intcrsecl ion point where 111 and 11 mny be m = 11, 111 < 11 o r 111 > 11. Give an algorithm for 
finding the merging point. 

NULL 

? 

Solution: Brute-Force Approach: One easy solution is to compa re every node pointer in the first list with every 
other node pointer in the second list by which lhc matching node pointers will lead us to the intersecting node. 
But, the time complexity in this case will be O(mn) which will be high. 

Time Complexity: 0(11111). Space Complexity: 0(1). 

Problem-18 Can we solve Problcm-17 using the sorting technique? 

Solution: No. Consider the following algorithm which is based on sorting and sec why this algorithm foils. 

Algorithm: 

• Take first lisl node pointers and keep them in some array and son them. 
• Take second list node pointers and keep them in some array and son them. 
• After sorting, use two indexes: one for the first sorted array and the other for the second sorted array. 
• Start comparing values at the indexes and increment the index according to whichever has the lower 

value (increment only if the values arc not equal). 
• At a ny point, if we a rc ublc to find two indexes whose values arc the same, then that indicates that 

those two nocJes arc pointing to the same node nncl we return that node. 

Time Complexity: Time for sortin14 lists + Time for scanning (for comparing) 
= 0(111lo9m) +0(11/11gn) +O(m + 11) We need lo consider the one that gives the maximum value. 

Space Complexity: 0(1). 

Any problem with the above algorithm? Yes. In the a lgorithm, we are storing all the node pointers of both the 
lists and sorting. BUl we are forgetting the fact that there can be many repeated clements. This is because after 
the merging point, all node pointers are the same for both the lists. The algorithm works fine only in one case 
and it is when both lists have the ending node at their mer~c point. 

Problem-19 Can we solve Problcm-17 using hash tables':' 

Solution: Yes. 

Algorithm: 
• Select a list which has less number of nodes (If we do not know the lengths beforehand then select one 

list randomly). 
• Now, traverse the other list and for each node pointer of this lisL check whether the same node pointer 

exists in the hash table. 
• If there is a merge point for the given lists then we will definitely encounter thl· node pointer in the hash 

table. 

def findlnterscetingNodc( self, list I, list2 ): 
intersect = O 
t = listl 
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while None != L: 

intersect[t) =True 
l = t.getNext() 

# first duplicate is in tersection 
t • list2 
while None I= t: 

if None != intersect.get( t ): 
return t 

t = t.getNext() 
return None 

Linked Lists 

Time Complexity: Time for crealing the hash table+ Time for scanning the second list = O(m) + O(n) (or O(n) + 
O(m), depending on which list we select for c reating the ha s h table. But in both cases the time complexity is the 
sume. 
Spncc Complexity: O(r1) or 0(111). 

Problem-20 

Solution: Yes. 

Algorithm: 

Ca n we use stocks for solving Problem- 17? 

• Create two slacks: one for the first list and one for the second list. 
• Traverse the first list and push all the node addresses onto the first stack. 
• Traverse the second list and push all the node addresses onto the second stack. 
• Now both stacks contuin the node address of the corresponding lists. 
• Now compa re the top node address of both s tacks. 
• If they arc the same, take the top c lements from both the stacks and keep them in some temporary 

variable (since both node addresses arc node, it is enough if we use one temporary variable). 
• Continue this process unti l the top node add resses of the stacks arc not the sa me. 
• Th is po int is the one whe re the lists merge into a s ingle list. 
• Return t he value of the Lcmporary variable. 

Time Complexity: O(m + n), for scanning both Lhc lists. 
Space Complexity: O(m + n). for crcuting two stacks for both the lists. 

Proble m -21 Is there any other way of solving Problem- 17? 

Solution: Yes. Using "finding the first repeating numb<:r" approach in a n array (for algorithm r<:fe r Searcliing 
chapter). 

Algorithm: 
• Create an array A and keep a ll the next pointers of both the lists in the a rray. 
• In the array find the firHl repeating clement I Refe r to Searchi11g chapter for n lgorithmj. 
• The fi rs t repeating number indicates the merging point of both the lists. 

Tim<: Complexity: O(m + 11 ). Spocc Complex ity: O(m + 11). 

Problem-22 Can we sLill think of linding a n alterna tive solulion for Problem- In 
Solution: Yes. By combining sorti ng and search techniques we can reduce the complexity. 

Algorithm: 
• Create an a rray A and k<:<:p a ll the next pointers of the first list in the array. 
• Sort these array clements. 
• Then, for each of the second liHl clements, scurch in the sorted array (le t us OHsume that we arc using 

binary search whic h gives 0(10911)). 
• Si nce we a rc scanning the second list one by one, the first repeating clement that appea rs in the u rTay is 

nothing but the me rging point. 

Time Complexity: Time for sorting + Time for searching = O(Max(mlofJm, n logn)). 
Space Complexity: O(Max(m, 11)). 

Problem-23 

Solution: Yes. 

Can we improve the complexity for Problcm-17? 

Efficient Approach: 
• 1:ind le ng ths (LI a nd L2) of both lists -- 0(11) + O(m) = 0(11wx(m, n)). 
• Take the difference c/ of the le ngths -- 0(1). 
• Make d s teps in longer liHt -- O(cl). 
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• Step in both lists in parallel until links to next node match -- O(min(m, n)). 
• Total time complexity = O(max(m, n)). 
• Space Complexity= 0(1). 

def gellntersectionNode(self, listl, list2): 
currentList l ,currentList2 = listl,list2 
listl Len,list2Lcn = 0,0 
while currentListl is nol None: 

listl Len += 1 
currentListl = currentListl.next 

while currentList2 is nol None: 
list2Len += 1 
currentList2 = currentList2.next 

current List I ,currentList2 = listl,list2 
if listlLcn > lis l2Len: 

for i in range(list1Len-list2Len): 
curTcntList l "'eurrcntList 1.next 

elif list2Len > listl Len: 
for i in range(list2Len-list1 Len): 

currentList2 = currentL:ist2.ncxl 
while currentList2 '"" currcntListl: 

currentList2 = currentList2.nexl 
currentList 1 = cu rrcn tList 1. next 

rclurn currenLListl 

Problem-24 How will you find the middle of the linked lisr:> 

Solution: Brute-Force Approach: Por each of the node counts how many nodes a re U1ere in lhe list and sec 
whether il is the middle. 

Time Complexity: 0(n2). Space Complexity: 0(1). 

Problem-25 

Solution: Yes. 

Algorithm: 

Can we improve the complexity of Problem-24? 

• Traverse the list and find the length of lhc list. 
• After finding the length, again scan the list and locale n/2 node from the beginning. 

Time Complexity: Time for finding the length of the list+ Time for localing middle node= O(n) + O(n) "" O(n). 
Space Complexity: 0(1). 

Problem-26 Can we use the hash table for solving Problem-24? 

Solution: Yes. The reasoning is lhe same as lhal of Problcm-3. 

Time Com plexity: Time for creating lhc hush table. There fore, 7'(11) = 0(11). 
Space Complexity: 0(11). Since we need to c reate a hash table of size n. 

Problem-27 Can we solve Problem-24 just in one scan? 

Solution: Efficient Approach: U::;c two pointers. Move one pointer al twice the speed of the second. When the 
first pointer reache::; lhe end of the list, the second pointer will be pointing lo the middle node. 

Note: If lhe list has an even number of nodes, the middle node will be of 111/21. 

def findMiddleNode( seU) : 
faslPlr = self.head 
s lowPtr =self.head 

while (fastPtr != None): 
fastPtr = fastPtr.getNext() 
if (fastPtr == None): 

return slowPtr 

fastPtr = fastPtr.getNcxl() 
slowPtr • slowPtr.getNcxt() 

return slowPtr 

Time Complexity: 0(11). Space Complexity: 0(1 ). 
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Problem-28 How will you display a linked list from the end? 

Solution: Traverse recursively ti ll the end of the linked list. While coming back, start printing the elements. It is 
natural to express many list operations using recursive methods. For example, the fo llowing is a recursive 
algorithm for printing a list backwa rds: 

I. Separate the list in to two pieces: the lirst node (ca lled the head); and Lhe rest (called t he tail). 
2. Pri nt the tail backward. 
3. Print the head. 

Of course, Step 2, the recursive call, assumes that we have a way of printing a Jjst backward. 

def printListFromEnd( self, list) : 
if list == None: 

r eturn 
head= list 
tail = list.getNextQ 
self. pri n LListFromEnd (tail) 
print head.gctDataQ, 

if name_ == "_main_": 
linkedlst = LinkedList() 
linkedlst.insertAtEnd(J ) 
linkedlst.insertAtEnd(2) 
Ii n kedlst.insertAtEnd(3) 
lin kedlsL inscrtAtEnd(4) 

linkedlst.printLisl() 
linkcdlst. prin tListFromEnd(linkedlst. head) 

Time Complexity: O(n). Space Complexity: O(n)-> for Stack. 

Problem-29 Check whether the given Linked List length is even or odd? 

Solution: Use a Zx pointer. Ta ke a pointer that moves at Zx [two nodes at. a time]. Al the end, if the length is 
even, then the pointer will be NULL; otherwise it will poin t to the last node. 

def isLinkedListLengthEven(scl~: 
current= self.head 
while current != None and currenLgetNext()!= None: 

current = curren t.getNext().getNext() 
if current == None: 

return 1 
retu rn 0 

Time Complexity: 0(1 11/21) ::;:,Q(n). Space Complexity: 0(1). 

Problcm-30 If the head of a linked list is pointing to /a h clement, then how will you get the cle ments before 
klh clement? 

Solution: Use Memory Efficient Linked Lists !XOR Linked Lists!. 

Problem-31 Given two sorted Linked Lists, how to merge them into the third list in sorted order? 

Solution: Assume the sizes of lists are m and n. 

def mcrgeTwoLists(self, list 1, list2): 
Lemp= Node() 
pointer = lemp 
while listl !=None and list2 !=None: 

if listl .ge tDat.a()<list2.gclData(): 
pointer.setNexl(lis l 1) 
list I = listl .getNexl() 

else: 
pointer.setNext(list2) 
list2 = list2. getNext() 

pointer = pointer.getNcxt() 
if listl == None: 

pointcr.sctNcxt(list2) 
else: 

pointer.setNext(listl) 
return temp.gctNext() 
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Time Complexity: O(n + m), where n and m are lengths of two lists. 

Problem-32 Reverse the li nked list in puirs. If you have a linked I isl that holds 1 -> 2 --> 3 
ofter the func tion has been ca lled the linked list would hold 2 __, I • '1 _, 3 - • X. 

Solution: 

def reverselnPairs( self) : 
temp = self.head 
while None l• temp and None!= tcmp.getNext(): 

self.swapData( temp, Lcmp.getNext() ) 
temp = tcmp.getNext().getNext() 

def swapOat.a( self, a, b ): 
trnp = a.getOata() 
a.setOata(b.gctData()) 
b.setData(t mp) 

Time Complexity · 0(11). Space Complexity: 0(1). 

Problem-33 Given a binary tree convert it to doubly linked list. 

Solution: Refer Trees chapter. 

Problem-34 I low do we sort the Linked Lists? 

Solut ion: Refer Sorting chapter. 

Linked Lists 

4 _, X, then 

Problem-35 8 plit o Circular l_,inked List into two equ11l parts. If the number of nodes in the list arc odd then 
rnuke first list one node cxtrn thun :;ceond list. 

Solution: 

Algorit hm: 

• Store the mid and last pointers of the linked list using Floyd cycle finding a lgorithm. 
• Set head pointers of the two linked lists. 

As on example, consider the following linked list. 

4 I -H.___' s__._~---·I._ _1__.__.I ·I 40 I + 
II cad 

After the split, the ubove list will look like: 

4 

I lead 

def splitList(head): 
fast= head 
slow= head 

I -H 15 I J+ 

while fast I None and fast.gctNextO I"' None: 
slow slow.geLNext() 
fast = fast.gcLNcxt() 

fast = fast.geLNext() 

middle= slow.getNext() 
slow.setNext(None) 

return head, middle 

Time Complexity: 0(11). Space Complexity: 0(1). 

.__,__7__.__.I ·I 4 o 
t 
middle 

I :t 

Problem-36 
l) 
2) 
3) 

If we want to concatenate two linked lis1s. which of the following gives 0( 1) complexity? 
Singly hnkcd lists 
Doubly linked lists 
Circular doubly linked lists 
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Solution: Circular Doubly Linked Lists. This is because for singly and doubly linked lists, we need to traverse 
Lhc first list lill the end and append the second list. But in Lhe case of circular doubly linked lists we don't have 
to traverse the lists. 

Problcm-37 

Solution: 

Algorithm: 

How will you check if the linked list is palindrome or not? 

.l. Get the middle of the linked list. 
2. Reverse the second ha lf of the linked list. 
3. Compare the first half and second half. 
4 . Construct the original linked list by reversing the second half again and allaching it back to the first 

half. 

Time Complexity: O(n). Space Complexity: 0(1 ). 

Problem-38 l"or a given /( value (K > 0) reverse blocks of K nodes in a list. 
Example: Input: 1 2 3 4 S 6 7 IJ 9 10. Output for different K values: 

Por K = 2: 2 14 3 6 S 8 7 10 9 For K = 3: 3 2 16 S 4 9 8 710 Por K = 4: 4 3 2 187 6 S 9 10 

Solution: 

Algorithm: This is an extension of swapping nodes in a .linked list. 

l) Check if remaining list has K nodes. 
a . If yes get the pointer of K + 1 1h node. 
b. Else return. 

2) Reverse first K nodes. 
3) Set next of lasl. node (a fter reversal) Lo K + 1. LI• node. 
4) Move to K + l tll node. 
5) Go Lo step 1. 
6) K - 1 ih node of first K nodes becomes the new head if available. Otherwise, we can return the head. 

def reverseKBlock(self, head, k): 
temp= Node(O); 
tern p.setNext(hcad) 
previous = temp 
while True: 

begin = previous.getNext() 
end= previous 
for i in range(O,k): 

end = end.getNext() 
if end == None: 

return temp.getNext() 
ncxlBJock = end.getNexl() 
self. reverseList(begin,e nd) 
previous. set Next.( end) 
begin.setNcxl(ncxtBlock) 
previous = begin 

def rcvcrseList(sclf, st.art, end): 
a lreadyReverscd "' st.art 
actual = start 
ncxtNode = start.gctNcxt() 
while actual != end: 

act<Jal = ncxtNode 
nexlNodc "' nexlNodc.gctNcxl() 
actual. scLN ext( already Reversed) 
alrcadyRcvcrsed = actual 

Problem-39 Is it possible to get 0(1) access time for Linked Lists'? 

Solution: Yes. Create a linked !isl and at the same time keep it in a hash table. For 11 elements we have lo keep 
all the clements in u hash table which gives u preprocessing time of 0(11). To read uny clement we require on ly 
constan t Lime 0(1) and to read n elements we require 1t • 1 unit of time = n units. Hence by using amortized 
ana lysis we can suy that clement accc:;s can be performed within 0(1) time. 

Time Complexity - 0( !) IAmorlizedJ. Space Complexity - O(n) for Hash Table. 
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Problem-40 Josephus Circle: Flavius Josephus was a famous Jewish historian of the first century, at the 
time of the destruction of the Second Temple. According to legend, during the Jewish-Roman war he was 
trapped in a cave with a group of forty soldiers surrounded by Romans. Preferring death lo capture, the Jews 
decided lo form a circle a nd , proceeding a round it, lo kill every third person rernnining until no one was lcf1. 
.Josephus found the ~m fe spot in lhe c irc le and thus stayed a live. Write a func tion joscphus(n,m) that rel urns 
n li :-;t of 11 people, numbered from 0 lo 11 - 1, in t he order in wh ich they a rc execu ted, every 111 11'pcrson in turn , 
with the sole s urvivor as the lust person in the lis t . Thnt mean, find which person wi ll be the last one 
remaining (with rank 1 ). 

Solution: Assume the input is a circu lar linked lis t with 11 nodes a nd each node has a number (ra nge 1 to 11) 

associated with it. The head node has number 1 as data. 

def getJosephus Position(n, m): 
class Node: 

def _ init (self, data • None, next = None): 
self. sctData(data) 
self. sctN ext( next) 

#method for ::ietling the <fota field of lhe node 
def setData(self,data): 

self.data = data 
#method for gelling the data field of the node 
def getData(sclf): 

return self.data 
II method for selling the next field of the node 
def setNext(sclf.next): 

self. next '" next 

#method for getting the next field of the node 
def getNext(selt): 

return self.next 

#returns true if the node points to another node 
def hasNext(sclf): 

return self.next!= None 
answer= II 
II initiali7..e circular linked list 
head = Node(O) 
prev = head 
for n in range( I , n): 

currcntNodc = Node(n) 
prev.sctNext(currcntNodc) 
prcv = currentNodc 
prev.sctNexl(head) # set the lust node to point l.o th<.: front (circular list) 

II extract items from linked list in proper order 
currentNode =- head 
counter= 0 

while currentNode.getNcxt() != currentNodc: 
counter+= l 
if counter =-= m: 

counter = 0 
prev.sctNcxt(currcn tNode. next) 
answcr.appcnd(currcn LNode.getData()) 

else: 
prev = currcntNodc 

currentNode = currentNode.getNext() 

a nswer.append(currentNodc.ge lData()) 
return answer 

print str(getJosephus Position(6, 3)) 

Problem-41 Given a linked list consists of data, a next pointer ond a lso a random pointer which points w n 
ronclom node of the list. Give un nlgorith m for cloning the lis t . 

Solution: We can use a hash table to associate newly c rea ted nodes with the instunccs of node in the given list. 
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Algorithm: 

• Scan the original list and for each node X, create a new node Y with data of X, then store lhe pair (X, Y) 
in hash table using X as a key. Note that during this scan set Y ~ next and Y ~random to NULL and we 
will lix lhem in I he next scan. 

• Now for each node X in lhc originul lis t we have a copy Y s tored in our hush tnble. We scan the originnl 
list ugain and sl.:l the pointers bu ild ing the new list. 

class Node: 
def _ init_ (self, data}: 

self.setOala(data) 
self.setNcxt(None) 
self.setRand(None) 

#method for setting lhc data field of the node 
def seLData(self,data): 

self.data • data 
tlmethod for gelling the data field of the node 
def gctData(selQ: 

return self.data 
lfmclhod for selling lhe next lield of the node 
def setNext(self,nexl): 

self.next = next 
l#melhod for selling the next field of the node 
def sctRand(self,rand): 

self. rand = rand 
#method for gelling the next field of the node 
def getRand(selQ: 

return self.rand 
If m ethod for gettjng the next field of the node 
def getNex,t(self): 

return self.next 
l#retums true if the node points to another node 
def hasNext(selQ: 

rclum self.next I= None 

def cloneLinkedList(old): 
if not old: 

return 

old_copy = old 
root = Node(old.getDataQ) 
prev =root 
Lemp= None 

old = old.gel.Next() 

mapping = U 
while old: 

temp = Node(old.getData()) 
mapping[old) =temp 

prev.setNcxt(temp) 
prev =temp 
old = old.getNext() 

old = old_copy 
temp= root 

while old: 
temp. sctRa nd(mapping[old. rand I) 
temp =- tcmp.getNcxlO 
old =- old.gctNextO 

return root 

Time Complexity: O(n). Spuce Complexity: O(n). 

Problcm-42 

Solution: Yes. 

Can we solve Problcm-4 I without any cxtrn space',> 
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# Definition for singly-linked list with a random poinler. 
class RandomListNode: 

def _ init (self, dat.a): 
self.data = data 
self.next = None 
self.random = None 

class Solution: 
# @param head, a RundomListNode 
#@return a RandomLisLNode 
def copyRandoroList(self, head): 

if None == bead: 
return None 

save list = l I 
pl head 
while None I= p I : 

save list.appcnd(p 1) 
pl = pl.next 

new_hcad = RandomListNode(- 1) 
new head.next = head 
first new_hcad 
second • head 
copyHcad = Random ListNode(- I) 
copyFirst = copy! leud 
copySceond = None 

while None != firs t: 
copySecond = RandomListNode(sccond.data) if None != second else None 
copyfi'irsl.next = copySecond 
copyl"irst = copyl"irst.next 
first = first.ncxl 
if None != second: 

second = second. next 

pl "' head 
pl Lail .. head.next 
p2 = copyHead.ncxl 
while None!= pl: 

pl _Lail =pl.next 
pl.next= p2 
p2.random = pl 
pJ .. pl tail 
p2 - p2.next 

p2 copyHcad.next 
while None , .. p2: 

p2 .random = p2. random.random.nexl if None I= p2.random.random else None 
p2 = p2.nexl 

len_save_list = len(save_list) 
for i in range(O, len save list - I): 

save. lisllil.nexl = savc_list[i + 11 
save_lis t[lcn_save. list - 1).ncxt .. None 
return copyHead.ncxt 

Time Complexity: 0(311) ==0(11). Space Complexity: 0( I). 

Linked Lists 

Problem-43 Given a linked list wiLh even and odd numbers, c reate an a lgorithm for making c hanges to the 
list in such a way tha t a ll even numbers appear nt the beginning. 

Solution: To solve this problem, we can use the splilting logic. While traversing the list, split the linked list into 
cwo: o ne contains all even nodes and the other contains a ll odd nodes. Now, lo get the final list, we can simply 
append the odd node linked li:st after the even node linked list. 

To split the linked lis t, trnvc rsc the origi1w l linked !isl 1111cl move nil odd nodes lo o separntc linked I is l of oil odd 
nodes. At the end of the loop, the o riginn l list will hnvc nil the even nodes a nd the odd node list will huve a ll the 
odd nodes. To keep the ordering of all nodes the same, we must in::;crt a ll the odd nodes nt the end of the odd 
node list. 
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Time Complexity: 0(11). Space Complexity: 0(1). 

Problem4'.4 .In a linked list with n nodes, the time taken lo insert an clement after an element pointed by 
some pomter 1s 

(A) 0(1) (C) 0(11) (D) O(nl o.gn) 

Solution: A. 

Problem-45 Find modular node: Given a singly linked list, write a funclion to find the Inst element from the 
beginning whose 11%k == 0, where 71 is the number of elements in the list and k is an integer constant. For 
example, if 71 = 19 and k = 3 then we shou ld return I f.J 1hnodc. 

Solution: For this problem the value of 11 is not known in advance. 

def modularNodcFromBegin(sclf, k): 
currcnLNode = self.head 
moclularNode = None 
i = 1 
if k <= 0: 

rel.um None; 
while currenLNode !=None: 

ifi%k= 0: 
modularNode .. currcntNodc 

i - i + 1 
currcntNode • currenLNodc.getNcxt() 

print ( modulnrNodc.gctData()) 

Time Complexity: O(n). Space Complexity: 0(1). 

Problem-46 Find modular node from the end: Given a singly linked list, write a function to find the first 
from the end whose n%k == 0, where 11 is the number of elements in the list and k is an integer constant. 
If n = 19 and k = 3 then we should return 161h node. 

Solution: For this problem the value of 11 is not known in advance and it is the same as finding the k 1hclcmcnt 
from the end of the the linked list. 

def rnodularNodcFromEnd(sclf, k): 
currenlNodc ... self.head 
modularNodc =self.head 
i =O 
if k <= 0: 

return None; 

while i < k and currentNode != None: 
i • i +I 
currenLNode = currentNode.getNext() 

if currentNode == None: 
return 

while currcnLNode != None: 
modularNode = modularNode.getNext() 
currentNode = currcntNodc.getNextO 

print (modulurNodc.getData()) 

Time ComplexiLy: O(n). Space Complexity: 0(1). 

Problem-47 Find fractional node: Given a singly linked list, wriLe a function to find the ~th clement, where 

11 is the number of clements in the list. 

Solution: For this problem the value or II is not known in advance. 

def fractiona!Nodc(self, k): 
fractiom1INode = None 
currentNode • self.head 
i = 0 
if k <= 0: 

rclum None; 

while currcntNode != None: 
ifio/ok == 0: 
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i = i + I 

if fractionalNode == None: 
fractionaJNode = self.head 

else: 
fractionalNode = fractiona lNode.getNext() 

currentNodc - currcntNodc.getNcxt() 

print (fractiona lNode.getData()) 

Time Complexity: 0(11). Space Complexity: Op). 

Linked Lists 

Problem-48 Find ..tn"' node: Given a s ingly linked list, write a function to find the ,filth element, where n is 
the number of clements in the list. Assume lhe value of 11 is not known in advance. 

Solution: For this problem the value of 11 is not known in advance. 

def sqrtNthNodes(scl~: 
sqrtNode = None 
c urrentNode - self.head 
i = j = I 

while currentNode I= None: 
if i == j * j: 

if sqrtNode == None: 
sqrlNode = self.head 

else: 

j = j + I 
i = i + 1 

sqrlNodc sqrtNode.gctNext() 

currentNode = currentNode.getNext() 

print (sqrLNode.gelData()) 

Time Complexity: 0(11). Space Complexity: 0(1). 

Problem-49 Given two lists Listi = {11 1 , 112 , .•• , 11 11 } a nd Lis t2 = {81 , 82 , ... , 81111 with dntn (both lists) in 
ascend in~ order. Merge them into the third lis t in ascending order so thnt the merged lis t will be: 

{11 1 , 8 1, Ai, 112 ••••• 11 111 , fl.., , 1111111 •••• 11111if1t >- m 
{A 1, 8 1 , 11 2, 82 .•••• 11 11 , /J11 , 81111 .... IJml if m >= n 

Solution: 

def mcrgeTwoSortedLists(self, listl, list2): 
temp = Node(O) 
pointer= temp 
while list I !aNone a nd list2 !=None: 

if list I .gcLData()<list2.gclData(): 
pointer.setNext(list I) 
list I .. list I .gctNcxt() 

else: 
pointer.setNext(list2) 
list2 = list2.getNext() 

pointer = poinler.getNext() 
if list 1 == None: 

pointer.setNext(list2) 
. else: 

poinLer.sclNext(lisl l) 
rclum lemp.gctNcxt() 

Time Complexity: The while loop takes O(min(n, m)) time as it will run for mm(n, m) times. The other steps run in 
0( 1). Therefore the total time complexity is O (min(11,m)). Space Complexity: 0(1.). 

Problem-SO Median in an infinite series of integers 

Solution: Median is the middle number in a sorted list of numbers (if we have an odd number of clements). If we 
have an even number of clements, the median is the average of two middle numbers in n sorted list or numbers. 

We cnn solvl! th is problem with linked lists (with both sorted and unsorted li nked lis ts). 

First, let us tr)' with an 1111sorLcci linked lis1. In an unsorted linked list, we can insert the c lement either a t the 
head or at the tail. The disadvantage with this approach is that finding the median takes O(n). Also, the 
insertion operation takes 0( I). 
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Now, let us try _with a sorted linked list. We can find the median in 0(1) time if we keep track of the middle 
~lements. lnseru~n to a particular l_o~at~on is also O(l) in any linked list. But, finding the right location to insert 
~s _n~t O(logn) as 111 u sorted u rray, 1t 1s instcud 0(11) because we can't perform binary search in u linked list even 
if 1t is sorted . 

So, using a sorted linked list isn't worth the effort as insertion is 0(11) and finding median is 0(1), Lhc snme as 
lhc sorted array. In the sorted array the insertion is linear due Lo shifting, but here it's linear because we cun't 
do a binniy search in a linked list. 

No te: For an efficicnt algorithm refer to the Pr-iority Queues and Heaps chapter. 

Problem-51 Given a linked list, how do you modify it such that all the even numbers appear before all the 
odd numbers in the modified linked list'.> 

S o lution : 

def exchangeEvenOddList(head): 
# initiaJizing the odd and even list headers 
oddList = evenList =None 

ff creating tail variables for both the list 
oddListEnd = evenListEnd = None 
itr=head 

if( head =~ None): 
return 

else: 
while( itr ! .. None ): 

if( ilr.data % 2 •• 0 ): 
if( evenList •• NULL): 

else: 

else: 

II first even node 
evenList = even ListEnd = itr 

# inserting the node at the end of linked list 
evenListEnd.next = itr 
evenLislEnd • itr 

if( oddLisl .... NULL): 

else: 

itr ilr.next 
evenListEnd.next = oddList 
return head 

ff first odd node 
oddLisL = oddListEnd = iLr 

# inserting lhe node at the end of linked list 
odd LislEnd.next = itr 
oddLisLEnd • itr 

Time Complexity: O(n) . Space Complexity: 0 (1). 

Proble m -52 Given two linked lists, each list node with one integer digit, add these two linked lists. The 
result should be stored in the th ird linked list. Also note that the head node contains the most significant 
digi t of the number. 

Solution: Since the in teger ucld ition starts from the lcusl s ig nifico nt digit, we first need to visit the last node of 
both lists and add them up, create a new node to store the result, take care of the carry if ony, and link the 
resulting node to the node which will be added to the second least significant node and continue. 

Pirst of nil, we need to take into accou nt the difference in the number of digits in the two numbers. So before 
starting recursion, we need lo do s ome ca lc ulation a nd move t he longer list pointer to the appropriate place so 
that wc need the last node of both lists al the same time. The other lhing we need to take care of is carry. If two 
digits add up to more than I 0, we need to forward the carry to the next node and add it. If lhe most significant 
digit addition results in a carry. we need to create an extra node to store the carry. 

The func tion below is actua lly n wrapper funct ion which docs n ll lhc housekeeping like ca lc ulating lenglhs of 
lists, cn lling recursive implcmcntalion, cn·nt ing an extra node for the carry in lhc most significant digit , nnd 
adding uny remaining nodes ldt in lhe longer list. 

class AddingListNumbers: 
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def addTwoNumbers(self, list 1, list2): 
if \isl l == None: 

return lisl2 
if list.2 -~ None: 

return list I 

Jen I • lcn2 = 0 
head ,,. lisll 
while head != None: 

lcn I += 1 
head= head.next 

head • List2 
while head I== None: 

len2 += 1 
head =head.next 

if Jen I >= lcn2: 
longer = list I 
shorter = list2 

else: 
longer = list2; 
shorter = list I 

sum • None 
carry• 0 
while shorter ! None: 

value = longer.data + shorter.data + carry 
carry= value/ 10 
value-= carry * I 0 

if sum == None: 
sum = Node(value) 
resull =sum 

else: 
sum.next Node(value) 
sum = sum.next 

longer= longer.next 
shorter= shorter.next 

while longer != None: 
value = longer.data + cany 
carry= value / 10 
value-= carry • I 0 

sum.next = Node(value) 
sum =sum.next 

longer= longer.next 

if carry!= 0: 
sum.next= Nodc(carzy) 

return result 

Time Complexity: O(max(Ust I /e11gtli, l1s12 /engtli)). 
Space Complexity: O(mi11(1.i-;1 J /e11gth, 1.tst2 /engtli)) for recursive stack. 

Note:l l can nlM be solved using stncks. 

Problem-53 Write code for finding I he sum of all data values from linked list with recursion. 

Linked Lists 

Solution: One of the basic operations we perform on linked lists (as we do with lists) is to iterate over them, 
processing alst their values. The following function computes the sum of the values in a Linked !isl. 

def linkedListSum(lsl): 
sum• 0 
while Isl I• None: 

sum+- 1st. 
Isl lst.getNcxt() 

return sum 
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Lots of code that traverses (iterates over) linked Lists looks similar. In class we will go over (hand simulate) how 
this code processes the linked list above, with the call linkedUstSum(x) and see exactly how it is that we visit 
each node in the linked list and stop processing it at the end. 

We can also define linked lists recursively and use such a definition to help us write functions that recursively 
process linked lists. 

1) None is the smallest linked list: it contains no nodes 
2) /\ list node whose next refers ton linked list is also linked list 

So None is a linked list (of 0 values); a list node whose next is None is a linked list (of 1 value); a list node whose 
next is a list node whose next is None is a linked list (of 2 values); etc. 

So, we can recursively process a linked list by processing its first node and then recursively processing the (one 
smaller) linked list they refer to; recursion ends at None (which is the base case: the smallest linked list). We can 
recursively compute the sum of linked list by 

def linkedListSum(self, 1st): 
if Isl == None: 

return 0 
e lse: 

return lsl.gctData() + linkedListSumfu;LgctNext()) 

An even simpler traversal of linked lists computes their length. Herc arc the iterative and recursive methods. 

def listLength(lsl): 
count= 0 
while Isl I None: 

count 1 1 
Isl = lsl.getNext() 

return count 

def tistLengthRecursive(lst): 
if lst = None: 

return 0 
else: 

return 1 -+ listLengthRecursive(lst.gclNextO) 
These arc simpler than the /inkcdl.istSum function: rather than adding the value of each list node, these add 1 to 
a count for each list node, ultimately computing the number of list nodes in the entire linked list: its length. 

Problem-54 Given a sorted linked lis t, write a program to remove duplicates from it. 

Solution: Skip the repeated adjacenl elemcnls. 

def dcleleLinkcdListDuplicates(sel.f): 
current - self.head; 
while current l= None tind current.next l=N<>ne: 

if current.getData () .... currenl.getNexl().gelData(): 
currcnt.selNcxl(current.gctNext().gctNcxl()) 

else: 
current current.getNcxtO 

return head 

Time Complexity: O(n). Space Complexity: 0(1). 

Problem-55 Given a list, Listi = {A 1, A2 , ••• An-I• An} with data, reorder it LO {A1, An, Az, An- 1·····} without 
using any extrn space. 

Solution: Split the list, reverse the latter half and merge. 

It Definition for singly-linked lisL 
class Node: 

def _ init (self, x): 
self.data = x 
self.next= None 

class reordcrLists: 
def revcrse(self,hcad): 

dummy prcv Nodc(O) 
while hcnd: 

ncxl • head.next 
heud.nexl = prev.ncxt 
prev.ncxt =head 
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head= nexl 
return dummy.next 

def geLMiddleNodc(self,head): 
slow - fast "' head 
while fast.next and fast.next.next: 

fast = fasL.ncxt.next 
slow = s low. next 

head - slow.next 
slow.nexl ... None 
return head 

def reordcrList(self, head): 
if not head o r not head.next: 

return head 
head2 • self.gctMiddleNode(hcad) 
head2 .... self.reverse(bcad2) 
p =head 
q= head2 
while q: 

qnexl = q.next # store the next node since q will be moved 
q.ncxt = p.next 
p.ncxt = q 
p = q.ncxt 
q = qncxt 

relurn head 

Time Complexity: 0(11). Space Complexity: 0(1). 

Problem-56 Whic h sorting a lgorithm is easily adnpla ble to singly linked lists? 

Linked Lists 

Solution: Simple Insertion sort is easily adabtable tO singly linked lists. To insen an element, the linked list is 
Lraversed until the proper posiLion is found, or until the end of the list is reached. It is inserted into the list by 
merely adjusling the pointers without shifling any c le ments, unlike in the nrray. This reduces the Lime required 
for insertion but not the time required for searching for lhe proper position . 
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STACKS 4 

4.1 What is a Stack? 
A slack is a si mple data struc ture used for s toring dnla (similar to Linked Lists). In a stack, the o rder in which 
the data arrives is impona nt. A pile of pln tcs in a cafeteria is a good example of n stuck. The plates arc added to 

the stack as they arc cleaned and they a rc placed on the top. When a plate, is required it is taken from the top of 
the stack. The first pla te placed on the stack is the last one lo be used. 

Definition: A stack is an ordered list in which insertion and deletion a re done al one end, ca lled top. The last 
c le ment inse rted is the first one to be deleted. Hence, il is called the Last in First out (LI PO) or F'irst in Last oul 
(f'I LO) list. 

Specia l names a rc given to the two chanitcs t hat ca n be made to a stack. When an clement is inserted in n 
slack, the concept is cu lled push, and whe n an clement is removed from the s lllc k, the concept is ca lled pop. 

Trying to pop out an empty stack is ca lled underf/uw and trying to push a n clement in n full stack is called 
overflow. Generally, we treat them as exceptions. As an example, consider the snapshots of the stack. 

Pus hing D Popping D 

top top 

B B B 

A A A 

4.2 How Stacks are Used 
Consider a working day in the office. Let us assume a developer is working on a long-term project. The manager 
then gives the developer a new task which is more important. The developer puts the long-term project aside 
and begins work on the new task. The phone rings, And this is the highest priority as it must be a nswered 
immediaLely. The develope r pushes I he prc:-;ent task into the pending tray and answers the phone. 

When the cu ll i:; complete the task that wus abandoned to answer the phone is rel ricved from lhc pend ing troy 
und work pm~resscs. To wkc another call, it may have to be handled in the same manner, but evcnluully the 
new task will be finished, and the developer can druw the long-term project from the pending tray and continue 
with Lhat. 
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4.3 Stack ADT 
The following operations make a stack an ADT. For simplicity, assume the data is an integer type. 

Main stack operations 

• Pus h (int data): lnscns daw onto stack. 
• int Pop(): Re moves and returns the last inserted clement from the :>tack. 

Auxiliary stack operations 

• int Top(): Returns the last inserted clement without removing it. 
• int Siz{!(): Returns the number of clements stored in the stack. 
• int lsEmptyStack(): Indicates whether a ny clements an: s tored in the stuck or not. 
• int lsPullS tack(): Indicates whether the stack is full or not. 

Exceptions 
Attempling the execution of an operation may sometimes cause an error condition, ca lled an exception . 
Exceptions arc said to be ~thrown' by an operation that cannot be executed. In the Stack ADT, operations pop 
and top cannot be performed if the stack is empty. Att empting the execution of pop (top) on a n empty stack 
throws an exception. Tryin14 to pu s h nn c lement in n fu ll slack throws a n exception . 

4 .4 Applications 
Pollowing arc some of the npplications in which stacks play an import.ant role. 

Direct applications 

• Bo lanc ing of symbols 
• lnflX-to-postfix conversion 

Eva lua tion of postfix expression 
• Implementing forn..: lion calls (i nc luding recursion) 
• Finding of s pans (finding spans in stock markets, refer to Problems section) 
• Page-visited history in a Web browser [Back Buttons] 
• Undo sequence in a text edito r 
• Matching Tags in HTML and XML 

I ndirect applications 

• Auxiliary data structure for other algorithms (Example: Tree traversal a lgori thms) 
• Component of other data structures (Example: Simulating queues, refer Queues chapter) 

4.5 Implementat ion 
There arc many ways of implementing stack ADT; below arc the commonly used methods. 

• Simple a rray based implcmentnlion 
• Dynamic array bused imple mentalion 
• Linked lists imple mentation 

Simple Array I mplementation 

This implementation of s tack ADT uses a n array. In the array, we add clements from left to right and use n 
var·iablc to keep track of the index of the top clement. 
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T~e .array .swring the s~ck clements may become full. A push operation will then throw a full stack exception. 
S1m1larly, 1f we try deleting an clement from an empty stack it will throw stack empty exception. 

class Stack(object): 
def inil_ (self, Limit • I 0): 

self.slk = II 
self.limit = limit 

dt.Jf isEmpty(sclf): 
return Jen(self.stk) < .. 0 

def push(self, item): 
if len(self.stk) >= self.limit: 

print 'Stack Overflow!' 
else: 

self.stk.append(item) 
print 'Stack after Push',self.stk 

def pop(sclf): 
if len(sclf.stk) <= 0: 

else: 

print 'Stack Underflow!' 
return 0 

return sclf.stk.popQ 

def peek(seU): 
if lcn(sclf.stk) < 0: 

else: 

print 'Stack UndcrOowl' 
return 0 

return sclf.stkl-11 

def size(sell): 
return len(sclf.stk) 

our stack = Stack(S) 
our stack.push("!") 
our stack.push{"2 I ~) 
our s tack.push("14") 
our stack.push("3J ") 
our stack. push(" 19") 
our stack.push("3") 
our_stack. push("99") 
ou r stack.push("9") 
print our stack.peek() 
print our_stack.pop() 
print our stack.peck() 
print our_stack.pop() 

Performance & Limitations 

Performance 

l,,cl n be the number of clements in the stack. The complexities of stack operations with this representation can 

be given ns: 
Space Complexity (for 1t push operations) 0(11) 
,_ 

Time Complexity of Push() 0(1) 

Time Complexity of Pop() 0(1) 

Time Complexity of Size() 0(1) 

Time Complexity of IsEmptyStackO 0(1) 

Time Complexity of IsFullStackO 0(1) 

Time Complexity of DelcLeStack() 0(1) 

Limitations 

The maximum s i;i;c of the stuck must first be defined und it cannot be changed. Trying to push a new clement 
into o fu ll swck causes an implcmcntulion-spccific exception. 
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Dynamic Array Implementation 
First, let's consider how we im plemen ted a simple array based slack. We Look one index vuriable top which 
points lo the index of lhc mosl rcccnlly inserted clement in the stack. To insert (or push) an element, we 
increment top index and then place the new clement ut that index. 

Similarly, to delete (or pop) an clement we take the clement at top index ond then decrement the top index. We 
represent an empty queue with top value equal to - 1. The issue that slill needs Lo be resolved is what we do 
when all the slots in the fixed size array stack arc occupied? 

First try: Whal if we increment the s ize of the a rray by l every lime the s tack is full? 

• Push(): increase size of Sil by l 
• Pop(): decrease si;-.c of SIJ by I 

Problems with this approach? 

This way of incrementing the array :;i;-..c is too cxpcnsivc. Let us see the reason for this. f"or example, at n = I , w 
push nn element creole a new army of si;-,c 2 and copy u ll the old array elements to the new nrray, and at I he 
end add Lhe new c lement. At 11 - 2, to push an c lement c r<.:ate a n<.:w arrny of size 3 and copy all the old array 
elem ents to the new array, and al the end add the new elemenl. 

Similarly, al 11 = n - 1, if we want to push an clement create a new array of size 11 and copy all the old array 
elements lo the new array and ut the end add the new clement. After n push operations the total time T(11) 
(number of copy operations) is proportional to 1 + 2 + ... -I n ,,,Q(n2 ). 

Alternative Approach: Repeated Doubling 

Let us improve the complexity by using the array c1011bli11g technique. If the array is full, crealc a new array of 
twice the size, and copy Lhe ilems. With this approach, pushing n items takes time proportional w n (not 112 ). 

For simplicity. let us assume that initially we started with n = 1 and moved up to n = 32. That means, we do 
the doubling at 1, 2, 4, 8, 16. The other way of analyzing the same approach is: at n = I. if we want to add (push) 
an clement, double the current si7..c of the array and copy ull the clements of the old army to the new array. 

At 11 = 1, we do 1 copy opera tion, ut 11 2, we do 2 copy opcralions, and 11L 11 = 4, we do 4 copy operations und 
so on. By the lime we reach 11 = 32, the total number o f copy operations is I+ 2 + 4 + I! I 16 = 3 1 which is 
approximately equal to 211 value (32). If we observe carefully, we arc doing the doubling opcru tion lo9n times. 

Now, let us generalize the discussion. For 11 push operations we double the array si;1,c log11 times. Thal means, 
we will have logn terms in the expression below. The totaJ time T(n) of a series of n push operations is 
proportional to 

n 11 n n IL 
I+ 2 + 4+8 ... +1 +2+ 11 = 11 + z + 4+ 0 ... +4+2+ 1 

( 
1 I I 4 2 

- 11 I + - + - I- ... I - +--1 
2 '1!1 1111 

= 11(2) ~ 211 = 0(11) 

1'(11) is 0(11) and the amortized time of a push operation is 0(1). 

class Stack(object): 
def _ init (self, limit = 10): 

self.stk"' limit*INone] 
sclf.limil = limit 

def isEmpty(sclf): 
return lcn(sclf.stk) <= 0 

def push(self, item): 
if len(self.stk) >= self.limit: 

self. resize() 
self.stk.append(item) 
print 'Sta.ck after Push',sclf.stk 

def pop(sclf): 
if lcn(self.stk) < .... 0: 

else: 

4 .5 Implementation 

print 'Stack Underflow!' 
return 0 

return sclf.stk.pop() 

~) 
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def pcck(seln: 
if len(self.slk) <= 0: 

else: 

print 'Stack Undernow!' 
return 0 

return sclf.stkl-11 
def si;.-,c(sctn: 

return len(self.stk) 

def resize(setn: 
newStk = list(self.stk) 
self.limit= 2*self.limit 
self. stk = newStk 

our slack = Stack(S) 
our slack.push(" J ") 
our stack.push("21") 
our stuck.push(" 14") 
our slack.push(" I I") 
our stack. push("31 ") 
our_stack.push(" 14") 
our stack. push(" 15") 
our stack. push(" 19") 
our stack.push("3") 
our stack.push("99") 
our stack.push("9") 
print our stack.peckO 
print our_stack.pop() 
print our_stack.peek() 
print our_stack.pop() 

Performance 

Stacks 

Let 11 be the number of clements in the stack. The complexities for operations with this representation can be 
given as: 

Note: Too many doublings may cause memory ovcrnow exception. 

Linked List Implementation 
The other way of implementing stacks is by using Linked lists. Push operation is implemented by inserting 
clement at the beginning of the list. Pop operation is implemented by deleting the node from the beginning (the 
header/top node). 

t._4__,__,I •I.___ 1 _s ~-·I.___ 1-----'--'I •._I 40___.l___.j+ NU LL 

top 

#Node of a Singly Linked List 
class Node: 

#t·onstructor 
def _ init_(sctn: 

self.data = None 
self.next= None 
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#method for selling the data l'ield of the node 
def selDaLa(self.data): 

self.data = data 
#met hod for gelting the data field of U1e node 
def getData(sell): 

return self.data 
#method for setting the next field of the node 

def sctNext(sclf, next): 
self. next = next 

#melhod for getting the next l'ield of the node 
def getNext(scll): 

return seLLnext 
#returns lrue if the node points to another node 
def hasNcxt(sell): 

return self.next I"' None 

class Stack(object): 
def init (self, data• None): 

self. head = None 
if data: 

for data in data: 
self.push(dat.a) 

def pu1:1h(self, data): 
temp "' Node() 
temp.setData(data) 
tcmp.setNext(self. head) 
self.head = temp 

def pop(sell): 
if self.head is None: 

raise lndcxError 
temp = self.head.get Data() 
self. head .. sclf.hcad.gelNext() 
rclurn temp 

def pcek(sell): 
if self. head is None: 

raise lndexError 
return self.head.gelData() 

our_list = ("first", "second", "third", "fourth"! 
our_stack = Stack(our_list) 
print our stack.pop() 
print our stack.pop() 

Performance 

Stacks 

Let n be the number of clements in the slack. The complexities for operotions with this rcprescntotion ca n be 
given m;: 

4.6 Comparison of Implementations 

Comparing Incremental Strategy and Doubling Strategy 
We compare the incremental strntcg_y and cloublin~ strateg_y by unalyzin11, the total time T(n) needed Lo perform a 
series of n push operations. We start with a n empty stack represented by an array of size 1. 
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We call amortized Lime of a push operalion is the average Lime taken by a push over the series of operations, 
that is, 'f'(n)/n. 

Incremental Strategy 

The amortized time (average time per opcraLion) of a push operation is O(n) 10(112 )/nj. 

Doubling Strategy 

In this method, the a morti?.Cd Lime of a push opcralion is 0(1) IO(n)/nl. 

Note: For analysis, refer Lo the Implementation secLion. 

Comparing Array Implementation and Linked List Implementation 

Array Implementation 

• Operations take constant time. 
• 8xpensive doubling operation every once in a whi le. 
• Any sequence of 11 oper::nions (s tarting from empty stack) - "amortized" bound takes time proportional to 

11. 

Linked List Implementation 

• Grows and shrinks grncefully. 
• 8vcry operation takes consLant lime 0(1). 
• Every operation uses cxlra space and time to deal with references. 

4.7 Stacks: Problems & Solutions 
Problem-I Discuss how stacks can be used ror checking balancing of symbols. 

Solution: Stacks can be used to check whether the give n expression has balanced symbols. This algorithm is 
very useful in compilers. Each lime the pa rser reads one churncter nt u Lime. If the charac ter is an opening 
delimiter such as (, (, or I- then it is written to the s tuck. When n closing delimite r is e ncountered like ). l, or ]
the stuck is popped. 

The opening and closing delimiLCrs arc thcn compared. If they match, the parsing of the string continues. If they 
do not match, the parscr indicates that thcre is an error on the line . A linear-Lime 0(11) a lgorithm based on s tack 
ca n be given as: 

Algorithm: 
a) Create a stack. 
b) while (e ncl of input is nol reached) { 

1) If the cha racter read is nol a symbol lo be bala nced, ignore it. 
2) If the character is an opening symbol like(, j, l. push it onto the s tack 
3) If it is a closing symbol like ),I,}, then if Lhe st:1ck is empty report an erTor. Otherwise pop the 

stack. 
4) If the symbol popped is not the corresponding opening symbol, reporL an error. 

} 
c) At end of input. if the stack is not empty report a n error 

Examples: 
&<amolc Valid? Deserio Lion 
ff\ t Alt IC-DJ Yes The expression hns a balanced symhol 
U/'\+Bl •re Dl No One closmt?. bracl· is m1ssint?. 
{(f\+l.J} I IC· l))) Yes Oocninl! nnd immc<hntc closint?. brnccs correspond 
((A+Bl I IC-Dll No The last closing brace docs not corn·snond with the first opc11111g parc111lwsis 

F'or tracing the algorithm let us assume that the input is: () (() IO ll 

Input Symbol, A(i) Operation Stack Output 

( Push ( ( 

) 
l'op ( 
Test 1f ( nnd /'\l•I mmch? YES 

( Push ( ( 
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( Push ( (( 

) 
Pop ( ( 
Test if (and l\(i) malch? n:s 

I Push I (I 

( Push ( ((( 

) 
Pop ( (I 
TC'st if( and A[i) match? YES 

I 
Pop I ( 
TC'sl if I and l\(i] malC'h? Yl~S 

) 
Pop ( 
T<·st if( nnd Alil m11ld1? n :s 

Tcsl if stack is Em ply? YES TRUE 

Time Complex ity: O(n). Since we a rc scanning the inpu t only once. Space Complexity: O(n) !for slac kJ. 

def chcckSymbolBalancc(input): 
symbolstack • Stack() 
ba lanced = 0 
for symbols in input: 

if symbols in I"(", T, "l"J: 
symbols tack. push(symbols) 

else: 
if symbolstack.isEmpty(): 

balanced = 0 
else: 

topSymbol = symbolstack.pop() 
if not matches(topSymbol,symbols): 

btila nced :a 0 
else: 

bala nced 

return balanced 

print checkSym bolBalance("(I))") 
'"Output: 0"' 

print chcckSymbolBala nce("{{(LJIJ)IQ}") 
'"Output: I"' 

Problem-2 Disc uss infix l.o pos t.fix conversion u lgorilhrn using s tuck. 

Stacks 

Solution: Oeforc discuss ing the a lgorithm , first let us sec the definitions of infix, prefix and postfix expressions. 

Infix: An infix expression is a single letter, or a n operator, proceeded by one infix string a nd followed by another 
Infix string. 

A 
A+B 

(A+l3)-+ (C-0) 

Prefix: A prefix expression is a single lellcr, or an operator, followed by two prefix strings. Every prefix string 
longer than a single vuriablc comains an operator, first operand and second operand. 

A 
+AB 

++AB-CD 

Postfix: A postfix expression (also called Reverse Polish No tation) is a single letcer or an operator, preceded by 
two postfix sLrings. Every posLfix SLring longer than ::i s ingle variable con tains first and second operands followed 
by on operntor. 

A 
AB~ 

AB •CD-+ 

Pre fix and pos Lfix notions :ire methods of writing mathematica l expressions wi thout parenthesis. Time to 
evaluate a postfix a nd prefix expression is 0(11) , where n is the number of clements in the a rray. 
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lnfix Prefix Postfix 
A+A -+AO AB+ 

A+l:! -C - •ABC AB+C-

(A+H)'C-0 · ~ABCD AD+C' D-

Now, lcL us focus on the a lgorithm. In infix expression:;, the operator preccdem:e is im plicit un less we use 
parentheses. Therefore, for the infix to postfix conversion alf.\orithm we have Lo define the operawr precedence 
(or priority) inside the algorithm. 

The table shows Lhe precedence a nd their associativity (order of evaluation) among operators. 

Token O""""tor Precedence Associativitv 
() function call 17 left-to-right 
11 array element - struct or union member 

-- I I incremenl , (kcrcmcnl 16 lcft-10-righl 

++ dccr<'mCnt, incrnnrnt 15 right-to lrfl 
I logical not 
- one's complcmc nl 
- + unary minus or p lus 
&* address or indirection 
size of si7,e lin bvtcsl 
ltvoel tvoc cast 14 1i!!ht-to left 
• I% multiplicatiVl' 13 l.efl-to 1 ight 

~ lllnarv add or subtract 12 left-to rill.ht 
<< >> shifi 11 left-to rfoht 
> >~ relational 10 left-to-right 
< <= 
•• !c eoua li tv 9 lc ft-to-riPhl 
&. bitwise and 8 le ft-to-1ight 

/\ bitwise exclusive or 7 lcft-to-ril!.ht 
I bitwise or 6 left-to-ri1!11 t 
&&. lo!!ical and 5 lefl-to rirh1 

11 logical or 4 left-to right 

?: conditional 3 rieht-to left 

- +~ -- I ·~ (~~ assignment 2 right-to-lrft 
<<~ >> 

&= "~ 
comma 1 lcft-to-ril!.hl 

Important Properties 

• Let us consider the infix expression 2 + 3 * 4 nnd ils postfix equiva lent 2 3 4 * ·1 . Nolice lhat belwet:n 
infix and postfiJC the order of the numbers (or operands) is unchanged. It is 2 3 4 in both cuscs. But the 
order of the operators • and t is affected in the two expressions. 

• Only one stack is enough to convert an infix expression to postfix expression. The stuck that we use in 
the algorithm will be used to c hange the order of operators from inflX to postfix. The stack we use wiH 
only contain operators and the open parentheses symbol '('. 
Postfix expressions do not contain pa rentheses. We shall noL output the pa rentheses in the postfix 
output. 

Algorithm: 

u) Create u s tack 
b) for each c harac ter tin the input stream{ 

if( t is an operand) 
output t 

else if(t is a right pa renthesis){ 
Pop and output tokens until a left parenthesis is popped (but not output) 

I 
else / / tis an operator or lefl parenthesis! 

pop and o utput tokens until one of lowe r prio rity than tis e ncountered or a left parenthesis 
is encou ntered or the stac k is e mpty 
Pus h c 
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f 
c) pop and output tokens until the stack is empty 

For better understanding let us trace out an example: A* 8- (C + 0) + E 

loout Character 
A . 
B 
-
( 

c 
+ 
I) 

l 
.. 
E 

Encl of input 

class Stack : 
def inil_ (sell): 

self.items = II 

O ocration on Stork 

Push 

Check and Push 
Pus h 

Check and Push 

Pon and ann<'ncl to oostfix till •r• 
Clwck and Push 

Pop till cmotv 

#method for pushing an item on a stack 
def push(self,itcm): 

sclf.itcms.appcnd(item) 

#melhod for popping an item from a stack 
def pop(scll): 

return self.items.pop() 

#method to check whether the stack is emply or not 
def isEmpty(self): 

return (self. items == Ill 
#method to get the top of the stuck 
def peek(scll): 

return self.items!- I I 

def str (sell): 
return str(sclf.itcms) 

def infi.x'foPosLfix(infixexpr): 
prec = O 
precl"*"I = 3 
precl" /"I = 3 
prccl"+"I = 2 
prccl"-"I = 2 
prccl"rl"' l 
opStack "' Stack() 
postfixList = II 
tokenList = infixexpr.split() 

for token in tokcnList: 

Stuck 
1-:mnty 
• 
• 
" 

- ( _, 
. (+ 

+ 
+ 

r>ostfi,'I( l~"-nression 

A 
A 
AH 
All' 
Al.l" 
ATl 'C 
AB •C 
AH 'CD 
AH'CD~ 
AB'CDt-
AH'CDt E 
AIJ'CD• - E+ 

if token in "ABCOEFGHIJKLMNOPQRSTUVWXYZ" or token in "0123456789": 
postfixList appcnd(tokcn) 

elif token ,, ... '(': 
opStack.push(tokcn) 

clif lokcn • ')': 
topTokcn .. opStack.pop() 

while topToken != '(': 
postfixList.append(topToken) 
topToken = opStack. pop() 

else: 
while (nol opStack. i8Emply()) and 

(prcclopStack.pcck()j > prccltokcnl): 
posLfix Lis La ppcnd(opSLack. pop()) 

opStack. push( token) 

while not opStack.isEmpty(): 

4 .7 Slacks: Problems & Solutions 
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postfixList.append(opStack.pop()) 

return " ".join(postfixList) 

print(infixToPostfix(" A * B + C • D")) 
print(infixToPostfix("( A + B ) * C - ( D - E ) * ( F + G )")) 

Problem-3 Discuss postfix evaluation using stacks':> 

Solution: 

Algorithm: 
l Scan the Postfix string from left to right. 
2 Initia lize an empty slack. 
3 Repeal steps 4 and 5 Lill a ll the characters arc scanned. 

Slacks 

4 If the scanned character is an operand, push il onto the stack. 
5 If the scanned character is an operator, and if the operator is a unary operator, then pop an e lement 

from the slack. If the opernlor is a binary operator, then pop Lwo c lements from the s tack. After popping 
the c lements, apply the operator to those popped clements. Let the result of this operation be rclVa l 
onlo lhc stack. 

6 After all characters are scanned, we will have only one element in the stack. 
7 Return top of the stack as result. 

Example: Let us sec how the above-mentioned a lgorithm works using an example. Assume lhat the postfix 
string is 123*+5-. 

Initially thc stack is empty. Now, the first. three characters scanned arc 1, 2 and 3, which arc operands. They 
will be pushed into the stack in that order. 

3 

2 Expression 

Stack 

The next character scanned is"*", which is an operator. Thus, we pop the top two elements from the stack and 
perform the "*" operation with the two operands. The second operand will be the ftrst element thal is popped. 

2*3=6 

Expression 

Stack 

The value of the cxpn.:ssion (2*3) that has been evalualcd (6) is pushed into the stack. 

6 Expression 

Stack 

The next character scanned is"+", which is an operator. Thus, we pop the top two clcment1:1 from the stack a nd 
perform the"+" operation with the two operands. The st:cond operand wi ll be the first c lement that is popped. 
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1+6 =7 

Expression 

Stack 

The value of the expression (1 +6) that has been evaluated (7) is pushed into the stack. 

Expression 

7 

Stac k 

The next c ha racter scanned is "5", whic h is added lo the stack. 

5 Expression 

7 

Stuck 

The next character sea nncd is "-", which is a n operator. Thus, we pop the Lop two elemenls rrom the stack and 
perform the"-" operalion with the two operands. The second operand will be the firs t c..:lcmcnt that is popped. 

7 -5= 2 

Expression 

Stack 

The value of the expression(7-5) that has been evaluated(23) is pushed into the stack. 

Expression 

2 

Stac k 

Now, s ince all the characte rs are scanned, Lhe remaining clement in !he stack (there will be only one clement in 
the slac k) will be returned. End result: 

• Postfix String : 123*+5-
• Result : 2 

class Sta.ck: 
def init_(seil): 
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self.items = II 
#method for pushing an item on a stack 
def push(self,item): 

self. items.append(item) 

#method for popping an item from a stack 
def pop(selJ): 

return self.items.pop() 

#method to check whether the stack is empty or not 
def isEmpty(sel~: 

return (self.items== rn 
def _ str_(se lf): 

return str(se lf.items) 

def post.fixEval(postfixExpr): 
opcrandStack = Stack() 
token Lis t = postfixExpr.split() 

for token in tokenList: 
if token in ''0123456789": 

operand Stack. push(int(toke n)) 
else: 

operand2 = operandStack. pop() 
operand! = operandStack.pop() 
rcsu1l = doMath(token,operand 1,opera nd2) 
operandStack.push(result) 

retur n operandStack.pop() 

def doMath(op, opl, op2): 
if op== "*'': 

return opl * op2 
elif op == "/": 

re tum op 1 / op2 
elif op == "+": 

return op I + op2 
t:lse: 

return opl - t1p2 

prinl(postfixEval('I 2 3 * + 5 -]) 

Problem-4 Can we evaluate the infix expression with stacks in one pass? 

Solution: Using 2 stacks we can evaluate a n infix expression in 1 pass without converting lo postfix. 

Algorithm: 
1) Create a n e m ply opera tor stack 
2) Create a n empty operand stack 
3) ror each token in the input string 

a . Get the next token in the infix string 
b. If next token is an operand, place it on the opera nd s tack 
c . If n ext token is an operator 

i. Evaluate lhc operator (next op) 

Stacks 

4) While operator stack is not empty, pop operator and operands (left and right), evaluate left operator 
right and push result onto opera nd stack 

S) Pop resu lt from operator stack 

Problem-5 How to design a stack such that GctM inimum() s hould be 0(1 )'? 

Solution: Take an auxiliary stack that maintains the minim um of a ll values in the stack. Also, assume that 
each element of the stack is less than its below elements. F'or simplicity let us ca ll the a uxiliary stack min stack. 

Whe n we pop the ma in slack, pop the min stack too. When we pu s h Lhe ma in s tack, pus h e it he r the new 
clement or the current minimum, whichever is lower. Al a ny point, if we want Lo get t he m inimu m, the n we jus t 
need lo return the lop element from the min sl<.1ck. Let us take un exam ple a nd truce il out. In itia lly let u s 
assume tha t we have pushed 2, 6, 4, I und 5. Based on the a bove- mentioned a lgorithm the min stack will look 
like: 
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Main stack Min stack 

5 _..top I ·top 
I I 
4 2 
6 2 
2 2 - -

After popping lwice we get: 
Main stack Min stuck 
4 --> lop 2 - top 
6 2 
2 2 

Bnsed on the discussion above, now let us code the push, pop nnd GelMinimum() operations. 

closs SmartStaek: 
def init (sci~: 

self.stack= II 
self.min = II 

def stack_push(self,x): 
self.stack.appcnd(x) 
1f not self.min or x <= self.stack min(): 

self.min.appcnd(x) 
else: 

self. min .append(self. min!- 1 ll 
def stack_pop(sclf): 

x =self.stack.pop() 
self.min.pop() 
return x 

def stack min(self): 
return self.min[- I I 

Stacks 

Time complexity: 0(1). Space complexity: 0(11) [for Min s wckj . This a lgorithm has muc h bcucr space usage if we 
ra re ly gel a "new minimum or equal". 

Problem-6 ror Problcm-5 is it possible to improve the space complexity? 

Solution: Yes. The main problem of the previous approach is, for each push operation we arc pushing the 
clement on to min stack a lso (e it her the new element or existing minimum clement). Thal means, we a rc pushin~ 
the duplicate minimum clements on to the slack. 

Now, let us c ha nge the algorilhm to improve the space compl<:xity. We still have the min swck, but we only pop 
from it when the value we pop from the main stack is equal to the one on the min stack. We only push to the min 
stack when the va lue being pushed onto the ma in slack is less than or equal w the current min value. In this 
modified algorithm also, if we wa nL to get lhc minimum th('n we just need to return the top clement from the 
min slack. ror example, taking the original version and pushing I again, we'd get: 

Main stack Min stack 

1 - top 

5 
I 
4 I •top 
6 I 

2 2 

Popping from the above pops from both stacks because 1 L, leaving: 

Main stacJ< Min SIACk 

5 · top 

I 
4 ,_ 
6 I 'IOp -
2 2 

Popping agnin 011/y pops from the main stack, been use 5 > I: 
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Main stack 
I - top 
4 
6 
2 

Popping ngnin pops both s tacks bceuusc I == I : 

Main stack 
4 - Loo 
6 
2 

Note: The difference is only in push & pop operations. 

c lass SmartStack: 
def inil_(self): 

sclf.stack= II 
self. min = II 

def slack_push(self,x): 
sclf.stack.append(x) 
if not self.min or x <=self.stack min(): 

self. min.append(x) 

def stack_pop(self): 
x .. self.stack.pop() 
if x .. = self.stack min(): 

self. min.pop() 
rclurn x 

def sl.Uck min(self): 
return self.min[-1] 

Stacks 

Min stack 

1 - LOP 

2 

Min stnck 

2- too 

Time complexity: 0(1). Space complexity: O(n) !for Min st.ackj. But this algorithm has much bcller space usage if 
we n:irely get a "new minimum or equa l". 

Problcm-7 For a given array with n symbols how many stack permutations arc possible? 

Solution: The number of s tack pcrmuU.llions with n symbols is represented by Catalan number and we will 
discuss this in the Dynamic Pro9rt1111111111,<1 chapter . 

Problcm-8 Given an array of characters formed with a's and b 's. The string is marked with special 
churucter X which represents lhc middle of the list (for example: ababa ... ababXbabab ..... baaa). Check 
whether the string is palindrome. 

Solution: This is one of the simple::;t a lgorithms. Whal we do is, start two indexes, one al the beginning of I he 
strin~ nnd the other at the end oft he string. Each time compare whether the values nt both the indexes arc the 
somc or not. If the values arc not the same then we say thul the given string is not u pal indrome. 

If the values arc Lhe same then incrcmcnt the left index and decrement the right index. Continue this process 
until both the indexes meet at the middle (at X) or if the string is not palindrome. 

def isPalindrome(A): 
i=O 
j = len(A)-1 
while (i < j and Alil == Au]): 

i += 1 
j ·"' 1 

if (i < j ): 

else: 

print("Nol a Palindrome") 
return 0 

print("Palindromc") 
return 1 

isPalindrome(l'm". 'a', 'd','a', 'm'I) 

Time Complcxity: O(n). Space Complexity: 0(1). 

Problem-9 F'or Problcm-8, if the input is in singly linked list then how do we check whether thc list 
elements form a palindrome (Thul mcuns, moving backward is not possible). 
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Solution: Refer Linked Lists chaplcr. 

Problem-10 Can we solve Problcm-8 using stacks? 

Solution: Yes. 

Algorithm: 
• Traverse lhc !isl Lill we encou nter X as input elem ent. 
• During lhe traversa l push all the ele ments (until X) on to the stack. 
• For the second half of the list, compare each element's content with top of the stack. 1f they arc the 

same then pop the stack and go to the next clement in the input list. 
• If they a re not the same then the given string is not a palindrome. 

• Continue this process until the stack is empty or the string is not u pulindrome. 

clef isPalindromt:(slr): 
slrStaek = Stack() 
palindrome "' FHlse 
for char in str: 

strStack. push(char) 
for char in str: 

if char== strStack.pop(): 
palindrome = True 

else: 
palindrome = F'alse 

return palindrome 

print isPalindromc("smadams") 

Time Complexity: 0(11). S pace Complexity : O(n/2) ::::<O(n). 

Problem-11 
pop)? 

Given a stack, how to reverse the clements of the s tack u s ing only stack operations (push & 

Solution: 

Algorithm: 
• Firs t pop a ll the c lements of the s tack Lill it becomes empty. 
• ror cuch upwa rd step in recursion, insert the clement at the bottom of the slack. 
c lass Stack(object): 

def init_ (sclf,itcms=[]J: 
self. stack= items 

def is empty(sell): 
return not self.stack 

def pop(scll): 
return self.stack.pop() 

def push(self,data): 
self. stack.append( data) 

def _ rcp1· (self): 
re turn "Stack {O)".format(self.stack) 

def rcverseStack(stack): 
de f reverseStackRecursive(stack,newStaclr-=Stack()): 

if not s tack.is_ empty(): 
ncwStack. push(stack. popO) 
rcverseStackRccursive(stack,newStack) 

rctum ncwStack 
rctu rn rcve rseStackRecursive(stack) 

s tk = Stack(range(lO)) 
print stk 
prinl reverseStack(stk) 

Time Complexity: O(ri2 ). S pace Complexity: 0(11), for recu rsive stack. 

Problem-12 Show how to implement one queue efficiently us ing IW<> s tacks. An a lyze the nrnning lime of the 
queue opcrnlions. 

Solution: Refe r Queues chapter. 
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Problem-13 Show how LO implement one stack efficiently using two queues. Analyze the running time of the 
stack operations. 

Solution: Refer Queues chapter. 

Problem-14 l low do we implement two stacks using only om; urroy? Our stack routines should not indicate 
an exception unless every slot in the array is used? 

Solution: 

f • 
I I 

f ~ 

Stack- I Stack-2 
Topi Top2 

Algorithm: 
• Start two indexes one u l the left end and the other ut the right end. 
• The le ft index simulfl les the first stack and the right index s imula tes the second s tock. 
• lfwe want to pus h nn clement in to the firslslack then pul the e le ment a t the le fl index. 
• S imila rly, if we want to push an c lement into the second s tack then pul Lhe clement a t the right index. 
• The first slack grows towards the right, and the second slack grows towa rds the le ft. 

Time Complexity of push and pop for both stacks is 0 (1). Space Complexity is 0(1). 

Problem-15 3 stacks in one array: How to implement 3 stacks in one array? 

Solution: For this problem, then· could be other ways of solving it. Given below is one possibility and it works 
as long os there is an empty sp;.1cc in the array. 

I I I I I 
Stack- I T Stack-3 T t Stack-2 

Topi Top3 Top2 

To implement 3 stacks we keep the following information. 

• The index of the first stuck [rop I): this indicates the size of the first stack. 
• The index of the second stnck [rop2): this indicates the si;.-.e of the second swck. 
• Starting index of Lhe third stack (base address of third stack). 
• Top index of the third stack. 

Now, let us define the push und pop operations for t his implcmenlalion. 

Pushing: 
• For pushing on to th<.: first stuck, we need lo sec if udding u new c lemen t c11uscs il lo bump inlo the 

lhird sl::ick. If so, try to shift the thi rd stack upwards. Insert lhe new c lemen t nt (s lnrll + Topi). 
• Por pushing to lhe second slack, we need to sec if adding a new c lement causes it to bump into the 

third stack. If so, try to shift the third stack downward. lnscrl the new element ::i t (slart2 - Top2). 
• When pushing lo the Lhird stack, sec if it bumps into the second stack. If so, try to shift the third stack 

downward and lry pushing again. Insert the new element at (start3 + Top3). 

Time Complexity: 0(1t). Since, we may need Lo adjust the third stuck. Space Complexity: 0(1). 

Popping: For popping, we don't need to shift, just decrement the sbi:c of the appropriate stack. 

Time Complexity: 0(1). Space Complexity: 0(1) . 

Problem -16 For Problem- 15, is there any other way of implementing the middle stack·~ 

Solution: Yes. When either the left stack (which grows to the right) or the right slack (which grows Lo the left) 
bumps into the middle stack, we need to shift the entire middle stack to make room. The same happens if a 
push on the middle stack causes it lo bump into the right stack. 

To solve the :.ibove-mcntioned problem (number of shifts) what we can do is: alternating pushes can be added at 
altcrnnling sidei; of the middle list (For example, even elements ure pushed to the left, odd clements are pushed 
lO the right). This would keep the middle slack balanced in the center of the ::irrny but it would still need to be 
shifted when it bumps into the left or right stack, whether by growing on its own or by the growth of a 
neighboring stack. 
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We can optimize the in ilia I locations of the three stacks if they grow / shrink at different rates and if they have 
djfferent average sizes. For example, suppose one stack doesn't change much. If we put it at the left. then the 
middle s tack will eventua lly gel pushed against it and leave a gap between the middle nnd right stacks, which 
grow toward each other. If they collide, then it's like ly we've run out of space in the array. There is no change in 
the Lime complexity but the uverugc number of shift s will get reduced . 

Problem-17 MLiltiplc (111) stncks in one amiy: Si milar to Problcm-15, what if we wnnt to implcmenL 111 stucks 
in one array? 

Solution: Let us assume that array indexes arc from 1 to n. Similar to the discussion in Problcm-15, to 
implement m stacks in one array, we divide the array into m pans (as shown below). The si7,c of each part is~. 

m 

11 2n 
11 

111 m 

A. I 
f f f f 
Base[ II 8ase(2] Base[3l Baselm+ ll 

Top[ll Top[2] Top[3[ Top[m + 11 

From the above rcprescntution we can sec that, first stack is starting at index 1 (starting index is stored in 
Base[ I[), second stack is starting a l index~ (starling index is stored in Basc[21), third stack is starting at index 

Ill 

~ (sto ning index is s tored in Ousc[31), and so on. S imila r to /Jase a rray, let us assume that Top array stores the 
Ill 

top indexes for each of the stnck. Cons ider the fo llowing te rminology fo r the discuss ion. 

• Top[ iJ, fo r l S i S 111 will point to the topmoist clement of the stack i. 
• If Basc[i] == Top[i[, t hen we can say the stack i is empty. 
• If Top[ ii == Base[i+ l[, the n we can say t he stack i is fu ll. 

Initia lly Base[il =- Top[il .!!.(1 - 1), for 1 S i S 111. 

"' 
• The i 111 stack grows from Basc[i[+ I to Base[i+ I[ . 

Pushing on to 1111 s tack: 

l) For pushing on to Lhe 1111 stack, we check whether the LOP of i1h stack is pointing to Base[i+ I ] (this cast'. 
defines that ;th stack is full). That means, we need to see if adding a new element causes it LO bump into 
the i + 11h stack. If so, try to shift the stacks from i + 11h stack to m'h stack toward the right. Insert the 
new ele ment at (Bascli[ -1 Top[il). 

2) If right s hifting is 1101 possible then try shifting the stacks from l to i - 1 ui stack toward the left. 
3) If both of them a rc not possible then we can say thnt a ll stacks are ful l. 

def push(StacklD, data): 
ifTop[il == Base[i+ I j: 

print (i'h Stack is full and does the necessary action (shifting)) 
Top[ ii = Top[il+ l 
AITop[ilJ = data 

Time Complexity: O(n). Since we may need to adjust the stacks. Space Complexity: 0(1). 

Popping from ;th s tack: For popping. we don't need to shift, just decrement the size of the appropriaLc stnck. 
The only case to check is stack empty cnsc. 

def Pop(Sta.cklD): 
if(Toplil ... ,., Ba!:!C[il) 

print (ith Stack is empty) 
return A[Top[il--1 

Time Complexity: 0(1). Space Complexity: 0(1). 

PToblem-18 Consider an cm ply stack of integers. Let the numbers I. 2, 3. 4, 5, 6 be pushed on to this slack in 
the order they a ppcnr from left to right. Let S indicate a push and X indicate a pop operation. Cun they bt· 
pcnnutcd in to th<' order 325M !(ou tput) a nd order IS'162:rr> 

Solution: SSSXXSSXSXXX outputs :-{2 !i64 1. 154623 cunnot be output as 2 is pusht·cl muc-h before :'\ so cnn 
oppenr on ly nfler 3 is outpu l. 
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Problem-19 Earlier in this c hapter, we discussed thal for dynamic array implementation of stacks, the 
'repeated doubling' approach is used. For the same problem, what is the complexity if we create a new array 
whose size is n + K instead of doubling? 

Solution: Let us assume that the iniliul slack s ize is 0. For simplicity let us assume thut K - I 0. For inscning 
the c lement we c reate a new nrrny whose size is 0 + 10 = 10. S imilarly, after 10 elements we again c rcale a new 
array whose si"A.: is 10 + 10 - 20 und this process continues at values: 30,40 ... That means, fnr a given n value, 
we arc crculing the new arrays nt: .!!..,.!!..,.!!..,.!!.. ... The total number of copy operations is: 

10 lO IO 40 

n 11 n n (1 1 1 ') n = iO + 20 t JO+··· l = iO I+ 2 + j + ···;; = j(jlogn:::::: O(nlogri) 

If we arc performing tt push operations, the cost per operation is O(logn). 

Problem-20 Given a string containing t1 S's and t1 X's where S indicates a push operation and X indicates a 
pop operation, and with the stack initially empty, formulate a rule to check whether a given string S of 
opcrutions is admissible or not? 

Solution: Given o string of lcngt h 2n, we wish to check whether the given string of operations is permissible or 
not with respect lo ils functioning on a slnck. The only rest rictcd operation is pop whose prior requirement is 
that the slack should not be empty. So whi le traversing the string from left to right, prior to a ny pop the stack 
shouldn't be empty, which means the number of S's is a lways greater than or equal to that of X's. Hence the 
condilion is at any stage of processing of the string, Lhe number of push operations (S) should be greater than 
the number of pop operations (X). 

Problem-21 Suppose lherc arc two singly linked lists which intersect at some point and become a single 
linked !isl. The head or slnrt pointers of both the lisls arc known, but the intersecting node is not known. 
Also, the number of nodes in cnch of the lists before they intersect are unknown und both lists may huvc a 
different number. Ust I mny huvc 11 nodes before it reaches the intersection poinl und Ust2 may have 111 

node::; before it reaches the intersection point where 111 and n may be m = n,m < t1or111 > 11. Can we find 
the merging point using s t ucks·~ 

NULL 

? 

Solution: Yes. For algorithm refer to Linked Lists chapter. 

Problem-22 Finding Spans: Given an arTay A, the span SFI of Afi ] is the maximum number of consecutive 
clements Al/] immediately preceding A[il and such that Afj] ~A[i]'? 
Another way of asking: Given un nrray A of integers, find the maximum of j - i subjected lo the constraint of 
A[i] < Afjl. 

Solution: 

8 

.----
6 - --

-
-- -
~ 

-
~ 

2 -

0 2 3 4 
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Day: Index i lnpul Array Ali) S!i): Span of Alil 
0 6 I 
l 3 I 

2 4 2 
:\ 5 :\ 

4 2 l 

This is a very common problem in stock markets lo find the peaks. Spans urc used in financial analysis (E.g., 
stock al 52-week high). The spun of a stock pdce on a certain day, i, is the maximum number or consecutive 
days (up to the current day) the price of the stock has been less than or equal to its price on i. 

As an example, let us consider the table and the corresponding spans diagram. In the figure the arrows indicate 
the length of the spans. Now, lcl us concentrate on the algorithm for finding the spans. One simple way is, each 
day, check how many contiguous days have a slock price that is less thun the current price. 

class St.ack: 
def init_ (self): 

self.items"' II 
#method for pushing an ilem on a stack 
def push(self,item): 

self.items.append(ilem) 

#method for popping un item from a stack 
def pop(sell): 

return self.items.pop() 

#method to check whether the stack is empty or not 
def isEmpty(scll): 

return (self.items == Ill 
#method to get the top of the stack 
def peek(scU): 

return sclf.itemsl-1 I 
def str_ (sell): 

return str(self.items) 

def findingSpans(A): 
s = [None)*lcn(A) 
for i in rangc(O,lcn(A)}: 

j = ] 

while j <= i and A[i) > A[i-j): 
j = j + I 
sfi) j 

prints 

findingSpans(l'6', '3', '4', '5', '2'1) 

Time Complexity: O(n2). Space Complexity: 0(1). 

Problem-23 Can we improve the complexity of Problem-22? 

Solution: From the example above, we can sec that span Slil on day i can be easily cnlculatcd if we know the 
closest day preceding i, such that the price is greater on lhot day than the price on day i. Let us call such a day 
as P. If such a day exists then lhe spun is now defined us Slil = i - P. 

class Stack: 
def inil_ (self): 

self. items = II 
#method for pushing an item on a stack 
def push(self,item): 

self.items.append(itcm) 
#method for popping an item from a stack 
def pop(self): 

return self.items.pop() 
#method to check whether the stack is empty or nol 
def isEmpty(self): 

return (self.items =• Ill 
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#method to get the top of the s tack 
def pcek(self): 

return self. items!- I I 
def str_(self): 

return str(self. items) 
dd findingSpan::;(A): 

D - Stack() 
S = jNonej*len(A) 
for i in range {O,len(A)): 

print S 

while not D.isEmpty() and Ali) > AID. peek{}): 
D.pop() 

if D. isEmpty(): 
p - 1 

else: 
P 0.pcck() 

Slil = i-P 
D. push(i) 

finding$pans(['6', '3', '4', 'S', '2')) 

Stacks 

Time Complexjty: Each index of the array is pushed inco the stack exactly once and also popped from the stack 
al most once. The sLatemcnts in the while loop are executed al most n times. Even though the algorithm has 
nested loops, the complexity is 0(11) as the inner loop is executing only n times during the course of the 
ulgorithm (trace out an cxumple nncl sec how many times the inner loop becomes successful). Space Complexity: 
O(n) !for stack]. 

Proble m -24 Largest rectangle under histogram: /\ histogram is a polygon composed o f a seque nce o f 
rectangles a ligned at a common base line . For s implicity, assume that the r ecla ngles ha ve equ a l widt hs but 
may ha ve d iffere n t heigh ts. r o r example, the figure o n the le ft s hows a histogram tha t cons is ts of rec ta ng les 
with the heights 3, 2, 5. 6, 1, 4, 4, mcusured in uni ts where 1 is the width of th e rcclUnglcs. llcrc our problem 
is: given an array with heights of rectangles (assuming width is 1), we need to find the la rgest rectangle 
possible. For the given cxnmple, the largest rcclanglc is the shared part. 

n-Illi11 ~II 
Solution: /\ straightforward answer is to go to each bur in the histogra m and find the maximum possible areu 

in the histogram for it. Fina lly, find the maximum of these values. This will requ ire 0(112). 

Problem-25 For Problcm-24, can we improve the time complexity? 

Solution: Linear search u sing a stack of incomplete sub problems: There arc many ways of solving this 
problem. judge has given a nice algorithm for this problem which is based on stack. Process the clements in lcft
to-right order and maintain a stack of information about started but yet unfinished sub histograms. 

If the stack is empty, open a new sub problem by pushing the element onto the stack. Otherwise compare it to 
the clement on lop of the stack. If the new one is greater we again push it. If the new one is equal we skip it. In 
all these cases, we continue with the next new clement. If the new one is less, we finish the topmost sub 
problem by updating the maximum urea with respect to the clement at the top of the stuck. Then, we discard 
U1c element at the top, and repeat the procedure keeping the current new clement. 

This wny, u ll sub problems arc finished when the slack becomes empty, o r its top clement is less than or cquul 
to the new clement, leading to the actions described above. If all clements have been processed, and Ll1e slack is 
not yet empty, we finish the remaining sub problems by updating the maximum area with respect to the 
clements at the top. 

def largestRcctanglcArea(self, height): 
stackz::ll; i=O; maxArca'"O 
while i<len(hcight): 

if st.ack•..,•11 or hcightlil>hcight!stack(lcn(stack)- L II: 
stack.appcnd(i) 

e lse: 
c u IT"'Slack. pop() 
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i+=l 

width=i if sui.ck-•11 else i-sta.ckjlen(stack)-1 J- l 
maxArea=max(maxArea, width*heightlcurrl) 
i-= l 

while slack!=!I: 
cu rr=stack. pop() 
width=i if sluck••ll c.:lsc lcn(hcight)-sluckllcn(s tack)- 1 ]- I 
maxArca=max(muxArca, width*heightlcurrl) 

reLUrn maxArea 

Stacks 

At the first impression. this solution seems to be having 0(112 ) complexity. But if wc look carefully, every element 
is pushed and popped at most once, and in every step of the function at least one clement is pushed or popped. 
Since the amount of work for the decisions and the update is constant, the complexity of the algorithm is 
O(n) by amortized analysis. 
Spnce Complexity: O(n) !for stock!. 

Problem-26 Given a s toc k of integers, how do you c hec k whether each successive pnir of numbers in the 
:;tuck is consecutive or nol. The pnirs can be inc reasing or dccrcusing, and if the stuck hns un odd number of 
e lements, the element uL the top is left out of a pair. For exo mple, if the stack of clements arc 14, 5, -2, -3, 1 I , 
LO, 5, 6, 201, then the output s hould be true because eueh of the pairs (4, 5), (-2, -3), (11, 10), and (5, 6) 
consists of consecut ive numbers. 

Solution: Refer Queues chapter. 

Problem-27 Recursively n·movc a ll a djacent duplicates: Given a string of characters, recursively remove 
adjacent duplicate charoctcrs from string. The output st ring should not have any adjacent duplicates. 

Input: careermonk 
Ou ut: camonk 

Input: mississippi 
Out ut: m 

Solution: This solution runs with the concept of in -pince stack. When clement on slack doesn't match the 
c urrent character, we add il LO s lack. When il matches lo stack lop, we skip charuclcrs unt ii the clement 
matches the top of stack ond remove the element from stuck. 

def rcmoveAdjacenLDuplicutcs(1:1tr): 
stkptr = -1 
i 0 
si;-,c==lcn(str) 
while i<size: 

if (stkptr == -1 or strf stkptrj!==strli)): 
stkptr += 1 
strfstkptrJ=str!il 
i += 1 

else: 
while i < si;r..c and strlstkptrl==str[il: 

i += 1 
stkptr -= 1 

stkptr += l 
str = str[O:stkplrl 
printstr 

rcmoveAdjacentDuplicates(l'6', '2', '4', '1'. '2', '1 '. '2', '2', 'I 'I) 

Time Complexity: O(n}. Space Complexity: 0(1) as the stack simu lation is done in place. 

Problem-28 Given nn nrruy ()f c lements, replace every clement with nearest g rcn tcr clement on the right of 
thut clement. 

Solution: One simple a pproach would involve sca nning I he array cle me nts a nd for each of the clements, scan 
the re maining elements a nd find the nearest greater c lement. 

def replaceWithNearestOrcaterElement(A): 
ncxtNearestGreatcr - Ooat("- inf') 
i = j = 0 
for i in range(O,lcn(A)- 1): 

nextNca rcstOrcater .. noal("-inf") 
for j in ranRc(il l,lcn(A)): 

if Ali] < ALil: 
ncxtNea restGreater "' ALil 
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break 
printrFor "+ str(Alill +", "+ str(nextNearestGreater) +"is the nearest greater element") 

Time Complexity: O(n2). Space Complexity: 0(1). 

Problcm-29 F'or Problcm-28, cu11 we improve the complcxily'r' 

Solution: The upproach is prclly much simila r to Problem-22. <.: rcall.! o. stack und push lhc first e le ment. Fo r 
rest oft he clements, mark the curr-enl clement as nextNearcstGreat er. If stack is not empty, then pop an clement 
from stack and compare it with next NearestGreater. If next NeurestGreatcr is greater than the popped clement, 
then nextNearestGreater is the next grealer element for the popped element. Keep popping from the stack while 
the popped element is smaller than nextNearestGreater. nextNearestGreater becomes the next greater clement for 
all such popped elements. If nextNearestGreater is smaller than the popped element, then push the popped 
clement back. 

def replaceWithNcarestGrcatcrElcmentWithStack(A): 
i -o 
S ~ Stack() 

$.push(A[OJ) 
for i in range(O,le.n(A)): 

nextNearestOrealcr "' Ali] 
if not S.isEmpty(): 

element $.pop() 
while (clement < nextNearestGrcatcr): 

print(slr(elemenl)+"-->"+str(ncxtNearestGreater) 
if S.isEmpty(): 

break 
clement • S.pop() 

if element> ncxtNearestGreatcr: 
S. push(clcment) 

S. push(nextN carcstGreater) 

while (not S.isEmpty()): 
element= S.pop() 
nextNearesLCrenter • float("-inr') 
print(str(elcmcnt) • "~" 1 str(ncxlNearestGrcatcr) 

rcplaceWithNcarestGreaterElcmentWithStack{l6, 12, 4, I, 2, 111, 2. 2, 10]) 

Time Complexity: 0(11). Space Complexity: O(n). 

Problem-30 

Solution: 

def reordcrList(self, head): 
if head == None: 

return head 
stack= U 
temp= head 
while temp != None: 

stackappend(temp) 
temp = temp.next 

list= head 
fromHead =head 
fromStack = True 
while (fromStack and list I sluckl- 1 IJ or ( not fromStnck and lisl != fromHead): 

if fromStack: 

else: 

from Head • from I lead.next 
list.next= stack.pop() 
fromStack = False 

list.next= fromHcad 
fromStack "'True 

list .. list.next 
list.next= None 

Time Complexity: O(n). Spucc Complexity: O(n). 
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( ~11 1\ l >rr1~R 

QUEUES 5 

5.1 What is a Queue? 
A queue is a data structure used for s to ring data (s imilar to Linked Lists and 8tncks). In queue, the order in 
which dula a rrives is importnnl. In genera l, a que ue is a line of people or things waiting to be served in 
seque ntial order starling at the beginning of the line or sequence. 

Definition: A queue is an ordered list in which insertions are done at one end (rear) and deletions a rc done a l 
other end u ·1·011t). The first cleme nt to be inserted is the firs t one Lo be deleted. Hence, it is called First in First 
out (PIPO) or Last in Last out (LILO) list. 

Similar to Stacks, special numcs urc given to the two changes thnt can be made to a queue. When an clement is 
inserted in a queue, the concept is en lied HnQ11e11e, and when an clement is removed from the queue, the concept 
is culled DeQueue. 

DeQ11e11emg an empty queue is called underflow a nd EnQueuing an element in a full queue is called overflow. 
Generally, we treat them as exceptions. As an example, consider the snapshot of the queue. 

Elements ready 
lo be served 
(DcQueue) 

front 

5.2 How are Queues Used 

rear 
New clements ready 
to enter Queue 
(EnQucuc) 

The concept of a qucuc cun bc explained by observing a linc ul a rcser-vation cou nt er. When we e nte r t hc line wc 
stand ut thc e nd of thc line und the person who is at the fron t of the line is the onc who wi ll bt; servcd nexl. I le 
will ex it the queuc a nd be scrvccl. 

As this happens, thc next person wi ll come al the head of the lin e, wi ll exit the qucuc and wi ll be scr-vcd. As each 
person al the head of the line kee ps exiting the queue, we move towards the head of the lin c. Finally we will 
reach the head of the line nncl we will exit the queue and be ser-ved. This behavior is very usefu l in cases whcrc 
there is a need to maintain thc order of arrival. 

5.3 Queue ADT 
Thc following operations mnkc u qucue an ADT. Insertions and dclctions 111 the queue must follow tlw FIFO 
schcmc. For s implicity we assume the clements arc integers. 
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Main Queue Operations 

• EnQucue(inl data): Inserts an elcmenl at the end of the queue 
• inl DcQueuc(): Removes and returns the clement at the front of the queue 

Auxiliary Queue Operations 

• int Front(): Returns the clement at the front without removing it 
• int QucueSizc(): Returns the number of e lements stored in the queue 
• int IsEmptyQueue(): Indicates whether no e lements arc stored in the queue or not 

5. 4 Exceptions 
Similar lo other ADTs, executi ng DeQueue on an empty queue throws an " Empty Queue Hxceptio11" a nd executing 
H11Q11e11c on a full que ue throws u " Fu/I Queue J;'xception". 

5.5 Applications 
rollowing arc the some of the applica lions tha t u se queues. 

Direct Applications 

• Operating systems schedule jobs (with equal priority) in the order of arrival (e.g., o print queue). 
• Simulution of rea l-world queues such as lines at a licket counter or any other first-come first-served 

scenario requires a queue. 
• Mulliprogramming. 
• Asynchronous data transfer (file 10, pipes, sockets). 
• Waiting times of c ustomers a l call center. 
• Determining number of cashie rs to have at a supermarket. 

Indire ct Applica tions 

• Auxiliary data structure for a lgorithms 
• Component of olher data structures 

5.6 Implementation 
There arc muny ways (simila r Lo Stacks) of im plementing queue operations and some of the commonly used 
methods ore listed below. 

• Simple c irc ula r n rrny based im ple mentation 
• Dynnm ic c ircu lur u rroy bused implementation 
• Linked list implcmcn tntion 

Why Circular Arrays? 
Firsl, let us sec whether we can use simple arrays for implementing queues as we have done for stacks. We 
know that, in queues, the insertions are performed at one end and deletions a re performed at the other end. 
Afler performing some insertions and deletions the process becomes easy to understand. 

In the exumplc s hown below, it ca n be seen clearly that the initial s lots of the array arc getting wasted. So, 
simple urruy implementation for queue is not efficient. To solve this problem we assume the orrays as c irc ula r 
urruys. Thnt means, we treat the last clement and the first urruy clements os contiguous. With this 
rc prcsentcHion, if there arc any free s lots al the beginning, the rear pointer can easily go lo its next free slot. 

front rear 

5.4 Exccplions 

New clements rcndy to 
enter Que ue (e nQue ue) 
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Note: The simple circular array and dynamic circular array implementations are very similar to stack array 
implementations. Refer to Stacks chapter for analysis of these implementations. 

Simple Circular Array Implementation 
Fixed s i;1,c urray 

rear 

front 

This simple implementation of Qu<•uc /\DT uses nn nrrny. In the array, we add elements circularly and use two 
variables to keep track of the start elc.:ment and end clement. Generally, front is used to indicate the start element and 
rear is used LO indicate the encl c·kment in the queue. 

The array storing the qm·ue clements may become full. /\n /:"11Qucue operation will then throw a full queue exceptio11. 
Similarly, if we t ry deleting nn clcmC'nt from an empty qu<'u<' ii will throw empty queue cxccptio11. 

Note: ln11ially, both front and n·nr pomts to - I which md1cntcs thnt the queue is empty. 

class Queue(objcct): 
def _ init_ (self, limit • 5): 

self.que = II 
self.limit = limil 
self.front = None 
self.rear = None 
self.size = 0 

def isEmpty(1:1clf): 
return self.size < 0 

def enQucue(self, item): 
if self.size >= self. limit: 

print 'Queue Overflow!' 
return 

else: 
sdf.quc.appcnd(.item) 

if self.front is None: 
self.front • self.rear= 0 

else: 
self.rear • self.size 

self.size += 1 
print 'Queue after cnQueu e',self.que 

def deQucuc(sclf): 
if sclf.si7.c <= 0: 

else: 

print 'Queue Undcrnowl' 
return 0 

self.quc. pop(O) 
self.size ... I 
if self.size =- 0: 

self. fron t= self.rear None 
else: 

self.rear - sclf.si7,c- l 
print 'Queue after dcQucuc',sclf.quc 

def queueRcar(sclf): 
if self.rear is None: 

print "Sorry, the queue is empty!" 
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raise lndexError 
return self.quc[self.rcar] 

def qucueFront(sell): 
if self.front is None: 

print "Sorry, the queue is cmplyl" 
raise lndexError 

rct urn self.quclsclf. front] 

def size(self): 
return self.size 

que = QueueO 
quc.cnQueue("first ") 
print "Front: "+que.queueFrontO 
print "Rear: "+quc.qucucRcarO 
quc.enQueue("sccond") 
print "Front: "+que.queucFront() 
print "Rear: "+quc.qucucRcar() 
quc.enQueue("third") 
print "Front: "+quc.qucucFront() 
print "Rear: ''+que.queucRcar() 
quc.deQueueO 
print "Front: "+que.qucucFront() 
print "Rear: "+quc.qucucRcar() 
que.dcQueue() 
print "f'ront: "+que.qucucFront() 
print "Rear: "+quc.queucRear() 

Performance and Limitations 
Performance: Let n be the number of e lements in the queue: 

Queues 

eralions 

Limitations: The maximum size of the queue must be defined as prior and cannot be changed. Trying to 
£11Que1w a new e lement inLO a full queue causes an implementation-specific exception. 

Dynamic Circular Array Implementation 

class Queue(object): 
def _ init_ (self, limit • 5): 

self.que = II 
self.limit = limit 
self.front = None 
self.rear None 
self.siY,c • 0 

def isEmpty(sell): 
return sclf.si7,c < 0 

def enQueue(self, item): 
if self.si7.c >= self. limit: 

self. resize() 

self.que.append(itcm) 

if self.front is None: 
self.front $t:lf.rear .. 0 

else: 
self.rear • Helf.size 

self.size ..... 1 
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print 'Queue after en Queue' ,self.que 
def dcQucue(sclf): 

if self.si7£ <- 0: 

else: 

print 'Queue Underflow!' 
return 0 

sclf.que. pop(O) 
self.size -= l 
if self.size == 0: 

self.front = self.rear= None 
else: 

self.rear= self.size-! 
prinl 'Queue after deQucue' ,self.que 

def qucucRear(sclf): 
if self.rear is None: 

print ''Sorry, the queue is empty!" 
rafoe lndexErTor 

return self.que!self.rear) 

def queueFront(sclf): 
if self.front is None: 

print "Sorry, the queue is empty!'' 
ruise lndcxError 

return self.que(sclf.front) 

def si:-,c(self): 
return self.size 

def rcsize(self): 
newQue = list(self.quc) 
self.limit - 2*self.limit 
self.quc newQue 

quc = Queue() 
que.cnQueue("first") 
print "Front: "+que.qucueFront() 
print "Rear: ''+que.queueRear() 
que.enQueue(''second") 
print "Fronl: "+que.queueFront() 
print "Rear: "+que.queueRear() 
que.enQueuc("LhiJ'd") 
print "Front: "+quc.queucFronl() 
print "Rear: "+quc.qucueRear() 
que.cnQueue("four") 
print "Front: "+que.queueFronlQ 
print "Rear: "+que.qucucRear() 
quc.cnQueue("fivc") 
print "Front: "+quc.queueFront() 
print "Rear: "+que.queucRcar() 
quc.enQucue("six") 
print "Front: "+quc.queueFront() 
print "Rear: "+que.queueRear() 
que.deQueueO 
print "Fronl: "+que.queueFront() 
print "Rcur: " ·~quc.qucueRcar() 

quc.dcQucuc() 
print "Front: "+quc.queueFront() 
print "Rear: "+que.qucucRear() 

Performance 

5.6 Implcmcntalion 

Queues 
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Let 11 be the number of clements in the queue. 

era lions 

Linked List Implementation 
Another way of implementing queues is by using Linked lists. E11Q11eue operation is implemented by inserting an 
clement ut Lhe end of the lisl. DeQueue operation is implemented by deleting an element from the beginning of 
Lhe lisl. 

I 4 

t 
I =H~_1 s ~--·~l -7~1 ·~I _4o~I~ 

f 
front 

#Node of a Singly Linked List 
class Node: 

ltconstructor 
def _init _ (self, data• None, ncxt=None): 

self.data = data 
self.last = None 
self.next= nc.xl 

llrnethod for setting the data field of the node 
def selData(sclf,data): 

self.data = data 
#method for getting the data field of the node 
def getDac.a(selQ: 

return self.data 
#method for setting the next field of the node 
def setNext(self,next): 

self.next= next 
ff method for getting the next field of the node 
def getNcxt(sclQ: 

return self.next 
#method for setting the last field of the node 
def sctLast(self,last): 

self.last"" last 
#method for getting the last field of the node 
def getLas t(sclij: 

return self. last 
#returns true if the node points to another node 
def hasNcxt(self): 

return self.next f- None 
class Queue(object): 
def _init (self, data•None): 

self.front = None 
self. rear = None 
self.s i7.e = 0 

def enQueue(self, data): 
sclf.lastNodc self.front 
::>cir.front= Node(data, self.front) 
if sclf.lastNodc: 

self. laslNodc.scll .. ast(self. front) 
if self.rear is None: 

self.rear = self.front 

5.6 Implementation 

rea r 
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self.si7.e += I 

def queueRear(seU): 
if self.rear is None: 

pri nt "Sorry, lhe queue is empty!" 
raise lndcxError 

return sclf.rcar.gclDala() 

def queueFront(seU): 
if self.front is None: 

print "Sorry, the queue is empty!" 
raise IndexError 

return self. front. getData() 

def deQueuc(seln: 
if self.rear is None: 

print "Sorry, the queue is empty!" 
raise lndexError 

result = self. rear.gctData() 
self.rear = self.rear.last 
self.size -= 1 
return result 

def size(sel~: 
return sclf.si7.e 

que = Queue() 
que. cnQueue(" first") 
print "Front: "+que.queueFront() 
print "Rear: "+que.queueRear() 
que.enQueue("second") 
print "Front: "+quc.queueFront() 
print "Rear: "+qut:.queueRear() 
que.enQucue("third") 
print "Front: "+quc.queueFronl() 
print "Rear: "+quc.qucueRear() 
print "Dequeuing: "+que.deQucuc() 
print "Front: "+quc.queueFront() 
print "Rear: ''+que.queucRear() 

Performance 
Let 11 be the number of clements in the queue, then 

Space Complexity (for n EnQueue operations) 
Time Complexity of E;;nQueue() 
Time Complexity of DeQueue() 
Time Complexity of IsEmptyQueue() 
Time Complexity of DeleteQueue() 

Comparison of Implementations 

0(11) 

0(1) (Average) 
0(1) 

0(1) 

0(1) 

Note: Comparison is very simila r lo slack implementations and Stacks chapter. 

5.7 Queues: Problems & Solutions 

Queues 

Problem-1 Give an a lgorithm for reversing a queue Q. To access the queue, we arc only allowed to use the 
methods of queue ADT. 

Solution: 

class Stack(object): 
def _init_(self, limit= I 0): 

self.stk = 11 
self.limit = limit 

def isEmpty(seU): 
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return len(self.stk) <= 0 

def push(setr, item): 
if len(self.stk) >=self.limit: 

print 'Stack Overflow!' 
else: 

self.stk.appcnd(item) 
print 'Stack after Push',self.stk 

def pop(self): 
if len(self.stk) <= 0: 

else: 

def peek(self): 

print 'Stack Underflow!' 
return 0 

return self.st k. pop() 

if len(self.stk) <• 0: 

else: 

def size(self): 

print 'Stack Underflow!' 
return 0 

return self.stkl-11 

return len(self.stk) 

#Node of a Singly Linked List 
class Node: 

#constructor 
def _ injt_ (sclf, data=None, next=None): 

self.data = data 
self. last = None 
self.next = next 

#method for setting the data field of the node 
def setDoLa(sclf,data): 

self.data = data 
#method for gelling lhe data field of the node 
def getOal~(self): 

return self.dat.a 
#method for setting the next field of the node 
def setNext(self,ncxt): 

self. next = next 
#method for get ting the next. field of the node 
def gelNexl(sell): 

rct urn self.next 
#method for sellfog the last field of the node 
def setLast(self, last): 

self. last = last 
#method for getting the last field of the node 
def getLast(sclf): 

rct urn self.last 
##returns true if the node points to another node 
def hasNcxt(t:iclf): 

return self.next I None 

class Queue(object): 
def irut_(self, data=None): 

self.front= None 
self.rear= None 
self.size = 0 

def enQucue(sclf, dat.a): 
self.lastNode - self.front 
self.front= Node(data, self.front) 
if sclf.lastNodc: 

self.lastNodc.setLasl.(selL front) 
if self.rear is None: 

self.rear= self.front 

5.7 Queues: Problems & SoluLions 

Queues 
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self.si7.c += 1 

def queueRcar(sel1): 
if self.rear is None: 

print "Sorry, Lhe queue is empty!" 
raise lndcxError 

return self.rcar.gelOata() 

def queucFront(self): 
if self.front is None: 

print "Sony, the queue is empty!" 
raise JndexError 

return self.front.getData() 

def dcQueuc(sclf): 
if self.rear is None: 

print "Sony, the queue is empty!" 
raise lndcxError 

result .. sclf.rear.getData() 
self.rear = self.rear.last 
sclf.si7.c -= 1 
return result 

def si7,c(self): 
return self.size 

def isEmpty(self): 
return self.size == O 

que - Queue() 
for i in xrange(S): 

que.enQueue(i) 

# suppose your have a Queue my queue 
aux stack= Stack() 
while not quc.isEmpty(): 

aux stack. push(que.deQucueOJ 

while not aux_stack.isEmpty(): 
que.enQueue(aux stack..popOJ 

for i in xrange(S): 
print que.deQueue() 

Time Complexity: 0(11). 

Problem-2 I low cun you implement a queue u si ng two stacks':' 

Queues 

Solution: The key insight is that a 8luck reverses order (while a queue doesn't). A sequence of clements pushed 
on a slack comes bnck in reversed order when popped. Consequcnl ly, Lwo slacks chuined togclhe1· will relurn 
clements in the same order, since reversed order reversed again is origina l order. 

Let SI and S2 be the two stacks to be used in the implementation of queue. All we have to do is to define the 
EnQueue and DcQueuc operations for the queue. 

EnQueue Algorithm 

• ,Just push on 10 stack SI 

Time Complexity: 0(1). 

DeQueue Algorithm 

• If stack S2 is not empty then pop from S2 and return that clement. 
• If stack is empty, then transfer all elements from Sl to S2 and pop the top clement from S2 and return 

that popped clement [we con optimize the code a little by trnnsfcrring only 11 - 1 elements from S I to S2 
nncl pop the 11 th clement from SI and return thnt popped clcmenlj. 

• If stack SI is nlso empty then throw e rror. 

Time Complexity: Prom the a lgorithm, if lhc stack S2 is nol empty lhe11 the complexity is 0(1). If I.he stack S2 is 
em ply, then we need to transfer lhc c lements from S I lo S2. 0111 if we can;f"ully observe, the number of 
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transferred elements and the number of popped elements from S2 are equal. Due to this the average complexity 
of pop operation in this case is 0(1). The amorti7.ed complexity of pop operation is 0(1). 

class Queue(objec t): 
def _ init_ (sclf): 

sclf.S I - II 
sclf.S2 II 

def enqueuc(sclf,clcmenl): 
sclf.Sl.append(element) 

def dequeue(sclf): 
if not self.S2: 

while sclf.S I: 
sclf.S2.appcnd(sclf.S l.pop()) 

return sclf.S2.pop() 

q = Queue() 
for i in xrangc(S): 

q.cnqueuc(i) 
for i in xrange(S): 

print q.dcqueuc() 

Problem-3 Show how you con efficiently implement one stack us ing two queues. Analyze the running Lime 
of the stack opcru tions. 

Solution: IA:l Q I n11cl Q2 be the two queues to be used in the implcmcnlnlion of stock. All we have to do is to 

define the push a nd pop opera tions for the s tack. 

In the algorithms below, we make sure that one queue is a lways empty. 

Push Operation Algorithm: Insert the clement in whichever queue is not empty. 
• Check whether queue QI is empty or not. If Q 1 is empty then Enqueue the clement into Q2. 
• Otherwise EnQucue the clement into QI. 

Time Complexity: 0(1). 

Pop Operation Algorithm: Transfer n - 1 clements Lo the other queue and delete last from queue for performing 
pop operation. 

• If queue QI is not empty then tra nsfer n - 1 elements from QI to Q2 a nd then, DeQueue the last 
c lement of QI a nd return it. 

• Jf queue Q2 is not empty then transfer n - 1 elements from Q2 to QI a nd then, DcQueue the last 
clement of Q2 nnd return it. 

Time Complexity: Running time of pop operalion is 0(11) us cuch time pop is culled, we urc Lrunsfcrr ing a ll Lhe 
clements from one queue to the other. 

class Qucue(objcct): 
def iniL (self): 

self.queue=(] 

def isEmpty(sclf): 
return sclf.qucuc==ll 

def enqucuc(sclf,x): 
sclf.qucue.append(x) 

def dequcuc(sclf): 
if self.queue: 

else: 

def si7..c(sclf): 

a=self.queuefO] 
self.queue.remove(a) 
return a 

raise lndexError,'queue is cmply' 

rcLurn lcn(::;clf.queu c) 

class Stuck(objccl): 
def _ init . (self): 

self.Ql=Qucue() 
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self. Q2=QucueO 

def isEmpty(self): 
return self.Ql.isEmpty() and self.Q2.isEmpty0 

def push(self,ilcm): 
if sclf.Q2.isEmpty(): 

sclf.Q 1.enqueuc(ilem) 
else: 

self.Q2.enqueuc(itcm) 

def pop(selQ: 
if self.isEmply(): 

raise Index.Error, 'st.ack is empty' 
elif selJ.Q2. is Empty(): 

else: 

stk =Stack() 
for i in xrange(5): 

stk. push(i) 
for i in xrange(S): 

print sLk.pop() 

while not self.Ql.isEmpty(): 
cur=self.Q I .dequeue() 
if self.Q l .isEmpty(): 

return cur 
self. Q2.enqucue(cur) 

while not self.Q2.isEmpty(): 
cur=sclf.Q2.dcqueue() 
if sclI.Q2.isEmpty(): 

return cur 
seLf.Q 1.cnqucuc(cur) 

Queues 

Problem-4 Maximum sum in sliding window: Given a rray All with sliding window of size w which is 
moving from the very left of the orray lo the very righl. Assume that we can on ly sec the w numbers in the 
window. Each lime the s liding window moves rightwards by one position. ror example: The array is 11 3 - 1 -3 
5 3 6 71, and w is 3. 

Window position Max 

11 3 -1) -3 5 3 6 7 3 
l [3 - 1 -3] 5 3 6 7 3 

1 3 [- 1 -3 51 3 6 7 5 
I 3 - L l-3 5 3[ 6 7 5 
I 3 - 1 -3 15 3 61 7 6 

l 3 - 1 -3 5 [3 6 71 7 

Input: A long array Al], and a window width w. Output: An auay B[], Blil is the maximum value from A[i] to 
Al i+w-1 ]. Requirement: r ind a good opli ma l way to get B[i] 

Solution: This problem can be solved with doubly ended queue (which supports insertion and deletion at both 
ends). Refer Priority Queues chapter for algori thms. 

Problem -5 Given a queue Q containing 11 elements, transfer these items on Lo a stack S (initially empty) so 
that front c lement of Q appears al the top of the stack und the ord<~r of all other items is preserved. Using 
enqueue and d equeue operations for the queue, and push and pop operations for the slack, out lin e an 
efficient O(n) algorithm lo accomplish the above task, using on ly u constant amount of additional storage. 

Solution: Assume the c lements of queue Q are a1, a2 •.• a 11 • Dequeuing all c lements and pushing them onto the 
stack will result in a stack with a,, at the top and a1 a t the bottom. This is done in O(rt) Lime as dequeue and 
each push require constant time per operation. The quc.:ue is now empty. By popping al l clements and pushing 
Lhcm on Lhc queue we will get a1 at the top of the stack. This is done again in O(n) time. 

As in big-oh a rithmetic wc can ignore eonslant factors. The process is ca rried out in O(rr) Lime. The a mount of 
adclitionul storage nccdccl here has to be big enough lo tempora rily hold one item. 

Problem -6 A queue is set up in a circu lar aJTay AIO .. n - II with front and rear dcfinc.:d as usual. Assume 
that 11 - 1 locations in the array an: available for storing the clements (with lhc other clement being used to 
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detect full/empty condition}. Give a formula for the number of elements in the queue in terms of rear, front, 
and n. 

Solut ion : Consider Lhc following figure lo get a clear idea of the queue. 

Fixed size array 

rear 

front 

• Rear of Lhe queue is somewhere clockwise from the front. 
• To enqueue an clement, we move rear one position clockwise a nd write the clement in Lhat position. 

• To dequeue, we simply move front one position clockwise. 
• Queue migrates in a c lockwise direction as we enqueue and dequeue. 

• Emptiness and fullness to be checked carefully. 
• Analyze the possible situations (make some drawings to see where front and rear are when the queue is 

empty, and partially and totally filled) . We will get this: 

{
rear - front + 1 

Number 0 f Elements = f ont + rear- r n 
if rear == front 

otherwise 

Problem-7 What is the most appropriate data structure lo print clements of queue in reverse order? 

Solution: Stack. 

Problem-8 Implement doubly ended queues. A double-ended queue is an abstract data structure that 
implements a queue for which elements can only be added to or removed from the front (head) or back (tail). It 
is also often called a head-tail linked list. 

Solution: We will create a new class for the implementation of the abstract data type deque. In removeFronl we 
use the pop method lo remove the last element from the list. However, in removcRcar, the pop(O) method must 
remove the fi rst clement of the list. Likewise, we need to use the insert method in addRear since the append 
method as1>umcs the addition of a new clement lo the end of the list. 

class Deque: 
def _init _(self): 

self.items= II 
def isEmpty(selD: 

return self.items == LI 

def addFront(self, item): 
sclf.itcms.appcnd(item) 

def addRear(sclf, item): 
self. items. il'iscrt(O, item) 

def removeFront(selD: 
return self.items.popO 

def removeRear(sell): 
return self. i terns. pop(O) 

def si~e(sell): 
return Jen(self.ilems) 

Problem-9 Given u st.ack of illlegers, how do you check whether each successive pair of numbers in the 
stack is consecutive or not. The pairs can be increasing or decreasing, and if the stack has an odd number of 
elements, the e lement at the Lop is left out of a pair. For example, if the stack of clements a rc [4, 5, -2, -3, 11, 
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10, ~· 6, 20J, then the output should be true because each of the pairs (4, 5), (-2, -3), (11, 10), and (5, 6) 
consists of consecutive numbers. 

Solution: 

import math 
def checkStackPairwiseOrder(stJc): 

quc = Queue() 
pa irwiseOrdered = l 
#Reverse Stack elements 
while not stk.isEmpty(): 

que.enQueue(stk.pop()) 
while not que.isEmpty(): 

stk. push (quc.deQueue()) 

while not stk.isEmply(): 
n = slk. pop() 
que.cnQueuc(n) 
if not slk isEmpty(): 

m = stk.pop() 
que.enQueue(m) 
if (a bs(n - m) I= l): 

pairwiseOrdered = 0 
break 

while not que.isEmpty(): 
stk. push(q uc.deQueue()) 

return pairwiseOrdercd 

stk = Stack() 
stk.push(-2) 
stk. push(-3) 
stk.push(l 1) 
slk.push(lO) 
stk.push(5) 
slk.push(6) 
stk. push(20) 
slk.push(21) 
print checkStackPa irwiseOrder(stk) 

Time Complexity: O(n). Space Complexity: O(n). 

Problem-10 Given a queue of integers, rearrange the elements by interleaving the first half of Lhc lisl with 
the second half of the lis t. For example, s uppose a queue s tores the fol lowing sequence of va lues: 11 1, 12, 13, 
14, IS, 16, 17, 18, 19, 201. Consider the two ha lves of this list: firs t ha lf: jl l , 12, 13, 14, 151 second hnlf: 116, 
17, 18, 19, 20]. These arc combined in an a lternating fashio n to form a sequence of interleave pairs: the first 
values from each ha lf (11 a nd 16), then Lhc second values from each half ( 12 a nd 17), then the Lhircl values 
from each ha lf (1 3 a nd 18), a nd so on. In each pair, the value from the firsl ha lf appears before the value from 
the second half. Thus, a fte r the call, the queue stores Lhe following values: j11, 16, 12, 17, 13, 18, 14, 19, 15, 
20]. 

Solution: 

clef inlcrLeavingQueuc(que): 
slk = StackQ 
halfSize = quc.sizc/ / 2 
for i in range(O,halfSize): 

stk. push(que.deQueue()) 
while not stk.isEmpty(): 

que.enQueue(stk. popQ) 
for i in range(O,half'Size): 

que.cnQueue(que.deQueue()) 
for i in range(O,halfSi7.c): 

stk.push(quc.deQueue()) 
whilt! not stk. is fO:mpty(): 

que.enQueuc(slk.pop()) 
que.enQueue(que.deQucue()) 

que = Queue() 
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quc.enQueue(l l) 
que.enQueue( 12) 
que.enQueue( 13) 
quc.cnQucue( 14) 
quc.enQueue( 15) 
que.enQueue(l6) 
que.enQueue(l 7) 
quc.cnQucue( 18) 
que.enQueue(19) 
que.enQueue(20) 

interLeavingQueue(que) 

while not que.isEmptyO: 
prinl quc.deQueueO 

Time Complexity: O(n). Space ComplcxiLy: O(n). 

Queues 

Problem-11 Give n a n integer k a nd a queue of integers, how do you reverse the order of the first k elem ents 
of Lhe q ueue, leaving the other elemen ts in the same relative order? For example, if k=4 and queue has lhc 
clemcnls po, 20, 30, 40, 50, 60, 70, 80, 90); the output should be [40, 30, 20, 10, 50, 60, 70, 80, 90]. 

Solution: 

def reverseQueucFinstKElements (que, k ): 
stk = Stack() 
if quc .. = None or k > quc.sizc: 

relum 
for i in range(O,k): 

stk.push(que.deQueue()) 
while not stk.isEmpty(): 

que.enQueue(s tk.pop{)) 
for i in range(O,que.si:r..e-k): 

que.enQucuc(que.deQueue()) 

que a Queue() 
quc.enQueue(J 1) 
que.enQueue( 12) 

que.enQueue(l3) 
que.enQueue( 14) 
que.cnQueue{lS) 
que.enQueue( 16) 
que.enQueue( 1 7) 
quc.cnQueue(18) 
quc.cnQueue( 19) 
que.cnQueue(20) 
que.enQucuc(21) 
que.enQueue(22) 

reverscQueueFirstKElements(que, 4) 

while not que. isEmpty(): 
prinl que.deQueue() 

Time Complexity: 0(11). Space Complex iLy: 0 (11). 

Problem -12 Implement producer consumer problem with pyLhon threads and queues. 

Solution: 

#!/usr/bin/env python 
from random import randint 
from time import sleep 
.from Queue import Queue 
from myThread import MyThrcad 

def writeQ(queuc): 
print 'producing object for Q .. .', 
queuc.put('MONK', 1) 
print "size now'', qucue.qsizc() 
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def readQ(queue): 
val= queue.get(l) 
print 'consumed object from Q ... size now', queue.qsize() 

def producer(queuc, loops): 
for i in rangc(loops): 

writeQ(qucue) 
slcep(randint(J, 3)) 

def consumer(queue, loops): 
for i in range(loops): 

readQ(queue) 
sleep(randint(2, 5)) 

funcs =(producer, consumer! 
nfuncs = range(lcn(funcs)) 

nloops = randint(2, 5) 
q .. Queuc(32) 

threads=[] 
for i in nfuncs: 

t = MyThread(funcsliJ, {q, nloops), 
funcsli]. name_ ) 

t:hrcads.append(t) 

for i in n funcs: 
lhrcads[il .starl() 

for i in nfuncs: 
threadsli].join() 

print 'all DONE' 

Queues 

As you can see, the producer and consumer do not necessarily a lternate in execution. In Lh is solution, we use 
the Queue. We use random.randint() to make production and consumption somewhat varied. 

The writeQ() and rcadQ() functions each have a specific purpose: to place an object in the queue-we arc u:-;ing 
the string 'MONK', for example-and to consume a queued object, respectively. Notice that we urc producing one 
object and reading one object each 1 imc. 

The producer() is going to run as a single thread whose sole purpose is to produce a n item for the queue, wait 
for a bit, and then do it again, up to the specified number of times, chosen randomly per script execution. The 
consumer() will do likewise, with the exception of consuming an item, of course. 

You will notice Lhat Lhe random number of seconds that the producer sleeps is in general shorter than Lhe 
amount of lime the consumer s leeps. This is lo discourage the consumer from trying to lake items from a n 
empty queue. By giving the producer a s horter lime period or wailing, it is more like ly lhal there will a lready be 
a n object for the consumer lo consume by the Lime their turn rolls around again. 

These are just setup lines to set the total number of threads Lhat arc to be spawned a nd executed. 

Finally, we have our main() function, which should look quite similar to the main() in all of Lhe other scripts in 
this chapter. We create the appropriate threads and send them on their way, finishing up when both threads 
have concluded execution. 

We infer from this example that a program that has mu ltiple tasks to perform can be organized to use separate 
threads for each of the tasks. This con result in a much cleaner program design than a sin~lc - thrcaded program 
thal attempts to do a ll of the tasks. 

We illustrated how a single-threaded process can limit an applicat ion's performance. In partic u lar, programs 
with independent, non -determinisLic, and non-causal tasks that execute sequentially can be improved by 
division into separate tasks executed by individual threads. Nol a ll applications will benefit from multithrea ding 
due to overhead and the fact that Lhc Python interpreter is a single-threaded application, but now you ~u-e more 
cogni7..ant of Python 's threading capabilities and can use Lhis tool to your advantage when appropriate. 

Problem-13 Given o string, write a Python mclhod to check whether it is u palindrome or nor using doubly 
ended queue. 

Solution: 

class Dequc: 
def _init_(self): 

self.items = II 
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def isEmpty(scll): 
return self.items == U 

def addFront(sclf, itetn): 
sclf.items.appcnd(item) 

def addRear(self, item): 
self. items. inscrt(O,item) 

def removeFronl(self): 
return self.items. pop() 

def removeRear(seli): 
return self.items.pop(O) 

def si7..e(sell): 
return len(sclf.itcms) 

def palchccker(aString): 
chardeque = Dequc() 

for ch in aSlring: 
chardequc.addRear(ch) 

stillEqual = True 

while chardeque.si;.-..e() > 1 and stillEqual: 
first = chardeque. removeFront() 
last = cbardeque.removcRcar() 
if rtrSt != last: 

stillEqual = False 

return stillEqual 

prin t(palcbecker("lsdkjf skr')) 
prin t(palchecker(" madam")) 

Time Complexity: O(n). Space Complexity: O(n). 
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CIIAI>TEl{ 

TREES 6 
."t ;. 

6.1 What is a Tree? 
A tree is a data structure similar to a linked LisL but instead of each node poinling simply to Lhe next node in a 
linear fashion, each node points to a nu mber of nodes. Tree is an example of non-linea r data ::;tructurcs. J\ Lrce 
struc ture is a way of represen ting I he hierarchical na ture of a s truc ture in a graphical form. 

In trees ADT (Abslraet Data Type), the o rder of lhc clements is not important. If we need ordering information 
linear data structures like linked lists, stacks, queues, elc. cn n be used. 

6.2 Glossary 

• Th e root of a tree is Lhc nod<" with no pa ren ts. There ca n bl! nl most one rool node in a tree (node 11 in the 
above example). 

• An eclge refers to the link from parent to child (all links in the figure) . 
• A node with no children is called leaf node (!-:,}, K, II and /). 
• Children of same parent arc called siblings (IJ, C, D arc sibling::; of A, and £. P nre the siblings of H). 
• A node p is an ancestor of node q if there exists a path from root to q and 11 appears cm the path. The node q 

is cn llcd a descc11da11l of 11. l"or 1:xmnple, 11, C nncl r. arc t he ancl!stor::; of K. 

• The set of a ll node::; at u givl!n depth is called the level of the tree (8, C and I) arc the same level) . The rool 

nodl! is at level zero. 
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root 
Level-0 

Level- I 

Lcvel-2 

• The depth of a node is the length of the path from the root to the node (depth of G is 2, A - C - G). 

• The height of a node i s the length of the path from that node to the deepest node. The height of a tree is the 
length of the path from the root lo the deepest node in the t rec. A (rooted) tree with on ly one node (the root) 
has a heigh t of zero. In the previous example, lhc height of IJ is 2 (8 - F - J). 

• J/ei,qht of the tree is the maximum height among all the nodes in the tree and depth of the tree is the 
maximum depth among all the nodes in the tree. For a given tree, depth and height returns the same value. 
But ror individual nodes we muy r~el different results. 

• The si.Y,c of a node is the number of descendants it has including itself (the si:1,c o f the subtree C is 3). 

• If ever)' node in a tree has only one child (except leaf nodes) then we call such trees skew trees. If every node 
has only left child then we call them left skew trees. Similurly, if every node has only right child then we call 
them right skew trees. 

root 
root 

Left Skew Tree 
Skew Tree 

Right Skew Tree 

6.3 Binary Trees 
A tree is called binary tree if each node has zero chi ld, one child or two children. Empty tree is also a valid binary 
tree. We can visualize a binary tree as consisting of a root and two disjoint binary trees, called the left and right 
su btrecs of the root. 

Gene ric Binary Tree 

root 

Example 
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6.4 Types of Binary Trees 
Strict Binary Tree: A binary tree is called strict binary tree if each node has exactly two children or no children. 

root 

Full Binary Tree: A binary tree is ca lled {111/ binary tree if each node has exactly two c hi ld ren a nd a ll leaf nodes 
urc at the same level. 

Complete Binary Tree: Bt::fore de fin ing the complete /Ji11(lry tree, let us assume that the he ight of the binary tree 
is h. In complete bina ry trees, if wc give numbering for the nodes by s tarting al the root (let us say the root node 
hus I) then we get u complete sequence from 1 to the number of nodes in the t ree. Wh ile travers ing wc shou ld 
g ive numbering for NULL pointers u l:,;o. A binary tree is cu lled co111plete bi11ury tree if n il leuf nodes arc a t height /1 
or Ji - I and also without any missing number in the sequence. 

6.5 Properties of Binary Trees 
For the following properties, let us assume that the height of the tree is h. AJso, ::issumc that root node is at 
heigh t ;r,cro. 

Height Number of nodes at level /1 

,, = 0 zo : I 

h - l 21 :; 2 
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h = 2 22 = 4 

From the diagram we can infer the following properties: 

• The number of nodes n in a full binary tree is 2h 11 
- 1. Since, there arc h levels we need lo add all nodes 

aL each level [2° + 2 1+ 22 + ... + 211 = zh+t - I]. 
• The number of nodes 11 in u complete binary tree is between 2h (minimum) and zh H - 1 (maximum). For 

more information on this, refer to JJriority Queues cha pler. 
• The number of leaf nodes in a full binary tree is 21

'. 

• The number of NULIJ links (wasted pointers ) in n complete binury tree of n nodes is n + I . 

Structure of Binary Trees 

Now lcl us define structure of lhc binary tree. One way to represent a node (which contains data) is to have two 
links which point to left and right children a long with data fields as shown below: 

data Or ~ 

'"Binary Tree Class and its methods"' 
class Binary'frecNodc: 

def _ init_ {self, data): 
self.data = data 
self.left = None 
self.right - None 

Usct data 
def setDat.a(sclf, dat.a): 

self.data = data 
#get data 
def getData(self): 

return self.data 
#Igel left child of a node 
def gelLeft(sclf): 

return self.lcfl 
#Igel right child of u node 
def getR.ighl(self): 

return self. right 

#root node 
#left child 
#right child 

Note: In trees, the default now is from paren t to children and it is not mandatory to show directed branches. For 
our discussion, we assume both the representations shown below arc the same. 

~ ~ 
Operations on Binary Trees 

Basic Operations 

• Inserting an element into a tree 
• Deleting an element from a tree 
• Searching for an clement 
• Traversing the tree 

Auxiliary Operations 

• Finding the size of the t ree 
• Finding Lhe height of the trc.:c.: 
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• rinding the level which has maximum sum 
• rinding the least common ancestor (LCA) for a given pair of nodes, and many more. 

Applications of Binary Trees 
Following nrc the some of the upplie11tions where 1Ji11aT"y trees piny nn important role: 

• Expression trees are used in compilers . 
• I luffman coding tree::; that arc used in data compression algorithms. 
• Binary Search Tree (BST), which supports search, insertion and deletion on a collection of items in 

O(logn) (average). 
• Priority Queue (PQ), which support::; search and deletion of minimum (or maximum) on a collection of 

items in logarithmic time (in worst case). 

6.6 Binary Tree Traversals 
In order to process trees, we need 11 mechanism for traversing them, a nd that forms the su~ject of this section . 
The process of visiting a ll nodes of a tree is called tree traversal. Each node is processed on ly once but il may be 
visited more than once. /\s we have a lready seen in linear daLa structures (like linked list:>, stacks, queues, etc.), 
the clements are visited in sequential order. But, in tree structures there arc many different ways. 

Tree traversal is like searching the tree, except that in traversal the goal is to move through the tree in a 
particular order. In addition, oll nodes are processed in the traversal by searclli11,q stops when the required node 
is found. 

Traversal Possibilities 
Starting at the root of a binary tree, there are three main steps that can be performed and the order in which 
they arc performed defines the traversal type. These steps arc: performing an action on the current node 
(referred to as "visiting" the node und denoted with "D"), traversing to Lhe left chi ld node (denoted with "/."), and 
traversing to the right child node (denoted with "/?"). This process can be easily described through recursion. 
Based on the above definition there arc 6 possibilities: 

I. I.DR: Process lcrt subtree, process the currcnl node claw and then process right subtree 
2. l.IW: Process lert subtree, process right subtree and then process the current node data 
3. DLR: Process the current node data, process left subtree and then process right subtree 
4. DUI.: Process the current node data, process right subtree a nd then process left subtree 
5. RDL: Process right subtree, process the current node data and then process le ft subtree 
6. RLD: Process right subtree, process left subtree and then process the current node data 

Classifying the Traversals 
Th e sequence in which these cn t ilics (nodes) arc processed defines a pn rt iculur trnversal method. The 
clussification is based on the order in which current node i:> processed. That means, if we arc c lassifying based 
on current node (D) and if D comes in the middle then it docs not matter whether L is on left side of D or U is on 
left side of D. Similarly, it does not matter whether/. is on right side of Dor/? is on right side of D. Due to this, 
the total 6 possibilities are reduced to 3 and these arc: 

• Prcorder (DLR) Traversal 
• lnorder (LOI?) Traversal 
• Postorder (LRD) Traversal 

There is another traversal method which does not depend on the nbovc orders and it is: 

• Level Order Trnversul: This method is in spired from Brcudth F'irst Truven;o l (BPS of Graph algorithms). 

Let us use the diagram below for Lhe rema ining d iscussion. 
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PreOrder Traversal 

In preorder traversal, each node is processed before (pre) either of its subtrees. This is the simplest traversal to 
understand. llowever, even though each node is processed before the subtrees, it still requires that some 
information must be maintained while moving down the tree. In the example above, 1 is processed first, then 
the left subtree, and this is followed by Lhe right subtree. 

Therefore, processing must reLUrn to the right subtree after finishing the processing of the left subtree. To move 
to the right subt rec after processing the left subtree, we must maintain the root information. The obvious ADT 
for such informaLion is a stack. Because of its LIFO structure, it is poss ible to get the information about the 
right subtrees back in the reverse order. 

Preorder traversal is defined as follows: 

• Visit the rool. 
• Traverse the left subtree in Prcorder. 
• Traverse the right subtree in Preorder. 

The nodes of tree would be visited in the order: 1 2 4 S 3 6 7 

# Pre-order 1-ecursivc traversal. The nodes' values arc appended to the result list in travcn;uJ order 
def preorderRecursive(root, result): 

if not root: 
return 

rcsult.appcnd(root.data) 
preorderRccursive(root. left, result) 
preorderRccursive(root.right, result) 

Time Complexity: 0(11). Space Complexity: O(n). 

Non-Recursive Preorder Traversal 

In the recursive version, a stack is required as we need to remember the current node so that after completing 
the left subtree we can go to the right subtree. To simulate the same, first we process the current node and 
before going to the left subtree, we store the current node on slack. After completing the lcfl subtree processing, 
pop the clemc nl nnd go to its right s ubtree. Continue lhis process unti l slack is nonempty. 

#Pre-order iterative traversal. The nodes' values arc appended to the result list in traversttl order 
def preorder _iteraUve(rool, result): 

if not root: 
rel urn 

stack= ti 
stack.appcnd(root) 

while stack; 
node • stack.pop() 
result.append(node.data) 
if node.right: stack.append(node.right) 
if node.lefl: stack.append(node.left) 

Time Complexity: O(n). Space Complexity: O(n). 

I nOrder Traversal 

In lnorder Traversal the root is visited between the subtrees. lnordcr traversal is defined as follows: 

• Traverse the left subtree in lnorder. 
• Vis it the root. 
• Traverse lhc right subtree in Inorder. 

The nodes of tree would be visited in the order: 4 2 5 1 6 3 7 

# Jn-order recursive traversal. The nodes' vaJucs arc appended Lo the result list in traversal order 
def inordcrRccursivc(root, result): 

if not root: 
return 

inordcrRccursive(root. lefl, result) 
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resulLappend(root.data) 
inorderRecursive(root.righl, resuJt) 

Time Complexity: O(n). Space Complexity: O(n). 

Non-Recursive Inorder Traversal 

The Non-recursive version of lnorcler traversal is similar to Prcorclcr. The only chunge is, instead of proccssin~ 
the node before going to left subtree, process it after popping (which is indicated after completion of left subtree 
processing). 

# In-order iterative traversal. The nodes' values are appended to the result list in traversal order 
def inorderlterativc(root, result): 

if not root: 
rel um 

stack= II 
node= root 

while stack or node: 
if node: 

stack.append(node) 
node = node. left 

else: 
node= stack.pop() 
I result.append(nodc.data) 
node = node.right 

Time Complexity: O(n). Space Complexity: O(n). 

Postorder Traversal 

In postorder traversal, the root is visited after both subtrees. Postorder traversal is ddined us follows: 

• Traverse Lhe left subtree in Postorder. 
• Traverse the right subtree in Post<>rder. 
• Visit the root. 

The nodes of the tree would be visited in the order: 4 S 2 6 7 3 

# Post-order recursive traversal. The nodes' values arc appended to the result list in traversal order 
def postorderRecursive(root. result): 

if not root: 
rel um 

postorderRecursivc(rool.lefl, result) 
postorderRecursivc(rool. righ l, result) 
result.a_ppend(rool.data) 

Time Complexity: O(n). Space Complexity: O(n). 

Non-Recursive Postorder Traversal 

In prcorder and inorder traversals, after popping the stuck clement we do not nc<'cl to visit the same vertex 
again. But in postorder traversal, each node is visited twi<.:c. That means, after processing Lhe lcfL subtree we will 
visit Lhe ct1rrcnl node and ufLcr processing the right subtree we will visit the same current node. But W<' should 
be processing the node during the second visit. ll erc the problem is how to differcntintc whether we nre 
rctllrning from the left subtree or the right subtree. 

We use a previous variable to keep track of the earlier trnvcrsecl node. Let's assume current is the current node 
that is on top of the stack. When previous is curre11t's parent, we arc traversing clown the tree. In this case, we 
t ry to traverse to current's left child if available (i.e., push left child to the stack). If it is not available, we look at 
current's right child. If both left and right child do not exist (ic, current is a leaf node), we print current's value 
and pop it off the stack. 

If prev is currant's left child, we arc traversing up the trct• from the left. We look at c11rre111's right child. If 11 is 
available, then traverse down the right child (i.e., push right child to the sl<-1ck); ()therwisc print cun·ent's value 
and pop it off the stack. If previous is current's right child, we ore truvcrsing up the tn:c from the right. In this 
case, we print current's value and pop it off the stack. 
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# Post-order iterative traversal. The nodes' values are appended to the result list in traversal order 
def postorderllerative(root, result): 

if not root: 
return 

vis ited .. set() 
stuck - !l 
node= root. 
while stack or node: 

if node: 
stack.append( node) 
node = node.left 

else: 
node = stack. pop() 
if node.right and not node.right in visited: 

stack.append(nodc) 
node = node.right 

else: 
visited.add(node) 
result.append(node.data) 
node= None 

Time Complexity: O(n). Space Complexity: O(n). 

Level Order Traversal 
Level order traversal is def med as follows: 

• Vis it the root. 
• While traversing level l, keep all the elements at level l + 1 in queue. 
• Go to the next level and visit a ll the nodes al that level. 
• Repeat this until a ll levels arc completed. 

The nodes of the tree are visited in the order: 1 2 3 4 S 6 7 

import Queue 
def levelOrder(root, result): 

if root is None: 
return 

q = Queue. Queue() 
q.put(root ) 
node = None 

while not q.emply{): 
node = q.get(l 
result.append(node.getDa ta()) 
if node.getLeft()is not None: 

q. put( node.getLeft() ) 

if node.getRight() is not None: 
q.put( node.getRight()) 

# dequeue FIFO 

Trees 

Time Complexity: O(n). Space Complexity: O(n). Since, in the worst case, all the nodes on the entire last level 
could be in the queue s imultaneously. 

Binary Trees: Problems & Solutions 
Problem-I Give an a lgorithm for finding maximum element in bina1y tree. 

Solution: One simple way of solving this problem is: find the maximum element in left subtree, find the 
maximum element in right sub tree, compare them with root data and select the one which is giving the 
maximum value. This approach can be easily implemented with recursion. 

maxData = Ooat("-infinity") 
def findMaxRecursive(rool): If maxData is the initially the value of root 

global maxData 
if not root: 

6.6 Binary Tree Traversals 142 



Duta Structure and Algorithmic Thinking with Python 

return maxOata 

if rool.getData() > maxOata: 
maxData = root.gelOala() 

lindMaxRecursive(root.gel Left()) 
lindMaxRccursive(root.gctRight()) 
retu rn maxData 

Time Complexity: 0(11). Space Complexi1y: 0(11). 

Problem-2 Give an algorithm for finding the maximum clement in binary tree without recursion. 

Solution: Using level order traversal: just observe the e lement's data while deleting. 

def findMaxUsingLevclOrde r(root): 
ir root is None: 

return 
q • Queue () 
q.cnQucue( root) 
node = None 
maxEJcment = 0 
while not q.isEmpty(): 

node = q.deQueuc() 

if maxElcmenl < node.getOataQ: 
maxElcmcnl node.gelDaLa() 

if node.left is not None: 
q.enQucuc( node.left) 

if node.right is not None: 
q.enQueuc( node. right ) 

print maxElerncnt 

Time Complexity: O(n). Space Complexity: O(n). 

# dequeue FIFO 

Problem-3 Give an a lgorithm for searching an clement in binary tree. 

Trees 

Solution: Given a binary tree, return trnc if a node with data is found in the tree. lkcurse down the tree, choose 
the left or right branch by comparing data with each node's data. 

def findRccursive(root, data): 
if not root: 

return 0 

if root.gelOata() == data: 
return l 

else: 
temp= lindRccursivc(root.lefL, data) 
if temp == I: 

return temp 
else: 

return fmdRecursive(root.righl, data) 

Time Complexity: 0(11). Space Complexity: O(n). 

Problem-4 Give an algorithm for searching an clement in binary tree without recu rsion. 

Solution: We can use leve l order t rnversa l for solvin~ 1 his problem. The only cha nge req uired in level order 
lravcrsu l is, inslcud of prinlinf.( 1hc dn tn, we just need lo check whether the rool datu is equa l to the dcmcnt we 
wnnl to sco rch. 

def findUsingLcvelOrder(root, data): 
if root is None: 

rerum -I 

q = QueucO 
q.cnQucuc( root ) 
node "' None 
while not q.isEmpty(): 

node = q.deQucuc() 

if data "'= nodc.gctData (): 
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return 1 
if node. left is not None: 

q.enQueue( node.left ) 
if node.right is not None: 

q.cnQueue( node.right ) 

return 0 

Time Complexity: O(n). Space Complexity: O(n). 

Problem-5 Give an a lgorithm for inserting an c lement into binary tree. 

Trees 

Solution: Since the given tree is a binary tree, we can insert the e lement wherever we want. To insert an 
clement, we can use the level order traversa l and insert the clement wherever we find the node whose left or 
right child is NU LL. 

"'Binary Tree Class and its methods"' 
class Binary'free: 

def _ inil (self, data): 
self.data = data 
self.left= None 
self.right= None 

#set data 
def setData(self, data): 

self.data = data 
#get data 
def getData(sell): 

return self.data 
#get left child of a node 
def getLcft(sell): 

return self. left 
#get right child of a node 
def gctRight(self): 

return self.right 

def in::;crtLeft(self, ncwNodc): 
if self.left== None: 

lfroot node 
#left child 
#right child 

self.left= Binary'free(newNode) 
else: 

temp = Binary'rree(newNode) 
temp.left = self. left 
self.left = temp 

def inscrtRight(sclf, newNodc): 
if self.right == None: 

i;:lse: 
self. right• Binary'free(newNodc) 

temp= Binary'frce(newNode) 
temp.right - self.right 
self.right = temp 

# Insert using level order traversal 
def inserllnBinaryTreeUsingLevelOrdcr(root, data): 

ncwNode = Binary'free(dat.a) 
if root is None: 

root = newNodc 
return root 

q = Queue() 
q.enQucue( root ) 
node = None 
while not q.isEmpty(): 

node = q.dcQueue() 

if data== node.gctData(): 
return root 

if node.left is not None: 
q.enQucuc( node.left ) 

else: 
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node.left = newNode 
reLurn root 

if node.right is not None: 
q.cnQueuc( node.right) 

else: 
node.right .. newNodc 
return root 

Time Complexity: O(n). Space Complexity: O(n). 

Problem-6 Give an algorithm for finding the si7..e of binary tree. 

Trees 

Solution: Calculate the si7,c of left and right subtrees recursively, add 1 (current node) and return LO its parent. 

# Compute lhe number of nodes in a tree. 
def findSizcRecursivc(root): 

if not rool: 
return 0 

return findSizeRccursive(root.left) + findSizcRecursive(root.right) + 1 

Time Complexity: O(n). Space Complexity: 0(11). 

Problem-7 Can we :mlvc Problem-6 without recursion'( 

Solut ion: Yes , using level order traversal. 

def findSizcusingLcvelOrdcr(root): 
if root is None: 

return 0 

q = Queue() 
q.cnQueu e( root ) 
node= None 
count= 0 
while not q.isEmpty(): 

node • q.deQueue() 
count+• I 
if node.left is not None: 

q.cnQueue( node.left) 

if node.right is not None: 
q.enQueuc( node.right) 

return count 

Ti me Complexity: O(n). Spuce Complexity: 0(11). 

# dequeue FWO 

Problcm-8 Give an nlgorithm for printing the level order clnlu in reverse order. For example, the output for 
the below tree should be: 4 5 6 7 2 3 I 

Solution: 

def levelOrder'I'raversallnReverse(root): 
if root is None: 

return 0 

q =Queue() 
s •Stack() 
q.cnQueue( root ) 
node~ None 
count= 0 
while not q.isEmpty(): 
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node = q.deQueue() # dequeue FIFO 
if node.left is not None: 

q.enQueue( node.lefl ) 

if node.right is not None: 
q.enQucuc( node.right) 

s. push(nocle) 

whilc(nol s.isEmpty{)): 
print s.pop().gctDataQ 

Time Complexity: O(n). Space Complexity: O(n). 

Problem-9 Give an algorithm for deleting the u·ee. 

Solution: 

To delete a tree, we must traverse all the nodes of the tree and delete them one by one. So which traversal 
should we use: lnorder, Preordcr, Postorder or Level order Travcrsarr> 

Before deleting the parent node we should delete its children nodes lirst. We can use postorder traversal as it 
docs Lhe work without storing anything. We can delete tree with other traversals a lso with extra space 
complexity. For the following, tree nodes are deleted in order - 4, S, 2, 3, 1. 

def deletcBinaryTree(root): 
if(root - None) : 

return 

deleteBinaryTree(root. lcft); 
deleteBinaryTree(root.right); 
del root 

Time Complexity: O(n). Space Complexity: O(n). 

Problem-IO Give an a lgorithm for rinding the height (or depth) of the binary tree. 

Solution: Recursively calculate height of left and right subtrees of u node and assign height to U1e node as max 
of the heights of two children plus I. This is similar to PreOrdcr tree truversal (and DFS of Graph a lgorithms). 

def maxDcplh(root): 
if root == None: 

return 0 
return max(maxDepth(root.getLeft()),maxDepth(root.getRight())}+ 1 

Time Complexity: O(n). Space Complexity: O(n). 

Problem-11 Can we solve Problem- I 0 without recursion? 

Solution: Yes, u::;ing level order I rnvcnml. This is similur to /JFS of c; raph algorithms. Encl of level is ide ntified 
with NULL. 

def maxOepth(rooL}: 
if root = None: 

return 0 
q = II 
q.appcnd(lroot, I)) 
temp - 0 
while lcn(q) != 0: 

node, depth = q. pop() 
depth = max(temp, dcp) 
if node.gctLeft() I= None: 
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q.append(lnode.getLeft(), depth + l]I 
if node.getRight() != None: 

q.append(lnode.getRight(), depth+ lj) 
return temp 

Time Com plexity: O(ri). Space Complexity: O(n). 

Proble m -12 Give a n a lgorithm for findin g the clccpcst node of the binary tree. 

Solution: 

def deepestNode(rnot): 
if root is None: 

return 0 
q =Queue() 
q.enQucuc( root ) 
node = None 
while not q.isEmply(): 

node = q.deQucuc() 
if node.left is not None: 

q.cnQueue( node.left) 

if node.right is not None: 
q.enQucue( node.right ) 

return node.getData() 

Time Complexity: O(ri). Space Complexity: 0(11). 

I# dequeue Fl li'O 

Proble m -13 Give a n a lgorithm for deleting an e lement (assuming dala is given) from binary tree. 

Solution: The deletion of a node in binary tree can be implemented as 

• Starting al root, find the node which we want to delete. 
• l"ind the deepest node in the tree. 
• Replace the deepest node's data with node to be clclelecl. 
• Then delete the deepest node. 

Tree~ 

Pro blem-14 Give an algorithm for finding the number of leaves in the binary tree without using recursion. 

Solution: The sec of nodes whose both left and right children arc NU LL are called leaf nodes. 

def numberOfLeaveslnBTusingLevelOrder(root): 
if root is None: 

return 0 
q =Queue() 
q.enQueue( root ) 
node = None 
count = 0 
while not q.isEmply(): 

node = q.deQueue () # dequeue FIFO 
if node.left is None and node.right is None: 

else: 

return count 

count+= 1 

if node.left is not None: 
q.enQueue( node.left) 

if node.right is not None: 
q.cnQucuc( node.right) 

Time Complexity: O(n). Space Complexity: O(n). 

Problem-15 
recursion. 

Give an aJgorithm for finding the number of full nodes in the binary tree without using 

Solution: The set of all nodes with both left ::ind right children arc called full nodes. 

def numberOfF'ul!NodeslnBTusingLcvelOrdcr(root): 
if root is None: 

return 0 
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q =Queue() 
q.enQueue( root ) 
node= None 
count= 0 
while not q.isEmply(): 

node = q.dcQueue() It dequeue FIFO 
ir node.left is not None and node.right is not None: 

count+- I 
if node. left is not None: 

q.enQueue( node.lefl) 

if node.right is not None: 
q.enQueue( node.right) 

return count 

Time Complexity: O(n). Space Complexity: O(n). 

Trees 

Problem-16 Give a n a lgorithm for finding the number of hnlf nodes (nodes with on ly one child) in the bina ry 
tree without using recursion. 

Solution: The set of all nodes with either Jcrt or right child (but not bot h) a re called hulr nodes. 

def numberOfHal:fNodeslnBTusingLevelOrder(root): 
if root is None: 

return 0 
q = Queue() 
q.enQueue( root) 
node = None 
count = 0 
while not q.isEmpty(): 

node = q.deQucue() #dequeue FIFO 
if (node.left is None and node.right is not None) or (node.left is not None and node.right is None): 

count+= 1 
if node.Icrt is not None: 

q.enQucue( node.left) 

if node.right is not None: 
q.enQueue( node. right) 

return count 

Time Complexity: O(n). Space Complexity: O(n). 

Problem-17 

Solution: 

Algorithm: 

Given two binary trees, return true if they arc structurally identica l. 

• If both trees arc NULL then return true. 
• If both trees arc not NULL, then compare data and recursively check left and right subtree su·ucturcs. 

# Return true if they arc structurally identical. 
def areStructurullySameTrees(rootl, root2): 

if (not rootl.left) and not (rootl.right) and (not root2.left) and \ 
not (root2.right) and rooll .data = root2.data: 
return True 

if (rootl.data != root2.data) or (root I.left and not root2. lcft) or \ 
(not rooll .left and root2.lcft) or (root I.right and not root2.right) \ 
or (not rootl .right and root2.righl): 
return False 

left= areStructurullySameTrees(rootl.left, root2.left) if rooll.lcft and root2.left e lse True 
right = areStructurullySamcTrees(rootl.right, root2. right) if rootl .right and root2.right else True 
return left and right 

Time Complexity: O(n). Space Complexity: O(n), for recursive stuck. 

Problem-18 Give an a lgorithm for finding the d iameter of the binary tree. The diameter of a tree (sometimes 
called the width) is the number of nodes on the longest path between two leaves in the tree. 
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Solution: To find the diameter of a tree, first calculate the diameter of left subtree and 1·ight subtrees 
recursively. Among these two va lues, we need to send maximum value along with current level (+1). 

ptr = 0 
def diamctcrOffree(root): 

global ptr 
if(not root) : 

return 0 
left = diameterorrree(root.lcft); 
right= diameterOITree(root.right); 

if(left + right > ptr): 
plr = left+ right 

return rnax(lefl, right)+ I 

#Alternative Coding 
def diameter(root): 

if (root == None): 
return 0 

!Height= height(root.eft) 
rHeight = height(root.right) 
!Diameter = diamcter(rool.left) 
rDiarneter = diamcter(root.righl) 
return max(LHcight + rHcighl + I, max(IDiameter, rDia rneter)) 

#The function Compute the "height" of a tree. Height is the number of nodes along 
# the longest path from the root node down to the farthest leaf node. 
def height(root): 

if (root == None) : 
re turn 0 

There is another solulion and the complexity is 0(11). The main idea of this approach is thal the node stores its 
left child's and right child's maximum diameter if the node's child is the "root", therefore, there is no need to 
recursively call the height method. The drawback is we need to add two extra variables in the node class. 

def findMaxLen(root): 
nMaxLen = 0 
if (root == None): 

return 0 
if (root.left == None): 

root.nMaxLcfl 0 
if (root.right == None): 

root.nMaxRight = 0 
if (root.left I= None): 

findMaxLen(root. left) 
if (root.right!= None): 

findMaxLen(rool. right) 
if (root.left I= None): 

nTempMaxLcn 0 
nTcm pMaxLcn "' max(root.lcfl. nMax Left, root.left. n Max Right) 
root.nMaxLcft = nTcmpMaxLen + 1 

if (root.right!= None): 
nTempMaxLcn = 0 
nTempMaxLcn = max(root.right.nMaxLcfL, rooLright.nMaxRight) 
rooLnMaxRight = nTempMaxLen + 1 

if (root.nMaxLeft + rool.nMaxRight > nMaxLen): 
nMaxLen .. root.nMaxLcft + root.nMaxRight 

return nMaxLen 

Time Complexity: O(n). Space Complcxily: 0(11). 

Problem-19 Give an a lgorithm for finding lhc level that hos the maximum sum in the binary tree. 
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Solution: The logic is very much similar to finding the number of levels. The only change is, we need to keep 
track of the sums as well. 

def findLevelwithMaxSu m(root): 
if root is None: 

return 0 
q .. Queue() 
q.enQueue( root ) 
q.cnQueue( None ) 
node= None 
level = maxLevel= currentSum = maxSum = 0 
while not q.isEmpty(): 

node = q.deQucueO ## dequeue FIFO 
# If the current level ii:; completed then compare sums 
if(node a- None): 

else: 

if(currcntSum> maxSum): 
maxSum .. currentSum 
maxU:vel =level 

currentSum .. 0 
#place the in d icator for end of next level at the end of queue 
if not q.isEmpty(): 

q.cnQueue( None ) 
level+ I 

currcntSum +• node.getDala() 
if nodc.ld t is not None: 

q.cnQueue( node.le ft ) 

if node. right is not None: 
q.cnQue ue( node. righ t ) 

return m ax.Leve l 

Time Complexity: O(n). Space Complexity: O(n). 

Problem -20 Given a binnry tree, print out all its rool-lo-lcnf paths. 

Solution: Refer LO comments in functions. 

def pathsAppender(root, path, paths): 
if not root: 

return 0 

palh.a ppcnd(root.data) 
paths.a ppend(path) 
pat hsAppcndcr(root.lefl, palh+lrool.datal, paths) 
pathsAppcnder(root.righ l, pnth+lroot.datal, paths) # mukc sure it can be executed! 

def palhsFinder(root): 
paths= II 
pathsAppender(root, II, paths) 
print 'paths:', paths 

Time Complexity: O(n). Space Complexity: 0(11), for recursive stack. 

Problem -2 1 Given a binory tree containing digits from 0-9 only, each root-to-leaf path could represent o 
number. An example is the root-to-leaf path 1->2->3 which represents Lhe number 123. Pind thc total sum of 
all root-lo-leaf numbers. For exnmplc, 

The root-to lcuf puth l ->2 rcprcscnts thc numbcr 23. 
The root-to-lcnf path 1->3 rcprcscnts the number 24. 
Return the sL1m = 23 + 24 = 47. 

Solution : 
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def sumNumbers(self, root): 
if not rool: 

return 0 
currcnt=O 
sum=[OI 
self.caJSum(r<>ot, current, sum) 
return sumjOI 

def calSum(self, root, current, sum): 
if not root: 

return 
current=current*l O+rool.data 
if not root. left and not root. right: 

sum[Ol+"'currcnt 
return 

self.calSum(root.lcft, current, sum) 
self.calSum(root.righL,currcnt, sum) 

Trees 

Problem-22 Given a bina ry tree, find the maximum pulh sum. The path may start and end at any node in 
the tree. For example: Given the below binary tree, 

Solution: 

def treeMaximumSumPath(node, is_left=True, Lpath={}, Rpath={}): 
if is left 

# left sub- tree 
if not node.left: 

Lpath[node.idl = 0 
relurn 0 

else: 
Lpath{node.id] = node.data. + max( 

treeMaximumSumPath(node.left, True, Lpath, Rpath), 
treeMaximumSumPath(node. left, False, Lpath, Rpath) 

) 
return Lpa.thlnode.id] 

else: 
fl. right sub-tree 
if not node.right: 

Rpath[node.idl = 0 
return 0 

else: 
Rpath[node.idl = node.data+ max( 

treeMaximumSumPath(node.right., True, Lpath, Rpath), 
treeMaximumSumPath(node.right,, False, Lpalh, Rpath) 

) 
return Rpath[node.idl 

dof maxsum_path(root): 
Lpath = (} 
Rpath = 0 
treeMaximumSumPath(root, True, Lpath, Rpath) 
treeMaximumSumPath(root, F'alse, Lpath, Rpath) 
print 'Left-path:', Lpath 
print 'Right-path:', Rpath 
path2sum = dict((i, Lpalhlil+Rpathlil) for i in IJpath.kcys()) 
i = max(palh2sum, key=path2sum.get) 
print 'The path going through node', i, 'wilh max sum', palh2sum[ij 
return path2surn[ij 

6.6 Binary Tree Traversals 151 



Data Slruclu re a nd Algorilhmic Thinking wi th Python Trees 

Problem-23 Give an algorithm for checking the existence of path with given sum. That means, given a sum, 
check whether there exists a path from root to any of the nodes. 

Solution: For this problem, the strategy is : subtract the node value from the sum before calling its children 
recurs ively, and check to see if the sum is 0 when we run out of tree. 

def pathFinder(root, val, palh, paths): 
iJ n<>t root: 

return False 

if ript root.left and not root.right: 
if root.data == val: 

path.append(root.data) 
paths.append(path) 
return True 

else: 
return False 

left= pathFinder(root.left, val-root.data, path+lroot.data], paths) 
rignt = pathFinder(root.right, val-root.data, path+!root.dataJ, paths)# make SUH!> it can be executed! 
return left or right 

defhasPath With Sum( root, val): 
paths = [] 
pathFinder(root, va l, !] , paths) 
print 'sum:', val 
print 'paths:', paths 

Time Complexity: O(n). Space Complexity: O(n). 

Problem-24 Give an a lgori t hm for finding the sum of a ll elements in binary tree. 

Solution: Recursively, call left subtree sum, right su btree sum and add their va lues to current nodes da la. 

def sum In Binary'f reeRecu rsive(root): 
if(root == None) : 

return 0 
return root.data+suminBinaryTreeRecursive(root.left) + sumlnBinaiyTreeRecursive(root.right) 

Time Complexity : O(n). Space Complexity: O(n). 

Problem-25 Can we solve Problcm-24 withoul recursion"? 

Solution: We can use level order traversal with s imple change. Eve1y time a fler dc leling a n clement from queue, 
add the node's data va lue lo sum va riable. 

def sumln Bina ry'I'ree LevelO rd er( root): 
if root is None: 

return 0 
q = QueueQ 
q.enQueue( root) 
node= None 
sum=O 
while not q.isf~mpty(): 

node = q.deQueue() 
sum += node.getData() 

if node.left is not None: 
q.enQueue( node.left ) 

if node.right is not None: 
q.enQueue( node.right ) 

return sum 

Time Complexity: O(n). Space Complexity: O(n). 

# dequeue FIFO 

Problem-26 Give a n a lgorilhm for converling a tree to its mirror. Mirror of a tree is a nother lrce wilh lcfl a nd 
righl c hildren of a ll non-leaf nodes interchanged. The Lrecs be low arc mirrors lo each 0U1cr. 
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root 

Solution: 

def MirrorOfBinary'l'rec(root): 
if(root != None): 

M irrorOfBina ry'l'rec(root. lefc) 
MirrorOfBina ry'I'ree(root. righl) 
# swap the pointers in this node 
temp = root.left 
root.left = root.right 
root.right = temp 

return root 

Time Complexity: 0(11). Space Complexity: O(n). 

root 

Problem-27 

Solution: 

Given two trees, give a n algorith m for checking whether they arc mirrors of each other. 

def AreMirrors(rootl, rool2): 
if(rootl == None and root2 == None): 

return I 
if(rooll = None or root2 ...... None): 

return 0 
if(root 1.data != root2.dotn): 

return 0 
else: 

retu1·n AreMirrors(root l.lefL, root2.right) and AreMirrors(rootl.right, root2.lcft) 

Time Complexity: O(n). Space Complexity: 0(11). 

Problem-28 

Solution: 

Give un a lgorithm for finding LCA (Lcns l Common Ancestor) of two nodes in fl Binary Tree. 

def lca(root, alphu, beta): 
if nol root: 

return None 
if root.data == alpha or root.data == beta: 

return root 
left = lca(root.left, alpha, beta) 
right = lca(root.right, alpha, beta) 

if left and right: 
II a lpha & beta are on both s ides 
return root 

else: 
# EITHER a lpha/ beta is on one side 
# OR alpha/beta is not in L&R subtrees 
return left if left e lse right 

Time Complexity: O(n). Space Complexity: 0(11) for recursion. 

Problcm-29 Give an a lgorithm for constructing binary tree from given lnorder and Preorder traversals. 

Solution: Le t us cons ider the trnvcrsals below: 

6.6 Binary Tree Traversals 

lnorder sequence: D B E A F' C 
?reorder sequence: A B D E C F' 
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In a Preorder sequence, leftmost element denotes the root of the tree. So we know 'A' is the root for given 
sequences. By searching 'A' in lnorder sequence we can find out all clements on the left s ide of 'A', which come 
under the left subtree, and clements on the right side of 'II', which come under the right s ubtree. So we get the 
structure us seen below. 

We recursive ly follow the above steps and get Lhe fol lowing tree. 

Algorithm: Bui ldTree() 

I Select an element from Prem·de1· . Increment a Preorder index va r;able (preOrderlmlcx in code below) LO 

pick next element in next recursive call. 
2 Create a new tree node (11 ewNode) from heap with the dale.I as selec ted clement. 
3 Find the selected element's index in lnorder. Let the index be i110rder/11dex. 
4 Ca ll BuildBinary'free for clements before i110rder/11dex ond ma ke the built tree as left subtree of 

11ewNode. 
5 Cull BuildBinaryTrcc for clements after i110rder/11ciex und make the built t ree as right s ubtree of 

11ewNode. 
6 return newNode. 

class TreeNode: 
def _ init_ (self, data): 

self. val = data 
self.left= None 
self.right= None 

class Solution: 
def buildTree(self, preorder, inordcr): 

if not inorder: 
return None ## inorder is empty 
root= TreeNode(prcorderjOJ) 
rootPos = inorder.index(preorder[OIJ 
root.left= self.buildTree(preorder(l : 1 + rootPos[, inorder[ : rootPoslJ 
root.right= self.buildTrce(preordertrootPos + I : I, inordcr[rootPos + l : ll 

return root 

## Alternative coding 
class Solution2: 

def buildTree(self, preordcr, inorder): 
return self.buildTrecRec(preorder, inorder, 0, 0, lcn(preorder)) 

def buildTreeRec(self, prnorder, inorder, ind Pre, indln , clement): 
if element==O: 

return None 
solution = TreeNode(preorderlindPrcl) 
numElementsLcftSubtrcc - O; 
ror i in range(indln, indln+clcmcnt): 

if inorder[i) == preordcr[indPrc]: 
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break 
numElementsLeftSubLree += 1 

solution.left= self.buildTreeRec(preordcr, inorder, indPrc+ I, indln, numElcmcntsLefLSubtree) 
solution.right = self. buildTreeRcc(preorder, inorder, indPrc+numElementsLcftSubtrcc+ I,\ 

ind ln+numElemcnlsLcftSubtree+ I, clcment- 1-numE;lcmentsLeftSubtrcc) 
return solution 

Tim e Complexity: O(n). Space Complexity: O(n). 

Problcm-30 If we arc given two traversal sequences, can we construct the binary 1 rec uniquely? 

Trees 

Solution: It depends on what traversals arc given. If one of the traversal method::> i::> /non/er then the tree can be 
conlilructcd uniquely, otherwise not. 

The refore, the following com bi no I ions cun uniquely idenl ify n tree: 

• lnorder a nd Preorder 
• lnordcr and Postorder 

lnordcr and Level-order 

The following combinations do not uniquely identify a tree. 

• Postorder and Preorder 
• Preorder and Level-order 
• Postorder a nd Level-order 

For example, Preorder, Level-order and Postorder traversals me the same for the above trees: 

Preorder Traversal = AB Postorder Traversal = BA Level-order Trave rsnl AB 

So, even if three of them (PreOrder, Level-Order and PostOrdcr) arc given, the tree connot be constructed 
uniquely. 

Problem-31 Give an algorithm for printing all the oncestors of a node in a Binary tree. For the tree below, 
for 7 the ancestors arc 1 3 7. 

Solution: Apart from the Depth First Search of this tree, we can use the following recursive way lo print the 
n nccstors. 

def PrintAILAncestors(root, node): 
if(root == NULL}: 

return 0 
if(roolleft == node or rooLright == node or PrinWlAncestors(root.left, node) or \ 

PrintAllAnccstors(root.right, node)}: 
print(root.data) 
return 1 

return 0 

Time Com plexily: O(n). Space Complexity: 0(11) for recursion. 
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Problcm-32 Zigzag Tree Traversal: Give an a lgorithm to traverse a binary tree in Zigr,ag order. Fo r example, 
the output for the tree below should be: 13245 6 7 

Solut ion: This problem can be solved easily using two s tacks. Assu me the two stacks ure: currentlevel a nd 
ncxll.cvcl. We would also need a variable to keep trnck of 1 he cu rrent level order (whether it is left to right o r 
right to lcf1). 

We.; pop from currenllevel stack and print the nodc.;'s value. Whe never the current level order is from left to right, 
pus h the node's left c hild, then its r ight child, to stack ncxt/,evel. Since a stack is a Last In First Out (LIFO) 
structu re, the next time that nodes are popped off nextLcvel, it will be in the reverse order . 

On the other hand, when the cu rrent level order is from right to left, we would push the node's righ t child first, 
then its left child. Finally, don't forget to swap those two s tacks at the end of each level (1. c., when currentl evel is 
empty). 

def ziv.ag'fravcrsal(self, root): 
result ... II 
currentLevel =n 
if root I= None: 

currentLevel.append(root) 

lc ftToRjghl = True 
while len(currentLcvel)>O: 

levelrcsult =II 
nextLevel = II 
while len(currentLevel)>O: 

node = currcntLcvel.pop() 
levelresult.append(node. val) 
if leflToRight: 

if node.left != None: 
nexLLcvel.append(node.Jcfl) 

if node.right ! .. None: 
nextLcvel.appcnd(nodc.righl) 

else: 
if node. right I= None: 

nextLcvel.append(node.right) 
if node.left != None: 

nextLeve l.appcnd(node. left) 
c urrentLevcl = ncxLLcvel 
rcsult.append(levclresult) 
leftToRight = not lcft'J'oRight 

return result 

Time Complexity: O(n). Space Complexity: Space.; for two stacks = O(n) + O(n) = O(n). 

Problem-33 Give an algorithm for finding the vertica l sum of a binary tree. For example, 
The 1ree hos 5 vertical lines 

Verticul-1: nodes-4 =>vertical sum is 4 
V1:rticul-2: nodcs-2 =>vertica l sum is 2 
Ve rtical -3: noclcs- 1,5,6 => verticnl s um is 1 + 5 + 6 12 
Ve rticul-4: noclcs-3 => vcrticn l sum is 3 
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Vert.ical-5: nodes-7 =>vertical sum is 7 
We need Lo output: 4 2 12 3 7 

root 

Trees 

Solution: We can do on inordcr traversal and hash the column. We ca ll VerticalSumlnBinnryTrce(root, 0) which 
means the root is at column 0. While doing the traversal, h::ish the column ::incl increase its va lue by root -+data. 

hashTablc = I} 
def verticalSumlnBinuryTree(root, column): 

if not root: 
return 

if not column in hashTa ble: 
hashTa ble!columnJ = 0 

hashTablclcolum nj = hashTablc!column) -+ root.dat.a 
vcrtica!SumlnBinaryTrec(root.lc ft, column - 1) 
verticalSumlnBinaryTree(root.right. column -1 1) 

vertica!SumlnBinaryTrec(root, 0) 
print hashTable 

Problem-34 How many differem binary t rees a rc possible with n nodes? 

Solution: For example, consider a tree with 3 nodes (11 = 3). It will have the maximum combination of 5 different 
(i.e., :(' - 3 = 5) trees. 

In general, if there arc n nodes, there exist 2" - 11 different trees. 

Problem-35 Given a tree with a special property where leaves arc represented with 'L' and internal node with 
'I'. Also, assume thnt cu ch node hns e ither 0 or 2 children. Given preordcr traversal of t his t rec, construct the 
tree. 
Example: Given preordcr string - > !LI LL 

root 

Solution: First, we should sec how preorder traversal is arranged. Pre-orde r traversal means lirst pu t root node, 
then pre-order traversal of left subtree and then pre-order Lraven;al of right subtree. In a normal scenario, it'::; 
not possible to detect where left subtree ends and right subtree starts using only pre-order traversal. Since every 
node has either 2 children or no child, we can surely say that if a node exists then its sibling also exist:;. So 
every time when we arc computing a subtree, we need to compute its sibling subtree as well. 

!-kcondly, whenever we get 'L' in the inpul string, that is o leaf und we can stop for u particular subtree at that 
point. After this 'L' node (left child of its p::ircnt 'L 1, its sibling starts. If 'L' node is right child of its parent, then 
we need to go up in the hie rarchy to lind th<.: n<.:xt s ubtree 10 compute. 
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l(ecping the above invaria nt in mind, we can easily determine when a subtree ends a nd the next one starts. It 
means Lhat we can give any start node to our method a nd il can easily complete the subtree it generates going 
outside of its nodes. We just need to uikc care of passing the correct start nodes to different sub-trees. 

i • 0 
def lmildTreeFromPrcOrdor(A): 

global i 
if(A == None or i >= len(A)): 

return None 
newNode = Binary'free(Alill 
newNode.data = Af ii 
newNode.left = ncwNode.right = None 

if(Alil == "L "): 
relurn ncwNodc 

# Boundary Condition 

# On reaching leaf node. return 

i += I # Populalc ldt. sub tree 
ncwNode.left = buildTrc<!FromPrcOrder(A) 

i += 1 # Populate right sub tree 
newNode.rigbt = buildTreeFromPreOrder(A) 

return newNode 

rooL - buildTreeFrom PreOrder(l"l","l"," L"."I", "L","L","l*."L", · 1~·n 

postorderRecursive(root) 

Tim e Complexity : O(n). 

Problem-36 Given a binary tree with three pointers (ldt, right and ncxtSibling), give un algorithm for filling 
lhc 1wxtSibling pointers assu ming Lhey are NULL initially. 

Solution: We can use simple qucllc (simila r to the solu t ion of Problem- I I). Let us assume lhnl the structure of 
binary tree is: 

def fillNextSiblingsWith Lcvcl0rder1'ravcrsal(root): 
if root is None: 

return 0 

q = QucueO 
q.enQueue( root) 
node= None 
count= 0 
while not q.isEmpty(): 

node = q.dcQucue() 
node.nextSibling • q .queueFrontQ 
if node.left is not None: 

q.cnQucue( node.left ) 

if node.right is not None: 
q.enQueue( node. right) 

Time Complexity: 0(11). Spoce Complexity: O(n). 

# dequeue FIFO 

Problem-37 Is there a ny othe r way of solving Problcrn-36'~ 

Solution: The trick is to re- use I he populated nextSibling pointers. As mentioned earlier, we just need one more 
step for it LO work. Before we puss lhe le ft and right to the recursion function itself, we connec t the right child 's 
11extSibling to the current node's nextSibling left child. In o rder for this to work, the current node nextSibling 
pointer must be populated, which is true in this case. 

def fillNcxtSiblings(root): 
ir (root == None): 

return 

if root.left: 
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rooLlefLncxtSibling = root.right 

if root.r ight: 
if root.nextSibli ng: 

root.right.ncxtSibling .. root.ncxtSibling.lcft 
else: 

root.righl.ncxtSibling = None 

fillNextSiblings (root.left) 
lil!NcxtSiblings(root. right) 

Time Complexity: O(n). 

6.7 Generic Trees (N-ary Trees) 

Trees 

In the previous section we discussed binary trees where each nocJc can ha ve a maximum of two children and 
these a rc re presented ensily with two pointers . But s uppose if we huve a tree with ma ny children a t every nod e 
nnd a lso if we do not know how mnny c hildre n a node ca n have, how do we represent them? 

For example, consider the tree s hown be low. 

How do we represent the tree? 
In the above tree, there a rc nodes with 6 children , with 3 c hi ldren, with 2 children, with I c hild , a nd with zero 
e hi ldn:;n (leaves). To present this tree we hi.we to cons ider the wori; t case (6 childre n) and nllocate that ma ny 
c hi ld pointers for each node. Based on this, the node rc prcscntat ion ca n be given as: 

#Node of a Generic Tree 
class TreeNode: 

#constructor 
def _ init_ (sclf, data=None, ncxt=None): 

self.data= data 
self.lirstChild None 
sclf.secondChild = None 
self.thirdChild None 
self.fourt hCh ild = None 
selr.fifthChild = None 
self.sixthChild = None 

Since we are not using a ll the pointers in a ll the cases, there is a lot of memory wastage. Another problem is that 
we do not know the number of ch ildren for each node in advance. In order to solve this problem we need a 
representation that minimi)l'.CS the wastage and also accepts nodes with any number of children. 

Representation of Generic Trees 
Since our objective is to rcoch all nodes of the tree, o possible solution to this is as follows: 
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• At each node link children of same parenl (siblings) from lefl lo right. 
• Remove the links from parenl to all children except the firsl child. 

What lhese above stalements say is if we have a link between children then we do not need extra links from 
parent to all children. This is because we ca n traverse all the c lements by starting at the first child of the parcnl. 
So if we have a link between parent and first c hild and also links between all children of sa me parent then il 
solves our problem. 

This represcntalion is somclimcs called firsL child/nexl sibling representation. Fina child/ nexl sibling 
representalion of the generic tree is shown above. The actual representation for this tree is: 

A Elcmenl 

~ 
F'irst Child 

NUL,L Next Sibling 

8 A A 

NULL NULL I 
- -/ -- -

I 
A 

NULi~ 

NULL 

Based on this discussion, the tree node declaration for general tree can be given as: 

#Node of a Generic Tree 
class TreeNode: 

#constructor 
def init_ (self, data=None, ncxt .. None): 

self.data • data 
sdf.firstChild = None 
self.ncxtSibling .. None 

Generic Trees: Problems & Solutions 
Problcm-38 Implement simple generic lrec which allows us lo add children and also prinls the path from 

root to leaves (nodes without children) for every node. 

Solution: 

import string 
class GenericTrce: 
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""" Generic n-ary tree node object 
Children are additive; no provision for deleting them. 
The birth order of children is recorded: 0 for the first 
child added, 1 for Lhe second, and so on. 

GenericTree(parent, value• Nonc) Constructor 
purent If this is the rool node, None, otherwise the parent's GenericTree object. 
child List List of children, :r.cro or more GencricTree objects. 
value Value passed Lo constructor; can be any type. 

Trees 

birthOrder If this is the root node, 0, otherwise the index of th.is child in the parent's .child List 
nChildrenO Returns the number of selfs children. 
nthChild(n) Returns the nth child; raises lndcxError if n is not a valid child number. 
fullPalh(): Returns path to self as a list of child numbers. 
nodeld(): Returns path to self as a Nodeld. 

def init ( self, parent, value None ): 
self.parent - parent 
self. value .., value 
self.child.List - II 
if parent is None: 

self. birlhOrdcr 0 
else: 

::ielf.birthOrder - lcn(parent.childList) 
parent.childList.append ( self) 

def nChildrcn ( self): 
return len(sclf.childLisl) 

def nthChild ( self, n ): 
return self.childJ,ist( n J 

def fullPath ( self): 
result. = [] 
parent = self.parent 
kid = self 
while parent: 

result.insert ( 0, kid.birthOrder) 
parent, kid = parent.parent, parent 

return result 

def nodeld ( self): 
fullPalh = self.fullPalh() 
return Nodeld ( fullPath ) 

class Nodcld: 
def inil ( self, pulh ): 

self.path - path 

def str ( self): 
L = map ( str, self.path) 
return string.join ( L, "/") 

def find ( self, node ): 
return self._ reFind ( node, 0 ) 

def rcFind ( self, node, i ): 
if i >• len(sclf.path): 

return node.value II We're there! 
else: 

childNo = sclf.pathlil 
try: 

child = node.nlhChild ( childNo ) 
except lndexError: 

return None 
return self. rerind ( child, i+ I ) 

def isOnPath ( self, node ): 
if len(nodcPath) > lcn(self.path): 

return 0 It Node is deeper than self.path 

for i in ra nge(len(nodcPath)): 

6. 7 Generic Trees (N-ary Trees) 16 1 



Dato Structure and Algorithmic Thinking with Python 

ir nodePa thliJ != self.pathlil: 
return 0 #Node is a different route than self.path 

return l 

Problem-39 Given a tree, give an a lgorithm for finding the sum or all the elements of the tree. 

Trees 

Solution: The solulion is s imi lar to what we ha ve done for s imple binary trees. Thul means, traverse the 
complete list oncl keep on adding the values. We can either use level order t ravcrsu l or s imple recursion. 

def findSum(root): 
if(root == None): 

return 0 
return root data + findSum(rootfirstChild) + findSum(rootncxtSibling) 

Time Complexity: 0(11). Space Complexity: 0(1) (if we do not consider stack s pace). otherwise 0(11). 

Note: All problems which we have discussed for binary trees arc applicable for generic trees also. Instead of left 
and right pointers wejusl need to use firs tChild a nd ncxtSibling. 

Problem-40 For u 4-ary tree (cuch node can contain maximum of 4 c hildre n), whut is the muximum possible 
height with I 00 nodes':> Assume he ight of a single node is 0. 

Solution: In 4-a ry tree each node can contain 0 to 4 children, a nd to get maximum height, we need lo keep only 
one c hild for each parent. With 100 nodes, the maximum possible height we can gel is 99. 

If we hove a restriction lhat ut least one node has 4 children, then we keep one node with 4 children and the 
remaining nodes with I child. In this case, the maximum possible height is 96. Similurly, with n nodes the 
maximum possible height is 11 - I\. 

Problem-41 For u 4-ury tree (each node can contain maximum of 4 children), whot is lhe minimum possible 
height with 11 nodes·:> 

Solution: Similar to the above discussion, if we wa nt to get minimum height, then we need to fill a ll nodes with 
maximum children (in this case 4). Now let's see the following tablt:, which indicates the maximum number of 
nodes for a given height. 

Height, h Maximum Nodes at height, h = 4h .,. .. , 1 

Total Nodes height Ii • ---;=--
0 I I 
I 4 I t 4 
2 4 y 4 I+ 4 x 4 

3 4 x 4 x 4 1+4x4+4 x 4 x 4 

For a given height h the maximum possible nodes are: 
4
":' 

1
• To get minimum height, take logarithm on both 

s ides: 
4h" I 

11 - - :-
1 

- = 41
' ~ 1 = 311 + 1 = (Ii+ 1)log4 = log(3n + 1) = h + 1 = log4 (311+1) = Ii = log4 (3n + 1) - 1 

Problem-42 Give n u parent nrray I' , where P[i] indicat es lhe parent of i 111 node in the tree (uss umc parent of 
roo1 node i::> indica ted wil h - 1) . Give un a lgorithm for finding the height or de pth oft he tree. 

Solution: 

For example: if the Pis 
- I 0 l 6 6 0 0 2 7 

0 2 3 4 5 6 7 8 
Its corresponding tree is: 
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From the problem definit ion, the given array represents the parent array. That means, we need to consider the 
tree for that array and find the depth of the tree. The depth of this given tree is 1 . If we carefully observe, we just 
need to start at every node and keep going to its parent until we reach -1 and a lso keep track of the maximum 
depth among all nodes. 

def findDepthlnGcncl'icTrcc(P): 
maxDepth =- 1 
currentDepth •- I 
for i in range (0, lcn(P)): 

currentDcplh 0 
j = i 
while(Plil != - 1 ): 

currentDcpth += 1 
j PLil 

if(cun·cntDcpth > maxDcpth): 
maxDcpth currcntDepth 

retu rn maxDepth 

P• j- 1, 0, 1, 6, 6, 0, 0, 2, 71 
print "Depth of given Generic Tree is:", findDeplhlnGcnericTrce(P) 

Time Complexity: O(ri2). For skew trees we will be re-calcula ting the same values. Space Complexity: 0(1). 

Note: We can optimize the code by storing the previous calculated nodes' depth in some hash table or other 
nrray. This reduces the time complexity but uses cxtru spuce. 

Problem-43 
node. 

Given a node in the generic tree, give on a lgorithm for counting the number of s iblings for that 

Solution: Since tree is represented with the first chiJd/ next s ibling method, the t rec structure can be given as: 

class GenericTreeNode: 
def _ init_ (sclf, d~tta): 

self.data .. dau1 
sclf.firstChild • None 
self.nextSibling • None 

#root node 
#left child 
llright c hild 

f'or a given node in the tree, we JUSl need to traverse all its next siblings. 

def siblingsCount(currcnt): 
count= 0 
while(current): 

count+= 1 
current = currcnt.ncxtSibling 

return count 

Time Co mplexity: 0(1t). 8po<.:e Complexity: 0(1). 

Wilh generic tree representation, we ca n count the s iblings of a g ive n node with code below. 

def siblingCouot ( self): 
if parent is None: 

return 1 
else: 

return self.parcnt.nChildrcn 

Problem-44 Given a node in the generic tree, give nn nlgorithm for countin~ lhe numbe r of children for thut 
node. 

Solution: With tree is repn.:sc11 lecl ns first child/ next 8i l>linp; met hod; for a given node i11 the tree, we just need 
to point to its first child a nd keep I rnversing all its next s iblings. 

def childrenCount(current): 
count= 0 
current= currenl.firstChild 
whilc(current): 

count+ .. I 
CUI-rent= currcnt.nextSibling 

return count 

Time Complexity: 0(11). Spncc Complexity: 0(1). 
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With gcn<::ric tree representation, we can count the chi ldren of a given node with code below. 

de f childrenCount ( self): 
return len(self.childList) 

Problcm-45 Given two I recs how do we check whether the Lrees a rc isomorphic lo each other or not? 

Solution: root 

Trees 

Two binary trees root1 and root2 arc isomorphic if they have the same structure. The values of the nodes docs 
not affect whether two trees are isomorphic or nol. In the diagram below, the tree in the middle is not 
isomorphic to the other trees, but the tree on the right is isomorphic to the tree on the left. 

def is l~;omorphic(root I , root2): 
if(not root l and not root2): 

return l 
if((not rootl and root2) or (root! and not root2)): 

rctumO 
return (islsomorphic(rootl.left, root2.left) and islsomorphic(rooll.right, root2.right)) 

Time Complexity: O(n). Spucc Complexity: 0(11). 

Problcm-46 Given two trees how do we check whether they a rc quasi-isomorphic to each other or not? 

Solution: 

Two trees root1 and root2 arc quasi-isomorphic if root1 can be transformed into root2 by swapping the left and 
right children of some of the nodes of rnotl. Data in the nodes arc not important in determining quasi
isomorphism; only the shape is important. The trees below arc quasi-isomorphic because if the ch ildren of the 
nodes on the left arc swapped, the tree on the right is obtuined. 

def quusilsomorphic(rooU, root2): 
if(not rootl and not root2): 

return I 
if((not root! and root2) or (root.l and not root2)): 

return 0 
return (quasilsomorphic(root l.left, root2. left) and quasilsomorphic(root 1. right, root2. right) 

or quasilsomorphic(root l. right, root2. lcft) and quasilsomorphic(root l.left. root2. right)) 

Time Complexity: 0(11). Space Complexity: 0(11). 
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Problem-47 A full k -a1y tree is a tree where each node has eilhcr 0 or k children. Given an array which 
conlains the preordcr traversal of full k -ary tree, give an a lgori thm for constructing the full k -ary tree. 

Solution: In k -ary tree, for a node at i tlr position its children will be al k * i + 1 to k * i + I<. For example, the 
example be low is for fu ll 3-ary tree. 

As we have seen, in preorder traversal first left subtree is processed then followed by rool node and right 
subtree. Because of lhis , to construct a fu ll /c-a 1y, we just need to keep on c rc.::ating the nodes without bothering 
about the previous constrncted nodes. We can use this trick to bui ld the tree by us ing one global index. The 
declaration for k-a ry tree can be given as: 

class Ka.ryTreeNode: 
def _jnjl_ ( self, k, data=None ): 

self.data = data 
self.childList = [] 

def BuildKaryTree(A, k): 
n = len(A) 
if n <= 0: 

return None 
index = 0 
root -= KaryTreeNode(None, A[O]) 
if(not root): 

print("Memory Error") 
return 

Q =Queue() 
if(Q == None): 

re turn None 
Q.enQueue(root) 
while(not Q.isEmpty()): 

temp = Q.deQu eue() 
for i in range(O,k): 

index+= I 
if index< n: 

return root 

def preordcrRecursive(kroot): 
if not kroot: 

return 
print kroot.data 

temp.chi.ldList.inse1t(i,Kary1'reeNode(None, Alindexl)) 
Q.enQueue(temp.childList[i]) 

for node in kroot.childtist: 
preorderRecursive(node) 

A=l l,2,3,4,5,6, 7,8,9,10, 11, 12, 13] 
kroot = BuildKary'free(A, 3) 
preorderRecursive(kroot) 

Time Complex ity: O(n), where n is the s ize of the pre-order array. This is because we arc moving scqucnlially 
and not visiting the a lready constructed nodes. 
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6.8 Threaded Binary Tree Traversals (Stack or Queue-less Traversals) 
In ea rlier sections we have seen that, preorder, inorder, and postorder binary tree traversals used stacks and 
level order traversals used queues as a n auxiliary data structure. In this section we will cliscuss new traversal 
a lgorithms which do not need both stacks and queues. Such traversal a lgorithms are called 
threwlc:cl binary tree traversals or stac:"I queue less traversals. 

Issues with Regular Binary Tree Traversals 

• The storage space required for the stack and queue is large. 
• The majority of pointers in any binary tree arc NULL. For example, a binary tree with n nodes has n + 1 

NULL pointers and these were wasted. 

2 

11 

• It is difficult to fmd successor node (prcordcr, inordcr and postorder successors) for a given node. 

Motivation for Threaded Binary Trees 

To solve these problems, one idea is to store some useful information in NULL pointers. If we observe the 
previous traversals carefully, stack/queue is required because we have to record the current position in order to 
move to the right subtree after processing the left subtree. If we store the useful information in NULL pointers, 
then we don't have to store such information in stack/queue. 

The bina ry trees which store such information in NULL pointers arc called threaded binary trees. From the above 
discussion, let us assume that we want to store some usefu l information in NULL pointers. The next question is 
what to store'? 

The common convention is to put predecessor/successor information. That means, if we a rc dealing with 
preorder traversals, then for a given node, NULL left pointer will contain preorder predecessor information and 
NULL right pointer will contain preordcr successor information. These special pointers are called threads. 

Classifying Threaded Binary Trees 

The c las:>ificalion is based on whether we are storing useful information in both NULL pointers or only in one of 
them. 

• If we store predecessor information in NULL left pointers only then we can call such binary trees 
left threaded binary trees. 

• 1f we store successor information in NULL right pointers only then we can call such binary trees 
right threaded binary trees. 

• If we store predecessor information in NULL left pointers and successor information in NULL right 
pointers, then we can call such binary trees fully tlireaclecl binary trees or simply threaded binary trees. 

Note: ror the remaining discussion we consider only (fully) threaded binary trees. 

Types of Threaded Binary Trees 

Based on obove discussion we get three representations for threaded binary trees. 
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• ?reorder Threaded Binary Trees: NULL left pointer will contain PrcOrder predecessor information and 
NULL right pointer will contain PreOrder successor information. 

• lnorcler Threaded Binary Trees: NULL left pointer will contain lnOrder predecessor information and NULL 
right pointer will contain lnOrder successor information. 

• Postorde1· Threaded /Jirwry Trees: NULL left pointer will contain Postorder predecessor informa l ion and 
NULL right pointer will contain PosLOrdcr successor information. 

Note: As the representations arc similar, for the remaining discussion we will use lnOrdcr threaded bina ry 
trees. 

Threaded Binary Tree structure 
Any program examining the tree musl be able to differentiate between a regular lefl/ri9ht pointer and a thread. 
To do this, we use two additional fields in each node, giving us, for threaded trees, nodes of the following form: 

..-LJ.eft I LTag data 

"'Threaded Binary Tree Class and its methods"' 
class ThreadedBinary'free: 
def _init_(self, data): 

self.data = data 
self.left= None 
self. L Tag = None 
self.right= None 
self.RTag =None 

#data 
#left child 

#right child 

RTag Righl....._l 

Difference between Binary Tree and Threaded Binary Tree Structures 
Trees 

left oints to the left c hild 
NULL 
ri ht oints to Lhe ri ht c hild 

Note: Similarly, we can define preorder/postorder differences as well. 
As an example, let us try representing a tree in inorder threaded binary tree form. The tree below shows what an 
inorder threaded binary tree will look like. The dotted arrows indicate the threads. lf we observe, the left pointer 
of left most node (2) and right pointer of righl most node (31) arc hanging. 

\ 

' .. 
What should leftmost and rightmost pointers point to? 

, 
I 
-. .. 

In lhc representation of a threaded binary tree, it is convenient to use a special node Dummy which is always 
present even for an empty tree. Note lhat right tag of Dummy node is l and its right child points to itself. 

For Empty Tree For Normul Tree 

.1 0 , j \ } I - - J,, 
I + ,' + I ,_, 

To SubTree I 
~" ~" 
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With this convention the above t ree can be represented as: 

r ~ Dummy Node 
L--i--'-~~___JL-~~~-'-~~--&.~~T-~ I 

I 
I 
I 

Al \ I 
\ I ' ...... 

I 

' I 
I 

I 

Finding Inorder Successor in Inorder Threaded Binary Tree 

Trees 

To find inorder successor of a given node without using a stack, assume that the node for which we want to find 
the inorder successor is P. 

Strategy: If P has a no right subtree, then return the light child of I' . If P has right subtree, then return the left 
of the nearest node whose left subtree contains I'. 

def lnorderS uccessor(P): 
if(P.RTag == 0): 

else: 
return P.righ t 

Position = P.righl 

while(Position.LTag •• l): 
Position = Position. left 
return Position 

Time Complexity: O(n). Space Complexity: 0(1). 

Inorder Traversal in I norder Threaded Binary Tree 

We can st.a.rt with dummy node and call lnorderSucccssor() to visit each node un t ii we reach dummy node. 

def lnorderfraversal(rool): 
P = lnorderSuccessor(root) 
while(P != root): 

P = lnorde rSuccessor(P) 
p rint P.data 

Alternative coding: 

def Jnordcr!'ra versal(rool): 
P =root 
while(!): 

P = InorderSuccessor(P) 
if(P = root): 

return 

print P.dato 

Time Com plexity: O(n). Space Compkxity: 0(1). 
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Finding PreOrder Successor in InOrder Threaded Binary Tree 

Strategy: If P has a left subtree, then return lhc left child of P. If P has no left subtree, then return the right 
child of Lhc nearest node whose right subtree contains P. 

def PreorderSucccssor(P): 
if(P.LTag == I): 

else: 
return P.left 

Position = P 
whilc(Position.RTag == 0): 

Position = Position.right 
return Posilion.righl 

Time Complex ity: O(n). Space Complexity: 0(1.). 

PreOrder Traversal of InOrder Threaded Binary Tree 

As in inorder traversal, start with dummy node and call PreorderSuccessor() to visit each node until we gel 
dummy node again. 

def Preordcr'l'raversa l(root): 
P '" Pn:ordcrSuccc~:>or(root) 

wh ilc(P I= root) : 
P = PreordcrSuecessor(P) 
print P.dat.a 

Alternative coding: 

def Preorder'l'raversal(root) : 
P = root 
while( l): 

P • PreorcforSuccc:osor(P) 
if(P == root): 

return 
print P.data 

Time Complexity: 0(11). Space Complexity: 0(1). 

Note: Prom the above discussion, it should be c lea r that inorder a nd preorder successor finding is easy with 
threaded binary trees. But finding postorder successor is very difficu lt if we do not use stack. 

Insertion of Nodes in InOrder Threaded Binary Trees 

For simplicity, let us assume that there are two nodes P and Q and we want to attach Q to right of P. For this we 
will have two cases. 

• Node P docs not have right child: In this case we just need to attach Q to P and cha nge its left and right 
pointers. 

• Node P has right c.:hilcl (say, U) : In this case we need to traverse Ifs left subtree a nd find the left most 
node and then update the left and right pointer of t hat n ode (a s shown below). 
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def lnsertRighUnlnorder'fBT(P, Q): 
Q.right = P.righl 
Q.RTag = P.RTag 
Q.left = P 
Q.LTag = 0 
P.right = Q 
P.RTag = 1 
if(Q.RTag "'= 1) : 

Temp = Q.righl 
while(Tcmp.LTag): 

Temp = Temp.left 
Temp.left = Q 

Time Complexity: O(n). Space Complexity: 0(1). 

Threaded Binary Trees: Problems & Solutions 
Problem-48 For a given binary tree (not Lhrcadcd) how do we lind lhc prcordcr successor? 

Trees 

Solution: Por solving this problem, we need lo use an aux iliary stack S. On the firsl call, the parameter node is 
a pointer to the head of the tree, and thereafter its value is NULL. Since we arc simply asking for the successor 
of the node we got the last lime we ca lled the function . 

It is necessary lhal the contents or the stack Sand the pointer P lo the last node "visited" are preserved from one 
call of the function to the next; they arc dclincd as s tatic variables. 

#pre-order successor for an unthrcaded binary tree 
def PreorderSueeessor(node): 

S =Stack() 
if(node != None): 

P =node 
if(P.left I= None): 

else: 

Push(S,P) 
P = P.left 

while (P.right =-= None): 
P = Pop(S) 
P = P.right 

return P 

Problem-49 For a given binary tree (not threaded) how do we find the i11order successor? 

Solution: Simila r lo the above discussion, we can lind the inorder successor of a node as: 

# Jn-order successor for an unthreaded binary lree 
def I norderSuccessor(nodc): 

S =Stack() 
if(node != None): 

P =node 
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if(P.right = = None): 

else: 
P = Pop(S) 

P = P.right 
while (P.left != None): 

Push(S, P) 
P = P. left 

return P 

6.9 Expression Trees 

Trees 

A tree representing an expression is called an expression tree. In expression trees, leaf nodes are operands and 
non-leaf nodes are operators. That means, an expression tree is a binary tree where internal nodes arc operators 
and leaves arc operands. An expression tree consists of binary expression. But for a u-nary operator, one 
subtree will be empLy. The fi gure below s hows a simple expression tree for (A + B * C) / 0. 

c 

Algorithm for Building Expression Tree from Postfix Expression 

operatorPrecedence = { 
'(': 0, 
')' : 0, 
'+' : L, 
,_, : 1, 
'*': 2, 
'/' : 2 

def postfixConvert(infix): 
stack = [] 
postfix= II 
for char in infix: 

if char not in operatorPrecedence: 
postfix. append( char) 

else: 
if Ien(stack) == 0: 

stack.append(char) 
else: 

if char == "(": 
stack. append(char) 

elif char == ")": 

while stack[Ien(stack) - l] != "(": 
postfix. append( stack. pop()) 

stack. pop() 
e lif operatorPrecedencejcha rj > operatorPrecedence[sta.ck[len(stack) - l JI: 

stack.append(char) 
e lse: 

while len(stack) != 0: 
if stack(len(stack) - lJ == 'C: 
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break 
postfix.append(stack. pop()) 

stack.append( char) 

while len(stack) != 0: 
post.fix.append(slack. pop()) 

return postfix 

class Node(object): 
def _init_ (self, value): 

self. value == value 
self. left = None 
self.right = None 

class ExressionTree(object): 
def _ init_ (self, root = None): 

self._ rool - root 

def inordcr(self): 
self._inordcr_helper(self._ rool) 

def _ inorder_helper(sclf, node): 
if node: 

self._ inordcr_helpcr(node.lefl) 
print node. value 
sclf._ inorder helpcr(nodc.righl) 

def preorder(self): 
self._ preorderUt.il(self. root) 

def _preorderUtil(self, node): 
if node: 

print node.value 
self._preorderU til(node. left) 
self. _ preorderU til(node. righ l) 

def poslordcr(self): 
sclf._ poslorclerUtil(sclf. root) 

def _ postorderUtil(self, node): 
if node: 

self._ postorderU til(node. left) 
self._postorderU til(node. right) 
print node.value 

def bu ildExpressionTrec{infix): 
posl(ix = postlixConvert{infi.x) 
stack= II 

for char in postJix: 
if char not in operat.orPrcccdtmcc: 

node = Node{cha r) 
stack.append(node) 

else: 
node = Node{cha.r) 
right= stack.pop() 
lefl = stuck.pop() 
node.right = right 
node.left= left 
stack.append(node) 

return ExressionTree(stack. pop()) 

print "In Order:" 
build ExpressionTrcc(" (5+ 3 )*6 "). inorder() 
print "Post Order:" 
build E:iq>rcssionTree{" {5+3)*6"). poslorder() 
print "Pre Order:" 
bu ildExprcssionTrec(" (5+ 3)*6"). prcorder() 

Trees 

Example : Assume Lhal one symbol is read al a Lime. If lhc symbol is an operand, we create a tree node and 
push a pointer to il onlo a s tack. If the symbol is an operator, pop pointers to two trees T1 and T2 from the stack 
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(Ti is popped fast) and form a new tree whose root is the operator and whose left and right children point to 'l'-1. 
and 1'1 respectively. A pointer to this new tree is the n pushed onto the stack. 

As an example, assume the input is AB C * + D /. The first three symbols a re operands, so create Lree nodes 
a nd push pointers to the m onto a stack as s hown be low. 

c 

B 

A 

Next, an operator '*' is read, so two pointers lo trees are popped, a ne w lrcc is formed a nd a poin ter t.o it is 
pushed onto the stack. 

8 

Next, a n opera tor '+' is read , so two pointers to trees a rc popped, a new tree is fo rmed a nd a pointer to it is 
pus hed onto the stack. 

B 

Next, an operand 'D' is read, a one-node tree is created and a pointer to the corresponding tree is pus hed on to 
the s tack. 

B 

Fina lly, th e last sym bol ('/1 is read, Lwo trees arc merged a nd a po inter to t he fi na l t ree is left on the stuck. 

D 
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6.10 XOR Trees 
This concept is similar to memory efficient doubly linked lists of Linked lists chapter. Also, like threaded binary 
Lrces this rcprcscnlation docs not need stacks o r- queues fo r traversing Lhe trees. This representation is used for 
traversing back (lo parent) a nd forth (to ch ildre n) us ing E9 operation. To represent Lhe same in XOR trees, for 
each node below a re the rules used for representation: 

• Each nodes left will have the E9 of its parent and its left children. 
• Each nodes r igh t will ha ve the EB of its parent a nd its right children. 
• The root nodes parent is NU LL a nd a lso leaf nodes children are NULL nodes. 

G 

Based on the above rules a nd discussion, the tree can be represented as: 

NULLEBB A NULLE9C 
< ... ... ... ... ....... 
A©F _I c 

' ' ' ' ' '• 
BE9NULL 11 BE9G E BE9NULL I 

L,_~~~~--J'--~~L-~~~--' .___-,-~~~----'~~----'~~~~--' -........... 
BE9NULL D 

CE9NULL I F I 
EEElNU l.L 

,,. 

G 1"' EEElNULL 

AEB NULI. 

... 
' I 

CEBNULI. 

The major objective of this presentation is the ability to move to parent as well to children. Now, let us see how 
to use this representation for traversing the tree. For example, if we arc at node B and want LO move LO its 
parent node A, then we just need to perform E9 on its left content with its left child address (we can use right 
child a lso for going to pa ren t node). 

Similarly, if we want to move to its c hild (say, left child DJ then we have to perform EB on its left content wilh its 
pa rent node address. One important point thal we need to understand about Lhis re presentation is: When we 
a rc at node 8, how do we know lhe address of its childre n D? Since the traversal starts al node root node, we 
can a pply EB on root's left content with NULL. /\s a result we get its left c hild, B. When we a re a t B, we can a pply 
EB on ils le ft content wilh A add ress. 

6.11 Binary Search Trees (BSTs) 

Why Binary Search Trees? 
In previous sections we have discussed different lrcc re prescnlations a nd in a ll of them we did nol i mposc a ny 
restriction on lhc nodes data. /\s a result, Lo search for <1n element we need lo c heck boLh in lefl s ubtree a nd in 
right subtree. Due to this, the worst case complexity of search operation is O(n). 

6.10 XOR Trees 174 



Data Slructurc and Algorithmic Th in king with Python Trees 

In t his section, we will d iscuss another variant of binary trees: Binary Search Trees (BSTs). As the name 
su ggests, the ma in use of this representation is for searching. In this representation we impose restric tion on the 
kind of data a node can contain. As a resull, it reduces the worsl case average search operation lo O(lo,gn). 

Binary Search Tree Property 

In binary search trees, a 11 the left su btrce e lem e n ls should be less lha n root data and n II I he right su bt.rec 
clements should be greater than root data. This is called binary search tree property. Nole that, this properly 
should be satisfied al every node in the tree. 

• The left s ubtree of a node contains only nodes with keys less than the nodes key. 
• The right subtree of a node contains only nodes with keys greater than the nodes key. 
• Both the left and right subtrees must also be bina ry search trees. 

root 

<root-> data >root- data 

Example: The left Lree is a binary search tree a nd the r ight tree is not a binary search tree (at node 6 it's not 
satisfying the binary search tree property). 

Binary Search Tree Declaration 

,- .... , , \ 

~ 3 , 

d'-' 

There is no difference between regular binary tree declaration and binary search tree declaration. The difference 
is only in data but not in structure. But for our conven ience we c hange the structure name as: 

"Binary Search Tree Class and its methods"' 
class BSTNode: 

def init. (self, data): 
self.data = data 
self.left= None 
self. right = None 

#set data 
def setoata(self, data): 

self.data = data 
#get data 
def getData(sclf): 

return self.data 
#get left child of a node 
def getLeft(self): 

return self.left 
#get right child of a node 
def getRigbt(self): 

return self.right 

#root node 
#left child 
#right child 

Operations on Binary Search Trees 
Main operations : Following arc the ma in operations thut a rc suppor·ted by binary search trees: 

• Find/ Find Minimum / Find Maximum element in binary search trees 
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• Inserting an clement in binary search trees 
• Deleting an clement from binary search trees 

Auxiliary operations : Checking whether the given tree is a binary search tree or not 

• Finding k111 -smallcst clement in tree 
• Sorting the clements of binary search tree and many more 

Important Notes on Binary Search Trees 
• Since root data is always between left subtree data and right subtree data, performing inorder traversal 

on binary search tree produces a sorted list. 
• While solving problems on binary search trees, first we process left subtree, then root data, and fmally 

we process right subtree. This means, depending on Lhe problem, only the intermediate step (processing 
root data) changes a nd we do not touch the first and third steps. 

• If we <i re scorch ing for an clement a nd if the left subtree root daln is lcss than the clement we want to 
search, then skip it. The same is the case with the right s ubtree .. Because of Lhis, binary search trees 
ta ke less Lime for searching an clement than regula r bina ry lrccs. In othe r words, the binary search 
t rees eon::;icler e ithe r left or right subtrees for searching an clement but not both. 

• The bas ic operations that can be performed on bina ry search tree (BST) are insertion of element, 
deletion or clement, a nd searching for an element. While performing these operations on BST the height 
of the tree gets changed each time. Hence there exists variations in lime complexities of best case, 
average case, a nd wors t case. 

• The basic operations on a binary search tree take time proportional to the height of the tree. For a 
complete binury tree with node n, such operations runs in O(lgn) worsl-cu::;c Lime. If the tree is a linea r 
chain of n nodes (skew- tree). however, the same operations takes O(n) worst-case time. 

Finding an Element in Binary Search Trees 
Find operation is straigh tforward in a BST. Start with the root and keep moving left or right using the BST 
property. If the data we are searching is same as nodes data then we return current node. 

If the data we arc searching is less than nodes data then search left subtree of current node; olhcr.vi::;c search 
right ::;ubu·cc of cur-rent node. If the data is not present, we end up in a NULL link. 

def find( root, data ): 
currentNodc = root 
while currentNode is not None and data != cu1TentNodc.gctData(): 

if data> currentNode.getData(): 
currentNode = currentNode.getRight() 

else: 
currentNode = currentNode.getLeft() 

return currenlNodc 

Time Complexity: O(n), in worst case (when BST is a skew tree). Space Complexity: O(n), for recurs ive stack. 

Non recursi1Je version of the a bove a lgorithm can be given as: 

#Search the key from node, iteratively 
def find(root, data): 

currentNode = root 
while currentNode: 

if data== cuncnlNodc.getData.(): 
return currcntNodc 

if data < currcntNode.gctData(): 
currentNode = currentNode.getLeft() 

else: 
currenlNode = currentNode.getRight() 

return None 

Time Complexity: O(n). Space Complexity: 0(1). 

Finding Minimum Element in Binary Search Trees 
In BSTs, the minimum clement is the left-most node, which does not havl! left child. In the BST below, the 
minimum clement ill 4. 
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def findMin(root}: 
currentNode = root 
if currentNode.getLeft() == None: 

return currentNodc 
else: 

return findMin(eurrentNode.getLeft()) 

Time Complexity: O(n), in worst case (when BST is a left skew tree). 
Space Complexity: O(n), for recurs ive stack. 

7 

Non recursive version of the above algorithm can be given as: 

def findMin(rool): 
eurrentNode = root 
if cw·rentNode == None: 

return None 
while currentNode.getLeft() !=None: 

currentN9de = currentNode.getLeft(} 
return currentNode 

Time Complexity: O(n). Space Complexity: 0(1). 

Finding Maximum Element in Binary Search Trees 

Trees 

In BSTs, the maximum element is the right-most node, which does not have right child. In the BST below, t he 
maximum element is 16. 

#Search the key from node, iteratively 
def findMax(root) : 

curtentNode = root 
if currentNode.getRight() == None: 

retum currenLNode 
else: 

return findMax(currentNode.getRight()) 

Time Complexity: O(n), in worst case (when SST is a right skew tree). 
Space Complexity: O(n), for recursive stack. 

7 

Non recursive version of the above a lgorithm can be given as: 

_!ief findMax(root}: 
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currenlNode = root 
if currentNode == None: 

return None 
while currenLNode.getRight() , .. None: 

currcntNodc "' currcntNodc.gctRight() 
return currcntNodc 

Time Complexi ty: O(n). Space Complexity: 0(1). 

Where is Inorder Predecessor and Successor? 

Trees 

Where is the inorder predecessor und successor of node X in a binary search tree assuming all keys are distinct? 

If X has two children then its inordcr predecessor is the muximum value in its left subtree and its inordcr 
successor the minimum value in its right subtree. 

x 

Prcdccessor(X) 

If it docs not have a left child, then a node's inordcr predecessor is its lirst left ancestor. 

Prcdcccssor!Xl 

#Successror of a node in BST 
def successorBST(root): 

temp = None 
if root.getRight(): 

temp = rool.getRight() 
while temp.getLeft(): 

temp= s.getLcft() 
return Lemp 

II Predecessor of a node in BST 
def pn:deccssorBST(root): 

temp .. None 
if root.getLeft(): 

temp = root.getLcft() 
while temp.get.Right(): 

temp = Lcmp.geLRight() 
return temp 

x 

Inserting an Element from Binary Search Tree 
To insert data into binary search tree, first we need to find the locotion for that element. We can lind the location 
of insert ion by following the same mechanism as that of find opera Lion. While finding the location, if the data is 
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a lready lhere then we can simply neglect and come out. Otherwise, insert data at the last location on the path 
traversed. 

As an example let us consider lhe following tree. The dotted node indicates the clement (5) to be inserted. To 
insert S, tra verse the tree using fi11d function. At node with key 4, we need to go right, but there is no subtree, 
so 5 is nol in the tree, irnd this is the correct location for insertion. 

def insertNode(root, node): 
if root is None: 

root= node 
else : 

if root.data > node.data: 
if root.left == None: 

rool.lefl = node 
else: 

insertNode(root.left, node) 
else: 

if root.right == None: 
root.right = node 

else: 
inserlNode(rooLrighl, node) 

root 

Note: In the above code, a fter inserting an clement in subtrees, the tree is returned lo its parent. As a result, the 
complete tree will get updated. 

Time Complexity:O(n). Space Complcxity:O(n). for recursive stack. For iterative version, space complexity is 0(1). 

Delet ing an Element from Binary Search Tree 

The delete operation is more complicated thun other operations. This is beca use the e lement to be deleted may 
not be the leaf node. In this opera I.ion a lso, first we need to find l he location of the c lement which we want to 
delete. 

Once we have found the node to be de leted, consider the fol lowing cases: 

• If the clement to be deleted is a leaf node: return NU l.,L to its parent. That means make the 
corresponding child pointe r NULi_,. In the tree below to delete 5, set NULL to its parent node 2. 

root 

, ' 
', 5 ~ 
' , __ , 

• If the c lcmcnl to be deleted has one c hild: In this case we just need to send the current node's child to 
its pa rent. In the tree below, lo delete 4, 4 left s ubtree is set to its pa rent node 2. 
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root 

' 
I 4 ~ d __ ,' 

• If lhc clemenl to be deleted has both children: The general strategy is to replace the key of this node 
with Lhc largest element of the left subtree.: and recun;ivcly delete that node (which i:; now empty). The 
la rgest node in the left subtree ca nnot have u right c hild, so the second del ece is nn easy one. As un 
example, le t us wnsicler the following tree. In the tree below, to dele te 8, it is the right c hild of the root. 
The key vu lue is 8. It is rc plucccl with the larges t key in its left subtree (7), and then that node is deleted 
as be fore (second case). 

root 

Note: We can re place with minimum c le ment in right subtree also. 

def deleteNodc(root, data): 
"""delete the node with the given data and return the root node of the tree '""' 
if root.data .. data: 

else: 

# found the node we need to delete 
if root.right and root.left : 

e lse: 

H get the successor node and its parent 
(psucc, succl = findMin(rooLright, root) 
H splice out the successor 
# (we need t he parent to do this) 
if psucc.left ... succ: 

psucc.left .. succ.right 
else: 

psucc.right .. succ.righl 
# reset the left a nd right children of the successor 
succ.left = root.left 
succ.right = root.right 
return suec 

ff "easier" case 
if root. left: 

return root.left # promot{~ the left subtree 
e lse: 

return root. right ti promote the right subtree 

if root .. du ta > datu: II data s hould be in the left s ubt ree 
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if root.left: 
root. left "' deleteNode(root.left, data) 

# else the data is not in the tree 
else: #data should be in Lhe righl subtree 

if root.right: 
root.right = dcleteNodc(root.right, data) 

return root 

def findMin(root, parent): 
""" return the minimum node in the current Lrec and its parent """ 
# we use an ugly trick: the parent node is passed in as an argument 
#so that eventually when the leftmost child is reached, the 
# call can return both the parent to the successor and Lhc succcs$or 
if rool.lcft: 

return findMin(root.ldt, root) 
else: 

return [pa rent, rool) 

Time Complexity: O(n). 
Space Complexity: O(n) for recursive stack. For iterative version , space complexity is 0(1). 

Binary Search Trees: Problems & Solutions 

Trees 

Note: For ordering related problem:; with binary search trees and balnnccd binary search trees, lnorder traversa l 
has advantages over others as it gives the sorted order. 

Problem-SO Given pointers to two nodes in a binary search tree, find the lowest common ancestor (I.CA). 
Assume that both values already exist in the tree. 

Solution: 

a 

The main idea of the solution is: while traversing BSf from root to bottom, the first node we encounter with 
value between a and p, i.e., a < node-+ data < fl, is the Least Common Ancestor(LCA) of a and {J (where a < fl). 
So just traverse the BST in pre-order, and if we find a node with value in between a and fl, then thaL node is the 
LCA. 

If its value is greater than both a and p, then the LCA lies on the left side of the nod<.:, and if its value is smal ler 
than both a and j3, then the LCA lies on the right side. 

def FindLCA(root. a, b): 
while( root): 

if((a <= root.data and b > root.data) or (a > root.data and b <= rooL.data)): 
return root 

if(a < root.data): 
root = root. lefl 

else: root = root.right 

Time Complexity: O(n). Space Complexity: 0(11), for skew trees. 

Problem-51 Give an a lgorithm for finding the shortest path between two node:; in a BST. 

Solut ion: It's nothing but fmding the LCA of two nodes in SST. 

Problem-52 Give an algorithm for counting the number of BSTs possible with 11 nodes. 
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Solution: This is a DP problem. Refer to c ha pter on Dynamic Programming for the a lgorithm. 

Prob lem -5 3 Give an a lgorithm to c heck whether the given binary tree is a BST or not. 

Solution: 

I ' 

~ 9 ; 
' I ~-' 

Consider the following simple program. For eac h node, chec k if the node on its left is smaller and c heck if the 
node on its right is greater. This approach is wrong as this will rc lurn true for binary tree below. Chec king on ly 
at currcnl node is nol enough. 

def IsBST(root): 
if root == None: 

return 1 
# false if left is > than root 
if root.getLeft() != None and root.getLeft().gctData() > root.gctData(): 

return 0 

# false if right is < than root 
if root.getRight() != None and rooL.getRight().getData() < rool.getData(): 

return 0 

# false if, recursively, the left or right is not a BS'r 
if not IsBST(root.getLeftOJ or not IsBST(root.getRight()): 

return 0 

# passing all that, it's a BST 
return 1 

Problem-54 Ca n we think of getting the correct a lgorithm? 

Solution: F'or each node, chec k if max va lue in le ft subtree is smaller than the eurre nt node d a ta a nd min va lue 
in right subtree greater than the node data. It is assumed that we have helper funclions FindMi11() and Fi11dMax() 
that return the min or max integer value from a non-empty tree. 

# Returns true if a binary tree is a binary search tree 
def lsBST(root): 

if root == None: 
return 1 

# false if the max of Lhe left is > than root 
if rooLgetLeft() != None and FindMax(root.getLeft()) > root.getData(): 

return 0 

# false if the min of the right is <= than root 
if root.getRight{) != None and FindMin(root.getRight{)) < root.getDataQ: 

return 0 

# false if, recursively, the left or right is not a BST 
if not lsBST(root.getLeft()) or not lsBST(root.getRighl()): 

return 0 

# passing all that, it's a BST 
return 1 

Time Complexity: O(n2) . Space Complexity: O(n). 

Problem-55 Ca n we improve the complexity of Problem-54? 

Solut ion: Yes. A better solution is to look a t each node only once. The tric k is lo w1·itc a uti lity he lper func tion 
ls BSTUtil(st.ruct Bina ryTrceNod e'* root, int min , int mw.:) tha t trave rses down the tree keeping trac k o f the 
na rrowing min a nd max allowed va lues as it goes, looking a t each node o nly o nce. The initia l va lues for min a nd 
ma x s hould be INT_MIN a nd INT_MAX - Lht:y na rrow from lhere. 
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def lsBST(root, min, max): 
if root== None: 

return 1 
if root.getDataQ<=min or root.getData()>=max: 

return 0 
result = IsBST(root.gctLcft(), min, root.getData(J) 
result = result. and IsBST(root.gctRight(), root.getData(), max) 
return result 

print(IsBST(root, float(" -infinity"), float(" infinity"})) 

Time Complexity: O(n). Space Complexity: O(n), for stack space. 

Problem-56 Can we further improve the complexity of Problem-54? 

Trees 

Solution: Yes, by us ing inorder traversal. The idea behind th is solution is that inordc r traversal of BST 
produces sorted lists. While traversing the BST in inorder, at each node check the condition thut its key vulue 
should be greater than the key vaJue of its previous visited node. Also, we need Lo initialize the prev with 
possible minimum integer value (say, INT_MIN). 

previousVaJue = float("infinity") 
def isBST4(root, previous Value): 

if root is None: 
return l 

if not isBST4(root.getLeft(), previousVaJue): 
return F'a lse 

if root.gc lData() < lastNodelOI: 
return 0 

previousValue "' root.getData() 
return isBST4(root.getRight(), previousValue) 

Time Complexity: O(n). Space Complexity: O(n), for stack space. 

Problem-57 Give an algorithm for converting BST to circular DLL with space complexiLy 0(1). 

Solution: ConverL lcfl a nd right s ubtrees to DLLs a nd ma inta in end of those lists. Then, adjust the pointers. 

def BSTioDLL(root): 
'" main func tion to take the root of lhe BST and relttm the head of the doubly linked list "' 
prev = None 
head= None 
BSTioDoublyList(root, prev, head) 
return head 

def BSTioDoublyList(root, prev, head): 
if (not root): return 

BSTioDou blyList(root. left, prev, h.ead) 

# current node's left points to previous node 
root.left = prev 

prev.right = root 
head= root 

right= root.right 

# Previous node's right points to current node 
# If previous is NULL that current node is head 

# Saving right node 

#Now we need to ma ke lis t created till now as circular 
head.left= root 
root.right = head 

#For right-subtree/parent, current node is in-order predecessor 
prev =root 
BSTToDoublyList(right, prev, head) 

Time Complexity: O(n). 

Problem-58 For Problem-57, is there any other way of solving it? 

Solution: Yes. There is a n a lternative solution based on the divide a nd conquer method which is quite ncn l. As 
evident, lhe function cons iders 4 major cases: 

1. When the current node(rool) is a leaf node 
2. When there exists no left child 
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3. When Lhcre exists no righl ch ild 
4. When there exists both left and right child 

def BSTToDLL(root}: 
"' main function Lo take the root of the BST and ret"Urn the head of the doubly linked list "' 
#for leaf Node return itself 
if rooL lefL .... root and rooL. righ I .. ,,. rooL: 

return root 
elir root.left == root: #No left subtree exist 

h2 = BSTToDLL(root.right) 
root.right = h2 
h2.left.rigbt = root 
rooLleft = h2.left 
h2.lcft = root 
return rool 

clif root.right == root: # No right subtree exist 
h I = BSTToDLL(root.left) 
rooLlcfc = h l.left 
hl.left.right =root 
root.right= bl 
h 1 ..left = root 
return hl 

else: # Both left and right subtrnes exist 
h I = BSTToDLL(root.lcft) 
h2 = BSTToDLL(root.right) 

I l = h 1 . left # Find last. nodes of the lists 
12 = h2.left 

hl.left = 12 
12.rigbt = h 1 

11.rigbt = root 
root.left = 11 

root.right = h2 
h2.lcft = root 
return bl 

Time Complexity: O(n). 

Problem-59 
tree. 

Given a sorted doubly linked list, give an a lgori thm for converting it into balanced binary search 

Solution: Find the middle node and adjust the pointers. 

def DLLtoBalanceclBST(head): 
if( not head or not head. next): 

return head 
# Refer Linked Lists chapter for this runction. We can use two-pointer logic lo find the middle node 
temp = FindMiddleNode(head) 
p =head 
while(p.next != temp): 

p = p.nexl 
p.next = None 
q = temp.next 
temp.next = None 
temp.prev = DLLtoBalanccdBST(head) 
temp.next = DLLtoBalancedBST(q) 
return temp 

Time Complexity: 2T(n/2) + 0(11) I for finding the middle node] = O(nlogn). 

Note: For FindMiddleNode function refer I.inked Lists cha pte r. 

Problem-60 Given a sorted aITay, giv<.: an algorithm for converting lhe an-ay lo BST. 

Solution: If we have to choose an array e lement lo be the roo1 of a ba lanced BST, which element should we 
pick? The root of a balanced SST shou ld b<.: the middle clement from the sorted array. We would pick the middle 
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element from the sorted array in each iteration. We then create a node in the tree initialized with this element. 
After the clement is chosen, what is left? Could you identify the sub-problems within the problem? 

There are two arrays left - the one on its left and the one on its right. These two arrays are the sub-problems of 
the original problem, si11cc both of them arc sorted. F'urthermore, they are subtrees of the current node's left 
and right c hild. 

The code below creates a balanced BST from the sorted a rray in O(n) time (11 is the number of elements in the 
a rray). Compare how sim ilar the code is to a binary search a lgorithm. Both are using the divide and conquer 
methodology. 

def BuildBST(A, left, right) : 
if(left > right): 

return None 
newNode = Node() 
if(not newNode) : 

print("Memory Error") 
return 

if(left == right): 

else: 

newNode.data = A[left] 
newNode.left = None 
newNode.right = None 

mid = left+ (right-left)/ 2 
n cwNodc.data = Ajmid] 
newNode.left = BuildBST(A, left, mid - 1) 
newNode.right = BuildBST(A, mid+ 1, right) 

retu1n newNode 

if _name_ == "_ main_": 
#create tlie sample BST 
A= [2, 3, 4, 5, 6, 7) 
root = BuildBST(A, 0, len(A)-1) 
print "\ncreating BST" 
prin lBST(root) 

Time Complexity: O(n). Space Complexity: O(n), for s tack space. 

Problem-61 Given a singly linked list where elements are sorted in ascending order, convert it to a height 
balanced BST. 

Solution: A naive way is to apply the Problem-59 solution directly. In each recursive call, we would have to 
traverse half of the list's length to find the middle element. The nm time complexity is clearly O(nlogn), where n 
is the tota l number of elements in the list. This is because each level of recursive call requires a total of n/2 
t ra versa l steps in Lhe lis t, a nd there arc a total of lo.1111 number of lcvds (ic, the height of Lhe balanced tree). 

Problem-62 For Problcm-61, can we improve the complexity? 

Solution: Hint: How about inserting nodes following the list order? If we can ach ieve this, we no longer need to 
find the middle element as we are able to traverse the list while inserting nodes to the tree . 

Best Solution: As usual, the best solution requires us to think from another perspective. In other words, we no 
longer create nodes in the tree using the top-down approach. Create nodes bottom-up, and assign them to their 
pa rents. The bottom-up approach ena bles us to access t.he list in its order while creating nodes [421. 

Is n 't the bottom-up a pproach precise? Any Lime we a rc s tuck with the top-clown approach, we can give bottom 
up a Lry. Although the bottom -up a pproach is not the most natu ra l way we think, it is helpful in some cases. 
However, we s hould prefer top-clown instead of bottom-up in general, since the latter is more difficult lo ve1ify. 

Below is the code for converting a singly linked lisL to a balanced SST. Please note that the a lgorithm requires 
the list length to be passed in as the function parameters. The list length can be found in O(n) time by 
traverning the entire list once. The recursive calls traverse the list and create tree nodes by the list order, which 
also takes O(n) time. Therefore, the overall run time complexity is still OO(n). 

def Sortcdl..istToBST(head, start, e nd): 
if(start > end): 

.return None 
#same as (start+end)/2, avoids overOow 
mid = start + (end - start) / / 2 
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left= SortedListToBST(head, sta.rt, mid-1) 
root= BSTNode(head.data) 
head= head.next 
print ''root data mid:",mid, .rc:>ot.dala 
root. left = left 
root.right= SorLcdLislToBST(head. mid+l, end) 
return rool 

def convertSortcdListToBST(hcad, n) : 
return SortedLisIToBST(head, 0, n-1) 

Problem-63 Give an a lgorithm for finding lhc krn smallest clement in BST. 

Trees 

Solution: The idea behind this solution is that, inorder traversal of BST produces sorted lists. While traversing 
the BST in inorder, keep track of the number of clements visited. 

count=O 
def kthSmallestlnBST(root, k): 

global count 
if(not root): 

reLUro None; 
left= kthSmallest.lnBST(root.lcft, k) 
if( left ): 

return left 
count+= I 
if(count =,.. k}: 

return root 
return kthSmallcstlnBST(root.right, k) 

Time Complexity: 0(11). Space Complexity: 0(1). 

Problem-64 Floor and ceiling: If a given key is less than the key at the root of a SST then the floor of the 
key (the largest key in the SST less than or equal to the key) must be in the left subtree. If the key is greater 
Lhan the key at the root, then the floor of the key could be in the righl subu·ee, but only if there is a key 
smaller than or equa l to the key in the right subtree; if not (or if the key is equal lo lhe the key at lhe root) 
then the key al the root is the floor of the key. Finding the ceiling is similar, inlerchanging right and left. For 
example, if the sorted with input array is (I, 2, 8, I 0, 10, 12, 19}, then 

For x = 0: noor docsn'L exist in a rray, cci l = I, For x = l: noor = 1, eeil = 1 
For x = 5: noor = 2, ccil = 8, For x = 20: noor = 19, ceil doesn'L exist in array 

Solution: The idea behind this solution is that, inorder traversal of BST produces sorted lists. While traversing 
the SST in inorder, keep u·ack of the values being visited. If the roots data is greater than the given value then 
return the previous value which we have maintained during traversal. If the roots data is equal to the given data 
then return rool data. 

def FloorlnBSTUlil(root, data): 
if(not root): 

return sys. maxinl 

if(root.da.ta == data) : 
return root.data 

if(data < root.data ): 
return FloorlnBSTUtil(root. left, data) 

floor= FloorlnBSTUtil(rool.right, data) 
if floor <= daw.: 

relurn noor 
else: return root .data 

Time Complexity: O(n). Space Complexity: O(n), for slack space. 

For ceiling, we jusl need to call the righ l su btrec first, followed by left su blree. 

def CeillnBST(root, data): 
#Base case 
if( root == None ): 

return -sys.maxint 
# Found equal dat.a 
if( root.data == data ): 

return root.data 
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#If root's data is smaller, ceil must be in right subtree 
if( root.data< data) : 

return CeilinBST(root.right, data) 
#Else, either lert subtree or root has the ceil data 
ceil = CcillnBST(rooLleft, data) 
if ceil >== data: 

return ceil 
else: r~turn root.data 

Time Complexily: O(n). Space Complexity: O(n), for stack space. 

Problem-65 Give an algorithm for finding the union and intersection of BSTs. Assume parenl pointers are 
available (say threaded binaiy trees). Also, assume the lengths of two BSTs are m and n respectively. 

Solution: If pa renl pointers arc a va ilable then the problem is same as merging of lwo sorted lists. This is 
because if we ca ll inordcr successor each lime we get the next highest clement. It's just a matter of which 
lnorderS uccessor to call. 

Time Complexity: O(m + n). Space complexity: 0(1). 

Problem-66 For Problem-65, what if parent pointers are not available? 

Solution: If parent pointers are not available, the BSTs can be converted to linked lists and then merged. 

1 Convert both the BSTs into sorted doubly linked lists in O(n + 1n) time. This produces 2 sorted lists. 
2 Merge the two double linked lis ts into one and a lso ma inta in the coun t of total clement:;; in O(n + m) 

lime. 
3 Convert t he sorted doubly linked list into he ight balanced tree in O(n + m) time. 

Problem-67 For Problem-68, can we still think of an alternative way to solve the problem? 

Solution: Yes, by using inordcr traversal. 
• Perform inorder traversal on one of the BSTs. 
• While performing the traversal store them in table (hash table). 
• Afte r completion of the tra versa l of first BST, start traversal or second BST a nd compa re them with hash 

table conte nts . 

Time Complexity: O(m + n). Space Complex ity: O(Max(m, n)). 

Problem-68 Given a BST and two numbers Kl a nd K2, give an algorithm for printing a ll t he e lem ents of BST 
in the range Kl and K2. 

Solution: 

def ran.gePrinter(rool, Kl, K2): 
if not root: 

return 
if Kl <= root.getData() <= 1<2: 

print(root.getData()) 
if root.getData() < Kl: 

return rangePrinter(root.getRight()) 
if root.getData() > K2: 

return rangePrintcr(root.getLeft()) 

Time Complexity: O(n). Space Complcxily: O(n). for stack space. 

Problem-69 For Problcm-68, is there any a lternative way of solving t he proble m? 

Solution: We ca n use leve l o rde r traversal: while adding the e le me nts to queue c heck for the range. 

import Queue 
def rangePrinter(root): 

if root is None: 
return 

q = Queue.Queu e () 
q.put(root) 
Lemp= None 

while not q.empty(): 
temp= q.get() 
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if K 1 <=root.getDataO<=J<2: 
print(root.gelData()) 

if temp.getLeft() is not None and temp.geLData() >= K 1: 
q. pu t(temp.gctLcft()) 

ff t.emp.gcLRight() is not None and 1.e mp.gctData () <= K2: 
q.put(temp.gctRight()) 

Time Complexity: 0 (11). S pace Complexity: 0(11) , for que ue. 

Problem-70 For Proble m-68, ca n we s till think of alte rn::itive way for s olving the problem? 

Solution: First locate Kl with norma l bina ry sea rc h a nd after tha t use lnOrder successor until we encounter KZ. 
For algorithm, re fe r to problems section of threaded bina ry tree::>. 

Problem-71 Give n root o f a Binary Sea rc h t ree, trim the t ree, so that a ll e lements re turned in the new tree 
a rc between the inputs /\ a nd 13. 

Solution: It's jus t a nothe r way o f asking Pro blcm-68. 

def trimBST(root, min Val, maxVal): 
if not root: 

retwn 
root.setLeft(trimBST(rooLgetLeft(), minVal, maxVal)) 
root.setRight(trimBST(root.getRight(), minVal. maxVal)) 
if minVal<=root.getDa ta()<=maxVal: 

return root 
if root.getData()<minVa l: 

return root.getRight() 
if root.gctDa ta (}>maxVa l: 

return rooLgetLeft O 

Problem-72 Given two BSTs, chec k whether the clements o f them a re the same or not. For example: two 
BSTs with da ta 10 5 20 15 30 and 10 20 15 30 5 s ho uld return true a nd the dataset with 10 5 20 15 30 
and 10 15 30 2 0 5 should return fa lse. Note: BSTs da ta can be in a ny orde r. 

Solution: On<.: s imple way is performing un ino rdcr truvc rsa l on first tree a nd s to ring its data in has h ta ble . As a 
second ::> tc p, perform inorde r I ra versa l on second lrce a nd c heck wh <.:ther tha t data is a lready the re in has h ta ble 
or not (if it exis ts in has h ta b le lhen ma rk it wilh - 1 or some unique va lue). 

During the traversal of s econd tree if we find a ny mis ma tc h re turn fals e . After lravcrsal of second tree check 
whether it has all - ls in the hash table or not (this ensures extra data available in second tree). 

Time Complexity: O(max(m, 11)), where m a nd rt a rc the number of clements in fu-st and second BST. Space 
Complexity: O(max(m, n)). This depends on the size of Lhc firs t I.rec. 

Problem-73 For Problem-72, cu n w<.: reduce Lhc t ime complexity? 

Solution: Inst.ca d of performing the lroversols one ofter the other, we can perform in - order travers a l of both 
the trees in para lle l. Since the in - order trnversal gives the sorled lis t, we ca n check whether both the trees are 
generating the same sequence or not. 

Time Complexity: O(ma.x(m, n)). Space Complexity: 0(1). This depends on the size of the first tree. 

Problem-74 For Lhe key values 1 . . . n, how many st.ructurally unique BSTs are possible that store those keys. 

Solution: Slrategy: conside r that each va lue could be l he root. Recurs ively find lhe size of the left and right 
subtr<.:cs. 

def countTrccs(n) : 
if (n <= l): 

return l 
else: 

# there will be one vaJue al the root, with whatever remains on lhe left and right 
#each forming their own subtrees. Itera te through all toe values that could be the root ... 
sum = O 
for root in ra ngc(l ,n+ l): 

left counlTrces (root - l) 
right = count1'rccs(n - root) 
If numb<.:r of possible lrccs with this roo t == le ft*right 
sum += left• right 
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return( sum ) 

Proble m-75 Given a BST of size n, in which each node r has an additional field r ~size, the number of the 
keys in the sub-tree rooted al r (including the root node r). Give an O(h) algorithm CrealertlwnConstant(r, k) 10 

find lhe number of keys that arc s trictly grealer than k (Ii is the height of the bina ry i;;eurch tree). 

Solution: 
def GrealerthanConstanl (r, k): 

keysCount "' 0 
while (r}: 

if (k < r .data): 
keysCount = keysCount + r.right.size + l 
r = r.left 

else if (k > r.data): 
r = r.right 

else: 
keysCount = keysCount + r.righl.sizc 
break 

return keysCount 

The s u ggested algorithm works well if the key is a unique value for each node. Othenvise when reaching 
k=r.data, we should s tart a process of moving to the right until reaching a node y with a key thal is bigger then 
Jc, and then we i;;hould return keysCount + y.size. Time Complexily: O(lt) where /i=O(n) in the worst case a nd 
O(lo9n) in lhe average case. 

6.12 Balanced Binary Search Trees 
in earlier sections we have seen different lrees whose worsl case complexity is O(n), where n is the number of 
nodes in the tree. This happens when the trees are skew trees. ln this section we will try to reduce this worst 
case complexity to O(lo9n) by imposing restrictions on the heights. 

In general, the height bala nced trees a rc represented with llB(k). where k is the difference between left s ubtree 
height a nd right subtree height. Sometimes le is called balance factor. 

Full Balanced Binary Search Trees 
In HB(k), if k = 0 (if balance factor is zero), then we call such binary search trees as full ba lanced bina ry searc h 
trees. That means, in HB(O) binary search tree, Lhe difference between left subtree height a nd righ t s ubtree 
height should be at mosl ze ro. This ensures that the tree is a full binary tree. For example, 

Note: For constructing HB(O) tree refer lo Prohlems section. 

6.13 AVL (Adelson-Velskii and Landis) Trees 
In HB(k),if k = 1 (if balance factor is one), such a bina1y search tree is called an AVL tree. Thal means an AVL 
tree is a binary search tree with a balance condition: the difference between left subtree heigh t a nd right subtree 
height is at most 1. 

Properties of AVL Trees 
A bina1-y tree is said lo be an AVL tree, if: 

• It is a binary search tree, a nd 
For a ny node X, the height of left subtree of X and height of right s ubtree of X differ by at most I. 
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As an example, among the above binary search trees, the left one is not an AVL tree, whereas the right binary 
search tree is an AVL tree. 

Minimum/Maximum Number of Nodes in AVL Tree 

For simplicity le t us assume that the height of an AVL tree is h and N(h) indicates the number of nodes in AV I. 
tree with height h. To get the minimum number of nodes with height h, we should fill the tree with the minimum 
number of nodes possible. That means if we fill the left subtree with height h -1 then we should fill the right 
subtree with height h - 2. As a result, the minimum number of nodes with height h is: 

N(h) = N(h - 1) + N(l1 - 2) + 1 

In the above equation: 

• N(h - 1) indicates the minimum number of nodes with height Ir - 1. 

• N(h - 2) indicates the minimum number of nodes with height h - 2. 
• ln the above expression, "1" indicates the current node. 

We can give N(h -1) either for left subtree or right subtree. Solving the above recurrence gives: 

N(h) - 0(1.618h) = h = 1.44logn =- O(logn) 

T root 

f 
h -2 

h f 

_l_~ 
N(h - 2) 

N(h - I ) 

Where n is the number of nodes in AVL tree. Also, the above derivation says that the maximum height in AVL 
trees is O(logn). Similarly, to get maximum number of nodes, we need to fill both left and right subtrees with 
height h - l. As a result, we get: 

N(h) = N(h - 1) + N(h - l ) + 1 = 2N(h - 1) + 1 

The above expression defines the case uf fu ll binary tree. Solving the rec urrence we get: 

:. In both the cases, AVL tree property is ensuring that the height of an AVL u·ec with 11 nodes is 0(/0911). 

AVL Tree Declaration 
Since AVL tree is a BST, the declarution of AVL is similar to that of BST. But just to simplify the operations, we 
also include the height as pan of the dcclannion. 

class AVLNode: 
def _init_ (self,data,balanccFactor,left,right): 
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self.data= data 
self. balanceFactor = 0 
self.left = left 
self.right= right 

Finding the Height of an AVL tree 

def height(scU): 
return self.recHeight(self.root) 

def recHeight(self,root): 
if root == None: 

else: 
return 0 

leftH = self.recHcighl(r.lefl) 
rightH = self. reel leighl(r.right) 
if leftH>rightH: 

return l +leftH 
else: 

return 1 +rightH 

Time Complexity: 0(1). 

Rotations 

Trees 

When the tree structure changes (e.g., with insertion or deletion), we need to modify the tree to restore the AVL 
tree property. This can be done using single rotations or double rotations. Since an insertion/deletion involves 
adding/deleting a s ingle node, this can on ly inc rease/decrease the height of a subtree by 1. 

So, if the AVIJ tree property is violated at a node X, it means that the he ights of lefl(X) and righl(X) d iffer by 
exactly 2. This is because, if we balance the AVL tree every lime, then at any point, the difference in heights of 
le ft(X) and right(X) differ by exactly 2. Rotations is the technique used for rei;toring the AVL tree property. This 
means, we need lo apply the rotations for the node X. 

Observation: One important observation is that, after an insertion, on ly nodes that are on the path from the 
insertion point to the root might have their balances altered, because only those nodes have their subtrees 
a ltered. To restore the AVL tree properly, we start al the insertion point and keep going Lo the root of the tree. 

While moving to the root, we need to consider the fast node that is not saLisfying the AVL property. f.rom that 
node onwards, every node on the path to the root will have the isi;ue. 

Also, if we fix the issue for that first node, then all other nodes on the path to the root will automatically satisfy 
Lhe AVL tree property. Thal means we a lways need LO care for the first node that is not satisfying the AVL 
property on the path from the inse1·tion point to the root and fix it. 

Types of Violations 
Let us assume the node that must be rebalanced is X. Since any node has al moi;t two ch ildren, and a height 
imbalance requires that X's two subtree heights differ by two, we can observe that a violation might occu r in four 
cases: 

1. An insertion into the left s ubtree of the left chi ld of X. 
2. An insertion into the right subtree of the le ft chi ld of X. 
3. An insertion into the left subtree of the right child of X. 
4. An insenion into the ri~ht subtree of Lhc right chi ld of X. 

Cases 1 and 4 are symmetric and easily solved with s ingle rotations. Similarly, cases 2 and ~ arc also symmetric 
and can be solved with double rotations (needs two single rotations). 

Single Rotations 
Left Left Rotation (LL Rotation j [Case-1]: In the case below, node X is not satisfying t he AVL tree properly. As 
discussed earl ier, the rotation docs not have to be done al the root of a tree. In genera l, we ~ta rt at the node 
inse1-ted and travel up the tree, updating the balance information at every node on the path. 
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root 
root 

' I \ 

', 9 ,' 

For example, in the figure above, aflcr the insertion of 7 in the origina l AVL t ree on the left, node 9 becomes 
unbalanced. So, we do a single lefl-left rotation a t 9. As a result we gel the u·cc on the right. 

def singleLeftRotate(self,root): 
W =root.left 
root. left = W. right 
W.righl = root 
return W 

Time Complexity : 0( 1). Space Complexity: 0(1). 

Right Right Rotation (RR Rotation) (Case-4]: In this case, node X is not satisfying the AVL tree property . 
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For example, in the above figure, after the insertion of 29 in the original AVL Lree on the left, node 15 becomes 
unbalanced . So, we do a single right-right rotation at 15. As a result we get the tree on Lhc right. 

def s ingleRightRotate(self,rool): 
X = root.right 
root.right= X.lefl 
X. lcft "' root 
return X 

Time Complexity: 0(1) . Space Complexity: 0(1) . 

Double Rotations 
Left Right Rotation (LR Rotation) (Case-2): For case-2 and case-3 single rotation does not fix the problem. We 
need to perform two rotations. 

' ' ' ' 

------

' ' ' \ 

,, ,, 

\ 
\ 
I 
I 

I 

f\s on example, le t u::; consider the following tree: Insertion of 7 is creating the case-2 scenario and right s ide 
tree is the one after double rotation. 

root root 

- --- - II> 

Code for left-right double rotation can be given as: 

def righ tLefLRotalc(sclf, root): 
X = rool.left 
if X.balanceFactor == - 1: 

root. balanceFa.ctor = 0 
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X. balanccFactor "" 0 
root = self.singleLeftRotate(root) 

e lse: 
Y = X.right 
if Y.baJanceFaclor ="'- - 1: 

root.balanceFactor "' I 
X.balanceFaclor .. 0 

el:if Y. balanccF'actor == 0: 
root . balanceFactor = 0 
X.balanceFactor = 0 

else: 
root. balanceFaclor = 0 
X. balanceFaclor = -1 

Y. balanceFactor = 0 
root.left = sclf.singleRighLRoate(X) 
root = sclf.singlcLeftRot.atc(root) 

return root 

Trees 

Right Left Rotation (RL Rotation) (Case -3): S imila r to casc-2, we need to perform two rolations lo fix this 
scenario. 

root 
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As an example, let us consider the following tree: The insertion of 6 is creating the casc-3 scenario and the right 
side tree is the one after the double rotation. 

def rightLeftRotate(self, root): 
X = root.right 
if X. balanceFactor == 1: 

root.balanceFactor = 0 
X.baJanceFactor = 0 
root= self.singleRightRoate{r) 

else: 
Y = X.left 
ifY.balanceFactor == - 1: 

root. balanceFactor = 0 
X. balanceFactor = 1 

clif Y. balance Factor == 0: 
root. balanceFactor = 0 
X.balanceFactor = 0 

else: 
root. balanceFactor = -1 
X. balanceFactor = 0 

Y. balanceFactor = 0 
root.right "' self.singleLeftRotate(X) 
root = self.singleRightRoate(root) 

return root 

Insertion into an A VL tree 
Insertion into an AVL tree is similar to a BST insertion. After inserting the element, we just need to check 
whether there is any height imbalance. ff there is an imbalance, call the appropriate rotation functions. 

def insert(sel.f,<lata); 
newNode ""AVLNodc(data,O,None,None) 
!self.root, taller] = self.recinsertA VL(self. root1 newNode) 

def reclnsertAVL(self, root, newNode): 
if root == None: 

root = newNode 
root. balanceFactor = 0 
taller = True 

elif newNode.data< root.data: 
(root.left, taller] = self.recinsertA VL(root.left, newNode) 
if taller: 

else : 

if root. balance Factor == 0 : 
root. balanceFactor = - 1 

elif root.balanceFactor == l: 
root. balanceFactor= 0 
taller = False 

else: 
root= self.rightLeftRotate(root) 
taller = False 

!root.right, taller] = self. reel nserlA VL(root. right, ncwNode) 
if taller: 

if rool.bala.nceFactor == - 1: 
root. balanceFaclor = 0 
taller = False 

elif root. balanceFa,ctor == 0 : 
root. balanceFactor = 1 

else: 
root = self.rightLeftRotate(root) 
taller = False 

return [root,tallcr] 

Time Complcxily: O(logn). Space Complexity: O(logn). 
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Full Implementation 
class A VLNode: 

def _ init_(self, data, balanceFaotor, left, right): 
self.data = data 
self. balanccFactor = 0 
self.left = left 
self.right = right 

class AVL'free: 
def _ init_(seU): 

self.root = None 

def inOrderPrint(sel.f): 
self.reclnOrderPrint(self.root) 

def reclnOrderPrint(sclf, root): 
if root != None: 

self. rcclnOrderPrint(rnot.lcft) 
print root.data 
self.reclnOrderPrint(root.right) 

def insert(self,data): 
newNode = AVLNode(data,0,None,None) 
!self.root,tallcr] = self.reclnsertAVL(self.root,newNode) 

def reclnserlAVL(se lf, root, newNode): 
if root == None: 

root = ncwNode 
root. balance Factor = 0 
taller = True 

elif newNode.data< root.data: 
lroot.left,taller] = self.reclnsertAVL(root.lefl, newNode) 
iftallc1·: 

else : 

if root. balanceFactor == 0 : 
root. balanceFactor = -1 

clif rool.baJanceFactor == I: 
root.balanccFactor= 0 
taller = False 

else: 
root = self.rightLeftRotate(root) 
taller = False 

!root.right, taller! = sclf.reclnsertA VL(root. right, new Node) 
if taller: 

if root. balanceFactor ="' - 1: 
rooL balanccFactor = 0 
taller = False 

elif root. balanceFactor = 0 : 
root.balanceFactor "' 1 

else: 
root = self.rightLeftRotate(root) 
taller = False 

return lroot,tallerl 
def righLLeftRotate(self, root): 

X = root.right 
if X. balanceFactor == 1: 

root. balanceFactor = 0 
X. balanceFactor = 0 
root = self.singleRightRoate(r) 

else: 
Y = X.left 
ifY.balanceFactor == -1 : 

root.balanccFactor = 0 
X. balanceFactor "' l 

clif Y. balanccFactor == 0: 
root. balanccFactor = 0 
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X. balanceFactor = 0 
else: 

root. balanceFactor = -1 
X. balancePactor = 0 

Y. balanceFactor = 0 
root. right = sclf.singleLeftRotatc(X) 
root = sclf.singleRighrnoate(root) 

return root 

def rightLeftRotate(self,root): 
X = root.left 
if X. balanceFactor == -1 : 

root. balanceFactor = 0 
X. balanceFactor = 0 
root = self.singleLeftRotate(root) 

else: 
Y = X.right 
ifY.balanceFactor == - l: 

root. balanceFactor = l 
X. balanceFactor = 0 

elifY.balanceFactor == 0: 
root. balanceFactor = 0 
X. balanceFactor = 0 

else: 
root.balance.Factor= 0 
X.balancePactor = - 1 

Y.balanceFactor = 0 
root.left = self.singleRightRoate(X) 
root = self.singleLeftRotate(root) 

return root 

def singleRightRoate(self, r): 
X = root.right 
root.right = X.lcft 
X.lcft = r 
return X 

def singleLeftRotate(self,root): 
W = root.left 
root.left= W.right 
W.right = root 
return W 

def height(se1n: 
re tum self. recHeight(scl f. rool) 

def recHeight(self,root): 
if root== None: 

return 0 
else: 

leftH = self.recHeight(root.left) 
rightH = self. recHeight(root.right) 
if leftH>rightH: 

return I +lcft.H 
else: 

return l +1ightl-I 
def tester(): 

avl = AVLTree() 

data = f3,l,9,6,0, 11,2,5,4) 

for i in range(len(data)): 
avl.insert(data[i]) 

avl. inOrderPrint() 
prinl "height = ",avl.he ightO 

if _ name_ == '_ main_': 
tcsterO 
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AVL Trees: Problems & Solutions 
Problem-76 Given a he ight h, give an algorithm for generating the 118(0). 

Solution: As we have discussed, ///J(O) is nothing but generating full binary tree. In full binary tree the number 
of nodes with height h is: 21111 - 1 (let us assume that the height of n tree with one node is 0) . As a result the 
nodes can be numbered as: 1 to 211+ 1 

- 1. 

count= 0 
def BuildHBO(h): 

global count 
if(h <= 0): 

return None 
avlNode = AVLTree() 
avlNode.root = avlNode 
av!Node.lefl = BuildH BO(h- 1) 
avlNode.right = BuildHBO(h-1) 
av!Node.data =count 
count+= 1 
return avlNode 

Time Complexity: O(n). 
Space Complexity: O(logn). where /ogn indicates the maximum stack size which is equal to he ight of tree. 

Problem-77 Is there any alternative way of solving Problem-76? 

Solution: Yes, we can solve it following Mcrgeson logic. That means, instead of working with height, we can 
take the ra nge. With this approach we do not need any g lobal coun ter to be maintained. 

def BuildHBO(l, r): 
mid = l + (r-1)/ /2 
if(J > r): 

return None 
avlNode = AVLTree() 
avJNode.root = avlNode 
avlNode.left = Bu.ildHBO(J, mid-1) 
avlNode.right = BuildHBO(mid+l, r) 
avlNode.data = mid 
return avlNode 

The initial call lo the BuildHBO function could be: Bui/di/BO( I, 1 « /J). 1 « h does the sh ift operation for 
calculating the zh+t - 1. 

Time Complexity: O(n). Space Complexity: 0(/ogn). Where logn indicates maximum stack size which is equal Lo 
the height of the tree. 

Proble m -78 ConslrucL minimal AVL Lrecs of height 0,1,2,3,4,and S. Whal is Lhe number of nodes in a 
minimal AVL tree of height 6? 

Solution Let N(h) be the number of nodes in a minimal AVL Lrcc with height It. 

N(O) 1 

N(l) 2 

N(h) = 1 + N(h - 1) + N(h - 2) 

N(2) = + N(l) + N(O) 
= +2+ 1 = 4 
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N(3) 1 + N(2) + N(1) 
1+4+2 = 7 

N(4) = 1 + N(3) + N(2) 
= 1 + 7 + 4 = 12 

N(S) = l + N(4) + N(3) 
= 1 + 12 + 7 = 20 

Trees 

Proble m-79 For Pi-oblem-76, how many different shapes can there be of a minima l AVL tree of height 1t·~ 

Solution: Let NS(h) be the number of different shapes of a min imal AVL tree of height h . 

NS(O) = 1 

NS(l) = 2 

NS(2) = 2 • NS(l) • NS(O) 
=2•2•1 = 4 

NS(3) = 2 ._ NS(2) * NS(l) 
=2 •4 ... l = B 

NS(h) 2 • NS(h - 1) .. NS(h - 2) 

0 

Problem-SO Given a binary sea rch tree, c heck whether il is an AVL tree or not? 

Solution: Lel us assume that l sAVI. is the function which checks whether the given binary search tree is an AVL 
tree or not. lsAVL returns -1 if the tree is not an AVL tree. During the checks each node sends its height to its 
parent. 

count= 0 
def BuildHBO(h): 

global count 
if(h <= 0): 

rel.Um None 
avlNode = AVLTrce(} 
av!Node.root = av!Node 
av!Node.left. = BuildHBO(h-1) 
avlNode.right = BuildHBO(h-1) 
av!Node.data = count 
count+= 1 
return avlNode 

def tester(}: 
avlNode = BuildH80(4) 
av IN ode. in Order Print() 
print "height= ",avlNode.height() 
print isAVL(avlNode) 
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if _name_== '_ main_'· 
tester() 

Time Complexity: O(n). Space Complexity: O(n). 

Problem-81 Given a height Ii, give an a lgorithm lo ge nerate an AVL Lree with m inimum numbe r or nodes . 

Solution: To get minimum number or nodes, rill one lcvd with h - 1 and the othe r with h - 2. 

count= 0 
def generateAVLTrcc(h): 

global count 
if(h <= 0): 

return None 
avlNode = AVLTrec() 
avlNodc.root = avlNode 
av!Nodc.lefl = gc.:nerateAVLTrcc(h-2) 
avlNode.right = generatcAVLTree(h- 1) 
avlNode.data = count 
count += l 
return avlNode 

def tester(): 
avlNode = gencrateAVLTree(4) 
avINode.inOrderPrint() 
print "height = • ,avlNode.height() 

if name_ == '_main ': 
tester() 

Problem-82 Given an AVL tree with n integer items and two integers a a nd b, where a a nd b can be a ny 
integers with a <= b. Implement an algorithm to count the number or nodes in the range fa, bl. 

Solution: 

a 

The idea is to ma ke use of the recursive pro perty o f binary searc h trees. The re a re three cases to cons ider: 
whe the r the curre nt node is in the ra nge la. bl, o n t he left s ide o f the ra nge la. bl. o r o n the right s ide o r the ra nge 
la. bl. Only s ubtrees U1a t poss ibly contain the nodes will be processed under· each of the three cases . 

def rangeCount(root, a, b): 
if root== None: 

return 0 
elif root.data > b: 

return rangeCount(root.left, a, b) 
elif root.data < a: 

return rangeCount(root.righl, a, b) 
elif root.data >= a and rool.data <= b: 

relurn rangeCount(root.left, a, b) + rangcCount(rool.righl, u, b) + 

def tester(): 
avlNode = generateAVLTree(4) 
print rangeCount(avlNode, 2, 7) 

if _ name_== '_main_': 
tester() 

The complexity is ::;imila r to in - order truve rsal of the tree bul s kipping left or right s ub-trees when they do no t 
conla in a ny a nswers . So in the wors t case, if the ra nge covers a ll the nodes in the tree, we need Lo tra ve rse a ll 
Uie 11 nodes to get the a nswer. The worst time complexity is therefore O(n ). 
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If the range is small, which only covers a few elements in a small subtree at. the bottom of the tree, the time 
complexity will be O(h) = O(Iogn), where h is the height of the tree. This is because only a single path is 
traversed to reach the small subtree at the bottom and many higher level subtrees have been pruned along the 
way. 

Note: Refer t.o s imila r problem in BST. 

Problem-83 Given u SST (applicable Lo AVL Lrccs as well) where each node contains 1.wo data clements (i ts 
data a nd also the number of nodes in its subtrees) as shown below. Convert the tree t.o another BST by 
rep.lacing the second data element (number of nodes in its subtrees) with previous node data in inorder 
traversal. Note that each node is merged with i.norder previous node data. Also make sure that conversion 
happens in-place. 

I ~ ~ / 

" ,, 
9 2 / 

I~ WI 
2 0 ~ 7 

8 

i 8 I 0 I 
Solution: The simplest way is to use level order traversal. If the number of elements in the left subtree is greater 
than the number of elements in the right subtree, find the maximum element in the left subtree and replace the 
current node second data element with it. Similarly, if the number of elements in the left subtree is less than the 
number of elements in the right subtree, find the minimum element in the right subtree and replace the current 
node second data element with it. 

def treeCompression (root): 
Q = Queue() 
lr(root == None): 

return None 

Q.enQueue(root) 
while(not Q.isEmpty()): 

temp = Q.deQueue() 
if(temp.left and temp.right and (temp.left.data2 > temp.right.data2)): 

temp2 = findMax(temp) 
else: temp2 = findMin(temp) 

temp.data2 = temp2.data2 /#Process currenl node 
temp2 = None 
if( temp. left): 

Q.enQueue(temp. left) 
if( temp.right): 

Q.enQueue(temp.right) 

Time Complexity: O(nlogn) on average since BST takes O(logn) on average to find maximum or mu11mum 
clement. 
Space Complexity: O(n). Since, in the worst case, a ll the nodes on the entire last level could be in the queue 
s imultaneously. 

Problem-84 Can we reduce time complexity for the previous problem? 

Solution: The idea behind this solution is that inorder traversal of BST produces sorted lists. While traversing 
the BST in inorder, keep track of the elements visited and merge them. 

import sys 
def TreeCompression(root, previousNodeData): 

if(nol root): 
return None 

TreeComprcssion(root. left, previousNode) 
if(previousNodeDat.a == -sys.maxint): 

previousNodeData = root.data 
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free(root) 

if(previousNodeData I= -sys.maxint): #Process current node 
root.data2 = previousNodcOata 

return TreeCompression(rool.right, previousNode) 

Time Complexity: O(n). 
Spuce Complexity: 0( 1). Nole thut, we arc still having recursive s tac k space for inorcler t ruvcrsnl. 

Problem-85 Given a BST a nd u key, find the clement in the BST whic h is c losest to I he g iven key. 

Solut ion: As a simple solution, we can use level-order traversa l a nd for every clement compute the difference 
between the given key and the element's value. If that difference is less than the previous ma inta ined diffe re nce, 
then update the difference with this new minimum value. Wit h this approach, at the e nd of the traversal we will 
get the clement which is closest to the given key. 

import sys 
import math 
def elosestlnBST(root, key): 

difference= sys.maxint 
if(not root): 

return 0 

Q = QueueQ 
Q.enQueue(rool) 
while(not Q.isEmptyO): 

temp = Q.deQueuc() 
if(dilference > a bs(temp.data-key)): 

difference abs(tcmp.data-key) 
element • temp 

if(temp.left): 
Q.enQueue (temp.left) 

if(temp.right): 
Q.enQueuc (Lemp.right) 

return e lement.data 

Time Complexity: O(n). Space Complexity: O(rr). 

Problem-86 For Problem-85, can we solve it using the recursive approach? 

Solution: The approach is simila r to Problern-18. Following is a simple algorithm for finding the closest Value in 
SST. 

I. If the root is NULL, then the c losest value is zero (or NULL). 
2. If the root's dala matc hes the given key, then the c losest is the root. 
3. Else, consider the root us the closest a nd do the following: 

a. If the key is smuller t ho n lhe root duLU, find the c losest on the left side tree of the root 
recursively and cull it Lemp. 

b. If the key is larger than Lhe root daLU, find the closest on the right side tree of the root 
recursively and call it temp. 

4. Return the root or temp depending on whichever is nearer to the given key. 

import math 
def closestlnBST(root, data): 

if(root == None): 
return root 

if(root.data == data): 
return rool 

if(data < root.data): 

e lse: 

if(not root.left): 
return root 

temp = closestlnBST(root.left, data) 
if (abs(temp.data-data) > abs(root.data-data)): 

return root 
e lse: return temp 

if(not rool.right): 
ret-urn root 
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temp = closestlnBST(root.righl, data) 
if (abs(temp.data-data) > abs(rooLdata-data)): 

1·cturn root 
else: return temp 

return None 

Time Complexity: 0(11) in worst case, and in avernge case it is 0(10911). 
Space Complexity: O(n) in worst case, and in average case it is 0(10911). 

Problem-87 Median in a n infinite series of integers 

Trees 

Solution: Median is the middle number in a saned list of numbers (if we have odd number of elements). If we 
have even number of clements, median is the average of two middle numbers in o sorted list of numbers. 

F'or solving this problem we can use a binary search tree with add itional information at each node, and the 
number of c hildren on the le ft. und right s u btrees. We a lso keep the number of total nodes in the tree. Using this 
add itiona l info rmation we cu n find the media n in 0 (10911) Lime, taking the appropriate bra nch in the tree bused 
on the number of ch ildren on Lhe left and righ t of the current node. But, the insertion complexity is O(n) because 
a standard binary search lrcc can degenerate into a linked list if we happen lo receive the numbers in i:;orted 
order. 

So, let's use a baJanced binary search tree to avoid worst case behavior of standard binary search trees. For this 
problem, the balance factor is the number of nodes in the left subtree minus the number of nodes in the right 
subtree. And only the nodes with a balance factor of+ I or 0 are considered to be balanced. 

So, the number of nodes on the left subtree is either equal to or l more than the number of nodes on the r igh t 
subtree, but not less. 

If we ensure this ba la nce factor on every node in the tree, Lhen the root of the tree is the median, if the nu mber 
of c lements is odd. In the number of elements is even, the median is the average of the root a nd its inorder 
s uccessor, which is the leftmost descenden t of its right subtree. 

So, the complexity of insertion maintaining a balanced condition is O(logn) a nd finding a median operation is 
0(1) assuming we calculate Lhe inorder successor of the root at every insertion if the number of nodes is even. 

Insertion a nd balancing is very s imila r to AVL trees. Instead of updating the heights, we update the number of 
nodes information. Balanced binary sea rch Lrees seem to be the most optimal solution , insertion is O (/.ug11) und 
find median is 0(1). 

Note: F'or an e fficient a lgorithm refer to the Priority Queues and Heaps cha pter. 

Problem-88 Given a bina ry tree, how do you remove all the ha lf nodes (which have only one child)? Note that 
we s hould not touch leaves. 

Solution: By using post-order traversal we can solve this problem efficicnlly. We first process the lc fl children, 
then th e right children, and fina lly the node itself. So we form lhc new tree bottom up, starling from the leaves 
towards Lhc root. By the time we process the current node, both its left a nd right subtrees have a lready been 
processed . 

def removeHaJCNodes(root): 
if root is None: 

return 
root.left= removeHa lfNodes (root.left) 
root.right= removclla lfNodes(root.right) 
if (root. left == Nonu and root.right == None): 

return root 
if (root.left == None): 

return root. right 
if (root.right== None): 

return root.left 
return root 

Time Complexity: O(n). 

Problem -89 Given a binory tree, how do you remove lt:aves? 

Solution : By ·using post-order traversal we eun solve this problem (other l n.wersals wou ld a lso work). 

def removeLeaves(root): 
if root is None: 

return 
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if (rooLleft == None and root.right== None): 
return None 

else: 
root.left = rcmovcLcaves(root. left) 
root.right .. rcmoveLeavcs(root. right) 

return root 

Time Complcxjty: O(n). 

Trees 

Problem-90 Given a BST and two integers (minimum and mwmum integers) OS paramccers, how do you 
remove (prune) elements from the tree elements that arc not within that range. 

Sample Trc1· 

Prunel3ST(2'1, 7 1 ); 

37 53 

25 71 
;>-..._ _ _/ 

7 

Prunc8ST(53,79); 

71 ) 

( 60 ) 

49 

( 25 ) ( 60 ) ( 82 

Prund3ST( 17,41); 

( 19 I 41 

( 25 

Solution: Observation: Since we need to check each und every clement in the tree, ond the subtree changes 
shou ld be rcnected in the parent, we ca n think about using post order traversal. So we process the nodes 
starting from the leaves towards the root. As a result, while processing the node itself, both its left and right 
subtrees arc valid pruned BS'l's. At each node we will return a pointer based on its value, which will then be 
assigned to its parent's left or right child pointer, depending on whether the current node is the left or right child 
of the parent. If the current node's value is between II and /J (II <= node's data <= 8) then no action needs to be 
taken, so we return the reference to the node itself. 

If the current node's value is less than 11, then we return the reference to its right subtree and discard the left 
subtree. Because if a node's value is less than A, then its left ch ildren arc definite ly b;s than A since this is u 
binnry search tree. But its right children may or may not be less than A; we ca n't be sure, so we return lhe 
reference to it. Since we're performing bottom-up post-order traversal, its right subtree is a lready a lrimmed 
valid binary sea rch tree (possibly NULL), and its left subtree is definitely NULL bt:cuuse those nodes were surely 
less than A and they were eliminated during the post-order traversal. 

/\. similar situation occurs when the node's value is greater than 8, so we now return the reference to its left 
subtree. Because if a node's value is greater than 8, lhcn its righc children are definitely greater than B. But its 
left children may or may not be greater than B; So we discard the right subtree and return the reference to the 
already valid left subtree. 

def pruneBST(root, A, B): 
if(not root): 

return None 
root.left= pruncBST(root.lcft,A,B) 
root.right= pruneBST(root.1ighl,A,B) 
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if(A<:root.data and root.data<=B): 
return root 

if(root.data<A): 
return root.right 

if(root.data> B): 
return root.left 

Time Complex ity: O(n) in worst case a nd in average case it is O(lngn). 

Note: If the given BST is an AYL tree then O(n) is the average time complexity. 

Trees 

Problem-91 Given a binary tree, how do you connect a ll the adjacent nodes al the sa me lever? Assume that 
given binary tree has next pointer along with left a nd right pointers as shown below. 

class Binary'l'reeNode: 
def _ init (root, data): 

rool. lcfl = None 
root.right = None 
root.data = data 
root. next = None 

Solution: One simple approach is to use level-order traversal and keep updating the next pointers. While 
traversing, we will link the nodes on the next level. If the node has left and right node, we will Link left to right. If 
node has next node, then link righ tmost child of current node to leftmost chi ld of next node. 

def linkingNodesOfSameLevel(root): 
Q = Queue() 
if(nol root): 

return 
Q.enQueue(root) 
currentLevelNodeCount = 1 
ncxtLevelNodeCount = 0 
prcv =None 

while (not Q.isEmplyQ} : 
temp = Q.deQueue() 
if (temp.left): 

Q.enQucue(lcmp.left) 
nextLeveLNodeCount += 1 

if (temp.right): 
Q.enQueue( temp.right) 
nextLeve!NodeCount += l 

# l~ink the previous node of the current level lo this node 
if (prev): 

prev .next = Lemp 
# Set the previous node lo the cu rrent 
prev =temp 
currentLevelNodeCoun t -= 1 
if (currentLevelNodeCount == 0) : # if this is the last node of the current level 

currentLevelNodcCounl = ncxtLevelNodeCounl 
nextLevelNodeCounl .. 0 
prev = None 

Time Complexity: O(n). Space Complexity: 0(11). 

Problem-92 Can we im prove space complexity fo r Problem-9 l? 

Solution: We can process the tree level by level, but wilhout a queue. The logical pa rt is thal when we process 
the nodes of the next level, we make sure that Lhe current level has already been linked. 

def linkingNodesOfSameLevel(root): 
if(not root): 

re turn 
rightMostNode = None 
nexLHead = None 
t.emp = ro()t 

#connect. next level of currenl root node level 
while(templ= None): 
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if(temp.left!= None): 
if(rightMostNode== None): 

righlMostNode=temp.left 
nextHcad=temp.left 

else: 
rightMostNode.next = temp.Jcfl 
rightMosLNode = rightMoslNode.next 

if(temp.rigbt!= None): 
if(rightMoslNode== None): 

rightMostNode=temp.right 
ncxtHcad=temp.right 

else: 
righlMostNode.next =temp.right 
righLMostNode = rightMostNode.ncxt 

temp=temp. next 
linkingNodesOfSameLcvel(nextHcad) 

Time Complexity: O(n). Space Complexity: O(depth of tree) for stack space. 

Problem-93 Let T be a proper binary tree with root r. Consider the following algorithm. 
Algorithm TreeTraversal(r): 

if (not r): return l 
else: 

a= TreeTraversal(r.lcfl) 
b = TreeTravcrsal(r.righl) 
return a+ b 

What docs the algorithm do? 
A. It a lways returns the value l. 
C. It computes the depth of the nodes. 
I':. It computes the number of leaves in Lhe tree. 

Solution: E. 

8. It computes the number of nodes in the tree. 
D. It computes the height of the tree. 

Problem-94 Assume thul a set S of n numbers a rc stored in :;omt: form of ba la nced bina ry search tree; i. e. 
the depth of the tree is 0 (10911 ). In addition to the key value and the pointers lo ch ildren, assume that every 
node contains the number of nodes in its subtree. Specify a reason(s) why a balanced binary tree can be a 
better option than a complete binary tree for storing the sel S. 

Solution: Implementation of a balanced binary tree requires less RAM space as we do not need to keep complete 
Lree in RAM (since they use pointers). 

Problem-95 For Lhe Problem-94, specify a reason (s) why a complete binary tree can be a better option than 
a balanced binary tree for storing the set S. 

Solution: A complete binary tree is more space efficient as we do not need a ny extra nags. A balanced binary 
tree usua lly takes more space since we need lo store some nags . For example, in a Red -Black tree we need to 
store a bit for the color. Also, a complete binary tree can be stored in a RAM as an array without using pointers. 

Problem-96 
the tree. 

Given a binary tree, find the maximum path sum. The path may start and end at any node in 

Solution: 
class Answer: 

def maxPa thSum(sclf, root): 
self.maxValue = noat("-inf') 
self.maxPathSumRec(root) 
return self.maxValue 

def maxPathSumRec(self, root): 
if root== None: 

return. 0 
leftSum = self.max:PathSumRcc(root.left) 
rightSum = self.maxPathSumRcc(root. right) 
if leftSum<O and rightSum<O: 

self.maxValue = max(sclf.maxValue, root.data) 

return root.data 
if IeftSum > 0 and rightSum > 0: 
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self.maxVaJue = max(self.maxValue, root.data+leftSum+rightSum) 
maxValueUp = max(leflSum, rightSum) + root.data 
sclf.maxValue = max(sclf.maxValue, maxValueUp) 
return maxValueUp 

6.14 Other Variations on Trees 

Trees 

In this section, let us enumerate the other possible representations of trees. In Lhe earlier sections, we have 
looked at AVL trees, which is a binary search tree (BST) with balancing property. Now, let us look at a few more 
balanced binary search trees: Red-black Trees and Splay Trees. 

6.14.1 Red-Black Trees 

In Red-black Lrecs each node is associated with an extra attribute: the color, which is either red or black. To get 
logarithmic complexity we impose the following restrictions. 

Definition: A Red- black tree is a binary search tree that satisfies the following properties: 

• Root Property: the root is black 
• External Property: every leaf is black 
• Inte rnal Property: the chi ldren of a red node are black 
• Depth Property: a ll the leaves have the same black 

Similar to A Vt, trees, if the Red- block tree becomes imbalanced, t h1·11 we perform rotations to reinforce the 
baluncing property. With Red -black trees, we can perform the following operations in O(logn) in worst case, 
where 11 is the number of nodes in the trees. 

• Insertion, Deletion 
• Finding predecessor, successor 
• rinding minimum. maximum 

6.14.2 Splay Trees 
Splay-trees arc BSTs with a self-adjusting property. Another interesting property of splay-trees is: starting with 
an empty tree, uny sequence of K operations with maximum of 11 nodes tukcs O(Klng11) time complexity in worst 
cnsc. 

Spiny trees arc easier to program and a lso ensure faster access to recent ly occessed items. Simila r Lo AV/. and 
Red-Black trees, at any point that the splay tree becomes imba lanced, we cun perform rotations lo reinforce the 
bulnncing property. 

Spiny- trees cu nnot guarantee the O(logn) complexity in worst case. But it gives amortiY-ed O(log1t) complex ity. 
Even though individuul operations can be expensive, any sequence of operations gels the complexi ty of 
logarithmic behavior. One opcrution may take more lime (a single opcrntion may take 0(1t) time) but the 
subsequent operations may not take worst case complexity and on the average per operation complexity is 
O(/o,qn). 

6.14.3 8-Trees 
B-Trce is like other self-balancing trees such as AVL and Red-black tree such that it maintains its balance of 
nodes while opcrlions arc performed against it. 8-Tree has the following properties: 

• Minimum degree "t" where, except root node, all other nodes must hnvc no less than t - 1 keys 
• Ench node with 11 keys has 11 + I children 
• Keys in each node arc lined up where k 1 < k2 < .. k11 

Each node cannot have more than 2L-1 keys, thus 2t children 
• Root node at least must contain one key. There is no root node if the tree is empty. 
• Tree grows in depth only when root node is split. 

Unlike a binary-tree, each node of a b-trce may have a variable number of keys and children. The keys tu-c 
stored in non-decreasing order. Each key hos an associated child thnt is the root of a subtree containing nil 
nodes with keys less than or equal to the key but greater than the prccccding key. A node a lso has an additional 
ri~htmost child that is the root for n subtree containing all keys ~renter than uny keys in the node. 

A b-trcc has u minumum number· of ttllowable children for each node known as the 111inimizatio11 factor. If 1 is 
this 111i11imixatio11 factor, every node must have at least L - 1 keys. Under certnin circumstances, the root node 
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is a llowed to violate this property by having fewer than t - 1 keys. Every node may have at most 2t - 1 keys or, 
equiva lently, 2t children. 

Since each node tends to have a la rge branching factor (a large number of children), it is typically neccessary to 
Lrnvcrsc relatively few nodes before localing the desired key. If access to each node requires a disk access, then a 
B-lrce will minimize the number of disk accesses required. The minimzation factor is usua lly chosen so that the 
tola l si7,c of each node corresponds to a multiple of the block s i7,e of the underlying storage device. This choice 
s implifies and oplimizcs disk access. Consequ enlly, a B- tree is a n ideal data structure for s itua tions where a ll 
data cannot reside in primary storage a nd accesses to secondary storage are compara tively expensive (or time 

cons uming). 

To search the tree, it is simila r to binary tree except that the key is compared multiple times in a given node 
because the node contains more than l key. If the key is found in the node, the search terminates. Otherwise, it 

moves down where al child pointed by ci where key k < k 1• 

Key insertions of a B-tree ha ppens from the bottom fasion. This mea ns that it walk down the tree from root to 
the target child node first. If lhe child is not full, the key is simply inserted. If it is full, the child node is splil in 
the middle, the median key moves up to the parenl, then the new key is inserted. When inserting and walking 
down Lhe Lree, if the root node is found to be full, it's split firsl and we have a new rool node. Then lhe normal 

insertion operation is performed. 

Key deletion is more complicated as il needs to ma inta in the number of keys in each node to meet Lhe 
constraint. If a key is found in leaf node and deleting it still keeps Lhe number of keys in the nodes not too low, 
it's si mply done right away. If it's done to the inner node, the predecessor of the key in Lhc com.:sonding child 
node is moved to replace the key in the inner node. If moving the predecessor will cause Lhe chi ld node to violate 
Lhe node count constTaint, the s ibling child nodes are combined a nd the key in the inner node is dele ted. 

6.14.4 Augmented Trees 
In earlier sections, we have seen va rious problems like finding the /( 11' - smallest - e lement in the tree and other 
s imilur ones. Of a ll the problems the wors t complexity is 0(11), where 11 is the number of nodes in the tree. To 
perform s uch operations in O(logn), a ugmented trees a re useful. In Lhcsc trees, extra information is added to 
each node a nd thal extra data depends on the problem we arc try ing to solve. 

10 

3 

13 

6 

30 

13 

2 

50 

70 

For exa mple, lO find the K1helcment in a binary search tree, let us sec how a ugmented trees solve Lhe problem. 
~t ~!s assume that we are using Rcd-S la~k trees as ~alanced SST (or a ny balanced SST) a nd augmenting the 
s ize informuuon 1n lhc nodes data. For a given node X 111 Red-Black tree with a field size(X) equa l to the number 
of nodes in the s ubtree a nd can be calcula ted as: 

size(X) = size(X-+ le/ t) + size(X -+ right)) + 1 

1< 111
- sma llest - operation can be defined as: 

def KthS.mallest (X, K): 
r = X.left.size + 1 tt Assume size property is added to node 
if(K == r): 

return X 
if(K < r): 

return KlhSmallesl (X.left, I<) 
if{K > r): 

return KthSmallest (X.right, K- r) 
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Time Complexity: O(logn). Space Complexity: O(logn). 

Example: With the extra size information, the augmented tree will look like: 

6.14.5 Interval Trees [Segment Trees] 
We often face questions Lhal involve queries made in an array based on range. For example, for a given a rray of 
integers, whul is the maximum number in the range a to fi, where a and {J arc of course within a rray limits . To 
iterate over those entries with intervals containing a parLicular value, we can u se a s imple array. But if we need 
more efficient access, we need a more sophisticated data struc ture. 

An array-based storage scheme and a bru te-force search through the entire array is acceptable on ly if a single 
search is to be performed, or if the number of clements is small. For example, if you know a ll the a rray values of 
interest in advance, you need lo make only one puss through the array. However, if you can interactively specify 
different search operations at different times, the brute-force search becomes impractical beca use every clement 
in the array must be examined during each search operation. 

If you sort the array in ascending order of the array values, you can terminate the sequential search when you 
reach the object whose low value is greater than the e lement we arc searching. Unfortunately, this techn ique 
becomes increasingly ineffective as the low value increases, because fewer sea rch operations arc eliminated.That 
means, what if we have to am;wer a large number of queries like this? - is brute force still a good option? 

Anothcr example is when we need t.o return a sum in a given range. We can brnte force this too, but the problem 
for a large number of queries still rema ins . So, what can we do? With a bit of thinking we ca n come up with an 
a pprooch like ma in taining a separate a rray uf n clements, where n is the s ize of the origina l array, where each 
index stores Lhe sum of all elements from 0 Lo that index. So essentia lly we have with a bit of preprocessing 
brought down th e query time from a worst case O(n) to 0(1). Now this is great as far as static a rrays are 
concerned, but, what if we are required to pcrfor·m updates on the a rray too? 

The first approach gives us an O(n) query time, but an 0( I) update time. The second approach, on the other 
hand, gives us 0( 1) query Lime, but an 0(11) update time. So, which one do we choose'? 

Interval trees arc al so binary search trees and they store interval information in the node structu re. That means, 
we maintain a set of n intervals li1 , i 2 ] such that one of the intervals containing a query point Q (if any) can be 
found efficiently. Interval trees are used for performing range queries efficiently. 

/\ segment tree is a heap-like data su·ucturc that ca n be used for making updatc/que1·y operations upon array 
interva ls in logarithmical time. We define the segment tree for the interval [i.il in the fo llowing recursive manner: 

• The root (lirst node in the a rray) node will hold the in forma tion fo r the int erva l I/,/] 
• If i < j the left a nd right ch ildren wil l hold the information for the inte rva ls Ii, ':'1 and (:1+ 1, ii 

Segment trees (a lso called segtrees a nd interval trees) is a cool data structure, primari ly used for range queries. 
IL is a height bala nced binary tree with a static structure. The nodes of a segment tree correspond to various 
intervals, and can be augmented with appropriate information perta ining Lo those intervals. It is somewhat less 
powerful than a balanced binary tree because of its static structure, but due Lo the recu rsive nature of 
operations on the scgtrce, it is incredibly ea:>y to think about and code. 

We can use segment trees to solve range minimum/maximum query problems. The time complexity i:s T(nlogn) 
where O(n) is the time required to build the tree and each query takes O(logn) Lime. 

Query Line 

Intervals 

Example: Given a set of interva ls: S = (12-5]. 16-71, 16- 101, [8-9]. I 12- 15]. 11 5-2:11, 125-:301}. /\ query with Q = 9 
rcLurns 16, 1 OJ or [8, 91 (assume these a re the inte rva ls wh ich contain 9 among a ll the intervals ). A query with Q 

23 relu rns I 1 5, 23]. 
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Construction of Interval Trees: Let us assume that we are given a set S of n intervals (called segments). These n 
interva ls will have 2n endpoints. Now, let us see how to construct the interval tree. 

Algorithm: 

Recursively build the tree on interval set Sas follows: 

• Sort the 2n endpoints 

• Le t Xmid be the median point 

Time Complex ity for building interval trees : O(nlogn). Since we are choosing the median, Inte rval Trees will be 
approximately balanced. This ensures that we split the set of end points in half each lime. The depth of the tree 
is O(logn). To simplify the search process, genera lly X1111t1 is stored with each node. 

Store intervals that cross 
Xmiitin node 11 

Intervals that a re completely 
to the left of X1111 d in n->left 

6.14.6 Scapegoat Trees 

Interva ls that a re completely to 
the right of Xmld in n-.right 

Scapegoat tree is a self-balancing binary search tree, discovered by Arne Andersson. It provides worst-case 
O(logn) search time, and 0(/0911) amonizcd (average) insertion a nd deletion lime. 

AVL trees reba lance whenever the height of two s ibling subtrees diffe r by more than one; scapegoat trees 
rebala nce whenever the size of a child exceeds a certain ratio of its parents, a ratio known as a. After inserting 
the clement, we traverse back up the tree. If we find an imbalance where a child's s ize exceeds the parent's size 
times a lpha, we must rebuild the subtree at the parent, the scapegoat. 

There might be more than one possible scapegoat, but we only have Lo pick one. The mos t optimnl scapegoat is 
aelu1;1 lly determined by he ighl bala nce. When removing it, we sec if lhc tota l s ize of the tree is less t ha n a lpha of 
the la rgest s i?-c s ince the last rebui lding of the tree. If so, we rebuild the entire tree. The a lpha for a scapcgoal 
tree ca n be a ny number bet.ween 0.5 a nd 1.0. The va lue 0.5 will force perfect balance, while 1.0 will cau se 
reba la ncing to never occur, effectively turning it into a SST. 
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PRIORITY QUEUES 
AND HEAPS 

7 .1 What is a Priority Queue? 

CI I A 1-:>"_l'ER 

7 

In some s itua tions we may need to find the m inimum/maximum element among a collection of c lements. We 
can do this with the help of Priority Queue ADT. A priority queue ADT is a data structu re that supports the 
operations Insert and DeleteMin (which re turns a nd removes the minimum e leme nt) o r DeleteMax (which returns 
a nd removes the maximum e lement). 

These operations a re equivalent to HnQueue and DeQueue operations of a queue. The difference is that, in priority 
queues, the order in which the clements enter the queue may not be the same in which they were processed. An 
example application of a priority queue is job sc heduling, which is prioritized instead of serving in first come 
first serve. 

Insert DelcteMax 
Priority Queue 

A priority queue is ca lled a n ascendin!J - priorit.y queue, if the item wit h the smu llest key has Lhe highest priority 
(I ha t meons, dele te the s ma llest e le ment a lways). Simila rly, a priority queue is said 10 be u descending - priority 
qu e ue if the ite m wit.h the largest key has the highest priority (delete the maximum clement ulways). S ince these 
two types a re symmetric we will be concentra ting on one of them: ascending-priority queue. 

7. 2 Priority Queue ADT 
The fo llowing operations make priority queues a n /\OT. 

Main Priority Queues Operations 
A priority queue is a container of ele ments, each having a n associated key. 

• Insert (key, data): Inserts data with key to the priority que ue. Elements arc ordered based on key. 
• DeleteMin/DeleteMax: Remove and return the clement with the smallest/ largest key. 
• GctMinimum/GetMaximum: Return the clement with the smallest/la rgest key without deleting it. 

Auxiliary Priority Queues Operations 
• k 11' - S rna llest/k11' - La rgest: l~eturns lh c 1< 11' - Smallcst/l<'lt - Largest key in priori ty queue. 
• S ize: Returns numbe r of elements in priority queue. 
• I leap Sort: Sons the elements in the priority queue based on priority (key). 
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7.3 Priority Queue Applications 
Priority queues have many applications - a few of them are listed be low: 

• Da ta compression: Huffma n Coding a lgori t hm 
• Shorlcsl palh a lgorithms: Dijkstra's a lgorithm 
• Minimum spann ing tree a lgorithms: Prim's a lgorithm 

• Event-driven simulation: cu:;lomers in a line 
• Selection problem: Finding 1'111

- smallest element 

7.4 Priority Queue Implementations 
Before discussing the actual implementation, let us enumerate the possible options. 

Unordered Array Implementation 
Elements a re inserted into the a rray without bothering about the order. Deletions (DeleleMax) are performed by 
searching the key and then deleLing. 

lnscrlions complexity: 0(1). DclctcMin complexity: O(n). 

Unordered List Implementation 

It is ve ry s imila r to array implem entation, but ins tead of using arrays, linked lists a rc used. 

Insertions complexity: 0(1). DeleteMin complexity: O(n). 

Ordered Array Implementation 

Elements arc inserted into the array in sorted order based on key field. Deletions are performed at onJy one end. 

Insertions complexity: O(n). De lcteM in complexity: 0(1). 

Ordered List Implementation 
Elements a re inserted into the list in sorted order based on key fi eld. De letions are performed at only one end, 
hence preserving the status of the priority queue. All other functiona lities associated with a linked list ADT arc 
pcrfo1·med without modification. 

Insertion s complexity: O(n). DeleteMin complexity : 0(1). 

Binary Search Trees Implementation 
Both insertions a nd deletions take O(/og11) on average if insertions a rc random (refer to Trees chapter). 

Balanced Binary Search Trees Implementation 
Both in sertions and deletion take O(logn) in Lhe worst case (refer to Trees c hapter). 

Binary Heap Implementation 

In subsequent seclions we will discuss thi s in fu ll detai l. For now, us:;umc Lhul binary heap implemcnlution 
gives O(logn) complexity for sea rc h, insertion s a nd deletions and O(l) for finding the maximum or minimum 
c le me nt. 

Comparing Implementations 

Implementation Insertion De letion (DeleteMax) Find Min 

Unordered a rray 1 11 11 

U nordcrcd list I 11 11 

Ordered array 71 I 1 

Ordered list 11 1 1 
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Binary Search Trees 

Balanced Binary Search Trees 

Binary Heaps 

7.5 Heaps and Binary Heaps 

What is a Heap? 

logn (average) 

10911 

log11 

logn (average) /0911 (average) 

log11 lo911 

logn I 

/\ heap is a Lree with some special properties. The bosic requirement of a heap is that the va lue of a node must 
be ~ (or S:) than the values of its children. This i:,; culled heap property. A heap also has the additional proper ty 
that all leaves should be at It or It - 1 levels (where Ii is the height of the tree) for some Ii > 0 
(complete /Ji11nry trees). That means heap should form u co111plcw binary tree (as shown below). 

In the examples below, the left tree is a heap (each clement is greater than its children) and the right tree is not 

a heap (since I ·1 is greater than 2). 

Types of Heaps? 
Based on the property of a heap we can classify heaps into two types: 

• Min heap: The value of a node must be less than or equal to t he values of its children 

• Max heap: The value of a node must be greater thnn or equa l to the va lues of ils children 

7.5 Heaps and Binary Heaps 2 13 
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7 .6 Binary Heaps 
In bina ry heap each node may have up to two children. In practice, binary heaps a re enough a nd we concentrate 
on binary min heaps and binary max heaps for the remaining discussion. 

Representing Heaps : Before looking a t hea p operations, let us see how heaps can be represen ted. One 
possibility is u s ing arrays. Since heaps a re forming complete binary t rees, there will nol be a ny wastage of 
locations. 

Por the d iscussion below let us assume that clements arc s tored in arrays, wh ich starts at index 0. The previous 
max hea p can be represented as: 

17 13 6 l 4 2 5 

0 2 3 4 5 6 

Note: Por the remain ing discussion let us assume that we are doing ma nipulations in max heap. 

Declaration of Hea p 

c lass Heap: 
def init_ {self): 

self.heapList = !OJ 
self.size = 0 

Time Complexity: 0(1). 

Parent of a Node 

# Elements in Heap 
# Si7.c of the heap 

F'or a node al i 11' location, its pa rent is at !.f location. In the previous example, the e lement 6 is at second 
location and its parent is al ot1• location. 

def parent(self, index): 

Parent will be at math.floor(index/2). Since integer division 
s imulates the floor function, we don't explicitly use it 
.,,.11 

return index I 2 

Time Complexity: 0(1). 

Children of a Node 
Similar to Lhc above discussion, for a node at i 11' location, its children a rc al 2 • i + 1 and 2 • i + 2 locations . Por 
example, in the above tree the element 6 is at second location and its children 2 a nd 5 arc at 5 (2 * i + 1 = 2 • 2 + 
1) and 6 (2 * i + 2 = 2 ,. 2 + 2) locations. 

def leftChild(self, index): 
""" I is added because a rmy begins at index 0 """ 
return 2 • index + 1 

Time Complexi:ty: 0(1 ). 

7 .6 Binary Heaps 

def rightChild{self, index): 
rclum 2 * inde.x + 2 

Time Complexity: 0(1). 

2 14 
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Getting the Maximum Element 
Since Lhe maximum element in max heap is always al root, it will be slored at hcapListiOJ. 

l#Get Maximum for MaxHeap l#Get Minimum for Min Heap 
def getMaximum(seln: def gctMinimum(seln: 

if self.si;-,c == 0: if self.size .. = 0: 
return - 1 return - 1 

return sclf.heapList[O] return sclLheapList[O] 

Time Complexity: 0(1). Time Complexity: 0(1). 

Heapifying an Element 
After inserting un clemen t into heap, it may not satisfy the heap property. In that case we need to adjust the 
localions or the heap to make it heap again. This process is called lr.aa11i fyi11.11. In mux- heap, to heapiCy an 
e lement, we have to find the maximum of its children and swap it with the current c lement a nd continue this 
process until the heap property is satisfied at every node. In min-heap, to heapify an clement, we have to find 
the minimum of its children a nd swap it with the current element a nd continue this process until the heap 
property is satisfied at every node. 

Observation: One important property of heap is that, if an clement is not satisfying the heap property, then all 
the e lements from Lhal clement to the root will have Lhe same problem. In the example below, e lement 1 is not 
:satisfying the heap property and its parent 31 is a lso having the issue. Simila rly, if wc hcapify an c lement, then 
a ll the clements from that c lement to the root will a lso sulisfy the heap properly <1utomalica lly. Let us go 
Lhrough an example. In the a bove heap, lhc element I is nol satisfying Lhe heap properly. Le t us try hcapifying 
this clement. 

To hcapify 1, find Lhe maximum of its children and swap with that. 

We need Lo continue this process until the clement satisfies Lhe heap properties. Now, swap 1 with 8. 
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Now the tree is sa tisfying the heap properly. In the above heapify ing process, s ince we a re moving from lop lo 
bottom, lhis process is sometimes called pe1·colate down. Simila rly, if we s ta rt heapify ing from any other node to 
root, we ca n tha l process percolate up as move from bottom lo Lop. 

def pe.reolateDown(self,i): 
while (i * 2) <= self.size: 

minimumChild = sclf.minChild(i) 
if self. heapList[i] > sclf.heapListlminimumCnildl: 

Lmp = self. heapList[il 
sclf.hcapLisllil = self. heapList[min imumChild] 
sclf.heapList!minimumChildJ = tmp 

i = minimumChild 

def minimumChild(self,i): 
if i * 2 + 1 > self.si7,e: 

return i * 2 
else: 

if self.heapListli*21 < self.heapListli*2+1]: 
return i * 2 

else: 
return i * 2 + 

def pcrcolatcUp(self,i): 
while i / / 2 > 0: 

if self.heapLisl[il < self.heapList[i / / 2]: 
tmp = self.heapListli I I 21 
self.heapList!i // 21 = self.heapList[il 
sclf.heapListFI = lmp 

i ... i // 2 

Time Complexity: 0(10911). I leap is a complete binary tree and in the worst case we sla rl a l lhe root a nd come 
down to the lea f. Thi8 is equal lo the height of the complete bina ry tree . S pace Complexity: 0(1). 

Deleting an Element 
To delete a n c lemen t from hea p, we just need to delete the clement from the root. This is the only operation 
(maximum ele me nl) s upported by standard heap. Afler deleting the root e lemenl, copy the lasl clement of the 
heap (tree) and delete Lhat last clement. 

After replacing the lrrnt cle ment, the t ree may not satisfy the heap propcny. To make it heap aga in, call the 
Pe1·colateDow11 function. 

• Copy the first e lement into some variable 
• Copy the last clement into first clement location 
• PercolaLeDown lhe first element 

#Delete Maximum for MaxHeap 
def deleteMax(seIO: 

rcLval = self.heapList( 11 
self. hea pListl l I "' self. hea,pListlself. size! 
self.s i;-,c = self.size - I 
self.heapList.pop() 
self.pcrcolatcDown( L) 

7.6 Binary Heaps 

#Delclc Minimum for MinHeap 
def deleteMin(selO: 

rctva1 = self. heapLisL( 11 
self. hcapList( 11 = self. heapListlself.sizel 
self.s ize .. self.size - I 
self. heap List. pop() 
self. percola teDown( 1) 
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relum retval return rctval 
Time Complexity: O(lo9n). Time Complexity: O(logn). 

Note : Deleting an clement uses PercolateDown, and inserting an clement uses PercolateUp. 
Time Complexity: same as lleapif y function and it is 0(10911) 

Inserting an Element 
Insertion of an clement is s imilar Lo Lhe hcapify a nd deletion process. 

• Increase the heap size 
• Keep the new element at the end of the heap (tree) 
• Hcapify the clement from bottom to top (root) 

Before going through code, let us look at an example. We have inserted the c lement 19 at the end of the heap 
and this is not satisfying the heap property. 

, ' , \ 

I 19 I 
\ I 

.... __ .... 

In order to hcapify this element (19), we need to compare it with its parent and adjust them. Swapping 19 and 14 
gives: 

/\r,.iin, swap 19 andl 6: 
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Now the tree is satisfying the heap property. Since we are following the bottom-up approach we sometimes call 
this process percolate ·up. 

def inscrt(self,k): 
self.hcapList.append(k) 
self.size = self.size + l 
self. percolateU p(self.s ize) 

Ti me Com plexity: O(logn). The expla nulion is the same as that of the lleapify func tion. 

Heapifying the Array 
One simple approach for bu ilding the heap is. take n input item s and place them into a n empty heap. This can 
be done with n successive inserts and takes O(nlogn) in the worst case. This is due to the fact that each insert 
operation takes O(logn). 

To finish our d iscussion of binary heaps, we will look al a method lo bui ld an entire heap from a list of keys. The 
first method you migh t think of may be like t he following. Given a list of keys, you could easily build a heap by 
inserting each key one at a time. Since you are starting with a list of one item, the !isl is sorted and you could 
use binary search to find the right position lo insert the nexl key al a cosl of approxima tely O(logn) operations. 
However , remember that insert ing a n item in the middle of the list may require O(n) operations to s hift the rest 
of lhe lis t ove r to make room fo r the new key. Therefore , to insert n keys into the heap would require a tota l of 
O(nlo911) operations . Howeve r, if we st.art with an en t ire !isl then we ca n build the whole heap in O(n) opera! ion s . 

Obs ervation: Leaf nodes a lways salisfy the heap property a nd do not need Lo care for them. The leaf clements 
are a lways al Lhe end and to heapify the g iven array it s hou ld be enough if we hcapify the non-leaf nodes. Now 
let us concentrate on finding the first non -leaf node. The last element of the heap is al location h -. counl - 1, 
and Lo find the first non-leaf node it is enough to fmd the parent of the last c lement. 

def buildHeap(self,A): 
i = len(A) I I 2 
self.size = len(A) 
self. heapList = IOI + A[:I 
while (i > 0): 

self. percolatcDown (i) 
i = j - 1 

~ ' \ - , G I \ 

l 21 I 18 
I I 

1-~ (si" - 1)/2 ;, the locat;on of 0 first non- leaf node 

Time Complexity: The linear time bound of bui lding heap can be shown by compuling Lhe su m of Lhc heights of 
a ll lhc nodes. ror a complete binary tree of height h containing n = 21111

- I nodes, the sum of the heights of the 
nodes is 11 - h - l = n - logn - 1 (for· proof refer lo Problems Section). That means, building the heap operation can 
be done in linear time (O(n)) by applying a PercolateDown fu nction to the nodes in reverse level o rder. 

7. 7 Heapsort 
One mc.iin c.ipplication of heap ADT is sorting (heap sort) . The heap sort ulgorithm inserts all elemt.:nls (from an 
unsorted array) into a heap, then removes them from the root of a heap until the heap is em pty. Nole lhal heap 
sort can be done in place with the array lo be sorted . Instead of deleting nn clcmt.:nt, exchange the first e lement 
(maximum) with the last e le me nt a nd red uce t he heap s ize (array s ize). Then, we hea pify the fi rst elemen L. 
Contin ue this process until t he nu mbe r of re maining elements is one. 
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def hcapSort( A): 
# convert A to heap 
length • len( A) - I 
lcastParent = length / 2 
for i in range ( leastParent. - 1, -1 ): 

pcrcoleteDown( A. i, length ) 

# fiallen heap into sorted array 
for i in range (length, 0, -1 ): 

if AIOI > Alil: 
swap( A, 0, i ) 
pcrcolateDown( A, 0, i - 1 ) 

ltModfied percolateDown to skip the sorted elements 
def percolntcnown( A, first, last): 

l~ll'gcst • 2 • first + I 
while lurgcst <'" last: 

ti ri~hl child exists and is larger than left ch ild 
if (largest< last) and ( A(largest] < Allargest + I] ): 

largest+= 1 

#right child is larger than parent 
if Apargcst] > Alfirstl: 

swap( A, largest, first) 
# move down to largest child 
first - largest.; 
largest 2 • first + I 

else: 
return # force exit 

def swap( A, x. y ): 
temp• Alxl 
Alxl - Aly] 
Aly) - temp 

Priority Queues and Heaps 

Time complexity: As we remove the clements from the heop, the volues become sorted (since maximum clements 
urc ulwuys ront only). Since the time complexity of both the insertion algorithm and deletion a lgorithm is O(/og11) 
(where 11 is the number of items in the heap), the time complexity of the heap sort algorithm is 0(11lo9n). 

7.8 Priority Queues [Heaps]: Problems & Solutions 
Problem-1 Whnl nrc the minimum and maximum number of clement:; in u heap of height It? 

Solution: Since heap i::; a complete binary tree (ull levels con tain full nodes except possibly the lowest level), it 
hns at most 2111 1 

- I clements (if it is complete). This is becuuse, to gel mnximum nodes, we need to fill ull the II 
levels complc1ely und the maximum number of nodes is nothing but the sum of all nodes at a ll h levels. 

To get minimum nodes, we should fill the h - 1 levels fully and the last level with only one element. As a result, 
the minimum number of nodes is nothing but the sum of nll nodes from It - 1 levels plus 1 (for the last level) and 
we get 211 

- 1 + 1 = 2h elements (if the lowest level has just 1 clement and all the other levels are complete). 

Problcm-2 Is there a min-heap with seven distinct clements so that the prcorder traversal or it gives the 
clements in sorted order? 

Solution: Yes. ror the tree below, preorder u·aversal produces nsccnding order. 

Problcm-3 Is there a max-heap with seven distinct c lemen ts so that the preordcr traversal of it gives the 
clements in soned order? 
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Solution: Yes. For the tree below, preorder traversal produces descending order. 

Problcm-4 Is there a min-heap/ max- heap with seven distincl e lements so Lhat lhc inorder traversal of it 
gives the clements in sorted order? 

Solution: No. Si nce a hea p must be either a min-heap o r a max-heap, the rool will ho ld the smallest ele ment or 
the largest. An inorder traversal will visit the root of Lhc tree as its second step, which is not Lhe appropriate 
place if the tree's root contains the smallest or largest clement. 

Problem-5 Is there a min-heap/max-heap with seven distinct elements so that Lhe posLOrder traversal of it 
gives the elements in sorted order? 

Solution: 
root root 

Yes , if the tree is a max-heap and we want descending order (below left), or if Lhe tree is a min-heap and we 
want ascending order (below right). 

Problem-6 Show that the height of a heap wilh 11 clements is logn? 

Solution: A heap is a complete binary tree. All the levels, except the lowest, arc completely full. A heap has at 
least 21' clements and at most elements 21i $ n $ 21•+ 1 -1. This implies, h 5 Logn 5 h + L Since his an inleger, h = 
Logn. 

Problcm-7 Given a min-heap, give a n a lgorithm for finding the maximum e lement. 

Solution: Pora g iven min heap, t he maximum clement will a lways be at leaf on ly. Now, the ncxl question is how 
Lo find the lc11f nodes in the tree. 

If we ca re fully observe, the next node of the lust e lement's parent is U1c first lea f node. S ince the last element is 
a lways a t the size - 111' location, the next node of its parent (pa rent. at location slw- i) can be ca lculated as: 

2 
size - 1 size + 1 

2 +l~ 2 
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Now, the only step remaining is scanning the leaf nodes and find ing Lhe maxi mum among them. 

def findMaxinMinHeap(self) : 
max= -1 
for i in ra nge((sclf.size+ 1 )/ /2, self.siu): 

if(sclf.arrayjij > max): 
max "' self.arraylil 

return max 

Time Complexity: O(~) ::::: 0(11). 
2 

Problem-8 Give a n algorithm for deleting an arbitrary clement from min heap. 

Solution: To delete an clement, first we need to searc h for a n cle me nt. Let us assu me that we are using level 
order traversal for finding the clement. After finding the cle ment we need to follow the DclctcMin process. 

Time Complexity = Time for finding the element + Time for de leting an clement 
= O(n) + O(logn) :::::O(n). //Time for search ing is dominated. 

Problem-9 Give a n a lgori thm for deleting the ill' indexed clement in a given min-heap. 

Solution: Delete the iu'clcmcnet and perform hcapify at i 01 posilion. 

def Delete(self, i): 
if(self.size < i): 

print("Wrong position») 
return 

key = sclf.a rrayl il 
self.array! ij= sclf.arrayjsclf.siu- I I 
self.size -= 1 
seld.percolaleOown(i) 
return key 

Time Complexity = O(logn). 

Problem-10 Prove that, for a complete binary tree of height It the s um of the height of all nodes is O(n - h). 

Solution: A complete binary tree has zi nodes on level i. Al so, a node on leve l i has depth i a nd he ight h - i. Let 
us ussume that S denotes the su m of the he ights of a ll these nodes a nd Scan be ca lc ula ted as: 

11 

s =I 2'c1i - i) 
j' :o() 

s = h + 2(1t - 1) + 4(h - 2) + ·· · + zh-1(1) 

Multiplying with 2 on both sides gives: 25 = 2h + 4(h - 1) + 8(h - 2) + ··· + 21'(1) 

Now, s ubtrac t 5 from 25: 25 - 5 = -h + 2 + 4 + ··· + 211 = S = (zl" 1 - 1) - (h - 1) 

But, we a lready know that the Lola! number of nodes n in a complete binary Lree wilh height h is n = 211
' 

1 
- l. 

This gives LI S: It = log(n + 1). 

Fina lly, replacing 21' ~ • - 1 with n, gives: 5 = n - (h - 1) = 0(11 - logn) = 0(11 - h). 

Problem-11 Give an algorithm to find all elements Jess than some value of kin a binary heap. 

Solution: Start from the root of the heap. If the value of the root is smaller than k then print its value and call 
recu rsively once for its left child and once for its right child . If the value of a node is greater or equal than k then 
the function stops without printing that value. 

The complexity of th is a lgorithm is O(n), where n is the total number of nodes in the heap. This bound takes 
place in the worst case, where the value of eve1y node in the heap will be smalle r than k, so t he func tion has to 
call each node of the heap. 

Problem-12 Give an algorithm for merging two binary max-hea ps. Let us assume that the si:r.c of the lirs t 
heap ism+ n and the size of the second heap is n. 

Solution: Onc s imple way of solving this problem is: 
Assume that the e lements of the first urray (with size m + 11) are at the beginning. That mea ns, firs t 111 

cells arc filled and remaining n cells are empty. 
• Without e hunging the first heap, just a ppe nd the second hc11p nncl hcnpify t he nrrny. 
• S ince the total number of clcmcms in the new a rray is 111+11, coc h hcapify opera tion ta kes O(iog(m + 11)). 

The complexity of this a lgorithm is : O((m + n)log(m + n)). 

Problem-13 Cun we improve the complexity of Problem- I 2? 
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Solution: Instead of heapifying all the clements of the m + n array, we can use the technique of "building heap 
with an array of clements (hcapifying arrayf. We can start with non-leaf nodes and hcapify them. The algorithm 
can be given as: 

• Assume that the clements of the first array (with size m + 11) arc al the beginning. That means, the first 
111 cells a rc filled a nd the remaining 11 cells arc empty. 

• Without changing the first heap, just append tile second heap. 
• Now, find the first non-leaf node and start hcapifying from that clement. 

In the Lhcory section, we have a lready seen that building a heap with n clements lakes 0(11) complexity. The 
complexi ly of merging with this technique is: O(m + n). 

Problcm-14 Is there an efficient algorithm for merging 2 max-heaps (slorcd as an array)? Assume both 
arrays have 11 clements. 

Solution: The alternative solution for this problem depends on what type of heap il is. If it's a standard heap 
where every node has up lo two chi ldren and which gets filled up so that the !coves nrc on u maximum of two 
different rows, we cannol get better than 0(11) for the merge. 

There is an 0(/09111 x 10911) a lgorithm for merging two binary heaps with sizes m and 11. For 111 = 11 , this algorithm 
takes 0(1092 11) time complexity. We will be skipping it due to its difficulty and scope. 

F'or better merging performance, we can use a nother variant of binary heap like a Fibo11acci-lleap which can 
merge in 0(1) on average (amortized). 

Problem-15 Give an algorithm for finding the k 1
h sma llest clement in min-heap. 

Solut ion: One simple solution to this problem is: perform dclclion k Limes from min-heap. 

def kthSmallcst(collection, k): 
"""Return kth smallest clement in collection for valid k >= 1 """ 
A = collccLion[:kJ 
build Heap( A) 
for i in rangc(k, len(collection)): 

if collection[i] < AIOI: 
AIOI = collection[il 
hcapify(A, 0, k) 

return AIOI 

def buildHcap(A): 
n • len(A) 
for i in range(n/2-1, -1, -1): 

heapify(A, i, n) 

def hcapify (A, index, maxlndcx): 
'""'Enisurc structure rooted al Al index( is a heap"'"' 
left • 2*index+l 
ri~ht • 2*index+2 
if left < maxlndcx and A[lcftl > A[inde.x]: 

largest = left 
else: 

largest = index 
if right< maxl.ndex and Alright! > Allargest): 

largest = right 

if largest I= index: 
A[indexl,A[largestj = Allargcst[,A[indcx[ 
hcopify(A, largest, maxlndcx) 

print kthSmallest(rangc(l0),3) 
print kthSmallest(range( I 0), 1) 
print kthSmallest(range( I 0). I 0) 

Time Complexity: O(klogn). Since we arc performing deletion operation k times and each deletion takes O(logn). 

Problem-16 For Problem- I 5, can we improve the time complexity? 

Solution: Assume that Lhc original min -heap is called I/Ori,<] and the auxiliary min heap is named HAux. 
lnitio lly, the clement al the top of llOri.<J, the minimum one, is inserted into I/Aux. ll ere we don't do the operation 
of DelcteM111 with I/Orig. 
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Every while- loop ilcration gives the k 11
' smallest element and we need k loops to get the kr11 smallest elements. 

Because the size of the auxiliary heap is always less than k, every while-loop itera tion the si7.C of the auxiliary 
hea p increases by one, a nd the original heap HOrig has no operation during the finding, the running time is 
O(klogk). 

Note: The above a lgorithm is useful if the k va lue is too sma ll compa red to 11. If the k value is a pproximately 
equa l ton, then we ca n s imply sort the array (let's say, us ing couting sort or uny other linear sorting a lgorithm) 
a nd return k111 sma llest c lement from the sorted a rray. This gives O(n) solution. 

import heapq 
class Heap: 

def _ init_ (self): 
self. heapList = fOJ 
self. size = 0 

def parent(self, index): 
return index / / 2 

def leftChildlndcx(s clf, index): 
return 2 * index 

def rightChildlndcx(self, index): 
return 2 * index + 1 

def leflChild(self, index): 
if 2 * index <"' self.size: 

# Elements in Heap 
# Size of the heap 

rotum self.heapListl2 * index J 
return - 1 

def rightChild(self, index): 
if 2 • index + 1 <= self.size : 

return sclf.heapList[2 *index+ 11 
return - I 

def searchElcment(sclf,itm): 
i = 1 
while (i <= self.size): 

if iun == self.heapList[i] : 
return i 

i +=I 
def gctMinimum(self): 

if self.size == 0: 
return - 1 

return self.heapList[l) 
def percolateDown(self,i): 

while (i * 2) <= self.size: 
minimumChild = self.minimumChild(i) 
if self.heapListji] > self.heapLisl[minimumChi ldl: 

lmp = sclf.hcapList.fi] 
self. hcapListlil = sclf.heapList.lminim umChildl 
sclf.heapListlminimumChildl = tmp 

i = minimumChild 
def minimumChild(self, i): 

if i * 2 + 1 > self.si.7,e: 
return i * 2 

else: 
if self. heapLisqi'•21 < self.heapLisl(i*2+ 1 j: 

rclurn i * 2 
else: 

return i * 2 + l 
def percolatcUp(self,i): 

while i / / 2 > 0: 
if self.heapList[i] < self.heapList[i / / 21: 

tmp = self.heapList[i I I 21 
self.heapLisl[i / / 2] = self.heapListlil 
self. heapListlil = Imp 

i = i // 2 
llDclete Minimum for MinHcap 
def deleteM in( self): 

retval = self.heapListf 1] 
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self.heapList(l 1 = self.heapList(self.si7,ej 
self.size = self.size - 1 
self. heap List. pop0 
sclr. pcrcolatcDown( 1) 
return rctvaJ 

def inscrt(sclf,k): 
self. heapList. append(k) 
self.size = self.size + l 
self.percolatcUp(sclf.sizc) 

def prinlHeap(selQ: 
print self.heap List[ l: I 

def FindKUiLargcstElc(HOrig, k): 
count• I 
I !Aux llcap() 
itm I IOrig.gclMinimum() 
I lAux.insert(itm) 
if count •• k: 

return itm 
while (HAux.size>= 1 ): 

itm = HAux.deleteMin() 
count+= l 
if count"'"' k: 

return itm 
else: 

if I IOrig.rightChild(HOrig.scarchElement(itm)) 1 .. • l: 

Priorily Queues and Heaps 

HAux. insert(HOrig. righ tChild(H Orig. search Elemcnt(itm))) 
if HOrig.leftChild(HOrig.searchElement(itm)) != -1: 

HOrig = Heap() 
## add some test data: 
HOrig.insert( I) 
1 l0rig.inscrt(20) 
IlOrig.inscrt(S) 
HOrig.inscrt( l 00) 
I lOrig.inscrt(l 000) 
l lOrig.inscrl( 12) 
H0rig.inscrl(l8) 
H0rig.insert(l6) 

HAux.insert(HOrig.leftChild(HOrig.searchElement(itm))) 

print PindKthLargestElc(HOrig,6) 
print PindKLhLargcstElc(HOrig,3) 

Problem-17 Find le rnux clements from rnux heap. 

Solution: One i;implc solution lo this problem is: build mux-hcup and perform deletion k limes. 

T(n) = DeleLeMin from heap k times= ®(k/0911). 

Problem-18 For Problem-17, is there any alternative solution? 

Solution: We ca n use the Problem-16 solution. At the end, the auxiliary heap contains the k-largest elements. 
Without deleting the clements we should keep on adding elements to HAux. 

Problem-19 I low do we implement stack using heap? 

Solution: To implement a stack using a priority queue PQ (using min heap), let us assume that we arc using 
one cxlru integer variable c. Also, assume thal c is iniLialized equal lo ony known value (e.g., 0). The 
implementation of the stack AOT is given below. llere c is used os the priority while inserting/deleting the 
clements from PQ. 

def Push(clcmcnt): 
PQ.Inscrt(c, clement) 
c - I 

def Pop(): 
return PQ.DclctcMin() 

def Top(): 
return PQ.Min() 

def Size(): 
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return PQ.Size() 
def lsEmpty(): 

return PQ.lsE:mpty() 

We could also increment c back when popping. 

Priority Queues and Heaps 

Observation: We could use Lhe negative or Lhe currcnl system time instead or c (to avoid overnow). The 
implementation based on Lhis can be given as: 

def Push(clcment): 
PQ.insert(-gcttime(),element) 

Problem-20 How do we implement Queue using heap? 

Solution: To implement a queue using a priority queue PQ (us ing m in heap), as s imilar to stacks simulation , let 
us assume that we a rc using one extra integer variable, c . /\!so, assume that c is iniLiaJi:;~ed equal to any known 
va lue (e.g., 0). The implementation of the queue ADT is given below. Herc thc c is used as the priority while 
inscrling/dclcting the elements from PQ. 

def Push(clcment): 
PQ.Insert(c, c lement) 
c += 1 

def Pop(): 
return PQ.DeleteMin() 

def Top(): 
return PQ.Min() 

def Size(): 
return PQ.Size() 

def lsEmpty() { 
return PQ.IsEmpty() 

Note: We could also decrement c when popping. 

Observation: We could use just the negative or Lhc current system time instead of c (to avoid overflow). The 
implementation based on this can be given as: 

void Push(inl c lement) ( 
PQ.inscrt(gcttime(),element); 

Note: The only change is thal we need to take a positive c value instead of negative. 

Problem-21 Given a big rile containing billions or numbers, how ca n you find the I 0 maximum numbers 
from lhal fil e? 

Solution: Always re member that when you need to rind max 11 clements, t he best data structure to u se is 
priority queues. One solution ror this problem is lo d ivide the dalu in sets of 1000 clements (let's say 1000) and 
make u heap of them, a nd t he n take 10 e lements from each heap one by one. l"ina lly heap sort all the sets of 10 
clements a nd take the top IO among those. But the problem in this approach is where to s tore 10 c lements from 
each heap. Thal may req uire a large a mount or memory as we have billions of numbers. 

Reusing the Lop 10 clements (from the earlier heap) in subsequent clemen ts can solve this problem. Thal mea ns 
lake the first block of 1000 elements and subsequent blocks of 990 elements each. Initially, Heapsort the first set 
of 1000 numbers, take max 1 O elements, and mix them with 990 elements or the zmt set. Again , Heapsort these 
1000 numbers (1 O from the first set and 990 from the znd set), takc 10 max clements, and mix them with 
990 elements of the 3rd set. Repeat till the last set of 990 (or less) c lements and take max 10 clements from the 
fina l heap. These 10 elements will be your answer. 

Time Complexity: O(n) = n/ I 000 x(complcxily or I lcapsort I 000 clements) Since complexity of heap sorting lOOO 
clements wi ll be u constant so the O(n) = n i.e. linear complexity. 

Problem-22 Merge k sorted lists with total of n elements : We arc given k sorted lists with total n inputs in 
all the lisLS. Give an algorithm to merge them into one s ing le sorted list. 

Solution: Since there a re k equal si7..C lists with a lot.al or n elements, the si?..C of each list is ~· One simple way or 
solving this problem is: 

Take the first list and merge it with the second list. Since the si7-c of each list i s ~· this step produces a 

sorlcd list with si11,e 2~' . This is similar to merge sort logic. The time complex ity of this step is: 
2~'. This is 

because we need lo scan a ll the elements of both the lists. 
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• Then, merge the second list output with the third list. As a result, this step produces a sorted list with 

si?,c 3
k". The time complexity of this step is: 

3
: . This is because we need to scan all the elements of both 

lists (one with size 
2
k" and the other with si7.e ~). 

• Continue this process until all the lists a rc merged to one list. 

. . 2 n Jn 411 kn \'II in n ~n . n(k
1

) O( k) 
Total urnccomplex1ty: = k'+k'+k'+···.k' = "-1 2k" = j;L..i- 2' "" k "" 11 · 
S pace Complexity: 0(1). 

Problem -23 

Solution: 

For Problcm-22, ca n we improve the lime complexity? 

Divide the lists into pairs and merge them. That means, first take two lists at a time and merge them so 
that the total clements parsed for a ll lists is O(n). This operation gives k/2 lists. 

2 Repeat step-1 until the num bcr of lists becomes one. 

Time complexity: Stcp- 1 executes logk t imes and each operation parses ull 11 clements in a ll the lists for making 
k/2 lis ts. Por example, if we have 8 lis ts, the n the first pass would make 4 lists by parsing a ll n clements. The 
second pass wou ld ma ke 2 lists by again pa rsing n elements a nd the third pass would give 1 list by again 
parsing tt c lem ents . As a result the total time complexity is 0(11log11). Space Complexity: O(n). 

Problem -24 For Problem-23, can we improve the s pace complexity? 

Solution: Let Wi use heaps for reducing the space complexity. 

I . Build the max-heap with all the firs t clements fro m each list in O(k). 
2. In cuch step, extract the maximum clement of the heap a nd add it ul the encl or th e output. 
3. Acid lhc next c lement from the list of the one extracted. That mea ns we need to select the next clement 

of the list which contains the extracted clement of the previous step. 
4. Repeat step-2 and scep-3 until all the elements arc completed from all the lists. 

Time Complexity = 0(11lo9k ). At a time we have k elements max-heap and for all n elements we have to read just 
the heap in logk time, so total time = O(nlogk). 
Space Complexity: O(k) I for Max-hcapl. 

Problem-25 
(Alil, /lljl). 

Given 2 arrays 11 and 8 each with 11 elements. Give nn algorithm for finding largest n pairs 

Solution: 

Algorithm: 
• I lcapify II a nd 8 . This step takes 0(2n) ""O(n). 
• The n keep on deleting the clem en ts from both the heaps. Each step lakes 0(2logn) ""O(logn). 

Total Time complexity: 0(11logn). 

Problem -2 6 Min-Max heap: Give a n OlRorilhm that supports min uncl m11x in 0(1) Lime, insert, delete min, 
and delete max in O(lo_q11) time. Thal meo d d urc which s upports the fo llowing operations: ns, cs1gn a ala struct 

Operation Complexity 
I nit 0(11) 

lnscn 0(10911) 

FindMin 0(1) 

FindMax 0(1) 

DcleleMin 0(10911) 

Delete Max O(logn) 

Solut ion: This problem ca n be solved using two heaps. Let us say two heaps ore: Minimum- Heap 11111111 a nd 
Maximum-1 lcnp I l m11x Also, assume that c lements in both the arrays huvc mutual pointers. That means, an 
clement in 11111111 will have a pointer to the same clement in H 1m1A and an clemen t in 1 lmax will have a pointer to the 
same clement in 11 111 111. 

I nil Build llmm in O(n) and 11,,,.., in O(n) 
lnscrt(x) Insert x ro Hmm in O(l<>gn). lnscn x to llmax in O(lo911). Updmc the pointers in 0(1) 
FindMinO Return root(Hmm) in 0(1 ) 
Fm cl Max Rrturn root(H,...._,) 111 0(1 ) 

Ocil'1cM111 
DclrlC' lhf' minimum from !Im.., in O(lo,q11). Delete lhc sm1w dcme111 fiom 11,.,." l>y using the 
muwnl poinlt"r 111 O(/o911) 

DcleteMu.x 
Delcie 1111' 111 nx1mu1T1 from 11.,.,,. in 0(/0911). Delete' 1lw sirmc· t'h0 nwn1 fi·om 11.,.., by using th<' 

mutual poinl cr in O(/o,qn ) 
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Problem-27 Dynamic median finding. Design a heap data structure that supports finding the median. 

Solution: In a set of n e lements, median is the middle element, such that the number of elements lesser than 
the median is equal LO the number of clements larger than the median. If 11 is odd, we can find the median by 
sorting the set and taking the middle element. If n is even, the median is usuuJly defined as the average of the 
two middle clements. This algorithm works even when some of the c lements in the list are equal. Por example, 
the median of the mullisct {1, 1, 2, 3, S} is 2, and the median of the multisct (1, I , 2, 3, 5, 8) is 2.5. 

" Median heaps~ arc lhe variant of heaps that give access to the median demcnt. A median heap can be 
implemented using two heaps, each containing half the elements. One is a max-heap, containing the smallest 
clements; the other is a min-heap, containing the largest elements. The size of the max-heap may be equal to 
the si~e of the min- heap, if the total number of elements is even. In th is case, the median is the average of the 
maximum clement of the max-heap and the minimum clement of the min-heap. If there is an odd number of 
c lements, the max- heap will contain one more clement than the min- hcup. The med ian in this case is s imply the 
maximum c lement of the max- heap. 

Problem-28 Maximum sum in sliding window: Given array Al] with s liding window of s i%C w which is 
moving from the very left of lhc array to the very right. Assume that we ca n only sec the w numbers in the 
window. Euch tjmc the s liding window moves rightwards by one position. For example: The array is 11 3 - 1 -3 
5 3 6 71, and w is 3. 

Window position Max 
[l 3 - ll -3 5 3 6 7 3 
1 [3 - 1 -315 3 6 7 3 
I 3 [- 1 -3 513 6 7 5 
1 3-L[-353167 5 
l 3 - 1 -3 [5 3 617 6 
I 3 - I -3 5 [3 6 71 7 

Input: A long a rray A[J, and a window width w. Output: An array Bil, Blil is the maximum value of from A[ij 
to Aji+w-1 j 
Requirement: Find a good optimal way to get B(i] 

Solution: Brute force solution is, every time Lhe window is moved we can search for a total of w elements in the 
window. Time complexity: O(nw). 

Problem-29 ror Problcm-28, can we reduce the complexity? 

Solution: Yes, we ca n use hea p data structure. This reduces tht.: time complexity to O(nlo9w) . Insert operation 
takes O(logw) time, where w is the size of the heap. However, gelling the maximum value is cheap; it merely 
lakes constant time as the maximum value is always kept in the root (head) of the heap. As the window slides to 
the right, some clements in the heap might not be valid anymore (range is outside of the current window). How 
should we remove them? We would need to be somewhat careful here. S ince we only remove clements that w·c 
out of the window's range, we would need Lo keep track of the clements' indices too. 

Problem-30 ror Problem-28, can we further reduce the complexity? 

Solution: Yes, The double-ended queue is the perfec t. dnta s tructure for thi:-i problem. It suppons 
insertion/deletion from the front and back. The trick is to find a wuy s uc h Lhat the largest clement in the 
window would a lways a ppea r in the front of the queue. How wou ld you mainta in this requirement as you push 
and pop elemen ts in a nd out of the queue? 

Besides, you will notice that there a re some redundant elements in the queue that we shouldn't even consider. 
For example, if the current queue has the elements: [10 5 3], and a new c lemen t in the window has the element 
11. Now, we could have emptied the queue without considering clements 10, 5, and 3, and insert only element 11 
into Lhc queue. 

Typically, most people Lry Lo mainlain the queue size the same us lhc window's s ize. Try to break away from this 
thought and think out of the box. Removing redundanl elements and storing only clements that need to be 
considered in the queue is the key to achieving the efficient 0(11) solution below. This is because each element in 
lhe list is being inserted and removed at most once. Therefore, lhc total number of insert + delete operations is 
2n. 

from collections import deque 
def MaxSlidingWindow(A, k): 

D "'dcque() 
res, i = IJ, 0 
for i in xrange(len(A)): 

while D and D!-1 1101 <=Ali]: 
D.pop() 
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D.append({Alil, i+k-1)) 
if i >= k-1: res.append(D[O)(OJ) 
if i == DIOJlll: D.popleftO 

return res 

prinl MaxSlidingWindow([4, 3, 2, 1, 5, 7, 6, 8, 91, 3) 

Priority Queues and Heaps 

Problem-31 /\ priority queue is a !isl of item s in which each item has associa ted with it a priority. Items are 
withdrawn from a priority queue in order of the ir priorities sta rling with the highest priority item first. If the 
maximum priority item is required, then a heap is cons tructed s uch than priority of every node is g reater t han 
the priority of its c hildren. 

Design such a hea p where the item with the middle priority is withdrawn first. If there are n items in the 
heap, then the number of items with the priority smaller than the middle priority is~ if n is odd, else~ + 1. 2 2 

Expla in how withdra w and insert operations work, cale ulatc the ir complexity, and how the dula s truc ture is 
construc ted . 

Solution: We can use one min heap and one max heap such t hul root of the min heap is larger tha n the root of 
the max heap. The s ir,c or the min heap should be equa l or one less than Lhe size of the max hea p. So t he midd le 
e le ment is a lways the root of Lhe max heap. 

For the insert operation, if the new item is less Lhan the root of max heap, then insert it into Lhe max h eap; e lse 
insert it in to the min heap. After Lhe withdraw or insert operation, if the size of heaps are not as specified above 
than transfer the mot clement of lhe max heap to min heap or vice-versa. 

With this implementation, insert a nd withdraw operation will be in 0(/0911) Lime. 

Problem-32 Given two heaps, how do you merge (union) them? 

Solution: Binary heap s upports various operations quickly: Find-min, insert, decrease-key. If we have two min
heaps, H l and 1-1 2, there is no efficient way lo combine Lhcm into a single min-heap. 

For solving this problem efficiently, we can use mergcablc heaps. Mergeable heaps support efficient union 
operation. It is a do ta structure that supports the following operations: 

• Create-I leap(): c reates an empty heap 
• lnscrt(ll,X,1<): inse rt an item x with key K into a heap II 

• Fincl- M in(l 1) : return item with min key 
• Ddete-Min(H) : return and remove 
• Union(H I, H2) : merge heaps H l and 1-12 

Examples of mcrgcable heaps are: 

• Binomiul Heaps 
• Fibonacci Heaps 

Both heaps a lso su pport : 

• Oec reusc- Key(H,X, I<): assign item Y with a smn ller key K 
• DelcLe(ll ,X) : remove item X 

Binomial Heaps: Un like binary heap which consists of a single tree, a binomial heap consists of a small set of 
component trees and no need to rebuild everything when union is performed. Each component tree is in a 
special format, called a binomial tree. 

Example: 

Bo 

() ( ) ( ) 
I )f ~) / I 

CJ c(c- ? () 
81 () () 

8 2 () 13:1 

( ) 
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A binomial tree of order k, denoted by Bk is defined recursively as follows: 

• IJ0 is a tree with a single node 

• F'or k ~ 1, Bk is formed by joining two /Jk- 1> such that the root of one tree becomes the leftmost child of 
the root of the other. 

Fibonacci Heaps: Fibonacci heap is another example of mcrgcable heap. It has no good worst-case guarantee 
for uny operation (except Insert/Create- Heap). Fibonacci I leaps hnve excellent amoni;-.ccl cost to perform each 
operation. Like /Jinomial heap, fi/10nacci heap consists of a set of min-heap ordered componenl trees. However, 
un l ike binomial heap, it has 

• No lim i t on number of trees (up to O(n)), and 

• No l imit on height of a tree (up to O(n)) 

Also, Fi11d-Mi11, Delete-Min, Union, Decrease- Key, Delete all have won;t-casc 0(11) running time. However, in the 
amorti:t.cd sense, each operolion performs very quickly. 

Opcmlion Binary I h'ap Binomial Heap Fibonurc:1 I l<'np 
Create-Heap (-)(I) 0(1) (·)(I) 

Find -Min (·)(I) 0(/ogn) (·)(I) 

Delete-Min 0(/ogn) 0(10911) 0(10911) 
Insert E»(logn) 0(1ogn) (·)(I) 

Delete (·)(10911) 0(/ogn) (-)(10911) 
Decrease-Key (-)(/og11) 0(/0.1111) <·>(I) 
Union <->(n) 0(/olJll) <->(I) 

Proble m-33 Median in an infinite series of integers 

Solution: Median is the m idd le number in a sorted list of nu m bers (if we huvc odd number of clements). If we 
have even number of clements, median is the average of two middle numbers in a so1·tcd list of numbers. 

We can solve this problem efficiently by using 2 heaps: One Maxi leap and one Min Heap. 

I. Maxi leap contains the smallcsl half of lhe received integers 
2. Mini leap contains the lnrgcst hnlf of the received integers 

The integers in Maxi leap arc always less than or equal to the integers in Mini leap. Also, the number of clements 
in Maxi leap is either equal to or 1 more than the number of clements in the M inl leap. 

In the strcum if we get 211 elements (at any point of time), MaxHcap and Minllcup will both contain equal 
number of clements (in this case, n elements in each heap). Otherwise, if we have received 211+1 elements, 

MaxHcap will contain n + 1 and MinHeap n. 

Lei us find the Med ian: If we have 211 + 1 clements (odd), the Med ian of received c lements wi ll be the largest 
dcmcnt in the Maxllcop (nothing bu t. l he root o f Mnxl leop). Otherwise, the Mcd inn or received c lements w ill be 

the nverngc o f lnrgcst c lemen t in the MaxHcnp (nothing but !he root o f Maxi lcnp) nnd smu llcsl c lemen t in the 
Mini lcn p (nothing bu t the root of Mini leap). This ca n be ca lculated in 0 (1) . 

Insert ing nn c lement into heap can be done in O(logn). Note t hat, any heap con t::iin ing 11 + 1 clemen ts migh t need 

one delete operation (and inser tion to other heap) as well. 

Example: 
Insert I: Insert to MaxHcap. 
Maxllcap: Ill. Minllcap:O 

Insert 9: Insert to MinHcap. Since 9 is greater than I and Minllcap mainioins thl! maximum clements. 
Maxi leap: (I:. Minllcap:(9} 

Insert 2: Insert Min Heap. Since 2 is less than all clements of Min Heap. 
MaxHeap: {1,2}, Minllcap:(9} 

lnserc 0: Since MaxHeap already has more than half; we have to drop the max clement from MaxHeap 
ond insert it to Min i leap. So, we have to remove 2 and insert into Mini leap. With that it becomes: 
Maxi lenp: ( I }, Minllcap:(2,91 
Now, insert 0 lo Max i leap. 

Totu l Time Com plexi ty: O(logn) . 

c lass StrcamMcdiun : 
def init (self): 
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self.minHeap, se!I.maxHeap =[I, [I 
self.n=O 

def insert(self, num): 
if self. n%2==0: 

heapq.hcappus h(self.maxHeap, - 1 *num) 
sclf.n+= l 
if lcn(sclf. minH.cap)==O: 

rel um 
if - I *self.maxHcaplOl>self.minHeap!OI: 

else: 

toMin=- 1 *heapq.heappop(self.maxHcap) 
toMax=heapq.heappop(self.minHeap) 
heapq. hcappush(self.maxHeap, -1 *toMax) 
heapq.hcappush(self.minHeap, toMin) 

toMin==- 1 *heapq.heappushpop(sclf. max Heap, - 1 *num) 
hcapq. hcappus h(self.minHeap, toMin) 
sclf.n += I 

def getMedian(sell): 
if self.n%2==0: 

return (- l *'self.maxHeap[Oj+self.minHcap[OJ)/2.0 
els~: 

retw·n -1 *sclf.maxl-leap[OJ 

Problem-34 Given a string inpulS tr a nd a slring pattern, find the minimum window in inputSlr which will 
conl a in a ll lhc characte rs in paltern in complexity O(n). Por example, inputS tr = "XFDOYEZODEYXNZD" 
pattern = "XYZ" Minimum window is "XPDOYEZ". If there is no such window in inputStr that covers a ll 
characters in pattern, return the emtpy s tring"". If there arc multiple such windows, you arc guaran teed Lhul 
there will a lways be only one unique minimum window in inputStr. 

Solution: 

def minWindowSubstr(inputStr, pattern): 
if inputStr ==<" or pattern == ": return " 
JasLsccn = {} 
start = O; end = lcn(inputStr)- L 
paltern = set(pattcrn) 
tt find such a substring ended al i-th c:haracter. 
for i, ch in enumerate(inpuLSlr): 

if ch not in pattern: continue 
last_seen{cb.j "" i 

if len(last_seen) = len(paltem): 
# all chars have been seen 
first "' min(last._seen.vaJucs()) # .. We can use a priority queue, O(logn) 
if i-first+ 1 < end-start+ l: 

s tart = first; end = i 

window = inputStr[starl:end+ 1] if len(last_seen) == Jen(patlern) else •·•· 
#print window, len(window) 
return window 

print minWindowSubstr("XFDOYEZODEYXNZD", "XYZF'') 
pd11t minWindowSubstr("XXXYDF'YF'F'HGKOXXFDOPPQDQPFVZZDEZ", "XZD") 
print minWindowSubstr("XXXYYYY", "XV") 
print rninWindowSubstr("", '"') 

Tirne Complexity: O(m/0911), where m = /e11(i11p11tStr) a nd 11 = len(patt crn). 

Problem-35 Given a maxhcap, g ive a n aJgorithm to check whether the k11' la rgest item is greater than or 
equal to x . Your algorithm should run in ti me proportional to k . 

Solution: If the key in the node is greater than or equal to x, recurs ively search both the left subtree and the 
right s ubtree. S top when lhe number of node explored is equa l to k (the a nswer is yes) or there a re no more 
nodes to explore (no). 

Problcm-36 You have k lists of sorted integers . Find the smu llcsl rnng<.: that inc ludes a t least one number 
from each of the k lists. 

Solution: 
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import hcapq 
def KListsOncElementFromEach(Lst): 

heap = 11 
end= False 

for 1 in L."lt : 
thi!iRange • max(!) - min(!) 
hcap.appcnd(min(l)) 
heapq. hcapify(heap) 

while not end: 
elem = heapq.heappop(heap) 
print e lem 
for I in Lst: 

if elem in I: 
#print 1 
I. remove( elem) 
llprinl I 
if lcn(I) == 0: 

end= True 
break 

hea pq. heappusb(heap, l[OJ) 
print heap 

def minL{I): 
m m in(noal(s) for s in 1) 
return m 

def maxL(l): 
m = max(float(s) for s in 1) 
return m 

Lst • ll4. 10, l5,24,26f,IO, t9, 12,201.11s, 18,28.301,f 
l<ListsOncElemenlFromEach(Lst) 

Problcm-37 Suppose the clements 7, 2, 10 and 4 arc inserted, in that order, into the valid 3-ary max heap 
found in the above question, Whic h one of the following is the sequence of items in the on·ay representing the 
resultant heap? 

(A) 10, 7, 9, 8, 3, 1, 5, 2, 6, 4 
(C) 10, 9, 4, 5, 7, 6, 8, 2, 1, 3 

(B) 10, 9, 8, 7, 6, 5, 4, 3, 2, I 
(D) 10, 8, 6, 9, 7, 2, 3, 4 , 1, 5 

Solution: The 3-ary max heap with clements 9, 5, 6, 8, 3, I is: 

After Insertion of 7: 

7.8 Priority Queues !Heaps]: Problems & Solutions 231 



Data Structu re and AlgoriLhmic Thinking with Python Priority Queues and Heaps 

After Insertion of 2: 

After Insertion of 10: 

After Insertion of 4: 

Pro blem-38 A com plete binary min-heap is mudc by including each integer in I 1, 10231 exactly once. The 
depth of a node in the heap is the length of the path from the root of the heap to that node. Thus, the root is 
al depth 0. The maximum depth at which integer 9 can a ppear is_ 

Solut ion: As shown in the figure below, for a given number i, we can fix the element i at i1h level and arrange 
the numbers 1 to i - 1 to the levels above. Since the root is at depth zero, the maximum depth of the i0 ' element 
in a min-heap is i - 1. Hence, the maximum depth at which integer 9 can appear is 8. 
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DISJOINT SETS 

ADT 

8.1 Introduction 

DisjoinL Sets ADT 

CI-IAPTER 

8 

In Lhis chapter, we will rcprescnl an important mathema tics concept: sets. This mcuns how Lo represent a group 
of clements which do not need any order. The disjoint sets ADT is the one used for this purpose. IL is used for 
solving the equivalence problem. It is very simple to implement. A simple array can be used for the 
implementation and each function takes only a few lines of code. Disjoint sets ADT acts as an auxiliary data 
structure for many other algorithms (for example, Kruska/'s algorithm in graph theory). Before starting our 
discussion on disjoint sets ADT, let us look at some basic properties of sets. 

8.2 Equivalence Relations and Equivalence Classes 
For the discussion below let us assume that S is a set conta ining the c lements and a relation U is defined on it. 
That means fo r every pair of clements in a, /JES, a U b is either true or false. If a U b is true, then we say "is 
relulcd to /1 , otherwise a is not related to b. A relation R is called an eq11ivale11ce r-elalio11 if it satisfies the following 
properties: 

• Reflexive: For every element a ES, a Ra is true. 
• Symmetric: For any two clements a. b ES, if a R b is true then h I/ a is true. 
• 1'rcrnsitivc: For any lhrcc clements a, b, c E S, if a R band b U c ore lrnc then a R c is true. 

As an example, rclulions ~ (les::i lhun or equa l to) a nd ;:::; (gn:uter thun or equal to) on a set of integers ure not 
equivalence re lu tions. They arc re nexivc (since a ~ a) a nd trnnsitivc (a $ Ii and II ~ c implies a ~ c) bul not 
symmetric (a $ b docs not imply /J $ a). 

Similurly, rail connectivity is an equivalence re lation . This relation is rcncxivc because any location is connected 
to itself. If there is connectivity from city a to city b, then city b a lso has connectivity to city a, so the relation is 
symmetric. Pinally, if city a is connected to city b and city b is connected to city c, then city a is also connected 
lO city C. 

The cq11i11n/c11cc class of an clement a ES is a subset of S that contains n il the c lements that are related to a. 
8quivalence classes create a Jlartition of S. Every member of S a ppears in exactly one equivalence class. To 
cleeicle if all I>, we just need to check whether a a nd b arc in the snmc equivalence c lass (group) o r not. 

In the above example, two cities will be in same equivalence class if they have rail connectivi ty. If they do not 
have connectivity then they wiJI be part of different equivalence classes. 

Since the intersection of any two equivalence classes is empty (<fl). the equivalence classes are sometimes called 
disjoint sets. In the subsequent sections, we will try to see the operations that cun be pe1formcd on equivalence 
classes. The possible operations arc: 

• Creating an equivalence class (making a sel) 
• Finding the equiva lence class nnme (Find) 
• Combininp; the equiva lence c lasses (Union) 
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8.3 Disjoint Sets ADT 
To manipulate the sel e lements we need basic operations defined on sets. In this chapter, we concentrate on the 
following set ope rations: 

• MAKESET(X): Creates a new set conta ining a s ingle clem ent X. 
• UNION(X, Y): Creates a new set conta ining the clements X and Y in their union and deletes the sets 

conta ining the elements X a nd Y. 
• FIN D(X): Returns the name of the set conta ining the element X. 

8.4 Applications 
Disjoint sels ADT have many applications a nd a few of them are: 

• To represent network connectivity 
• Image processing 
• To find least com mon a ncestor 
• To define equivalence of finite stale automata 
• lfruskal's minimum spanning t ree a lgorithm (gra ph theory) 
• In game a lgorithms 

8.5 Tradeoffs in Implementing Disjoint Sets ADT 
Let us sec the possibi li ties for implementing disjoint set operations. Initia lly, assume the input clements arc a 
colleclion of 11 sets, each with one cle ment. Thal means, ini tia l representation assumes nil relations (except 
rcnexivc rela tions ) arc fa lse. Each set has a different c lement, so that S; n Sj= ¢. This makes the sets disjoint. 

To add the re la tion a U b (UNION), we first need Lo check whether a and bare a lready related or not This can be 
verified by performing FINDs on both a and b and checki ng whether they are in the same equivalence class (set) 
or not. 

If they arc not, the n we apply UNION. This operation me rges the two equivalence classes containing a and b into 
a new equivalence class by creating a new set Sk = S1 u s1 a nd deletes S; a nd s1. Basica lly the re a rc lwo ways to 
implement the above FIND /UNION operations: 

• Fast FIND implementation (also called Quick FIN O) 
Fast UN ION operation implementation (a lso called Quick UNION) 

8.6 Fast FIND Implementation (Quick FIND) 
In this method, we use an array. As an example, in the representation below the array contains the scl name for 
each clement.. For simplicity, let us assume that a ll the clem en ts a re numbered sequentially from O to n - 1. 

In the example below, clement 0 has the set name 3, clement 1 has the set name S, a nd so on. With th is 
re presenta tion FIND lakes only 0(1) s ince for a ny clement we can find the sci na me by accessing its array 
location in constant Lime. 

Set Name 

3 5 

/ 
27 I 3 

0 2 n-2 n- 1 

In this representation, to perform UNION(a, b) !assuming that u is in set i and b is in set jJ we need to scan the 
complete a rray a nd change all i's to j. This takes 0(11). 

A seque nce of 11 - 1 unions take O(n2 ) Lime in the worst case. If there arc 0(112 ) FIND operations, this 
performa nce is fine, as the average time complexity is 0(1) for each UNION or FIND operation. If there are fewer 
FINDs, this complexity is not acceptable. 

8. 7 Fast UNION Implementation (Quick UNION) 
In this and s ubsequenl sections, we will d iscuss the raster UNI ON imple mentations a nd its variants . There arc 
different ways of implementing this approach and the fo llowing is a lisl of a few of them. 
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• Fast UNION implementations (Slow FIN D) 

• Fast UNION implementations (Quick FI ND) 
• Fast UNION implementations with path compression 

8.8 Fast UNION Implementation (Slow FIND) 

As we have discussed, FIND operation returns the same a ns wer (set nAmc) if a nd on ly if they a rc in the sa me 
set. In representing disjoint sets, our main objective is to give u d iffe rent set na m e for each group. ln genera l we 
do not care about the na me of the set. One possibility fo r imple menting the set is tree as each e le men t hos on ly 
one root a nd we can use it as the set name. 

How are these represented? One poss ibili ty is using a n a rray: for each element keep the root as its set nnme. 
But with this representation, we will have the sa me problem u 8 that of FIND array implem entation. To solve this 
problem, ins tead of storing I.he root we can keep the pt1renl of the clement. The re fore, us ing un a rray whic h 
s tores the parent of each clement solves our problem. 

To differe ntiate the root node, let us assume its parent ii> the same as that of the e lement in the array. Based on 
this representation, MAKESET, FIND, UNION operations can be dclincd as: 

• 

• 

• 

(X): Creates a new set containing a single c lement X and in the a rray update the parent of X as X. That 
means root (set name) of X is X. 

UNION(X, Y): Replaces the two sets conta ining X and Y by their union a nd in the a rray updates the 
parent of X as Y. 

,-~ , ',,.___) 
: y I 

__ /)--, 
, 'i 1 X I 6 
\ I d--' 
~ 

FIND(X): Returns the name of the set con tai ning the element X. We keep on searching for X's sel name 
unti l we come lo the root of the tree. 

... 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 
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For the clements 0 to n - 1 the initial representation is: 

0 n-2 ll- l 

Parent Array 

To perform a UNION on two sets, we merge the two trees by making the root of one tree point to the root of the 
Othc.:r. 

Initial Configuration for the e lements 0 to 6 

0 2 3 4 5 6 

Parent Array 

After UNION(S,6) 

, 

0 2 3 4 5 6 

Parent Array 

After UNION( 1,2) 

... -
; ' 

... - ... "'"' ' 
,' \ I 
' 2 ,.._"', 
\ I ,• , __ , 

, 
.,.- ... / 

I \ 
I I 
t I 

".... ,,,,.' 

0 2 3 4 5 6 

Parent Array 
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After UNION(0,2) 

0 2 3 4 5 6 

Parent Array 

One important thing to observe here is, UNIO N operaLion is chonging the root's pnrcnt only, but not for a ll the 
c lements in the sets . Due lo this, the time complexity of UN ION opcralion is 0( 1). A PIN O(X) o n clement X is 
performed by returning the root of Lhc tree containing X. The time to perform this opcrn tion is proportiona l to 

the dept h of the node representing X. Using this m ethod, it is possible to create u t rec of depth n - 1 (Skew 
Trees). The worst-case running lime of a FIND is O(n) and m consecutive FIND operations take O(mn) time in 
the worst case. 

MAKESET 

class DisjointSet: 
def init (self, n): 

self.MAKESET(n) 

def MAKESET(sclf, n): 
self.S •Ix for x in range(nJI 

FIND 

def FIND(sclf, X): 

UNION 

if( SIXJ .... x ): 
return X 

e lse: 
return FIN D(IXI) 

def UN ION(self, root I, rool2): 
SlrooUJ • root2 

8.9 Fast UNION Implementations (Quick FIND) 

The main problem with the previous approach is that, in the worsl case we arc gelling the skew trees and as a 
result the PINO opcralion is laking 0(11) lime complcxily. There arc two ways lo improve it: 

• UNION by Size (u lso ca lled UNION by Weight): Muke the smu llcr tree a subtrcc of the larger tree 
• UNION by Height (also ca lled UNION by Rank): Make lhe lree with less heigh1 11 subtree of the lrce with 

more height 

UNION by Size 

In the earlier rcprescnunion, for each element i we have stored 1 (in thc parcnt array) for the root element and 
for othcr clements we have swrcd the parent of i. But in this approach we store ne~:nive of the si:--.e of the tree 
(thnt mcnns, if the si:--;(! of the tree is 3 then store -3 in the parent array for the root clement). For the previous 
example (after UN ION(0,2)), the new representation will look like: 
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2 2 - 1 - I 6 -2 

Parent Array 

Assume that the si7~ or one clemen t set is 1 and store - I . Other than this there is no chunge. 

MAl<ESET 

FIND 

class DisjointScl: 
dcr init._ (sctr. n): 

self.MAKESET(n) 

def MAKESET(scir, n): 
sclf.S = 1-1 for x in rangc(n)I 

dcr FIND(self, X): 
if( self.SIX! < 0 ): 

return X 
e lse: 

return self.FIND(self.S[XIJ 

UNION by Size 

dcr UNION(sclf. root I, root2 ): 
ifsclf.FIND(rootl) • self.FIND(root2) and sclf.FIND(rootl) • • -1 : 

return 
if(self.S[root21 < sclf.S(rootlj ): 

self.Sjroot2J += self.S[rootll 
self.Sjrootl I = root2 

else: 
self. SI root 11 += sclf.Sjroot2] 
self. Sjroot21 • rootl 

Note: The re is no change in FIND opera tion implementation. 

UNION by Height (UNION by Rank) 

2 2 -2 - 1 

Pa rent Array 

- l 6 -2 

As in UN ION by si7.c, in this method we store negative of height of the tree (that mcuns, if the height of the tree 
as :i tlwn we store - 3 in the parent array for the root clement). We assume the height of a tree with one clement 
set is I . For the previous example (after UNJON(0,2)), Lhc new rcprcscmation will look like: 
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2 2 -2 - l - 1 

Parent Array 

UNION by Height 

def UNION(sclf, moll , root2): 
ifsclf.FINO(rooll) =• sclf.FIND(root2) and sclf.FfND(rootl ) .... -1: 

rel urn 
if(self.S[rool2l < self.S(rootl J ): 

self.S[rootl) = root2 
clif self.S(root21 == self.S(rootlj : 

self.S[rootl) -= 1 
self.Sfroot21 - rootl 

Note: For FIND operation there is no change in the implementation. 

Comparing UNION by Size and UNION by Height 

6 -2 

With UNION by siY.c, the depth of a ny node is never more than lo,g11. This is because a node is initially at depth 
0. When its depth increases as a result of a UNION, it is pluccd in a tree that is al least twice as large as befon;. 
That means its depth can be increased at most logn times. This means that the running time for a FIND 
operution is 0(/0911), and a sequence of m operations tukcs 0(111 lo,tJ11) . 

Similarly with UN ION by height, if we take the UNION of two trees of the same height, the height of the UN ION is 
one larger than the common height, and otherwise equal to the max of the two heights. This will keep the height 
of tree of 11 nodes from growing past 0(/0911). A sequence of 111 UN IONs a nd FINDs can then still cost O(m /0911). 

Path Compression 
li'IN D operation traverses a list of nodes on the way to the root. We ca n make la ter FIND operations efficient by 
mu king each of these vertices poin t direc tly to the root. This process is ca lled path comwession. l"or example, in 
the li'INO(X) operution , we trnvel from X to the root of the tree. The effect of pa th compression is that eve1y node 
on the pulh from x to the root hlusoits arent c ha nged lo the root. •" - .... , ,-... ' 

,' '\ t 
_.... I I 

- - \ I , --- ---~ ' .... _ ..... ........ _~ 

, 

Before l"IND(X) 

I 
I 

I 
I 

I 
I 
I 
\ 

\ 
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\ 
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After l"IND(X) 
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With path compression the only change to the FIND function is that SIXI is made equal to the value rcLUrned by 
FINO. That means, after the root of the set is found recursively, X is made to point directly to it. This happen 
recursively to every node on the path to the root. 

FIND with path compress ion 

def FINDBYSIZE(sclf, X): 
if( self.SIX! < 0 ): 

return X 
else: 

return sclf.FINDBYSlZE(self.S[XJ) 

Note: Path compression is compatible with UNION by size but not with UNION by height as Lhcrc is no efficient 
way to cha nge the height of the tree. 

8.10 Summary 
Performi ng /11 un ion-find operations on u set of 11 objects . ,, 

Algorithm Worsl-casc time 
Quick-find mn 
Ot1 ick-u n ion mn 
Quick-U nion bv Sizc/l lcigh l II + Ill /O.Qll 

Path compression II + Ill / O.Q ll 

Quick-Union bv Si7.c/l leight + Path Compression (Ill I II) /O(/ll 

8.11 Disjoint Sets: Problems & Solutions 
Problem-1 Consider a list of cities ch c2 , •• • ,cn· Assume that we huvc a relation R such that, for any i,j, 

R(c,.c1) is l if cities c, and c1 arc in the same state, and 0 otherwise. If R is stored as a table, how much 
space docs it require? 

Solution: U must have an entry for every pair of ciLics. There arc 0(11i) of these. 

Proble m -2 l"or Problem- I, using a Disjoint sets ADT, give an nl~orithm that puti:i each city in a set such 
thut c1 und c1 arc in the same set if and only if they are in the same s lu lc. 

Solution: 

for 1 in ra nge(O,n -1): 
MAf<ESET(c;) 
forj in runge(l,i- 1): 

if(R(cj, ct)): 

UNION(cl• c1) 
break 

Problem-3 For Problem- I, when the cities arc stored in the Disjoint sets ADT, if we are given two cities c, 
and c1, how do we check if they arc in the same state? 

Solution: Cities c, and c1 are in the same state if and only if FIND(c,) = FIND(c
1

). 

Problcm-4 l"or Problcm- 1, if we use linked-lists with UNION by size to implement the union- find ADT, how 
much space do we use to store the cities? 

Solution: There is one node per city, so the space is 0(11). 

Problcm-5 Por Problem- I, if we use trees with UN ION by rank, whut is the worst-case ru n ning time o f the 
nlgor ithm from O? 

Solution: Whenever we do a UNION in the algorithm from 0, the second argument is a tree of size 1. Therefore, 
all trees have height I, so each union takes time 0(1). The worst-case running time is then ®(n2). 

Problem-6 If we use trees without union-by-rank, what is the worst-case running time of the algorithm 
from O? Arc there more worst-case scenarios than Problcm-5? 

Solution: lkeuusc of the special case of the unions, union-by rnnk docs not make a difference for our 
algorithm. I lcncc, everything is the same as in Problem-5. 
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Pro blem-7 Wi th Lhe quick-union algorithm we know that a sequence of n operations (unions and finds) can 
Lake s lightly more than linear time in the worst case. Explain why if all the finds are done before all the 
unions, a sequence of n operations is guaranteed to take O(n) time. 

Solution: If the find operations are performed first, lhcn the find operations Lake 0(1) time each because every 
item is the root of its own tree. No item has a parent, so finding the set an item is in takes a ri,xcd number of 
operations. Union operations a lways Lake 0( 1) time. Hence, a sequence of 11 operations with a ll the finds before 
the 11nions lakes O(n) Lime. 

Problem-8 With reference to Problem-7 , expla in why if a ll the unions are done before a ll the finds, a 
sequence of n operalions is guaranteed to take O(n) time. 

Solutio n: This problem requires amorti7~d analysis. Find operations can be expensive, but this expensive find 
operation is bala nced out by lots of cheap union operations. 

The uccounting is as follows. Union operations a lways ta ke 0( I) Lime, so le t's say they have an actual cost of~ I. 
Ass ign each u11io11 operation an amortized cost of ~2, so every union operation puts ~ l in the uceount. Each 1wion 
operation c reates o new c hi ld. (Some node that was not u c hild of a ny other node before is a child now.) When a ll 
the union opera tions a rc done, there is $1 in the account for every c hild , or in other words, for every node with a 
depth of one o r greater. Let's say th al a f ind(u) operation costs '{ I if u is a root. For any other node, the find 
opera lion costs a n additional n for each parent pointer the find operation traverses. So the actual cost is '{(I + 
d), where d is Lhc depth of u. Assign each find operation an amortized cost of '{2. This covers the case where u is 
a root or a child of a root. For each additional parent pointer traversed, '{ 1 is withdrawn from the account to pay 
for it. 

Fortunately, path compression changes the parent pointers of a ll the nodes we pay '{ 1 to traverse, so these 
nodes become children of the root. All of the traversed nodes whose depths arc 2 or greater move up, so their 
depths arc now I. We will never- have to pay to traverse these nodes again. Say that a node is a grandchild if its 
dcpU1 is 2 or greater. 

Every Lime fi11d(t1) visits a grandchild, '{ 1 is withdrawn from the account, but the grandchild is no longer a 
grandchild. So the maximum number of dollars that can ever be withdrawn from the account is lhe number of 
grandchildren. But we initially put $1 in the bank for every c hild, a nd every grandchild is a child, so the bank 
balance will never drop below ~ro. The refore, the a morti7,a tion works out. Union and find operations both have 
amorti;,,ed costs of '{2, so any sequence of n operations where a ll lhc unions a re done first takes O(n) time. 
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OIIAPTER 

GRAPH 9 
ALGORITHMS 

9.1 Introduction 
In lhc real world, many problems a rc represented in lcrms of objects and connccl ion s between them. For 
exa mple, in on a irline route ma p, we might be interested in questions like: "What's th<.: fastes t way Lo go from 
Hyderabad lo N<.:w York?" or "Whal is the c hea pest way to go from Hyderabad to New York?" To answer these 
questions w<.: need information about connections (a irline routes) between objects (towns). Graphs a re data 
slrnctu res used for solving these kinds of problems. 

9.2 Glossary 
Gra ph: A graph is a pair (V, E), where Vis a set of nodes, called vertices, and E is a collection of pairs of vertices, 
called ed9es. 

• Vertices and edges arc positions and slore clements 
Definitions that we use: 

o Directed edge: 
ordered pair of vcniccs (u, v) 

first vertex t1 is the o rigin 
second vertex v is the dcstinntion 
Example: one-way road traffic 

o Undirected edge: 
unordered pai1- of vertices (u, v) 
Example: railway lines 

o Directed graph: 

9.1 Introduction 

all the edges a rc dircc lcd 
Example: rou te network 
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o Undirected graph: 
all lhe edges arc undirected 
Example: Oighl network 

• When an edge connects two verlices, the vertices arc said to be adjacent to each other and lhc edge is 
incident on both vertices. 

• A graph with no cycles is ca lled a tn:e. A tree i::; an ucyelic connected gruph. 

• A self loop is an edge that connects a vertex to itself. 

• Two edges are parallel if they connect lhe same puir of vertices. 

• The Degree of a vertex is the number of edges incident on it. 
• A subgraph is a subset of a graph's edges (with associated vertices) that form a graph. 
• A path in a graph is a sequence of adjacent vertices. Simple path is a path with no repeated verlicc::;. In 

the graph below, the dolled lines represent a path from C to /:'. 

' ' ' ' ' ' ' ' ' ' ' -----G) 
• A cycle is a path where the firnt und last vertices ore the same. A simple cycle is n cycle with no repeated 

vertices or edges (except the first and last vertices). 

I 
I 

~-----------~ 
• We say that one vertex is connected to another if there is a path that contains both of them. 
• A graph is connected if there is a path from every vertex to every other vertex. 
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• If a graph is not connected then it consists of a set of connected components. 

• A directed acyclic graph [DAG] is a directed graph with no cycles. 

• A fo rest is a disjoinl sel of trees. 
• A sp<rnnini.: tree of a connected graph is a s u bgraph that conta ins all of Lhal gra ph's vertices and is a 

s ingle tree. A spnnni ng forest of a graph is the union of s panning trees of ils connected components. 
• A bipartite graph is a graph whose verlices can be divided into two sets such Lhut a ll edges connect a 

vertex in one set with a vertex in the other set. 

In weighted graphs integers (weights) a rc assigned to each edge to represent (distances or costs). 

5 

• Graphs with a ll edges present a rc called complete graphs. 

• U ruphs with relalivdy few edges (generally if il edges < IVI log IVIJ arc ea lh.:cl spurse graphs. 
• Graphs with rclalivcly few of the possible edges missi ng a rc ca lled dense. 
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• Directed weighted graphs are sometimes called netwark. 
• We will denote the number of vertices in a given graph by IVI, and Lhe number of edges by IEI. Note that 

E can range anywhere from 0 Lo IVICIVI - 1)/2 (in undirected graph). This is because each node can 
connect lo every other node. 

9.3 Applications of Graphs 
• Representing relationships between components in electronic circuits 
• Tra nsporlation networks: Highway network, Fligh t neLwork 
• Computer networks: Local area network, Internet, Web 
• Databases: For representing ER (Entity Relationship) diagrams in daLabases, for representing 

dependency of tables in databases 

9 .4 Graph Representation 
As in other ADTs, to manipulate graphs we need to represenl Lhem in some useful form. Basically, there arc 
Lhree ways of doing Ulis: 

• Adjacency Matrix 
• Adjacency List 
• Adjacency Set 

Adjacency Matrix 

Graph Declaration for Adjacency Matrix 

First, lel us look al the components of the graph data structure. To represent graphs, we need the number of 
vertices, the number of edges a nd also their interconnections. So, the graph can be declared as: 

class Vertex: 
def init_(self, node): 

self.id = node 
# Mark all nodes unvisited 
self.visited =False 

def addNeighbor(self, neighbor, G): 
G.addEdge(self.id, neighbor) 

def getConnections(self, G): 
return G.adjMatrixfself. id] 

def getVertexID(self): 
return self.id 

def setVertexJD(self, id): 
self.id= id 

def sctVisitcd(self): 
self.vis ited =True 

def _str_(sclf): 
return str(self. id) 

class Graph: 
def iniL (self, numVertices, cost= 0): 

self.adjMatrix = (1- ll*numVerliccs for _ in range(numVerUces)j 
self.numVerLices i=numVertices 

self. vertices = ll 
for i in range(O,numVertices): 

newVertex = Vertex(i) 
self.vertices.append(newVerlex) 

Description 
In this meLhod, we use a matrix with sizt: V x V. The values of matrix arc boolean. Let us assume the matrix is 
Adj. The value Adj[u, 11] is set to I if there is an edge from vertex u to vertex v and 0 otherwise. 

In the matrix, each edge is represented by two bits for undirected graphs. That means, an edge from u to v is 
represented by 1 value in both Adflu, vj and Adflii, v] . To save time, we can process only half of this symmetric 
matrix. Also, we can assume that there is an ~edge" from each vertex lo itself. So, Adj[u, uJ is set to I for all 
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veniccs. If the graph is a direc ted graph then we need to mark only one entry in the adjacency matrix. As an 
example, consider the directed graph below. 

The adjacency matrix for this graph can be given as: 

A B c D 
A 0 I 0 I 
B 0 0 I 0 -c l 0 0 I 
D 0 0 0 0 

Now, let us concen trate on lhe implementation. To read a graph, one way is to first read the vertex names and 
then read pairs of vertex names (edges). The code below reads un undirected graph. 

class Vertex: 
def i.nit (self, node): 

self.id = node 
## Mark all nodes unvisited 
self.visited = False 

def addNeighbor(self, neighbor, G): 
G.addEdge(self.id, neighbor) 

def gctConnections(sclf, G): 
relurn G.adjMatrixlself.idl 

def gcLVcrtcxlD(self): 
return self.id 

def selVertexlD(self, id): 
self.id = id 

def set Visited( sell): 
self.visited =True 

def slr_(self): 
return str(self.id) 

class Graph: 
def iniL (self, numVerticcs, cost - 0): 

sclf.adjMalrix = ([-1 l*numVerlices for_ in rangc(numVcrLices)] 
sclf.numVertices =numVcrLiccs 

self. vertices = II 
for i in range(O,numVcrtiees): 

newVertex = Vcncx(i) 
self.vertices.append(newVertex) 

def setVcrte.x(self, vtx, id): 
if 0 <= vtx < self.numVcrticcs: 

self. vcrticcslvtxj.set Vcrtcx.lD(id) 

def gelVcrtcx(self, n): 
for verlxin in range(O,sclf.numVcrtices): 

if n == self.vertices(verlxinJ.getVertexJD(): 
return vcrtxin 

else: 
return -1 

def addEdgt:(self, frm, to, cost 0): 
if sclf.gctVertex(frm) !• - 1 and sclf.gctVertcx(to) I• - 1: 

sclf.adjMntrixlsclf.gctVcrtex(frm)Jlself.gctVcrtcx(to)I = cost 
#For directed graph do not add this 
self.adjMatrixlsclf.getVertex(to))(self.getVertex(frm)] =cost 
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def getVertices(self): 
vertices = IJ 

for vertxin in range(O,self.numVerlices): 
vertices. a pp end ( sc Ir. verl iccslvertxi n I-get Vertcxl 0()) 

return vertices 

def printMat.rix(selJ): 
for u in range(O,self.numVcrtices): 

row= II 
for v in range(O, self.numVertices): 

row.appcnd(sclf.adjMatrix[u)fv)) 
print row 

def getEdges(self): 
edges -11 

for v in rangc(O,self.numVertices): 
for u in range(O, self.numVerlices): 

if self.adjMat.rix!uJlvl !== - I: 

return edges 

if name •= ' main_'· 
G Oraph(5) 
G.setVertex(O.'a') 
C.selVertex(I, 'b') 
O.setVertex(2, 'c') 
G.setVertex(3, 'd') 
G.setVertex(4, 'e') 
print 'Graph data:' 
G.addEdge('a', 'e', 10) 
O.addEdgc('a', 'c', 20) 
O.acldEdge('c', 'b', 30) 
G.addEdge('b', 'e', 40) 
C.addEdge('e', 'd', 50) 
G.addEdge('r, 'e', 60) 
print G.printMatrix() 
print G.getEdges() 

vid = self. vertices{v!.getVertexJD() 
wid = self. verticestu).getVerlexID() 
edges.append((vid, wid, self.adjMalrixtu)[vl)) 

Graph Algorithms 

The udjaceney matrix representation i!': good if the graphs are dense. The matrix requires O(V2) bits of storage 
nncl O(V2 ) time for initializalion. If the number of edges is proportional to V2 , then there is no problem becu usc 
y z steps ore required to read the edges. If the graph is sparse, the inilia li.-,ation of the matrix dominates the 
running Lime of the algorithm os it tokes takes O(V2 ). 

Adjacency List 
Graph Declaration for Adjacency List 

In this representation all the vertices connected to a vertex v are listed on an adjacency list for that vertex v. 
This can be easily implemented with linked lists. That means, for each vertex v we use a linked list and list 
nodes represents the connections between v and other vertices to which v has an edge. 

The IOtnl number of linked lists is equol to the number of vertices in the graph. The ~ruph /\OT can be declared 
m;: 

class Vertex: 
def _inil_(self, node): 

self.id = node 
self.adjacent = O 
# Set distance to infinity for aJI nodes 
self.distance = sys.maxint 
# Mark all nodes unvisited 
self.visited = False 
# Predecessor 
self.previous"' None 

9.4 Graph Representation 247 



Datu Structure and Algorithmic Thinking with Python 

class Graph: 
def init_(self): 

self. vertDictionary = 0 
self.numVerlices • 0 

Description 

Graph Algorithms 

Considering lhe same example us thal or the adjacency matrix, lhe adjacency I isl represenlulion can be given 
ns: 

A 

B 

c 

D 

Since vertex A has an edge for 8 ond 0, we have added them in the adjacency list for /\. The same is the case 
with other verlices as well. 

clnss Vertex: 
def inil_ (self, node): 

self.id= node 
self.adjacent = O 
I# Set distance to infinity for all nodes 
self.distance = sys.maxint 
I# Mark all nodes unvisited 
self.visited = FaJse 
I# Pn.'Clcccssor 
self.previous= None 

def addNeighbor(self, neighbor, weight=O): 
self.adjacent[neighborl =weight 

def gelConnections(self): 
return self.adjacent.keys() 

def get VerlcxlD(self): 
return self.id 

def gctWeight(sclf, neighbor): 
return self.adjacent[neighborl 

def sctDistance(self, dist): 
self.distance = dist 

def gctDistance(sell): 
return self.distance 

def setPrcvious(sclf, prcv): 
::;elf.previous= prcv 

def setVisitcd(selQ: 
self. visited = True 

def str (self): 
return slr(self.id) + ' adjacent: ' + str(lx.id for x in self.adjacentlJ 

class Graph: 
def init (selQ: 

i;clf. vcrtDictionary • O 
self.numVerlices = 0 

def itcr (self): 
return iter(self. vertDictionary. values()) 

9.4 Graph Representation 248 



Data Structure and Algorithmic Thinking with Python 

def addVertex(self, node): 
self.numVertices = self.numVerLices + 1 
newVertex = Vertex(node) 
sclf.vertOiclionarylnodcl = ncwVertcx 
return ncwVertex 

def gctVcrtex(self, n): 
if n in solf.ve1tDictionary: 

return self.vertDictionarylnJ 
e lse: 

return None 

def addEdge(self, frm, to, cost= 0): 
if frm not in self.verLDictionary: 

sclf.addVertex(frm) 
if Lo not in sclf.vertDiclionary: 

selLaddVcrtex(to) 
sclf.vertDictionary[frml.addNeighbor(self.vertDictionaryltol, cost) 

#For directed graph do not add this 
sci f. vertDictionary[ toj .addNcigh bor(sclf. vcrtDictionary[f rm), cost) 

def getVertices(self): 
return self.vertOictionary.kcys() 

def sctPrcvious(self, current): 
self.previous= current 

def getPrevious(scJf, current): 
return self.previous 

def gctEdgcs(sclf): 
edges= [J 

for v in G: 
for w in v.gctConncctions(): 

vid = v.getVcrtcxlD() 
wid = w.getVcrlcxlD() 
cdges.appcnd((vid, wid, v.getWeight(w)}) 

return edges 

if name •= '_main_': 
G =Graph() 
G.addVertex('a') 
G.addVertcx('b') 
G.oddVcrtex('c') 
O .udclVcrlcx('d') 
(LudclVcrlcx('c') 
G.addEdgc('a', 'b', 4) 
G.addEdge('a', 'c', l) 
G.addEdgc('c', 'b', 2) 
G.addEdge('b', 'e', 4) 
G.addEdge('c', 'd', 4) 
G.addEdge('d', 'e'. 4) 
print 'Graph data:' 
print G.gctEdgcs() 

Graph Algorithms 

For this representation, the order of edges in the input is important. This is becuuse they determine the order of 
the vcrlices on the adjacency lists. The same graph can be represented in many different ways in an adjacency 
list. The order in which edges appear on the adjacency list affects the order in which edges are processed by 
algorithms. 

Disadvantages of Adjacency Lists 

Using adjacency list representation we cannot perform some operations efficiently. As an example, consider the 
case of deleting a node .. In adjacency list representation, it is not enugh if we simply delete a node from the list 
representation. if we delete o node from the adjacency list then that is enough . For each node on the adjacency 
list of thnt node specifies a nother vertex. Wc need to search other nodes linked list also for deleting it. This 
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problem can be solved by linking lhe two list nodes that correspond to a particula r edge and making the 
adjacency lists doubly linked. But all these extra links are risky to process. 

Adjacency Set 
It is very much s imila r to adjacency list but instead of using Linked lists, Disjoint Sets IUnion- f"indl a rc used. 
For more detai ls refer to lhe Disjoint Sets AD'/' chapter. 

Comparison of Graph Representations 
Directed and undirected graphs are represented with the same su-uctures. For directed graphs, everything is the 
same, except that each edge is represented just once. An edge from x toy is represented by a 1 value in Adj[x][yJ 
in the adjacency matrix, or by adding y on x's adjacency list. For weighted graphs, everyth ing is the same, 
except fil l the adjacency matrix with weights instead of boolean values. 

Represen talion Space 
Checking edge between Iterate over edges 

v and w? incident to v? 

List of edges E I:.' E 

Adj Matrix vz 1 v 
Adj List E+V Degree(v) Degree(v) 

Adj Set E+V log(Degree(v)) Degree(v) 

9.5 Graph Traversals 
To solve problems on graphs, we need a mechanism for traversing the graphs. Graph traversal algorithms are 
a lso called graph search a lgorithms. Like trees traversal algorithms (Inorder, Preorder, Postorder and Level-Order 
traversals), graph search a lgorithm::; can be thought of as slarting at some source vertex in a graph and 
"searching" the graph by going through the edges and marking the vertices. Now, we will discuss two such 
algorithms for traversing the graph::;. 

• Depth rirst Search I Df"SI 
• Breadth rirst Search IBFSI 

Depth First Search [DFS] 
OFS algorithm works in a manner similar Lo preorder traversal of the trees. Like preordcr traversal, internally this 
algorithm also uses stack. 

Let us consider the following example. Suppose a person is trapped inside a maze. To come out from that maze, 
the person visits each path a nd each intersection (in the worst case) . Lel us say the person uses two colors of 
puinl to mark the intersections a lready passed. When discovering a new intersection , it il> marked grey, and he 
continues lo go deeper. 

After reaching a "dead e ncl" the person knows that there is no more unexplored path from the grey interncction, 
which now is completed, and he marks il with black. This "dead end" is either an intersection which has a lready 
been marked grey or black, or simply a path that does not lead lo an intersection . 

The intersections of the maze a re the vertices and the paths between the intersections a re the edges of the 
graph. The process of ret-urning from the "dead end" is ca lled backtracking. We are trying lo go away from the 
starling vertex into the graph as deep as possible, until we have to backtrack to the preceding grey vertex. In 
ors algorithm, we encounter the following types of edges. 

Tree edge: encounter new vertex 

Back edge: from descendent to ancestor 
Forward edge: from ancestor to descendent 

Cross edge: between a tree or subtrees 

ror most algori thms boolean cluslSification, unvisited/visited is enough (for three color implementation refer to 
problems sect.ion). Thal means, for some problems we need to use t hrec colors, but for our discussion two colors 
arc eno ugh. 

false Vertex is L1nvisitcd 

true Vertex is visited 
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Initially a ll vertices a re marked unvisited (false). The DPS algorithm starts at a vertex 11 in Lhc graph. By sLarting 
at vertex u it considers the edges from u to other verLices. If the edge leads to an a lready visi ted vertex, then 
backtrack to cu rrent vertex u . 1f an edge leads to an unvisited vertex, then go to that vertex and start processing 
from that vertex. That mea ns the new vertex becomes the current vertex. F'ollow this process until we reach the 
dead-end. At this point start backtracking. 

The proct:ss terminates when backtracking leads back to the start vertex. The a lgorithm based on this 
mechanism i::i given below: assume Visited!! is a globa l a rray . 

def dfs (G, current Vert, visited): 
visited[currentVertl"'True 
print "traversal: " + currentVert.getVertexlD() 
for nbr in currentVert.getConnections(): 

if nbr not in visited: 
dfs (G, nbr, visited) 

def DFS'fraversal(G): 
visited .. O 
for currentVert in G: 

if current Vert not in visited: 
dfs(G, currentVert, visited) 

# Mark the visited node 

# Take a neighbouring node 
#Check whether the neighbour node is a ln::ady visited 
I# Recursively traverse the neighbouring node 

# Dictionary to mark the visited nodes 
# G contains vertex objects 
# Start traversing from the root node only if its not visited 
#For a connected graph thls is called only once 

As an example, cons ider the following graph. We ca n sec lhat somelimes an edge leads to an a lready d iscovered 
ver tex. These edges arc called back edges, a nd Lhe o ther edges a re called tree edges because delcling the back 
edges from the graph generates a Lrce. 

The fina l generated t.rec is called the DFS tree one! the order in which the vertices a rc proet:ssed is called 
DFS numbers of the vertices. In the graph below, the gray color indicates that the vertex is vis it.eel (there is no 
otht:r s ignificance). We need to see when the Visited table is updated. 

Visited Table 

l 0 0 0 00 0 0 

S tarting vertex f\ is 
ma rked visit.eel 

Visited Table 

9.5 Graph Traversals 

0 0 0 0 0 

Rccursiv t: call of 
DFS, vertex C is 
vi siled 

A 

A 

Visited Table 

0 0 0 0 0 0 

Vertex B is vis ited 

Visited Table 

0 0 0 0 

Recu rs ive call of DFS, 
vert ex D is visi tt:cl 
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A 

A 

A 

Vis ited Tobie 

Io Io I o I o I 

l111 c; k1 rac;k from D 

Visited Table 

0 0 

Recurs ive call of OFS, 
ve rtex F is visiLed 

Visited Table 

I I I 

l~ecursive call of DFS, 
vertex G is vis ited 

9 .5 Gra ph Traversa ls 

A 

A 

Gra ph Algorithms 

Vis ited Ta ble 

Io I o o 

1'1ecursivc call of ors, 
ve rtex E is visited 

Visited Table 

0 0 

Backtrack from F 

Visited Table 

0 

Backtrack from G 
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Visited Table 

I 1 I 1 l 

Recursive call of DFS, 
vertex 11 is visited 

Visited Table 

Backtrack from E 

Visited Table 

I i I l 

Bncktrnck from B 

Graph Algorilhms 

Visited Table 

I I I 

Backtrack from II. Edge 
IR 111 i<: t • h nl'I< Nia1• 

Visited Table 

Backtrack from C 

Visited Table 

Vertex A is completed. 

From the above diagrams, it can be seen that the DFS traversal creates a tree (without back edges) and we call 
such tree a IJFS tree. The above algorithm works even if the given graph has connected components. 

The time complexity of DFS is O(V +I::), if we use adjacency lis1:; for representing the graphs. This is because we 
arc :;wrtin1~ ut n vertex and processing the adjacent nodes only if they arc not visited. Similarly, if an adjacency 
matrix is used for a graph representation, then all edges odjocent to a vertex can't be found efficiently, and this 
g ives ocvi) complexity. 
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Applications of DFS 
• Topological sorting 

Finding connected components 
• Pinding articulation points (cul vertices) of the graph 
• Find ing strongly connected components 
• Solvi ng puzzles SLICh us mnzcs 

Por algorithms refer to Problems Section. 

Breadth First Search [BFS] 
The BFS a lgorithm works similar to level - order traversal or the trees. Like level - order traversal, BFS a lso uses 
queues. In fue l, level - order· traversal got inspired from BFS. BFS works level by level. Initially, BFS starts at a 
given vertex, which is al lev<.:l 0. In the first stage it visits all vertices al level 1 (that means, vertices whose 
clist::ince is l from the start ve11.cx or the graph). In the second stage, it visits all vertices a t the second level. 
These new vertices arc the ones which arc adjacent to leve l 1 vcnices. BFS continues this process until a ll the 
levels of Lhc graph are completed. Generally queue data structure is used for storing the vertices of a level. 

As s imilar to DFS, assume Lhal initially aJI vertices are marked imvisited (false). Vertices that have been 
processed and removed from the queue are marked visited (true). We use a queue to represent the visited set as 
it will keep the vertices in the order or when they were first visited . The implementation for the above discussion 
can be give n as: 

def BF'S1'ravcrsal(G,s): 
start = G.getVertc:x(s) 
sla.rt.setDistance(O) 
start.setPrevious{None) 
vertQueue = QueueO 
vertQueue.enQueue(start) 
while (vertQucuc.sizc > 0): 

defBFS(G): 

currenLVerl = vcrlQueue.deQueue() 
print current Vert.gctVcrte..x!D() 
for nbr in currentVerl.getConncctions(): 

if' (.nbr.gctColor() "'"" 'white'): 
nbr.sdColor('g.ray') 
n l>r.sct.Distance(currentVert.gelDistance() + J) 
nbr.sclPrevious(currentVert) 
vertQueue.enQueue(nbr) 

currenlVert.seLColor('black') 

for v in G: 
if (v.gelColor() ... 'white'): 

I3FS1'ravcrsf1l(G, v .get Verte.x!D()) 

As an cxnmple, let us consider the sumc graph as thal or the ors example. The BFS traversal can be shown as: 

0 

Starting vertex A is marked 
unvisited. Assume this is at 
level 0. 

Queue: A 

Visited Tnblc 

0 0 0 () () 

9.5 Graph Traversals 

Vcitcx A is completed. Circled part is level 
1 a nd added to Queue. 

\.!UCUC: fj 

Visited Table 

0 0 0 0 0 0 

254 



Data Structure and Algorithmic Thinking wilh Python 

B is completed. Selected part is 
level 2 (add to Queue). 

Queue: C, H 

Visited Table 

0 0 0 0 0 

D and E arc completed. F and 
G arc marked with gray color 
(next level). 

Queue: F, G 

Visited Table 

0 0 

Graph Algorithms 

Vertices C and H a rc 
completed. Circled part is 
level 3 (add to Queue). 

Queue: D, E 

Visited Table 

0 0 0 0 

All vertices completed and 
Queue is empty. 

Queue: l!:mpty 

Visited Table 

I I I I I I I 

Time complexity of BFS is O(V + !:"), if we use adjacency lists for representing the graphs, and O(V2
) for 

adjuccncy matrix representation. 

Application s of BFS 
' • rinding all connected components in a graph 

• Finding all nodes within one con nected component 
• rinding the shortest puth between two nodes 
• Tes ling u graph for bipartitcncss 
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Comparing DFS and BFS 
Comparing BFS and DFS, the big advantage of DFS is that it has much lower memory requirements than BFS 
because it's not required to store a ll of 1 he ch ild pointers at each level. Depending on the data and what we urc 
looking for, either DFS or BFS cu n be advantageous . For example, in a fami ly lrcc if we arc looking for someone 
who's sti ll alive and if we assu me that person would be al lhe bottom of the tree, then ors is a better c hoice. 
BFS would take a ve1-y long Lime lo reach Lhal last level. 

The DFS a lgorithm finds the goal faster. Now, if we were looking for a fumily member who died a very long Lime 
ago, then that person would be c loser to the top of the tree. In this case, BFS finds faster than DPS. So, Lhe 
advantages of either vary depending on Lhe data and what we are looking for. 

DFS is related to preorder traversal of a tree. Like preorder traversal, DFS visits each node before its children. 
The l:::!FS algori thm works similar to level - order traversal of the trees. 

If someone asks whether DFS is beller or BFS is better, the;: answer depends on the type of the proble m that we 
arc tiying to solve. BFS visits each level one al n time, and if we know the solution we a re searching for is al a 
low depth, then BFS is good. DPS is u better choice if the solu tion is at maximum depth. The below table shows 
the differences between DFS and BPS in terms of their applications. 

Applications OFS BFS 
Spanning forest, connected components, palhs, cycles Yes Yes 
Shortest paths Yes 
Minima l use of memory space Yes 

9.6 Topological Sort 
Topological sort is an ordering of vertices in a directed acyclic graph IDAGI in which each node comes before all 
nodes to which it has outgoing edges. As an example, consider the course prerequisite structure at universities. 
A directed edge (v, w) indicates that course v must be completed before course w. Topological ordering for this 
example is the sequence which docs not violate the prerequisite requirement. Evc1y DAG may have one or more 
topological orderings. Topological sort is not possible if the graph has a cycle, since for two vertices v and w on 
lhc cycle, v precedes wand w precedes v. 

Topological sorl has a n interesting properly. All pairs of consecutive vc1tices in the sorted order arc connected 
by edges; then these edges form a directed Hamiltonian path !refer to Problems Section! in the DAG. If a 
Hamiltonian path exists, the topological sort order is unique. If a topologica l sort does not form a Hami ltonian 
path, DAG can have two or more topological orderings. In the graph below: 7, 5, 3, 11., 8, 2, 9, 10 and 3, 5, 7, 8, 
11, 2, 9, 10 are both topological orderings. 

8 
I 

lnilia lly, i11degree is computed for a ll ve rtices, starting with the vc1-liccs whic h are ha ving indcgrcc O. That means 
consider t.he vertices which do not have any prerequisite. To keep track of verliccs with indegrec zero we can use 
a queue. 

All vertices of indcgree 0 are placed on queue. While the queue is not cm ply, a vertex v is removed, and aJJ edges 
adjacent to v have their indegrccs decremented. A vertex is pul on the queue as soon as its indegree falls to O. 
The topologica l ordering is the order in which the vertices DeQueue. 

The time complexity of this algorithm is 0(11:"1 + IVI) if adjacency lists arc used. 

class Vertex: 
def inil_ (self, node): 

self.id = node 
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self.adjacent= {} 
# Set distance to infinity for all nodes 
self.distance= sys.max.int 
# Mark all nodes unvisited 
self.visited - False 
II Predecessor 
self. previous = None 
#I lnDegn.'C Count 
self.inDegree = 0 
#I OutDegrce Count 
setr.oulDegrce =O 
#1 •••••••• 

class Graph: 
def init (sel~: 

self.vcrtDictionary = O 
self.numVertices = 0 
II ........ . 

def topologicalSort(G): 
"""Perform a topological sort of the nodes. If the graph has a cycle, 
throw a GraphTopologicalException with the list or successfully 
ordered nodes.••• 
II Topologically sorted list of the nodes (result) 
topologicalList • II 
#I Queue (lifo list) or the nodes with inDegrec 0 
LopologicalQucuc = II 
#I {node: inDegrce} for the remaining nodes (those with inDcgrcc>O) 
remaininglnDegree = O 
nodes= G.getVertices() 
for v in G: 

indcgrec = v.gctlnDegrec() 
if indegrcc == 0: 

topologicalQucuc.appcnd(v) 
else: 

remaininglnDegreelvl = indegrcc 

II Remove nodes wilh inDegree 0 and decrease Lhc in Degree or their sons 
while len(topologicalQucuc): 

# Remove the first node with degree 0 
node= lopologicalQueue.pop(O) 
topologicalLisl.append(nocle) 

II Decrease Lhc in Degree or Lhe sons 
for son in nodc.gctConnccLions(): 

son.setlnDegree(son.geUnDegrec0-1) 
if son.geUnOegreeQ == 0: 

Lopologica!Queue.append(son) 

II If not all nodes were covered, the graph must have a cycle 
# Raise a GraphTopographicalException 
if lcn(topologicalList)l=lcn(nodes): 

raise G raphTopologica IException(topologicalList) 

II Printing the topological order 
while lcn(lOpologicallJist): 

node = topologica!List.pop(O) 
print node.getVertexJD() 

Total running time of topological so1t is O(V + £). 

Graph Algorilhms 

Note: The Topological sorting problem can be solved with OFS. l"kfcr to the Problems Seclio11 for Lhe algorithm. 

Applications of Topological Sorting 
• l~epresenting course prerequisites 
• Dctccling deadlocks 
• Pipeline of computjng jobs 
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• Checking for symbolic link loop 
• Evaluating formulae in spreadsheet 

9.7 Shortest Path Algorithms 
Let us consider the other important problem of a graph. Given a graph G = (V, E) and a distinguished vertex s, 
we need to find the shortest path from s lo every other vertex in G. 'l'he rc arc va rialions in the shortest path 
a lgori thms which depend on the type of I.he input graph a nd arc given below. 

Variations of Shortest Path Algorithms 

Shortest 
Shortest 
Shortest h with ne ative ed es 

Applications of Shortest Path Algorithms 

• Pinding fastest way to go from one.: place to another 
• Pinding cheapest way to fly/send daLU from one city to another 

Shortest Path in Unweighted Graph 

Lets be the input vertex from which we want to find the ::;hortcsl path lo all other vertices. Unweighted graph is 
a special case of the weighted shortest-path problem, with all edges a weight of I . The a lgorithm is similar to 
BPS and we need to use the fo llowing data structu res: 

• A distance table with three colu mns (each row corresponds to a vertex): 
o Distance from source vertex. 
o Path - contains the name of the vertex through which we get the shortest d istance. 

• A queue is used to implement bread th -first search. It contains vertices whose dista nce from the source 
node has been computed and their adjacent vertices are to be examined. 

As an exam pit;, consider the folJowing graph and its adjacency !isl representation. 

The adjacuncy list for this graph is: 

A: B-) D 
B:D -)E 
C:A -) F 
D: F -) G 
E:G 
F: -
G:F 

Lets = C. The distance from C to C is 0. lnilially, distances to all other nodes a rc not computed, and we initialize 
the ::;ccond column in the distance table for a ll vertices (excepl C) with - 1 as below. 

Vertex Distaoccfvl Previous vertex which gave Distancef vi 
A - 1 -
H - I -
c 0 -
D - I -
l:" - I -
F - l -
G - I -
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Algorithm 

class Vertex: 
der init (self, node): 

self. id = node 
self.adjacent .. O 
# Set distance to infinity for all nodes 
self.distance= -1 
II Mark all nodes unvisited 
self.visited = False 
ll Predecessor 
self. previous = None 
I# ••••••••• 

class Graph: 
def init (seln: 

self.vertDictionary = {) 
self.numVenices = 0 " ........ . 

def UnweightedShortestPath(G,s): 
source = G.getVertex(s) 
source.setDistance(O) 
source.setPrevious(None) 
vcrtQucuc = QueueO 
vcrtQucuc.cnQueue(source) 
while (vertQueue.si?,e > 0): 

currcnlVcrl = vcrtQucue.dcQueuc() 
for nbr in currcntVert.getConnections(): 

if nbr.getDistance() == - 1: 
nbr.setDistance(currentVcrt.gctDistance() + l) 
nbr.sctPrcvious(currcn l V crt) 
vertQueue.enQueue(nbr) 

forv in C.vertDictionary.values(): 
print source.gelVertcxlO(J, " to ",v.gctVerlexID(), "-->",v.getDist.ance() 

Graph Algorithms 

Running time: 0(1£1 + IVI), if adjacency lists arc used. In for loop, we arc checking the outgoing edges for a given 
vertex and the sum or all examined edges in the while loop is equal to the number or edges which gives 0(1£1). 

If we use matrix representation the complexity is O(IVl2), because we need to read an entire row in the matrix or 
length IVI in order to find the adjacent vertices for a given vertex. 

Shortest path in Weighted Graph [Dijkstra's] 
A famous solution for the shortest path problem wus developed by Oijkstra. J)ijkstra's ulgorithm is a 
generu li;-.ulion of Lhc Bf<'S a lgorithm. The regula r BrS a lgorithm ca nnot solve the shorlcsl path problem as it 
ca nnot guarantee that the vertex at the front or the queue is lhe vertex closest to source s. 

Before going to code let us understa nd how lhe a lgorilhm works. As in unweighted shortest path algorithm, here 
too we use the distance table. The algorilhm works by keeping the shortest distance of vertex v from the source 
in the Oistance table. The value DistanceLvJ holds the distance from s to v. The shortest distance of the source LO 

itself is 7..cro. The Distance table for a ll other vertices is set to - 1 to indicate that those vertices are not already 
processed. 

Venex Dis tancelvl Previous vertex which gave Oistance(vl 
A - I -
8 - I -
c 0 -
D - 1 -
E - 1 -
F - I -
G - I -

l\fle r I he algorithm fini shes, the /Jis tr111cc table will hnve I he shortest distance from soL1rce s to each other vertex 
v. To simplify the understanding of Oijlcstra's algorithm, let us assume thal the given vcrl ices arc mciinlainecl in 
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two sets. Initially the first set contains only the source element and the second set contains all the remaining 
clements. After the kth iteration, the first set contains k vertices which are c losest to the source. These k vertices 
arc the ones for which we have already computed the shortesl distances from source. 

Notes on Dijkstra's Algorithm 

• IL uses greedy mclhocl: Always pick the next c loscsl verlcx lo lhc sou rce. 
• It uses priority queue lo slore Linvisited vertices by dislance from s. 
• It does not work with negative we igh ts. 

Difference between Unweighted Shortest Path and Dijkstra's Algorithm 

1) To represent weights in the adjacency list, each vertex con Lu ins the weights of the edges (in addition to 
their identifier). 

2 ) Instead of ordinary queue we use priority queue [distances arc the prioriLiesl a nd the vertex wilh Lhe 
s mallest dista nce is selected for processing. 

3) The distance to a vertex is ca lcu lated by the sum of the weights of the edges on the path from the source 
to that vertex. 

4) We update the distances in case the newly computed distance is smaller than the old distance which we 
have already computed. 

import heapq 
def dijl<stra(G, source): 

print '"Dijkstra's shortest path"' 

ff Set the distance for the source node lo zero 
source.setDistance(O) 

ff Put tuple pair into the priority queue 
unvisiLedQueue = [(v.getDistance(),v) for v in G) 
heapq.heapify(unvisitedQueue) 

while len(unvisitedQueue): 
#Pops a vertex with the smallest dilita.nce 
uv = hcapq.heappop(unvisitedQueuc) 
CUITCnt = uv{ll 
cu rrcn l. set Visited(} 

#for next in v.adjacent: 
for next in current.adjacent: 

# if visited, skip 
if next.visited: 

continue 

newDisl = current.getDistance() + c urrenl.getWeight(next) 

if new Dist < next.getDistancc(): 
nexL.setDistance(newDist) 
next.setPrevious(current) 
print 'Updated : current = o/os next= o/os ncwDist = %s' \ 

%(current.gel Vertcxl D(), next.gctVertexlD(), next.getDistance()) 
else: 

print 'Not updated : current = 'Yos next = %s newDisl = %s' \ 
% (current.getVcrlexlO(), next.gel VertexlD(), next.geLDista nee()) 

#Rebuild heap 
# 1. Pop every item 
while len(unvisitedQueue): 

heapq.heappop(unvisitedQueue) 

# 2. Put all vertices not visited into the queue 
unvisitedQueue = [(v.getDislancc(),v) for v in G if not v.visited] 
heapq. heapify(unvisitedQueue) 

The above a lgorithm can be better understood through an example, which will explai n each step that is taken 
and how Distance is calcula ted. The weighted graph below has 5 vertices from A - l:". 
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The value between the two vertices is known as Lhe edge cost between Lwo vertices. For example, the edge cost 
between A and C is 1. Dijkstra's a lgorithm can be used to find the shortest palh from source A to the remaining 
vertices in the graph. 

4 

Initially the Distance table is: 

Verlex Distanccivl Previous vertex which gave Distancelvl 
A 0 -
8 - 1 -
c - 1 -
D - 1 -
r: - 1 -

After the firsl step, from vertex A, we ca n reach 8 a nd C. So, in the Dislllnce table wc L1pdatc the reachability of /1 

and C with their costs and the same is shown bclo\I· 

A 0 -
B 4 A 
c 1 A 
D - I -
E - I -

4 

Shortest path from 8, Cf rom A 

Now, let us select the minimum distance among all. The minimum dii;;tancc vertex is C. That means, we have to 
reach other vertices from these two verLices (/\ and C). Fo1· example, 8 can be reached from A and a lso from C. In 
this cose we have LO select the one which gives the lowest cost. Since reaching IJ th rough C is giving the 
minimum cosl (1 + 2), we update the Disw11ce table for vertex B with cosl 3 and the vertex from which we got this 
cost as C. 

A 0 -

B 3 c 
c l A 

D s c 
E -1 -

Shortest path to B, Dusing C r1s intermediate vertex 

Th<.: only v<.:rt<.:x remaining is t:. To reach t:, we have to sec a ll lh<.: paths through which we can reach I:" and 
select the one which gives the minimum cost. We can see that if we use 11 as 1he intermediate v<.:rtex through C 
we get the minimum cost. 
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A 0 -
B 3 c 
c 1 A 
D 5 c 
E 7 13 

The finnl minimum cost tree which Dijkstra's algorithm generates is: 

Performance 

In Dijkstra's algorithm, the efficiency depends on the nu mber of DelcteMins (V DeleteMins) and updates fo r 
priori ty q ueues (£ updates) that a rc used. If a standard binary heap is used then the complexity is O(ElogV). 

The term /:'logV comes from /:' updates (each u pdate takes /ogV) for the standard heap. If the set used is an array 
thi:n the complexity is 0(1:' I V2

). 

Dis adva n tages of Dijkstr a's Algo r it h m 

• As discussed above, tht.: mujor disadvantage of the algorithm is that it docs a blind search, thereby 
wasting time a nd necessary resources. 

• Anothe r disadva n tage is that it cannot ha ndle negative edges. This leads to acyclic graphs a nd most 
often cannot obtain the righ t s ho rtest pa th. 

Relatives of Dijkstra's Algorit hm 

• The Be/Iman - Ford a lgorith m computes s ing le -source shortest paths in u weigh ted digraph. It u ses the 
sume concept as that of IJijkstru's a lgorith m but can handle negative edges as well. It has more running 
time than Dijkstra's algorithm. 

• Prim's algorithm finds n minimum spanning tree for a connected weighted graph. IL implies that a 
subset of edges that form a tree where the total weight of all the edges in the tree is minimized. 

Bellman-Ford Algorit hm 
If the graph has negative edge costs, then Oijkstra's a lgorilhm docs not work. The p roblem is that once a verlex 
11 is cleclured known, it is possible that fro m some o lher, unknown vertex v there is u puth back lo u tha t is very 
m;gn l ive. In s uc h a case, tuking 11 pu lh from s lo v back lo 11 is be li er tha n going from s lo 11 without us ing 11 . A 
com binnt ion of Dijkstra's ulgo rilhm nncl unweigh ted olgo ri1hms will s olve t he proble m . In itia lize the que ue wil h 
s. The n, a l each s tage, we Di:Qw:11 1: n vertex 11. We find a ll ve rtices w adjacent to v s uc h lha l, 

distance to 11 + weight(v, iv)< old dim111cc LO w 

We update wold distance and path, and place won a queue if it is not already there. A bit can be set for each 
vertex to indicate presence in the queue. We repeal the process unLil the queue is empty. 

import sys 
def Bcllmun Ford(G, source): 

dcstinulion = O 
predecel'!sor = U 
fo r node in G: 

deslina tion[node l = sys.maxint # We s tart admiting tha t the rest of nodes a rc very very far 
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predecessor!node) =None 
destinalionlsource) = 0 # For the source we know how to reach 
for i in range(len(G)- 1): 

for u in G: 
for v in Glul: #For each neighbour of u 

# If the distance between Lhe node and lhe neighbour is lower than the one I have now 
if destinationlv] > destination!ul + O!uJlv): 

# Record th is lower distance 
destination{v] = destination[uj + OfuJlvJ 
predcccssorlv) = u 

# Step 3: check for negative-weight cycles 
for u in G: 

for v in Glul: 
a1:1scrl deslination!vl <• dcstinationlul + Gfu]!vl 

return destination, predecessor 
if numc ... '_ main ': 

G = { 

l 

'A': ('B': - I, 'C': 4}, 
'B': ('C': 3, 'O': 2, '£': 2}, 
'C': {}, 
'D': {'B': l , 'C': 5}, 
'E': f D': -3} 

print BcllmanFord(G, 'A') 

This algorithm works if there arc no negative-cost cycles. Each vertex can DeQueue at mosl I VI times, so the 
running time is 0(1£1. JVI) if adjacency lists are used. 

Overview of Shortest Path Algorithms 

Short.est path in unweighted grJpb I Modified IJFSJ O(IHI + !VI) 

Shoncst path in weighted graph [Dijkstra's) 0(1/:'l log !VI) 

Shortest path in wcighted graph with negative edges I /Jellman - Pord] O(ll:l JVI) 

Shonest path in weighted acyclic graph 0(1£1 + JVI) 

9.8 Minimal Spanning Tree 
The Spa1111i119 tree of a gra ph is a subgraph that contains :ill the vertices a nd is a lso a tree. A graph may have 
muny spu nning I.recs. As an cxumple, cons ider a graph with 4 verl ices as shown below. Let us assume that Lhc 
corners of the graph arc vertices. 

Vertices Edges 

For this simple graph, we can have multiple spannjng trees as shown below. 

n LJ 
The a lgorithm we will d iscuss now is minimum sparmi11.c1 tree in 011 undi rected graph. We assume that the given 
graphs ure wcighled graphs. If the graphs are unweight ed graphs then we can still u se the weighted graph 
a lgorithms by treating all weights as equal. A minimum spanni11.<J tree of an undirec ted graph G is a tree formed 
from graph edges that connect a ll the vertices of G with minimum total cost (weights). A minimum s panning tree 
exists only if the graph is connected. There arc two famous ulgorithms for this problem: 

• I' rim's Algorithm 
• Kruskal's Algorithm 
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Prim's Algorithm 
Prim's ulgorilhm is almost the same as Dijkstra's algorithm. As in Dijkstra's algorithm, in Prim's algorithm we 
keep the values distance: and /UHhs in the distance table. The only exception is that since the definition of 
clis1C111ce is different, the updating stn lcmcnt a lso changes a li lllc. The update slatcmcn l is simpler than before. 

def Prims(O, source): 
print "'Dijkstra Modified for Prim'" 

# Sel the distance for lhe source node to zero 
source.setDistance(O) 

# Put tuple pair into lhc priority queue 
unvisitedQueue = ((v.getDistancc(),v) for v in GI 
hcupq. hcapify(u nvisitedQucuc) 

while len(unvisitcdQucuc): 
II Pops a vertex with the smallest distance 
uv • hcapq.heappop(unvisitedQucue) 
current = uv[l] 
current.setVisited() 

#for next in v.adjacent: 
for next in current.adjacent: 

II if visited, skip 
if next. visit.ed: 

continue 
ncwCost = currcnt.getWeight(ncxt) 

if newCost < next.getDistancc(): 
next.setDistancc(current.getWeight(next)) 
nexl.setPrevious(currcnt) 
print 'Updated : currcnl = %s next = % s newCost = %s' \ 

%(current.getVertcxIO(), next.getVertcxID(), ncxl.getDistancc()) 
else: 

print 'Not updated : current %s next = %s newCost %s' \ 
% (currcnt.gctVcrtexJD(), ncxt.gctVertexJD(), next.getDistancc()) 

# Rebuild heap 
# 1. Pop every item 
while len(unvisitedQueue): 

heapq.heappop(unvisitcdQueuc) 
II 2. Put all vertices not visiled into the queue 
unvisitedQueue = [(v.gctDistancc(),v) for v in G if not v.visitcdl 

hcapq.heapify(unvisitcdQueue) 

The entire implcmentalion of this n lgorithm is identical to that of Dijkstra's a lgorithm. The running time 1s 
O(IVll) without heaps (good for dense graphs!, and O(ElogV) using binary heaps [good for sparse graphsj. 

Kruskal's Algorithm 

The algorithm starts with V different trees (V is the vertices in the gra ph). While constructing the minimum 
spa nning tree, every time Kruskal's nlorilhm select:; an edge thul has minimum weighl a nd then adds thol edge 
if it doesn 't create a cycle. So, in i I in lly, I here a rc IV I single -node lrees in 1 he forest. /\dd i ng an edge merges two 
lrees inlo one. Wh en Lhe ulgorilhm is completed, there wil l be on ly one I rec, a nd lhnl is t he minimum spa nning 
lrce. The re a re two ways of implement ing Kruskal's a lgorithm: 

• By using Disjoint Sets: Using UNION and PINO operations 
• By using Priority Queues: Maintains weights in priority queue 

The approprialc data structure is the UNION/FIND algorithm [for implementing forests). Two vertices belong to 

the same set if and only if they ar·e connected in the current spanning forest. Each vertex is initially in its own 
set. If 11 und v a rc in the same set, the edge is rejected bccnusc it forms a cycle. Otherwise, the edge is accepted, 
nnd n UN ION is performed on the two sets containing 11 and v. /\s an example, consider the following graph (the 
cdg1·s s how the weights). 
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5 

11 

Now let us perform I<ruskal's a lgorithm on this graph. We always select the edge which has minimum weight. 

5 

5 

9.8 Minimal Spanning Tree 

From the above graph, the edges 
which have minimum weight (cost) 
a rc: AD and BE. From these two we 
can select one of them and let us 
assume that we select AD (dotted 
line). 

OF is the next edge that has 
the lowest cost (6). 
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7 

5 
9 

Graph Algorithms 

BE now has the lowest cost and we 
select it {dotted lines indicate 
selected edges). 

Next, J\C and CE have the low cost 
of 7 and we select J\C. 

Then we sdecl CE as its cost 1s 7 
uncl it docs not form a cycle. 
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5 

6 

def kruskaJ(G): 
edges = II 
for v in G: 

9 

makeSet(v .gel VertcxID()) 
for win v.getConnectionsO: 

11 

vid "'v.getVertexID() 

' ' ' ', <) 

' ' ' ' 

wid = w.gelVerlexID() 
edges.append((v.gelWeight(w),vid, wid)) 

edges.sort() 
minimum SpanningTrec = set() 
for edge in edges: 

weight, verticel. verlice2 =edge 
if find(vert icc I) != fi nd(vcrtice2): 

union(verticc 1, vertice2) 
minimum SpanningTree.add(edgc) 

return minimumS panningTree 

The next low cost edges are CB and 
EF'. But if we select CB, then it 
forms a cycle. So we discard it. This 
is u lso lhe case with EF. So we 
s hould not s elect those lwo. /\nd 
the next low cost is 9 (BO a nd EG). 
Sck:cting BD forms a cycle so we 
discard it. Adding EG will not form 
a cycle a nd therefore with this edge 
we complete a ll vertices of the 
graph. 

Note: F'or implementation of UNION and FIND operations, refer to the Disjoint Sets AD'/' c ha pter. 
The worst-case running Lime of this a lgorithm is O(l:'lnfJI:'). whic h is dominated by the heap operations. That 
mean::;, s ince we arc constructing the heap with E edges, we need O(J:'logf:') time to do that. 

9.9 Graph Algorithms: Problems & Solutions 
Problc m - l In an undirected s imple graph with 11 vertices, what is the maxim um nt1mbcr of edges'? Self-

loops nrc not a llowed. 

Solution: Since every node can connect to all other nodes, Lhc finH node can connect to 11 - 1 nodes. The second 
node can connect ton - 2 nodes [since one edge is already Lhcre from the first node!. The total number of edges 
. n (n- 1) 
1s: 1 + 2 + 3 + ... + n - 1 = -

2
- edges. 

Problem-2 How many different adjacency matrices docs n graph with n vertices and r: edges have? 

Solution: It's equa l to the number of pe rmutations of 11 c lements. i.e., 11!. 

Problc m -3 I low many different ndjaccncy lists docs o grnph with 11 vertices have? 

Solution: It's equa l to the number of permutations o f edges. i.e., fl. 

Problem-4 Which undirected graph representation i::; most a ppropriate for determining whether or not a 
vertex is isolated (is not connected to any other ver tex)'? 

Solution: Adja c e ncy List . If we use Lhe adjacency matrix, then we need to c heck the comple te row to determin e 
whet her that vertex has edges o r not. By using the adjacency list, it is very easy to check, and it can be done 
just by c hecking whether tha t vertex has NULL for nexl pointer or not !NULL indicates that the vertex is not 
connected to nny other vertex!. 

Proble m -5 ror checking whether there is a path from source s to ta rgcl t , whic h one is best between 
disjoint sets and DPS? 
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Solution: The table below shows Lhe comparison between disjoint sets and DFS. The entries in the table 
represent the case for any pair of nodes (for s and t). 

Method Processing Time Query Time Space 

Union-Pind v + F: lo9V logV v 
DPS F: + v 1 l;' -1- v 

Problem-6 Whal is the maximum number of edges a directed graph with n vertices can ha ve and stiJl not 
contain a directed cycle? 

Solution: The number is V (V - 1)/2. Any directed graph can have at most n2 edges. However, since the graph 
has no cycles it cannot contain a self loop, and for any pair x,y of vertices, at most one edge from (x.y) and (y,x) 
can be included. Therefore the number of edges can be at most (V2 - V)/2 as desired. It is possible LO achieve 
V(V - 1)/2 edges. Label 11 nodes 1. 2 ... 11 and add an edge (x, y) if and only if x < y. This graph has the 
appropriate number of edges and cannot cont.a in a cycle (any path visits an increasing scqucnce of nodes). 

Problem-7 
V? 

How many s imple directed graphs with no parallel edges and self-loops arc possible in terms of 

Solution: (V) x (V -1). Since, each vertex can connect to V - 1 vertices without self-loops. 

Problem-8 

Solution: 

What are the differences between DFS and BFS? 

DFS BFS 
Backtracking is possible from a dead end. Backtrackin~ is not possible . 
Vertices from which exploration is incomplete are The verticcs to be explored arc organized as a FIFO 
prnccsscd in a L1 FO order queue. 

The search is done in one particular direction 
The vertices al lhe same level are maintained in 
parallel. 

Problem-9 Earlier in this chapter, we discussed minimum spanning tree aJgorithms. Now, give an 
ulgorithm for finding the maximL1m -weight spanning tree in a graph. 

Solution: - I 

1 3 2 -2 
- 1 

- 1 

- 1 

Given graph Tra n sfor·med graph with negaLive edge weights 

Using Lhe given graph, construct a new graph with the same nodes and edges. But instead of using the same 
we ights, take the negative of their weights. That means, weight of an edge = negative of weight of the 
corresponding edge in the given graph . Now, we can use existing mininrnm spanning tree a lgor ithms on this new 
grnph. As u result, we will get the maximum-wcighl spanning tree in the original one. 

Problem-IO Give an ulgorithm for checking whethe r a g iven graph G has s imple path from sou rce s Lo 
destination d. Assume the graph G is represented using the ucljacenl matrix. 

Solution: Let us assume that thc structure for the graph is: 

class Graph(object): 
def _init_(self, graph_dict=OJ: 

""" initializes a graph object""" 
self.graphDictiona1y = graph_dicl 

def vertices(self): 
""" returns the vertices of a graph '""' 
reLun1 list(self.graph Dictionu ry. kcyl:l{)) 

def edges(self): 
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""" returns the edges of a graph """ 
return self.generateEdgesO 

def addVcrtex(self, vertex): 
••• If the vertex "vertex" is not in 

self.graphDictionary, a key "vertex" with an empty 
list as u value is added to the dictionary. 
Otherwise nothing has to be done. 

if vertex not in self.graph Dictionary: 
self.graphDictionary(vcrtex:J =LI 

def addEdge(self, edge): 
'""' assumes that edge is of type set, tuple or list; 

between two vertices can be multiple edges! 

edge • sct(cdge) 
(vertex 1, vcrtex2) • tuple( edge) 
if vertex 1 in sclf.graphDictionary: 

self.graph Dictiona1y(vcrtexl J .append(vertex2) 
else: 

self.graph Dictionary[vertexl I = {vertex2) 

The following method finds a path from a start vertex to a n end vertex: 

def ch<..'CkForPath(setr, source, destination, path=[)): 
""" find a path from source to destination 

in graph""" 
graph "' sclf.graphDictionary 
path • path + (source( 
if source = ~ destination: 

return path 
if source not in graph: 

return None 
for vertex in graph[source(: 

if vertex not in path: 
cxtendcdPnlh · sclf.checkForPath(vertcx, destination, Plllh) 
if extended Path: 

rctu rn cxtcndedPath 
return None 

if name == "_ main_ ": 
R = {"a": l''b", "c"I, 

••b": ("d'', "c'·I, 
.. c" : ("d", ''c•·1, 
"d": l"c"[, 
"c": ("uttl, 
"r· : II 

I 
graph = Graph(g) 

print("Vertices of graph:") 
prin I (graph. vertices()) 

prinl("Edgcs of graph:") 
prinl(graph.<..'dges()) 

palhRcsull graph.checkF'orPalh("a", "e") 
if(pathRcsull •~ None): 

print "No path between source and destination" 
else: 

print pathResult 

pa.lhRcsult - graph.checkForPath("a", "f") 
if(pathResult .. - None): 

print "No path between source and destination" 
else: 

print pathRcsult 
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Time Complexity: 0(£). In the above algorithm, for each node, since we a rc not calli ng DFS on all of its neighbors 
(discarding through if condition), Space Complexity: O(V). 

Problem-11 Count simple paths for a given graph G has simple path from sources to destinalion d? Assume 
the graph is represented using Lhe adjacent matrix. 

Solution: Similar lo the d iscussion in Problem- I 0, slart al one node and ca ll DFS on Lhat node. As a resu lt of 
this ca ll, it: visits a ll the nodes Lhul ii. can reach in the given graph. Thul merrns il visits all I.he nodes of lhc 
connec ted component of Lhat node. If" there arc any nodes thal have nol been visited, then again start at one of 
those nodes a nd call DFS. 

Before the first DFS in each connected component, increment the connected components count. Continue this 
process until all of the graph nodes arc visited. As a result, at the end we will get the total number of connected 
components. The implementation based on Lhis logic is given below: 

def countSimplcPathsFromSourccToDcstination(self, source, destination, path=ll): 
"'"' find all paths from source to destination in graph""" 
graph = self.graphDictionary 
path = path + !source] 
if source == destination: 

return {pathj 
if source not in graph: 

return 11 
pa ths"' II 
for vertex in graphlsourccj: 

if vcrlex not in path: 
cxtendcd_paths = self.countSimplePathsFromSourccToDcslination(vertex, destination, path) 
for pin cxtcnded_palhs: 

palhs.append(p) 
return paths 

if name == "_ main_ ": 
g = { "a" : l"b", "c"], 

} 

"b0 

: ("d'', "e'..-J, 
"c" : f''dtl, "e"l, 
"d'' : r~e''I, 
"e'': ("a11 J, 
"r': fl 

graph = Graph(g) 

print("Verlices of graph:") 
print(graph. vertices()) 

print(" Edges of graph:") 
print(graph.cdgcs()) 

pathResult = graph.countSimplePathsl"romSourceToDest.ina.Lion("a", "c") 
if(lcn(pathResult) == 0): 

print "No path between source and destination" 
else: 

print pathResult 

pathResult = graph .countSimplePalhsl<"romSourceToDeslinalion("a", 'T') 
if(lcn(pathRcsult) == 0): 

print "No path between source and dt:slinalion" 
else: 

print pathResull 

Problem-12 All pairs s hortest pa th problem: Find the shortest g r·aph distances between every pair of 
vertices in a given graph. Let us assume thal the given graph docs not have negative edges. 

Solution: The problem can be solved using n applications of Dijkstra's algorithm. That means we apply 
Dijkstra's a lgorithm on each vertex of the given graph. This algorithm does not work if the graph has edges with 
negative weights. 

Problem-13 In Problem- 12, how do we solve the al l pairs shortest puth problem if the graph has edges with 
negotivc weights? 
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Solution: This can be solved by using the Floyd - Warshall algorithm. This a lgorithm a lso works in the case of a 
weighted graph where the edges have negative weights. This a lgorithm is a n example of Dynamic Programming -
refer to the Dynamic Programming chapter. 

Problem -14 DFS Applica tion: Cut Vertex or Articulation Points 

Solution: In an undirected gra ph, n cut vertex (or articula tion point) is a vertex, and if we remove it, then the 
graph s pliLs into two disconn ected components. As an example, consider the following figure. Remova l of Lhe "D" 
vertex d ivides the graph into two connected components ({£, F) and {A, B, C, G)). 

Similarly, remova l of the "C" vertex divides the graph into ({G} and {A, 8, D, E, Fl). For Lhis graph, A and C are th e 
cut vertices. 

Note : A connected, und irected graph is called bi - connected if the graph is still connected after removin g a ny 
vertex. 

DPS provides a linear-lime a lgorithm (O(n)) to fmd all cut ve rlices in a connected graph. S tarling at any vertex, 
call a DFS and number the nodes as Lhcy arc visited. fo'or each vertex v, we call this DFS number df snum(v). The 
tree generated with DrS traversa l is ca lled DPS spanning tree. Then, for every vertex v in t he DPS spanning tree, 
we compute the lowest- numbe red ve rtex, which we call low(v) , that is reachable from v by taking zero or more 
tree edges a nd then possibly o ne back edge (in that order). 

Based on the above discussion, we need the following information for this a lgorithm: the df snum of each vertex 
in the DFS tree (once it gets visited), a nd for each vertex v, the lowest depth or ne ighbors or all descendants of v 
in the DPS Lrec, called the low. 

The df snwn can be computed during DFS. The low of v can be computed a fte r visiting all descendants or v (i.e., 
just before v gets popped o ff t he DPS s tack) ns the minimum or the dfsrwm of a ll neighbors or v (other lhan the 
parent or v in the DFS tree) and Lhc low of a ll c hildren of v in the DFS tree. 

I 
I 

I 

\ 
\ 

; 
I 

; ,, 
,, ,, ,, " 

A,l/ 

The rooL verlex is a cut vertex ir and only if it has a t least two c hildren. A non -root vertex u is a cut vertex if and 
only ir there is a son v of u s uch Lhat low(v) ~ df snwn(u). This property can be tested once the DFS is returned 
from every child or u (that means, just before u gets popped off the DFS stack), and ir true, u sepa rates the 
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graph into different bi-connected components. This can be represented by computing one bi-connected 
component out or every such v (a component which contains v will contain the sub-tree or v, plus u), and then 
erasing the sub-tree of v from the tree. 

For the given graph, the DPS tree with cff snum/low can be given as shown in the figure below. The 
implementation for the above discussion is: 

import math 
drsnum = IOI * G.numVerticcs 
num 0 
low = [OJ * G.numVcrLices 
def Cut Vertices( G, u ) : 

lowlul = num 
dfsnumlul = num 
num a num +l 
for v in range{O,G.numVertices): 

if(O.adjMatrixlullvl and dfsnumlvl ="' - 1): 
Cut Vertices( v ) 
ir(tow[vJ > dfsnumjul): 

print "Cul Vetex:",u 
low[ul = min ( low(u], lowfvl) 

else: ti (u,v) is a back edge 
low[u] = min(lowjuJ , dfsnum[v)) 

Problem-15 Let G be o connected graph of order 11. What is the maximum numbcr of cut-vertices that r; can 
contain·~ 

Solution: 11 - 2. /\s an example, consider the following graph. In the graph below, except for the vertices I and 
11, all the remaining vertices arc cut vertices. This is because rcmovinp, I and /1 venices does not split the graph 
into two. This is a case where we ca n get the maximum number of cut vertices. 

----------8 
Problem-16 DFS Application: Cut /Jridges or Cut Edges 

Solution: 
Definition: Let G be a connected graph. /\n edge tw in G is called a lwicl,11c or G if G - 1w is disconnected. 

/\s an example, consider the fo llowing graph. 

In the above graph, ir we remove the edge uv then the graph splits into two components. For this graph, 1w is a 
bridge. The discussion we had for cut vertices holds good for bridges also. The only change is, instead of printing 
the vertex, we give the edge. The main observation is that an edge (u. v) cannot be a bridge if it is pan or a cycle. 
Ir (u, v) is not part of a cycle, then it is a bridge. 

We can detect cycles in DPS by the presence or back edges. (u, v) is a bricl~e if and only ir none or v or v's children 
hos n bock edge to u or any of u's ancestors. To detect whether a ny or u's chi ldren has a back edge to u's parent, 
we cnn use a similar idea as above lo sec what is the smallest clfs1111111 reuchuble from the subtree rooted at u. 

imporl math 
dfsnum = (01 * G.numVertices 
num=O 
low= 101 * G.numVertices 
def Bridges( G, u ) : 

lowjuJ = num 
dfsnumlul "' num 
num • num +I 
for v in range(O,G.numVertices): 

if(G.adjMatrixlullvl and dfsnumLvJ == -1): 
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Problem-17 

cutVertices( v ) 
if(low!vJ > d fs nu mlu]): 

print (u,v) #as a bridge 
lowjul ... min ( low(u) , low(vl ) 

else: # (u, v) is a back edge 
lowlu I = min(low(uj . dfsnumlv]) 

DFS Application: Discuss l:"u/er Circuits 

Solution : Before discussing this problem let us see the terminology: 

• Eulerian tour - a path that contains all edges wilhout repetition. 

Graph Algorilhms 

• Eulerian circuit- a path that contains all edges without repetition and starts and ends in the sa me 
vertex. 

• Eulerian 9raph - a graph that contains an Eulerian c ircuit. 
• Hven vertex: a vertex that has an even number of incident edges. 
• Odd vertex: a vertex that has an odd number of inc ident edges. 

Huler circuit: For a given graph we have to reconstruct the circuits using u pen, drawing each line exactly once. 
We should not lift the pen from the paper while drawing. That means, we must find a path in the graph that 
visits every edge exactly once a nd this problem is called an Euler path (also called E"uler tour) or 
Euler circuit problem. This puzzle has a simple solution based on DFS. 

J\n Huler circuit exists if and only if the graph is connected and the number of neighbors of each vertex is evcn. 
Start with any node, i:;elcct any untraversed outgoing edge, a nd follow it. Repeal until there a1·c no more 
rema ini ng unselected ou tgoing edgci:;. For example, consider the fo llowing grnph: A lcgn l Euler Ci rcuit of this 
graph is 0 1 3 41 2 3 5 4 2 0. 

If we start a t vertex 0, we can select Lhe edge to vertex 1, then select the edge to vertex 2, then select the edge to 
vertex 0. There arc now no remaining unchosen edges from vertex 0: 

0 
We now have a circuit 0,1 ,2,0 that docs not traverse every edge. So, we pick some other vertex that is on that 
ci rcui t, say vertex 1. We then do another depth rirst search of the rcmaini np, edges. Say we choose the edge lo 
node 3, then 4, then I. Again we arc stuck. There urc no more u nchosen edges from node 1. We now splice this 
puth 1,3,4,1 into lhc old path 0,1,2.0 lo get: O;l,3,4,1,2,0. The unchosen edges now look like this: 

We can pick yet another vertex lo start another DFS. If we pick vertex 2, and splice tht: path 2,3,5,4.2, then we p,t•t 
the final c ircuit O, l,3,4, l,2,3,S.4.2,0. 

A similar problem is to line! a simple cycle in a n undirected graph that visits every vertex. This is known as tht: 
llamilwnian cycle problem. Although it seems almost identical to the t:uler ci rcuit problem, no efficient algorithm 
for it is known. 
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Notes: 
• A connected undirected graph is Eulerian if and only if every graph vertex has an even degree, or cxaclly 

two vertices with an odd degree. 
• A directed graph is Hulerian if it is strongly connected a nd every vertex has an equa l in and out degree. 

Application: A postman has lo visit a set of streets in order to deliver mai ls und packages. He needs lo find a 
pnth that starts and ends a t the post-office, and that passes through each street {edge) cxaclly once. This way 
the postman will deliver mails and packages to all the necessary su·eets, and at the same time will spend 
mjnimum time/ effort on the road. 

Problem-18 DFS Application: Finrung Strongly Connected Components. 

Solution: This is another application of DFS. In a directed graph, two vertices u and v arc strongly connected if 
and only if there exists a path from u to v and there cxjsts a path from v to u. The strong connectedness is an 
cquivolcncc relation. 

• A vertex is strongly connected wi th itself 
• If a vertex u is slrongly connected to a vertex v, then v is s t rongly connected to u 
• If a vertex u is strongly connected to a vertex v, and v is strongly connected to a ver tex x, then 11 is 

strongly connected to x 

What this says is, for a given directed graph we can divide it into strongly connected components. This problem 
can be solved by performing two depth-first searches. With two DFS searches we can test whether a given 
directed graph is strongly connected or not. We can also produce the subsets of vertices that arc strongly 
conncclcd. 

Algorithm 
• Perform DFS on given graph C. 

• Number vertices of given graph G according to a post-ord er traversa l of depU1 -first spanning forest. 
• Construct graph G,. by reversing a ll edges in G. 
• Perform DPS on G,.: Always start a new DFS (initial call to Visit) al Lhc highest-numbered vertex. 
• Each tree in the resulting depU1-first spanning forest corresponds to a strongly-connected component. 

Why this algorithm works? 

Let us consider two vertices, v and w. If they are in the same strongly connected component, then there arc 
paths from v tow and from w lo v in the original graph G, and hence also in G,.. If two vertices v and w arc not in 
the same depth-first spanning tree of Gn clearly they cannot be in the same strongly connected component. As 
an example, cons ider the graph shown below on the left. Let us assume this gra ph is G. 
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Now, as per the a lgorithm, performing DFS on this G graph gives the following diagram. The dotted line from c to 
A indicates a back edge. 

Now, performing post order traversal on this tree gives: D, C, Band A. 

Vertex Post Order l'fumbcr 
A 4 
8 3 
c 2 
D J 

Now reverse the given graph G and call it G,. and at the same time assign postorder numbers to the vertices. The 
reversed graph G,. will look like: 
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The last step is performing DFS on this reversed graph Gr. While doing DFS, we need to consider the vertex which 
has the largest DFS number. So, first we start at A and with DFS we go to C and then B. Al B, we cannot move 
further. This says that {A, 8, C} is a strongly connected component. Now the only remaining element is D and we 
end our second DFS at D. So the connected components are: {A, B, C} and {D}. 

----------~ 

I 
\ 

\ 

' ' ' ' ' ' 

... 
... .. .. .. 

.. .. 
.... .... 

The implementation based on this discussion can be shown as: 

def stronglyConnectedComponents(G): 
indexCounter = [O] 
slack = II 
lowLinks =fl 
index= O 
result= lJ 
def strongConnect(node): · 

#set the depth index ·for this node to the smallest unused index 
index!nodeJ = indexCounterf OJ 
lowLinks[node] = indexCounterf O] 
indexCounterroJ += 1 
sta.ck.append(node) 

# Consider successors of ·node· 
try: 

successors = G[node] 
except: 

successors = II 
for successor in successors: 

if successor not in lowLinks: 
# Successor has not yet been visited; recurse on it 
strongConnect(successor) 
lowLinks[node) = min(IowLinks[node],lowLinksfsuccessor]) 

elif successor in stack: 
# the successor is in the stack and hence in the current strongly connected component (SCC) 
lowLinksfnodel = min(lowLinks[nodeJ,index(successor)) 

#If ' node' is a root node, pop the stack and generate an sec 
if lowLinks[nodeJ == index[nodej: 

connectedComponent = II 

while True: 
successor = stack. pop() 
connectedComponent.append(successor) 
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if successor == node: break 
component = tuple(connectedComponent) 
I# storing the result 
rcsult.append(componcnt) 

for node in G: 
if node not in lowLmks: 

slrongConncct(node) 

return result 

Problem-19 
matrix. 

Count the number of connected components of Graph G which is represented in the adjacent 

Solution: This problem cun be solved with one extra counter in DFS. 

def dfs(G, current Vert, visited): 
visitcdlcurrcnt Vcrtl True # mark lhc visited node 
print "lravcrsul: " + currcnLVert.gcLVcrtcxlD() 
for nbr in currentVerl.gclConncclions(): # take a neighbouring node 

if nbr nol in visited: #condition to check whether the neighbour node is already vis ited 
dfs(O, nbr, visited) #recursively traverse the neighbouring node 

def countConnecledComponentsWilhDFS(G): 
visited .. {) II Diet ionary to mark the visited nodes 
count = 0 
for currentVcrt in G: # G contains vertex objects 

if current Vert not in visited: I# Start traversing from the root node only if its not visited 
count+= 1 
dfs(G, currentVert, visited) # For a connected graph this is caJled only once 

return count 
Time Complexity: Same as that of DPS and it depends on implementation. With adjacency matrix the complexity 
is O(IHI -f IVD and with adjacency matrix the complexity is O(IVl2). 

Problem-20 Can we solve the Problem- 19, using BPS? 

Solution: Yes. This problem can be solved with one extra counter in BFS. 

def bfs(G,s): 
start• G.geLVertcx(s) 
start.seLDistance(O) 
start.setPrevious(Nonc) 
vertQueuc = Queue() 
vcrtQucue.enQueue(starl) 

while (verLQucue.si~ > 0): 
currentVerl vertQucuc.dcQucue() 
print currentVert.gctVcrtexJD() 
for nbr in currcntVert.gctConnections(): 

if (nbr.getColorQ == 'white'): 
n br. setColor(' gray') 
nbr.sctDistance(currentVerLgetDistanceQ + 1) 
nbr.sctPrcvious(currentVert) 
vertQueuc.cnQueue(nbr) 

currcntVert.setColor('black') 

def countConncctedComponcntsWilhBFS(G): 
edges • II 
count 0 
for v in G: 

if (v.getColorO = 'white'): 
count+= 1 
bfs(G, v.gctVertexID(}} 

print counl 

Time Complexity: !:>umc us that of IJFS a nd it depends on implementation. With adjacency matrix the complex ity 
is O(IHI + IVD 1111t1 with mljm:ency 111atrix the.; complexity is ocivn. 
Problcm-21 Lei 11s assume that G(V,E) is an undiJ·cctecl graph. Give on a lgorithm for finding o spanning lree 

which tokes 0(1/:'I) lime eomplcxily (nol necessarily a minimum spanning tree). 
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Solution: The test for a cycle can be done in constant time, by marking vertices that have been added to t he set 
S. An edge will introduce a cycle, if both its vertices have already been ma rked. 

Algorithm: 
S " O #Assume Sis a set 
for each edge c in E: 

if(adding e to S doesn't form a cycle): 
add e to S 
marke 

Problem-22 Is there a ny other way of solving O? 

Solution: Yes. We can run BFS a nd find the BFS tree for the graph (leve l order tree of the graph). Then start at 
the root clement a nd keep moving to Lhe next leve ls a nd at the same time we huve lo cons ider the nodes in the 
next level on ly once. Th1:1t mea ns, if we have a node with multiple inr>ul edges then we should consider only one 
of them; otherwise they will form a cycle. 

Problem-23 Oetee ling a cycle in an undirected graph 

Solution: An undirected graph is acyclic if and only if a DFS yields no back edges, edges (u, 11) where v has 
already been discovered and is an ancestor of u. 

• Execute DFS on the graph. 
• If there is a back edge - the graph has a cycle. 

If the graph docs not contain a cycle, then I HI < WI a nd f)FS cost O(jVI). If the graph conta ins a cycle, then a 
back edge is discovered a fter 21VI steps at most. 

Problem-24 Detecting a cycle in DAG 

Solution: 

Cycle detection on a graph is different than on a tree. This is because in a graph, a node can have multiple 
parents. In a tree, the algorithm for detecting a cycle is to do a depth first search, marking nodes as they are 
encountered. If a previously marked node is seen again, then a cycle exists. This won't work on a graph. Let us 
consider the graph shown in the figure below. If we use a tree cycle detection algorithm, then it will report the 
wrong result. That means that this graph has a cycle in it. But the given graph docs not have a cycle in it. This 
is because node 3 will be seen twice in a DFS starting a l node 1. 

The cycle detection a lgorithm for trees can easily be modified to work for gruphs. The key is that in a DFS of un 
acyclic graph, u node whose descendants have all been visited can be seen ngu in without implying a cycle. Btll, 
if a node is seen for the second time before a ll its descendan ts have been visited , then there must be a cycle. 

Can you see why this is? Suppose there is a cycle containing node A. This means that A must be reachable from 
one of its descendants. So when the DFS is visiting that descendant, it will see A again, before it has finished 
visiting all of A's descendants. So there is a cycle. 

In order LO detect cycles. we can modify the depth first search. 

def DetectCyclc(G) : 
for i in rangc(O, G numVerticcs): 

Visitedlsl'"O 
Prcdcccssorfil - 0 

for i in range(O, G.numVerticcs): 
if(not Visitedf ii and HasCycle(G, i)): 

return 1 
return False 

def HasCycle(G, u): 
Visiled!ul I 
for i in rangc(O, G.numVert.ices): 

if(G.adjMaLrixlslliJ) : 
if(Prcdeccssorf ii I= u and Visitedlil): 

return 1 
e lse: 

Predecessor[ij = u 
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return HasCycle(G, i) 
return 0 

Time Complexity: O(V + E). 

Proble m -2 5 For Problem-24, is there a ny other way of solving the problem? 

Solution: We can topologica l sort lo check whether a given graph is direcled acyclic or not. As seen 111 

lopologica l sort section, it will return None if lhere is a cycle in given dirccled graph. 

def isDirectedAeyclicGraph(G): 
"""Relum True if Lhe graph G is a directed acyclic graph (DAG) . Otherwise return False. """ 
if topologicalSort(G) : #Refer Topological sort section for topologicalSortQ 

return True 
else: 

return Fa ist! 

Problem-26 Given a d irected acyclic graph, give a n a lgorithm for finding it s depth. 

Solution: If it i1; an und irected graph, we can use the s imple u nweighted s horlesl path a lgorithm (check 
Shortest Path Algorithms section). We jus t need to return the highest nu mber a mong a ll d is ta nces. For directed 
acyclic graph, we can solve by following the similar approach which we used fo r finding t he depth in trees. In 
trees, we have solved thi s problem using leve l orde r traversal (with one extra s pecia l sym bol to indicate the end 
of the level). 

def BFS'l'raversa l(G,s): 
global maxPa thLeng1h 
pathLcngLh = 0 
start = G.getVerlex(s) 
start.setDistance(O) 
start.setPrevious(None) 
vertQueue = Queue() 
vertQueue.enQueue(start) 
vertQueuc.enQueue(None) 
while (ve rLQueuc.sizc > 0): 

currentVert = vertQu eue.deQueue() 
if(currcnLVert == None): 

pathLength += 1 
if vertQueue.size > 0: 

vertQueue.enQueue(None) 
continue 

print currentVer l.getVertexIDO 
for nbr in currenlVerl.gelConnections(): 

if (nbr.getColor() =='white'): 
nbr.setColor('gray') 
nbr.setDistance(cunontVer t.getDistance() + I) 
nbr. setPreviou s (currentVert) 
vertQu eue.enQueu e(nbr) 

currenlVert.setColor('black') 
if palhLenglh > maxPathLength: 

maxPalhLength = pathLength 
maxPaLhLcngth = 0 
def LongeslPathlnDAG(G): 

for v in G: 
if (v.gelColor() == 'white'): 

BFSTraversaJ(G, v.getVertexlDO) 
return maxPalhLenglh 

Total running time is O(V + £) . 

Problem-27 How many topological sorts of the following dag a re there? 

Solution: If we obscnrc the above graph there are three stages with 2 vertices. In the early discussion of this 
chapter, we saw that topological sort picks the clemen ts with zero indegrec al any point of time. Al each of the 
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two verlices stages, we can first process either the top vertex or the bottom ve1-tex. As a result, al each of these 
stages we have two possibilities. So the total number of possibilities is the mullipljcation of possibilities at each 
stage and that is, 2 x 2 x 2 = 8. 

Problem-28 Unique topological ordering: Design a n algorithm to determine whether a directed graph has a 
unique topological ordering. 

Solution: A directed graph has a unique topological ordering if and only if there is a directed edge between each 
pair of consecutive vertices in Lhe topological order. This can a lso be defined as: a directed graph has a unique 
topological ordering if and only if it has a Hamiltonian path. If the digraph has multiple topological orderings, 
then a second topological order can be obtained by swapping a pair of consecutive vertices. 

Problem-29 Let us consider the prerequisites for courses at /IT Bombay. Suppose that all prerequisites are 
mandatory, every course is offered every semester, and there is no limit to the number of courses we can 
lake in one semester. We would like to know the minimum number of semesters required to complete the 
major. Describe the data sLrucLurc we wou ld use to represent this problem, and outline a linear time 
a lgorithm for solving il. 

Solution: Use a directed acyclic graph (DAG). The vcrlices represent courses and the edges represent the 
prerequisite relation between courses at /IT Bombay. It is a DAG, because the prerequisite relation has no cycles. 
The number of semesters required to complete the major is one more than the longest path in the dag. This can 
be calculated on Lhc DFS tree recursively in linear time. The longest path out of a vertex x is 0 if x has 
outdegree 0, otherwise it is 1 +max {lon9est path out of y I (x,y) is an ed9e of G}. 

Problem-30 Al a university let's say /IT Bombay), there is a list of courses a long with their prerequisites. That 
means, two lists are given: 
A - Courses list 
B - Prerequisites: B contains couples (x,y) where x,y E A indicating that course x can't be taken before 
course y. 
Let us consider a student who wants to take on ly one cou rse in a semester. Design a schedule for this 

student. 

Example: A= {C-Lang, Data Structures, OS, CO, Algorithms, Design Patterns, Programming}. B = { (C -Lang, 
CO), (OS, CO), (Data Structures, Algorithms), (Design Patterns, Programming) }. One possible schedule could 
be: 

Semester I: Data Structures 
Semester 2: Algorithms 
Semester 3: C-Lang 
Semester 4: OS 
Semester 5: CO 
Semester 6: Design Patterns 
Semester 7: Programming 

Solution: The solution to this problem is exactly the same as that of topological sort. Assume tJ1at the cou rses 
names arc integers in the range [1 .. uj, n is known (11 is not constan t). The re lations between the courses will be 
represented by a directed graph G = (V, H), where V arc the set of cou rses a nd if cou rse i is prerequisite of 
coursej, H will contain the edge (i.j). Let us assume that Lhc graph will be represented as an Adjacency list. 

First, let's observe another algorithm to topologically sort a DAG in O(IVI + [£1). 

• Find in-degree of all the vertices - O(IV I + 1£1) 
• Repeat: 

Find a vertex v with in-degree=O - O(IVI ) 
Output v a nd remove il from G, 1:.1 long with its edges - O(IV I) 
Reduce the in-degree of each node u such as (v, u) was an edge in G and keep a list of vertices with in
degrcc=O - O(lie91·ee(v)) 
Repeat the process until all t he vertices a rc removed 

The time complexity of this a lgorith m is a lso the same as that of the topological sort and it is O(IVI + IEI). 

Problem-31 In Problcm-30, a studen t wants Lo take a ll the courses in A, in the min imal number of 
st:mt:slt:rs. Thal means the student is ready lo tu kc uny number of courses in a semester. Design a schedule 
for this scenado. One possible scheclu le is: 
Semester 1: C-Lang, OS, Des ign Potlerns 
Semester 2: Data Structures, CO, Prngramming 
Semester 3: Algorithms 

Solution: A variation of the above topological sort a lgorithm with a s light change: In each semester, instead of 
taking one subject, lake all the subjects with zero inclcgree. That means, execute the algorithm on all the nodes 
with degree O (instead of dealing with one source in each stage, a ll the sources will be dealt and printed). 
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Time Complexity: O(IVI + IHI). 

Problem-32 LCA of a DAG: Given a DAG a nd lwo vertices v and w, find the lowest common ancestor (LC/\) of 
v and w. The LCA of v a nd w is a n a ncestor of v a nd w that has no descendants Lhat a rc a lso a ncestors of v 
a nd w. 

Hint: Define lhc height of a vencx v in u DAG to be the length of lhe longcsL path from root to v . Among Lhc 
vertices that a 1·c a nccslors of both v and w, the one with Lhc greatest height is a n LCA of v a nd w. 

Problem-33 Shortest ancestral path: Given a DAG and two vertices v and w , find the shortest ancestral path 
between v and w. An ancestral path between v and w is a common ancestor x along with a shortest pa th 
from v lo x and a s hortest path from w to x. The shortest ancestral path is the ancestral path whose total 
length is minimir..cd . 

Hint: Run BFS two times. First run from v a nd second time from w. Find a DAG where the s hortest a ncestra l 
path goes to a common a ncestor x lhat is not on LCA. 

Problem-34 Let us ass ume that we have two gra phs G1 and C2 • How do we check whclher they a re 
isomorphic o r not? 

Solution: There a rc ma ny ways of representing the same graph. As an example, consider the following s imple 
graph. It can be seen that all the representations below have the same number of vertices and the sa me number 
of edges. n 
Definition: Graphs G1 = {V1, Ed and G2 = {V2 , E2 } a re isomorphic if 

I) The re is a one- to-one correspondence from V1 to V2 and 

LJ 
2) There is a one-to-one correspondence from E1 to E2 t hat map each edge of G1 to G2 • 

Now, for the given graphs how do we check whether they arc isomorphic or not? 

In genera l, it is not a simple tusk to prove I hat two graphs arc isomorphic. For that reason we must consider 
some properties of isomorph ic graphs. Tha l means those properties must be satis fied if the gruphs arc 
isomorphic. If the g iven graph docs nol sa tis fy these prope rties then we say they arc not isomorphic graphs. 

Pn1pe1'ly: 'l'wo graphs a rc isomorphic if and on ly if for some ordering of their vertices the ir adjacency matrices 
a re equal. 

Based on the above property we decide whe ther the given graphs are isomorphic or not. I order to check the 
properly, we need to do some matrix transformation operations. 

Problem-35 How ma ny s imple undirected non-isomorphic graphs are there with n vertices? 

Solution: We will try to answer this question in two steps. First, we count a ll labeled graphs. Assume a ll the 
representations below arc la be led wilh 11. 2. 3} as vertices. The set of a ll s uch graphs for 11 = 3 are: 

• 

• • / . • \ • 

• • 

Thcrc a rc only two choices fo r each edge: it eithe r exists or it docs not. Therefore, s ince the maximum number of 

edges is G) (and s ince the maximum number of edges in a n undirected graph with n vertices is n(•~- lJ = 11<, = (;)), 
Lhe total number of undirec ted la beled graphs is 2e). 

Problem-36 Hamiltonian path in DAGs: Given a DAG, design a linear time algorithm to determine whethe r 
there is a pa th that visits each vcrlex exactly once. 

Solution: The llamiltonian pa th problem is an NP-Complete problem (for more deta ils ref Complexity Classes 
cha pter). To solve this problem, we will try to give the approxjmation algm·ithm (wh ich solves the problem, bul it 
may not a lways produce lhc oplimu l solution) . 

Let us consider t hc topologica l sort a lgorithm for solving this problem. Topological sort hns an interesti ng 
proper ty: thuL if u ll puirs of conscculive vertices in the sorted order arc connected by edges, Lhcn these edges 
form a direc ted llamiltonian path in the DAG. If a llamiltonian path exists, the topologicu l sort order is uniqu e. 
Also, if a topologica l sort docs not form a llamiltonirm path, the DAG will have two or more topologica l orderings. 
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Approximation Algorithm: Compute a topological sort and check if there is an edge between each consecutive pair 
of vertices in the topological order. 

In an unweighted graph, find a path from s tot that visits each vertex exactly once. The basic solution based on 
backtracking is, we start at sand Uy a ll of its neighbors recursively, making sure we never visit the same vertex 
twice. The a lgorithm based on this implementation can be given as: 

def HamillonianPath( G, u ): 
if( u == t) 

else: 
# Check that we have seen all vertices. 

for v in range(O,G.numVertices) 
if( !seenTablervJ and G.adjMatrix[uJlvJ): 

seenTablef vi = True 
HamiltonianPath( v ) 
scenTableLvJ = False 

Note that if we have a partial path from s to u using vertices s = v 1 • vl ,. ... vk = u, then we don't care about the order 
in which we visited these vertices so as to figure out which vertex to visit next. All that we need to know is t he 
set of vertices we have seen (the seenTable[) array) and which vertex we are at right now (u). There are 2" possible 
sets of vertices and n choices for u. In other words, there arc 2" possible secn'f'able[] a nays and n different 
parameters to HamiltonianPath(). What HamiltonianPath() docs during any particular recursive call is 
completely determined by the seenTable[] array and the parameter u. 

Problem-37 For a given graph G with 11 vertices how many trees we can construct? 

Solution: There is a simple formula for this problem and it is named after Ar thur Caylcy. For a given graph with 
n labeled vertices the formula for finding number of trees on is 11 11

-
2 • Below, the number of trees with differenL 11 

values is shown. 

n value Formula value: nn-2 Number of Trees 

2 I 1 2 

3 3 /\ !\ !\ 
2 3 l 2 3 l 

Problem-38 For a g iven graph G with n vertices how many spanning trees can we construct? 

Solution: The solution Lo this problc;m is the sumc as that of Problcm-37. IL is just another wuy of asking the 
same question. Because lhc number of edges in both regular tree and spann ing tree arc the same. 

Problem-39 The Hamiltonian cycle problem: Is it possible to traverse each of the vertices of a graph exactly 
once, starting and ending at the same vertex? 

Solution: Since the Hamiltonian path problem is an NP-Complete problem, the Hamiltonian cycle problem is an 
NP-Complete problem. A Hamiltonian cycle is a cycle that traverses every vertex of a graph exactly once. There 
arc no known conditions in which are both necessary and sufficient, but there are a few sufficient conditions. 

• l'or a graph to have a llrm1 iltm1ia11 cycle the degree of each vertex must be two or more. 
• The Petersen graph docs not have a llamilL011ian cycle und the graph is given below. 

• In general, the more edges a graph has, the more likely it is to have a lfamill<mia11 cycle. 
• Let G be a simple graph with n 2: 3 vertices. If every vertex has a degree of at ll:asl ;, then G has a 

l/amiltonian cycle. 
• The best known algorithm for finding a Hamiltonian cycle has an exponentia l worst-case complexity. 
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Note: For the approximation algorithm of Hamiltonian path, r·efer lo the Dynamic Programming chapter. 

Problem-40 What is the difference between Dijkstra's and Prim's algorithm'? 

Solution: Dijkstra's ulgorithm is almost identica l to that of P1·i1111s. The a lgorithm begins ul a s pecifi c vertex and 
extends outwa rd within the graph until all ve rtices have been reached. The only dis tinc tion is lhal. Prim's 
algorithm stores a minimum cost edge whereas Dijkstra's a lgorithm s tores the tota l cos t from a source vertex to 
the current vertex. More simply, Dijkstra's algorithm stores a summation of minimum cost edges whereas Prim's 
algorithm stores at most one minjmum cost edge. 

Problem-41 Reversing Graph: : Give an a lgorithm lhat returns the reverse of the directed graph (each edge 
from v tow is replaced by an edge from w to v). 

Solution: In graph theory, the reverse (aJso called transpose) of a directed graph r. is a nother directed graph on 
the same set of vertices wilh a ll the edges reversed. Tha t mea ns, if G conta ins an edge (u. v) then the reverse of r. 
conta ins an edge (v, u) and vice ve rsa. 

Algorithm: 

def ReverseTheDirectedGraph(G): 
Create new graph with name ReversedGraph and 

let us assume that this will contain the reversed graph. 
#The reversed graph also will contain same number of vertices and edges. 
for each vertex of given graph G: 

for each verlcx w adjacent to v: 
Add the w to v edge in RcvcrscdGraph; 
# Thal means we jusl need to reverse lbe bits in adjacency matrix. 

return ReversedGraph 

Problem-42 Travelling Sales Person Problem: Find the shortest pa lh in a graph that visits each ver tex at 
least once, starting and ending at the same vertex'? 

Solution: The Traveling Salesman Problem (TSP) is rela ted to finding a Ha milton ian cycle. Given a weighted 
graph G, we wa nt to find the s hor-test cycle (may be non -simple) Lhut visits a ll the vertices. 

Approximation algorithm: This a lgorithm docs not solve the problem but g ives a solution which is within a 
factor of 2 of optimal (in the worst-case). 

1) Find a Minimal Spanrung Tree (MST). 
2) Do a DFS of the MST. 

For details, refer to the chapte r on Complexity Classes. 

Problem-43 Discuss Bipartite matchings? 

Solution: In Bipartite graphs, we divide lhe graphs in to two disjoin t sets, a nd each edge connects a vertex from 
one set to a vertex in another subset (as shown in figure). 

Definition: A simple graph G = (V, £) is called a bipartite graph if its vertices can be divided into two disjoint 
sets V = V1 u V2, such that every edge has the form e = (a. b) where a E V1 a nd b E V2• One importa nt condition 
is that no vertices both in V1 or both in V2 a rc connected . 

Properties of Bipartite Graphs 

A graph is called bi part it.c if and only if the g iven graph docs not have an odd length cycle. 
• A complete bipartite graph K111 _,. is a bipanite graph that has each vertex from one set adjacent to each 

vertex from another sel. 
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• A subset of edges Mc H 1s a matching if no two edges have a common vertex. As an example, matching 
sets of edges are represented with dotted lines. A matching M is called maximum if it has the largest 
number of possible edges. In the graphs, the dotted edges represent the alternative matching for the 
given graph. 

3 
3 

2 4 2 4 

A matching M is per[ ect if it matches all vertices. We must have V1 = V2 in order to have perfect 
matching. 
An alternating path is a path whose edges alternate between matched and unmatched edges. If we !ind 
an a lternating path, then we can improve the matching. This is because an a lternating path consists of 
matched and unmatched edges. The number of unmatched edges exceeds the number of matched edges 
by one. Therefore, an alternating path always increases the matching by one. 

The next question is, how do we find a perfect matching? Based on the above theory and definition, we can 
find the perfect matching with the following approximation a lgorithm. 

Matching Algorithm (Hungarian algorithm) 

1) Start at unmatched vertex. 
2) Find an alternating path. 
3) If it exists, change matching edges to no matching edges and conversely. If it does not exist, choose 

another unmatched vertex. 
4) If the number of edges equals V /2, stop. Otherwise proceed to step 1 and repeat, as long as all vertices 

have been examined without finding any a lternating paths. 

Time Complexity of the Matching Algorithm: The n umber of iterations is in O(V). The complexity of finding 
a n alternating path using BFS is O(H) . Therefore, the total time complexity is O(V x E). 

Problem-44 Ma rriage and Per::.onnel Problem? 

Marriage Problem: Then; arc X men a nd Y women who desire to get married. Participants indica te who a mong 
the opposit e sex could be a potential spouse for them. Every womon cun be married to at mosl one man, a nd 
every man to al most one woman. How can we marry eve1ybody to someone they like'? 

Personnel Problem: You are the boss of a company. The company has M workers and N jobs. Each worker is 
qualified to do some jobs, but not others. How will you assign jobs to each worker? 

Solution: These two cases arc just another way of asking about bipartite graphs, and the solution is the same 
as that of Problem-43. 

Problem-45 I low many edges will be there in complete bipartite graph Km.11? 

Solution: m x 11. This is because each vertex in the first scl can connect all vertices in the second set. 

Problem-46 A graph is called a regular graph if it has no loops and multiple edges where each vertex has the 
same number of neighbors; i.e., every vertex has the same degree. Now, if K111,11 is a regular graph, what is 
the relation between m a nd n? 

Solution: Since each vertex should have the same degree, the relation should be m = n. 

Problem-47 Whal i::; the maximum number of edges in the maximum matching of a bipartite graph with 11 

vertices? 

Solution: From the defin ition of matching, we should not have ed~cs with common vertices. So in a bipartite 
gra ph , each vertex con connect to only one vertex. Since we divide the tolul vertices into two sets, we can get the 
maximum number of edges if we divide them in half. Finally the imswer is ~· 
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Problem-48 Discuss Planar Graphs . Planar graph: Is it possible to draw the edges of a graph in such a way 
that the edges do not cross? 

Solution: A graph G is said to be planar if it can be drawn in the plane in such a way that no two edges meet 
each other except at u vertex to which they are incident. Any such drnwing is called a plane drawing of G. As an 
example consider the below graph: 

This graph we can easily convert to a p lanar graph as be low (wit houl nny crossed edges). 

I low do we decide whether a given graph is planar or not? 

The solution LO this problem is not simple, but researchers have found some interesting properties that we can 
use to decide whether the given graph is a planar graph or not. 

Properties of Planar Graphs 

• 

• 

• 

• 

• 

If a graph G is a connected planar simple graph with V vertices, where V = 3 and E edges, then E 
3V - 6. 
K., is non-plunar. IK-. stands for complete graph with 5 vertices! . 

If a graph G is a connected planar simple graph with V vertices nncl /:"edges, and no triangles, then £ = 
2V - 4. 

K3.3 is non-planar. IK3,3 stands for bipartite graph with 3 vertices on one side and the other 3 vertices on 
the other side. K3•3 contains 6 vertices]. 

If a graph G is a connected planar s imple graph, then G contains at least one vertex of 5 degrees or less . 

/\ graph is plunur if und only if it does not contain a subgraph I hot hus /(-, uncl K3.3 as a contraction. 

If o gruph G conta ins a non planar graph as a subgraph, then G is non-pin nor. 

If a graph G is a p lanar graph, then every subgraph of G is plunur. 

For any connected planar graph G = (V, H), the following formula should hold: V + F - £ = 2, where F 
slands for the number of faces. 

For any planar graph G = (V,£) with K components, the following formula holds: V + F - E = 1 + K . 

In order to test the planarity of a given graph, we use these properties and decide whether it is a planar graph or 
not. Note that all the above properties are only the necessary conditions but not suflicicnt. 

Problem-49 I low many faces does K2.1 have? 

Solution: Prom the above discussion, we know that V + F - /;" = 2, and from an curlier problem we know that/:' -
111 x n = 2 x 3 = 6 and V = 111 + n = 5. :. 5 + F - 6 = 2 = F = 3. 

Problem-SO Discuss Graph Coloring 

Solution: A k -coloring of a graph G is an assignment of one color to each vertex of G such that no more than k 
colors arc used and no two adjacent vertices receive the same color. A graph is called k -colorable if and only if 
it has a k -coloring. 

Applications of Graph Coloring: The graph colol"ing problem hns mnny 11pplic11tions such os schcdulin~. 
register allocation in compi lers, frequency assignment in mobi le radios, etc. 

Clique: A clique in a graph C is the maximum complete subgraph and is denoted by w(G). 
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Chromatic number: The chromalic number of a graph G is the smallest number k such that G is k - colorable, 
and it is denoted by X (G). 

The lower bound for X (G) is w(G) , and thal mea ns w(G) $ X (G). 

Properties of Chromatic number: Let G be a graph with n vertices a nd G' is its complement. The n, 
• X (G) $ /j. (G) + 1, where t\ (G) is the maximum degree of G. 
• X (G) <v(G') ~ 11 

• X (G) + w(G') $ 11 + I 
• X (G) + (G') $ rt + 1 

K-colorability problem: Given a graph G = (V,H) and a positive integer k $ V. Check whether G is 
k - colorable? 

This problem is NP-complete and will be discussed in detail in the cha pter on Complexity Classes. 

Graph coloring algorithm: As discussed earlier, this proble m is NP-Complete. So we do not ha ve a polynomial 
Lime a lgorithm to determine X(G). Let us conside r the following approximation (no t:ffic ient) a lgori thm. 

• Consider a gra ph G with two non-adjacent vertices a a nd b. The connection G1 is obtained by joining the 
two non-adjacent vertices a and b with a n edge. The contraction G2 is obtained by shrinking {a,b} into a 
single vertex c(a, b) and by joining it to each neighbor in G of vertex a and of vertex b (and eliminating 
multiple edges). 

• A coloring of G in whic h a a nd b ha ve the same color y ields a coloring of G1 • A coloring of G in which a 
and b ha ve different colors y ields a colo ring of C2 • 

• Re peat the operations of connection a nd cont raction in each graph gene rated, until the resulting graphs 
arc a ll c liques. If the s m a llest res ulting clique is a K - clique, the n (C) = I<. 

Important notes on Graph Coloring 

• Any simple pla nar graph G ca n be colored with 6 colors . 
• Every simple planar graph can be colored with less than or equal to 5 colors. 

Problem-51 What is the four coloring problem? 

Solution: A graph can be constructed from any map. The regions of the map arc represented by the vertices of 
the g ra ph, a nd two vertices a re joined by a n edge if the regions corresponding lo the ve rtices are adjacent. The 
resulting graph is pla na r. That mea ns it ca n be drawn in the pla ne without a ny edges c rossing. 

The Four Color· Problem is whether the vertices of u pla nar graph can be colored with al most four colors so that 
no two adjacent vertices use the same color. 

History: The Four Color Problem was first given by francis Guthr-ie. He was a student at University Colle9e London 
where he studied under Augusts De Mor,qan. After graduating from London he studied law, but some years later 
his brother Frederick Guthrie had become a s tudent of De Morgan. One day Francis asked his brother lo discuss 
this problem with De Morgan. 

Problem-52 When an adjacency- matrix reprcsentnlion is u sed, most graph a lgorithms require Lime O(Vl). 
Show that determining whether a directed graph, re presented in an adjacency- matrix lhal conta ins a s ink 
can be done in lime O(V). A sink is a vertex with in -degree WI - I a nd out-degree 0 (On ly one can exist in a 
graph). 

Solution: A vertex i is a sink if and only if Mfi.jl = 0 for a ll j and MU. i] = 1. fo r a ll j =F i. For any pair of ve rtices 
i and j: 

Algorithm: 

M[i, jJ 
Mli,j l 

1 -7 ve rtex i ca n't be a sink 
= 0 7vcrtex j ca n't be a sink 

• Start at i = l,j = 1 
• If Mli.il = 0 7 i wins, j + + 
• If M(i,j] = 1 7 j wins, i + + 
• Proceed with this process until j = nor i = 11 +1 
• If i == n + 1, the graph docs not contain a s ink 
• Otherwise, check row i - iL s hould be a ll zeros; a nd check column i - it should be all but M(i, i) ones; -

if so, i is a s ink. 

Time Complex ity: O(V). because a l most 2JVI cells in the matrix a rc exam ined. 

Problem-53 What is the worst - case memory usage of DFS'i> 

Solution: ll occurs when the 0( IV I ), which happens if the graph is actu a lly u list. So lhe a lgorithm is memory 
efficient on graphs with small diamete r. 
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----------0 
Problcm-53 Does DFS find thc s hortest path from s lnrt node to some node w? 

Solution: No. In DFS it is not compu lsory Lo :,;clcct the smn llcsl wc ight edge. 

Problcm-54 Give an nlgorithm that lakes as input a dircclcd gra ph G. Thc a lgorithm should c heck if there is 
a vertex v so Lhal there is n path from v to at mo:>t I 0 vcrtices in the graph. Assume that the graph is 
represented via an array of adjacency lists (an array of linked lists). 

Solution: For every v, the algorithm st.arts to do a BFS search. We iniliate a counter to 0. Each time a new 
vertex is encountered (a new vertex is labeled, so it has finite distance from v, namely, is reachable from v), we 
augment this counter by I . If the counter gets Lo l l then there are more than I 0 vertices reachable from v and 
we go to the next vertcx. Otherwise, the BFS checks o consuint number of vertices for every v. The total running 
time is O(n). 
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SORTING 10 

10.l What is Sorting? 
Sorting is an algorithm that arranges Lhe elements of a list in a certain order !either ascending or clescendingj. 

The outpuL is a permutation or reordering of the input. 

10.2 Why is Sorting Necessary? 
Sorting is one of the important categories of algorithms in computer science and a lot of research has gone into 
this category. Sorting can significantly reduce the complexily of n problem, and is often used for database 
algorithms and searches. 

10.3 Classification of Sorting Algorithms 
Sorting algorithms arc generally calcgorized based on Lhe following parameters. 

By Number of Comparisons 
Jn lbis mc.;thocl, sorlin14 nlgori lhms urc classified bnsc.;d on the number of compurhmns. For compa rison based 
sorting a lgorithms, bes t cusc.; behavior is 0(11 log11) and worst case bdwvior is 0(11z). Comparison-based sorting 
a lgorithms cva luute the c lements of the list by key compnri:mn opernlion and need al. least O(nlogn) 
comparisons for most inputs. 

Later in this chapter we will discuss a few non - compm·isnn (linear) sorting ulgorilhms like Counting sort, Bucket 
sort, Radix sort, etc. Linear Sorting aJgoriLhms impose few restrictions on the inputs to improve the complexity. 

By Number of Swaps 
In this method, sorting algorithms arc categorized by the number of swa11s (ulso ca lled inversions). 

By Memory Usage 
Some sorting algorithms are "in place" and Lhey need O(L) or 0(/0911) memory to create auxiliary locations for 
sorting the data temporarily. 

By Recursion 
Sorting ulgorithms urc c.;ither recursive !quick son! or non- recursive.; lsclcclion sort, :rnd insertion sort!, and 
there arc some a lgorithms which use both (merge sort). 
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By Stability 
Sorti ng algorithm is stable if for a ll indices i and j such that the key A[i] equals key AUJ, if record R[i] precedes 
record R[i] in the original file, record I?lil precedes record I?lj l in the sorted list. Few so1i.ing a lgorithms maintain 
the relative order of clements with equa l keys (equivalent clements retain their relative positions even after 
sorting). 

By Adaptability 
With a few sorling a lgorithms, the complexity changes based on pre-sortedness [quick sort]: pre-sortedness of 
the input affects the running time. Algorithms that take this into account are known to be adaptive. 

10.4 Other Classifications 
Anothe r method of c lassifying sorting a lgorithms is: 

• Interna l Sort 
• External Sort 

Internal Sort 
Sort algorithms that use ma in mcmo1-y exclusively during the sort arc called internal sorting algorithms . This 
kind of algorithm assumes high-speed ra ndom acccs::; to a ll memory. 

External Sort 

Sorting a lgorithms that use external memory, such as tape or disk, during the sort come under this category. 

10.5 Bubble Sort 
Bubble sort is the s implest sorting a lgorithm . It works by iterating the input a rray from the first clement to Lhc 
last, comparing each pair of clements and swapping them if needed. 13ubblc sort continues its iterations until no 
more swaps a rc needed. The a lgorithm gets its name from the way smaller c lements "bubble" to the top of the 
list. Generally, insertion sort hos better performance than bubble sorl. Some resea rc hers suggest that we shou ld 
not leach bu bble sorl because of its s im plicily and high lime complexity. 

The only significant advantage thal bubble sorl ha:; over other implementations is that it can detect whether the 
input list is already sor ted o r nol. 

I mplementation 

def BubbleSort.( A ): 
for i in range( lcn( A) ): 

fork in range( lcn( A) - L, i, - I ): 
if ( A[kl < A[k - I J ): 

def swap( A, x, y ): 
temp= A[xl 
A[xj = A[yj 
A[y[ = Lemp 

swap( A, k, k - l ) 

A = [534,246,933, 127,277,32L,454.565,220j 
BubblcSort(A) 
print( A) 

Algorithm takes O(n2) (even in best case). We can improve it by using one extra nag. No more swaps indicate the 
completion of sorling. If lhe list is a lready sorted, we can use this flag to skip the remaining passes. 

def BubblcSort( A ): 
swapped= I 
for i in range( lcn( A ) ): 

if ( swapped .. a 0 ): 
return 

fork in range( len( A) - L, i, - 1 ): 
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if ( A[k) < A(k - 1 J ): 

def swap( A, x, y ): 
temp = A{x] 
A[xj = AlyJ 
A[yl = temp 

swap( A, k, k - 1) 
swapped= 1 

A= 1127, 220, 246, 277, 321, 454, 534, 565, 933] 
BubbleSort(A) 
.Pri!1t(A) 

This modified version improves the best case of bubble sort to O(n). 

Performance 

10.6 Selection Sort 

Sorting 

Selection sort is an in-place sorting algorithm. Selection sort works well for small files. It is used for sorting the 
files with very large values and small keys. This is because selcclion is made based on keys and swaps arc made 
only when required. 

Advantages 
• Easy to implement 
• In-place sort (requires no additional storage space) 

Disadvantages 
• Doesn't scale well: O(n2) 

Algorithm 
l. Find the minimum value in the list 
2 . Swap it with the value in the current position 
3. Repeat this process for all the elements until the entire array is sorted 

This a lgorithm is called selection sort since il repeated ly selects the sma llest element. 

Implementation 
def SelectionSort( A ): 

for i in range( len( A ) ): 
least = i 
fork in range( i + 1 , len( A)): 

if A[kl < A[leastj: 
least = k 

swap( A, least, i ) 

def swap( A, x, y ): 
temp= A[x] 
A[xJ = A(y] 
A[y] =temp 

A= {54,26,93,17,77,31,44,55,20] 
SelectionSort(A) 
prinl(A) 

Performance 
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10. 7 Insertion Sort 
Insertion sort is a s imple and efficient comparison sort. In this a lgorithm , each iteration removes an element 
from the input data and inserts it into the corTect position in the list being sorted. The choice of the clement 
being removed from the input is random and this process is repeated until all inpu t elements have gone 
through . 

Advantages 
• Simple implementation 
• Efficient for small data 
• Adaptive: If the input list is presorted !may not be completely! then insertions sort takes O(n + cl), 

where d is the number of inversions 
• Practically more efficient than selection and bubble sorts, even though all of them have 0(112) worst 

case complex ity 
• Stable: Maintains relative order of input data if the keys are same 
• In-place: It requires on ly a constant amount 0(1) of additional memory space 
• On line: Insertion sort can sort the list as it receives it 

Algorithm 

Every repetition of insertion sort removes un clement from the input data, and inserts it into the correc t position 
in the already-sorted list until no input elements rcmuin. Sorting is typically clone in - place. The resulting array 
after k iterations has the property where the first k + I entries are sorted. 

Sorted partial resu lt Unsorted clements 

5 x >x x 

Sorted partial result U nsorl eel elem en ls 

becomes 5 x x >x 

Each clement greater than x is copied to the right as it is compared against x . 

Implementation 

def lnserlionsort( A ): 
for i in range( I , lcn( A ) ): 

temp = A[iJ 
k= i 
while k > 0 and temp< Alk - l ]: 

Alkl = Alk - l] 
k -= 1 

Alk] =temp 

A= 1 54,26,93~17,77,3 1 ,44,55,20] 

I nserlionsorl(A) 
print(A) 

Example 
Given an array: 6 8 l 4 5 3 7 2 a nd the gonl is to put them in ascending order. 

6 8 l 4 5 3 7 2 (Consider index 0) 
6 8 I 4 5 3 7 2 (Consider indices 0 - I ) 
1 6 8 4 5 3 7 2 (Consider incl ice~ 0 - 2: inscrLion plt1ccs l in front of 6 and 8) 
1 4 6 8 5 3 7 2 (Process some as above is rcpcutcd until urruy is sorted) 
14568 372 
1345678 2 
1 2 3 4 5 6 7 8 (The array is sorted!) 
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Analysis 

Wors t cas e analysis 

Worst case occurs when for every i the inner loop has lo move a ll clements Ill I] .... , Al i - ll (whic h happens 
when lllil = key is smaller than all of them}, that takes 0(i - I) t imc. 

T(n) = 0(1) + 0(2) + 0(2) + ...... + 0(n - 1) 
- 0(1 I 2 I 3 I ..•.. + 11- I )= A("C~-I)) :::: 0(112) 

Average case analysis 

For the a verage case, the inner loop will insert AliJ in the middle of A[1 [, ... . A[i - 1J. This takes 0(i/2) time. 
n 

T(n) = I 0(i/2) ::::: C->(11i) 
l= l 

Performance 

Comparisons to Other Sorting Algorithms 
Insertion sort is one of the elementary sorting algorithms with O(n1 ) worst-case time. Insertion sort is used 
when the data is nearly sorted (due lo its adaptiveness) or when the input si;r,c is small (due to its low overhead). 
For these reasons and due to ilS stability, insertion son is used as the recursive base case (when the problem 
size is small) for higher overhead divide-and-conquer sorting a lgorithms, such as merge sort or quick sort. 

Notes: 
l 2 

• Bubble sort takes~ comparisons and~ swaps (inversions) in both average case und in worst case. 
2 2 

l 

• Selection sort takes ~ comparisons and n swaps. 
2 2 

• Insertion sort lakes~ comparisons and~ swaps in average cusc and in the worst case they arc double. 
4 8 

• Insertion sort is a lmost linear for partially sorted input. 
• Selection sort is best s uits for elements with bigger values and s ma ll keys. 

10.8 Shell Sort 
Shell sort (also culled climi11ishin9 increment sort) was invented by /Jnnal<l Shell . This sorling a lgorithm is a 
genera lization of insertion sort. Insertion sort works efficiently on input thut is al ready al most sorted. Shell sort 
is a lso known as n-gup insert.ion sort. Instead of comparing only the adjnccnt pair, shell son makes several 
passes and uses various gaps between adjacent elements (ending with the gup of I or classical insertion sort). 

In insertion sort, comparisons arc made between the adjacent clements. AL most I inversion is eliminated for 
each comparison done with insertion sort. The variation used in shell sort is to avoid comparing adjacent 
elements until the last step of the algorithm. So, the last step of shell sort is effectively the insertion sort 
algorithm. It improves insertion sort by allowing the comparison and exchange of clements that arc far away. 
This is the first algorithm which got less Lhan quadratic complexity among comporison sort algor-ithms. 

Shcllsort is actually a simple extension for insertion sort. The primary difference is its capability of exchanging 
clements that arc far apart, making it considerably faster for clements to get to where they should be. For 
example, if the smallest clement happens to be at the encl of an array, with insertion sort it will require the full 
array of steps to put this element at the beginning of the array. llowcvcr, with shell sort, this element can jump 
more than one s tep a time and reach the proper destination in fewer exchanges. 

The basic idea in shcllsort is to exchange every hth clement in the array. Now this can be confusing so we'll talk 
more about this. h determines how far apart element exchange can happen, say for example take It as 13, the 
first c lement (indcx-0) is exchanged with the 141h c lement (indcx- 13) if ncccssury (of course). The second c lement 
with the 151

h c lement, and so on. Now if we take has I, it is cxnctly the some as u regular insertion sort. 

S hellsort works by starting with big e nough (but not larger thnn the array size) Ii so us to a llow eligible clement 
exchanges that a rc far apart. Once a sort is complete with a particular It , the array co n be said us Ii-sorted. The 
next step is lo reduce It by a certain sequence, a nd again pe rform another complete It-sort. Once It is 1 a nd II -
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sorted, the army is completely sorted. Notice that the last sequence for h is I so the last sort is a lways an 
insertion sort, except by this time the array is already well-formed and easier LO sort. 

Shell sort uses a sequence Ii I, 112, ...• ht called the increment sequence. Any increment sequence is fine as long as 
Ill = l,and some c hoices arc better than others. Shell sort makes multiple passes through the input list and 
sorts a number or equally sil'.cd sets using the insertion sort. Shell sort improves the efficiency of insertion sort 
by 11wckly shifting values lO their destination. 

Implementation 
def ShellSort(A): 

sublistcount - len(A)/ /2 
while sublistcount > 0: 

for startposition in rangc(sublistcount): 
Gap I nsertionSort(A,startposiLion,su blistcount) 

print("Artcr increments or si7,c",sublistcount, "The list is",A) 
sublislcount sublislcount / / 2 

def GaplnserlionSort(A,starl,gap): 
for i in rangc(start+gap,len(A),gap): 

currentvnlue = Alil 
posilion • i 

while position>=gap and Alposition-gapj>currentvaluc: 
Al pt)Si tion I• Al position-gap! 
position position-gap 

J\f positionj•currentvalue 

J\ = 1534,246,933, 127,277,321,454,565,2201 
ShcUSort(A) 
print( A) 

Nole that when Jr -- I, the algorithm makes a pass over the entire list, comparing adjacent clements, but doing 
very few cleme nt excha nRes. For II == 1, shell sort works just like inscrLion sort, except lhc number of 
inversions thut have to be eliminated is greatly reduced by lhc previous steps of the algorithm with h > J. 

Analysis 
Shell sort is efficient for medium size lists. For bigger lists, the a lgorithm is not the best choice. It is the fastest 
of all O(n2) sorting ulgorithms. 

The disadvantage or Shell sort is thal it is a complex algorithm and not nearly as efficient as the merge, heap, 
and quick sorts. Shell iwrt is significantly slower than the merge, heap, and quick sorts, but is a relatively 
s imple a lgorithm, which mukcs il a good choice for sorting lists of less than 5000 items unless speed is 
important. It is ulso 11 ROOd c hoice for repetitive sor·ting of smaller lists. 

The best cnse in Shell sort is when the ar-ray is already sorted in the right order. The number of comparisons is 
less. The running time or Shell sort depends on the choice of increment sequence. 

Performance 

10.9 Merge Sort 
Merge sort is an example of the divide and conquer strategy. 

Important Notes 
Ma,qin.'I is the process of combining two sorted files lo make one bigger sorted file. 
Selection is tlw 1wocess of dividing a file into two ports: k smnllesl clements and 11 - k lnq~csl e lements. 

• Select ion nncl merging nre opposite opcrulions 
o selection split s n list into two lists 
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o merging joins lwo files to make one file 
• Merge sort is Quick sort's complement 

• Merge sort accesses the data in a sequential manner 
• This algorithm is used for sorting a linked list 
• Merge sort is insensitive Lo the initial order of its input 
• In Quick sort most of the work is done before the recursive culls. Quick sort slarts with the laq~est 

subfile and finishes with the small ones and as a result it needs stuck. Moreover, this algorithm is not 
stable. Merge sorl divides the !isl into lwo parts; then each part is conquered individually. Merge sort 
starts with the small subfiles and finishes with the largest one. As a rcsull it doesn'l need slack. This 
algorithm is stable. 

Implementation 
def McrgeSort(/\): 

if lcn(A)> 1: 
mid = len(A)//2 
leflhalf = Al:midl 
righthalf = A[mid:J 
MergeSort(lcfthalt) 
M crgeSort( righ lhal I) 
i j k-•O 
while i<len(lcfthalf) and j<len(righlhalf): 

if lcfthalflil<righlhalflil: 
Alkl=lcfthalqil 
i=i+J 

else: 
A(k)=righthalfli) 
j=j+l 

kr-k+ 1 

while i<len(leflhalf): 
A[kJ=lcfthalqij 
i=i+ I 
k=k+l 

while j<len(righthalf): 
Alkl=righthatqj) 
j=j+l 
k=k+l 

A = (534,246,933, 127,277,321,454,565,2201 
MergeSorl(A) 
prinl(A} 

Analysis 
In Merge sort the input list is divided into two parts and these arc solved recursively. After solving the sub 
problems, they arc merged by scanning lhe resultant sub problems. Let us assume T(11) is the complexity of 
Merge sort with 11 clements. The recurrence for the Merge Sort can be defined as: 

Recurrence for Mcrgesort is 7'(n) = 2Tei) + 0(n). 

Using Master theorem, we get, T(n) = 0( nlogn). 

Note: For more details, refer to Divide and Conquer chapter. 

Performance 
Worst case complexity : 0(nlo9rt) 

Best case complt::Xity : E-)(nlogn) 

Average case complexity : 0(nlogn) 
Worsl case space complexity: 0(n) auxiliary 
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10.10 Heap Sort 
Hcapsorl is a comparison-based sorting algorithm and is part of the selection sort family. Although somewhat 
slower in practice on most machines than a good implemcntalion of Quick sort, it has the advantage of a more 
favorable worst-case 0(nlo,qn) runtime. I lenpsort is an in-place a lgorithm but is not u stublc sort. 

Performance 

For other details on Heapsort refer to the Priority Queues ch:.iptcr. 

10.11 Quick Sort 
Quick sort is an example of a divide-and-conquer algorithmic technique. It is a lso called pa1·tition exchange sort. 
It uses recursive calls for soning the clements, and it is one of the famous algorithms among comparison -based 
sorting algorithms. 

Divide: The array A[low ... high] is partitioned into two non-empty sub arrays 11(/ow ... q] and 11[q + 1 ... high!, such 
Lhal each elem ent of Ar low ... high I is less than or cqua 1 lO each Clemen l of 11 I q + 1 ... high J. The index q is 
computed as part of this parlilioning procedure. 

Conquer·: The two sub arrays 11 [/ow ... qi and 11 lq + l ... lrig/r] un; soncd by recursive calls to Quick sort. 

Algorithm 
The recursive a lgorithm consists of four steps: 

l) If there are one or no clements in the array to be sorted, return. 
2) Pick an element in the a rray to serve as the "pivot" point. (Usually the left-most element in the array is 

used.) 
3) Spli t the array into two parts - one with clt:ments larger than the pivol and the other with clements 

smal ler than Lhe pivol. 
4) Recursively repeat the algorithm for bot.h ha lves of the original array. 

Implementat ion 

import random 
def QuickSort( A, low, high ): 

if low < high: 
pivot = Partition( A, low, high) 
QuickSort( A, low, pivot - I ) 
QuickSort( A, pivot + I, high) 

def Partition( A, low, high ) : 
pivot= low 
swap( A, pivot, high) 
for i in range(low, high ): 
if A[il <=Al high I: 

swap( A, i, low) 
low-i·= I 

swap( A, low, high) 
return low 

def swap( A, x, y ): 
temp= AfxJ 
AlxJ = AfyJ 
A[.yl = Lemp 

A= [534,246,933, 127,277,321,454,565,2201 
QuiekSort(A, 0, Jen( A ) - I) 
print(A) 
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Analysis 
Lel us assume that /(n) be the complexity of Quick sort and a lso a:;~rnmc that a ll elements a re distinct. 
Recurrence for T(n) de pends on two subproble m sizes whic h depend on partition clement. If pivot is ;LI• smallest 
element Lhen exactly (i - 1) items will be in left pa rt and (11 - i) in right pa rt. Let us ca ll it as i - split. Since 
each c lement has equal probability of selecting it as pivot the probabi li ty of selecting it11 clement is 2-. 

II 

Best Case: Each partition splits array in halves and gives 

T(n) = 2T(n/2) + 0(n) = E>(nlogn), [using Divide a11d Co11quer master theorem] 

Worst case: Each partition gives unbalanced splits and we get 

T(11) = T(11 - 1) + E>(n) = 0(n2)[ using Subtraction and Conquer nwster theorem I 

The wor·st-casc occurs when the list is a lready sorted and last clement chosen as pivot. 

Average case: In Lhe average case of Quick sort, we do not know where the :;plit happens. For this reason, we 
take all possible values of split locations, add all their complexities and divide with 11 to get the average case 
complexity. 

11 

T(n) = I~ (runtime with i - split) + n + 1 
l= I 

N 

= ~ ~ (T(i - 1) + T(1t - i)) + n + I nL 
i = l 

//since we arc dealing with best case we can assume T(n - i) and T(i - 1) arc equal 
II 

=: ~ T(i - 1) + n + 1 nL 
i= t 
11-1 

= ~I rco + n + 1 
i= O 

Multiply both s ides by 11. 
n- 1 

nT(n) = 2 I T(i) + 112 + 11 

1=0 
Same formula for n - 1. 

n-2 

(n - l)T(n - 1) = 2 I T(i) + (n - 1 )' + (n - 1) 
•= 0 

Subtract the 11 - 1 formula from n. 
n- 1 n-2 

nT(n)- (n-1)T(n - 1) = 2 I T(i) + 11 l + n - (2 I T(i) + (11 - 1)2 + (n - 1)) 
t = CJ I () 

nT(n) - (n - l)T(n -1) = 2T(n - 1) + 2n 
nT(n) = (11 + l)T(n - 1) + 211 

Divide with n(n + 1). 

Time Complexity, T(n) = 0(11/.ogn). 

10.11 Quick Sort 

T(n) 

11 + I 

T(n) 

11 + I 
'/'(11) 

T(11 - I) 2 
- --+--

II n I I 
7'(11 - 2) 2 2 
---1-- -1--

11 - l II II I J 

0(1) + 2 Ll1
s3 T 

0(1) + 0(2111g11) 
0(10911) 

0((11 I- I) /0.1J11) = 0(11/og11) 
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Performance 

Randomized Quick sort 
In average-case behavior of Quick sort, we assume that a ll permulations of the input numbe rs are equally likely. 
However, we cannot always expect it to hold. We can add randomization to an algorithm in order to reduce the 
probability of getting worst case in Quick sort. 

There arc two ways of adding randomii'.ation in Quick sort: either by ra ndomly placing the input data in the 
a rray or by randomly choosing un element in the input clatn for pivot. The second choice is easier to a n a lyze a nd 
implement. The c hange will only be done a t the Partition algorithm . 

In norma l Quick sort, pivo t cleme nt wus always the leftmost ele ment in the list to be sorted . Instead of always 
us ing Allow] as pivot , we will u se a randomly chosen c lement from the subarray A[low .. high I in the randomized 
versio n of Quick sort. It is done by exc ha nging cleme nt A[lowl with an element c hosen at random from 
A[low .. highj. This ensures tha t the pi voe cle ment is equa lly like ly to be any of the high - low + 1 elements in the 
subarray. 

Since the pivot e lement is randomly chosen, we ca n expect the split of the input array to be reasonably well 
balanced on average. This can help in preventing the worst-case behavior of quick sort which occurs in 
unbalanced partitioning. 

Even though the randomized version improves the wo rst case complexity, its worst case complexity is still 
0(112). One way to improve Jla11do1111zecl - Quick sort is to choose the pivot for partitioning more carefully than by 
pic king a random element from the array. One common approach is to choose the pivot as the median of a set of 
3 ele ments random ly selec ted from the array. 

10.12 Tree Sort 
Tree son uses a binary sea rch tree. It involves scanning each clement of the input and plac ing it into its proper 
position in a binary scnrch tree. This has two phases: 

• First phase is c rcaling a binury search tree using the given array elements. 
• Second phase is traversing the given binary sea rc h tree in inorder, thus resulting in a sorted array. 

Performance 
The 11vcruge number o f comparisons for this method is 0(11l1J.<1 11). 11u l in wo rst case, t he number of com pa risons 
is red uced by 0(11 2) , a case which a rises when the sort tree is skcw tree. 

10.13 Comparison of Sorting Algorithms 

Name 
Average Worst Auxiliary Is 

Other Notes 
Case Case Memory Stable? 

Bubble O(n2) O(nl) I yes Small code 
Selection 0(112) 0(11l) I no Stabi lity dcocnds on the imolementation. 

lnserlion 0(112 ) 0(11') I yes 
Average case is u lso 0(11 + d), where d is 
the n umber of inversions. 

Shell - 0(11/11,1/11) I no 

Merge sort O(nlogn) 0(11lo,q11 ) de pends yes 

Heap sort O(nlogn) 0(11/0911) 1 no 

Quick sort 0 (11lo911) 0(11l) O(logn) depcncls 
Can be implemented as a stable sort 
depending: on how the oivot is handled. 

Tree sort 0(1110911) O(nl) 0(11) depends Can be implemented usu stable sort. 

Note : 11 denotes the number of clements in the input. 
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10.14 Linear Sorting Algorithms 
In earlier sections, we have seen many examples of comparison-based sorting a lgorithms. Among them, the best 
comparison-based sorting has the complexity O(nlogn). In this section, we will d iscuss other types of ulgorithms: 
Linear Sorting Algorith ms. To improve the time complexity of :mrting lhcsc a lgorithms, we make some 
assumptions about the input. A few examples of Linea r Sorting Algorithms arc: 

• Cou nting Sort 
• Bucket Sort 
• Radix Sort 

10.15 Count ing Sort 
Counting sort is not a compa rison sort algorithm a nd gives O(n) complexity for sorting. To achieve O(n) 
complexity, counting sort assumes that each of the clements is an integer in the range I. Lo /(, for some integer K. 
When K = O(n), the counting sort runs in 0(11) Lime. The basic idea of Counting sort is to determine, for each 
input element X, the number of clements less than X. This information can be used to place it directly into its 
correct position. For example, if 10 elements are less than X, then X belongs to pos ition 11 in the output. 

In the code below, A[O .. n -1] is the input array with length 11. In Counting sort we need two more a rrays: let us 
assume array 8 [O .. n - 1] con tajns the sorted output and the array Cl 0 .. K - 1 ] provides temporary storage. 

import random 
def CountingSort(A, k): 

B = !0 for el in A! 
C = 10 for el in range(O, k+ 1)] 

for i in xrange(O, k +l): 
C[il = 0 

for j in xrange(O, len(A)}: 
C[ALil! += 1 

for i in xrange(l, k + 1): 
Cfi! += C!i - l] 

for j in xrange(len(A)-1, 0 - 1, -1): 
lmp = AUi 
tmp2= C[tmp] -1 
Bltmp2) = tmp 
Cjtmp] -= 1 

return B 

A= [534,246,933, 127,277,321,454,565,2201 
print(CounlingSort(A, 1000)) 

Total Complcxily: O(K) + O(n) + O(K) + 0(11) = O(n) if K =O(n). 
Space Complexity: O(n) if K =O(n). 

Note: Counting works well if K =O(n). Othenvise, the complexity will be greater. 

10.16 Bucket Sort (or Bin Sort) 
Like Counting sort, Bucket sort also imposes rcstriclions on the inpul LO improve the performance. In other 
words, Bucket sort works well ir the input is drawn from fixed set. Bucket sort is the genera lization of Cou11ti11g 
Sort. For example, assume that a ll the input clements from {O, 1, ... , K - l}, i.e., the set of int.ci.~ern in the 
interval IO, K -1]. That means, K is the number of distant elements in the.: input. Bucket sort uses K counlers. 
The ith counLer keeps track of the number of occurrences of the 1t1• clement. Bucket sort wilh two buckets i::; 
effectively a version of Quick sort with two buckets . 

For bucket sort, the hash function that is used to partition the elements need Lo be very good and must produce 
ordered hash : if i < k then hash(i) < hash(k). Second, the elements to be sorted must be uniformly distributed. 

The aforementioned aside, bucket sort is actually very good considering thal counting sort is reasonably 
speaking its upper bound. And counting son is very fast. The particular distinction for bucket sort is that it 
uses a hash function to pa r·tition the keys of the input array, so thul multiple keys may hash to the some 
bucket. Hence each bucket must effectively be a growable list; similar to radix sort. 
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In the below code lnscrtionson is used to sort each bucket. This is to inculcate that the bucket son a lgorithm 
docs not specify which sorting tec hnique to use on the buckets. A programmer may choose to con tinuously use 
buc ket sort on each bucket until the collection is sorted (in the manner of the radix sort progra m below). 
Whichever sorting method is used on the , bucket sort still tends toward O(n). 

def inscrtions ort( A ): 
for i in range( I , ten( A ) ): 

temp = Ali! 
k = i 
while k > 0 and temp < Alk - lj: 

Alkl = Alk - 11 
k -=I 

Alkl =temp 

def BuckctSort( A ): 
code - Hashing( A ) 
buckets = !list() for in range( codel 11 ll 
for i in A: 

x = ReHashing( i, code ) 
buck = buckets[xl 
buck.append( i ) 

for buc ket in buckets: 
inscrtionSor t( bucket) 

ndx "' 0 
for b in range( lcn( buckets ) ): 

for v in buckcts lbl: 
A[ndxl "' v 
ndx += I 

return A 

import math 

def I lashing( A): 
m - AIOI 
for i in range( l, lcn( A ) ): 
if ( m < Af ii ): 

m = A[i] 
result = (m, int( math.sqrt( !en( A) ) JI 
return result 

def Rel lashing( i, code ): 
return int( i / codclOI • ( code! I] - I ) ) 

A ~ 1534,246,933, 127,277,32 1,454,565,2201 
print(BuckctSort(A)) 

Time Complexity: O(n). Space Complexity: O(n). 

10.17 Radix Sort 
Similar to Counting sort and /Jucket sort, this sorting algorithm also assumes some kind of information about the 
input clements. Suppose thut the input values to be sorted arc from based. That means a ll numbers arc d -digit 
numbers. 

In Radix son, first son the c lements based on the Inst digit lthe least significant digilj. Thci';c resu lts arc aga in 
sorted by second digit !the next LC> least significant digilj. Continue this process for all digits umil we reach the 
most significant digits. Use some stable sort LO sort them by lusl digit. Then stable sort them by the second least 
significant digit, then by the third, etc. If we use Counting sort as the stable sort, the Lot.al time is O(nd) zO(n). 

Algorithm: 

I) Take the least significant digit of each clcmenl. 
2 ) Sort the list of clements bused on that digit , bllt keep the o rder of elements with the same digit (this is 

the definition of n stnbk sort). 
3) l~epcut the sort with each more :-iip,n ificunt digit. 
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The speed of Radix sort depends on Lhc inner basic operations. lf the operations arc not efficient enough, Radix 
sort can be slower than other algorithms such as Quick sort and Merge sort. These operations include the inserL 
and delete functions of the sub-Lists and the process of isolating the digit we want. If the numbers a re not of 
equal length then a test is needed to check for additional digits that need sorting. This can be one of the slowest 
parts of Radix sort a nd also one of the hardest to make efficient. 

Since Radix sort depends on the digits or letters, it is less flexible than other sorts. For every different type of 
data, Radix sort needs to be rewritten, a nd if the sorting order changes, the sort needs to be rewritten again . In 
short, Radix son takes more time to write, a nd it is very difficult to write a general purpose Radix sort that can 
handle all kinds of data. 

For many programs that need a fast sor t, Radix sort is a good choice. Still, there arc faster sorts, which is one 
reason why Radix sor-t is not used as much as some other sorts. 

def RadixSort( A ): 
RADIX = 10 
maxLcngth "' False 
tmp , placement = - 1, J 
while not maxLcngth: 

maxLength = True 
buckets = [list() for _ in range( RADIX)) 
for i in A: 

a=O 

I.mp = i / placement 
buckutsftmp % RADIXJ.append( i ) 
if maxlAmgth and tmp > 0: 

maxLength = False 

for b in range( RADIX ): 
buck .. bucketsf b] 
for i in buck: 

A[a[ = i 
a+= 1 

# move to next digit 
placement • .. RADIX 

A= [534,246,933, 127,277,32 l,454,565,220] 
prinl(RadixSort(A)) 

Time Complexity: O(nd) ::::O(n), if d is small. 

10.18 Topological Sort 
Refer lo Graplr Al9orit/1111s Chapter. 

10.19 External Sorting 
External sorting is a generic term for a class of sorting algorithms that can handle massive amounts of data. 
These external sorting algorithms arc useful when the files are too big and cannot fit into main memory. 

As with internal sorting a lgorithms, there arc a number of algorithms for external sorting. One such a lgorithm is 
External Mergesorl. In practice, these externa l sorting algorithms arc being supplemcntcd by inte rna l sorts. 

Simple External Mergesorl 

A number of records from each tape arc rend into main memory, sorted using an internal sorl, and then output 
to the Lape. For the sake of c larity, let us assume that 900 mega bytes of data needs to be sorted using only I 00 
megabytes of RAM. 

1) Read lOOMB of the data in to main memory and sort by some conventional method (let us say Quick 
sort). 

2) Write the sorted data to disk. 
3) Repeal steps I and 2 unti l t ill of the data is sorted in chunks of IOOMB. Now we need to merge them 

into one single sorted output fi le. 
4) Read the first lOMB of each sorted chunk (ca ll them input buffers) in main memory (90MB tot.a l) and 

allocate the remaining IOMB for output buffer. 
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Perform a 9-way Mcrgesort and store the result in the output buffer. If the output buffer is full, write it to the 
linal sorted lile. If any of the 9 input buffers gets empty, lill it with the next I OMB of its associated lOOMB sorted 
chunk; or if there is no more du ta in the sorted chunk, mark it as exhausted and do not use it for merging. 

K-Way Mcrgcsort 

l l 
Internal Sort 

r:==~====--:=J ---!--------'~~ 
~ '---:...+------.i r r-··----~-<2~~----~ 

-------.i~ i _,. __ ....... -··- _____ _j 

'---~ 

The above algorithm con be generalized by assuming that the amount of datn to be sorted exceeds the available 
memory by n factor of K. Then, K chunks of data need lo be sorted and a K -wuy merge has LO be completed. 

If X is the ti mount of main memory available, there will be K input buffers and 1 output buffer of size X/(K + 1) 
each. Depending on various factors (how fast is the hard drive?) better performance can be achieved if the 
output buffer is made larger (for example, twice as large as one input buffer). 

Complexity of the 2-way External Merge sort: In each pass we read + write each page in lilc. Lcl us assume that 
there arc 11 pages in lile. Thal means WC need r logn l + 1 number of passes. The total cost is 2n01ognl + 1). 

10.20 Sorting: Problems & Solutions 
Problem-1 Given an arruy lllO ... n - 1) of n numbers conta1111ng the repetition of some number. Give an 

algorithm for checking whether there are repeated elements or not. Assume that we are not allowed to usc 
additional space (i.e., we can use a few temporary variables, 0(1) storage). 

Solution: Since we arc not a llowed to use extra space, one simple way is lo scan the clements one-by-one and 
for eac h clement check whether thnt c lement appears in the remaining clements. If we lind a match we return 
true. 

def ChcckDuplicutesBrutcForcc(A): 
for i in rangc(O,lcn(A)): 

for j in rangc(i+ I ,len(A)): 
if(A[il == ALil): 

print("Ouplicates exist:", Ali)) 
return; 

prinl("No duplicates in given array.") 

A .. IJ,2, I 0,20,22,321 
Check Du pliculcsB ru tcForcc(A) 
A 13,2, 1,2,2,31 
ChcckDu plicalesBru tcForcc(A) 

Each iteration of the inner, j -indcxcd loop uses 0(1) space, and for a fixed value of i, thcj loop executes 11 - i 
times. The oulcr loop executes n - 1 times, so the entire function uses time proportional to 

,.,. 1 . ( l) v n-1 . ( l) 11(11 - 1) 11(11 - 1) O( 2 ) 
i.;/ 1 II - I - II II - - L..1- I I = ll It - - -

2
- = -

2
- = ll 

Time Complexity: 0(111.). Spuet· Complexity: 0(1). 

Problem-2 Cun we improve the lime complexity of Problem- I? 

Solution: Yes, using sorting technique. 
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def CheckOuplicatesSorting(A): 
A.sort() 
for i in range(O,len(A)- 1 ): 

for j in rangc(i+ l,len(A)): 
if(A!iJ == A[i+ 1 I): 

print("Duplicates exist:", A[i]) 
return; 

print("No duplicates in given array.") 

A= [33,2,10,20,22,32) 
Check:DuplicatesSorting(A) 
A = [3,2, 1,2,2,3) 
ChcckDuplicatesSorting1A) 

Sorling 

I leapsorl function takes 0(11 /ogn) time, and requires 0(1) space. The scan c learly takes 11 - 1 iteralions, each 
itcralion using 0(1) Lime. The overall time is O(nlogn + n) = O(nlo,qn). 

Time Complexity: O(nlo,qn). Spuce Complexity: 0(1). 

Note: For variations of this problem, refer Searching chapter. 

Problem-3 Given a n a rray A[O ... n - 1], where each clement of the array represents a vote in the election. 
Assume that each vole is given as an integer representing the ID of the chosen candidate. Give an algorithm 
for determining who wins the election. 

Solution: This problem is nothing but finding the e lement which repeated the maximum number of Limes. The 
solution is :;imila r to the Problem- I solution: keep track of counter. 

def CheckWhoWinsThe81ection(A): 
counter= maxCounter = 0 
candidate= AIOI 
for i in range(O,len(A)): 

counter= I 
for j in rangc(i+l,len(A)): 

if(A(i)=ALilJ: 
counter+= I 

if(countcr > maxCounter): 
maxCounter = counter 
candidate = A[i) 

prinl candidate, "appeared ", maxCounter, " times• 

A = 13,2, I ,2,2,3J 
CheckWhoWinsTheElection(A) 
A = f3,3,3,2 ,2,3l 
CheckWhoWinsThcElection(A) 

Time Complcxily: 0(11 2). Space Complexily: 0(1). 

Note: For varia tions of th is proble m, refer lo Searching c hapte r. 

Problem-4 Can we improve the time complexity of Problcm-3? Assume we don't have a ny extra space. 

Solution: Yes. The approach is to sort the votes based on candidate ID, then scan the sorted array and count 
up which candidate so far has the most votes. We only have to remember the winner, so we don't need a clever 
data strucLUrc. We can use Hcapsor-t as il is an in-place sorting a lgorilhrn. 

def CheckWhoWinsTheElection(A): 
A.SOl'l() 
counter = maxCounter "' 0 
candidate = maxCandidate = 0 

for i in range(O,len(A)): 
if( A(il ==candidate): 

coun ter+= 1 
else: 

counter= 1 
candidate = Ali] 

if(counler > maxCounter): 
maxCandidate =Ali] 
max.Counter= counter 
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prin t maxCandidalc, "appeared", maxCounter, ''times" 

A = (2,3,2, 1,2,2,3,2,2] 
CheckWhoWinsTheElection(A) 
A = (3,3,3 .2,2,31 
ChcckWhoWi nsThcElcction(A) 

Sor ling 

Since I !eapsorl time complexi ty is O(nlogn) a nd in-place, it only uses an additionul 0(1) of s torage in addition to 
the input a rray. The sca n of the sorted array does a constant-time conditional 11 - 1 Limes, thus using 0(11) 
time. The overall time bound is O(nlogn) . 

Problem-5 Can we further improve the time com plexity of Problcm-3';> 

Solution: In the given problem, the nu mber of candidates is less but the number of votes is significantly la rge. 
For this probkm we ca n use counting sort. 

Time Complexity: 0(11) 1 11 is the number of votes (clements) in the array. 
Space Complexi ty: 0(1<), k is the n umber of candida tes partic ipating in the dec tion. 

Problem-6 G ivcn an array II o f' n clemen ts, each of whic h is an integer in the range [1. 112], how do we sort 
the a rruy in O(rt) time? 

Solution: If we s ubtract each number by l then we gel the range I 0, n 2 - 11. If we cons ider a ll numbers as 
2 - digit base 1t. Eac h d ig it ra nges from 0 to 112 - 1. Sort this u sing radix sort. This uses only two calls to counting 
sort. F inally, add 1 to a ll the numbers. Since lhere a re 2 calls, the complexily is 0(211) ""O(n) . 

Problem-7 For Problcm-6, what if the range is (1 ... n 3P 
Solution: If we subtract each number by 1 then we gel the rnnge [O.n:i - I(. Conside ring a ll numbe rs as 3-d igit 
base 11: each digit ra nges from 0 to n3 - I. Son this using radix sort. This uses only three calls to counling sort. 
Finally, add I to a ll the numbers. Since there arc 3 calls, the complexity is 0(311) ""0(11). 

Proble m -8 Given an array with n integers, each of value less than 11100 , can it be sorted in linear time? 

Solution: Yes. The reasoning is same as in of Problem-6 and Proble m-7. 

Proble m -9 Let II a nd B be two a rrays of 11 elements each. Given a number K , give an 0(11lo9n) time 
a lgori thm for determining whethe r there exists a EA and b EB such that a+ b = K. 

Solution: Since we need O(nlogn), it gives us a pointer that we need to sorl. So, we will do thal. 

de f binaryScarch(numbersList, value): 
low = 0 
high = lcn(numbersList)-1 
while low <= high: 

m id = (low+high)/ /2 
if numbcrsList[mid] >value: h igh = mid- 1 
clif numbersListjmidl <value: low= mid+ l 
else: retus·n mid 

return - 1 

def findSumlnJ.,ists(A, B, k): 
A.sort() 
for i in range(O,le n(B)): 

c = k -B[i) 
if(BinarySearch(A, c} != - 1): 

return I 
return 0 

A = [2,3,5,7, 12 , 15,23,~2,421 
B = (3, I 3, I 3, 15,22,33) 
print findSumlnLists(A, B, 270) 

Note: fi'or variations of this proble m, refer Lo Sea,-chin9 chapter. 

Problem-10 Let II, B and C be three arrays of n elemems each . Given a number K, give an O(nlo9n) time 
aJgorithm for deter·mining whether there exists a EA, b EB a nd c EC s u c h tha t a+ b + c = K. 

Solution: Refer· to Sca,-chin9 c ha pte r. 

Proble m -11 Given an array o f 11 clement:;, can we output in sorted o rde r the K clements following the 
median in sorted order in time O(n + KlogK). 
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Solution: Yes. Find the median and partition the median. With this we can find a ll the clements greater than it. 
Now find the Klh largest clement in this set and partition it; and get all Lhe elements Jess than it. Output the 
sorted list of the final set of elements. Clearly, this operation takes 0(11 + KlogK) time. 

Problem-12 Consider the sorting algorithms: Bubble sort. Insertion sort, Selection sort, Merge sort, Heap 
sort, and Quick sort. Which of these are stable? 

Solution: Let us assume that A is the array to be sorted. Also, let us say R and S have the same: key and R 
appears earl ier in the array than S. That means, R is at Alil and S is at Al/I, with i < j. To show any st.able 
algorithm, in the sorted output R must precede S. 

Bubble sort: Yes. Elements change order only when a smaller record follows a larger. Since Sis not smaller than 
R il cannot precede it. 

Selection sort: No. It divides the array into sorted and unsorted portions and iteratively finds the minimum 
values in lhe unsorted portion. After finding a minimum x, if the a lgorithm moves x into the sorted portion of the 
array by means of a swap, then the clement swapped cou ld be U which then cou ld be moved behind S. This 
would invert the positions of R and S, so in general it is not stable. Ir swapping is avoided, it could be made 
stable but the cost in time wou ld probably be very significant. 

Insertion sort: Yes. As p resented, when Sis to be inserted into sorted suba rray Al1 .. j - l l, only records lru·ger 
than S arc shifted. Thus /? would not be shifted during S's insertion and hence would a lways precede it. 

Merge sort: Yes, In the case of records with equal keys, the record in the left subarray gets preference. Those 
are the records that came first in the unsorted array. As a result, they will precede later records with the same 
key. 

Heap sort: No. Suppose i = l and I? a nd S happen to be the two records wilh the la rgest keys in the input. 
Then U will remain in location I a fter the array is hcapificd, and will be placed in location 11 in the first iteration 
of Heapsort. Thus Swill precede U in the output. 

Quick sort: No. The partitioning step can swap the location of records many times, and thus two records with 
equal keys could swap position in the final output. 

Proble m -13 Consider the same sorting algorithms as that of Problem- 12. Which of them arc in-place? 

Solution: 

Bubble sort: Yes, because only two integers are required. 

Insertion sort: Yes, since we need to store two integers and a record. 

Selection sort: Yes. This algorithm would likely need space for two integers and one record. 

Merge sort: No. Arrays need to perform the merge. (If the data is in the form of a linked list, the sorting can be 
done in-place, but this is a nontrivial modification.) 

Heap sort: Yes, since the heap and partially-sorted ruTay occupy opposite ends of the input a rray. 

Quicksort: No, since it is recursive and stores O(lo.qn) aclivation records on the stack. Modifying it lo be non 
rccurs ivc i:; fcttsiblc but nontrivial. 

Problem-14 Among Qu ick sort, Insertion sor t, Selection sort, and Heap sort: a lgorithms, whic h one needs the 
minimum numbe r of swaps? 

Solution: Selection sort- it needs n swaps only (refer to theory section). 

Problem-15 Whal is the minimum number of comparisons required to determine if an integer appears more 
than n/2 times in a sorted a rray of n integers? 

Solution: Refer to Searching chapter. 

Problem-16 Sort an array of O's, 1 's and 2's: Given an array All consisting of O's, I's and 2's, give an 
algorithm for sorting 11[1. The algorithm should put a ll O's first, then all l's and all 2's last. 
Example: Input = f0,1,l,0,1,2,1,2,0,0,0,ll, Output= {0,0,0,0,0, 1, I, 1, 1, l,2,2} 

Solution: Use Counting sort. Since there are only three clements and the maximum value is 2, we need a 
temporary array with 3 elem ents. 

Time Complexity: O(n). Space Complexity: 0(1). 

Note: For variations of this probh.:m, refer to Searching chapter. 

Problem-17 Is there any other way of solving Problcm- 16':' 
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Solution: Using Quick dort. Since we know Lhat there arc only 3 elements, 0, 1 and 2 in the array, we can select 
I as a pivot element for Quick sort. Quick sorl finds the correct place for 1 by moving all O's to the left of 1 and 
all 2's Lo the right of 1. For doing Lhis it uses only one scan. 

Time Complexity: 0(11). Space Complexity: 0(1). 

Note: For efficient a lgorithm, refer to Searchi119 chapter. 

Problcm-18 I low do we find the number that appeared the maximum number of time:; in nn o rray? 

Solution: One simple approach i:; to sor1 the given array nnd scan the sorted array. While scanning, keep track 
of Lhc clements that occur the maximum number of times. 

Time Complexity =Time for Sorting+ Time for Scan = 0(11/ogn) +O(n) = O(nlo9n). Space Complexity: 0(1). 

Note: For variations of this problem, refer to Searcl1i119 chapter. 

Problem-19 Is there any other way of solving Problcm- 18? 

Solution: Using Binary Tree. Create a binary tree with an extra field count which indicu1es the number of times 
an clement appeared in the input. Let us say we have crcmed o. Binary Search Tree !C3STI. Now, do Lhc In-Order 
traversal of the tree. The In-Order traversal of SST produces the sorted list. While doing the In-Order traversal 
keep track of the maximum element. 

Time Complexity: 0(11) +O(n) ::=O(n). The first parameter is for constructing the BST and the second parameter 
is for lnorder Traversal. Space Complexity: 0(211) ::=0(11), since every node in BST needs two extra pointers. 

Problem-20 Is there yet another way of solving Problem- 18? 

Solution: Using Hash Table. For cnch elemcnL of the given urruy we use a counter, und for each occurrence of 
the c lement we increment the corresponding counter. At the end we can just return the c lement which has t he 
moximum counter. 

Tim1.: Complexity: O(n). Space Complexity: 0(11). For construc ting the hash table we nc1.:d O(n). 

Note: For the efficient algorithm, refer to the Searchi11g c hapter. 

Problcm-21 
nnd why? 

Given a 2 GB file with one string per line, which sorting a lgorithm wou ld we use to sort the fil e 

Solution: When we have a size limit of 2GB, iL means Lhat we can not bring all the dmo into the main memory. 

Algorithm: llow much memory do we have available? Let's assume we have X MB of memory available. Divide 
the file into K chunks, where X • K -2 GB. 

• Bring each chunk into memory and son the lines as usual (any O(n/0911) algorithm). 
• Save the lines back to the file. 
• Now bring the next chunk into memory und sorL 
• Once we're done, merge them one by one; in the case of one set finishing, brin~ more data from the 

pnrticu la r chunk. 

The nbovc a lgorithm is a lso known ns external sort. Step :l - 4 is known as K-way 1111.:rgc. The idea behind going 
for an external sort is the size of data. Since the data is huge and we can't bring it to the memory, we need to go 
for u disk-based sorting algorithm. 

Problcm-22 Nearly sorted: Given an array of 11 elements, each which is at most K positions from its target 
position, devise an a lgorithm that sorts in 0(11 lo.<JK) time. 

Solution: Divide the clements into 11/K groups of size K, ond sort each piece in O(Klo,gK) time, let's say using 
Mcrgt'son. This preserves the properly that no clement is more than K elements ou1 of position. Now. merge 
ench block of K clements with the block wits left. 

Problcm-23 ls there any other wny of solving Problcm-22? 

Solution: Insert the first K clements inLO a binary heap. Insert the next clement from the array into the heap, 
and delete the minimum element from the heap. Repeat. 

Problem-24 Merging K sorted lists: Given K sorted lists with a total of 11 clements, give an 0(11/09K) 
algorithm to produce a sorted list of all 11 clements. 

Solution: Simple Algorithm for merging K sorted lists: Consider groups each having~ clements. Take the first 
list nnd merge it with the second lis t using a linear I imc n l~orithm for merging two sorted lis ts, such as the 
mt'rging algorithm used in merge sort. Then, merge the res ulting list of~ e le ments with I he I hi rd list, and then 

K 
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merge the resulting list of ~ clem ents with the fourth list. Repeat this until we end up with a single sorted list 
of all n elements. 

Time Complexity: In each iteration we are merging K elements . 

211 311 411 K11 11 IK 
T(11) =-+-+-+···-(11)= - i 

K K K K K 
i= 2 

7'(11) =~ I K(K2-1 1)J :o:O(nK) 

Problem -25 Can we improve the time complexity of Problem-24? 

Solution: One mclhod is to repeatedly pair up the lists and lhcn merge each pair. This method can a lso be seen 
as a tail com pone nt of the execution merge sort, where the ana lysis is c lear . This is called the Tournament 
Method. The maximu m depth of the Tou rnament Met hod is log /( and in each ileralion we a rc scan n ing ull the 11 

clements. 

Time Complexily:O(nlogK). 

Problem -26 ls there any other way of solving Problcm-24? 

Solution: The other method is to use a min pr·iority queue for the minimum elements of each of the K lists. At 
each step, we output the extracted minimum of the priority queue, determine from which of the K lists it came, 
and insert the next element from that list into the priority queue. Since we a re using priority queue, that 
maximum depth of priority queue is logK. 

Time Complcxity:O(nlogK). 

Problem-27 Whic h sorting method is better for Linked Lists? 

Solution: Merge Sort is a better choice. At first a ppearance, merge sort may not be a good selection since the 
middle node is required to subdivide the given list inlo two sub-lists of equal length. We can easily solve this 
problem by moving the nodes alternatively to two lists (refer lo linked lists chapter). Then , sorting these two lists 
recu rsively a nd merging the results into a single list will sorl lhc given one. 

# Definition for singly-linked list. 
class ListNode: 

def _ ini t_ (self, x): 
self.data = x 
self. next = None 

class LinkedListS<>rtWithMergeSort: 
def sortList(self, head): 

if head == None: 
return None 

counter = 0 
temp "' head 
while temp I= None: 

temp = temp.next 
counter+= l 

return sclf.sort(head, counter) 

def sort(self,head,size): 
if si;r..e == 1: 

return head 
lisl2 = head 
for i in range(O,size/ /2): 

list.2 • list2.ncxt 
l ist 1 = sclf.sort(hcad, s ize/ /2) 
lisl2 = sclf.sort(list2,size-size/ / 2) 
return self.mcrge(listl, s ize/ /2, list2, size-siz,e / / 2 ) 

def merge(sclf,listl, sizeLis tl , list2, sizeList2): 
dummy = LisLNodc(O) 
list = dummy 
pointer! = 0 
poinlcr2 = 0 
while pointer 1 < sizeListl and pointer2 < sizeList2: 

if listl .data<list2.data: 
list.next = listJ 
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listl = listl.next 
pointer 1 += 1 

else: 
list.next = list2 
list2 = lisl2.next 
pointcr2 += 1 

list = list.next 
while pointer! < sizeLisll: 

!isl.next= listl 
!isl l = lis tl.next 
pointerl += 1 
list= list.next 

while pointer2 < sizeLisl2: 
!isl. next = List2 
list2 = list2.next 
pointcr2 += 1 
list= list.next 

list.next= None 
return dummy.next 

Sorting 

Note: Append() appends the first argument to the tuil of a singly linked list whose head and tail are defined by 
Lhe second and third arguments. 

All externn l sorting a lgorithms can be used ror soning linked lists since each involved file ca n be considered as a 
linked list thal can on ly be accessed seqL1cntin lly. We cun sort a doubly linked list using its next fields as if il 
wus n singly lin ked one and reconstruct the prcv fields a fter sorting with a n additiona l sca n. 

Problcm-28 Can we implement Linked Lists Sorting with Quick Sort? 

Solution: The origina l Quick Sort cannot be used for sorting Singly Linked Lists. This is because we cannot 
move backward in Singly Linked Lists. But we can modify the original Quick Sort a nd make it work for Singly 
Lin keel Lists. 

Let us consider the following modified Quick Sort implementation. The first node of Lhc input list is considered a 
pivot and is moved lo equal. The value of each node is compared with the pivot and moved to less (respectively, 
equal or larger) ir lhe nodes value is smaller than (respectively, equal to or lcn-ger Lhan) the pivot. Then, less a nd 
larger arc sorted recursively. Finally, joining less, equal and larger into a single list yields a sorted one. 

Apµe11d() appends the first argument lo Lhc tail or a singly linked list whose head and Lail are defined by Lhe 
second a nd third arguments. On return, Lhe first argument will be modified so that it points to the next node of 
the list. join() appends the list whose head and tail are defined by the third and fourth arguments to the list 
whose head and tail are defined by the first and second arguments. For simplicity, the first and fourth 
arguments become the head and ta il or the resulting list. 

ff Definition for singly-linked lisl. 
class ListNodc: 

def inil_ (self, x): 
self.data = x 
self.next= None 

def Qsort(first, last): 
JesHEAD = lesTAIL=None 
equHEAD "' equTAJL=None 
larHEAD = lar'I'AIL=Nonc 
current= first 
if(currenl == None): 

return 
pivot = current.data 
Append(current, equHEAD, equTAJL) 
while (current != None): 

info = current.data 
if(info < pivot): 

Append(currcnt, lt:sl IEAD, lesTAJL) 
elif(info > pivot): 

Append(current, la1·HEAD, 11:1rTAIL) 
e lse: 

Append(current, equHE:AD, equTAIL) 
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Quicksort(lesHEAD, lesTAIL) 
Quicksort(larHEAD, latrAIL) 
J oin(lesHEAD, lesTAlL,equHEAD, equTAJL) 
,Jom(lesHEAD, equTAIL,larHEAD, lar'I'AIL) 
first lesllEAD 
lust lar'I'AIL 

Sor ling 

Problcm-29 Given an array of 100,000 pixel color values, each of which is un integer in the range I0,2551. 
Which sorting algorithm is preferable for sorting them? 

Solution: Counting Sort. There arc only 256 key values, so the auxiliary array would only be of si<1e 256, and 
there would be only two passes through the data, which would be very efficient in both time and space. 

Problem-30 Similar lo Problcm-29, if we have a telephone directory with IO million entries, which sorting 
algorithm is best? 

Solution: Bucket Sort. In Bucket Sort the buckets arc defined by the last 7 digits. This requires an auxiliary 
array of size I 0 million and has the advantage of requiring only one puss through tJ1c data on disk. Each bucket 
contains all telephone numbers with the same Inst 7 digits but with different area codes. The buckets can then 
be sorted by area code with selection or insertion sort; there arc only a handful of area codes. 

Problem-31 Give an a lgorithm for merging K -sorted lists. 

Solution: l~cfer lo Priority Queues chapter. 

Problcm-32 Given u big file containing billions of numbers. Find maximum 10 numbers from this file. 

Solution: Refer to Priority Queues chapter. 

Problem-33 There arc two sorted arrays A and 8. The first one is of si:t.c 111+11 containing only m elements. 
Another one is of si7..e n and contains n c lements. Merge these two arrays into the first array of size m + n 
such that the output is sorted. 

Solution: The trick for this problem is to start filling the destination array from the back with the largest 
elements. We will end up with a merged a nd sorted destination array. 

def Mcrge(A, m, B, n): 
i • n - I 
j k m - 1 
while k>•O: 

if(B(i) > AUi or j < 0): 

e lse: 

k -• I 

A(k) =B[i) 
i -= 1 
if(i<O): 

break 

Alkl = ALi) 
j -= 1 

Time Complexity: O(m + n). Space Complexity: 0(1). 

Problem-34 Nuts and Bolts Problem: Given a set of n nuts of different sizes and n bolts such that there is a 
one-Lo-one correspondence between the nuts and the bolts, find for each nut its corresponding bolt. Assume 
that we can only compare nuts to bolts: we cannot compare nuts to nuts a nd bolls Lo bolts. 

Alternative way of framing the question: We arc given a box which contuins bolts and nuts. Assume there 
arc n nuts and 11 bolts and that ea c h nut matches exactly one bolt (and vice versa). 13y trying Lo match a bolt 
und u nut we ca n sec which one is bigger, but we cannot compare two bolts or two nuts directly. Design an 
efficient algorithm for matc hing the nuts and bolts. 

Solution: Brute Force Approach: Start with the first bolt and compare it with each nut until we find a match. 
In the worst case, we require n comparisons. Repeat this for successive bolts on all remaining gives O(n2) 

complexity. 

Problcm-35 For Proble m-34, can we improve the complexity? 

Solution: In Problem-34, we got O(n2) complexity in the worst case (if bolts arc in usccndinK ordcr and nuts a rc 
in desccndin~ order). Its a nalysis is the same as that of Quick Sort. The improve ment is also along the same 
lines. 
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To reduce the worst case complexity, instead of selecting the first bolt every time, we can select a random bolt 
and match it with nuts. This randomized selection reduces the probability of getting the worst case, but still the 
worst case is O(n2). 

Problem-36 For Problem-34, can we further improve the complexity? 

Solution: We ca n u se u divide-and-conquer lechniqw.: for solving this problem and the solulion is very similar to 
rundomi?.ed Quick Sort. For simplicity let us nssumc thut bolts a nd nuts arc reprcsent<.:d in two a rrays 8 and N. 

The a lgorithm first performs a pa rtition opernlion as follows: pick a random bolt fl lll· Using this bolt, rearrange 
the a rruy of nuts into three groups of clements: 

• Pirst the nuts smaller than Bfil 
• Then the nut that matches Bli], and 
• Pinally, Lhe nuts larger than Blil· 

Next, using the nut that matches Blil, perform n simi lar partition on the array of bolts. This pair of partitioning 
operations can easily be implemented in 0(11) time, and it leaves the bolts and nuts nicely partitioned so that 
the "pivot" bolt and nut arc aligned with each other and a ll other bolts and nuts arc on the coi-rcct side of these 
pivols - smaller nuts and bolls precede the pivot::;, and larger nuts and bolts follow the pivots. Our algorith m 
then completes by recursively applying itself to the subarray to the lefl and right of the pivot position to match 
these remaining bolts and nuts. We can assume by induction on 11 that these recursive calls will properly match 
the remaining bolts. 

To analy7.e the running time of our a lgorithm, we can use Lhe same analysis as that of randomized Quick Sort. 
Therefor<.:, opplying the analysis from Quick Sort., the time complexity of our algorithm is 0(11/0,qn). 

Alternative Analysis: We can solve thi::; problem by making a small change to Quick Sort. Let us assume that 
we pick the last element as the pivot, say it is a nut. Compare the nut with only bolls as we walk down the 
a rray. This will partition the array for the bolts. Every bolt less than Lhc partition nut will be on the left. And 
every boll greater than the partition nut will be on the righ t. 

While trave rsing down the list, find the matching bolt for the partition nut. Now we do the partition again using 
the matching boll. As a resu lt, all the nuts less than the matching bolt will be on the left side and a ll the nuts 
greater than the malching boll wi ll be on the right side. Recursively call on the left a nd right a rrays. 

The time complexity is 0(2nlogn) :;::O(nlogn). 

Problem-37 Given a binary tree, can we print its clements in sorted order in O(n) time by performing a n In-
order tree traversal? 

Solution: Yes, if the tree is a Binary Search Tn.:e [BSTI. For more details refer co Trees chapter. 

Problem-38 An algorithm for finding a specific value in a row and column sorted matrix of values. The 
algorith m takes as input a matrix of values where each row and each column a rc in sorted order, along with 
a value Lo locale in that array, then returns whether that element exists in the matrix. For example, given 
the matrix a long with the number 7, the a lgorithm would outpuL yes, but if given the number O the 
a lgorithm wotild output 110. 

I 2 2 2 3 4 
l 2 3 3 4 5 
3 4 4 4 4 6 
4 5 6 7 8 9 

Solution: One approach for solving this problem would be a s imple exhaustive search of the matrix to find t he 
value. If the matrix dimensions arc nm, this a lgorithm will take time O(nm) in the worst-ca::;e, wh ic h is indeed 
linear in the :size of the matrix but takes no advantage of the sorted structure we w·e guaranteed to have in the 
matrix. Our goG1I will be to find a much faster algorithm for solving the same problem. 

One approach that might be useful for solving the problem is lO try to keep deleting rows or columns out of Lhc 
array in a way that reduces the problem size without ever deleting the value (should it exist) . For example, 
suppose that we iteraLively start deleting rows and columns from the mau-ix Lhat we know do not contain the 
value. We can repeal this until either we've reduced the matrix down LO nothingness, in which case we know 
that the element is not present, or until we find the value . If the matrix is nm, then this would require only 
O(m + n) steps, which is much faster than the O(mn) approach oullined above. 

In order to rea li7.e this as a concrete a lgorithm , we'll need lo find a way to determ ine which rows or columns to 
drop. One partict1larly e legant way to do I his is to look ot the very last clement of the first row of the matrix. 
Consider how it mighl relate lo the vuluc we' re looking for. lf it's equa l to the value in quest.ion, we're done a nd 
ca n just hund back that we've found the entry we want. If it's g reater tha n the value in question, s ince each 
column i::; in sorted order, we know that no e le me nt of the last column cou ld possibly be equal to the number we 
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want to search for, and so we can discard the last column of the matrix. Finally, if it's less than the value in 
question, then we know that since each row is in soncd order, none of the values in the first row can equal the 
element in question, since they're no bigger than the last clement of that row, which is in turn smaller than the 
clement in question. This gives a very straightforward algorithm for finding the clement - we keep looking at the 
last clement of the first row, then decide whether to discard the last row or the last column. As mentioned 
above, this will run in O(m + n) time. 

def matrixFind(matrix, value): 
m - len(malrix) 
ifm a• O: 

return 0 

n = lcn(malrix(OI) 
if n - · 0: 

return 0 

i - 0 
j - 11 - l 

while i < m andj >= 0: 
if matri.xlillil .. value: 

return l 
elif matrix[i!Li) < value: 

I i + l 
else: 

j ... j - l 

return 0 

Proble m-38 Sort clements of list by frequency. 

Soution: Sorting lists in Python is very simple (list.sort()), but we often need to sort a list of objects based on the 
one of the objects' attributes. Say we have a list of objects, each of which has an attribute called 'score'. We can 
sort the list by object score like so: 

myList.sort(kcy = lambda x: x.score) 

This passes a lambda function to sort, which tells it to compare the score atlributes of the objects. Otherwise, 
the sort function works exaclly as normal (so will, for example, order strings alphabetically. We can also use this 
technique to son a dictionary by its values: 

soncdKcys = sortcd(myDict.keys(), key=lambda x: myDict[x)) 
for k in sortedKeys: 

print myOictlkl 

The code c reates a list of the dictionary keys, which it sorts based on the value for each key (note that we can't 
simply sorl rnyOict.keys()). /\ ltcrnalivcly we can loop through the keys and values in one go: 

f<n' k, v in sor1cd(myDict. itcms(), kcy=lam bda (k,v): v): 
prin l k, v 

Example : 

myString ="We want to gel lhe counts for each letter in this sentence" 
counts= O 
for teller in myString: 

countslletterj = counts.gct(letter, 0) + 1 
print counts 

sortedKcys - sorted(counts.keys(), keJ""lambda x: counts(xl) 
fork in sortedKeys: 

print k , "-->" , counts[kJ 
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SEARCHING 

11.1 What is Searching? 

Searching 

(JIIA prf1El< 

11 
. '.!>~'l . 
M 

In computer science, searching is the process of finding an item with specified properties from a collection of 
items. The items may be sLOrcd as records in a database, simple datu c lements in arrays, text in files, nodes in 
trees, vertices and edges in graphs, or they may be clements of other search spaces. 

11.2 Why do we need Searching? 
Searc/11119 is one of the core computer science algorithms. We know that today·s computers store a lot of 
information. To retrieve this informaLion proficiently wc need very cmcicnl searching algorithms. 

There arc certain ways of organizing the data that improves the searching process. That means, if we keep the 
data in proper order, it is easy lo search the required clemcnl. Soning 1s one of the techniques for making the 
clements ordered. In this chapter we will sec different searching a lgorithms. 

11.3 Types of Searching 
Following a re the types of searches which wc wiU be discussing in this book. 

• Unordered Linear Sea rc h 
• Sorted/Ordered Linear Search 
• 13 inary Search 
• Symbol Tables and Hashing 
• String Searching Algorithms: Tries, Ternary Search and Suffix Trees 

11.4 Unordered Linear Search 
Let us assume we are given an array where the order of the elements is not known. That means the elements of 
the orn:iy arc not sorted. In this case, lo search for an element we have to scan the complete array and sec if the 
clement is there in the given list or not. 

def UnOrderedLinearScareh (numbcrsList, value): 
for i in rangc(lcn(num bcrsList)): 

if numbersListlil •• value: 
return i 

return· I 
A= f534,246,933,127,277,321,454,565,220) 
print(UnOrdcredLinearSearch(A,277)) 

Time complexity: O(n), in the worst case we need to scan the complete urruy. Space complexity: 0(1). 

11.5 Sorted/Ordered Linear Search 
If the clements of the array arc nlrcady sorted, then in many cases Wl! don't have to scan the complete arrny to 
see if the clement is there in the given array or not. In the algorithm below, it ca n be seen chat, at a ny point if 
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the value at 1qq is brreater than the data to be searched, then we just return - 1 without searching the remaining 
array. 

def OrderedLincarSearch (numbersList, value): 
for i in range(len(numbersList)): 

1f numbersLisllil "'"'value: 
return i 

clif numbersList(il > value: 
return -1 

return - 1 

A= (34,46,93,127,277,321,454,565,12201 
print(OrdcrcdLinearSearch(A,565)) 

Time complexity of this algorithm is O(n). This is because in the worst case we need lo scan the complete array. 
But in the average case it reduces the complexity even though the growth rule is the same. 

Space complexity: 0(1). 

Note: For the above algorithm we can make further improvement by incrementing the index at a faster rate (say, 
2). This will reduce the number of comparisons for searching in the sorted list. 

11.6 Binary Search 
Let us consider the problem of searching a word in a dictionary. Typically, we direclly go to some approximate 
page !say, middle pogej and start searching from that point. If the name that we arc sco rching is the same then 
the search is complete. If the page is before the selected pages then apply the same process for the first half; 
otherwise apply the some process to the second half. Binary seurch also works in the same way. The ulgorithm 
applying such a strategy is referred to as binary scrffcl1 algorithm. 

low value to be searched high 

'd I + ( lunh- low) tow+hinh mt = ow 
2 

or 
2 

/ /ltcralivc Binary Search Algorithm 
def BinarySearchltcrative(numbcrsLi:st, value): 

low = 0 
high = len(numbersList)-1 
while low <= high: 

mid • (low+high)/ /2 
if numbersListlmid] > value: high = mid- I 
elif numbersList[mid) <value: low= mid+l 
else: return mid 

return - 1 
A · 1534,246,933, 127,277,321,454,565,2201 
print(BinarySearchlterative(A,277)) 

I/ Recursive Binary Seru·ch Algorithm 
def BinarySearchRecursive(numbersList, vaJue, low= 0, high= -1): 

if not numbersList: return -1 
if(high .. = · l): high = len(numbersList)- 1 
if low -'"' high: 

if numbcrsListjlowj == value: return low 
else: return - 1 

mid low + (high-low)/ /2 

- .--

if numbersListlmidJ >value: return BinarySearchRecursive(numbcrsList, value, low. mid -1) 
clif numbersListlmid] < value: return BinarySearchRecursive(numbersList, value, mid+ I. high) 
else: return mid 

A • j534,246,933,127,277,321.454,565,220j 
pri nl(B inarySearch Rccu rsive(A,277)) 

Recurrence for binury search is T (n) = T(~) +e( I) . This is because we arc ulwuys considering on ly half of the 
2 

input list und throwing out the other half. Using /Jivltle a11d Co1t<tuer muster theorem, we get, '/'(11) -=-0(10911) . 

Time Complexi ty: O(lo,1J11). Space Complexity: 0(1) jfor iterative algorithm!. 
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11.7 Interpolation Search 
Undoubtedly binary search is a great algorithm for searching with average running Lime complexity of logn. lt 
always chooses the middle of the remaining search space, discarding one half or the other, again depending on 
the compa rison belween the key value found al the estimated (middle) position and the key value sought. The 
remain ing search space is reduced to the part before or after Lhe estimated posilion. 

Wha l will happen if we don't use the constnnl '/~, but another more accurate constunl "K", that ca n lead us 
closer to the searched item. 

low data to be searched 

---. .,,,. ____ ..,,...._ __ 

/( = ctow - lnw 

1111111 lnw 

high 

- _,. 

This a lgorithm tries to follow the way we search a name in a phone book, or a word in the dictionary. We, 
humans, know in advance that in case the name we're searching starts with a "m", like "monk" for instance, we 
should start searching near the middle of the phone book. Thus if we're searching the word "career" in the 
dictionary, you know that it should be placed somewhere at the beginning. This is because we know the order of 
the letlers, we know the interval (a-z), and somehow we intuitively know that the words arc dispersed equally. 
These facts arc enough to realize that the binary search can be a bad choice. Indeed the binary search algorithm 
divides the list in two equa l sub-lists, which is useless if we know in advance that lhe searched item is 
somewhere in I he beginning or the end of the list. Yes, we can use a lso jump sea rc h if the item is al lhe 
beginning, bul not if il is at the encl, in lhul case Lhis a lgorithm is not so effeclive. 

The interpolation search algorithm u·ies lo improve lhe bina1y search. The question is how lo find lhis value? 
Well, we know bounds of the interva l and looking cluser to lhe image above we can define lhc following formula. 

data - low 
/( = ----

high - low 

This conslont I< is used to narrow down the search space. for binary search, this constant /( is (low + high)/2. 

Now we cnn be sure lhal we're closer to the searched value. On average the interpolation search makes abou t 
log(logn) comparisons (if the clements ai-e unifor·mly distributed), where 11 is the number of clements to be 
searched. In the worsl case (for instance where the numerical va lues of the keys increase exponentially) it can 
make up Lo O(n) comparisons. In interpolation-sequential search, interpolation is used to find an ite m near the 
one being searched for, then linear search is used to find the exact item. For this algorithm to give best results, 
the dataset should be ordered and uniformly distributed. 

def lnterpolaLionSearch(numbersLisl, value): 
low = 0 
high = lcn(numbersList) - l 
while numbersListpowj <= value and numbersListjhighl >= value: 

mid "' (low+ ((value - numbersListpowl) • (high - low)) 
I (numbersList[highj - ntLmbcrsLisl[Jowl)) 

if numbersList[mid) <value: 
low= mid+ l 

elif numbcrsList(mid] <value: 
high= mid - l 

else: 
return mid 

if numbersList(lowj == value: 
return low 

return None 

11.8 Comparing Basic Searching Algorithms 
Implementation Search-Worst Case 
Unordered An-ay n 
Ordered Array (Binnrv Search) lo(Jn 
Unordered List 11 

Ordered List 1l 

11.7 Interpolation Search 

Search-Average Case 

n/2 
lo.q11 
n/2 
n/2 
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Binary Search Trees (for skew trees) n logn 
Interpolation search n log(log11) 

Note: For discussion on binary search trees refer ·ri-ees chapter. 

11.9 Symbol Tables and Hashing 
l~cfcr to Symbol Tables and II ashing chapt ern. 

11.10 String Searching Algorithms 
Refer to String Algorithms chapter. 

11.11 Searching: Problems & Solutions 
Problcm-1 Given an array of 11 numbers, give an algorithm for checking whether there a rc any duplicate 

clements in the array or no? 

Solution: This is one of the simplest problems. One obvious answer to this is exhaustively searching for 
duplicates in lhc array. That means, for each input c lement check whether there is any clement with the same 
value. This we can solve just by using two simple for loops. The code for this solution can be given as: 

def ChcckDuplicatesBruteForcc(A}: 
for i in rangc(O,len(A}}: 

for j in rangc(i+ 1,len(A)}: 
if(Alil =- AUIJ: 

prinl("Duplicates exist:", AliJ) 
return; 

print("No duplicates in given array.") 

A = 13,2, J 0,20,22,32] 
CheckDuplicatesBruteForcc(A) 
/\ 13,2, 1,2.2,3) 
ChcckDuplicatesBruteForcc(A) 

Time Complexity: O(n2), for two nested for loops. Space Complexity: 0(1). 

Problem-2 Can we improve the complexity of Problcm- 1 's solution? 

Solution: Yes. Sort the given array. After sorting, all Lhe clements with equal values will be adjacent. Now, do 
another scan on this sorted array and sec if there arc clements with the same value irnd adjacent. 

def CheckDuplicatesSorting{A): 
A.sort() 
for i in range(O,Jen(A)-1): 

for j in range(i+ l ,len(A)): 
if(A[il == A[i+ll): 

print("Duplicates exist:", Alill 
return; 

print("No duplicates in given array.") 

A .. 133,2, I 0,20,22,32) 
CheckDuplicatcsSorting(A) 
A 13,2, l ,2,2,31 
ChcckOuplicatesSorting(A) 

Time Complexity: 0(11/ogn), for sorting (assuming nlo911 sorting algorithm). Space Complexity: 0(1). 

Problcm-3 Is there any altemaLive way of solving Problem-1? 

Solution: Yes, using hash table. Hash tables arc a simple and cffccLive method used to implement dictionaries. 
ll11cra,t1e time to scarch for an clement is 0(1). while worst-case time is O(n). Refer lo ll11shi11g chapter for more 
details on hashing algorithms. As nn example, consider the nrray, II = p, 2, 1, 2, 2, 3). 

Seun I he input urray and insert the clements into the hush. ror each inserted clement, keep the counter as l 
(assume inilinlly a ll entires a rc fi lled with zeros). This indicates that the corresponding c lement has occurred 
already. For lhc given array, the hash table will look like (oft er inserting the lirsl three clemcnls 3, 2 and l): 
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E: 
Now if we try inscrling 2, sin<.:e th<.: counter value of 2 is a lready 1, we can say the clement has appeared twice. 

Time Complexity: O(n). Space Complexity: 0(11). 

Problem-4 Can we further improve the complexity of Problem-1 solution? 

Solution: Lel us assume that the array e lements are positive numbers and a ll the e lements an: in the range 0 to 
n - 1. F'or each element A[ij, go to the array clement whose index is A[i]. That mea ns select AIAlill and mark -
AIAlill (negate the value at AfALiJJ). Continue this process until we encounter the e lement whose va lue is already 
negated. If one :;uch e lement exists then we say duplicate c lements exist in the given a rray. As a n example, 
consider the arrny, /\ = (3, 2, 1, 2, 2, 3}. 

In itially, 3 2 2 2 3 

0 2 3 4 5 

Al slcp- 1, negate Alabs(AIOIJI, 3 2 1 -2 2 3 

0 2 3 4 5 

At step-2, negate Ajabs(A[l])], 3 2 -1 -2 2 3 

0 2 3 4 5 

At step-3, negate Alabs(Aj2J)J, 3 -2 - 1 -2 2 3 

0 2 3 4 5 

Al step-4, negate A[abs(Al3J)I, 3 -2 - I -2 2 3 

0 2 3 4 5 

At step-4, observe that A[abs(A[3])] is already negative. That means we have encounte1·ed the same value twice. 

import math 
def ChcckDuplicatesNega LionTechn ique(A): 

A.sort() 
for i in range(O,len(A)): 

if(A[abs(A(il)J < 0): 

else: 

print("Duplicf.1tes exist:", A[i]) 
return 

A[AliJI = - A[Aji)J 
prini("No duplicates in given array.") 

A= 13,2, 1,2,2,3] 
CheckDuplicatcsNegationTechnique(A) 

Time Complexity: O(n). Since only one scan is required. Space Complexity: 0( 1). 

Notes: 
• This solution does not work if the given array is read only. 
• This solution will work only iJ all the array clements are positive. 
• If the e lements range is not in O ton - l the n it may give exceptions. 

Proble m -5 Given a n array of n numbers. Give an a lgorithm for finding the c lement which appears the 
mux imum number of times in the array? 

Brute Force Solution: One s imple solution Lo this is, for each input e lement c heck whe t her there is any 
c lement with the same value, and for cuch i:rnch occurrence, increment the cou nter. Each time, check Lhe 
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current counter with the max counter and update it if this value is greater lhan max counter. This we can solve 
just by using two simple for loops. 

def MaxRepititionsBrutcForcc(A): 
n = len(A) 
count.,. max 0 0 
for i in rangc(O,n): 

count '"' 1 
for j in range(O,n): 

if( i != j and Ali) = ALij): 
count+= 1 

if max< count: 
max= count 
maxRcpcatcdElcmcnt = A[i) 

print maxRepeatedElement, "repealed for", max 

A= [3,2,1,2,2,3,2, l,31 
MaxRcpilitionsBruteForce(A) 

Time Complexity: O(n2), for two nested for loops. Space Complexity: 0(1). 

Problem-6 Can we improve the complexity of Problcm-5 solution? 

Solution: Yes. Sort the given array. After sorting, all the clements with equa l values come adjacent. Now, just 
do another scan on this sorted array and see which clement is appearing the maximum number of times. 

def MaxRepititionsWithSort(A): 
A.sort() 
print A 
j=O 
count = max = 1 
element = A[OJ 
for i in range(l,len(A)): 

if (A[i[ == element): 
count+ ... 1 

else: 

if count > max: 
max= count 
maxRepeatcdElemcnt .. clement 

count= l 
element= Ali) 

print maxRepeatedElement, "repeated for", max 
A = [3,2, 1,3,2,3,2,3,3) 
MaxRepit ilionsWithSort(A) 

Time Complexity: 0(11/ogn). (for sorting). Space Complexity: 0( I). 

Problem-7 Is there any other way of solving Problcm-5'? 

Solution: Yes, using hash table. For each clement of the input, keep track of how many Limes that clement 
appeared in the inpul. That means the counter value represents the number of occurrences for that clemcnl. 

def MaxRepititionsWithHash(A): 
table = {} # hash 
max=O 
for element in A: 

if elemenl in table: 
Lable[element) += 1 

clif clement != • ": 
table[elementJ = l 

else: 
table[element) = 0 

for element in A: 
if tabletelemcnt) > max: 

max = table(clcmentj 
maxRcpcatcdElemenl = elcmenl 

print maxRepeatedElemcnl, "repeated for", max," times" 
A= (3,2, 1,3,2,3,2,3,31 
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MaxRepititionsWithHash(A) 

Time Complexity: O(n). Space Complexity: O(n). 

Problem -8 For Proble m-5, can we improve lhc lime complexity? Assume that the e le menls' range is 0 lo n -
I. Thal means a ll lhc clc.:mcnts arc within this range on ly. 

Solution: Yes. We can s o lve lh is problem in lwo scans. We ca.mwl use lhe ncgalion tec hn iq ue of Problcm-3 for 
lhis problem beca use of lhc number of rcpelilions. In lhc firsl scan, instead of negating, a dd lhc value n. Thal 
means for each occurrence of an e lement add the array s ize to lhat elemenl. In the second scan, check the 
clement value by dividing it by 11 a nd return the elemenl whic h gives the maximum va lue . The code based on 
this method is given below. 

de f MaxRepititionsEfficicnt(A): 
n = len(A) 
max = 0 
for i in range(O,Je n(A)): 

AIA!il°li•nl += n 
for i in rangc(O,lcn(A)): 

if(Alil / n > max): 
max = A[i)/n 
maxlndcx =i 

print max.Index, "repeated for", max, " times" 
A = [3,2,2,3,2,2,2,3,31 
MaxRcpititionsEfficienl(A) 

Notes: 
• This solULion docs not work if the given array is read only. 
• Th is solution will work on ly if the a rray elements arc positive. 
• If the e lements range is not in 0 to 11 - l lhcn it may give exceptions. 

Time Complexity: O(n). S ince no nested for loops ar e requ ired. Space Complexity: 0(1). 

Problem-9 Given an array of n numbers, give an a lgorithm fo r finding the firs l elcmcnl in the array whic h 
is repeated . For example, in the array A = (3, 2, 1, 2, 2, 3}, the first repeated number is 3 (nol 2). That means, 
we need to rc LUrn lhc first clement among the repeated cle ments. 

Solution: We can use the brute force solution that we used for Problem-!. For each cleme nt, s ince it checks 
whether there is a duplicate for that e lement or not, whichever clement duplicates first will be returned. 

Problem-10 For Problem-9, can we use the sorting technique? 

Solution: No. For proving the fa iled case, Jet us consider the following a rray. l"or example, A = {3, 2, 1, 2, 2, 3). 
Aflcr sorting we get A = {1,2,2,2, 3,3). In this sorted array the fi rst repeated clement is 2 but the actual answer is 
3. 

Problem-11 ror Problcm-9, ca n we USC hashing tec hn ique·? 

Solution: Yes. Bul lhc s imple hashing technique which we used for Problem-3 will noL wo rk. For example, if we 
consider the input a rray as A = {3,2, l, 2,3j, then the first repeated clement is 3, but using otir s imple hashing 
lcchnique we get the a nswer as 2. This is because 2 is coming lwicc before 3 . Now let us change the hashing 
table behavior so thal we get the first repeated element. Let us say, instead of storing 1 value, initially we store 
the position of the element in the a rray. As a result lhe hash table will look like (after inserting 3, 2 and 1): 

3 

2 

l 

Now, if we see 2 again, we just nega te the currcnl value of 2 in the hash table. That means, we make its counter 
value as - 2. The negative valu e in the hash table indicates that we have seen the same element two times. 
Similarly, for 3 (the next elem ent in the input) also, we negate the current value of lhe has h table and finally the 
hash table will look like: 
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After processing the complete input array, scan the hash table and return the highest negative indexed value 
from it (i.e ., -1 in our case). The highes t negative vaJue indicates that we have seen that element first (among 
repeated clements) and also repealing. 

def FirslRepcatcdElcmcnlAmongRepeatedElementsWithl lash(A): 
table - U # hash 
max 0 
for element in A: 

if element in table and i.able(elemenlJ = .. I: 
table(clcmcnl) = -2 

elif element in table and table(elementj < 0: 
Lable[clementJ -= 1 

elif element !• " ": 
Lablc(elcmentj = I 

else: 
tablc(clemcntj .. 0 

for element in A: 
if table(elementj < max: 

max = table(element] 
maxRcpeatedElement = element 

print maxRepeatedElement, "repeated for ", abs(max), " times" 
A = (3,2, l, 1,2, 1,2,5,5) 
FirstRcpeatedElemenlAmongRepeatedElementsWithHash(A) 

What if the e leme nt is rep eated more t han twice? In this case, just skip the clement if the corresponding 
value i is already negative. 

Problem-12 For Problem-9, can we use the technique that we used for Problcm-3 (negation technique)? 

Solution: No. As a n example of contradiction. for the array A = {3. 2, 1, 2, 2, 3} the first repeated element is 3. But 
with negation technique the result is 2. 

Problem -13 Finding the Missing Number: We arc given a list of n - 1 integers and these integers are in the 
range of I to 11. There arc no duplicates in the list. One of the integers is missing in the list. Given an 
algorithm to find the missing integer. Example: 1/P: I l.2,4.6,3, 7,81 O/P: 5 

Brute Force Solution: One simple solution to this is, for cnch number in I to 11, check whether that number is 
in the given a rray or not. 

def FindMissingNumbcr(A): 
n = len(A) 
for i in rangc(l ,n+l): 

found "' 0 
for j in rn.ngc(O,n): 

if(i •• ALiJ): 
found • l 

if found •• 0: 
print. "Missing number is", i 

A= [8,2,1,4,6,5,7,9] 
FindM issingNu mber(A) 

Time Complexity : O(n2). Space Complexity: O(l). 

Problem -14 ror Problcm- 13, can we use sorting technique·:> 

Solution: Yes. Sorting the list will give the clements in incrcasin~ order a nd with another scan we can find the 
missing number. 

Time Complexity: 0(11/0911), for sorting. Space Complexity: 0(1). 

Problem-15 For Problcm- 13, can we use hashing technique? 

Solution: Yes. Scan the input array and insert clements into the hash. For inserted c lements, keep counter as 1 
(assume initially all entires a rc filled with zeros). This indicates that the corresponding element has occurred 
already. Now, scan the hush wblc and return the c lement which has counter vnluc zero. 

Time Complexity: 0(11). Space Complexity: O(n). 

Problem-16 For Problcm- 13, cnn we improve the complexi ty',> 

Solution: Yes. We can use summation formula. 

1) Get Lhc sum of numbers, s um = n x (11 + 1)/2. 
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2) Subtract all the numbers from swn and you will get the missing number. 

Time Complexity: O(n), for scann ing the complete array. 

Problem-17 In Problem- 13, if the sum or the numbers goes beyond the maximum allowed integer, then there 
can be integer overOow and we may nol gel the correct answer. Can we solve t his problem? 

Solution: 

I) XOR all the array clements, let Lhe result or XOR be X. 
2) XOR a ll numbers from l to 11, let XOR be Y. 
3) XOR of X and Y gives the missing number. 

def FindMissingNumber(A): 
n = lcn{A) 
X=O 
for i in range( I, n+2): 

X=X" i 
for i in range(O,n): 

X = X "A(i] 
print "Missing number is", X 

A= [8,2, 1,4,6,5,7,9J 
FindMissingNumbe r(A) 

Time Complexity: O(n). for sca nning the complete a rray. Space Complexity: 0(1). 

Pr oble m -18 Find t h e Numbe r Occurring an Odd Number of Times: Given a n a rray or posilivc integt:r:;, all 
numbers occur an even number of times except one number wh ic h occu rs a n odd number of times. Pinc! t.he 
number in O(n) time & con:;tunt s pace. Example : 1/P = [1,2,3,2, 3, 1,31 0/P = 3 

Solution: Do a b itwise XOU of all the clements. We get the number whic h has odd occu rrences. This is beca use, 
A XOR A = 0. 

Time Complexity: O(n). Space Complexity: 0(1). 

Proble m -19 Find t he t wo re peating ele m ents in a give n array: Given a n array with sixe, all cle men ts of 
the array a rc in ra nge l lo 11 a nd a lso all c le me nts occur only once except two numbers which occur twice. 
Pinc! those two repcuting numbern. For exam ple: if the a rray is 4. 2. 4. 5, 2, 3, 1 with sixe = 7 and n = 5. This 
input has 11 + 2 = 7 clements with a ll dcments occu rring once except 2 a nd 1 which occur twice. So the 
output s hou ld be 1 2. 

Solution: One s imple way is lo scan the complete a 1Tay for each clement of the input e leme nts. That means use 
two loops. In the outer loop, select clements one by one and count the number of occurrences of Lhe selected 
clement in the inner loop. Por the code below, assume that PrintRepeatedEleme11ts is called with 11 + 2 Lo indicate 
the size. 

def Print.'l'\.voRepcatedElcmentsBruteForce(A): 
n = lcn(A) 
for i in rangc(O,n): 

for j in range(i+ I ,n): 
if(A(iJ == AUJ): 

print Afi) 
A= (3,5,7,4,2,4,2,1,91 
Print.'l'\.voRepeatedElcmenlsBruteForce(A) 

Time Complex ity: 0(112). Space Complexity: 0(1). 

Proble m -20 Por Problcm- 19 , can we improve the Lime complexity? 

Solution: Sort the a rray using any comparison sorting a lgo r~i thm a nd sec if lhcrc are any c lements which a rc 
con t iguous with the same value. 

Time Complexity: 0(11lo9n) . Space Complexity: 0(1). 

Proble m -2 1 For Problcm-19, can wc improve the time complexity'? 

Solution: Use Cou nt Army. This solution i::; like using a hu:;h table. Por simplicity we ca n use a rray for s toring 
the cou nls. Trnvc rnc the nrrny once nnd keep t rnck oft he count of a ll e leme nts in lhe an-ay us ing a temp urrny 
c11u11t ll of s i;r,c 11 . When we sec nn dcrncnL wh()se count is u lrcady set, print it as duplicate. l;-or the code below 
assume Lhn t Pri11.tUepeatcdH/cmw11ts is cu lled with 11 + 2 to indica te the s ize. 

def PrintTwo l~cpcatcclElcmentsl-lash{A) : 
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table = {} # hash 
for element in A: 

l#prinl clemenl 
if clement in table and tablc(elemcnt) == 1: 

print elcmcnl 
tablclclcmcnt) += l 

clif clcmcnl in table: 
table(element) +~ 1 

elif clement I= " ·: 
tablelelement) = I 

else: 
tablelclemcnt) = 0 

A = 13,5,7,4,2,4,2,J,9) 
Print'I'woRepealedElemcn tsl lash(A) 

Time Complexity: O(n). Space Crlmplcxity: O(n). 

Searching 

Problem-22 Consider Problem- 19. Let us assume that the numbers arc in lhc range 1 to n. Is there any 
other way of solving the problem·,> 

Solution: Yes , by using XOR Operation. Let the repeating numbers be X and Y, if we XOR all the clements in 
the array and also all integers from 1 ton, then the result will be X XOR Y. The 1 's in bina1y representation of 
X XOR Y correspond to the different bits between X and Y. If the kr11 bit of X XOR Y is 1, we can XO/l a ll the 
clements in the nrruy und also oil integers from 1 to 11 whose k 11' bits arc 1. The result will be one of X and Y. 

#I Approach is same for two repeated and two missing numbers 
def find'I'woRepeatingNumbcrsWithXOR (A}: 

XOR ... AIOI 
X= Y = 0 
n = len(A) - 2 
for i in rangc(l,len(A)): 

XOR"= Ali) 

for i in rangc(l,n+l): 
XOR" i 

righlMostSclBitNo XOR & - (XOR - 1) 
for i in rangc(O,lcn(A}): 

if(Alil & rightMoslSetBilNo): 
X = X" Alil 

else: Y = Y" Ali) 
for i in rangc(I,n+l): 

if(i & rightMostSctBitNo): 
X • X"i 

else: Y .. Y " i 
print X, Y 

A=j4, 2, 4, 5, 2, 3, I I 
find1'woRcpcalingNumbcrsWithXOR(A) 

Time Complexity: O(n). Space Complexity: 0(1). 

Problem-23 Consider Problem- I 9. Let us assume that the numbers arc in the range l to ti. Is there yet other 
way of solving the problem? 

Solution: We can solve this by c reating two simple mathematical equations. Let us assume that two numbers 
we arc going to find ure X and Y. We know the sum of n numbers is n(11 + 1)/2 and the product is n!. Make two 
equations using these sum a nd product formulae, and get values of two unknowns using the two equations. Let 
the summation of all numbers in array be S and product be P and the numbers which are being repealed are X 
and Y. 

n(n+ 1) 
X+Y=S-

2 
XY = P/n! 

Using the ubove two cqunlions, we ca n find out X and Y. There cun be a n addition nnd multiplication overnow 
probll:m with this opprouch. 

Time Complexi ty: 0(11). Spuce Complexity: 0(1 ). 
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Problem-24 Similar to Problem- 19, lel us assume that the numbers arc in the range 1 to n . Also, n - 1 
elements are repealing thrice and remaining elcmenl repeated twice. Find the ele men t which repeated twice. 

Solution: If we XOR all the clements in the a rray a nd a ll integers from ·1 to n, the n a ll the elements which a re 
repealed Lhricc will bccomc ;,,ero. This is because, s ince the elem ent is re peating thrice a nd XOR a nother time 
from ra nge ma kes that e leme nt appea r four times. As a res ult, the output of a XOR a XOU a XOR a = 0. It is the 
same case with all clements that a rc re peated three times. 

With t he same log ic, for the c le ment which repea ted twicc, if we XOR the input clements and also the range, then 
the total number of a ppearances for that eleme nt is 3. As a result, the output of a XOR a XO/? a = a. Finally, we 
get the element which repeated twice. 

Time Complexity: O(n). Space Complexity: 0(1). 

Problem-25 Given an array of 11 c lements . Find two c lements in the a rray s uch that their sum is equal to 
given ele me nt K. 

Brute Force Solution: One s imple solu tion to this is, for each input clement, c heck whether there is a n y 
clement whose sum is K. This we can solve just by usi ng two sim ple for loops. The code for this solution can be 
given as: 

def twoElementsWithSumKBruteForce(A, K): 
n = len(A) 
for i in range(O,n): 

return 0 

for j in range(i+ I ,n): 
if(A[i] + AUi == K): 

return 1 

A= [l, 4, 45, 6, 10, -8] 
A.sort() 
print twoElementsWitbSumKBru teForce(A, 111) 

Time Complexity: O(n2). This is because of two nested for loops. Space Complexity: 0(1). 

Problem-26 For Proble m-25, ca n we improve the time complc.xiLy'? 

Solution: Yes . Let u:; assume thut we huvc sorted Lhc given a 1-ray. This operation lakes 0(11lo9n). On the sorted 
array, maintain ind ices lolndex = 0 a nd hilndex = 11 - 1 a nd compute Allulndexj + Alhilndexj . If the s um equals 
K, then we arc clone with the solution. If the s um is less than K, decreme nl hilndex, if the sum is greater than K, 
increment lolndex. 

def twoElementsWithSumKBruteForce(A, K): 
lolndex = 0 
hilndex = len(A)- 1; 
while (le ft < right): 

if(AiJolndexJ + AJhilndcxl -= K): 
re turn I 

elif(A[lolndexJ + AJhilndexJ < £<): 
lolndex += l 

else: 
hi.Index-= 1 

return 0 

A = Jl, 4, 45, 6. 10, -81 
A.sort() 
prinl twoElemenLsWilhS umKBrutcForce(i\., J I) 

Time Complexity: 0(11 /o,g11). If the give n a rray is a lready i;ortecl then the complexity is O(n). 
Space Complexity: 0(1). 

Problem-27 Does the solu tion of Problcm-25 work even if the array is not sorted? 

Solution: Yes. Since we arc c hecking a ll possibilities, the a lgorithm ensures that we get the pair of numbers if 
they exist. 

Problem-28 Is there a ny olhcr way of solving Prnblcm-25? 

Solution: Yes, using ho.sh table. Since our objective is to find two indexes o f Lhe a rray whose sum is K. Let u s 
say those indexes u re X and Y. Thal m eans, AIXI + AlYJ = K. Wha t we need is, for each element of the input 
array AlXJ, c heck whether K - AJXI a lso exists in the input array. Now, let us simplify that search ing with hash 
table . 
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Algorithm: 
• For each element of the input array, insert it into the hash table. Let us say the current element is A[X]. 
• Before proceeding to the next cleme nt we c heck wheth er K - A[XI also exists in the hash table or not. 
• Ther existence of suc h numbe r indicates thal we a rc a ble to find the indexes. 
• Otherwise proceed to the next input clem ent. 

Time Complexity: O(tt). Space Complexity: O(n). 

def twoElementsWithSumKWithHash(A, K): 
table = O # hash 
for element in A: 

if clement in table: 
table(elemenll +• 1 

cllf element != " ": 
table(clcment] = 1 

else: 
table(element] = 0 

for element in A: 
if K-element in table: 

print "yes-->", element, "+", K-clement, " = ", K 
A= [l, 4, 45, 6, 10, -81 
A.sortQ 
twoElementsWithSumKWithHash(A, 11) 

Problem-29 

Solution: 

Algorithm: 

Given a n arTay A of n cle ments. Find three indices, i,j &, k s uc h tha tA [ij2 + Al/12 = AlkJ2 ? 

• Sort the given array in-place. 
• For each array index i compute Alil2 a nd store in array. 
• Seru·ch for 2 numbers in a rray from 0 to i - 1 which adds to A[i] similar to Problem-25. Thjs will give us 

the result in O(n) Lime. If we !ind such a s um, return true, otherwise continue. 

A.sort() I# Sort the input array 
for i in range(O. n): 

Ali] = A(i)*A(i) 
for i in range(O, n, -1 ): 

res= 0 
if(res): 

//Problem- 11/ 12 Solution 

Time Complexity: Time for sorting+ n x (Time for finding lhe sum) = O(nln,qn) + n xO(n)= n2 . 

Space Complexity: 0(1). 

Problem-30 Two elements whos e sum is closest to zero. Give n an array wilh bolh positive and negative 
numbers, find the two c lements s uch lhat their s um is closest Lo zero. For lhc below array, a lgorithm s hould 
give - 80 and 85. Example: l 60 - 10 70 - BO l!S 

Bru te Force Solution: For each ele men t, find the sum with every other element in the array and compare sums. 
Finally, return the minimum sum. 

def twoElemenlsClosest'foZero(A): 
n m lcn(A) 
if(n < 2): 

print "Tnvabd Input." 
return 

minLeft = 0 
minRight = l 
minSum = AjO] + A(l] 
for I in range(l,n-1): 

for r in range(l+l,n): 
sum • Alli + Afrl; 
if(abs(minSum) > abs(sum)): 

minSum • sum 
minLcft c I 
minRight .. r 
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print" The two elements whose sum is minimum are", AlminLcflJ, A(minRighlj 

A = ll, 60, -10, 70, -80, 85) 
twoElcmenlsClosestToZero(A) 

Ti me complexity: O(n2). Space Comrlexily: 0(1). 

Problcm-31 Can we improve the l ime complexi ty or Problein-30'? 

Solution: Use Sorting. 

Algorithm: 
1. Sort all the elements of the given input a rray. 

Searching 

2. Maintain two indexes, one at the beginning (i = OJ a nd the other al the e nding (j - n - 1). Also, ma inwin 
two variables to keep track of the smaHest positive s um closest to zero und the s mallest negative sum 
c losest to zero. 

3. While i < j: 
a. If the current pair sum 1s > zero nnd < 1111strveClosest then update the posliveClosesl. 

Decrement j. 
b. lf the current pair sum is < zero und > negalivcC/osest. then updute the negaLivcCloscsl. 

Increment i. 
c. Else, print the pa ir 

import sys 
def 1\voElcmen tsClosestToZcro(A): 

n = len(A) 
A.sort() 
if(n < 2): 

print "Invalid Input" 
return 

I= 0 
r = n-1 
minLeft =I 
minRight = n-1 
minSum = sys.maxinl 
whilc{l<r): 

sum = Alli + A[rl; 
if(abs(minSum) > abs(sum)): 

minSum =sum 
minLeft = l 
minRight = r 

if sum< 0: 
I+= l 

else: r -= I 
print" The two clements whose sum is minimum arc", AjminLeftj. AlminRighlj 

A = ( l , 60, - 10, 70, -80, 851 
1\voElemencsClosestToZero(A) 
A=( 10,8,3,5,-9,-7,6] 
1'woElementsClosestToZero(A) 

Time Complexity: O(nlogn) , for sorting. Space Complexity: 0( I ). 

Problem-32 Given an array of 11 elcmenLs. Find three clements in the array such thot their sum is equal to 
given e lement K? 

Brute Force Solution: The cl cfou ll solution to this is, for each r oi r of input clements c heck whethe r there is any 
c le ment whose sum is K . This we can solve just by using three s imple for loops. The code for this solution ca n 
be given as: 

def twoElementsWithSumKBruLeForce(A, K): 
n = len(A) 
for i in range(O,n-2): 

return 0 

for j in range(i+ I, n- 1 ): 
for k in ronge(j+ 1,n): 

if(Alil + AUi + A(kl •• K): 
print "yes-->", Afil. .. I " , ALiJ. .. + ", Alkl... ", K 
return 1 
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A= 11, 6, 45, 4, 10, 181 
A.sort() 
twoElementsWithSumKBruteForce(A, 22) 

Time Complexity: O(n3), for three nested for loops. Space Complexity: 0( 1). 

Problem-33 Docs the ::;olution of Problcm-32 work even if the array is not sorted"? 

Solution: Yes . Since we arc c hecking a ll possibilities, the a lgorithm ensures lhaL we cun find three numbers 
whose sum is K if they exis t. 

Problem-34 Can we use sorting technique for solving Problcm-32? 

Solution: Yes . 

def lhrecElemcntsWilhSumKWithSorting(A, K): 
n = len(A) 
left .. 0 
right = n- 1 
for i in range(O,n-2): 

left= i + 1 
right = n -1 
while(left < right): 

return 0 

print A(i) + A!left) + A(rightj, K 
if( A[iJ + A(lcftJ + A[rightJ == K): 

print "yes-->", A!iJ, " + ", A[leftJ, " + ", /\[right!, " .. ", I< 
return I 

clif(A[iJ + Alleft[ + A[rightJ < K): 
left+= I 

else: 
right -= l 

A = (1 , 6, 45, 4, 10, 18) 
A.sort() 
print threcElemcntsWithSumKWithSorting(A, 23) 

Time Complexity: Time for sorting + Time for searching in sorted list - O(n/0911) + 0(112) "'O(rr2). This is 
because of cwo nested for loops. Space Complexity: 0(1). 

Problem-35 Can we use hashing technique for solving Problem-32? 

Solution: Yes. S ince our objective is to find t hree indexes of the a rray whose sum is K. Let us say those indexes 
are X, Y and 1.. That means, A[XJ + A[YJ + A[Zj = K. 

Let u s assume that we have kept a ll possible s ums a long with the ir pairs in hash table. Thal means Lhc key to 
hash table is K - AIXI and values for K - AIX] a rc a ll possible pairs of input whose s um is K - AIXI. 

Algorithm: 
• Before starting the search, insert a ll possible sums with pnirs of c lemen t:; in to the hash wble. 
• For each clement of the input array, insert into the hash table. Let us say the currcnl clement is AIX ]. 
• Check whether there exists a hash en try in the table with key: K - AIX I· 
• If such element exists then scan the element pairs of K - AIXI and return all possible pairs by including 

A[Xj also. 
• If no such clement exists (with K - AIXI as key) then go to next element. 

Time Complexity: The time for storing all possible pairs in I lash tnblc + searching 0(11i) 1- 0(11 2) "' O(n2). 
Space Complexity: 0(11). 

Problem-36 
to zero. 

Given an array of 11 integers, the 3 - sum problem is to find three integers whose sum is c losest 

Solution: This is the same as that of Problem-32 with K value is zero. 

Problem-37 Let A be an array of n distinct integers. Suppose A ha::; the following property: there exists an 
index 1 S k S 11 such that A[lj ....• A[kj is a n increasing sequence nnd lllk 1 l j, ... ,A[nj is a decreasing 
sequence. Design and analyze a n efficient algorith m for finding k. 
Similar question: Let us assume that the given anny is sorted but stnrt:-; with negntive numbers and ends 
with posi tive numbers jsuch functions arc called monotonically increosing function:-;j. In this array find the 
starting index of lhc posilivc numbers. Assume that we know the length of the input array. Design a O(log11) 
a lgorithm. 
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Solution: Let us use a variant of the binary search. 

def findMinimumlnRotatedSortedArray(A): 
mid, low, high = 0, 0, len(A) - 1 
while A(low] >= A(high): 

if high - low<= 1: 
return Alhighl, high 

mid = (low+high) » 1 
if A[mid) == A[low] : 

low+= 1 
elif A[mid] > A[low] : 

low= mid 
elif A[mid] = A(high]: 

high-= 1 
else: 

high = mid 
return A[low], low 

A= [15, 16, 19, 20, 25, 1, 3, 4 , 5, 7, 10, 14] 
print findMinimumlnRotatedSortedArray(A) 

The recursion equation is T(n) = 2T(n/2) + c. Using master theorem, we get O(lo9n). 

Problem-38 If we don't known, how do we solve lhe Problem-37? 

Searching 

Solution: l~cpcalcd ly comp1.1le A[l l,Af2 l.11[4l,A[81.A[l6] a nd so on, until we find a va lue ofn such that Aini > 0. 

Time Complexity: O(logn), s ince we a re moving at the rate of 2. Refer to Introduction to Analysis of Algorithms 
chapter for details on this . 

Problem-39 Given an input a rray of size unknown with all l's in the beginning and O's in the end . Find the 
index in the array from where O's start. Consider there are millions of l's and O's in the array. E.g. a rray 
contents 1111111. .. .. .. 1100000 ..... .. .. 0000000. 

Solution: This problem is almost similar to Problcm-38. Check the bits at the rate of 2K where k = 0, 1, 2 .... S ince 
we are moving a t the rate of 2, the complexity is O(logn). 

Problem-40 Given a sorted a rray of n integers that has been rotated an unknown number of times, give a 
O(logn) a lgori thm that finds an clement in t he a rray. Example: Pind 5 in array (1S1619 20 25 13 4 5 7 10 14) 
Output: 8 (the index of 5 in the array) 

Solution: Let us assume that the given array is AL]and use the solution of Problem-37 with an extension. The 
function below FindPivot returns the k value (let us assume that this function returns the index instead of the 
va lue). Find the pivot point, divide the array into two sub-arrays and call binary search. 

The ma in idea for finding the pivot point is - for a sorlcd (in increasing order) and pivoted a rray, the pivot 
e lcmcnl is the only clement for which th e next e lemenl to it is smaller tha n it. Using the a bove criteria and lhe 
binary search methodology we can gel. pivot e lement in O(logn) time. 

Algorithm: 
1) Pind oul the pivot point and divide the array in to two sub-a rrays. 
2) Now call binary search for one of the t\vo sub-arrays. 

a. if the clement is greater than the first element then search in left subarray. 
b. else search in righ t subarray. 

3) If e lement is found in selected sub-array, then rel.um index else return - 1. 

def findlnRota.tedSortedArray(A, target): 
left = 0 
right == len(A) - 1 
while left<= right: 

mid = (left + right) / 2 
if A[midj == target: 

return mid 
if Almidl >= A[left]: 

e lse: 

if A(leftJ <= target< AlmidJ: 
right= mid - 1 

else: 
left = mid + l 

if A[mid) < target <= A(rightJ: 
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left = mid+ 1 
e lse: 

right = mid - l 
return - 1 

A = I LS, 16, 19, 20, 25, ·1, 3, 4, 5, 7, LO, 141 
print findinRotaledSorlcdArray{A, 2) 

Time complexity: O(lo9n). 

Problem-41 For Problem-40, can we solve with recursion? 

Solution: Yes. 

def findlnRotatedSortedArrayWithRecursion(A, target): 
if A==None or len(A)==O: 

return - 1; 
loW"'O; 
high=lcn (A)-1 
return findWithRecursion(A, target, low, high) 

def llndWithRecursion(A, target, low, high): 
if low>high: 

return -1 
mid=now+high)/2 
if A(mid]==targct: 

return mid 
if Allow)<A[midj: 

if Allowj<=target<Almidj: 
return findWithRecursion(A, target, low, mid-1) 

return findWilhReeursion{A, target, mid+ 1, high) 
elif A(lowl>A(midj: 

if A[mid]<targct<=Alhighj: 
return findWithRecursion(A, target, mid+ l, high) 

return fLndWilhRecursion{A, target, low, mid- I) 
else: 

if Almidjl::A!highj: 
rel urn lindWithRecursion{A, target, mid+ 1, high) 

result=findWit:hReeursion{A, target, low, mid-1) 
if result!=-I: 

return resull 
return findWithRecursion(A, target, mid+l, high) 

A= [15, 16, 19, 20, 25, I, 3, 41 5, 7, 10, 14 ] 
print findlnRotatedSortedArroyWithRccursion(A, 5) 

Time complexity: 0(10911). 

Searching 

Problem-42 Bitonic search: /\n a r ray is bitonic if it is com prised of a n increasing seque nce of integers 
followed immediately by a decreasing sequence of integers. Given a bitonic a rray A of n distinct integers, 
describe how to determine whether a given integer is in the a rray in O(logn) s teps. 

Solution: The solution is the same as Lhat for Problcm-37. 

Problem-43 Yet, other way of fra ming Problcm-37. 
Let All be a n a rn:iy Lhat st.a rts out inc reasing, reaches a maximum , and then decreases. Design an O(lo9n) 
a lgorithm lo find the index of the maximum valu e. 

Problem-44 Give an O(nlog11) a lgorithm for computing the media n of a sequence of n integers. 

Solution: Sort and return e lement at~. 
2 

Problem-45 Given two Rortcd lists of s ize m a nd n, find median of all elements in O(log (m + n)) time. 

Solution: Refer to Divide and Conquer c hapter. 

Problem-46 Given a sorted array A of 11 clements, possibly with duplicates, find the index of the first 
occurrence of a number in O(logn) time. 

Solution: To find the first occurrence of a number we need to check for the following condition. Return the 
position if any one of the following is Lrne: 
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mid== low&&. AlmidJ == dala 11 Almid] ==data && Almid-lJ <data 

def binarySea1·cbFirstOccurrcnce(A, target) : 
if A==None or len(A)==O: 

return -1; 
high=lcn(A)- 1 

low = 0 
m = 0 
lastFound = -1; 
while( 1 ): 

if (low> high ): return lastFound 
m = (Iow+high)/2 
if (Alm! == target): 

lastFound = m; high = m- 1 
if ( A{mj < target): low = m+ l 
if ( Alm! > target): high = m-1 

return m 
A= IS. 6, 9, 12, 15, 21, 21, 34, 45, 57, 70, 84J 
print binarySearch FirstOccurrence(A,21) 

Time Complexity: O(logn). 

Searc hing 

Problem-47 Given a sorted array II of 11 clements, possibly with duplicates. Pind the index of the last 
occurrence of a number in 0(/0911) time. 

Solution: To find the last occurrence of a number we need Lo check for the following condition. Return the 
position if any one of the following is true: 

mid == high && Al midi == data 11 Al midi = data&&. Ajmid+ 11 >data 

def binarySearchLastOccurrence(A, taJ"get): 
if A==Nonc or lcn(A)==O: 

return -1; 
high=len(A)-1 

low=O 
m = O 
lastFound = - 1; 
while( 1 ): 

if ( low> high ): return lastFound 
m = (low+high)/2 
if ( Alml == target ): 

lastFound = m; low = m+ 1 
if ( Alml < target): low = m+ 1 
if ( Alm] > target): high = m- 1 

return m 
A = [5, 6, 9, 12, 15, 2 1, 21, 34, 45, 57 . 70, 84] 
print binarySearchLastOccurrence(A,21) 

Time Complexity: O(logn). 

Problem-48 Given a sorted a rray of n clements, possibly with duplicates. Find the number of occurrences of 
a number. 

Brute Force Solution: Do a linear search of the a rray a nd inc rement count as and when we find the element 
data in the a rray. 

def LincarSearchCOunt(A, data): 
count= 0 
for i in range (0, lcn(A)): 

if(AliJ ==data): 
cou nt += 1 

return count 

A= f7,3.6,3,3,6,7] 
print LinearSearchCOunt(A, 7) 

Time Complexity : O(n). 

Problem-49 Ca n we improve the time complexity of Problem-48? 
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Solution: Yes. We can solve this by using one binary search call followed by another sma ll scan. 

Algorithm: 
• Do a binary search for the data in the array. Lcl us assu me its position is K. 
• Now traverse towards the left from I< a nd count the number of occurre nces of daw. Le t this count be 

le ftCount. 
• S imilarly, traverse towa rds right a nd count the numbe r of occurrences of data. Lcl this counl be 

ri9/itCou11t. 
• Tota l number of occurrences = le ftCou11t + 1 + right.Count 

Time Complexity - O(logn + S) where S is the number of occurre nces of data. 

Problem-50 ls there any alternative way of solving Problcm-48? 

Solution: 

Algorithm: 
• Find firs t occurrence o f datn a nd cu ll its index as firstOccurrence (for a lgorithm refer to Problcm -46) 
• Find last occurre nce of data a nd call its index as /astOccurre11ce (fo r a lgori thm refer to Problem-4 7) 
• Return lastOccurr-e11ce - f irstOccurrence + I 

Time Complexity = O(logn + logn) = O(logn). 

Problem-51 What is the next numbe r in the sequence 1, 11, 21 a nd why? 

Solution: Read the given number loudly. This is just a fun problem. 

One One 
1'wo Ones 
One two, one one~ 1211 

So the a nswer is: the next number is the representa tion of the previous number by reading it loudly. 

Problem-52 Finding second smallest number effic ienl.ly . 

Solution: We can construct a heap of lhe given cle me n ts using up just less than n comparisons (Refe r to the 
Priority Queues c ha pte r for the algorithm). Then we lind Lhe second s m a llest using log n compa risons for the 
GetMa x() operation. Overall, we gel n + logn + co1L~ ta11l. 

Problem-53 Is Lhere any other solution for Problc.;m-52? 

Solution: Alternatively, split the 11 numbers into groups of 2, perform n/2 comparisons successively to find the 
largest, using a tournament-like method. The first ro und will y ield Lhc maximum in 11 - l compa risons. The 
second round will be performed on the winners of the first round and the ones that the maximum popped. This 
will yield lo9n - 1 comparison for a total of n + log11 - 2. The above solution is called the tournament problem. 

Problem-54 An eleme nt is a m ajority if it a ppears more than n/2 times. Give an a lgorithm takes an array of 
n element as a rgument and identifies a majority (if it exists ). 

Solution: The basic solution is to have two loops and kcc.:p track o f the maximum count for a ll diffe rent 
clements . If themaxirnum count becomes greater than n/2. then break the loops a nd return the.: c lem ent ha ving 
maximum count. If m aximt1m count doesn 't become more than 11/2, then the majority ele ment doesn't exis t. 

Time Complexity: O(n2). Space Complexity: 0(1). 

Problem-55 Can we improve Problcm-54 time complexity to O(nlo9n)? 

Solution: Using binary search we can achieve this. Node o f the Binary Search Tree (used in this approach) will 
be as follows. 

class TreeNode(object): 
def _ init_ (sclf, value): 

self.data = value 
self.left= None 
self.right = None 
self.count = None 

Insert elements in BST one by one a nd if an c lement is a lready present then inc reme nt the count of the node . Al 
any stage, if lhe count of a node becomes more tha n 11./2, then return. This method work::; well for the cases 
where n/2 + 1 occurrences of Lhc majority element arc pre::;enl al the s ta rt of the a rn1y, for example 
{1, 1.1.1.1. 2. 3, a nd 1). 

Time Complexity: If a binary search tree is usc.:d then wors t. lime complexity wi ll be 0(112 ). If a bala nccd -b ino1y 
search tree is used then O(nlogn ). S pace Complexity: O(n). 

11.11 Searching: Problems & Solutions 327 



Data Structure and Algorith mic Thinking with Python 

Problem-56 Is there any other of achieving O(nlogn) complexity for Problcm-54? 

Solution: Sort the input array and scan the sorted array to find the majority e lement. 

Time Complexity: O(nlogn). Space Complexity: 0(1). 

Problem-57 Can we improve the complexity for Problcm-54? 

Searching 

Solution: If an clement occu rs more than n/2 times in A then it must be the med inn of 11. But, the 1·evcrsc is not 
true, so once the median is found , we must check to sec how ma ny times it occurs in A. We can use linear 
selection which takes O(n) Lime (for algorithm, refer to Selectio11 Algorithms chapter). 

int CheckMajority(int A[]. in n) l 
1) Use linear selection to fmd the median m of A. 
2) Do one more pass through A and count the number of occurrences of m. 

a. If m occurs more than 11/2 times then return true; 
b. Otherwise return fa lse. 

Problem-58 Is there any other way of solving Problem-54? 

Solution: Since only one element is repeating, we can use a simple scan of the input array by keeping track of 
Lhe count for the elements. If the count is 0, then we can assume that the clement visited for the first time 
othenvisc that the resultant clement. 

def majorityElement(A): 
count= 0 
element= -1 
n = len(A) 
if n == 0: 

re Lum 
for i in range(O, n- 1 ): 

if(count == 0) : 
element = Al ii 
count= 1 

elif(element == Alil): 
count+= 1 

else: 
count-"' 1 

return element 

A= [7,3,2,3,3,6,3j 
print majorityElement(A) 

Time Complexity: O(n). Space Complexity: 0(1). 

Problem-59 Given an array of 2n clem ents of which 11 c lements arc the same and the remaining 11 clements 
are a ll different. Find the majority clement. 

Solution: The repeated clements will occt1py half the array. No matter what arrangement it is, only one of Lhc 
below will be true: 

• All duplicate elements will be al a relative distance of 2 from each other. Ex: n, 1, n, 100, n, 54, n ... 
• At least two duplicate elements will be next to each other. 

Ex: 11, n, I, 100, n, 54, 11, .. .. 

11, 1, n, n, 11, 54, 100 .. . 
1, 100, 54, n, n, n, n .. .. 

In worst case, we will need two passes over Lhe array: 
• First Pass: compare l\[i] and l\[i + 11 
• Second Pass: compare A[il and l\[i + 2] 

Something will match and that's your clement. This will cost O(n) in time and 0(1) in space. 

Problem-60 Given an array with 2n + 1 integer elements, n elements appear twice in arbitrary places in the 
array and a single integer appears only once somewhere inside. Find the lone ly integer with O(n) operations 
and 0(1) extra memory. 

Solution: Except for one clement, all clements arc repcu tcd. We know that I\ XOR I\ = 0. Bused on this if we XOU 
a ll the input c lements then we get the remaining c lement. 

def singleNumber(A): 
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i = res =O 
for i in range (0, len(A)): 

res = res " A[.i] 
ret-um res 

A= [7,3,6,3.3,6, 7] 
print singleNumber(A) 

Time Complexity: O(n). Space Complexity: 0(1). 

Searching 

Proble m -61 Throwing eggs from a n n -story building: Suppose we have an n story building and a number 
of eggs. Also assume that a n egg breaks if il is thrown from floor F or higher, a nd will not break olhenvise. 
Devise a strategy to determine floo r F, while breaking O(logn) eggs. 

Solution: Refer to Divide and Conquer chapter. 

Proble m -62 Local m inimum of a n array: Given an array 11 of 11 distinct integers, design an 0(10911) 
a lgo1ithm to find a local minimum: an index i such that 11 Ii - l I < 11[i] < 11 [i + 1 J. 

Solution: Check the middle value 11(11/2], and two neighbors Ajn/2 - 11 and A[n/2 + 1]. If A[n/2] is local 
minimum, stop; othen vise search in half with smaller neighbor. 

Problem-63 Give an 11 x 11 array of ele ments such that each row is in ascending order and each column is in 
ascending order, devise a n 0(11) a lgorithm to determine if a g iven element x is in the array. You may assume 
a u e lements in the n x n array arc distinct. 

Solution: Let us assume lhat the given matrix is Ajn J111 ]. Start with the last row, first column jor first row, last 
column!. If the clement we arc sea rching for is greate r than the clement at A[ll[n]. then the first colum n can be 
eliminated. If t he search clement is less than the clement at 11[1Jln], then the last row can be completely 
eliminated. Once the first column or the last row is e liminated, start the process again with the left-bottom end 
of the remaining array. In lhis algorithm, there would be maximum n c lements that Lhe search e lement would be 
compared with. 

Time Complexity: O(n). This is because we will traverse at most 211 points. Space Complexity: 0(1). 

Problem-6 4 Given a n n x n array a of n2 numbers, give an O(n) a lgorithm lo find u pair of indices i and j 
s uch that AlilUI <Ali + 1]1/]. A(ilfj] < AlillJ' + 11.Alilljl < Ali - l]ljl. and 11 [ilijl < Alillj - 1]. 

Solution: This problem is the sa me as Problem-63. 

Problem-65 Given 11 x n matrix, a nd in each row a ll l's a re followed by O's. Rind the row with the maximum 
number of O's. 

Solut ion: Start with first row, last column. If the clement is 0 then move to the previous column in the sam e row 
and at the same Lime increase the counter to indicate thc maximum number of O's. If the clement is 1 then move 
to the next row in the the same column . Repeat this process unti l your reach last row, first column. 

Ti me Complexity: 0(2n) i:::O(n) (sim ilar to Problem-63). 

Proble m -66 Given a n input a rray of s i"-C unknown, with a ll numbers in the begin ning a nd special symbols in 
the end. Find the index in the array from whe re the specia l symbols s ta rt. 

Solution: Refer to Divide and Conquer chapter. 

Problem-67 Separate even and odd numbers : Given an a rray Al]. write a function that segregates even and 
odd numbers. The functions s hould put a ll even numbers firs t, a nd then odd numbers. Example: Input = 
{12. 34, 45, 9, 8, 90, 3) Output = {1 2, 34, 90, 0, 9, 4.S, 3 J 
Note: In the output, the o rder of numbe rs can be c ha nged. i.e., in the a bove example 34 can come before '12, 
a nd 3 can come befo re 9. 

Solution: The problem is very s imila r to Separate O's and I's (Problem-68) in a n a rray, a nd both problems are 
variations of the famous Dutch national flag problem. 

Algorithm: The logic is similar to Quick sort. 
1) Initialize two index variables left and right: left = 0, right = n - 1 
2) Keep inc rementing the left index until you sec an odd number. 
3) Keep decrementing the right inclcx until youe sec un evcn number. 
4) If left < right thcn s wap 11[/cltl and 11[r(1Jhl l 

def separateEvenOdd(A): 
lefl = O; right = lea(A)-1 
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while(left < right): 
while(A!leftJ%2 = 0 and left< righl): 

left+= 1 
while(Alrightj1Yc12 == 1 and left< right): 

right -= I 
if(lcft < right): 

A!leftJ. Alrightl - Alright], Alleft] 
left+= I 
right -= I 

A= [12, 34, 45, 9, 8, 90, 3) 
separateEvenOdd(A) 
print A 

Time Complexity: O(n). 

Searching 

Problem-68 The following is another way of s truc turing Problem-67, but with a s light difference. 
Separate O's and l's in an array: We are given an array of O's and I 's in random order . Separate O's on the 
le ft side and I's on the right side of the a rray. Traverse the array on ly once. 
Input array = [O, 1, 0, 1, 0, 0, 1, I, 1, OI Output array = 10, 0, 0, 0, O, l, 1, 1, I, 1) 

Solution: Counting O's or l's 

I. Count the number of O's. Let the count be C. 
2. Once we have the count, put C O's al the beginning and 1 's al the remaining 11 - C positions in the array. 

Time Complexity: O(n). This solution scum; the a rray two times . 

Problem-69 Can we solve Problem-68 in one scan',> 

Solution: Yes. Use two indexes to traverse: Maintain two indexes. In itialize Lhc firi:;t index lefl as 0 and the 
second index right as 11 - 1. Do the following whi le left < right: 

1) Keep the incrementing index left while the re arc Os in it 
2) Keep the decrementing index r ight while there are ls in it 
3) If left< right then exchange /\lle{lj and lllrightJ 

def scparateZerosAndOncs(A): 
left = O; right = len(A)- 1 
while(.left < right): 

while(Alleftl == 0 and left< righl): 
left+= I 

while(A[rightl == 1 and left< right): 
right-= 1 

if(lefL < right): 
A[l<:fLJ, A[righq = Afrigh Lj, Aflcftl 
left+= I 
right -"' I 

A= 11, 1, 0, 0, l, 0, lj 
separateZcrosAndOncs(A) 
print A 

Time Complexity : O(n). Space Complexity: 0(1). 

Problem-70 Sort an array of O's, l's and 2's [or R's, G's and B's): Given a n a rray All consisting of O's, l's 
and 2's, give a n a lgorithm for sorting /\ I I.The nlgoriLhm should put a ll O's first, then a ll l's a nd finally a ll 2's 
al Lhe end. Example Input = {0,1,1,0,1,2,1,2.0,0,0,1), Output = {0,0,0,0,0, l, 1, 1, 1, l, 2,2} 

Solution: 

def sortingO 12sDutchl71agProblcm(A): 
n = le n(A) 
zero = O; two = n- l 
# Write 1 al the beginning; 2 at the end. 
cur = 0 
while cur <= two: 

print cur, A, zero, two 
if AlcurJ == 0: 

if cur> zero: 
Alzeroj, AfcurJ = Afcurl, Alzerol 
zero+= 1 
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else: # TRICKY PART. 
# cur === zero and A[curJ == A[zerol == 0 
c ur += I 
zero + l 

elif A[curj 2: 
if cur< two: 

A[twoj, A[c url - A[curl, A[two) 
two _ .. I 

else: 
break 

else: 
cur+"' l 

print A, '\n' 
return A 

sortingO 12sDutchFlagProblcm(l2,0, L ,0,2, J ,2,2, I , 11) 
sorting012sDulchFlagProblcm(l2, 1,2, 1,2,0ll 
sorting012sDutchFlagProblcm(IO,O, 1,2,2,2,0,0,01) 

Time Complexity: O(n). S pace Complexity: 0(1). 

Searching 

Problem-71 Maximu m d ifference between two e lements: Given an array AIJ of integers, find out the 
difference between any two clements s uch that the la rger clement appears after the s maller number in AIJ. 
Examples: If array is [2,3,10,6,4,8,1) then returned vnlue shou ld be 8 (Difference between 10 and 2). lf a rray 
is [7,9,5,6,3,2 [then the returned value should be 2 (Difference between 7 und 9) 

Solution: Refer to Divide and Conquer chapter. 

Problem-72 Given an array of 101 clements. Out of I 0 I clements, 25 clements are repeated twice, 12 
clements arc repeated 4 times, and one element is repeated 3 times. Pind the clement which repeated 3 
times in 0(1 ). 

Solution: Before solving this problem, let us consider the following XOU operation property: a XOR a= 0. That 
means, if we apply the XOR on the same clements then the resu lt is 0. 

Algorithm: 
• XOR a ll the c lements of the given a rray and assume the result is A. 
• After this operotion, 2 occuiTcnces of the number which appeared 3 times becomes 0 a nd o ne 

occurrence remains the samc. 
• The 1.2 elements that a re a ppearing 4 Limes become 0. 
• The 25 e leme nts lha t a re a ppearing 2 times become 0. 
• So jus l XOl?'in,g nil the clements gives Lhc rcsull. 

Time Complexity: 0(11), bccuu::;e we un,: doing on ly one scan. Spncc Complexi ty: 0( 1). 

P roblem-73 

Solution : 

Given n number n, g ive an a lgorithm for find ing the number of lru il ing zeros inn!. 

def numberOITrailingZCrosOfFacLorialNumber(n): 
count "' 0 
if(n < 0): 

return - 1 
i :: 5 
while n/i >O: 

count-+ • n / i 
i* 5 

return count 
print numbcrOITrailingZerosOfFactmialNumber( l 00) 

Time Complexity: 0(10911). 

Pro ble m -74 Given an array of 211 integers in the following formn t a I a2 a3 ... an bl b2 b3 ... bn . Shuffle the 
array to u I bl a2 b2 a3 b3 ... an bn without a ny extn.i memory. 

Solut ion: A brute force solution involves two nested loops to rolnle the clements in t he second half of the a rTay 
to the left. The first loop runs 11 limes to cover a ll c lements in the second hu lf of the array. The second loop 
rota tes the ckmcn1s to the left. Note thul the start index in the sc<'ond loop depends on which c leme nt wc a rc 
rotating and the end index depends o n how many positions we need to move to the left. 
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def rearrangeArrayElementsAl B 1 A282(A): 
n = len(A)/ /2 
i =O; q = 1 ; k = n 
while (i<n): 

j "' k 
while j > i+ q: 

ALiJ. ALi- 1 J .., ALi- 11. ALiJ 
j -= l 

i += l; k += l ; q += l 
A = ll,3,5,6,2,4,6,8) 
rearrangeArrayElementsAl 81 A282(A) 
print A 

Time Complexity: O(n2 ). 

Proble m -75 Can we improve Problem-74 solution·? 

Searching 

Solution: Refer to the Divide and Conquer chapter. A better solution of Lime complexity O(nlogn) can be achieved 
using the Divide and Conc11r technique. Let us look at a n example 

1. Stare with the array: al a2 a3 a4 bl b2 b3 b4 
2 . S plit the array into two halves: a 1 a2 a3 a4: bl b2 b3 b4 
3. Exchange elements around the center: exchange a3 a4 with bl b2 and you get: a1 a2 bl b2 a3 a4 b3 b4 
4. Split (11 a2 b I /JZ into a1 a2: b1 b2. Then split a3 n4 b3 h4 into a3 a4: b3 b4 
5. Exchange c lements around the center for each subarray you get: a I bl a2 b2 and a3 b3 a4 b4 

Note that this solution only handles the case when 11 = 21 where i = 0, 1, 2, 3, etc. In our example n = 22 = 4 
which makes it easy to recu rsively split the array into two halves. The basic idea behind swapping clements 
around the center before ca lling the recurs ive function is to produce smaller size problems. A solution with 
linear time complexity may be achieved if the clements a re of a specific nature. For example, if you can calculate 
the new position of the clement using the value of the clement itself. This is nothing but a hashing technique . 

Problem-76 Given a n a rray All, find lhc maximum j - i s uch that ALil > Ajij. For example, Input: {34, 8, 10, 3, 
2, 80, 30, 33, l} and Oulpul: 6 (j = 7, i "' I). 

Solution: Brute Force Approach: Run Lwo loops. In lhc ouLcr loop, pick clements one by o ne from the left. In 
Lhc inner loop, compa re lhc pic ked clement with the c lements i>tarting from the right side. Stop the inner loop 
when you sec an clcmcnl greater thnn the picked clement a nd keep upda ting Lhe maximum j - i so far. 

def maxlndexDiff(A): 
maxJ = maxl = maxDiff"' - I 
n = lcn(A) 
for i in range(O,n): 

j "'n- 1 
wh ile(j > i): 

if(/\[il > Ali! and maxDiff < (j - i)): 
maxDiff = j - i 
muxl = i;muxJ = j 

j -= I 
return maxDiff, maxl, max.J 

A=j34, 8, 10, 3, 2, 80, 30, 33, 11 
print maxlndexDiff(A) 

Time Complexity: 0(112) . Space Complexity: 0(1 ). 

Proble m -7 7 Can WC improve the complexity or Problcm-76.? 

Solution: To solve this problem, we need to get two optimum indexes of All : left index i and right index j . For an 
clement Aji], we do not need to consider Ali! for Lhc left index if there is a n clement smaller than A[i) on the left 
side of A[i]. Similarly, if there is a greater c lement on the right side of ALiJ then we do not need to consider this j 
for the right index. 

So we construct two auxil iary Arrays LcftMins[J a nd RighlMaxslJ s uc h that LcftMins[i] holds the smallest 
clement on the left side of Ali! including Ali!. and RightMaxsLil holds the greatest clcmcnt on the right side of ALi) 
inc luding ALJI. After construcling these two auxiliot ry u rray:;. we traverse both these arrays fro m left to right. 

While traversing LdtM insll a nd RightMaxsll, if we see that LcftMinsliJ is greater than RightMaxsLJI, then we must 
move ahead in LcftMinslJ (or do i++) because a ll elements on the left of LcftMinslil a re greater than or equal to 
LeftMi.nsfij. Otherwise we must move ahead in RightMaxsLil to look for a g rea ter j- i value. 
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def maxlndcxDifT(A): 
n = lcn(A) 
LcftMins IOl*(n) 
RightMaxs IOl*(n) 
LcftMinslOJ AIOI 
for i in range( l ,n): 

LcftM ins) ii min(A(ij, LcftMins(i-11) 

RightMaxs(n I) - Aln-11 
for j in range(n-2,-1,-1): 

RightMa.xslfl = max(AljJ, RightMaxslj+ l J) 

i = O; j = O; mo.xDiff = -J; 
while U < n and i < n): 

if (LcftMinsji] < RightMa.xsUJ): 
maxDifT .. ma.x(maxDiff, j-i) 
j j + I 

else: 
i "' i+l 

return maxDiff 

A=[34, 8, 10, 3, 2, 80, 30, 33, 11 
print ma.xlndcxOiff(I\) 

Time Compll:xity: 0(11). Space Complexity: O(n). 

Searching 

Problem-78 Oiven nn urruy of clements, how do you check whether the list is pairwise sorted or not"? I\ list is 
considered pairwise sorted if each successive pair of number!'! is in sorted (non-decreasing) order. 

Solution: 

def chcckPairwiscSorted(A): 
n = len(A) 
if(n~•Oornp 1): 

return l 
for i in rangc(O, n- 1,2): 

return l 

1f (A(il > A(i+ 11): 
return 0 

A=l34, 48, I 0, 13, 2, 80, 30, 23) 
print checkPairwiscSortcd(A) 

Time Complexity: 0(11). Space Complexity: 0(1). 

Problem-79 Given an urruy of n c lements, how do you print the frequencies of clements without using extra 
space. Assume ull clements urc positive, editable and less than n. 

Solution: Use 11e,qatim1 technique. 

def frequencyCounter(A): 
pos = 0 
n = len(A) 
whilc(pos < n): 

expcctcdPos = Alpos] - 1 
if(Alposj > 0 and A(expectedPos] > 0): 

Alposj, AlexpectedPosj = AlexpectedPosl,Alposl 
AlexpectedPosl = -1 

clif(Alposl > 0): 

else: 

AlcxpcctcdPos] -= 1 
Alposj c: 0 
pos += 1 

pos += I 
for i in range( l ,n): 

print i ~ I ," -->",abs(A[ij) 

A• 110, 1, 9, 4, 7, 6, 5,5, I, 2, I] 
freq ucncyCou n tcr(A) 
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Array should ha ve numbers in the range p, nl (where n is the size of the array). The if condition (Alposj > 0 && 
A[expectedPos] > 0) means that both lhe numbers at indices pas and expectedPos a re actual numbers in the array 
but not lheir freque ncies. So we will swap them so that the number at the index pos will go to the position where 
it s hould have been if the numbers 1, 2, 3, .... , n are kept in 0, 1, 2, ... , 11 - 1 indices. In the above exa mple input 
a rray, initially pas = 0, so IO at index O will go to index 9 after the swap. As this is the first occurrence of I 0, 
make it to - 1. Note that we arc storing the freq uencies as ncgaLive numbers to differentiate between actual 
numbers a nd frequencies. 

The e lse if condition (/\[pas] > 0) means A[posl is a number and A[expecte<f Posl is its frequency without inc luding 
the occurrence of A[posj. So increment the frequency by 1 (that is decrement by I in terms of negative numbe rs). 
As we count its occurTence we need Lo move lo next pos, so pos + +, but before moving to that next position we 
should ma ke the freque ncy of the number pas+ 1 which corresponds to index pas of ;-,cro, since s uch a number 
has not yet occurred. 

The final else pa rt means the c urrent index pos a lready has the frequency of the numbe r pos + 1, so move to the 
next pos, hence pos + +. 
Time Complexity: O(rr) . Space Complexity: 0(1). 

Problem-SO An, array, A conta ins 11 integers from the range X to Y. Also, there is one number that is not in A 
from the range X to Y. Design an O(n) time algorithm for finding that number. 

Solution: The a lgorith m for finding the number that is not in array A: 

import sys 
def findMissingNumbcrll'mmOivcnRange(A, X, Y): 

n :o lcn(A) 
S = 1-sys.maxint]*(n) 
missingNum .. -sys.maxint 
for l in rangc(O,n): 

S[A[i[-X]=A[i] 
for i in range(O,n): 

if(S[i] ="' -sys.maxint): 
missingNum"' i + X 
break 

return missingNum 
A = llO, 16, 14, 12, 11 , 10, 13,15, 17, 12, 191 
print findMissingNumberFromGivenRangc(A, 10, 20) 

Time ComplexiLy: 0(11). Space Complexity: O(n). 
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SELECTION 
ALGORITHMS 

[MEDIANS] 

12. l What are Selection Algorithms? 

C~IIAr>TER 

12 
~ .¥. 

Seleclio11 algorithm is an algori thm for finding the k 1h smallest/largest number in a list (also called as k 01 order 
stnlislic). This includes finding the minimum, maximum, and median clements. For findingthc k 1h order 
statistic, lhcre a re multiple solulions which provide diffcrenl complexities, and in this chapter we will enum cralc 
lhosc possibililics. 

12.2 Selection by Sorting 
A sclcclion problem can be converted to a sorting problem. In this method, we first sort the input elements and 
then gel the desired clement. It is efficient if we want to perform many selec tions. 

For exumple, let us say we wont to get the minimum clement. After sorting the input clements we can simply 
return the first clement (assuming the array is sorted in ascending order). Now, if we want to find Lhc second 
smallest c lement, we can simply return the second element from the sorted list. 

That means, for Lhe second smallest element we arc not pc rforrning the sorting again. The same is also Lhe case 
with s ubsequent queries. Even if we want to get k 1h smallest clement, just one scan of the sorted list is enough 
to find the clement (or we can return the kih_indexed va lue if the clements a rc in the a rmy ). 

From the ubove disc ussion whut we can say is, with the initia l sorl ing we cun a nswer a ny query in o ne scan, 
0(11). In general, this method requires O(nlogn) lime (for sorli11g)1 where 11 is the length of the input list. Su pposc 

r • • h h . . . "t<>nn 0(1 ) 'l'I . I . d f 1 . . we a rc per.orm111g 11 queries, l en I e average cost per opcrnllon ts JUSl-
11

- ~ 0.1111 • i1s on o ana ys1s 1s 
called cmwrtizccl analysis. 

12.3 Partition-based Selection Algorithm 
For the a lgorithm check Problcm-6. This algorithm is similar to Quick sorl. 

12.4 Linear Selection Algorithm - Median of Medians Algorithm 
Worst-case performance 0(11) 

Best-case performance 0(11) 

Worst-case space complexity 0(1) auxiliary 

Refer to Problem- I I. 

12.5 Finding the K Smallest Elements in Sorted Order 
Por lhc a lgorithm check Problcm-6. This a lgorithm is s imilar lo Quick son. 
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12.6 Selection Algorithms: Problems & Solutions 
Problem-I Pind the largest element in a n array A of si;-,c 11. 

Solution: Sca n the complete array and rcLUrn the largest clement. 

dd FindLargesUnArray(A): 
max = 0 
for number in A: 

if number> max: 
max= number 

return max 

print(l"indLargesllnArray([2, 1,5,234,3,44,7,6,4,5,9, 11, .1 2, 14, 131)) 

Time Complex ity - 0(11). Space Complexity - 0(1). 

Note: Any deterministic a lgorithm that can find the largest of 11 keys by compa rison of keys lakes at least 1t - 1 

comparisons. 

Problem-2 Find the smallest and largest clements in an array II of size n. 

Solution: 

def PindSmallestAndLargestlnArray(A): 
max • 0 
min 0 
for number in A: 

if number > max: 
max= number 

clif number < mjn: 
min =- number 

print("Smallest: %d", min) 
print('' Largest: %d", max) 

l"indSrnalleslAndLargestJnArray([2, 1,5,234,3,44, 7,6,4,5,9, I I, 12, 14, 131) 

Time Complexity - O(n). Space Complex ity - 0(1 ). The worst-case number of comparisons is 2(n - 1). 

Problem-3 Ca n we improve the previous a lgorithms? 

Solution: Yes. We can do this by comparing in pairs. 

def findMinMa:xWithPairComparisons(A): 
ff# for an even-sized Aray 
_max = AIOI 

min = AIOI 
for indx in rangc(O, lcn(A), 2): 

first = Alindxj 
second = Alindx+lj 
if (first < second): 

if first < _min: _min = first 
if second > _max: _max = second 

else: 
if second < _min: _min = second 
if firnt > _max: max = first 

print( min) 
print( max) 

lindMinMaxWithPairComparisons([2, 1,5,234,3,44,7,6,4,5,9, I J , 12, 14, 13, 19]) 

Time Complexity - O(n). Space Complexity - 0(1). 

{

3,. ., ·r . 
-;- - L., 1 n is even 

Number o f compa risom;: ~ 
3 ~ - :. if n is odd 

Summary: 
2 2 

Straightforward compalison - 2(n - I) comparisons 
Compare for min only if comparison for max fails 

12.6 Selection Algorithms: Problems & SoluLions 336 



Data SLructurc and Algorithmic Thinking with Python Selection Algorithms [Medians! 

Bcsl case: increasing order - n - 1 compatisons 
Worst case: decreasing order - 2(n - 1) comparisons 
Average case: 3n/2 - 1 comparisons 

Note: For divide a nd conquer techniques refer lo Divide and Conquer chapter. 

Problem-4 Give an a lgorithm for finding tht: second largest clement in Lhc given input list of clements. 

Solution: Brute Force Method 

Algorithm: 

• Find largest element: needs n - 1 comparisons 
• Delete (disca rd) the largest c lement 
• Aga in find la rgest clement: needs n - 2 comparisons 

Tota l number of comparisons : n - I + 11 - 2 = 2n - 3 

Problem-5 Can we reduce the number of comparisons in Problem-4 solution ? 

Solution: The Tournament method: For s implic ity, assume that Lhe numbers arc dislincl and LhaL 11 is a 
power of 2. We pair U1e keys and compare lhc pairs in rounds until only one round remains. If the input has 
eight keys, there are four comparisons in the first round, two in the second, and one in the last. The winner of 
the last round is lhc la rgest key. The figure below shows the method. 

The tournament method directly applies only when 11 is a power of 2. When this is not the c<isc, we can add 
enough items to the encl of the array lo ma ke the a rray s ize a power of 2. If the lrce is complete then the 
maximum height of the tree is /0911. If we construc t I he comple te binary tree, we need n - J comparisons to find 
Lhe largesL The second largest key has to be a mong Lhe ones t hal were lost in a comparison with the largest 
one. That means, the second la rgest c lement s hou ld be one of the opponents of the la rgest element. The number 
of keys that are lost to the largest key is the he ight of the tree, i.e . logn [if the tree is a complete binary treej. 
Then using the selection a lgori thm to find the la rgest among them, take logn - 1 comparisons. Thus the total 
number of comparisons to find the largest and second la rgest keys is n + lo_qn - 2. 

12 10 5 15 18 12 4 16 

\/ \/ \/ \/ 
12 15 18 16 

~I \!./ 
15~ ~ 

def secondSmallesUnArray(A): 
comparisonCount = 0 
# indexes that are Lo be compared 
idx "' range(O, len(A)) 

# list of knockout ror all elements 
knockout = Ill for i in idxj 

18 

# play tournaments, until we have only one node left 
while lcn(idx) > 1: 

# index of nodes that win this tournament 
idxl = 11 
# nodes in idx odd, if yes then last automatically goes to next round 
odd = len(idx) % 2 
#iterate over even indexes, as we do a paired tournament 
for i in xrange(O, len(idx) - odd, 2): 

firstlndex = idxlil 
secondlndex • idxji+ .I I 
comparisonCount -~· 1. 
ff perform tournament 
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if A[firstJndexJ < Alsecondlndexj: 
# firstlndex qualifies for next round 
idxl .appe nd(firstlndex) 
#acid Alsecondlndcxl to knockout list of firsllndex 
knockou ll firs LI ndexJ .append(/\! second! ndcxJ) 

else: 
idx l..append(second l ndcx) 
knockou ljsccond I ndcx] .append(A! rirstl ndexl) 

if odd== I: 
idx 1 .append(idxl i+21) 

# perform new tournament 
idx = idxl 

print "Smallest e le ment ="', AlidxlOll 
print "Total compa risons=", compa risonCounL 
print "Nodes knocked off by the smallest .... , knockout[idx!OIJ, "\n" 
# compute second smallest 
a = knockoutlidx[OIJ 
if len(a) > 0: 

v= alOI 
for i in xrange(l,len(a)): 

comparisonCount += l 
if v > al iJ: v = al il 

print "Second smallest c lement•", v 
print "Total comparisons=". comparisonCount 

A= 12, 4, 3, 7, 3, 0, 8, 4, 11 , 11 
prin t(secondSmallestI nArray(A)) 

Problem-6 Find the k-smallest clcmcnls in a n a rray S of 11 ele ments us ing partitioning method. 

Solution: Brute Force Approach: Scan th rough the numbers k limes LO have the desired cle ment. This method 
is lhc one used in bubble sort (a nd selection sor t), every lime we find out the sma llest c lement in the whole 
sequence by comparing every clement. In th is method , the sequence has lo be traversed k times. So the 
complexity is 0(11 x k). 

Problem-7 Can we use the sorting technique for ::;olving Problcm -6? 

Solution: Yes. Sort and take the first k clements. 

1. Sort the numbers. 
2 . Pick the first k elements . 

The time complexity ca lcula tion is trivia l. Sorting of 11 numbers is of O(nlo,qri) and picking k clem ents is of O(k). 
Th e total complexity is O(nlo911 + k) = O(nlog11). 

Problem-8 

Solution: Yes. 

Can we use the tree so 1·Li11,q techniq ue for solving Probk:m -6? 

1. lnser·t au the clements in a binary searc h Lrcc. 
2 . Do an lnOrder traversal and print k clcmcnls whic h wil l be the smallest ones. So, we have the k 

smallest clements. 

Th e cost of c reation of a binary search tree with n clements is O(nlogn) a nd t he traversa l up lo k clements is 
O(k). Hence the complexity is 0(11ln,1111 + k) = 0(11/11g11) . 

Disadvantage: If the m 1mbcrs a re sorlccl in descending orde r, we will bc getting u tree which will be skewed 
towa rds t he le ft. In that case, the construction of th e tree will be O + 1 + 2 + ... + (n - l) = 1t(u- t) whic h is 

2 
O(n2

). To escape from this, we ca n keep the tree bn lonccd, so that the cost of constructing the tree will be only 
nlogn. 

Problem-9 Can we improve the tree sorting technique for solving Problem -6? 

Solution: Yes. Use a sma lle r tree lo give the same resu lt. 

1. Toke I.he first k c le ments of U1c sequence Lo c reo le a ba la nced tree of k nodes (this wi ll cost klogl<). 
2. Toke Lhc remuining numbers one by one, a nd 

a. If the number is la rger t ha n the la rgest c le ment of the Lree, return . 
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b. If the number is smaller than the largest element of the tree, remove the largest element of the 
tree and add the new element. This step is to make sure that a smaller element replaces a larger 
clement from the tree. And of course the cost of this operation is logk since the tree is a 
balanced tree of k clements. 

Once Step 2 is over, the ba lanced tree with k e lements will have the smallest k c lements. Thc only rcmnining 
task is to print out the largest clement of the tree. 

Time Complexity: 
1. For the first k elements, we make the tree. Hence the cost is klogk . 
2. For the rest n - k clements, the complexity is O(logk). 

Step 2 has a complexity of (n - k) logk. The total cost is klogk + (n - k) logk = nlogk which is 0(11/09k). This 
bound is aclUally betler than the ones provided earlier. 

Problem-10 

Solution: Yes . 

Algorithm 

Can we use the partitioning technique for solving Problem-6? 

I. Choose a pivot from the array. 
2. Partition the array so that: A[low ... pivotpoint - 1] <= pivotpoint <= A[pivotpoint + 1..high l. 
3 . if k < pivotpoint then it must be on the left of the pivot, so do the same method recursively on the left 

part. 
4. if k = pivolpoinl thcn it must be the pivot. nnd print a ll the elements from low to pivolpoi11l. 

5. if '' > piuotpoi11t t hc;n it must be on the: right of p ivot, so do the same method recursively on the right 
parL. 

The input data can be any itcrablc. The randomization of pivots makes the a lgorithm perform consistenUy even 
with unfavorable data orderings. 

import random 
def kthSmallest(data, k): 

"Find the nth rank ordered clement (the least value has rank O)." 
data = list(data) 
if not 0 <= k < lcn(data): 

raise ValueError('not enough clements for the given rank') 

while True: 
pivot= random.choice(data) 
pcount = 0 
under, over = IJ, n 
uappend, oappend = under.append, over.append 
for elem in data: 

if elem < pivot: 
uappend(elem) 

elif elem > pivot: 
oappend(elem) 

else: 
pcount += 1 

if k < len(under): 
data= under 

elif k < len(under) + pcount: 
retum pivot 

e lse: 
data= over 
k -= len(undcr) + pcount 

print(kthSmallest(l2, 1,5,234,3,44, 7,6,4,5,9, 11, 12, 14,13], 5)) 

Time Complexity: O(n2 ) in worst case os similar to Quicksort. Although the worst case is the same as that of 
Quicksort, this performs much better on the average [O(nlo,qk) - Average casej. 

Proble m -11 Pind the /(/./' -smallest c lement in un a rray S of n clements in best possible wuy. 

Solution: This proble m is s imilar to Problcm-6 and a ll the solutions discussed for Problcm-6 a re valid for this 
proble m. The on ly d ifference is thut in s tead or printing a ll the k elem ents, we print only the k11'elemc nt. We can 
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improve the solution by using the median of medians a lgorithm. Media n is a special case of the selection 
algorithm. The algor ithm Selection(A, k) to find the krh s ma llest clemen t from set A of n elements is as follows: 

Algorithm: Selection(A, k) 

I . Pa rtition ;\ into ceil ('en,q~h(A)) groups, with each group ha ving five items (the last group may have fewer 

items). 
2. Sort each group separately (e.g., insertion sort). 

3. Pind Lhe median of each of the~ groups a nd store the m in some array (let us say tl'). 
5 

4. Use Selection recursively lo find the media n of A' (media n of medians). Let us asay the media n of 
media ns is m. 

/en.gch(A) 

m = Selection(A'.~); 

5. Let q = II d c rncnts of 11 s maller than 111; 

6. lf(/l == I/ + J) 
return m; 

/ " Pa rtition with pivot */ 
7. Else pa rtition A into X and Y 

X = {items smaller than mf 

• Y = (items larger than m} 

/* Next,form a s ubproblem * / 
8. l f(k < q + 1) 

re turn Sclcction(X, k); 
9. Else 

return Selcetion(Y, k - (q+ l)); 

Before developing recurre nce, let us consider the representa tion of the input below. In the figure, each c irc le is 
a n ele men t a nd eac h colLJmn is grouped with 5 elements . The black c ircles indicate the median in each group of 
5 e lements. As discussed, 1:>ort each column using cons t.an l lime insertion sort. 

Media n of 
Media ns 

0 

0 

• 
0 

0 

0 0 

0 0 

• • 
0 0 

0 0 
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Afler sorting rearrange the 
medians so thal all 
medians will be in 
ascending order 

0 0 

0 

0 

0 

0 

0 0 0 
Median of Medians 

Items>~ Gray 

0 0 
In the ligurc a bove the gray circled item is the median of medians (let us call this 111). It ca n be seen that at least 
1 /2 of 5 c lement group medians S m. Also, these 1/2 of 5 clement groups contribulc 3 clcmcnls Lhal arc ~ m 
except 2 groups [lasl group which may contain fewer than 5 clements, and other group which contains m]. 
Similarly, at least 1/2 of 5 element groups contribute 3 elements that are 2: mas s hown above. l/2 of S element 
groups contribute 3 clements, except 2 groups gives: 30 .!.I !!. ll-2) s:: ~ - 6. The remoininiz a rc 11 -

311 
- 6 "'

711 + 6. 
2 5 I 0 10 10 

s· 711 6 . h 311 d 'd 111 r mcc Iii+ 1s greater t a n 10 - 6 we nee to cons1 e r iii+ 6 1or worst. 

Components in recurrence: 

• In our selection algorithm, we choose m, which is the median of medians, to be a pivot, and partition A into 
two sets X and Y. We need to select the set which gives maximum si'l,e (to get the worst case). 

• The Lime in function Selection when called from procedure partition. The number of keys in the input to this 
call to Selection is i· 
The number of comparisons required to partition the a rray. This number is /c11,qLli(S) , let us say n. 

We have established the following recurrence: T(n) = T (%) + 8(11) .. Max(T(X). T(Y)} 

From the nbove discussion we have seen that, if we select median of medians m as pivot, the panition sizes arc: 
311 

- 6 nnd 
7

" + 6. If we select the maximum of these, then we get: 
10 10 

7'(11) Tm + 8(11) + T (?a+ 6) 
"" rG) + 8(11) + r(~) + O( I) 

7n n 
S ciii + c-;; + 0(11) + 0(1) 

Pinully, T(11) = 0(11). 

CHUNK SIZE • 5 
def kthByMedianOfMcdian(unsortedList, k): 

if lcn(unsortcdList) <= CHUNK.....SIZE: 
return gct.Jrth(unsortedList, k) 

chunks ... spliUntoChunks(unsortedList, CHUNK_SIZE) 

medians list = II 
for chunk in chunks: 

median chunk - gel median(chunk) 
medians list.append(median chunk) 

size lcn(mcdians_list) 
mom = kthByMcdianOfMedian(medians lisL size / 2 + (size % 2)) 
smaller, larger = splitListByPivot(unsorted.List, mom) 
valucsBcforeMom = len(smaller) 

ifvaluesBeforcMom == (k - 1): 
return mom 

elif valucsBcforcMom > (k - 1 ): 
return klhByMcdinnOfMcdian(smaJlcr, k) 

\llNC: 
return kthByMcdianOfMcdia11(largcr, k - vaJuesBcforcMom - 1) 
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Problem-12 In Problem- I I, we divided Lhe input a rray into groups of 5 elements. The constant S play an 
importanl pa rt in the analysis. Ca n we divide in groups of 3 which work in linear time? 

Solution: In this case the modification causes lhc routine to take mo re lhan linear lime. In the worst case, at 
least ha lf of the ril media ns found in the grouping step a rc greater Lha n Lhc media n of medians m, but lwo of 

those groups contribute less than two elements la rger than nL So as a n upper bound, the number of clcme nls 
larger lhan the p ivolpoinl is al lea s t: 

ztr~.'.:·n-2) 2: ~-4 
~I 2 3 :1 

Likewise this is a lower bound. Thus up to 11 - (~ - 4) = 211 + 4 elements arc fed into the recursive call to Select . 
3 3 

The recursive step that finds lhe median o f medians runs on a pro blem of s izer~ l, a nd consequently the t ime 

recu rre nce is : 
T(n ) =rd i lJ+T(2n/3 + 4) +8(11). 

. h "( ) . . II . . I d h '1'(211 4) T(211
) 27'(11

) cl Assuming l al I 11 is monoLonicu y 111c reas111g, we may cone u c L at "'J + 2: 3 2: 3 , a n we cu n 

say lhe upper bound for this as T(n) 2: 3'/'(i) + 0(11), which is 0(11/ogn). Therefore, we cannot select 3 as the 

group size. 

Problem-13 As in Problern-12, can we use groups of size 7? 

Solution: l'ollowing a similar reasoning, we once more modify lhe routine, now u sing groups of 7 ins tead of 5. 
In the worst case, al least hn lr the I ~ I mcdiuni;; found in the grouping s lep ore greater than lhe median of 

mcdions m, bul two of those groups contribute less Lhan four elcmcnl s la rger lhan 111. So as an upper bound, 
the num ber of e leme nts la rger lhan the pivolpoinl is al least: 

4Q I /2 f n/7 11-2) 2: 
2
;

1 
- 8. 

Likewise lhis is a lower bound. Thus up w 11 - (
2
;

1 
- 8) = 5; 1 + 8 elements a re fed into the recursive call to Select. 

The recursive step that finds the media n of medians runs on a problem of size f~ l, and consequently the time 
7 

recu rre nce is 
T(n) = T(f !! l) + T(~ + 0) I· 0(11) 

7 7 

'1'(11) $ Lf !! I+ c(~ I- U) 1- 0(11) 
7 7 

II 511 
Sc 7 + c7 + He+ m1, aisaco11sta11L 

ll 
= Cll - c7 + WI + 9c 

11 
= (a + c) 11 - (c7 - 9c). 

Th is is bou nded above by (a + c) 1t provided that c~ - 9c ;::: 0. Therefore, we can s elect 7 as the group size. 

Problem-14 Given two arrays each con tain ing 1t sorted e lements, g ive a n O(logn)- Lime a lgorilhm to find the 
median of a ll 211 c lcmcnls. 

Solution: The simple solution lo this problem is to me rge the two lists a nd then take the average of the middle 
two e le ments (note the union a lways contains a n even numbe r of va lues). But, the merge would be 8(n), so thal 
doesn 't satisfy the problem stateme nt. To gel /0911 complexity, let median/\ and media118 be the media ns of the 
rcspeclive lists (which can be easily found since both lists are sorted). If media11A == medianB, then that is the 
overall median of the union and we a rc done. Otherwise, the m edian of lhc union must be between m edian/\ a nd 
medianB. S uppose that medianA < media118 (the opposite case is cnlircly s imila r). Then we need to find the 
mecliun of lhe union of the following two scls: 

{x ln II I x >= medic.mil} (x in IJ Ix <= median fl) 

So, we can do this recursive ly by resetling lhe boundaries o f lhc two a rrays . The a lgorithm tracks both a rrays 
(whic h a rc sorted) using two indices. These indices are used to access a nd compare the median of both a rrays to 
find where the overall median lies. 

def findKthSmallest(A, B, k): 
if len(A) > len(B): A, 8 = 8, A 
I# slepsA = (cndlndex + bcginlndcx_as_O) / 2 

sLcpsA (min(lcn(AJ. k) - 1 )/ 2 
# stcpsB .. k - (stepsA + I) - I for the 0 -based index 
stepsB = k - slepsA - 2 
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II Only array B contains elements 
if len(A) == 0: return B(k-1 I 
II Both A and 8 contain elements, and we need the smallest one 
elif k ..... 1: return min(AfOI, BIOi) 
# The median would be either AjstepsAI or BlstepsBj, while AlstcpsAI and 
II BlstcpsBI have the same value. 
elif AlstcpsAI •• BlstepsBJ: return AlstcpsAI 
II The median must be in the right part of B or left part of A 
elif AlstcpsAI > BlstepsB]: return findKthSmaUest(A, B!stepsB+l:I, k-stcpsB-1 ) 
It The median must be in the right part of A or left part of 8 
else: return findKthSmallest(AlstepsA+ l :j, 8, k-stepsA-1) 

def findMcdianSortedArrays(A, B): 
1# There must be at least one clement in these two arrays 
assert not(len(A) === 0 and lcn(B) a= 0) 

if (len(A)+len(B))%2=<= I: 
II There are odd number of clements in total. The median the one in U1e middle 
return findKthSmallest(A, B, ncn(A)+le n(B))/2+ 1) * 1.0 

else: 
II There arc even number of clements in total. The median the mean value of the 
ff middle two clements. 
return ( findKU1Smnllcst(A, B, (lcn(A)+len(B))/2+1) + findKthSmollest(A, B, (len(A)+len(B))/2)) / 2 .0 

A • 1127, 220, 246, 277, 32 l, 454, 534. 565, 933J 
B = 112, 22, 24, 27, 32, 45. 53, 65, 931 

print(findMcdianSortcdArrays(A.B)) 

Time Complexity: O(logn), since we arc reducing the problem sir.c by half every time. 

Problem-15 Let A and B be two sorted arrays of n clements each. We can easily find the k 1
h smallest clemcnL 

in A in 0(1) time by just outputting Alkl. Similarly, we can easily find the k 1
h smallest clement in 8. Give an 

O(logk) time nlgorithm to find the k1h smallest element overall (i.e .. the k11
' smallest in the union of A and 11. 

Time Complexity: O(logn), since we arc reducing the problem size by half every time. 

Problem-16 Let A a nd IJ be two sorted arrays of n c lements each. We ca n cosily find the kth smallest element 
in A in 0(1) Lime by just outputting /lfkl. Similarly, we can easily find the I<"' smallest element in B. Give a n 
O(logk) t imc a lgori thm to find the 1€ 01 ::;mallcst c lemen t ovcmll l i.e., the f<ll• sma llest in the union of A and 8. 

Solution: It's just nnothcr woy of aski11µ; Problcm- 14. 

Proble m -17 Find the k smallest c lements in sorted order: Given o set of 11 c lements from a tota lly-ordered 
domain, find the k smallest c..:lcments, and list them in sorted order. /\nnlyl\c the worst-case running time of 
the best implementation of the approach. 

Solution: Sort the numbers, and list the k sma llest. 

'f'(n) = Time complexity of sort + Listing k smallest clements = S(nlogn) + 0(11) - 0(nlogn). 

Problem-18 For Problem- I 7, if we follow the approach below, then wh::it is the complexity? 

Solution: Using the priority queue data structure from heap sort, construc l a min- heap over the set, and 
perform cxtracL-min k times. l~cfer Lo the Priority Quc11cs (lleavs) chapter for more dctnils. 

Problem-19 For Problem-17, if we follow the approach below then whaL is the complexity? 
Find the k11'-smallcst clement of the set, par tiUon around this pivot clement, and sort the k smallest 
clements. 

Solution: 

'/'(11) - Time complexity of ktlt - smallest + Fi11cli11g piunl + Sorti119 prefix 
= 0(11) I 0(11) + €>(klngk) - €>(11 + klo.'}k) 

Si nce, k :S 11, this approach is better than Problem- 17 and Problcm- 18. 

Proble m -20 Find k ncorcsl neighbors to the median of n distinel numb(·rs in 0(11) time. 
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Solution: Let us assume that Lhc array elements are sorted. Now find the median of n numbers and call its 
index as X (since array is sorted, median will be at i location). All we need to do is select k clements with the 

smu llest absolute differences from the median, moving from X - l to 0, and X + 1 ton - 1 when lhe median is at 
index ni. 

Ti me Complex ity: Each ::;tep lakes 0(11) . So the lot.al time complcx ily of lhe a lgori thm is E>(n). 

Problem-21 Is there any other way of solving Problem-20? 

Solution: Assume for simplicity that n is odd and k is even. If set A is in sorted order, the median is in position 
11/2 and the k numbers in A that are closest lo the median arc in positions (n - k)/2 through (n + k)/2. 

We first use linear time selection to find the (n - k)/2, n/2, and (n + k)/2 elements and then pass through set A 
to find the numbers less than the (n + k)/2 element, greater tha n the (n - k)/2 element, and not equal to the n/ 
2 c lemenl. The aJgorithm takes O(n) Lime as we use Linea r time sclcclion exactly three times nnd traverse the 11 

numbers in A once. 

Problem-22 Given (x, y) coordinates of n houses, where.: shou ld you build a roud purullel to x-axis to 
m in imize the construction cost of building driveways? 

5 

2 

7 

10 
8 6 

Solution: The road costs nothing to build. l l is the driveways tha t cost money. The driveway cost is proportional 
to its distance from the road. Obviously, they will be perpendicular. The solution is to put the street at the 
median of the y coordinates. 

Problem-23 Given a big file containing billions of numbers, find the maximum 10 numbers from that file. 

Solution: Refer to the Priority Queues chapter. 

Problem-24 Suppose there is a milk company. The compa ny collects milk every day from a ll its agents. The 
agents arc located at different places. To collect lhc milk, whut is the best place to start so that the least 
amoun t of total distance is travelled? 

Solution: Star ling al the mecliun red uces the total distance travelled because it is the p lace which is at the 
center of all the places. 
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CIIAl'TER 

SYMBOL TABLES 13 

13.1 Introduction 
Since childhood, we a ll have used a dictiona ry, and ma ny of us ha ve a word processor (say, Microsoft Word) 
which comes with a spell c hecker. The spell c hecker is a lso a dictionary but limited in scope. There a rc many 
real lime exa mples for dictionaries a nd a few of the m a rc: 

• Spell checker 
• The data dictionary found in database ma nagement applications 
• Symbol tables generated by loaders, assemblers, and compilers 
• Routing tables in networking components (DNS looku p) 

In computer science, we generally use Lhc te rm 'symbol table' rather than 'd ic tionary' wht:n referring to the 
abstract dala type (ADT). 

13.2 What are Symbol Tables? 
We can define the symbol table as a data structure that associates a value wiLh a key. It supports the fo llowing 
operations: 

• Sea rc h whether a particular name is in the table 
• Gel Lhe attributes of that na me 
• Modify the attributes of that name 
• Insert a new na me a nd its attributes 
• Delcie a na me a nd its a ttributes 

There ure only three basic operations on symbol tables: searching, inserting, and deleting. 

Example: DNS lookup. Let us assume that the key in this case is the URL and the value is a n IP address. 

• Insert URL with specified IP address 
• Given URL, find corresponding IP address 

Kev[ Website I Value [IP Address] 

www.CareerMonks.com 128.1 12. 136. 1 I 

www.Authorslnn.com 128.112.128.15 

www.Authlnn.com 130.132.143.21 

www.klm.com 128.103.060.55 
www. Can.:erMonk.com 209.052.165.60 

13.3 Symbol Table Implementations 
Before imple menting symbol ta bles, let us enumera te the po:-;sib lc implcmc nLnlions. Symbol wbles can be 
imple mented in ma ny ways and some of the m urc lis ted bt:low. 

13.1 Introduction 345 



Datn S truc LUrc and AlgoriLhmic Thinking wilh Pylhon Symbol Tables 

Unordered Array Implementation 
With Lhis method, just maintaining a n array is enough. lt needs O(n) time for sea rching, insertion and deletion 
in llw worst case. 

Ordered [Sorted] Array Implementation 
In 1his we m:.iintain a sorted array of keys a nd values. 

• Slore in soricd order by key 
• keyslil = i1h largest key 
• values[i) = value associaLed wiLh ;rh largest key 

Since the clements are sorlcd und stored in a rrays, we can use a simple binary search for finding an clement. It 
tokes 0(/0911) time for searching and O(n) time for insertion and dclelion in the worst case. 

Unordered Linked List Implementation 
,Jusl maintaining a linked lisL with Lwo duLa values is enough for lhis method. It needs O(n) Lime for searc hing, 
insertion and deletion in the worst case. 

Ordered Linked List Implementation 
In this method, while inserting the keys, ma intain the order of keys in the linked list. Even if the list is sorted, in 
the worst case iL needs O(n) time for sen rching, insertion and deletion. 

Binary Search Trees Implementation 
Refer lo Trees chapter. The advantages of this melhod are: iL docs nol need much code and it has a fast search 
IO(logn) on a vcrageJ. 

Balanced Binary Search Trees Implementation 
l~eft·r LO Trees c ha pler. IL is an extension of binary search Lrees implementaLion and Lakes 0(/0911) in worsL cnse 
for sea rch , insert a nd delete opera Lions. 

Ternary Search Implementation 

l~cfcr to String Algorithms c hapter. This is one of the important methods used for implementing dictionaries. 

Hashing Implementation 
Thi::; method is importont. Por u complete discussion , rder to the Jlushi11g chupter. 

13.4 Comparison Table of Symbols for Implementations 
Let us consider Lhc following comparison table for all the implementations. 

Implementation Search Insert Delete 

Unordered Array II 11 n 
Ordered Array (can be implemented with a rray bin;:u·y sco rc h) lo,qll ri 11 
Unordered IJist II 11 ll 

Ordered Li::;t II II 11 

Binary Search Trees (O(/ogn) on average) /og11 /ogn logn 
Balanced Binary Search Trees (0(10911) in worst case) logn logn log11 

Ternary Search (only c hange is in logarithms base) /0911 logn /0911 
Hashing (0(1) on average) j I 1 

Notes: 

• In the above table, n is the inpu1 si:t..c. 
• Tuble indicaLes the possible implementations discussed in this book. Uut, there cou ld be olher 

implementations. 

13.4 Comparison Table of Symbols for Implementations 346 



Data Structure and Algorithmic Thinking with Python Hashing 

( JIIAPTER 

HASHING 14 

14.l What is Hashing? 
Hashing is a technique used for storing and retrieving information as quickly us possible. It is used to perform 
optimal searches and is useful in im plementing symbol tables. 

14.2 Why Hashing? 
In the Trees chapter we saw that balanced binary search trees support operations such as insert, delete and 
search in O(lo,q11) time. In applications, if we need these operations in 0(1 ), then hashing provides a way. 
Remember that worst case complexity of hashing is still 0(11 ), but it gives 0( 1) on the average. 

14.3 HashTable ADT 
The common operations for hash table arc: 

• CreatHashTable: Crea tes a new hash table 
• Has hSearch: Searches the key in hash Lablc 
• Hushlnsert: Inserts a new key into hush table 
• HashDclctc: Deletes o key from hosh table 
• Delete I lashTuble: Deletes the ho sh table 

14.4 Understanding Hashing 
In simple terms we can treat array as a hash table. For understnnding the use of hash tables, !el us consider 
the following example: Give an a lgorithm for printing the first repeated character if there arc duplicated elements 
in it. Let us think about the possibk solutions. The s imple and brute force wny of solving is: given a string, for 
each character check whether that character is repeated or not. The time complexity of this approach is 0(112

) 

with 0( 1) spncc complexity. 

Now, let us find a better solution for this problem. Since our objec tive is to find the first repeated character, 
what if we remember the previous cha racters in some array? 

We know that the number of possible cha racters is 256 (for simplicity assume ASCII characters only). Create an 
array of si?.e 256 and initialize it with a ll 7.eros. Por each of the input characters go to the corresponding position 
and increment its count. Since we arc using arrays, it takes constant time fo r reaching any location. While 
scanning the mput, 11 we get a character whose cou n ter 1s a lrcttdy ·1 then we can ::my that the character is the 
one which is repeating for the first time. 

def FirslRepeatedCha r ( str ): 
sizc• len(slr) 
count = 101 • (256) 
for i in rangc(sizc): 

if(counl[ord(str[i])J== l): 
slr i 
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break 
else: 

counl[ord(strlillJ += 1 
if(i==size): 

print "No Repealed Characters" 
return 0 

FirstRepeatedChar(l'C','a', 'r', 'e', 'e', 'r', 'm', 'o', 'n', 'k'll 

Why not Arrays? 

Hashing 

In the previous problem, we have used an array of size 256 because we know the number of different possible 
characters [256] in advance. Now, let tis consider a s light varia nt of the same problem. Suppose the given array 
has numbers instead of characters, then how do we solve the problem? 

Universe of possible keys 

\ 0 

1 
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In this case the set of possible vulues is infinity (or at least very big). Creating a huge array and storing the 
counters is not possible. That means there a rc a set of universal keys a nd limited locations in the memory. If we 
want to solve this problem we need to somehow map aJI these possible keys to the possible memory locations. 

From the above discussion and diagram it can be seen that we need a mapping of possible keys to one of the 
available locations. As a result using simple arrays is not the correct choice for solving the problems where the 
possible keys arc very big. The process of mapping the keys to locations is called hashing . 

Note: For now, do not worry about how the keys arc mapped to locations. That depends on the function used for 
conversions . One such simple function is key% Wble size. 

14.5 Components of Hashing 
Hash ing has four key componcnls: 

1) Hash Table 
2) Hash Functions 
3) Collisions 
4) Collision Resolution Techniques 

14.6 Hash Table 
Hash table is a generali~lion of a rruy. With an array, we store the c lement whose key i::; k at a position k of the 
array. That means, given u key le, we find U1e e lement whose key is /c by just looking in the k 11' position of the 
array. This is called direct addressing. 
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Direct addressing is applicable when we can afford to allocate a n a rray with one position for every possible key. 
But if we do not have enough space to a llocate a location for each possible key, then we need a mechanism to 
handle this case. Another way of defining the scenario is: if we have less locations a nd more possible keys, t hen 
s imple a rray implemen talion is not enough. 

In these cases one option is to use hash tables. Hash table or hash mop is a data structure that stores the keys 
a nd their associated va lues, and hash table uses a hash runclion Lo map keys Lo I.heir associated va lues. The 
genera l conven tion is that we use a hash table when the number of keys actually stored is small rclalivc to the 
number of possible keys. 

14.7 Hash Function 
The hash function is used to tra nsform the key into Lhe index. Ideally, the hash function shou ld map each 
possible key Lo a unique s lot index, but it is d ifficu lt Lo ach ieve in practice. 

Given a collection of elements, a hash funclion that maps each item into a unique s lot is referred to as a perfect 
hash function . If we know the elemen ts and the collection will never change, then it is possib le lo construct a 
perfect h ash function. Unfo rtunately, given a n arbitrary collection of clements, t here is no systematic way lo 
construct a perfect hash fu nction . Luckily, we do not need the hash fu nction to be perfect to still gain 
performance efficiency. 

One way to a lways have a perfect hash function is lo inc1·easc the size of lhc hash table so Lhal each possible 
value in the c lement range can be accommodated. This guarantees Lhal each clement wi ll have a unique slot. 
Although this is practical for small numbers of clcmcnls, it is not feasible when Lhc number or possible elements 
is la rge. For example, if the clements were nine-digit SociaJ Security numbers, this method would require almost 
one billion slots. If we only want to store data for a class of 25 students, we will be wasting an cnormous 
amount of memory. 

Our goal is to create a hash function lhal minimizes the number of collisions, is easy to compute, and even ly 
distributes the elemems in the hash table. There arc a number or common ways to extend t. he simple remainder 
method. We will consider a kw of them here. 

The folding method for constructing hash functions begins by dividing Lhc clements in lo equal-size pieces (the 
last piece may nol be of equal s ize). These pieces are then added together to give the resulting hash value. For 
example, if our element was the phone number 436-555-4601, we would take the digits and divide them into 
groups of2 (43,65,55,46,01). After the addition, 43+65+55+46+0 1, we gel 2 10. Ir we assume our hash table has 
11 slots, then we need to perform the extra step of dividing by 11 and keeping the remainder. In this case 2 10 % 

11 is l, so the phone number 436-555-4601 hashes to slot 1. Some folding methods go one step rurthcr and 
reverse every other piece before the addition. For the above example, we get 43+56+55+64+01 =2l9 which gives 
219'% 11 =10. 

How to Choose Hash Function? 
The basic problems associated with the creation of hash tables are: 

• An efficient hash function should be designed so that it distributes the index values of inserted objects 
uniformly across the table. 

• An efficient collision resolution algorithm should be designed so that it computes an alternative index 
ror a key whose hash index corresponds lo a location previously inserted in the hash table. 

• We must choose a hash runction which can be calculated quickly, returns vaJucs within Lhc range of 
locations in our table, and minimizes collisionsns. 

Characteristics of Good Hash Functions 
A good hash function should have the following characteristics: 

• Minimize collision 
• Be easy and quick to com putt: 
• Distribute key va lues evenly in the hash table 
• Use all the information provided in the key 
• Have a high load factor for a given set of keys 
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14.8 Load Factor 
The load factor of a non-empty hash table is the number of items stored in the table divided by the size of the 
table. This is the decision parnmctcr used when we want to rehash 01· expand the existing hash table entries. 
This also helps us in determining the efficiency of the hashing function . Thal means, it tells whether the hash 
function is distributing the keys uniformly or not. 

Number of elements in hash table 
Load factor = Hash Table size 

14.9 Collisions 
Hash functions arc used Lo map each key lo a differcnl address space, bul practically it is not possible to create 
such a hash function and the problem is called collisio11. Collision is the condition where two records arc stored 
in the same location. 

14.10 Coll ision Resolution Techniques 
The process of finding an a lternate location is ca lled collision resolution. Even though hash tables have collision 
problems, they a re more efficient in many cases compared to a ll oth er data structures, like search trees. There 
are a number of collision resolu tion techniques, and the most popular are direct chaining and open addressing. 

• Direct Chaining: An a rray of li nked list application 
o Sepa rate chaining 

• Open Addressing: Array-based im plementation 
o Linea r probing (linear sea rch) 
o Quadratic probing (non linear search) 
o DoL1blc hash ing (use two hash functions) 

14.11 Separate Chaining 
Collision resolution by chaini ng combines linked representation with hash table. When two or more records 
hash to the same location, these records are constituted into a singly-linked lisl called a clruin. 

Universe of possible keys 
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Used keys 

14.12 Open Addressing 
In .open acldrcs~ing a ll keys urc stored in the hash table itself. This approach is a lso known as closed hashing. 
This procedu re is based on probing. A collision is resolved by probing. 
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Linear Probing 
The interval between probes is fixed al 1. In linear probing, we search the hash table sequentia lly. starting from 
Lhc original hash location. If a location is occupied , we check the next location. We wrap around from the last 
ta ble location lo the first table location if necessa ry. The func tion for rehashing is lhc following: 

rehash(key) = (11+1)% tableslze 

One of lhc problems wit h linea r probing is that ta ble items tend to c lus ter together in the hash table . This 
means that the table contains groups of consecutive ly occu pied locations that a rc called cltL<;tering. 

Clusters can get close to one another, and merge into a larger clus ter. Thus, the one pa rt of the table might be 
quite dense, even though a nother part has relative ly few items. Clus tering causes long probe searches and 
therefore decreases the overall effi c iency. 

The next location to be probed is de termined by Lhe slep-si7,c, where other s tep-sizes (more than one) arc 
possible. The s tep-size s hould be rela tively prime to the table s ize, i.e. their greatest common divisor should be 
equal to 1. If we choose the table size lo be a prime number, then a ny s tep-size is relatively prime to the table 
size. Clustering cannot be avoided by large r step-sizes. 

Quadratic Probing 
The interva l between probes increases proportiona lly to the hash value (the interva l thus increasing linearly, a nd 
the indices a rc described by a quadratic function). The problem of Clus tering can be e liminated if we use the 
quadratic probing method. 

In quadratic probing, we slan from the original hash location i. If a location is occu pied, we check the locations 
i+12 , i+22, i+32 , i+42 •.. We wraparound from the last table location Lo the first ta ble location if necessary. 
The function for rehashing is the following: 

rehash(key) = (n + k2)% tablesize 

Example: Let us assume that the table size is 11 (O .. 1 O) 

Hash Function: h(key) = key mod 11 

Insert keys: 

31mod11 = 9 
19mod11 = 8 
Zmod 11 = 2 
13mod11 = 2 ~ 2 + 12 = 3 
25 mod 11 = 3 ~ 3 + 12 = 4 
24modll = 2 ~2+12,2+22 =6 
21mod11 = 10 
9mod11 = 9~9+1 2,9+22 mod11,9+32 modll = 7 
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Even though c lustering is avoided by quadratic probing, sti ll I here a rc cha nces of clustering. Clu s te ring is 
caused by multiple sea rch keys ma pped to the same hash key. Thus, lhc probing sequence for s uch sea rch keys 
is prolonged by repeated connicts a long the probing seq uence. Both linear and quadratic probing use a probing 
sequence that is independent of lhe sea rch key. 

Double Hashing 
The interval between probes i::; computed by a nother hash function. Double hashing reduces clustering in a 
better way. The inc rements for the probing sequence a rc computed by us ing a second hash func tion . The second 
hash func tion lt2 s hould be: 

hZ(key) * O and lt2 * 111 

We first probe the location hl(key). If the location is occupied , wc probe Lhc local.ion hl(key) + h2(key), hl(key) + 
2 * hZ(key), ... 
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Example: 
Table si7..e is I I (0 . . I 0) 
I lash Punction: assume 111 (key) - key mod 11 and 

h2(key) 7 - (key mod 7) 

Insert keys: 

58 mod 11 3 

14 mod 11 = 3 -+ 3 + 7 - 10 

91mocl11 3 -+ 3 + 7, :~ + 2 • 7 mod 11 = 6 

25 mod ll = 3 -+ 3 I 3, 3 + 2 • 3 = 9 

14.13 Comparison of Collision Resolution Techniques 

Comparisons: Linear Probing vs. Double Hashing 
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The choice between linear probing and double hashing depends on the cost of computing the hash function and 
on the load fac tor I number of clements per s lot! o f the table. Both use few probes but double hashing take more 
Lime because ii hushes to compnrc two hash functions for long keys. 

Comparisons: Open Addressing vs. Separate Chaining 
It is somewhat complicated because we have to account for Lhe memory usage. Separate chaining uses extra 
memory for links. Open addressing needs extra memory implicitly within the table to terminate the probe 
sequence. Open-addressed hash tables cannot be used if the data does not have unique keys. An alternative is 
to use separate chained hash tables. 

Comparisons: Open Addressing methods 

Linear Probing Quadratic Probing Double hashing 

Pastcst among three Easiest to implement and deploy Makes more efficient use of memory 

Uses extra memory for links and it 
Uses few probes docs not probe all locations in the Uses few probes but takes more Lime 

table 
A problem occurs 

J\ problem occurs known as 
known os primnry 

secondary clustering 
More complicritccl lo implement 

c luste ring 
Interval between probes Interval between probes increases Interval between probes is computed 
is rixcd - often at 1. proportional to the hash value by another hash function 

14.14 How Hashing Gets 0(1) Complexity 
From the previous discussion, one doubts how hashing gets 0(1) if multiple clements mup to the same 
location ... 

The answer lo this problem is simple. By using the load factor we make sure that each block (for example, 
linked list in separate chaining approach) on Lhc average stores the maximum number of clements less than the 
load factor. Also, in practice this load factor is a constant (generally, 10 or 20). As a result, searching in 
20 clements or 10 clements becomes constant. 

If the uvcrugc nL1mbcr of clements in a block is grculcr than the load factor, we rehash the c lements with n 
bigger hash lnble si:t.e. One thing we should remember is thal we consider average occupancy (total number of 
c;lcmcn lH in lhc hnnh lllblc divided by tnblc s i?.c) when deciding the rehash. 

Tlw ucccss liml' of I he: In hie de pends on the lond factor which in turn ck pends on I he hush func tion. Thi s is 
because hush func tion dis1ribu1cs the elements Lo Lhe has h tublc. Fo r this reason, we say hnsh table g iv<.:s 0( 1) 
complexity on nverngc. /\lso, we generally use hash tables in cases where sea rches a rc more than insertion and 
deletion operulions. 
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14.15 Hashing Techniques 
There arc two types of hashing techniques: static hashing a nd dynamic hushing 

Static Hashing 

If the data is fixed then static hashing is useful. In static hashing, the set of keys is kept fixed and given in 
advance, and the number of primary pages in the directory arc kept fixed. 

Dynamic Hashing 
If the data is not ftxed, static hashing can give bad performance, in which case dynamic hashing 1s the 
alternative, in which case the set of keys can change dynamical ly. 

14.16 Problems for which Hash Tables are not suitable 
• Problems for which data ordering is required 
• Problems having multidimensional data 
• Prcftx searching, especially if the keys are long and of variable-lengths 
• Problems that have dynamic data 
• Problems in which the data does not have unique keys. 

14 .17 Bloom Filters 
A Bloom filter is a probabilistic data structure which was designed to check whether an clement is present in a 
set with memory and time efficiency. It tells us that the element either definitely is not in the set or may be in 
the set. The base data structure of a Bloom filter is a Bit Vector. The algorithm was invented in 1970 by Burton 
Bloom and it relies on the use of a number of different hash functions. 

How it works? 

_/I lushrunction I 

Elcmenll 

~ Hashrunction2 

/llashf'unctionl 

Element2 

~ HashF'unction2 

0 

I 

0 
I 

0 

Now that the bits in the bit vector hnve 
been set for /:'lement I and L:'lement2; we 
can query the bloom filter to tell us if 
something has been seen before. 

The clement is hashed but instead of 
selling the bits, this time a check is done 
and if the bits that would have been set 
arc a lready set the bloom Jilter will return 
true thnl the clement has been seen 
bdorc. 

A Bloom filter starts off with a bit array initialized to zero. To sto1 c u data value, we simply apply k dillcrcnt hash 
functions and treat the resulting k values as indices in Lhc array, and we set each of the k array clements to I. 
We repeat this for every clement that we encounter. 

Now suppose un clement turns up and we want to know if we have seen it before. What we do is apply the k 
hash runctions and look up the indicated array clements. If any or them ure 0 we can be IOC1'/c1 sure tha t we 
have never encountered the clement before - if we had, the bit would huvc been set to I. I lowcvcr, even if all of 
Lhcm arc one, we still can't conclude that we have seen the clement before because all of the bits could have 
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been sel by the k hash functions applied to mulli plc other elements. ALI we can conclude is th at it is likely that 
we have encou ntered Lhc e lcmenl before. 

Nole Lhat it is not possible to remove a n e lement from a Bloom fi lter. The reason is si mply that we can't unset a 
bit that appears to belong to an clement bcen use it might a lso be set by another c lement. 

If the bit array is most ly empty, i.e., set to ~ro, ond the I< hash functions arc independent of one another, Lhen 
the probability of a fa lse positive (i.e., concluding that we have seen a do ta item when we actually haven't) is low. 
For example, if there arc only k bits set, we can conclude that the probability of a false positive is very close to 
zero as the only possibility of error is that we entered a data item that produced the same k hash values - which 
is un likely as long as the 'has' functions arc independent. 

As the bit array fills up, the probability of a false positive slowly increases. Of course when the bit array is fu ll, 
every clement queried is identified as having been seen before. So clearly we can trade space for accuracy as well 
as for time. 

One-time removal of an clement from a Bloom filter can be simulated by having a second Bloom filter that 
contains clements that have been removed. However, falsl: positives in the second fi lter become false negatives 
in the composite filter, which may be undesirable. In this approach, re-adding a previously removed item is not 
possible, as one wou ld have to remove it from the 1·emoved fllter. 

Selecting hash functions 
The requirement of designing k different independent hash functions can be prohibitive for large k. For a good 
hash function with a wide output, there should be little if any correlation between different bit-fields of such a 
hash, so this type of hash can be used to generate muILiplc dif {ercnt hash functions by slicing its output into 
multiple bit fields. Alternatively, one can pass k different initial values (such as 0, I, ... , k - 1) to a hash function 
that takl:S an initial value - or add (or append) these va lues to the key. For larger m and/or k, independence 
among the hash functions can be relaxed with negligible increase in the false positive rate. 

Selecting s ize of bi t vector 
A Bloom fi lter with 1% error and an optimal va lue of k, in contrast, requires only about 9.6 bits per element -
rega rd less of Lhc size of the clements. This advantage comes partly from its compactness, inherited from arrays, 
and partly from its probabilistic nature. The 1%1 fa lse- positive rate can be reduced by a factor of ten by adding 
on ly al>out 4.8 bits per element. 

Space Advantages 
While risking fa lse positives, Bloom filters have a strong space adva ntage over o ther data structures for 
representing sets, s uch as self-bala ncing bina ry sea rch t rees, tries, hash tables, or s imple a rrays or linked lists 
of the entries. Most of these require storing a l least the data items themselves, which ca n require a nywhere from 
a sma ll nu mber of bits, for smal l integers, to a n a rbitrary num ber of bits, s uch as fo r strings (tries a re a n 
exception, s ince they ca n sha re s lorai;c between e lements wilh eq ua l prd ixcs). Lin ked structures incur a n 
add itional linea r ::.pace overhead for poin ters . 

However, if Lhe num ber of potentia l va lues is s ma ll a nd ma ny of them can be in the set, the Bloom fi lter is eas ily 
surpassed by the determ inistic bit a rray, which requires only one bit for each potent ia l element. 

Tim e Advantages 
Bloom fi lters a lso have Lhc un usua l properly t hat t he Li me needed ei thl:r to add 'items or to check whether a n 
item is in lhe set is a fixed cons tont, O(k}. complete ly independent of the nu mber of items a lready in th e set. No 
othe1· constant-space set du la s l ruclu re has this property, bu t the average uccess t ime of spa rse hash tables ca n 
make th em faster in practice than some Bloom filters. In a hardware implementation, however, the Bloom !tiler 
shines because its k lookups an: indl:pl:ncknt and can be parnlle lizcd. 

Implemen tation 

Refer to Problems Section. 

14.18 Hashing: Problems & Solutions 
Problem-1 Implement o separall: ehoining collision rl:solulion technique. Also, discuss Lime complexities of 

each function. 

So lut ion: To create a hashtablc of given size, say 11, we allocate an array of n/L (whose value is usually between 
5 and 20) pointers to list, initialized to NULL. To perfo1-m Search/Insert/Delete operations, we first compute the 
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index of the table from lhc given key by using hash[ unction and then do the corresponding operation in the 
linear !isl maintained al thal location. To get uniform distribution of keys over a hashtable, maintain table size 
as the prime number. 

class I lashTable: 
def inil (self): 

self.sb.e .. 11 
self.slots .. (Noncj • self.size 
self.data • INonej • self.size 

def pul(self,kcy,data): 
hashvalue - sclf.hashfunction(key,len(self.slots)) 

if self.slotslhashvaluej == None: 
self.slots(hashvalucj = key 
sclf.datalhashvaluel = data 

else: 
if sclf.slots[hashvaluej == key: 

self.data(hashvalucj =data #replace 
else: 

nextslot = self.rehash(hashvalue,lcn(self.slots)) 
while self.slots(nextslotj != None and self.slots[nextslotl != key: 

nextslot = self.rchash(ncxtslot, len(sel f.slots)) 

if sclf.slots[ncxtslotj == None: 

else: 

def hashfunetion(self,key,size): 
return kcy<'/osize 

def rehash(i:;clf,oldhash,si7.e): 
return (old hash+ l)'Yosizc 

def gct(sclf,key): 

sclf.slots(ncxtslotj=key 
sclf.data[ncxtslotl=data 

self.data(nextslotj = data #replace 

start.slot - sclf.hashfunction(kcy,lcn(sclf.slots)) 

data • None 
stop .. False 
found = False 
position = slarlslot 
while sclf.slotslposilionl != None and not found and not stop: 

if selr.slolslpositionl == key: 

else: 

return data 

found ., True 
data = sclf.datalposilionj 

posi lion•self. rehash( position ,!en (self.slots)) 
ir position == stanslot: 

stop= True 

def gelitcm (self,key): 
return sclf.get(key) 

def sclitcm (self,key,data): 
self.put(kcy,data) 

H=HashTable() 
Hl54J="books" 
Hf54)="data" 
Hl26j~"algorilhms" 

H[93)="madc" 
HI I 7J•"casy" 
1 l l771"'''CnrccrMOonk" 
Hl311 "Jobs" 
Hl44J "Hunting" 
H155j="King" 
Hl20J•"Lion" 
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print H.slot:s 
print H.data 
prinl H[20J 

Hashing 

CrcatHashTablc - O(n). I lashScarch - 0(1) overuge. 1-lash lnserl - 0(1) average. Hash Delete - 0(1) average. 

Problem-2 Given an array of characters, give an a lgorithm for removing the duplicates. 

Solut ion: Start wilh the first character and check whether il a ppears in the remaining prui of the string using a 
simple linear sea rch. If it repeats, bring the last character to Urnt position and decrement Lhe size of the string 
by one. Continue this process for each dislincl character of the given s tring. 

def RemoveDuplicates(A): 
m=O 
for i in range(O, len(A)): 

if (not elem(A, m, A!ilJ): 
Alm! = Alil 
m += I 

return m 

def elem(A, n , c): 
for i in range(O, n): 

if (Af ii == e): 
return l 

return 0 

A= !54,26,93,54,77,31,44,55,201 
Remove Du pl ica tcs(/\) 
print A 

Time Complexity: O(n2). Space Complexity: 0(1). 

Problem-3 Can we find any other idea to solve this problem in better time than O(n2)? Observe that the 
order of cha racters in solutions do not matter. 

Solut ion: Use sorting to bring the repeated characters together. Finally scan through the array to remove 
duplicates in consecutive positions. 

def RemoveDuplieates(A): 
A.sort() 
j = O 
for i in range(l, len(A)): 

if (ALil != Ali]) : 
j +"' l 
ALil "' Ali] 

print Al:j+ I J 

A "' [54,3 1,93,54,77,3 1,44,55,93) 
RemoveDupljcatcs(A) 
print A 

Time Complexity: 6(nlo9n). Space Complexity: 0(1). 

Problem-4 Can we solve this problem in a single pass over given array? 

Solution: We ca n use ho.sh table Lo check whclhcr o. cha racter is repea ling in the given string or not. If the 
currenl characler is not avai lable in has h La ble, then inserl it into hash ta ble and keep that character in the 
given s tring a lso. If the current character cxists in the hash tab!<: lhen skip tha t characlcr. 

A= 11, 2, 3, 'a', 'b', 'c', 2, 3, 4, 'b', 'c', 'd 'J 
unique= IJ 
hclperSet = set() 
for x in A: 

if x not in he lperSet: 
unique.append(x) 
helperSct.add(x) 

print I\ 
print unique 

Time Com plexity: 0(n) on average. Space Complex ity: 0(11). 
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Problem-5 
numbers? 

Given two a rrays of unordered numbers, check whether both arrays have the same set of 

Solution: Let us assume lhat two given a rrays are A and B. A simple solut ion to the given problem is: for each 
element of /\, check whether that element is in B or not. A problem arises with this approach if there arc 
duplicates. ror example consider the fo llowing in puts: 

II = {2,5,6,8,10,2,2} 

8 = {2,5,5,8,10,5,6} 

The above algorithm gives the wrong result because for each element of A there is an element in B also. But if we 
look at lhe number of occurrences, they are not the same. This problem we can solve by moving the elements 
which a re already compared to t he end of the list. That means, if we find a n element in B, t hen we move that 
element to the end of B, and in the next searching we will not find those e lements. Bul the disadvantage of this 
is it needs extra swaps. Time Complexity of this approach is O(n.2), since for each element of/\ we have to scan B. 

Problem-6 Can we improve the lime complex ity of Problcm-5? 

Solution: Yes. To improve the lime complexity, let us assume that we have sorted both the lists. Since the sizes 
of both arrays arc n, we need O(n log n) time for sorting them. After sorting, we jusl need lo scan both the arrays 
with two pointers and see whether they point to the same element every time, and keep moving the pointers 
until we reach the end of the arrays. 

Time Complexity of this approach is O(n log n). This is because we need O(n log n) for sorting the arrays. After 
sorting, we need O(n) time fo r scann ing but it is less compared to O(n log n) . 

Problem-7 Can we further improve the time complexity of Problcm-5? 

Solution: Yes, by using a hash table. For this, consider the following a lgori thm. 

Algorithm: 

• Construct the hash table with array A elements as keys. 
• While inserting the clements, keep track of the number frequency for each number. That means, if there 

are duplicates, then increment the counter of that corresponding key. 
• After constructing the hash table for !l's clements, now scan the array /J. 

For each occurrence of /J's elemenLs reduce the corresponding counter values. 
• At the end, check whether a ll coun ters arc zero or nol. 
• If a ll counters arc zero, then both arrays are the same otherwise the arrays are different. 

Time Complexity: O(n) for scanning the arrays. Space Complexity: O(n) for hash table. 

Problem-8 Given a list of number pairs; if pair(i,j) exists, and pair(), i) exists, report a ll such pairs. For 
example, in ({1,3}, {2,6}, (3,5}, {7,4}, {5,3}, {8,7)}. we see that (3,5} a nd {5,3} are present. Report th is pair when 
you encounter {5,3}. We call such pairs 'symmetric pa irs'. So, give an efficient a lgorithm for finding all such 
pairs. 

Solution: By using hashing, we can solve th is problem in just one scan. Consider Lhc following a lgorithm. 

Algorithm: 
• Read the pairs of elements one by one and insert them into the hash table. For each pair, consider the 

first element as key and the second element as va.lue. 
• While inserting the clements, check if the hashing of the second element of the current pair is the same 

as the lirsl number of the current pair. 
• If they arc the same, then that indicates a symmetric pair exits and output that pair. 
• Othenvise, insert that c lement into lhal. Thal means, u se the first number of the current. pair as key 

and the second number as va lue a nd insert them into the hash table. 
• By the lime we complete the scanning of a ll pa irs, we have output a ll the symmetric pairs. 

Time Complexity: O(n) for scanning the arrays. Note that we a re doing a scan only of the input. Space 
Complexity: O(n) for hash table. 

Problem-9 Given a singly linked list, check whether it has a loop in it or not. 

Solution: Using Hash Tables 

Algorithm: 
• Traverse the linked list nodes one by one. 
• Check if the node's address is there in the hash table or not. 
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• If it is already there in the hash table, lhat indicates we arc visiting a node which was a lready visited . 
This is possible only if the given linked list has a loop in it. 

• lf the address of the node is not there in the hash table. then insert that node's address into the hash 
table. 

• Continue this process until we reach the encl of the linked list orwc find the loop . 

Time Complexity: O(n) for scanning the linked list. Note that we me cloinA a scan only of the input. Space 
Complexity: 0(11) for hash table. 

Note: for an efficient solution , refer to lhc linked Usts chapter. 

Problem-10 Given an array of 101 elements. Out of them 50 clements arc distinct, 24 clements a rc repeated 
2 times, and one clement is repeated 3 times. Find the clement that is repeated 3 times in 0(1). 

Solution: Using Hash Tables 

Algorithm: 
• Scan the input army one by one. 
• Check if the c lement is a lready there in the hash table or not. 
• If it is a lready there in the hash table, increment its counter vnluc !this indicates the number of 

occurrences of the clement]. 
• If the ele ment is not there in the hash table, insert that node into the hash table with counter value 1. 
• Continue this process until reaching the end of the array. 

Time Complexity: O(n), because we a rc doing two scans. Speice Complexity: O(n), for hash table. 

Note: For an efficient solution refer to the Searchin9 chapter. 

Problem-11 Given m sets of integers lhat have 11 clements in them, provide an nlgorithm to find an element 
which appeared in the maximum number of sets? 

Solution: Using Hash Tables 

Algorithm: 
• Scan the input sets one by one. 
• For each clement keep track of the counter. The counter indicULes the frequency of occurrences in all 

the sets. 
• After completing the scan of all the sets, select the one which hos the maximum counter value. 

Time Complexity: O(mn), because we need to scan a ll the sets. Space Complexity: O(m11), for hash table. 
Because, in the worst case all the clements may be different. 

Problem-12 Given two sets A and 8, and a number K, Give an a lgorithm for finding whether there exists a 
pair of elements, one from A and one from 8, that add up to K. 

Solution: For simplicity, let us assume that the size of A is 111 and the Sii'.C of /1 is 11. 

Algorithm: 
• Select the set which has minimum clements. 
• For the selected set create a hash table. We can use both key and value as the same. 
• Now scan the second array and check whether (K-selected e/e111e11t) exists in the hash table or not. 
• If it exists then return the pair of clements. 
• Otherwise continue until we reach the end of the set. 

Time Complexity: O(Max(m, 11)), because we arc doing two scans. Space Complexity: O(Min(m, 11)), for hash table. 
We can select the small set for c reating the hash table. 

Problem-13 Give an algorithm to remove the specified characters from u given string which arc given in 
another string? 

Solution: For simplicity, let us assume that the maximum number of different characters is 256. First we create 
an auxiliary array initialized to 0. Scan the characters to be removed, and for each of those characters we set lhc 
value lo 1, which indicates that we need to remove that character. 

After inilialization, scan the input string, and for each of the character:;, we check whether that character needs 
to be deleted or not. If the nag is set then we simply skip to lhe next charncter, otherwise we keep the charnctcr 
in the input string. Continuc this process until wc reach the encl of the input string. All these operations we cnn 
do in-place 11s given below. 

def RemoveChars(str, removeThcscChars): 
table = U # hash 
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temp= (J 
#set true for au characters to be removed 
for char in removeTheseChars.lower(): 

table[char) = 1 
index= 0 
for char in sLr. lower(): 

if char in I.able: 
continue 

else: 
temp.append(char) 
index+= l 

return "~.join(temp) 

print RemoveChars("careermonk'', "e") 

Hashing 

Time Complexity: Time for scanning the characlc rs to be removed + Time for scanning I he inpul array= 
O(n) +O(m) ::.:O(n). Where m is the length of the cha racters to be removed a nd 11 is the length of the inpu t string. 

Space Complexity: O(m), length of the characters to be removed. But s ince we a rc assuming the maximum 
number of different characters is 256, we can treat this as a constanl. But we should keep in mind that when we 
are dealing with multi-byte characters, the total number of different characters is much more than 256. 

Problem-14 Give an a lgorithm for finding the first non-repeated character in a string. For example, the first 
non-repeated character in the slring "abzddab" is 'z'. 

Solution: The solution to this problem is trivial. Por each character in the g iven string, we can scan the 
remaining string if that character appears in it. If it docs not appears th<.:n wear<.: done with the solution and we 
re turn that character. If the cha racter appears in the remaining string, then go to the next character. 

def findNonrepeated(A): 
n = len(A) 
for i in range(O,n): 

repeated = 0 

re tum 

for j in range(O,n): 
if( i I= j and Ali! == ALJJ): 

repeated = 1 
if repeated == 0: 

return Afil 

print findNonrepeated("careermonk") 

Time Complexity: O(n2), for two for loops. Space Complexity: 0(1). 

Problem-15 Can we improve the time complexity of O? 

Solution: Yes. By using hash tables we can reduce the time complexity. Create a hash table by reading all the 
characters in the input string and keeping counl of the number of times each character appears. After creating 
the hash table, we can read the hash table entries to sec which c lement has a count equal to 1. This npproach 
takes O(n) space but reduces the time complexity also to O(n). 

def findNonrepeated(A): 
table = O # hash 
for char in A.lower(): 

if char in table: 
tablelchar] += 1 

clif char != " ": 
tablelchar) = 1 

else: 
table[char] = 0 

for char in A.lower(): 

rel um 

if table[char) == 1: 
print(" the first non repeated character is: 'Yos" % (char)) 
return char 

print findNonrepeated("carecrmonk'') 
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Time Complexity: We have O(n) to create the hash table and another O(n) to read the entries of hash lable. So 
the tolal time is O(n) + O(n) = 0(2n) ""O(n). Space Complexity: O(n) for keeping the count values. 

Problem-16 Given a string, give an a lgorithm for finding lhc firs l repeating letter in a string'? 

Solution: The solution Lo this problem is somewhat s imilar lo 0 and Problcm- 15. The on ly d iffe rence is, instead 
or scanning the hash table twice we ca n give the a nswer in just one sca n. This is because while inserting into 
the hash table we can sec whether that c lement a lready exis ts or not. If it a lready exis ts then we just need lo 
return thal character. 

def firstRepeatedChar(A): 
table = O # hash 
for char in A.lower(): 

return 

if char in table: 
table(char] += 1 
print("thc first repealed ch aracter is : %s'' % (char)) 
return char 

elif char l= " ": 
table[charj = 1 

else: 
table[char] = 0 

print firstRepeatedChar(" careermonk") 

Time Complexity : We have O(n) for scanning a nd c reati ng the hash table. Nole that we need only one scan for 
this problem. So the tota l time is O(n). Space Complex ity: O(n) for keeping the count va lues. 

Problem-17 Given a n array of n numbers, c rea te a n a lgorithm wh ich displays a ll pairs whose sum is S. 

Solution: This problem is s imilar to Problem-12. But instead of using two sets we use only one set. 

Algorithm: 

• Scan the e lements of the input a rray one by one and create a hash table. Both key and value can be the 
same. 

• After creating the hash Lable, again scan the input array and check whether (S - selected element} exits 
in the hash table or not. 

• If it exits t hen return the pair of e lements . 
• Otherwise continue and read all the elements of the a rray. 

Time Complexity: We have O(n) to create the hash table and another O(n) to read the entries of the hash table. 
So the total time is O(n) + O(n) = 0(2n) ::::O(n). Space Complexjty: O(n) for keeping the count values. 

Problem-18 Is there a ny other way of solving Problem-17? 

Solution: Yes. The aJternative solution to this problem involves sorting. First sort the input a rray. After sorting, 
use lwo pointers, one al the sta rling a nd another at the ending. Each Lime acid lhe va lues of both the indexes 
a nd see if their sum is equa l lo S . If they arc equa l then pr int that pair. Otherwise inc rease the left pointe r if the 
sum is less than Sand decrease the right pointer if the sum is greater than S. 

Time Complexity: Time for sorting+ Time for scanning= O(nlogn) + O(n)"' O(nlogn). 
Space Complexity: 0(1). 

Problem-19 We have a file with millions of lines of data. Only two lines are identical; the rest are unique. 
Each line is so long that it may not even fit in the memory. Whal is the most efficient solution for finding the 
identical lines? 

Solution: Since a complete line may not fit into the ma in memory, read the line pai-tially a nd compute the hash 
from that partial line. Then read the next pa r t of the line a nd compute the hash. This lime use th e previous 
has h also while computing the new hash value. Continue this process until we find the hash for the complete 
line. Do this for each line and store all the hash values in a file [or maintain a hash table of these hashes!. If at 
any point you get same hash value, read the corresponding lines part by part and compare. 

Note: Refer lo Searching chapter for related problems. 

Problem-20 If h is t he hashing function and is used to hash n keys into a table of s ize s, where n <= s, the 
expected number of collis ions involving a particula r key X is : 
(A) less than 1. (8 ) less than n. (C) less tha n s. (D) less lha n ~· 

Solution: A. 

Problem-21 Implement Bloom Fillers 
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Solution: A Bloom Filter is a data structure designed to tell, rapidly and memory-efficiently, whether an element 
is present in a set. It is based on a probabilistic mechanism where false positive retrieval results are possible, 
but false negatives are not. At the end we will see how to tune the parameters in order to minimize t he number 
of false positive results. 

Let's begin wilh a li ttle bit of Lhcory. The idea behind the Bloom filter is to a llocate a bit vector of length m, 
initia lly all set to 0, and then choose k independent hash func tions, h1, h2 , ••• , hk, each with range 11... mj. When 
an element a is added to the set then the bits al positions h1 (a), lt2 (a ), ... , hda) in the bit vector are set to l. 
Given a query clement q we can test whether it is in the set using the bits at positions h1 (q), h2 (q), ... , hdq) in 
the vector. If any of these bits is 0 we report that q is not in the set otherwise we report that q is. The Lhing we 
have to care about is that in the first case there remains some probability that q is not in the set which could 
lead us to a false positive response. 

class BloomFilter: 
""" Bloom F'ilter "'"' 
def _ init_ (sclf,m,k,hashFun): 

self.m = m 
self.vector = [O]*m 
self.k = k 
self.hashFun = hashFun 
self.data = n # data structure to store the data 
self.llasePositive = 0 

def insert(self,key, value): 
sclf.data[keyl =value 
for i in range(self.k): 

self.vector(self.hashFun(key+str(i)) % self.ml= l 
def contains(self,key): 

for i in range{seJf.k)~ 
'if self.vector!self.hashFun(key+str(i)) % self.ml ==O: 

return False # the key doesn't exist 
return True # the key can be in the data set 

clef get(self,key): 
if self.contains(key): 

try: 
return self.data[key] #actual lookup 

except KeyError: 
self.flasePositive += l 

import hashlib 
def hashF'unction(x): 

h = hashlib.sha256{x) #we'll use sha256 just for th is example 
return int(h.hexdigesl(),basc=16) 

b "' BloomFilter(lOO, 10,hashFunction) 
b.insert('this is a test key', 'this is a new value') 
print b.get('this is a key') 
print b.get('this is a testkey'), 
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STRING 
ALGORITHMS 

15.1 Introduction 

String Algorithms 

(JIIA 1~r111~J I-{ 

15 

To understand the importance of string algorithms let us consider the cusc of entering the URL (Uniform To 
understand the importance of string algorithms let us conside r the case of entering the URL (Uniform Resource 
Locator) in any browser (say, Internet Explorer, Firefox, or Google Chrome). You wiH observe that after typing the 
prefix of the URL, a list of all possible URLs is displayed. That means, the browsers are doing some internal 
processing and giving us the list of matching URLs. This technique is sometimes called auto - completion. 

Similarly, consider the case of entering the directory name in the command line interface (in both Windows and 
UNIX). After typing the prefix of the d irectory name, if we press the wb button, we get a list of ull matched 
directory names available. This is another example of auto completion. 

In order to support these kinds of operations, we need a data structure which stores the string data efficiently. 
In this chapter, we will look at the data structures that arc useful for implementing string algorithms. 

We start our discussion with the basic problem of strings: given a string, how do we search a substring 
(pattern)? This is called a string matching problem. After discussing various string matchjng a lgorithms, we will 
look at different data structures for storing strings. 

15.2 String Matching Algorithms 
In this section, we concentrate on checking whether a pattern P is a substring of another string T (T stands for 
text) or not. Since we a re trying to check a fixed string P, sometimes these a lgorithms are called 
exact string matching algorithms. To simplify our illscussion, let us assume that the length of given text Tis 11 

and the length of Lhc pattern P which we arc trying to match has the length m. Thal means, T has the chamclcrs 
from 0 to n - 1 (T[O ... n - 1]) and P has Lhe characters from 0 to m - 1 (P[O ... m - 1]). This algorithm is 
implemented in C ++as strstrO. 

In the subsequent sections, we start with the brute force method and gradually move towards better a lgorithms. 

• Brute Force Method 
• Robin- Karp su;ng Matching Algorithm 
• String Matching with Finite Automata 
• KMP Algorithm 
• Boyce-Moore Algorithm 
• Suffix Trees 

15.3 Brute Force Method 
In this method, for each possible position in the text'/' we check whcthcr the pattern P matches or not. S ince the 
length of r is 11, we have 11 - 111 + 1 possible choices for comparisons. This is because we do not need to check the 
last m - 1 locations of T as the pattern length is 111. The following a lgorithm seurchc::s for the first occurrence of a 
pattern string P in a text string T .. 
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Algorithm 

def strstrBruteForce(str , pattern): 
if not pattern: return 0 
for i in range(len(str)-len(pallem)+l}: 

stri = i; patterni = 0 
while slri < len(str) and patterni < len(patte rn) and strjslrij == paltcrnjpattemil: 

stri += L 
patlemi += l 

if paltcrni -= len(paltem): return i 
return -1 

print strstrBruteForce("xxxxyzabcdabcdefabc", "abc") 

Time Complexity: O((n - m + 1) x 111 ) z O(n x m). Space Complexity: 0(1). 

15.4 Robin-Karp String Matching Algorithm 
In this method, we will use the hashing technique and instead of checking fo r each possible position in T, we 
check only if the hashing of P and the hashing of m char-acters of?' give the same result. 

Initially, apply the hash function to the first m c haracters of T a nd check whether this result and P's hashing 
result is the same or not. If Lhey are not the same, t hen go to the next c haracter of T and again apply the hash 
function to m charnctcrs (by starling at the second c haracter). If they arc the same then we compare those m 
c haracters of T with P. 

Selecting Hash Function 
AL each step, since we are finding the hash of m c ha racters of T, we need a n e ffic ient hash function. If the hash 
function takes O(m) complexity in every step, then the total complexity is O(n x m) . This is worse than the brute 
force method because first we a re apply ing the hash function a nd a lso comparing. 

Our objective is to select a hash function which takes 0(1) complexity for finding the hash of m characters of 
T every lime. Only then can we reduce the toLal complexity o f the a lgorithm. If the hash function is not good 
(worst case), Lhc complexity of Lhe Robin- Karp a lgorithm is 0(11 - m + 1) x 111) z O(n x m). If we select a good hash 
funclion , Lhc complexity of the Robin- Karp a lgorithm complexity is O(m + n). Now let us sec how to select a hash 
function which can compute Lhc hash of m c haracters of'/' a t each step in 0(1.). 

For simplicity, Jet's assume lhat the characters used in string T arc on ly integers . That means, all characters in 
TE {O, 1, 2, . . ., 9 }. Since all of them arc integers, we can view a string of m consecutive characters as deci ma l 
numbers. Fo r example, string '61815' corresponds to the number 61815. With the above assu mption , the pa ttern 
P is also a decimal va lue, a nd let us assume that lhe decimal value of P is p. For Lhc given text T[O .. n -11. 
lelt(i) denote the dec imal va lue of le ngth- m su bsLri ng Tl i .. i + m - 1] for i = 0, 1,. . ., n - m - 1. So, l(i) == p if and 
on ly if Tl i .. i+m - 11 == PI0 .. 111 - 11. 

We can compute p in O(m) t·imc using Horner':-; Ru ic as: 

p = PLm - 1] + lO(P(m - 2.J + lO(Plm -3]+ ... +lO(P(lj + tOP[O]) ... )) 

The code for the above assumption is: 

value= 0 
for i in range (0, rn· 1 ): 

value = value * 10 
value = va lue+ Plil 

We can compute a ll t(i), for i = O, I,. . ., n - m - I va lues in a total of 0(11) lime . The va lue of t(O) can be similarly 
computed from T[O .. m - 1] in O(m) lime. To com pute the remaining va lues l(O), t(l), ... , t (n - m - 1), understand 
that t(i + 1) can be computed from t(i) in constant time. 

L(i + 1) = 10 ... (L(i) - 1om I .. 'l'[i]) + T[i + m - 11 

For example, if T = ''123456" and 111 = 3 

t(O) = 123 
t(1) = 10•(123 - 100;. l) + 4 = 234 
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Step by Step explanation 

first : remove the first digit : 123 - I 00 • 1 = 23 
Second: Multiply by I 0 to shirt it : 23 • 10 = 230 

Third: Add last digit: 230 1 '1 "" 23'1 

String Algori thms 

The ulgorithm runs by comparing, L(i) with p. When t{1) -- p, then we have round the substring P in T, starting 

from position 1.. 

def RobinKarp(text, pattern): 
if pattern == None or text == None: 

return - 1 
if pattern =• "" or text == "": 

return I 

ir lcn(patlern) > len(tcxl): 
return - 1 

hashTcxt - Hash(tcxt, lcn(paltern)) 
hashPattcrn = llash(pattcrn, len(pattem)) 
hash Pattern.update() 

for i in range(len(Lext)- len(pattcm)+ 1): 
if hashTcxt.hashcdValuc() == hashPattcrn.hashedValue(): 

ir hashTcxt. text() "= pattern: 
return i 

hashTcxt. u pdatc() 

return - I 

class Hash: 
def _ init_ (self, text, si7.e): 

self.str = text 
setr. hash = 0 
for i in xrange(O, si7.e): 

sctr.hash +• ord(self.strlill 

sclf.init 0 
self.end • size 

def updatc(scll): 
ir sclr. end <= lcn(sclf.str) - 1: 

selLhash -= ord(sclf.slr[self. initj) 
selLhash += ord(sclr.strlsclf.end]) 
sclf.inil += I 
self.end += I 

def hui;hcclVuluc(scll): 
r eturn self.hash 

def text(sell): 
return setr.strlsctr. in it:sc:l f.cnd I 

print RobinKarp("3 I 4 I 592653589793", "26") 

15.5 String Matching with Finite Automata 
In this method we use the finite automata which is the concept or the Theory of Computation (ToC). Before 
looking al the algorithm, first let us look al the definition or fini te uutomutu. 

Finite Automata 
A fmite automaton Fis a 5-tuplc (Q,q0 ,A,l;,o), where 

• Q is a finite sel or states 

• q0 E Q is the start slalc 

• A !: Q is a sel or uccepting states 
• Lis a finite inpllt nlphnbct 
• o is the trnnsi t ion fLJnction that gives the next slule for a given cu rrent state a11d input 
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How does Finite Automata Work? 
• The finite automaton F begins in state q0 

• Reads characters from l: one at a time 
• If F is in :;late q and reads input charact<.:r a, F moves to stat<.: o(q,a) 

• At the end, if its state is in A, the n we say, F accepted the input st.ring read so far 
• If the input string is not accepted it is ca lled the rejec ted string 

Example: Let us assume that Q = (0,1},q0 = 0,A = (1},..[ = {a,b). o(q,a) as shown in the transition 
table/diagram. This accepts strings that end in an odd number of a's; e.g., abbaaa is accepted, cw is rejected. 

Input a 

State a b 

0 ttBJ 
b 

1 

Transition F'unction/Table 

Important Notes for Constructing the Finite Automata 
For building the automata, first we st.urt with the initial stale. Th<.: PA will be in stat<.: k if k characters of the 
pattern have been matched. If the next text character is equal to the pattern character c, we have matched k + I 
characters and the FA enters state k + 1. If the next text cha racter is not equal to the pattern character, then the 
FA go to a state 0, 1, 2, .. ., or k, depending on how many initial pattern characters match the text characters 
ending with c. 

Matching Algorithm 
Now, let us concentrate on the matching algorithm. 

• For a given pauern P[O .. m - 1 ], first we need 10 build a finite aut<>maton F 

o The state set is Q = {O, 1, 2, .... m} 
o The start state is 0 
o The only accepting stale is m 
o Time to build F can be large if L is large 

• Scan the text string T[O .. n - 1] to find a ll occurrences of the pattern P(O .. m - lj 

• String matching is efficient: e>(n) 
o Each character is examined exactly once 
o Constant time for each character 
o But the lime Lo compute o (transition func tion) is O(ni!2:1). This is because o has O(m Jl:I) 

entries. If we assume 12:1 is constant then the complexity becomes O(m). 

Algorithm: 

# Input: Pattern string P(O .. m-1 ], 6 and F 
# Goal: All valid shifts display<..'CI 
def FiniteAutomataSlringMatchcr(P,m, F, 6): 

q - O 
for i in range(O,m): 

q = 6(q, T[i)) 

if(q = m): 

print("Partern occurs with shift: ", i-m) 

Time Complexity: O(m). 

15.6 KMP Algorithm 
As before, let us assume that T is the string to be searched und P is the pnttem Lo be matched. This nlgorithm 
was presented by Knuth, Morris and Pratt. It takes O(n) time complexity for :>C<Hching a paucrn. To get 0(11) 
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time complexity, it avoids the comparisons with clements of T that were previously involved in comparison with 
some clement of the pattern P. 

The a lgorithm uses a table and in general we call it prefix function or pre fix table or fail f1111clion F. Pirst we will 
sec how Lo fill this ta ble a nd la ter how to searc h for a pattern using this table. The prefix function F for a pattern 
stores the knowledge a bout how the patte rn ma tches against shifts of itself. This information can be used to 
avoid useless shifts of the pattern P. It mea ns that this table can be used for avoiding backtracking on the string 

TT. 

Prefix Table 

def prefixTablc(pattem): 
m = len(pattern) 

P = 101 * m 
k = O 
for q in range(l, rn): 

while k > 0 and pattem(kl != pattem(q]: 
k = F(k - lJ 

if pattem(kj == pattern(qj: 
k=k+l 

F[qj = k 
return F 

As an exa mple, a ssume that P = ab ab a ca. For this pa ttern, let us follow the step-by-step inslruclions for 
filling the prefix table F. Initia lly: m = lengthlPJ = 7,F(OI = 0 a nd F[1 J = 0. 

Step 1: i = l,j = O,f[1J = 0 0 l 2 3 4 5 6 
p a b a b a c a 
F 0 0 

step 2: ; = 2.j = o. r:r21 = 1 0 I 2 3 4 5 6 
p a b a b a c a 
F 0 0 J 

Step 3: i = 3,j = 1,F(3J = 2 0 l 2 3 4 5 6 
p a b a b a c a 
F 0 0 l 2 

Step 4: i = '1.,j = t, FJ 4J = 3 0 I 2 3 4 5 6 
p n b a b a c a 
F 0 0 J 2 3 

Step 5 : i = 5, j = 3, FLSJ = I 0 l 2 3 4 5 6 
p a b a b a c a 
F 0 0 I 2 3 0 

Step 6: i = 6.j = l,F(GJ = 1 0 l 2 3 4 5 6 
p a b n b a c n 
F 0 0 I 2 3 0 l 

At this step the fi lling of the prefix lublc is complete. 

Matching Algorithm 

The KMP algorithm takes pattern P, string T a nd prefix function Fas input, and finds a match of Pin '/'. 

def KM P(tcxt, pattern): 
n = lcn(tcxt) 

m = lcn(pattcrn) 
F = prcfi.x'T'ablc(pattern) 
q=O 

15.6 KMP Algorithm 366 



Dala Slruclu rc and Algori Lhm ic Thinking wilh PyLhon 

for i in range(n): 
while q > 0 and patternlql != textlil: 

q = F[q - ll 
if pattern[qj == text[ ii: 

q = q+l 

if q =co m: 
return i - m + 1 

return -1 

print KMP("bacbabababacaca", "ababaca") 

String Algorithms 

Time Complexity: O(m + 11), where m is the length of the pattern and 11 is the length of the text to be searched. 
Space Complexity: O(m). 

Now, lo understand the process let us go through a n example. Assume that T = b a c b ab ab a b a ca ca & P = 
ab ab a ca . Since we have a lready filled the prefix ta ble, li.;t us use it a nd go to the matching a lgori thm. Inilially: 
11 =size of T = 15; m = size of P = 7. 

Step 1: i = 0, j = 0, compari ng P[O] wilh T[Oj. P[OJ does not match with '/'[OJ. P will be shifted one position to the 
right. 

1;1 tHh I ~ 1 :1 ~ I : I bl a I blalc I •1c1• I 
Step 2 : i = 1, j = 0, compa ring PIO] with TP l. PIO] matches with Tl lj. S ince there is a ma Leh, P is not shifted. 

I ;1 bl :rtifl~I~ I ~ l~I ·I b 1·1c 1· I cl• I 
Step 3: i = 2, j = 1, compa ring Pl11 with Tl2J. PllJ docs not matc h with Tf2). Backtracking on P, comparing P[OJ 
and '1'121. 

Step 4: i = 3, j = 0, compa ring P(OJ with '/'[3]. P[O] docs not match with Tl3l 

I ;1 b I· I cl rsih l ~EE ~ I~ I· I c 1· I' 1·1 
Step 5: i = 4, j = 0, compa ring PfOI with '1'1'1·1· PIOI ma tches with 7'[4). 

I ~ I b I a I c I b I :Rl'.: I ~ I : I ~ I : I c 1 • 1 c I a I 
Step 6: i = 5, j = 1, compa ring N1l with TfS].Pfll ma tc hes with TISI . 

I; I b I a I c E9 ~I ~Rf~ I: I ~ I: I c I a I c I a I 
Step 7: i = 6, j = 2, comparing Pl21 with 7'161. P[2[ matches with 7'[61. 

I; I b I a I c I b I : I ~ I :Rf: I ~ I: I c I a I c I a I 
Step 8: i = 7. j = 3, compa ring Pl31 with '1'171. P13l m atches with T[7J. 

l~lbl"l'lbl :l~l:l~ID~l :lc l alcla l 
Step 9: i = 8, j = 4, comparing P[41 with '/' IOI. 11 14 1 m atches with T[B]. 
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l~lblalclbl:l~l=l~l:Rf:lclalclal 
Step 10: i ~ 9, j - 5, compa ring P[S] with '1'!91. PIS! docs not match with '1'19]. Backtracking on P, comparing 

Pl4l with '1'(9] because ofter mismatch j = 1"141 = 3. 

l~l"l"lclbl:l~l:l~l:l~ffic1•1c1u1 
Comparing /'[3j with T[9j. 

T b a c b a b o b 0 b C U C II 

p a b tl b C H 

Step 11: i = 10, j - '1 , comparing Pl4J with 1'(10]. 1'141 matches with Tl !OJ. 

I ~ I b I a I c I b I a I b I : I : I : I : I :Rf: I c I a I 
Step 12: i = 11, j S, comparing P[S] with Tll 11. P[SI matches with 'fl 11 ]. 

T b a c b a b a b a b a c a 
P a b a b a 

Step 13: i = 12, J = 6, comparing Pf 6] with T(12]. P(6] matches with 7'[ 12j. 

p a b a b u c 

Pattern P has been found to completely occur in string '/'. The total number of shifts that took place for the 

match to be found arc: i - m = 13 - 7 = 6 shifts. 

Notes: 
KM P performs the compa risons from left to right 

• l<MP a lgorithm needs a preprocessing (prefix function) which wkes O(rn) space und time complexity 
• Searching lllkcs 0(11 + m) time com plcxity (docs not depend on alphabet size) 

15.7 Boyce-Moore Algorithm 
Like the KMP algorithm, this also docs some pre-processing and we call it last function. The algorithm scans the 
characters of the pattern from righc to left beginning with the nghtmosl character. During the testing of a 
possible placement of pattern P in '/', a mismatch is handled as follows: Let us assume that the current 
character being matched is 7'[i) - c and the correspondin~ pattern character 1s PIJI. If c is not contained 
anywhere in P, then shift the pattern /> complctcly past T[1 I. Otherwise, shift P until an occurrence of character c 
in P gets aligned with Tlil. This technique avoids needless comparisons by shifting the pattern rclativc to thc 
text. 

The last function cakes O(m + ILD time and the actual search takes O(nm) time. Therefore Lhe worst case 
running time of the Boyer-Moore algoriLhm is O(nm + ILD· This indicates that lhe worst-case running Lime is 
quadratic, in the case of 11 == m, the same as the brute force algorithm. 

• The Boyer-Moore ;;ilgorithm i:; very fast on the large ulphobct (rclutive LO the length of the pattcrn). 
For the smnll nlphnbet, Boyce-Moore is not preferable. 

• For binary strings, the KM P algorithm is recomme nded. 
• For the very shortest patterns, the brute force ulgorith m is better. 
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15.8 Data Structures for Storing Strings 
If we have a set of strings (for example, a ll the words in the dictionary) and a word whic h we wa nt to search in 
that set, in order lo perform the search operation fa:stcr, we need a n e ffi cie n t woy of storing the s trings. To store 
s ets of strings we can use a ny of the fo llowing data structures. 

• Hushing Tables 
• Binary Search Trees 
• Tries 
• Terna1y Search Trees 

15.9 Hash Tables for Strings 
As seen in the Hashing chapter, we can use hash ta bles for storing the integers or strings. In this case, t he keys 
are nothing but the strings. The problem with hash table implem entation is that we lose th e: ordering 
information - after a pplying the hash func tion, we do not know where it will map to. As a result, some queries 
take more lime. For example, to find a ll the words starting with the letter "K", with hash table representation we 
need to scan the complete hash table. This is because the hash function takes the complete key, performs hash 
on it, and we do not know the location of each word. 

15.10 Binary Search Trees for Strings 
In this representation, every node is used for sorting the strings al phabetically. This is possible because the 
strings have a natural ordering: A comes before fl, which comes before C, and so on. This is because words ca n 
be ordered and we can use a Binary Search Tree (SST) lo store and retrieve them. F'or example, let us assume 
that we want to store the following strings using BSTs: 

this is a caree1· monk strin9 

For the given string there are many ways of representing them in BST. One such possibility is shown in t he tree 
below. 

Issues with Binary Search Tree Representation 
This method is good in terms of storage efficiency. But the disadva ntage of th is re presentation is that, ot every 
node, the search operation performs the complete match of the given key with the node dnta, and as u result the 
time complexity of the search operation increases. So, from this we can say that SST representation of strings is 
good in terms of storage but not in terms of time. 

15.11 Tries 
Now, let us sec the a lternative representation that reduces the time com plexity of the search operation. The: 
name trie is taken from the word re"Lrie". 

What is a Trie? 
A trie is a Lrcc and each node in it contains the number of pointers equal to the number of c ha racters of the 
alphabet. For example, if we assume that all the stri ngs arc formed with English a lphabet characters "a" to .. 7. .. 

then each node of the Lrie contain s 26 pointers. A trie data structure can be decla red as: 

class Node(object): 
def _ inh_ (sell): 

self.children={}#contains a map with c hild characters as keys and their Node as values 

15.8 Data Structures for Storing Strings 369 



Data Structure and Algorithmic Thinking with Python S t.ring Algorithms 

Suppose we want to store the strings "a", "all", "als", and "as"": trie ror these strings will look like: 

'a' 
26-Pointcrs for each riossible character 

'I' 

NULL NULi~ NULL NULL NULL 

'I' 

NU LL NULL NULL 

Why Tries? 

The tries can insert and find strings in O(L) time (where /. represents the length of u single word). This is much 
faster than hash table and binary search tree rcpresenullions. 

Trie Declaration 
The structure of the TrieNodc has data (char), is End Of String (boolean), and has n collection of ch ild nodes 
(Collection of TrieNodes) . It a lso has one more method ca lled subNode(char). This method takes a character as 
argument and will return the child node of that character type if that is present. The basic clement - TrieNocle of 
a TRIE data structure looks like this: 

class Nodc(object): 
def init_ (scU): 

self.childrcn={}#contains a map with child characlC!rs as keys and their Node as values 
class Trie(object): 

def init_ (self): 
self. root = NodeO 
sclf.rooLdata = n /" 

Now that we have defined our TrieNodc, let's go ahead and look ul the other operations of Tl~ l l!:. fortunately, the 
TRIE data structure is simple to implement since it has two major methods: insert() and search(). Let's look ot 
the elementary implementation of both these methods. 

Inserting a String in Trie 
To insert a string, we just need to start at the root node and follow the corresponding path (path from root 
indicates the prefix of the given string). Once we reach the NULL pointer. we just need to create a skew of tail 
nodes for the remaining characters of the given string. 

def addWord(self.word): 
currentNode = self.root 
i 0 
#print "adding word '"+ word+'" to tric " 
for c in word: 

#print "add ing c haracter" + c 
try: 

currentNode = currentNode.childrenlcl 
#print "character "+c + " exists" 

except: 
sclf.createSubTrec(word(i:lcn(word)),currcnLNode) 
break 

i = i +I 

Time Complexity: O(L), where /. is the length of the string to be inserted. 
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Note: For real dictionary implementation, we may need a few more checks such as checking whether the given 
string is already there in the dictionary or not. 

Searching a String in Trie 
The same is the case wiLh the search operation: we just need to start at the root and follow the pointers. The 
time complexity of the search operation is equal to the length of the given string that want to sear·ch. 

def getWordList(sclf,sLartingCharacters): 
startNode =self.root 
for c in startingCharacters: 

try: 
startNode = startNode.childrenfcl 

except: 
return II 

nodestack""ll 
for child in startNodc.childrcn: 

nodcstack.appcnd(startNodc.ehildrcn[child)) 
words= I] 
currentWord="" 
while len(nodestack} != 0: 

currentNode = nodestack.popO 
currentWord += currentNode.data 
if lcn (currcntNodc.children) == 0: 

words.append(startingCharacters+currentWord) 
currcntWord = "" 

for n in currentNode.children: 

return words 

temp= eurrentNode.children[n) 
nodestack.append(temp} 

Time Complexity: O(L), where L is the length of the string to be searched. 

Issues with Tries Representation 
The main disadvantage of tries is that they need lot of memory for storing the strings. As we have seen above, for 
each node we have too many node pointers. In many cases, the occupancy of each node is less. The final 
conclusion regarding tries data structure is that they arc faster but require huge memory for storing the s trings. 

Note: There arc some improved tries representations called trie compression techniques. But, even with those 
techniques we can reduce the memory only at the leaves and not al the internal nodes. 

15.12 Ternary Search Trees 
This represenwtion was initially provided by Jon 13entlcy and Sedgcwick. I\ ternary search tree takes the 
advantages of binary search trees and tries. That means it combines the memory efficiency of BSTs and the time 
efficiency of tries. 

Ternary Search Trees Declaration 

class TSTNode: 
def _ init_ (self, x): 

sclf.daLa = x 
self.left = None 
self.eq = None 
self.right= None 

The Ternary Search Tree (TST) uses three pointers: 

• The left pointer points to the TST containing all the strings which are alphabetically less than data. 
• The right poin ter points to the TST containing all the strings which are alphabetically (,treater than data. 
• The eq pointer points lo the TST containing all the strings which arc a lphubclicu lly equal lo data. Thul 

means, if we want lo search for a string, and if the current character of the input string und the data of 
cu rrent node in TST arc the same, then we need to proceed to the next character in the input string a nd 
search it in th<.: s ubtr<.:c which is pointed by eq. 
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Operation Method of TST 

Let's make the operation method of class TST. 

class TST: 
def _ init _ (self, x = None): 

self.root = Node (None)# header 
self. leaf = x 

String Algorithms 

The instance variable root of TST will store the header. Data in this section is a dummy. The actual data will 
continue to add to the root of the child. Instance variable leaf stores the data representing the termination. leaf 
is passed as an argument when calling the TST. It will be None if it is omitted. 

Inserting strings in Ternary Search Tree 

For simplicity let us assume that we wanl lo store the following words in TST (also assume the same order): 
/Joats, /Joat, /Jat a nd bats. Initially, let us start with the !>oats string. 

'b' 0 

NULL NULL 

'o' 0 

NULL NULL 

'a' 0 

't' 0 

NULL NULL 

's' 

NULL 

Now if we want to insert the string boat, then the TST becomes jthe only change is selling the is_End_Of_String 
f1ag of "t" node to l ]: 

'b' 0 

NULL NULL 

'o' 0 

NULL NULL 

'a' 0 

't' l 

NULL NULL 

's' 

NULL 
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Now, let us insert the next string: bat 

NULL 

'a' 0 

NULL NULL NULL NULL 

't' 1 0 

NULL NULL 

't' 

NULL NULL 

's' 

Now, lel us inserl the final word: bats. 

NULL 

'a' 0 

NULL NULL 

't' 1 

's' 

NULL NULL 

's' 

Based on these examples, we can write the insertion algorithm as below. We will combine Lhe insertion opcralion 
of BST and tries. 

# Insert 
def _insert (node, x}: 

if node is None: return x 
elif x.data == node.data: return node::. 
elif x.data <node.data: 

node.left = _insert (node.left, x) 
else: 

node.right = _insert (node.right, x) 
return node 

c lass TST: 
def ... )nil_ (self, x = None): 
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self. root = TSTNode (None) # header 
self.leaf = x 

#Insert 
def insert (self, seq): 

node = self.rool 
for x in seq: 

child = _search (nodc.cq, x) 
if not child: 

child = TSTNode (x) 
node.eq = _insert (node.eq, child) 

node = child 
#Check leaf 
if not _search (node.eq, self. Leaf): 

node.eq = _insert (node.cq, TSTNode (self.leaf)) 

Time Complexity: 0(/.), where l, is lhc length of lhc string to be inserted. 

Searching in Ternary Search Tree 

String Algorithms 

If after inserting the words we want to search for them, then we have to follow the same rules us thut of binary 
search. The only d ifference is, in case of match we should check for lhe rema ining characters (in eq subtree) 
instead of return. Also, like BSTs we will sec both recursive and non- recursive vcrnions of the search method . 

#Search 
def search (node, x): 

while node: 
if node.data == x: return node 
if x <node.data: 

node = node. left 
else: 

node= node.right 
return None 

class TST: 
#Search 

def _search (node, x): 
while node: 

if node.data == x: return node 
if x <node.data: 

node = node. left 
else: 

node = node. right 
return None 

Time Complexity: 0(/,). where /, is the length of the string to be searched . 

Displaying All Words of Ternary Search Tree 
If we want to print all the strings of TST we can use the following algorithm. If we want Lo print them in sorted 
order, we need to follow the inorder traversal of TST. 

#Traverse 
def traverse (node, leaf): 

if node: 
for x in _traverse (node. left, leaf): 

yield x 
if node.data == leaf: 

yield 11 
else: 

for x in _traverse (node.eq, leaf): 
yield [node.data] + x 

for x in _traverse (node.right, leaf): 
yield x 

class TST: 
def _ init_ (self, x = None): 

self.root = TSTNode (None) # header 

15.12 Ternary Search Trees 374 



Data Structure and Algorithmic Thinking with Python 

self.leaf = x 

#Traverse 
def traverse (self): 

for x in _traverse (self. root.eq, self.leaf): 
yield x 

Full Implementation 

class TSTNode: 
def _ init_ (self, x): 

self.data= x 
self.left= None 
self.eq =None 
se1f.right = None 

def search (node, x): 
while node: 

if node.data== x: return node 
if x <node.data: 

node = node.left 
else: 

node= node.right 
return None 

def insert (node, x): 
if node is None: return x 
clif x.data == node.data: return node 
elifx.data <node.data: 

node.left = _insert (node. left, x} 
else: 

node.right = _insert (node.right, x) 
return node 

#Find the minirmun value 
def _scarchMin (node): 

if node.left is None: return node.data 
return _searchMin (node.left) 

# Delete the mini.mum value 
def _deleteMin (node): 

if node.left is None: return node.right 
node.left = _de1eteMin (node.left) 
return node 

def _delete (node, x): 
if node: 

if x == node.data: 
if node.left is None: 

return node.right 
eli.f node.right is None: 

return node.left 
else: 

node.data = searchMin (node.right} 
node. right= deleteMin (node.right) 

clif x <node.data: 
node.left = delete (node.lefL, x) 

else: 
node.right = delete (node.right, x) 

return node 

def _traverse (node, leal): 
if node: 

for x in _traverse (node.left, lcal): 
yield x 

if node.data == leaf: 
yield 11 

else: 
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for x in _traverse (node.eq, leaf): 
yield [node.data! + x 

for x in traverse (node.right, leaf): 
yield x 

1#1##1#1# Ternary Search Tree 1#1#1##1# 

class TST: 
def _ init_ (self, x = None): 

self.root = TSTNode (None) # header 
self.leaf = x 

def search (self, seq): 
node = self.root 
for x in seq: 

node = search (node.eq, x) 
if nol node: return False 

#Check leaf 
rclu rn _search (node.eq, self. leaf) is not None 

def insert (self, seq): 
node= self.root 
for x in seq: 

child = _search (node.eq, x) 
if not child: 

child = TSTNodc (x) 
node.eq = insert (node.eq, child) 

node = child 
#Check leaf 
if not _search (node.cq, self.leaf): 

node.cq = _insert (node.eq, TSTNode (self.leaf)) 

def delete (self, seq): 
node = self.root 
for x in seq: 

node = _search (nodc.eq, x) 
if not node: return False 

# Delete leaf 
if _search (node.eq, self.leaf): 

node.cq = _delete (node.eq, self. leaf) 
return True 

return False 

def lraverse (sell): 
for x in traverse {sdf.root.cq, self.leaf): 

yield x 
I# The data with a common prefix 
def commonPrcfix (self, seq): 

node = self.root 
buff = 11 
for x in seq: 

buff.append (x) 
node = search (node.eq, x) 
if not node: return 

for x in traverse {node.cq, self.leaf): 
yield bu ff + x 

if _ name_ == '_ main_ ': 
I# Suffix trie 
def makeTST {seq): 

a=TST() 
for x in xrange (Jen (seq)): 

a.insert (::;cq [x:I) 
rc.:turn a 

s = makeTST ('abcabbca') 
for x in s.lravcrsc () : 

print x 
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for x in ['a', 'be']: 
print x 
for y in s.com monPrefix (x): 

print y 
print s.delete ('a') 
prints.delete ('ca') 
print s.delete ('bca') 
for x in s.traversc (): 

print x 
s ""makeTST (f0,1,2,0,1,1,2,0)) 
for x in s . traverse (): 

print x 

15.13 Comparing BSTs, Tries and TSTs 
• Has h ta ble and SST imple mentation s t.ores complete the s lJ·ing al each node. As a result. they ta ke more 

time for searching. But they a re memory effici ent. 
• TSTs can grow and shrink dynamically but hash tables resize only based on load factor. 
• TSTs allow partial search whereas BSTs and hash tables do not support il. 
• TSTs can display the words in sorted order, but in hash tables we cannot get the sorted order. 
• Tries perform search operations very fast bul they take huge memory for storing the string. 
• TSTs combine the advantages of BSTs and Tries. Tha l means they combine the memory efficiency of 

BSTs a nd the lime effic iency of tries 

15.14 Suffix Trees 
Suffix lrees are an important data slructurc for strings. With suffix trees we can answer the queries very fast. 
But this requires some preprocessing and construction of a suffix tree. Even though the construction of a suffix 
tree is complica ted, it solves many other string-related problems in linear time. 

Note: Suffix trees use a tree (suffix ln.:c) for one string, whereas Hash ta bles, BSTs, Tries and TSTs store a set of 
strings. That means, a s uffix lree a ns wers lhc queries re lated to one string. 

Let us sec the lcrminology we use for t his representation. 

Prefix and Suffix 
Given a string T = '/'1 '12 ... Tn, the prefix of Tis a string T1 ... T; where i can take values from 1 ton. For example, if 
T = banana, then the prefixes of'/' are: /J, ba, ban, bana, banan, banana. 

Similarly, given a string T = 7'1'/'2 ... 1;1, the suffix of T is a string 'fj .. :1;1 where i can take va lues from n to 1. For 
example, if 'l' =banana, then the suffixes of T a rc: a, na, ana., nana, mwna, banana. 

Observation 
From the above example, we can easily see that. for a given text T and paltern P, the exact strin g matching 
problem can also be defined as: 

• Find a suffix of T such that P is a prefix of t his sufftx or 
• Find a pre fix of T such that P is a s uffix of this prefix. 

Example : Let the texl to be searched be '/' = accbkkbac a nd the pattern be P = kkb. For this example, P is a 
pref'tx of the su ffi x kkbac a nd a lso a suffix of the prefix accbkl<b. 

What is a Suffix Tree? 
In simple terms, the suffix tree for texl T is a Trie-like data sLructurc that represents the suffixes of T. The 
definition of suffix trees can be given as: A suffix tree for a n character string Tl 1 ... nl is a rooted tree with the 
following properties. 

• A suffix t ree will con tain 11 leaves which are numbered from 1 ton 
• Each internal node (except root) should have at least 2 children 
• Each edge in a tree is labeled by a nonempty s ubstring of T 
• No two edges of a node (children edges) begin with the samt.: character 
• The paths from the rool to the leaves represent a ll lhc suff'txes of T 
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The Construction of Suffix Trees 
Algorithm 

l. Let S be the set of all suffixes of'/'. Append $ lo each of the s uffixes. 
2. Sort the suffixes in S based on their first character. 

3. Por each group Sc (c E L): 
(i) If Sc group has on ly one clement, then create a leaf node. 
(ii) Otherwise, find the longest common prefix of the suffixes in Sc group, create an interna l 

node, and recursively continue with Step 2, S being the set of remaining suffixes from Sc 
after splitting off the longest common prefix. 

For bell.er understanding, lt:t us go through an example. Let the given text be T = tatat. For th is suing, give a 

number to each of the s uffixes. 
lndc..'< 

1 

2 
3 
4 
5 
6 

Now, sort the suffixes based on their initial characters. 

Index 
1 
3 
5 
2 
4 
6 

Suffix 
$ 
t$ 

at$ 
tat$ 

at at$ 
ta tat$ 

Suff'IX 
$ 

al$ 
a tat$ 

t$ 
tat$ 

tat at$ 

roup 51 based on a 
Group S2 based on a 

.rroup S3 based on t 

In the three groups, the first group has on ly one element. So, as per the a lgorithm, create a leaf node for it, as 
shown below. 

Now, for S2 and S3 (as they have more than one element), let us find the longest prefix in the group, and the 
result is shown below. 

Grouo lndexes for this rrrouo Longest Prefix of Grouo Suffixes 
s'l 3,S at 
s., 2,4,6 t 

For 52 and 53 , create internal nodes, and the edge contains the longest common prefix of those groups. 

$ 
at$ 

at 

$ 
at$ 

atat$ 

$ 

Now we have lo remove the longest common prefix from the 52 and 53 group elements. 

Group Indexes for this group Longest Prefix of Grouo Suffixes Resultant Suffixes 
s'l 3,5 at $,at$ 
s~ 2,'1·,6 t $,ut$,utat$ 

Out next step is solving S2 a nd S:1 recurs ively. Firs t let us takes,. In th is group, if we sort them based on their 
first character, it is easy lo sec that the first group conta ins only one c lement $, a nd the second group a lso 
contains on ly one clement, at$. Since both groups have only one element, we can directly create leaf nodes for 
them . 
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s 
atS 

atatS 

At this step, both S1a ncl S2 c lements are done and the only remaining group is S3 . As s imilar to earlier steps, in 
the S3 group, if we sorl them based on their first character, it is easy to see that there is only one element in the 
firs t group and it is$. ror S3 remaining clements, remove the longest common pre lix. 

Grou' Indexes for this rou Lon est Prefix of Grou Suffixes l~csultanl Sufrl)(cs 
s 4, 6 (I/ $, at$ 

In lhe S:1 ::iccond group, there arc two c lements: $and at$. We ca n d irectly ndd the lcuf nodes for Lhe firs t group 
cleme nt $. Le t us udd 5:1 s ubtree as s hown below. 

at 

$ 
at$ 

Now, SJ con LO ins two clements. If we sort them based on their first c harac ter, it is easy to see that there arc only 
two clements and among them one is$ and other is atS. We ca n direc tly add the leaf nodes fo r them. Let us add 
S3 subtree as shown below. 

at 

at$ 

Since there arc no more c lements, this is the completion of the constru c t ion of the suffix tree for string T = tatat. 
The Lime-complexity of the construction of a suffix tree using the above algorithm is O(n2 ) where n is the length 
o f the input string beca use there are n distinct suffixes. The longest has length n, the second longest has length 
n - 1, and so on. 

Note: 
• There a rc O(n) a lgorithms for constructing suffix trees. 
• To improve the complexity, we can use indices instead of s tring for branches. 

Applications of Suffix Trees 
All the problems below (but not limited to these) on strings can be solved with suffix trees very efficiently (for 
algorithm::; refer to Pro/J/cms section). 

• Exact String Matching: Given a text T and a pattern P, how do we c heck whether P appea rs in Tor 
not":> 

• Longes t Repeated Subs tring: Given a text T how do we lind the substrin~ of T that is the maximum 
rcpcn t<'cl substring':> 
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• Longest Pa lindrome: Given a text T how do we find the substring of T that is the longest palindrome of 
T? 

• Longest Commo n S ubstring: Given two strings, how do we find the longest common substring? 
• Longest Co m m on Prefix: Given two strings X[i ... nj and YU ... ml, how do we rind the longest common 

prefix? 
• I low do we search for a regular expression in given text T? 
• Given a text T and a pattern P, how do we find the first occurrence of Pin T? 

15.15 String Algorithms: Problems & Solutions 
Proble m -1 Given a paragraph of words, give an a lgorithm for finding the word which appears the maximum 

number of times. If the paragraph is scrolled down (some words disappear from the first fra me, some words 
slill appea r , and some are new words), give the maximum occurring word. Thus, it should be dynamic. 

Solution: ror lhis problem we can use a combination of priority queues and tries. We start by creating a trie in 
whic h we insert a word us it appears, a nd at every leaf of trie. I ts node contains that word a long with a pointer 
that. points lo Lhe node in the heap [priority qucucj which we a lso create. This heap contains nodes whose 
structure conLuin::; a counter. This is its frequency and a lso a pointer lO that leaf of trie, which contains that 
word so that there is no need Lo store the word twice. 

Whenever a new word comes up, we find it in tric. ff it is already there, we increase the frequency of that node in 
the heap corresponding to that word, and we call it heapify. This is clone so that al any point of time we can gel 
the word of maximum frequency. While scrolling, when a word goes out of scope, we decrement the counter in 
heap. If the new frequency is slill g reater than ;,,ero, heapify the heap to incorporate Lhe modificalion. If the new 
frequency is zero, delete the node from heap a nd delete it from lric. 

Problem-2 G ivcn two strings, how can we find Lhe longest common substring? 

Solut ion: Let us assume that the given two strings arc T1 and T2 • The longest common substring of two strings, 
T1 and 7'2 , can be found by building a generalized suffix tree for T1 and T2 • That means we need to build a single 
suffix tree for both the strings. Each node is marked to indicate if il represents a suffix of T1 or T2 or both. This 
indicates that we need to use different marker symbols for both the strings (for example, we can use$ for the 
first string and II for lhe second symbol). After constructing the common suffix tree, the deepest node marked for 
both T1 and Tz repre::;cnts the longest common substring. 

Anoth er way of d o ing this is : We can build a suffix tree for th<.: stiing 7\$7'zll. This is equivalent to building a 
common st1ffix tree for both the strings. 

Time Complt:.Xily: O(m + 11), where m and n are the lengths of input strings 7\ and 'l'z . 

Proble m -3 Longest Palin dro me: Given a text T how do we find the substring of T which is the longest 
palindrome of'/'? 

Solution: The longest palindrome of T[l .. n] can be found in O(n) time. The a lgorithm is: first build a suffix tree 
for T$n:verse(T)ll or bui ld a genero lir.cd suffix tree for T and reverse(T). After building the suffix tree, find the 
deepest node marked with both $ and 11. Basically it means rind the longest com mon substring. 

Problem-4 Given a string (word), give an algorithm for finding the next word in the diclionur-y. 

Solution: Let us assume that we a re using Tr ie for stori ng the dictionary words. To find the next word in Tries 
we can fo llow a s imple a pproach as shown below. Starting from Lhc rightmost character, increment the 
characters one by one. Once we reach Z, move to the next character on the left s ide. Whenever we increment, 
check if the word wilh the incremented character exists in the dic tionary or not. If it exists, then return the 
word , otherwise increment aga in. If we use TST, then we can find the inorder successor for the current word. 

Proble m -5 Give an algorithm for reversing a string. 

Solution: 
# If the st.r is editable 
def ReversingString(str): 

s = Lisl(str) 
end = len(str)-1 
st.art= 0 
while (slarl<cnd): 

temp = s!startl 
slstarlj "' slcndl 
slcndl • temp 
start ~"' I 
encl ..... 1 

return "" .join(s ) 
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slr"' "CareerMonk Publications." 
print RevcrsingString(str) 

#Alternative Implementation 
def rcversc(sLr): 

r - "" 
for c instr: 

r•c+r 
return r 

str .. "CarccrMonk Publications." 
print reverse(str) 

Time Complexity: 0(11), where n is lhc length of the given string. Spuce Complexity: 0(11). 

Problcm-6 Cun we reverse the string without using any tempornry vnriublc? 

Solution: Yes, we cun ui;e XOR logic for swapping the variables. 
def RcveraingSLring(str): 

s • lis l(slr) 
end = Icn(slr)-1 
s ta rL "' O 
while (st.ar t<end): 

slsla rt), s{cndl = s!endl, sJstart} 
start+.- l 
end I 

return "".join(s ) 
str" "CareerMonk Publications." 
print RcvcrsingString(slr) 

# Alternative Implementation 
str = "CarecrMonk Publications." 
print "".join(str[cJ for c in xrange(len(str) - 1, -1, -1)) 

SLring Algorithms 

Probably the easiest and close to the fastest way to reverse a string 1s to use Python's extended slice syntax. This 
allows you to specify ~1 start, stop and step value to use when c reating a slice. The syntax is: lstart:stop:stepJ. 

str - "CarccrMonk Publications.• 
print slrl::- 1 I 

If start is omitted it defaults lo 0 and if stop is omitted it defaults LO the length of the string. A step of - 1 tells 
Python to start counting by I from the stop until it reaches the start. 

When working with forge strings, or when you just don't want to reverse the whole str-ing at once, you can use 
the reverc;ed() built-in. reversed() returns an iterator and is a rguably the mnsl Python ic way to reverse a string. 

s l.r = "CarccrMonk Publications." 
pri11L "".join(reverned(str)) 

Time Com plex ity: o(~) ~0(11), where rt is Lhe length of the give n strin~. S pncC' Complexity: 0(1). 

Problem-7 o text ond a pattern, give an algorithm for matc hing the pullern in Lhe tcxl. Assume ? (single 
c ha racter matcher) a nd • (multi c haracter matcher) arc the wi ld ca rd characters. 

Solution: Brute Force Method. Por efficient method, refer to the theory section. 

def wildcardMatch(inputString, pattern): 
if lcn(pattcrn) .. - 0: 

return len(inputString) .. = O 
II inputString can be empty 
if pattcrnlOI '?': 

return len(inputString) > 0 and wildcardMatch(inputStringl 1 :J. pattern! I :I) 
clif pattern[OI '*'· 

# match nothing or 
# match one and continue, AB* = A* 
return wildcardMatch(inputString, pattern[l:J) or\ 

(lcn(inputString) > 0 and wildcardMatch(inputString( I :I, pullcm)) 
else: 

return lcn(inputS tring) > 0 and inputStringlOI == pollcmlOI und \ 
wildcardMatch(inputSlringl 1 :I, pattern! I :I) 

return 0 
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print wildcardMatch("cc","c") 
print wildcardMatch("cc","cc") 
print wildcardMatch("ccc","cc") 
print wildcardMatch("cc", "*") 
print wildcardMatch("cc", "a*") 
print wildcardMatch("ab", "?*") 
print wildcardMatch("cca", "c*a*b") 

Time Complexity: 0(11111), where m is the length of the text and 11 is the length of the pattern. 
Spacc Complexity: 0(1). 

Problem-8 Give an algorithm for reversing words in a sentence. 
Example: Inpu t: "This is a Career Monk String", Output: "String Monk Career a is This" 

Solution: Stort from the beginning and keep on reversing the words . The be low implementution assumes that '' 
(space) is I hc dclimiter for words in given sentence. 

II (il)param s, o string 
II (i11retum a string 
def reverseWordsLnSenccnce(self, s): 

result .. lJ 
inWord = False 
for i in range(O, len(s)): 

if Mil==' 'or s[ij=='\t') and in Word: 
inWord = FaJse 
resu It. insert(O, s[st.art:il) 
resu lt.insert(O, ' ') 

elif not (s[ij••'' or sJil .. "'' \t' or inWord): 
in Word = True 
start= i 

ifinWord: 
result.insert(O, s[start: len(s)J) 
res ult.insert(O, ' ') 

if lcn (rcsult)>O: 
res ult.pop(O) 

return ".join(result) 

Time Complexity: 0(211) <:::0(11), where n is the length of the string. Space Complexity: 0(1 ). 

Problem -9 Permutations of a string [anagra ms): Give an algorithm for printing all possible permutations 
of the characters in a string. Unlike combinations, two permutations are considered distinct if they contain 
the same chnracters but in a different order. For simplicity assume that each occurrence of a repeated 
character is o distinct characLer. That is, if the input is "aaa", the output shou ld be six repetitions of "aaa". 
The permutations may be output in any order. 

Solution: The solution is renched by genera ting 11! s trings, each of length 11 , where 11 is the length of the inpul 
s tring. A generator f"unction that genern tes all permutations of the input clc;ments. If the input contains 
duplicn tcs, lht.:n some permutations may be visited with multiplicity greater thnn one. 

Our rcc ursive a lgorithm requires two pieces of information, the e lements that have not yel been permuted and 
the parlial permuta tion built up so far. We thus phrase this function as a wra pper around a recursive function 
with extra p::1ramcters. 

def pe rmutaLions(elcms): 
for perm in reccursivePcrmutations(clems. II): 

print perm 

A helper function to recursively generate permutations. The fu nction takes in two arguments, the c lements co 
permute and the partial permutation created so far, and then produces all permutations that sta rt with the 
given sequence a nd end with some permutations of the unpermuted c lements. 

def reccursivePermutations(elems, soFar): 
# Base cnse: If there are no more elements lo permute, then the answer will 
ff be the permutation we have created so far. 
if lcn(elems) •• 0: 

yield soFar 

II Othcrwise, try extending the pcrmut<ltion we have so fur by each of the 
II clements we have yet to permute. 
else: 
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for i in range(O, len(elems)): 
#Extend the current permutation by the ith element, then remove 
#the ith element from the set of elements we have not yet 
# permuted. We then iterate across all the permutations that have 
I# been generated this way and hand each one back to the caller. 
for perm in reccursivcPcrmutations(elcmslO:iJ + cl<.:ms!i+l :I, soFar + [clems[ilJ): 

yield perm 

# Permutalions by iteration 
def permulationByllera.Lion(elems): 

Jevel=[elems!O]) 
for i in range(l,len(elems)): 

nList=[J 
for item in level: 

nList.append(ilcm+clcrns[il) 
for j in rangc(lcn(itcm)): 

nLisL.appcnd(iLem[O:j[+clems!i[+ilemLj:J) 
level=nLisl 

return nList 

String Algorithms 

Problem-10 Combina tions Combina tions of a String: Unlike permutations, two combinations are 
considered to be the same if they contain the same c haracters, but may be in a different order. Give an 
algorithm that prints a ll possible combinations of the characters in a string. For example, "ac" and "ab" are 
different combinations from lhc input string "abc", bul "ab" is lhe same as "ba". 

Solution: The solution is achieved by generating 11!/r! (11 - r) ! strings, each of length between 1 and n where n is 
the length of the given input string. 

Algorithm: 
For each of the inpul c ha racters 

a. Put the current character in output string a nd print it. 
b. Ir there arc a ny .rema ining c haracters, generate combinations with those remaining characters. 

def combinationByRecursion(elems, s, idx, li): 
for i in range(idx, lcn(clcms)): 

s+=elcms[i) 
li.appcnd(s) 
#print s, idx 
cornbinationByRecursion(elems, s, i+ 1, Ii) 
s=s[0:-1) 

def combinationByltera.tion(elems): 
level=r"I 
for i in range(len(elems)): 

nLisl=fl 
for item in level: 

n List.a ppend(item+elems[ ii) 
Jevel+=n List 

return level[ I: 1 
res=[) 
combinationByRecur&ion('abc', ", 0, res) 
print combin.ati.onByileralion('abc') 
print combinalionByfl.C!ralion('abc') 

Proble m -11 Given a s tring "ABCCBCBA", give an a lgorithm for recurs ively re moving lhc adjacent characlers 
if they arc the same. Por example, ABCCBCBA --> ABBCBA-->ACBA 

Solution: Pirsl we need to c heck if we have a c haracter pair; if yes, then cancel it .. Now check for next character 
and previous clement. Keep canceling the cha racters until we ciU1er reach the start of the an-ay, reach the end 
of the array, or don't find a pair. 

def removeAdjacentRepca ts(nums): 
j = 1 
while i < len(nums): 

if numsji] == numsji-1 [: 
nums. pop(i) 
i -= 1 

i += 1 
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return nums 

nums=l"AM, "B" .''CH, "C", "C", "C", ''B"', ''A "l 
print removcAdjacent(nums) 

Problem-12 Given a set of characters ClfAUS and a inpu t string INPUT, find the m1rumum window in str 
which will contain a ll the characters in Cl/AUS in complexity O(n). For example, INPU'f' = ABBACIJAA und 
CHARS = AAB has the minimum window fJA/\. 

Solu tion: This a lgorithm is based on the s liding window approach. In this approach, we stan from the 
beginn ing of lhe array and move to the right. As soon as we have a window which has aU the required c lements, 
try s liding the window as far righl as possible with a ll Lhe required clements. If the current window lcnglh is less 
than the minimum length found until now, update t he minimum length. For example, if the inpul array is 
ABBACIJAA a nd I.he minimum window should cover characters AA/3, then the sliding window will move like this: 

[[1 8 B A 11 C B A A 

A B B c B A A 

A B B A c 8 A A 

Algorithm: Tlw input is thr given array and chars is 1hr array ofcharuc1crs that need lo be fou nd. 
I Mnkr nn in trgcr array shouldfindl l of lcn 256. The /1

h clcinent of tllis array will have the count of how many times 
we need to fi11d lhc element of ASCII v11lut· i. 

2 Make another array hasfound of 256 clements, which will h nve the count of the required clements fou nd until 
ll OW. 

3 Count <= O 
4 While input[il 

a. lfinpullij element is not to be found-. continu e 
b. lfinputfil e le ment is required => increase count by 'I. 
c. If counl· is le ngth of charsfl arrny, s lide lhc window as much right as possible. 
d. lf ClllTCnl window le ngth is less than mj11 le 11g1h found until now, upda te min le ngU'1. 

from collections import default:dict 
def sma llestWindow(INPUT, CHARS): 

assert CHARS != " 
disctionary = defaultdict(int} 
nneg = !OJ # number of negative entries in dictionary 
def incr(c): 

disc tionary[c] += I 
if disctionaryjcl == 0: 

nneglOI -= l 
def dccr(c): 

if disctionary[cl == 0: 
nneg(OI += l 

disctionary(cl - = l 
for c in CHARS: 

decr(c) 
minLenglh = len(INPUT) + 1 
j .. 0 
for i in xrange(len(lNPUT)): 

while nneg!OI > 0: 
if j >= len(INPUT): 

return minLength 
incr(JN PUTLiJ) 
j += l 

min Length = min(minLength, j - i) 
decr(J N PUT[ ii) 

return minLenglh 

print smallestWindow("ADOBECODEBANC","ABC") 

Complexity: If we wa lk through Lhe code, i a nd j can traverse at most n s te ps (whe re 11 is the in put s i~e) in the 
wori;L cai;c, adding to a total of 211 Limes. Therefore, time complexity is O(n). 
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Problem-13 Given two strings st:rl and str2, write a function that prints al l interleavings of the given two 
strings. We may assume thal a ll characters in both s Lrings arc different. Example: Input: strl = "AB", s tr2 = 
"CD'' and Output: ABCD ACBD ACDB CABD CADS COAB. An interleaved string of given two 
strings prese rves the orde r o f c ha racters in individua l strings. For example, in a ll the interleaving's of above 
first example, 'A' comes before 'B' and 'C' comes before 'D'. 

Solution: Let Lhe length o f strl be 111 a nd the length of str 2 be 11 . Let us assume that a ll c ha racters in strl a nd 
str2 a re different. Let Count(m, n) be the count of a ll inte rleaved s trings in s uc h strings. The value of Count(m, n) 
can be written as following. 

Count(m, n) = Count(m-1, n) + Count(m, n-1) 
Count(l, 0) = 1 and Count(l, 0) = l 

To prin t all in terlcaving's, we can first fix Lhc first c haracter of str LjO .. m- 11 in outpUL string, a nd recursively call 
for str l [ I.. m- 1] a nd slr210 .. n -11. And then we can fix the firs t character of sLr2jO .. n- l] a nd recurs ively call fo r 
s tr 110 .. m- 1] a nd str2 1 I.. n-11. 
On other words, Lhis problem can be red uced to that o f c reating a ll unique permutations of a particular !isl. Say 
m a nd n arc lhc lengths of the strings str l a nd str2, respectively. Then construct a list like this : 

10] • strl +!LI* str2 

There exists a one-to-one corresponde nce (a bijection) from the unique permutations of this list to all the 
possible interleavings of the two strings :;trl a nd slr2 . The idea is to let each value of the permutation specify 
which string to take the nex t c ha racter from. 

def PrinUnterleavings (slrl , slr2): 
perms = 11 
if len(str 1) + len(str2) -- I: 

return [strl or str21 
ifstrl: 

for item in Printlnterleavings(str l I l: J, str2): 
perms.append(strllOI +item) 

if str2: 
for item in Prinllnterleavings (strl, str2[ I :J): 

perms.append(str2IO] + item) 
rel urn perms 

print Printlntcrlcavings("AB". "C'O") 

Problem-14 Given a matrix with s iw 11 x 11 conta ining ra ndom integers . Give a n algorithm which c hecks 
whether rows match with a colum n(s) or not. For example, if i 11' row matches with / 11 column, a nd i 111 row 
contains the elements - [2,6,5,8,9]. Then / 1' column would a lso contain the elements - [2,6,5,8,9]. 

Solution: We can build a tric for the data in the columns (rows wou ld a lso work). Then we can compare the 
rows with the trie. This would a llow u s to exit as soon as lhc beginning of a row does not match any column 
(backtracking). Al:;o this wou ld let u s c heck a row ogoinst oil columns in one pass. 

If we do not wa nt to waste mc.;mory for e m ply pointe rs the n we ca n furthe r improve the s o lu tion by cons truc ting 
a suffix tree. 

Problem-15 How do you replace all space:; in a s tring with ''X,20'. Assu me string has s ufficient space at e nd 
of string to hold additional cha racters. 

Solution: 

class ReplacableString: 
def init (self, inputString): 

self.input String =inputString 
de f replaccr(sclf, lo ruplacc, replacer): 

for i in xrange(len(self.inputString)): 
if to_replace == self.inpulSlring[i:i+len(to replace)i: 

self.inpu tString ... self.inputSLring[ :i] + replacer+ self.inputString[i+len(to replace):] 

def _ str_ (sell): 
return str(self.inputString) 

inpul = ReplacableString("This is e lh string") 
input.replacer(" ", '%20") 
print input 

Time Complexity: O(n). Space.; Complexity: 0( I) . llerc, we do not have.; to worry on the space needed for extra 
cha racters. We have to sec how muc h extra space is needed for filling that. 
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Important note: Python provides a simple way to encode URLs. 

import urllib 
input url = urllib.quote ('http:/ /www.CareerMonk.com/example one.html') 

String Algorilhms 

In this example, Python loads the urllib module, then takes the string and norma li i",cs the URL by replacing the 
unreadable blank space in the Uf~L between "example one.html" with the special c harnctcr '%20". 

Problem-16 Given a 20 board containing 'X' and 'O', captu re a ll regions surrounded by 'X'. A region is 
ca ptured by nipping a ll 'O's into 'X's in that surrounded region . 

Sample Input: Output: 
xx xx xx xx 
XOOX XXXX 
xx ox xx xx 
xoxx xoxx 

Solution: We use baeklruc king lo idcnliry the e lements not SLllTOunded by 'X' and we ma rk those with a 
temporal symbol ('$'). The c lements not surrounded by 'X' means that exists a path or c lements 'O' to a border. 
So we start the backtracking a lgorithm with the boarders. The last thing is replacing lhe temporal clement by 'O' 
and the rest c lements Lo 'X'. 

class CamptureRegions: 
# @param bo~u·d, a 2D array 
# Capture all regions by modifying the input board in-place. 
# Do not return any va lue. 
def solvc(sclf, board): 

if len(board)==O: 
return 

for row in rangc(O,len(board)): 
self.mark(board,row,O) 
self.mark{board, row, len(board[0))-1) 

for col in range(O, len(board(OJ)): 
self.mark(board, 0, col) 
self.mark(board, len(board)-1, col) 

for row in range(O,Jen(board)): 
for col in ntngc(O, len(boardJOI)): 

if boardJrowlf col] .... '$': 
board[row1tcolf = 'O' 

else: 
boardf rowJ!coll = 'X' 

def mark(self, board, row, co1): 
stack = II 
nCols= len(boardf 01) 
stack.append(row*nCols+col) 
while len(stack)>O: 

posilion = slack. pop() 
row = position / / nCols 
col = posilion %1 nCols 
if boardf rowl(colj I= 'O': 

continue 
boardJrowUcolJ = '$' 
if row>O: 

stack.append(( row- I )*nCols+col) 
if row< lcn(board)- 1: 

stack.append((row+ 1 )*nCols+col) 
if col>O: 

slack.appcnd(row*nCols+col-1) 
if col< nCols- 1: 

stack.append(row*nCols+col+ 1) 

Problem-17 Ir h is a ny hashi ng function and is used to hash n keys in LO a table or s ii".C m, where n ::::; m, the 
expected number of collis ions involving a particular key X is : 

A) less than 1. 8) less than n. C) less than m. D) less than 11/2. 

Solution: i\. Hash func tion s hould distribute the cle ments uniformly 
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16.1 Introduction 

Algori t hms Design Techniques 

CIIAPTEl~ 

16 
:b" -fh.$.. 
'. 

In t he previous choptcrs, we huve seen many a lgori thms for solving d ifferent kinds of problems. Before solving a 
new problem, the gcnernl tendency is lo look for the s imilarity of the current problem to other problems for 
which wc have solutions. This helps us in gelling lhe solution easily. 

In th is chapter, we will sec different ways of classifying the algorithms and in subsequen t chapters we wi ll focus 
on a few of them (Greedy, Divide and Conquer, Dynamic Programming}. 

16.2 Classification 
There arc many wnys of classifying algorithms and a few of them urc shown below: 

• I mplcmentnl ion Method 
• Design Method 
• Other Classifications 

16.3 Classification by Implementation Method 

Recursion or Iteration 
A recursive algorithm is one that ca lls itself repeatedly until a base condition is satisfied. It is a common method 
used in functiona l programming languages like C, C + +. etc. 

Iterative algorithms use constructs like loops and sometimes other data structures like stacks and queues to 
solve the problems. 

Some problems arc suited for recursive and others are suited for iterative. For example, the Towers of llanoi 
problem can be easily understood in recursive implementation. Every recursive version has an iterative version, 
and vice versa. 

Procedural or Declarative (Non-Procedural) 
In declarative programming languages, we say what we want without having to say how to do it. With procedural 
programming, we have to specify the exact steps to get the result. For exam ple, SQL is more declarative than 
procedural, because the queries don't specify the steps to produce the result. Examples of procedural languages 
include: C, Pl IP, ond PERL. 

Serial or Parallel or Distributed 
In ge nera l, while d iscussing t he nlgori l hms we assume 1 ha t com puLcrs execute one ins l ruction a.t o time. These 
arc cn llcd serial nlgorit ilrns. 
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Parallel a lgorithms take advantage of computer architectures to process several instructions al a time. They 
divide the problem into subproblems and serve them to several processors or threads. Iterative a lgorithms arc 
generally paralle lizable. 

If the parallel a lgorithms arc distributed on to different machines then we call such algorithms distributed 
aJgorithms. 

Deterministic or Non-Deterministic 
Deterministic a lgorithms solve the problem with a predefined process, whereas non - deterministic a lgorithms 
guess the best solution at each step through the use of heuristics. 

Exact or Approximate 
As we have seen, for many problems we arc not able lo find Lhc optimal solutions. That means, the a lgorithms 
for which we arc able to find the optimal solutions a rc ca lled exact a lgorithms. In computer science, if we do not 
have the optimal soluLion, we give approximation a lgorithms. 

Approximation a lgorithms arc generally associated with NP-hard problems (refer to the Complexity Classes 
chapter fo r more details). 

16.4 Classification by Design Method 
Another way of classifyinJ!; algorithms is by their desig n method. 

Greedy Method 
Greedy a lgorithms work in stages. In each stage, a decision is made that is good al that point, without bothering 
about the future conseq uences. Genero lly , this means that some local best is chosen. It assumes that the local 
best select.ion a lso makes for the global optimal solution. 

Divide and Conquer 
The I) & C ::;lrut.egy ::;olves a problem by: 

I) Divide: Bren king Lhc problem into sub problems that arc themselves s ma ller instances oft he same type 
of problem. 

2) Recursion: Recurnivcly solving these sub problems. 
3) Conquer: Apprnpriat.ely combining their answers. 

Examples: merge sort a nd binary search algorithms. 

Dynamic Programming 
Dynamic programming (DP) and mcmoi;-,utio n work together. The difference between OP and divide and conquer 
is that. in the case of Lhc latter there is no dependency among the sub problems, whereas in DP there will be an 
overlap of sub-problems. By using memoiwtion [maintaining a table for already solved sub problems[, DP 
reduces the cxponcnliol complexity lo polynomial complexity (O(n2), O(n3 ), etc.) for many problems. 

The difference between dynamic programming and recursion is in the memoization of recursive calls. When sub 
problems are independent a nd if there is no repetition, memoization does not help, hence dynamic programming 
is not a solution for all problems. 

By using mcmoi;-.ation !maintaining a table of sub problems already solved!, dynamic programming reduces the 
complexity from exponential to polynomial. 

Linear Programming 
In linear programming, there arc inequalities in terms of inputs and mcu:muzmg (or minimizing) some linear 
function of the inputs. Many problems (example: maximum flow for directed graphs) can be discussed using 
linear programming. 

Reduction [Transform and Conquer] 
In this method we solve u diffic ult problem by transforming it into a known problem for whic h we ha ve 
asymptotically optirno l algorithms. In this method, the goal is to find a reducing a lgorithm whose complexity is 
not dominated by the resulting reduced algorithms. For example, the selection algorithm for finding the median 
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in a list involves first sorting the list and then finding out the m idd le clement in the sorted list. These techniques 
are also called transform and conquer. 

16.5 Other Classifications 

Classification by Research Area 
In compu ter scie nce each fie ld has its own problems a nd needs effi c ient a lgorithms. Examples : search 
a lgorithms, sorting a lgorithms, merge a lgorithms, nume rical a lgorithms, graph algorithms, string algorithm s, 
geometric algorithms, combina toria l a lgorithms, machine learning, c ryptography, parallel algorithms, data 
compression algori t hms, parsing techniques, a nd more. 

Classification by Complexity 
In this classification, a lgorithms a rc classified by the time they take to find a solu tion based on the ir input s i7.c. 
Some a lgorithms ta ke linea r time complexity (0(11) ) a nd others take expone ntia l time, a nd some never ha lt. Note 
that some problem s may have mul tiple a lgori thms with differen t complexities. 

Randomized Algorithms 
A few a lgorithms m ake c hoices ra ndomly. Fo r so me problems, the fas test s olutions mus t involve randomness. 
Example: Quick Sort. 

Branch and Bound Enumeration and Backtracking 
These were u sed in Artificial Inte lligence a nd we do no t need to explore these fully. For Lhe Backtracking m ethod 
refer to the Recusion and Backtracking cha pte r. 

Note: In the n ext few cha pters we discuss the Greedy, Divide a nd Conque r, a nd Dyna mic Programming) des ign 
methods. These me thods are emphasized beca use they a rc used more often tha n other methods to solve 
problems. 
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GREEDY 17 
ALGORITHMS 

17 .1 Introduction 
Let us s tart our discussion with simple theory that will give us an understand ing of the Greedy technique. In the 
game ofC/tess, every time we make a decision about a move, we have to a lso think aboul the future 
consequences. Whereas, in the game of Te1111is (or Volleyball), ou r action is based on the immediate situation. 
This m eans lhal in some cases making a decision that looks right al that moment gives the best solution 
(Greedy) , but in othe r cases it docsn'l. The Greedy technique is best s uited for looking at the immediate 
s ilualion. 

17.2 Greedy Strategy 
Greedy a lgorithms work in stages. In each slagc, a decision is mudc thal is good at thal point, without bothering 
a boul lhc fulure. This means that some loca l /J est is c hosen. ll assumes thal a local good selection ma kes for a 
globa l oplima1 soluLion. 

17 .3 Elements of Greedy Algorithms 
The two basic properlies of optimal Greedy a lgorithms a rc: 

1) Greedy choice properly 
2 ) Optima l substructu re 

Greedy choice property 
This properly says (hat Lhc glubu lly oplirna l solulion cun be oblaincd by making a locally optimal solut ion 
(Greedy). Th e c ho ice made by a Greedy a lgorithm may depend on earlier choices but not on the future. rt 
iteratively ma kes one Greedy c hoice afler a nother a nd reduces the given problem to a smaller one. 

Optimal substructure 
A proble m exhibits optima l subsLi-uc turc if a n o ptima l solution to lhc problem contains optimal s olulions to the 
s ubproblem s . Tha t mean s we cun solve s ubproblems a nd build up the solutions lo solve la rger problems. 

17.4 Does Greedy Always Work? 
Making locally optima l c ho ices does not a lways work. He nce, Greedy a lgorithms will nol a lways give the best 
solulions. We will sec particula r exa mples in Lhe Problems section and in the Dynamic Prn9rammin9 chapter. 

17.5 Advantages and Disadvantages of Greedy Method 
The mai n advanlagc of the Greedy method is thal it is s traighlforwnrd, easy to undcrntand a nd easy to code. In 
Greedy a lgorithm:-;, once we mukc a decision, we do nol have to spend time re -exam ining the a lready computed 
values. lls main disadvantage is tha t for many problems there is no g reedy a lgo.-ithrn. Thal means, in many 
cases there is no guuranlec lhat making locally optima l improvements in a locally optimal solutio n gives the 
optima l global solutio n. 
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17 .6 Greedy Applications 
• Sorting: Selection sort, Topological sort 
• Priority Queues: Heap sort 

• Huffman coding compression a lgorilhm 
• Prim's and Kruskal's a lgorithms 
• Shortest path in Weighted Graph !Dijkstra's] 
• Coin change problem 

• Fractional Knapsack problem 

• Disjoint sets-UNION by size and UNION by height (or rank) 
• ,Job scheduling a lgorithm 

• Greedy lechniqucs can be used as an approximation a lgorithm for complex problems 

17.7 Understanding Greedy Technique 
For better understanding !cl us go Lhrough an example. 

Huffman Coding Algorithm 

Definition 

Given a set of n characters from Lhc a lphabet A leach character c E A} and their associated frequency {req(c), 
find a binary code for each character c E A, such that Lee A frcq(c)lbinarycode(c)I is minimum, where 
/binarycode(c)/ represents the length of binary code of character c. That means the sum of the lcnglhs of a ll 
character codes should be minimum [the sum of each character's frequency multiplied by the number of bits in 
the representation). 

The basic idea behind lhe Huffman coding a lgorithm is lo use fewer bits for more frequently occurring 
characters. The Huffman coding algorithm compresses the storage of data using variable length codes. We know 
that each character takes 8 bits for representation. But in general, we do not use all of them. Also, wc use somc 
characters more frequently than othe1·s. When reading a file, the system generally reads 8 bits at a t imc to read 
a single character. But this cod ing scheme is inefficient. The reason for this is tha t some characters arc more 
frequently used than other characters. Let's say lhal the character 'e' is used 10 times more frequcnUy than the 
character 'q' . It would then be advantageous for us to instead use a 7 bit code for c a nd a 9 bit code for q 
because that could reduce our overall message lengU1. 

On average, using Huffman coding on standard files can reduce them anywhere from 10% to 30% depending on 
the character frequencies. The idea behind the character coding is to g ive longer binary codes for less frequent 
characters and groups of characters. Also, the charac ter coding is constructed in such a way that no two 
character codes arc prefixes of each other. 

An Example 

Let's assume that after scanning a file we find the following character frequencies: 

Character Frequency 
a 12 

b 2 
c 7 

d 13 

c 11 

f 85 

Given this, create a binary tree for each character that also stores the frequency with which it occurs (as shown 
below). 

b-2 l [ c-7 l [ a-12 11 d-13 l r e-~11 f-85 

The algorithm works as follows: In the list, find the Lwo binary tree:> that store minimum frcqucnc ies at their 
nodes. 

Connect these two nodes at a newly created common node Lhat will store no character but wi ll store the sum of 
the frequencies of all the nodes connected below it. So our picture looks like this: 
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r 9 ) 

~ 
J l a-12 b-2 c-7 [ d - 13 e- 14 I ( r-ss 

Repeat this process until only one tree is le ft : 

2 1 I r 27 

~ r 9 I I a-12 

~ 
l b-2 I [ c-?_] 

~ 
( d- 13 e- 14 

r-85 

~ 
f 2 1 27 

~ 
( 

9 a-12 cl - 13 e- 14 
} 

f-85 

( 
133 

_/"'( 
r 48 l [ r-85 

--------------[ 2 1 J [ 27 ) 

~ ~ I 9 J I 0- 12 J d- 13 J [ c- 14 

~ 
r b-2 l [ c-7 l 

Once the trce is built, each leaf node corresponds to a letter with n code. To determine the code for a particular 
node, traverse from the root to the leaf node. ror each move lo the left, append a 0 to the code, and for each 
move to the right, append a I. As a result, for the above generated tree, we get the following codes: 

Letter Code 
a 00 1 
b 0000 
c 0001 
d 010 
e 0 11 
f I 

Calculating Bits Saved 

Now, let us sec how muny bits that Huffma n coding a lgorithm is saving. All we need to do for this calculation is 
see how many bits arc o rigina lly used to store the data a nd subtract from that the number of bits that are used 
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to store the data us ing the Huffman code. In the above example, since we ha ve s ix c ha rac ters, let's assume each 
character is stored with a th ree bit code. Since there a rc 133 such c haracters (mult iply total freque ncies by 3), 
the total numbe r of bits used is 3 • 133 = 399. Using the Huffman cod ing frequencies we ca n calculate the new 
total number of bits used: 

Letter Code Frequency Total Bits 
a 00 1 12 36 
b 0000 2 8 
c 0001 7 28 
d 010 13 39 
e 011 14 42 
f I 85 85 

Total 238 

Thus, we saved 399 - 238 ;::; 161 bits, or nearly 40% of the storuge space. 

from heapq import hcappush, heappop, heapify 
from collections import dcfaultdict 

def Huffman Encode(characterFrequency): 
heap= [lfreq, lsym, ""II for sym, freq in charactcrFrequcncy.ilems()) 
heapify(heap) 
while len(heap) > I: 

lo "' heappop(hcap) 
hi • heappop(hcap) 
for pair in loll :I: 

pair! 11 = 'O' + pair[ 11 
for pair in hi(l:): 

pair(l] = ' l ' + pairll) 
heappush(heap, PolOI + hi[Oll + lo[l :) + hi(l :I) 

return sortcd(hcappop(hcap)[l:j, kcy=lambda p: (lcn(p(- 11), p)) 

inpulTcxt .. "Lhis is an example for hufiman encoding" 
characterFrequency dcfaultdic t(int) 
for character in inputTexl: 

characterFrequency(characterj += 1 

huffCodes = HuffmanEncode(characterFrequency) 
print "Symbol\ LFrcqucncy\ tHuffman Code" 

for pin huffCodcs: 
print "%s\t\t\t%s\l\t\t%s"% (p[Oj, characterFrequcncy[plOll, Pllll 

Time Complexity: 0(11lo,q11), since there will be one bu ild heap, 211 - 2 delete mins, and 11 - 2 inserts, on a 
priori ty queue that never has more than 11 clements. Refer lo the l'riorily Queues cha pt er for detai ls. 

17.8 Greedy Algorithms: Problems & Solutions 
Problem-! Given an array F with size 11. Assume the array content Flil indicates the length of the ;rh file 

and we want to me rge all these files into one s ingle file. Check whether the following algorithm gives the best 
solution for this problem or not? 

Algorithm: Merge the files contiguously. That means select the first two fi les uncl merge them. Then select 
the output of the previous merge and merge with the third file, and keep going ... 

Note: Given two files /\ and H with sizes 111 and 11 , the complexity of mcq~ing is O(m + 11 ). 

Solution: This algorithm will not produce the optimal solution. For n counter exa mple, let us consider the 
following file sizes array. 

F = {10,5,100,50,20,15} 

As per the above algorithm, we need to merge the first two files (10 and S si7.c files), and as a result wc gel the 
fo llowing list of files. In the list below, 15 indice1tcs the cost of merging two files with sizes 10 nnd 5. 

{ l S, I 00,50,20. 1 S} 

S imila rly, merging 15 with the next file 100 produces: { 115,50.20, 1 S}. For the sub8cqucnt s teps the list becomes 

(165,20,15). {185,15} 

Fina lly, {200} 
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The total cost of merging = Cost of all merging operations = 15 + 115 + 165 + 185 + 200 = 680. 

To see whether the above result is optimal or not, consider the order: {5, 10, 15, 20, 50,100}. For this example, 
following the same a pproach, the tota l cost of merging = 15 + 30 +SO+ 100 + 200 = 395. So, Lhe give n a lgorithm is 
not g iving the best (optima l) solu tion. 

Problem-2 Similur to Problem- I , docs the following a lgori thm give the optima l solution? 

Algorithm: Merge the files in pairs . That means after the first step, lhe a lgorithm produces the n/2 
intermediate files. For the next step, we need lo consider t hese intermedia te files and me rge them in pairs 
and keep going. 

Note: Sometimes this algorithm is called 2-way merging. Instead of two files at a time, if we merge K files al 
a time then we call il K -way merging. 

Solution: This a lgorithm will not produce the optimal solution a nd conside r lhc previous example for a coun ter 
example. As per the above a lgorithm, we need t.o merge the first pair of fi les (I 0 and 5 size fil es), the second pair 
of fil es (100 and SO) a nd the t hird pair or fil es (20 and 15). As a result we gel the fo llowing list of fi les. 

{15, 150, 35} 

Similarly, merge the output in pairs and this step produces [below, the third clement docs nol have a pair 
element, so keep it the same]: 

Finally, 
(165,35} 

{185} 

The total cosl of merging = Cost of a ll merging opera tions = 15 + 150 + 35 + 165 + l85 = 550. This is much more 
tha n 395 (of the previous problem). So, the given a lgorithm is not giving the besl (optimal) solution. 

Problem-3 In Problem-I, whal is the best way to merge all the files into a s ingle file? 

Solution: Using the Greedy algorithm we can reduce the tota l time for merging the given files. Let us consider 
the following algorithm. 

Algorithm: 
1. Store file sizes in a priority queue. The key of elements are file lengths. 
2 . Repeat the fo llowing until there is only one file: 

a. Extract two smallest clements X a nd Y. 
b. Merge X and Y and insert this new fil e in the priority queue. 

Variant of same algorithm: 
1. Sort the file sizes in ascending order. 
2. Repeat the following until there is only one file: 

a. Take the first two elem ents (smallest) X and Y. 
b. Merge X and Y and insert this new file in the sorted list. 

To check the above algori thm, let us trace it with the previous example. The given array is: 

F = {10,5,100.S0,20.l5} 

As per the a bove algorithm, after sorting the list it becomes: {5, 10, I 5, 20, 50,100}. We need to merge the two 
smallest files (5 and 10 size files) and as a result we get the following list of files. In the list below, 15 indicates 
the cost of merging two files with sizes 10 and 5. 

{ 15, 15,20,50, 100} 

Similarly, merging the two smallest elements ('IS and 15) produces: {20,30,50.100). For the subsequent steps the 
list becomes 

Finally, 

(50,50,100} //merging 20 and 30 
(100,100} //merging 20 and 30 

{200} 

The total cost of merging = Cost of all merging operations = 15 + 30 + 50 + 100 + 200 = 395. So, this algori thm is 
producing the optimal solution for this merging problem. 

Time Complexity: O(nlogn) time using heaps lo find besl merging pattern plu s the optimal cost of merging the 
fi les. 

Problem-4 Interval Scheduling Algorithm: Given a set of 11 interva ls S = ((sta rt1, end1)1 I :;:; i :;:; nj. Let us 
assume that we want lo find a maximum subset S' of S such that no pair of interva ls in S' overlaps. Check 
whether the following a lgorithm works or not. 

Algorithm: while (S is not empty) { 
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Selecl the interval I that overlaps the least number of other in tervals. 
Add I to fina l solution set S'. 
Remove all in tervals from S Lhat overlap with / . 

Solution: This a lgorithm does not solve the problem of finding a maximum subset of non -overlapping inter·vals. 
Consider Lhc following intervals. The optimal solution is {M, 0, N, K}. However, the intervo l thut overlaps with the 
fewest others is C, and Lhe g iven a lgorithm will select C first. 

c 

M 0 N )( 

Problem-5 In Problem-4, if we select the interval that starts earliest (also not overlapping with already 
chosen intervals), does it give the optimal solulion? 

Solution: No. It will not give the optimal solution. Let us consider the example below. IL can be seen that the 
optimal solution is 4 whereas the given algorithm gives 1. 

Optimal Solution 

Given Algorithm gives 

Problem-6 In Problem-4, if we select the shortest interval (but it is not overlapping the already chosen 
intervals), does it give the optimal solution? 

Solution: This also will not give the optima l solution. Let us consider the example below. It can be seen that the 
optimal solution is 2 whereas the algorithm gives 1. 

Problem-7 For Problem-4, what is the optima l solution? 

Solution: Now, let us concentrate on the optimal greedy solution. 

Algorithm: 
Sort intervals according to the right-most ends [end times]; 
for every consecutive interval { 

Optimal SoluLion 

Current Algorithm gives 

If the left-most end is after the right-most end of the last selected interval then we select this 
interval 
Otherwise we skip it and go to the next interval 

Time complexity =Time for sorting+ Time for scanning = O(nlogn + n) = 0(_11/0911). 

Problem-8 Consider the following problem. 
Input: S = {(start;, end;) l1 $ i $ n} of intervals. The interval (start;, end;) we can treat as a request for a room 
for a class with time start; to time endi. 
Output: Find an assignment of classes to rooms that uses the fewest number of rooms. 
Consider the following iterative algorithm. Assign as many c lasses as possible Lo the first room , then assign 
as many classes as possible to the second room, then assign us many c lasses as possible lo the third room, 
etc. Docs thjs algorithm give the best solution? 

Note: In fact, this problem is sim ilar to the interval scheduling a lgorithm. The only difference is the 
application. 
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Solution: This algorithm does not solve the interval-coloring problem. Consider the following intervals: 

A 

B c D 

E F G 

Maximizing the number of classes in the first room results in having {B, C, F, G} in one room, and classes A, D, and 
E each in their own rooms, for a total of 4. The optimal solution is to put A in one room, { B, C, D} in another, and 
(£. F, G} in another, for a total of 3 rooms. 

Problem-9 For Problem-8, com;ider the following a lgorithm. Process the c lasses in inc reasing order of start 
times. Assume that we are processing c lass C. If there is a room R such that R has been assigned to an 
ea rlier class, and C can be assigned to fl without overlapping previously assigned classes, then assign C to 
R. Other.vise, put Cina new room. Docs th is a lgorithm solve t he problem? 

Solution: This algorithm solves the interval-coloring problem. Note that if the greedy algorithm creates a new 
room for the current class c;, then because it examines classes in order of start times, ci start point must 
intersect with the last class in all of the current rooms. Thus when greedy creates the last room, n, it is because 
the start time of the current class intersects with n - 1 other classes. But we know that for any single point in 
any c lass it can only intersect with at mosts other c lass, so it. must then be that n =:;; S. Ass is a lower bound on 
the total number needed, and greedy is feasible, it is thus a lso optimal. 

Note: For optimal solution re fer to Problem-7 and for code refer to Problem-10. 

Problem-10 Suppose we a re given two arrays Start[l .. n] and Finish[l .. n] listing the start and finish times of 
each class. Our task is to choose the largest possible subset X E (1, 2, ... , n} so that for any pair i,j E 
X, either Start [i] > Finishlj] or Start [j] > Finish [i] 

Solution: Our aim is to finish the first class as early as possible, because that leaves us wi th the most 
remaining c lasses. We scan through the classes in order of finish lime, and whenever we encounter a class that 
doesn't conflict with the latest c lass so far, then we la ke that c lass. 

def LargestTasks(Start, n, Finish): 
sort FinishlJ 
rearrange Start!] to match 
count= l 
Xjcount] = 1 
for i in range(2,n): 

if(Startli] > FinishlX[count]J): 
cou n t = count+ 1 
X[countJ = I 

return XLl:countj 

This algorithm clearly runs in O(nlogn) time due to sorting. 
This algorithm clearly runs in O(nlogn) time due to sorting. 

Problem-11 Consider the making change problem in the country of India. The input to this problem is an 
integer M. The output should be the minimum number of coins to make M rupees of change. Jn India, 
assume the available coins a re 1., 5, 10, 20, 25, SO rupees. Assume that we have a n unlimited number of coins 
of each type. 

For this problem, does the following algorithm produce the optimal solution or not? Take as many 
coins as possible from the highest denominations. So for example, to make change for 234 rupees the greedy 
algorithm would lake four SO rupee coins, one 2S rupee coin, one S rupee coin, and four 1 rupee coins. 

Solution: The greedy algorithm is not optimal for the problem of making change with the minimum number of 
coins when the denominations are 1, 5, 10, 20, 25, and 50. In order to make 40 rupees, the greedy algorithm would 
use three coins of 2S, 10, and 5 rupees. The optimal solution is to use two 20-shilling coins. 

Note: For the optima l solution, refer to the Dynamic Programming chapter. 

Problem-12 Let us assume that we a rc going for a long d rive between c ities A and B. In preparation for our 
trip, we have downloaded a map that conta ins the distances in mi les between a ll the petrol stations on our 
route. Assume that our car's tanks can hold petrol for n miles. Assume that the value n is given. Suppose we 
stop at every point. Does it give the best solution? 
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Solution: He re the algori thm does nol produce optima l solution. Obvious l~eason: filling at each petrol sta tion 
does not produce op tim a l solution. 

Problem-13 For proble m Problem -12, s lop if a nd only if you don 't ha ve enough pe trol lo make it lo the next 
gas station , a nd if you stop, fi ll the ta nk up a ll the way. Prove o r dis prove tha t th is a lgorithm correctly s olve::; 
the problem. 

Solution: The greedy approach works : We s ta rt our trip from A wi th a fu ll ta nk. We c heck ou r mup to dete rmine 
the fa rthest pe tro l slation on our route withjn n m iles. We s top a t tha t pe trol s ta tion , fill up our ta nk and check 
ou r map again lo determ ine the farthest petrol sta tion on our route within n miles from this stop. Repeal the 
process until we get to B. 

Note: For code, refer to Dynamic Pro9rammi119 cha pte r. 

Problem-14 Fractional Knapsack problem: Give n ite ms t 1, t 2, •.. • t ,. (i tems we might wa nt to ca rry in our 
backpack) with associa ted weights s1, s2 , ••• , s11 a nd bcnefit va lues v1, v2, ••• , v,., how can we maximize the 
to ta l benefit cons ide ring tha t we arc s ubject to a n a bsolute weight limit C? 

Solution: 

Algorithm: 
1) Com pu te value per size density for each item d ; = !2. 

Sj 

2) Sort each item by its value dens ity. 
3) Ta ke as muc h as possible of the de ns ity ite m not a lready in the bag 

Time Complexity : O(nlogri) fo r sorting a nd O(n) fo r greedy selections. 

Note: The item s can be e n tered in to a priori ty que ue a nd retrieved one by one u ntil eit he r the bag is full or a ll 
items ha ve been selected . This actually has a better run t ime of O(n + clo9n) where c is lhe number of items t hat 
actua lly get selected in the s olution. There is a savings in run time if c = O(n), but otherwise there is no c ha nge 
in the complexity. 

Problem-15 Number of railway-platforms: At a ra ilway station, we have a time- table with the trai ns' 
arrivals a nd depar tures. We need to find the minim u m number of platforms so t hat a ll the tra ins ca n be 
accommodated as per their schedule. 
Example: The timeta ble is as given be low, the a nswer is 3. Otherwise, the railway stn.tion will not be able to 
accommodate all the tra ins . 

Rail Arrival Departure 

Ra il A 0900 hrs 0930 hrs 

Ra il B 09 15 hrs 1300 hrs 

Ra il C 1030 hrs 11 00 hrs 

Rail D 1045 hrs l J 45 hrs 

Solution: Let's take the same example as described above. Calculating the n umber of platforms is done by 
de te rmining Lhe maximum nu mber of trains a t the railway s tation at a ny t ime. 

First, sort a ll the anival(I\) and departure(D) Limes in a n a rray. Then, save the correspond ing a rrivals 
andde partures in the a rray a lso. After s orting, our array will look like this: 

0900 09 15 0930 1030 1045 11 00 11 45 1300 

A A 0 A A 0 0 0 

Now modify the array by placing I for I\ a nd - I fo r D. The new a rray will look like this: 

I i I i I -1 I -I I -I - I 

Fina lly ma ke a cumulative array ou t of this : 

I i 1 2 I i 2 3 2 0 

Our solution will be the maximum va lue in this a rray. Herc it is 3. 

Note: If we ha ve a train a rriving a nd a nother departing a l the same time, then pu t the departu re Lime fi rs t in t he 
sorted a r-ray. 

Problem-16 Cons ider a coun try wi th very long roads a nd houses a long the road. Assume that the residents 
of a ll houses use cell phones. We wa nt to place cell phon e towe rs a long the road, and each cell phone towe r 
covers a ra n ge of 7 kilometers. Create a n effic ien t a lgorithm that a llow for t.he fewest cell phone towers. 
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Solution: 

7 miles D 7 miles D 
First uncovered house Base Stal ion Uncovered houses Base Station 

The algori thm lo locale lhc least number of cell phone lowers: 
1) Slan from the beginning of the road 
2) Find the first uncovered house on the road 
3) lf there is no such house, terminate this algorithm. Otherwise, go to next step 
4) Locate a cell phone tower 7 miles away a fter we find this house along the road 
5) Go to step 2 

Problem-17 Preparing Songs Cassette: Suppose we have a set of 11 songs and want to store these on a tape. 
In the future, users will want to read those songs from the tape. Read ing a song from a tape is nol like 
reading from a disk; first we have lo fast - forward past a ll the other songs, a nd that takes u s ign ifican t 
amount of lime. Let lllJ .. 11 j be an an-ay listing the lengths of each song, specifically, song i has length llji]. If 
the songs are stored in order from l to 11, tJ1en the cost of accessing the k 11

' song is: 
k 

C(k) =I llf i) 
i= l 

The cost reflects the fact that before we read song k we must first scan past a ll the earlier songs on the tape. 
If we change the order of the songs on the tape, we c hange the cost of accessing lhe songs, with the result 
that some songs become more expensive lo read, bul others become cheaper. Different song orders cire likely 
to result in different expected costs. If we assume lhal each song is equally like ly Lo be accessed, which 
order should we use if we want the expected cost lo be as small as possible? 

Solution: The answer is simple. We should store the songs in the order from shortest lo longest. Storing Lhc 
short songs al Lhe beginning reduces the forward ing times for the remaining jobs. 

Problem-18 Let us consider a set of events at HIT£X (llyderabad Co11ue11Uo11 Center). Assume that there arc 11 

events where each takes one unil of time. Event i will provide a profit of P[il rupees (Pfi] > 0) if started at or 
before ti me T[i), where T[i) is an arbitrary number. If an event is not started by '/'Iii then there is no benefit 
in schedu ling it at al l. All events can start as early as time 0. Give the efficient a lgorithm to find u schedule 
that maximi7,es the profit. 

Solution: 

Algorithm: 
• Sort the jobs according to noor(TliJ) (sorted from largest to smaJ lest). 
• Let time t be the current time being considered (where initially t = noor(TI iJ)). 
• All jobs i where Ooor(T[i]) = t arc inserted into a priority queue with lhe profit g1 used as the key. 
• A DeleteMax is performed to select the job lo rnn al lime t. 
• Then l is decremented and the process is conLinuccl. 

Clearly the time complexity is O(nlogn). The sort takes O(nlogn) and there arc at most 11 insert and DclctcMax 
operations performed on the priority queue, each of which takes O(logn) time. 

Problem-19 Let us consider a customer-care server (say, mobile customer-ca re) with 11 customers to be 
served in the queue. For simplicity assume that the service lime required by each customer is known in 
advance and it is wi minutes for customer i. So if, for example, the customers arc served in order of 
increasing i, then the ;tti customer has to wait: r.7;;1

1 w1 mimaes. The total waiting Lime of a ll customers can 
be given as = E~_ 1 E~-:\ wi. What is Lhc bc::;t way to serve the customers so that the total waiting time can be 
reduced? 

Solution: This problem can be easily solved using greedy technique. Since our objective is to reduce the total 
waiting time, what we can do is, select the customer whose service time is less. That means, if we process the 
customers in the increasing order of service time then we can reduce the total waiting time. 

Tillie Complexity: O(nlog11). 
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18.1 Introduction 

Divide a nd Conquer Algori thms 

CIIAPTEl~ 

18 

In the Greedy chapter, we have seen that for many problems the Greedy strategy failed to provide optimal 
solutions. Among those problems, there arc some that can be easi ly solved by using the Divide and Conquer 
(D & C) technique. Divide and Conquer is an important algorithm design technique bused on recursion. 

The D & C algorithm works by recursively breaking down a problem into two or more sub problems of the same 
type, until they become simple enough lo be solved directly. The solutions lo the sub problems arc then 
combined to g ive a solution to the original problem. 

18.2 What is Divide and Conquer Strategy? 
The D & C strategy solves a problem by: 

1) Divide: Breaking the problem into sub problems that are themselves smaller instances of the same type 
of problem. 

2) Recursion: Recursively solving these sub problems. 
3) Conquer: Appropriately combining their answers . 

18.3 Does Divide and Conquer Always Work? 
!l's not possible to solve all the problems with the Divide & Conquer technique. As per the definition of D & C, 
the recursion solves the subproblems which are of the same type. For all problems it is not possible to find the 
subproblems which are the same size and D & C is not a choice for all problems. 

18.4 Divide and Conquer Visualization 
For better understanding, consider U1e following visualization. Assume Ulal n is the si:t.c of the original problem. 
As described above, we can sec that the problem is divided into sub problems with each of size 11/b (for some 
constant b). We solve the sub problems recursively and combine their solutions to get the solution for tile 
original problem. 

DivideAndConquer ( P ): 
if( small ( P) ): 

/ / P is very small so that a solution is obvious 
return solution ( n) 
divide the problem Pinto k sub problems Pl, P2, ... , Pk 
return ( 

Combine ( 
DividcAndConqucr (Pl ), 
DivideAnclConqu~r ( P'2 ), 

DivideAndConquer ( Pk ) 
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a subproblem or size 
n/b 

Solution to s ubproblem n/b 

u problem of s i;,,c n 

Subproblems 

Combine s ub-solutions for 
solution to problem 11 

18.5 Understanding Divide and Conquer 

Divide and Conquer Algorithms 

a subproblem of size 
n/b 

Solution lo subproblem 11/b 

For a clear understanding of D & C, let us consider a sto1y. There was an old man who was a rich ranner and had 
seven sons. He was afraid Lhat whe n he died, his land and his possessions would be divided among his seven 
sons, and that they would qua rn:l with one a nother. 

So he gulhcred them toge ther and s howed I hem seven sticks that he had tied together and told them that 
anyone who could break lhe bundle would inherit everything. They a ll tried, but no one cotild break the bundle. 
Then the old man untied the bundle nnd broke the sticks one by one. The brothers decided that they should 
stay together and work together a nd s ucceed together. The moral for problem solvers is different. If we can't 
solve the problem, divide it into pa rts, a nd solve one part at a time. 

In earlier chapters we have already solved ma ny problems based on /J & C strategy: like Binary Search, Merge 
Sort, Quick Sort, etc .... Rercr to those topics lo get an idea or how D & C works. Below are a rew other real-time 
problems whic h can easily be solved wil.h I) & C strategy. For ull lhc::;c problems we can find the subproblems 
whic h arc s imilar lo the origina l problem. 

• Looking ror a name in a phone book: We have a phone book with names in a lphabetica l order. Given a 
name, how do we find whclh<.:r that name is there in the phone book or nol? 

• Breaking a stone into dust: We wan I Lo convert a s tone into dust (very small stones). 
• Finding the exit in a hotel: We are at the e nd o r a very long hotel lobby with a long series of doors, with 

one door next lo us. We arc looking for the door that leads lo the exit. 
• Finding our car in a parking lot. 

18.6 Advantages of Divide and Conquer 
Solving difficult problems: D & C is a powerful me thod for solving difficull problems. As an example, consider 
the Tower of Ha noi problem. This requires breaking the problem into subproblems, solving the trivial cases and 
combining the subproblems lo solve the original problem. Dividing the problem into subproblems so that 
subproblems can be combined again is a major difficulty in designing a new algorithm. For many such problems 
D & C provides a s imple solution. 

Parallelism: Since D & C a llows us to solv<.: the s ubproblem::; independently, this a llows for execution in multi
processor machines, especia lly s h ::i red-mcmory system s where the communication of data between processors 
docs not need to be planned in advance, because different subproblem s can be executed on different processors . 

Memory access: D & C a lgorithms naturally lend lo ma ke efficienL use of memory caches. This is because once a 
subproblem is small, a ll its s ubproblems ca n be solved within the cache, without accessing the slower main 
memory. 
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18. 7 Disadvantages of Divide and Conquer 
One disadvantage of the D & C approach is that recursion is slow. This is because of the overhead of the repeated 
subproblem calls. Also, the D & C approach needs stack for s toring the calls (the state at each point in the 
recursion). Actually thi:-; depends upon the implementation style. With large enough recursive base cases, the 
overhead of recursion can become negligible for many problems. 

Another problem with D & C is that, for some problems, it may be more complicated than an iterative approach. 
For example, to add n numbers, a simple loop to add them up in sequence is much easier than a D & C 
approach that breaks the set of numbers into two halves, adds them recursively, and then adds the sums. 

18.8 Master Theorem 
As stated above, in the D & C method, we solve the sub problems recursively. All problems a re gene ra lly defined 
in terms of recursive definitions. These recursive problems can ensi ly be solved us ing Master theorem. For 
details on Master theorem , refer to the /11t roducU011 to Analysis nf Algorithms c hapter. Jus t for continuity, let u s 
reconsider the Master theorem. If the recurrence is of the form T(n) = aT(f,) + 8(nklo9''11), where a ~ l , b > 
1,k 2: 0 a nd pis a real number, then the complexity ca n be di rectly give n as: 

l) If a > bk, then T(n ) = ®( n10.q~) 

2) ff a = bk 
a. If lJ > - 1, then T(n) = e(n109g log"~ In) 
b. If p - - 1, then T(n) - 6(111"1lg loglog11) 

c. If p < - 1, then 7'(11) = 8(n10.qg) 
3) !fa < l/' 

a. If p ;::: 0, then T(n) = 8(nk log"n) 
b. If p < 0, then T(n) = O(nk) 

18. 9 Divide and Conquer Applications 
• Binary Search 
• Merge SorL and Quick Sort 
• Mediu n rinding 
• Min a nd Max r inding 
• Matrix Mulliplicution 
• Closest Pair proble m 

18.10 Divide and Conquer: Problems & Solutions 
Problcm-1 Lcl us consid<.:r un 11lgorilhm A whic h s o lves problems by divid ing I hem into five s ubproblems of 

hulf Lhe s i;-.<.:, recurs ively solving cuc h s ubproblem, und then combining the solutions in linear time. Whal is 
the complexity of this a lgorithm? 

Solution: Let us assume Lhal the input s i2e is n a nd T (11) defines the solu tion to the given proble m. As per the 
description, the a lgorithm divides the problem into S s ub problem s with each of size i· So we need to solve ST(~) 
subproblems. After solving these s ub problems, the give n array (linear time) is scanned to combine these 

solutions. The total recurrence a lgorithm for this problem can be given as: T(n) = ST G) +O(n). Using the Master 

theorem (of 0 &. C), we get lhe complexity us O(n10Pl ) "" O(n2') "" O(n 1). 

Problcm-2 Similar to Problem- ! , an a lgorithm /J solves problems of size n by recursively solving two 
subproblems of si:r,c 11 - I and then combining the solutions in constant time. What is the complexity of this 
algorithm? 

Solution: Let us assume that the input si:r,c is n and T(n) defines the solution to the given problem. As per the 
description of a lgorithm we divide the problem into 2 sub problems with each of size n - I. So we have to solve 
2T(n - 1) sub problems. After solving these sub problems, the algorithm takes only a constant time to combine 
these solutions. The total recurrence algorithm for this problem can be given as: 

T(11) = 27'(11 - I)+ 0( 1) 

Using Moster theorem (of S11/Jtrc1ct ancl Conquer), we get the complexity ns 0(11°2~) ... 0(2"). (Refer to Introduction 

c ha pter for more details). 
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Problem-3 Again similar to Problem- I, another a lgorithm C solves problems of size n by dividing them into 
nine subproblems of size i• recu rsively solving each subproblem, and then combining the solutions in O(n2

) 

time. Whal is the complexity of this a lgorithm? 

Solution: Let us assume that input size is n and T(n) defines the solution lo the given problem. As per the 
description of a lgorithm we divide the problem into 9 sub problems with each of size~· So we need to solve 9T(i) 
sub problems. After ::;olving 1 he sub problems, the a lgorithm takes quadratic time to combine these solutions. 

The tota l recurrence a lgorithm for this problem can be given as: T(n) = 9T (~) + O(n2
). Using D & C Master 

theorem, we get the complexity as O(n2 /ogn). 

Problem-4 Write a recurrence and solve it. 
def function(n): 

if(n > 1): 
print(("*'') 
function(il 

function(il 

Solution: Let us assu me that input sil',e is 11 and T(n) defines the solution to the given problem. As per the given 
code, after printing the character a nd dividing the problem into 2 subproblems with each of size i and solving 

them. So we need to solve 2T(i) subproblems. After solving these subproblems, the a lgorithm is not doing 

anything for combining the solutions. The lotal rec urrence algorithm for this problem can be given as: 

T(1t) = 2T (~) + 0(1) 

Using Master theorem (of D & C), we get the complexity as 0(1110lli) "" O(n 1) = O(n). 

Problem-5 Given an a rray, give an a lgorithm for finding the maximum and minimum. 

Solution: Refer Selection Al9orithms chapter. 

Problem-6 Discuss Binary Search and its complexity. 

Solution: Refer Searchi11,q clrnptcr for discussion on Binary Search. 

Analysis: Lel us assu me lhat input si;1,e is n and T(11) defines the solution lo t he given proble m. The clements 
urc in sorted orcler. In binory search we lake the m idd le clerncnL ond check whether t he element lo be searched 
is equal Lo that c lement or not. 1r il is cquu l then we return thal clcmcnl. 

If the clement to be searched is greater than the middle clcmcnl then we consider lhc right su b-array for finding 
the element and discard the left sub-array. Similarly, if the e lement to be searched is less than the middle 
element then we consider the left sub-array for finding the clement and discard the right sub-array. 

What this means is, in both the cases we are discarding half of the sub-a rray and considering the remaining half 
only. Also, al every iteration we nrc dividing the clements into two equal halves. As per the above discussion 
every time we divide the problem into 2 sub problems with each of sil',c ~ and solve one T(i) sub problem. The 

tota l recurre nce algorithm for this problem can be given as: 

T(11) = 2T G) +0(1) 
Using Master theorem (of D &. C), we get the complexity as O(logn). 

Problem-7 Consider the modified version of binary search. Let us assume that the array is divided into 3 
equal parts (ternary search) instead of 2 equal parts. Write the recurrence for this ternary search and find 
its complexity. 

Solution: rrom the discussion on Problcm-5, binary search has the recurrence relation: T(n) = T(¥) +0(1). 

Similar to the Problcm-5 discussion, instead of 2 in the recurrence relation we use "3". That indicates that we 
are dividing the array into 3 sub-arrays with equa l s i?,c a nd considering only one of them. So, the recurrence for 
the ternary search can be given as: 

T(n) = T (i) +0(1) 

Using Master th eorem (of D & C), we get the complexity as O(logf) ::< O(logn) (we don't have LO worry about the 
base of log as they are constants). 

Problem-8 In Problcm-5, what if we divide the u rray into two sets of sizes approximately one-third and two-
Lhirds. 

Solution: We now consider a s ligh lly modified version of ternary search in whic h only one comparison is made, 
which c rcutcs two partitions, one of roughly ~ clements a nd the other of~. Here the worst case comes when the 

J 3 

rec ursive call is on the l arger~· clement part. So the recurrence corresponding to this worst case is: 

18.10 Divide and Conquer: Problems & Solutions 402 



Data Slruclu rc and Algorilhmic Thinking with Pylhon Divide and Conquer Algorith ms 

T(n) = 1' C~1) + 0(1) 

Using Master theorem (of D & C), we gel the complexity as O(logn) . IL is interesting to note that we will get the 
same resulls for genera l k-ary search (as long as k is a fixed constant which does not depend on n) as n 
approaches infinity. 

Problem-9 Discuss Merge Sort und its complexity. 

Solution: Refer to Sorting chapter for discu ssion on Merge Sort. In Merge Sort, if the number of clements arc 
greater than 1, then divide them into two equal s ubsets , the a lgoriLhm is rec ursively invoked on the subsets, a nd 
the returned sorted subsets arc merged to provide a sorted list of the original set. The recurrence equation of Lhe 
Merge Sort algorithm is: 

T(11) = f 2T G) + 0(11), if 11 > I 

() ,i/11 = I 

If we solve Lh is recurre nce using D & C Master theore m it gives O(nlogn) complexity . 

Problem-10 Discu ss Quick Sort a nd its complexity. 

Solution: Refer lo Sorting chapter for discu ssio n on Quick Sort. Por Quick Sort we have different complexities 
for best case and worst case. 

Best case: In Quick Sort, if the num ber of clements is greater than 1 then they are d ivided into two equal 
subsets, and the algorithm is recursively invoked on the subsets. After solving the sub problems we don't need 
to combine them. This is because in Quick Sort they arc already in sorted order. But, we need to scan the 
comple te cle mc nls lo pa rtition Lhe cle ments . The recurre nce equation of Quick Sort best case is 

'/'(11) = {2'f (¥) + 0(11), if 11 > 1 
0 ,ifn = 1 

If we solve this recurrence using Master theorem of D & C gives O(nl.ogn) complexity. 

Worst case: In the worst case, Quick Sort divides the input clements inlo two sets and one of them conlains 
only one element. That mea ns ot her set has n - 1 clem ents to be sorted. Let us assume that the input size is n 
and 7'(11) de fines the solution lo the given problem. So we need to solve T(n - 1), T(l) subproblems. But to divide 
the input into two sets Quick Sort needs one sca n of th e input cleme nts (this lakes 0(11)). 

Afte r solving these s ub problems the algorithm ta kes only u constant lime to combine these solutions. The tota l 
recurrence aJgorithm for this problem ca n be give n as: 

T (n) = T(n - 1) +0(1) +O(n). 

1,h . . I I . . S 'f' ( ) 11<11 + t ) 0( 2) . is 1s c ear ya summal10n recu rrence cqual!on . o, 11 = - z- = n . 

Note: For lhc average case anulysis, refer lo Sorli11,q chapter. 

Problem-11 Given a n in fini te array in which the first n cells contain integers in sorted order and the rest of 
Lhe cells arc fi lled with some specia l symbol (say, $).Assume we do not know then va lue. Give an a lgoriU1m 
that takes a n integer/( as inpu t and fi nds a position in the array conta in ing /(, if s uch a posit ion exis ts, in 
O(logn) lime. 

Solution: Since we need an O(logn) a lgori thm, we s ho uld no t search for a ll the cleme nts of the give n lis t (which 
gives O(n) complexity). To get O(logn) complexity one possib ili ty is to use binary s earch. But in the given 
scenario we cannot use binary search as we do not know the e nd of t he list. Our fi rst problem is to fmd the e nd 
of the list. To do thal, we can s tart at the first c lement a nd keep searching with doubled index. That means we 
fi rst search ut index I then, 2.~.ll ... 

def fincl lnlniiniLeSeries(A): 
1 = r = I 
whiJe( A(r] != '$'): 

l"" r 
r=rx2 

while( (r - l > 1 ): 
mid = (r- 1)/2 + I 
if( A[mid] == '$'): 

r "" mid 
e lse: I= mid 

It is clear that, once we ha ve identified a possible interva l Aji, ... ,2il in whic h K might be, its length is at most 11 

(since we have only 11 numbe rs in the array A), so sea rc hing for K us ing binary search takes O(Logn) time. 
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Problem-12 Given a sorted an·ay of non-repeated integers Al1.. nl, check whether there is an index i for 
which A[i] = i. Give a divide-and-conquer a lgorithm that runs in time O(logn). 

Solution: We can't use binary search on the array as it is. If we want to keep the O(lo,qn) properly of the solution 
we have to implement our own binary search. If we modify the array (in place or in a copy) and subtract i from 
Ali], we can then use binary searc h. The complexity for doing so is O(n). 

Problem-13 We a re given two sorted lists of size n. Give an algorithm for rinding the median e lement in the 
union of the two lists. 

Solution: We use the Merge Sort process. Use merge procedure of merge sort (refer to Sorting chapter) . Keep 
track of Lhe count while comparing e lements of two arrays. If the count becomes n (since there arc Zn elements ), 
we have reached the median. Take the average of the elements at indexes n - 1 and n in the merged array. 

Time Complexity: O(n). 

Problem-14 Can we give the algori thm if the sihe of the two lists arc nol the same·.> 

Solution: The solu 1 ion is s im ila r to the previous problem. Let us assume that the lengths of two lists a re m a nd 
11. In th is ca::ic we need to s top when the coun ter reaches (m + n)/ 2. 

Time Complexity: 0((111 + n)/ 2). 

Proble m -15 Can we im prove t he time complexity of Proble m- 13 to O(lo,q11)? 

Solution: Ye s , using t he D & C approach. Let us assume Lhal Lhe given two lisls a rc /,J a nd /,2. 

Algorithm: 
l. Find lhc medians of Lhe given smtcd inpul arrays Ll !I and /,2 [1. Assume thul those medians a re ml and 

m2. 
2. Jf 111 l a nd m2 are eq ual then return ml (or m2). 
3. If ml is greater than m2, Lhen the fina l median will be below two sub arrays. 
4. From lirst clement of 1.1 to ml. 
5. From 1112 to last clement of l2. 
6. If m2 is grcatc1· U1an ml, then median is present in one of the two sub arrays below. 
7. From m1 to last clement of /.l. 
8. From lirst element of /.2 to m2. 
9. Repeat the above process until the si7.c of both the sub arrays becomes 2. 
I 0. If size of the two arrays is 2, then use the formula below lo get the median. 
11. Media n = (max(l.l l0 1,l210J) + min(Ll l l ],l2[1])/2 

Time Complexity: O(logn) since we are considering only half of the input and throwing Lhe remaining half. 

Proble m -16 Given an input array A . Let us assume that there can be duplicates in the list. Now search for 
an clement in the I isl in such a way lhal we get the highest index if there a rc duplicales. 

Solution: Refer lo Seurchi119 chapler. 

Problem-17 Discuss Strasscn's Matrix Multiplication Algorithm using Divide and Conquer. Thal means, 
given two 11. x n ma lriccs, A a nd B, com pu tc the n x n ma lrix C = I\ x 8, where I he clcmcn ls o r C a re given by 

u - 1 

C;.j = I A ;,k /]k,j 

k = O 

Solution: Before Strassen's a lgori t hm, first let u s see the basic divide and conquer a lgorithm. The genera l 
approach we fo llow fo r solving Lhis problem is given below. To determine, f.li,jj we need to multiply the iu' row o f 
A with ju' column of /J. 

I I Initialize c. 
for i = I ton 

for j = I ton 
fork = I lo n 

Cji, jj += Aji, kl * Blk, j); 

The matrix multiplication problem can be solved with the D & C technique. To implement a D & C algorithm we 
need to break the given problem into several subproblems that are similar to Lhc original one. In this instance 
we view each of then x n mat1iccs as a 2 x 2 matrix, the elements of which are~ x ~submatrices. So the orioinaJ 

2 2 ' b"'' 

matrix multiplication, C = Ax H can be written as: 
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From lhe given definition o f C,,1• we gel that the result sub matrices can be computed as follows: 
Cu = A1.1 x 81 .1 + A1.2 x 82.1 
C1.2 =Al.I x 8 1;z. + A1,2 x Bi.i 
C2.1 = A2.1 x 81.1 + A2.2 X 82.1 

c2.2 = A2.I x 81 .2 + Az.2 x 82.2 
Herc the symbols I- and x arc taken to mean addition and multiplication (respectively) of ix i matrices. 

In order lo compute the original n x /1 maLrix multiplication we must compute eight.'.!. x .'.!. matrix products (divide) 
2 2 

followed by four ix i matrix sums (co11quer). Since matrix addition is an 0(112) operation, the lotal running time 
for the multiplication operation is given by the recurrence: 

{ 

0(1) 

T (11) = BT (i-) + O(n2) 

Using masler t hcorcm, we gel T(n) = 0(113 ). 

.for11 = I 

.{or n > I 

Fortunately, it lurns out thul one of lhe e ight matrix multiplica tions is rcdundunl (found by Slrasscn). Cons ider 
the followinO' series of seven .'.!. x .'.!. matrices: ,., 7. 2 

Mo = (A1 ,1 + A2.2) x (Bu+ 82.2) 
M1 = (A1.2 - Az,2) X (82.1 + Bz.z) 
M2 = (A 1•1 - Av) X (81.1 + 81•2) 

M3 = (A1.1 + A1.2) X /J2.2 

M4 = A1, 1 x ( /J1.2 - 8 2.2 ) 

M5 = A2,2 x (/J2•1 - 8 1,1) 
M6 = (A2 1 + A2.2) x 81.1 

Each equation above has on ly one multiplication. Ten additions and seven multiplications arc required lo 
compute M0 through M6 . Given M0 through M6 , we can compute the clem en ts of the product mau·ix C as follows: 

C1.1 = M0 + M1 - M3 + M5 

C1.2 = M3 + M" 
C2. 1 = Ms +M6 
Cl,Z = M0 - M2 + M4 - M6 

This approach requires seven!!. x .'.!. matrix multiplications 
l 2 

running time is given by the following recu rrence: 

{

0 (1) 

T(n) = 7T (i) + O(n2) 

Using master theorem, we gel, '1'(11) = 0(11100~) = O(n2·81 ) . 

d 8 n n dd' . r an I 2 x 2 n 1uons. There1orc, the worst-case 

,fo,-11= I 

,for n = 1 

Problem-18 Stock Pricing Problem: Consider the stock price of CarncrMcmk. co111 in 11 consecu tive days. Thnl 
means the input consists of an urray with stock prices of the company. We know that the stock price will 
nol be the same on ull the days. In the input stock p1iccs there may be dutes where the stock is high when 
we can sell the c urrent holdings, and there may be days when we can buy the stock. Now our problem is to 
find the day on which we can buy the stock and the day on which we can sell the stock so Lhat we can make 
maximum profit. 

Solution: As given in the problem, let us assume that the input is an array with stock prices !integers!. Let us 
say the given array is A[1 l ..... Alnl. From this array we have to find two days jonc for buy and one for sclll in 
such a wny lhol we can make maximum profit. Also, another point to make is thut the buy dnle should be 
before sell date. One simple approach is to look at all possible buy and sell dates. 

def calculntcProfitWhc nBuyingNow(A, index): 
buyingPriec "' Alindcxl 
maxProfit • 0 
sellAt = index 
for i in rangc(index+ I, len(A)): 

l.icllingPrice • Ali! 
profit "' l.icllingPricc buyingPrice 
if profit > max Profit : 

maxPrnfit • profit 
scll/\l • i 

return maxProfit, scllAL 
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# check all possible buying times 
def StockStrategyBruteForce(A): 

maxProfit =None 
buy = None 
sell = None 

for index, item in cnumcralc(A): 
profit, scllAl = calculateProfitWhcnBuyingNow(A , index) 
if (maxProfil is None) or (profit > maxProfi t): 

maxProfit = profit 
buy= index 
sell = sellAt 

retu rn maxProfit, buy, sell 

The 1wo nested loops take n(n + 1)/2 compu tations, so lhi::; lakes time 0(112). 

Problem -19 For Problcrn- 18, can we improve lhe Lime complexity'? 

Solution: Yes, by opting for t11c Divide-and-Conquer 0(11/0,qn) solution. Divide ilic input. list. into two parts a nd 
recursive ly find the solution in both the parts. Herc, we get three cases: 

• buyDaLelndex a nd sellDatelndex both are in the earlier Lime period. 
• buyDatclndex and sellDatelndex both arc in the later Lime period. 
• buyDatelndcx is in the earlier part and sc/1Dat el11dex is in the later part of the time period . 

The first two cases can be solved with recursion. The third case needs ca re. This is because buyDaLelndex is one 
side a nd sel/Datelndcx is on other side. In iliis case we need Lo find the minimum and maximum prices in the 
two sub-parts a nd this we can solve in linea r-time. 

def StockStrategy(A, start, stop): 
n = stop - start 

II edge case 1: start== stop: buy and sell immediately = no profit at a ll 
if n == 0: 

relurn 0, sta rt, start 

if n == 1: 
return Alstopl - Alsta rt], start, s top 

mid "' starl + n/2 

# the "divide" parL in Divide & Conquer: try both halfs of the array 
maxProfitl, buyl, selll = StockStrategy(A, start, mid- 1) 
maxProfit2, buy2, sell2 = StockStrategy(A, mid, stop) 

maxProfilBuylndex = start 
maxProfitBuyValue = Ajstartl 
fork in rangc(start+ l, mid): 

if Alkl < maxProfitBuyValue: 
maxProlitBuyValue = A[k) 
maxProlitBuylndex = k 

maxProfitSclllndex = mid 
maxProfitScLIValue = Almidl 
for k in range(mid+ 1, stop+ 1): 

if A(kl > maxProfitSeJIVa lue: 
maxProfitSellValuc = A(k] 
maxProfitSclllndex = k 

fl those lwo points generate the maximum cross border profit 
maxProfilCrossBorder = maxProfitSeUVaJue - maxProfiLBuyValue 

# and now compare our three options and find the best one 
if rnaxPro fi L2 > max Profit 1 : 

if maxProlitCrossBorder > maxProfit2: 
return maxProfitCrossBorder, maxProfitBuylndex, maxProfitSeLUndex 

e lse: 
rclum maxProfit2, buy2, se112 

else: 
if maxProfitCrossBorder > maxProfill: 

return maxProfitCrossBorder, maxProfilBuylndex, maxProfitSelllndex 
else: 
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return maxProfitl, buy 1 , seU 1 

def StockStrategyWithDivideAndConquer(A): 
return StockStrategy(A, 0, len(A)- 1) 

Algorithm StockStrate9y is used recursively on two problems of half lhe s ize of lhe input, and in addition 
0(n) Lime is spent sea rching for lhc maximum and minimum prict:s. So the time complexity is c haracterized by 
the recu rre nce T(n) = 2T(n/2) + f>(n) a nd by the Master theorem we get O(nlogn). 

Problem-20 We a re lesling "u nbreakable" laptops a nd our goal is to find out how unbreakable they really 
are. In particula r, we work in a n n-story building a nd want to find out the lowest floor from which we can 
drop the laptop without breaking it (ca ll this "the ceiling"). Suppose we a rc given two laptops and want to 
find the highest ceiling possible . Give a n a lgorithm that minimizes the number of tries we need to make 
f(n) (hopefully, f(n) is sub-linea r, as a linear f(n) yields a trivial solution). 

Solution: For the given problem, we canno t use bina ry search as we cannot divide t he problem and solve it 
recu rsively. Lcl us take an example for understanding the scenario. Let us say 14 is the a nswei-. That means we 
need 14 drops to find the answer. First we drop from he ight 14, and if it breaks we try all floors from 1 to 13. If it 
doesn't break then we arc lefl 13 drops, so we will drop it from 14 + 13 + 1 = 28111 floor. The reason being if it 
breaks at the 28111 floor we can try all the floors from 1 S to 27 in 12 d rops (total of 14 drops). If it did not break, 
then we are left with 11 drops and we ca n Lry to figure out U1e floor in 14 drops. 

From the above example, it can be seen that we first tried with a gap of 14 floo rs, and then followed by 13 floors, 
then 12 and so on . So if the answer is k then we a rc trying the intervals at k,k - 1,k - 2 .... 1. Given that the 
number of fl oors is n, we have lo relate these two. Since the maxi mum floor from which we can try is n, the total 
skips s hould be less thnn 11. This gives: 

k + (k - I) + (k - 2) + .. · + I 
k(k + 1) 

2 
k 

Complexity of this process is 0( >/n). 

$ n 

Problem-21 Given 11 numbe rs, c heck if a ny two a rc equa l. 

Solution: Refer to Sem·chi119 c hapter. 

Problem-22 Give an a lgorithm lo find out if an integer is u square? E.g. 16 is, 15 is n't. 

Solution: Ini tia lly let us say i = 2. Com pul e lhe value ix i c-t nd ::;cc if it is equa l to the given numbe r. If it is equal 
then we a rc done; other.vise increment the i vlaue. Continue this process until we reach i x i greater than or 
equ a l to the given number. 

Time Complexity: O(fii,). Space Complexity: 0(1). 

Problem-23 Given a n a rray of 2n integers in the fo llowing format al a2 a3 ... an bl b2 b3 ... bn. Shuffle the 
array to a l b1 a2 /J2 a3 1>3 ... an bn without a ny extra memory !MAI. 

Solution: Let us lake a n example (for brute force solul ion re fer lo Searching chapter) 

1. Sta rt wilh the a rray: tl'I a2 a3 a4 bl /J2 /13 b4 
2. Split the a rray inlo two ha lves: a1 a2 a3 a.4 : /11 112 /J3 /J4 
3. Exchange elements arnund the center: exchange a3 a4 with /J1 b2 you get: al a2 bl b2 a3 a4 b3 b4 
4. Split al a2 bl b2 into al a2 : bl b2 then splil a3 a4 113 b4 in to a3 a4: b3 /J4 
5. Exchange c lements a round the cent e r for each suba rray you get: al bl a2 b2 and a3 1>3 a4 b4 

Please note that this solution only hand les the ca:;c whe n rt = 21 where i = 0, 1,2,3, etc. In our example n = 
22 = 4 whic h ma kci; it easy to recurs ive ly split the a rray inlO two ha lves. The basic idea behind swapping 
clements around the center before calling the recurs iv<.: function is to produce s ma ller size problems. A solution 
with linear Lime complexity may be achieved if lhe e lements a rc of a s pecific natu re. For example you can 
calcula te the new position of the clement us ing the va lue of Lhc c le men t its elf. This is a hashing technique . 

def shuffleArTay(A, I, r): 
#Array center 
c = I+ (r-1)/2 
q = I + I + (c- 1)/ / 2 

if(I == r): 
return 

k = I 
I = q 
while(i<=c): 

# Base case when the array has only one element 
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# Swap e lements around the center 
tmp = A[il 
Ali! = Ale + kl 
A[c +kl= Lmp 
i +=I 
k +- I 

ShufficArray(A, I, c) 
ShufficArray(A, c + l, r) 

Time Com plexity: O(nlogn). 

# Recursively call the function on the left and right 
#Recursively call the function on the right 

Problem-24 Nuts and Bolts Proble m : Given a set of n nuts of different s izes and n bolts such that there is a 
one-lo-one correspondence belween lhc nuts a nd the bolts, find for each nut its corresponding bolt. Assume 
that we ca n only compare nuts to bolts (cannot compare nu ts LO nuts and bolts to bolls) . 

Solution: Rt:fer to Sorting chapter. 

Proble m -25 Maximum Value Contiguous Subsequence: Given a sequence of n m1mbcrs 11(1) ... J\ (11). give 
a n a lgorithm for finding a contiguous subsequence A(i) .. . A(j) for which the s um of clements in the 
subseque nce is maximum. Example: {-2, 11, -4, 13, -5, 2} --+ 20 and {l, -3, 4 , -2 , -1, 6}-+ 7. 

Solution: Divide this input into two halvt:s. The maximum contiguous subsequence sum can occw- in one of 3 
ways: 

Case l : IL can be completely in the first half 
Case 2 : It can be comple te ly in the second half 
Case 3: IL begins in the firs t ha lf a nd e nds in Lhe second ha lf 

We begin by looking a l case 3. To a void the neslt:d loop that resu lts from cons idering a ll n/2 s ta rling points a nd 
n/2 ending poin ts independently, replace two nested loops with two consecutive loops. The consecutive loops, 
each of size n/2. combine to require only linear work. Any conLiguous subsequence Lhat. begins in Lhe first ha lf 
and ends in the second ha lf must include both the last element of the first half and Lhc first cleme nt of the 
second ha lf. What we can do in cases 1 and 2 is apply the same strategy of dividing into more ha lves. Jn 
summary, we do the fo llowing: 

I . Recursively compute lht: maximum contiguous subsequence that resides entirely in the first ha lf. 
2. Rccursivc.;ly compute the max imum contiguous subsequence that res ides entire ly in the second ha lf. 
3 . Compute, via two const:cutivc loops, the maximum contiguous subsequence s um lhal begins in the firs t 

half but ends in the second ha lf. 
4. Choose the largest of U1c three sums. 

def maxSumWithDivideAndConquer(A, low, hi): 
#run MCS a lgorithm on condensed list 
if low is hi: 

else: 
return (low, low, A[low1[21J 

pivot = (low + hi) / 2 
#max subsequence exclusively in left half 
left= maxSumWithDivideAndConquer(A, low, pivot) 
#max subsequence exclusively in right half 
right= maxSub(A, pivot+ 1, hi) 
#calculate max sequence left from mid 
leftSum = A(pivotJl2] 
temp = 0 
for i in xrange(pivot, low - l, - 1): 

temp+= Alill21 
if Lemp >= le ftSum: 

1 = i 
leftSum = temp 

#calcu late max sequence right from mid 
r ightSum = A[pivot + 11121 
temp = 0 
fo r i in xrange(pivot + I , hi + l ): 

temp +.,. AliJl21 
if t.crnp >• right.Sum: 

r = i 
rightSum = temp 

#combine lo find max subsequence crossing mid 
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mid = (1, r, lertSum + rightSum) 
if lertf2J > mid[2[ and 1er1(2J > right[2]: 

return lert 
clif right[2J > mid[21 and right[21 > lefl(2 ): 

return right 
else: 

return mid 

list= poo, -4, -3, -10, -5, - 1, -2, -2, -o, - 1 s, -3, -5, -2, 101 
print maxSumWithDivideAndConquer(list, 0, lcn(list) - J) 

The base case cost is 1. The progra m performs two rec ursive calls plus the linear work involved in computing the 
maximum sum for case 3. The recurrence relation is: · 

T(l) = 1 
T(n) = ZT(n/2) + 11 

Using D & C Master theorem, wc gel lhc lime complexi ty as T(11) = 0(11lo,q11). 

Note: For an efficient solution refer to t he Dynamic Programming chapter. 

Problem-26 Closest-Pair of Points: Given a set of n poinls, S = {p1.J>2 ,p3, ··· ·Pn}. where p1 = (x1,y1) . Find the pair 
or points having the smallest distance a mong all pairs (assume that a ll points a re in one dimension). 

Solution: Let u s assume that we have sorted lhe points. Since the points a re in one dimension, all the points 
are in a line a rter we sort them (either on X-ax is o r Y-axis). The complex ity of sorting is O(nlo,gn). After sorting we 
can go through them to find the consecutive points with the least d iffe rence. So the problem in one dimension is 
solved in 0(1110911) Lime which is ma inly dominated by sorting Lime. 

Time Complexity: O(nlogn). 

Problem-27 For Problem-26, how do we solve it if Lhc points arc in two-dimensional s pace? 

Solution: Before going Lo lhe a lgorithm, let u s consider Lhc fo llowing mathematical equation: 

distm1ce(p1, P2) = J (x1 - Xz)2 - CY1 - Y2)2 

The above equation calcu lates Lhc d is tance between two points p 1 = (x1,y1) a nd Pz = (x2,y2). 

Brute Force Solution: 
• Calculate the distances between a ll Lhc pairs of points. From n points the re a rc nc, ways or selecting 2 

points. (nc
2 
= O(n2)). 

• After finding dista nces for a ll 112 possibilities, we select Lhe one which is giving the minimum distance 
and this Lakes O(n2

). 

The overall Lime complexily is O(n2). 

from math import sqrt, pow 
def dist.ancc(a, b): 

return sqrt(pow(1:1[0] - b[0],2) + pow(al 11 - bl 1 J,2)) 

def brutcMin(points, currcnt=floa t("inf')): 
if len(points) < 2 : 

return current. 
else: 

head = poi.nts[OJ 
del points [OI 
ncwMin = min(ldistancc(hcad, x) for x in points]) 
newCurrcnt = min([ncwMin, current]) 
return brnteMin(poin.ts, newCurrent) 

A = ((12,30), (40, 50), (5, 1), (12, 10), (3,4)] 
print bruteMin(A) 

Problem-28 Give O(nlo.<Jn) solution for cln.'iesL pair" problem (Problcm -27)? 

Solution: To find O(nlo,qn) solution, we can use the D & C lechn iqu c. Before sturling the divide-a nd-conquer 
process lcl us assume that Lhc points arc sorted by increasing x-coord inate. Divide the points into two eq ua l 
halves based on median of x-coordinales. Thul mcam> the problem is d ivided into that of finding the c losest pa ir 
in each or Lhe two ha lves. For s implicity let us consider the following a lgorith m to understand the process. 
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Algorithm: 
1) Sort the given points in S (give n set of points) based on their x - coordinates. Partition S into two 

subsets, 51 a nd S2 , about the line I through median of S. This step is the Divide pa rt of the D & C 

technique. 
2 ) Find the c losest- pairs in S1 ands, and call them Land R recursively. 
3) Now, s teps 1 lo 8 form thc Combining com pone nt of the D & C techn ique. 
4) Let us assume that 6 = min (L, !?). 
5) Eliminate points that a rc farther than o apart from l. 
6) Consider the re ma ining points a nd sort based on their y-coordinates. 
7) Scan the rema ining points in the y order and compute the distances of each point LO a ll its neighbors 

that a rc dista nced no more than 2 x 6 (that's the reason for sorting according to y). 
8) If any of these d istances is less than 6 then update IS . 

0 
0 

0 

0 

0 

0 
0 

0 x-coordinates of points 

0 
0 0 

0 

Linc I passing through thc mcdian point a nd d ivides the set into 2 equa l pa rts 

Combining the results in linear time 

0 

2 X 0 a rea 
0 

0 

0 

0 

0 
0 

0 

Linc I passing through the med ia n poin t und divides the set into 2 equa l parts 

Let Ii = min(!, ,!?). where I. is the solu tion to firs t sub problem and R is the solution to second s ub problcm. The; 
possible ca ndicla t1.:s for closcsl-pa ir, which a rc across the dividing line, are those whic h arc less than o distance 
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from the line. So we need only the points which are inside the 2 x o area across the dividing line as shown in the 
figu re. Now, to check all points within distance o from Lhe line, consider lhe following figure. 

20 20 

From Lhe above diagram we can see that a maximum of 12 points can be placed inside the square with a 
distance not less than o. Thal means, we need to check only the distances which arc within 11 positions in the 
sorted !isl. This is similar to Lhe one above, but with the difference that in the above combining of subproblems, 
there arc no ver·Lical bounds. So we can apply the 12- point box tactic over all the possible boxes in the 2 x 8 area 
with the dividing line as the middle line. As there can be a maximum of n such boxes in the area, the total time 
for finding the closest pair in the corridor is O(n). 

Analysi.s: 
l) Step-1 and Stcp-2 take 0(11logn) for sor·ting and recursively finding the minimum. 
2) Step-4 takes 0(1). 
3) Step-5 takes O(n) for scanning and eliminating. 
4) Step-6 lakes O(nlo9n) for sorting. 
5) Stcp-7 takes O(n) for scanning. 

The total complexity: T(n) = O(n/o.<Jn) + 0(1) + 0(11) + O(n) + O(n) ~ O(nlogn). 

import operator 

class Point(): 
def _ inil_(self, x, y): 

ttfu1 lniC .. "' 
self.x = x 
self.y = y 

def _ repr_ (seU): 
return '<(0}, {l}>'.format(self.x, sclf.y) 

def distance(a, b): 
ret urn abs((a.x - b.x) ** 2 + (a.y - b.y) ** 2) *"' 0.5 

def closestPoints(points): 
"""Time complexity: O(nlogn)""" 
n = len(points) 
ifn<=l: 

print 'Invalid input' 
raise Exception 

elif n == 2: 
return (pointslOJ, points! I I) 

elif n .... 3: 
# Cale directly 
(a, b, c) = points 
ret = (a, b) if distance(a, b) < distance(a, c) else (a, c) 
ret = (ret[OJ, retl l)) if distance(ret[O], retl 11) < distance(b, c) else (b, c) 
return rel 

else: 
points= sorled(poinls, key"'operator.alLrgeller('x')) 
leftPoi.nts = points! : n / 21 
rightPoints = pointsln / 2 : I 

# Dcvide and conquer. 
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(left_a, left_b) = closestPoints(lefLPoints) 
(right_a, righL_b) = closestPoints(rightPoints) 

# Find the min distance for leftPoints part and rightPoints part. 
d = min(distance(lcft_a, lcft_b), distancc(right a, right_b)) 

# Cut U1e point scl into two. 
mid= (points[n / 21.x + poinls[n I 2 + lj.x) I 2 

# Find all points fall in [mid - cl, mid + d] 
mid Range= filtcr(lambda pt: pl.x >= mid - d and pt.x <= mid + d, points) 
# Sort by y axis. 
midRange = sorted{mjdRange, key=operator.attrgetter('y')) 

rct =None 
localMin = None 
# Brutal force, for each point, find another point and delta y less than d. 
# Cale the distance and updaLC the global var if hits the condition . 
for i in xrange(lcn(midRange)): 

a = midRangelil 
for j in xrange(i + 1, len(midRange)): 

b = midRange[j) 
if (not ret) or (abs(a.y - b.y) <= d and distance(a, b) < localMin): 

rct =(a, b) 
localMin = distance(a, b) 

return rct 

points = I Poinl(l, 2), Point(O, 0), Point(3, 6), PoinL(4, 7), Point(S, 5), 
Poinl(8, 4), Point(2, 9), Point(4, 5), Point(8, I), Point(4, 3), 
Poinl(3, 3)1 

ptinl closestPoints(points) 

Problem-29 To calculate k", give algorithm and discuss its complexity. 

Solution: The naive a lgorithm to compu te k" is: start with I and multiply by I< until reaching I<". For this 
approach; there arc n - l mulliplications and each takes conslanl lime giving a 0(n) algorithm. 

Bul there is a fr.Isler way to compute I<". ror example, 

92•1 = (912)2 = ((96)2)2 = CCWl)2)2)Z = (((92. 9)2)2)2 

Note that taking the square of a number needs only one multiplication; this way, to compute 924 we need only 5 
multiplications instead of 23. 

def powerBruteForce(k, n): 
'""'linear power a lgorithm""" 
x = k; 
for i in range(l, n): 

x *"" k 
return x 

def power(k, n): 
if o == 0: return l 
x = powcr(k, math.floor(n/2)) 
if n % 2 == 0: return pow{x, 2) 
else: relurn k * pow(x, 2) 

Let T(n) be lhc number of mulliplica tions requ ired 1.0 compu lc fl". For s implicity, assume k = 21 for some i ;?; 1. 

II 
T(11) = T(- ) + I 

2 
Using master theorem we gel T(11) = O(logn). 

Problem-30 The Skyline Problem: Given the exact locations and shapes of n rectangular buildillgs in a 2-
dimensional c ity. There is no particular order for these rectangular buildings. Assume that the bottom of all 
buildings lie on a fixed horizontal line (bottom edges a rc collinear). The input is a list of triples; one per 
building. A building 81 is represented by the triple (11, h., r,) where 11 dcnotc lhe x-position of the le ft edge a nd 
r, denote the x-position of the right edge, und Jr, denotes the bui lding's height. Give an algorith m that 
compuLCs the skyline (in 2 dimensions) of these buildings, c.:liminaling hidden lines. In the diagram below 
there an: 8 buildings, represented from left to right by the triplets (I, 14, 7), (3, 9, 10), (5, 17, 12). (14 , 11, 18), 
( 15, 6, 27), (20, I 9, 22). (23, 15, 30) and (26, 14, 29). 
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The output is a collection of points which describe Lhc path of the skyline. In some versions of the problem t his 
collection of points is represented by a sequence of numbe rs p11 µ2, ... , p11 1 such that Lhe point p1 represents o 
horizontal line drawn at he ight p; if i is even, a nd it represents a vcrticnl line drawn a l pos ition p1 if i is odd. In 
our case Lhe collection of points will be a sequence of p1 , p2 , ••• , p11 pa irs of (x1, '11) where p,.(x1, hi) represents the 
h; height of the skyline a t position x1• In Lhc diagram above the s kylin e is drawn wi th a thick line a round the 
buildings and it is represented by the sequence of position -height pa irs (l , 14), (5, 17), (12, 0), (14, 11), ( 18, 6), 
(20, 19), (22, 6), (23, 15) and (30, 0). Also, assume that R1 of the righ t most bui lding can be maximum of I 000. 
That means, the l; co-ordinate of left building can be minimum of 1 and R1 of t he righ t most building can be 
maximum of 1000. 

Solution: The most important piece of information is that we know that the le ft and right coordinates of each 
a nd every building a rc non- negative integers less than I 000. Now why is this important? Because we can assign 
a height-value to every distinct x1 coordinate where i is between 0 and 9,999. 

Algorithm: 
• Allocate an array for 1000 elements and initialize all of the clements lo 0. Let's call this an-ay 

auxHeights. 
• Iterate over all of the buildings and for every B; building iterate on Lhe range of 111 •• ri) where 11 is the left, 

r1 is the righl coordinate of the bui lding 8 1• 

• For every x1 element of this ra nge c heck if h1>cw xllei,qhtslxj l , thul is if building 81 is taller than the 
current height-value at position x1• If so, replace auxlleightslx1] with h1• 

Once we checked all the buildings, Lhc auxHeighls a rray s tores Lhe heights of the tallest bu ild ings at every 
position. The re is one more thing to do: conver t Lhe auxlleights array to the expected output formal, that is lo u 
sequence of position-height pa irs . It's a lso easy: jus t ma p each and every i index to an (i, auxHeights]il) pair. 

def SkyLineBruteForce(): 
auxHeights = 10]*1000 
rightMostBuildingRi=O 
p = raw_input("Enter three values: ") # raw input() function 
inputValucs = p.split() 
inputCount = len(inputValues) 
while inputCount==3: 

left "' int(inputValues(O]) 
h = int(inputValues( 1)) 
right= int(inputValues(2)) 
for i in rangc(left, right-1): 

if(auxHeights(i)<h): 
auxHeightsli)=h; 

if(righ tMostBuildingRi<righl): 
rightMostBuildingRi=right 

p = raw_input("Enter three values: ") # 1·aw_input() function 
inputValues = p.splitQ 
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inputCount = l~n(inputValues) 
prev= 0 
for i in range(l,rightMostBuildingRi-1): 

if prev!=auxHeights[i]: 
print i, " ", auxH.eights( i] 

prev=auxHeigh tsl i] 
print rightMostBuildingRi, "", auxHeigh ts[rightMostBuilclingRi] 

SkyLineBruteForce() 

Let's have a look at the time complexity of this algorithm. Assume that, n indicates the number of buildings in 
the input sequence and m indicates the maximum coordinate (right most building rd. From the above code, it is 
clear that for every new input building, we a re traversing from left (Id to right (rd to update the heights. In the 
worst case, with n equal-size buildings, each having l = 0 le ft and r = m - 1 righ t coordinates, that is every 
bu ilding spans over the whole jO .. m) in terva l. Thus the running lime of setting the height of every position is 
O(n x m). The overa ll time-complexity is O(n. x m), which is a lot larger than O(n2

) ifm > n. 

Problem-31 Can we improve the solulion of the Problem-30? 

Solution: It would be a huge speed-up if somehow we could determine the skyline by calcu lating the height for 
those coordinates only where it matters, wouldn't it? Intuition tells us that if we can insert a building into an 
existing skyline then instead of all the coordinates the building spans over we only need to check the height at 
the left and right coordinates of the building plus those coordinates of t he skyline the building overlaps with and 
may modify. 
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Is merging two skylines subslantia lly different from merging a building wiLh a skyline? The answer is, of course, 
No. This s uggests that we use divide-and-conque r. Divide the input of n buildings into two equal sets. Compute 
(recursively) the skyline for each set then merge the two sky lines. Jnserting the buildings one after the other is 
not the fastest way to solve this problem as we've seen it above. If, however, we first merge pairs of buildings into 
skylines, then we m erge pairs of these skylines into bigger skylines (and not two sets of buildings), and then 
merge pairs of these bigger skylines into even bigger ones, then - since the problem size is halved in every step -
afler lo9rr steps we can compute the fina l skyline. 

class Sk.yLinesDivideandConquer: 
# @param {inleger(Jll} buildings 
# @return {inlegerO!I} 
def getSkylines(self, buildings): 

result -= [] 
if len(buildings) = 0: 

return result 
if len(buildings) == 1: 

result.append(lbuildings[OJIOJ, buildingsj0][2]1) 
rcsult.append(fbuildingslOll l I, OJ) 
return result 

mid = (len(bu.ildings) • 1) / 2 
leftSkyline = self.gelSkyline(O, mid, buildings) 

18.10 Divide and Conquer: Problems & Solutions 414 



Data Structure and Algorithmic Thinking with Python 

rightSkyline = self.getSkyline(mid + l, len(buildiiigs)-1, buildings) 
result= self.mergeSkylines(leftS:kylfue, rightSkyline) 
return result 

def getSkyline(self, start, end, buildings): 
result "' [] 
if suui == end: 

resu I l.appcnd(lbuild ingsf sfart] [OJ, buildings I startJ f 2Jl) 
result.append([buildingslstart][ IL 0)) 
return result 

mid = (st~rt + end) / 2 
leftSkylini\><" . self.getSkyline{start, mid, buildings) 
rightSky1iRe = self.getSkyline(mid+ 1, end, buildings) 
result = self.mergeSkyJines(leftSkyline, rigbtSkyline) 
return result 

def mcrgeSkylines(sc:lf, leftSkyline, rightSkyline): 
result "" O 
i, j, hl, h2, maxH = O, O, O, 0, O 
while i < len{leftSkyline) and j < len(rightSkyline): 

ifleftSkyline[il[O) < rightSkylineLiJ[OJ: 
hl = leftSkylinefil[l] 
ifmaxH l"! max(hl, h2): 

result.append([leftSkylineliJ[Oj, max(h 1, h2))) 
maxH = max(hl, h2) 
i +- 1 

elif JeftSkylineliJIO] > rightSkylineijJIO): 
h2 = rightSkyline[jJ(l) 
ifmaxH != max(hl, h2): 

result.append(frightSkylin.eLiJ[O), max(hl, h2)]) 
maxH = max(hl, h2) 
j += 1 

efse: 
hl = leftSkyline[iJll] 
h2 = rightSkylineLiJ[l] 
if maxH I"' max(h 1, h2): 

rcsult.append([rightSkyline[j] [Oj, max(hl, h2)j) 
maxH .. max(hl, h2) 
i += 1 
j += 1 

whi1e i < len(left:Skylio.e): 
result.append(IeftSkyline[i]) 
i += 1 

while j < len(rightSkyline): 
result.appm'.ld(rightSkylinc[j]) 
j += l 

return result 

Divide and Conquer Algorithms 

For example, given two skylines A=(a1 , ha1, a 2 , ha2 , .•. , a11 , 0) and B= (b1, hb1, b2 , hb2 , •.. , b111 , 0), we merge Lhese 
lisls as the new list: (c1, hc1 , c2 , hc2 , ... , Cn+m• 0). Clearly, we merge the lisl of a's a nd b's just like in the standard 
Merge algorithm. But, in addition to that, we have to decide on the correct height in between these boundary 
values. We use two variables currentHeight1 and currentHeight2 (note that these are the heights prior to 
encountering the heads of the lisls) to store the current height of the first and the second skyline, respectively. 
When comparing the head enlries (currentlleight1, currentl-leight2) of the two skylines, we inlroduce a new strip 
(and append to the output skyli11e) whose x-coorcl inate is the minimum of the entries' x -coordinatcs and whose 
height is the maximum of currentlfeight1 and currenllleight2. This a lgorithm has a structure s imilar lo 
Mcrgesorl. So the overa ll running lime of the divide and conquer a pproach will be O(nlogn). 
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DYNAMIC 

PROGRAMMING 

19.1 Introduction 

CIIAP'I,1Dl~ 

19 

In this c hapte r we will try lo solve lhc problems for whic h we failed lo get the oplimal solulions us ing olher 
lechniques (say, Divide &. Conquer and Greedy methods ). Dyna mic Programming (DP) is a simple technique but it 
can be difficult to maslcr. One easy way to idcnlify and solve DP problems is by solving as ma ny problems as 
possible. The term Pro9rammin9 is not related to coding but it is from literature, and means filling ta bles (simi lar 
to linear Programming) . 

19.2 What is Dynamic Programming Strategy? 
Dynam ic programming a nd memoization work logcther. The main d iffere nce between dynamic progra mming a nd 
divide a nd conquer is tha t in lht: case of the latter , s ub problems a re inde pe ndent, whe reas in DP there can be 
a n overlap of sub problems. By using mcmoization !mainta ining a table of sub problems a lready solvedJ , 
dynamic programming reduces lhe exponential complexity to polynomial complexity (0(112), 0(11:1), etc.) for ma ny 
problems. The major components of DP arc: 

• Recursion: Solves sub problems recursively. 
• Memoization: Stores already computed values in table (Memoization means caching). 

Dynamic Programming = Recursion + Memoizatio11 

19.3 Properties of Dynamic Programming Strategy 
The two dynamic programming properties whic h can tell whether il ca n solve the given proble m or nol arc: 

• Optimal substructure: an optimal solution lo a problem conta ins optimal solutions to sub problems. 
• Overlapping su.b problems: a recursive solution contains a small number of distinct sub problems 

repeated many times. 

19.4 Can Dynamic Programming Solve All Problems? 
Like Greedy a nd Divide a nd Conquer techniques, DP cannot solve every problem. There arc problems which 
cannol be solved by a ny a lgorithmic technique [Greedy, Divide and Conquer a nd Dyna mic Programming!. 

The difference between Dynamic Programming a nd straightforward recu rsion is in me moi7..alion of recurs ive 
calls. If the sub problems are independenl and there is no repetition Lhen me moihation does nol he lp, so 
dynamic programming is not a solution for all problems. 

19.5 Dynamic Programming Approaches 
Basically the re a rc two approaches for solving DP problems: 

• Bottom-up dyna mic programming 
• Top-down dyna mic programming 
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Bottom-up Dynamic Programming 
In this method, we evaluate the funclion starting with the smallest possible input argument value and then we 
step through possible values, s lowly increasing lhe input argument value. While compuling the values we store 
a ll computed values in a table (memory). As larger argumcn ls me eva luated, prc-compu lecl values for s ma ller 
arguments can be used. 

Top-down Dynamic Programming 

In this method, the problem is broken into s ub problems; each of these sub problems is solved; and the 
solutions remembered, in case they need to be solved. Also, we save each computed value as the final action of 
the recursive function, and as the first action we check if pre-computed value exists. 

Bottom-up versus Top-down Programming 

In bottom-up programming, the programmer has to select values to calcu lute and decide the order of 
ca lculation. In this case, a ll sub problems that might be needed ore solved in advance and then used to build up 
solutions to larger problems. In top-down programming, the recursive structure of the origina l code is preserved, 
but unnecessary recalculation is avoided. The problem is broken into sub problems, these sub problems arc 
solved and the solutions remembered, in case they need to be solved again. 

Not e : Some problems can be solved with both the techniques and we will sec examples in the next section. 

19.6 Examples of Dynamic Programming Algorithms 
• Many string algorithms including longest common subsequence, longest increasing subsequence, 

longest common substring, edit distance. 
• Algorithms on graphs can be solved efficiently: Bcllman- Pord a lgorithm for finding the shortest distance 

in a graph, Floyd's All-Pairs shortest path a lgorithm, etc. 
• Chain matrix multiplication 
• Subset Sum 
• 0/ I Knapsack 
• Travelling salesman problem, and many more 

19.7 Understanding Dynamic Programming 
Before going to problems, let us understand how DP works through examples. 

Fibonacci Series 
In Fibonucc i series, Lhc cu rrent number is the sum of previous two m1mbcrs. The Pibonucci series is defined as 
follows: 

Fib(n) = 0, for 11 = 0 
= 1, for n = 1 
= Fib(n - 1) + Fib(n - 2).for n > 1 

The recursive implementaLion can be given as: 

def Fibo(n): 
if n ..... 0: retum 0 
elif n •= 1: return I 
else: return Fibo(n- l)+F'ibo(n-2) 

print (Fibo(lO)) 

Solving the above recurrence gives: 

T(n) = 7'(11- l) + T(n- 2) + 1 .., ( 1 ~,rs)n"" 2" = 0(2") 

Note: For proof, refer to l11troduclim1 chapter . 

How does Memoization h e lp? 

Calling fib(S) produces a cu ll tree that culls the funclion on the same value many times: 
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f ib(S) 
fib(4) + fih(3) 
(f ib(3) + (ib(2)) + (fib(2) + fib(l)) 
((fib(2) + fib(l)) + (fib(1) + fib(O))) + ((fib(l) + fib(O)) + fib(1)) 
(((fib(l) + (ib(O)) + fib(1)) + (fib(l ) + fih(O))) + ((fi/J(l) + fi/J(O)) + fi/J(1)) 

In Lhe a bove example, (ib(2 ) was ca lcu lated three times (ove rla pping of subproblems). If n is big, the n many more 
values of fib (sub problems) a re reca lc ula ted , whic h leads to a n cxpone nlia l lime a lgorithm. Ins tead of s o lving 
the same s ub problems again a nd again we can store the previous calcula lcd va lues and reduce the complexity . 

Memoization works like this: Start with a recursive functio n a nd add a table tha t maps the func lion 's parame te r 
values to the results computed by the function. Then if this func tion is called twice with the same para meters, 
we simply look up the a nswer in the table. 

Improving: Now, we sec how OP reduces this problem complexity from exponentia l to polynomial. /\s discussed 
earlie r, the re a rc two ways of doing this . One a pproach is botiom- up: these methods start with lowe r values of 
input a nd keep building lhc solutions for highe r values. 

def Fibo(n): 
fibTable = (0, 1] 
for i in range(2,n+ 1 ): 

fibTable.append(fibTableli-1 J + libTableli-21) 
return fibTable[n) 

print(Fibo(lO}) 

The other approach is top-clown. In this method, we preserve the recursive calls and use the va lues if they a rc 
a lready computed. The impleme ntation for this is g ive n as: 

fibTable = {1: 1, 2:1} 
def Fibo(n): 

if n <= 2: 
return l 

if n in fibiable: 
return libTablelnJ 

else: 
libTablejnJ = Fibo(n-1) + Fibo(n-2) 
return fibTablelnJ 

print(Fibo(l OJ) 

Note: For all problems, it may not be possible to find both top-down a nd botto m-up progra mming solutions. 

Both versions of the Pibonacci series implementations c learly reduce the problem complexity lo O(n) . This is 
because if a value is already computed then we are not calling the s ubproblems again. Instead, we arc directly 
taking its value from the table. 

Time Com plexity: O(n). 
Space Complexity: O(n), for table. 

Further Improving: One more observatio n from the F'ibonacci series is: The c urrent value is the sum o f the 
previous two calculations on ly . This indicates that we don't have to s tore a ll the previous values. Instead , if we 
store just the last two values, we can calculate the c urrent value. The implementation for this is given below: 

def Fibo(n): 
a, b = o, 1 
for i in range(n): 

a, b = b, a+ b 
return a 

print(Fibo(lO)J 

Time Complexity: O(n). 
Space Complexity: 0 (1). 

Note: Th is method may not be applicable (available) for a ll proble ms. 

Observations 

While solving the problems using OP, try to figure out the following: 
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• See how the problems are defined in terms of subproblems recursively. 
• See if we can usc some table [mcmoizat ion] to avoid the repeated calculations. 

Factorial of a Number 
As a nothe r example, cons ider th e factor ia l proble m: n! is the produc t of a ll integers between 11 and 1. The 
de fini tion of rec urs ive facto ria l can be give n as: 

n! = n * (n - 1)1 
1! = 1 
O! = 1 

This definition can easily be converted to implemen tation. Here the problem is finding the va lue of n!, a nd the 
sub-problem is finding the value of (n - l)!. In the recursive case, when n i:;; greater than 1, the function call:; 
itself to find the va lue of (n - l)! a nd multiplies that with n. In Lhc base case, when 11 i:;; O or I, the func tion s im ply 
returns 1. 

def factorial(n): 
if n == 0: return 1 
return n*factorial(n-1) 

print(factoria1(6)) 

The recurrence for the above implementation can be given as: T(n) = n x T(n - 1) ::::O(n) 
Time Complexity: O(n). Space Complexity: O(n), recursive calls need a stack of s ize n. 

In the a bove recw,-ence re la tion and imple me n tation , for any r1 value, there arc no repetitive calc ula tions (no 
overlapping of sub problems) a nd the facto ria l function is not gelling a ny benefits with dyna mic programming. 
Now, let us say we want to compu te a series of m! for some a rbitrary value m. Using the above a lgori thm, for 
each such call we can compute it in O(m). For example, to find both n! a nd m! we can use the above approach, 
wherein the total complexity for finding n! a nd m! is O(m + n). 

Time Complexi ty: O(n + m). 
Space Complexity: O(rnax(m, n)) , recursive calls need a stack of size equa l to the maximum of m and r1. 

Improving: Now let us see how DP reduces the complexity. From the above recursive de finitio n it can be seen 
Lhat f act(n) is calculated from {acl(n - I) and n a nd nothing else. Instead of calling fact(n) every time, we can 
store the previous calc ulated va lues in a table and use these values to calculate a new va lue. This 
implementation can be given as: 

factTable = n 
def factorial(n): 

try: 
return factTablefnl 

except KeyError: 
if n -== 0: 

facl1'a b1e(O) = 1 
return 1 

else: 
factTable[ n} = n * factorial(n~ 1) 
return factTable[n] 

print(factoria1( 10)) 

For simplic ity, let us assume that we ha ve already calculated n! a nd want to find m! . For finding m!, wc just 
need to sec the table and use the existing entries if they arc a lready computed. If 111 < 11 then we do not have to 
recalculate m!. If m > 11 then we can use 11! and call the factoria l on the remaining numbers only. 

The above implementation clearly reduces the complexity to O(max(m, n)) . This i:; because if the f act(n) is 
al ready there, then we are not recalculaLing the va lue again. If we fill these newly computed values, then the 
subsequent calls further reduce the complexity. 

Time Complexity: O(max(m, n)). 
Space Complexity: O(max(m, n)) for table. 

19.8 Longest Common Subsequence 
Given two str;ngs: string X of length m [X(l .. m)], a nd string Y of length 11 [Y(l.. n)I, find th t.: longest common 
subsequence: the longest sequence of c haracters t hat appear left- to-right (but not necessarily in a contiguous 
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bloc k) in both strings. For example, if X = "ABCBDAB" a nd Y = "BDCABA", the l.CS(X, Y) = {"BCBA", "BDAB", 
"BCAB"}. We can see there arc severa l optimal solutions. 

Brute Force Approach: One simple idea is to check every subsequence of X[1 .. ml (m is Lhc length of seque nce 
X) to sec if it is a lso a subsequence of ytl .. nl (n is the le ngth of sequence Y). Checking Lakes O(n) lime, und there 
are 2"' subsequences of X. The running lime thus is exponentia l 0(11.2111

) a nd is not good for lnrgc seque nces. 

Recursive Solution: Before going to DP solution, let us form the recurs ive solulion for lh is und la te r we can add 
mcmoization to reduce the complexity. Let's start with some s imple observations about the LCS problem. If we 
have two strings, say "ABCBDAB" and "B DCABA", and if we draw lines from Lhe letters in the first string to the 
corresponding letters in the second, no two lines cross: 

A 8 C B DAB 

I I I I 
BOCA B A 

rrom the above observation , we can sec tha t the current c haracters of X a nd Y muy or may not match. Tha t 
means, suppose that the two first c haracters differ. The n it is not possible fo r both of them to be part of a 
common subsequence - one or the other (or maybe both) will have to be re moved. Fina lly , observe that once we 
have decided what to do with the first characters of the s tr ings, the re ma ining sub problem is again a LCS 
problem, on two shorter strings. Therefore we can solve il recursively. 

The solution to LCS should find two sequences in X and Y and let us say Lhc s1.a1-ting index of seque nce in X is 
i and the starting index of sequence in Y is j. Also, assume that Xii ... m] is a substring of X sta rting at character 
i a nd going until the end of X. a nd that YI) ... n] is a substring of Y starling al character j a nd going until the e nd 
of Y. 

Based on Lhe above discussion, here we get the possibili ties as described below: 

1) If X(i] == Y[j]: 1 + 1,CS(i + 1,j + 1) 
2) If X[i] * Y[j]: l.CS(i,j + 1) / / skipping j"' character of Y 
3) If X[i] * Y[j]: tCS(i + 1,j) / / skipping i1h character of X 

In the first case, if X[i ] is equal to Y[j], we get a matching pai r and can count it towards the total length of Lhe 
LCS. Otherwise, we need to s kip either itl' c haracter of X or t 1' c ha racter of Y and find the longest com mon 
subsequence. Now, /,CS(i,j) can be defined as: 

{ 

0, 
l,CS(i, j) = Max{LCS(i,j + 1),1.CS(i + 1,j)}, 

1 + l.CS[i + 1,j + l], 

if i = m or j = n 
if Xfil * Yfj] 

if X(i] == YLi) 

LCS has many applications. In web searching, if we find the s m a llest number of changes that a rc needed to 
change one word into another. A change here is a n insertion, deletion or replacement of a s ingle c ha racter. 

def LCSLengtb(X, Y): 
if not X or not Y: 

return"" 
x, m , y, n = X[Ol, X( I:], Y[OJ, Y[ I:] 
if x == y: 

retum x + LCSLength(m, n) 
else: 

return max(LCSLength(X, n), LCSLength(m, Y), key=len) 

print (LCSLength('thisisatesl', 'testingLCS123testing')) 

This is a correct solution but it is very time consuming. F'or example, if the two strings have no matc h ing 
characters, the last line a lways gets executed which gives (if m - = 11) close to 0(2 "). 

DP Solution: Adding Memoization: The problem with tht: recurs ive solu tion is that the same subproblems gel 
called many different times. A s ubproblem consists of a call to LCSLcngth, with the argum en ts being two 
suffixes of X and Y, so there a rc exactly (i + l)U + l) possible subproblems (a relative ly small number). If the re 
are nearly 2" recursive calls, some of these subproblems must be being solved over a nd over. 

The DP solution is to check, whenever we want to solve a sub problem, whether we've a lready don e it before. So 
we look up the solution ins tead of solving it agai n. Implemented in the most d irect way, we just add some code 
to ou r recursive solution. To do this, look up the code. This can be give n as : 

def LCSLenglh(X, Y): 
Table = 110 for j in range(len(Y)+ l )I for i in rangc(lcn(X)+ I JI 
# row 0 and column 0 arc initialized Lo 0 already 
for i, x in cnumerate(X): 
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for j, y in enumerate(Y): 
ifx == y: 

Table! i+ 11 Li+ I ) = Table! i)Li] + 1 
else: 

Tableli+lJU+l) = \ 
max(Table[i+ 1 ILil, Table( i)Li+ l j) 

# read the; substring out from the matrix 
result 
x, y = len(X), lcn(Y) 
while x I= 0 and y != 0: 

ifTablejxl[yj == Tablelx-lJlyj: 
x -= I 

elif Table!xlly] == Tablcjx)ly-lj: 
y -"'" I 

else: 
a~scrt Xjx-1 I • Y[y-1 I 
result = Xjx-lj +result 
:x -= 1 
y -= l 

return resuJt 
print (LCSLength('lhisisatest', 'testingLCSl 23testing')) 

l'in;l, lake ca re of the base cases. We have created an LCS table wilh one row a nd one column larger than the 
le ngths of the two strings. Then run the iterative OP loops to fill each t:cl l in the table. This is like doing 
recurs ion backwards, or bottom up. 

L[iJUJ 
~ 

LlilLi+ 1 J -

/ ' ........... 

'Lli+ ll lil ...... Lli+l lli+l I 

The value of /.CSllllJI depends on 3 other values (LCSli + ljl/ + 1], LCSliJIJ + l] and LCSli + l]ljj), all o r which have 
la rger values of i or j. They go through the table in the order of decreasing i and j values. This will guarantee 
that when we need lo fill in the value of LCS[i]U]. we already know the va lues of a ll the cells on which it depends. 

Time Complexity: O(mn), s ince i takes values from 1 tom and a nd j la kes values from 1 ton. 
Space Complexity: O(mn). 

Note: In the above discussion, we have assumed LCS(i,j) is the length of Lhc LCS with Xii ... mj a nd YU ... 11]. We 
co n solve the problem by cha nging the definition as /,CS(i,i) is the le ngth of the LCS with Xfl ... iJ a nd vr1 ... )]. 

Printing the subsequence: The above a lgorithm can find Lhe length of the longest common subsequence but 
cannot give the actua l longest subsequence. To gel the sequence, we trace il through the ta ble. Start at cell 
(0,0). We know that thc value of LCS[O]lO] was the maximum of 3 values of the ne ighboring cells. So we simply 
recompute LCS(O]LOJ and note which cell gave the maximum value. Then we move to that cell (it will be one of 
(1, 1), (0, 1) or (1, 0)) and repeat this until we hit the boundary of the table. Every time we pass through a cell 
(i,j) where Xiii == YIJI. we have a matching pair and print X[i]. Al the end , we will ha ve printed the longest 
common s ubsequence in O(nm) Lime. 

An o llcrnaLivc way of gelling path is to keep a separate tablc for cach cel l. This will tell us which direction we 
ca me from when computing the value of that cell. AL the end, we again start al ccll (0,0) and follow these 
dfrcctions until lhc opposite corner o f the table. 

From the above examples, I hope you understood the idea behind DP. Now let us see more problems which can 
be easily solved using the OP technique. 

Note: As we have seen above, in DP the main component is recursion. If we know the recurrence then 
convening that lo code is a minimal task. For the problems below, we concentrate on getting the rccurTence. 

19.9 Dynamic Programming: Problems & Solutions 
Problem-I Convert the following rec urrence to code. 

T(O) = 7"(1 ) = 2 
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n- 1 

'/'(11) = I 2 x T(i) x T(i - 1), for n > 1 
l= l 

Solution: The code for the given recu rs ive formula can be given os: 

def f(n): 
sum= 0 
if(n==O or n== I): 

return 2 
# Recursive case 
for i in range(l, n): 

sum+= 2 * f(i) * f(i-1) 
return sum 

Dynamic Programming 

Problem-2 Can we improve the solution to Problcm- 1 using mcmoizalion of OP? 

Solution: Yes. Before finding a solution, let us sec how Lhc va lues ure calcu lated. 

T(O) = T(1) = 2 
T(2) = 2 * '/'(l) * T(O) 
T (3) = 2 * T(l) * T(O) + 2 * T(2) * T(1) 
T( 4) = 2 * T(l) * T(O) + 2 * T(2) * T(1) + 2 * T(3) * 1'(2) 

rrom Lhe above ca lcu lations it is c lear that there a re lots of repeated ca lc u lations with the same in put values. 
Let us use a table for a voiding I hcse repeated calcu lations, and the implementation ca n be give n a :;: 

def f2(n): 
T = [OJ* (n+l) 
TIO! = Till = 2 
for i in range(2, n+l): 

T[iJ = 0 
forj in range(l, i): 

T!iJ +=2 • TLiJ * T[j-1] 

reLUrn Tin! 
print f2(4) 

Time Complexity: 0(117.), two for loops. Space Complexity: O(n), for table. 

Problem-3 Can we further improve the complexity of Problem-2? 

Solution: Yes, since a ll sub problem calcu lations a re dependenL only on previous calculations, code can be 
modified as: 

def f(n): 
T .. [01 * (n+l) 
Tl Of .. Tl 11 = 2 
'1'121""2 * TIO! .. T[ll 
for i in range(3, n+l ): 

T[iJ=T[i- l J + 2 * T[i-1 J * T[i-2] 
re tu rn T[n] 

print f(4) 

Time Complexity: 0(11), since only one for loop. Space Complexity: O(n). 

Proble m -4 Maximum Value Contiguous Subsequence: Given nn nrray of /1 numbers, give an algorithm for 
finding A co1111g11ous s11bstqurnrr A(i) . . . A(j) for which the sum of <:lemrnts is mAximurn. 
Example: 1-2, 11, -4, 13, -5, 2) - 20 and {I, -3, 4 , -2 , -1, 6 ) - • 7 

Solution: 

Input: Array 11(1) ... A(n) of 11 numbers. 

Goal: If there a re no negative numbers, then the solution is jusL lhe su m of a ll e lemen ts in the given array. If 
negative numbers a rc there, then our aim is to maximi11c the sum [Lhcrc can be a negative number in the 
contiguous s umj . 

One s imple u nd brute force approach is to st:e a ll possible sums a nd select the one which has maximum vuluc. 

def MaxContigousSum(A): 
ma.xSum = 0 
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n = len(A) 
for i in range(!, n): 

for j in range(i, n): 
currcntSum = 0 
for k in range(i, j+ l): 

return maxSum; 

A= (-2, 3, -16, 100, -4, 51 
print MaxContigousSum(A) 

currcntSum +.- Alk] 
ir(currcntSum > maxS um): 

maxSum = currentSum 

Time Complexity: O(n 3) . Space Complexity: 0(1). 

Problem-5 Can we improve Lhc com plcxity o f Problem-4? 

Dynamic Programming 

Solution: Yes. One important observation is that, if we hove a lrcacly calc ula ted Lhe s um for the s u bsequence 
i ,. .. ,j - 1, the n we need on ly one more addition to get the s um fo r the subsequence i, ... ,j. But, the Problcm-4 
a lgorilhm ignores this information . tr we use t his fac t, we ca n get a n improved a lgorithm with the running time 
O(n2) . 

def MaxContigousSum(A): 
maxSum = 0 
n = len(A) 
for i in ra nge(l, n): 

curre nlSum "' 0 
for j in range(i, n): 

currentSum += ALil 
ir(currentSum > maxS um): 

maxSum = currentSum 
return maxSum; 

A= [-2, 3 , -16, 100, -4, 51 
print MaxContigousSum(A) 

Time Complexity: 0 (112 ). S pace Complexity: 0(1). 

Problem-6 Can we solve Problcm -4 usi ng Dyna mic Progrnmming? 

Solution: Yes. F'or s implic ity, let us say, M(i ) indica tes maximum s um over a ll windows ending a t i. 

Given Array, A: recursive fo rmula considers the case of selecting it11 element 

? 

To find maximum sum we have to do one of the following a nd s elect max imum among them. 

• Either extend the old s um by adding ll(il 
• or star t new window starting with one clement ll liJ 

M(i ) = Max (~(i - l) + Alil 

Whe re, M(i - 1) + A[il indicates lhc case of cxlcnding the previous s um by adding ll li l a nd 0 indicates lhe new 
window s ta rling a l Alil· 

def MaxContigousSum(A): 
maxSum = 0 
n = len(A) 
M = (0) * (n+l) 
if(A[Ol > 0) : 

M(OI = AIOI 
e ls e: MIO) = 0 
for i in range( l , n): 

if( M[i- 11 + Ali! > 0): 
MJi] = M[i- 1 I + Ali) 

else: M[i] = 0 
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for i in range(O, n): 
if(M[iJ > maxSum): 

maxSum = Mfil 

return maxSum 

A= f-2. 3, -16, 100, -4, SJ 
print MaxCont.igousSum(A) 

Time Complexity: O(n). Space Complexity: O(n). for table. 

Proble m -7 Is there any other way of solving Problcm-4':' 

Solution: Yes. We can solve this problem without DP too (without memory). The a lgorithm is a little tricky. One 
simple way is to look for all positive contiguous segments of the a rray (sum£ndi119 llere) and keep track of the 
maximum sum contiguous segmenL among a ll posilivc segments (s umSoFar). Each time we get a positive sum 
compare it (s11ml:ndi119Here) with sumSoFar and update sumSoFar if it is greater than sumSoPar. Let us consider 
the following code for the above observation. 

def MaxContigousSum(A): 
sumSoFar = sumEndingHere = 0 
n = len(A) 
for i in range(O, n) : 

sumEnctingHere = sumEndingHere +Ali! 
if(sumEndjngHerc < 0): 

sumEndingHerc = 0 
continue 

if(sumSoF'ar < sumEndingHcrc): 
sumSoFar = sumEnding.Hcrc 

return sumSoFar 
A= (-2, 3, -16, 100, -4, 5] 
print MaxContigousSum(A) 

Note: The a lgorithm doesn't work if the input contains all negative numbers. It returns 0 if a ll numbers are 
negative. To overcome this, we can add an extra c heck before Lhe actua l implementation. The phase will look if 
all numbers arc ncgalivc, a nd if they a rc it will return maximum of them (or smallest in lerms of a bsolu te value). 

Time Complexity: O(n), because we arc doing only om; scan. Spnce Complexity: O(L). for· table. 

Problem-8 In Problcm -7 :>olution , we havt: assumed that M(i) indicates maximum s u m over a ll windows 
end ing at i. Can we assume M(i) indicates maximum sum over a ll windows starling al i a nd e nd ing at n? 

Solution: Yes. Por s im plic ity, let us say, M(i) ind icates maximum sum over aU windows startin g at i . 

Given Array, A: recursive fo rmu la considers the cusc o r selecting ; th c lemen t 

To find maximu m window we ha ve to do o ne of t he following and select maximum among them. 

• Eithe r exte nd the old s um by add ing /\Iii 
• Or start new window slarlinp; with one cle me n t /\[ i] 

M( ') M {M(i + I)+ /\ Iii. 
I = ClX Q ' 

if M(i + I)+ /\ Iii > O 
if M(i + I)+ llfil <= 0 

Where, M(i + 1) + /\I i i indica tes the case of extending the p rev ious s um by add ing ll[i], a nd 0 indicates t he new 
window start ing at /\[ij. 

Time Complexity: O(n). Space Complexity: O(n), for table. 

Note: For O(nlo9n) solution, refer to the Divide a11<1 ConCjuer chapter. 

Proble m -9 Given a sequence of 11 numbers /\(1) ... /\(11), give an algorithm for finding a contiguous 
subsequence l\(i) ... l\U) for which the sum of clements in the subsequence is maximum. Here the condition is 
we should noL s t:lt:c l two cnnliguous numbers. 

Solution: Let us sec how DP solves this problem. Assume that M(i) represents the maximum sum from 1 to i 
numbers without selecting two contiguous numbers. While computing M(i), the decision we have to make is, 
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whether to select the iLl1 elemcnl or not. This gives us two possibili lics a nd based on Lhis we can write Lhc 
recursive formula as: 

{

Max{A(i] + M(i - 2), M(i - I)}, if i > 2 
M(i) = AILI. if i - I 

Max{Al t ],/ILZI}, ifi - 2 

• The firsl case indicalcs whether we arc selecting the i 11' clement or nol. If we don't select the i1h clement 
then we have lo maximize the sum using the c lements I to i - I. If i 111 clement is selected then we 
should not select i - 1th clement and need to maximize the sum using l Lo i - 2 clements. 

• In the above representation, the last two cases indicate the base cases. 

Given Array, A: recursive formu la considers the case of selecting i 111 c leme nt 

I ..... I ····· I ? 

A!i-21 /\Ii- I I /\[ii 

def maxSum With No1\voCon tinuousNumbers(A): 
n = lcn(A) 
M = 101 * (n+l) 
MIO! = A[OI 

if(A[OJ>A[ 11): 
MIOJ a AIOI 

else: MIOJ - A[ l J 
for i in range(2, n): 

if( Mli-lj>M[i-2J+Alil): 
MfiJ = M(i-11 

else: M(i) = Mli-2)+AliJ 

return M[n- 11 

A = 1-2, 3, - 16, 100, -4, 51 
print maxSumWithNo1\voContinuous Numbers(A) 

Time Complexity: O(n). Space Complexity: O(n). 

Problem-10 In Problem-9, we assumed that M(i) represents the maximum sum from I lo 1 numbers without 
selecting two contiguous numbers. Can we solve the same problem by changing the definition as: M(i) 
represents the maximum sum from i ton numbers without selecting two contiguous numbers? 

Solution: Yes. Let us assume that M(i) represents the maximum sum from i lo 11 numbers without selecting two 
contiguou s numbers: 

{

Max(A[il + M(i + 2), M(i + I)}, if i > 2 
M(i)= Alli. ifi I 

MC1X{l![1],A[2)}. 1[ I - 2 

Given Array, A: recursive formula considers the case of selecting i 111 clement 

? I ..... I 
A(i[ /\(i+ 11 /\[i+2J 

• The first case indicates whether we a rc selecting the i1h clement or not. If we don't select the 1
1
h clement 

then we have to maximize the sum using the elements i I I Lo r1. If ;th clement is selected then we 

should not select i +1th element need to maximi7,e the sum using i + 2 tO 11 clements. 
• In the above representation, the last two cases indicate the base cases. 

Time Complexity: 0(11). Space Complexity: 0(11). 

Problem-1 1 Given a sequence of 11 numbers A( t) ... A(n), give an a lgorithm for finding a contiguous 
s ubsequence A(i) ... A(}) for which the s um of c lemen ts in the subsequence.: is maximum. I lcrc the condition is 
we s hould not sclccl three contin uous numbers. 

Solution: Inpu t: Array 11(1) ... l!(n) of11 numbers. 
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Given Array, A: recursive formula considers the case of selecting ith element 

I ..... I 
A[i-3 [ A[i-2 [ A[i- 1] Ali[ 

Assume that M(i) represents the maximum sum from 1 to i numbers without selecting three contiguous 
numbers. While computing M(i), the decision we have to ma ke is, whether to select ith element or not. This gives 
us the following possibilities: 

{

A[i] +A li - 11+M(i-3) 
M(i) = Max 11[i] + M(i - 2) 

M(i - I ) 
• In the g iven problem the restriction is not to select three continuous numbers, but we can select two 

clement::. continuous ly und skip the third one. That is what the fast case says in the above recursive 
fo rmula . That means we arc skipping 11 [i - 2]. 

• The other possibility is, selecting i 11' c lement a nd skipping second i - 1111 e lement. This is the second 
case (skipping A(i - 1]). 

• The third term defines the case of not selecti ng i 11' elem ent a nd as a result we should solve the problem 
with i - 1 elements. 

Time Complexity: 0(11). Space Complexity: O(n). 

Problem-12 In Problem- 11, we assumed t hat M( i) represents the maximum su m from 1 to i numbers 
without selecting three con tiguous num bers. Can we solve the same problem by c ha nging the de finition as: 
M(i ) represents Lhe maximum su m from i ton numbers witholll ::.electing three contiguous numbers? 

Solution: Yes. The reasoning is very muc h similar. L<.:t us sec how DP solves this problem. Assume that M(i) 
represents the maximum sum from i ton numbers without selecting three contiguous numbers. 

Given Array, A: recursive formula cons iders the case of st.:lccting i' 11 element 

? 

Af ij Ali+ 11 Ali+2 [ Aji+3[ 

While computing M(i). the decision we have to ma ke is, whether to select iu' element or not. This gives us the 
following possibilities: 

{

A[il + A[i + 1I+M(i+3) 
M(i) = Max Ari I+ M(i + 2) 

M(i + 1) 

• In I.he given problem lhc reslric tion is to nol sclccl three continuous numbers, buL we can sclecl two 
demt.:nts continuously a nd skip the lhird one. Tha t is what the first case says in the above recursive 
for·mu la. That mea ns we a rc s kipping Ali+ 21. 

• The other possibility is , selecting it" clement and skipping second i - 1 ur element. This is the second 
case (skipping All+ l]). 

• And the Lhird case is not selecting i 11
' derncnt and as a result we should solve the problem with i + 1 

clements. 

Time Complexity: 0(11). S pace Complex ity: 0(11). 

Problem-13 The re a rc 11 petrol s ta tions a long a c ircular roulc, where the a mounl of petrol at station i 1s 
peLrolli l. You have a cur with an unlimited petrol La nk a nd il costs cost[ ii of petrol to travel from station i to its 
next station (i + 1). You begin lhcjourncy with a n empty ta nk al one of the petrol stations. Return the starting 
petrol station's index if you can lravc l a round the c ircuit once, olhcnvisc return - 1. 

Solution: This is just alternative way of asking Lhe Problem -4. We need to make sure that the value should 
neve r go less than zero. 

def canComplcteTour(self, petrol, cost): 
minVal = noal("inr') 
minPos = - 1 
petro!TillNow .. 0 
for i in range(O, le n(petrol)): 
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pctrolTiUNow +:: pelrol[i] - cost[iJ 
if petrolTillNow <min Val: 

minVal = petrolTillNow 
rninPos = i 

if pclrolTillNow >=O: 
return (minPos + l) <Yo len(petrol) 

rolurn -1 

Problem-14 Catalan Nu m bers: How many binary search trees arc there with n vertices? 

Solution : Binary Search Tree (BST) is a tree where the left subtree clemenls a re less than the root clcmcnl, and 
the right subtree e lements are greater than the root element. This property should be satisfied at eve1y node in 
the tree. The number of BSTs with n nodes is called Catalan Number and is denoted by C,,. For example, there are 
2 BSTs with 2 nodes (2 choices for the rool) and 5 BSTs wilh 3 nodes. 

Number of nodes, n Number of Trees 

2 

3 

Let us assume that the nodes of the tree are numbered from 1 to n. Among the nodes, we have lo select some 
node as root, and Lhen divide the nodes which are less than root node inlo left sub tree, and elements greater 
than root node into right sub tree. Since we have already numbe red the vertices, let us assume that the root 
element we selected is it11 elemenl. 

If we select i t11 c lement us rool then we gel i - 1 clements on le ft sub-tree and 11 - i c lements on righl sub lree. 
Since C11 is the Catalan number for n e le me nts, Ci - i represents the Catalan number for left s ub tree clements 
(i - 1 e lements ) and Cu- I represents lhe Catalan number for right s ub lrce eleme nts. The lwo sub trees a re 
independe nt of each olher, so we simply mu ltiply the two numbers. Thal means, Lhe Cata la n number for a 
fixed i value is c,_, x c,,_,. 
Since there a rc n nodes, for i we will gel n choices. The total Catalan number with n nodes can be given as: 

def CatalanRccursive(n): 
if n "'= 0: 

return 1 
else: 

count= 0 
for i in range(n): 

11 

ell =I ci-1 x Cn- i 

1=1 

count += CatalanRecursive(i) * CatalanRecursive(n - 1 - i) 
relum count 

print CataJanRccursivc(4) 

Time Complexity: 0(411). For proof, refer /11troductio11 chapter. 

Problem-15 Can we improve Lhc Lime complexity of Problcm- 144 using OP? 
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Solution: The recursive call Cn depends only on the numbers C0 lo C,._1 and for any value of i, there are a lot of 
recalculations. We will keep a table of previously computed va lues ofC1 • If the fun ction CatalanNumber() is called 
with parameter i, a nd if il has already been computed before, then we ca n simply avoid recalculating the same 
s ubproblem. 

de f CatalanNumbcr(n): 
cataJan=l 1, I J+IOl*n 
for i in range(2,n+ 1): 

for j in range(n): 
ca talanl i]+=catalanLJ]*eatalan[i-j-1] 

return catalanlnJ 
prin t CatalanNumbcr(4 ) 

The lime complex ity of this implem en tation O(n2), because lo compute CatulanNumber(n), we need lo comput e a ll 
of the Cawla11Nu11t/Je1·(i) va lues between 0 and 11 - 1, a nd each one will be computed exactly once, in I incur time. 

In mathematics, Cat1;1lan Number can be represented by di reel equation as: 

catalan= IJ 

#1st term is l 
catalan.append( l) 

for i in range (1,1001): 
x=<catalanji-1 ]*(4*i-2)/(i+ l) 
catala n.appcnd(x) 

def CutalanNumbcr (n): 
return catalanjn] 

p rint CatalanNumber(4) 

-
(2n)! 

rt!(1HJ)!° 

Problem-16 Ma trix Product Parenthesizations: Given a series of matrices: A1 x A2 x A3 x .. . x A11with U1eir 
dimensions, what is the best way to parenthesize them so that it produces the min imum number of tota l 
multiplications. Assume that we are using sta nda rd matrix a nd not Strassen's matrix multiplication 
a lgorithm. 

Solution: In pu t: Sequence of matrices /\ 1 x /\ 2 x /\ :1 x . . . x 11 11 , where 111 is a 1'1_ 1 x P1• The d imcm;ions nn; g iven 
in an u r ray P. 

Goa l: Parenthesize the given matrices in such a way t hal it produces Lhe opti ma l n um ber of m ultiplications 
needed lo compu te /\ 1 x /\ 2 x 11:1 x ... x A11 • 

For the matrix multiplication problem , there are many possibilities. This is because matrix multiplication is 
associative. I t docs not matter how we parenthesize Lhe product, the result will be the same. As an example, for 
four matrices /\, B, C, a nd D, the possibilities could be: 

(ABC)D = (llB)(CD) = ll(UCD) = A(BC)D = .. 

Mu ltiplying (p x q) matrix with (q x r) matrix requ ires pqr multiplications. Each of the a bove possibilities 
produces a different number of products during multiplication. To select the best one, we can go through each 
possible pa re nthesiza tion (brute force), but this requires 0(2") time a nd is very s low. Now let us use DP Lo 
improve this time complexity. Assume that, M[i,j) re presents the least number of multip lications needed to 
multiply II, · · · 111• 

. . {o . if i = j 
M[r,J) = Min{Mli,kJ + Mlk + 1,j]+ P1- 1PkPj},ifi<j 

The above recurs ive formu la soys Uiat we have to find poinl k s uc h tha t it produces the minimum number or 
mu lliplico tions. After com pu ling a ll possible values for k , we hnvc to select the k value whic h g ives m in imum 
value. We ca n use one more ta ble (say, S li.j ]) to reconsln1c l the optimal parenthesizatio ns . Compu te the Mll.jl 
and Sli.i.I in a bottom- up fashion. 

import sys, time 
gk = lambda i,j:str(i)+','+strO) 
MAX = sys.maxint 
def malrixMulliplicationWithDP(p): 

n = lcn(p)- 1 
m = 0 
for i in xrange( I. n+ 1): 

for j in xrangc (i, n+ 1): 
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mfgk(i, j)J = MAX 
,return lookup_chain(m, p, 1, n) 

def look:up_chain(m, p, i, j): 
if mJgk(i, j)] < MAX: 

return m[gk(i, j)} 
if i == j: 

m(gk(i, j)I = 0 
else: 

for k in xrange(i, j); 
q = lookup_cbain(m, p, i, ~) + lookup_chain(m, p, k+ 1, j) t~li-lj*p[k)*pLiJ 
if q < m[gk(i, j)J: ' ' 

m[gk(i, j)J = q 
return m(gk(i, j)) 

p = (30,35, 15,5, 10,20,25,5,16,34,28, 19,66,34, 78,55,231 
print matrixMultiplicationWithDP(p) 

How many sub problems are there? In the above formula, i can range from 1 ton a nd j can range from 1 ton, 
So lherc are a total of n 2 subproblems, and also we are doing n -1 such operations [since the total number of 
operations we need for A1 x A2 x A3 x , , , x An ise n - l), So the time complexity is O(n3), Space Complexity: 
O(n2). 

Problem-17 For the Problem-16, can we use greedy method'? 

Solution: Greedy method is not an optimal way of solving this problem, Let. us go through some coun ter example 
for this. As we have seen a lready, greedy method makes the decision that is good locally and it docs not consider 
the future optimal solutions. In this case, if we use Greedy, then we a lways do the c heapest multiplicntion first. 
Sometimes it returns a parenthesizalion that is nol oplimaL 

Example: Consider A1 x A2 x A3 with dimentions 3 x 100, 100 x 2 and 2 x 2 , Based on greedy we parenthesize 
them as: A1 x (A 2 x A3 ) with 100 , 2 , 2 + 3 · 100 · 2 = 1000 multiplications. But the optimal solution to this 
problem is: (A1 x A2) x A3 with 3 , 100 · 2 + 3 · 2 · 2 = 612 multiplications, :, we cannot use greedy for solving t his 
problem, 

Problem-18 Integer Knapsack Problem [Duplicate Items Permitted): Given n types of items, where the iu' 
item type has an integer s ize s1 and a value v1, We need lo fill a knapsack of total capacity C with items of 
max imum value, We can add multiple items of the same type Lo the knapsack. 
Note: For Fractional Knapsack problem refer to Greedy Algorithms chapter. 

Solution: Input: n types of items where it11 type item has the size si and value v1• Also, assume infinite number 
of items for each item type, 

Goal: Fill the knapsack with capacity C by using n types of items and with maximum value, 

One important note is that it's not compulsory to fill the knapsack completely, That means, filling the knapsack 
completely !of size CJ if we get a value v a nd without filling the knapsack completely [let us say C - lJ with value lJ 
and if v < U then we consider the second one. In this case, we a rc basicnlly filling the knapsack of size c - L If we 
gel the same situation for C - 1 a lso, then we try to fill the knapsack with C - 2 size and get the maximum value. 

Let us say M(j) denotes the maximum value we can pack into a j size knapsack We can express MU) recursively 
in terms of solutions to sub problems as follows: 

MU) = {max{M(j - l), max1=1 ton(M(j- sJ) +vi}, 
0, 

if j;::: 1 
if j ~ () 

Por this problem the decision depends on whether we select a particular i1'11 item or not for a knapsack of s i?-c j, 
• If we select £11' item , then we add its va lu e ·v1 to the optimal solution a nd decrease the size of the 

knapsack to be solved lo j - s1. 

• If we do not select the item then check whether we can get a better solution for the knapsack of size j -
L 

The value of M(C) will contain the value of the optimal solution, We can find the list of items in the optimal 
solution by maintaining and following "back pointers", 

Time Complexity: Finding each MU) value will requ ire 0)(11) time, and we need to sequentia lly compute C such 
va lues. Therefore, total nmning time is <->(nC), 
Space Complexity: e(C), 
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Problem-19 0-1 Knapsack Problem: For Problem- 18, how do we solve it if the items are not duplicated (not 
having an infinite number of items for each type, and each item is allowed to be used for 0 or 1 time)? 

Real-time example: Suppose we arc going by flight, and we know that there is a limitation on the luggage 
weighl. Also, the items which we are carrying can be of different types (like laptops, etc.). In this case, our 
objective is to select the items wilh maximum value. That means, we need to tell the customs officer lo 
select the items whic h ha ve more weight a nd less value (profit). 

Solution: Input is a set of n items with sizes si and values v1 and a Knapsack of size C which we need to fill with 
a subset of items from the given set. Let us lry to find the recursive formula. for this problem using DP. Let 
M(i,j) represent the optimal value we can gel for filling up a knapsack of size j with items 1 ... i . The recursive 
formula can be given as: 

M(i,j) = Max{M(i. -1,j), M(i - 1,j - s;) + v;} 

iu' iJm is i 11' itc J is 
not used used 

Time Complexity: O(nC), since lhere are nC subproblems to be solved and each of them takes 0(1) to compute. 
Space Complexity: O(nC), where as Integer Knapsack takes only O(C) . 

Now let us consider the follm.ving diagram which helps us in reconstructing the optimal solution and also gives 
further understanding. Size of below matrix is M. 

M(i~ M(i - 1,j) 

~ 1 -... 
M(i,j) 

Since i takes values from 1 ... n and j takes values from 1 ... C, there are a total of nC subproblems. Now let us see 
what the above formula says: 

• M(i - 1,j): Indicates the case of not sdecting the ith item. In this case, since we are not adding any size 
to the knapsack we have to use the same knapsack size for subproblems but excluding the it11 item. The 
remaining items a rc i - 1. 

• M(i - 1,j - S;) + v1 indicates the case where we have s elected the i 01 item. If we add the iu' item then we 
have to reduce the s ubproblem knapsack s iw to j - .'>; a nd a l the same time we need to add the value v1 

to the optimal solution. The remaining items are i - 1. 

Now, after finding all M(i,j) values, the optimal objective value can be obtained as: Maxi{M(n,j)} 
This is because we do not know what amount of capacity gives the best solution. 

In order to compute some value M(i,j), we take the maximum of M(i - l,j) and M(i - 1,j - s;) + v1• These two 
values (M(i,j) and M(i - 1,j - sa) appear in the previous row and also in some previous columns. So, M(i,j) can 
be compuled just by looking a l two values in lhe previous row in the table. 

def Knapsack(knapsackSize, itcmsVa.lue, items Weight): 
nu.mltems = len(itemsVa.lue) 
M "'!10 for x in range(knapsackSize+l)] for x in range(len(itemsVa.lue))I 
for i in range(l, numltems): 

for j in range(knapsackSize+ 1): 
value= itemsValue[iJ 
weight "' itemsWeight[il 
if we ight > j: 

M[iJLil = M[i- 1 ILiJ 
else: 

M[iJU] = max(M[i- J j(j]. MF-l l(i-weightj + va lue) 

return M(numltems-1 ][knapsackSize] 
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print Knapsack(SO, 160, 100, 120), I I 0,20,30]) 

Problem-20 Making Change: Given n types of coin denomina tions of values v1 < v2 < ... < vn (integers). 
Assume V1 = 1, so that we ca n a lways make change for a ny a mount of money C. Give a n algorithm which 
makes change for un amount of money C with as few coins as possible. 

Solution: 

Coin Denominations 

Value 

Optimnl wuy lo make chnngc 
for a mount of money equal to C 

Knapsack Items 

Value - 1 

Optima l way to exactly fill u 
capaci ty C Knapsack. 

This problem is identica l lo the Integer Kna psack problem. In our problem, we have coin denominations, each of 
value v;. We ca n <:onstruct an instance of a Knapsack problem for each item that has a sizes,, which is equa l to 
the value of v1 coin denominntion. In the Knapsack we can give the value of every item as - 1. 

Now it is cnsy to understund on optimal way lo make money C with the fewest coins is completely equiva lent to 
the oplimn l wny to fill the Knupsack of s i:t.e C. This is because s ince every value has u voluc of - 1, and the 
Knapsack a lgorithm uses as few items as possible which correspond lo as few coins us possible. 

Let us try fonnu la ting the recu rrence. Let M(j) indicate che minimum number of coins required to make cha nge 
for the amount of money equal to j. 

M(j) = Min;{M(i - v 1)) + 1 

What this says is, if coin denominntion i was the last denomination coin added to lhc solution, then the optimul 
way lo finish the solut ion with that one is to optima lly make change for the amount of money 1 - v1 and then add 
one extra coin of value v1• 

def MakingChange(coins,chnnge,minimumCoins,coinsUsed): 
for cents in rangc(changc+ 1): 

coinCount =cents 
ncwCoin = 1 
for j in le for c in coins if c <= cents!: 

if minimumCoins!ccnls-jj + I < coinCount: 
coinCount minimumCoins!cents-jj+ l 
newCoin j 

minimumCoinslccntsl coinCount 
coinsUsedlccnLsl ... ncwCoin 

return minimumCoinslchangel 

Time Complexity: O(nC). Since we are solving C sub-problems a nd each of them requires minimization of n 
terms. 
Space Complexity: O(nC). 

Problem-21 Longest Increasing Subsequence: Given a sequence of n numbers 11 1 •• • An. determine a 
subsequence (not necessarily contibruous) of muximum length in which the values in the subsequence form a 
strictly increasing sequcn<:c. 

Solution: 

Input: Sequence of n numbers 11 1 •• • 11 11 • 

Goal: To find <i subsC'qucncc that is just a subset of elements and docs not happen to be contiguous. But the 
clement::; in the subsequence shou ld fonn a strictly increasing sequence a nd at the sam<: time the subsequence 
s hould con1uin us muny c lements us possible. 

For example, if the sequence is (5,6,2,3,4,1,9,9,8,9,5), then (5,6), (3,5), ( 1,0,9) ore a ll int: re;rning sub-sequences. The 
longest one of them is (2,3,4,3, 9). und we wa nt an a lgorithm for finding it. 

Firs t, let us concentrate on the a lgorithm for finding the longest subsequence. Later, we can try prin1 ing the 
sequence itself by tracing the table. Our first step is finding the recursive formula. Pirst, let us create the base 
conditions. If there is on ly one c lement in the input sequence then we don't have to solve the problem and we 
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just need to return that clement. For any sequence we can start with the first element (All]) . Since we know the 
first number in the LIS, let's fmd Lhe second number (A(2]). If A[2] is larger than A[lj then include A[2] also. 
Otherwise, we arc done - the LIS is the one element sequence (Afl]}. 

Now, let us generuli \',e the discussion and decide about irh element. Let L(i) represent the optima l subsequence 
which is starting at posilion 11[1 I und ending at Ajq. The optimal way to obtain a strictly increasing subsequence 
ending at position i is Lo extend some subsequence starting at some earlier position j. F'or this the recursive 
formula can be written as: 

L(i) = Maxj<iandAUJ<A(i](l.U)) + L 

The above recurrence says that we have to select some earlier position j which gives the maximum sequence. 
The 1 in the recursive formula indicates the addition of iu' element. 

j 

Now after finding the maximum sequence for a ll positions we have to select the one among a ll positions which 
gives the maximum sequence a nd it is defined as: 

def Longest! nercasingScqucnce(num List): 
LISTablc = [JJ 
for i in range(!, len(numList)): 

LISTable.append{l) 
for j in range(O, i): 

Max;(L(i)} 

if numLisL!iJ > numListLiJ and LISTablejiJ<=LISTableLiJ: 
LISTablejiJ = l + LlSTableLiJ 

print LlSTable 
return max(LISTable) 

print LongcsllncrcasingSequence([3,2,6,4,5, l]) 

Time Complexity: O(n2), since l:\vo for loops. Space Complexity: O(n), for table. 

Problem-22 Longest Increasing Subsequ e nce: In Problem-21, we assumed that l(i) represents the optimal 
subsequence which is sta rting at position A[l] and ending at A[i]. Now, let us cha nge the definition of l(i) as: 
l(i) represents the optimal subsequence which is starting at position ll[i] and ending al ll[n). With this 
approach can we solve the problem? 

Solution: Yes. 
ll 

Lel l(i) represent lhe optimal subsequence which is starting at position Alil a nd ending al ALnJ. The optimal way 
to obtain a strictly increasing subsequence starting at position i is going lo be to extend some subsequence 
starting at some la ter position j. For this the recursive formula can be written as: 

L(i) = Maxi<j nnrl Alil<A[JJ{l,U)} + 1 

We have to select some lutcr position j which gives the maximum scquence. The 1 in Lhc recursive formula is the 
addition of i 11

' clement. After finding the maximum sequence for all positions select Lhe one among all positions 
which gives Lhe maximum sequence and it is defined as: 

Max;{L(i)} 

Problem-23 Is there an alternative way of solving Problem-22? 

Solut ion : Yes. ThC' othrr method is to sor1 the given sequence nnd snvr it into nnother r1rray and then take out 
the "Longest Common Subsequcnccn (LCS) of the two arruys. This method has a complexi ty of O(ri2). Por LCS 
problem refer theory secli1111 of this chapter. 

Problem-24 Box St acking: Assume that we are given a set of n rectangular 3 - D boxes. The dimensions of 
ill' box a rc height hi, width wi and depth di. Now we want to create a stack of boxes which is as tall as 
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possible, but we can only stack a box on top of another box if the dimensions of the 2 -D base of the lower 
box are each strictly larger than those of the 2 -D base of the higher box. We can rotate a box so that any side 
functions as its base. It is possible to use multiple instances of the same type of box. 

Solution: Box stacking problem can be reduced to LIS jProblem-22j. 

Input: n boxes where i01 with height h;, width w1 and depth d;. For a ll n boxes we have to consider a ll t he 
orientations with respect to rotation. Tha t is, if we have, in the original set, a box with dimensions 1 x 2 x 3, then 
we consider 3 boxes, 

{

1 x (2 x 3), with height 1,base 2 and width 3 
1 x 2 x 3 = 2 x (1 x 3), with he'.ght 2,base 1 and width 3 

3 x (1 x 2), with height 3,base 1 and width 2 

2 j 

Decreasing base area 

This simplification a llows us to forget about the rotations of the boxes and we just focus on the stacking of n 

boxes with each height as h1 and a base area of (w1 x cl;). Also assume thatw1 ::;; d1• Now what we do is, make a 
stack of boxes that is as ta ll as possible and has maximum height. We allow a box ion top of box j only if box i 
is smaller than box j in both the dimensions. That means, if w1 < w1 && d1 < d1. Now let us solve this using DP. 
First select the boxes in the order of decreasing base area. 

Now, let us say H(j) represents the tallest stack of boxes with box j on top. This is ve1y similar to the LIS 
problem because the stack of n boxes with ending box j is equal to finding a subsequence with the first j boxes 
due to the sorting by decreasing base area. The order of the boxes on the stack is going to be equal to the order 
of the sequence. 

Now we can write H(j) recursively. In order to form a stack which ends on box j, we need to extend a previous 
stack ending a l i. That means, we need to put j box al the top of the stack [i box is the current top of the staekJ. 
To pul j box at the top of the stack we should satisfy the condition w; > wjand d; > dj [this ensures that the low 
level box has more base than the boxes above it). Based on this logic, we can write the recursive formula as: 

H(j) = Maxi<,. and w >wand d->d· {H(i)} + h; 
I I ( ' ' , 

Similar to the LIS problem, at the end we have to select the best j over all potential values. Tills is because we 
are not sure which box might end up on top. 

Time Complexity: O(n2). 

Problem-25 Building Bridges in India: Consider a very long, straight river which moves from north to 
south. Assume there are n cities on both sides of the river: n cities on the left of the river and n cities on the 
right side of the river. Also, assume that these cities are numbered from 1 to n but the order is not known. 
Now we want to connect as many left-right pairs of cities as possible with bridges such that no two bridges 
cross. When connecting cities, we can only connect city i on the left side to city i on the right side. 

Solution: 

Input: Two pairs of sets with each numbered from 1 to n. 

Goal: Construct as many bridges as possible without any crosses between left side cities to right side cities of 
the river. 

To understand better let us consider the diagram below. In the diagram it can be seen that there arc n cities on 
the left side of river a nd n cities on the right side of river. Also, note that we are connecting the cities which have 
the same number Ja requirement in the problcmJ. Our goal is to connect the maximum cities on the left. side of 
river to c ities on the right s ide of the river, without a ny c ross edges. Just to make it simple, let us sort the c ities 
on one s ide of the river. 

If we obse1ve carefully, s ince the cities on the left side are a lready so1·ted, the problem can be s implified to 
finding the maximum increasing sequence. That mea ns we have to use the LIS solution for finding the 
maximum increasing sequence on the right side cities of the river. 
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River Left Side 
Ci Lies 

Time Com pie.xi Ly: 0(112), (snmc as I.IS) . 

2 

1l 2 

River Right Side 
Cities 

Problem-26 Subset Sum: Given a sequence of n positive numbers A1 ••• A11 , give an algorithm which checks 
whether there exists a subset of A whose sum of all numbers is T? 

Solution: This is a variation of the Knapsack problem. As a n example, consider the following array: 

A = [3,2,4,19,3,7,13,10,6,11] 

Suppose we want to c heck whether there is any ::iub:-;et whose sum is 17. The a ns we r is yes, because Lhc sum of 
4 + '13 = 17 nnd therefore f4, 13} is such a subset. 

Let us uy solving this problem us ing DP. We will define n x T matrix, where 11 is the number of c lements in our 
in put array and T is the sum we want lo check. Let, M[i,jJ = 1 if it is possible LO find a subset of the numbers l 
through i that produce sum j a nd Mji,jj = 0 otherwise. 

Mli.JJ = Max(Mri - 1,j].M[i - l.J - A;]) 

According to the above recursive formula s imilar to the Knapsack problem, we check if we can get the sum j by 
not inc luding the clement. I in our subset, and we check ifwc can gel Lhc sum j by including i and checking if the 
sum j - /\ 1 exists wilhoul tht: iu' c lement. This is identical lo l<napsack, except that we arc storing 0/1 's instt:ad 
of values. In the below implcmcnLaLion we can use binary OR operation to get the maximum among Mli - 1,jJ 
and Mli - 1,j - A, I. 

def SubselSum(A, T): 
n = len(A) 
M =[10 for x in range(T+ 1 JI for x in range(n+ 1)] 

M[O][OJ=O 
for i in range(O, n+ I): 

MliJIOI = 0 
for i in rangc(O, T+ 1 ): 

M[OJliJ = 0 
for i in rangc(l,n+l): 

for j in range(!, T+ 1 ): 
MlilLil = M[i-llLil or (M[i-llLi -A{ilJ) 

return M[nl['r[ 

A= [3.2,4, 19,3,7,13, L0,6.1 LI 
print SubsctSum(A, 17) 

How many s ubproblems are there? In lhc above formula, i can range from 1 ton and j can range from I to'/'. 
There arc a total of 1tT subproblems and each one takes 0(1). So the time complexity is O(n'f') and this is not 
polynomial as the running Lime depends on two variables [n and TJ, and we can sec that they arc ancxponcntial 
function of the other. 

Space Complexity: O(nT). 

Problem-27 Given a set of n integers und the s um of a ll numbers is at mosl/<. Find the s ubset of these n 
clements whose sum is exuctly hnlf of the total sum of n numbers. 

Solution: Assume that the numbers arc /\ 1 ••• /\ 11 • Lcl us use DP t.o solve this problem. We will e renl c u boolean 
a rray '/' with s i;,,e cquul to/(+ I. Assume that T[x] is 1 if there exists a subset of give n n c lements whose sum is 
x . Thal means, after lhc a lgorithm fini s hes, TIKJ will be 1, if and only if there is a subset of the numbers that has 
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sum K. Once we have that value then we just need to return rrK /2]. If it is 1, then there is a s ubset that adds up 
to half the total sum. 

Initially we set a ll values of T to 0. Then we set T(O] to 1. This is because we can always bu ild O by taking a n 
empty set. If we have no numbers in 11 , then we a rc done! Otherwise, we pick the first number, 11[0). We ca n 
either throw it away or lake it into our subset. This means that the new Tl I shou ld hove '/'[OJ and Tl11[0ll set to 1. 
This creates U1c base case. We continue by taking the next c lement of 11. 

Suppose that we have already taken care of the first i - 1 clements of A. Now we lake A[ij and look al our table 
TQ. After processing i - 1 elements, the array T has a 1 in every location that corresponds to a sum that we can 
make from the numbers we have already processed. Now we add the new number, A(i]. What shou ld the table 
look like? First of a ll, we can simply ignore A(i]. That means, no one should disappear from TO - we can still 
make all those sums. Now consider some location of Tfj] that has a 1 in it. It corresponds to some subset of the 
previous numbers that add up to j. If we add Afil to that s ubset, we will get a new subset with total sum j + Alil· 
So we should set Tfj + A[iJI to 1 as well. That's a ll. Based on the above discussion, we can write the a lgorithm as: 

def SubsetSum2(A, T): 
n = lcn(A} 
T = [OJ * (10240) 
K=O 
for i in range(O, n): 

K += A(i] 
T(OJ = l 
for i in range(l, K): 

T[i] = 0 
#process the numbers one by one 
for i in range(O, n): 

for j in range(K - A(i),O, -1): 
if( Tli] ): 

TU+ A[i]] = 1 
return T[K I 2] 

A= (3,2,4,19;3,7, 13, 10,6, 11) 
print SubsetSum2(A, 17) 

In Lhe above code, j loop moves from right lo left. This reduces the double counting problem. Thal means, if we 
move from left to right, then we may do the repeated calculations. 

Time Complexity: O(nK), for the two for loops. Space Complcx.ily: O(K), for Ll1e boolean table T. 

Problem-28 Can we improve the performance of Problem-27? 

Solution: Yes. In the above code what we a re doing is, the inner j loop is starting from K and moving left. That 
means, it is unnecessarily scanning the whole table every time. 

What we actually want is to find all the l entries. Al Lhc beginning, only the O'" entry is l. If we keep the locaLion 
of the rightmost 1 entry in a variable, we can always start al that spot and go lcfl instead of starting at the right 
end of the table. 

To take full advantage of this, we can sort AO first. That way, the righlmosl I enlry wiJI move to the right as 
s lowly as possible. F'inally, we don't really care about what happens in the right half of the table (after T[K/2J) 
because if T[x] is 1, then TfKxl must also be 1 eventually - it corresponds to the complement of the subset that 
gave us x. The code based on above discussion is given below. 

def SubselSum(A): 
n = lcn(A) 
I< = 0 
for i in range(O, n): 

K +=A(il 
A.sortO 
T = [OJ * ( K + 1 ) 
TIO]= 1 
R=O 
#process the numbers one by one 
for i in range(O. n): 

for j in range(R,-1, -1): 
if( TUI): 

TU+ A[i]] = I 
R = min(K/2, R+A(i)) 
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return T(K I 21 

A= [3,2,4,19,3,7,13, 10,6,11] 
print SubsetSum(A) 

Afte r the improvements, the Lime complexity is still O(nK), but. we have removed some useless s t.cps. 

Proble m -29 Partilion pa rtition problem is lo determine wh ether a given set ca n be pa rtitioned inlO two 
subsets such that the sum of clements in both subsets is the same !the M me as lhc previous problem but a 
different way of asking]. Por example, if All = {1, 5, 11, 5), the a rmy can be pa rtilioncd as (I , 5, 5) a nd {11). 
Similarly, if All = {l, 5, 3}, Lhe array cannol be partitioned into equal sum scls. 

Solution: Let us try solving this problem another way. Following arc the two main steps to solve this problem: 

1. Calculate the sum of the array. Ir lhe sum is odd, there cannot be two subscls with an equal sum, so 
rclurn fa lse. 

2. If the s um of the a rray c lcmenls is even , ca lcu late sum/2 a nd !ind u subset of the array with a s um 
equa l to sum/2. 

The first step is simple. The second slcp is c ruc ia l, and it can be solved eilhc r us ing recurs ion or Dynamic 
Programming. 

Recursive Solution: Following is Lhe recursive property of the second step mentioned above. Let subsetSum(A, 
n , sum/2) be the function that returns true if there is a subset of A[O .. n-1 [ with sum equa l to sum/2. The 
isSubsetSum problem can be divided into two sub problem s: 

a ) isSubsetSum() withoul conside ring lasl c lement (reducing n ton - 1) 
b) isSubsctSum cons idering the last clcmenl (reduc ing s um /2 by Aln- 11 and 11 to 11 - I) 

If any of the above sub problems return t rue, t hen return true. 

subsetSum (A, n, sum/2) = isSubsetS1tm (A, n - 1, sum/2) II subsetSum (A, n - 1, swn/2 - A [n - 1]) 

#A utility function that returns 1 if there is a subset of All with sum equal to given sum 
def subsetSum (A, n, sum): 

if (sum == 0): 
return l 

if (n == 0 and sum != 0): 
return 0 

# lf last element is greater than s um, then ignore it 
if (Aln-11 >sum): 

return subsetSum (A, n-1, sum) 

return subsctSum (A, n-1, sum) orsubsetSum (A, n-1, sum-A[n-1)) 

# Returns 1 if All can be partitioned in two subsets of equal sum, otherwise 0 
def findPartition(A): 

#calculate sum of a ll e lements 
sum= 0 
n = len(A) 
for i in range(O,n): 

sum+= Ali! 

# ff sum is odd, there cannot be two subsets with equal sum 
if (sum%2 != 0): 

return 0 

# Find if there is subset with sum equal to ha lf of total sum 
return subselSum (A, n, sum/2) 

Time Complexity: 0(2") In worst case, this solution tries two possibilities (whether to include or exclude) for 
every element. 

Dynamic Programming Solution: The problem can be solved u s ing dyna mic programming when the sum of the 
elements is not loo big. We can create a 2D array partllll of size (sum/2)*(11 + 1). And we can construct the 
solution in a bottom-up man ner such that every fill ed en try has a following property 

part[i]U] = true if a subset of {Aro], Af l),.. AU - 1]) has sum equal to swn/2. otherwise f alse 

# Returns 1 if All can be partitioned in two subsets of equal sum, otherwise O 
def find Partition(/\): 

#calculate sum of alJ c lements 
sum= 0 
n = len A 
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for ,i i,n range(O,n): 
sum+=A[i] 

# If sum is odd, there cannot be two subsets with equal sum 
if (sum%2 != 0): 

retum 0 

Table= fl O for x in range(n+ I )J for x in range(sum/ /2 + 1)1 

# initialize top row as true 
for i in range(O,n): 

Table[OJli] = 1 

#initialize leftmost column, except Table[OJ[O], as 0 
for i in range(l,sum/ /2+1): 

Tablefi](O] = 0 

ff Fill the partition table in bottom up manner 
for i in rangc(l,sum/ /2+1): 

for j in rangc(O,n+ 1): 
Table[iJLi] = Table[ i]Li~l] 
if (i :>= ALi-11): 

Table[ilLiJ = Table[iJU] or Table[i - ALi- l JILi-1 J 
return Table[sum/21Lnl; 

Dynamic Programming 

Time Complexily: O(sum x 11). Space Complexity: O(sum x n). Please note that Lhis solution wi ll not be feasible for 
a rrays with a big sum. 

Problem-30 Counting Boolean Parenthesizations: Let us assume that we arc given a boolean expression 
consisting of symbols 'true', 'false', 'and', 'or', and 'xor'. 17ind the number of ways to parenthesize the expression 
such that it will evaluate to true. For example, there is only 1 way to parenthesize 'true and false xor true' such 
that it evaluates to true. 

Solution: Let the number of symbols be n and between symbols there arc boolean operators like and,or,xor, etc. 
For example, if 11 = 4, Tor F and T xor F. Our goal is to count the numbers of ways lo parenthesize Lhe expression 
with boolean operators so Lhal il evaluates to true. In the above case, if we use Tor ( (F and T) xor F) then il 
evaluates Lo lrue. 

T or( (F and T)xor F) = True 

Now let us see how DP solves this problem. Let T(i,j) represent the number of ways Lo parenthesize the sub 
expression with symbols i ... j !symbols means only T and F and not the operators! with boolean operators so that 
it evaluates to true. Also, i and j take the values from l ton. For example, in the above case, T(2, 4) = 0 because 
there is no way to parenthesize the expression F and T xor F to make it true. 

Just for simplicity and similarity, let F(i,j) represent the number of ways to parenthesize the sub expression 
with symbols i ... j with boolean operators so that it evaluates to false. The base cases are T(i, i) a nd F(i, i). 

Now we arc going to compute T(i, i + 1) and F(i, i + l) for a ll values of i. Similarly, T(i, i + 2) a nd F(i, i + 2) for a ll 
values of i and so on. Now let 's generalize the solution. 

1 2 

i- 1 {T(i,k)T(k+1,j), 
T(i,j) = L Total(i,k)Total(k + l,j) - F(i,k)F(k + 1,j), 

k=i T(i,k)F(k + 1,j) + F(i,k)T(k + 1,j), 

k +l 

and, or, xor 

for "and" 
for "or-'' 

for "xor" 

Where, Total(i. k) = T(i. k) + F(i, k). 

j 11 

What this above recursive formula says is, T(i,j) indicates the number of ways Lo parenthesize the expression. 
Let us assume that we have some sub problems which are ending at k. Then the total number of ways to 
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parenthesize from i to j is lhe sum of counts of parcnthesi?.ing from i to k and from k + l to j. To parenthesize 
between k and k + 1 there arc three ways: "and", "or" and "xor". 

• If we use "and" between k and k + 1, then the fina l expression becomes true on ly when both are true. Jr 
bolh a re true then we ca n include them to get lhe fi ord count. 

• If we use "or", then if al lcui:; t one of them is lnw, lhc rcsull becomes trne. ln::>Lcud of inc luding a ll three 
possibilities for "or", we a rc giving one a lternative where we a rc s ubtracting the "fu l::>e" cases from totu l 
possibilities. 

• The same is the case with "xor". The conversation is as in the above two cases. 

After finding all the values we have to select the value of k, which produces the maximum count, and for k there 
are i to j - 1 possibilities. 

How many subproblems are there? In the above formula, i can range from 1 ton, and j can range from 1 lo 11. 

So there are a total of 112 subproblems, and also we arc doing summation for a ll such values. So the Lime 
complexity is O(n3

). 

Problem-31 Optimal Binary Search Trees: Given a set of 11 (sorted) keys Al 1.. nl, build the best binary 
search tree for the clements of A. Also assume that each c lement is associated with frec1uency which indicates 
the number of times that a particular item is searched in the bina1y search trees. Thal mea ns we need to 
construct a binary search tree so that the total search t ime will be reduced. 

Solution: Before solving the problem let us understand the problem with an example. Let us assume that the 
given array is A= [3. 12. 21, 32, 35J. There are many ways to represent these clements, two of which are listed 
below. 

Of the two, which representation is better? The search time for an element depends on the depth of the 
cl Th b f . ~ h fi . I tZ.iH+l II cl ~ h cl h no e. e average num er o compansons or t e 1rst tree 1s: 

5 
=-;; an or t c ::;econ tree, t e average 

number of compa risons is: IH+HH• = £ . Of the two, the first tree gives better resu lts. 
~ 5 

If frequencies are not given and if we wa n t to search a ll c lements, then the above s imple calculation is enough 
for deciding the best tree. If the frequencies arc given, then the selection depends on the frequencies of the 
clements and a lso the depth of the clements. Por simplicity let us assume that the given a rray is A and the 
corresponding frequencies arc in array F. Ffil indicates the frequency of i'h clement Ajij. With this, the total 
search time S(root) of the tree with root can be defined as: 

11 

S(root) = L (depll1(root, i) + 1) x F[i)) 
i=l 

In the above expression, deplh(root, i) + 1 indicates the number of comparisons for searching the ith element. 
Since we are trying to create a binary search tree, the left subtree elements are less tha n root element and the 
right subtree elements are greater than root element. If we separate the left subtree time and right subtree time, 
then the above expression can be written as: 

r · I rt 11 

S(root) = L (depl h(root,i) + 1) x Fjil) + L Flil + L (depth(root,i) + I) x F[il) 
I I i= l / = r+ I 

Where r indicates the pos ition of the root element in the array. 
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If we replace the left subtree and righl subtree times wilh their corresponding recursive calls, then the 
expression becomes: 

11 

S(rooL) = S(root-. left)+ S(root __. ri,qlit) + + L Plil 

Binary Search Tree node declaration 

Refer lo Trees chapter. 

Implementation: 

I I 

class OptimalBinarySearchTree(BSTNode): ## For BSTNodc, refer 1'rees chapter 
def init (selQ: 

supcr(OplimalBinarySearchTree, self}. init () 
self.num keys• 0 
self.keys II 
self.probabilities - II 
sclf.dummyProbabilitics - (11 

def optimaJBST(selQ: 
n = len(self.kcys) + l 
root_matrix = no for i in x.range(nlJ for j in x.range(nll 
probabilitiesSumMatrix = [10 for i in x.range(n)J for j in xrangc(n)) 
expectedCostMatrix - [199999 for i in xrangc(n)I for j in xrange(n)I 
for i in xrange( I, n): 

probabiliticsSumMatrixlil11 I) = self.dummyProbabilitics(i - 11 
cxpcctc.'CICostMatrix[illi-11 = self.dummyProbabilities(i - 11 

for I in xrange(l, n): 
for i in xrange(l, n - I): 

j=i+l-1 
expecteclCostMatrix(ilLil = 99999 
probabmtiesSumMatrix(ilLil = probabilitiesSumMatrix(ilLi 11 + \ 

self. probabiliticsul ~ self.dummyProbabilitiesLil 
for r in xrangc(i, j + I): 

t .. cxpcctcdCoslMatrixlillr - 11 + expectedCostMalrix(r+ I !Lil + probabilitiesSumMalrix[iJLll 
if t < expcctedCostMatrix(ilLiJ: 

cxpectedCostMatrixliJLil = t 
root matrix(illjJ = r 

return root matrix 

def eonslructOplimalBST(selQ: 
root self.oplimulBST() 
n = sclf.num keys 
r .. root( I Jlnl 
value .. self.kcys(rl 
self. inscrl(valuc) 
self.eonstruclOplimalSubtrcc(I, r-1, r, "lc[t", root) 
sclf.constructOptimaJSu btree(r+ l, n, r, "right", root) 

def constructOptimalSubtrce(sclf, i, j, r, direction, root): 
if i <= j: 

l = rool(ilLil 
value self.kcysltl 
sclf.inscrt(valuc) 
self.constructOptimalSubLrec(i, t-1, t, "left", root) 
self.constructOptimalSubtree(t+l, j , t, "right", root) 

Problem-32 Edit Distance: Given two strings II of length m and /J of length n, transform A into B with a 
minimum number of operations of the following types: delete n character from A, insert a character into A, or 
change some chaructcr in /1 into a new character. The minimal number of such operations required to 
transform 11 into IJ is called the edit distance between II uncl fl. 

Solution: 

Input: Two text strings 11 of length 111 uncl H of length 11. 

Goa l: Convert string /1 into H with minima l conversions. 
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Before going to a solution, let us consider the possible operations for converting string A into B. 

• If m > n, we need to remove some characters of A 
• If m == n, we may need lo convert some characters of J\ 
• If m < n, we need to remove some characters from 11 

So the operations we need arc the insertion of a character, the replacement of a cha racter and the deletion of a 
character, and I.heir correspond ing cost codes arc defined below. 

Costs of operations: 
Insertion of a character c, 
Replacement of a character Cr 

Deletion of a character Cd 

Now let us concentrate on the recursive formulat ion of the problem. Let, T(i,j) represcnls lhe minimum cost 
required lo transform first i characters of 11 to firsl j characlcrs of B. That means, 11(1 ... i] to BP ... n. 

{

Ca+ T(i - 1,j) 
. . . T(i,j - 1) + c, 

T(t,J) = mm [T(i - 1,j - 1), if 11[i] ~=BU] 
T(i - 1,j - 1) +Cr if A[i] :f= BU] 

Based on lhe above discussion we have the following cases. 

• If we delete i0 • character from A, then we have to convert remaining i - 1 characters of A to j characters 
oflJ 

• If we insert i 11' character in 11, I.hen conver t these i characters of 11 lo j - 1 characters of /3 
• If 11[iJ == BIJl, then we have to converl the remaining i - l characters of 11 to j- 1 characters of 8 
• If A[i l =t= BU], then we have lo replace iw character of A to / 1' character of Band convert remaining i -1 

characters of A to j - 1 characters of B 

After calculating a ll the possibilities we have to select the one which gives lhe lowest cost. 

How many subproblems are there? In the above formula, i can range from 1 tom and j can range from 1 ton. 
This gives mn subproblems and each one takes 0(1) and the time complexity is O(mn). Space Complexity: O(mn) 
where m is number of rows a_nd n is number of columns in the given matrix. 

def editOistance(A, B): 
m=len(A)+l 
n=len(B)+l 

table= O 
for i in range(m): table[i,OJ=i 
for j in range(n): table[O,j j=j 
for i in range(l, m): 

for j in range(l, n): 
cost = 0 if Ali- l I == BLi-1 l else 1 
table[i,jj = min(table[i, j-1]+ 1, tablefi-1, j ]+ 1, table[i-1, j- l]+cost) 

return table[i,j) 
print(editDistance("HelJoworld", ''HalloWorld'')) 

Problem-33 All Pairs Shortest Path Problem: Floyd's Algorithm: Given a weighted dircclcd graph G = 
(V, £), where V = {1. 2, .... n}. Find the shortest paLh between uny pair of nodes in the graph. Assume the 
weights are represented in the matrix C(VlWl. where C[iffjl indicates lhe weight (or cosl) between the nodes i 

and j. Also, Cl ii I/I = oo or - 1 if there is no path from node i to node j. 

Solution: Let us try to find lhc DP solution (Floyd's algorithm) for this problem. The Floyd's a lgorithm for all 
pairs shortest path problem uses matrix A(l.. n)fl .. n] to compute the lengths of the shortest paths. Initially, 

A[i,j] = C[i,i] if i =t= j 

= 0 if i = j 

From the definition, C[i,jl = oo if there is no path from i to j. The a lgorithm mukes n passes over A. Lcl 
110,11 1, •.• ,1111 be the values of J\ on then passes, with 110 being the inilia l value. 
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Just after the k - t 01 itcration, "k- t (i,j] = smallest length of any path from vertex i to vertex j that does not pass 
through the vertices (k + 1, k + 2, ... . n). Thal means, it passes through the vertices possibly through {l, 2, 3, .... k -
1}. 

In each iteration, the value Alillil is updated with minimum of Ak iii.JI And Ak_1[1,kl 1 Ak ilk.JI. 

l J {
Ak-1 (1,JI 

A I,/ = mm Ak 1[1,kJ I Ak .lk.11 

The k1
h pass explores whether the vertex k lies on an optimal path from 1 to j. for all i,j. The same is shown in 

the diagram below. 

#script for Floyd Warshall Algorithm- All Pair Shortest Path 
INF - 999999999 
def printSolution(distGraphl: 

string .. "inr 
nodes =distGraph.kcysQ 
for n in nodes: 

print "O/o 1 Os"%(n), 
print" " 
for i in nodes: 

print "%s""!.1(i), 
for j in nodes: 

if distGraphlilLil •• INF: 
print ''<>/.1 l Os"%{string), 

else: 
print'% lOs"cYo{distGraph[ilLiJI, 

print"" 

def floydWarshall(graphl: 
nodes • £,rra ph . kcysO 
d istance • () 
for n in nodes: 

distancelnl • {} 
for k in nodes: 

distancefnllkl = graph[nJlk) 
for k in nodes: 

for i in nodes: 
for j in nodes: 

if distancelillkl + dislance(klLil < distanccfilLil: 
distancef ilLil = distance[illkl+distance[k[Lil 

printSolution(distance) 

if _name_== '_main ': 
graph= fA':f A':O,'B':6,'C': INF,'D':6,'E':7}, 

'B ':('A':INF.'8':0, 'C':S,'D': INF,'E':INF}, 
'C':fA':JNF,'8':1NF,'C':O,'D':9,'E':3), 
'D':{'A':INF,'B':INF,'C':9,'0':0,'E':7}, 

'E':fA':INF,'8 ':4,'C': INF,'D ':INF,'E':O} 
} 
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floydWarshall(graph) 

Time Complexity: O(n3). 

Proble m -34 Optimal Strategy for a Game: Consider a row of 11 coins of values v 1 ••• v11 , where n is even 
!s ince it's a two player gamc l. We play this game with the opponent. In each turn, a p layer selects either the 
firs t or last coin from the row, removes it from the row pennunent ly, a nd receives lhc value of the coin. 
Determine the max imum possible a mount of money we ca n definitely win if we move firs t. 

Solution: Lcl us solve the problem u s ing our DP technique. For each I.urn e ither we or our opponent selects the 
coin only from the ends o f the row. Lel us define the subproblems as: 

V(i,j) : denotes the maximum possible value we can definitely win if it is our turn a nd the only coins rem a ining 
arc v; ... vi. 

2 11 

Vz V; 

Base Cases: V (i, i), V (i, i + 1) for all values of i. 
From these va lues, we can compu te V(i, i + 2), V(i, i + 3) and so on. Now let us defi ne V(i,j) for each sub problem 
as: 

. . { . {V(i+l,j-1)} . { V(i,j - 2) J J 
V(t,j) = Max Mm V(i + 2,j) + V1, Mm V(i + l,j- l) +VJ 

In the recursive call we have to focus on i'h coin to j1h coin (v1 .. . v1). Since it is ou r turn to pick the coin, we have 
two possibilities: either we can pick v1 or v1 . The first term indicates the case if we select i 11

' coin (v,) and the 
second term indicates Lhe case if wc select / 1' coin (v1). The outer Max indicates that we have to select the coin 
which gives maximum value. Now let us focus on the terms: 

• Selecting ;t1• coin: If we select the ;1
h coin then the remaining range is from i + 1 to j . Since we seleclcd 

the iu' coin we gee the value v1 for that. From the remaining range i + 1 to j, the opponents can select 
eithe r i +1th coin or /h coin. But che opoone nls selection should be min imized as much as possible !the 
Min termj . The same is desc1·ibed in the below figure . 

1 2 i + 1 j - 1 

Vz v, ., I 

Opponent's selection range: i + 1 to j 

• Selecting che /h coin : Here also lhe a rgu ment is the same as above. If we selecl Lhe j1h coin, then the 
remaining range is from i to j - 1. Since wc selected the ju' coin we get the value v1 for tho t. From the 
rema ining range i to j - I, the opponent can select either the i 11' coin or the j - I u, coin. But the opponent's 
selection s hould be minimized as much as possible lthc Min term!. 

1 2 i + 1 j - 1 11 

Vz v,. 

Opponent's seleclion range: i to j - l 

How many subproblems are there? In the above formula, i can range from l w n and j can range from I ton. 
There a rc a total of 112 subproblems and each takes 0(1) a nd the total Lime complexity is O(rr2 ). 
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# row of n coins 
coins = fl,2,3,4,5] 
n = len(coins) 
#each time it is o·ur turn, take the max of the two available moves (but the minimum of 
#the opponent's two potential moves) 
v =II 
for i in range(n): 

V.appen.d(fO] * n) 

for i in range(n): 
for j in range(n): 

if i == j: 

print V 

Vfif[j] = coinsji) 
elif j == i + 1: 

Vli]Li] = max(coins[i), coinsLiJ) 

# only va lid if i < j 
if (i + 2) <= j: 

take_start = V[i + 2]Li) 
else; 

tak:e_start = 0 
if (i + 1) <"" G - 1): 

take_end = V[i + 111.i - lj 
else: 

take_start = 0 

Problem-35 Tiling: Assume that we use dominoes measuring 2 x 1 to tile an infinite strip of height 2 . How 
many ways can one tile a 2 x n strip of square cells with 1 x 2 dominoes? 

Solution: 

Solution: Notice that we can place ti les e ither vertically or hori~ontally. For placing vertical tiles, we need a gap 
of at least 2 x 2. For placing horizontal tiles, we need a gap of 2 x 1. In this manner, the problem is reduced 
to finding the number of ways to partition n using the numbers 1 and 2 with order considered relevant 111· For 
example: 11 = 1 + 2 + 2 + 1 + 2 + 2 + 1. 

If we have to find such arrangements for 12, we can either place a 1 at the end or we can add 2 in the 
arrangements possible with 10. S imila rly, let us say we have F;, possible a rrangements for n. Then for (n + 1), we 
can e ither place just l at the end or we ca n find possible a rra ngeme nts for (11 - 1) and put a 2 at the end. Going 
by the above theory: 

Fn+l = F;, + Fn-1 

Let's verify the above theory for our original problem: 

• In how many ways can we fill a 2 x 1 strip: 1 -> Only one vertical tile. 
• In how many ways can we fill a 2 x 2 strip: 2-> Either 2 horizontal or 2 vertical tiles. 
• In how ma ny ways can we fill a 2 x 3 strip: 3 -> Eilher put a vertical tile in the 2 solutions poss ible for a 

2 x 2 s lrip, or put 2 horizonta l tiles in the o nly solutio n possible for a 2 x 1 s trip. (2 + 1 = 3). 
• Simil~u·ly, in how ma ny ways ca n we fill a 2 x n strip: Either put a ve rtical tile in th e solutions possible 

for 2 X (n - 1) strip or put 2 horizontal tiles in the solution poss ible for a 2 x (n - 2) s trip. (1·~1 _ 1 + F11_ 2). 

• That's how we verified that our final solution is: Fri = F11_ 1 + F11 _ 2 with F1 = 1 and r2 = 2. 

Problem-36 Longest Palindrome Subsequence: A sequence is a palindrome if it reads the same whether we 
read it left to right or right to left. For example A, C, G, G, G, G, C, A. Given a sequence of length n, devise an 
algorithm to output the length of the longest pa lindrome subsequence. For example, lhe string 
A,G ,C,T,C,8,M,A,A,C,'r,G,G,A,M has many pa lindromes as subsequences, for instance: A,G,T,C,M,C,T.G,A has 
length 9. 

Solution: Let us use DP to solve this problem. If we look at the sub-s tring Ali .... il of the string A, then we can 
find a palindrome sequence of length at least 2 if A[i] == Aljj. If Lhey are not the same, then we have lo find the 
maximum length palindrome in subsequences A(i + 1, ... , j] and A[i, ... , j - l j . 
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Also, every character Ali] is a palindrome of length 1. Therefore the base cases are given by il[i, i] 1. Let us 
define the maximum length palindrome for the :rnbstring A[i, ... ,jJ as L(i,j). 

. . f/,(i + l,j - 1) + 2, i/ 1\[i] == Afjl 
l.(t,J) = Mux{l.(i + l,j),/.(i,j - 1)), otherwise 

l.(i, i) = I for a ll i = I w n 

def LongestPalindromcSubscqucnce(A): 
n = len(A) 
L =110 for x in range(n)J for x in range(n)J 
# palindromes with length J 
for i in range(O,n-1): 

LliJli] = I 
# palindromes with lcnglh up lo j+ I 
fork in rangc(2,n+I): 

#print L 

for i in range(O,n-k+ I): 
j = i+k- 1 
if A!il == ALil and k ==2: 

L[iJLij = 2 
if A[i] == ALiJ: 

LlilLiJ = 2 + L[i+l JLi-lJ 
else: 

l..li!Lil .. max( L[i+ 1 ]Lil , L[iJLi-11 ) 

re tum L[Oll n-11 
print LongestPalindromeSubscqucnce(''Carcer Monk Publications") 

Time Complexity: First 'for' loop takes O(n) time while Lhe second 'for' loop takes O(n - k) which is also O(n). 
Therefore, the total running lime of the algori thm is given by O(n2

). 

Problem-37 Longest Palindrome Substring: Given a string/I, we need LO find Lhe longest sub-string of A 
such thal Lhe reverse of it is exactly the same. 

Solution: The basic difference between the longest palindrome substring and the longest pa lindrome 
subsequence is that, i.n the case of the longest palindrome substring, the output st.ring s hould be the contiguous 
characters, which gives the maximum palindrome; and in the case of t he longest pa lindrome subsequence, the 
output is the sequence of c haracters where the characters might not be contiguous but they shou Id be in an 
increasing sequence with respect to Lheir positions in the given string. 

Brnte-force solution exhaustively c hecks a ll n (n + l) / 2 possible substrings of the given n-length string, tests 
each one if it's a palindrome, a nd keeps track of Lhc longest one seen so far. This has worst-case 
complexity O(n:1), bul we ca n easily do bet ler by rcali ;.t,ing thal a palindrome is centered on e ither a letter (for 
odd-length palindromes) or u space between letters (for even -length palindromes). Therefore we can examine a ll 
n + 1 poss ible centers o nd find the longest pa lindrome for thal center, keeping traek of the oven.di longest 
palindrnme. This has worst-case complex ily O(n2

). 

Let us use DP lo solve this problem. ll is worth noting that. the re arc no more than O(n2 ) s ubstrings in a string 
of length n (while there are exactly 2" subsequences). Therefore, we could scan each s ubstring, check for a 
palindrome, and update the length of the longest palindrome substring discovered so far. Since the palindrome 
test takes time linear in the length of the substring, this idea lakes 0(113) a lgorithm. We can use DP to improve 
this. ror 1 $ i $ j ~ n, define 

L(i,j) = (~·. il Ali! .... 111/I is a palindrome substring, 
otherwise 

/.Ii.i i = I. 
1.li.jl = 1.li.i +II .if Alil == Ali+ 1. J./or l $ l $ j $ n - l. 

Also, for string of length al least 3, 

Lli,jj = (l.[i + 1,j - l l a11d Ali] = Aljl). 

Nole that in order to obtain a well-defined recurrence, we need lo explicitly initialize two distinct diagonals of the 
boolean array /, ji,jJ, ::iince the recurrence for entry ji,j l LIS\.!S the value [i - "l,j - 1J. which is two diagonals away 
from [i,j] (that mi.;ans, for a substring of kngt h k , wi.; need to know the stotus of a substring of length k - 2). 

def longestPalindromeSubslring(A): 
n = len(A) 
if n == 0: return '' 
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L=O 
for i in range(n): L[(i,i)I = True 
# k = j -i between 0 and n-1 
for k in range(n- 1 ): 

for i in ra ngc(n): 
j ~ i+k 
if j >"" n: continue 
if i+ l < .. j -1 : 

L[(i,j)) = Ll(i+ 1 j-1)) and Af i) == AUJ 
else: 

L[(i,j)) = AliJ == ALi) 
slart, end = maxffk for k in L if LlkJI, 

key=lambda x:xl l l-xlOIJ 
rclurn Alstart:cnd+ 11 

prinl longcstPalindromcSubstring('cabcbaabac') 
print longestPalindromcSubstring('abbaaa') 
print longestPalindromeSubstring(") 

Time Complexity: Pirsl for loop lakes 0(11) time while the second fo r loop la kes O(n - k) which is a lso O(n). 
Therefore the total running time of lhc algorithm is given by O(n2). 

Problem-38 Given two strings Sand T , give an a lgorilhm lo find the number of limes S appea rs in T. ll's not 
compu lsory thal a ll c haracters of S s hould appear contiguous to T. Por example, if S = ab and T = abadcb 
then the solution is 4, because ab is appearing 4 limes in abadcb. 

Solution: 

Input: Given two strings S[ I. . mj and TL I ... mj. 

Goal: Count the number of times that S appears in r. 
Assume t(i,j) represents the count of how many times i characters of S arc appearing in j characters of T. 

{

O, if J = 0 
. . 1, if; - 0 

/,(i.1) - Max L(i - 1,j - I)+ J,(1.1 - 1). 1f Sid -- T[JI 
t(i - 1,j), 1{ S[1 I -1- TIJ I 

If we concentrate on the components of the above recursive formula , 

• If j = 0, then since T is empty the count becomes 0. 
• If i = 0, then we can treat empty string S also appearing in T and we ca n give the count as 1. 
• If S[i) == TUJ. il means i'h character of S and ju' characlcr of T arc the same. In this case we have to c heck 

the s ubproblems with i - 1 characters of Sand j - 1 characters or T and a lso we have to cou nt Lhe resu lt 
of i characters of S wilhj - 1 c ha racters of T . This is because even a ll i cha racters of S might be 
a ppearing in j - I c ha racters o f T. 

• lfSliJ *TUI , then we have to get the resu lt of s ubproblem with i - I c hnructen> of Sand j characters oft. 

After computing a ll the values, we have lo select the one which gives the maximum count. 

How ma.ny subproblems are there? Jn the above formula, i can range from I to 111 and j can range from 1 ton. 
The re are a total of mn subproblems and each one takes 0(1). Time Complexity is O(mn). 
Space Complexity: O(mn) where 111 is number of rows and 11 is number of columns in the given matrix. 

Problem-39 Given a matrix with 11 rows and m columns (n x m). In each cell there arc a number of apples. 
We start from the upper-left corner of the matrix. We can go down or right one cell. Pinally, we need to arrive 
at the bottom-right corner. Pind the maximum number of npplcs that we can collect. When we pass through a 
cell, we collect all the apples left there. 

Solution: Let us assume that the given matrix is l1[11J1111J. The first thin~ that must be observed is that there arc 
at most 2 ways we can come to a ceU - from the left (if it's not situated on the fin>t column) and from the top (if 
it's not situated on the most upper row). 

Sli- llLil 
I 
T 

,_ 

Sli lLi - 11 ~ S!i Iii I 
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To find the best solution fo r that cell, we have to have already found the best solutions for a ll of the cells fro m 
which we can arrive lo the current cell. From above, a recu rrent relation can be easily obtained as: 

if j > 01} 
if i > 0 

S(i,j) mus t be calculated by going lirst from le ft lo right in each row a nd process the rows from top to bottom, or 
by going li rst from top to bollom in each column a nd process the columns from left to righl. 

def FindApplesCount(Apples, n, m): 
S =[[O for x in range(m)) for x in range(n)I 
S[Ol[O] = Apples[O)[OJ 
for i in range(l, n): 

S[iJ!O] = Apples[ilfOI + S[i-1 l!OJ 

for j in rangc(l, m): 
s101u1 = ApplcslOJUJ + S[OILi- 11 

for i in range( 1, n): 
for j in range( I, m): 

r1 = S[i]Li- 1 J 
r2 = S[i-1 ]Li] 
if (rl > r2): 

S!ilLil = Applcs[i]Lij+rl 
else: 

Sli!Lil = Applesli1Lil+r2 

return S(n-l)[m- 1] 

Apples= I (5, 24], I 15, 25], [27, 40), [SO, 6011 
print FindApplesCount(Apples, 4, 2) 

How many such subproblems are there? In the above formu la, i can range from 1 ton and j can ra nge 
from 1 tom. There are a total of nm s ubproblems a nd each one ta kes 0(1). Time Complexity is O(mn). Space 
Complexity: O(nm), where 111 is number of rows a nd 11 is numbe r of columns in the given matrix. 

Problem-40 Similar to Problem-39, assume that we can go down, right one cell , or even in a d iagona l 
direction. We need to a rrive Ht the bottom -right corner. Give DP solulion to lind the maximum number of 
a pples we ca n collccl. 

Solution: Yes. The d iscussion is very s imilar to Problem-39. Let us assume that th e given matr ix is A[n][rn]. The 
first th ing that must be observed is that there a rc at mosl 3 ways we can come to a cell - from the left, from the 
top (if it's not situated on the uppermost row) or from the top diagonal. To find th e best solution for that cell, we 
have to have a lready fou nd t he best solutions fo r a ll o f Lhc cells from which we can arrive to the curren t cell. 
From above, a recurre n t relation can be easi ly obt:.i incd: 

{ {

S(i,/ - 1), i/j >Ol} 
S(i, j) = 11[,i]ljJ + Max S(i - 1. /), i fi > O 

S(i - 1,j - 1), i( i > 0 and j > 0 

S(i, j) must be calculated by going lirst from left Lo right in each row and process the rows from top to bottom, or 
by going first from top to bottom in each column a nd process the columns from left to right. 

S[i- l ]lj - 1] Sli - l lLil 

---..... ~ 
S[i! Li- lt : S(ilLJI 

How many such subproblems a re there? In the a bove formu la, i can ra nge from 1 ton and j can range 
from 1 tom. There a rc a Lola ! of 11111 s ubproble ms a nd and each one tnkcs 0(1) . Time Complexity is O(mn). 
Space Complexity: O(nm) where 111 is number of rows a nd 11 is number of columns in the given ma trix. 

Proble m -41 Maximum s ize squa re s ub-m a trix with all l 's: Given o matrix with O's and 1 's, g ive an 
a lgorithm fo r finding lhc maximum s i7..<: square sub-matrix with a ll l s . For example, consider the binary 
matrix below. 
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0 1 I 0 1 
1 1 0 I 0 
0 1 1 0 
1 1 0 
I I I I I 
0 0 0 0 0 

The maximum square sub-matrix with all set bits is 

1 1 I 
l l 1 
l l l 

Solution : Let us try solving this problem using DP. Let the given binary matrix be Bl'mlfm]. The idea of the 
a lgorithm is to construct u temporary matrix LI If I in whic h each entry /.[i]UI represents size of the square sub
matrix with all 1 's inc luding /J(iJU] and B(iJUI is the 1·ightmost and bottom-mos t entry in the sub-matrix. 

Algor ithm: 

1) Construct a sum matrix l[mJl nj for the given matrix /J(ml[n]. 
a. Copy lirst row and first colum ns as is from Bl 11 1 to LI II ]. 
b. ror other entries, use the following expressions to construct LI II J 

if(BliJU]) 
lliJU I = min(l[ilU-ll.L li-lllil.L li-1 lli - 1J) + 1; 

else llill/l = O; 
2) Find the maximum entry in lf ml[n). 
3) Using the value a nd coordinates of maximum entry in Llil, print sub-matrix of Bl If I· 

def squareBlockWilhAllOneslnMatrix(matrix, ZERO=O): 
nrows, ncols = len(matrix), (len(matrix[OI) if matrix else 0) 
if not (nrows and ncols): return 0 #empty matrix or rows 
Table = [[O)*ncols for _ in xrangc(nrows)] 
for i in rcvcrsed(xrange(nrows)): # for each row 

assert len(matrixfiJ) == ncols #matrix must be rectangular 
for j in reversed(xrange(ncols)): # for each clement in the row 

if matrixlilLiJ I= ZERO: 
TableliJU) = (1 + min( 

TableliJLi+ l J, # east 
Tableli+ l ILiJ. #south 
Table[i+l]li+l] #south-east 
)) if i < (nrows - 1) and j < (ncols - 1) else 1 #edges 

return max(e for rows in Table for c in rows) 

matrix=[[O, I , I, 0, 11, 11, l, 0, 1, OJ, [O, 1, 1, l, OJ, II, I , I, l, 01, fl , 1, l, 1, I], [O, 0, 0, 0, OIJ 
prinl squo.reBlockWithAllOncslnMatrix(matrix) 

How m any subproblems a re t here ? In the above formula, i ca n rnnge from 1to11 a nd j can ra nge from 1 tom. 
There a rc a total of 11m subproblems a nd each one takcsO(I). Time Complexity is O(nm). Space Complexity is 
O(mn). where n is number of rows and mis number of columns in the given matrix. 

Problem-42 Maximum s ize s ub-matrix with all l's : Given a matrix with O's a nd 1 's, give an algorithm for 
rinding the maximum si:t.e sub-matrix with all ls. For example, consider the binary matrix below. 

l 1 0 0 1 0 
0 1 I I 
l l J 0 
0 0 0 0 

The maximum sub-matrix with all set bits is 

l l 
l l 

Solution: If we draw a histogram of all l's cells in the above rows for a particular row, then maximum all l's 
sub-matrix ending in that row will be equal to maximum area rectangle in that histogram. Below is an example 
for 3rr1row in the above discussed matrix [lj: 

01110 l 1 
l 0 

0 1 I 0 0 
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If we calculate this area for all the rows, maximum area will be our answer. We can extend our solution very 
easily to rind start and end co-ordinates. For this, we need lo generate an auxiliary matrix Sllll where each 
clement represents the number of 1 s above and including it, up until lhe first 0. S[lll for the above matrix will be 
as shown below: 

1 100 I 0 
0 2 I I 2 I 
132230 
003300 

Now we can simply call our maximum rectangle in histogram on every row in Sllll and update the maximum 
area every time. Also we don't need any extra space for saving S. We can update original matrix (A) lo Sand after 
calculation, we can convert S back to A. 

def ma.ximumRectanglclnMatrix(sclf, malrixlnput): 
maxArca "'0 
rows • II 
columns"' II 
for i in rangc(O,lcn(matrixJnpul)): 

rowTemp = II 
colTemp = II 
for j in rangc(O, len(malrixlnput[Ol)): 

row'fcm p.a ppcnd (0) 
colTcmp.appcnd(O) 

rows.appcnd(rowTcmp) 
columns.append(colTcmp) 

for i in rangc(len(matrixlnput)- 1,- 1 ,-1 ): 
for j in range(len(matrixlnput(Ol)-1,-1,-1 ): 

area= 0 
if matrixlnputlilLil==' l ' : 

if i==len(matrixlnput)-1: 
rows[illil = 1 

else: 
rows[illil = rows[i+ l llil + l 

if j lcn(mat.rixlnpuqOJ)- 1: 
columns[iJLi] = l 

else: 
columnsliJLi] = columns[i)Li+ 1]+1 

area = columnslillil 
minCol - columnslilliJ 

fork in rangc(l, rows{illil): 
if minCol > columns(i+kJLij: 

minCol = columns[i+kllil 
if (k+ l )*minCol > area: 

area= (k+ I )*minCol 
ir maxArca < area: 

maxArca = area 
return maxArea 

Problem-43 Maximum sum sub-matrix: Given an 11 x 11 matrix M of posiLivc and negative integers, give an 
algorithm to rind the sub-matrix with the largest possible sum. 

Solution: Let AlLtjr,cl represent the sum of rcctangul:ir suburray of M with one corner at entry p, q and the 
other at [r,c]. Since there arc 11 2 such possibilities, we can compute them in 0(11i) time. After computing all 
possible sums, the sum of any rccwngular subarray of M can be com puled in constant time. This gives an 0(114

) 

algorithm: we simply guess the lowcr-lcfl and the upper-right comer of Lhc rccwngular subarray and use the 
Aux cable to compulc its sum. 

import sys 
def preComputeMatrix(A,n): 

global Aux 
for i in range (O,n): 

for j in range (0,n): 
if(i••O and j'""'0): 

Aux[i!Lil = AlijLiJ 
clif(i"'=O): 
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AuxlilLil +=Aux(iJLi-11 + A(iJLil 
elif(j==O): 

AuxliJLil +=Auxli-1 ILil + AlilLil 
else: 

Auxl iJLil +=Aux[i- l IUl+Aux[iJLi- l l-AuxJi- l lli-11 + Afillil 
def computcSum (A, i L, i2, j I , j2): 

if(il==O andj l .. =0): 
return Aux[i2JLi21 

elif(i l ==O): 
return Aux(i2JLi21 - Aux(i21Lil-1J 

elif(j l ==O): 
return AuxJi2Jli21 - Aux[i 1-1 JLi21 

else: 
return Aux[i2JLi21 - Aux(i21Li 1-11- Auxli l - llli21 + Auxli 1- llli 1- 11 

def gclMaxMatrix(A,n): 
ma.xSum = -sys.maxint 
for rowl in range (0,n): 

for row2 in range (O,n): 
for con in range (O,n): 

for col2 in range (0,n): 

Dynamic Programming 

maxSum = max(maxSum,computeSum(A,row l ,row2,coll .col2)) 
return maxSum 

A• (1-l, -2, -3, -41. r-s. -6, -7, -81.(-9, - 10, - 11, - 121.(-13, -14, -15, -1611 
n 4 
Aux =[(O for x in rangc(n)I for x in rangc(n)I 
preComputeMalrix(A,n) 
print getMaxMatrix(A,n) 

Problem-44 Can we improve the complexity of Problem-43? 

Solution: We can use Problem-7 solution with little vuriulion, us we have seen that the maximum sum array of 
a 1 - D array a lgorithm scans the array one ent ry at o time and keeps a running total of the entries. At any 
point, if this total becomes negative, then set it to 0. This nlgori thm is called Kadww's algorithm. We use this us 
an auxiliary function to solve a two-dimensional problem in the following way. 

import sys 
def preComputeMalrix(A, n): 

global Aux 
for i in range (O,n): 

for j in range (0,n): 
if(i• .. O und .i="'O): 

AuxliJLil • AliJLil 
clif(i• .. 0): 

AuxliJLil +=Auxlilli- 11 + AJilLil 
clif(j==O): 

AuxliJUJ +=Aux(i-1 JUI + Alillil 
else: 

Aux(iJLil +=Aux(i-l llil+Auxli)Li- 11-Aux[i- l lli-1 j + A(ilUJ 

def computeSum(A, il, i2, j I , j2): 
if(i Jc=O andj l••O): 

return Auxli21Li21 
e lif(i l ==O): 

return Auxli21Li2] - Aux[i2 1Li 1- 1 I 
e lif(j 1 ==O): 

return Aux[i2)Li2) - Aux[ i 1-1 JLi21 
e lse: 

return Auxli21Li21 - Awqi2)Li 1- IJ- Auxli 1- llli21 + Auxli 1- llli 1- 1) 

def getSubmatSum( r l, cl, r2, c2): 
if(rl == 0 and cl •• 0): 

return Auxlr211c21 
if (rl == 0): 

return Aux[r211c21 - /\ux[r2llcl - l l 
if(c l == 0): 
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return Aux!r2Jlc2j - Aux[rl - lJlc2] 
return Auxlr2)(c2] - Auxlrl - 1Hc2] - Auxlr211cl - 1] + Auxlrl - lllcl - 11 

def getMaxMatrix(A,n): 
globalma.x = 0 
for i in range (0,n): 

for j in range (i,n): 
localmax = 0 
fork in range (O,n): 

return globaJmax 

localmax = max(locaJmax+getSubma LSum(i, k, j , k), 0) 
globalmax = max(localmax, globalmax) 

A= ll-1, -2, 13, -41, 1-5, -6, -7, -8 J,(-9. 10, - 11 , - 12] .l- 13, - 14, - 15, -161] 
n=4 
Aux "'110 for x in rangc(n)J for x in rangc(n)J 
preComputeMatrix(A,n) 
print getMaxMatrix(A,n) 

Time Complexity: O(n3 ) . 

Problem-45 Given a number n, find the minimum number of squares required to sum a given number n. 
Examples: mini 11 = l = 12 , minl21 = 2 = 12 + 12 , minl4J = l = 22 , minll31=2 = 32 + 22 . 

Solution: This problem can be reduced to a coin change problem. The denominations are I to ,/Ii.. Now, we just 
need lo make change for n wilh a minimum number of denominations. 

Problem-46 Finding Optimal Number of Jumps To Reach Last Element: Given an a rray, start from the 
first clement a nd reach the last by jumping. The jump length can be at most the value at the current position 
in the a rray. The optimum result is when you reach the goal in the minimum number of jumps. Example: 
Given array A = (2,3, 1, 1,4}. Possible ways lo reach the end (index lisl) a re: 

• 0 ,2,3,4 Uump 2 to index 2, and then jump I lo index 3, and Lhen jump I to index 4) 
• 0, 1,4 Uump I to index I , and then jump 3 to index 4) 

Since second solulion has on ly 2 jumps il is the opti mum rcsul L. 

Solution: This problem is a c lassic cxo mplc of Dynamic Programming. Though we can solve this by bru te-force, 
it would be com plex. We can use the LIS problem approach for solving this. A-s soon as we traverse Lhc array, we 
should find the minimum number of jumps for reaching Lhal position (index) and update our result array. Once 
we reach the end, we have lh e optimum solulion a l last index in result a rray. 

How can we find the optimum number of jumps for every position (index)? For first index, the optimum 
number of jumps will be zero. Please note that if va lue a l first index is zero, we can't jump to any element and 
return infinite. For n + 1°1 clement, initialize rcsultln + I J ai:; infinite. Then we should go through a loop from 
0 ... n, and a t eve ry index i, we s hould sec if we are able lo jump lo rt+ I from i or not. If possible, then see if total 
number of jumps (rcsull[i[ + 1) is less tha n rcsultj11 + 1 [, then upda te rcsu ltln + 1 j, clscjusl continue lo next index. 

import sys 
def miJ1Jumps(A): 

n = len(A) 
jumps= [OJ*(n) 
if (n == 0 or AIOI == 0): 

return sys.maxi.nt + l 

jumps[OI = 0 
for i in range(l ,n): 

jumpslil = sys. ma.xinl + 
for j in range(O, i): 

if (i <= j + ALiJ and jumps Lil I= sys.maxint + 1): 
jumpslil = minUumpsliJ, jumps LiJ + 1) 
brea k 

return jumps[n-11 

A = [1, 3, 6, 1, 0 , 9] 
print "Minimum number of jumps lo reach end is ", minJumps(A) 

A= 12,3, l, 1,41 
print "Minimum number of jumps to reach end is", minJumps(A) 

Above code will return optimum number of jumps. To find U1e jump indexes as well, we can very easily modify 
the code as per requirement. 
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Time Complexity: Since we are running 2 loops here and iterating from O to i in ever-y loop Lhen tota l Lime takes 
will be 1 + 2 + 3 + 4 + ... + n - 1. So time efficiency 0(11) = O(n * (n - 1)/2) = O(n2). 

Space Complexity: O(n) space ror result array. 

Problem-47 Explain whal would happen if a dynamic programming a lgorithm is designed l.o solve a problem 
thal docs not have overlapping sub-problems. 

Solution: IL will be just a wasle of memory, because I.he answers of sub-problems will never be used again. And 
the running time will be the same as using the Divide & Conquer algorithm. 

Problem-48 Given a sequence of n positive numbers totaling to T, check whether there exists a subsequence 
totaling to X, where X is less than or equal lo T. 

Solution: Let's call the given Sequence S for convenience. Solving this problem, there a re two approaches we 
could take. On the one hand, we could look through a ll the possible sub-sequences of S lo sec if any of them 
s um up to X. This approach, however, wou ld Lake an exponentia l amount of work since there arc 2" possible 
sub-sequences in S. On the other hand, we could list a ll lhe sums between 0 und X und then try 10 find n sub
sequence for each one of them until we find one for X. This second approach LUrns oul to bc quil.c a lot faster: 
O(n x T). Here are lhe steps: 

0. Create a boolean array called sum of size X+l: As you might guess, when we arc done filling the array, 
all the sub-sums between 0 and X that can be calculaled from S will be set to lrue and I.hose that 
cannol be reached will be set to false. For example if S={2,4,7,9} then sum[5J=falsc while sum[ 13J=lruc 
since 4+9= 13. 

1. Initial ize sum{) to faJse: Before any computation is performed , assumc/prclcnd that each sub-sum is 
unreachable. We know that's not I.rue, but for now let's be outrageous. 

2. ScL sum at index 0 to true:This truth is self-evident. By taking no clements from S, we end up with an 
empty sub-sequence. Therefore we can mark sum[O!=t.ruc, since the sum of nothing is zero. 

3. To fill the rest of the table, we arc going to use the following trick. Let S=(2,4,7,9}. Then starting with 0, 
each time we find a positive sum, we will add an clement from S lo that sum to get a greater sum. For 
example, since sum(O]=truc and 2 is in S, then sum[0+2] must also be true. Therefore, we set 
sum[0+21=sum[2]=true. Then from sum[2[=truc and e lement 4 , we can say sum[2+4 [=sum[6]=truc, and 
so on. 

Step 3 is known as the relaxation step. First we started with a n absurd assumption that no sub-scqucncc of S 
can sum up to any number. Then as we find evidence to thc contrary, wc relax our assumption. 

Alternative implementation: This alternative is easier to read, but it does not halt for small X. In the actual 
code, each for-loop checks for "not sum[X)" since that's really all we care about and shou ld slop once we find it. 
Also this time complexity is 0(11 x T) and space complexity is O(T) 

subSum = [False! * ( X + 1 ) 
sumf Ol = True 
for a in A: 

for i in range(sum(A), a-1.-1): T = sum(A) 
if not sum[i] and sum[i - aJ: 

sum[iJ =True 

def positiveSubseLSum( A, X ): 
# prelim.inary 
if X < 0 or X > sum( A ): # T = sum(A) 

return False 

# algorithm 
subSurn =[False[* ( X + l ) 
subSum(O] = True 
p=O 
while not subSum(XI and p <!en( A): 

a= AfpJ 
q=X 
while not subSum[X] and q >=a: 

if not subSum[ql and subSum[q - a[: 
subSum[q] =True 

q -= l 
p += 1 

return subSum(XJ 
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Problem-49 You arc climbing a stair case. It Lakes 11 steps to reach to the top. Each time you can either 
climb I or 2 steps. In how many distinct ways can you climb to the top? 

Solution: The easiest idea is u fo'ibonacci number. lib(n) .. lib(n - 1) + lib(n-2). The 11 11'stnirs is from either 11 - I tit 
the stair or the 11 - 2"1 stair. I lowever rec ursive is time-consuming. We know thnt recursion can be written in 
loop, t he trick here is 1101 construct n length of n arruy, on ly three dement array is enough. 

Problem -SO Christmns is approaching. You're helping Suntu Cluus t<> distribute gifts to c hildren. For case of 
delivery, you arc asked lo divide 11 gifts into two groups such that Lhe weight difference of these two groups is 
minimized. The weight of each gift is a positive integer. Please design an algorithm to find an optimal division 
minimizing the value difference. The algorithm should find the minimal weight difference as well as the 
groupings in O(nS) time, where S is the total weight of these 11 gifts. Briefly justify the correctness of your 
algorithm. 

Solut ion: This problem can be converted into making one set as close to ~ as possible. We consider an 
2 

equivalent problem of making one set as close to w~ l~ I as possible. Deline FD(1. w) to be the minimal gup 

bet ween the weight of the bag nnd W when using the first i gifts only. WLOU , we cnn nssume the weight of the 
bag is always less than or equal lo W. The n fill the DP tnble for Os;is; n a nd Os; w S W in which F(O, w) = W for a ll 
w, and 

FD(i, w) = min{FD(i - 1. w - w,)-w1• FD(i - 1, w)} if (FD(i - 1, w - w,) ~ w1 
= FD(i - I, w) otherwise 

This lakes O(nS) lime. F/J(n. W) is lhc minimum gop. Finully, to reconstruct the nnswer, we backtrack from 
(11. W). During backtracking, if PD(i,j) = FD(i - l,j) then 1 is 1101 selected in the bag and we move to F(i - 1,j). 
Otherwise, 1 is selected and we move to P(i - LJ - iv,). 
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20 

20.1 Introduction 
In lhe previous chapters we have solved problems of different complcxilies. Some a lgorithms have lower rates of 
growth whi le olhers have higher rates of growth. The problems with lower rates of growth an.: ca lled easy 
problems (or easy so/11ecl problems) and the problems with higher rates of growth arc ca lled hard problems (or 
hard sollled problems). This c lassification is done based on the running time (or memory) that an algorithm takes 
for solving the problem. 

Time Complexity Name Example Problems 
0(1) Constant Adding an element to the front of a linked list 

0(10911) Logarithmic Finding an clement in a binary search tree 

O(n) Linear Finding an element in an unsorted array 

O(nlogn) Linear Logarithmic Merge sort 

O(n2) Quadratic Shortest path between two nodes in a graph Easy solved problems 
O(n3) Cubic MaLrix M ultiplicalion 

0(2") Exponential The Towers of Hanoi problem 
Hard solved problems 

O(n!) Factorial Permutations of a string 

There are lots of problems for which we do not know the solutions. AJI the problems we have seen so far arc the 
ones which can be solved by computer in deterministic time. Before starling our discussion let us look at the 
basic terminology we use in this chapter. 

20.2 Polynomial/Exponential Time 
Exponential Lime means, in essence, trying every possibility (for example, backtracking algorithms) and they a rc 
very slow in nature. Polynomial time means having some clever algorithm to solve a problem, and we don't lry 
every possibility. Mathematically, we can represent these as: 

• Polynomial Lime is O(nk), for some k. 
• Exponential time is O(k"). for some k. 

20.3 What is a Decision Problem? 
A decision problem is a question with a yes/no answer and the answer depends on Lhe values of input. For 
example, the problem "Given an array of 11 numbers, check whether then: are any dupUcalcs or not?" is a 
decision problem. The answer for this problem can be either yes m- no depending on Lhe values of the input 
array. 

Yes 

Inpu t Algorithm 

No 
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20.4 Decision Procedure 
For a given decision problem let us assume we have given some algorithm f01· solving it. The process of solving a 
given decision problem in Lhe form of an a lgorithm is called a decision procedure for that problem. 

20.5 What is a Complexity Class? 
In computer science, in order to understa nd the problems for which solutions are not there, the problems are 
divided into classes and we call them as complexity classes. In complexity theory, a complexity class is a set of 
problems with related complexity. It is the branch oft heory of computation that studies the resources required 
during computation to solve a given problem. 

The most common resou rces a re lime (how much t ime the a lgorithm takes to solve a problem) and space (how 
much memory it takes). 

20.6 Types of Complexity Classes 

P Class 
The complexity class P is the set of decision problems that can be solved by a deterministic machine in 
polynomial time (P stands for po lynomia l time). I' problems arc a set of problems whose solutions are easy to 
find. 

NP Class 
The complexity class NP (NP s tands for non-deterministic polynomial time) is the set of decision problems that 
can be solved by a non-deterministic machine in polynomial time. NP class problems refer to a set of problems 
whose solutions are hard to find, but easy to ve rify. 

For better understanding Jet us consider a college which has 500 students on its roll. Also, assume that there 
arc 100 rooms a vaila ble for students. A selection of I 00 students mus t be pa ired together in rooms, bul the dean 
of students has a list of pairings of certain students who ca nnot room together for some reason. 

The total po:;sible number of pairing:; is loo la rge. But the solutions (the lis t o f pa irings) provided lo the dean, 
arc easy to check for errors. If one of the prohibited pairs is on the li:;t, that's an e rror. In this problem, we can 
see that checking every possibility is very diffic ult, but the result is easy to validate. 

Thal means, if someone gives us a solution lo the problem, we can tell them whether it is right or nol in 
polynomial lime. Based on the above discussion, for NP class problems if the answer is yes, then there is a proof 
of this fact, which can be vel'ificd in polynomia l time. 

Co-NP Class 
Co - NI' is t he opposite of NI' (complement of NI'). If the answer to a proble m in Co - NP is no, then there is a 
proof of this fact that can be c hecked in polynomial time. 

p Solvable in polynom ia l time 
NP Yes a nswers can be c hecked in polynomial time 
Co-NP No answers can be checked in polynomia l time 

Relationship between P, NP and Co-NP 
Every decision problem in P is also in NP. If a problem is in P, we can verify YES answers in polynomia l time. 
Similarly, any problem in Pis a lso in Co - NP. 
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One of the important open questions in theoretical computer science is whether or not P = NP. Nobody knows. 
Intuitively, it should be obvious that P =t= NP, but nobody knows how to prove it. 

Another open question is whether NP and Co - NP are different. Even if we can verify every YES answer quickly, 
there's no reason lo think thal we can also verify NO answers quickly. 

l t is generally believed t hat NP =t= Co - NP, but again nobody knows how to prove it. 

NP-hard Class 
It is a class of problems such that every problem in NP reduces to it. All NP-hard problems are not in NP, so it 
lakes a long time to even check them. That means, if someone gives us a solution for NP-hard problem, it takes 
a long time for us to check whether it is righ t or not. 

A problem K is NP-hard indicates that if a polynomia l-time a lgorithm (solution) exists for/( then a polynomial
time a lgorithm for ever·y problem is NP. Thus: 

K is NP-ha rd implies that if/( ca n be solved in polynomial time, th en P = NP 

NP-Hard 

NP-complete Class 
Finally, a problem is NP-complete if it is part of both NP-hard and NP. NP-complete problems arc the hardest 
problems in NP. If anyone finds a polynomial-time a lgorithm for one NP-complete problem, then we ca n find 
polynomial-time algorithm for every NP-complete problem. This means that wc can check an answer fast and 
every problem in NP reduces to it. 

NP-Hard 

NP-Complete 

Relationship between P, NP Co-NP, NP-Hard and NP-Complete 
Prom the above discussion, we can write the rela tionships between different components as shown below 
(remember, this is just an assumption). 

NP-Hard 

NP-Complete 

The set of problems that a rc NP- ha rd is a s trict superset of the problem s t hat a rc NP-comple te. Some proble ms 
(like the ha iling problem) a rc NP-ha rd, but not in NP. NJJ-ha rd problems might be impossible Lo solve in general. 
We can tell t he difference in difficully between NP-hard and Nf'-complele problems because the c lass 
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NP includes everything easier tha n its "toughest" problems - if a problem is not in NP, it is harder than a ll the 
problems in NP. 

Does P==NP? 
If p = NP, it means that every problem thot can be c hecked quick ly can be solved quickly (remembe r the 
ctiffcrence between c hecking if a n answer is righl a nd actually solving a problem). 

This is a big question (a nd nobody knows the a nswer), because right now there a re lots of NP-complete problems 
that can't be solved quickly. If P = NP , that means there is a way to solve them fast. Remember that "quickly" 
means not trial-and-error. It could take a billion yea rs, but as long as we didn't use trial and error, it was quick. 
ln future, a computer will be able to c ha nge cha t billion years into a few minutes. 

20. 7 Reductions 
Before discussing red uc tions, let us consider the following scenario. Assume thal we wanl Lo solve proble m X 
but feel it's very complicated. In this case what do we do? 

The first thing that comes to mind is, if we have a s imilar problem to that of X (let us say Y), then we try to map 
X to Y and u se Y's solution to solve X a lso. This process is called reduction . 

Instance 
of lnput 
(for X) Algorithm fo r Y 

Algorithm for X 

8olulion 
to I 

In o rder to map problem X to problem Y, we need some a lgorithm and thnt may lake linear time or more. Based 
on this discussion the cost of solvi ng problem X co n be given ns: 

Cost of solvi11g X = Cost of so /vi119 Y + ReducLio11 Lime 

Now, le t us conside r the other scena rio . For solving problem X, sometimes we may need to use Y's algorithm 
(solution) multiple limes. In tha t case, 

Cost of solving X = Numher of 1'imes * Cos t of solving X + Reduction time 

The main thing in NP-Complete is reduc ibili ty. Tha l means, we reduce (or traJ1s form) given NP-Complete 
problems to other known NP-Complete problem. S ince the NP-Comple te problems a re ha rd to solve and in order 
to prove that given NP-Complete problem is ha rd, we take one existing ha rd problem (which we can prove is 
ha rd ) a nd lry t.o map g iven proble m Lo lhn t nnd fina lly we prove thal the given problem is hard. 

Note: IL's not compu lsory to reduce the give n proble m Lo known ha rd problem to prove its ha rdness. Sometimes, 
we reduce the known hard problem lo given problem. 

Important NP-Complete Problems (Reductions) 
Satisfiability Proble m: A boolea n formu la is in ccmj1111clive normal f'orm (CNF) if it is a conjunction (AND) of 
severa l c la uses, each of whic h is the d isjunc tion (OR) of several literals, each of whic h is either a varia ble o r its 
negation. For example: (Cl V b V c v cl v e) /\ (b v -c v - cl) /\ (- a v c v cl) /\ (a v - b) 

A 3-C NF formula is u CNF formu la wil h exactly three literals per clause. The previous example is not a 3-CNF 
formula, s ince its first clause has five litera ls a nd its last clause has only two. 

2-SAT Problem: 3-SAT is just SAT restricted to 3-CNF formulas: Given a 3-CNF formula, is there an assignment 
to the variables so tha t the form u la eva luates to TRUE? 

2-SAT Problem: 2-SAT is just SAT restricted to 2-CNF fonnulas: Given a 2-CNF' formula, is there an assignment 
to the variables so that the formula eva lua tes to TRUE? 

Circuit-Satisfiability Problem: Given a bookan combina tiona l c ircuit composed of ANO, OR and NOT gates, is 
it satisfiable?. Tha l meuns, given u boolean circuit consisting of AN D, OR and NOT gates propedy connected by 
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wires, the Circuit-SAT problem is to decide whether there exists an input assignment fo r which the ou tput is 
TRUE. 

CNF-SAT ._ ___ _ NP-hard unless P= NP 

3-CNF-SAT Clique 

Dir-Ham-Cycle 

l 
Ham-Cycle 

~ 

l 
Planar-3-Color 

Ind-Set Vcrlex-Covcr 

Set-Cover Subset-Sum 

Ham- Palh TSP 
Partition Integer Programming 

1 
Shortest-Path Schedule Knapsack 

Hamiltonia n Path Problem (Ha m-Path): Given an undirected graph, is there a path that visits cver-y vertex 
exactly once? 

Hamiltonian Cycle Problem (Ham-Cycle ): Given an undirectt:d graph, is there a cycle (where start and end 
vertices are same) that visits every vertex exactly once? 

Directe d Hamiltonian Cycle Problem (Dir-Ha m-Cycle ): Given a directed graph, is there a cycle (where start 
and end vertices a rc same) that visits every vertex exaclly once? 

Travelling Salesm an Problem (TSP): Given a list of cities and lhcir pair-wise distances, the problem is Lo find 
Lhe shortesl possible tour that visits each city exactly once. 

Shortest Path Problem (Shortest-Pat h): Given a directed graph and two vertices sand L, check whether there 
is a shortest simple path from s Lo t. 

Graph Colorin~ A k-coloring of a graph is to map one of k 'colors' to each vertex, so that every edge has two 
different colors al its endpoints. The graph coloring problem is to find the smallest possible number of colors in 
a legal coloring. 

3-Color problem: Given a graph, is it possible to color the graph with 3 colors in such a way that every edge has 
two different colors? 

Clique (also called complete graph): Given a graph, the Cl.IQ/JI:: problem is to compute the number of nodes in 
its largest complete subgraph. That means, we need to find the maximum subgraph which is also a complete 
graph. 
Independent Se t Problem (Ind_Set): Let G be an arbitrary graph. An independent set in G is a subset of the 
vertices of G with no edges between them. The maximum independent set problem is the size o f Lhe la rgesl 
independent set in a given graph. 

Vertex Cover Proble m (Vertex-Cover): A vcncx cover- of a graph is a set of vertices that touches every edge in 
the graph. The venex cover problem is Lo find the smallcsl vertex cover in a given graph . 

Subset Sum Proble m (Subset-Sum): Given a scl S of integers and an integer T, determine whether S has a 
subset whose elements sum to T. 
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Integer Programming: Given integers b,, a1i find 0/1 variables x1 thaL satisfy a Linear system of equations. 
N L a;;xi = bi 1 ::::; i ::::; M 

/ = I 
xi E {0.1} 1 ::::; j ::::; N 

In Lhe figure, arrows indicate Lhc reductions. For example, Ham -Cycle (Hamiltonian Cycle Problem) can be 
reduced to CNF-SAT. Same is the case with a ny pair of problems. For our discussion, we can ignore the 
reduction process for each of the problems. There is a theorem called Cook's Theor·em which proves that Circuit 
satisfiability problem is NP-hard. That means, Circuit satisfiability is a known NP-hard problem. 

Note: Since the problems below a rc NP-Complete, they are NP and NP-hard too. For s implicity we can ignore the 
proofs for these reductions. 

20.8 Complexity Classes: Problems & Solutions 
Problem-I What is a qu ick a lgorithm? 

Solution: A quick a lgorithm (solution) means not trial-and-error solu tion. It cou ld take a billion years, but as 
long as we do not use trial and error, it is efficient. Future computers will change those billion years to a few 
minutes. 

Problem-2 What is an effic ient a lgorithm? 

Solution: An a lgorithm is said lo be efficien t if it satisfies the following properties: 

• Scale with input si7..c. 
• Don't care about constants. 
• Asymptotic running time: polynomial time. 

Problem-3 Can we solve all problems in polynomial Lime? 

Solution: No. The answer is trivial because we have seen lots of problems wh ich take more than polynomial 
time. 

Problem-4 Arc there any problems which arc NP-hard? 

Solution: By definition, NP-hard implies that it is very hard. Thal means it is very hard to prove and to verify 
thaL it is ha1·d. Cook's Theorem proves that Circuit satisfiability problem is NP- hard. 

Por 2-SAT problem, which of the following are applicable? Problem-5 
(a) P (b) NP (c) CoNP(d) NP-Hard 
(c) CoNP- Hard (f) NP-Complete (g) CoNP-Completc 

Solution: 2-SAT is solvable in poly-Lime. So it is P, NP, a nd CoNP. 

Por 3-SAT problem, whic h of the fo llowing arc applicable':> Problem-6 
(u) P (b) NP (c) CoN/'(cl) N/'-Ha rcl 
(e) CoNJ>- Hard (f) NP-Complete (g) CoNP-Complelc 

Solution: 3-SAT is NP-complete. So it is NP, NP- Hard, and NP-complete. 

Problem-7 
(a) P 

For 2-Clique problem, which of the following are applicable? 
(b) NP (c) CoN I' 

(c) CoNP- ll urd (I) NP-Complete (g) CoNP-Complete 
(d) NP- Hard 

Solution: 2-Clique is solvable in poly-lime (check for an edge between a ll vertex-pairs in O(n2) Lime). So it is 
P,NP, and CoNP. 

Problem-8 
(a) P 

For 3-Cliquc problem, which of the following arc applicable':> 
(b) NP (c) CoNP 

(e) CoNP-Hard (I) NP-Complete (g) CoNP-Complctc 
(d) NP-Hard 

Solution: 3-Clique is solvable in poly-time (check for a triangle between nil vertex- triplets in O(n3 ) Lime). So it is 
P, NP, and CoNP. 

Problem-9 Consider the problem of determining. For a give n boolean formula, check whether every 
assignment lo the varia bles satisfies it. Which of the following is applicable·:> 
(u) /> (b) NP (c) CoNP (d) NP- llard 
(c) CoNP-1 lard (f) NP-CompleLe (g) CoNP-Complctc 
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S o lution: Tautology is the complimentary problem lo Satis fi a bility, which is NP-complete, so Tautology is CoNP
complete. So it is CoNP, CoNP-hard, a nd CoNP-completc. 

Problem-10 Let S be a n NP-complete proble m a nd Q a nd R be two olhc r problems not known lo be in NP. Q 
is polynomia l lime reduc ible to S a nd S is polynomial-lime red uc ible lo R. Whic h one of the following 
statements is true? 

(a ) U is NP-complete (b) U is Nl' - h ard (c) Q is NP-complete (d) Q is Nl'-ha rd. 

Solution: R is NP-ha rd (b). 

Problem-11 Let A be the problem of finding a Hamiltonian cycle in a gr a ph G = (V, £), with WI divisible by 3 
and B the problem of determining if Ha miltonia n cycle exis ts in such gra phs. Which one of the following is 
true? 
(a) Both A a nd Bare NP-hard 
(c) A is NP- ha rd, but 8 is not 

Solution: Both A a nd 8 arc NP- h a rd (a ). 

(b) A is NP- hard , bul 8 is nol 
(d) Neither A no r 8 is NP-hard 

Problem-12 Let A be a problem that belongs to the class NP. State whic h of Lhe following is true? 
(a ) There is no polynomial Lime algorithm for A. 
(b) If A can be solved deterministically in polynomial time, then P = NP. 
(c) If A is NP-hard, then it is NP-complete. 
(d) A may be undec idable. 

Solution: If A is NP-hard, then it is NP-complete (c). 

Problem-13 Suppose we assume Vertex - Cover is known to be NP-complete. Based on our reduc lion, can we 
say Independent - Set is NP-comple te? 

Solution: Yes. This follows from the two conditions necessary to be Nf'-completc: 

• Independent Set is in NP, as stated in the problem. 
• A reduction from a known NP-complete proble m. 

Problem-14 Suppose Independent Set is known to be NP-complete. Based on our reduction, is Vertex Cover 
NP-complete? 

Solution: No. By reduction fro m Vertex-Cover to fndepende nl -Set, we do not know the difficu lty of solving 
Independent-Set. This is because Independent-Sci could sti ll be a much ha rder problem th a n Ve r-tcx-Cover. We 
have not proved Lhal. 

Problem-15 
Explain. 

The class of NP is the class of la nguages that cannot be accepted in polynomia l time. Is it true? 

Solution: 

• The class of NP is Lhe c lass of la ng uages thal ca n be verified in poly11nmial time. 
• The class of Pis lhc c lass of la nguages that ca n be decided in polynomial time. 
• The c lass of P is the c lass of la nguages lhal ca n be accepted in µo/ynomial lime. 

P !;;;; NP a nd "la nguages in P can be accepted in poly nomia l Lime", the description "la nguages in NP cannot be 
accepted in polynomia l time" is wrong. 

The term NP comes from nondeterministic polynomial lime a nd is derived from a n a lternative characleri7,ation 
by using nondetermin istic polynomial time Turing machines. fl has nothing lo do with "cannot be accepted in 
polynomial lime". 

Problem-16 Diffe re nt e ncodings would ca use d ifferent time complexity for the same a lgori thm. Is it tr-ue? 

Solution: Tr·uc . The time complexity of the same a lgorithm is different between unary encoding and binary 
encoding. But if Lhe two encodings arc polynomiully rela ted (e.g. base 2 & busc 3 encodin~s), the n cha nging 
between them will not cause the time complexity lo c ha nge. 

Problem-17 If P = NP, then NPC (NP Complete) i;; P. Is it true? 

Solution: True. If P = NP, the n for any la nguage L E NP C (1) L E NPC (2 ) Lis NP-hard. By the first condition, L E 
NPC !;;;; NP= P ~ NPC i;; P. 

Problem-18 If NPC ~ P, the n P = NP. Is it true? 

Solut ion : True. All the NP problem can be reduced to arbitrary NPC proble m in polynomia l time, a nd NPC 
problems can be solved in polynomial time because NPC ~ P. ~ NP problem solvable in polynomia l lime ~ NP!;;;; 
P and trivially P i;; NP implies NP = P. 
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MISCELLANEOUS 

CONCEPTS 

21.1 Introduction 
In this c hapte r we will cove r the topics which are useful for interviews and exams. 

21.2 Hacks on Bitwise Programming 

Miscellaneous Concepts 

CIIAl->TEl< 

21 

In C and C ++we can work with bits effectively. Pirst let us see the definitions of each bit operation and then 
move onto different techniques for solving the problems. Basically, there are six operators t ha t C and C + 
+support for bit manipulalion : 

Symbol Operation 
& Bitwise AND 

I Bitwise OR 
/\ Bitwise Exclusive-OR 
« Bitwise le ft shi ft 
» Bitwise right shift 

- Bitwise comple ment 

21.2.1 Bitwise AND 

The bitwise AND tests two binary numbers and returns bit values of 1 for positions where both numbers had a 
one, a nd bit values of 0 where both numbers did not have one: 

21.2.2 Bitwise OR 

01001011 
& 00010101 

00000001 

The bitwise OR tests lwo binary numbers and r<::lurns bit values of 1 for positions where either bit or both bits 
arc one, the res ult of 0 on ly huppcns when both bits a re 0: 

21 .1 In troduction 

0 I 001011 
00010101 

0 1011111 
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21.2.3 Bitwise Exclusive-OR 
The bitwise Exclus ive-OR tests two binary numbers and returns bit values of 1 for positions where both bits arc 
different; if they are the same then lhc result is 0: 

21.2.4 Bitwise Left Shift 

010010 11 
A 00010 101 

0101 11 10 

The bitwise left shift moves a ll bits in the number to the left and fills vacated bit positions with 0. 

01001011 
<< 2 

00101100 

21.2.5 Bitwise Right Shift 
The bitwise right shift moves all bits in the number to the r ight. 

01001011 
» 2 

??0 10010 

Note the use of? for the fill bits. Where the left shi ft filled the vacated positions with 0, a right shift will do the 
same only when the value is unsigned. rf the value is signed then a right shift will fill the vacated bit positions 
with the sign bit or 0, whichever one is implementation -defined. So the best option is to never right shift signed 
values. 

21.2.6 Bitwise Complement 
The bitwise complement inverts the bits in a single binary number. 

01001011 

10110100 

21.2.7 Checking Whether K-th Bit is Set or Not 
Let us assume that the given number is n . Then for c hecking the Ku' bit we ca n use the expression: n & (1 « K -
1). If the expression is true then we can say the Ku' bit is set (tha t mea ns, set to 1). 

Example: n = 01001011 and [( = 4 
1 « /( - 1 00001000 

n & (1 « /( - 1) 0000 I 000 

21.2.8 Setting K-th Bit 

For a given number n , to set the K 11' bit we can use the expression: n I I «(I< - 'l ) 

E'xample: 

21.2.9 Clearing K-th Bit 

n = 0·1001011 andK = 3 
1 « K - 1 00000100 

n I (1 « I< - 'l) 0 l 00 I I I I 

To clear [( 1·
1
' bit of a given number n, we can use the expression: 11 & - (1 « [( - 1) 

Example: I! = 010010 11 a nd K = 4 
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21.2.10 Toggling K-th Bit 

1 « K -1 00001000 
-(l«K -1) 11110111 

n&-(l«K -1) 0 100001 1 

r or a given number 11, for toggling Lhe Kr 11 bil we can use lhe expression: n "( I « K - 1) 

Hxamrile: n = 01001011 and K = 3 
1 « K - 1 00000100 

n"(l«K - 1) 01001111 

21.2.11 Toggling Rightmost One Bit 
ror a g iven number 11, for toggling rightmost one bit we can use the expression: 11 & 11 - 1 

/:'xample: n = 01001011 
n - 1 0100 l 0 1 0 

n & n - 1 0100l010 

21.2.12 Isolating Rightmost One Bit 
For a given numbe r 11 , for isola ling righLmos t one bit we can use Lhc ex pression: n & - 11 

Hx ample: It = 01001011 
- 11 10 l l 0 I 0 I 

n & - n 0000000 1 

Note: For com puling - 11 , use two's complement representation. That means, toggle a ll bits and add 1. 

21.2.13 Isolating Rightmost Zero Bit 
For a g iven number 11, for isolating rightmost :--.cro b it we can u se the expression: - 11 & 11 + 1 

Hxample: 0100'1011 
10110100 
01001100 

-n & n + 1 00000 100 

11 = 
-n 

7l + 1 

21.2.14 Checking Whether Number is Power of 2 or Not 
Give n numbe r 11, lo c hec k wh ether lhc number is in 2" form for not, we ca n ui;e the expression: i/(11 & 11 - 1 == 
0) 

Hxarnple: It = 
n-1 

n&n-1 
if(n & n - 1 == 0) 

OJ0010 11 
OlOOJOlO 
01001010 

0 

21.2.15 Multiplying Number by Power of 2 

Por a given number n, lo mulliply lhc number with 211 we can use the expression: 11 « K 

Example: 11 = 00001011 and K = 2 
n « K 00 I 0 I I 00 

21.2.16 Dividing Number by Power of 2 

For a g ive n number 11, lo divide the number with 211 we can use t he expressio n: n » K 

f:xample: 11 = 00001011 a nd K = 2 
n » K 000 I 00 I 0 
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21.2. 17 Finding Modulo of a Given Number 

For a given number 11, to find the %8 wc can use the expression: 11 & Ox7. SimiJarly, to find %32, use the 
expression: n & Ox IF 

Note: Similarly, we can find modulo value of any number. 

21.2. 18 Reversing the Binary Number 

For a given number n, to reverse the bits (reverse (mirror) of binary number) we can use the following code 
snippet: 

def rcverseNumber(n ): 
nRcversc = n 
s - n .bit length() 
whilc(n): 

nReverse <<• I 
nReverse I= (n & I) 
s -= 1 
n >>= l 

nRcvcrse <<= s 
return nReversc 

n=4 
prin t n, rcverscNum bcr(n) 

Time Complexity: This requires one iteration per bit :rnd the number of iterations depends on the size of the 
number. 

21.2.19 Counting Number of One's in Number 
For a given number 11 , to count the number of l's in its binary representation we can use any of Lhe following 
methods. 

Metbod l: Process bit by bit 

def numberOfOncs(n): 
count"'O 
whilc(n): 

cou nt += n & 1 
n >>= 1 

p rinl cou n t 

Time Complexity: This npprooch requ ires one it.era lio n per b it nnd the nu mber o f it.eralio ns depe nds on system. 

Mct hod2 : Using mod 1ilo a pprouch 

def num ber0 f0ncs2(n): 
coun t=O 
while(n): 

if(n%2 == I): 
count+= 1 

n = n/2 
prin t count 

Time Complexity: This requires one iteration per bit and the number of iterations depends on system. 

Method3: Using toggling appronch: 11 & 11 - I 

def number0f0nes3(n): 
COUl1t""'0 

while(n ): 
coun t+- 1 
n &= n - I 

prin t cou n t 

Time Complex ity: The number of iterations depends on the number of I bits in the number. 

Me tbod4: Using preprocessing idea. In this met hod, we process the bits in groups. f'or example if we process 
Lhcm in groups of 4 bits at a time, we create n table wh ich indicates the number of one's for each of lhose 
possibili ties (as shown below). 
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0000-.0 0100-.1 1000-1 1100--2 
0001-1 0101-+2 1001-2 1101-3 
0010-1 0110--2 1010-2 1110 ,3 
0011-2 011 1-3 1011-+3 1111-.t 

The following code to count the number of ls in the number with this approach: 

def numbcr0f0ncs4(n): 
Table - 10, l , 1,2, l,2,2,3, 1,2,2,3,2,3,3,41 
counl = 0 
while {n): 

count= count+ Tableln & OxFI 
n >>= 4 

print count 

T1111r Compkxity: This npproorh requires one itcrntion p1·r 4 l>ils nn<I thr number of ilt'rations clrprnds on system. 

21.2.20 Creat ing Mask for Trailing Zero's 

For a given number 11, to create a mask for trailing zeros, we can use the expression: (11 & - 11) - 1 

Hxam/)le: n = 
-n 

n &- n 

01001011 
10110101 
00000001 
00000000 (11 &- 11) - I 

Note: In the above case we arc getting the mask as all zeros because there arc no trailing 7.cros. 

27 .2.21 Swap all odd and even bits 

Hxamvle: n = 01001011 

Find even bits of given number {evenN) = n &. OxAA 00001010 
Find odd bits of given number (oddN) = 11 & Ox55 0 I 00000 I 

cvenN »= I 00000 I 0 I 
oddN «- 1 I 00000 I 0 

Final Expression: evenN I oddN 10000111 

21.2.22 Performing Average without Division 

ls there a bit-twiddling a lgorithm to replace mid = (low + high)/ 2 (used in Binary Search a nd Merge Sort) with 
something mu c h foster? 

We cun use mic/ = (low+ high)>> 1. Note thut using (low I high)/ 2 for midpoint calculalions won't work 
correclly when integer overOow becomes an issue. We eun use bit shifting and a lso overcome o possible ovcrnow 
issue: low I ((hig h - low)/ 2) a nd the bit sh ifting operation fo r this is low+ ((high - low) >> 1). 

21.3 Other Programming Questions with Solut ions 
Problem- I Give an algorithm for printing the matrix elements in spiral order. 

Solution : Non-recursive solution involves directions right. left, up, down, and dealing their corresponding 
indices. Once the first row is printed, direction changes (from right) to down, the row is discarded by 
incrcmen1111g the upper limit. Once the last column is printed, direction changes to left, the column is discarded 
by decrementing the right hand limit. 

def spirallterativc(n): 
dx,dy = 1,0 # Starting increments 
x,y - 0,0 #Starting localion 
matrix = l(Nonc)* n for j in range(n)) 
for i in xrunge(n**2): 

maLrixlxllyl i 
nx,ny • x+dx, y+dy 
if O< nx<n und O<=ny<n und matrix jnx]l nyj == None: 

x,y .. nx,ny 
else: 

dx,dy -dy,d:x 
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x,y = ::>t+d.X, y+dy 
return matrix 

def print$piral(matrix): 
11 = range(len(matrix)) 
fory inn: 

for x inn: 
print "%2i" % matrixlxJtyJ, 

print 

print§pkal(spirallterative(5)) 

Recursive: 

def spiral(n): 
def spiralPart(x, y, n): 

if x == - l and y == O: 
return -1 

if y .... (x+l) and x < (n // 2): 
ret\lrn spiralPart(x-1, y-1, n-1) + 4*(n-y) 

if x. < (n-y) and y <~ x: 
retu.tll spilf'cUPart(y-1, y, n) + (x-y) + 1 

if x >= (n-y) and y <= x: 
return spiralPart(x, y-1, n) + l 

if x >= (n-y) and y > x: 
return spira!Part(x+ 1, y, n) + l 

ifx < (n-y) and y > x: 
return spiralPart(x, y-1, n) - l 

array= ([OJ * n for j in xrange(n)I 
for x in xrange(n): 

for yin xrange(n): 
array[x](yJ = spiralPart(y, x, n) 

return array 
for row in spiral(S): 

print" ".j<>in("0/o2s" % x for x in row) 

Time Complexity: O(n2). Space Complexity: 0(1) . 

Problem-2 Give an a lgorilhm for shuffling the desk of cards. 

Miscellaneous Concepts 

Solution: Assume that we want to shuffle an array of 52 cards, from 0 to 51 with no repeats, such as we might 
wan t for a deck of cards. First fill the array with the values in order, then go through the array and exchange 
each element with a randomly chosen element in the range from itself to the end. It's possible that an clement 
will swap with itself, but there is no problem with that. 

import random 
def shuffle(cards): 

max = Jen(cards)- 1 
while max != 0: 

r = random.randint(O, max) 
cardslrl, cards[max] = cards(max), cards(r] 
max=max-1 

return cards 

data = range{!, 53) 
print shuffle(data) 

Time Complexity: O(n). Space Complexity: 0(1). 

Problem-3 Reversa l a lgorithm for a rray rotation: Write a function rotate(A(j, d , n) that rotates All of size n 
by d elemen ts. For example, the a rray 1, 2, 3, 4, S, 6, 7 becomes 3, 4, 5, 6, 7, l, 2 after 2 rotations. 

Solution: Consider the following algorithm. 

Algorithm: 
rotatc(Arrayll, d, n) 
rcverse(Array[I, 1, d) ; 
rcverse(Array[I, d + 1, n); 
reverse(Array[I, 1, n); 
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Let AB be the two parts of the input Arrays where A Array[O . . d - 1 [ a nd B /\rray!d .. n- LI. The idea of lhe 
a lgorithm is: 

Reverse A to gel ArB. / * Ar is reverse of A * / 
Reverse B to gel ArBr. / * Br is reverse of B * / 
Reverse all to get (ArBr) r = 8/\. 
F'or example, if Array![ = I l , 2, 3, 4, 5, 6, 71, d =2 a nd n = 7 then, A = 11, 21 a nd B = !3, 4, 5, 6, 71 
Reverse A, we gel ArB = J2, J. , 3, 4, 5, 6, 71, Reverse B, we gel ArBr = J2, I, 7, 6, 5, 4, 31 
Reverse a ll, we gel (ArBr)r = [3, 4, 5, 6, 7, 1, 2] 

def rotateList(A, K): 
n = K % len(A) 
word= A[::-1) #Reverses the list 
return A!n:J + wordlJen(A)-n:J 

A= !7,3,2,3,3,6,3) 
print A, rot.ateList(A, 3) 

Problem-4 Suppose you a rc given a n a rray s l l ... n l a nd a procedure reverse (s, ij) which reverses the orde r 
of e le ments in between posilions i and j (both inclusive). Whal does the following sequence 

do, where I < k <= n: 
reverse (s, 1, k); 
reverse (s, k + l, n); 
reverse (s, 1, n); 

(a) Rotates s le ft by k positions (b) Leaves s unchanged (c) Reverses all e le ments of s (d) None of the 
above 

Solution: (b). Effect of Lhe above 3 1·cvcrsa ls for nny k is equiva lent lo left rota lion of the array of s ize 11 by k 
[refer Problem-3] . 

Problem-5 Finding Anagrams in Dictionary: you arc given these 2 files: dicLionary. t.xl and jumblcs.lxt 
The jumbles.txt file contains a bunc h of scrambled words. Your job is to print out those jumbles words, l 
word to a line. After each jumbled word, print a list of real dictionary words that could be formed by 
unscrambling thejumbled word. The dictionary words that you have to choose from a rc in the diclionary.Lxt 
file. Sam ple conlen l o f jumbles.: 

nwae: wean anew wane 
eslyep: s leepy 
rpeoims: semipro imposer promise 
ettniner: renitent 
ahieryrhe: hierarchy 
dica: acid cadi ca.id 
dobol: blood 

% 

Solution: Step-By-Step 
Step 1: lnitial i7,ation 

Open Lhc dictionary.LXt fi le and read t he words into an array (before going further verify by echoing out 
the words back from the a rray out to the screen) . 

• Declare a hash table variable. 
Step 2: Process the Dictionary for each dictionary word in the array. Do the following: 
We now have a hash table where each key is the sorted form of a dic tionary word and the value associated lo it 
is a string or a rray of dictionary words that sort to that same key. 

• Remove the newline off the encl of each word via chomp($word); 
• Make a sorted copy of the word - i.e. rearrange the individual chars in the string to be sorted 

a lphabetically 
• Think of the sorted word as the key value and think of the set of a ll d ictionary words that sort to lhe 

exact same key word as being the value of the key 
• Query the hashtablc to sec if the sortedWord is already one of the keys 
• Jf it is not already presenl then insert the sorted word as key a nd the unsorted origina l o f the word as 

the va lue 
• Else concal the unsorted word on to the value string a lready OLll there (put a space in between) 

Step 3: Process the jumbled word file 
• Read through the jumbled word file one word a t a lime. As you read each j um bled word c hom p it and 

make a sorted copy (the sorted copy is your key) 
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• Print the unsorted jumble word 

• Query the hashtable for the sorted copy. If found, print the associated value on same line as key and 
then a new line. 

Step 4: Celebrate, we are a ll done 

Sample code in Perl: 

open("MYFILE", <dictionary. txl>); 
while(<MYFILE>){ 

$row=$_; 
chomp($row); 
push(@wo1·ds,$row); 

} 
my %hasbdic = 0; 
#step 2 
foreacb $words(@words){ 

I 

@not sorled=split (/ /, $words); 
@sortt.'C! "' sort (@not sorted); 

$name=join("" ,@sorted); 
if (exists $hashdic{$name}) { 

$hashdic{$name}. =" $words"; 
} 
else { 

$hashdicj$name}=$words; 

$si7..e=keys %hashclic; 

#step 3 
open("jumbled", <jumbles. bet>); 
while( <jumbled>){ 

$jum = $_; 
chomp($jum); 

@nol_sorted l =split (/ /, $jum); 
@sorted I= sort(@not_sortcdl); 
$name l =join("" ,@sorted l); 

if(length($hashdic!$namel})< 1) { 
print "\n$jum : NO MATCHES"; 

} 
else { 

@value=split(/ / ,$hashdic{$name I)); 
print "\n$jum: @values"; 

#step I 

Problem-6 Pathways: Given a matrix as shown below, calculate the number of ways for reaching 
destination 8 from A. 

A 

Solution: Before finding the solution, we try to understand Lhc problem with a simpler version. The s ma llest 
problem that we can consider is the number of possible routes in a 1x 1 grid. 

From the above figure, it can be seen that 

• From both the bollom-left and Lhc top-right corners there's only one possible route to the destination. 
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• From the top-left corner there arc trivia lly two possib le routes. 

Simila rly , for 2x2 and 3x3 grids, we can ri ll the ma trix us: 

~ 0 1 1 
I 2 3 
J 3 6 

From the a bove discuss ion , it is c lear tha t to reuch the bottom right corner from le ft top corner, lhc pa th s a re 
overla pping. As unique path s could overla p a t certa in points (grid cells), we cou ld try to a lter the previous 
algor ithm, a s a way to a void following the sam e pa th again. If we sta rt rilling 4x 4 and SxS, we can easily ligure 
out the solutjon based on our c hildhood ma thema tics conce pts . 

0 1 .I 1 0 1 1 1 1 
I 2 3 4 1 2 3 4 5 
l 3 6 10 I 3 6 10 15 
I 4 10 20 I 4 JO 20 35 

I 5 15 35 70 

Are you a ble to rigu rc out the pa u crn? It is the same as Pascals tr ia ngle. So, lo rind the number of ways , we can 
simply scan through the table a nd keep coun ting the m while we move from left to right and top lo bottom 
(starting with le fl -Lop). We can even solve this pro ble m with ma thema tical equation of Pascals triangle. 

Problem -7 Given a s tring tJ1at has a set of wo rds a nd s paces, wri te a program to move the spaces to f ront 
of string. You need to traverse lhe a rray only once a nd you need to adjus t the string in place. 
Input ="move these s paces to beginning" Ottt pltl =" movethcsepacestobcginning" 

Solution: Ma inta in two ind ices i a nd j; tra verse from end lo beginning. If the current index con ta ins c ha r, s wa p 
cha rs in index i with index j . This will move all t he spaces to beginning of the a rray . 

def moveSpacesToBegin(A): 
i=len(A)-1 

dataJjst = list(A) #strings atr immutable. Covert iL to list 
j=i 
for j in range(i, - 1, - 1): 

if(nol da la lisllil- is space()): 
tcmp=da.la listlil 
data listj ijadalalistLi I 
dat.a listLil"'temp 
i -= l 

A = ".join(dataJjst) 
return A 

A = "move lhese spaces to beginning" 
p rint A, "\n", moveSpacesTn8egin (A) 

Time Complexily : O (n) whe re 11 is lhe n umbe r or c hnrac ters in the inpu t u rrny. S pace Com plexity: 0 (1). 

Problem-8 For the Problem -7, can we im prove the com plexity? 

Solution: We ca n avoid a s wa p operation with a s imple coun ter. Bu t, it docs not reduce the overall complcxjty . 

def moveS pacesToBegin(A): 
n=<len(A)- l 
dataJjst = list(A) 
count=i = n 
for j in range(i,O, - I): 

if(not data HslLi].isspace()): 
da lalist[co·u ntJ= da ta lis LLi] 
counl -= 1 

while(count>=O): 
datalistlcount]=' ' 
count -= 1 

A = ".join(data list) 
re turn A 

A ="move thes e s paces to beginning" 
prin t A, " \n", moveSpaccsToBegin(A) 

Time Complexjty: 0 (11) whe re 11 is Lhe number o f c haracte rs in in put a rray. S pace Complexity : 0(1). 
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Problem-9 Given a string that has a set of words and spaces, write a program to move the spaces to end of 
string. You need to traverse the array only once and you need to adjust the string in place. 
Input = "move these spaces to end" Output = "movcthcscpaccstoend • 

Solution: Traverse the array from left to r ight. While LI·avcrsing, maintain a counter for non -space elcmems in 
array. For every non-space character AliJ. put the clement at Alco1111tj and incrcmcnl count. After complete 
trnvcrsal, all non-space c lcmcnls have already been shifted 10 front end and count is set as index of firsl 0. Now, 
all we need to do is run a loop which fills all clements with spaces from count till end of the array. 

def moveSpaccsToEnd(A): 
n• len(A)-1 
datalist = lisl(A) 
count•i = 0 
for i in rungc(i,n): 

if(not datalist(ij.isspace()): 
datalist(countj= datalis tlil 
count+= l 

whilc(cou nt<• n): 
dnta list(counl)='' 
count+= 1 

A= ".join(datalist) 
return A 

A = "move these spaces to beginning" 
print A, "\n", moveSpaccsToEnd(A) 

Time Complexity: 0(11) where 11 is number of characters in input a rray. Space Complexity: 0(1). 

Problem-10 Moving Zeros to end: Given an array of 11 integers, move all the zeros of a given array to the end 
of the array. For example, if the given array is {I, 9, 8, 4, 0, 0, 2, 7, 0, 6, O}, it should be changed to {I, 9, 8, 4, 
2, 7, 6, 0, 0, 0, O}. The order of all other elements s hould be same. 

Solution: Mainta in two variables i and j ; and initia lize with 0. For each of the array clement Ali]. if 11(il non-r.cro 
element, then replace the clement 111/J with clement 11lil· Variable i will always be incremented till 11 - 1 but we 
will increment j only when the clement pointed by i is non-zero. 

def moveZcrosToEnd(A): 
i• j .. O 
while (i < .. Icn(A) - 1 ): 

if (A[ij != 0): 

i += 1 

ALiJ = A(i) 
j += 1 

while (j <= len(A) - l ): 
AUi • 0 
j +• I 

return A 
A• [7,0,0,3,0,2,3,3,6,3] 
print A,"\n", moveZerosToEnd(A) 

Time Complexity: O(n). Space Complexity: 0( 1 ). 

Problcm -11 For Problem-10, can we improve Lhe complexity? 

Solution: Using simple swap technique we can avoid the unnecessary second wllile loop from the above code. 

def mySwap(A, i, j): 
temp /\(ij;A(il•Alil;Alil=temp 

def movcZcrosioEnd2(A): 
i j•O 
while (i < .. len(A) - 1 ): 

if (A(il !=O): 
mySwap(A,j, i) 
j += l 

i += l 
return/\ 

A 17,0,0,3,0,2,3,3,6,31 
print A,"\n", moveZerosToEnd2(A) 
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Time Complexity: O(n). Space Complexity: 0(1). 

Proble m -12 Vnriant of Problem-10 and Problem- 11: Given an array containing negative and pos1uve 
numbers; give an algorithm for separating positive and negative numbers in it. Also, maintain the relative 
order of posit ive <lnd negative numbers. Input: -5, 3, 2. - 1, 4, -8 Output: -5 - 1 -8 3 4 2 

Solut ion: In the 111ovelernsToH11d function, just replace the condi tion Ali! !=O with Altl < 0. 

Problc m -13 

Solution: 

Given a number represented as an array of digits, plus one to the number. 

from _ future import division 
import random 
def plus one(digils): 

print digits, '+ 1 =', 
curry I 
for i in rcvcrscd(xrange(len(digits))): 

x = digitsl il 
curry, x divmod(x+carry, 10) 
digitslil ... x 

if carry> 0: digits.insert(O,carry) 
print digits 
return d igits 

if name ~ ' main_'· 
plus one(l l ,2,3,41) 
plus one(ll,9,91) 
plus one(l9,9,91) 
plus_one(IO]) 

Problem-14 Give a s huffle algorithm for an array. 

Solution: The Fisher-Yates shuffle a lgorithm was described by Ronald A. Fisher and Frank Yates in their book 
Statistical tables for biological, agricultural and medical research. The basic method given for generating a 
random pcrmutntion of the numbers l through 11 goes as follows: 

I. Write down the numbers from I through n . 
2. Pit:k u rnndom number k between one and the number of unstruck numbers remaining (inclusive). 
3. Counting from the low end, strikc out the kth number not yet struck out, and write it down elsewhere. 
4. Repeat from step 2 until all the numbers have been struck out. 
5. The sequence of numbers writlen down in step 3 is now a random permutation of the original numbers. 

The a lgorilhm described by Durste nfe ld diffe rs from that given by Fisher a nd Yates in a s ma ll but significant 
way. Whercus a naive computer imple mentation o f ris her and Yates' method would s pend needless time 
counting the re maining numbers in step 3 above, Dur:;tenfcld':; solution i:; to move the strnck numbers to the 
e nd or the list by swupping them with the last unstruc k number al each itera tion . This reduces the a lgori thm's 
time complexity to 0(11), compared Lo O (ni ) for the na ive implementation. 

import random 
def ::ihuffleArray(A): 

n .. lcn(A) 
i = n - l 

while i>O: 
j .. int((ra ndom.random OJ% (i+l)) 
tmp - Ali- l );A[j-1) = A[j); Ali) = tmp 
i - I 

A - I 1,3,5,6,2,4,6,8) 
shufficArra.y(A) 
print A 

21.3 Other Programming Questions with Solutions 470 
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