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Preface

Applied Differential Geometry: A Modern Introduction is a graduate–level
monographic textbook. It is designed as a comprehensive introduction into
methods and techniques of modern differential geometry with its various
physical and non–physical applications. In some sense, it is a continuation
of our previous book, Natural Biodynamics (World Scientific, 2006), which
contains all the necessary background for comprehensive reading of the cur-
rent book. While the previous book was focused on biodynamic applica-
tions, the core applications of the new book are in the realm of modern theo-
retical physics, mainly following its central line: Einstein–Feynman–Witten.
Other applications include (among others): control theory, robotics, neu-
rodynamics, psychodynamics and socio–economical dynamics.

The book has six chapters. Each chapter contains both ‘pure mathe-
matics’ and related ‘applications’ labelled by the word ‘Application’.

The first chapter provides a soft (‘plain–English’) introduction into man-
ifolds and related geometrical structures, for all the interested readers with-
out the necessary background. As a ‘snap–shot’ illustration, at the end of
the first chapter, a paradigm of generic differential–geometric modelling is
given, which is supposed to fit all above–mentioned applications.

The second chapter gives technical preliminaries for development of the
modern applied differential geometry. These preliminaries include: (i) clas-
sical geometrical objects – tensors, (ii) both classical and modern physical
objects – actions, and modern geometrical objects – functors.

The third chapter develops modern manifold geometry, together with its
main physical and non–physical applications. This chapter is a neccessary
background for comprehensive reading of the remaining chapters.

The fourth chapter develops modern bundle geometry, together with its
main physical and non–physical applications.

vii
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The fifth chapter develops modern jet bundle geometry, together with
its main applications in non–autonomous mechanics and field physics. All
material in this chapter is based on the previous chapter.

The sixth chapter develops modern geometrical machinery of Feynman’s
path integrals, together with their various physical and non–physical appli-
cations. For most of this chapter, only the third chapter is a neccessary
background, assuming a basic understanding of quantum mechanics (as
provided in the above–mentioned World Scientific book, Natural Biody-
namics).

The book contains both an extensive Index (which allows easy connec-
tions between related topics) and a number of cited references related to
modern applied differential geometry.

Our approach to dynamics of complex systems is somewhat similar to
the approach to mathematical physics used at the beginning of the 20th
Century by the two leading mathematicians: David Hilbert and John von
Neumann – the approach of combining mathematical rigor with conceptual
clarity, or geometrical intuition that underpins the rigor.

The intended audience includes (but is not restricted to) theoreti-
cal and mathematical physicists; applied and pure mathematicians; con-
trol, robotics and mechatronics engineers; computer and neural scientists;
mathematically strong chemists, biologists, psychologists, sociologists and
economists – both in academia and industry.

Compared to all differential–geometric books published so far, Applied
Differential Geometry: A Modern Introduction has much wider variety of
both physical and non–physical applications. After comprehensive read-
ing of this book, a reader should be able to both read and write journal
papers in such diverse fields as superstring & topological quantum field the-
ory, nonlinear dynamics & control, robotics, biomechanics, neurodynamics,
psychodynamics and socio–economical dynamics.

V. Ivancevic
Defence Science & Technology Organisation, Australia

e-mail: Vladimir.Ivancevic@dsto.defence.gov.au
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School of Mathematics, The University of Adelaide

e-mail: Tijana.Ivancevic@adelaide.edu.au
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Glossary of Frequently Used Symbols

General

– ‘iff’ means ‘if and only if’;
– ‘r.h.s’ means ‘right hand side’; ‘l.h.s’ means ‘left hand side’;
– ODE means ordinary differential equation, while PDE means partial dif-
ferential equation;
– Einstein’s summation convention over repeated indices (not necessarily
one up and one down) is assumed in the whole text, unless explicitly stated
otherwise.

Sets

N – natural numbers;
Z – integers;
R – real numbers;
C – complex numbers;
H – quaternions;
K – number field of real numbers, complex numbers, or quaternions.

Maps

f : A→ B – a function, (or map) between sets A ≡ Dom f and B ≡ Cod f ;

Ker f = f−1(eB)− a kernel of f ;

Im f = f(A)− an image of f ;

Coker f = Cod f/ Im f − a cokernel of f ;

Coim f = Dom f/Ker f − a coimage of f ;

xi
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X Y-f

h
@

@
@
@R

Z
?

g

− a commutative diagram, requiring h = g ◦ f .

Derivatives

Ck(A,B) – set of k−times differentiable functions between sets A to B;
C∞(A,B) – set of smooth functions between sets A to B;
C0(A,B) – set of continuous functions between sets A to B;
f ′(x) = df(x)

dx – derivative of f with respect to x;
ẋ – total time derivative of x;
∂t ≡ ∂

∂t – partial time derivative;
∂xi ≡ ∂i ≡ ∂

∂xi – partial coordinate derivative;
ḟ = ∂tf + ∂xif ẋ

i – total time derivative of the scalar field f = f(t, xi);
ut ≡ ∂tu, ux ≡ ∂xu, uxx ≡ ∂x2u – only in partial differential equations;
Lxi ≡ ∂xiL, Lẋi ≡ ∂ẋiL – coordinate and velocity partial derivatives of the
Lagrangian function;
d – exterior derivative;
dn – coboundary operator;
∂n – boundary operator;
∇ = ∇(g) – affine Levi–Civita connection on a smooth manifold M with
Riemannian metric tensor g = gij ;
Γijk – Christoffel symbols of the affine connection ∇;
∇XT – covariant derivative of the tensor–field T with respect to the vector–
field X, defined by means of Γijk;
T;xi ≡ T|xi – covariant derivative of the tensor–field T with respect to the
coordinate basis {xi};
Ṫ ≡ DT

dt ≡
∇T
dt – absolute (intrinsic, or Bianchi) derivative of the tensor–

field T upon the parameter t; e.g., acceleration vector is the absolute time
derivative of the velocity vector, ai = ˙̄vi ≡ Dvi

dt ; note that in general,
ai 6= v̇i – this is crucial for proper definition of Newtonian force;
LXT – Lie derivative of the tensor–field T in direction of the vector–field
X;
[X,Y ] – Lie bracket (commutator) of two vector–fields X and Y ;
[F,G], or {F,G} – Poisson bracket, or Lie–Poisson bracket, of two functions
F and G.
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Smooth Manifolds, Fibre Bundles and Jet Spaces

Unless otherwise specified, all manifolds M,N, ... are assumed Ck−smooth,
real, finite–dimensional, Hausdorff, paracompact, connected and without
boundary,1 while all maps are assumed Ck−smooth. We use the symbols
⊗, ∨, ∧ and ⊕ for the tensor, symmetrized and exterior products, as well as
the Whitney sum2, respectively, while c denotes the interior product (con-
traction) of (multi)vectors and p−forms, and ↪→ denotes a manifold imbed-
ding (i.e., both a submanifold and a topological subspace of the codomain
manifold). The symbols ∂AB denote partial derivatives with respect to co-
ordinates possessing multi–indices BA (e.g., ∂α = ∂/∂xα);
TM – tangent bundle of the manifold M ;
πM : TM →M – natural projection;
T ∗M – cotangent bundle of the manifold M ;
π : Y → X – fibre bundle;
(E, π,M) – vector bundle with total space E, base M and projection π;
(Y, π,X, V ) – fibre bundle with total space Y , base X, projection π and
standard fibre V ;
Jk(M,N) – space of k−jets of smooth functions between manifolds M and
N ;
Jk(X,Y ) – k−-jet space of a fibre bundle Y → X; in particular, in
mechanics we have a 1–jet space J1(R, Q), with 1–jet coordinate maps
j1t s : t 7→ (t, xi, ẋi), as well as a 2–jet space J2(R, Q), with 2–jet coordinate
maps j2t s : t 7→ (t, xi, ẋi, ẍi);
jkxs – k−jets of sections si : X → Y of a fibre bundle Y → X;
We use the following kinds of manifold maps: immersion, imbedding, sub-
mersion, and projection. A map f : M → M ′ is called the immersion if
the tangent map Tf at every point x ∈M is an injection (i.e., ‘1–1’ map).
When f is both an immersion and an injection, its image is said to be a
submanifold of M ′. A submanifold which also is a topological subspace is
called imbedded submanifold. A map f : M → M ′ is called submersion if
the tangent map Tf at every point x ∈M is a surjection (i.e., ‘onto’ map).
If f is both a submersion and a surjection, it is called projection or fibre
bundle.

1The only 1D manifolds obeying these conditions are the real line R and the circle

S1.
2Whitney sum ⊕ is an analog of the direct (Cartesian) product for vector bundles.

Given two vector bundles Y and Y ′ over the same base X, their Cartesian product is a
vector bundle over X ×X. The diagonal map induces a vector bundle over X called the

Whitney sum of these vector bundles and denoted by Y ⊕ Y ′.
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Lie and (Co)Homology Groups

G – usually a general Lie group;
GL(n) – general linear group with real coefficients in dimension n;
SO(n) – group of rotations in dimension n;
Tn – toral (Abelian) group in dimension n;
Sp(n) – symplectic group in dimension n;
T (n) – group of translations in dimension n;
SE(n) – Euclidean group in dimension n;
Hn(M) = Ker ∂n/ Im ∂n−1 – nth homology group of the manifold M ;
Hn(M) = Ker dn/ Im dn+1 – nth cohomology group of the manifold M .

Other Spaces and Operators

i ≡
√
−1 – imaginary unit;

Ck(M) – space of k−differentiable functions on the manifold M ;
Ωk(M) – space of k−forms on the manifold M ;
g – Lie algebra of a Lie group G, i.e., the tangent space of G at its identity
element;
Ad(g) – adjoint endomorphism; recall that adjoint representation of a Lie
group G is the linearized version of the action of G on itself by conjugation,
i.e., for each g ∈ G, the inner automorphism x 7→ gxg−1 gives a linear
transformation Ad(g) : g→ g, from the Lie algebra g of G to itself;
nD space (group, system) means n−dimensional space (group, system), for
n ∈ N;
� – semidirect (noncommutative) product; e.g., SE(3) = SO(3) � R3;
y – interior product, or contraction, of a vector–field and a one–form;∫
Σ – Feynman path integral symbol, denoting integration over continu-
ous spectrum of smooth paths and summation over discrete spectrum of

Markov chains; e.g.,
∫
Σ D[x] eiS[x] denotes the path integral (i.e., sum–over–

histories) over all possible paths xi = xi(t) defined by the Hamilton action,

S[x] = 1
2

∫ t1
t0
gij ẋ

iẋj dt, while
∫
Σ D[Φ] eiS[Φ] denotes the path integral over

all possible fields Φi = Φi(x) defined by some field action S[Φ].

Categories

S – all sets as objects and all functions between them as morphisms;
PS – all pointed sets as objects and all functions between them preserving
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base point as morphisms;
V – all vector spaces as objects and all linear maps between them as mor-
phisms;
B – Banach spaces over R as objects and bounded linear maps between
them as morphisms;
G – all groups as objects, all homomorphisms between them as morphisms;
A – Abelian groups as objects, homomorphisms between them as mor-
phisms;
AL – all algebras (over a given number field K) as objects, all their homo-
morphisms between them as morphisms;
T – all topological spaces as objects, all continuous functions between them
as morphisms;
PT – pointed topological spaces as objects, continuous functions between
them preserving base point as morphisms;
T G – all topological groups as objects, their continuous homomorphisms as
morphisms;
M – all smooth manifolds as objects, all smooth maps between them as
morphisms;
Mn – nD manifolds as objects, their local diffeomorphisms as morphisms;
LG – all Lie groups as objects, all smooth homomorphisms between them
as morphisms;
LAL – all Lie algebras (over a given field K) as objects, all smooth homo-
morphisms between them as morphisms;
T B – all tangent bundles as objects, all smooth tangent maps between them
as morphisms;
T ∗B – all cotangent bundles as objects, all smooth cotangent maps between
them as morphisms;
VB – all smooth vector bundles as objects, all smooth homomorphisms be-
tween them as morphisms;
FB – all smooth fibre bundles as objects, all smooth homomorphisms be-
tween them as morphisms;
Symplec – all symplectic manifolds (i.e., physical phase–spaces), all sym-
plectic maps (i.e., canonical transformations) between them as morphisms;
Hilbert – all Hilbert spaces and all unitary operators as morphisms.
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Chapter 1

Introduction

In this introductory chapter we will firstly give a soft, ‘plain English’ in-
troduction into manifolds and related differential–geometric terms, with
intention to make this book accessible to the wider scientific and engi-
neering community. Secondly, we will present the paradigm of differential–
geometric modelling of dynamical systems, in the form of a generic algorith-
mic ‘recipe’ (see [Ivancevic and Ivancevic (2006)] for background details).
The readers familiar with the manifold concept can skip the first section
and only quickly review the second one.

1.1 Manifolds and Related Geometrical Structures

The core of both differential geometry and modern geometrical dynamics
represents the concept of manifold . A manifold is an abstract mathematical
space, which locally (i.e., in a close–up view) resembles the spaces described
by Euclidean geometry , but which globally (i.e., when viewed as a whole)
may have a more complicated structure. As main pure–mathematical ref-
erences, we recommend popular graduate textbooks by two ex–Bourbaki
members, Serge Lang [Lang (2005); Lang (2003); Lang (2002); Lang (1999)]
and Jean Dieudonne [Dieudonne (1969); Dieudonne (1988)]. Besides, the
reader might wish to consult some other ‘classics’, including [Spivak (1965);
Spivak (1970-75); Choquet-Bruhat and DeWitt-Morete (1982); Bott and Tu
(1982); Abraham et al. (1988); De Rham (1984); Milnor (1997); Munkres
(1999)], as well as free internet sources [Wikipedia (2005); Weisstein (2004);
PlanetMath (2006)]. Finally, as first–order applications, we recommend
three popular textbooks in mechanics, [Abraham and Marsden (1978);
Arnold (1989); Marsden and Ratiu (1999)].

For example, the surface of Earth is a manifold; locally it seems to be

1
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flat, but viewed as a whole from the outer space (globally) it is actually
round. A manifold can be constructed by ‘gluing’ separate Euclidean spaces
together; for example, a world map can be made by gluing many maps of
local regions together, and accounting for the resulting distortions.1

Another example of a manifold is a circle S1. A small piece of a circle
appears to be like a slightly–bent part of a straight line segment, but overall
the circle and the segment are different 1D manifolds (see Figure 1.1). A
circle can be formed by bending a straight line segment and gluing the ends
together.2

1On a sphere, the sum of the angles of a triangle is not equal to 180o. A sphere is not a

Euclidean space, but locally the laws of the Euclidean geometry are good approximations.

In a small triangle on the face of the earth, the sum of the angles is very nearly 180o. A
sphere can be represented by a collection of two dimensional maps, therefore a sphere is

a manifold.
2Locally, the circle looks like a line. It is 1D, that is, only one coordinate is needed

to say where a point is on the circle locally. Consider, for instance, the top part of

the circle (Figure 1.1), where the y−coordinate is positive. Any point in this part can

be described by the x−coordinate. So, there is a continuous bijection χtop (a mapping
which is 1–1 both ways), which maps the top part of the circle to the open interval

(−1, 1), by simply projecting onto the first coordinate: χtop(x, y) = x. Such a function

is called a chart . Similarly, there are charts for the bottom, left , and right parts of the
circle. Together, these parts cover the whole circle and the four charts form an atlas (see

the next subsection) for the circle. The top and right charts overlap: their intersection

lies in the quarter of the circle where both the x− and the y−coordinates are positive.
The two charts χtop and χright map this part bijectively to the interval (0, 1). Thus a

function T from (0, 1) to itself can be constructed, which first inverts the top chart to
reach the circle and then follows the right chart back to the interval:

T (a) = χright

“
χ−1

top(a)
”

= χright

“
a,

p
1− a2

”
=

p
1− a2.

Such a function is called a transition map. The top, bottom, left, and right charts show

that the circle is a manifold, but they do not form the only possible atlas. Charts need

not be geometric projections, and the number of charts is a matter of choice. T and the
other transition functions in Figure 1.1 are differentiable on the interval (0, 1). Therefore,

with this atlas the circle is a differentiable, or smooth manifold.
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Fig. 1.1 The four charts each map part of the circle to an open interval, and together
cover the whole circle.

The surfaces of a sphere3 and a torus4 are examples of 2D manifolds.
3The surface of the sphere S2 can be treated in almost the same way as the circle S1.

It can be viewed as a subset of R3, defined by: S = {(x, y, z) ∈ R3|x2+y2+z2 = 1}. The
sphere is 2D, so each chart will map part of the sphere to an open subset of R2. Consider

the northern hemisphere, which is the part with positive z coordinate. The function χ

defined by χ(x, y, z) = (x, y), maps the northern hemisphere to the open unit disc by
projecting it on the (x, y)−plane. A similar chart exists for the southern hemisphere.

Together with two charts projecting on the (x, z)−plane and two charts projecting on the

(y, z)−plane, an atlas of six charts is obtained which covers the entire sphere. This can
be easily generalized to an nD sphere Sn = {(x1, x2, ..., xn) ∈ Rn|x2

1 +x2
2 + ...+x2

n = 1}.
An n−sphere Sn can be also constructed by gluing together two copies of Rn. The

transition map between them is defined as Rn \ {0} → Rn \ {0} : x 7→ x/‖x‖2. This
function is its own inverse, so it can be used in both directions. As the transition map

is a (C∞)−smooth function, this atlas defines a smooth manifold.
4A torus (pl. tori), denoted by T 2, is a doughnut–shaped surface of revolution gen-

erated by revolving a circle about an axis coplanar with the circle. The sphere S2 is a

special case of the torus obtained when the axis of rotation is a diameter of the circle. If

the axis of rotation does not intersect the circle, the torus has a hole in the middle and
resembles a ring doughnut, a hula hoop or an inflated tire. The other case, when the

axis of rotation is a chord of the circle, produces a sort of squashed sphere resembling a

round cushion.
A torus can be defined parametrically by:

x(u, v) = (R+ r cos v) cosu, y(u, v) = (R+ r cos v) sinu, z(u, v) = r sin v,

where u, v ∈ [0, 2π], R is the distance from the center of the tube to the center of the
torus, and r is the radius of the tube. According to a broader definition, the generator

of a torus need not be a circle but could also be an ellipse or any other conic section.
Topologically, a torus is a closed surface defined as product of two circles: T 2 = S1 ×

S1. The surface described above, given the relative topology from R3, is homeomorphic
to a topological torus as long as it does not intersect its own axis.

One can easily generalize the torus to arbitrary dimensions. An n−torus Tn is defined
as a product of n circles: Tn = S1 × S1 × · · · × S1. Equivalently, the n−torus is
obtained from the n−cube (the Rn−generalization of the ordinary cube in R3) by gluing



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

4 Applied Differential Geometry: A Modern Introduction

Manifolds are important objects in mathematics, physics and control the-
ory, because they allow more complicated structures to be expressed and
understood in terms of the well–understood properties of simpler Euclidean
spaces.

The Cartesian product of manifolds is also a manifold (note that not
every manifold can be written as a product). The dimension of the prod-
uct manifold is the sum of the dimensions of its factors. Its topology is the
product topology, and a Cartesian product of charts is a chart for the prod-
uct manifold. Thus, an atlas for the product manifold can be constructed
using atlases for its factors. If these atlases define a differential structure
on the factors, the corresponding atlas defines a differential structure on
the product manifold. The same is true for any other structure defined
on the factors. If one of the factors has a boundary, the product manifold
also has a boundary. Cartesian products may be used to construct tori and
cylinders, for example, as S1 × S1 and S1 × [0, 1], respectively.

Manifolds need not be connected (all in ‘one piece’): a pair of separate
circles is also a topological manifold(see below). Manifolds need not be
closed : a line segment without its ends is a manifold. Manifolds need not
be finite: a parabola is a topological manifold.

Manifolds can be viewed using either extrinsic or intrinsic view. In the
extrinsic view , usually used in geometry and topology of surfaces, an nD
manifold M is seen as embedded in an (n + 1)D Euclidean space Rn+1.
Such a manifold is called a ‘codimension 1 space’. With this view it is
easy to use intuition from Euclidean spaces to define additional structure.
For example, in a Euclidean space it is always clear whether a vector at
some point is tangential or normal to some surface through that point. On
the other hand, the intrinsic view of an nD manifold M is an abstract
way of considering M as a topological space by itself, without any need for
surrounding (n+1)D Euclidean space. This view is more flexible and thus it
is usually used in high–dimensional mechanics and physics (where manifolds
used represent configuration and phase spaces of dynamical systems), can
make it harder to imagine what a tangent vector might be.

Additional structures are often defined on manifolds. Examples of man-
ifolds with additional structure include:

• differentiable (or, smooth manifolds, on which one can do calculus;

the opposite faces together.
An n−torus Tn is an example of an nD compact manifold . It is also an important

example of a Lie group (see below).
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• Riemannian manifolds, on which distances and angles can be de-
fined;
• symplectic manifolds, which serve as the phase space in mechanics

and physics;
• 4D pseudo–Riemannian manifolds which model space–time in gen-

eral relativity.

The study of manifolds combines many important areas of mathematics:
it generalizes concepts such as curves and surfaces as well as ideas from
linear algebra and topology. Certain special classes of manifolds also have
additional algebraic structure; they may behave like groups, for instance.

Historically, before the modern concept of a manifold there were several
important results:

(1) Carl Friedrich Gauss was arguably the first to consider abstract spaces
as mathematical objects in their own right. His ‘Theorema Egregium’
gives a method for computing the curvature of a surface S without
considering the ambient Euclidean 3D space R3 in which the surface
lies. Such a surface would, in modern terminology, be called a manifold.

(2) Non–Euclidean geometry considers spaces where Euclid’s ‘Parallel Pos-
tulate’ fails. Saccheri first studied them in 1733. Lobachevsky, Bolyai,
and Riemann developed them 100 years later. Their research uncovered
two more types of spaces whose geometric structures differ from that
of classical Euclidean nD space Rn; these gave rise to hyperbolic geom-
etry and elliptic geometry . In the modern theory of manifolds, these
notions correspond to manifolds with negative and positive curvature,
respectively.

(3) The Euler characteristic is an example of a topological property (or topo-
logical invariant) of a manifold. For a convex polyhedron in Euclidean
3D space R3, with V vertices, E edges and F faces, Euler showed that
V − E + F = 2. Thus the number 2 is called the Euler characteristic
of the space R3. The Euler characteristic of other 3D spaces is a useful
topological invariant, which can be extended to higher dimensions using
the so–called Betti numbers. The study of other topological invariants
of manifolds is one of the central themes of topology.

(4) Bernhard Riemann was the first to do extensive work generalizing the
idea of a surface to higher dimensions. The name manifold comes from
Riemann’s original German term, ‘Mannigfaltigkeit’, which W.K. Clif-
ford translated as ‘manifoldness’. In his famous Göttingen inaugural
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lecture entitled ‘On the Hypotheses which lie at the Bases of Geome-
try’, Riemann described the set of all possible values of a variable with
certain constraints as a ‘manifoldness’, because the variable can have
many values. He distinguishes between continuous manifoldness and
discontinuous manifoldness, depending on whether the value changes
continuously or not. As continuous examples, Riemann refers to not
only colors and the locations of objects in space, but also the possi-
ble shapes of a spatial figure. Using mathematical induction, Riemann
constructs an n times extended manifoldness, or nD manifoldness, as
a continuous stack of (n − 1)D manifoldnesses. Riemann’s intuitive
notion of a ‘manifoldness’ evolved into what is today formalized as a
manifold.

(5) Henri Poincaré studied 3D manifolds at the end of the 19th Century,
and raised a question, today known as the Poincaré conjecture. Her-
mann Weyl gave an intrinsic definition for differentiable manifolds in
1912. During the 1930s, H. Whitney and others clarified the founda-
tional aspects of the subject, and thus intuitions dating back to the
latter half of the 19th Century became precise, and developed through
differential geometry (in particular, by the Lie group theory introduced
by Sophus Lie in 1870, see below).

1.1.1 Geometrical Atlas

Now we continue introducing manifolds. As already stated above, an atlas
describes how a complicated space called a manifold is glued together from
simpler pieces. Each piece is given by a chart (also known as coordinate
chart or local coordinate system).5

The description of most manifolds requires more than one chart (a single
chart is adequate for only the simplest manifolds). An atlas is a specific
collection of charts which covers a manifold. An atlas is not unique as
all manifolds can be covered multiple ways using different combinations of

5A coordinate map, a coordinate chart, or simply a chart, of a manifold is an invertible

map between a subset of the manifold and a simple space such that both the map and
its inverse preserve the desired structure. For a topological manifold , the simple space
is some Euclidean space Rn and interest is focused on the topological structure. This

structure is preserved by homeomorphisms (invertible maps that are continuous in both
directions).

In the case of a differentiable manifold , a set of charts called an atlas allows us to

do calculus on manifolds. Polar coordinates, for example, form a chart for the plane R2

minus the positive x−axis and the origin. Another example of a chart is the map χtop
mentioned above, a chart for the circle.
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charts.
The atlas containing all possible charts consistent with a given atlas is

called the maximal atlas. Unlike an ordinary atlas, the maximal atlas of a
given atlas is unique.

More generally, an atlas for a complicated space is constructed out of
the following pieces of information:

(i) A list of spaces that are considered simple.
(ii) For each point in the complicated space, a neighborhood of that

point that is homeomorphic to a simple space, the homeomorphism being
a chart.

(iii) We require the different charts to be compatible. At the minimum,
we require that the composite of one chart with the inverse of another be a
homeomorphism (also known as a change of coordinates, or a transforma-
tion of coordinates, or a transition function, or a transition map) but we
usually impose stronger requirements, such as C∞−smoothness.6

This definition of atlas is exactly analogous to the non–mathematical
meaning of atlas. Each individual map in an atlas of the world gives a
neighborhood of each point on the globe that is homeomorphic to the plane.
While each individual map does not exactly line up with other maps that it
overlaps with (because of the Earth’s curvature), the overlap of two maps
can still be compared (by using latitude and longitude lines, for example).

Different choices for simple spaces and compatibility conditions give dif-
ferent objects. For example, if we choose for our simple spaces the Euclidean
spaces Rn, we get topological manifolds. If we also require the coordinate

6Charts in an atlas may overlap and a single point of a manifold may be represented

in several charts. If two charts overlap, parts of them represent the same region of
the manifold, just as a map of Europe and a map of Asia may both contain Moscow.

Given two overlapping charts, a transition function can be defined, which goes from

an open Euclidean nD ball Bn = {(x1, x2, ..., xn) ∈ Rn|x2
1 + x2

2 + ... + x2
n < 1} in Rn

to the manifold and then back to another (or perhaps the same) open nD ball in Rn.

The resultant map, like the map T in the circle example above, is called a change of
coordinates, a coordinate transformation, a transition function, or a transition map.

An atlas can also be used to define additional structure on the manifold. The structure

is first defined on each chart separately. If all the transition maps are compatible with
this structure, the structure transfers to the manifold.

This is the standard way differentiable manifolds are defined. If the transition func-

tions of an atlas for a topological manifold preserve the natural differential structure

of Rn (that is, if they are diffeomorphisms, i.e., invertible maps that are smooth in
both directions), the differential structure transfers to the manifold and turns it into a

differentiable, or smooth manifold.
In general the structure on the manifold depends on the atlas, but sometimes different

atlases give rise to the same structure. Such atlases are called compatible.
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changes to be diffeomorphisms, we get differentiable manifolds, or smooth
manifolds.

We call two atlases compatible if the charts in the two atlases are all
compatible (or equivalently if the union of the two atlases is an atlas).
Usually, we want to consider two compatible atlases as giving rise to the
same space. Formally, (as long as our concept of compatibility for charts
has certain simple properties), we can define an equivalence relation on the
set of all atlases, calling two the same if they are compatible. In fact, the
union of all atlases compatible with a given atlas is itself an atlas, called
a complete (or maximal) atlas. Thus every atlas is contained in a unique
complete atlas.

By definition, a smooth differentiable structure (or differential struc-
ture) on a manifold M is such a maximal atlas of charts, all related by
smooth coordinate changes on the overlaps.

1.1.2 Topological Manifolds

A topological manifold is a manifold that is glued together from Euclidean
spaces Rn. Euclidean spaces are the simplest examples of topological man-
ifolds. Thus, a topological manifold is a topological space that locally looks
like an Euclidean space. More precisely, a topological manifold is a topo-
logical space7 locally homeomorphic to a Euclidean space. This means that

7Topological spaces are structures that allow one to formalize concepts such as conver-

gence, connectedness and continuity. They appear in virtually every branch of modern
mathematics and are a central unifying notion. Technically, a topological space is a set

X together with a collection T of subsets of X satisfying the following axioms:

(1) The empty set and X are in T ;

(2) The union of any collection of sets in T is also in T ; and

(3) The intersection of any pair of sets in T is also in T .

The collection T is a topology on X. The sets in T are the open sets, and their

complements in X are the closed sets. The elements of X are called points. By induction,
the intersection of any finite collection of open sets is open. Thus, the third Axiom can be
replaced by the equivalent one that the topology be closed under all finite intersections

instead of just pairwise intersections. This has the benefit that we need not explicitly
require that X be in T , since the empty intersection is (by convention) X. Similarly, we
can conclude that the empty set is in T by using Axiom 2. and taking a union over the

empty collection. Nevertheless, it is conventional to include the first Axiom even when
it is redundant.

A function between topological spaces is said to be continuous iff the inverse image

of every open set is open. This is an attempt to capture the intuition that there are
no ‘breaks’ or ‘separations’ in the function. A homeomorphism is a bijection that is

continuous and whose inverse is also continuous. Two spaces are said to be homeomor-
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every point has a neighborhood for which there exists a homeomorphism
(a bijective continuous function whose inverse is also continuous) mapping
that neighborhood to Rn. These homeomorphisms are the charts of the
manifold.

Usually additional technical assumptions on the topological space are
made to exclude pathological cases. It is customary to require that the
space be Hausdorff and second countable.

The dimension of the manifold at a certain point is the dimension of the
Euclidean space charts at that point map to (number n in the definition).
All points in a connected manifold have the same dimension.

In topology and related branches of mathematics, a connected space is
a topological space which cannot be written as the disjoint union of two or
more nonempty spaces. Connectedness is one of the principal topological
properties that is used to distinguish topological spaces. A stronger notion
is that of a path–connected space, which is a space where any two points
can be joined by a path.8

phic if there exists a homeomorphism between them. From the standpoint of topology,
homeomorphic spaces are essentially identical.

The category of topological spaces, Top, with topological spaces as objects and contin-

uous functions as morphisms is one of the fundamental categories in mathematics. The
attempt to classify the objects of this category (up to homeomorphism) by invariants has

motivated and generated entire areas of research, such as homotopy theory, homology
theory, and K–theory.

8Formally, for a topological space X the following conditions are equivalent:

(1) X is connected.

(2) X cannot be divided into two disjoint nonempty closed sets (this follows since the

complement of an open set is closed).

(3) The only sets which are both open and closed (open sets) are X and the empty set.

(4) The only sets with empty boundary are X and the empty set.

(5) X cannot be written as the union of two nonempty separated sets.

The maximal nonempty connected subsets of any topological space are called the
connected components of the space. The components form a partition of the space
(that is, they are disjoint and their union is the whole space). Every component is a

closed subset of the original space. The components in general need not be open: the

components of the rational numbers, for instance, are the one–point sets. A space in
which all components are one–point sets is called totally disconnected.

The space X is said to be path–connected iff for any two points x, y ∈ X there exists

a continuous function f : [0, 1] → X, from the unit interval [0, 1] to X, with f(0) = x
and f(1) = y (this function is called a path from x to y). Every path–connected space

is connected.



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

10 Applied Differential Geometry: A Modern Introduction

1.1.2.1 Topological manifolds without boundary

The prototypical example of a topological manifold without boundary is
Euclidean space. A general manifold without boundary looks locally, as a
topological space, like Euclidean space. This is formalized by requiring that
a manifold without boundary is a non–empty topological space in which
every point has an open neighborhood homeomorphic to (an open subset
of) Rn (Euclidean n−space). Another way of saying this, using charts,
is that a manifold without boundary is a non–empty topological space in
which at every point there is an Rn−chart.

1.1.2.2 Topological manifolds with boundary

Generally speaking, it is possible to allow a topological manifold to have a
boundary. The prototypical example of a topological manifold with bound-
ary is the Euclidean closed half–space. Most points in Euclidean closed
half–space, those not on the boundary, have a neighborhood homeomor-
phic to Euclidean space in addition to having a neighborhood homeomor-
phic to Euclidean closed half–space, but the points on the boundary only
have neighborhoods homeomorphic to Euclidean closed half–space and not
to Euclidean space. Thus we need to allow for two kinds of points in
our topological manifold with boundary: points in the interior and points
in the boundary. Points in the interior will, as before, have neighborhoods
homeomorphic to Euclidean space, but may also have neighborhoods home-
omorphic to Euclidean closed half–space. Points in the boundary will have
neighborhoods homeomorphic to Euclidean closed half–space. Thus a topo-
logical manifold with boundary is a non-empty topological space in which
at each point there is an Rn−chart or an [0,∞)×Rn−1−chart. The set of
points at which there are only [0,∞)×Rn−1−charts is called the boundary
and its complement is called the interior. The interior is always non–empty
and is a topological n−manifold without boundary. If the boundary is non–
empty then it is a topological (n − 1)−manifold without boundary. If the
boundary is empty, then we regain the definition of a topological manifold
without boundary.

1.1.2.3 Properties of topological manifolds

A manifold with empty boundary is said to be closed manifold if it is
compact, and open manifold if it is not compact.

All 1–manifolds are curves and all 2–manifolds are surfaces. Examples
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of curves include circles, hyperbolas, and the trefoil knot. Sphere, cylinder,
torus, projective plane,9 Möbius strip,10 and Klein bottle11 are examples
of surfaces.

Manifolds inherit many of the local properties of Euclidean space. In
particular, they are locally path–connected, locally compact and locally
metrizable. Being locally compact Hausdorff spaces, they are necessarily
Tychonoff spaces. Requiring a manifold to be Hausdorff may seem strange;
it is tempting to think that being locally homeomorphic to a Euclidean
space implies being a Hausdorff space. A counterexample is created by
deleting zero from the real line and replacing it with two points, an open
neighborhood of either of which includes all nonzero numbers in some open
interval centered at zero. This construction, called the real line with two
origins is not Hausdorff, because the two origins cannot be separated.

All compact surfaces are homeomorphic to exactly one of the 2–sphere,
a connected sum of tori, or a connected sum of projective planes.

A topological space is said to be homogeneous if its homeomorphism
group acts transitively on it. Every connected manifold without boundary
is homogeneous, but manifolds with nonempty boundary are not homoge-
neous.

It can be shown that a manifold is metrizable if and only if it is para-
compact. Non–paracompact manifolds (such as the long line) are generally

9Begin with a sphere centered on the origin. Every line through the origin pierces

the sphere in two opposite points called antipodes. Although there is no way to do so

physically, it is possible to mathematically merge each antipode pair into a single point.
The closed surface so produced is the real projective plane, yet another non-orientable

surface. It has a number of equivalent descriptions and constructions, but this route

explains its name: all the points on any given line through the origin projects to the
same ‘point’ on this 1plane’.

10Begin with an infinite circular cylinder standing vertically, a manifold without

boundary. Slice across it high and low to produce two circular boundaries, and the
cylindrical strip between them. This is an orientable manifold with boundary, upon

which ‘surgery’ will be performed. Slice the strip open, so that it could unroll to become

a rectangle, but keep a grasp on the cut ends. Twist one end 180 deg, making the inner
surface face out, and glue the ends back together seamlessly. This results in a strip with
a permanent half–twist: the Möbius strip. Its boundary is no longer a pair of circles,

but (topologically) a single circle; and what was once its ‘inside’ has merged with its
‘outside’, so that it now has only a single side.

11Take two Möbius strips; each has a single loop as a boundary. Straighten out those

loops into circles, and let the strips distort into cross–caps. Gluing the circles together
will produce a new, closed manifold without boundary, the Klein bottle. Closing the

surface does nothing to improve the lack of orientability, it merely removes the boundary.

Thus, the Klein bottle is a closed surface with no distinction between inside and outside.
Note that in 3D space, a Klein bottle’s surface must pass through itself. Building a Klein

bottle which is not self–intersecting requires four or more dimensions of space.
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regarded as pathological, so it’s common to add paracompactness to the
definition of an n−manifold. Sometimes n−manifolds are defined to be
second–countable, which is precisely the condition required to ensure that
the manifold embeds in some finite–dimensional Euclidean space. Note that
every compact manifold is second–countable, and every second–countable
manifold is paracompact.

Topological manifolds are usually required to be Hausdorff and second–
countable. Every Hausdorff, second countable manifold of dimension n

admits an atlas consisting of at most n+ 1 charts.

1.1.3 Differentiable Manifolds

For most applications, a special kind of topological manifold, a differentiable
manifold , is used. If the local charts on a manifold are compatible in a
certain sense, one can define directions, tangent spaces, and differentiable
functions on that manifold. In particular it is possible to use calculus on
a differentiable manifold. Each point of an nD differentiable manifold has
a tangent space. This is an Euclidean space Rn consisting of the tangent
vectors of the curves through the point.

Two important classes of differentiable manifolds are smooth and ana-
lytic manifolds. For smooth manifolds the transition maps are smooth, that
is infinitely differentiable, denoted by C∞. Analytic manifolds are smooth
manifolds with the additional condition that the transition maps are an-
alytic (a technical definition which loosely means that Taylor’s expansion
Theorem12 holds). The sphere can be given analytic structure, as can most
familiar curves and surfaces.

In other words, a differentiable (or, smooth) manifold is a topological
manifold with a globally defined differentiable (or, smooth) structure. A
topological manifold can be given a differentiable structure locally by using
the homeomorphisms in the atlas of the topological space (i.e., the home-
omorphism can be used to give a local coordinate system). The global
differentiable structure is induced when it can be shown that the natu-
ral composition of the homeomorphisms between the corresponding open
Euclidean spaces are differentiable on overlaps of charts in the atlas. There-
fore, the coordinates defined by the homeomorphisms are differentiable with
respect to each other when treated as real valued functions with respect to

12The most basic example of Taylor’s Theorem is the approximation of the exponential

function near the origin point x = 0: ex ≈ 1 + x + x2

2!
+ x3

3!
+ · · · + xn

n!
. For technical

details, see any calculus textbook.
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the variables defined by other coordinate systems whenever charts overlap.
This idea is often presented formally using transition maps.

This allows one to extend the meaning of differentiability to spaces with-
out global coordinate systems. Specifically, a differentiable structure allows
one to define a global differentiable tangent space, and consequently, differ-
entiable functions, and differentiable tensor–fields (including vector–fields).
Differentiable manifolds are very important in physics. Special kinds of
differentiable manifolds form the arena for physical theories such as classi-
cal mechanics (Hamiltonian mechanics and Lagrangian mechanics), general
relativity and Yang–Mills gauge theory . It is possible to develop calculus
on differentiable manifolds, leading to such mathematical machinery as the
exterior calculus.

Historically, the development of differentiable manifolds (as well as dif-
ferential geometry in general) is usually credited to C.F. Gauss and his
student B. Riemann. The work of physicists J.C. Maxwell and A. Einstein
lead to the development of the theory transformations between coordinate
systems which preserved the essential geometric properties. Eventually
these ideas were generalized by H. Weyl in ‘Idee der Riemannschen Fläshe’
(1913) and ‘Raum, Ziet, Materie’ (‘Space Time Matter’, 1921). T. Levi–
Civita applied these ideas in ‘Lezioni di calcolo differenziale assoluto’ (‘The
Absolute Differential Calculus’, 1923). The approach of Weyl was essen-
tially to consider the coordinate functions in terms of other coordinates
and to assume differentiability for the coordinate function. In 1963, S.
Kobayashi and K. Nomizu gave the group transformation/atlas approach.

Generalizations of manifolds

The three most common generalizations of manifolds are:

• orbifolds: An orbifold is a generalization of manifold allowing for cer-
tain kinds of ‘singularities’ in the topology. Roughly speaking, it is a
space which locally looks like the quotients of some simple space (e.g.,
Euclidean space) by the actions of various finite groups. The singular-
ities correspond to fixed points of the group actions, and the actions
must be compatible in a certain sense.
• algebraic varieties and schemes: An algebraic variety is glued together

from affine algebraic varieties, which are zero sets of polynomials over
algebraically closed fields. Schemes are likewise glued together from
affine schemes, which are a generalization of algebraic varieties. Both
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are related to manifolds, but are constructed using sheaves13 instead
of atlases. Because of singular points one cannot assume a variety is a
manifold.
• CW–complexes: A CW complex is a topological space formed by gluing

objects of different dimensionality together; for this reason they gener-
ally are not manifolds. However, they are of central interest in algebraic
topology, especially in homotopy theory, where such dimensional defects
are acceptable.

1.1.4 Tangent and Cotangent Bundles of Manifolds

1.1.4.1 Tangent Bundle of a Smooth Manifold

The tangent bundle of an open contractable set U ∈ Rn is the smooth
manifold U × Rn.

The tangent bundle TM of the smooth manifold M is constructed using
the transition maps which define the differentiable structure of M . One may
construct transition maps for the atlas of smooth manifolds Ui×Rn, where

13A sheaf F on a topological space X is an object that assigns a structure F (U) (such

as a set, group, or ring) to each open subset U of X. The structures F (U) are compatible
with the operations of restricting the open set to smaller subsets and gluing smaller open

sets to get a bigger one. A presheaf is similar to a sheaf, but it may not be possible to

glue. Sheaves enable one to discuss in a refined way what is a local property, as applied
to a function.

Sheaves are used in topology, algebraic geometry and differential geometry whenever

one wants to keep track of algebraic data that vary with every open set of the given
geometrical space. They are a global tool to study objects which vary locally (that is,

depend on the open sets). As such, they are a natural instrument to study the global

behavior of objects which are of local nature, such as open sets, analytic functions,
manifolds, and so on.

For a typical example, consider a topological space X, and for every open set U ∈ X,

let F (U) be the set of all continuous functions U → R. If V is an open subset of U ,
then the functions on U can be restricted to V , and we get a map F (U) → F (V ). Now,

‘gluing’ describes the following process: suppose the Ui are given open sets with union
U , and for each i we are given an element fi ∈ F (Ui), a continuous function fi : Ui → R.
If these functions agree where they overlap, then we can glue them together in a unique

way to form a continuous function f : U → R, which agrees with all the given fi. The
collection of the sets F (U) together with the restriction maps F (U) → F (V ) then form
a sheaf of sets on X. Furthermore, each F (U) is a commutative ring and the restriction
maps are ring homomorphisms, making F a sheaf of rings on X.

For a very similar example, consider a smooth manifold M , and for every open set U of

M , let F (U) be the set of smooth functions U → R. Here too, ‘gluing’ works and we get
a sheaf of rings on M . Another sheaf on M assigns to every open set U of M the vector
space of all smooth vector–fields defined on U . Restriction and gluing of vector–fields

works like that of functions, and we get a sheaf of vector spaces on the manifold M .
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Ui denotes one of the charts in the atlas for M . The extended atlas defines
a topological manifold and the differentiablity of the transition maps define
a differentiable structure on the tangent bundle manifold.

The tangent bundle is where tangent vectors live, and is itself a smooth
manifold. The so–called Lagrangian is a natural energy function on the
tangent bundle.

Associated with every point x on a smooth manifold M is a tangent
space TxM and its dual, the cotangent space T ∗xM . The former consists of
the possible directional derivatives, and the latter of the differentials, which
can be thought of as infinitesimal elements of the manifold. These spaces
always have the same dimension n as the manifold does. The collection of
all tangent spaces can in turn be made into a manifold, the tangent bundle,
whose dimension is 2n.

1.1.4.2 Cotangent Bundle of a Smooth Manifold

Recall that the dual of a vector space is the set of linear functionals (i.e.,
real valued linear functions) on the vector space. In particular, if the vector
space is finite and has an inner product then the linear functionals can be
realized by the functions fv(w) = 〈v, w〉.

The cotangent bundle T ∗M is the dual to the tangent bundle TM in the
sense that each tangent space has a dual cotangent space as a vector space.
The cotangent bundle T ∗M is a smooth manifold itself, whose dimension
is 2n. The so–called Hamiltonian is is a natural energy function on the
cotangent bundle. The total space of a cotangent bundle naturally has the
structure of a symplectic manifold (see below).

1.1.4.3 Fibre–, Tensor–, and Jet–Bundles

A fibre bundle is a space which locally looks like a product of two spaces but
may possess a different global structure. Tangent and cotangent bundles
are special cases of a fibre bundle.14

A tensor bundle is a direct sum of all tensor products of the tangent
bundle and the cotangent bundle.15 To do calculus on the tensor bundle

14Every fiber bundle consists of a continuous surjective map: π : E −→ B, where small
regions in the total space E look like small regions in the product space B × F. Here B

is called the base space while F is the fiber space. For example, the product space B×F ,

equipped with π equal to projection onto the first coordinate, is a fiber bundle. This is
called the trivial bundle. One goal of the theory of bundles is to quantify, via algebraic

invariants, what it means for a bundle to be non–trivial.
15Recall that a tensor is a certain kind of geometrical entity which generalizes the
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a connection is needed (see below). In particular, the exterior calculus
on a totally antisymmetric tensor bundle allows for a generalization of the
classical gradient, divergence and curl operators.

A jet bundle is a generalization of both the tangent bundle and the
cotangent bundle. The Jet bundle is a certain construction which makes a
new smooth fiber bundle out of a given smooth fiber bundle. It makes it
possible to write differential equations on sections of a fiber bundle in an in-
variant form. In contrast with Riemannian manifolds and their (co)tangent
bundles, a connection is a tensor on the jet bundle.

1.1.5 Riemannian Manifolds: Configuration Spaces for La-

grangian Mechanics

To measure distances and angles on manifolds, the manifold must be Rie-
mannian. A Riemannian manifold is an analytic manifold in which each
tangent space is equipped with an inner product g = 〈·, ·〉, in a manner

concepts of scalar, vector and linear operator in a way that is independent of any cho-

sen frame of reference. While tensors can be represented by multi-dimensional arrays
of components, the point of having a tensor theory is to explain the further implica-

tions of saying that a quantity is a tensor, beyond that specifying it requires a number

of indexed components. In particular, tensors behave in special ways under coordinate
transformations. The tensor notation (also called the covariant formalism) was devel-

oped around 1890 by Gregorio Ricci–Curbastro under the title ‘Absolute Differential
Geometry’, and made accessible to many mathematicians by the publication of Tullio

Levi–Civita’s classic text ‘The Absolute Differential Calculus’ in 1900. The tensor cal-

culus achieved broader acceptance with the introduction of Einstein’s general relativity
theory, around 1915. General Relativity is formulated completely in the language of

tensors, which Einstein had learned from Levi–Civita himself with great difficulty. But

tensors are used also within other fields such as continuum mechanics (e.g., the strain
tensor). Note that the word ‘tensor’ is often used as a shorthand for ‘tensor–field’, which

is a tensor value defined at every point in a manifold.

The so–called ‘classical approach’ views tensors as multidimensional arrays that are nD
generalizations of scalars, 1D vectors and 2D matrices. The ‘components’ of the tensor

are the indices of the array. This idea can then be further generalized to tensor–fields,
where the elements of the tensor are functions, or even differentials.

On the other hand, the so–called ‘modern’ or component–free approach, views tensors

initially as abstract geometrical objects, expressing some definite type of multi–linear
concept. Their well–known properties can be derived from their definitions, as linear
maps, or more generally; and the rules for manipulations of tensors arise as an ex-

tension of linear algebra to multilinear algebra. This treatment has largely replaced
the component–based treatment for advanced study, in the way that the more modern

component–free treatment of vectors replaces the traditional component–based treat-

ment after the component–based treatment has been used to provide an elementary
motivation for the concept of a vector. You could say that the slogan is ‘tensors are

elements of some tensor bundle’.
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which varies smoothly from point to point. Given two tangent vectors X
and Y, the inner product 〈X,Y 〉 gives a real number. The dot (or scalar)
product is a typical example of an inner product. This allows one to de-
fine various notions such as length, angles, areas (or, volumes), curvature,
gradients of functions and divergence of vector–fields. Most familiar curves
and surfaces, including n−spheres and Euclidean space, can be given the
structure of a Riemannian manifold.

Any smooth manifold admits a Riemannian metric, which often helps
to solve problems of differential topology. It also serves as an entry level
for the more complicated structure of pseudo–Riemannian manifolds, which
(in four dimensions) are the main objects of the general relativity theory.16

Every smooth submanifold of Rn (see extrinsic view above) has an in-
duced Riemannian metric g: the inner product on each tangent space is
the restriction of the inner product on Rn. Therefore, one could define
a Riemannian manifold as a metric space which is isometric to a smooth
submanifold of Rn with the induced intrinsic metric, where isometry here
is meant in the sense of preserving the length of curves.

Usually a Riemannian manifold M is defined as a smooth manifold
with a smooth section of positive–definite quadratic forms on the associated
tangent bundle TM . Then one has to work to show that it can be turned
to a metric space.

Even though Riemannian manifolds are usually ‘curved’ (e.g., the space–
time of general relativity), there is still a notion of ‘straight line’ on them:
the geodesics. These are curves which locally join their points along shortest
paths.

In Riemannian manifolds, the notions of geodesic completeness, topolog-
ical completeness and metric completeness are the same: that each implies
the other is the content of the Hopf–Rinow Theorem.

1.1.5.1 Riemann Surfaces

A Riemann surface, is a 1D complex manifold. Riemann surfaces can be
thought of as ‘deformed versions’ of the complex plane: locally near every
point they look like patches of the complex plane, but the global topology
can be quite different. For example, they can look like a sphere, or a torus,
or a couple of sheets glued together.

16A pseudo–Riemannian manifold is a variant of Riemannian manifold where the met-
ric tensor is allowed to have an indefinite signature (as opposed to a positive–definite

one).
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The main point of Riemann surfaces is that holomorphic (analytic com-
plex) functions may be defined between them. Riemann surfaces are nowa-
days considered the natural setting for studying the global behavior of these
functions, especially multi–valued functions such as the square root or the
logarithm.

Every Riemann surface is a 2D real analytic manifold (i.e., a surface),
but it contains more structure (specifically, a complex structure) which is
needed for the unambiguous definition of holomorphic functions. A 2D real
manifold can be turned into a Riemann surface (usually in several inequiv-
alent ways) iff it is orientable. So the sphere and torus admit complex
structures, but the Möbius strip, Klein bottle and projective plane do not.

Geometrical facts about Riemann surfaces are as ‘nice’ as possible, and
they often provide the intuition and motivation for generalizations to other
curves and manifolds. The Riemann–Roch Theorem is a prime example of
this influence.17

Examples of Riemann surfaces include: the complex plane18, open sub-
sets of the complex plane19, Riemann sphere20, and many others.

Riemann surfaces naturally arise in string theory as models of string

17Formally, let X be a Hausdorff space. A homeomorphism from an open subset

U ⊂ X to a subset of C is a chart. Two charts f and g whose domains intersect are said

to be compatible if the maps f ◦ g−1 and g ◦ f−1 are holomorphic over their domains. If
A is a collection of compatible charts and if any x ∈ X is in the domain of some f ∈ A,

then we say that A is an atlas. When we endow X with an atlas A, we say that (X,A)

is a Riemann surface.
Different atlases can give rise to essentially the same Riemann surface structure on X;

to avoid this ambiguity, one sometimes demands that the given atlas on X be maximal,

in the sense that it is not contained in any other atlas. Every atlas A is contained in a
unique maximal one by Zorn’s lemma.

18The complex plane C is perhaps the most trivial Riemann surface. The map f(z) = z

(the identity map) defines a chart for C, and f is an atlas for C. The map g(z) = z* (the
conjugate map) also defines a chart on C and g is an atlas for C. The charts f and g are

not compatible, so this endows C with two distinct Riemann surface structures.
19In a fashion analogous to the complex plane, every open subset of the complex plane

can be viewed as a Riemann surface in a natural way. More generally, every open subset
of a Riemann surface is a Riemann surface.

20The Riemann sphere is a useful visualization of the extended complex plane, which
is the complex plane plus a point at infinity. It is obtained by imagining that all the
rays emanating from the origin of the complex plane eventually meet again at a point

called the point at infinity, in the same way that all the meridians from the south pole
of a sphere get to meet each other at the north pole.

Formally, the Riemann sphere is obtained via a one–point compactification of the com-

plex plane. This gives it the topology of a 2–sphere. The sphere admits a unique complex
structure turning it into a Riemann surface. The Riemann sphere can be characterized

as the unique simply–connected, compact Riemann surface.
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interactions.

1.1.5.2 Riemannian Geometry

Riemannian geometry is the study of smooth manifolds with Riemannian
metrics g, i.e. a choice of positive–definite quadratic form g = 〈·, ·〉 on
a manifold’s tangent spaces which varies smoothly from point to point.
This gives in particular local ideas of angle, length of curves, and volume.
From those some other global quantities can be derived by integrating local
contributions.

The manifold may also be given an affine connection,21 which is roughly
an idea of change from one point to another. If the metric does not ‘vary
from point to point’ under this connection, we say that the metric and
connection are compatible, and we have a Riemann–Cartan manifold. If
this connection is also self–commuting when acting on a scalar function, we
say that it is torsion–free, and the manifold is a Riemannian manifold.

The Levi–Civita Connection

In Riemannian geometry, the Levi–Civita connection (named after Tul-
lio Levi–Civita) is the torsion–free Riemannian connection, i.e., a torsion–
free connection of the tangent bundle, preserving a given Riemannian metric
(or, pseudo–Riemannian metric).22 The fundamental Theorem of Rieman-

21Connection (or, covariant derivative) is a way of specifying a derivative of a vector–

field along another vector–field on a manifold. That is an application to tangent bundles;

there are more general connections, used to formulate intrinsic differential equations.
Connections give rise to parallel transport along a curve on a manifold. A connection

also leads to invariants of curvature, and the so–called torsion.
An affine connection is a connection on the tangent bundle TM of a smooth manifold

M . In general, it might have a non–vanishing torsion.

The curvature of a connected manifold can be characterized intrinsically by taking a
vector at some point and parallel transporting it along a curve on the manifold. Although

comparing vectors at different points is generally not a well–defined process, an affine
connection ∇ is a rule which describes how to legitimately move a vector along a curve
on the manifold without changing its direction (‘keeping the vector parallel’).

22Formally, let (M, g) be a Riemannian manifold (or pseudo–Riemannian manifold);
then an affine connection is the Levi–Civita connection if it satisfies the following con-
ditions:

(1) Preserves metric g, i.e., for any three vector–fields X,Y, Z ∈M we have Xg(Y, Z) =

g(∇XY, Z)+g(Y,∇XZ), whereXg(Y, Z) denotes the derivative of a function g(Y, Z)
along a vector–field X.

(2) Torsion–free, i.e., for any two vector–fields X,Y, Z ∈ M we have ∇XY − ∇YX =

[X,Y ], where [X,Y ] is the Lie bracket for vector–fields X and Y .
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nian geometry states that there is a unique connection which satisfies these
properties.23

In the theory of Riemannian and pseudo–Riemannian manifolds the
term covariant derivative is often used for the Levi–Civita connection. The
coordinate expression of the connection is given by Christoffel symbols.24

Note that connection is not a tensor, except on jet bundles.

The Fundamental Riemannian Tensors

The two basic objects in Riemannian geometry are the metric tensor and
the curvature tensor. The metric tensor g = 〈·, ·〉 is a symmetric second–
order (i.e., (0, 2)) tensor that is used to measure distance in a space. In other
words, given a Riemannian manifold, we make a choice of a (0, 2)−tensor
on the manifold’s tangent spaces.25 At a given point in the manifold, this
tensor takes a pair of vectors in the tangent space to that point, and gives a

23The Levi–Civita connection defines also a derivative along curves, usually denoted

by D. Given a smooth curve (a path) γ = γ(t) : R → M and a vector–field X = X(t)
on γ, its derivative along γ is defined by: DtX = ∇γ̇(t)X. This equation defines the

parallel transport for a vector–field X.
24The Christoffel symbols, named for Elwin Bruno Christoffel (1829–1900), are coor-

dinate expressions for the Levi–Civita connection derived from the metric tensor. The

Christoffel symbols are used whenever practical calculations involving geometry must be

performed, as they allow very complex calculations to be performed without confusion.
In particular, if we denote the unit vectors on M as ei = ∂/∂xi, then the Christoffel

symbols of the second kind are defined by Γkij = 〈∇ei ; ej , ek〉. Alternatively, using the

metric tensor gik (see below) we get the explicit expression for the Christoffel symbols
in a holonomic coordinate basis:

Γikl =
1

2
gim

„
∂gmk

∂xl
+
∂gml

∂xk
−
∂gkl

∂xm

«
.

In a general, nonholonomic coordinates they include the additional commutation coef-

ficients. The Christoffel symbols are used to define the covariant derivative of various
tensor–fields, as well as the Riemannian curvature. Also, they figure in the geodesic

equation:
d2xi

dt2
+ Γijk

dxj

dt

dxk

dt
= 0

for the curve xi = xi(t) on the smooth manifold M .
25The most familiar example is that of basic high–school geometry: the 2D Euclidean

metric tensor, in the usual x − y coordinates, reads: g =

»
1 0
0 1

–
. The associated length

of a curve is given by the familiar calculus formula: L =
R b
a

p
(dx)2 + (dy)2.

The unit sphere in R3 comes equipped with a natural metric induced from the ambient

Euclidean metric. In standard spherical coordinates (θ, φ) the metric takes the form:

g =

»
1 0

0 sin2 θ

–
, which is usually written as: g = dθ2 + sin2 θ dφ2.
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real number. This concept is just like a dot product, or inner product. This
function from vectors into the real numbers is required to vary smoothly
from point to point.26

On any Riemannian manifold, from its second–order metric tensor
g = 〈·, ·〉, one can derive the associated fourth–order Riemann curvature
tensor . This tensor is the most standard way to express curvature of Rie-
mannian manifolds, or more generally, any manifold with an affine connec-
tion, torsionless or with torsion.27

26Once a local coordinate system xi is chosen, the metric tensor appears as a ma-
trix, conventionally given by its components, g = gij . Given the metric tensor of a

Riemannian manifold and using the Einstein summation notation for implicit sums,

the length of a segment of a curve parameterized by t, from a to b, is defined as:

L =
R b
a

q
gij

dxi

dt
dxj

dt
dt. Also, the angle θ between two tangent vectors ui, vi is defined

as: cos θ =
giju

ivjq
|gijuiuj ||gijvivj |

.

27The Riemann curvature tensor is given in terms of a Levi–Civita connection ∇ (more
generally, an affine connection, or covariant differentiation, see below) by the following

formula:

R(u, v)w = ∇u∇vw −∇v∇uw −∇[u,v]w,

where u, v, w are tangent vector–fields and R(u, v) is a linear transformation of the
tangent space of the manifold; it is linear in each argument. If u = ∂/∂xi and v = ∂/∂xj
are coordinate vector–fields then [u, v] = 0 and therefore the above formula simplifies to

R(u, v)w = ∇u∇vw −∇v∇uw,

i.e., the curvature tensor measures non–commutativity of the covariant derivative. The

linear transformation w 7→ R(u, v)w is also called the curvature transformation or endo-

morphism.
In local coordinates xµ (e.g., in general relativity) the Riemann curvature tensor can

be written using the Christoffel symbols of the manifold’s Levi–Civita connection:

Rρσµν = ∂µΓρνσ − ∂νΓ
ρ
µσ + ΓρµλΓλνσ − ΓρνλΓλµσ .

The Riemann curvature tensor has the following symmetries:

R(u, v) = −R(v, u), 〈R(u, v)w, z〉 = −〈R(u, v)z, w〉,
R(u, v)w +R(v, w)u+R(w, u)v = 0.

The last identity was discovered by Ricci, but is often called the first Bianchi identity or
algebraic Bianchi identity, because it looks similar to the Bianchi identity below. These
three identities form a complete list of symmetries of the curvature tensor, i.e. given
any tensor which satisfies the identities above, one can find a Riemannian manifold with
such a curvature tensor at some point. Simple calculations show that such a tensor has

n2(n2 − 1)/12 independent components.
The Bianchi identity involves the covariant derivatives:

∇uR(v, w) +∇vR(w, u) +∇wR(u, v) = 0.
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1.1.5.3 Application: Lagrangian Mechanics

Riemannian manifolds are natural stage for the Lagrangian mechanics,
which is a re–formulation of classical mechanics introduced by Joseph Louis
Lagrange in 1788. In Lagrangian mechanics, the trajectory of an object is
derived by finding the path which minimizes the action, a quantity which
is the integral of the Lagrangian over time. The Lagrangian for classical
mechanics L is taken to be the difference between the kinetic energy T and
the potential energy V , so L = T − V . This considerably simplifies many
physical problems.

For example, consider a bead on a hoop. If one were to calculate the
motion of the bead using Newtonian mechanics, one would have a com-
plicated set of equations which would take into account the forces that
the hoop exerts on the bead at each moment. The same problem using
Lagrangian mechanics is much simpler. One looks at all the possible mo-
tions that the bead could take on the hoop and mathematically finds the
one which minimizes the action. There are fewer equations since one is
not directly calculating the influence of the hoop on the bead at a given
moment.

Lagrange’s Equations

The equations of motion in Lagrangian mechanics are Lagrange’s equa-
tions, also known as Euler–Lagrange equations. Below, we sketch out the
derivation of Lagrange’s equation from Newton’s laws of motion (see next
chapter for details).

Consider a single mechanical particle with mass m and position vector
~r. The applied force, ~F , can be expressed as the gradient (denoted ∇) of a
scalar potential energy function V (~r, t):

~F = −∇V.
A contracted curvature tensor is called the Ricci tensor . It is a symmetric second–order
tensor given by:

Rik =
∂Γlik

∂xl
−
∂Γlil

∂xk
+ ΓlikΓ

m
lm − ΓmilΓ

l
km.

Its further contraction gives the Ricci scalar curvature, R = gikRik. The Einstein tensor
Gik is defined in terms of the Ricci tensor Rik and the Ricci scalar R,

Gik = Rik −
1

2
gikR.
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Such a force is independent of third– or higher–order derivatives of ~r, so
Newton’s Second Law forms a set of 3 second–order ODEs. Therefore,
the motion of the particle can be completely described by 6 independent
variables, or degrees of freedom (DOF). An obvious set of variables is the
Cartesian components of ~r and their time derivatives, at a given instant of
time, that is position (x, y, z) and velocity (vx, vy, vz).

More generally, we can work with a set of generalized coordinates,
qi, (i = 1, ..., n), and their time derivatives, the generalized velocities, q̇i.
The position vector ~r is related to the generalized coordinates by some
transformation equation: ~r = ~r(qi, t). The term ‘generalized coordinates’
is really a leftover from the period when Cartesian coordinates were the
default coordinate system. In the qi−coordinates the Lagrange’s equations
read:

∂L

∂qi
=

d

dt

∂L

∂q̇i
,

where L = T − V is the system’s Lagrangian.
The time integral of the Lagrangian L, denoted S is called the action:28

S =
∫
Ldt.

Let q0 and q1 be the coordinates at respective initial and final times t0 and
t1. Using the calculus of variations, it can be shown the Lagrange’s equa-
tions are equivalent to the Hamilton’s principle: “The system undergoes
the trajectory between t0 and t1 whose action has a stationary value.” This
is formally written:

δS = 0,

where by ‘stationary’, we mean that the action does not vary to first–order
for infinitesimal deformations of the trajectory, with the end–points (q0, t0)

28The action principle is an assertion about the nature of motion, from which the
trajectory of a dynamical system subject to some forces can be determined. The path
of an object is the one that yields a stationary value for a quantity called the action.

Thus, instead of thinking about an object accelerating in response to applied forces,
one might think of them picking out the path with a stationary action. The action is
a scalar (a number) with the unit of measure for Action as Energy × Time. Although

equivalent in classical mechanics with Newton’s laws, the action principle is better suited
for generalizations and plays an important role in modern physics. Indeed, this principle

is one of the great generalizations in physical science. In particular, it is fully appreci-

ated and best understood within quantum mechanics. Richard Feynman’s path integral
formulation of quantum mechanics is based on a stationary–action principle, using path

integrals. Maxwell’s equations can be derived as conditions of stationary action.



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

24 Applied Differential Geometry: A Modern Introduction

and (q1, t1) fixed.29

The total energy function called Hamiltonian, denoted by H, is ob-
tained by performing a Legendre transformation on the Lagrangian.30 The
Hamiltonian is the basis for an alternative formulation of classical mechan-
ics known as Hamiltonian mechanics (see below).

In 1948, R.P. Feynman invented the path–integral formulation extending
the principle of least action to quantum mechanics for electrons and pho-

29More generally, a Lagrangian L[ϕi] of a dynamical system is a function of the dy-

namical variables ϕi(x) and concisely describes the equations of motion of the system
in coordinates xi, (i = 1, ..., n). The equations of motion are obtained by means of an

action principle, written as
δS
δϕi

= 0,

where the action is a functional

S[ϕi] =

Z
L[ϕi(s)] dnx,

(dnx = dx1...dxn).

The equations of motion obtained by means of the functional derivative are identical to

the usual Euler–Lagrange equations. Dynamical system whose equations of motion are
obtainable by means of an action principle on a suitably chosen Lagrangian are known

as Lagrangian dynamical systems. Examples of Lagrangian dynamical systems range

from the (classical version of the) Standard Model, to Newton’s equations, to purely
mathematical problems such as geodesic equations and the Plateau’s problem.

The Lagrangian mechanics is important not just for its broad applications, but also

for its role in advancing deep understanding of physics. Although Lagrange sought to
describe classical mechanics, the action principle that is used to derive the Lagrange’s

equation is now recognized to be deeply tied to quantum mechanics: physical action and
quantum–mechanical phase (waves) are related via Planck’s constant, and the Principle

of stationary action can be understood in terms of constructive interference of wave

functions. The same principle, and the Lagrangian formalism, are tied closely to Noether
Theorem, which relates physical conserved quantities to continuous symmetries of a

physical system; and Lagrangian mechanics and Noether’s Theorem together yield a

natural formalism for first quantization by including commutators between certain terms
of the Lagrange’s equations of motion for a physical system.

More specifically, in field theory, occasionally a distinction is made between the La-

grangian L, of which the action is the time integral S =
R
Ldt and the Lagrangian

density L, which one integrates over all space–time to get the 4D action:

S[ϕi] =

Z
L[ϕi(x)] d4x.

The Lagrangian is then the spatial integral of the Lagrangian density.
30The Hamiltonian is the Legendre transform of the Lagrangian:

H (q, p, t) =
X
i

q̇ipi − L(q, q̇, t).
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tons. In this formulation, particles travel every possible path between the
initial and final states; the probability of a specific final state is obtained by
summing over all possible trajectories leading to it. In the classical regime,
the path integral formulation cleanly reproduces the Hamilton’s principle,
as well as the Fermat’s principle in optics.

1.1.5.4 Finsler manifolds

Finsler manifolds represent generalization of Riemannian manifolds. A
Finsler manifold allows the definition of distance, but not of angle; it is
an analytic manifold in which each tangent space is equipped with a norm
‖.‖ in a manner which varies smoothly from point to point. This norm can
be extended to a metric, defining the length of a curve; but it cannot in
general be used to define an inner product. Any Riemannian manifold (but
not a pseudo–Riemannian manifold) is a Finsler manifold.31

1.1.6 Symplectic Manifolds: Phase–Spaces for Hamilto-

nian Mechanics

A symplectic manifold is a smooth manifold M equipped with a closed, non-
degenerate, 2–form ω called the symplectic volume form, or Liouville mea-
sure. This condition forces symplectic manifolds to be even–dimensional.
Cotangent bundles, which arise as phase–spaces in Hamiltonian mechanics,
are the motivating example, but many compact manifolds also have sym-
plectic structure. All surfaces have a symplectic structure, since a symplec-
tic structure is simply a volume form. The study of symplectic manifolds
is called symplectic geometry/topology.

Symplectic manifolds arise naturally in abstract formulations of classical
mechanics as the cotangent bundles of configuration manifolds: the set of
all possible configurations of a system is modelled as a manifold M , and
this manifold’s cotangent bundle T ∗M describes the phase–space of the

31Formally, a Finsler manifold is a differentiable manifold M with a Banach norm

defined over each tangent space such that the Banach norm as a function of position is
smooth, usually it is assumed to satisfy the following regularity condition:

For each point x of M , and for every nonzero vector X in the tangent space T ×M ,

the second derivative of the function L : T ×M → R given by L(w) = 1
2
‖w‖2 at X is

positive definite.

The length of a smooth curve γ in a Finsler manifold M is given by
R ‚‚‚ dγdt (t)

‚‚‚ dt.
Length is invariant under reparametrization. With the above regularity condition,

geodesics are locally length–minimizing curves with constant speed, or equivalently

curves in whose energy function,
R ‚‚‚ dγdt (t)

‚‚‚2
dt, is extremal under functional derivatives.
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dynamical system.32

Any real–valued differentiable function H on a symplectic manifold can
serve as an energy function or Hamiltonian.33 Associated to any Hamilto-
nian is a Hamiltonian vector–field .34 The integral curves of the Hamiltonian

32Hamiltonian mechanics is a re–formulation of classical mechanics that was invented

in 1833 by William Rowan Hamilton. It arose from Lagrangian mechanics, a previous

re–formulation of classical Newtonian mechanics, introduced by J.L. Lagrange in 1788. It
can however be formulated without recourse to Lagrangian mechanics, using symplectic

manifolds. It is based on canonical Hamilton’s equations of motion:

ṗ = −
∂H

∂q
, q̇ =

∂H

∂p
,

with canonical coordinate q and momentum p variables and the Hamiltonian (total

energy) function H = H(q, p). An important special case consists of those Hamiltonians

that are quadratic forms, that is, Hamiltonians that can be written as:

H(q, p) =
1

2
〈p, p〉q

This Hamiltonian consists entirely of the kinetic term. If one considers a Rieman-

nian manifold, or a pseudo–Riemannian manifold, so that one has an invertible, non–
degenerate metric, then 〈·, ·〉q is simply the inverse of the Riemannian metric g.

33In contrast, the quantum–mechanical HamiltonianH is the observable corresponding

to the total energy of the system. It generates the time evolution of quantum states (see,
e.g., [Ivancevic and Ivancevic (2006)]). If the wave–function |ψ(t)〉 represents the state

of the quantum system at time t, then its time evolution is given by the Schrödinger

equation:

H |ψ(t)〉 = i~
∂

∂t
|ψ(t)〉 ,

where ~ is the Planck constant. If the quantum Hamiltonian H is independent of time,

then the time evolution is given by:

|ψ(t)〉 = exp

„
−

iHt

~

«
|ψ(0)〉 .

34In canonical coordinates (qi, pi) on a symplectic manifold M , the symplectic form ω
can be written as ω =

P
n dq

i∧dpi and thus the Hamiltonian vector–field takes the form

XH =
“
∂H
∂pi

,− ∂H
∂qi

”
. The Hamiltonian vector–field XH also induces a special operation,

the Poisson bracket , which is a bilinear map turning two differentiable functions on a
symplectic manifold M into a function on M . In particular, if we have two functions, f

and g, then the Poisson bracket {f, g} = ω(df, dg). In canonical coordinates (qi, pi) on
the phase–space manifold, the Poisson bracket takes the form

{f, g} = ω(df, dg) =

nX
i=1

»
∂f

∂qi
∂g

∂pi
−
∂f

∂pi

∂g

∂qi

–
.

The time evolution of a function f on the symplectic manifold can be given as a one–
parameter family of symplectomorphisms, with the time t being the parameter. The
total time derivative can be written as d

dt
f = ∂

∂t
f +{f,H} = ∂

∂t
f −{H, f}. The Poisson
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vector–field are solutions to the Hamilton–Jacobi equation.35

The Hamiltonian vector–field defines a flow on the symplectic manifold,
called a Hamiltonian flow or symplectomorphism. By Liouville’s Theorem,
Hamiltonian flows preserve the volume form on the phase space.36

Symplectic manifolds are special cases of a Poisson manifold; the defi-
nition of a symplectic manifold requires that the symplectic 2–form ω be
non–degenerate everywhere. If this condition is violated, the manifold may
still be a Poisson manifold .37 Also, a symplectic manifold endowed with a
metric that is compatible with the symplectic form is a Kähler manifold .
bracket acts on functions on the symplectic manifold, thus giving the space of functions
on the manifold the structure of a Lie algebra (see Lie groups below).

35The Hamilton–Jacobi equation (HJE) is a particular canonical transformation of the

classical Hamiltonian which results in a first order, nonlinear differential equation whose
solution describes the behavior of the system. While the canonical Hamilton’s equations

of motion represent the system of first order ODEs, two for each coordinate, the HJE is

a single PDE of one variable for each coordinate. If we have a Hamiltonian of the form
then the HJE for that system is

H

„
q1, . . . , qn;

∂S

∂q1
, . . . ,

∂S

∂qn
; t

«
+
∂S

∂t
= 0,

where S represents the classical action functional. The HJE can be used to solve several

problems elegantly, such as the Kepler problem.
36Liouville’s Theorem, named after the French mathematician Joseph Liouville, is a

key Theorem in classical statistical and Hamiltonian mechanics. It asserts that the

phase–space distribution function is constant along the trajectories of the system – that

is that the density of system points in the vicinity of a given system point travelling
through phase–space is constant with time.

The Liouville equation describes the time evolution of a phase–space distribution
function, or Liouville measure. Consider a dynamical system with coordinates qi and

conjugate momenta pi (i = 1, ..., n). The time evolution of the phase–space distribution

ρ(p, q) is governed by the Liouville equation:

dρ

dt
=
∂ρ

∂t
+

nX
i=1

„
∂ρ

∂qi
q̇i +

∂ρ

∂pi
ṗi

«
= 0.

Time derivatives are denoted by dots, and are evaluated according to Hamilton’s equa-

tions for the system. The Liouville’s Theorem states that the phase–space distribution
function ρ(p, q) is constant along any trajectory in phase space. The Theorem is often
restated in terms of the Poisson bracket with the Hamiltonian function H = H(q, p):

∂ρ

∂t
= −{ρ,H}.

Geometrically, this Theorem says that Liouville measure is invariant under the Hamil-

tonian flow .
37Closely related to even–dimensional symplectic manifolds are the odd–dimensional

manifolds known as contact manifolds. Any (2n+ 1)−D contact manifold (M,ω) gives

rise to a (2n+ 2)−D symplectic manifold (M × R, d(etω)).
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There are several natural geometric notions of submanifold of a sym-
plectic manifold. There are symplectic submanifolds (potentially of any
even dimension), where the symplectic form is required to induce a sym-
plectic form on the submanifold. The most important case of these is that
of Lagrangian submanifold , which are isotropic submanifolds of maximal di-
mension, namely half the dimension of the ambient manifold. Lagrangian
submanifolds arise naturally in many physical and geometric situations.38

1.1.7 Lie Groups

A Lie group is smooth manifold which also carries a group structure whose
product and inversion operations are smooth as maps of manifolds. These
objects arise naturally in describing symmetries.

A Lie group is a group whose elements can be continuously parametrized
by real numbers, such as the rotation group SO(3), which can be
parametrized by the Euler angles. More formally, a Lie group is an an-
alytic real or complex manifold that is also a group, such that the group
operations multiplication and inversion are analytic maps. Lie groups are
important in mathematical analysis, physics and geometry because they
serve to describe the symmetry of analytical structures. They were intro-
duced by Sophus Lie in 1870 in order to study symmetries of differential
equations.

While the Euclidean space Rn is a real Lie group (with ordinary vector
addition as the group operation), more typical examples are given by matrix
Lie groups, i.e., groups of invertible matrices (under matrix multiplication).
For instance, the group SO(3) of all rotations in R3 is a matrix Lie group.

One classifies Lie groups regarding their algebraic properties39 (simple,
semisimple, solvable, nilpotent, Abelian), their connectedness (connected

38One major example is that the graph of a symplectomorphism in the product sym-

plectic manifold (M ×M,ω × −ω) is Lagrangian. Their intersections display rigidity

properties not possessed by smooth manifolds; the Arnold conjecture gives the sum of
the submanifold’s Betti numbers as a lower bound for the number of self intersections of
a smooth Lagrangian submanifold, rather than the Euler characteristic in the smooth

case.
39If G and H are Lie groups (both real or both complex), then a Lie–group–

homomorphism f : G→ H is a group homomorphism which is also an analytic map (one

can show that it is equivalent to require only that f be continuous). The composition of
two such homomorphisms is again a homomorphism, and the class of all (real or com-

plex) Lie groups, together with these morphisms, forms a category. The two Lie groups

are called isomorphic iff there exists a bijective homomorphism between them whose
inverse is also a homomorphism. Isomorphic Lie groups do not need to be distinguished

for all practical purposes; they only differ in the notation of their elements.
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or simply connected) and their compactness.40

To every Lie group, we can associate a Lie algebra which completely
captures the local structure of the group (at least if the Lie group is con-
nected).41

40An n−torus Tn = S1×S1×· · ·×S1 (as defined above) is an example of a compact

Abelian Lie group. This follows from the fact that the unit circle S1 is a compact Abelian
Lie group (when identified with the unit complex numbers with multiplication). Group

multiplication on Tn is then defined by coordinate–wise multiplication.

Toroidal groups play an important part in the theory of compact Lie groups. This is
due in part to the fact that in any compact Lie group one can always find a maximal

torus; that is, a closed subgroup which is a torus of the largest possible dimension.
41Conventionally, one can regard any field X of tangent vectors on a Lie group as a

partial differential operator, denoting by Xf the Lie derivative (the directional deriva-

tive) of the scalar field f in the direction of X. Then a vector–field on a Lie group G is

said to be left–invariant if it commutes with left translation, which means the following.
Define Lg [f ](x) = f(gx) for any analytic function f : G→ R and all g, x ∈ G. Then the

vector–field X is left–invariant iff XLg = LgX for all g ∈ G. Similarly, instead of R, we

can use C. The set of all vector–fields on an analytic manifold is a Lie algebra over R
(or C).

On a Lie group G, the left–invariant vector–fields form a subalgebra, the Lie algebra

g associated with G. This Lie algebra is finite–dimensional (it has the same dimension
as the manifold G) which makes it susceptible to classification attempts. By classifying

g, one can also get a handle on the group G. The representation theory of simple Lie
groups is the best and most important example.

Every element v of the tangent space Te at the identity element e of G determines a

unique left–invariant vector–field whose value at the element g of G is denoted by gv;
the vector space underlying the Lie algebra g may therefore be identified with Te.

Every vector–field v in the Lie algebra g determines a function c : R → G whose

derivative everywhere is given by the corresponding left–invariant vector–field: c′(t) =
TLc(t)v and which has the property: c(s + t) = c(s)c(t), (for all s and t) (the

operation on the r.h.s. is the group multiplication in G). The formal similarity of this

formula with the one valid for the elementary exponential function justifies the definition:
exp(v) = c(1). This is called the exponential map, and it maps the Lie algebra g into

the Lie group G. It provides a diffeomorphism between a neighborhood of 0 in g and

a neighborhood of e in G. This exponential map is a generalization of the exponential
function for real numbers (since R is the Lie algebra of the Lie group of positive real

numbers with multiplication), for complex numbers (since C is the Lie algebra of the
Lie group of non–zero complex numbers with multiplication) and for matrices (since

M(n,R) with the regular commutator is the Lie algebra of the Lie group GL(n,R) of all
invertible matrices). As the exponential map is surjective on some neighborhood N of e,
it is common to call elements of the Lie algebra infinitesimal generators of the group G.

The exponential map and the Lie algebra determine the local group structure of every

connected Lie group, because of the Baker–Campbell–Hausdorff formula: there exists a
neighborhood U of the zero element of the Lie algebra g, such that for u, v ∈ U we have

exp(u)exp(v) = exp(u+ v + 1/2[u, v] + 1/12[[u, v], v]− 1/12[[u, v], u]− ...),

where the omitted terms are known and involve Lie brackets of four or more elements.
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1.1.7.1 Application: Physical Examples of Lie Groups

Here are a few examples of Lie groups and their relations to other areas of
mathematics and physics:

(1) Euclidean space Rn is an Abelian Lie group (with ordinary vector ad-
dition as the group operation).

(2) The group GLn(R) of invertible matrices (under matrix multiplication)
is a Lie group of dimension n2. It has a subgroup SLn(R) of matrices
of determinant 1 which is also a Lie group.

(3) The group On(R) generated by all rotations and reflections of an nD
vector space is a Lie group called the orthogonal group. It has a sub-
group of elements of determinant 1, called the special orthogonal group
SO(n), which is the group of rotations in Rn.42

(4) Spin groups are double covers of the special orthogonal groups (used
e.g., for studying fermions in quantum field theory).

(5) The group Sp2n(R) of all matrices preserving a symplectic form is a
Lie group called the symplectic group.

(6) The Lorentz group and the Poincaré group of isometries of space–time
are Lie groups of dimensions 6 and 10 that are used in special relativity.

(7) The Heisenberg group is a Lie group of dimension 3, used in quantum
mechanics.

(8) The unitary group U(n) is a compact group of dimension n2 consisting
of unitary matrices. It has a subgroup of elements of determinant 1,
called the special unitary group SU(n).

(9) The group U(1)× SU(2)× SU(3) is a Lie group of dimension 1 + 3 +
8 = 12 that is the gauge group of the Standard Model of elementary
particles, whose dimension corresponds to: 1 photon + 3 vector bosons
+ 8 gluons.

In case u and v commute, this formula reduces to the familiar exponential law :

exp(u)exp(v) = exp(u+ v).

Every homomorphism f : G→ H of Lie groups induces a homomorphism between the

corresponding Lie algebras g and h. The association G =⇒ g is called the Lie Functor .
42For example, in terms of orthogonal matrices, the rotations about the standard

Cartesian coordinate axes (x, y, z) in R3 through an angle φ are given by:

Rx(φ) =

0@1 0 0

0 cosφ − sinφ
0 sinφ cosφ

1A , Ry(φ) =

0@ cosφ 0 sinφ

0 1 0
− sinφ 0 cosφ

1A , Rz(φ) =

0@cosφ − sinφ 0

sinφ cosφ 0
0 0 1

1A
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1.1.8 Application: A Bird View on Modern Physics

1.1.8.1 Three Pillars of 20th Century Physics

In this subsection we make small digression into the field of modern physics,
which is the major customer for machinery of differential geometry. Ar-
guably, the three most influential geniuses that shaped the world of the
20th Century physics, and at the same time showed the pathway to the
current unified physical ‘theory of everything’, have been:

(1) In the first third of the Century, it had been Albert Einstein.
(2) In the second third of the Century, it was Richard Feynman.
(3) At the end of the Century – and still today, it has been Edward Witten.

It is well–known that Einstein had three periods of his scientific career:

(1) Before 1905, when he formulated Special Relativity in a quick series of
papers published in Annalen der Physik (the most prestigious physics
journal of the time). This early period was dominated by his ‘thought
experiments’, i.e., ‘concrete physical images’, described in the language
of non–professional mathematics. You can say, it was almost pure
visualization. This quick and powerful series of ground–braking papers
(with just enough maths to be accepted by scientific community) gave
him a reputation of the leading physicist and scientist.43

(2) Although an original and brilliant theory, Special Relativity was not
complete, which was obvious to Einstein. So, he embarked onto the
general relativity voyage, incorporating gravitation. Now, for this goal,
his maths was not strong enough. He spent 10 years fighting with
gravity, using the ‘hard’ Riemannian geometry, and talking to the lead-
ing mathematician of the time, David Hilbert . At the end, they both
submitted the same gravitational equations of general relativity (only
derived in different ways) to Annalen der Physik in November of 1915.

(3) Although even today considered as the most elegant physical theory,
General Relativity is still not complete: it cannot live together in the
same world with quantum mechanics. So, Einstein embarked onto the
last journey of his life, the search for unified field theory – and he
‘failed’44 after 30 years of unsuccessful struggle with a task to big for

43Recall that the Nobel Prize was ‘in the air’ for Einstein for more than 15 years; at

the end he got it in 1921, for his discovery of the Photo–Electric Effect.
44Einstein ‘failed’ in the same way as Hilbert ‘failed’ with his Program of axiomatic

formalization of all mathematical sciences. Their apparent ‘failure’ still influences de-

velopment of physics and mathematics, apparently converging into superstring theory.
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one man.

Feynman’s story is very different. All his life he was a profoundly orig-
inal scientist, similar to the young Einstein. He refused to take anybody’s
word for anything, which meant that he had to reinvent for himself almost
the whole of physics. It took him five years of concentrated work to rein-
vent quantum mechanics. At the end, he got a new version of quantum
mechanics that he (and only he) could understand. In orthodox physics it
was said: Suppose an electron is in this state at a certain time, then you
calculate its future behavior by solving Schrodinger equation. Instead of
this, Feynman said simply: “The electron does whatever it likes.” A his-
tory of the electron is any possible path in space and time. The behavior
of the electron is just the result of adding together all histories according
to some simple rules that Feynman worked out. His path–integral and
related Feynman diagrams, for long defied rigorous mathematical founda-
tion. However, it is still the most powerful calculation tool in quantum
(and statistical) mechanics. Later, Feynman generalized it to encompass
physical fields – which led to his version of quantum electrodynamics (the
first prototype of a quantum field theory) – and his Nobel Prize. All his
career he consistently distrusted official mathematics and invented his own
maths underpinned with a direct physical intuition.

If the story had ended here, we might have said that visual physical
intuition is leading the way of science. However, the story does not end here.
The leading authority in contemporary physics is Ed Witten, a physicist
who did not get the Nobel Prize, but rather the Fields Medal – together
with his ‘superstring theory of everything’.45 Witten works at the same
place where Einstein spent the last 30 years of his life – at the Princeton
Institute of Advanced Study. He is dreaming Einstein’s dream: a unified
theory of everything, using the most powerful maths possible. His prophecy,
delivered at a turn of the Century, has been: “In the 21 fist Century,
mathematics will be dominated by string theory.”

When superstring theory arrived in physics in 1984 as a potential the-
ory of the universe, it was considered by mainstream physicists as little
better than religion in terms of constituting a viable, testable theory. In
string theory, the fundamental particles were string–like, rather than point
particles; the universe had 10 or 11 dimensions, rather than four; and the

Their joined work on gravity is called the Einstein–Hilbert action.
45Witten joined the ‘old Green–Schwarz bosonic string community’ after he won his

Fields Medal for topological quantum field theory (TQFT)



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Introduction 33

theory itself existed at an energy so far from earthly energies that it took a
leap of enormous faith to imagine the day when an experiment could ever
test it. Quite simply, string theory seemed an excessively esoteric pursuit,
which it still is.

1.1.8.2 String Theory in ‘Plain English’

With modern (super)string theory,46 scientists might be on the verge of ful-
filling Einstein’s dream: formulating the sought for ‘theory of everything’,
which would unite our understanding of the four fundamental forces of Na-
ture47 into a single equation (like, e.g., Newton, or Einstein, or Schrödinger
equation) and explaining the basic nature of matter and energy.

Fig. 1.2 All particles and forces of Nature are supposed to be manifestations of different

resonances of tiny 1D strings vibrating in a 10D hyper–space: (a) An ordinary matter;

(b) A molecule; (c) An atom (around ten billionths of a centimeter in diameter; (d) A
subatomic particle (e.g., proton – around 100.000 times smaller than an atom); (e) A

super–string (around 1020 times smaller than a proton).

In simplest terms, string theory states that all particles and forces of Na-
ture are manifestations of different resonances of tiny 1–dimensional strings
(rather than the zero–dimensional points (particles) that are the basis of
the Standard Model of particle physics), vibrating in 10 dimensions (see

46Recall that ‘superstring’ means ‘supersymmetric string’. The supersymmetry (of-
ten abbreviated SUSY) is a hypothetical symmetry that relates bosons (particles that

transmit forces) and fermions (particles of matter). In supersymmetric theories, every

fundamental fermion has a bosonic ‘superpartner’ and vice versa.
47Recall that the four fundamental forces are: (i) Gravity (it describes the attractive

force of matter; it is the same force that holds planets and moons in their orbits and keeps
our feet on the ground; it is the weakest force of the four by many orders of magnitude);
(ii) Electromagnetism (it describes how electric and magnetic fields work together; it

also makes objects solid; once believed to be two separate forces, could be described by
a relatively simple set of Maxwell equations); (iii) Strong nuclear force (it is responsible
for holding the nucleus of atoms together; without it, protons would repel one another
so no elements other than hydrogen, which has only one proton, would be able to form);

(iv) Weak nuclear force (it explains beta decay and the associated radioactivity; it also
describes how elementary particles can change into other particles with different energies
and masses).
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Figure 1.2).
Recall that the Standard Model is a theory which describes the strong,

weak, and electromagnetic fundamental forces, as well as the fundamental
particles that make up all matter. Developed between 1970 and 1973, it
is a quantum field theory , and consistent with both quantum mechanics
and special relativity. The Standard Model contains both fermionic and
bosonic fundamental particles. Fermions are particles which possess half–
integer spin, obey the Fermi–Dirac statistics and also the Pauli exclusion
principle, which states that no fermions can share the same quantum state.
On the other hand, bosons possess integer spin, obey the Bose–Einstein
statistics, and do not obey the Pauli exclusion principle. In the Standard
Model, the theory of the electro–weak interaction (which describes the weak
and electromagnetic interactions) is combined with the theory of quantum
chromodynamics. All of these theories are gauge theories,48 meaning that
they model the forces between fermions by coupling them to bosons which

48Recall that the familiar Maxwell gauge field theory(or, in the non–Abelian case,

Yang–Mills gauge field theory) is defined in terms of the fundamental gauge field (which
geometrically represents a connection) Aµ = (A0, ~A), that is µ = 0, 3. Here A0 is the

scalar potential and ~A is the vector potential. The Maxwell Lagrangian

LM = −
1

4
FµνF

µν −AµJ
µ (1.1)

is expressed in terms of the field strength tensor (curvature) Fµν = ∂µAν −∂νAµ, and a
matter current Jµ that is conserved: ∂µJµ = 0. This Maxwell Lagrangian is manifestly

invariant under the gauge transformation Aµ → Aµ + ∂µΛ; and, correspondingly, the

classical Euler-Lagrange equations of motion

∂µF
µν = Jν (1.2)

are gauge invariant. Observe that current conservation ∂νJν = 0 follows from the

antisymmetry of Fµν .
Note that this Maxwell theory could easily be defined in any space–time dimension d

simply by taking the range of the space–time index µ on the gauge field Aµ to be µ =

0, 1, 2, . . . , (d− 1) in dD space–time. The field strength tensor is still the antisymmetric
tensor Fµν = ∂µAν − ∂νAµ, and the Maxwell Lagrangian (1.1) and the field equations

of motion (1.2) do not change their form. The only real difference is that the number
of independent fields contained in the field strength tensor Fµν is different in different
dimensions. (Since Fµν can be regarded as a d × d antisymmetric matrix, the number

of fields is equal to 1
2
d(d− 1).) So at this level, planar (2 + 1)D Maxwell theory is quite

similar to the familiar (3 + 1)D Maxwell theory. The main difference is simply that the
magnetic field is a (pseudo–) scalar B = εij∂iAj in (2 + 1)D, rather than a (pseudo–)

vector ~B = ~∇ × ~A in (3 + 1)D. This is just because in (2 + 1)D the vector potential
~A is a 2D vector, and the curl in 2D produces a scalar. On the other hand, the electric

field ~E = −~∇A0 − ~̇A is a 2D vector. So the antisymmetric 3× 3 field–strength tensor
has three nonzero field components: two for the electric field ~E and one for the magnetic
field B.
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mediate the forces. The Lagrangian of each set of mediating bosons is
invariant under a transformation called a gauge transformation, so these
mediating bosons are referred to as gauge bosons. There are twelve different
‘flavours’ of fermions in the Standard Model. The proton, neutron are

The real novelty of (2 + 1)D is that, instead of considering this ‘reduced’ form of

Maxwell theory, we can also define a completely different type of gauge theory: a Chern–
Simons gauge theory. It satisfies the usual criteria for a sensible gauge theory: it is

Lorentz invariant, gauge invariant, and local. The Chern–Simons Lagrangian is (see,

e.g., [Dunne (1999)])

LCS =
κ

2
εµνρAµ∂νAρ −AµJ

µ. (1.3)

Two things are important about this Chern–Simons Lagrangian. First, it does not look
gauge invariant, because it involves the gauge field Aµ itself, rather than just the (man-

ifestly gauge invariant) field strength Fµν . Nevertheless, under a gauge transformation,

the Chern–Simons Lagrangian changes by a total space–time derivative

δLCS =
κ

2
∂µ (λ εµνρ∂νAρ) . (1.4)

Therefore, if we can neglect boundary terms then the corresponding Chern–Simons ac-

tion,

SCS =

Z
d3xLCS,

is gauge invariant. This is reflected in the fact that the classical Euler–Lagrange equa-
tions

κ

2
εµνρFνρ = Jµ, or equivalently Fµν =

1

κ
εµνρJ

ρ, (1.5)

are clearly gauge invariant. Note that the Bianchi identity, εµνρ∂µFνρ = 0, is com-
patible with the current conservation: ∂µJµ = 0, which follows from the Noether

Theorem. A second important feature of the Chern–Simons Lagrangian (1.3) is that

it is first–order in space–time derivatives. This makes the canonical structure of these
theories significantly different from that of Maxwell theory. A related property is that

the Chern–Simons Lagrangian is particular to (2 + 1)D, in the sense that we cannot

write down such a term in (3+1)D – the indices simply do not match up. Actually, it is
possible to write down a ‘Chern–Simons theory’ in any odd space–time dimension (for

example, the Chern–Simons Lagrangian in 5D space–time is L = εµνρστAµ∂νAρ∂σAτ ),

but it is only in (2 + 1)D that the Lagrangian is quadratic in the gauge field.
Recently, increasingly popular has become Seiberg–Witten gauge theory. It refers to

a set of calculations that determine the low–energy physics, namely the moduli space
and the masses of electrically and magnetically charged supersymmetric particles as
a function of the moduli space. This is possible and nontrivial in gauge theory with

N = 2 extended supersymmetry, by combining the fact that various parameters of the
Lagrangian are holomorphic functions (a consequence of supersymmetry) and the known
behavior of the theory in the classical limit. The extended supersymmetry is supersym-

metry whose infinitesimal generators Qαi carry not only a spinor index α, but also an
additional index i = 1, 2... The more extended supersymmetry is, the more it constrains

physical observables and parameters. Only the minimal (un–extended) supersymmetry

is a realistic conjecture for particle physics, but extended supersymmetry is very im-
portant for analysis of mathematical properties of quantum field theory and superstring

theory.
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made up of two of these: the up quark and down quark, bound together
by the strong nuclear force. Together with the electron (bound to the
nucleus in atoms by the electromagnetic force), those fermions constitute
the vast majority of everyday matter. To date, almost all experimental
tests of the three forces described by the Standard Model have agreed with
its predictions. However, the Standard Model is not a complete theory
of fundamental interactions, primarily because it does not describe the
gravitational force.

For this reason, string theories are able to avoid problems associated
with the presence of point–like particles in a physical theory. The basic
idea is that the fundamental constituents of Nature are strings of energy
of the Planck length (around 10−35 m), which vibrate at specific resonant
frequencies (modes). Another key claim of the theory is that no measurable
differences can be detected between strings that wrap around dimensions
smaller than themselves and those that move along larger dimensions (i.e.,
physical processes in a dimension of size R match those in a dimension of
size 1/R). Singularities are avoided because the observed consequences of
‘big crunches’ never reach zero size. In fact, should the universe begin a
‘big crunch’ sort of process, string theory dictates that the universe could
never be smaller than the size of a string, at which point it would actually
begin expanding.

Recently, physicists have been exploring the possibility that the strings
are actually membranes, that is strings with 2 or more dimensions (mem-
branes are refereed to as p−branes, where p is the number of dimensions,
see Figure 1.3). Every p−brane sweeps out a (p + 1)−dimensional world–
volume as it propagates through space–time. A special class of p−branes are
the so–called D–branes, named for the mathematician Johann Dirichlet.49

D–branes are typically classified by their dimension, which is indicated by
a number written after the D: a D0–brane is a single point, a D1–brane is
a line (sometimes called a ‘D-string’), a D2–brane is a plane, and a D25–
brane fills the highest–dimensional space considered in old bosonic string

49Recall that Dirichlet boundary conditions have long been used in the study of fluids

and potential theory, where they involve specifying some quantity all along a boundary.

In fluid dynamics, fixing a Dirichlet boundary condition could mean assigning a known
fluid velocity to all points on a surface; when studying electrostatics, one may establish

Dirichlet boundary conditions by fixing the voltage to known values at particular loca-

tions, like the surfaces of conductors. In either case, the locations at which values are
specified is called a D–brane. These constructions take on special importance in string

theory, because open strings must have their endpoints attached to D–branes.
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theory.50

Fig. 1.3 Visualizing strings and p−branes.

According to superstring theory, all the different types of elementary
particles can be derived from only five types of interactions between just
two different states of strings, open and closed : (i) an open string can split
to create two smaller open strings (see Figure 1.4); (ii) a closed string can
split to create two smaller closed strings; (iii) an open string can form both
a new open and a new closed string; (iv) two open strings can collide and
create two new open strings; (v) an open string can join its ends to become a
closed string. All the forces and particles of Nature are just different modes
of vibrating strings (somewhat like vibrating strings on string instruments
to produce a music: different strings have different frequencies that sound
as different notes and combining several strings gives chords). For example,
gravity is caused by the lowest vibratory mode of a circular string. Higher
frequencies and different interactions of superstrings create different forms
of matter and energy.

50The central idea of the so–called brane–world scenario is that our visible 3D universe

is entirely restricted to a D3–brane embedded in a higher–dimensional space–time, called

the bulk . The additional dimensions may be taken to be compact, in which case the
observed universe contains the extra dimensions, and then no reference to the bulk is

appropriate in this context. In the bulk model, other branes may be moving through
this bulk. Interactions with the bulk, and possibly with other branes, can influence our
brane and thus introduce effects not seen in more standard cosmological models. As

one of its attractive features, the model can ‘explain’ the weakness of gravity relative
to the other fundamental forces of nature. In the brane picture, the other three forces
(electromagnetism and the weak and strong nuclear forces) are localized on the brane,
but gravity has no such constraint and so much of its attractive power ‘leaks’ into the
bulk. As a consequence, the force of gravity should appear significantly stronger on small

(sub–millimetre) scales, where less gravitational force has ‘leaked’. Various experiments
are currently underway to test this. For example, in a particle accelerator, if a graviton
were to be discovered and then observed to suddenly disappear, it might be assumed

that the graviton ‘leaked’ into the bulk.
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Fig. 1.4 An elementary particle split (a) and string split (b). When a single elementary

particle splits in two particles, it occurs at a definite moment in space–time. On the

other hand, when a string splits into two strings, different observers will disagree about
when and where this occurred. A relativistic observer who considers the dotted line to

be a surface of constant time believes the string broke at the space–time point P while
another observer who considers the dashed line to be a surface of constant time believes

the string broke at Q.

String theory is a possible solution of the core quantum gravity problem,
and in addition to gravity it can naturally describe interactions similar to
electromagnetism and the other forces of nature. Superstring theories in-
clude fermions, the building blocks of matter, and incorporate the so–called
supersymmetry .51 It is not yet known whether string theory will be able

51In a world based on supersymmetry, when a particle moves in space, it also can

vibrate in the new fermionic dimensions. This new kind of vibration produces a ‘cousin’
or ‘superpartner’ for every elementary particle that has the same electric charge but

differs in other properties such as spin. Supersymmetric theories make detailed pre-

dictions about how superpartners will behave. To confirm supersymmetry, scientists
would like to produce and study the new supersymmetric particles. The crucial step

is building a particle accelerator that achieves high enough energies. At present, the
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to describe a universe with the precise collection of forces and matter that
is observed, nor how much freedom to choose those details that the theory
will allow. String theory as a whole has not yet made falsifiable predictions
that would allow it to be experimentally tested, though various special cor-
ners of the theory are accessible to planned observations and experiments.
Work on string theory has led to advances in both mathematics (mainly
in differential and algebraic geometry) and physics (supersymmetric gauge
theories).52

Historically, string theory was originally invented to explain peculiarities

highest–energy particle accelerator is the Tevatron at Fermilab near Chicago. There,
protons and antiprotons collide with an energy nearly 2,000 times the rest energy of

an individual proton (given by Einsteins well–known formula E = mc2). Earlier in

this decade, physicists capitalized on Tevatron’s unsurpassed energy in their discovery
of the top quark, the heaviest known elementary particle. After a shutdown of several

years, the Tevatron resumed operation in 2001 with even more intense particle beams.
In 2007, the available energies will make a ‘quantum jump’ when the European Labo-

ratory for Particle Physics, or CERN (located near Geneva, Switzerland) turns on the

Large Hadron Collider (LHC). The LHC should reach energies 15,000 times the proton
rest energy. The LHC is a multi–billion dollar international project, funded mainly by

European countries with substantial contributions from the United States, Japan, and

other countries.
52Recall that gauge theories are a class of physical theories based on the idea that

symmetry transformations can be performed locally as well as globally. Yang–Mills

theory is a particular example of gauge theories with non–Abelian symmetry groups
specified by the Yang–Mills action. For example, the Yang–Mills action for the O(n)

gauge theory for a set of n non–interacting scalar fields ϕi, with equal masses m is

S =

Z
(

nX
i=1

1

2
∂µϕi∂

µϕi −
1

2
m2ϕ2

i ) d
4x.

Other gauge theories with a non–Abelian gauge symmetry also exist, e.g., the Chern–
Simons model. Most physical theories are described by Lagrangians which are invariant

under certain transformations, when the transformations are identically performed at

every space–time point-they have global symmetries. Gauge theory extends this idea by
requiring that the Lagrangians must possess local symmetries as well-it should be possible

to perform these symmetry transformations in a particular region of space–time without
affecting what happens in another region. This requirement is a generalized version of
the equivalence principle of general relativity. Gauge symmetries reflect a redundancy in

the description of a system. The importance of gauge theories for physics stems from the
tremendous success of the mathematical formalism in providing a unified framework to
describe the quantum field theories of electromagnetism, the weak force and the strong
force. This theory, known as the Standard Model (see footnote 5), accurately describes
experimental predictions regarding three of the four fundamental forces of nature, and is

a gauge theory with the gauge group SU(3)×SU(2)×U(1). Modern theories like string
theory, as well as some formulations of general relativity, are, in one way or another,
gauge theories. Sometimes, the term gauge symmetry is used in a more general sense to

include any local symmetry, like for example, diffeomorphisms.
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of hadron (subatomic particle which experiences the strong nuclear force)
behavior. In particle–accelerator experiments, physicists observed that the
spin of a hadron is never larger than a certain multiple of the square of
its energy. No simple model of the hadron, such as picturing it as a set
of smaller particles held together by spring–like forces, was able to explain
these relationships. In 1968, theoretical physicist Gabriele Veneziano was
trying to understand the strong nuclear force when he made a startling dis-
covery. He found that a 200–year–old Euler beta function perfectly matched
modern data on the strong force. Veneziano applied the Euler beta function
to the strong force, but no one could explain why it worked.

In 1970, Yoichiro Nambu, Holger Bech Nielsen, and Leonard Susskind
presented a physical explanation for Euler’s strictly theoretical formula. By
representing nuclear forces as vibrating, 1D strings, these physicists showed
how Euler’s function accurately described those forces. But even after
physicists understood the physical explanation for Veneziano’s insight, the
string description of the strong force made many predictions that directly
contradicted experimental findings. The scientific community soon lost
interest in string theory, and the Standard Model, with its particles and
fields, remained un–threatened.

Then, in 1974, John Schwarz and Joel Scherk studied the messenger–
like patterns of string vibration and found that their properties exactly
matched those of the gravitational force’s hypothetical messenger particle
- the graviton. They argued that string theory had failed to catch on be-
cause physicists had underestimated its scope. This led to the development
of bosonic string theory , which is still the version first taught to many stu-
dents. The original need for a viable theory of hadrons has been fulfilled by
quantum chromodynamics (QCD), the theory of Gell–Mann’s quarks and
their interactions. It is now hoped that string theory (or some descendant
of it) will provide a fundamental understanding of the quarks themselves.

Bosonic string theory is formulated in terms of the so–called Polyakov
action, a mathematical quantity which can be used to predict how strings
move through space and time. By applying the ideas of quantum mechan-
ics to the Polyakov action - a procedure known as quantization - one can
deduce that each string can vibrate in many different ways, and that each
vibrational state appears to be a different particle. The mass the particle
has, and the fashion with which it can interact, are determined by the way
the string vibrates - in essence, by the ‘note’ which the string sounds. The
scale of notes, each corresponding to a different kind of particle, is termed
the spectrum of the theory. These early models included both open strings,
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which have two distinct endpoints, and closed strings, where the endpoints
are joined to make a complete loop. The two types of string behave in
slightly different ways, yielding two spectra. Not all modern string the-
ories use both types; some incorporate only the closed variety. However,
the bosonic theory has problems. Most importantly, the theory has a fun-
damental instability, believed to result in the decay of space-time itself.
Additionally, as the name implies, the spectrum of particles contains only
bosons, particles like the photon which obey particular rules of behavior.
While bosons are a critical ingredient of the Universe, they are not its only
constituents. Investigating how a string theory may include fermions in its
spectrum led to supersymmetry, a mathematical relation between bosons
and fermions which is now an independent area of study. String theories
which include fermionic vibrations are now known as superstring theories;
several different kinds have been described.

Roughly between 1984 and 1986, physicists realized that string theory
could describe all elementary particles and interactions between them, and
hundreds of them started to work on string theory as the most promising
idea to unify theories of physics. This so–called first superstring revolution
was started by a discovery of anomaly cancellation in type I string theory by
Michael Green and John Schwarz in 1984. The anomaly is cancelled due to
the Green–Schwarz mechanism. Several other ground–breaking discoveries,
such as the heterotic string, were made in 1985.

Note that in the type IIA and type IIB string theories closed strings
are allowed to move everywhere throughout the 10D space-time (called the
bulk), while open strings have their ends attached to D–branes, which are
membranes of lower dimensionality (their dimension is odd - 1,3,5,7 or 9
– in type IIA and even – 0,2,4,6 or 8 – in type IIB, including the time
direction).

While understanding the details of string and superstring theories re-
quires considerable geometrical sophistication, some qualitative properties
of quantum strings can be understood in a fairly intuitive fashion. For
example, quantum strings have tension, much like regular strings made of
twine; this tension is considered a fundamental parameter of the theory.
The tension of a quantum string is closely related to its size. Consider a
closed loop of string, left to move through space without external forces.
Its tension will tend to contract it into a smaller and smaller loop. Classi-
cal intuition suggests that it might shrink to a single point, but this would
violate Heisenberg’s uncertainty principle. The characteristic size of the
string loop will be a balance between the tension force, acting to make it
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Contemporary String Theories
Type Dim Details
Bosonic 26 Only bosons, no fermions means only forces, no mat-

ter, with both open and closed strings; major flaw:
a particle with imaginary mass, called the tachyon,
representing an instability in the theory

I 10 Supersymmetry between forces and matter, with both
open and closed strings, no tachyon, group symmetry
is SO(32)

IIA 10 Supersymmetry between forces and matter, with
closed strings and open strings bound to D–branes, no
tachyon, massless fermions spin both ways (nonchi-
ral)

IIB 10 Supersymmetry between forces and matter, with
closed strings and open strings bound to D–branes, no
tachyon, massless fermions only spin one way (chiral)

HO 10 Supersymmetry between forces and matter, with
closed strings only, no tachyon, heterotic, meaning
right moving and left moving strings differ, group
symmetry is SO(32)

HE 10 Supersymmetry between forces and matter, with
closed strings only, no tachyon, heterotic, meaning
right moving and left moving strings differ, group
symmetry is E8 × E8

small, and the uncertainty effect, which keeps it ‘stretched’. Consequently,
the minimum size of a string must be related to the string tension.

Before the 1990s, string theorists believed that there were five distinct
superstring theories: type I, types IIA and IIB, and the two heterotic string
theories (SO(32) and E8 × E8). The thinking was that out of these five
candidate theories, only one was the actual correct theory of everything,
and that theory was the theory whose low energy limit, with ten dimensions
spacetime compactified down to four, matched the physics observed in our
world today. But now it is known that this näıve picture was wrong, and
that the five superstring theories are connected to one another as if they are
each a special case of some more fundamental theory, of which there is only
one. These theories are related by transformations that are called dualities.
If two theories are related by a duality transformation, it means that the
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first theory can be transformed in some way so that it ends up looking just
like the second theory. The two theories are then said to be dual to one
another under that kind of transformation. Put differently, the two theories
are two different mathematical descriptions of the same phenomena. These
dualities link quantities that were also thought to be separate. Large and
small distance scales, strong and weak coupling strengths – these quantities
have always marked very distinct limits of behavior of a physical system,
in both classical field theory and quantum particle physics. But strings can
obscure the difference between large and small, strong and weak, and this
is how these five very different theories end up being related.

This type of duality is called T–duality . T–duality relates type IIA
superstring theory to type IIB superstring theory. That means if we take
type IIA and Type IIB theory and ‘compactify’ them both on a circle, then
switching the momentum and winding modes, and switching the distance
scale, changes one theory into the other. The same is also true for the two
heterotic theories. T–duality also relates type I superstring theory to both
type IIA and type IIB superstring theories with certain boundary conditions
(termed ‘orientifold’). Formally, the location of the string on the circle is
described by two fields living on it, one which is left-moving and another
which is right-moving. The movement of the string center (and hence its
momentum) is related to the sum of the fields, while the string stretch
(and hence its winding number) is related to their difference. T-duality
can be formally described by taking the left-moving field to minus itself, so
that the sum and the difference are interchanged, leading to switching of
momentum and winding.

On the other hand, every force has a coupling constant , which is a mea-
sure of its strength, and determines the chances of one particle to emit
or receive another particle. For electromagnetism, the coupling constant is
proportional to the square of the electric charge. When physicists study the
quantum behavior of electromagnetism, they can’t solve the whole theory
exactly, because every particle may emit and receive many other particles,
which may also do the same, endlessly. So events of emission and reception
are considered as perturbations and are dealt with by a series of approx-
imations, first assuming there is only one such event, then correcting the
result for allowing two such events, etc (this method is called Perturbation
theory. This is a reasonable approximation only if the coupling constant is
small, which is the case for electromagnetism. But if the coupling constant
gets large, that method of calculation breaks down, and the little pieces
become worthless as an approximation to the real physics. This can also
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happen in string theory. String theories have a string coupling constant .
But unlike in particle theories, the string coupling constant is not just a
number, but depends on one of the oscillation modes of the string, called
the dilaton. Exchanging the dilaton field with minus itself exchanges a very
large coupling constant with a very small one. This symmetry is called S–
duality . If two string theories are related by S–duality, then one theory
with a strong coupling constant is the same as the other theory with weak
coupling constant. The theory with strong coupling cannot be understood
by means of perturbation theory, but the theory with weak coupling can.
So if the two theories are related by S-duality, then we just need to under-
stand the weak theory, and that is equivalent to understanding the strong
theory. Superstring theories related by S–duality are: type I superstring
theory with heterotic SO(32) superstring theory, and type IIB theory with
itself.

Around 1995, Edward Witten and others found strong evidence that
the different superstring theories were different limits of a new 11D theory
called M–theory. With the discovery of M–theory, an extra dimension ap-
peared and the fundamental string of string theory became a 2-dimensional
membrane called an M2–brane (or supermembrane). Its magnetic dual is
an M5–brane. The various branes of string theory are thought to be related
to these higher dimensional M–branes wrapped on various cycles. These
discoveries sparked the so–called second superstring revolution.

One intriguing feature of string theory is that it predicts the number
of dimensions which the universe should possess. Nothing in Maxwell’s
theory of electromagnetism, or Einstein’s theory of relativity, makes this
kind of prediction; these theories require physicists to insert the number
of dimensions ‘by hand’. The first person to add a fifth dimension to Ein-
stein’s four space–time dimensions was German mathematician Theodor
Kaluza in 1919. The reason for the un–observability of the fifth dimension
(its compactness) was suggested by Swedish physicist Oskar Klein in 1926.
Today, this is called the 5D Kaluza–Klein theory .

Instead, string theory allows one to compute the number of spacetime
dimensions from first principles. Technically, this happens because for a
different number of dimensions, the theory has a gauge anomaly. This
can be understood by noting that in a consistent theory which includes
a photon (technically, a particle carrying a force related to an unbroken
gauge symmetry), it must be massless. The mass of the photon which
is predicted by string theory depends on the energy of the string mode
which represents the photon. This energy includes a contribution from
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the Casimir effect , namely from quantum fluctuations in the string. The
size of this contribution depends on the number of dimensions since for a
larger number of dimensions, there are more possible fluctuations in the
string position. Therefore, the photon will be massless – and the theory
consistent – only for a particular number of dimensions.

The only problem is that when the calculation is done, the universe’s
dimensionality is not four as one may expect (three axes of space and one
of time), but 26. More precisely, bosonic string theories are 26D, while
superstring and M–theories turn out to involve 10 and 11 dimensions, re-
spectively. In bosonic string theories, the 26 dimensions come from the
Polyakov equation. However, these results appear to contradict the ob-
served four dimensional space–time.

Two different ways have been proposed to solve this apparent contradic-
tion. The first is to compactify the extra dimensions; i.e., the 6 or 7 extra
dimensions are so small as to be undetectable in our phenomenal experi-
ence. The 6D model’s resolution is achieved with the so–called Calabi–Yau
manifolds (see Figure 1.5). In 7D, they are termed G2−manifolds. Es-
sentially these extra dimensions are compactified by causing them to loop
back upon themselves. A standard analogy for this is to consider multidi-
mensional space as a garden hose. If the hose is viewed from a sufficient
distance, it appears to have only one dimension, its length. Indeed, think
of a ball small enough to enter the hose but not too small. Throwing such
a ball inside the hose, the ball would move more or less in one dimension;
in any experiment we make by throwing such balls in the hose, the only
important movement will be one-dimensional, that is, along the hose. How-
ever, as one approaches the hose, one discovers that it contains a second
dimension, its circumference. Thus, a ant crawling inside it would move in
two dimensions (and a fly flying in it would move in three dimensions). This
‘extra dimension’ is only visible within a relatively close range to the hose,
or if one ‘throws in’ small enough objects. Similarly, the extra compact
dimensions are only visible at extremely small distances, or by experiment-
ing with particles with extremely small wave lengths (of the order of the
compact dimension’s radius), which in quantum mechanics means very high
energies. Another possibility is that we are stuck in a 3+1 dimensional (i.e.,
three spatial dimensions plus one time dimension) subspace of the full uni-
verse. This subspace is supposed to be a D–brane, hence this is known as a
brane–world theory . In either case, gravity acting in the hidden dimensions
affects other non–gravitational forces such as electromagnetism. In princi-
ple, therefore, it is possible to deduce the nature of those extra dimensions
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by requiring consistency with the Standard Model, but this is not yet a
practical possibility. It is also be possible to extract information regarding
the hidden dimensions by precision tests of gravity, but so far these have
only put upper limitations on the size of such hidden dimensions.

Fig. 1.5 Calabi–Yau manifold – a 3D projection created using MathematicaTM .

For popular expose on string theory, see [Witten (2002); Greene (2000)],
while the main textbook is still [Green et. al. (1987)].

1.2 Application: Paradigm of Differential–Geometric
Modelling of Dynamical Systems

In this section we give a paradigm of differential–geometric modelling and
analysis of complex dynamical systems (see [Ivancevic and Ivancevic (2006)]
for more background details). This is essentially a recipe how to develop a
covariant formalism on smooth manifolds, given a certain physical, or bio–
physical, or psycho–physical, or socio–physical system, here labelled by a
generic name: ‘physical situation’. We present this recipe in the form of
the following five–step algorithm.

(I) So let’s start: given a certain physical situation, the first step
in its predictive modelling and analysis, that is, in applying a powerful
differential–geometric machinery to it, is to associate with this situation
two independent coordinate systems, constituting two independent smooth
Riemannian manifolds. Let us denote these two coordinate systems and
their respective manifolds as:

• Internal coordinates: xi = xi(t), (i = 1, ...,m), constituting the mD
internal configuration manifold : Mm ≡ {xi}; and
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• External coordinates: ye = ye(t), (e = 1, ..., n), constituting the nD
external configuration manifold : Nn ≡ {ye}.

The main example that we have in mind is a standard robotic or bio-
dynamic (loco)motion system, in which xi denote internal joint coordi-
nates, while ye denote external Cartesian coordinates of segmental centers
of mass. However, we believe that such developed methodology can fit a
generic physical situation.

Therefore, in this first, engineering step (I) of our differential–geometric
modelling, we associate to the given natural system, not one but two differ-
ent and independent smooth configuration manifolds, somewhat like view-
ing from two different satellites a certain place on Earth with a football
game playing in it.

(II) Once that we have precisely defined two smooth manifolds, as
two independent views on the given physical situation, we can apply our
differential–geometric modelling to it and give it a natural physical inter-
pretation. More precisely, once we have two smooth Riemannian manifolds,
Mm ≡ {xi} and Nn ≡ {ye}, we can formulate two smooth maps between
them:53

f : N →M , given by coordinate transformation: xi = f i(ye), (1.6)

and

g : M → N , given by coordinate transformation: ye = ge(xi). (1.7)

If the Jacobian matrices of these two maps are nonsingular (regular), that
is if their Jacobian determinants are nonzero, then these two maps are
mutually inverse, f = g−1, and they represent standard forward and inverse
kinematics.

(III) Although, maps f and g define some completely general nonlinear
coordinate (functional) transformations, which are even unknown at the
moment, there is something linear and simple that we know about them
(from calculus). Namely, the corresponding infinitesimal transformations
are linear and homogenous: from (1.6) we have (applying everywhere Ein-
stein’s summation convention over repeated indices)

dxi =
∂f i

∂ye
dye, (1.8)

53This obviously means that we are working in the category of smooth manifolds.
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while from (1.7) we have

dye =
∂ge

∂xi
dxi. (1.9)

Furthermore, (1.8) implies the linear and homogenous transformation of
internal velocities,

vi ≡ ẋi =
∂f i

∂ye
ẏe, (1.10)

while (1.9) implies the linear and homogenous transformation of external
velocities,

ue ≡ ẏe =
∂ge

∂xi
ẋi. (1.11)

In this way, we have defined two velocity vector–fields, the internal one:
vi = vi(xi, t) and the external one: ue = ue(ye, t), given respectively by the
two nonlinear systems of ODEs, (1.10) and (1.11).54

(IV) The next step in our differential–geometrical modelling/analysis
is to define second derivatives of the manifold maps f and g, that is the
two acceleration vector–fields, which we will denote by ai = ai(xi, ẋi, t)
and we = we(ye, ẏe, t), respectively. However, unlike simple physics in
linear Euclidean spaces, these two acceleration vector–fields on manifolds
M and N are not the simple time derivatives of the corresponding velocity
vector–fields (ai 6= v̇i and we 6= u̇e), due to the existence of the Levi–Civita
connections ∇M and ∇N on both M and N . Properly defined, these two
acceleration vector–fields respectively read:

ai = v̇i + Γijkv
jvk = ẍi + Γijkẋ

j ẋk, and (1.12)

we = u̇e + Γehlu
hul = ÿe + Γehlẏ

hẏl, (1.13)

where Γijk and Γehl denote the (second–order) Christoffel symbols of the
connections ∇M and ∇N .

Therefore, in the step (III) we gave the first–level model of our physical
situation in the form of two ordinary vector–fields, the first–order vector–
fields (1.10) and (1.11). For some simple situations (e.g., modelling ecolog-
ical systems), we could stop at this modelling level. Using physical termi-
nology we call them velocity vector–fields. Following this, in the step (IV)
we have defined the two second–order vector–fields (1.12) and (1.13), as

54Although transformations of differentials and associated velocities are linear and ho-
mogeneous, the systems of ODE’s define nonlinear vector–fields, as they include Jacobian
(functional) matrices.
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a connection–base derivations of the previously defined first–order vector–
fields. Using physical terminology, we call them ‘acceleration vector–fields’.

(V) Finally, following our generic physical terminology, as a natural
next step we would expect to define some kind of generic Newton–Maxwell
force–fields. And we can actually do this, with a little surprise that indi-
vidual forces involved in the two force–fields will not be vectors, but rather
the dual objects called 1–forms (or, 1D differential forms). Formally, we
define the two covariant force–fields as

Fi = mgija
j = mgij(v̇j + Γjikv

ivk) = mgij(ẍj + Γjikẋ
iẋk), and (1.14)

Ge = mgehw
h = mgeh(u̇h + Γhelu

eul) = mgeh(ÿh + Γhelẏ
eẏl), (1.15)

where m is the mass of each single segment (unique, for symplicity), while
gij = gMij and geh = gNeh are the two Riemannian metric tensors corre-
sponding to the manifolds M and N . The two force–fields, Fi defined by
(1.14) and Ge defined by (1.15), are generic force–fields corresponding to
the manifolds M and N , which represent the material cause for the given
physical situation. Recall that they can be physical, bio–physical, psycho–
physical or socio–physical force–fields. Physically speaking, they are the
generators of the corresponding dynamics and kinematics.

Main geometrical relations behind this fundamental paradigm, forming
the so–called covariant force functor , are depicted in Figure 1.6.

Fig. 1.6 The covariant force functor, including the main relations used by differential–

geometric modelling.
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Chapter 2

Technical Preliminaries: Tensors,
Actions and Functors

2.1 Tensors: Local Machinery of Differential Geometry

Physical and engineering laws must be independent of any particular coor-
dinate systems used in describing them mathematically, if they are to be
valid. In other words, all physical and engineering equations need to be
tensorial or covariant. Therefore, for the reference purpose, in this section,
we give the basic formulas from the standard tensor calculus, which is used
throughout the text. The basic notational convention used in tensor cal-
culus is Einstein’s summation convention over repeated indices. More on
this subject can be found in any standard textbook on mathematical meth-
ods for scientists and engineers, or mathematical physics (we recommend
[Misner et al. (1973)]).

2.1.1 Transformation of Coordinates and Elementary

Tensors

To introduce tensors, consider a standard linear nD matrix system, Ax = b.
It can be rewritten in the so–called covariant form as

aijx
j = bi , (i, j = 1, ..., n). (2.1)

Here, i is a free index and j is a dummy index to be summed upon, so the
expansion of (2.1) gives

a11x
1 + a12x

2 + ...+ a1nx
n = b1 ,

a21x
1 + a22x

2 + ...+ a2nx
n = b2 ,

...

an1x
1 + an2x

2 + ...+ annx
n = bn ,

51
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as expected from the original matrix form Ax = b. This indicial notation
can be more useful than the matrix one, like e.g., in computer science,
where indices would represent loop variables. However, the full potential
of tensor analysis is to deal with nonlinear multivariate systems, which
are untractable by linear matrix algebra and analysis. The core of this
nonlinear multivariate analysis is general functional transformation.

2.1.1.1 Transformation of Coordinates

Suppose that we have two sets of curvilinear coordinates that are single–
valued, continuous and smooth functions of time, xj = xj(t), (j = 1, ...,m)
and x̄i = x̄i(t), (i = 1, ..., n), respectively, representing trajectories of mo-
tion of some physical or engineering system. Then a general (m × n)D
transformation (i.e., a nonlinear map) xj 7→ x̄i is defined by the set of
transformation equations

x̄i = x̄i(xj), (i = 1, ..., n; j = 1, ...,m). (2.2)

In case of the square transformation, m = n, we can freely exchange the
indices, like e.g., in general relativity theory. On the other hand, in the
general case of rectangular transformation, m 6= n, like e.g., in robotics,
and we need to take care of these ‘free’ indices.

Now, if the Jacobian determinant of this coordinate transformation is
different from zero, ∣∣∣∣ ∂x̄i∂xj

∣∣∣∣ 6= 0,

then the transformation (2.2) is reversible and the inverse transformation,

xj = xj(x̄i),

exists as well. Finding the inverse transformation is the problem of matrix
inverse: in case of the square matrix it is well defined, although the inverse
might not exist if the matrix is singular. However, in case of the square
matrix, its proper inverse does not exist, and the only tool that we are
left with is the so–called Moore–Penrose pseudoinverse, which gives an
optimal solution (in the least–squares sense) of an overdetermined system of
equations. Every (overdetermined) rectangular coordinate transformation
induces a redundant system.

For example, in Euclidean 3D space R3, transformation from Cartesian
coordinates yk = {x, y, z} into spherical coordinates xi = {ρ, θ, ϕ} is given
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by

y1 = x1 cosx2 cosx3, y2 = x1 sinx2 cosx3, y3 = x1 sinx3, (2.3)

with the Jacobian matrix given by

(
∂yk

∂xi

)
=

 cosx2 cosx3 −x1 sinx2 cosx3 −x1 cosx2 sinx3

sinx2 cosx3 x1 cosx2 cosx3 −x1 sinx2 sinx3

sinx3 0 x1 cosx3

 (2.4)

and the corresponding Jacobian determinant,
∣∣∣∂yk∂xi

∣∣∣ = (x1)2 cosx3.

An inverse transform is given by

x1 =
√

(y1)2 + (y2)2 + (y3)2, x2 = arctan
(
y2

y1

)
,

x3 = arctan

(
y3√

(y1)2 + (y2)2

)
, with

∣∣∣∣ ∂xi∂yk

∣∣∣∣ =
1

(x1)2 cosx3
.

As an important engineering (robotic) example, we have a rectangular
transformation from 6 DOF external, end–effector (e.g., hand) coordinates,
into n DOF internal, joint–angle coordinates. In most cases this is a redun-
dant manipulator system, with infinite number of possible joint trajectories.

2.1.1.2 Scalar Invariants

A scalar invariant (or, a zeroth order tensor) with respect to the transfor-
mation (2.2) is the quantity ϕ = ϕ(t) defined as

ϕ(xi) = ϕ̄(x̄i),

which does not change at all under the coordinate transformation. In other
words, ϕ is invariant under (2.2). For example, biodynamic examples of
scalar invariants include various energies (kinetic, potential, biochemical,
mental) with the corresponding kinds of work, as well as related thermo-
dynamic quantities (free energy, temperature, entropy, etc.).

2.1.1.3 Vectors and Covectors

Any geometrical object vi = vi(t) that under the coordinate transformation
(2.2) transforms as

v̄i = vj
∂x̄i

∂xj
, (remember, summing upon j−index),
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represents a vector, traditionally called a contravariant vector, or, a first–
order contravariant tensor. Standard physical and engineering examples
include both translational and rotational velocities and accelerations.

On the other hand, any geometrical object vi = vi(t) that under the
coordinate transformation (2.2) transforms as

v̄i = vj
∂xj

∂x̄i
,

represents a one–form or covector, traditionally called a covariant vector,
or, a first–order covariant tensor. Standard physical and engineering exam-
ples include both translational and rotational momenta, forces and torques.

2.1.1.4 Second–Order Tensors

Any geometrical object tik = tik(t) that under the coordinate transforma-
tion (2.2) transforms as

t̄ik = tjl
∂x̄i

∂xj
∂x̄k

∂xl
, (i, k = 1, ..., n; j, l = 1, ...,m),

represents a second–order contravariant tensor. It can be get as an outer
product of two contravariant vectors, tik = uivk.

Any geometrical object tik = tik(t) that under the coordinate transfor-
mation (2.2) transforms as

t̄ik = tjl
∂xj

∂x̄i
∂xl

∂x̄k
,

represents a second–order covariant tensor. It can be get as an outer prod-
uct of two covariant vectors, tik = uivk.

Any geometrical object tik = tik(t) that under the coordinate transfor-
mation (2.2) transforms as

t̄ik = tjl
∂x̄i

∂xj
∂xl

∂x̄k
,

represents a second–order mixed tensor. It can be get as an outer product
of a covariant vector and a contravariant vector, tik = uivk.

Standard physical and engineering examples examples include:

(1) The fundamental (material) covariant metric tensor g ≡ gik, i.e., inertia
matrix, given usually by the transformation from Cartesian coordinates
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yj to curvilinear coordinates xi,

gik =
∂yj

∂xi
∂yj

∂xk
, (summing over j). (2.5)

It is used in the quadratic metric form ds2 of the space in consideration
(e.g., a certain physical or engineering configuration space)

ds2 ≡ dyjdyj = gikdx
idxk,

where the first term on the r.h.s denotes the Euclidean metrics, while
the second term is the Riemannian metric of the space, respectively.

(2) Its inverse g−1 ≡ gik, given by

gik = (gik)−1 =
Gik
|gik|

, Gik is the cofactor of the matrix (gik);

(3) The Kronecker–delta symbol δik, given by

δik =
{

1 if i = k

0 if i 6= k
,

used to denote the metric tensor in Cartesian orthogonal coordinates.
δik is a discrete version of the Dirac δ−function. The generalized
Kronecker–delta symbol δijklmn (in 3D) is the product of Ricci antisym-
metric tensors εijk and εlmn,

δijklmn = εijkεlmn =


0 if at least two indices are equal

+1 if both ijk and lmn are either even or odd
−1 if one of ijk, lmn is even and the other is odd

.

For example, to derive components of the metric tensor g ≡ gij in
standard spherical coordinates, we use the relations (2.3–2.4) between the
spherical coordinates xi = {ρ, θ, ϕ} and the Cartesian coordinates yk =
{x, y, z}, and the definition, gij = ∂yk

∂xi
∂yk

∂xj , to get the metric tensor (in
matrix form)

(gij) =

1 0 0
0 (x1)2 cos2 x3 0
0 0 (x1)2

 =

1 0 0
0 ρ2 cos2 ϕ 0
0 0 ρ2

 , (2.6)
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and the inverse metric tensor

(gij) =

1 0 0
0 1

(x1)2 cos2 x3 0
0 0 1

(x1)2

 =

1 0 0
0 1
ρ2 cos2 ϕ 0

0 0 1
ρ2

 . (2.7)

Given a tensor, we can derive other tensors by raising and lowering
its indices, by their multiplication with covariant and contravariant metric
tensors. In this way, the so–called associated tensors to the given tensor
are be formed. For example, vi and vi are associated tensors, related by

vi = gikv
k and vi = gikvk.

Given two vectors, u ≡ ui and v ≡ vi, their inner (dot, or scalar)
product is given by

u · v ≡ gijuivj ,

while their vector (cross) product (in 3D) is given by

u× v ≡ εijkujvk.

2.1.1.5 Higher–Order Tensors

As a generalization of above tensors, consider a geometrical object Rikps =
Rikps(t) that under the coordinate transformation (2.2) transforms as

R̄ikps = Rjlqt
∂x̄i

∂xj
∂xl

∂x̄k
∂xq

∂x̄p
∂xt

∂x̄s
, (all indices = 1, ..., n). (2.8)

Clearly, Rikjl = Rikjl(x, t) is a fourth order tensor, once contravariant and
three times covariant, representing the central tensor in Riemannian geom-
etry, called the Riemann curvature tensor . As all physical and engineering
configuration spaces are Riemannian manifolds, they are all characterized
by curvature tensors. In case Rikjl = 0, the corresponding Riemannian
manifold reduces to the Euclidean space of the same dimension, in which
gik = δik.

If one contravariant and one covariant index of a tensor a set equal, the
resulting sum is a tensor of rank two less than that of the original tensor.
This process is called tensor contraction.

If to each point of a region in an nD space there corresponds a definite
tensor, we say that a tensor–field has been defined. In particular, this is a
vector–field or a scalar–field according as the tensor is of rank one or zero.
It should be noted that a tensor or tensor–field is not just the set of its
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components in one special coordinate system, but all the possible sets of
components under any transformation of coordinates.

2.1.1.6 Tensor Symmetry

A tensor is called symmetric with respect to two indices of the same vari-
ance if its components remain unaltered upon interchange of the indices;
e.g., aij = aji, or aij = aji. A tensor is called skew–symmetric (or, antisym-
metric) with respect to two indices of the same variance if its components
change sign upon interchange of the indices; e.g., aij = −aji, or aij = −aji.
Regarding tensor symmetry, in the following we will prove several useful
propositions.

(i) Every second–order tensor can be expressed as the sum of two tensors,
one of which is symmetric and the other is skew–symmetric. For example, a
second–order tensor aij , which is for i, j = 1, ..., n given by the n×n−matrix

aij =


a11 a12 ... a1n

a21 a22 ... an2

... ... ... ...

an1 an2 ... ann

 ,

can be rewritten as

aij =
1
2
aij +

1
2
aij +

1
2
aji −

1
2
aji , that can be rearranged as

=
1
2
aij +

1
2
aji +

1
2
aij −

1
2
aji , which can be regrouped as

=
1
2

(aij + aji) +
1
2

(aij − aji), which can be written as

= a(ij) + a[ij] ,

where a(ij) denotes its symmetric part, while a[ij] denotes its skew–
symmetric part, as required.

(ii) Every quadratic form can be made symmetric. For example, a
quadratic form aijx

ixj , that (for i, j = 1, ..., n) expands as

aijx
ixj = a11x

1x1 + a12x
1x2 + ...+ a1nx

1xn +

+ a21x
2x1 + a22x

2x2 + ...+ a2nx
2xn +

...

+ an1x
nx1 + an2x

nx2 + ...+ annx
nxn,

with a non–symmetric second–order tensor aij , can be made symmetric in
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the following way.

aijx
ixj =

1
2
aijx

ixj +
1
2
aijx

ixj .

If we swap indices in the second term, we get

=
1
2
aijx

ixj +
1
2
ajix

jxi , which is equal to

=
1
2

(aij + aji)xixj .

If we now use a substitution,
1
2

(aij + aji) ≡ bij = bji, we get

aijx
ixj = bijx

ixj ,

where aij is non–symmetric and bij is symmetric, as required.
(iii) Every second–order tensor that is the sum aij = uivj + ujvi, or,

aij = uivj + ujvi is symmetric. In both cases, if we swap the indices i and
j, we get aji = ujvi + uivj , (resp. aji = ujvi + uivj), which implies that
the tensor aij (resp. aij) is symmetric.

(iv) Every second–order tensor that is the difference bij = uivj − ujvi,
or, bij = uivj − ujvi is skew–symmetric. In both cases, if we swap the
indices i and j, we get bji = −(ujvi − uivj), (resp. bji = −(ujvi − uivj)),
which implies that the tensor bij (resp. bij) is skew–symmetric.

2.1.2 Euclidean Tensors

2.1.2.1 Basis Vectors and the Metric Tensor in Rn

The natural Cartesian coordinate basis in an nD Euclidean space Rn is
defined as a set of nD unit vectors ei given by

e1 = [{1, 0, 0, ...}t, e2 = {0, 1, 0, ...}t, e3 = {0, 0, 1, ...}t, ..., en = {0, 0, ..., 1}t],

(where index t denotes transpose) while its dual basis ei is given by:

e1 = [{1, 0, 0, ...}, e2 = {0, 1, 0, ...}, e3 = {0, 0, 1, ...}, ..., en = {0, 0, ..., 1}],
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(no transpose) where the definition of the dual basis is given by the Kro-
necker’s δ−symbol, i.e., the n× n identity matrix:

ei · ej = δij =


1 0 0 ... 0
0 1 0 ... 0
0 0 1 ... 0
... ... ... ... ...

0 0 0 ... 1

 ,

that is the metric tensor in Cartesian coordinates equals g = δij . In general,
(i.e., curvilinear) coordinate system, the metric tensor g = gij is defined as
the scalar product of the dual basis vectors, i.e., the n× n matrix:

gij = ei · ej =


g11 g12 g13 ... g1n
g21 g22 g23 ... g2n
g31 g32 g33 ... g3n
... ... ... ... ...

gn1 gn2 gn3 ... gnn

 .

2.1.2.2 Tensor Products in Rn

Let u and v denote two vectors in Rn, with their components given by

ui = u · ei, and vj = v · ej ,

where u = |u| and v = |v| are their respective norms (or, lengths). Then
their inner product (i.e., scalar, or dot product) u · v is a scalar invariant
S, defined as

S = ui · vj = giju
ivj .

Besides the dot product of two vectors u,v ∈ Rn, there is also their ten-
sor product (i.e., generalized vector, or cross product), which is a second–
order tensor

T = u⊗ v, in components, T ij = ui ⊗ vj .

In the natural basis ei this tensor is expanded as

T = T ijei ⊗ ej ,

while its components in the dual basis read:

T ij = T (ei, ej),
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where T = |T| is its norm. To get its components in curvilinear coordinates,
we need first to substitute it in Cartesian basis:

T ij = Tmn(em ⊗ en)(ei, ej),

then to evaluate it on the slots:

T ij = Tmnem · ei en · ej ,

and finally to calculate the other index configurations by lowering indices,
by means of the metric tensor:

T ij = gjmT
im, Tij = gimgjnT

mn.

2.1.3 Covariant Differentiation

In this subsection, we need to consider some nD Riemannian manifold M

(see section (3.10.1) below) with the metric form (i.e., line element) ds2 =
gikdx

idxk, as a configuration space for a certain physical or engineering
system (e.g., robotic manipulator).

2.1.3.1 Christoffel’s Symbols

Partial derivatives of the metric tensor gik (2.5) form themselves special
symbols that do not transform as tensors (with respect to the coordinate
transformation (2.2)), but nevertheless represent important quantities in
tensor analysis. They are called Christoffel symbols of the first kind, defined
by

Γijk =
1
2

(∂xkgij + ∂xjgki − ∂xigjk),
(

remember, ∂xi ≡
∂

∂xi

)
and Christoffel symbols of the second kind, defined by

Γkij = gklΓijl.

The Riemann curvature tensor Rlijk (2.8) of the manifold M , can be ex-
pressed in terms of the later as

Rlijk = ∂xjΓlik − ∂xkΓlij + ΓlrjΓ
r
ik − ΓlrkΓrij .

For example, in 3D spherical coordinates, xi = {ρ, θ, ϕ}, with the metric
tensor and its inverse given by (2.6, 2.7), it can be shown that the only
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nonzero Christoffel’s symbols are:

Γ2
12 = Γ2

21 = Γ3
13 = Γ3

31 =
1
ρ
, Γ3

23 = Γ2
32 = − tan θ, (2.9)

Γ1
22 = −ρ, Γ1

33 = −ρ cos2 θ, Γ2
33 = sin θ cos θ.

2.1.3.2 Geodesics

From the Riemannian metric form ds2 = gikdx
idxk it follows that the

distance between two points t1 and t2 on a curve xi = xi(t) in M is given
by

s =
∫ t2

t1

√
gikẋiẋkdt.

That curve xi = xi(t) in M which makes the distance s a minimum is called
a geodesic of the space M (e.g., in a sphere, the geodesics are arcs of great
circles). Using the calculus of variations, the geodesics are found from the
differential geodesic equation,

ẍi + Γijkẋ
j ẋk = 0, (2.10)

where overdot means derivative upon the line parameter s.
For example, in 3D spherical coordinates xi = {ρ, θ, ϕ}, using (2.9),

geodesic equation (2.10) becomes a system of three scalar ODEs,

ρ̈− ρθ̇
2
− ρ cos2 θϕ̇2 = 0, θ̈ +

2
ρ
ρ̇ϕ̇+ sin θ cos θϕ̇2 = 0,

ϕ̈+
2
ρ
ρ̇ϕ̇− 2 tan θθ̇ϕ̇ = 0. (2.11)

2.1.3.3 Covariant Derivative

Ordinary total and partial derivatives of vectors (covectors) do not trans-
form as vectors (covectors) with respect to the coordinate transformation
(2.2). For example, let yk be Cartesian coordinates and xi be general curvi-
linear coordinates of a dynamical system (with i, k = 1, ..., n). We have:
xi(t) = xi[yk(t)], which implies that

dxi

dt
=
∂xi

∂yk
dyk

dt
, or equivalently, ẋi =

∂xi

∂yk
ẏk,

that is a transformation law for the contravariant vector, which means that
the velocity vi ≡ ẋi ≡ dxi

dt is a proper contravariant vector. However, if we



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

62 Applied Differential Geometry: A Modern Introduction

perform another time differentiation, we get

d2xi

dt2
=
∂xi

∂yk
d2yk

dt2
+

∂2xi

∂yk∂ym
dyk

dt

dym

dt
,

which means that d2xi

dt2 is not a proper vector.
d2xi

dt2 is an acceleration vector only in a special case when xi are an-
other Cartesian coordinates; then ∂2xi

∂yk∂ym
= 0, and therefore the original

coordinate transformation is linear, xi = aiky
k + bi (where aik and bi are

constant).
Therefore, d

2xi

dt2 represents an acceleration vector only in terms of Newto-
nian mechanics in a Euclidean space Rn, while it is not a proper acceleration
vector in terms of Lagrangian or Hamiltonian mechanics in general curvilin-
ear coordinates on a smooth manifold Mn. And we know that Newtonian
mechanics in Rn is sufficient only for fairly simple mechanical systems.

The above is true for any tensors. So we need to find another derivative
operator to be able to preserve their tensor character. The solution to this
problem is called the covariant derivative.

The covariant derivative vi;k of a contravariant vector vi is defined as

vi;k = ∂xkv
i + Γijkv

j .

Similarly, the covariant derivative vi;k of a covariant vector vi is defined as

vi;k = ∂xkvi − Γjikvj .

Generalization for the higher order tensors is straightforward; e.g., the co-
variant derivative tjkl;q of the third order tensor tjkl is given by

tjkl;q = ∂xq t
j
kl + Γjqst

s
kl − Γskqt

j
sl − Γslqt

j
ks.

The covariant derivative is the most important tensor operator in gen-
eral relativity (its zero defines parallel transport) as well as the basis for
defining other differential operators in mechanics and physics.

2.1.3.4 Covariant Form of Differential Operators

Here we give the covariant form of classical vector differential operators:
gradient, divergence, curl and Laplacian.
Gradient. If ϕ = ϕ(xi, t) is a scalar field, the gradient one–form grad(ϕ)
is defined by

grad(ϕ) = ∇ϕ = ϕ;i = ∂xiϕ.
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Divergence. The divergence div(vi) of a vector–field vi = vi(xi, t) is
defined by contraction of its covariant derivative with respect to the coor-
dinates xi = xi(t), i.e., the contraction of vi;k, namely

div(vi) = vi;i =
1
√
g
∂xi(
√
gvi).

Curl. The curl curl(θi) of a one–form θi = θi(xi, t) is a second–order
covariant tensor defined as

curl(θi) = θi;k − θk;i = ∂xkθi − ∂xiθk.

Laplacian. The Laplacian ∆ϕ of a scalar invariant ϕ = ϕ(xi, t) is the
divergence of grad(ϕ), or

∆ϕ = ∇2ϕ = div(grad(ϕ)) = div(ϕ;i) =
1
√
g
∂xi(
√
ggik∂xkϕ).

2.1.3.5 Absolute Derivative

The absolute derivative (or intrinsic, or Bianchi’s derivative) of a con-
travariant vector vi along a curve xk = xk(t) is denoted by ˙̄vi ≡ Dvi/dt

and defined as the inner product of the covariant derivative of vi and
ẋk ≡ dxk/dt, i.e., vi;kẋ

k, and is given by

˙̄vi = v̇i + Γijkv
j ẋk.

Similarly, the absolute derivative ˙̄vi of a covariant vector vi is defined as

˙̄vi = v̇i − Γjikvj ẋ
k.

Generalization for the higher order tensors is straightforward; e.g., the ab-
solute derivative ˙̄tjkl of the third order tensor tjkl is given by

˙̄tjkl = ṫjkl + Γjqst
s
klẋ

q − Γskqt
j
slẋ

q − Γslqt
j
ksẋ

q.

The absolute derivative is the most important differential operator in
physics and engineering, as it is the basis for the covariant form of both
Lagrangian and Hamiltonian equations of motion of many physical and
engineering systems.
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2.1.3.6 3D Curve Geometry: Frenet–Serret Formulae

Given three unit vectors: tangent τ i, principal normal βi, and binormal
νi, as well as two scalar invariants: curvature K and torsion T, of a curve
γ(s) = γ[xi(s)], the so–called Frenet–Serret formulae are valid1

˙̄τ i ≡ τ̇ i + Γijkτ
j ẋk = Kβi,

˙̄βi ≡ β̇
i
+ Γijkβ

j ẋk = −(Kτ i + Tνi),
˙̄νi ≡ ν̇i + Γijkν

j ẋk = Tβi.

2.1.3.7 Mechanical Acceleration and Force

In modern analytical mechanics, the two fundamental notions of accelera-
tion and force in general curvilinear coordinates are substantially different
from the corresponding terms in Cartesian coordinates as commonly used
in engineering mechanics. Namely, the acceleration vector is not an ordi-
nary time derivative of the velocity vector; ‘even worse’, the force, which is
a paradigm of a vector in statics and engineering vector mechanics, is not
a vector at all. Proper mathematical definition of the acceleration vector
is the absolute time derivative of the velocity vector, while the force is a
differential one–form.

To give a brief look at these ‘weird mathematical beasts’, consider a ma-
terial dynamical system described by n curvilinear coordinates xi = xi(t).
First, recall from section 2.1.3.3 above, that an ordinary time derivative of
the velocity vector vi(t) = ẋi(t) does not transform as a vector with respect
to the general coordinate transformation (2.2). Therefore, ai 6= v̇i. So, we
need to use its absolute time derivative to define the acceleration vector
(with i, j, k = 1, ..., n),

ai = ˙̄vi ≡ Dvi

dt
= vi;kẋ

k ≡ v̇i + Γijkv
jvk ≡ ẍi + Γijkẋ

j ẋk, (2.12)

which is equivalent to the l.h.s of the geodesic equation (2.10). Only in
the particular case of Cartesian coordinates, the general acceleration vector
(2.12) reduces to the familiar engineering form of the Euclidean acceleration
vector2, a = v̇.

1In this paragraph, the overdot denotes the total derivative with respect to the line

parameter s (instead of time t).
2Any Euclidean space can be defined as a set of Cartesian coordinates, while any

Riemannian manifold can be defined as a set of curvilinear coordinates. Christoffel’s
symbols Γijk vanish in Euclidean spaces defined by Cartesian coordinates; however, they

are nonzero in Riemannian manifolds defined by curvilinear coordinates.
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For example, in standard spherical coordinates xi = {ρ, θ, ϕ}, we have
the components of the acceleration vector given by (2.11), if we now rein-
terpret overdot as the time derivative,

aρ = ρ̈− ρθ̇
2
− ρ cos2 θϕ̇2, aθ = θ̈ +

2
ρ
ρ̇ϕ̇+ sin θ cos θϕ̇2,

aϕ = ϕ̈+
2
ρ
ρ̇ϕ̇− 2 tan θθ̇ϕ̇.

Now, using (2.12), the Newton’s fundamental equation of motion, that
is the basis of all science, F = ma, gets the following tensorial form

F i = mai = m ˙̄vi = m(vi;kẋ
k) ≡ m(v̇i + Γijkv

jvk) = m(ẍi + Γijkẋ
j ẋk),

(2.13)
which defines Newtonian force as a contravariant vector.

However, modern Hamiltonian dynamics reminds us that: (i) Newton’s
own force definition was not really F = ma, but rather F = ṗ, where
p is the system’s momentum, and (ii) the momentum p is not really a
vector, but rather a dual quantity, a differential one–form3. Consequently,
the force, as its time derivative, is also a one–form (see Figure 2.1; also,
compare with Figure Figure 5.2 above). This new force definition includes
the precise definition of the mass distribution within the system, by means
of its Riemannian metric tensor gij . Thus, (2.13) has to be modified as

Fi = mgija
j ≡ mgij(v̇j + Γjikv

ivk) = mgij(ẍj + Γjikẋ
iẋk), (2.14)

where the quantity mgij is called the material metric tensor, or inertia
matrix. Equation (2.14) generalizes the notion of the Newtonian force F,
from Euclidean space Rn to the Riemannian manifold M .

2.1.4 Application: Covariant Mechanics

Recall that a material system is regarded from the dynamical standpoint
as a collection of particles which are subject to interconnections and con-
straints of various kinds (e.g., a rigid body is regarded as a number of
particles rigidly connected together so as to remain at invariable distances
from each other). The number of independent coordinates which determine
the configuration of a dynamical system completely is called the number of
degrees of freedom (DOF) of the system. In other words, this number, n,

3For example, in Dirac’s < bra|ket > formalism, kets are vectors, while bras are
one–forms; in matrix notation, columns are vectors, while rows are one–forms.
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Fig. 2.1 A one–form θ (which is a family of parallel (hyper)surfaces, the so–called
Grassmann planes) pierced by the vector v to give a scalar product θ(v) ≡< θ, v >= 2.6

(see text for explanation).

is the dimension of the system’s configuration manifold. This viewpoint is
the core of our applied differential geometry.

For simplicity, let us suppose that we have a dynamical system with
three DOF (e.g., a particle of mass M , or a rigid body of mass M with
one point fixed); generalization to n DOF, with N included masses Mα, is
straightforward. The configuration of our system at any time is then given
by three coordinates {q1, q2, q3}. As the coordinates change in value the
dynamical system changes its configuration. Obviously, there is an infinite
number of sets of independent coordinates which will determine the con-
figuration of a dynamical system, but since the position of the system is
completely given by any one set, these sets of coordinates must be function-
ally related. Hence, if q̄i is any other set of coordinates, these quantities
must be connected with qi by formulae of the type

q̄i = q̄i(qi), (i = 1, ..., n(= 3)). (2.15)

Relations (2.15) are the equations of transformation from one set of dynam-
ical coordinates to another and, in a standard tensorial way (see [Misner
et al. (1973)]), we can define tensors relative to this coordinate transforma-
tion. The generalized coordinates qi, (i = 1, ..., n) constitute the system’s
configuration manifold.

In particular, in our ordinary Euclidean 3−dimensional (3D) space R3,
the ordinary Cartesian axes are xi = {x, y, z}, and the system’s center of
mass (COM) is given by

Ci =
Mαx

i
α∑N

α=1Mα

,

where Greek subscript α labels the masses included in the system. If we
have a continuous distribution of matter V = V (M) rather than the dis-
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crete system of masses Mα, all the α−sums should be replaced by volume
integrals, the element of mass dM taking the place of Mα,

N∑
α=1

Mα ⇒
∫∫∫
V

dM.

An important quantity related to the system’s COM is the double symmet-
ric contravariant tensor

Iij = Mαx
i
αx

j
α, (2.16)

called the inertia tensor, calculated relative to the origin O of the Cartesian
axes xiα = {xα, yα, zα}. If we are given a straight line through O, defined
by its unit vector λi, and perpendiculars pα are drawn from the different
particles on the line λi, the quantity

I(λi) = Mαp
2
α

is called the moment of inertia around λi. The moment of inertia I(λi)
can be expressed through inertia tensor (2.16) as

I(λi) = (Igij − Iij)λiλj ,

where gij is the system’s Euclidean 3D metric tensor (as defined above),
I = gijI

ij , and Iij = grmgsnI
mn is the covariant inertia tensor. If we now

consider the quadric Q whose equation is

(Igij − Iij)xixj = 1, (2.17)

we find that the moment of inertia around λi is 1/R, where R is the radius
vector of Q in the direction of λi. The quadric Q defined by relation (2.17)
is called the ellipsoid of inertia at the origin O. It has always three principal
axes, which are called the principal axes of inertia at O, and the planes
containing them in pairs are called the principal planes of inertia at O.
The principal axes of inertia are given by the equations

(Igij − Iij)λj = θλi,

where θ is a root of the determinant equation

|(I − θ)gij − Iij | = 0.

More generally, if we suppose that the points of our dynamical system
are referred to rectilinear Cartesian axes xi in a Euclidean n−dimensional
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(nD) space Rn, then when we are given the time and a set of generalized
coordinates qi we are also given all the points xi of the dynamical system,
as the system is determined uniquely. Consequently, the xi are functions
of qi and possibly also of the time, that is,

xi = xi(qi, t).

If we restrict ourselves to the autonomous dynamical systems in which these
equations do not involve t, i.e.,

xi = xi(qi), (2.18)

then differentiating (2.18) with respect to the time t gives

ẋi =
∂xi

∂qj
q̇j . (2.19)

The quantities q̇i, which form a vector with reference to coordinate trans-
formations (2.15), we shall call the generalized velocity vector. We see from
(2.19) that when the generalized velocity vector is given we know the veloc-
ity of each point of our system. Further, this gives us the system’s kinetic
energy,

Ekin =
1
2
Mαgmnẋ

m
α ẋ

n
α =

1
2
Mαgmn

∂xmα
∂qi

∂xnα
∂qj

q̇iq̇j . (2.20)

Now, if we use the Euclidean metric tensor gij to define the material
metric tensor Gij , including the distribution of all the masses Mα of our
system, as

Gij = Mαgmn
∂xmα
∂qi

∂xnα
∂qj

, (2.21)

the kinetic energy (2.20) becomes a homogenous quadratic form in the gen-
eralized system’s velocities q̇i,

Ekin =
1
2
Gij q̇

iq̇j . (2.22)

From the transformation relation (2.21) we see that the material metric
tensor Gij is symmetric in i and j. Also, since Ekin is an invariant for all
transformations of generalized coordinates, from (2.22) we conclude that
Gij is a double symmetric tensor. Clearly, this is the central quantity
in classical tensor system dynamics. We will see later, that Gij defines
the Riemannian geometry of the system dynamics. For simplicity reasons,
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Gij is often denoted by purely geometrical symbol gij , either assuming or
neglecting the material properties of the system.

Now, let us find the equations of motion of our system. According to the
D’Alembert’s Principle of virtual displacements, the equations of motion in
Cartesian coordinates xi in Rn are embodied in the single tensor equation

gmn(Mαẍ
m
α −Xm

α )δxnα = 0, (2.23)

where Xi
α is the total force vector acting on the particle Mα, while δxiα is

the associated virtual displacement vector, so that the product gijXi
αδx

j
α

is the virtual work of the system, and we can neglect in Xi
α all the internal

or external forces which do not work in the displacement δxiα. If we give
the system a small displacement compatible to with the constraints of the
system, we see that this displacement may be effected by giving increments
δqi to the generalized coordinates qi of the system, and these are related
to the δxi in accordance with the transformation formulae δxiα = ∂xiα

∂qj δq
j .

Furthermore, in this displacement the internal forces due to the con-
straints of the system will do no work, since these constraints are preserved,
and consequently only the external forces will appear in (2.23), so it be-
comes

gmn

[
Mα

d

dt

(
∂xmα
∂qj

q̇j
)
∂xnα
∂qi
−Xm

α

∂xnα
∂qi

]
δqi = 0. (2.24)

Now, using (2.20–2.22), we derive

Mαgmn
d

dt

(
∂xmα
∂qj

q̇j
)
∂xnα
∂qi

=
d

dt
(Gij q̇j)−

1
2
∂Gst
∂qi

q̇j q̇k =
d

dt

(
∂Ekin
∂q̇i

)
−∂Ekin

∂qi
.

Also, if we put

Fi = gmnX
m
α

∂xnα
∂qi

, we get

Fiδq
i = gmnX

m
α δx

n
α = δW, (2.25)

where δW is the virtual work done by the external forces in the small
displacement δqi, which shows that Fi is the covariant vector, called the
generalized force vector. Now (2.24) takes the form[

d

dt

(
∂Ekin
∂q̇i

)
− ∂Ekin

∂qi
− Fi

]
δqi = 0.
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Since the coordinates qi are independent this equation is true for all varia-
tions δqi and we get as a final result the covariant Lagrangian equations of
motion,

d

dt

(
∂Ekin
∂q̇i

)
− ∂Ekin

∂qi
= Fi.

If the force system is conservative and Epot is the system’s potential energy
given by

Fi = −∂Epot
∂qi

,

then, using (2.25) the Lagrangian equations take the standard form

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
, (2.26)

where the Lagrangian function L = L(q, q̇) of the system is given by L =
Ekin − Epot (since Epot does not contain q̇i).

Now, the kinetic energy Ekin of the system, given by quadratic form
(2.22), is always positive except when q̇i is zero in which case Ekin vanishes.
In other words, the quadratic form (2.22) is positive definite. Consequently,
we can always find the line (or arc) element, defined by

ds2 = Gijdq
idqj . (2.27)

A manifold in which ds2 is given by relation of the type of (2.27), geomet-
rically with gij instead of Gij , is called a Riemannian manifold.

2.1.4.1 Riemannian Curvature Tensor

Every Riemannian manifold is characterized by the Riemann curvature ten-
sor. In physical literature (see, e.g., [Misner et al. (1973)]) it is usually
introduced through the Jacobi equation of geodesic deviation, showing the
acceleration of the relative separation of nearby geodesics (the shortest,
straight lines on the manifold). For simplicity, consider a sphere of radius
a in R3. Here, Jacobi equation is pretty simple,

d2ξ

ds2
+Rξ = 0,

where ξ is the geodesic separation vector (the so–called Jacobi vector–field),
s denotes the geodesic arc parameter given by (2.27) and R = 1/a2 is the
Gaussian curvature of the surface.
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In case of a higher–dimensional manifold M , the situation is naturally
more complex, but the main structure of the Jacobi equation remains sim-
ilar,

D2ξ

ds2
+R(u, ξ, u) = 0,

where D denotes the covariant derivative and R(u, ξ, u) is the curvature
tensor, a three–slot linear machine. In components defined in a local coor-
dinate chart (xi) on M , this equation reads

D2ξi

ds2
+Rijkl

dxj

ds
ξk
dxl

ds
= 0,

where Rijkl are the components of the Riemann curvature tensor .

2.1.4.2 Exterior Differential Forms

Recall that exterior differential forms are a special kind of antisymmetri-
cal covariant tensors (see, e.g., [De Rham (1984); Flanders (1963)]). Such
tensor–fields arise in many applications in physics, engineering, and differ-
ential geometry. The reason for this is the fact that the classical vector
operations of grad, div, and curl as well as the theorems of Green, Gauss,
and Stokes can all be expressed concisely in terms of differential forms and
the main operator acting on them, the exterior derivative d. Differential
forms inherit all geometrical properties of the general tensor calculus and
add to it their own powerful geometrical, algebraic and topological ma-
chinery (see Figures 2.2 and 2.3). Differential p−forms formally occur as
integrands under ordinary integral signs in R3:

• a line integral
∫
P dx+Qdy +Rdz has as its integrand the one–form

ω = P dx+Qdy +Rdz;
• a surface integral

∫∫
Adydz+B dzdx+C dxdy has as its integrand the

two–form α = Adydz +B dzdx+ C dxdy;
• a volume integral

∫∫∫
K dxdydz has as its integrand the three–form

λ = K dxdydz.

By means of an exterior derivative d, a derivation that transforms
p−forms into (p+ 1)−forms, these geometrical objects generalize ordinary
vector differential operators in R3:

• a scalar function f = f(x) is a zero–form;



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

72 Applied Differential Geometry: A Modern Introduction

Fig. 2.2 Basis vectors and 1–forms in Euclidean R3−space: (a) Translational case; and
(b) Rotational case.

• its gradient df , is a one–form4

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz;

• a curl dω, of a one–form ω above, is a two–form

dω =
(
∂R

∂y
− ∂Q

∂z

)
dydz +

(
∂P

∂z
− ∂R

∂x

)
dzdx+

(
∂Q

∂x
− ∂P

∂y

)
dxdy;

4We use the same symbol, d, to denote both ordinary and exterior derivation, in

order to avoid extensive use of the boldface symbols. It is clear from the context which
derivative (differential) is in place: exterior derivative operates only on differential forms,
while the ordinary differential operates mostly on coordinates.
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• a divergence dα, of the two–form α above, is a three–form

dα =
(
∂A

∂x
+
∂B

∂y
+
∂C

∂z

)
dxdydz.

Fig. 2.3 Fundamental two–form and its flux in R3: (a) Translational case; (b) Rota-
tional case. In both cases the flux through the plane u ∧ v is defined as

R R
u∧v c dpidq

i

and measured by the number of tubes crossed by the circulation oriented by u ∧ v.

Now, although visually intuitive, our Euclidean 3D space R3 is not
sufficient for thorough physical or engineering analysis. The fundamen-
tal concept of a smooth manifold, locally topologically equivalent to the
Euclidean nD space Rn, is required (with or without Riemannian metric
tensor defined on it). In general, a proper definition of exterior derivative
d for a p−form β on a smooth manifold M , includes the Poincaré lemma:
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d(dβ) = 0, and validates the general integral Stokes formula∫
∂M

β =
∫
M

dβ,

where M is a p−dimensional manifold with a boundary and ∂M is its (p−
1)−dimensional boundary, while the integrals have appropriate dimensions.

A p−form β is called closed if its exterior derivative is equal to zero,

dβ = 0.

From this condition one can see that the closed form (the kernel of the
exterior derivative operator d) is conserved quantity. Therefore, closed
p−forms possess certain invariant properties, physically corresponding to
the conservation laws.

A p−form β that is an exterior derivative of some (p− 1)−form α,

β = dα,

is called exact (the image of the exterior derivative operator d). By
Poincaré lemma, exact forms prove to be closed automatically,

dβ = d(dα) = 0.

Similarly to the components of a 3D vector v defined above, a one–form
θ defined on an nD manifold M can also be expressed in components, using
the coordinate basis {dxi} along the local nD coordinate chart {xi} ∈ M ,
as

θ = θi dx
i.

Now, the components of the exterior derivative of θ are equal to the com-
ponents of its commutator defined on M by

dθ = ωij dx
i dxj ,

where the components of the form commutator ωij are given by

ωij =
(
∂θi
∂xi
− ∂θi
∂xj

)
.

The space of all smooth p−forms on a smooth manifold M is denoted by
Ωp(M). The wedge, or exterior product of two differential forms, a p−form
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α ∈ Ωp(M) and a q−form β ∈ Ωq(M) is a (p+q)−form α∧β. For example,
if θ = aidx

i, and η = bjdx
j , their wedge product θ ∧ η is given by

θ ∧ η = aibjdx
idxj ,

so that the coefficients aibj of θ ∧ η are again smooth functions, being
polynomials in the coefficients ai of θ and bj of η. The exterior product ∧
is related to the exterior derivative d : Ωp(M)→ Ωp+1(M), by

d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ.

Another important linear operator is the Hodge star ∗ : Ωp(M) →
Ωn−p(M), where n is the dimension of the manifold M . This operator
depends on the inner product (i.e., Riemannian metric) on M and also
depends on the orientation (reversing orientation will change the sign). For
any p−forms α and β,

∗ ∗ α = (−1)p(n−p)α, and α ∧ ∗β = β ∧ ∗α.

Hodge star is generally used to define dual (n − p)−forms on nD smooth
manifolds.

For example, in R3 with the ordinary Euclidean metric, if f and g are
functions then (compare with the 3D forms of gradient, curl and divergence
defined above)

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz,

∗df =
∂f

∂x
dydz +

∂f

∂y
dzdx+

∂f

∂z
dxdy,

df ∧ ∗dg =
(
∂f

∂x

∂g

∂x
+
∂f

∂y

∂g

∂y
+
∂f

∂z

∂g

∂z

)
dxdydz = ∆f dxdydz,

where ∆f is the Laplacian on R3. Therefore the three–form df ∧∗dg is the
Laplacian multiplied by the volume element, which is valid, more generally,
in any local orthogonal coordinate system in any smooth domain U ∈ R3.

The subspace of all closed p−forms on M we will denote by Zp(M) ⊂
Ωp(M), and the sub-subspace of all exact p−forms on M we will denote by
Bp(M) ⊂ Zp(M). Now, the quotient space

Hp(M) =
Zp(M)
BpM

=
Ker

(
d : Ωp(M)→ Ωp+1(M)

)
Im (d : Ωp−1(M)→ Ωp(M))
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is called the pth de Rham cohomology group (or vector space) of a manifold
M . Two p−forms α and β on M are equivalent, or belong to the same
cohomology class [α] ∈ Hp(M), if their difference equals α−β = dθ, where
θ is a (p− 1)−form on M .

2.1.4.3 The Covariant Force Law

Objective of this final tensor section is to generalize the fundamental New-
tonian 3D equation, F = ma, for a generic robotic/biodynamical system,
consisting of a number of flexibly–coupled rigid segments (see Figures 3.7–
3.8 above), and thus to formulate the covariant force law .

To be able to apply the covariant formalism, we need to start with the
suitable coordinate transformation (2.2), in this case as a relation between
the 6 external SE(3) rigid–body coordinates, ye = ye(t) (e = 1, ..., 6), and
2n internal joint coordinates, xi = xi(t) (i = 1, ..., 2n) (n angles, forming
the constrained n−torus Tn, plus n very restricted translational coordi-
nates, forming the hypercube In ⊂ Rn). Once we have these two sets of
coordinates, external–ye and internal–xi, we can perform the general func-
tional transformation (2.2) between them,

xi = xi(ye). (2.28)

Now, although the coordinate transformation (2.28) is nonlinear and even
unknown at this stage, there is something known and simple about it: the
corresponding transformation of differentials is linear and homogenous,

dxi =
∂xi

∂ye
dye,

which implies the linear and homogenous transformation of velocities,

ẋi =
∂xi

∂ye
ẏe. (2.29)

Our internal velocity vector–field is defined by the set of ODEs (2.29), at
each representative point xi = xi(t) of the system’s configuration manifold
M = Tn × In, as vi ≡ vi(xi, t) := ẋi(xi, t).

Note that in general, a vector–field represents a field of vectors defined at
every point xi within some region U (e.g., movable segments/joints only) of
the total configuration manifold M (consisting of all the segments/joints).
Analytically, vector–field is defined as a set of autonomous ODEs (in our
case, the set (2.29)). Its solution gives the flow, consisting of integral curves
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of the vector–field, such that all the vectors from the vector–field are tangent
to integral curves at different representative points xi ∈ U . In this way,
through every representative point xi ∈ U passes both a curve from the flow
and its tangent vector from the vector–field. Geometrically, vector–field is
defined as a cross–section of the tangent bundle TM , the so–called velocity
phase–space. Its geometrical dual is the 1–form–field, which represents a
field of one–forms (see Figure 2.1), defined at the same representative points
xi ∈ U . Analytically, 1–form–field is defined as an exterior differential
system, an algebraic dual to the autonomous set of ODEs. Geometrically,
it is defined as a cross–section of the cotangent bundle T ∗M , the so–called
momentum phase–space. Together, the vector–field and its corresponding
1–form–field define the scalar potential field (e.g., kinetic and/or potential
energy) at the same movable region U ⊂M .

Next, we need to formulate the internal acceleration vector–field, ai ≡
ai(xi, ẋi, t), acting in all movable joints, and at the same time generalizing
the Newtonian 3D acceleration vector a.

According to Newton, acceleration is a rate–of–change of velocity. But,
from the previous subsections, we know that ai 6= v̇i. However,

ai := ˙̄vi = v̇i + Γijkv
jvk = ẍi + Γijkẋ

j ẋk. (2.30)

Once we have the internal acceleration vector–field ai = ai(xi, ẋi, t),
defined by the set of ODEs (2.30) (including Levi–Civita connections Γijk
of the Riemannian configuration manifold M), we can finally define the
internal force 1–form field, Fi = Fi(xi, ẋi, t), as a family of force one–
forms, half of them rotational and half translational, acting in all movable
joints,

Fi := mgija
j = mgij(v̇j + Γjikv

ivk) = mgij(ẍj + Γjikẋ
iẋk), (2.31)

where we have used the simplified material metric tensor, mgij , for the
system (considering, for simplicity, all segments to have equal mass m),
defined by its Riemannian kinetic energy form

T =
1
2
mgijv

ivj .

Equation Fi = mgija
j , defined properly by (2.31) at every represen-

tative point xi of the system’s configuration manifold M , formulates the
sought for covariant force law , that generalizes the fundamental Newto-
nian equation, F = ma, for the generic physical or engineering system. Its
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meaning is:

Force 1–form–field = Mass distribution×Acceleration vector–field

In other words, the field (or, family) of force one–forms Fi, acting in

all movable joints (with constrained rotations on Tn and very restricted

translations on In), causes both rotational and translational accelerations

of all body segments, within the mass distribution mgij
5, along the flow–

lines of the vector–field aj .

2.1.5 Application: Nonlinear Fluid Dynamics

In this subsection we will derive the general form of the Navier–Stokes
equations in nonlinear fluid dynamics.

2.1.5.1 Continuity Equation

Recall that the most important equation in fluid dynamics, as well as in
general continuum mechanics, is the celebrated equation of continuity, (we
explain the symbols in the following text)

∂tρ+ div(ρu) = 0. (2.32)

As a warm–up for turbulence, we will derive the continuity equation
(2.32), starting from the mass conservation principle. Let dm denote an
infinitesimal mass of a fluid particle. Then, using the absolute time deriva-
tive operator ˙( ) ≡ D

dt , the mass conservation principle reads

˙dm = 0. (2.33)

If we further introduce the fluid density ρ = dm/dv, where dv is an in-
finitesimal volume of a fluid particle, then the mass conservation principle
(2.33) can be rewritten as

˙ρdv = 0,
5More realistically, instead of the simplified metric mgij we have the material metric

tensor Gij (2.21), including all k segmental masses mχ, as well as the corresponding
moments and products of inertia,

Gij(x,m) =

kX
χ=1

mχδrs
∂yr

∂xi
∂ys

∂xj
, (r, s = 1, ..., 6; i, j = 1, ..., 2n).
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which is the absolute derivative of a product, and therefore expands into

ρ̇dv + ρḋv = 0. (2.34)

Now, as the fluid density ρ = ρ(xk, t) is a function of both time t and
spatial coordinates xk, for k = 1, 2, 3, that is, a scalar–field , its total time
derivative ρ̇, figuring in (2.34), is defined by

ρ̇ = ∂tρ+ ∂xkρ ∂tx
k ≡ ∂tρ+ ρ;ku

k, (2.35)

or, in vector form ρ̇ = ∂tρ+ grad(ρ) · u,

where uk = uk(xk, t) ≡ u is the velocity vector–field of the fluid.
Regarding ḋv, the other term figuring in (2.34), we start by expanding an

elementary volume dv along the sides {dxi(p), dx
j
(q), dx

k
(r)} of an elementary

parallelepiped, as

dv =
1
3!
δpqrijk dx

i
(p)dx

j
(q)dx

k
(r), (i, j, k, p, q, r = 1, 2, 3)

so that its absolute derivative becomes

ḋv =
1
2!
δpqrijk

˙
dxi(p)dx

j
(q)dx

k
(r)

=
1
2!
ui;lδ

pqr
ijk dx

l
(p)dx

j
(q)dx

k
(r) (using ˙

dxi(p) = ui;ldx
l
(p)),

which finally simplifies into

ḋv = uk;kdv ≡ div(u) dv. (2.36)

Substituting (2.35) and (2.36) into (2.34) gives

˙ρdv ≡
(
∂tρ+ ρ;ku

k
)
dv + ρuk;kdv = 0. (2.37)

As we are dealing with arbitrary fluid particles, dv 6= 0, so from (2.37)
follows

∂tρ+ ρ;ku
k + ρuk;k ≡ ∂tρ+ (ρuk);k = 0. (2.38)

Equation (2.38) is the covariant form of the continuity equation, which in
standard vector notation becomes (2.32), i.e., ∂tρ+ div(ρu) = 0.
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2.1.5.2 Forces Acting on a Fluid

A fluid contained in a finite volume is subject to the action of both volume
forces F i and surface forces Si, which are respectively defined by

F i =
∫
v

ρf idv, and Si =
∮
a

σijdaj . (2.39)

Here, f i is a force vector acting on an elementary mass dm, so that the
elementary volume force is given by

dF i = f idm = ρf idv,

which is the integrand in the volume integral on l.h.s of (2.39). σij =
σij(xk, t) is the stress tensor–field of the fluid, so that the elementary force
acting on the closed oriented surface a is given by

dSi = σijdaj ,

where daj is an oriented element of the surface a; this is the integrand in
the surface integral on the r.h.s of (2.39).

On the other hand, the elementary momentum dKi of a fluid particle
(with elementary volume dv and elementary mass dm = ρdv) equals the
product of dm with the particle’s velocity ui, i.e.,

dKi = uidm = ρuidv,

so that the total momentum of the finite fluid volume v is given by the
volume integral

Ki =
∫
v

ρuidv. (2.40)

Now, the Newtonian–like force law for the fluid states that the time
derivative of the fluid momentum equals the resulting force acting on it,
K̇i = F i, where the resulting force F i is given by the sum of surface and
volume forces,

F i = Si + F i =
∮
a

σijdaj +
∫
v

ρf idv. (2.41)

From (2.40), taking the time derivative and using ˙ρdv = 0, we get

K̇i =
∫
v

ρu̇idv,
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where u̇i = u̇i(xk, t) ≡ u̇ is the acceleration vector–field of the fluid, so that
(2.41) gives ∮

a

σijdaj +
∫
v

ρ(f i − u̇i)dv = 0. (2.42)

Now, assuming that the stress tensor σij = σij(xk, t) does not have any
singular points in the volume v bounded by the closed surface a, we can
transform the surface integral in (2.42) in the volume one, i.e.,∮

a

σijdaj =
∫
v

σij;jdv, (2.43)

where σij;j denotes the divergence of the stress tensor . The expression (2.43)
shows us that the resulting surface force acting on the closed surface a equals
the flux of the stress tensor through the surface a. Using this expression,
we can rewrite (2.42) in the form∫

v

(
σij;j + ρf i − ρu̇i

)
dv = 0.

As this equation needs to hold for an arbitrary fluid element dv 6= 0, it
implies the dynamical equation of motion for the fluid particles, also called
the first Cauchy law of motion,

σij;j + ρf i = ρu̇i. (2.44)

2.1.5.3 Constitutive and Dynamical Equations

Recall that, in case of a homogenous isotropic viscous fluid, the stress tensor
σij depends on the strain–rate tensor–field eij = eij(xk, t) of the fluid in
such a way that

σij = −pgij , when eij = 0,

where the scalar function p = p(xk, t) represents the pressure field. There-
fore, pressure is independent on the strain–rate tensor eij . Next, we intro-
duce the viscosity tensor–field βij = βij(xk, t), as

βij = σij + pgij , (2.45)

which depends exclusively on the strain–rate tensor (i.e., βij = 0 whenever
eij = 0). A viscous fluid in which the viscosity tensor βij can be expressed



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

82 Applied Differential Geometry: A Modern Introduction

as a function of the strain–rate tensor eij in the form

βij = α1(eI , eII , eIII)gij + α2(eI , eII , eIII)eij + α3(eI , eII , eIII)eikekj ,
(2.46)

where αl = αl(eI , eII , eIII), (l = 1, 2, 3) are scalar functions of the basic
invariants (eI , eII , eIII) of the strain–rate tensor eij , is called the Stokes
fluid .

If we take only the linear terms in (2.46), we get the constitutive equa-
tion for the Newtonian fluid ,

βij = α1eIg
ij + α2eij , (2.47)

which is, therefore, a linear approximation of the constitutive equation
(2.46) for the Stokes fluid.

If we now put (2.47) into (2.45) we get the dynamical equation for the
Newtonian fluid,

σij = −pgij + µeIg
ij + 2ηeij , (2.48)

If we put µ = ηV − 2
3η, where ηV is called the volume viscosity

coefficient, while η is called the shear viscosity coefficient, we can rewrite
(2.48) as

σij = −pgij +
(
ηV −

2
3
η

)
eIg

ij + 2ηeij . (2.49)

2.1.5.4 Navier–Stokes Equations

From the constitutive equation of the Newtonian viscous fluid (2.49), by
taking the divergence, we get

σij;j = −p;jg
ij +

(
ηV −

2
3
η

)
eI;jg

ij + 2ηeij;j .

However, as eI;j = uk;kj as well as

eij;j =
1
2

(ui;j + uj;i);j =
1
2

(ui;jj + uj;ij ) =
1
2

∆ui +
1
2
uki;k
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we get

σij;j = −p;jg
ij +

(
ηV −

2
3
η

)
uk;kjg

ij + η∆ui + ηuk;kjg
ij ,

or σij;j = −p;jg
ij +

(
ηV −

1
3
η

)
uk;kjg

ij + η∆ui.

If we now substitute this expression into (2.44) we get

ρu̇i = ρf i − p;jg
ij +

(
ηV −

1
3
η

)
uk;kjg

ij + η∆ui, (2.50)

that is a system of 3 scalar PDEs called the Navier–Stokes equations, which
in vector form read

ρu̇ = ρf − grad p+
(
ηV −

1
3
η

)
grad(div u) + η∆u. (2.51)

In particular, for incompressible fluids, div u = 0, we have

u̇ = f − 1
ρ

grad p+ ν∆u, where ν =
η

ρ
(2.52)

is the coefficient of kinematic viscosity.

2.2 Actions: The Core Machinery of Modern Physics

It is now well–known that a contemporary development of theoretical
physics progresses according to the heuristic action paradigm6 (see e.g.,
[Ramond (1990); Feynman and Hibbs (1965); Siegel (2002)]), which fol-
lows the common three essential steps (note that many technical details
are omitted here for brevity):

(1) In order to develop a new physical theory, we first define a new action
A[w], a functional in N system variables wi, as a time integral from
the initial point t0 to the final point t1,

A[w] =
∫ t1

t0

L[w] dt. (2.53)

6The action principle is a fundamental concept in physics (of as great importance as

symmetry). It is very powerful for classical physics, allowing all field equations to be

derived from a single function, and making symmetries simpler to check. In quantum
physics the dynamics is necessarily formulated in terms of an action (in the path–integral

approach), or an equivalent Hamiltonian (in the Heisenberg and Schrödinger approaches).
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Now, the nature of the integrand L[w] in (6.230) depends on whether we
are dealing with particles or fields. In case of particles, L[w] = L(q, q̇) is
an ordinary finite–dimensional mechanical Lagrangian (usually kinetic
minus potential energy), defined through mechanical (total system en-
ergy) Hamiltonian H = H(q, p) as L[w] = L(q, q̇) = piq̇

i − H(q, p),
where q, q̇, p are generalized coordinates, velocities and canonical mo-
menta, respectively.
In case of fields, the integrand L[w] is more involved, as fields just
infinite–dimensional particles. Thus,

L[w] =
∫
dnqL(ϕ, ϕ̇, ϕq),

where the integral is taken over all n space coordinates7, while ϕ, ϕ̇, ϕq
denote field variables, their velocities and their coordinate (partial)
derivatives, respectively. The subintegrand L = L(ϕ, ϕ̇, ϕq) is the sys-
tem Lagrangian density , defined through the system Hamiltonian den-
sity H = H(ϕ, π, πq) as L(ϕ, ϕ̇, ϕq) = πiϕ̇

i − H(ϕ, π, πq), where π, πq
are field (canonical) momenta, and their coordinate derivatives.

(2) Variate the action A[w] using the extremal (least) action principle

δA[w] = 0, (2.54)

and using techniques from calculus of variations (see, e.g., [Arfken
(1985); Fox (1988); Ramond (1990)]), derive classical field and mo-
tion equations, as Euler–Lagrangian equations, describing the extremal
path, or direct system path: t 7→ w(t), from t0 to t1.
Again, we have two cases. The particle Euler–Lagrangian equation
reads

∂tLq̇i = Lqi ,

and can be recast in Hamiltonian form, using the Poisson bracket (or,
classical commutator)8, as a pair of canonical equations

q̇i = [qi,H], ṗi = [pi,H]. (2.55)
7In particular, n = 3 for the fields in Euclidean 3D space.
8Recall that for any two functions A = A(qk, pk, t) and B = B(qk, pk, t), their Poisson

bracket is defined as

[A,B]partcl =

„
∂A

∂qk
∂B

∂pk
−
∂A

∂pk

∂B

∂qk

«
.
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The field Euler–Lagrangian equation

∂qL∂qϕi = Lϕi ,

in Hamiltonian form gives a pair of field canonical equations9

ϕ̇i = [ϕi,H], π̇i = [πi,H]. (2.56)

(3) Once we have a satisfactory description of fields and motions, we can
perform the Feynman quantization10 of classical equations [Feynman
and Hibbs (1965)], using the same action A[w] as given by (6.230),
but now including all trajectories rather than just the extremal one.
Namely, to get the probability amplitude 〈f |i〉 of the system transition
from initial state i(w(t0)) at time t0 to final state f(w(t1)) at time t1,

9Here the field Poisson brackets are slightly generalized in the sense that partial
derivatives ∂ are replaced with the corresponding variational derivatives δ, i.e.,

[A,B]field =

„
δA

δqk
δB

δpk
−
δA

δpk

δB

δqk

«
.

10Recall that quantum systems have two modes of evolution in time. The first, gov-

erned by Schrödinger equation:

i~
∂

∂t
|ψ〉 = Ĥ |ψ〉 ,

(where Ĥ is the Hamiltonian (energy) operator, i =
√
−1 and ~ is Planck’s constant

divided by 2π (≡ 1 in natural units)), describes the time evolution of quantum systems
when they are undisturbed by measurements. ‘Measurements’ are defined as interactions

of the system with its environment. As long as the system is sufficiently isolated from

the environment, it follows Schrödinger equation. If an interaction with the environ-
ment takes place, i.e., a measurement is performed, the system abruptly decoheres i.e.,

collapses or reduces to one of its classically allowed states.

A time–dependent state of a quantum system is determined by a normalized, complex,
wave psi–function ψ = ψ(t), that is a solution of the above Schrödinger equation. In

Dirac’s words, this is a unit ‘ket’ vector |ψ〉 (that makes a scalar product ‘bracket’ 〈, 〉
with the dual, ‘bra’ vector 〈ψ|) , which is an element of the Hilbert space L2(ψ) with
a coordinate basis (qi). The state ket–vector |ψ(t)〉 is subject to action of the Hermi-

tian operators (or, self–adjoint operators), obtained by the procedure of quantization of
classical mechanical quantities, and whose real eigen–values are being measured. Quan-
tum superposition is a generalization of the algebraic principle of linear combination of

vectors.
The (first) quantization can be performed in three different quantum evolution pic-

tures, namely Schrödinger (S)–picture, in which the system state vector |ψ(t)〉 rotates

and the coordinate basis (qi) is fixed; Heisenberg (H)–picture, in which the coordinate
basis rotates and the state vector is fixed; and Dirac interaction (I)–picture, in which

both the state vector and the coordinate basis rotate.
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we put the action A[w] into the path integral11 (see, e.g., [Feynman and
Hibbs (1965); Schulman (1981); Siegel (2002)]), symbolically written as

〈f |i〉 =
∫

Ω

D[w] eiA[w], (2.57)

where i =
√
−1 is the imaginary unit, Ω represents the space of all

system paths wi(t) which contribute to the system transition with equal
probabilities, and the implicit Planck constant } is normalized to unity.
This ‘functional integral’ is usually calculated by breaking up the time
interval [t0, t1] into discrete points and taking the continuum limit.
The symbolic differential D[w] in the path integral (2.57) representing
a (somewhat non–rigorous) path measure, defines a product

D[w] =
N∏
i=1

dwi,

which in case of quantum–mechanical particles reads

D[w] =
N∏
i=1

dqidpi,

and in case of quantum fields reads

D[w] =
N∏
i=1

dϕidπi.

The path integral scheme (2.57) is commonly used for calculating the
propagator of an arbitrary quantum(gravity) system, as well as that

11The Feynman path integral is an expression for the system’s propagator in terms of
an integral over an infinite–dimensional space of paths within the system’s configuration

space. It constitutes a formulation of non–relativistic quantum mechanics which is al-
ternative to the usual Schrödinger equation. Whereas the Schrödinger equation is based
on Hamiltonians, the Feynman path integral is based on Lagrangians. In the last three

decades, path integrals have proven to be invaluable in quantum field theory, statistical
mechanics, condensed matter physics, and quantum gravity. The path integral is now
the preferred method for quantizing gauge fields, as well as setting up perturbation ex-

pansions in quantum field theory. It also leads very quickly to important conclusions
in certain problems. However, for most simple non–relativistic quantum problems, the

path integral is not as easy to use as the Schrödinger equation, and most of the results

obtained with it can be obtained more easily by other means. Nevertheless, one cannot
help but be impressed with the elegance and beauty of the Feynman path integral, or

recognize that it is a result of fundamental scientific importance.
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of a Markov–Gaussian stochastic systems described by either Langevin
rate ODEs or Fokker–Planck PDEs.
The most general quantization method, the path integral (2.57), can
be reduced to the most common Dirac quantization rule [Dirac (1982)],
which uses modified particle equation (2.55) for quantum particles,

˙̂qi = i{Ĥ, q̂i}, ˙̂pi = i{Ĥ, p̂i}, (2.58)

and modified field equation (6.147) for quantum fields,

˙̂ϕi = i{Ĥ, ϕ̂i}, ˙̂πi = i{Ĥ, π̂i], (2.59)

where coordinate and field variables (of ordinary Euclidean space) are
replaced by the corresponding Hermitian operators (i.e., self–adjoint
operators) in the complex Hilbert space and the Poisson bracket [, ]
is replaced by the quantum commutator {, } (multiplied by −i). In
addition, the Dirac rule postulates the Heisenberg uncertainty relations
between the canonical pairs of coordinate and field variables, namely

∆qi ·∆pi ≥
1
2

and ∆ϕi ·∆πi ≥
1
2
.

The action paradigm, as outlined above, provides both classical12 and
quantum description for any new physical theory, even for those yet to
be discovered. It represents a heuristic tool in search for a unified force
of nature; the latest theory described in this way has been the celebrated
superstring theory.

2.3 Functors: Global Machinery of Modern Mathematics

In modern mathematical sciences whenever one defines a new class of math-
ematical objects, one proceeds almost in the next breath to say what kinds
of maps between objects will be considered [Switzer (1975)]. A general
framework for dealing with situations where we have some objects and maps
between objects, like sets and functions, vector spaces and linear operators,
points in a space and paths between points, etc. – gives the modern meta-
language of categories and functors. Categories are mathematical universes
and functors are ‘projectors’ from one universe onto another. For this rea-

12For example, the Einstein–Hilbert action is used to derive the Einstein equation of
general relativity (see below).
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son, in this book we extensively use this language, mainly following its
founder, S. MacLane [MacLane (1971)].

2.3.1 Maps

2.3.1.1 Notes from Set Theory

Given a map (or, a function) f : A→ B, the set A is called the domain of
f , and denoted Dom f . The set B is called the codomain of f , and denoted
Cod f. The codomain is not to be confused with the range of f(A), which
is in general only a subset of B.

A map f : X → Y is called injective or 1–1 or an injection if for
every y in the codomain Y there is at most one x in the domain X with
f(x) = y. Put another way, given x and x′ in X, if f(x) = f(x′), then it
follows that x = x′. A map f : X → Y is called surjective or onto or a
surjection if for every y in the codomain Cod f there is at least one x in
the domain X with f(x) = y. Put another way, the range f(X) is equal to
the codomain Y . A map is bijective iff it is both injective and surjective.
Injective functions are called the monomorphisms, and surjective functions
are called the epimorphisms in the category of sets (see below).

Two main classes of maps (or, functions) that we will use int this book
are: (i) continuous maps (denoted as C0−class), and (ii) smooth or dif-
ferentiable maps (denoted as Ck−class). The former class is the core of
topology, the letter of differential geometry. They are both used in the core
concept of manifold.

A relation is any subset of a Cartesian product (see below). By defini-
tion, an equivalence relation α on a set X is a relation which is reflexive,
symmetrical and transitive, i.e., relation that satisfies the following three
conditions:

(1) Reflexivity : each element x ∈ X is equivalent to itself, i.e., xαx,
(2) Symmetry : for any two elements x, x′ ∈ X, xαx′ implies x′αx, and
(3) Transitivity : a ≤ b and b ≤ c implies a ≤ c.

Similarly, a relation ≤ defines a partial order on a set S if it has the
following properties:

(1) Reflexivity : a ≤ a for all a ∈ S,
(2) Antisymmetry : a ≤ b and b ≤ a implies a = b, and
(3) Transitivity : a ≤ b and b ≤ c implies a ≤ c.
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A partially ordered set (or poset) is a set taken together with a partial
order on it. Formally, a partially ordered set is defined as an ordered pair
P = (X,≤), where X is called the ground set of P and ≤ is the partial
order of P .

2.3.1.2 Notes From Calculus

2.3.1.3 Maps

Recall that a map (or, function) f is a rule that assigns to each element
x in a set A exactly one element, called f(x), in a set B. A map could be
thought of as a machine [[f ]] with x−input (the domain of f is the set of all
possible inputs) and f(x)−output (the range of f is the set of all possible
outputs) [Stuart (1999)]

x→ [[f ]]→ f(x)

There are four possible ways to represent a function (or map): (i) verbally
(by a description in words); (ii) numerically (by a table of values); (iii)
visually (by a graph); and (iv) algebraically (by an explicit formula). The
most common method for visualizing a function is its graph. If f is a
function with domain A, then its graph is the set of ordered input–output
pairs

{(x, f(x)) : x ∈ A}.

A generalization of the graph concept is a concept of a cross–section of a
fibre bundle, which is one of the core geometrical objects for dynamics of
complex systems.

2.3.1.4 Algebra of Maps

Let f and g be maps with domains A and B. Then the maps f + g, f − g,
fg, and f/g are defined as follows [Stuart (1999)]

(f + g)(x) = f(x) + g(x) domain = A ∩B,
(f − g)(x) = f(x)− g(x) domain = A ∩B,

(fg)(x) = f(x) g(x) domain = A ∩B,(
f

g

)
(x) =

f(x)
g(x)

domain = {x ∈ A ∩B : g(x) 6= 0}.
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2.3.1.5 Compositions of Maps

Given two maps f and g, the composite map f ◦ g (also called the compo-
sition of f and g) is defined by

(f ◦ g)(x) = f(g(x)).

The (f ◦ g)−machine is composed of the g−machine (first) and then the
f−machine [Stuart (1999)],

x→ [[g]]→ g(x)→ [[f ]]→ f(g(x))

For example, suppose that y = f(u) =
√
u and u = g(x) = x2 + 1. Since y

is a function of u and u is a function of x, it follows that y is ultimately a
function of x. We calculate this by substitution

y = f(u) = f ◦ g = f(g(x)) = f(x2 + 1) =
√
x2 + 1.

2.3.1.6 The Chain Rule

If f and g are both differentiable (or smooth, i.e., Ck) maps and h = f ◦ g
is the composite map defined by h(x) = f(g(x)), then h is differentiable
and h′ is given by the product [Stuart (1999)]

h′(x) = f ′(g(x)) g′(x).

In Leibniz notation, if y = f(u) and u = g(x) are both differentiable maps,
then

dy

dx
=
dy

du

du

dx
.

The reason for the name chain rule becomes clear if we add another link
to the chain. Suppose that we have one more differentiable map x = h(t).
Then, to calculate the derivative of y with respect to t, we use the chain
rule twice,

dy

dt
=
dy

du

du

dx

dx

dt
.

2.3.1.7 Integration and Change of Variables

1–1 continuous (i.e., C0) map T with a nonzero Jacobian
∣∣∣ ∂(x,...)
∂(u,...)

∣∣∣ that

maps a region S onto a region R, (see [Stuart (1999)]) we have the following
substitution formulas:
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1. for a single integral,∫
R

f(x) dx =
∫
S

f(x(u))
∂x

∂u
du,

2. for a double integral,∫∫
R

f(x, y) dA =
∫∫

S

f(x(u, v), y(u, v))
∣∣∣∣∂(x, y)
∂(u, v)

∣∣∣∣ dudv,
3. for a triple integral,∫∫∫

R

f(x, y, z) dV =
∫∫

S

f(x(u, v, w), y(u, v, w), z(u, v, w))
∣∣∣∣ ∂(x, y, z)
∂(u, v, w)

∣∣∣∣ dudvdw
4. similarly for n−tuple integrals.

2.3.1.8 Notes from General Topology

Topology is a kind of abstraction of Euclidean geometry, and also a natural
framework for the study of continuity.13 Euclidean geometry is abstracted
by regarding triangles, circles, and squares as being the same basic object.
Continuity enters because in saying this one has in mind a continuous de-
formation of a triangle into a square or a circle, or any arbitrary shape. On
the other hand, a disk with a hole in the center is topologically different
from a circle or a square because one cannot create or destroy holes by con-
tinuous deformations. Thus using topological methods one does not expect
to be able to identify a geometrical figure as being a triangle or a square.
However, one does expect to be able to detect the presence of gross features
such as holes or the fact that the figure is made up of two disjoint pieces
etc. In this way topology produces theorems that are usually qualitative in
nature – they may assert, for example, the existence or non–existence of an
object. They will not, in general, give the means for its construction [Nash
and Sen (1983)].

13Intuitively speaking, a function f : R −→ R is continuous near a point x in its domain
if its value does not jump there. That is, if we just take δx to be small enough, the two
function values f(x) and f(x + δx) should approach each other arbitrarily closely. In
more rigorous terms, this leads to the following definition: A function f : R −→ R is

continuous at x ∈ R if for all ε > 0, there exists a δ > 0 such that for all y ∈ R with
|y− x| < δ, we have that |f(y)− f(x)| < ε. The whole function is called continuous if it
is continuous at every point x.
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2.3.1.9 Topological Space

Study of topology starts with the fundamental notion of topological space.
Let X be any set and Y = {Xα} denote a collection, finite or infinite of
subsets of X. Then X and Y form a topological space provided the Xα

and Y satisfy:

(1) Any finite or infinite subcollection {Zα} ⊂ Xα has the property that
∪Zα ∈ Y , and

(2) Any finite subcollection {Zα1 , ..., Zαn} ⊂ Xα has the property that
∩Zαi ∈ Y .

The set X is then called a topological space and the Xα are called open
sets. The choice of Y satisfying (2) is said to give a topology to X.

Given two topological spaces X and Y , a function (or, a map)
f : X → Y is continuous if the inverse image of an open set in Y is an open
set in X.

The main general idea in topology is to study spaces which can be con-
tinuously deformed into one another, namely the idea of homeomorphism.
If we have two topological spaces X and Y , then a map f : X → Y is called
a homeomorphism iff

(1) f is continuous (C0), and
(2) There exists an inverse of f , denoted f−1, which is also continuous.

Definition (2) implies that if f is a homeomorphism then so is f−1. Home-
omorphism is the main topological example of reflexive, symmetrical and
transitive relation, i.e., equivalence relation. Homeomorphism divides all
topological spaces up into equivalence classes. In other words, a pair of
topological spaces, X and Y , belong to the same equivalence class if they
are homeomorphic.

The second example of topological equivalence relation is homotopy.
While homeomorphism generates equivalence classes whose members are
topological spaces, homotopy generates equivalence classes whose members
are continuous (C0) maps. Consider two continuous maps f, g : X →
Y between topological spaces X and Y . Then the map f is said to be
homotopic to the map g if f can be continuously deformed into g (see
below for the precise definition of homotopy). Homotopy is an equivalence
relation which divides the space of continuous maps between two topological
spaces into equivalence classes [Nash and Sen (1983)].
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Another important notions in topology are covering, compactness and
connectedness. Given a family of sets {Xα} = X say, then X is a covering
of another set Y if ∪Xα contains Y . If all the Xα happen to be open sets
the covering is called an open covering. Now consider the set Y and all its
possible open coverings. The set Y is compact if for every open covering
{Xα} with ∪Xα ⊃ Y there always exists a finite subcovering {X1, ..., Xn}
of Y with X1 ∪ ... ∪Xn ⊃ Y . Again, we define a set Z to be connected if
it cannot be written as Z = Z1 ∪ Z2, where Z1 and Z2 are both open and
Z1 ∩ Z2 is an empty set.

Let A1, A2, ..., An be closed subspaces of a topological space X such that
X = ∪ni=1Ai. Suppose fi : Ai → Y is a function, 1 ≤ i ≤ n, iff

fi|Ai ∩Aj = fj |Ai ∩Aj , 1 ≤ i, j ≤ n. (2.60)

In this case f is continuous iff each fi is. Using this procedure we can define
a C0−function f : X → Y by cutting up the space X into closed subsets Ai
and defining f on each Ai separately in such a way that f |Ai is obviously
continuous; we then have only to check that the different definitions agree
on the overlaps Ai ∩Aj .

The universal property of the Cartesian product : let pX : X × Y → X,
and pY : X × Y → Y be the projections onto the first and second factors,
respectively. Given any pair of functions f : Z → X and g : Z → Y there
is a unique function h : Z → X × Y such that pX ◦ h = f , and pY ◦ h = g.
Function h is continuous iff both f and g are. This property characterizes
X/α up to homeomorphism. In particular, to check that a given function
h : Z → X is continuous it will suffice to check that pX ◦ h and pY ◦ h are
continuous.

The universal property of the quotient : let α be an equivalence relation
on a topological space X, let X/α denote the space of equivalence classes
and pα : X → X/α the natural projection. Given a function f : X → Y ,
there is a function f ′ : X/α → Y with f ′ ◦ pα = f iff xαx′ implies f(x) =
f(x′), for all x ∈ X. In this case f ′ is continuous iff f is. This property
characterizes X/α up to homeomorphism.

2.3.1.10 Homotopy

Now we return to the fundamental notion of homotopy. Let I be a com-
pact unit interval I = [0, 1]. A homotopy from X to Y is a continuous
function F : X × I → Y . For each t ∈ I one has Ft : X → Y defined by
Ft(x) = F (x, t) for all x ∈ X. The functions Ft are called the ‘stages’ of the
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homotopy. If f, g : X → Y are two continuous maps, we say f is homotopic
to g, and write f ' g, if there is a homotopy F : X × I → Y such that
F0 = f and F1 = g. In other words, f can be continuously deformed into
g through the stages Ft. If A ⊂ X is a subspace, then F is a homotopy
relative to A if F (a, t) = F (a, 0), for all a ∈ A, t ∈ I.

The homotopy relation ' is an equivalence relation. To prove that
we have f ' f is obvious; take F (x, t = f(x), for all x ∈ X, t ∈ I. If
f ' g and F is a homotopy from f to g, then G : X × I → Y defined by
G(x, t) = F (x, 1− t), is a homotopy from g to f , i.e., g ' f . If f ' g with
homotopy F and g ' f with homotopy G, then f ' h with homotopy H

defined by

H(x, t) =
{
F (x, t), 0 ≤ t ≤ 1/2
G(x, 2t− 1), 1/2 ≤ t ≤ 1

.

To show that H is continuous we use the relation (2.60).
In this way, the set of all C0−functions f : X → Y between two topo-

logical spaces X and Y , called the function space and denoted by Y X , is
partitioned into equivalence classes under the relation '. The equivalence
classes are called homotopy classes, the homotopy class of f is denoted by
[f ], and the set of all homotopy classes is denoted by [X;Y ].

If α is an equivalence relation on a topological space X and F : X×I →
Y is a homotopy such that each stage Ft factors through X/α, i.e., xαx′

implies Ft(x) = Ft(x′), then F induces a homotopy F ′ : (X/α) × I → Y

such that F ′ ◦ (pα × 1) = F .
Homotopy theory has a range of applications of its own, outside topol-

ogy and geometry, as for example in proving Cauchy Theorem in complex
variable theory, or in solving nonlinear equations of artificial neural net-
works.

A pointed set (S, s0) is a set S together with a distinguished point
s0 ∈ S. Similarly, a pointed topological space (X,x0) is a space X together
with a distinguished point x0 ∈ X. When we are concerned with pointed
spaces (X,x0), (Y, y0), etc., we always require that all functions f : X →
Y shell preserve base points, i.e., f(x0) = y0, and that all homotopies
F : X × I → Y be relative to the base point, i.e., F (x0, t) = y0, for all
t ∈ I. We denote the homotopy classes of base point–preserving functions
by [X,x0;Y, y0] (where homotopies are relative to x0). [X,x0;Y, y0] is a
pointed set with base point f0, the constant function: f0(x) = y0, for all
x ∈ X.

A path γ(t) from x0 to x1 in a topological space X is a continuous map
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γ : I → X with γ(0) = x0 and γ(1) = x1. Thus XI is the space of all paths
in X with the compact–open topology. We introduce a relation ∼ on X by
saying x0 ∼ x1 iff there is a path γ : I → X from x0 to x1. ∼ is clearly an
equivalence relation, and the set of equivalence classes is denoted by π0(X).
The elements of π0(X) are called the path components, or 0−components
of X. If π0(X) contains just one element, then X is called path connected,
or 0−connected. A closed path, or loop in X at the point x0 is a path γ(t)
for which γ(0) = γ(1) = x0. The inverse loop γ−1(t) based at x0 ∈ X is
defined by γ−1(t) = γ(1 − t), for 0 ≤ t ≤ 1. The homotopy of loops is the
particular case of the above defined homotopy of continuous maps.

If (X,x0) is a pointed space, then we may regard π0(X) as a pointed set
with the 0−component of x0 as a base point. We use the notation π0(X,x0)
to denote p0(X,x0) thought of as a pointed set. If f : X → Y is a map then
f sends 0−components of X into 0−components of Y and hence defines a
function π0(f) : π0(X) → π0(Y ). Similarly, a base point–preserving map
f : (X,x0) → (Y, y0) induces a map of pointed sets π0(f) : π0(X,x0) →
π0(Y, y0). In this way defined π0 represents a ‘functor’ from the ‘category’
of topological (point) spaces to the underlying category of (point) sets (see
the next section).

Combination of topology and calculus gives differential topology, or dif-
ferential geometry.

2.3.1.11 Commutative Diagrams

The category theory (see below) was born with an observation that many
properties of mathematical systems can be unified and simplified by a pre-
sentation with commutative diagrams of arrows [MacLane (1971)]. Each
arrow f : X → Y represents a function (i.e., a map, transformation, oper-
ator); that is, a source (domain) set X, a target (codomain) set Y , and a
rule x 7→ f(x) which assigns to each element x ∈ X an element f(x) ∈ Y .
A typical diagram of sets and functions is

X Y-f

h
@

@
@
@R

Z
?

g or

X f(X)-f

h
@

@
@
@R
g(f(X))

?

g

This diagram is commutative iff h = g◦f , where g◦f is the usual composite
function g ◦ f : X → Z, defined by x 7→ g(f(x)).
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Similar commutative diagrams apply in other mathematical, physical
and computing contexts; e.g., in the ‘category’ of all topological spaces, the
letters X,Y, and Z represent topological spaces while f, g, and h stand for
continuous maps. Again, in the category of all groups, X,Y, and Z stand
for groups, f, g, and h for homomorphisms.

Less formally, composing maps is like following directed paths from one
object to another (e.g., from set to set). In general, a diagram is commuta-
tive iff any two paths along arrows that start at the same point and finish
at the same point yield the same ‘homomorphism’ via compositions along
successive arrows. Commutativity of the whole diagram follows from com-
mutativity of its triangular components (depicting a ‘commutative flow’, see
Figure 2.4). Study of commutative diagrams is popularly called ‘diagram
chasing’, and provides a powerful tool for mathematical thought.

Fig. 2.4 A commutative flow (denoted by curved arrows) on a triangulated digraph.
Commutativity of the whole diagram follows from commutativity of its triangular com-

ponents.

As an example from linear algebra, consider an elementary diagram-
matic description of matrices, using the following pull–back diagram [Barry
(1993)]:

Nat×Nat Nat-
product

Matrix A List A-entries

?

shape

?

length

asserts that a matrix is determined by its shape, given by a pair of natural
numbers representing the number of rows and columns, and its data, given
by the matrix entries listed in some specified order.



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Technical Preliminaries: Tensors, Actions and Functors 97

Many properties of mathematical constructions may be represented by
universal properties of diagrams [MacLane (1971)]. Consider the Cartesian
product X × Y of two sets, consisting as usual of all ordered pairs 〈x, y〉 of
elements x ∈ X and y ∈ Y . The projections 〈x, y〉 7→ x, 〈x, y〉 7→ y of the
product on its ‘axes’ X and Y are functions p : X×Y → X, q : X×Y → Y .
Any function h : W → X × Y from a third set W is uniquely determined
by its composites p ◦ h and q ◦ h. Conversely, given W and two functions
f and g as in the diagram below, there is a unique function h which makes
the following diagram commute:

X X × Y�
p Y-

q

W

f
�

�
�

�	 ?

h g
@

@
@
@R

This property describes the Cartesian product X × Y uniquely; the same
diagram, read in the category of topological spaces or of groups, describes
uniquely the Cartesian product of spaces or of the direct product of groups.

The construction ‘Cartesian product’ is technically called a ‘functor’
because it applies suitably both to the sets and to the functions between
them; two functions k : X → X ′ and l : Y → Y ′ have a function k × l as
their Cartesian product:

k × l : X × Y → X ′ × Y ′, 〈x, y〉 7→ 〈kx, ly〉.

2.3.1.12 Groups and Related Algebraic Structures

As already stated, the basic functional unit of lower biodynamics is the
special Euclidean group SE(3) of rigid body motions. In general, a group
is a pointed set (G, e) with a multiplication µ : G×G→ G and an inverse
ν : G→ G such that the following diagrams commute [Switzer (1975)]:

(1)

G

1
@

@
@
@R

G G×G-(e, 1)
G-(1, e)

?

µ 1
�

�
�
��

(e is a two–sided identity)
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(2)

G×G G-
µ

G×G×G G×G-µ× 1

?

1× µ
?

µ

(associativity)
(3)

G

e
@

@
@
@R

G G×G-(ν, 1)
G-(1, ν)

?

µ e

�
�

�
��

(inverse).

Here e : G→ G is the constant map e(g) = e for all g ∈ G. (e, 1) means
the map such that (e, 1)(g) = (e, g), etc. A group G is called commutative
or Abelian group if in addition the following diagram commutes

G×G G×G-T

G

µ
@

@
@
@R

µ
�

�
�

�	

where T : G × G → G × G is the switch map T (g1, g2) = (g1, g2), for all
(g1, g2) ∈ G×G.

A group G acts (on the left) on a set A if there is a function α : G×A→
A such that the following diagrams commute [Switzer (1975)]:

(1)

A G×A-(e, 1)

1
@

@
@
@R

A
?

α
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(2)

G×A A-
α

G×G×A G×A-1× α

?

µ× 1

?

α

where (e, 1)(x) = (e, x) for all x ∈ A. The orbits of the action are the
sets Gx = {gx : g ∈ G} for all x ∈ A.

Given two groups (G, ∗) and (H, ·), a group homomorphism from (G, ∗)
to (H, ·) is a function h : G → H such that for all x and y in G it holds
that

h(x ∗ y) = h(x) · h(y).

From this property, one can deduce that h maps the identity element eG
of G to the identity element eH of H, and it also maps inverses to inverses
in the sense that h(x−1) = h(x)−1. Hence one can say that h is compatible
with the group structure.

The kernel Kerh of a group homomorphism h : G → H consists of all
those elements of G which are sent by h to the identity element eH of H,
i.e.,

Kerh = {x ∈ G : h(x) = eH}.

The image Imh of a group homomorphism h : G → H consists of all
elements of G which are sent by h to H, i.e.,

Imh = {h(x) : x ∈ G}.

The kernel is a normal subgroup of G and the image is a subgroup of
H. The homomorphism h is injective (and called a group monomorphism)
iff Kerh = eG, i.e., iff the kernel of h consists of the identity element of G
only.

Similarly, a ring is a set S together with two binary operators + and ∗
(commonly interpreted as addition and multiplication, respectively) satis-
fying the following conditions:

(1) Additive associativity: For all a, b, c ∈ S, (a+ b) + c = a+ (b+ c),
(2) Additive commutativity: For all a, b ∈ S, a+ b = b+ a,
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(3) Additive identity: There exists an element 0 ∈ S such that for all a ∈ S,
0 + a = a+ 0 = a,

(4) Additive inverse: For every a ∈ S there exists -a ∈ S such that a +
(−a) = (−a) + a = 0,

(5) Multiplicative associativity: For all a, b, c ∈ S, (a ∗ b) ∗ c = a ∗ (b ∗ c),
(6) Left and right distributivity: For all a, b, c ∈ S, a∗(b+c) = (a∗b)+(a∗c)

and (b+ c) ∗ a = (b ∗ a) + (c ∗ a).

A ring (the term introduced by David Hilbert) is therefore an Abelian
group under addition and a semigroup under multiplication. A ring that is
commutative under multiplication, has a unit element, and has no divisors
of zero is called an integral domain. A ring which is also a commutative
multiplication group is called a field. The simplest rings are the integers Z,
polynomials R[x] and R[x, y] in one and two variables, and square n × n
real matrices.

An ideal is a subset I of elements in a ring R which forms an additive
group and has the property that, whenever x belongs to R and y belongs
to I, then xy and yx belong to I. For example, the set of even integers is
an ideal in the ring of integers Z. Given an ideal I, it is possible to define
a factor ring R/I.

A ring is called left (respectively, right) Noetherian if it does not contain
an infinite ascending chain of left (respectively, right) ideals. In this case,
the ring in question is said to satisfy the ascending chain condition on left
(respectively, right) ideals. A ring is said to be Noetherian if it is both
left and right Noetherian. If a ring R is Noetherian, then the following are
equivalent:

(1) R satisfies the ascending chain condition on ideals.
(2) Every ideal of R is finitely generated.
(3) Every set of ideals contains a maximal element.

A module is a mathematical object in which things can be added to-
gether commutatively by multiplying coefficients and in which most of the
rules of manipulating vectors hold. A module is abstractly very similar to a
vector space, although in modules, coefficients are taken in rings which are
much more general algebraic objects than the fields used in vector spaces.
A module taking its coefficients in a ring R is called a module over R or
R−module. Modules are the basic tool of homological algebra.

Examples of modules include the set of integers Z, the cubic lattice
in d dimensions Zd, and the group ring of a group. Z is a module over
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itself. It is closed under addition and subtraction. Numbers of the form
nα for n ∈ Z and α a fixed integer form a submodule since, for (n,m) ∈ Z,
nα ±mα = (n ±m)α and (n ±m) is still in Z. Also, given two integers
a and b, the smallest module containing a and b is the module for their
greatest common divisor, α = GCD(a, b).

A module M is a Noetherian module if it obeys the ascending chain
condition with respect to inclusion, i.e., if every set of increasing sequences
of submodules eventually becomes constant. If a module M is Noetherian,
then the following are equivalent:

(1) M satisfies the ascending chain condition on submodules.
(2) Every submodule of M is finitely generated.
(3) Every set of submodules of M contains a maximal element.

Let I be a partially ordered set. A direct system of R−modules over
I is an ordered pair {Mi, ϕ

i
j} consisting of an indexed family of modules

{Mi : i ∈ I} together with a family of homomorphisms {ϕij : Mi → Mj}
for i ≤ j, such that ϕii = 1Mi

for all i and such that the following diagram
commutes whenever i ≤ j ≤ k

Mi Mk
-ϕik

Mj

ϕjk

@
@

@
@R

ϕij

�
�

�
��

Similarly, an inverse system of R−modules over I is an ordered pair
{Mi, ψ

j
i} consisting of an indexed family of modules {Mi : i ∈ I} together

with a family of homomorphisms {ψji : Mj → Mi} for i ≤ j, such that
ψii = 1Mi for all i and such that the following diagram commutes whenever
i ≤ j ≤ k

Mk Mi
-ψki

Mj

ψkj

@
@

@
@R

ψji
�

�
�
��
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2.3.2 Categories

A category is a generic mathematical structure consisting of a collection
of objects (sets with possibly additional structure), with a corresponding
collection of arrows, or morphisms, between objects (agreeing with this
additional structure). A category K is defined as a pair (Ob(K), Mor(K)) of
generic objects A,B, . . . in Ob(K) and generic arrows f : A → B, g : B →
C, . . . in Mor(K) between objects, with associative composition:

A
f - B

g - C = A
f◦g- C,

and identity (loop) arrow. (Note that in topological literature, Hom(K) or
hom(K) is used instead of Mor(K); see [Switzer (1975)]).

A category K is usually depicted as a commutative diagram (i.e., a
diagram with a common initial object A and final object D):

C D-
k

A B-f

?
h

?
g

'

&

$

%
K

To make this more precise, we say that a category K is defined if we have:

(1) A class of objects {A,B,C, ...} of K, denoted by Ob(K);
(2) A set of morphisms, or arrows MorK(A,B), with elements f : A → B,

defined for any ordered pair (A,B) ∈ K, such that for two different
pairs (A,B) 6= (C,D) in K, we have MorK(A,B) ∩ MorK(C,D) = ∅;

(3) For any triplet (A,B,C) ∈ K with f : A→ B and g : B → C, there is
a composition of morphisms

MorK(B,C)× MorK(A,B) 3 (g, f)→ g ◦ f ∈ MorK(A,C),

written schematically as

f : A→ B, g : B → C

g ◦ f : A→ C
.

If we have a morphism f ∈ MorK(A,B), (otherwise written f : A→ B,

or A
f - B), then A = dom(f) is a domain of f , and B = cod(f) is a

codomain of f (of which range of f is a subset) and denoted B = ran(f).
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To make K a category, it must also fulfill the following two properties:

(1) Associativity of morphisms: for all f ∈ MorK(A,B), g ∈ MorK(B,C),
and h ∈ MorK(C,D), we have h ◦ (g ◦ f) = (h ◦ g) ◦ f ; in other words,
the following diagram is commutative

B C-
g

A D-h ◦ (g ◦ f) = (h ◦ g) ◦ f

?

f
6
h

(2) Existence of identity morphism: for every object A ∈ Ob(K) exists a
unique identity morphism 1A ∈ MorK(A,A); for any two morphisms
f ∈ MorK(A,B), and g ∈ MorK(B,C), compositions with identity mor-
phism 1B ∈ MorK(B,B) give 1B ◦ f = f and g ◦ 1B = g, i.e., the
following diagram is commutative:

B

f
@

@
@
@R

A B-f
C-g

?

1B g

�
�

�
��

The set of all morphisms of the category K is denoted

Mor(K) =
⋃

A,B∈Ob(K)

MorK(A,B).

If for two morphisms f ∈ MorK(A,B) and g ∈ MorK(B,A) the equality
g ◦ f = 1A is valid, then the morphism g is said to be left inverse (or
retraction), of f , and f right inverse (or section) of g. A morphism which
is both right and left inverse of f is said to be two–sided inverse of f .

A morphism m : A → B is called monomorphism in K (i.e., 1–1, or
injection map), if for any two parallel morphisms f1, f2 : C → A in K the
equality m◦f1 = m◦f2 implies f1 = f2; in other words, m is monomorphism
if it is left cancellable. Any morphism with a left inverse is monomorphism.

A morphism e : A → B is called epimorphism in K (i.e., onto, or
surjection map), if for any two morphisms g1, g2 : B → C in K the equality
g1 ◦ e = g2 ◦ e implies g1 = g2; in other words, e is epimorphism if it is right
cancellable. Any morphism with a right inverse is epimorphism.
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A morphism f : A→ B is called isomorphism in K (denoted as f : A ∼=
B) if there exists a morphism f−1 : B → A which is a two–sided inverse of
f in K. The relation of isomorphism is reflexive, symmetric, and transitive,
i.e., equivalence relation.

For example, an isomorphism in the category of sets is called a set–
isomorphism, or a bijection, in the category of topological spaces is called a
topological isomorphism, or a homeomorphism, in the category of differen-
tiable manifolds is called a differentiable isomorphism, or a diffeomorphism.

A morphism f ∈ MorK(A,B) is regular if there exists a morphism
g : B → A in K such that f ◦ g ◦ f = f . Any morphism with either a left
or a right inverse is regular.

An object T is a terminal object in K if to each object A ∈ Ob(K) there
is exactly one arrow A → T . An object S is an initial object in K if to
each object A ∈ Ob(K) there is exactly one arrow S → A. A null object
Z ∈ Ob(K) is an object which is both initial and terminal; it is unique up to
isomorphism. For any two objects A,B ∈ Ob(K) there is a unique morphism
A→ Z → B (the composite through Z), called the zero morphism from A

to B.
A notion of subcategory is analogous to the notion of subset. A sub-

category L of a category K is said to be a complete subcategory iff for any
objects A,B ∈ L, every morphism A→ B of L is in K.

A groupoid is a category in which every morphism is invertible. A
typical groupoid is the fundamental groupoid Π1(X) of a topological space
X. An object of Π1(X) is a point x ∈ X, and a morphism x → x′ of
Π1(X) is a homotopy class of paths f from x to x′. The composition of
paths g : x′ → x′′ and f : x → x′ is the path h which is ‘f followed
by g’. Composition applies also to homotopy classes, and makes Π1(X) a
category and a groupoid (the inverse of any path is the same path traced
in the opposite direction).

A group is a groupoid with one object, i.e., a category with one object in
which all morphisms are isomorphisms. Therefore, if we try to generalize
the concept of a group, keeping associativity as an essential property, we
get the notion of a category.

A category is discrete if every morphism is an identity. A monoid is a
category with one object. A group is a category with one object in which
every morphism has a two–sided inverse under composition.

Homological algebra was the progenitor of category theory (see e.g.,
[Dieudonne (1988)]). Generalizing L. Euler’s formula f + v = e+ 2 for the
faces, vertices and edges of a convex polyhedron, E. Betti defined numerical
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invariants of spaces by formal addition and subtraction of faces of various
dimensions; H. Poincaré formalized these and introduced homology. E.
Noether stressed the fact that these calculations go on in Abelian groups,
and that the operation ∂n taking a face of dimension n to the alternating
sum of faces of dimension n−1 which form its boundary is a homomorphism,
and it also satisfies ∂n ◦ ∂n+1 = 0. There are many ways of approximating
a given space by polyhedra, but the quotient Hn = Ker ∂n/ Im ∂n+1 is an
invariant, the homology group. Since Noether, the groups have been the
object of study instead of their dimensions, which are the Betti numbers.

2.3.3 Functors

In algebraic topology, one attempts to assign to every topological space
X some algebraic object F(X) in such a way that to every C0−function
f : X → Y there is assigned a homomorphism F(f) : F(X) −→ F(Y )
(see [Switzer (1975); Dodson and Parker (1997)]). One advantage of this
procedure is, e.g., that if one is trying to prove the non–existence of a
C0−function f : X → Y with certain properties, one may find it relatively
easy to prove the non–existence of the corresponding algebraic function
F(f) and hence deduce that f could not exist. In other words, F is to be
a ‘homomorphism’ from one category (e.g., T ) to another (e.g., G or A).
Formalization of this notion is a functor.

A functor is a generic picture projecting one category into another.
Let K = (Ob(K), Mor(K)) be a source (or domain) category and L =
(Ob(L), Mor(L)) be a target (or codomain) category. A functor F =
(FO,FM ) is defined as a pair of maps, FO : Ob(K) → Ob(L) and FM :
Mor(K)→ Mor(L), preserving categorical symmetry (i.e., commutativity of
all diagrams) of K in L.

More precisely, a covariant functor, or simply a functor, F∗ : K → L
is a picture in the target category L of (all objects and morphisms of) the
source category K:

C D-
k

A B-f

?
h

?
g

'

&

$

%
K

F(C) F(D)-
F(k)

F(A) F(B)-F(f)

?
F(h)

?
F(g)

'

&

$

%
LF∗ -

Similarly, a contravariant functor, or a cofunctor, F∗ : K → L is a dual
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picture with reversed arrows:

C D-
k

A B-f

?
h

?
g

'

&

$

%
K

F(C) F(D)�
F(k)

F(A) F(B)� F(f)

6F(h) 6F(g)

'

&

$

%
LF∗-

In other words, a functor F : K → L from a source category K to a
target category L, is a pair F = (FO,FM ) of maps FO : Ob(K) → Ob(L),
FM : Mor(K)→ Mor(L), such that

(1) If f ∈ MorK(A,B) then FM (f) ∈ MorL(FO(A),FO(B)) in case of the
covariant functor F∗, and FM (f) ∈ MorL(FO(B),FO(A)) in case of
the contravariant functor F∗;

(2) For all A ∈ Ob(K) : FM (1A) = 1FO(A);
(3) For all f, g ∈ Mor(K): if cod(f) = dom(g), then
FM (g ◦ f) = FM (g) ◦ FM (f) in case of the covariant functor F∗, and
FM (g ◦ f) = FM (f) ◦ FM (g) in case of the contravariant functor F∗.

Category theory originated in algebraic topology, which tried to assign
algebraic invariants to topological structures. The golden rule of such in-
variants is that they should be functors. For example, the fundamental
group π1 is a functor. Algebraic topology constructs a group called the
fundamental group π1(X) from any topological space X, which keeps track
of how many holes the space X has. But also, any map between topological
spaces determines a homomorphism φ : π1(X)→ π1(Y ) of the fundamental
groups. So the fundamental group is really a functor π1 : T → G. This
allows us to completely transpose any situation involving spaces and con-
tinuous maps between them to a parallel situation involving groups and
homomorphisms between them, and thus reduce some topology problems
to algebra problems.

Also, singular homology in a given dimension n assigns to each topo-
logical space X an Abelian group Hn(X), its nth homology group of X,
and also to each continuous map f : X → Y of spaces a corresponding
homomorphism Hn(f) : Hn(X) → Hn(Y ) of groups, and this in such a
way that Hn(X) becomes a functor Hn : T → A.

The leading idea in the use of functors in topology is that Hn or πn
gives an algebraic picture or image not just of the topological spaces X,Y
but also of all the continuous maps f : X → Y between them.
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Similarly, there is a functor Π1 : T → G, called the ‘fundamental
groupoid functor’, which plays a very basic role in algebraic topology. Here’s
how we get from any space X its ‘fundamental groupoid’ Π1(X). To say
what the groupoid Π1(X) is, we need to say what its objects and morphisms
are. The objects in Π1(X) are just the points of X and the morphisms are
just certain equivalence classes of paths in X. More precisely, a morphism
f : x → y in Π1(X) is just an equivalence class of continuous paths from
x to y, where two paths from x to y are decreed equivalent if one can be
continuously deformed to the other while not moving the endpoints. (If this
equivalence relation holds we say the two paths are ‘homotopic’, and we call
the equivalence classes ‘homotopy classes of paths’ (see [MacLane (1971);
Switzer (1975)]).

Another examples are covariant forgetful functors:

• From the category of topological spaces to the category of sets;
it ‘forgets’ the topology–structure.
• From the category of metric spaces to the category of topological spaces

with the topology induced by the metrics; it ‘forgets’ the metric.

For each category K, the identity functor IK takes every K−object and
every K−morphism to itself.

Given a category K and its subcategory L, we have an inclusion functor
In : K −→ K.

Given a category K, a diagonal functor ∆ : K −→ K takes each object
A ∈ K to the object (A,A) in the product category K ×K.

Given a category K and a category of sets S, each object A ∈ K de-
termines a covariant Hom–functor K[A, ] : K → S, a contravariant Hom–
functor K[ , A] : K −→ S, and a Hom–bifunctor K[ , ] : Kop ×K → S.

A functor F : K → L is a faithful functor if for all A,B ∈ Ob(K) and for
all f, g ∈ MorK(A,B), F(f) = F(g) implies f = g; it is a full functor if for
every h ∈ MorL(F(A),F(B)), there is g ∈ MorK(A,B) such that h = F(g);
it is a full embedding if it is both full and faithful.

A representation of a group is a functor F : G → V.
Similarly, we can define a representation of a category to be a functor

F : K → V from the 2−category K (a ‘big’ category including all ordinary,
or ‘small’ categories, see section (2.3.8.1) below) to the category of vector
spaces V. In this way, a category is a generalization of a group and group
representations are a special case of category representations.
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2.3.4 Natural Transformations

A natural transformation (i.e., a functor morphism) τ : F ·→ G is a map
between two functors of the same variance, (F ,G) : K ⇒ L, preserving
categorical symmetry:

A B-f

'

&

$

%K

F -

τ ⇓

G - G(A) G(B)-
G(f)

F(A) F(B)-F(f)

?
τA

?
τB

'

&

$

%
L

More precisely, all functors of the same variance from a source category K
to a target category L form themselves objects of the functor category LK.
Morphisms of LK, called natural transformations, are defined as follows.

Let F : K → L and G : K → L be two functors of the same variance
from a category K to a category L. Natural transformation F τ−→ G is a
family of morphisms such that for all f ∈ MorK(A,B) in the source category
K, we have G(f) ◦ τA = τB ◦ F(f) in the target category L. Then we say
that the component τA : F(A)→ G(A) is natural in A.

If we think of a functor F as giving a picture in the target category L
of (all the objects and morphisms of) the source category K, then a natural
transformation τ represents a set of morphisms mapping the picture F to
another picture G, preserving the commutativity of all diagrams.

An invertible natural transformation, such that all components τA are
isomorphisms) is called a natural equivalence (or, natural isomorphism). In
this case, the inverses (τA)−1 in L are the components of a natural iso-
morphism (τ )−1 : G ∗−→ F . Natural equivalences are among the most im-
portant metamathematical constructions in algebraic topology (see [Switzer
(1975)]).

For example, let B be the category of Banach spaces over R and bounded
linear maps. Define D : B → B by taking D(X) = X∗ = Banach space of
bounded linear functionals on a space X and D(f) = f∗ for f : X → Y a
bounded linear map. Then D is a cofunctor. D2 = D ◦D is also a functor.
We also have the identity functor 1 : B → B. Define T : 1 → D ◦ D as
follows: for every X ∈ B let T (X) : X → D2X = X∗∗ be the natural
inclusion – that is, for x ∈ X we have [T (X)(x)](f) = f(x) for every
f ∈ X∗. T is a natural transformation. On the subcategory of nD Banach
spaces T is even a natural equivalence. The largest subcategory of B on
which T is a natural equivalence is called the category of reflexive Banach
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spaces [Switzer (1975)].
As S. Eilenberg and S. MacLane first observed, ‘category’ has been

defined in order to define ‘functor’ and ‘functor’ has been defined in order
to define ‘natural transformation’ [MacLane (1971)]).

2.3.4.1 Compositions of Natural Transformations

Natural transformations can be composed in two different ways. First, we
have an ‘ordinary’ composition: if F ,G and H are three functors from the
source category A to the target category B, and then α : F ·→ G, β : G ·→ H
are two natural transformations, then the formula

(β ◦ α)A = βA ◦ αA, for all A ∈ A, (2.61)

defines a new natural transformation β ◦ α : F ·→ H. This composition
law is clearly associative and possesses a unit 1F at each functor F , whose
A−-component is 1FA.

Second, we have the Godement product of natural transformations, usu-
ally denoted by ∗. Let A, B and C be three categories, F ,G, H and K be
four functors such that (F ,G) : A⇒ B and (H,K) : B ⇒ C, and α : F ·→ G,
β : H ·→ K be two natural transformations. Now, instead of (2.61), the
Godement composition is given by

(β ∗ α)A = βGA ◦H (αA) = K (αA) ◦ βFA, for all A ∈ A, (2.62)

which defines a new natural transformation β ∗ α : H ◦ F ·→ K ◦ G.
Finally, the two compositions (2.61) and (2.61) of natural transforma-

tions can be combined as

(δ ∗ γ) ◦ (β ∗ α) = (δ ◦ β) ∗ (γ ◦ α) ,

where A, B and C are three categories, F ,G, H, K, L, M are six functors,
and α : F ·→ H, β : G ·→ K, γ : H ·→ L, δ : K ·→ M are four natural
transformations.

2.3.4.2 Dinatural Transformations

Double natural transformations are called dinatural transformations. An
end of a functor S : Cop × C → X is a universal dinatural transformation
from a constant e to S. In other words, an end of S is a pair 〈e, ω〉, where
e is an object of X and ω : e ..→ S is a wedge (dinatural) transformation
with the property that to every wedge β : x ..→ S there is a unique arrow
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h : x → e of B with βc = ωch for all a ∈ C. We call ω the ending wedge
with components ωc, while the object e itself, by abuse of language, is called
the end of S and written with integral notation as

∫
c

S(c, c); thus

S(c, c) ωc→
∫
c

S(c, c) = e.

Note that the ‘variable of integration’ c appears twice under the integral
sign (once contravariant, once covariant) and is ‘bound’ by the integral
sign, in that the result no longer depends on c and so is unchanged if
‘c’ is replaced by any other letter standing for an object of the category
C. These properties are like those of the letter x under the usual integral
symbol

∫
f(x) dx of calculus.

Every end is manifestly a limit (see below) – specifically, a limit of a
suitable diagram in X made up of pieces like S(b, b)→ S(b, c)→ S(c, c).

For each functor T : C → X there is an isomorphism∫
c

S(c, c) =
∫
c

Tc ∼= LimT,

valid when either the end of the limit exists, carrying the ending wedge to
the limiting cone; the indicated notation thus allows us to write any limit
as an integral (an end) without explicitly mentioning the dummy variable
(the first variable c of S).

A functor H : X → Y is said to preserve the end of a functor S :
Cop×C → X when ω : e ..→ S an end of S in X implies that Hω : He ..→ HS

is an and for HS; in symbols

H

∫
c

S(c, c) =
∫
c

HS(c, c).

Similarly, H creates the end of S when to each end v : y ..→ HS in Y there
is a unique wedge ω : e ..→ S with Hω = v, and this wedge ω is an end of S.

The definition of the coend of a functor S : Cop×C → X is dual to that
of an end. A coend of S is a pair 〈d, ζ〉, consisting of an object d ∈ X and a
wedge ζ : S ..→ d. The object d (when it exists, unique up to isomorphism)
will usually be written with an integral sign and with the bound variable c
as superscript; thus

S(c, c)
ζc→

c∫
S(c, c) = d.
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The formal properties of coends are dual to those of ends. Both are much
like those for integrals in calculus (see [MacLane (1971)], for technical de-
tails).

2.3.5 Limits and Colimits

In abstract algebra constructions are often defined by an abstract property
which requires the existence of unique morphisms under certain conditions.
These properties are called universal properties. The limit of a functor
generalizes the notions of inverse limit and product used in various parts of
mathematics. The dual notion, colimit, generalizes direct limits and direct
sums. Limits and colimits are defined via universal properties and provide
many examples of adjoint functors.

A limit of a covariant functor F : J → C is an object L of C, together
with morphisms φX : L → F(X) for every object X of J , such that for
every morphism f : X → Y in J , we have F(f)φX = φY , and such that the
following universal property is satisfied: for any object N of C and any set
of morphisms ψX : N → F(X) such that for every morphism f : X → Y in
J , we have F(f)ψX = ψY , there exists precisely one morphism u : N → L

such that φXu = ψX for all X. If F has a limit (which it need not), then
the limit is defined up to a unique isomorphism, and is denoted by limF .

Analogously, a colimit of the functor F : J → C is an object L of
C, together with morphisms φX : F(X) → L for every object X of J ,
such that for every morphism f : X → Y in J , we have φY F(X) = φX ,
and such that the following universal property is satisfied: for any object
N of C and any set of morphisms ψX : F(X) → N such that for every
morphism f : X → Y in J , we have ψY F(X) = ψX , there exists precisely
one morphism u : L → N such that uφX = ψX for all X. The colimit of
F , unique up to unique isomorphism if it exists, is denoted by colimF .

Limits and colimits are related as follows: A functor F : J → C has
a colimit iff for every object N of C, the functor X 7−→ MorC(F(X), N)
(which is a covariant functor on the dual category J op) has a limit. If that
is the case, then MorC(colimF , N) = limMorC(F(−), N) for every object
N of C.

2.3.6 Adjunction

The most important functorial operation is adjunction; as S. MacLane once
said, “Adjoint functors arise everywhere” [MacLane (1971)].
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The adjunction ϕ : F a G between two functors (F ,G) : K � L of
opposite variance [Kan (1958)], represents a weak functorial inverse

f : F(A)→ B

ϕ(f) : A→ G(B)

forming a natural equivalence ϕ : MorK(F(A), B)
ϕ−→ MorL(A,G(B)). The

adjunction isomorphism is given by a bijective correspondence (a 1–1 and
onto map on objects) ϕ : Mor(K) 3 f → ϕ(f) ∈ Mor(L) of isomorphisms in
the two categories, K (with a representative object A), and L (with a rep-
resentative object B). It can be depicted as a (non–commutative) diagram

B G(B)-
G

F(A) A� F

?
f

?
ϕ(f)

'

&

$

%
K

'

&

$

%
L

In this case F is called left adjoint, while G is called right adjoint.
In other words, an adjunction F a G between two functors (F ,G) of

opposite variance, from a source category K to a target category L, is
denoted by (F ,G,η, ε) : K� L. Here, F : L → K is the left (upper) adjoint
functor, G : L ← K is the right (lower) adjoint functor, η : 1L → G ◦ F is
the unit natural transformation (or, front adjunction), and ε : F ◦ G → 1K
is the counit natural transformation (or, back adjunction).

For example, K = S is the category of sets and L = G is the category
of groups. Then F turns any set into the free group on that set, while
the ‘forgetful’ functor F∗ turns any group into the underlying set of that
group. Similarly, all sorts of other ‘free’ and ‘underlying’ constructions are
also left and right adjoints, respectively.

Right adjoints preserve limits, and left adjoints preserve colimits.
The category C is called a cocomplete category if every functor F : J →

C has a colimit. The following categories are cocomplete: S,G,A, T , and
PT .

The importance of adjoint functors lies in the fact that every functor
which has a left adjoint (and therefore is a right adjoint) is continuous.
In the category A of Abelian groups, this e.g., shows that the kernel of a
product of homomorphisms is naturally identified with the product of the
kernels. Also, limit functors themselves are continuous. A covariant functor
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F : J → C is cocontinuous if it transforms colimits into colimits. Every
functor which has a right adjoint (and is a left adjoint) is cocontinuous.

The analogy between adjoint functors and adjoint linear operators relies
upon a deeper analogy: just as in quantum theory the inner product 〈φ, ψ〉
represents the amplitude to pass from φ to ψ, in category theory Mor(A,B)
represents the set of ways to go from A to B. These are to Hilbert spaces
as categories are to sets. The analogues of adjoint linear operators between
Hilbert spaces are certain adjoint functors between 2−Hilbert spaces [Baez
(1997); Baez and Dolan (1998)]. Similarly, the adjoint representation of
a Lie group G is the linearized version of the action of G on itself by
conjugation, i.e., for each g ∈ G, the inner automorphism x 7→ gxg−1 gives
a linear transformation Ad(g) : g→ g, from the Lie algebra g of G to itself.

2.3.7 Abelian Categorical Algebra

An Abelian category is a certain kind of category in which morphisms and
objects can be added and in which kernels and cokernels exist and have the
usual properties. The motivating prototype example of an Abelian category
is the category of Abelian groups A. Abelian categories are the framework
for homological algebra (see [Dieudonne (1988)]).

Given a homomorphism f : A → B between two objects A ≡ Dom f

and B ≡ Cod f in an Abelian category A, then its kernel, image, cokernel
and coimage in A are defined respectively as:

Ker f = f−1(eB), Coker f = Cod f/ Im f,

Im f = f(A), Coim f = Dom f/Ker f,

where eB is a unit of B [Dodson and Parker (1997)].
In an Abelian category A a composable pair of arrows,

•
f - B

g - •

is exact at B iff Im f ≡ Ker g (equivalence as subobjects of B) – or, equiv-
alently, if Coker f ≡ Coim g [MacLane (1971)].

For each arrow f in an Abelian category A the triangular identities read

Ker(Coker(Ker f)) = Ker f, Coker(Ker(Coker f)) = Coker f.

The diagram (with 0 the null object)

0 - A
f - B

g - C - 0 (2.63)
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is a short exact sequence when it is exact at A, at B, and at C.
Since 0 → a is the zero arrow, exactness at A means just that f is

monic (i.e., 1–1, or injective map); dually, exactness at C means that g is
epic (i.e., onto, or surjective map). Therefore, (2.63) is equivalent to

f = Ker g, g = Coker f.

Similarly, the statement that h = Coker f becomes the statement that the
sequence

A
f - B

g - C - 0

is exact at B and at C. Classically, such a sequence was called a short
right exact sequence. Similarly, k = Ker f is expressed by a short left exact
sequence

0 - A
f - B

g - C.

If A and A′ are Abelian categories, an additive functor F : A → A′ is
a functor from A to A′ with

F(f + f ′) = Ff + Ff ′,

for any parallel pair of arrows f, f ′ : b→ c in A. It follows that F0 = 0.
A functor F : A → A′ between Abelian categories A and A′ is, by

definition, exact when it preserves all finite limits and all finite colimits. In
particular, an exact functor preserves kernels and cokernels, which means
that

Ker(Ff) = F(Ker f) and Coker(Ff) = F(Coker f);

then F also preserves images, coimages, and carries exact sequences to
exact sequences. By construction of limits from products and equalizers
and dual constructions, F : A → A′ is exact iff it is additive and preserves
kernels and cokernels.

A functor F is left exact when it preserves all finite limits. In other
words, F is left exact iff it is additive and Ker(Ff) = F(Ker f) for all f :
the last condition is equivalent to the requirement that F preserves short
left exact sequences.

Similarly, a functor F is right exact when it preserves all finite colim-
its. In other words, F is right exact iff it is additive and Coker(Ff) =
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F(Coker f) for all f : the last condition is equivalent to the requirement
that F preserves short right exact sequences.

In an Abelian category A, a chain complex is a sequence

... - cn+1

∂n+1- cn
∂n - cn−1

- ...

of composable arrows, with ∂n∂n+1 = 0 for all n. The sequence need not be
exact at cn; the deviation from exactness is measured by the nth homology
object

Hnc = Ker(∂n : cn - cn−1)/ Im(∂n+1 : cn+1
- cn).

Similarly, a cochain complex in an Abelian category A is a sequence

... - wn+1

dn+1- wn
dn - wn−1

- ...

of composable arrows, with dndn+1 = 0 for all n. The sequence need
not be exact at wn; the deviation from exactness is measured by the nth
cohomology object

Hnw = Ker(dn+1 : wn - wn+1)/ Im(dn : wn−1
- wn).

A cycle is a chain C such that ∂C = 0. A boundary is a chain C such
that C = ∂B, for any other chain B.

A cocycle (a closed form) is a cochain ω such that dω = 0. A coboundary
(an exact form) is a cochain ω such that ω = dθ, for any other cochain θ.
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2.3.8 n−Categories

In this subsection we introduce the concept of modern n−categories.
Intuitively, in describing dynamical systems (processes) by means of
n−categories, instead of classical starting with a set of things:

we can now start with a category of things and processes between things:

or, a 2−category of things, processes, and processes between processes:

... and so on. For example, this n−categorical framework can be used for
higher gauge theory [Baez (2002)], which .
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2.3.8.1 Generalization of ‘Small’ Categories

If we think of a point in geometrical space (either natural, or abstract)
as an object (or, a 0−cell), and a path between two points as an arrow
(or, a 1−morphism, or a 1−cell), we could think of a ‘path of paths’ as a
2−arrow (or, a 2−morphism, or a 2−cell), and a ‘path of paths of paths’
(or, a 3−morphism, or a 3−cell), etc. Here a ‘path of paths’ is just a
continuous 1–parameter family of paths from between source and target
points, which we can think of as tracing out a 2D surface, etc. In this way
we get a ‘skeleton’ of an n−category, where a 1−category operates with
0−cells (objects) and 1−cells (arrows, causally connecting source objects
with target ones), a 2−category operates with all the cells up to 2−cells
[Bénabou (1967)], a 3−category operates with all the cells up to 3−cells,
etc. This skeleton clearly demonstrates the hierarchical self–similarity of
n–categories:

0− cell :x •

1− cell :x •
f - • y

2− cell :x •

f

g

h
R

�∨
• y

3− cell :x •

f

g

h i
j

y x

>
R

�
• y

where triple arrow goes in the third direction, perpendicular to both single
and double arrows. Categorical composition is defined by pasting arrows.

Thus, a 1−category can be depicted as a commutative triangle:

A F (A)-F

G(F (A))

G ◦ F
@

@
@
@R

G
�

�
�

�	
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a 2−category is a commutative triangle:

A

f

g

α
R

�∨
B F (A)

F (f)

F (g)

F (α)
R

�∨
F (B)-F

G(F (A))

G(F (f))

G(F (g))

G(F (α))
R

�∨
G(F (B))

G ◦ F

@
@

@
@

@
@
@R

G

�
�

�
�

�
�

�	

a 3−category is a commutative triangle:

A

f

g

α β
ψ

y x

>
R

�
B F (A)

F (f)

F (g)

F (α) F (β)
F (ψ)

y x

>
R

�
F (B)-F

G(F (A))

G(F (f))

G(F (g))

G(F (α)) G(F (β))
G(F (ψ))

y x

>
R

�
G(F (B))

F ◦G

@
@

@
@

@
@

@
@

@
@R

G

�
�

�
�

�
�

�
�

�
�	

etc., up to n−categories.
Many deep–sounding results in mathematical sciences are get by the

process of categorification14 of the high school mathematics [Crane and
Frenkel (1994); Baez and Dolan (1998)].

An n−category is a generic mathematical structure consisting of a col-
lection of objects, a collection of arrows between objects, a collection of
2−arrows between arrows [Bénabou (1967)], a collection of 3−arrows be-

14Categorification means replacing sets with categories, functions with functors, and
equations between functions by natural equivalences between functors. Iterating this

process requires a theory of n−categories.
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tween 2−arrows, and so on up to n [Baez (1997); Baez and Dolan (1998);
Leinster (2002); Leinster (2003); Leinster (2004)].

More precisely, an n−category (for n ≥ 0) consists of:

• 0−cells, or objects, A,B, . . .

• 1−cells, or arrows, A
f - B, with a composition

A
f - B

g - C = A
g◦f- C

• 2−cells, ‘arrows between arrows’, A

f

g

α
R

�∨
B, with vertical compo-

sitions (denoted by ◦) and horizontal compositions (denoted by ∗),
respectively given by

A

f

g

h

α

β

-∨

∨

N

�
B = A

f

h

β◦α
R

�∨
B and

A

f

g

α
R

�∨
A′

f ′

g′

α′
R

�∨
A′′ = A

f ′◦f

g′◦g

α′ ∗ α
R

�∨
A′′

• 3−cells, ‘arrows between arrows

between arrows’, A

f

g

α β
Γ

y x

>
R

�
B (where the Γ−arrow goes in

a direction perpendicular to f and α), with various kinds of vertical,
horizontal and mixed compositions,
• etc., up to n−cells.

Calculus of n−categories has been developed as follows. First, there
is K2, the 2–category of all ordinary (or small) categories. K2 has cate-
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gories K,L, ... as objects, functors F ,G : K ⇒ L as arrows, and natural
transformations, like τ : F ·→ G as 2–arrows.

In a similar way, the arrows in a 3–category K3 are 2–functors F2,G2, ...

sending objects in K2 to objects in L2, arrows to arrows, and 2–arrows to
2–arrows, strictly preserving all the structure of K2

A

f

g

α
R

�∨
B

F2 - F2(A)

F2(f)

F2(g)

F2(α)
R

�∨
F2(B).

The 2–arrows in K3 are 2–natural transformations, like τ2 : F2
2·⇒ G2 be-

tween 2–functors F2,G2 : K2 −→ L2 that sends each object in K2 to an
arrow in L2 and each arrow in K2 to a 2–arrow in L2, and satisfies natu-
ral transformation–like conditions. We can visualize τ2 as a prism going
from one functorial picture of K2 in L2 to another, built using commutative
squares:

A

f

g

α
R

�∨
B

G2
@

@
@R

F2

�
�
��

F2(A)

F2(f)

F2(g)

F2(α)
R

�∨
F2(B)

G2(A)

G2(f)

G2(g)

G2(α)
R

�∨
G2(B)

⇓

K2

L2

?

τ2(A)

?

τ2(B)

Similarly, the arrows in a 4–category K4 are 3–functors F3,G3, ... sending
objects in K3 to objects in L3, arrows to arrows, and 2–arrows to 2–arrows,
strictly preserving all the structure of K3

A

f

g

α β
ψ

y x

>
R

�
B

F3 - F3(A)

F3(f)

F3(g)

F3(α) F3(β)
F3(ψ)

y x

>
R

�
F3(B)
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The 2–arrows in K4 are 3–natural transformations, like τ3 : F 3·⇒ G be-
tween 3–functors F3,G3 : K3 → L3 that sends each object in K3 to a
arrow in L3 and each arrow in K3 to a 2–arrow in L3, and satisfies natural
transformation–like conditions. We can visualize τ3 as a prism going from
one picture of K3 in L3 to another, built using commutative squares:

A

f

g

α β
ψ

y x

>
R

�
B

G3

@
@

@
@R

F3

�
�

�
��

F3(A)

F3(f)

F3(g)

F3(α) F3(β)
F3(ψ)

y x

>
R

�
F3(B)

G3(A)

G3(f)

G3(g)

G3(α) G3(β)
G3(ψ)

y x

>
R

�
G3(B)

⇓

K3

L3

?

τ 3(A)

?

τ 3(B)

2.3.8.2 Topological Structure of n−Categories

We already emphasized the topological nature of ordinary category theory.
This fact is even more obvious in the general case of n−categories (see
[Leinster (2002); Leinster (2003); Leinster (2004)]).

2.3.8.3 Homotopy Theory and Related n−Categories

Any topological manifold M induces an n−category Πn(M) (its funda-
mental n−groupoid), in which 0–cells are points in M ; 1–cells are paths
in M (i.e., parameterized continuous maps f : [0, 1] → M); 2–cells are
homotopies (denoted by ') of paths relative to endpoints (i.e., param-
eterized continuous maps h : [0, 1] × [0, 1] → M); 3–cells are homo-
topies of homotopies of paths in M (i.e., parameterized continuous maps
j : [0, 1] × [0, 1] × [0, 1] → M); categorical composition is defined by past-
ing paths and homotopies. In this way the following ‘homotopy skeleton’
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emerges:

0− cell : x • x ∈M ;

1− cell : x •
f - • y f : x ' y ∈M,

f : [0, 1]→M, f : x 7→ y, y = f(x), f(0) = x, f(1) = y;

e.g., linear path: f(t) = (1− t)x+ ty;

2− cell : x •

f

g

h
R

�∨
• y h : f ' g ∈M,

h : [0, 1]× [0, 1]→M, h : f 7→ g, g = h(f(x)),

h(x, 0) = f(x), h(x, 1) = g(x), h(0, t) = x, h(1, t) = y

e.g., linear homotopy: h(x, t) = (1− t)f(x) + tg(x);

3− cell : x •

f

g

h i
j

y x

>
R

�
• y j : h ' i ∈M,

j : [0, 1]× [0, 1]× [0, 1]→M, j : h 7→ i, i = j(h(f(x)))

j(x, t, 0) = h(f(x)), j(x, t, 1) = i(f(x)),

j(x, 0, s) = f(x), j(x, 1, s) = g(x),

j(0, t, s) = x, j(1, t, s) = y

e.g., linear composite homotopy: j(x, t, s) = (1− t)h(f(x)) + t i(f(x)).

If M is a smooth manifold, then all included paths and homotopies need
to be smooth. Recall that a groupoid is a category in which every morphism
is invertible; its special case with only one object is a group.

Category T T

Topological n−category T T has:

• 0–cells: topological spaces X

• 1–cells: continuous maps X
f - Y
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• 2–cells: homotopies h between f and g : X

f

g

h
R

�∨
Y

i.e., continuous maps h : X × [0, 1] → Y , such that ∀x ∈ X, h(x, 0) =
f(x) and h(x, 1) = g(x)

• 3–cells: homotopies between homotopies : X

f

g

h i
j

y x

>
R

�
Y

i.e., continuous maps j : X × [0, 1]× [0, 1]→ Y .

Category CK

Consider an n−category CK, which has:

• 0–cells: chain complexes A (of Abelian groups, say)

• 1–cells: chain maps A
f - B

• 2–cells: chain homotopies A

f

g

α
R

�∨
B,

i.e., maps α : A→ B of degree 1

• 3–cells A

f

g

α β
Γ

y x

>
R

�
B: homotopies between homotopies,

i.e., maps Γ : A→ B of degree 2 such that dΓ− Γd = β − α.

There ought to be some kind of map CC : T T ⇒ CK (see [Leinster (2002);
Leinster (2003); Leinster (2004)]).

2.3.8.4 Categorification

Categorification is the process of finding category–theoretic analogs of set–
theoretic concepts by replacing sets with categories, functions with functors,
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and equations between functions by natural isomorphisms between functors,
which in turn should satisfy certain equations of their own, called ‘coherence
laws’. Iterating this process requires a theory of n−categories.

Categorification uses the following analogy between set theory and cat-
egory theory [Crane and Frenkel (1994); Baez and Dolan (1998)]:

Set Theory Category Theory
elements objects
equations isomorphisms

between elements between objects
sets categories

functions functors
equations natural isomorphisms

between functions between functors

Just as sets have elements, categories have objects. Just as there are
functions between sets, there are functors between categories. Now, the
proper analog of an equation between elements is not an equation between
objects, but an isomorphism. Similarly, the analog of an equation between
functions is a natural isomorphism between functors.

2.3.9 Application: n−Categorical Framework for Higher

Gauge Fields

Recall that in the 19th Century, J.C. Maxwell unified Faraday’s electric and
magnetic fields. Maxwell’s theory led to Einstein’s special relativity where
this unification becomes a spin–off of the unification of space end time in
the form of the Faraday tensor [Misner et al. (1973)]

F = E ∧ dt+B,

where F is electromagnetic 2−form on space–time, E is electric 1−form on
space, and B is magnetic 2−form on space. Gauge theory considers F as
secondary object to a connection–potential 1−form A. This makes half of
the Maxwell equations into tautologies [Baez (2002)], i.e.,

F = dA =⇒ dF = 0 the Bianchi relation,

but does not imply the dual Bianchi relation, which is a second half of
Maxwell’s equations,

∗d ∗ F = J,
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where ∗ is the dual Hodge star operator and J is current 1−form.
To understand the deeper meaning of the connection–potential 1−form

A, we can integrate it along a path γ in space–time, x
γ - y. Clas-

sically, the integral
∫
γ
A represents an action for a charged point particle

to move along the path γ. Quantum–mechanically, exp
(

i
∫
γ
A
)

represents
a phase (within the unitary group U(1)) by which the particle’s wave–
function changes as it moves along the path γ, so A is a U(1)−connection.

The only thing that matters here is the difference α between two paths
γ1 and γ2 in the action

∫
γ
A [Baez (2002)], which is a two–morphism

x

γ1

γ2

α
R

�∨
y

To generalize this construction, consider any compact Lie group G. A
connection A on a trivial G−bundle is a γ−valued 1−form. A assigns

a holonomy P exp
(

i
∫
γ
A
)
∈ G along any path x

γ - y and has a
curvature F given by

F = dA+A ∧A.

The curvature F implies the extended Bianchi relation

dF +A ∧ F = 0,
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but does not imply the dual Bianchi relation, i.e., Yang–Mills relation15

∗(d ∗ F +A ∧ ∗F ) = J.
15Recall that the Yang–Mills (YM) Lagrangian density LYM is a functional of the

vector potential fields Aiµ, where the internal index i ranges over {1, · · · , n}, where n is
the dimension of the gauge group, and µ is a space–time index (µ = 0, · · · , 3). The field

tensor derived from these potential fields is (see, e.g., [Pons et. al. (2000)])

F iαβ = Aiβ,α −Aiα,β − CijkA
j
αA

k
β ,

where Cijk are the structure constants of the gauge group Lie. The YM Lagrangian

density is consequently given by

LYM = −
1

4

p
|g|F iµνF

j
αβg

µαgνβCij ,

where Cij is a nonsingular, symmetric group metric and g is the determinant of the

space–time metric tensor (in a semi–simple Lie group, Cij is usually taken to be CsitC
t
js;

in an Abelian Lie group, one usually takes Cij = δij).

The derivatives of LYM with respect to the velocities of the configuration–space vari-

ables, Ȧiα give the tangent–space functions P̂αi corresponding to the phase–space conju-
gate momenta:

P̂αi =
∂LYM

∂Ȧiα
=

p
|g|F jµνgαµg0νCij .

The Legendre map FL is defined by mapping P̂αi to Pαi in the phase–space. Because of
the antisymmetry of the field tensor, the primary constraints are

0 = P̂ 0
i =

∂LYM

∂Ȧi0
=

p
|g|F jµνg0µg0νCij .

A generator of a projectable gauge transformation thus must be independent of Ȧi0.
An infinitesimal YM gauge transformation is defined by an array of gauge fields Λi

and transforms the potential by

δR[Λ]Aiµ = −Λi,µ − CijkΛ
jAkµ.

We denote this transformation by

δRA
i
µ = −(DµΛ)j ,

where Dµ is the Yang–Mills covariant derivative (in its action on space–time scalars and

YM vectors). Under this transformation, the field transforms as

δRF
i
µν = −CijkΛ

jFkµν ,

where we work to first order in Λi and use the Jacobi identity

Cij`C
`
mn + Cim`C

`
nj + Cin`C

`
jm = 0.

The YM Lagrangian LYM is invariant under this transformation provided that the group
metric is symmetric,

Ck`iCkj = −Ck`jCki (which is if Cij = CsitC
t
js).
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Further generalization is performed with string theory. Just as point
particles naturally interact with a 1−form A, strings naturally interact
with a 2−form B, such that [Baez (2002)]

action =
∫

Σ

B, and phase = exp
(

i
∫

Σ

B

)
.

This 2−form connection B has a 3−form curvature G = dB, which satisfies
Maxwell–like equations, i.e., implies Bianchi–like relation dG = 0, but does
not imply the dual, current relation ∗d ∗G = J, with the current 2−form
J .

In this way, the higher Yang–Mills theory assigns holonomies to paths
and also to paths of paths, so that we have a 3−morphism

x

γ1

γ2

γ3

α1

α2

-∨

∨

N

�
y

allowing us to ask not merely whether holonomies along paths are equal,
but whether and how they are isomorphic.

This generalization actually proposes categorification of the basic ge-
ometrical concepts of manifold, group, Lie group and Lie algebra [Baez
(2002)]. Replacing the words set and function by smooth manifold and
smooth map we get the concept of smooth category. Replacing them
by group and homomorphism we get the concept of 2−group. Replacing
them by Lie group and smooth homomorphism we get the concept of Lie

2−group. Replacing them by Lie algebra and Lie algebra homomorphism

we get the concept of Lie 2−algebra. Examples of the smooth categories
are the following:

(1) A smooth category with only identity morphisms is a smooth manifold.
(2) A smooth category with one object and all morphisms invertible is a

Lie group.
(3) Any Lie groupoid gives a smooth category with all morphisms invert-

ible.
(4) A generalization of a vector bundle (E,M, π), where E and M are

smooth manifolds and projection π : E →M is a smooth map, gives a
vector 2−bundle (E,M, π) where E and M are smooth categories and
projection π : E →M is a smooth functor.
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2.3.10 Application: Natural Geometrical Structures

Closely related to the higher–dimensional automata are various natural ge-
ometrical structures, most of which are commonly called tangles.

For example, a 2D flow–chart–like complex 1D−structure could be a
diagram of the form [Leinster (2002); Leinster (2003)]:

Its 3D–generalization is a surface diagram with the same information–
flow:

Moreover, if we allow crossings, as in a braid :

then we start getting pictures that look like knots which are again related
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to higher categorical structures [Leinster (2002); Baez (1997)].
A category C with only one object is a monoid (= semigroup with unit)

M . A 2−category C with only one 0−cell is a monoidal category M. A
braided monoidal category is a monoidal category equipped with a map
called braiding

A⊗B
βA,B- B ⊗A ,

for each pair A,B of objects.
The canonical example of a braided monoidal category is BR [Leinster

(2003)]. This has:

(1) Objects: natural numbers 0, 1, . . .;
(2) Morphisms: braids, e.g.,

(taken up to deformation);
there are no morphisms m - n when m 6= n;

(3) Tensor product: placing side–by–side (which on objects means addi-
tion); and

(4) Braiding: right over left, e.g.,

Knots, links and braids are all special cases of tangles (see [Reshetikhin
and Turaev (1990)]). The mysterious relationships between topology, alge-
bra and physics amount in large part to the existence of interesting func-
tors from various topologically defined categories to Hilbert, the cate-
gory of Hilbert spaces. These topologically defined categories are always
∗−categories, and the really interesting functors from them to Hilbert are
always ∗−functors, which preserve the ∗−structure. Physically, the ∗ oper-
ation corresponds to reversing the direction of time. For example, there is
a ∗−category whose objects are collections of points and whose morphisms
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are tangles (see [Baez (1997); Baez and Dolan (1998)]):

.

We can think of this morphism f : x→ y as representing the trajectories of
a collection of particles and antiparticles, where particles and antiparticles
can be created or annihilated in pairs. Reversing the direction of time, we
get the ‘dual’ morphism f∗ : y → x:

.

This morphism is not the inverse of f , since the composite f ◦ f∗ is a
nontrivial tangle:

.

Indeed, any groupoid becomes a ∗−category if we set f∗ = f−1 for every
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morphism f .
The above example involves 1D curves in 3D space. More generally,

topological quantum field theory studies nD manifolds embedded in (n+k)D
space–time, which in the k → ∞ limit appear as ‘abstract’ nD manifolds.
It appears that these are best described using certain ‘n−categories with
duals’, meaning n−categories in which every j−morphism f has a dual f∗.

Therefore, a tangle is a box in 3D space with knotted and linked string
embedded within it and a certain number of strands of that string emanat-
ing from the surface of the box. There are no open ends of string inside
the box. We usually think of some subset of the strands as inputs to the
tangle and the remaining strands as the outputs from the tangle. Usually
the inputs are arranged to be drawn vertically and so that they enter tangle
from below, while the outputs leave the tangle from above. The tangle itself
(within the box) is arranged as nicely as possible with respect to a vertical
direction. This means that a definite vertical direction is chosen, and that
the tangle intersects planes perpendicular to this direction transversely ex-
cept for a finite collection of critical points. These basic critical points are
local maxima and local minima for the space curves inside the tangle. Two
tangles configured with respect to the same box are ambient isotopic if there
is an isotopy in three space carrying one to the other that fixes the input
and output strands of each tangle. We can compose two tangles A and B

where the number of output strand of A is equal to the number of input
strands of B. Composition is accomplished by joining each output strand
of A to a corresponding input strand of B [Kauffman and Radford (1995);
Kauffman and Radford (1999); Kauffman (1994)].

A tangle diagram is a box in the plane, arranged parallel to a chosen ver-
tical direction with a left–right ordered sequence of input strands entering
the bottom of the box, and a left–right ordered sequence of output strands
emanating from the top of the box. Inside the box is a diagram of the
tangle represented with crossings (broken arc indicating the undercrossing
line) in the usual way for knot and links. We assume, as above, that the
tangle is represented so that it is transverse to lines perpendicular to the
vertical except for a finite number of points in the vertical direction along
the tangle. It is said that the tangle is well arranged, or Morse with re-
spect to the vertical direction when these transversality conditions are met.
At the critical points we will see a local maximum, a local minimum or a
crossing in the diagram. Tangle composition is well–defined (for matching
input/output counts) since the input and output strands have an ordering
(from left to right for the reader facing the plane on which the tangle di-
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agram is drawn). Note that the cardinality of the set of input strands or
output strands can be equal to zero. If they are both zero, then the tangle
is simply a knot or link diagram arranged well with respect to the vertical
direction [Kauffman and Radford (1995); Kauffman and Radford (1999);
Kauffman (1994)].

The Reidemeister moves are a set of moves on diagrams that combi-
natorially generate isotopy for knots, links and and tangles [Reidemeister
(1948)]. If two tangles are equivalent in 3D space, then corresponding di-
agrams of these tangles can be obtained one from another, by a sequence
of Reidemeister moves. Each move is confined to the tangle box and keeps
the input and output strands of the tangle diagram fixed.

Two (tangle) diagrams are said to be regularly isotopic if one can be
obtained from the other by a sequence of Reidemeister moves of type 0,2,3
(move number 1 is not used in regular isotopy).

If A and B are given tangles, we denote the composition of A and B by
AB where the diagram of A is placed below the diagram of B and the output
strands of A are connected to the input strands of B. If the cardinalities
of the sets of input and output strands are zero, then we simple place one
tangle below the other to form the product [Kauffman and Radford (1995);
Kauffman and Radford (1999); Kauffman (1994)].

Along with tangle composition, as defined in the previous paragraph, we
also have an operation of product or juxtaposition of tangles. To juxtapose
two tangles A and B simply place their diagrams side by side with A to
the left of B and regard this new diagram as a new tangle whose inputs
are the inputs of A followed by the inputs of B, and whose outputs are the
outputs of A followed by the outputs of B. We denote the tangle product
of A and B by A⊗B.

It remains to describe the equivalence relation on tangles that makes
them represent regular isotopy classes of embedded string. Every tangle is
a composition of elementary tangles where an elementary tangle is one of
the following list: a cup (a single minimum – zero inputs, two outputs),
a cap (a single maximum – two inputs, zero outputs), a crossing (a single
local crossing diagram – two inputs and two outputs).

2.3.11 Ultimate Conceptual Machines:

Weak n−Categories

As traditionally conceived, an n−category is an algebraic structure
having objects or 0−morphisms, 1−morphisms between 0−morphisms,
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2−morphisms between 1−morphisms, and so on up to n−morphisms.
There should be various ways of composing j−morphisms, and these com-
position operations should satisfy various laws, such as associativity laws.
In the so–called strict n−categories, these laws are equations. While well–
understood and tractable, strict n−categories are insufficiently general
for many applications: what one usually encounters in nature are weak
n−categories, in which composition operations satisfy the appropriate laws
only up to equivalence. Here the idea is that n−morphisms are equivalent
precisely when they are equal, while for j < n an equivalence between
j−morphisms is recursively defined as a (j+ 1)−morphism from one to the
other that is invertible up to equivalence [Baez and Dolan (1998)].

Now, what makes it difficult to define weak n−categories is that laws
formulated as equivalences should satisfy laws of their own – the so–called
coherence laws – so that one can manipulate them with some of the same
facility as equations. Moreover, these coherence laws should also be equiv-
alences satisfying their own coherence laws, again up to equivalence, and
so on [Baez and Dolan (1998)].

For example, a weak 1−category is just an ordinary category. In a
category, composition of 1−morphisms is associative:

(fg)h = f(gh).

Weak 2−categories first appeared in the work of Bénabou [Bénabou
(1967)], under the name of bicategories. In a bicategory, composition of
1−morphisms is associative only up to an invertible 2−morphism, the ‘as-
sociator ’:

Af,g,h : (fg)h→ f(gh).

The associator allows one to re–bracket parenthesized composites of arbi-
trarily many 1−morphisms, but there may be many ways to use it to go
from one parenthesization to another. For all these to be equal, the asso-
ciator must satisfy a coherence law, the pentagon identity, which says that
the following diagram commutes:

(f(gh))i f((gh)i)-

((fg)h)i f(g(hi))-(fg)(hi)

?

6
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where all the arrows are 2−morphisms built using the associator. Weak
3−categories or tricategories were defined by [Gordon et. al. (1995)].
In a tricategory, the pentagon identity holds only up to an invertible
3−morphism, which satisfies a further coherence law of its own.

When one explicitly lists the coherence laws this way, the definition
of weak n−category tends to grow ever more complicated with increasing
n. To get around this, one must carefully study the origin of these coher-
ence laws. So far, most of our insight into coherence laws has been won
through homotopy theory, where it is common to impose equations only
up to homotopy, with these homotopies satisfying coherence laws, again up
to homotopy, and so on. For example, the pentagon identity and higher
coherence laws for associativity first appeared in Stasheff’s work on the
structure inherited by a space equipped with a homotopy equivalence to a
space with an associative product [Stasheff (1963)]. Subsequent work led
to a systematic treatment of coherence laws in homotopy theory through
the formalism of topological operads [Adams (1978)].

Underlying the connection between homotopy theory and n−category
theory is a hypothesis made quite explicit by Grothendieck [Grothendieck
(1983)]: to any topological space one should be able to associate
an n−category having points as objects, paths between points as
1−morphisms, certain paths of paths as 2−morphisms, and so on, with
certain homotopy classes of n−fold paths as n−morphisms. This should
be a special sort of weak n−category called a weak n−groupoid, in which
all j−morphisms (0 < j ≤ n) are equivalences. Moreover, the process
of assigning to each space its fundamental n−groupoid, as Grothendieck
called it, should set up a complete correspondence between the theory of
homotopy n−types (spaces whose homotopy groups vanish above the nth)
and the theory of weak n−groupoids. This hypothesis explains why all the
coherence laws for weak n−groupoids should be deducible from homotopy
theory. It also suggests that weak n−categories will have features not found
in homotopy theory, owing to the presence of j−morphisms that are not
equivalences [Baez and Dolan (1998)].

Homotopy theory also makes it clear that when setting up a the-
ory of n−categories, there is some choice involved in the shapes of ones
j−morphisms – or in the language of topology, j−cells. The traditional
approach to n−cate-gories is globular. This means that for j > 0, each
j−cell f : x→ y has two (j − 1)−cells called its source, sf = x, and target,
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tf = y, which for j > 1 satisfy

s(sf) = s(tf), t(sf) = t(tf)).

Thus a j−cell can be visualized as a globe, a jD ball whose boundary
is divided into two (j − 1)D hemispheres corresponding to its source and
target. However, in homotopy theory, the simplicial approach is much more
popular. In a simplicial set , each j−cell f is shaped like a jD simplex,
and has j + 1 faces, certain (j − 1)−cells d0f, . . . , dnf . In addition to
these there are (j + 1)−cells i0f, . . . , in+1f called degeneracies, and the
face and degeneracy maps satisfy certain well–known relations [Baez and
Dolan (1998)].
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Chapter 3

Applied Manifold Geometry

3.1 Introduction

Albert Einstein once said: “Nature is simple only when analyzed locally.
Why? Because, locally any system appears to be linear, and therefore fully
predictable and controllable. Geometrical elaboration of this fundamental
idea has produced the concept of a manifold , a topological space which
locally looks like Euclidean Rn−spaces, but globally can be totally differ-
ent. In addition, to be able to use calculus on our manifolds, in much the
same way as in ordinary Rn−spaces, the manifolds need to be smooth (i.e.,
differentiable as many times as required, technically denoted by Ck).

Consider a classical example, comparing a surface of an apple with a
Euclidean plane. A small neighborhood of every point on the surface of
an apple (excluding its stem) looks like a Euclidean plane (denoted by
R2), with its local geodesics appearing like straight lines. In other words,
a smooth surface is locally topologically equivalent to the Euclidean plane.
This same concept of nonlinear geometry holds in any dimension. If di-
mension is high, we are dealing with complex systems. Therefore, while
continuous–time linear systems live in Euclidean Rn−spaces, continuous–
time complex systems live in nD smooth manifolds, usually denoted by
M .

Finally, note that there are two dynamical paradigms of smooth mani-
folds:
(i) Einstein’s 4D space–time manifold , historically the first one, and
(ii) nD configuration manifold , which is the modern geometrical concept.

As the Einstein space–time manifold is both simpler to comprehend and
consequently much more elaborated, we start our geometrical machinery
with it, keeping in mind that the same fundamental dynamics holds for all

137
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smooth manifolds, regardless of their dimension.
Throughout the book we will try to follow the Hilbertian pedagogical

method of development: (i) intuitively introduce a new geometrical concept;
(ii) rigorously define it; (iii) apply it to solve a real–world problem.

3.1.1 Intuition Behind Einstein’s Geometrodynamics

Briefly, Einstein–Wheeler geometrodynamics can be summarized as
[Wheeler (1961); Wheeler (1962)]:

(1) Gravity is not a Newtonian force, but an aspect of the geometry of
space–time.

(2) Space is not an absolute invariant entity, but is influenced by the dis-
tribution of mass and energy in the Universe. The fundamental Ge-
ometrodynamics Principle states:
Space tells matter how to move, while matter tells space how to curve.

(3) Large masses introduce a strong curvature in space–time. Light and
matter are forced to move according to this metric. Since all the matter
is in motion, the geometry of space is constantly changing.

The celebrated Einstein equation relates the curvature of space–time to the
mass/energy density. It reads (in the so–called ‘normal’ units: c = 8πG =
1):

G = T, or, in components, Gαβ = Tαβ , (3.1)

where G = Gαβ is the Einstein curvature tensor, representing space–
time geometry, while T = Tαβ is the stress–energy–momentum tensor,
the ‘mystical’ SEM–tensor, representing matter; the 4D indices α, β =
(0, 1, 2, 3) label respectively the four space–time directions: (t, x, y, z).

To grasp the intuition behind the Einstein equation (3.1), we need to
consider a ball filled with test particles that are all initially at rest relative
to each other. Let V = V (t) be the volume of the ball after a proper time
t has elapsed, as measured by the particle at the center of the ball. Then
the Einstein equation says:

V̈

V

∣∣∣
t=0

= −1
2


flow of t−momentum in t− direction +
flow of x−momentum in x− direction +
flow of y−momentum in y − direction +
flow of z−momentum in z − direction

 ,
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where these flows are measured at the center of the ball at time t = 0,
using local inertial coordinates. These flows are the diagonal components
of the SEM–tensor T. Its components Tαβ tell us how much momentum
in the α−direction is flowing in the β−direction through a given point of
space–time. The flow of t−momentum in the t−direction is just the energy
density, T00 = ρ. The flow of x−momentum in the x−direction is the
‘pressure in the x−direction’, T11 = P1 ≡ Px, and similarly for y and z.

In any event, we may summarize the Einstein equation (3.1) as

V̈

V

∣∣∣
t=0

= −1
2

(ρ+ Px + Py + Pz) ≡ −
1
2

(T00 + T11 + T22 + T33). (3.2)

This new equation tells us that positive energy density and positive pressure
curve space–time in a way that makes a freely falling ball of point particles
tend to shrink. Since E = mc2 and we are working in normal units, ordinary
mass density counts as a form of energy density. Thus a massive object will
make a swarm of freely falling particles at rest around it start to shrink.
In short, (3.2) tells us that gravity attracts (see e.g., [Misner et al. (1973);
Baez (2001)]).

To see why equation (3.2) is equivalent to the Einstein equation (3.1),
we need to understand the Riemann curvature tensor and the geodesic de-
viation equation. Namely, when space–time is curved, the result of parallel
transport depends on the path taken. To quantify this notion, pick two
vectors u and v at a point p in space–time. In the limit where ε −→ 0, we
can approximately speak of a ‘parallelogram’ with sides εu and εv. Take
another vector w at p and parallel transport it first along εv and then along
εu to the opposite corner of this parallelogram. The result is some vector
w1. Alternatively, parallel transport w first along εu and then along εv.
The result is a slightly different vector, w2. The limit

lim
ε−→0

w2 − w1

ε2
= R(u, v)w (3.3)

is well–defined, and it measures the curvature of space–time at the point p.
In local coordinates, we can write it as

R(u, v)w = Rαβγδu
βvγwδ.

The quantity Rαβγδ is called the Riemann curvature tensor . We can use this
tensor to calculate the relative acceleration of nearby particles in free fall if
they are initially at rest relative to one another. Consider two freely falling
particles at nearby points p and q. Let v be the velocity of the particle at
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p, and let εu be the vector from p to q. Since the two particles start out
at rest relative to one other, the velocity of the particle at q is obtained by
parallel transporting v along εu.

Now let us wait a short while. Both particles trace out geodesics as time
passes, and at time ε they will be at new points, say p′ and q′. The point
p′ is displaced from p by an amount εv, so we get a little parallelogram,
exactly as in the definition of the Riemann curvature:

Next let us calculate the new relative velocity of the two particles. To
compare vectors we must carry one to another using parallel transport. Let
v1 be the vector we get by taking the velocity vector of the particle at p′

and parallel transporting it to q′ along the top edge of our parallelogram.
Let v2 be the velocity of the particle at q′. The difference v2 − v1 is the
new relative velocity. It follows that over this passage of time, the average
relative acceleration of the two particles is a = (v2 − v1)/ε. By equation
(3.3),

lim
ε→0

v2 − v1
ε2

= R(u, v)v, therefore lim
ε→0

a

ε
= R(u, v)v.

This is the simplified form of the geodesic deviation equation. From the defi-
nition of the Riemann curvature it is easy to see thatR(u, v)w = −R(v, u)w,
so we can also write this equation as

lim
ε−→0

aα

ε
= −Rαβγδvβuγvδ. (3.4)

Using geodesic deviation equation (3.4) we can work out the second
time derivative of the volume V (t) of a small ball of test particles that
start out at rest relative to each other. For this we must let u range over an
orthonormal basis of tangent vectors, and sum the ‘outwards’ component
of acceleration for each one of these. By equation (3.4) this gives

lim
V−→0

V̈

V

∣∣∣
t=0

= −Rαβαδvβvδ.

In terms of the so–called Ricci tensor , which is a contracted Riemann ten-
sor,

Rβδ = Rαβαδ ,

we may write the above expression as

lim
V−→0

V̈

V

∣∣∣
t=0

= −Rβδvβvδ.
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In local inertial coordinates, where the ball starts out at rest, we have
v = (1, 0, 0, 0), so

lim
V−→0

V̈

V

∣∣∣
t=0

= −R00. (3.5)

In short, the Ricci tensor says how our ball of freely falling test particles
starts changing in volume. The Ricci tensor only captures some of the
information in the Riemann curvature tensor . The rest is captured by
the so–called the Weyl tensor (see e.g., [Penrose (1989); Penrose (1994);
Penrose (1997)]), which says how any such ball starts changing in shape.
The Weyl tensor describes tidal forces, gravitational waves and the like.

Now, the Einstein equation in its usual form says

Gαβ = Tαβ .

Here the right side is the stress-energy tensor, while the left side, the ‘Ein-
stein tensor’, is just an abbreviation for a quantity constructed from the
Ricci tensor:

Gαβ = Rαβ −
1
2
gαβR

γ
γ .

Thus the Einstein equation really says

Rαβ −
1
2
gαβR

γ
γ = Tαβ . (3.6)

This implies

Rαα −
1
2
gααR

γ
γ = Tαα ,

but gαα = 4, so

−Rαα = Tαα .

Substituting this into equation (3.6), we get

Rαβ = Tαβ −
1
2
gαβT

γ
γ . (3.7)

This is an equivalent version of the Einstein equation, but with the roles
of R and T switched [Baez (2001)]. This is a formula for the Ricci tensor,
which has a simple geometrical meaning.

Equation (3.7) will be true if any one component holds in all local
inertial coordinate systems. This is a bit like the observation that all of
Maxwell’s equations are contained in Gauss’s law and and ∇ · B = 0.
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Clearly, this is only true if we know how the fields transform under change
of coordinates. Here we assume that the transformation laws are known.
Given this, the Einstein equation (3.1) is equivalent to the fact that

R00 = T00 −
1
2
g00T

γ
γ (3.8)

in every local inertial coordinate system about every point. In such coor-
dinates we have

g =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (3.9)

so g00 = −1, as well as

T γγ = −T00 + T11 + T22 + T33.

Equation (3.8) thus says that

R00 =
1
2

(T00 + T11 + T22 + T33).

By equation (3.5), this is equivalent to the required

lim
V→0

V̈

V

∣∣∣
t=0

= −1
2

(T00 + T11 + T22 + T33).

3.1.2 Einstein’s Geometrodynamics in Brief

As a final introductory motivation, we give an ‘express–flight bird–view’
on derivation of the Einstein equation from the Hilbert action principle,
starting from the Einstein space–time manifold M . For all technical details,
see [Misner et al. (1973)], which is still, after 33 years, the core textbook
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on the subject.

M ... the space–time manifold M

gij = gij(xi) ∈ TxM ... metric tensor on M

gij = (gij)
−1 ... inverse metric tensor on M

Γijk =
1
2

(∂xkgij + ∂xjgki − ∂xigjk) ... 1–order Christoffel symbols

Γkij = gklΓijl ... 2–order Christoffel symbols (Levi–Civita connection)

Rlijk = ∂xjΓlik − ∂xkΓlij + ΓlrjΓ
r
ik − ΓlrkΓrij ... Riemann curvature tensor

Rij = Rlijl ... Ricci tensor is the trace of Riemann

R = gijRij ... scalar curvature is the trace of Ricci

Gij = Rij −
1
2
Rgij ... Einstein tensor is the trace–reversed Ricci

Tij = −2
δLHilb
δgij

+ gijLHilb ... stress–energy–momentum (SEM) tensor

LHilb =
1

16π
gijRij(−g)1/2 ... is derived from the Hilbert Lagrangian

δS = δ

∫
LHilb(−g)1/2d4x = 0 ... the Hilbert action principle gives

Gij = 8πTij ... the Einstein equation.

We will continue Einstein’s geometrodynamics in section 6.4 below.

3.2 Intuition Behind the Manifold Concept

As we have already got the initial feeling, in the heart of applied differential
geometry is the concept of a manifold . As a warm–up, to get some dynam-
ical intuition behind this concept, let us consider a simple 3DOF mechan-
ical system determined by three generalized coordinates, qi = {q1, q2, q3}.
There is a unique way to represent this system as a 3D manifold, such that
to each point of the manifold there corresponds a definite configuration of
the mechanical system with coordinates qi; therefore, we have a geomet-
rical representation of the configurations of our mechanical system, called
the configuration manifold . If the mechanical system moves in any way,
its coordinates are given as the functions of the time. Thus, the motion
is given by equations of the form: qi = qi(t). As t varies (i.e., t ∈ R), we
observe that the system’s representative point in the configuration manifold
describes a curve and qi = qi(t) are the equations of this curve.
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Fig. 3.1 An intuitive geometrical picture behind the manifold concept (see text).

On the other hand, to get some geometrical intuition behind the concept
of a manifold, consider a set M (see Figure 3.1) which is a candidate for
a manifold. Any point x ∈ M1 has its Euclidean chart , given by a 1–1
and onto map ϕi : M → Rn, with its Euclidean image Vi = ϕi(Ui). More
precisely, a chart ϕi is defined by

ϕi : M ⊃ Ui 3 x 7→ ϕi(x) ∈ Vi ⊂ Rn,

where Ui ⊂ M and Vi ⊂ Rn are open sets (see [Boothby (1986); Arnold
(1978); De Rham (1984)]).

Clearly, any point x ∈ M can have several different charts (see Figure
3.1). Consider a case of two charts, ϕi, ϕj : M → Rn, having in their
images two open sets, Vij = ϕi(Ui ∩ Uj) and Vji = ϕj(Ui ∩ Uj). Then we
have transition functions ϕij between them,

ϕij = ϕj ◦ ϕ−1
i : Vij → Vji, locally given by ϕij(x) = ϕj(ϕ

−1
i (x)).

If transition functions ϕij exist, then we say that two charts, ϕi and ϕj are
compatible. Transition functions represent a general (nonlinear) transfor-
mations of coordinates, which are the core of classical tensor calculus.

A set of compatible charts ϕi : M → Rn, such that each point x ∈ M
has its Euclidean image in at least one chart, is called an atlas. Two atlases
are equivalent iff all their charts are compatible (i.e., transition functions

1Note that sometimes we will denote the point in a manifold M by m, and sometimes
by x (thus implicitly assuming the existence of coordinates x = (xi)).
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exist between them), so their union is also an atlas. A manifold structure
is a class of equivalent atlases.

Finally, as charts ϕi : M → Rn were supposed to be 1-1 and onto maps,
they can be either homeomorphisms, in which case we have a topological
(C0) manifold, or diffeomorphisms, in which case we have a smooth (Ck)
manifold.

Slightly more precisely, a topological (respectively smooth) manifold is
a separable space M which is locally homeomorphic (resp. diffeomorphic)
to Euclidean space Rn, having the following properties (reflected in Figure
3.1):

(1) M is a Hausdorff space: For every pair of points x1, x2 ∈M , there are
disjoint open subsets U1, U2 ⊂M such that x1 ∈ U1 and x2 ∈ U2.

(2) M is second–countable space: There exists a countable basis for the
topology of M .

(3) M is locally Euclidean of dimension n: Every point of M has a neigh-
borhood that is homeomorphic (resp. diffeomorphic) to an open subset
of Rn.

This implies that for any point x ∈M there is a homeomorphism (resp.
diffeomorphism) ϕ : U → ϕ(U) ⊆ Rn, where U is an open neighborhood
of x in M and ϕ(U) is an open subset in Rn. The pair (U,ϕ) is called a
coordinate chart at a point x ∈M , etc.

3.3 Definition of a Differentiable Manifold

Given a chart (U,ϕ), we call the set U a coordinate domain, or a coordinate
neighborhood of each of its points. If in addition ϕ(U) is an open ball
in Rn, then U is called a coordinate ball . The map ϕ is called a (local)
coordinate map, and the component functions (x1, ..., xn) of ϕ, defined by
ϕ(m) = (x1(m), ..., xn(m)), are called local coordinates on U .

Two charts (U1, ϕ1) and (U2, ϕ2) such that U1 ∩ U2 6= ∅ are called
compatible if ϕ1(U1∩U2) and ϕ2(U2∩U1) are open subsets of Rn. A family
(Uα, ϕα)α∈A of compatible charts on M such that the Uα form a covering of
M is called an atlas. The maps ϕαβ = ϕβ ◦ ϕ−1

α : ϕα(Uαβ)→ ϕβ(Uαβ) are
called the transition maps, for the atlas (Uα, ϕα)α∈A, where Uαβ = Uα∩Uβ ,
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so that we have a commutative triangle:

ϕα(Uαβ) ϕβ(Uαβ)-
ϕαβ

Uαβ ⊆M

ϕα
�

�
�

�	

ϕβ
@

@
@
@R

An atlas (Uα, ϕα)α∈A for a manifold M is said to be a Ck−atlas, if
all transition maps ϕαβ : ϕα(Uαβ) → ϕβ(Uαβ) are of class Ck. Two Ck

atlases are called Ck−equivalent, if their union is again a Ck−atlas for M .
An equivalence class of Ck−atlases is called a Ck−structure on M . In
other words, a smooth structure on M is a maximal smooth atlas on M ,
i.e., such an atlas that is not contained in any strictly larger smooth atlas.
By a Ck−manifold M , we mean a topological manifold together with a
Ck−structure and a chart on M will be a chart belonging to some atlas of
the Ck−structure. Smooth manifold means C∞−manifold, and the word
‘smooth’ is used synonymously with C∞ [De Rham (1984)].

Sometimes the terms ‘local coordinate system’ or ‘parametrization’ are
used instead of charts. That M is not defined with any particular atlas, but
with an equivalence class of atlases, is a mathematical formulation of the
general covariance principle. Every suitable coordinate system is equally
good. A Euclidean chart may well suffice for an open subset of Rn, but this
coordinate system is not to be preferred to the others, which may require
many charts (as with polar coordinates), but are more convenient in other
respects.

For example, the atlas of an n−sphere Sn has two charts. If N =
(1, 0, ..., 0) and S = (−1, ..., 0, 0) are the north and south poles of Sn re-
spectively, then the two charts are given by the stereographic projections
from N and S:

ϕ1 : Sn\{N} → Rn, ϕ1(x1, ..., xn+1) = (x2/(1− x1), . . . , xn+1/(1− x1)), and

ϕ2 : Sn\{S} → Rn, ϕ2(x1, ..., xn+1) = (x2/(1 + x1), . . . , xn+1/(1 + x1)),

while the overlap map ϕ2 ◦ ϕ−1
1 : Rn\{0} → Rn\{0} is given by the dif-

feomorphism (ϕ2 ◦ ϕ−1
1 )(z) = z/||z||2, for z in Rn\{0}, from Rn\{0} to

itself.
Various additional structures can be imposed on Rn, and the corre-

sponding manifold M will inherit them through its covering by charts. For
example, if a covering by charts takes their values in a Banach space E,
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then E is called the model space and M is referred to as a Ck−Banach
manifold modelled on E. Similarly, if a covering by charts takes their val-
ues in a Hilbert space H, then H is called the model space and M is referred
to as a Ck−Hilbert manifold modelled on H. If not otherwise specified, we
will consider M to be an Euclidean manifold, with its covering by charts
taking their values in Rn.

For a Hausdorff Ck−manifold the following properties are equivalent
[Kolar et al. (1993)]: (i) it is paracompact; (ii) it is metrizable; (iii) it
admits a Riemannian metric;2 (iv) each connected component is separable.

3.4 Smooth Maps Between Smooth Manifolds

A map ϕ : M → N between two manifolds M and N , with M 3 m 7→
ϕ(m) ∈ N , is called a smooth map, or Ck−map, if we have the following
charting:

2Recall the corresponding properties of a Euclidean metric d. For any three points
x, y, z ∈ Rn, the following axioms are valid:

M1 : d(x, y) > 0, for x 6= y; and d(x, y) = 0, for x = y;

M2 : d(x, y) = d(y, x); M3 : d(x, y) ≤ d(x, z) + d(z, y).
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This means that for eachm ∈M and each chart (V, ψ) onN with ϕ (m) ∈ V
there is a chart (U, φ) on M with m ∈ U,ϕ (U) ⊆ V , and Φ = ψ ◦ ϕ ◦ φ−1

is Ck, that is, the following diagram commutes:

φ(U) ψ(V )-
Φ

M ⊇ U V ⊆ N-ϕ

?

φ

?

ψ

Let M and N be smooth manifolds and let ϕ : M → N be a smooth
map. The map ϕ is called a covering, or equivalently, M is said to cover
N , if ϕ is surjective and each point n ∈ N admits an open neighborhood V
such that ϕ−1(V ) is a union of disjoint open sets, each diffeomorphic via ϕ
to V .

A Ck−map ϕ : M → N is called a Ck−diffeomorphism if ϕ is a bi-
jection, ϕ−1 : N → M exists and is also Ck. Two manifolds are called
diffeomorphic if there exists a diffeomorphism between them. All smooth
manifolds and smooth maps between them form the category M.

3.4.1 Intuition Behind Topological Invariants of Manifolds

Now, restricting to the topology of nD compact (i.e., closed and bounded)
and connected manifolds, the only cases in which we have a complete un-
derstanding of topology are n = 0, 1, 2. The only compact and connected
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0D manifold is a point. A 1D compact and connected manifold can either
be a line element or a circle, and it is intuitively clear (and can easily be
proven) that these two spaces are topologically different. In 2D, there is
already an infinite number of different topologies: a 2D compact and con-
nected surface can have an arbitrary number of handles and boundaries,
and can either be orientable or non–orientable (see figure 3.2). Again, it is
intuitively quite clear that two surfaces are not homeomorphic if they differ
in one of these respects. On the other hand, it can be proven that any two
surfaces for which these data are the same can be continuously mapped to
one another, and hence this gives a complete classification of the possible
topologies of such surfaces.

Fig. 3.2 Three examples of 2D manifolds: (a) The sphere S2 is an orientable manifold

without handles or boundaries. (b) An orientable manifold with one boundary and one

handle. (c) The Möbius strip is an unorientable manifold with one boundary and no
handles.

A quantity such as the number of boundaries of a surface is called a
topological invariant. A topological invariant is a number, or more generally
any type of structure, which one can associate to a topological space, and
which does not change under continuous mappings. Topological invariants
can be used to distinguish between topological spaces: if two surfaces have
a different number of boundaries, they can certainly not be topologically
equivalent. On the other hand, the knowledge of a topological invariant
is in general not enough to decide whether two spaces are homeomorphic:
a torus and a sphere have the same number of boundaries (zero), but are
clearly not homeomorphic. Only when one has some complete set of topo-
logical invariants, such as the number of handles and boundaries in the 2D
case, is it possible to determine whether or not two topological spaces are
homeomorphic. In more than 2D, many topological invariants are known,
but for no dimension larger than two has a complete set of topological in-
variants been found. In 3D, it is generally believed that a finite number of
countable invariants would suffice for compact manifolds, but this is not rig-
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orously proven, and in particular there is at present no generally accepted
construction of a complete set. A very interesting and intimately related
problem is the famous Poincaré conjecture, stating that if a 3D manifold
has a certain set of topological invariants called its ‘homotopy groups’ equal
to those of the 3–sphere S3, it is actually homeomorphic to the three-sphere.
In four or more dimensions, a complete set of topological invariants would
consist of an uncountably infinite number of invariants! A general classifi-
cation of topologies is therefore very hard to get, but even without such a
general classification, each new invariant that can be constructed gives us
a lot of interesting new information. For this reason, the construction of
topological invariants of manifolds is one of the most important issues in
topology.

3.5 (Co)Tangent Bundles of Smooth Manifolds

3.5.1 Tangent Bundle and Lagrangian Dynamics

3.5.1.1 Intuition Behind a Tangent Bundle

In mechanics, to each nD configuration manifold M there is associated its
2nD velocity phase–space manifold , denoted by TM and called the tangent
bundle of M (see Figure 3.3). The original smooth manifold M is called
the base of TM . There is an onto map π : TM −→M , called the projection.
Above each point x ∈M there is a tangent space TxM = π−1(x) to M at x,
which is called a fibre. The fibre TxM ⊂ TM is the subset of TM , such that
the total tangent bundle, TM =

⊔
m∈M

TxM , is a disjoint union of tangent

spaces TxM to M for all points x ∈ M . From dynamical perspective,
the most important quantity in the tangent bundle concept is the smooth
map v : M −→ TM , which is an inverse to the projection π, i.e, π ◦ v =
IdM , π(v(x)) = x. It is called the velocity vector–field . Its graph (x, v(x))
represents the cross–section of the tangent bundle TM . This explains the
dynamical term velocity phase–space, given to the tangent bundle TM of
the manifold M .

3.5.1.2 Definition of a Tangent Bundle

Recall that if [a, b] is a closed interval, a C0−map γ : [a, b] → M is said
to be differentiable at the endpoint a if there is a chart (U, φ) at γ(a) such
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Fig. 3.3 A sketch of a tangent bundle TM of a smooth manifold M (see text for

explanation).

that the following limit exists and is finite [Abraham et al. (1988)]:

d

dt
(φ ◦ γ)(a) ≡ (φ ◦ γ)′(a) = lim

t→a

(φ ◦ γ)(t)− (φ ◦ γ)(a)
t− a

. (3.10)

Generalizing (3.10), we get the notion of the curve on a manifold. For
a smooth manifold M and a point m ∈ M a curve at m is a C0−map
γ : I →M from an interval I ⊂ R into M with 0 ∈ I and γ(0) = m.

Two curves γ1 and γ2 passing though a point m ∈ U are tangent at m
with respect to the chart (U, φ) if (φ ◦ γ1)′(0) = (φ ◦ γ2)′(0). Thus, two
curves are tangent if they have identical tangent vectors (same direction
and speed) in a local chart on a manifold.

For a smooth manifold M and a point m ∈M, the tangent space TmM
to M at m is the set of equivalence classes of curves at m:

TmM = {[γ]m : γ is a curve at a point m ∈M}.

A Ck−map ϕ : M 3 m 7→ ϕ(m) ∈ N between two manifolds M and N

induces a linear map Tmϕ : TmM → Tϕ(m)N for each point m ∈M , called
a tangent map, if we have:
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� �-
ϕ

� �-T (ϕ)

?

πM

?

πN

#
"

 
!

#
"

 
!m ϕ(m)

M N

TM T (N)Tm(M) Tϕ(m)(N)

i.e., the following diagram commutes:

M 3 m ϕ(m) ∈ N-
ϕ

TmM Tϕ(m)N-Tmϕ

?

πM

?

πN

with the natural projection πM : TM → M, given by πM (TmM) = m,

that takes a tangent vector v to the point m ∈M at which the vector v is
attached i.e., v ∈ TmM .

For an nD smooth manifold M , its nD tangent bundle TM is the disjoint
union of all its tangent spaces TmM at all pointsm ∈M , TM =

⊔
m∈M

TmM .

To define the smooth structure on TM , we need to specify how to
construct local coordinates on TM . To do this, let (x1(m), ..., xn(m)) be
local coordinates of a point m on M and let (v1(m), ..., vn(m)) be compo-
nents of a tangent vector in this coordinate system. Then the 2n numbers
(x1(m), ..., xn(m), v1(m), ..., vn(m)) give a local coordinate system on TM .

TM =
⊔
m∈M

TmM defines a family of vector spaces parameterized by M .

The inverse image π−1
M (m) of a point m ∈M under the natural projection

πM is the tangent space TmM . This space is called the fibre of the tangent
bundle over the point m ∈M [Steenrod (1951)].

A Ck−map ϕ : M → N between two manifolds M and N induces a
linear tangent map Tϕ : TM → TN between their tangent bundles, i.e.,



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Applied Manifold Geometry 153

the following diagram commutes:

M N-
ϕ

TM TN-Tϕ

?

πM

?

πN

All tangent bundles and their tangent maps form the category T B. The
category T B is the natural framework for Lagrangian dynamics.

Now, we can formulate the global version of the chain rule. If ϕ : M →
N and ψ : N → P are two smooth maps, then we have T (ψ ◦ϕ) = Tψ ◦Tϕ
(see [Kolar et al. (1993)]). In other words, we have a functor T :M⇒ T B
from the category M of smooth manifolds to the category T B of their
tangent bundles:

N P-
ψ

M

ϕ
�

�
�

�	

(ψ ◦ ϕ) T=⇒
@

@
@
@R

TN TP-
Tψ

TM

Tϕ
�

�
�

�	

T (ψ ◦ ϕ)
@

@
@
@R

3.5.2 Cotangent Bundle and Hamiltonian Dynamics

3.5.2.1 Definition of a Cotangent Bundle

A dual notion to the tangent space TmM to a smooth manifold M at a
point m is its cotangent space T ∗mM at the same point m. Similarly to
the tangent bundle, for a smooth manifold M of dimension n, its cotangent
bundle T ∗M is the disjoint union of all its cotangent spaces T ∗mM at all
points m ∈ M , i.e., T ∗M =

⊔
m∈M

T ∗mM . Therefore, the cotangent bundle

of an n−manifold M is the vector bundle T ∗M = (TM)∗, the (real) dual
of the tangent bundle TM .

If M is an n−manifold, then T ∗M is a 2n−manifold. To define
the smooth structure on T ∗M , we need to specify how to construct
local coordinates on T ∗M . To do this, let (x1(m), ..., xn(m)) be lo-
cal coordinates of a point m on M and let (p1(m), ..., pn(m)) be com-
ponents of a covector in this coordinate system. Then the 2n num-
bers (x1(m), ..., xn(m), p1(m), ..., pn(m)) give a local coordinate system on
T ∗M . This is the basic idea one uses to prove that indeed T ∗M is a
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2n−manifold.
T ∗M =

⊔
m∈M

T ∗mM defines a family of vector spaces parameterized by

M , with the conatural projection, π∗M : T ∗M →M, given by π∗M (T ∗mM) =
m, that takes a covector p to the point m ∈ M at which the covector p
is attached i.e., p ∈ T ∗mM . The inverse image π−1

M (m) of a point m ∈ M
under the conatural projection π∗M is the cotangent space T ∗mM . This space
is called the fibre of the cotangent bundle over the point m ∈M .

In a similar way, a Ck−map ϕ : M → N between two manifolds M
and N induces a linear cotangent map T ∗ϕ : T ∗M → T ∗N between their
cotangent bundles, i.e., the following diagram commutes:

M N-
ϕ

T ∗M T ∗N-T ∗ϕ

?

π∗M

?

π∗N

All cotangent bundles and their cotangent maps form the category T ∗B.
The category T ∗B is the natural stage for Hamiltonian dynamics.

Now, we can formulate the dual version of the global chain rule. If
ϕ : M → N and ψ : N → P are two smooth maps, then we have T ∗(ψ◦ϕ) =
T ∗ψ ◦ T ∗ϕ. In other words, we have a cofunctor T ∗ :M⇒ T ∗B from the
category M of smooth manifolds to the category T ∗B of their cotangent
bundles:

N P-
ψ

M

ϕ
�

�
�

�	

(ψ ◦ ϕ) T∗=⇒
@

@
@
@R

T ∗N T ∗P�
T ∗ψ

T ∗M

T ∗ϕ

�
�

�
��

T ∗(ψ ◦ ϕ)

@
@

@
@I

3.5.3 Application: Command/Control in Human–Robot

Interactions

Suppose that we have a human–robot team, consisting of m robots and n hu-
mans. To be able to put the modelling of the fully controlled human–robot
team performance into the rigorous geometrical settings, we suppose that
all possible behaviors of m robots can be described by a set of continuous
and smooth, time–dependent robot configuration coordinates xr = xr(t),
while all robot–related behaviors of n humans can be described by a set of
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continuous and smooth, time–dependent human configuration coordinates
qh = qh(t). In other words, all robot coordinates, xr = xr(t), constitute
the smooth Riemannian manifold Mr

g (such that r = 1, ...,dim(Mr
g )), with

the positive–definite metric form

g 7→ ds2 = grs(x)dxrdxs (3.11)

similarly, all human coordinates qh = qh(t), constitute a smooth Rieman-
nian manifold Nh

a (such that h = 1, ...,dim(Nh
a )) , with the positive–definite

metric form

a 7→ dσ2 = ahk(q)dqhdqk. (3.12)

In this Riemannian geometry settings, the feedforward com-
mand/control action of humans upon robots is defined by a smooth map,

C : Nh
a →Mr

g ,

which is in local coordinates given by a general (nonlinear) functional trans-
formation

xr = xr(qh), (r = 1, ...,dim(Mr
g ); h = 1, ...,dim(Nh

a )), (3.13)

while its inverse, the feedback map from robots to humans is defined by a
smooth map,

F = C−1 : Mr
g → Nh

a ,

which is in local coordinates given by an inverse functional transformation

qh = qh(xr), (h = 1, ...,dim(Nh
a ); r = 1, ...,dim(Mr

g )). (3.14)

Now, although the coordinate transformations (3.13) and (3.14) are
completely general, nonlinear and even unknown at this stage, there is
something known and simple about them: the corresponding transforma-
tions of differentials are linear and homogenous, namely

dxr =
∂xr

∂qh
dqh, and dqh =

∂qh

∂xr
dxr,

which imply linear and homogenous transformations of robot and human
velocities,

ẋr =
∂xr

∂qh
q̇h, and q̇h =

∂qh

∂xr
ẋr. (3.15)
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Relation (3.15), representing two autonomous dynamical systems, given
by two sets of ordinary differential equations (ODEs), geometrically defines
two velocity vector–fields: (i) robot velocity vector–field, vr ≡ vr(xr, t) :=
ẋr(xr, t); and human velocity vector–field, uh ≡ uh(qh, t) := q̇h(qh, t). Re-
call that a vector–field defines a single vector at each point xr (in some
domain U) of a manifold in case. Its solution gives the flow, consisting of
integral curves of the vector–field, such that all the vectors from the vector–
field are tangent to integral curves at different points xi ∈ U . Geometrically,
a velocity vector–field is defined as a cross–section of the tangent bundle
of the manifold. In our case, the robot velocity vector–field vr = ẋr(xr, t)
represents a cross–section of the robot tangent bundle TMr

g , while the hu-
man velocity vector–field uh = q̇h(qh, t) represents a cross–section of the
human tangent bundle TNh

a . In this way, two local velocity vector–fields,
vr and uh, give local representations for the following two global tangent
maps,

TC : TNh
a → TMr

g , and TF : TMr
g → TNh

a .

To be able to proceed along the geometrodynamical line, we need
next to formulate the two corresponding acceleration vector–fields, ar ≡
ar(xr, ẋr, t) and wh ≡ wh(qh, q̇h, t), as time rates of change of the two ve-
locity vector–fields vr and uh. Now, recall that the acceleration vector–field
is defined as the absolute time derivative, ˙̄vr = D

dtv
r, of the velocity vector–

field. In our case, we have the robotic acceleration vector–field ar := ˙̄vr

defined on Mr
g by

ar := ˙̄vr = v̇r + Γrstv
svt = ẍr + Γrstẋ

sẋt, (3.16)

and the human acceleration vector–field wh := ˙̄uh defined on Nh
a by

wh := ˙̄uh = u̇h + Γhjku
juk = ẍr + Γhjkq̇

j q̇k, (3.17)

Geometrically, an acceleration vector–field is defined as a cross–section of
the second tangent bundle of the manifold. In our case, the robot accelera-
tion vector–field ar = ˙̄vr(xr, ẋr, t), given by the ODEs (3.16), represents a
cross–section of the second robot tangent bundle TTMr

g , while the human
acceleration vector–field wh = ˙̄uh(qh, q̇h, t), given by the ODEs (3.17), rep-
resents a cross–section of the second human tangent bundle TTNh

a . In this
way, two local acceleration vector–fields, ar and wh, give local representa-
tions for the following two second tangent maps,

TTC : TTNh
a → TTMr

g , and TTF : TTMr
g → TTNh

a .
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In other words, we have the feedforward command/control commutative
diagram:

TTNh
a TTM r

g
-TTC

6 6

Nh
a M r

g
-

C

TNh
a TM r

g
-TC

6 6

as well as the feedback commutative diagram:

TTNh
a TTM r

g
� TTF

6 6

Nh
a M r

g
�

F

TNh
a TM r

g
� TF

6 6

These two commutative diagrams formally define the global feedforward
and feedback human–robot interactions at the positional, velocity, and ac-
celeration levels of command and control.

3.5.4 Application: Generalized Bidirectional Associative

Memory

System Architecture

Here we present a covariant model of generalized bidirectional associa-
tive memory (GBAM), a neurodynamical classification machine generaliz-
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ing Kosko BAM and RBAM systems (see [Kosko (1992)]). Mathematically,
the GBAM is a tensor–field system (q, p,W ) defined on a manifold M called
the GBAM manifold. The system (q, p,W ) includes two nonlinearly cou-
pled (yet non–chaotic and stable) subsystems (see Figure 3.4): (i) activation
(q, p)−-dynamics, where q and p represent neuronal 1D tensor–fields, and
(ii) self–organized learning W−-dynamics, where W is a symmetric synap-
tic 2D tensor–field.

Fig. 3.4 Architecture of the GBAM neurodynamical classifier.

GBAM Activation Dynamics

The GBAM–manifold M can be viewed as a Banach space with a
C∞−smooth structure on it, so that in each local chart U open in M ,
an nD smooth coordinate system Uα exists.

GBAM–activation (q, p)−-dynamics, is defined as a system of two cou-
pled, first–order oscillator tensor–fields, dual to each other, in a local Ba-
nach chart Uα, α = 1, ..., n on M :

1. An excitatory neural vector–field qα = qα(t) : M → TM , being a
cross–section of the tangent bundle TM ; and

2. An inhibitory neural 1–form pα = pα(t) : M → T ∗M , being a
cross–section of the cotangent bundle T ∗M .

To start with conservative linear (q, p)–system, we postulate the GBAM
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scalar activation–potential V to be a negative bilinear form:

V = − 1
2ωαβq

αqβ − 1
2ω

αβpαpβ + qαpα, (α, β = 1, ..., n), (3.18)

where n is the number of neurons in each neural field, while ωαβ and ωαβ

represent respectively inhibitory–covariant and excitatory–contravariant
components of the symmetric (with zero–trace) coupling GBAM synaptic
tensor W .

The Lyapunov–stable, conservative, linear (q,p)−-dynamics is given as
a bidirectional (excitatory–inhibitory) gradient system:

q̇α = − ∂V
∂pα

= ωαβpβ − qα, ṗα = − ∂V
∂qα

= ωαβq
β − pα. (3.19)

As W is a symmetric and zero–trace synaptic coupling tensor, the con-
servative linear dynamics (3.19) is equivalent to the rule that the state of
each neuron (in both excitatory and inhibitory neural fields) is changed
in time if and only if the scalar action potential V , defined by relation
(3.18), is lowered. Therefore, the scalar action potential V is a monotoni-
cally non–increasing Lyapunov function V̇ ≤ 0 for the conservative linear
(q, p)−-dynamics (3.19), which converges to a local minimum or ground
state of V .

Applying the inputs Iα and Jα, we get the non–conservative linear
(q, p)−-system equations:

q̇α = Iα + ωαβpβ − qα, ṗα = Jα + ωαβq
β − pα. (3.20)

Further, applying the sigmoid GBAM activation functions Sα(·) and
Sα(·) to the synaptic product–terms, we get the non-conservative nonlinear
(q, p)–system equations, which generalize the transient RC–circuit neuro-
dynamical model:

q̇α = Iα + ωαβSβ(pβ)− qα, ṗα = Jα + ωαβS
β(qβ)− pα. (3.21)

The equations in (3.21) represent a 2–input system that can be applied
e.g., to classification of two–feature data. The generalization to an N–input
system working in a ND feature–space is given by

q̇αe = Iαe + ωαβe Sβ(pβ)− qαe , ṗoα = Ioα + ωoαβS
β(qβ)− poα, (3.22)

where e(= 2, 4, ..., N) and o(= 1, 3, ..., N − 1) denote respectively even and
odd partitions of the total sample of N features.

The GBAM model (3.22) gives a generalization of four well–known re-
current NN models:
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1. Continuous Hopfield amplifier–circuit model [Hopfield (1984)]

Cj v̇j = Ij −
vj
Rj

+ Tijui, (i, j = 1, ..., N),

where vj = vj(t) represent the activation potentials in the jth processing
unit, Cj and Rj denote input capacitances and leakage resistances, ui =
fi[vj(t)] are output functions from processing elements, and Tij = wij is
the inverse of the resistors connection–matrix; and the functions fi are
sigmoidal.

2. Cohen–Grossberg general ART–system [Cohen and Grossberg
(1983)],

v̇j = −aj(vj)[bj(vj)− fk(vk)mjk], (j = 1, ..., N),

with proved asymptotical stability.
3. Hecht–Nielsen counter–propagation network [Hecht-Nielsen (1987)],

v̇j = −Avj + (B − vj)Ij − vjIk,

where A, B are positive constants and Ij are input values for each process-
ing unit.

4. Kosko’s BAM (ABAM and RABAM) bidirectional models [Kosko
(1992)]

v̇j = −aj(vj)[bj(vj)− fk(vk)mjk],

u̇k = −ak(uk)[bk(uk)− fj(uj)mjk],

which is globally stable for the cases of signal and random–signal Hebbian
learning.

GBAM Self–Organized Learning Dynamics

The continuous (and at least C1−-differentiable) unsupervised update
law for the coupling synaptic GBAM tensor–field W can be viewed both as
an inhibitory–covariant Hebbian learning scheme, generalized from [Kosko
(1992)]:

ω̇αβ = −ωαβ + Φαβ(qα, pα), (α, β = 1, ..., n), (3.23)

and, as an excitatory–contravariant Hebbian learning scheme:

ω̇αβ = −ωαβ + Φαβ(qα, pα), (3.24)
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where the three terms from the left to the right denote respectively the
new–update value, the old value and the innovation of the synaptic tensor
W . In this case the nonlinear (usually sigmoid) innovation functions Φαβ
and Φαβ are defined by one of following four Hebbian models:

Signal Hebbian learning, with innovation in both variance–forms:

Φαβ = Sα(qα)Sβ(pβ),

Φαβ = Sα(qα)Sβ(pβ); (3.25)

Differential Hebbian learning, with innovation in both variance–forms:

Φαβ = Sα(qα)Sβ(pβ) + Ṡα(qα)Ṡβ(pβ),

Φαβ = Sα(qα)Sβ(pβ) + Ṡα(qα)Ṡβ(pβ), (3.26)

where Ṡ−terms denote the so–called ‘signal velocities’ (for details see
[Kosko (1992)]).

Random signal Hebbian learning, with innovation in both variance–
forms:

Φαβ = Sα(qα)Sβ(pβ) + nαβ ,

Φαβ = Sα(qα)Sβ(pβ) + nαβ , (3.27)

where nαβ = {nαβ(t)}, nαβ = {nαβ(t)} respectively denote covariant and
contravariant additive, zero–mean, Gaussian white–noise processes inde-
pendent of the main innovation signal; and

Random differential signal Hebbian learning, with innovation in both
variance–forms:

Φαβ = Sα(qα)Sβ(pβ) + Ṡα(qα)Ṡβ(pβ) + nαβ ,

Φαβ = Sα(qα)Sβ(pβ) + Ṡα(qα)Ṡβ(pβ) + nαβ . (3.28)

Total GBAM (q, p,W )−neurodynamics and biological interpre-
tation

Total GBAM tensorial neurodynamics is defined as a union of the neu-
ral oscillatory activation (q, p)−-dynamics (3.22) and the synaptic learning
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W−-dynamics (3.28), namely

q̇αe = Iαe + ωαβe Sβ(pβ)− qαe , (3.29)

ṗoα = Ioα + ωoαβS
β(qβ)− poα,

ω̇αβe = −ωαβe + Φαβe (qα, pα),

ω̇oαβ = −ωoαβ + Φoαβ(qα, pα), (α, β = 1, ..., n),

where the tensorial innovation Φ−-functions are given by one of Hebbian
models (3.25–3.28), α(= 1, ..., n) is the number of continuous–time (or,
graded–response) neurons in each neural–activation field, e(= 2, 4, ..., N)
and o(= 1, 3, ..., N − 1) denote respectively even and odd partitions of the
total sample of N features.

Artificial neural networks are generally inspired by biological neural
systems, but in fact, some important features of biological systems are not
present in most artificial neural networks. In particular, unidirectional neu-
ral networks, which include all associative neural networks except the BAM
model introduced by [Kosko (1992)], do not resemble oscillatory biological
neural systems. GBAM is a generalization of Kosko’s ABAM and RABAM
neural systems and inherits their oscillatory (excitatory/inhibitory) neuro-
synaptic behavior. Such oscillatory behavior is a basic characteristic of a
number of biological systems. Examples of similar oscillatory neural en-
sembles in the human nervous system are:

– Motoneurons and Renshaw interneurons in the spinal cord;
– Pyramidal and basket cells in the hippocampus;
– Mitral and granule cells in the olfactory bulb;
– Pyramidal cells and thalamic inter–neurons in cortico–thalamic sys-

tem;
– Interacting excitatory and inhibitory populations of neurons found in

the cerebellum, olfactory cortex, and neocortex, all representing the basic
mechanisms for the generation of oscillating (EEG–monitored) activity in
the brain.

Therefore, GBAM can be considered as a model for any of above–
mentioned oscillatory biological neural systems.
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3.6 Tensor Fields on Smooth Manifolds

3.6.1 Tensor Bundle

A tensor bundle T associated to a smooth n−manifold M is defined as a
tensor product of tangent and cotangent bundles:

T =
q⊗
T ∗M ⊗

p⊗
TM =

︷ ︸︸ ︷
p times

TM ⊗ ...⊗ TM ⊗

︷ ︸︸ ︷
q times

T ∗M ⊗ ...⊗ T ∗M.

Tensor bundles are special case of more general fibre bundles (see section
4.1 below).

A tensor–field of type (p, q) on a smooth n−manifold M is defined as a
smooth section τ : M −→ T of the tensor bundle T . The coefficients of the
tensor–field τ are smooth (Ck) functions with p indices up and q indices
down. The classical position of indices can be explained in modern terms
as follows. If (U, φ) is a chart at a point m ∈ M with local coordinates
(x1, ..., xn), we have the holonomous frame field

∂xi1 ⊗ ∂xi2 ⊗ ...⊗ ∂xip ⊗ dxj1 ⊗ dxj2 ...⊗ dxjq ,

for i ∈ {1, ..., n}p, j = {1, ..., n}q, over U of this tensor bundle, and for any
(p, q)−tensor–field τ we have

τ |U = τ
i1...ip
j1...jq

∂xi1 ⊗ ∂xi2 ⊗ ...⊗ ∂xip ⊗ dxj1 ⊗ dxj2 ...⊗ dxjq .

For such tensor–fields the Lie derivative along any vector–field is defined
(see section 3.7 below), and it is a derivation (i.e., both linearity and Leibniz
rules hold) with respect to the tensor product. Tensor bundle T admits
many natural transformations (see [Kolar et al. (1993)]). For example, a
‘contraction’ like the trace T ∗M ⊗ TM = L (TM,TM) → M × R, but
applied just to one specified factor of type T ∗M and another one of type
TM, is a natural transformation. And any ‘permutation of the same kind
of factors’ is a natural transformation.

The tangent bundle πM : TM →M of a manifold M (introduced above)
is a special tensor bundle over M such that, given an atlas {(Uα, ϕα)} of
M , TM has the holonomic atlas

Ψ = {(Uα, ϕα = Tϕα)}.

The associated linear bundle coordinates are the induced coordinates (ẋλ)
at a point m ∈ M with respect to the holonomic frames {∂λ} in tangent
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spaces TmM . Their transition functions read

ẋ′λ =
∂x′λ

∂xµ
ẋµ.

Technically, the tangent bundle TM is a tensor bundle with the structure
Lie group GL(dimM,R) (see section 3.8 below).

Recall that the cotangent bundle of M is the dual T ∗M of TM . It is
equipped with the induced coordinates (ẋλ) at a point m ∈M with respect
to holonomic coframes {dxλ} dual of {∂λ}. Their transition functions read

ẋ′λ =
∂x′µ

∂xλ
ẋµ.

3.6.1.1 Pull–Back and Push–Forward

In this section we define two important operations, following [Abraham
et al. (1988)], which will be used in the further text.

Let ϕ : M → N be a Ck map of manifolds and f ∈ Ck(N,R). Define
the pull–back of f by ϕ by

ϕ∗f = f ◦ ϕ ∈ Ck(M,R).

If f is a Ck diffeomorphism and X ∈ X k(M), the push–forward of X
by ϕ is defined by

ϕ∗X = Tϕ ◦X ◦ ϕ−1 ∈ X k(N).

If xi are local coordinates on M and yj local coordinates on N , the
preceding formula gives the components of ϕ∗X by

(ϕ∗X)j(y) =
∂ϕj

∂xi
(x)Xi(x), where y = ϕ(x).

We can interchange pull–back and push–forward by changing ϕ to ϕ−1,
that is, defining ϕ∗ (resp. ϕ∗) by ϕ∗ = (ϕ−1)∗ (resp. ϕ∗ = (ϕ−1)∗). Thus
the push–forward of a function f on M is ϕ∗f = f ◦ϕ−1 and the pull–back
of a vector–field Y on N is ϕ∗Y = (Tϕ)−1 ◦ Y ◦ ϕ.

Notice that ϕ must be a diffeomorphism in order that the pull–back and
push–forward operations make sense, the only exception being pull–back of
functions. Thus vector–fields can only be pulled back and pushed forward
by diffeomorphisms. However, even when ϕ is not a diffeomorphism we can
talk about ϕ−related vector–fields as follows.
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Let ϕ : M → N be a Ck map of manifolds. The vector–fields X ∈
X k−1(M) and Y∈ X k−1(N) are called ϕ−related, denoted X ∼ϕ Y , if
Tϕ ◦X = Y ◦ ϕ.

Note that if ϕ is diffeomorphism and X and Y are ϕ−related, then Y =
ϕ∗X. However, in general, X can be ϕ−related to more than one vector–
field on N . ϕ−relatedness means that the following diagram commutes:

M N-
ϕ

TM TN-Tϕ

6
X

6
Y

The behavior of flows under these operations is as follows: Let ϕ : M →
N be a Ck−map of manifolds, X ∈ X k(M) and Y ∈ X k(N). Let Ft and Gt
denote the flows of X and Y respectively. Then X ∼ϕ Y iff ϕ◦Ft = Gt ◦ϕ.
In particular, if ϕ is a diffeomorphism, then the equality Y = ϕ∗X holds iff
the flow of Y is ϕ◦Ft◦ϕ−1 (This is called the push–forward of Ft by ϕ since
it is the natural way to construct a diffeomorphism on N out of one on M).
In particular, (Ft)∗X = X. Therefore, the flow of the push–forward of a
vector–field is the push–forward of its flow.

3.6.1.2 Dynamical Evolution and Flow

As a motivational example, consider a mechanical system that is capable
of assuming various states described by points in a set U . For example, U
might be R3 ×R3 and a state might be the positions and momenta (xi, pi)
of a particle moving under the influence of the central force field, with
i = 1, 2, 3. As time passes, the state evolves. If the state is γ0 ∈ U at time
s and this changes to γ at a later time t, we set

Ft,s(γ0) = γ,

and call Ft,s the evolution operator ; it maps a state at time s to what the
state would be at time t; that is, after time t−s. has elapsed. Determinism
is expressed by the Chapman–Kolmogorov law [Abraham et al. (1988)]:

Fτ,t ◦ Ft,s = Fτ,s, Ft,t = identity. (3.30)

The evolution laws are called time independent, or autonomous, when
Ft,s depends only on t − s. In this case the preceding law (3.30) becomes
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the group property :

Ft ◦ Fs = Ft+s, F0 = identity. (3.31)

We call such an Ft a flow and Ft,s a time–dependent flow , or an evolution
operator. If the system is irreversible, that is, defined only for t ≥ s, we
speak of a semi–flow [Abraham et al. (1988)].

Usually, instead of Ft,s the laws of motion are given in the form of ODEs
that we must solve to find the flow. These equations of motion have the
form:

γ̇ = X(γ), γ(0) = γ0,

where X is a (possibly time–dependent) vector–field on U .
As a continuation of the previous example, consider the motion of a par-

ticle of mass m under the influence of the central force field (like gravity, or
Coulombic potential) F i (i = 1, 2, 3), described by the Newtonian equation
of motion:

mẍi = F i(x). (3.32)

By introducing momenta pi = mẋi, equation (3.32) splits into two Hamil-
tonian equations:

ẋi = pi/m, ṗi = Fi(x). (3.33)

Note that in Euclidean space we can freely interchange subscripts and su-
perscripts. However, in general case of a Riemannian manifold, pi = mgij ẋ

j

and (3.33) properly reads

ẋi = gijpj/m, ṗi = Fi(x). (3.34)

The phase–space here is the Riemannian manifold (R3\{0}) × R3, that
is, the cotangent bundle of R3\{0}, which is itself a smooth manifold for
the central force field. The r.h.s of equations (3.34) define a Hamiltonian
vector–field on this 6D manifold by

X(x, p) =
(
(xi, pi), (pi/m,Fi(x))

)
. (3.35)

Integration of equations (3.34) produces trajectories (in this particular
case, planar conic sections). These trajectories comprise the flow Ft of
the vector–field X(x, p) defined in (3.35).
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3.6.1.3 Vector–Fields and Their Flows

3.6.1.4 Vector–Fields on M

A vector–field X on U, where U is an open chart in n−manifold M , is a
smooth function from U to M assigning to each point m ∈ U a vector at
that point, i.e., X(m) = (m,X(m)). If X(m) is tangent to M for each
m ∈M , X is said to be a tangent vector–field on M . If X(m) is orthogonal
to M (i.e., X(p) ∈ M⊥

m) for each X(m) ∈ M , X is said to be a normal
vector–field on M .

In other words, let M be a Ck−manifold. A Ck−vector–field on M is
a Ck−section of the tangent bundle TM of M . Thus a vector–field X on
a manifold M is a Ck−map X : M → TM such that X(m) ∈ TmM for
all points m ∈ M,and πM ◦X = IdM . Therefore, a vector–field assigns to
each point m of M a vector based (i.e., bound) at that point. The set of
all Ck vector–fields on M is denoted by X k(M).

A vector–field X ∈ X k(M) represents a field of direction indicators
[Thirring (1979)]: to every point m of M it assigns a vector in the tangent
space TmM at that point. If X is a vector–field on M and (U, φ) is a chart
on M and m ∈ U , then we have X(m) = X(m)φi ∂

∂φi
. Following [Kolar

et al. (1993)], we write X|U = X φi ∂
∂φi

.

Let M be a connected n−manifold, and let f : U → R (U an open set
in M) and c ∈ R be such that M = f−1(c) (i.e., M is the level set of the
function f at height c) and ∇f(m) 6= 0 for all m ∈ M . Then there exist
on M exactly two smooth unit normal vector–fields N1,2(m) = ± ∇f(m)

|∇f(m)|
(here |X| = (X ·X)1/2 denotes the norm or length of a vector X, and (·)
denotes the scalar product on M) for all m ∈M , called orientations on M .

Let ϕ : M → N be a smooth map. Recall that two vector–fields X ∈
X k(M) and Y ∈ X (N) are called ϕ−related, if Tϕ ◦X = Y ◦ ϕ holds, i.e.,
if the following diagram commutes:

M N-
ϕ

TM TN-Tϕ

6
X

6
Y

In particular, a diffeomorphism ϕ : M → N induces a linear map between
vector–fields on two manifolds, ϕ∗ : X k(M) → X (N), such that ϕ∗X =
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Tϕ ◦X ◦ ϕ−1 : N → TN , i.e., the following diagram commutes:

M N-
ϕ

TM TN-Tϕ

6
X

6
ϕ∗X

The correspondences M → TM and ϕ→ Tϕ obviously define a functor
T :M⇒M from the category of smooth manifolds to itself. T is another
special case of the vector bundle functor (4.3.2), and closely related to the
tangent bundle functor (3.5).

A Ck time–dependent vector–field is a Ck−map X : R×M → TM such
that X(t,m) ∈ TmM for all (t,m) ∈ R×M, i.e., Xt(m) = X(t,m).

3.6.1.5 Integral Curves as Dynamical Trajectories

Recall (3.5) that a curve γ at a point m of an n−manifold M is a C0−map
from an open interval I ⊂ R into M such that 0 ∈ I and γ(0) = m. For
such a curve we may assign a tangent vector at each point γ(t), t ∈ I, by
γ̇(t) = Ttγ(1).

Let X be a smooth tangent vector–field on the smooth n−manifold M ,
and let m ∈M . Then there exists an open interval I ⊂ R containing 0 and
a parameterized curve γ : I →M such that:

(1) γ(0) = m;
(2) γ̇(t) = X(γ(t)) for all t ∈ I; and
(3) If β : Ĩ →M is any other parameterized curve in M satisfying (1) and

(2), then Ĩ ⊂ I and β(t) = γ(t) for all t ∈ Ĩ.

A parameterized curve γ : I → M satisfying condition (2) is called
an integral curve of the tangent vector–field X. The unique γ satisfying
conditions (1)–(3) is the maximal integral curve of X through m ∈M .

In other words, let γ : I →M, t 7→ γ (t) be a smooth curve in a manifold
M defined on an interval I ⊆ R. γ̇(t) = d

dtγ(t) defines a smooth vector–field
along γ since we have πM ◦ γ̇ = γ. Curve γ is called an integral curve or
flow line of a vector–field X ∈ X k(M) if the tangent vector determined by
γ equals X at every point m ∈M , i.e.,

γ̇ = X ◦ γ,
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or, if the following diagram commutes:

I M-
γ

TI TM-Tu

6

1

6

X

;

γ̇

�
�

�
�

��

On a chart (U, φ) with coordinates φ(m) =
(
x1(m), ..., xn(m)

)
, for

which ϕ ◦ γ : t 7→ γi (t) and Tϕ ◦ X ◦ ϕ−1 : xi 7→
(
xi, Xi (m)

)
, this is

written

γ̇i(t) = Xi (γ (t)) , for all t ∈ I ⊆ R, (3.36)

which is an ordinary differential equation of first–order in n dimensions.
The velocity γ̇ of the parameterized curve γ (t) is a vector–field along γ

defined by

γ̇(t) = (γ(t), ẋ1(t), . . . ẋn(t)).

Its length |γ̇| : I → R, defined by |γ̇|(t) = |γ̇(t)| for all t ∈ I, is a function
along α. |γ̇| is called speed of γ [Arnold (1989)].

Each vector–field X along
γ is of the form X(t) = (γ(t), X1(t), . . . , Xn(t)), where each component
Xi is a function along γ. X is smooth if each Xi : I → M is smooth. The
derivative of a smooth vector–field X along a curve γ(t) is the vector–field
Ẋ along γ defined by

Ẋ(t) = (γ(t), Ẋ1(t), . . . Ẋn(t)).

Ẋ(t) measures the rate of change of the vector part (X1(t), . . . Xn(t)) of
X(t) along γ. Thus, the acceleration γ̈(t) of a parameterized curve γ(t) is
the vector–field along γ get by differentiating the velocity field γ̇(t).

Differentiation of vector–fields along parameterized curves has the fol-
lowing properties. For X and Y smooth vector–fields on M along the
parameterized curve γ : I →M and f a smooth function along γ, we have:

(1) d
dt (X + Y ) = Ẋ + Ẏ ;

(2) d
dt (fX) = ḟX + fẊ; and

(3) d
dt (X · Y ) = ẊY +XẎ .
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A geodesic in M is a parameterized curve γ : I →M whose acceleration
γ̈ is everywhere orthogonal to M ; that is, γ̈(t) ∈ M⊥

α(t) for all t ∈ I ⊂ R.
Thus a geodesic is a curve in M which always goes ‘straight ahead’ in the
surface. Its acceleration serves only to keep it in the surface. It has no
component of acceleration tangent to the surface. Therefore, it also has a
constant speed γ̇(t).

Let v ∈Mm be a vector on M . Then there exists an open interval I ⊂ R
containing 0 and a geodesic γ : I →M such that:

(1) γ(0) = m and γ̇(0) = v; and
(2) If β : Ĩ →M is any other geodesic in M with β(0) = m and β̇(0) = v,

then Ĩ ⊂ I and β(t) = γ(t) for all t ∈ Ĩ.

The geodesic γ is now called the maximal geodesic in M passing through
m with initial velocity v.

By definition, a parameterized curve γ : I → M is a geodesic of M iff
its acceleration is everywhere perpendicular to M , i.e., iff γ̈(t) is a multiple
of the orientation N(γ(t)) for all t ∈ I, i.e., γ̈(t) = g(t)N(γ(t)), where
g : I → R. Taking the scalar product of both sides of this equation with
N(γ(t)) we find g = −γ̇Ṅ(γ(t)). Thus γ : I →M is geodesic iff it satisfies
the differential equation

γ̈(t) + Ṅ(γ(t))N(γ(t)) = 0.

This vector equation represents the system of second–order component
ODEs

ẍi +Ni(x+ 1, . . . , xn)
∂Nj
∂xk

(x+ 1, . . . , xn) ẋj ẋk = 0.

The substitution ui = ẋi reduces this second–order differential system (in
n variables xi) to the first–order differential system

ẋi = ui, u̇i = −Ni(x+ 1, . . . , xn)
∂Nj
∂xk

(x+ 1, . . . , xn) ẋj ẋk

(in 2n variables xi and ui). This first–order system is just the differential
equation for the integral curves of the vector–field X in U × R (U open
chart in M), in which case X is called a geodesic spray .

Now, when an integral curve γ(t) is the path a mechanical system Ξ
follows, i.e., the solution of the equations of motion, it is called a trajectory.
In this case the parameter t represents time, so that (3.36) describes motion
of the system Ξ on its configuration manifold M .
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If Xi (m) is C0 the existence of a local solution is guaranteed, and a
Lipschitz condition would imply that it is unique. Therefore, exactly one
integral curve passes through every point, and different integral curves can
never cross. As X ∈ X k(M) is Ck, the following statement about the
solution with arbitrary initial conditions holds [Thirring (1979); Arnold
(1989)]:

Theorem. Given a vector–field X ∈ X (M), for all points p ∈ M , there
exist η > 0, a neighborhood V of p, and a function γ : (−η, η) × V → M ,(
t, xi (0)

)
7→ γ

(
t, xi (0)

)
such that

γ̇ = X ◦ γ, γ
(
0, xi (0)

)
= xi (0) for all xi (0) ∈ V ⊆M.

For all |t| < η, the map xi (0) 7→ γ
(
t, xi (0)

)
is a diffeomorphism fXt be-

tween V and some open set of M . For proof, see [Dieudonne (1969)], I,
10.7.4 and 10.8.

This Theorem states that trajectories that are near neighbors cannot
suddenly be separated. There is a well–known estimate (see [Dieudonne
(1969)], I, 10.5) according to which points cannot diverge faster than expo-
nentially in time if the derivative of X is uniformly bounded.

An integral curve γ (t) is said to be maximal if it is not a restriction of
an integral curve defined on a larger interval I ⊆ R. It follows from the
existence and uniqueness theorems for ODEs with smooth r.h.s and from
elementary properties of Hausdorff spaces that for any point m ∈M there
exists a maximal integral curve γm of X, passing for t = 0 through point
m, i.e., γ(0) = m.

Theorem (Local Existence, Uniqueness, and Smoothness) [Abraham
et al. (1988)]. Let E be a Banach space, U ⊂ E be open, and suppose
X : U ⊂ E → E is of class Ck, k ≥ 1. Then

1. For each x0 ∈ U , there is a curve γ : I → U at x0 such that
γ̇(t) = X (γ(t)) for all t ∈ I.

2. Any two such curves are equal on the intersection of their domains.
3. There is a neighborhood U0 of the point x0 ∈ U , a real number a > 0,

and a Ck map F : U0 × I → E, where I is the open interval ]− a, a[ , such
that the curve γu : I → E, defined by γu(t) = F (u, t) is a curve at u ∈ E
satisfying the ODEs γ̇u(t) = X (γu(t)) for all t ∈ I.

Proposition (Global Uniqueness). Suppose γ1 and γ2 are two integral
curves of a vector–field X at a point m ∈ M . Then γ1 = γ2 on the
intersection of their domains [Abraham et al. (1988)].

If for every point m ∈M the curve γm is defined on the entire real axis
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R, then the vector–field X is said to be complete.
The support of a vector–field X defined on a manifold M is defined to be

the closure of the set {m ∈M |X(m) = 0}. A Ck vector–field with compact
support on a manifold M is complete. In particular, a Ck vector–field on a
compact manifold is complete. Completeness corresponds to well–defined
dynamics persisting eternally.

Now, following [Abraham et al. (1988)], for the derivative of a Ck

function f : E → R in the direction X we use the notation X[f ] = df ·X
, where df stands for the derivative map. In standard coordinates on Rn
this is a standard gradient

df(x) = ∇f = (∂x1f, ..., ∂xnf), and X[f ] = Xi∂xif.

Let Ft be the flow of X. Then f (Ft(x)) = f (Fs(x)) if t ≥ s.
For example, Newtonian equations for a moving particle of mass m

in a potential field V in Rn are given by q̈i(t) = −(1/m)∇V
(
qi(t)

)
, for

a smooth function V : Rn → R. If there are constants a, b ∈ R, b ≥
0 such that (1/m)V (qi) ≥ a − b

∥∥qi∥∥2
, then every solution exists for all

time. To show this, rewrite the second–order equations as a first–order
system q̇i = (1/m) pi, ṗi = −V (qi) and note that the energy E(qi, pi) =
(1/2m) ‖ pi‖2 +V (q) is a first integral of the motion. Thus, for any solution(
qi(t), pi(t)

)
we have E

(
qi(t), pi(t)

)
= E

(
qi(0), pi(0)

)
= V (q(0)).

Let Xt be a Ck time–dependent vector–field on an n−manifold M ,
k ≥ 1, and let m0 be an equilibrium of Xt, that is, Xt(m0) = 0 for all t.
Then for any T there exists a neighborhood V of m0 such that any m ∈ V
has integral curve existing for time t ∈ [−T, T ].

3.6.1.6 Dynamical Flows on M

Recall (6.289) that the flow Ft of a Ck vector–field X ∈ X k(M) is the one–
parameter group of diffeomorphisms Ft : M → M such that t 7→ Ft (m)
is the integral curve of X with initial condition m for all m ∈ M and
t ∈ I ⊆ R. The flow Ft(m) is Ck by induction on k. It is defined as
[Abraham et al. (1988)]:

d

dt
Ft(x) = X(Ft(x)).

Existence and uniqueness theorems for ODEs guarantee that Ft is
smooth in m and t. From uniqueness, we get the flow property :

Ft+s = Ft ◦ Fs
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along with the initial conditions F0 = identity. The flow property gen-
eralizes the situation where M = V is a linear space, X(x) = Ax for a
(bounded) linear operator A, and where Ft(x) = etAx – to the nonlinear
case. Therefore, the flow Ft(m) can be defined as a formal exponential

Ft(m) = exp(tX) = (I + tX +
t2

2
X2 + ...) =

∞∑
k=0

Xktk

k!
.

recall that a time–dependent vector–field is a map X : M × R→TM
such that X(m, t) ∈ TmM for each point m ∈ M and t ∈ R. An integral
curve of X is a curve γ(t) in M such that

γ̇(t) = X (γ (t) , t) , for all t ∈ I ⊆ R.

In this case, the flow is the one–parameter group of diffeomorphisms
Ft,s : M →M such that t 7→ Ft,s (m) is the integral curve γ(t) with initial
condition γ(s) = m at t = s. Again, the existence and uniqueness Theo-
rem from ODE–theory applies here, and in particular, uniqueness gives the
time–dependent flow property, i.e., the Chapman–Kolmogorov law

Ft,r = Ft,s ◦ Fs,r.

If X happens to be time independent, the two notions of flows are related
by Ft,s = Ft−s (see [Marsden and Ratiu (1999)]).

3.6.1.7 Categories of ODEs

Ordinary differential equations are naturally organized into their categories
(see [Kock (1981)]). First order ODEs are organized into a category ODE1.
A first–order ODE on a manifold–like object M is a vector–field X : M →
TM , and a morphism of vector–fields (M1, X1) → (M2, X2) is a map f :
M1 →M2 such that the following diagram commutes

M1 M2
-

f

TM1 TM2
-Tf

6
X1

6
X2

A global solution of the differential equation (M,X), or a flow line of a
vector–field X, is a morphism from

(
R, ∂∂x

)
to (M,X).
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Similarly, second–order ODEs are organized into a category ODE2. A
second–order ODE on M is usually constructed as a vector–field on TM,

ξ : TM → TTM, and a morphism of vector–fields (M1, ξ1)→ (M2, ξ2) is a
map f : M1 →M2 such that the following diagram commutes

TM1 TM2
-

Tf

TTM1 TTM2
-TTf

6
ξ1

6
ξ2

Unlike solutions for first–order ODEs, solutions for second–order ODEs are
not in general homomorphisms from R, unless the second–order ODE is a
spray [Kock and Reyes (2003)].

3.6.2 Differential Forms on Smooth Manifolds

Recall (see section 2.1.4.2 above) that exterior differential forms are a spe-
cial kind of antisymmetrical covariant tensors, that formally occur as inte-
grands under ordinary integral signs in R3. To give a more precise exposi-
tion, here we start with 1−forms, which are dual to vector–fields, and after
that introduce general k−forms.

3.6.2.1 1−Forms on M

Dual to the notion of a Ck vector–field X on an n−manifold M is a Ck

covector–field, or a Ck 1−form α, which is defined as a Ck−section of the
cotangent bundle T ∗M , i.e., α : M → T ∗M is smooth and π∗M ◦ X =
IdM . We denote the set of all Ck 1−forms by Ω1(M). A basic example
of a 1−form is the differential df of a real–valued function f ∈ Ck(M,R).
With point wise addition and scalar multiplication Ω1(M) becomes a vector
space.

In other words, a Ck 1−form α on a Ck manifold M is a real–valued
function on the set of all tangent vectors to M , i.e., α : TM → R with the
following properties:

(1) α is linear on the tangent space TmM for each m ∈M ;
(2) For any Ck vector–field X ∈ X k(M), the function f : M → R is Ck.

Given a 1−form α, for each point m ∈M the map α(m) : TmM → R is
an element of the dual space T ∗mM. Therefore, the space of 1−forms Ω1(M)
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is dual to the space of vector–fields X k(M).
In particular, the coordinate 1−forms dx1, ..., dxn are locally defined

at any point m ∈ M by the property that for any vector–field X =(
X1, ..., Xn

)
∈ X k(M),

dxi(X) = Xi.

The dxi’s form a basis for the 1−forms at any point m ∈ M , with local
coordinates

(
x1, ..., xn

)
, so any 1−form α may be expressed in the form

α = fi(m) dxi.

If a vector–field X on M has the form X(m) =
(
X1(m), ..., Xn(m)

)
,

then at any point m ∈M,

αm(X) = fi(m)Xi(m),

where f ∈ Ck(M,R).
Suppose we have a 1D closed curve γ = γ(t) inside a smooth manifold

M . Using a simplified ‘physical’ notation, a 1–form α(x) defined at a point
x ∈M , given by

α(x) = αi(x) dxi, (3.37)

can be unambiguously integrated over a curve γ ∈ M , as follows. Param-
eterize γ by a parameter t, so that its coordinates are given by xi(t). At
time t, the velocity ẋ = ẋ(t) is a tangent vector to M at x(t). One can
insert this tangent vector into the linear map α(x) to get a real number.
By definition, inserting the vector ẋ(t) into the linear map dxi gives the
component ẋi = ẋi(t). Doing this for every t, we can then integrate over t,∫ (

αi(x(t))ẋi
)
dt. (3.38)

Note that this expression is independent of the parametrization in terms
of t. Moreover, from the way that tangent vectors transform, one can
deduce how the linear maps dxi should transform, and from this how the
coefficients αi(x) should transform. Doing this, one sees that the above
expression is also invariant under changes of coordinates on M . Therefore,
a 1–form can be unambiguously integrated over a curve in M . We write
such an integral as∫

γ

αi(x) dxi, or, even shorter, as
∫
γ

α.
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Clearly, when M is itself a 1D manifold, (3.38) gives precisely the ordi-
nary integration of a function α(x) over x, so the above notation is indeed
natural.

The 1−forms on M are part of an algebra, called the exterior algebra,
or Grassmann algebra on M . The multiplication ∧ in this algebra is called
wedge product (see (3.40) below), and it is skew–symmetric,

dxi ∧ dxj = −dxj ∧ dxi.

One consequence of this is that dxi ∧ dxi = 0.

3.6.2.2 k−Forms on M

A differential form, or an exterior form α of degree k, or a k−form for short,
is a section of the vector bundle ΛkT ∗M , i.e., α : M → ΛkT ∗M . In other
words, α(m) : TmM × ...× TmM → R (with k factors TmM) is a function
that assigns to each point m ∈M a skew–symmetric k−multilinear map on
the tangent space TmM to M at m. Without the skew–symmetry assump-
tion, α would be called a (0, k)−tensor–field. The space of all k−forms is
denoted by Ωk(M). It may also be viewed as the space of all skew sym-
metric (0, k)−tensor–fields, the space of all maps

Φ : X k(M)× ...×X k(M)→ Ck(M,R),

which are k−linear and skew–symmetric (see (3.40) below). We put
Ωk(M) = Ck(M,R).

In particular, a 2−form ω on an n−manifold M is a section of the vector
bundle Λ2T ∗M. If (U, φ) is a chart at a point m ∈M with local coordinates(
x1, ..., xn

)
let {e1, ..., en} = {∂x1 , ..., ∂xn} – be the corresponding basis for

TmM , and let
{

e1, ..., en
}

=
{
dx1, ..., dxn

}
– be the dual basis for T ∗mM .

Then at each point m ∈M , we can write a 2−form ω as

ωm(v, u) = ωij(m) viuj , where ωij(m) = ωm(∂xi , ∂xj ).

Similarly to the case of a 1–form α (3.37), one would like to define a
2–form ω as something which can naturally be integrated over a 2D surface
Σ within a smooth manifold M . At a specific point x ∈ M , the tangent
plane to such a surface is spanned by a pair of tangent vectors, (ẋ1, ẋ2). So,
to generalize the construction of a 1–form, we should give a bilinear map
from such a pair to R. The most general form of such a map is

ωij(x) dxi ⊗ dxj , (3.39)
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where the tensor product of two cotangent vectors acts on a pair of vectors
as,

dxi ⊗ dxj (ẋ1, ẋ2) = dxi(ẋ1) dxj(ẋ2).

On the r.h.s. of this equation, one multiplies two ordinary numbers got by
letting the linear map dxi act on ẋ1, and dxj on ẋ2.

However, the bilinear map (3.39) is slightly too general to give a good
integration procedure. The reason is that we would like the integral to
change sign if we change the orientation of integration, just like in the 1D
case. In 2D, changing the orientation means exchanging ẋ1 and ẋ2, so we
want our bilinear map to be antisymmetric under this exchange. This is
achieved by defining a 2–form to be

ω = ωij(x)
(
dxi ⊗ dxj − dxj ⊗ dxi

)
≡ ωij(x) dxi ∧ dxj

We now see why a2–form corresponds to an antisymmetric tensor–field: the
symmetric part of ωij would give a vanishing contribution to ω. Now, pa-
rameterizing a surface Σ in M with two coordinates t1 and t2, and reasoning
exactly like we did in the case of a 1–form, one can show that the integra-
tion of a 2–form over such a surface is indeed well–defined, and independent
of the parametrization of both Σ and M .

If each summand of a differential form α ∈ Ωk(M) contains k basis
1−forms dxi’s, the form is called a k−form. Functions f ∈ Ck(M,R) are
considered to be 0−forms, and any form on an n−manifold M of degree
k > n must be zero due to the skew–symmetry.

Any k−form α ∈ Ωk(M) may be expressed in the form

α = fI dx
i1 ∧ ... ∧ dxik = fI dx

I ,

where I is a multiindex I = (i1, ..., ik) of length k, and ∧ is the wedge
product which is associative, bilinear and anticommutative.

Just as 1−forms act on vector–fields to give real–valued functions, so
k−forms act on k−tuples of vector–fields to give real–valued functions.

The wedge product of two differential forms, a k−form α ∈ Ωk(M) and
an l−form β ∈ Ωl(M) is a (k + l)−form α ∧ β defined as:

α ∧ β =
(k + l)!
k!l!

A(α⊗ β), (3.40)

where A : Ωk(M) → Ωk(M), Aτ(e1, ..., ek) = 1
k!

∑
σ∈Sk(signσ) τ(eσ(1), ...,

eσ(k)), where Sk is the permutation group on k elements consisting of all
bijections σ : {1, ..., k} → {1, ..., k}.
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For any k−form α ∈ Ωk(M) and l−form β ∈ Ωl(M), the wedge product
is defined fiberwise, i.e., (α ∧ β)m = αx ∧ βm for each point m ∈ M . It is
also associative, i.e., (α ∧ β) ∧ γ = α ∧ (β ∧ γ), and graded commutative,
i.e., α∧β = (−1)klβ∧α. These properties are proved in multilinear algebra.
So M =⇒ Ωk(M) is a contravariant functor from the category M into the
category of real graded commutative algebras [Kolar et al. (1993)].

Let M be an n−manifold, X ∈ X k(M), and α ∈ Ωk+1(M). The interior
product , or contraction, iXα = Xcα ∈ Ωk(M) of X and α (with insertion
operator iX) is defined as

iXα(X1, ..., Xk) = α(X,X1, ..., Xk).

Insertion operator iX of a vector–field X ∈ X k(M) is natural with
respect to the pull–back F ∗ of a diffeomorphism F : M → N between two
manifolds, i.e., the following diagram commutes:

Ωk−1(N) Ωk−1(M)-
F ∗

Ωk(N) Ωk(M)-F ∗

?

iX

?

iF∗X

Similarly, insertion operator iX of a vector–field X ∈ Yk(M) is natural
with respect to the push–forward F∗ of a diffeomorphism F : M → N , i.e.,
the following diagram commutes:

Ωk−1(M) Ωk−1(N)-
F∗

Ωk(M) Ωk(N)-F∗

?

iY

?

iF∗Y

In case of Riemannian manifolds there is another exterior operation.
Let M be a smooth n−manifold with Riemannian metric g = 〈, 〉 and the
corresponding volume element µ. The Hodge star operator ∗ : Ωk(M) →
Ωn−k(M) on M is defined as

α ∧ ∗β = 〈α, β〉µ for α, β ∈ Ωk(M).

The Hodge star operator satisfies the following properties for α, β ∈ Ωk(M)
[Abraham et al. (1988)]:
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(1) α ∧ ∗β = 〈α, β〉µ = β ∧ ∗α;
(2) ∗1 = µ, ∗µ = (−1)Ind(g);
(3) ∗ ∗ α = (−1)Ind(g)(−1)k(n−k)α;
(4) 〈α, β〉 = (−1)Ind(g) 〈∗α, ∗β〉, where Ind(g) is the index of the metric g.

3.6.2.3 Exterior Differential Systems

Here we give an informal introduction to exterior differential systems (EDS,
for short), which are expressions involving differential forms related to any
manifold M . Later, when we fully develop the necessary differential geo-
metrical as well as variational machinery (see (5.8) below), we will give a
more precise definition of EDS.

Central in the language of EDS is the notion of coframing , which is a real
finite–dimensional smooth manifold M with a given global cobasis and co-
ordinates, but without requirement for a proper topological and differential
structures. For example, M = R3 is a coframing with cobasis {dx, dy, dz}
and coordinates {x, y, z}. In addition to the cobasis and coordinates, a
coframing can be given structure equations (3.10.2.4) and restrictions. For
example, M = R2\{0} is a coframing with cobasis {e1, e2}, a single coor-
dinate {r}, structure equations {dr = e1, de1 = 0, de2 = e1 ∧ e2/r} and
restrictions {r 6= 0}.

A system S on M in EDS terminology is a list of expressions including
differential forms (e.g., S = {dz − ydx}).

Now, a simple EDS is a triple (S,Ω,M), where S is a system on M ,
and Ω is an independence condition: either a decomposable k−form or a
system of k−forms on M . An EDS is a list of simple EDS objects where
the various coframings are all disjoint.

An integral element of an exterior system (S,Ω,M) is a subspace P ⊂
TmM of the tangent space at some point m ∈ M such that all forms in S

vanish when evaluated on vectors from P . Alternatively, an integral element
P ⊂ TmM can be represented by its annihilator P⊥ ⊂ T ∗mM , comprising
those 1−forms at m which annul every vector in P . For example, with
M = R3 = {(x, y, z)}, S = {dx ∧ dz} and Ω = {dx, dz}, the integral
element P = {∂x + ∂z, ∂y} is equally determined by its annihilator P⊥ =
{dz − dx}. Again, for S = {dz − ydx} and Ω = {dx}, the integral element
P = {∂x + y∂z} can be specified as {dy}.
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3.6.3 Exterior Derivative and (Co)Homology

The exterior derivative is an operation that takes k−forms to (k+1)−forms
on a smooth manifold M . It defines a unique family of maps d : Ωk(U)→
Ωk+1(U), U open in M , such that (see [Abraham et al. (1988)]):

(1) d is a ∧−antiderivation; that is, d is R−linear and for two forms α ∈
Ωk(U), β ∈ Ωl(U),

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ.

(2) If f ∈ Ck(U,R) is a function onM , then df = ∂f
∂xi dx

i : M → T ∗M is the
differential of f , such that df(X) = iXdf = LXf−diXf = LXf = X[f ]
for any X ∈ X k(M).

(3) d2 = d ◦ d = 0 (that is, dk+1(U) ◦ dk(U) = 0).
(4) d is natural with respect to restrictions |U ; that is, if U ⊂ V ⊂ M are

open and α ∈ Ωk(V ), then d(α|U) = (dα)|U , or the following diagram
commutes:

Ωk+1(V ) Ωk+1(U)-
|U

Ωk(V ) Ωk(U)-|U

?

d

?

d

(5) d is natural with respect to the Lie derivative LX (4.3.2) along any
vector–field X ∈ X k(M); that is, for ω ∈ Ωk(M) we have LXω ∈
Ωk(M) and dLXω = LXdω, or the following diagram commutes:

Ωk+1(M) Ωk+1(M)-
LX

Ωk(M) Ωk(M)-LX

?

d

?

d

(6) Let ϕ : M → N be a Ck map of manifolds. Then ϕ∗ : Ωk(N)→ Ωk(M)
is a homomorphism of differential algebras (with ∧ and d) and d is
natural with respect to ϕ∗ = F ∗; that is, ϕ∗dω = dϕ∗ω, or the following
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diagram commutes:

Ωk+1(N) Ωk+1(M)-
ϕ∗

Ωk(N) Ωk(M)-ϕ∗

?

d

?

d

(7) Analogously, d is natural with respect to diffeomorphism ϕ∗ = (F ∗)−1;
that is, ϕ∗dω = dϕ∗ω, or the following diagram commutes:

Ωk+1(N) Ωk+1(M)-
ϕ∗

Ωk(N) Ωk(M)-ϕ∗

?

d

?

d

(8) LX = iX ◦d+d◦ iX for any X ∈ X k(M) (the Cartan ‘magic’ formula).
(9) LX ◦ d = d ◦ LX , i.e., [LX , d] = 0 for any X ∈ X k(M).

(10) [LX , iY ] = i[x,y]; in particular, iX ◦LX = LX ◦iX for all X,Y ∈ X k(M).

Given a k−form α = fI dx
I ∈ Ωk(M), the exterior derivative is defined

in local coordinates
(
x1, ..., xn

)
of a point m ∈M as

dα = d
(
fI dx

I
)

=
∂fI
∂xik

dxik ∧ dxI = dfI ∧ dxi1 ∧ ... ∧ dxik .

In particular, the exterior derivative of a function f ∈ Ck(M,R) is a
1−form df ∈ Ω1(M), with the property that for any m ∈ M , and X ∈
X k(M),

dfm(X) = X(f),

i.e., dfm(X) is a Lie derivative of f at m in the direction of X. Therefore,
in local coordinates

(
x1, ..., xn

)
of a point m ∈M we have

df =
∂f

∂xi
dxi.

For any two functions f, g ∈ Ck(M,R), exterior derivative obeys the
Leibniz rule:

d(fg) = g df + f dg,
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and the chain rule:

d (g(f)) = g′(f) df.

A k−form α ∈ Ωk(M) is called closed form if dα = 0, and it is called
exact form if there exists a (k − 1)−form β ∈ Ωk−1(M) such that α = dβ.

Since d2 = 0, every exact form is closed. The converse is only partially true
(Poincaré Lemma): every closed form is locally exact. This means that given
a closed k−form α ∈ Ωk(M) on an open set U ⊂M , any point m ∈ U has
a neighborhood on which there exists a (k − 1)−form β ∈ Ωk−1(U) such
that dβ = α|U .

The Poincaré lemma is a generalization and unification of two well–
known facts in vector calculus:

(1) If curlF = 0, then locally F = grad f ;
(2) If divF = 0, then locally F = curlG.

Poincaré lemma for contractible manifolds: Any closed form on a
smoothly contractible manifold is exact.

3.6.3.1 Intuition Behind Cohomology

The simple formula d2 = 0 leads to the important topological notion of
cohomology . Let us try to solve the equation dω = 0 for a p−form ω. A
trivial solution is ω = 0. From the above formula, we can actually find a
much larger class of trivial solutions: ω = dα for a (p − 1)−form α. More
generally, if ω is any solution to dω = 0, then so is ω + dα. We want to
consider these two solutions as equivalent:

ω ∼ ω + ω′ if ω′ ∈ Im d,

where Im d is the image of d, that is, the collection of all p−forms of
the form dα. (To be precise, the image of d contains q−forms for any
0 < q ≤ n, so we should restrict this image to the p−forms for the p we
are interested in.) The set of all p−forms which satisfy dω = 0 is called the
kernel of d, denoted Ker d, so we are interested in Ker d up to the equivalence
classes defined by adding elements of Im d. (Again, strictly speaking, Ker d
consists of q−forms for several values of q, so we should restrict it to the
p−forms for our particular choice of p.) This set of equivalence classes is
called Hp(M), the p−th de Rham cohomology group of M ,

Hp(M) =
Ker d
Im d

.
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Clearly, Ker d is a group under addition: if two forms ω(1) and ω(2) satisfy
dω(1) = dω(2) = 0, then so does ω(1) + ω(2). Moreover, if we change
ω(i) by adding some dα(i), the result of the addition will still be in the
same cohomology class, since it differs from ω(1) + ω(2) by d(α(1) + α(2)).
Therefore, we can view this addition really as an addition of cohomology
classes: Hp(M) is itself an additive group. Also note that if ω(3) and ω(4)

are in the same cohomology class (that is, their difference is of the form
dα(3)), then so are cω(3) and cω(4) for any constant factor c. In other
words, we can multiply a cohomology class by a constant to get another
cohomology class: cohomology classes actually form a vector space.

3.6.3.2 Intuition Behind Homology

Another operator similar to the exterior derivative d is the boundary op-
erator δ, which maps compact submanifolds of a smooth manifold M to
their boundary. Here, δC = 0 means that a submanifold C of M has no
boundary, and C = δU means that C is itself the boundary of some sub-
manifold U . It is intuitively clear, and not very hard to prove, that δ2 = 0:
the boundary of a compact submanifold does not have a boundary itself.
That the objects on which δ acts are independent of its coordinates is also
clear. So is the grading of the objects: the degree p is the dimension of the
submanifold C.3 What is less clear is that the collection of submanifolds
actually forms a vector space, but one can always define this vector space
to consist of formal linear combinations of submanifolds, and this is pre-
cisely how one proceeds. The pD elements of this vector space are called
p−chains. One should think of -C as C with its orientation reversed, and
of the sum of two disjoint sets, C1 + C2, as their union. The equivalence
classes constructed from δ are called homology classes.

For example, in Figure 3.5, C1 and C2 both satisfy δC = 0, so they
are elements of Ker δ. Moreover, it is clear that neither of them separately
can be viewed as the boundary of another submanifold, so they are not in
the trivial homology class Im δ. However, the boundary of U is C1 − C2.
(The minus sign in front of C2 is a result of the fact that C2 itself actually
has the wrong orientation to be considered a boundary of U .) This can be
written as C1−C2 = δU, or equivalently C1 = C2 + δU, showing that C1

and C2 are in the same homology class.
The cohomology groups for the δ−operator are called homology groups,

3Note that here we have an example of an operator that maps objects of degree p to

objects of degree p− 1 instead of p+ 1.
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Fig. 3.5 The 1D submanifolds S1 and S2 represent the same homology class, since their

difference is the boundary of U.

and denoted by Hp(M), with a lower index.4 The p−chains C that satisfy
δC = 0 are called p−cycles. Again, the Hp(M) only exist for 0 ≤ p ≤ n.

There is an interesting relation between cohomology and homology
groups. Note that we can construct a bilinear map from Hp(M)×Hp(M)→
R by

([ω], [C]) 7→
∫
C

ω, (3.41)

where [ω] denotes the cohomology class of a p−form ω, and [Σ] the homol-
ogy class of a p−cycle Σ. Using Stokes’ Theorem, it can be seen that the
result does not depend on the representatives for either ω or C∫

C+δU

ω + dα =
∫
C

ω +
∫
C

dα+
∫
δU

ω + dα

=
∫
C

ω +
∫
δC

α+
∫
U

d(ω + dα) =
∫
C

ω,

where we used that by the definition of (co)homology classes, δC = 0 and
dω = 0. As a result, the above map is indeed well–defined on homology
and cohomology classes. A very important Theorem by de Rham says that
this map is nondegenerate [De Rham (1984)]. This means that if we take
some [ω] and we know the result of the map (3.41) for all [C], this uniquely
determines [ω], and similarly if we start by picking an [C]. This in particular
means that the vector space Hp(M) is the dual vector space of Hp(M).

4Historically, as can be seen from the terminology, homology came first and cohomol-

ogy was related to it in the way we will discuss below. However, since the cohomology
groups have a more natural additive structure, it is the name ‘cohomology’ which is
actually used for generalizations.
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3.6.3.3 De Rham Complex and Homotopy Operators

After an intuitive introduction of (co)homology ideas, we now turn to their
proper definitions. Given a smooth manifold M , let Ωp(M) denote the
space of all smooth p−forms on M . The differential d, mapping p−forms
to (p+ 1)−forms, serves to define the de Rham complex on M

0→ Ω0(M) d0
- Ω1(M) d1

- ...
dn−1

- Ωn(M)→ 0. (3.42)

Recall (from section 6.200 above) that in general, a complex is defined
as a sequence of vector spaces, and linear maps between successive spaces,
with the property that the composition of any pair of successive maps is
identically 0. In the case of the de Rham complex (3.42), this requirement is
a restatement of the closure property for the exterior differential: d◦d = 0.

In particular, for n = 3, the de Rham complex on a manifold M reads

0→ Ω0(M) d0
- Ω1(M) d1

- Ω2(M) d2
- Ω3(M)→ 0.

(3.43)
If ω ≡ f(x, y, z) ∈ Ω0(M), then

d0ω ≡ d0f =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz = gradω.

If ω ≡ fdx+ gdy + hdz ∈ Ω1(M), then

d1ω ≡
(
∂g

∂x
− ∂f

∂y

)
dx∧dy+

(
∂h

∂y
− ∂g

∂z

)
dy∧dz+

(
∂f

∂z
− ∂h

∂x

)
dz∧dx = curlω.

If ω ≡ Fdy ∧ dz +Gdz ∧ dx+Hdx ∧ dy ∈ Ω2(M), then

d2ω ≡ ∂F

∂x
+
∂G

∂y
+
∂H

∂z
= divω.

Therefore, the de Rham complex (3.43) can be written as

0→ Ω0(M)
grad- →Ω1(M) curl- Ω2(M) div- Ω3(M)→ 0.

Using the closure property for the exterior differential, d◦d = 0, we get the
standard identities from vector calculus

curl · grad = 0 and div · curl = 0.

The definition of the complex requires that the kernel of one of the
linear maps contains the image of the preceding map. The complex is
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exact if this containment is equality. In the case of the de Rham complex
(3.42), exactness means that a closed p−form ω, meaning that dω = 0, is
necessarily an exact p−form, meaning that there exists a (p − 1)−form θ

such that ω = dθ. (For p = 0, it says that a smooth function f is closed,
df = 0, iff it is constant). Clearly, any exact form is closed, but the converse
need not hold. Thus the de Rham complex is not in general exact. The
celebrated de Rham Theorem states that the extent to which this complex
fails to be exact measures purely topological information about the manifold
M , its cohomology group.

On the local side, for special types of domains in Euclidean space Rm,
there is only trivial topology and we do have exactness of the de Rham
complex (3.42). This result, known as the Poincaré lemma, holds for star–
shaped domains M ⊂ Rm : Let M ⊂ Rm be a star–shaped domain. Then
the de Rham complex over M is exact.

The key to the proof of exactness of the de Rham complex lies in the
construction of suitable homotopy operators. By definition, these are linear
operators h : Ωp → Ωp−1, taking differential p−forms into (p − 1)−forms,
and satisfying the basic identity [Olver (1986)]

ω = dh(ω) + h(dω), (3.44)

for all p−forms ω ∈ Ωp. The discovery of such a set of operators imme-
diately implies exactness of the complex. For if ω is closed, dω = 0, then
(3.44) reduces to ω = dθ where θ = h(ω), so ω is exact.

3.6.3.4 Stokes Theorem and de Rham Cohomology

Stokes Theorem states that if α is an (n − 1)−form on an orientable
n−manifold M , then the integral of dα over M equals the integral of α
over ∂M , the boundary of M . The classical theorems of Gauss, Green, and
Stokes are special cases of this result.

A manifold with boundary is a set M together with an atlas of charts
(U, φ) with boundary on M . Define (see [Abraham et al. (1988)]) the
interior and boundary of M respectively as

IntM =
⋃
U

φ−1 (Int (φ(U))) , and ∂M =
⋃
U

φ−1 (∂ (φ(U))) .

If M is a manifold with boundary, then its interior IntM and its bound-
ary ∂M are smooth manifolds without boundary. Moreover, if f : M → N

is a diffeomorphism, N being another manifold with boundary, then f in-
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duces, by restriction, two diffeomorphisms

Int f : IntM → IntN, and ∂f : ∂M → ∂N.

If n = dimM , then dim(IntM) = n and dim(∂M) = n− 1.
To integrate a differential n−form over an n−manifold M , M must be

oriented. If IntM is oriented, we want to choose an orientation on ∂M

compatible with it. As for manifolds without boundary a volume form on
an n−manifold with boundary M is a nowhere vanishing n−form on M .
Fix an orientation on Rn. Then a chart (U, φ) is called positively oriented
if the map Tmφ : TmM → Rn is orientation preserving for all m ∈ U .

Let M be a compact, oriented kD smooth manifold with boundary ∂M .
Let α be a smooth (k − 1)−form on M . Then the classical Stokes formula
holds ∫

M

dα =
∫
∂M

α.

If ∂M =Ø then
∫
M
dα = 0.

The quotient space

Hk(M) =
Ker

(
d : Ωk(M)→ Ωk+1(M)

)
Im (d : Ωk−1(M)→ Ωk(M))

represents the kth de Rham cohomology group of a manifold M . recall that
the de Rham Theorem states that these Abelian groups are isomorphic to
the so–called singular cohomology groups ofM defined in algebraic topology
in terms of simplices and that depend only on the topological structure of
M and not on its differentiable structure. The isomorphism is provided
by integration; the fact that the integration map drops to the preceding
quotient is guaranteed by Stokes’ Theorem.

The exterior derivative commutes with the pull–back of differential
forms. That means that the vector bundle ΛkT ∗M is in fact the value
of a functor, which associates a bundle over M to each manifold M and
a vector bundle homomorphism over ϕ to each (local) diffeomorphism ϕ

between manifolds of the same dimension. This is a simple example of
the concept of a natural bundle. The fact that the exterior derivative d
transforms sections of ΛkT ∗M into sections of Λk+1T ∗M for every man-
ifold M can be expressed by saying that d is an operator from ΛkT ∗M
into Λk+1T ∗M . That the exterior derivative d commutes with (local) dif-
feomorphisms now means, that d is a natural operator from the functor
ΛkT ∗ into functor Λk+1T ∗. If k > 0, one can show that d is the unique
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natural operator between these two natural bundles up to a constant. So
even linearity is a consequence of naturality [Kolar et al. (1993)].

3.6.3.5 Euler–Poincaré Characteristics of M

The Euler–Poincaré characteristics of a manifold M equals the sum of its
Betti numbers

χ(M) =
n∑
p=0

(−1)p bp.

In case of 2nD oriented compact Riemannian manifold M (Gauss–
Bonnet Theorem) its Euler–Poincaré characteristics is equal

χ(M) =
∫
M

γ,

where γ is a closed 2n form on M , given by

γ =
(−1)n

(4π)nn!
ε1...2ni1...i2nΩi1i2 ∧ Ωi2n−1

i2n
,

where Ωij is the curvature 2−form of a Riemannian connection on M .
Poincaré–Hopf Theorem: The Euler–Poincaré characteristics χ(M) of a

compact manifold M equals the sum of indices of zeros of any vector–field
on M which has only isolated zeros.

3.6.3.6 Duality of Chains and Forms on M

In topology of finite–dimensional smooth (i.e., Cp+1 with p ≥ 0) mani-
folds, a fundamental notion is the duality between p−chains C and p−forms
(i.e., p−cochains) ω on the smooth manifold M , or domains of integration
and integrands – as an integral on M represents a bilinear functional (see
[Choquet-Bruhat and DeWitt-Morete (1982); Dodson and Parker (1997)])∫

C

ω ≡ 〈C,ω〉 , (3.45)

where the integral is called the period of ω. Period depends only on the
cohomology class of ω and the homology class of C. A closed form (cocycle)
is exact (coboundary) if all its periods vanish, i.e., dω = 0 implies ω = dθ.
The duality (3.45) is based on the classical Stokes formula∫

C

dω =
∫
∂C

ω.
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This is written in terms of scalar products on M as

〈C, dω〉 = 〈∂C, ω〉 ,

where ∂C is the boundary of the p−chain C oriented coherently with C.
While the boundary operator ∂ is a global operator, the coboundary oper-
ator, that is, the exterior derivative d, is local, and thus more suitable for
applications. The main property of the exterior differential,

d2 = 0 implies ∂2 = 0,

can be easily proved by the use of Stokes’ formula〈
∂2C,ω

〉
= 〈∂C, dω〉 =

〈
C, d2ω

〉
= 0.

The analysis of p−-chains and p−-forms on the finite–dimensional
smooth manifold M is usually performed in (co)homology categories (see
[Dodson and Parker (1997); Dieudonne (1988)]) related to M .

Let M• denote the category of cochains, (i.e., p–forms) on the smooth
manifold M . When C = M•, we have the category S•(M•) of generalized
cochain complexes A• inM•, and if A′ = 0 for n < 0 we have a subcategory
S•DR(M•) of the de Rham differential complexes in M•

A•DR : 0→ Ω0(M) d - Ω1(M) d - Ω2(M) · · · (3.46)

· · · d - Ωn(M) d - · · · .

Here A′ = Ωn(M) is the vector space over R of all p−-forms ω on M (for
p = 0 the smooth functions on M) and dn = d : Ωn−1(M)→ Ωn(M) is the
exterior differential. A form ω ∈ Ωn(M) such that dω = 0 is a closed form or
n–cocycle. A form ω ∈ Ωn(M) such that ω = dθ, where θ ∈ Ωn−1(M), is an
exact form or n–coboundary. Let Zn(M) = Ker(d) (resp. Bn(M) = Im(d))
denote a real vector space of cocycles (resp. coboundaries) of degree n.
Since dn+1 dn = d2 = 0, we have Bn(M) ⊂ Zn(M). The quotient vector
space

Hn
DR(M) = Ker(d)/ Im(d) = Zn(M)/Bn(M)

is the de Rham cohomology group. The elements of Hn
DR(M) represent

equivalence sets of cocycles. Two cocycles ω1, ω2 belong to the same
equivalence set, or are cohomologous (written ω1 ∼ ω2) iff they differ by a
coboundary ω1 − ω2 = dθ. The de Rham cohomology class of any form
ω ∈ Ωn(M) is [ω] ∈ Hn

DR(M). The de Rham differential complex (3.46) can
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be considered as a system of second–order ODEs d2θ = 0, θ ∈ Ωn−1(M)
having a solution represented by Zn(M) = Ker(d).

Analogously let M• denote the category of chains on the smooth man-
ifold M . When C = M•, we have the category S•(M•) of generalized
chain complexes A• inM•, and if An = 0 for n < 0 we have a subcategory
SC• (M•) of chain complexes in M•

A• : 0← C0(M) ∂←− C1(M) ∂←− C2(M) · · · ∂←− Cn(M) ∂←− · · · .

Here An = Cn(M) is the vector space over R of all finite chains C on the
manifold M and ∂n = ∂ : Cn+1(M) → Cn(M). A finite chain C such
that ∂C = 0 is an n−cycle. A finite chain C such that C = ∂B is an
n−boundary. Let Zn(M) = Ker(∂) (resp. Bn(M) = Im(∂)) denote a
real vector space of cycles (resp. boundaries) of degree n. Since ∂n+1∂n =
∂2 = 0, we have Bn(M) ⊂ Zn(M). The quotient vector space

HC
n (M) = Ker(∂)/ Im(∂) = Zn(M)/Bn(M)

is the n−homology group. The elements of HC
n (M) are equivalence sets

of cycles. Two cycles C1, C2 belong to the same equivalence set, or are
homologous (written C1 ∼ C2), iff they differ by a boundary C1 − C2 =
∂B). The homology class of a finite chain C ∈ Cn(M) is [C] ∈ HC

n (M).
The dimension of the n−cohomology (resp. n−homology) group equals

the nth Betti number bn (resp. bn) of the manifold M . Poincaré lemma
says that on an open set U ∈ M diffeomorphic to RN , all closed forms
(cycles) of degree p ≥ 1 are exact (boundaries). That is, the Betti numbers
satisfy bp = 0 (resp. bp = 0) for p = 1, . . . , n.

The de Rham Theorem states the following. The map Φ: Hn×Hn → R
given by ([C], [ω])→ 〈C,ω〉 for C ∈ Zn,ω ∈ Zn is a bilinear nondegenerate
map which establishes the duality of the groups (vector spaces) Hn and Hn

and the equality bn = bn.

3.6.3.7 Hodge Star Operator and Harmonic Forms

As the configuration manifold M is an oriented ND Riemannian manifold,
we may select an orientation on all tangent spaces TmM and all cotangent
spaces T ∗mM , with the local coordinates xi = (qi, pi) at a point m ∈M, in a
consistent manner. The simplest way to do that is to choose the Euclidean
orthonormal basis ∂1, ..., ∂N of RN as being positive.

Since the manifold M carries a Riemannian structure g = 〈, 〉, we have
a scalar product on each T ∗mM . So, we can define (as above) the linear
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Hodge star operator

∗ : Λp(T ∗mM)→ ΛN−p(T ∗mM),

which is a base point preserving operator

∗ : Ωp(M)→ ΩN−p(M), (Ωp(M) = Γ(Λp(M)))

(here Λp(V ) denotes the p−fold exterior product of any vector space V ,
Ωp(M) is a space of all p−forms on M , and Γ(E) denotes the space of
sections of the vector bundle E). Also,

∗∗ = (−1)p(N−p) : Λp(T ∗xM)→ Λp(T ∗mM).

As the metric on T ∗mM is given by gij(x) = (gij(x))−1, we have the
volume form defined in local coordinates as

∗(1) =
√

det(gij)dx1 ∧ ... ∧ dxn, and Vol(M) =
∫
M

∗(1).

For any to p−forms α, β ∈ Ωp(M) with compact support, we define the
(bilinear and positive definite) L2−product as

(α, β) =
∫
M

〈α, β〉 ∗ (1) =
∫
M

α ∧ ∗β.

We can extend the product (·, ·) to L2(Ωp(M)); it remains bilinear and
positive definite, because as usual, in the definition of L2, functions that
differ only on a set of measure zero are identified.

Using the Hodge star operator ∗, we can introduce the codifferen-
tial operator δ, which is formally adjoint to the exterior derivative d :
Ωp(M) → Ωp+1(M) on ⊕Np=0Ωp(M) w.r.t. (·, ·). This means that for
α ∈ Ωp−1(M), β ∈ Ωp(M)

(dα, β) = (α, δβ).

Therefore, we have δ : Ωp(M)→ Ωp−1(M) and

δ = (−1)N(p+1)+1 ∗ d ∗ .

Now, the Laplace–Beltrami operator (or, Hodge Laplacian, see [Griffiths
(1983b); Voisin (2002)] as well as section (3.13.5.3) below), ∆ on Ωp(M),
is defined by relation similar to (3.44) above

∆ = dδ + δd : Ωp(M)→ Ωp(M) (3.47)

and an exterior differential form α ∈ Ωp(M) is called harmonic if ∆α = 0.
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Let M be a compact, oriented Riemannian manifold, E a vector bundle
with a bundle metric 〈·, ·〉 over M ,

D = d+A : Ωp−1(AdE)→ Ωp(AdE), with A ∈ Ω1(AdE)

– a tensorial and R−linear metric connection on E with curvature FD ∈
Ω2(AdE) (Here by Ωp(AdE) we denote the space of those elements of
Ωp(EndE) for which the endomorphism of each fibre is skew symmetric;
EndE denotes the space of linear endomorphisms of the fibers of E).

3.7 Lie Derivatives on Smooth Manifolds

Lie derivative is popularly called ‘fisherman’s derivative’. In continuum me-
chanics it is called Liouville operator . This is a central differential operator
in modern differential geometry and its physical and control applications.

3.7.1 Lie Derivative Operating on Functions

To define how vector–fields operate on functions on an m−manifold M , we
will use the Lie derivative. Let f : M → R so Tf : TM → TR = R× R.
Following [Abraham et al. (1988)] we write Tf acting on a vector v ∈ TmM
in the form

Tf · v = (f(m), df(m) · v) .

This defines, for each point m ∈ M , the element df(m) ∈ T ∗mM . Thus
df is a section of the cotangent bundle T ∗M , i.e., a 1−form. The 1−form
df : M → T ∗M defined this way is called the differential of f . If f is Ck,
then df is Ck−1.

If φ : U ⊂ M → V ⊂ E is a local chart for M , then the local represen-
tative of f ∈ Ck(M,R) is the map f : V → R defined by f = f ◦ φ−1. The
local representative of Tf is the tangent map for local manifolds,

Tf(x, v) = (f(x), Df(x) · v) .

Thus the local representative of df is the derivative of the local representa-
tive of f . In particular, if (x1, ..., xn) are local coordinates on M , then the
local components of df are

(df)i = ∂xif.
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The introduction of df leads to the following definition of the Lie deriva-
tive. The directional or Lie derivative LX : Ck(M,R)→ Ck−1(M,R) of a
function f ∈ Ck(M,R) along a vector–field X is defined by

LXf(m) = X[f ](m) = df(m) ·X(m),

for any m ∈M . Denote by X[f ] = df(X) the map M 3 m 7→ X[f ](m) ∈ R.
If f is F−valued, the same definition is used, but now X[f ] is F−valued.

If a local chart (U, φ) on an n−manifold M has local coordinates
(x1, ..., xn), the local representative of X[f ] is given by the function

LXf = X[f ] = Xi ∂xif.

Evidently if f is Ck and X is Ck−1 then X[f ] is Ck−1.
Let ϕ : M → N be a diffeomorphism. Then LX is natural with respect

to push–forward by ϕ. That is, for each f ∈ Ck(M,R),

Lϕ∗X(ϕ∗f) = ϕ∗LXf,

i.e., the following diagram commutes:

Ck(M,R) Ck(N,R)-
ϕ∗

Ck(M,R) Ck(N,R)-ϕ∗

?

LX
?

Lϕ∗X

Also, LX is natural with respect to restrictions. That is, for U open in
M and f ∈ Ck(M,R),

LX|U (f |U) = (LXf)|U,

where |U : Ck(M,R)→ Ck(U,R) denotes restriction to U , i.e., the following
diagram commutes:

Ck(M,R) Ck(U,R)-
|U

Ck(M,R) Ck(U,R)-|U

?

LX
?

LX|U

Since ϕ∗ = (ϕ−1)∗ the Lie derivative is also natural with respect to
pull–back by ϕ. This has a generalization to ϕ−related vector–fields as
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follows: Let ϕ : M → N be a Ck−map, X ∈ X k−1(M) and Y ∈ X k−1(N),
k ≥ 1. If X ∼ϕ Y , then

LX(ϕ∗f) = ϕ∗LY f

for all f ∈ Ck(N,R), i.e., the following diagram commutes:

Ck(N,R) Ck(M,R)-
ϕ∗

Ck(N,R) Ck(M,R)-ϕ∗

?

LY
?

LX

The Lie derivative map LX : Ck(M,R) → Ck−1(M,R) is a derivation,
i.e., for two functions f, g ∈ Ck(M,R) the Leibniz rule is satisfied

LX(fg) = gLXf + fLXg;

Also, Lie derivative of a constant function is zero, LX(const) = 0.
The connection between the Lie derivative LXf of a function f ∈

Ck(M,R) and the flow Ft of a vector–field X ∈ X k−1(M) is given as:

d

dt
(F ∗t f) = F ∗t (LXf) .

3.7.2 Lie Derivative of Vector Fields

If X,Y ∈ X k(M), k ≥ 1 are two vector–fields on M , then

[LX ,LY ] = LX ◦ LY − LY ◦ LX

is a derivation map from Ck+1(M,R) to Ck−1(M,R). Then there is a unique
vector–field, [X,Y ] ∈ X k(M) of X and Y such that L[X,Y ] = [LX ,LY ] and
[X,Y ](f) = X (Y (f)) − Y (X(f)) holds for all functions f ∈ Ck(M,R).
This vector–field is also denoted LXY and is called the Lie derivative of
Y with respect to X, or the Lie bracket of X and Y . In a local chart
(U, φ) at a point m ∈ M with coordinates (x1, ..., xn), for X|U = Xi∂xi

and Y |U = Y i∂xi we have[
Xi∂xi , Y

j∂xj
]

=
(
Xi
(
∂xiY

j
)
− Y i

(
∂xiX

j
))
∂xj ,
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since second partials commute. If, also X has flow Ft, then [Abraham et al.
(1988)]

d

dt
(F ∗t Y ) = F ∗t (LXY ) .

In particular, if t = 0, this formula becomes

d

dt
|t=0 (F ∗t Y ) = LXY.

Then the unique Ck−1 vector–field LXY = [X,Y ] on M defined by

[X,Y ] =
d

dt
|t=0 (F ∗t Y ) ,

is called the Lie derivative of Y with respect to X, or the Lie bracket of X
and Y, and can be interpreted as the leading order term that results from
the sequence of flows

F−Yt ◦ F−Xt ◦ FYt ◦ F−Xt (m) = ε2[X,Y ](m) +O(ε3), (3.48)

for some real ε > 0. Therefore a Lie bracket can be interpreted as a ‘new
direction’ in which the system can flow, by executing the sequence of flows
(3.48).

Lie bracket satisfies the following property:

[X,Y ][f ] = X[Y [f ]]− Y [X[f ]],

for all f ∈ Ck+1(U,R), where U is open in M .
An important relationship between flows of vector–fields is given by the

Campbell–Baker–Hausdorff formula:

FYt ◦ FXt = F
X+Y+ 1

2 [X,Y ]+ 1
12 ([X,[X,Y ]]−[Y,[X,Y ]])+...

t (3.49)

Essentially, if given the composition of multiple flows along multiple vector–
fields, this formula gives the one flow along one vector–field which results
in the same net flow. One way to prove the Campbell–Baker–Hausdorff
formula (3.49) is to expand the product of two formal exponentials and
equate terms in the resulting formal power series.

Lie bracket is the R−bilinear map [, ] : X k(M)×X k(M)→ X k(M) with
the following properties:

(1) [X,Y ] = −[Y,X], i.e., LXY = −LYX for all X,Y ∈ X k(M) – skew–
symmetry;

(2) [X,X] = 0 for all X ∈ X k(M);
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(3) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0 for all X,Y, Z ∈ X k(M) – the
Jacobi identity;

(4) [fX, Y ] = f [X,Y ]− (Y f)X, i.e., LfX(Y ) = f(LXY )− (LY f)X for all
X,Y ∈ X k(M) and f ∈ Ck(M,R);

(5) [X, fY ] = f [X,Y ] + (Xf)Y , i.e., LX(fY ) = f(LXY ) + (LXf)Y for all
X,Y ∈ X k(M) and f ∈ Ck(M,R);

(6) [LX ,LY ] = L[x,y] for all X,Y ∈ X k(M).

The pair (X k(M), [, ]) is the prototype of a Lie algebra [Kolar et al.
(1993)]. In more general case of a general linear Lie algebra gl(n), which is
the Lie algebra associated to the Lie group GL(n), Lie bracket is given by
a matrix commutator

[A,B] = AB −BA,

for any two matrices A,B ∈ gl(n).
Let ϕ : M → N be a diffeomorphism. Then LX : X k(M) → X k(M) is

natural with respect to push–forward by ϕ. That is, for each f ∈ Ck(M,R),

Lϕ∗X(ϕ∗Y ) = ϕ∗LXY,

i.e., the following diagram commutes:

X k(M) X k(N)-
ϕ∗

X k(M) X k(N)-ϕ∗

?

LX
?

Lϕ∗X

Also, LX is natural with respect to restrictions. That is, for U open in
M and f ∈ Ck(M,R),

[X|U, Y |U ] = [X,Y ]|U,

where U : Ck(M,R)→ Ck(U,R) denotes restriction to U , i.e., the following
diagram commutes [Abraham et al. (1988)]:

X k(M) X k(U)-
|U

X k(M) X k(U)-|U

?

LX
?

LX|U
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If a local chart (U, φ) on an n−manifold M has local coordinates
(x1, ..., xn), then the local components of a Lie bracket are

[X,Y ]j = Xi ∂xiY
j − Y i ∂xiXj ,

that is, [X,Y ] = (X · ∇)Y − (Y · ∇)X.
Let ϕ : M → N be a Ck−map, X ∈ X k−1(M) and Y ∈ X k−1(N),

k ≥ 1. Then X ∼ϕ Y , iff

(Y [f ]) ◦ ϕ = X[f ◦ ϕ]

for all f ∈ Ck(V,R), where V is open in N.

For every X ∈ X k(M), the operator LX is a derivation on(
Ck(M,R),X k(M)

)
, i.e., LX is R−linear.

For any two vector–fields X ∈ X k(M) and Y ∈ X k(N), k ≥ 1 with
flows Ft and Gt, respectively, if [X,Y ] = 0 then F ∗t Y = Y and G∗tX = X.

3.7.3 Time Derivative of the Evolution Operator

Recall that the time–dependent flow or evolution operator Ft,s of a vector–
field X ∈ X k(M) is defined by the requirement that t 7→ Ft,s(m) be the
integral curve of X starting at a point m ∈M at time t = s, i.e.,

d

dt
Ft,s(m) = X (t, Ft,s(m)) and Ft,t(m) = m.

By uniqueness of integral curves we have Ft,s ◦ Fs,r = Ft,r (replacing the
flow property Ft+s = Ft + Fs) and Ft,t = identity.

Let Xt ∈ X k(M), k ≥ 1 for each t and suppose X(t,m) is continuous in
(t,m) ∈ R×M . Then Ft,s is of class Ck and for f ∈ Ck+1(M,R) [Abraham
et al. (1988)], and Y ∈ X k(M), we have

(1) d
dtF

∗
t,s f = F ∗t,s (LXt f) , and

(2) d
dtF

∗
t,s f = F ∗t,s([Xt, Y ]) = F ∗t,s (LXt Y ).

From the above Theorem, the following identity holds:

d

dt
F ∗t,s f = −Xt

[
F ∗t,s f

]
.

3.7.4 Lie Derivative of Differential Forms

Since F : M =⇒ ΛkT ∗M is a vector bundle functor on M, the Lie deriva-
tive (4.3.2) of a k−form α ∈ Ωk(M) along a vector–field X ∈ X k(M) is
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defined by

LXα =
d

dt
|t=0 F

∗
t α.

It has the following properties:

(1) LX(α ∧ β) = LX α ∧ β + α ∧ LX β, so LX is a derivation.
(2) [LX ,LY ] α = L[X,Y ] α.
(3) d

dtF
∗
t α = F ∗t LXα = LX (F ∗t α).

Formula (3) holds also for time–dependent vector–fields in the sense
that d

dtF
∗
t,sα = F ∗t,sLXα = LX

(
F ∗t,sα

)
and in the expression LXα the

vector–field X is evaluated at time t.
The famous Cartan magic formula (see [Marsden and Ratiu (1999)])

states: the Lie derivative of a k−form α ∈ Ωk(M) along a vector–field
X ∈ X k(M) on a smooth manifold M is defined as

LXα = diXα+ iXdα = d(Xcα) +Xcdα.

Also, the following identities hold [Marsden and Ratiu (1999); Kolar
et al. (1993)]:

(1) LfXα = fLXα+ df ∧ ixα.
(2) L[X,Y ]α = LXLY α− LY LXα.
(3) i[X,Y ]α = LX iY α− iY LXα.
(4) LXdα = dLXα, i.e., [LX , d] = 0.
(5) LX iXα = iXLXα, i.e., [LX , iX ] = 0.
(6) LX(α ∧ β) = LXα ∧ β + α ∧ LXβ.

3.7.5 Lie Derivative of Various Tensor Fields

In this section, we use local coordinates xi (i = 1, ..., n) on a biodynamical
n−manifold M , to calculate the Lie derivative LXi with respect to a generic
vector–field Xi. (As always, ∂xi ≡ ∂

∂xi ).

Lie Derivative of a Scalar Field

Given the scalar field φ, its Lie derivative LXiφ is given as

LXiφ = Xi∂xiφ = X1∂x1φ+X2∂x2φ+ ...+Xn∂xnφ.

Lie Derivative of Vector and Covector–Fields
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Given a contravariant vector–field V i, its Lie derivative LXiV i is given
as

LXiV i = Xk∂xkV
i − V k∂xkXi ≡ [Xi, V i]− the Lie bracket.

Given a covariant vector–field (i.e., a one–form) ωi, its Lie derivative LXiωi
is given as

LXiωi = Xk∂xkωi + ωk∂xiX
k.

Lie Derivative of a Second–Order Tensor–Field

Given a (2, 0) tensor–field Sij , its Lie derivative LXiSij is given as

LXiSij = Xi∂xiS
ij − Sij∂xiXi − Sii∂xiXj .

Given a (1, 1) tensor–field Sij , its Lie derivative LXiSij is given as

LXiSij = Xi∂xiS
i
j − Sij∂xiXi + Sii∂xjX

i.

Given a (0, 2) tensor–field Sij , its Lie derivative LXiSij is given as

LXiSij = Xi∂xiSij + Sij∂xiX
i + Sii∂xjX

i.

Lie Derivative of a Third–Order Tensor–Field

Given a (3, 0) tensor–field T ijk, its Lie derivative LXiT ijk is given as

LXiT ijk = Xi∂xiT
ijk − T ijk∂xiXi − T iik∂xiXj − T iji∂xiXk.

Given a (2, 1) tensor–field T ijk , its Lie derivative LXiT ijk is given as

LXiT ijk = Xi∂xiT
ij
k − T

ij
k ∂xiX

i + T iji ∂xkX
i − T iik ∂xiXj .

Given a (1, 2) tensor–field T ijk, its Lie derivative LXiT ijk is given as

LXiT ijk = Xi∂xiT
i
jk − T ijk∂xiXi + T iik∂xjX

i + T iji∂xkX
i.

Given a (0, 3) tensor–field Tijk, its Lie derivative LXiTijk is given as

LXiTijk = Xi∂xiTijk + Tijk∂xiX
i + Tiik∂xjX

i + Tiji∂xkX
i.

Lie Derivative of a Fourth–Order Tensor–Field
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Given a (4, 0) tensor–field Rijkl, its Lie derivative LXiRijkl is given as

LXiRijkl = Xi∂xiR
ijkl−Rijkl∂xiXi−Riikl∂xiXj−Rijil∂xiXk−Rijki∂xiX l.

Given a (3, 1) tensor–field Rijkl , its Lie derivative LXiRijkl is given as

LXiRijkl = Xi∂xiR
ijk
l −R

ijk
l ∂xiX

i +Rijki ∂xlX
i −Riikl ∂xiX

j −Rijil ∂xiX
k.

Given a (2, 2) tensor–field Rijkl, its Lie derivative LXiRijkl is given as

LXiRijkl = Xi∂xiR
ij
kl −R

ij
kl∂xiX

i +Rijil ∂xkX
i +Rijki∂xlX

i −Riikl∂xiXj .

Given a (1, 3) tensor–field Rijkl, its Lie derivative LXiRijkl is given as

LXiRijkl = Xi∂xiR
i
jkl −Rijkl∂xiXi +Riikl∂xjX

i +Rijil∂xkX
i +Rijki∂xlX

i.

Given a (0, 4) tensor–field Rijkl, its Lie derivative LXiRijkl is given as

LXiRijkl = Xi∂xiRijkl+Rijkl∂xiXi+Riikl∂xjXi+Rijil∂xkX
i+Rijki∂xlX

i.

Finally, recall that a spinor is a two–component complex column vector.
Physically, spinors can describe both bosons and fermions, while tensors can
describe only bosons. The Lie derivative of a spinor φ is defined by

LXφ(x) = lim
t→0

φ̄t(x)− φ(x)
t

,

where φ̄t is the image of φ by a one–parameter group of isometries with X
its generator. For a vector–field Xa and a covariant derivative ∇a, the Lie
derivative of φ is given explicitly by

LXφ = Xa∇aφ−
1
8

(∇aXb −∇bXa) γaγbφ,

where γa and γb are Dirac matrices (see, e.g., [Choquet-Bruhat and
DeWitt-Morete (2000)]).

3.7.6 Application: Lie–Derivative Neurodynamics

A Lie–derivative neuro–classifier is a self–organized, associative–memory
machine, represented by oscillatory (excitatory/inhibitory) tensor–field–
system
(x, v, ω) on the Banach manifold M . It consists of continual neural activa-
tion (x, y)−-dynamics and self–organizing synaptic learning ω−-dynamics.
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The continual activation (x, y)−dynamics, is defined as a system of two
coupled, first–order oscillator tensor–fields, dual to each other, in a local
Banach chart Uα, (α = 1, ..., n) on M :

1) an excitatory neural vector–field xi = xi(t) : M → TM , representing
a cross–section of the tangent bundle TM ; and

2) an inhibitory neural one–form yi = yi(t) : M → T ∗M , representing
a cross–section of the cotangent bundle T ∗M .

The self–organized learning ω−dynamics is performed on a second–order
symmetrical synaptic tensor–field ω = ω(t), given by its covariant compo-
nents ωij = ωij(t) and its contravariant components ωij = ωij(t), where
i, j = 1, ..., n.

Starting with the Lyapunov–stable, negative scalar neural action poten-
tial:

U = − 1
2 (ωijxixj + ωijyiyj), (i, j = 1, ..., n),

the (x, y)−-dynamics is given in two versions, which are compared and
contrasted:

(1) the Lie–linear neurodynamics with first–order Lie derivatives

ẋi = J i + LXU, ẏi = Ji + LY U,

and
(2) the Lie–quadratic neurodynamics with both first and second–order

Lie derivatives

ẋi = J i + LXU + LXLXU, ẏi = Ji + LY U + LY LY U,

where X = Si(xi), Y = Si(yi), Si represent sigmoid activation functions,
while LXLX , LY LY : F (M) → F (M) denote the second–order (iterated)
Lie derivatives.

Self–organized learning ω−-dynamics is presented in the form of differ-
ential Hebbian learning scheme in both covariant and contravariant forms

ω̇ij = −ωij + Si(xi)Sj(yj) + Ṡi(xi)Ṡj(yj), and

ω̇ij = −ωij + Si(xi)Sj(yj) + Ṡi(xi)Ṡj(yj), (i, j = 1, ..., n),

respectively.
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3.7.7 Lie Algebras

Recall from Introduction that an algebra A is a vector space with a product.
The product must have the property that

a(uv) = (au)v = u(av),

for every a ∈ R and u, v ∈ A. A map φ : A→ A′ between algebras is called
an algebra homomorphism if φ(u · v) = φ(u) · φ(v). A vector subspace I

of an algebra A is called a left ideal (resp. right ideal) if it is closed under
algebra multiplication and if u ∈ A and i ∈ I implies that ui ∈ I (resp.
iu ∈ I). A subspace I is said to be a two–sided ideal if it is both a left and
right ideal. An ideal may not be an algebra itself, but the quotient of an
algebra by a two–sided ideal inherits an algebra structure from A.

A Lie algebra is an algebra A where the multiplication, i.e., the Lie
bracket (u, v) 7→ [u, v], has the following properties:

LA 1. [u, u] = 0 for every u ∈ A, and
LA 2. [u, [v, w]] + [w, [u, v]] + [v, w, u]] = 0 for all u, v, w ∈ A.
The condition LA 2 is usually called Jacobi identity . A subspace E ⊂ A

of a Lie algebra is called a Lie subalgebra if [u, v] ∈ E for every u, v ∈ E. A
map φ : A→ A′ between Lie algebras is called a Lie algebra homomorphism
if φ([u, v]) = [φ(u), φ(v)] for each u, v ∈ A.

All Lie algebras (over a given field K) and all smooth homomorphisms
between them form the category LAL, which is itself a complete subcate-
gory of the category AL of all algebras and their homomorphisms.

3.8 Lie Groups and Associated Lie Algebras

In the middle of the 19th Century S. Lie made a far reaching discovery
that techniques designed to solve particular unrelated types of ODEs, such
as separable, homogeneous and exact equations, were in fact all special
cases of a general form of integration procedure based on the invariance of
the differential equation under a continuous group of symmetries. Roughly
speaking a symmetry group of a system of differential equations is a group
that transforms solutions of the system to other solutions. Once the sym-
metry group has been identified a number of techniques to solve and classify
these differential equations becomes possible. In the classical framework of
Lie, these groups were local groups and arose locally as groups of transfor-
mations on some Euclidean space. The passage from the local Lie group to
the present day definition using manifolds was accomplished by E. Cartan
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at the end of the 19th Century, whose work is a striking synthesis of Lie
theory, classical geometry, differential geometry and topology.

These continuous groups, which originally appeared as symmetry groups
of differential equations, have over the years had a profound impact on
diverse areas such as algebraic topology, differential geometry, numerical
analysis, control theory, classical mechanics, quantum mechanics etc. They
are now universally known as Lie groups.

3.8.1 Definition of a Lie Group

A Lie group is a smooth (Banach) manifold M that has at the same time a
group G−structure consistent with its manifold M−structure in the sense
that group multiplication

µ : G×G→ G, (g, h) 7→ gh (3.50)

and the group inversion

ν : G→ G, g 7→ g−1 (3.51)

are Ck−maps [Chevalley (1955); Abraham et al. (1988); Marsden and Ratiu
(1999); Puta (1993)]. A point e ∈ G is called the group identity element .

For example, any nD Banach vector space V is an Abelian Lie group
with group operations µ : V × V → V , µ(x, y) = x + y, and ν : V → V ,
ν(x) = −x. The identity is just the zero vector. We call such a Lie group
a vector group.

Let G and H be two Lie groups. A map G→ H is said to be a morphism
of Lie groups (or their smooth homomorphism) if it is their homomorphism
as abstract groups and their smooth map as manifolds [Postnikov (1986)].

All Lie groups and all their morphisms form the category LG (more
precisely, there is a countable family of categories LG depending on
Ck−smoothness of the corresponding manifolds).

Similarly, a group G which is at the same time a topological space
is said to be a topological group if maps (3.50–3.51) are continuous, i.e.,
C0−maps for it. The homomorphism G→ H of topological groups is said
to be continuous if it is a continuous map. Topological groups and their
continuous homomorphisms form the category T G.

A topological group (as well as a smooth manifold) is not necessarily
Hausdorff. A topological group G is Hausdorff iff its identity is closed. As
a corollary we have that every Lie group is a Hausdorff topological group
(see [Postnikov (1986)]).
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For every g in a Lie group G, the two maps,

Lg : G→ G, h 7→ gh, and

Rh : G→ G, g 7→ gh,

are called left and right translation maps. Since Lg ◦ Lh = Lgh, and Rg ◦
Rh = Rgh, it follows that (Lg)

−1 = Lg−1 and (Rg)
−1 = Rg−1 , so both Lg

and Rg are diffeomorphisms. Moreover Lg ◦ Rh = Rh ◦ Lg, i.e., left and
right translation commute.

A vector–field X on G is called left–invariant vector–field if for every
g ∈ G, L∗gX = X, that is, if (ThLg)X(h) = X(gh) for all h ∈ G, i.e., the
following diagram commutes:

G G-
Lg

TG TG-TLg

6
X

6
X

The correspondences G→ TG and Lg → TLg obviously define a functor
F : LG ⇒ LG from the category G of Lie groups to itself. F is a special
case of the vector bundle functor (see (4.3.2) below).

Let XL(G) denote the set of left–invariant vector–fields on G; it is a
Lie subalgebra of X (G), the set of all vector–fields on G, since L∗g[X,Y ] =
[L∗gX,L

∗
gY ] = [X,Y ], so the Lie bracket [X,Y ] ∈ XL(G).

Let e be the identity element of G. Then for each ξ on the tangent space
TeG we define a vector–field Xξ on G by

Xξ(g) = TeLg(ξ).

XL(G) and TeG are isomorphic as vector spaces. Define the Lie bracket on
TeG by

[ξ, η] = [Xξ, Xη] (e),

for all ξ, η ∈ TeG. This makes TeG into a Lie algebra. Also, by construction,
we have

[Xξ, Xη] = X[ξ,η],

this defines a bracket in TeG via left extension. The vector space TeG with
the above algebra structure is called the Lie algebra of the Lie group G and
is denoted g.
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For example, let V be a nD vector space. Then TeV ' V and the
left–invariant vector–field defined by ξ ∈ TeV is the constant vector–field
Xξ(η) = ξ, for all η ∈ V . The Lie algebra of V is V itself.

Since any two elements of an Abelian Lie group G commute, it follows
that all adjoint operators Adg, g ∈ G, equal the identity. Therefore, the
Lie algebra g is Abelian; that is, [ξ, η] = 0 for all ξ, η ∈ g [Marsden and
Ratiu (1999)].

Recall (3.7.7) that Lie algebras and their smooth homomorphisms form
the category LAL. We can now introduce the fundamental Lie functor ,
F : LG ⇒ LAL, from the category of Lie groups to the category of Lie
algebras [Postnikov (1986)].

Let Xξ be a left–invariant vector–field on G corresponding to ξ in g.
Then there is a unique integral curve γξ : R→ G of Xξ starting at e, i.e.,

γ̇ξ(t) = Xξ

(
γξ(t)

)
, γξ(0) = e.

γξ(t) is a smooth one–parameter subgroup of G, i.e.,

γξ(t+ s) = γξ(t) · γξ(s),

since, as functions of t both sides equal γξ(s) at t = 0 and both satisfy
differential equation

γ̇(t) = Xξ

(
γξ(t)

)
by left invariance of Xξ, so they are equal. Left invariance can be also used
to show that γξ(t) is defined for all t ∈ R. Moreover, if φ : R → G is a
one–parameter subgroup of G, i.e., a smooth homomorphism of the additive
group R into G, then φ = γξ with ξ = φ̇(0), since taking derivative at s = 0
in the relation

φ(t+ s) = φ(t) · φ(s) gives φ̇(t) = Xφ̇(0) (φ(t)) ,

so φ = γξ since both equal e at t = 0. Therefore, all one–parameter
subgroups of G are of the form γξ(t) for some ξ ∈ g.

The map exp : g→ G, given by

exp(ξ) = γξ(1), exp(0) = e, (3.52)

is called the exponential map of the Lie algebra g of G into G. exp is a
Ck−-map, similar to the projection π of tangent and cotangent bundles;
exp is locally a diffeomorphism from a neighborhood of zero in g onto a
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neighborhood of e in G; if f : G → H is a smooth homomorphism of Lie
groups, then

f ◦ expG = expH ◦Tef .

Also, in this case (see [Chevalley (1955); Marsden and Ratiu (1999);
Postnikov (1986)])

exp(sξ) = γξ(s).

Indeed, for fixed s ∈ R, the curve t 7→ γξ(ts), which at t = 0 passes through
e, satisfies the differential equation

d

dt
γξ(ts) = sXξ

(
γξ(ts)

)
= Xsξ

(
γξ(ts)

)
.

Since γsξ(t) satisfies the same differential equation and passes through e at
t = 0, it follows that γsξ(t) = γξ(st). Putting t = 1 induces exp(sξ) = γξ(s)
[Marsden and Ratiu (1999)].

Hence exp maps the line sξ in g onto the one–parameter subgroup γξ(s)
of G, which is tangent to ξ at e. It follows from left invariance that the
flow F ξt of X satisfies F ξt (g) = g exp(sξ).

Globally, the exponential map exp, as given by (3.52), is a natural
operation, i.e., for any morphism ϕ : G→ H of Lie groups G and H and a
Lie functor F , the following diagram commutes [Postnikov (1986)]:

G H-
ϕ

F(G) F(H)-F(ϕ)

?

exp

?

exp

Let G1 and G2 be Lie groups with Lie algebras g1 and g2. Then G1×G2

is a Lie group with Lie algebra g1 × g2, and the exponential map is given
by [Marsden and Ratiu (1999)].

exp : g1 × g2 → G1 ×G2, (ξ1, ξ2) 7→ (exp1(ξ1), exp2(ξ2)) .

For example, in case of a nD vector space, or infinite–dimensional Ba-
nach space, the exponential map is the identity.

The unit circle in the complex plane S1 = {z ∈ C : |z| = 1} is an Abelian
Lie group under multiplication. The tangent space TeS1 is the imaginary
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axis, and we identify R with TeS
1 by t 7→ 2πit. With this identification,

the exponential map exp : R→ S1 is given by exp(t) = e2πit.
The nD torus Tn = S1×···×S1 (n times) is an Abelian Lie group. The

exponential map exp : Rn → Tn is given by

exp(t1, ..., tn) = (e2πit1 , ..., e2πitn).

Since S1 = R/Z, it follows that

Tn = Rn/Zn,

the projection Rn → Tn being given by the exp map (see [Marsden and
Ratiu (1999); Postnikov (1986)]).

For every g ∈ G, the map

Adg = Te
(
Rg−1 ◦ Lg

)
: g→ g

is called the adjoint map (or operator) associated with g.
For each ξ ∈ g and g ∈ G we have

exp (Adgξ) = g (exp ξ) g−1.

The relation between the adjoint map and the Lie bracket is the follow-
ing: For all ξ, η ∈ g we have

d

dt

∣∣∣∣
t=0

Adexp(tξ)η = [ξ, η].

A Lie subgroup H of G is a subgroup H of G which is also a submanifold
of G. Then h is a Lie subalgebra of g and moreover h = {ξ ∈ g| exp(tξ) ∈ H,
for all t ∈ R}.

Recall that one can characterize Lebesgue measure up to a multiplicative
constant on Rn by its invariance under translations. Similarly, on a locally
compact group there is a unique (up to a nonzero multiplicative constant)
left–invariant measure, called Haar measure. For Lie groups the existence
of such measures is especially simple [Marsden and Ratiu (1999)]: Let G
be a Lie group. Then there is a volume form Ub5, unique up to nonzero
multiplicative constants, that is left–invariant. If G is compact, Ub5 is right
invariant as well.

3.8.2 Actions of Lie Groups on Smooth Manifolds

Let M be a smooth manifold. An action of a Lie group G (with the unit
element e) on M is a smooth map φ : G×M →M, such that for all x ∈M
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and g, h ∈ G, (i) φ(e, x) = x and (ii) φ (g, φ(h, x)) = φ(gh, x). In other
words, letting φg : x ∈ M 7→ φg(x) = φ(g, x) ∈ M , we have (i’) φe = idM
and (ii’) φg ◦ φh = φgh. φg is a diffeomorphism, since (φg)−1 = φg−1 . We
say that the map g ∈ G 7→ φg ∈ Diff(M) is a homomorphism of G into the
group of diffeomorphisms of M . In case that M is a vector space and each
φg is a linear operator, the function of G on M is called a representation
of G on M [Puta (1993)]

An action φ of G on M is said to be transitive group action, if for every
x, y ∈ M , there is g ∈ G such that φ(g, x) = y; effective group action, if
φg = idM implies g = e, that is g 7→ φg is 1–1; and free group action, if for
each x ∈M , g 7→ φg(x) is 1–1.

For example,

(1) G = R acts on M = R by translations; explicitly,

φ : G×M →M, φ(s, x) = x+ s.

Then for x ∈ R, Ox = R. Hence M/G is a single point, and the action
is transitive and free.

(2) A complete flow φt of a vector–field X on M gives an action of R on
M , namely

(t, x) ∈ R×M 7→ φt(x) ∈M.

(3) Left translation Lg : G → G defines an effective action of G on itself.
It is also transitive.

(4) The coadjoint action of G on g∗ is given by

Ad∗ : (g, α) ∈ G× g∗ 7→ Ad∗g−1(α) =
(
Te(Rg−1 ◦ Lg)

)∗
α ∈ g∗.

Let φ be an action of G on M . For x ∈M the orbit of x is defined by

Ox = {φg(x)|g ∈ G} ⊂M

and the isotropy group of φ at x is given by

Gx = {g ∈ G|φ(g, x) = x} ⊂ G.

An action φ of G on a manifold M defines an equivalence relation on
M by the relation belonging to the same orbit; explicitly, for x, y ∈M , we
write x ∼ y if there exists a g ∈ G such that φ(g, x) = y, that is, if y ∈ Ox.
The set of all orbits M/G is called the group orbit space.
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For example, let M = R2\{0}, G = SO(2), the group of rotations in
plane, and the action of G on M given by([

cos θ − sin θ
sin θ cos θ

]
, (x, y)

)
7−→ (x cos θ − y sin θ, x sin θ + y cos θ).

The action is always free and effective, and the orbits are concentric circles,
thus the orbit space is M/G ' R∗+.

A crucial concept in mechanics is the infinitesimal description of an
action. Let φ : G ×M → M be an action of a Lie group G on a smooth
manifold M . For each ξ ∈ g,

φξ : R×M →M, φξ(t, x) = φ (exp(tξ), x)

is an R−-action on M . Therefore, φexp(tξ) : M → M is a flow on M ; the
corresponding vector–field on M , given by

ξM (x) =
d

dt

∣∣∣∣
t=0

φexp(tξ)(x)

is called the infinitesimal generator of the action, corresponding to ξ in g.

The tangent space at x to an orbit Ox is given by

TxOx = {ξM (x)|ξ ∈ g}.

Let φ : G×M →M be a smooth G−−action. For all g ∈ G, all ξ, η ∈ g

and all α, β ∈ R, we have:
(Adgξ)M = φ∗g−1ξM , [ξM , ηM ] = − [ξ, η]M , and (αξ + βη)M = αξM +

βηM .
Let M be a smooth manifold, G a Lie group and φ : G ×M → M a

G−action on M . We say that a smooth map f : M → M is with respect
to this action if for all g ∈ G,

f ◦ φg = φg ◦ f .

Let f : M → M be an equivariant smooth map. Then for any ξ ∈ g we
have

Tf ◦ ξM = ξM ◦ f.
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3.8.3 Basic Dynamical Lie Groups

Here we give the first two examples of Lie groups, namely Galilei group
and general linear group. Further examples will be given in association
with particular dynamical systems.

3.8.3.1 Galilei Group

The Galilei group is the group of transformations in space and time that
connect those Cartesian systems that are termed ‘inertial frames’ in New-
tonian mechanics. The most general relationship between two such frames
is the following. The origin of the time scale in the inertial frame S′ may
be shifted compared with that in S; the orientation of the Cartesian axes in
S′ may be different from that in S; the origin O of the Cartesian frame in
S′ may be moving relative to the origin O in S at a uniform velocity. The
transition from S to S′ involves ten parameters; thus the Galilei group is a
ten parameter group. The basic assumption inherent in Galilei–Newtonian
relativity is that there is an absolute time scale, so that the only way in
which the time variables used by two different ‘inertial observers’ could pos-
sibly differ is that the zero of time for one of them may be shifted relative
to the zero of time for the other.

Galilei space–time structure involves the following three elements:

(1) World, as a 4D affine space A4. The points of A4 are called world points
or events. The parallel transitions of the world A4 form a linear (i.e.,
Euclidean) space R4.

(2) Time, as a linear map t : R4 → R of the linear space of the world parallel
transitions onto the real ‘time axes’. Time interval from the event a ∈
A4 to b ∈ A4 is called the number t(b−a); if t(b−a) = 0 then the events
a and b are called synchronous. The set of all mutually synchronous
events consists a 3D affine space A3, being a subspace of the world A4.
The kernel of the mapping t consists of the parallel transitions of A4

translating arbitrary (and every) event to the synchronous one; it is a
linear 3D subspace R3 of the space R4.

(3) Distance (metric) between the synchronous events,

ρ(a, b) =‖ a− b ‖, for all a, b ∈ A3,

given by the scalar product in R3. The distance transforms arbitrary
space of synchronous events into the well known 3D Euclidean space
E3.
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The space A4, with the Galilei space–time structure on it, is called
Galilei space. Galilei group is the group of all possible transformations
of the Galilei space, preserving its structure. The elements of the Galilei
group are called Galilei transformations. Therefore, Galilei transformations
are affine transformations of the world A4 preserving the time intervals and
distances between the synchronous events.

The direct product R × R3, of the time axes with the 3D linear space
R3 with a fixed Euclidean structure, has a natural Galilei structure. It is
called Galilei coordinate system.

3.8.3.2 General Linear Group

The group of linear isomorphisms of Rn to Rn is a Lie group of dimension
n2, called the general linear group and denoted Gl(n,R). It is a smooth
manifold, since it is a subset of the vector space L(Rn,Rn) of all linear maps
of Rn to Rn, as Gl(n,R) is the inverse image of R\{0} under the continuous
map A 7→ detA of L(Rn,Rn) to R. The group operation is composition

(A,B) ∈ Gl(n,R)×Gl(n,R) 7→ A ◦B ∈ Gl(n,R)

and the inverse map is

A ∈ Gl(n,R) 7→ A−1 ∈ Gl(n,R).

If we choose a basis in Rn, we can represent each element A ∈ Gl(n,R)
by an invertible (n × n)−-matrix. The group operation is then matrix
multiplication and the inversion is matrix inversion. The identity is the
identity matrix In. The group operations are smooth since the formulas for
the product and inverse of matrices are smooth in the matrix components.

The Lie algebra of Gl(n,R) is gl(n), the vector space L(Rn,Rn) of all
linear transformations of Rn, with the commutator bracket

[A,B] = AB −BA.

For every A ∈ L(Rn,Rn),

γA : t ∈ R 7→γA(t) =
∞∑
i=0

ti

i!
Ai ∈ Gl(n,R)

is a one–parameter subgroup of Gl(n,R), because

γA(0) = I, and γ̇A(t) =
∞∑
i=0

ti−1

(i− 1)!
Ai = γA(t)A.
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Hence γA is an integral curve of the left–invariant vector–field XA. There-
fore, the exponential map is given by

exp : A ∈ L(Rn,Rn) 7→ exp(A) ≡ eA = γA(1) =
∞∑
i=0

Ai

i!
∈ Gl(n,R).

For each A ∈ Gl(n,R) the corresponding adjoint map

AdA : L(Rn,Rn)→ L(Rn,Rn)

is given by

AdAB = A ·B ·A−1.

3.8.4 Application: Lie Groups in Biodynamics

3.8.4.1 Lie Groups of Joint Rotations

Recall (see [Ivancevic and Ivancevic (2006)]) that local kinematics at each
rotational robot or (synovial) human joint, is defined as a group action of
an nD constrained rotational Lie group SO(n) on the Euclidean space Rn.
In particular, there is an action of SO(2)−-group in uniaxial human joints
(cylindrical, or hinge joints, like knee and elbow) and an action of SO(3)−-
group in three–axial human joints (spherical, or ball–and–socket joints, like
hip, shoulder, neck, wrist and ankle). In both cases, SO(n) acts, with its
operators of rotation, on the vector x = {xµ}, (i = 1, 2, 3) of external,
Cartesian coordinates of the parent body–segment, depending, at the same
time, on the vector q = {qs}, (s = 1, · · · , n) on n group–parameters, i.e.,
joint angles.

Each joint rotation R ∈ SO(n) defines a map

R : xµ 7→ ẋµ, R(xµ, qs) = Rqsx
µ,

where Rqs ∈ SO(n) are joint group operators. The vector v = {vs}, (s =
1, · · · , n) of n infinitesimal generators of these rotations, i.e., joint angular
velocities, given by

vs = −[
∂R(xµ, qs)

∂qs
]q=0

∂

∂xµ
,

constitute an nD Lie algebra so(n) corresponding to the joint rotation group
SO(n). Conversely, each joint group operator Rqs , representing a one–
parameter subgroup of SO(n), is defined as the exponential map of the
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corresponding joint group generator vs

Rqs = exp(qsvs). (3.53)

The exponential map (3.53) represents a solution of the joint operator dif-
ferential equation in the joint group–parameter space {qs}

dRqs

dqs
= vsRqs .

Uniaxial Group of Joint Rotations

The uniaxial joint rotation in a single Cartesian plane around a perpen-
dicular axis, e.g., xy−plane about the z axis, by an internal joint angle θ,
leads to the following transformation of the joint coordinates

ẋ = x cos θ − y sin θ, ẏ = x sin θ + y cos θ.

In this way, the joint SO(2)−group, given by

SO(2) =
{
Rθ =

(
cos θ − sin θ
sin θ cos θ

)
|θ ∈ [0, 2π]

}
,

acts in a canonical way on the Euclidean plane R2 by

SO(2) =
((

cos θ − sin θ
sin θ cos θ

)
,

(
x

y

))
7−→

(
x cos θ −y sin θ
x sin θ y cos θ

)
.

Its associated Lie algebra so(2) is given by

so(2) =
{(

0 −t
t 0

)
|t ∈ R

}
,

since the curve γθ ∈ SO(2) given by

γθ : t ∈ R 7−→ γθ(t) =
(

cos tθ − sin tθ
sin tθ cos tθ

)
∈ SO(2),

passes through the identity I2 =
(

1 0
0 1

)
and then

d

dt

∣∣∣∣
t=0

γθ(t) =
(

0 −θ
θ 0

)
,

so that I2 is a basis of so(2), since dim (SO(2)) = 1.
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The exponential map exp : so(2)→ SO(2) is given by

exp
(

0 −θ
θ 0

)
= γθ(1) =

(
cos tθ − sin tθ
sin tθ cos tθ

)
.

The infinitesimal generator of the action of SO(2) on R2, i.e., joint
angular velocity v, is given by

v = −y ∂
∂x

+ x
∂

∂y
,

since

vR2 (x, y) =
d

dt

∣∣∣∣
t=0

exp(tv) (x, y) =
d

dt

∣∣∣∣
t=0

(
cos tv − sin tv
sin tv cos tv

)(
x

y

)
.

The momentum map (see subsection 3.12.3.5 below) J : T ∗R2 → R
associated to the lifted action of SO(2) on T ∗R2 ' R4 is given by

J (x, y, p1, p2) = xpy − ypx, since

J (x, y, px, py) (ξ) = (pxdx+ pydy)(vR2) = −vpxy +−vpyx.

The Lie group SO(2) acts on the symplectic manifold (R4, ω = dpx ∧
dx+ dpy ∧ dx) by

φ

((
cos θ − sin θ
sin θ cos θ

)
, (x, y, px, py)

)
= (x cos θ − y sin θ, x sin θ + y cos θ, px cos θ − py sin θ, px sin θ + py cos θ) .

Three–Axial Group of Joint Rotations

The three–axial SO(3)−group of human–like joint rotations depends on
three parameters, Euler joint angles qi = (ϕ,ψ, θ), defining the rotations
about the Cartesian coordinate triedar (x, y, z) placed at the joint pivot
point. Each of the Euler angles are defined in the constrained range (−π, π),
so the joint group space is a constrained sphere of radius π.

Let G = SO(3) = {A ∈ M3×3(R) : AtA = I3,det(A) = 1} be the
group of rotations in R3. It is a Lie group and dim(G) = 3. Let us isolate
its one–parameter joint subgroups, i.e., consider the three operators of the
finite joint rotations Rϕ, Rψ, Rθ ∈ SO(3), given by

Rϕ =

1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 , Rψ =

 cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ

 , Rθ =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1


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corresponding respectively to rotations about x−axis by an angle ϕ, about
y−axis by an angle ψ, and about z−axis by an angle θ.

The total three–axial joint rotation A is defined as the product of above
one–parameter rotations Rϕ, Rψ, Rθ, i.e., A = Rϕ ·Rψ ·Rθ is equal

A =

 cosψ cosϕ− cos θ sinϕ sinψ cosψ cosϕ+ cos θ cosϕ sinψ sin θ sinψ
− sinψ cosϕ− cos θ sinϕ sinψ − sinψ sinϕ+ cos θ cosϕ cosψ sin θ cosψ

sin θ sinϕ − sin θ cosϕ cos θ

 .
However, the order of these matrix products matters: different order prod-
ucts give different results, as the matrix product is noncommutative product .
This is the reason why Hamilton’s quaternions5 are today commonly used
to parameterize the SO(3)−group, especially in the field of 3D computer
graphics.

The one–parameter rotations Rϕ, Rψ, Rθ define curves in SO(3) start-

ing from I3 =

(
1 0 0
0 1 0
0 0 1

)
. Their derivatives in ϕ = 0, ψ = 0 and θ = 0 belong

to the associated tangent Lie algebra so(3). That is the correspond-
ing infinitesimal generators of joint rotations – joint angular velocities
vϕ, vψ, vθ ∈ so(3) – are respectively given by

vϕ =

[
0 0 0
0 0 −1
0 1 0

]
= −y ∂

∂z
+ z

∂

∂y
, vψ =

[
0 0 1
0 0 0
−1 0 0

]
= −z ∂

∂x
+ x

∂

∂z
,

vθ =

[
0 −1 0
1 1 0
0 0 0

]
= −x ∂

∂y
+ y

∂

∂x
.

Moreover, the elements are linearly independent and so

so(3) =


 0 −a b

a 0 −γ
−b γ 0

 |a, b, γ ∈ R

 .

The Lie algebra so(3) is identified with R3 by associating to each v =
5Recall that the set of Hamilton’s quaternions H represents an extension of the set

of complex numbers C. We can compute a rotation about the unit vector, u by an angle
θ. The quaternion q that computes this rotation is

q =

„
cos

θ

2
, u sin

θ

2

«
.
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(vϕ, vψ, vθ) ∈ R3 the matrix v ∈ so(3) given by v =

[
0 −a b
a 0 −γ
−b γ 0

]
. Then we

have the following identities:

(1) û× v = [û, v]; and
(2) u · v = − 1

2 Tr(û · v).

The exponential map exp : so(3)→ SO(3) is given by Rodrigues relation

exp(v) = I +
sin ‖v‖
‖v‖

v +
1
2

(
sin ‖v‖

2
‖v‖
2

)2

v2,

where the norm ‖v‖ is given by

‖v‖ =
√

(v1)2 + (v2)2 + (v3)2.

The the dual, cotangent Lie algebra so(3)∗, includes the three joint
angular momenta pϕ, pψ, pθ ∈ so(3)∗, derived from the joint velocities v by
multiplying them with corresponding moments of inertia.

Note that the parameterization of SO(3)−rotations is the subject
of continuous research and development in many theoretical and ap-
plied fields of mechanics, such as rigid body, structural, and multi-
body dynamics, robotics, spacecraft attitude dynamics, navigation, im-
age processing, etc. For a complete discussion on the classical attitude
representations see [Friberg (1988); Mladenova (1991); Shuster (1993);
Schaub (1995)]. In addition, a modern vectorial parameterization of fi-
nite rotations, encompassing the mentioned earlier developments as well
as Gibbs, Wiener, and Milenkovic parameterizations [Mladenova (1999);
Bauchau and Trainelli (2003)].

3.8.4.2 Euclidean Groups of Total Joint Motions

Biodynamically realistic joint movement is predominantly rotational, plus
restricted translational (translational motion in human joints is observed
after reaching the limit of rotational amplitude). Gross translation in any
human joint means joint dislocation, which is a severe injury. Obvious
models for uniaxial and triaxial joint motions are special Euclidean groups
of rigid body motions, SE(2) and SE(3), respectively.
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Special Euclidean Group in the Plane

The motion in uniaxial human joints is naturally modelled by the special
Euclidean group in the plane, SE(2). It consists of all transformations of
R2 of the form Az + a, where z, a ∈ R2, and

A ∈ SO(2) =
{

matrices of the form
(

cos θ − sin θ
sin θ cos θ

)}
.

In other words [Marsden and Ratiu (1999)], group SE(2) consists of ma-
trices of the form:

(Rθ, a) =
(
Rθ a
0 I

)
, where a ∈ R2 and Rθ is the rotation matrix:

Rθ =
(

cos θ − sin θ
sin θ cos θ

)
, while I is the 3 × 3 identity matrix. The inverse

(Rθ, a)−1 is given by

(Rθ, a)−1 =
(
Rθ a

0 I

)−1

=
(
R−θ −R−θa

0 I

)
.

The Lie algebra se(2) of SE(2) consists of 3× 3 block matrices of the form(
−ξJ v

0 0

)
, where J =

(
0 1
−1 0

)
, (JT = J−1 = −J),

with the usual commutator bracket. If we identify se(2) with R3 by the
isomorphism (

−ξJ v
0 0

)
∈ se(2) 7−→ (ξ, v) ∈ R3,

then the expression for the Lie algebra bracket becomes

[(ξ, v1, v2), (ζ, w1, w2)] = (0, ζv2 − ξw2, ξw1 − ζv1) = (0, ξJTw − ζJT v),

where v = (v1, v2) and w = (w1, w2).
The adjoint group action of

(Rθ, a)
(
Rθ a

0 I

)
on (ξ, v) =

(
−ξJ v

0 0

)
is given by the group conjugation,(

Rθ a

0 I

)(
−ξJ v

0 0

)(
R−θ −R−θa

0 I

)
=
(
−ξJ ξJa+Rθv

0 0

)
,
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or, in coordinates [Marsden and Ratiu (1999)],

Ad(Rθ,a)(ξ, v) = (ξ, ξJa+Rθv). (3.54)

In proving (3.54) we used the identity RθJ = JRθ. Identify the dual

algebra, se(2)∗, with matrices of the form
( µ

2J 0
α 0

)
, via the nondegenerate

pairing given by the trace of the product. Thus, se(2)∗ is isomorphic to R3

via ( µ
2J 0
α 0

)
∈ se(2)∗ 7−→ (µ, α) ∈ R3,

so that in these coordinates, the pairing between se(2)∗ and se(2) becomes

〈(µ, α), (ξ, v)〉 = µξ + α · v,

that is, the usual dot product in R3. The coadjoint group action is thus
given by

Ad∗
(Rθ,a)

−1(µ, α) = (µ−Rθα · Ja+Rθα). (3.55)

Formula (3.55) shows that the coadjoint orbits are the cylinders T ∗S1
α =

{(µ, α)| ‖α‖ = const} if α 6= 0 together with the points are on the µ−axis.
The canonical cotangent bundle projection π : T ∗S1

α → S1
α is defined as

π(µ, α) = α.

Special Euclidean Group in the 3D Space

The most common group structure in human–like biodynamics is the
special Euclidean group in 3D space, SE(3). It is defined as a semidirect
(noncommutative) product of 3D rotations and 3D translations, SO(3)�R3.

The Heavy Top

As a starting point consider a rigid body (see (3.12.3.2) below) moving
with a fixed point but under the influence of gravity. This problem still has a
configuration space SO(3), but the symmetry group is only the circle group
S1, consisting of rotations about the direction of gravity. One says that
gravity has broken the symmetry from SO(3) to S1. This time, eliminating
the S1 symmetry mysteriously leads one to the larger Euclidean group
SE(3) of rigid motion of R3. Conversely, we can start with SE(3) as
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the configuration space for the rigid–body and ‘reduce out’ translations to
arrive at SO(3) as the configuration space (see [Marsden and Ratiu (1999)]).

The equations of motion for a rigid body with a fixed point in a gravita-
tional field give an interesting example of a system that is Hamiltonian (see
(3.12.3.2)) relative to a Lie–Poisson bracket (see (3.13.2)). The underlying
Lie algebra consists of the algebra of infinitesimal Euclidean motions in R3.

The basic phase–space we start with is again T ∗SO(3), parameterized by
Euler angles and their conjugate momenta. In these variables, the equations
are in canonical Hamiltonian form. However, the presence of gravity breaks
the symmetry, and the system is no longer SO(3) invariant, so it cannot
be written entirely in terms of the body angular momentum p. One also
needs to keep track of Γ, the ‘direction of gravity’ as seen from the body.
This is defined by Γ = A−1k, where k points upward and A is the element
of SO(3) describing the current configuration of the body. The equations
of motion are

ṗ1 =
I2 − I3
I2I3

p2p3 +Mgl(Γ2χ3 − Γ3χ2),

ṗ2 =
I3 − I1
I3I1

p3p1 +Mgl(Γ3χ1 − Γ1χ3),

ṗ3 =
I1 − I2
I1I2

p1p2 +Mgl(Γ1χ2 − Γ2χ1),

and Γ̇ = Γ× Ω,

where Ω is the body’s angular velocity vector, I1, I2, I3 are the body’s prin-
cipal moments of inertia, M is the body’s mass, g is the acceleration of
gravity, χ is the body fixed unit vector on the line segment connecting
the fixed point with the body’s center of mass, and l is the length of this
segment.

The Euclidean Group and Its Lie Algebra

An element of SE(3) is a pair (A, a) where A ∈ SO(3) and a ∈ R3.

The action of SE(3) on R3 is the rotation A followed by translation by the
vector a and has the expression

(A, a) · x = Ax+ a.

Using this formula, one sees that multiplication and inversion in SE(3) are
given by

(A, a)(B, b) = (AB,Ab+ a) and (A, a)−1 = (A−1,−A−1a),
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for A,B ∈ SO(3) and a, b ∈ R3. The identity element is (l, 0).
The Lie algebra of the Euclidean group SE(3) is se(3) = R3 × R3 with

the Lie bracket

[(ξ, u), (η, v)] = (ξ × η, ξ × v − η × u). (3.56)

The Lie algebra of the Euclidean group has a structure that is a special
case of what is called a semidirect product. Here it is the product of the group
of rotations with the corresponding group of translations. It turns out that
semidirect products occur under rather general circumstances when the
symmetry in T ∗G is broken.

The dual Lie algebra of the Euclidean group SE(3) is se(3)∗ = R3×R3

with the same Lie bracket (3.56). For the further details on adjoint orbits
in se(3) as well as coadjoint orbits in se(3)∗ see [Marsden and Ratiu (1999)].

Symplectic Group in Hamiltonian Mechanics

Let J =
(

0 I

−I 0

)
, with I the n × n identity matrix. Now, A ∈

L(R2n,R2n) is called a symplectic matrix if ATJ A = J . Let Sp(2n,R)
be the set of 2n × 2n symplectic matrices. Taking determinants of the
condition ATJ A = J gives detA = ±1, and so A ∈ GL(2n,R). Further-
more, if A,B ∈ Sp(2n,R), then (AB)TJ(AB) = BTATJAB = J . Hence,
AB ∈ Sp(2n,R), and if ATJ A = J , then JA = (AT )−1J = (A−1)TJ ,
so J = (A− 1)T JA−1, or A−1 ∈ Sp(2n,R). Thus, Sp(2n,R) is a group
[Marsden and Ratiu (1999)].

The symplectic Lie group

Sp(2n,R) =
{
A ∈ GL(2n,R) : ATJ A = J

}
is a noncompact, connected Lie group of dimension 2n2 +n. Its Lie algebra

sp(2n,R) =
{
A ∈ L(R2n,R2n) : ATJ A = J = 0

}
,

called the symplectic Lie algebra, consists of the 2n× 2n matrices A satis-
fying ATJ A = 0 [Marsden and Ratiu (1999)].

Consider a particle of mass m moving in a potential V (q), where qi =
(q1, q2, q3) ∈ R3. Newtonian second law states that the particle moves along
a curve q(t) in R3 in such a way that mq̈i = − gradV (qi). Introduce the
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momentum pi = mq̇i, and the energy

H(q, p) =
1

2m

3∑
i=1

p2
i + V (q).

Then

∂H

∂qi
=
∂V

∂qi
= −mq̈i = −ṗi, and

∂H

∂pi
=

1
m
pi = q̇i, (i = 1, 2, 3),

and hence Newtonian law F = mq̈i is equivalent to Hamiltonian equa-
tions

q̇i =
∂H

∂pi
, ṗi = −∂H

∂qi
.

Now, writing z = (qi, pi) [Marsden and Ratiu (1999)],

J gradH(z) =
(

0 I

−I 0

)( ∂H
∂qi
∂H
∂pi

)
=
(
q̇i, ṗi

)
= ż,

so Hamiltonian equations read

ż = J gradH(z). (3.57)

Now let f : R3 × R3 → R3 × R3 and write w = f(z). If z(t) satisfies
Hamiltonian equations (3.57) then w(t) = f(z(t)) satisfies ẇ = AT ż, where
AT = [∂wi/∂zj ] is the Jacobian matrix of f . By the chain rule,

ẇ = ATJ grad
z

H(z) = ATJ A grad
w

H(z(w)).

Thus, the equations for w(t) have the form of Hamiltonian equations with
energy K(w) = H(z(w)) iff ATJ A = J , that is, iff A is symplectic. A
nonlinear transformation f is canonical iff its Jacobian matrix is symplectic.
Sp(2n,R) is the linear invariance group of classical mechanics [Marsden and
Ratiu (1999)].
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3.8.4.3 Group Structure of Biodynamical Manifold

Purely Rotational Biodynamical Manifold

Kinematics of an n−-segment human–body chain (like arm, leg or
spine) is usually defined as a map between external coordinates (usually,
end–effector coordinates) xr (r = 1, . . . , n) and internal joint coordinates
qi (i = 1, . . . , N) (see [Ivancevic and Snoswell (2001); Ivancevic (2002);
Ivancevic and Pearce (2001b); Ivancevic and Pearce (2001b); Ivancevic
(2005)]). The forward kinematics are defined as a nonlinear map xr =
xr(qi) with a corresponding linear vector functions dxr = ∂xr/∂qi dqi of
differentials: and ẋr = ∂xr/∂qi q̇i of velocities. When the rank of the
configuration–dependent Jacobian matrix J ≡ ∂xr/∂qi is less than n the
kinematic singularities occur; the onset of this condition could be detected
by the manipulability measure. The inverse kinematics are defined con-
versely by a nonlinear map qi = qi(xr) with a corresponding linear vector
functions dqi = ∂qi/∂xr dxr of differentials and q̇i = ∂qi/∂xr ẋr of ve-
locities. Again, in the case of redundancy (n < N), the inverse kinematic
problem admits infinite solutions; often the pseudo–inverse configuration–
control is used instead: q̇i = J∗ ẋr, where J∗ = JT (J JT )−1 denotes the
Moore–Penrose pseudo–inverse of the Jacobian matrix J .

Humanoid joints, that is, internal coordinates qi (i = 1, . . . , N), con-
stitute a smooth configuration manifold M , described as follows. Uniax-
ial, ‘hinge’ joints represent constrained, rotational Lie groups SO(2)icnstr,
parameterized by constrained angles qicnstr ≡ qi ∈ [qimin, q

i
max]. Three–

axial, ‘ball–and–socket’ joints represent constrained rotational Lie groups
SO(3)icnstr, parameterized by constrained Euler angles qi = q

φi
cnstr (in the

following text, the subscript ‘cnstr’ will be omitted, for the sake of simplic-
ity, and always assumed in relation to internal coordinates qi).

All SO(n)−-joints are Hausdorff C∞−-manifolds with atlases (Uα, uα);
in other words, they are paracompact and metrizable smooth manifolds,
admitting Riemannian metric.

Let A and B be two smooth manifolds described by smooth atlases
(Uα, uα) and (Vβ , vβ), respectively. Then the family (Uα × Vβ , uα × vβ :
Uα × Vβ → Rm × Rn)(α, β) ∈ A × B is a smooth atlas for the direct
product A × B. Now, if A and B are two Lie groups (say, SO(n)), then
their direct product G = A × B is at the same time their direct product
as smooth manifolds and their direct product as algebraic groups, with the
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product law

(a1, b1)(a2, b2) = (a1a2, b1b2), (a1,2 ∈ A, b1,2 ∈ B).

Generalizing the direct product to N rotational joint groups, we can
draw an anthropomorphic product–tree (see Figure 3.6) using a line segment
‘–’ to represent direct products of human SO(n)−-joints. This is our basic
model of the biodynamical configuration manifold M .

Fig. 3.6 Purely rotational, whole–body biodynamical manifold, with a single

SO(3)−joint representing the whole spinal movability.

Let TqM be a tangent space to M at the point q. The tangent bundle
TM represents a union ∪q∈MTqM , together with the standard topology
on TM and a natural smooth manifold structure, the dimension of which
is twice the dimension of M . A vector–field X on M represents a section
X : M → TM of the tangent bundle TM .

Analogously let T ∗qM be a cotangent space to M at q, the dual to
its tangent space TqM . The cotangent bundle T ∗M represents a union
∪q∈MT ∗qM , together with the standard topology on T ∗M and a natural
smooth manifold structure, the dimension of which is twice the dimension
of M . A 1−form θ on M represents a section θ : M → T ∗M of the
cotangent bundle T ∗M .

We refer to the tangent bundle TM of biodynamical configuration man-
ifold M as the velocity phase–space manifold, and to its cotangent bundle
T ∗M as the momentum phase–space manifold.
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Reduction of the Rotational Biodynamical Manifold

The biodynamical configuration manifold M (Figure 3.6) can be (for
the sake of the brain–like motor control) reduced to N−-torus TN , in three
steps, as follows.

First, a single three–axial SO(3)−joint can be reduced to the direct
product of three uniaxial SO(2)−joints, in the sense that three hinge joints
can produce any orientation in space, just as a ball–joint can. Algebraically,
this means reduction (using symbol ‘&’) of each of the three SO(3) rotation
matrices to the corresponding SO(2) rotation matrices1 0 0

0 cosφ − sinφ
0 sinφ cosφ

 & ( cosφ − sinφ
sinφ cosφ

)

 cosψ 0 sinψ
0 1 0

− sinψ 0 cosψ

 & ( cosψ sinψ
− sinψ cosψ

)

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 & ( cos θ − sin θ
sin θ cos θ

)

In this way we can set the reduction equivalence relation SO(3) &
SO(2)�SO(2)�SO(2), where ‘�’ denotes the noncommutative semidirect
product (see (3.8.4.2) above).

Second, we have a homeomorphism: SO(2) ∼ S1, where S1 denotes the
constrained unit circle in the complex plane, which is an Abelian Lie group.

Third, let IN be the unit cube [0, 1]N in RN and ‘∼’ an equivalence
relation on RN get by ‘gluing’ together the opposite sides of IN , preserving
their orientation. The manifold of human–body configurations (Figure 3.6)
can be represented as the quotient space of RN by the space of the integral
lattice points in RN , that is a constrained ND torus TN (3.221),

RN/ZN = IN/ ∼∼=
N∏
i=1

S1
i ≡ {(qi, i = 1, . . . , N) : mod 2π} = TN . (3.58)

Since S1 is an Abelian Lie group, its N−-fold tensor product TN is also an
Abelian Lie group, the toral group, of all nondegenerate diagonal N × N
matrices. As a Lie group, the biodynamical configuration space M ≡ TN
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has a natural Banach manifold structure with local internal coordinates
qi ∈ U , U being an open set (chart) in TN .

Conversely by ‘ungluing’ the configuration space we get the primary unit
cube. Let ‘∼∗’ denote an equivalent decomposition or ‘ungluing’ relation.
By the Tychonoff product–topology Theorem, for every such quotient space
there exists a ‘selector’ such that their quotient models are homeomorphic,
that is, TN/ ∼∗≈ AN/ ∼∗. Therefore IN represents a ‘selector’ for the
configuration torus TN and can be used as an N−-directional ‘command–
space’ for the topological control of human motion. Any subset of DOF
on the configuration torus TN representing the joints included in human
motion has its simple, rectangular image in the command space – selector
IN . Operationally, this resembles what the brain–motor–controller, the
cerebellum, actually performs on the highest level of human motor control.

The Complete Biodynamical Manifold

The full kinematics of a whole human–like body can be split down into
five kinematic chains: one for each leg and arm, plus one for spine with the
head. In all five chains internal joint coordinates, namely n1 constrained
rotations xkrt together with n2 of even more constrained translations xjtr
(see Figure 3.7), constitute a smooth nD anthropomorphic configuration
manifold M , with local coordinates xi, (i = 1, . . . , n). That is, the motion
space in each joint is defined as a semidirect (noncommutative) product of
the Lie group SO(n) of constrained rotations and a corresponding Lie group
Rn of even more restricted translations. More precisely, in each movable
human–like joint we have an action of the constrained special Euclidean
SE(3) group (see (3.8.4.2) above). The joints themselves are linked by
direct (commutative) products.

Realistic Human Spine Manifold

The high–resolution human spine manifold is a dynamical chain con-
sisting of 25 constrained SE(3)− joints. Each movable spinal joint has
6 DOF: 3 dominant rotations, (performed first in any free spinal move-
ment), restricted to about 7 angular degrees and 3 secondary translations
(performed after reaching the limit of rotational amplitude), restricted to
about 5 mm (see Figure 3.8).

Now, SE(3) = SO(3) � R3 is a non–compact group, so there is no any
natural metric given by the kinetic energy on SE(3), and consequently, no
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Fig. 3.7 A medium–resolution, whole–body biodynamical manifold, with just a single

SE(3)−joint representing the spinal movability.

Fig. 3.8 The high–resolution human spine manifold is a dynamical chain consisting of
25 constrained SE(3)−joints.

natural controls in the sense of geodesics on SE(3). However, both of its
subgroups, SO(3) and R3, are compact with quadratic metric forms defined
by standard line element gijdqidqj , and therefore admit optimal muscular–
like controls in the sense of geodesics (see section 3.10.1.2 below).
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3.8.5 Application: Dynamical Games on SE(n)−Groups

In this section we propose a general approach to modelling conflict res-
olution manoeuvres for land, sea and airborne vehicles, using dynami-
cal games on Lie groups. We use the generic name ‘vehicle’ to rep-
resent all planar vehicles, namely land and sea vehicles, as well as
fixed altitude motion of aircrafts (see, e.g., [Lygeros et. al. (1998);
Tomlin et. al. (1998)]). First, we elaborate on the two–vehicle conflict
resolution manoeuvres, and after that discuss the multi–vehicle manoeu-
vres.

We explore special features of the dynamical games solution when the
underlying dynamics correspond to left–invariant control systems on Lie
groups. We show that the 2D (i.e., planar) motion of a vehicle may be
modelled as a control system on the Lie group SE(2). The proposed al-
gorithm surrounds each vehicle with a circular protected zone, while the
simplification in the derivation of saddle and Nash strategies follows from
the use of symplectic reduction techniques [Marsden and Ratiu (1999)]. To
model the two–vehicle conflict resolution, we construct the safe subset of
the state–space for one of the vehicles using zero–sum non–cooperative dy-
namic game theory [Basar and Olsder (1995)] which we specialize to the
SE(2) group. If the underlying continuous dynamics are left–invariant con-
trol systems, reduction techniques can be used in the computation of safe
sets.

3.8.5.1 Configuration Models for Planar Vehicles

The configuration of each individual vehicle is described by an element of
the Lie group SE(2) of rigid–body motions in R2. Let gi ∈ SE(2) denote
the configurations of vehicles labelled i, with i = 1, 2. The motion of each
vehicle may be modelled as a left–invariant vector–field on SE(2):

ġi = giXi, (3.59)

where the vector–fields Xi belong to the vector space se(2), the Lie algebra
associated with the group SE(2).

Each gi ∈ SE(2) can be represented in standard local coordinates
(xi, yi, θi) as

gi =

 cos θi − sin θi xi
sin θi cos θi yi

0 0 1

 ,
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where xi, yi is the position of vehicle i and θi is its orientation, or heading.
The associated Lie algebra is se(2), with Xi ∈ se(2) represented as

Xi =

 0 −ωi vi
ωi 0 0
0 0 0

 ,
where vi and ωi represent the translational (linear) and rotational (angular)
velocities, respectively.

Now, to determine dynamics of the relative configuration of two vehicles,
we perform a change (transformation) of coordinates, to place the identity
element of the group SE(2) on vehicle 1. If grel ∈ SE(2) denotes the
relative configuration of vehicle 2 with respect to vehicle 1, then

g2 = g1g
rel =⇒ grel = g−1

1 g2.

Differentiation with respect to time yields the dynamics of the relative
configuration:

ġrel = grelX2 −X1g
rel,

which expands into:

ẋrel = −v1 + v2 cos θrel + ω1y
rel,

ẏrel = v2 sin θrel − ω1x
rel,

θ̇
rel

= ω2 − ω1.

3.8.5.2 Two–Vehicles Conflict Resolution Manoeuvres

Next, we seek control strategies for each vehicle, which are safe under (possi-
ble) uncertainty in the actions of neighbouring vehicle. For this, we expand
the dynamics of two vehicles (3.59),

ġ1 = g1X1, ġ2 = g2X2,

and write it in the matrix form as

ġ = gX, (3.60)

with

g =
[
g1 0
0 g2

]
, X =

[
X1 0
0 X2

]
,
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in which g is an element in the configuration manifold M = SE(2)×SE(2),
while the vector–fields Xi ∈ se(2) × se(2) are linearly parameterised by
velocity inputs (ω1, v1) ∈ R2 and (ω2, v2) ∈ R2.

The goal of each vehicle is to maintain safe operation, meaning that
(i) the vehicles remain outside of a specified target set T with boundary

∂T , defined by

T = {g ∈M |l(g) < 0},

where l(g) is a differentiable circular function,

l(g) = (x2 − x1)2 + (y2 − y1)2 − ρ2

(with ρ denoting the radius of a circular protected zone) defines the mini-
mum allowable lateral separation between vehicles; and

(ii)

dl(g) 6= 0 on ∂T = {g ∈M |l(g) = 0},

where d represents the exterior derivative (a unique generalization of the
gradient, divergence and curl).

Now, due to possible uncertainty in the actions of vehicle 2, the safest
possible strategy of vehicle 1 is to drive along a trajectory which guaran-
tees that the minimum allowable separation with vehicle 2 is maintained
regardless of the actions of vehicle 2. We therefore formulate this problem
as a zero–sum dynamical game with two players: control vs. disturbance.
The control is the action of vehicle 1,

u = (ω1, v1) ∈ U,

and the disturbance is the action of vehicle 2,

d = (ω2, v2) ∈ D.

Here the control and disturbance sets, U and D, are defined as

U = ([ωmin
1 , ωmax

1 ], [vmin
1 , vmax

1 ]),

D = ([ωmin
2 , ωmax

2 ], [vmin
2 , vmax

2 ])

and the corresponding control and disturbance functional spaces, U and D
are defined as:

U = {u(·) ∈ PC0(R2)|u(t) ∈ U, t ∈ R},
D = {d(·) ∈ PC0(R2)|d(t) ∈ U, t ∈ R},
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where PC0(R2) is the space of piecewise continuous functions over R2.
We define the cost of a trajectory g(t) which starts at state g at initial

time t ≤ 0, evolves according to (3.60) with input (u(·), d(·)), and ends at
the final state g(0) as:

J(g, u(·), d(·), t) : SE(2)× SE(2)× U ×D × R− → R,
such that J(g, u(·), d(·), t) = l(g(0)), (3.61)

where 0 is the final time (without loss of generality). Thus the cost depends
only on the final state g(0) (the Lagrangian, or running cost, is identically
zero). The game is won by vehicle 1 if the terminal state g(0) is either
outside T or on ∂T (i.e., J(g, 0) ≥ 0), and is won by vehicle 2 otherwise.

This two–player zero–sum dynamical game on SE(2) is defined as fol-
lows. Consider the matrix system (3.60), ġ = gX, over the time interval
[t, 0] where t < 0 with the cost function J(g, u(·), d(·), t) defined by (3.61)
As vehicle 1 attempts to maximize this cost assuming that vehicle 2 is act-
ing blindly, the optimal control action and worst disturbance actions are
calculated as

u∗ = arg max
u∈U

min
d∈D

J(g, u(·), d(·), t), d∗ = arg min
d∈D

max
u∈U

J(g, u(·), d(·), t).

The game is said to have a saddle solution (u∗,d∗) if the resulting optimal
cost J∗(g, t) does not depend on the order of play, i.e., on the order in which
the maximization and minimization is performed:

J∗(g, t) = max
u∈U

min
d∈D

J(g, u(·), d(·), t) = min
d∈D

max
u∈U

J(g, u(·), d(·), t).

Using this saddle solution we calculate the ‘losing states’ for vehicle 1, called
the predecessor Pret(T ) of the target set T ,

Pret(T ) = {g ∈M |J(g, u∗(·), d(·), t) < 0}.

3.8.5.3 Symplectic Reduction and Dynamical Games on SE(2)

Since vehicles 1 and 2 have dynamics given by left–invariant control systems
on the Lie group SE(2), we have

X1 = ξ1ω1 + ξ2v1, X2 = ξ1ω2 + ξ2v2,
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with ξ1, ξ2 being two of the three basis elements for the tangent Lie algebra
se(2) given by

ξ1 =

0 −1 0
1 0 0
0 0 0

 , ξ2 =

0 0 1
1 0 0
0 0 0

 , ξ3 =

0 0 0
1 0 1
0 0 0

 .
If p1 (resp. p2) is a cotangent vector–field to SE(2) at g1 (resp. g2), belong-
ing to the cotangent (dual) Lie algebra se(2)∗, we can define the momentum
functions for both vehicles:

P 1
1 = < p1, g1ξ

1 >,P 2
1 =< p1, g1ξ

2 >,P 3
1 =< p1, g1ξ

3 >,

P 1
2 = < p2, g2ξ

1 >,P 2
2 =< p2, g2ξ

2 >,P 3
2 =< p2, g2ξ

3 >,

which can be compactly written as

P ji =< pi, giξ
j > .

Defining p = (p1, p2) ∈ se(2)∗ × se(2)∗, the optimal cost for the two-player,
zero-sum dynamical game is given by

J∗(g, t) = max
u∈U

min
d∈D

J(g, u(·), d(·), t) = max
u∈U

min
d∈D

l(g(0)).

The Hamiltonian H(g, p, u, d) is given by

H(g, p, u, d) = P 1
1 ω1 + P 2

1 v1 + P 1
2 ω1 + P 2

2 v1

for control and disturbance inputs (ω1, v1) ∈ U and (ω2, v2) ∈ D as defined
above. It follows that the optimal Hamiltonian H∗(g, p), defined on the
cotangent bundle T ∗SE(2), is given by

H∗(g, p) = P 1
1

ωmax
1 + ωmin

1

2
+ P 1

2

ωmax
2 + ωmin

2

2
+ |P 1

1 |
ωmax

1 − ωmin
1

2

− |P 1
1 |
ωmax

2 − ωmin
2

2
+ P 2

1

vmax
1 + vmin

1

2
+ P 2

2

vmax
2 + vmin

2

2

+ |P 2
1 |
vmax
1 − vmin

1

2
− |P 2

1 |
vmax
2 − vmin

2

2

and the saddle solution (u∗, d∗) is given by

u∗ = arg max
u∈U

min
d∈D

H(g, p, u, d), d∗ = arg min
d∈D

max
u∈U

H(g, p, u, d). (3.62)

Note that H(g, p, u, d) and H∗(g, p) do not depend on the state g and
costate p directly, rather through the momentum functions P j1 , P

j
2 . This

is because the dynamics are determined by left–invariant vector–fields on
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the Lie group and the Lagrangian is state independent [Marsden and Ratiu
(1999)].

The optimal Hamiltonian H∗(g, p) determines a 12D Hamiltonian
vector–field XH∗ on the symplectic manifold T ∗M = SE(2) × SE(2) ×
se(2)∗ × se(2)∗ (which is the cotangent bundle of the configuration mani-
fold M), defined by Hamiltonian equations

XH∗ : ġ =
∂H∗(g, p)

∂p
, ṗ = −∂H

∗(g, p)
∂g

,

with initial condition at time t being g(t) = g and final condition at time 0
being p(0) = dl(g(0)). In general, to solve for the saddle solution (3.62), one
needs to solve the ODE system for all states. However since the original sys-
tem on M = SE(2)×SE(2) is left–invariant, it induces generic symmetries
in the Hamiltonian dynamics on T ∗M , referred to as Marsden–Weinstein
reduction of Hamiltonian systems on symplectic manifolds, see [Marsden
and Ratiu (1999)]. In general for such systems one only needs to solve
an ODE system with half of the dimensions of the underlying symplectic
manifold.

For the two-vehicle case we only need to solve an ODE system with 6
states. That is exactly given by the dynamics of the 6 momentum functions

Ṗ ji = LXH∗P
j
i = {P ji ,H

∗(g, p)}, (3.63)

for i, j = 1, 2, which is the Lie derivative of P ji with respect to the Hamil-
tonian vector–field XH∗ . In the equation (3.63), the bracket {·, ·} is the
Poisson bracket [Ivancevic and Pearce (2001a)], giving the commutation
relations:

{P 1
1 , P

2
1 } = P 3

1 , {P 2
1 , P

3
1 } = 0, {P 3

1 , P
1
1 } = P 2

1 ,

{P 1
2 , P

2
2 } = P 3

2 , {P 2
2 , P

3
2 } = 0, {P 3

2 , P
1
2 } = P 2

2 .

Using these commutation relations, equation (3.63) can be written explic-
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itly:

Ṗ 1
1 = P 3

1

(
vmax
1 + vmin

1

2
+ sign(P 2

1 )
vmax
1 + vmin

1

2

)
,

Ṗ 2
1 = P 3

1

(
−ω

max
1 + ωmin

1

2
− sign(P 1

1 )
ωmax

1 − ωmin
1

2

)
,

Ṗ 3
1 = P 2

1

(
ωmax

1 + ωmin
1

2
+ sign(P 1

1 )
ωmax

1 − ωmin
1

2

)
,

Ṗ 1
2 = P 3

2

(
vmax
2 + vmin

2

2
+ sign(P 2

2 )
vmax
2 + vmin

2

2

)
,

Ṗ 2
2 = P 3

2

(
−ω

max
2 + ωmin

2

2
− sign(P 1

2 )
ωmax

2 − ωmin
2

2

)
,

Ṗ 3
2 = P 2

2

(
ωmax

2 + ωmin
2

2
+ sign(P 1

2 )
ωmax

2 − ωmin
2

2

)
.

The final conditions for the variables P j1 (t) and P j2 (t) are get from the
boundary of the safe set as

P j1 (0) =< d1l(g), g1ξj >, P j2 (0) =< d2l(g), g2ξj >,

where d1 is the derivative of l taken with respect to its first argument g1 only
(and similarly for d2). In this way, P j1 (t) and P j2 (t) are get for t ≤ 0. Once
this has been calculated, the optimal input u∗(t) and the worst disturbance
d∗(t) are given respectively as

u∗(t) =


ω∗1(t) =

{
ωmax

1 if P 1
1 (t) > 0

ωmin
1 if P 1

1 (t) < 0

v∗1(t) =
{
vmax
1 if P 2

1 (t) > 0
vmin
1 if P 2

1 (t) < 0

d∗(t) =


ω∗2(t) =

{
ωmax

2 if P 1
2 (t) > 0

ωmin
2 if P 1

2 (t) < 0

v∗2(t) =
{
vmax
2 if P 2

2 (t) > 0
vmin
2 if P 2

2 (t) < 0

.

3.8.5.4 Nash Solutions for Multi–Vehicle Manoeuvres

The methodology introduced in the previous sections can be generalized to
find conflict–resolutions for multi–vehicle manoeuvres. Consider the three–
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vehicle dynamics:

ġ = gX, (3.64)

with

g =

 g1 0 0
0 g2 0
0 0 g3

 , X =

X1 0 0
0 X2 0
0 0 X3

 ,
where g is an element in the configuration space M = SE(2) × SE(2) ×
SE(2) and X ∈ se(2) × se(2) × se(2) is linearly parameterised by inputs
(ω1, v1), (ω2, v2) and (ω3, v3).

Now, the target set T is defined as

T = {g ∈M |l1(g) < 0 ∨ l2(g) < 0 ∨ l3(g) < 0},

where

l1(g) = min{(x2 − x1)2 + (y2 − y1)2 − ρ2, (x3 − x1)2 + (y3 − y1)2 − ρ2},
l2(g) = min{(x3 − x2)2 + (y3 − y2)2 − ρ2, (x1 − x2)2 + (y1 − y2)2 − ρ2},
l3(g) = min{(x2 − x3)2 + (y2 − y3)2 − ρ2, (x1 − x3)2 + (y1 − y3)2 − ρ2}.

The control inputs u = (u1, u2, u3) are the actions of vehicle 1, 2 and 3:

ui = (ωi, vi) ∈ Ui,

where Ui are defined as

Ui = ([ωmin
i , ωmax

i ], [vmin
i , vmax

i ]).

Clearly, this can be generalized to N vehicles.
The cost functions Ji(g, {ui(·)}, t) are defined as

Ji(g, {ui(·)}, t) :
N∏
i=1

SEi(2)×
N∏
i=1

Ui × R− → R,

such that Ji(g, {ui(·)}, t) = li(g(0)).
The simplest non–cooperative solution strategy is a so–called non–

coopera-tive Nash equilibrium (see e.g., [Basar and Olsder (1995)]). A set
of controls u∗i , (i = 1, ..., N) is said to be a Nash strategy, if for each
player modification of that strategy under the assumption that the others
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play their Nash strategies results in a decrease in his payoff, that is for
i = 1, ..., N , and ∀ui(·),

Ji(u1, ..., ui, ..., uN ) ≤ Ji(u∗1, ..., u∗i , ..., u∗N ), (u 6= u∗).

(Note that Nash equilibria may not be unique. It is also easy to see that
for the two–player zero–sum game, a Nash equilibrium is a saddle solution
with J = J1 = −J2.)

For N vehicles, the momentum functions are defined as in the two–
vehicle case:

P ji =< pi, giξ
j >,

with pi ∈ se(2)∗ for i = 1, ..., N and ξj defined as above.
Then the Hamiltonian H(g, p, u1, ...uN ) is given by

H(g, p, u1, ...uN ) = P 1
i ωi + P 2

i vi.

The first case we consider is one in which all the vehicles are cooperating,
meaning that each tries to avoid conflict assuming the others are doing the
same. In this case, the optimal Hamiltonian H∗(g, p) is

H∗(g, p) = max
ui∈Ui

H(g, p, u1, ...uN ).

For example, if N = 3, one may solve for (u∗1, u
∗
2, u

∗
3), on the 9D quotient

space T ∗M/M, so that the optimal control inputs are given as

u∗i (t) =


ω∗i (t) =

{
ωmax
i if P 1

i (t) > 0
ωmin
i if P 1

i (t) < 0

v∗i (t) =
{
vmax
i if P 2

i (t) > 0
vmin
i if P 2

i (t) < 0

.

One possibility for the optimal Hamiltonian corresponding to the non–
cooperative case is

H∗(g, p) = max
u1∈U1

max
u2∈U2

max
u3∈U3

H(g, p, u1, u2, u3).

3.8.6 Classical Lie Theory

In this section we present the basics of classical theory of Lie groups and
their Lie algebras, as developed mainly by Sophus Lie, Elie Cartan, Fe-
lix Klein, Wilhelm Killing and Hermann Weyl. For more comprehensive
treatment see e.g., [Chevalley (1955); Helgason (2001)].
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3.8.6.1 Basic Tables of Lie Groups and Their Lie Algebras

One classifies Lie groups regarding their algebraic properties (simple,
semisimple, solvable, nilpotent, Abelian), their connectedness (connected
or simply connected) and their compactness (see Tables A.1–A.3). This
is the content of the Hilbert 5th problem (see, e.g., [Weisstein (2004);
Wikipedia (2005)]).
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Some real Lie groups and their Lie algebras:

Lie

group

Description Remarks Lie

algb.

Description dim

/R
Rn Euclidean space

with addition

Abelian, simply

connected, not

compact

Rn the Lie bracket is

zero

n

R× nonzero real
numbers with

multiplication

Abelian, not con-
nected, not com-

pact

R the Lie bracket is
zero

1

R>0 positive real

numbers with
multiplication

Abelian, simply

connected, not
compact

R the Lie bracket is

zero

1

S1 =

R/Z
complex numbers

of absolute value

1, with multipli-
cation

Abelian, con-

nected, not sim-

ply connected,
compact

R the Lie bracket is

zero

1

H× non–zero quater-
nions with multi-

plication

simply con-
nected, not com-

pact

H quaternions, with
Lie bracket the

commutator

4

S3 quaternions of

absolute value 1,
with multiplica-

tion; a 3−sphere

simply

connected, com-
pact, simple and

semi–simple, iso-

morphic
to SU(2), SO(3)

and to Spin(3)

R3 real 3−vectors,

with Lie bracket
the cross prod-

uct; isomorphic

to su(2) and to
so(3)

3

GL(n,R) general linear

group: invertible
n−by-n real ma-

trices

not connected,

not compact

M(n,R) n−by-n matrices,

with Lie bracket
the commutator

n2

GL+(n,R) n−by-n real ma-

trices with posi-
tive determinant

simply con-

nected, not com-
pact

M(n,R) n−by-n matrices,

with Lie bracket
the commutator

n2
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Classical real Lie groups and their Lie algebras:

Lie

group

Description Remarks Lie

algb.

Description dim

/R
SL(n,R) special

linear group: real

matrices with de-
terminant 1

simply con-

nected, not com-

pact if n > 1

sl(n,R) square matri-

ces with trace 0,

with Lie bracket
the commutator

n2−
1

O(n,R) orthogonal

group: real

orthogonal matri-
ces

not connected,

compact

so(n,R) skew–symmetric

square real ma-

trices, with Lie
bracket the com-

mutator; so(3,R)
is iso-
morphic to su(2)

and to R3 with
the cross product

n(n−
1)/2

SO(n,R) special orthogo-
nal group: real

orthogonal matri-

ces with determi-
nant 1

connected, com-
pact, for n ≥ 2:

not simply con-

nected, for n = 3
and n ≥ 5: sim-

ple and semisim-
ple

so(n,R) skew–symmetric
square real ma-

trices, with Lie

bracket the com-
mutator

n(n−
1)/2

Spin(n) spinor group simply con-
nected, compact,

for n = 3 and
n ≥ 5: simple

and semisimple

so(n,R) skew–symmetric
square real ma-

trices, with Lie
bracket the com-

mutator

n(n−
1)/2

U(n) unitary group:

complex unitary

n−by-n matrices

isomorphic to S1

for n =

1, not simply con-
nected, compact

u(n) square complex

matrices A satis-

fying A = −A∗,
with Lie bracket

the commutator

n2

SU(n) special uni-

tary group: com-
plex uni-

tary n−by-n ma-

trices with deter-
minant 1

simply con-

nected, compact,
for n ≥ 2: simple

and semisimple

su(n) square com-

plex matrices A
with trace 0 sat-

isfying A = −A∗,
with Lie bracket
the commutator

n2−
1
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Basic complex Lie groups and their Lie algebras:6

Lie
group

Description Remarks Lie
algb.

Description dim
/C

Cn group operation

is addition

Abelian, simply

connected, not
compact

Cn the Lie bracket is

zero

n

C× nonzero complex

numbers with

multiplication

Abelian, not sim-

ply connected,

not compact

C the Lie bracket is

zero

1

GL(n,C) general lin-

ear group: invert-
ible n−by-n com-

plex matrices

simply con-

nected, not com-
pact, for n = 1:

isomorphic to C×

M(n,C) n−by-n matrices,

with Lie bracket
the commutator

n2

SL(n,C) special linear

group: complex
matrices with de-

terminant 1

simple, semisim-

ple, simply con-
nected, for n ≥ 2:

not compact

sl(n,C) square matri-

ces with trace 0,
with Lie bracket

the commutator

n2−
1

O(n,C) orthogonal

group: complex
orthogonal matri-

ces

not con-

nected, for n ≥ 2:
not compact

so(n,C) skew–

symmetric square
complex ma-

trices, with Lie

bracket the com-
mutator

n(n−
1)/2

SO(n,C) special orthogo-

nal group:

complex orthogo-
nal matrices with

determinant 1

for n ≥ 2: not

compact,

not simply con-
nected, for n = 3

and n ≥ 5: sim-

ple and semisim-
ple

so(n,C) skew–

symmetric square

complex ma-
trices, with Lie

bracket the com-

mutator

n(n−
1)/2

3.8.6.2 Representations of Lie groups

The idea of a representation of a Lie group plays an important role in the
study of continuous symmetry (see, e.g., [Helgason (2001)]). A great deal
is known about such representations, a basic tool in their study being the
use of the corresponding ’infinitesimal’ representations of Lie algebras.

Formally, a representation of a Lie group G on a vector space V (over
a field K) is a group homomorphism G → Aut(V ) from G to the auto-
morphism group of V . If a basis for the vector space V is chosen, the
representation can be expressed as a homomorphism into GL(n,K). This
is known as a matrix representation.

6The dimensions given are dimensions over C. Note that every complex Lie

group/algebra can also be viewed as a real Lie group/algebra of twice the dimension.
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On the Lie algebra level, there is a corresponding linear map from the
Lie algebra of G to End(V ) preserving the Lie bracket [·, ·].

If the homomorphism is in fact an monomorphism, the representation
is said to be faithful.

A unitary representation is defined in the same way, except that G
maps to unitary matrices; the Lie algebra will then map to skew–Hermitian
matrices.

Now, if G is a semisimple group, its finite–dimensional representations
can be decomposed as direct sums of irreducible representations. The irre-
ducibles are indexed by highest weight; the allowable (dominant) highest
weights satisfy a suitable positivity condition. In particular, there exists a
set of fundamental weights, indexed by the vertices of the Dynkin diagram of
G (see below), such that dominant weights are simply non–negative integer
linear combinations of the fundamental weights.

IfG is a commutative compact Lie group, then its irreducible representa-
tions are simply the continuous characters of G. A quotient representation
is a quotient module of the group ring.

3.8.6.3 Root Systems and Dynkin Diagrams

A root system is a special configuration in Euclidean space that has turned
out to be fundamental in Lie theory as well as in its applications. Also, the
classification scheme for root systems, by Dynkin diagrams, occurs in parts
of mathematics with no overt connection to Lie groups (such as singularity
theory, see e.g., [Helgason (2001); Weisstein (2004); Wikipedia (2005)]).

Definitions

Formally, a root system is a finite set Φ of non–zero vectors (roots)
spanning a finite–dimensional Euclidean space V and satisfying the follow-
ing properties:

(1) The only scalar multiples of a root α in V which belong to Φ are α
itself and -α.

(2) For every root α in V , the set Φ is symmetric under reflection through
the hyperplane of vectors perpendicular to α.

(3) If α and β are vectors in Φ, the projection of 2β onto the line through
α is an integer multiple of α.

The rank of a root system Φ is the dimension of V . Two root systems
may be combined by regarding the Euclidean spaces they span as mutually
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orthogonal subspaces of a common Euclidean space. A root system which
does not arise from such a combination, such as the systems A2, B2, and
G2 in Figure 3.9, is said to be irreducible.

Two irreducible root systems (V1,Φ1) and (V2,Φ2) are considered to
be the same if there is an invertible linear transformation V1 → V2 which
preserves distance up to a scale factor and which sends Φ1 to Φ2.

The group of isometries of V generated by reflections through hyper-
planes associated to the roots of Φ is called the Weyl group of Φ as it acts
faithfully on the finite set Φ, the Weyl group is always finite.

Classification

It is not too difficult to classify the root systems of rank 2 (see Figure
3.9).

Fig. 3.9 Classification of root systems of rank 2.

Whenever Φ is a root system in V and W is a subspace of V spanned
by Ψ = Φ ∩W , then Ψ is a root system in W . Thus, our exhaustive list of
root systems of rank 2 shows the geometric possibilities for any two roots
in a root system. In particular, two such roots meet at an angle of 0, 30,
45, 60, 90, 120, 135, 150, or 180 degrees.

In general, irreducible root systems are specified by a family (indicated
by a letter A to G) and the rank (indicated by a subscript n). There are
four infinite families:

• An (n ≥ 1), which corresponds to the special unitary group, SU(n+1);
• Bn (n ≥ 2), which corresponds to the special orthogonal group,
SO(2n+ 1);
• Cn (n ≥ 3), which corresponds to the symplectic group, Sp(2n);
• Dn (n ≥ 4), which corresponds to the special orthogonal group,
SO(2n),

as well as five exceptional cases: E6, E7, E8, F4, G2.
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Dynkin Diagrams

A Dynkin diagram is a graph with a few different kinds of possible edges
(see Figure 3.10). The connected components of the graph correspond to
the irreducible subalgebras of g. So a simple Lie algebra’s Dynkin diagram
has only one component. The rules are restrictive. In fact, there are only
certain possibilities for each component, corresponding to the classification
of semi–simple Lie algebras (see, e.g., [Conway et al. (1985)]).

Fig. 3.10 The problem of classifying irreducible root systems reduces to the problem of
classifying connected Dynkin diagrams.

The roots of a complex Lie algebra form a lattice of rank k in a Cartan
subalgebra h ⊂ g, where k is the Lie algebra rank of g. Hence, the root
lattice can be considered a lattice in Rk. A vertex, or node, in the Dynkin
diagram is drawn for each Lie algebra simple root , which corresponds to
a generator of the root lattice. Between two nodes α and β, an edge is
drawn if the simple roots are not perpendicular. One line is drawn if the
angle between them is 2π/3, two lines if the angle is 3π/4, and three lines
are drawn if the angle is 5π/6. There are no other possible angles between
Lie algebra simple roots. Alternatively, the number of lines N between the
simple roots α and β is given by

N = AαβAβα =
2 〈α, β〉
|α|2

2 〈β, α〉
|β|2

= 4 cos2 θ,

where Aαβ = 2〈α,β〉
|α|2 is an entry in the Cartan matrix (Aαβ) (for details on

Cartan matrix see, e.g., [Helgason (2001); Weisstein (2004)]). In a Dynkin
diagram, an arrow is drawn from the longer root to the shorter root (when
the angle is 3π/4 or 5π/6).

Here are some properties of admissible Dynkin diagrams:

(1) A diagram obtained by removing a node from an admissible diagram
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is admissible.
(2) An admissible diagram has no loops.
(3) No node has more than three lines attached to it.
(4) A sequence of nodes with only two single lines can be collapsed to give

an admissible diagram.
(5) The only connected diagram with a triple line has two nodes.

A Coxeter–Dynkin diagram, also called a Coxeter graph, is the same as
a Dynkin diagram, but without the arrows. The Coxeter diagram is suffi-
cient to characterize the algebra, as can be seen by enumerating connected
diagrams.

The simplest way to recover a simple Lie algebra from its Dynkin di-
agram is to first reconstruct its Cartan matrix (Aij). The ith node and
jth node are connected by AijAji lines. Since Aij = 0 iff Aji = 0, and
otherwise Aij ∈ {−3,−2,−1}, it is easy to find Aij and Aji, up to order,
from their product. The arrow in the diagram indicates which is larger.
For example, if node 1 and node 2 have two lines between them, from node
1 to node 2, then A12 = −1 and A21 = −2.

However, it is worth pointing out that each simple Lie algebra can be
constructed concretely. For instance, the infinite families An, Bn, Cn, and
Dn correspond to the special linear Lie algebra gl(n+1,C), the odd orthog-
onal Lie algebra so(2n + 1,C), the symplectic Lie algebra sp(2n,C), and
the even orthogonal Lie algebra so(2n,C). The other simple Lie algebras
are called exceptional Lie algebras, and have constructions related to the
octonions.

To prove this classification Theorem, one uses the angles between pairs
of roots to encode the root system in a much simpler combinatorial object,
the Dynkin diagram. The Dynkin diagrams can then be classified according
to the scheme given above.

To every root system is associated a corresponding Dynkin diagram.
Otherwise, the Dynkin diagram can be extracted from the root system by
choosing a base, that is a subset ∆ of Φ which is a basis of V with the
special property that every vector in Φ when written in the basis ∆ has
either all coefficients ≥ 0 or else all ≤ 0.

The vertices of the Dynkin diagram correspond to vectors in ∆. An
edge is drawn between each non–orthogonal pair of vectors; it is a double
edge if they make an angle of 135 degrees, and a triple edge if they make
an angle of 150 degrees. In addition, double and triple edges are marked
with an angle sign pointing toward the shorter vector.



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

244 Applied Differential Geometry: A Modern Introduction

Although a given root system has more than one base, the Weyl group
acts transitively on the set of bases. Therefore, the root system determines
the Dynkin diagram. Given two root systems with the same Dynkin dia-
gram, we can match up roots, starting with the roots in the base, and show
that the systems are in fact the same.

Thus the problem of classifying root systems reduces to the problem of
classifying possible Dynkin diagrams, and the problem of classifying irre-
ducible root systems reduces to the problem of classifying connected Dynkin
diagrams. Dynkin diagrams encode the inner product on E in terms of the
basis ∆, and the condition that this inner product must be positive definite
turns out to be all that is needed to get the desired classification (see Figure
3.10).

In detail, the individual root systems can be realized case–by–case, as
in the following paragraphs:

An. Let V be the subspace of Rn+1 for which the coordinates sum
to 0, and let Φ be the set of vectors in V of length

√
2 and with integer

coordinates in Rn+1. Such a vector must have all but two coordinates equal
to 0, one coordinate equal to 1, and one equal to -1, so there are n2 + n

roots in all.
Bn. Let V = Rn, and let Φ consist of all integer vectors in V of length

1 or
√

2. The total number of roots is 2n2.
Cn: Let V = Rn, and let Φ consist of all integer vectors in V of

√
2

together with all vectors of the form 2λ, where λ is an integer vector of
length 1. The total number of roots is 2n2. The total number of roots is
2n2.

Dn. Let V = Rn, and let Φ consist of all integer vectors in V of length√
2. The total number of roots is 2n(n− 1).
En. For V8, let V = R8, and let E8 denote the set of vectors α of

length
√

2 such that the coordinates of 2α are all integers and are either
all even or all odd. Then E7 can be constructed as the intersection of E8

with the hyperplane of vectors perpendicular to a fixed root α in E8, and
E6 can be constructed as the intersection of E8 with two such hyperplanes
corresponding to roots α and β which are neither orthogonal to one another
nor scalar multiples of one another. The root systems E6, E7, and E8 have
72, 126, and 240 roots respectively.

F4. For F4, let V = R4, and let Φ denote the set of vectors α of length
1 or

√
2 such that the coordinates of 2α are all integers and are either all

even or all odd. There are 48 roots in this system.
G2. There are 12 roots in G2, which form the vertices of a hexagram.
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Root Systems and Lie Theory

Irreducible root systems classify a number of related objects in Lie the-
ory, notably:

(1) Simple complex Lie algebras;
(2) Simple complex Lie groups;
(3) Simply connected complex Lie groups which are simple modulo centers;

and
(4) Simple compact Lie groups.

In each case, the roots are non–zero weights of the adjoint representation.
A root system can also be said to describe a plant’s root and associated

systems.

3.8.6.4 Simple and Semisimple Lie Groups and Algebras

A simple Lie group is a Lie group which is also a simple group. These
groups, and groups closely related to them, include many of the so–called
classical groups of geometry, which lie behind projective geometry and other
geometries derived from it by the Erlangen programme of Felix Klein. They
also include some exceptional groups, that were first discovered by those
pursuing the classification of simple Lie groups. The exceptional groups
account for many special examples and configurations in other branches
of mathematics. In particular the classification of finite simple groups de-
pended on a thorough prior knowledge of the ‘exceptional’ possibilities.

The complete listing of the simple Lie groups is the basis for the theory
of the semisimple Lie groups and reductive groups, and their representation
theory. This has turned out not only to be a major extension of the theory
of compact Lie groups (and their representation theory), but to be of basic
significance in mathematical physics.

Such groups are classified using the prior classification of the complex
simple Lie algebras. It has been shown that a simple Lie group has a simple
Lie algebra that will occur on the list given there, once it is complexified
(that is, made into a complex vector space rather than a real one). This
reduces the classification to two further matters.

The groups SO(p, q,R) and SO(p+ q,R), for example, give rise to dif-
ferent real Lie algebras, but having the same Dynkin diagram. In general
there may be different real forms of the same complex Lie algebra.

Secondly, the Lie algebra only determines uniquely the simply connected
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(universal) cover G∗ of the component containing the identity of a Lie group
G. It may well happen that G∗ is not actually a simple group, for example
having a non–trivial center. We have therefore to worry about the global
topology, by computing the fundamental group of G (an Abelian group: a
Lie group is an H−space). This was done by Elie Cartan.

For an example, take the special orthogonal groups in even dimension.
With −I a scalar matrix in the center, these are not actually simple groups;
and having a two–fold spin cover, they aren’t simply–connected either.
They lie ‘between’ G∗ and G, in the notation above.

Recall that a semisimple module is a module in which each submodule is
a direct summand. In particular, a semisimple representation is completely
reducible, i.e., is a direct sum of irreducible representations (under a de-
scending chain condition). Similarly, one speaks of an Abelian category as
being semisimple when every object has the corresponding property. Also,
a semisimple ring is one that is semisimple as a module over itself.

A semisimple matrix is diagonalizable over any algebraically closed field
containing its entries. In practice this means that it has a diagonal matrix
as its Jordan normal form.

A Lie algebra g is called semisimple when it is a direct sum of simple
Lie algebras, i.e., non–trivial Lie algebras L whose only ideals are {0} and
L itself. An equivalent condition is that the Killing form

B(X,Y ) = Tr(Ad(X)Ad(Y ))

is non–degenerate [Schafer (1996)]. The following properties can be proved
equivalent for a finite–dimensional algebra L over a field of characteristic
0:

1. L is semisimple.
2. L has no nonzero Abelian ideal.
3. L has zero radical (the radical is the biggest solvable ideal).
4. Every representation of L is fully reducible, i.e., is a sum of irreducible

representations.
5. L is a (finite) direct product of simple Lie algebras (a Lie algebra is

called simple if it is not Abelian and has no nonzero ideal ).
A connected Lie group is called semisimple when its Lie algebra is

semisimple; and the same holds for algebraic groups. Every finite dimen-
sional representation of a semisimple Lie algebra, Lie group, or algebraic
group in characteristic 0 is semisimple, i.e., completely reducible, but the
converse is not true. Moreover, in characteristic p > 0, semisimple Lie
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groups and Lie algebras have finite dimensional representations which are
not semisimple. An element of a semisimple Lie group or Lie algebra is
itself semisimple if its image in every finite–dimensional representation is
semisimple in the sense of matrices.

Every semisimple Lie algebra g can be classified by its Dynkin diagram
[Helgason (2001)].

3.9 Lie Symmetries and Prolongations on Manifolds

In this section we continue our expose on Lie groups of symmetry, as a link
to modern jet machinery, developed below.

3.9.1 Lie Symmetry Groups

3.9.1.1 Exponentiation of Vector Fields on M

Let x = (x1, ..., xr) be local coordinates at a point m on a smooth
n−manifold M . Recall that the flow generated by the vector–field

v = ξi(x) ∂xi ∈M,

is a solution of the system of ODEs

dxi

dε
= ξi(x1, ..., xm), (i = 1, ..., r).

The computation of the flow, or one–parameter group of diffeomorphisms,
generated by a given vector–field v (i.e., solving the system of ODEs) is
often referred to as exponentiation of a vector–field , denoted by exp(εv)x
(see [Olver (1986)]).

If v, w ∈M are two vectors defined by

v = ξi(x) ∂xi and w = ηi(x) ∂xi ,

then

exp(εv) exp(θw)x = exp(θw) exp(εv)x,

for all ε, θ ∈ R,x ∈ M, such that both sides are defined, iff they commute,
i.e., [v, w] = 0 everywhere [Olver (1986)].

A system of vector–fields {v1, ..., vr} on a smooth manifold M is in
involution if there exist smooth real–valued functions hkij(x), x ∈ M ,
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i, j, k = 1, ..., r, such that for each i, j,

[vi, vj ] = hkij · vk.

Let v 6= 0 be a right–invariant vector–field on a Lie group G. Then the
flow generated by v through the identity e, namely

gε = exp(εv) e ≡ exp(εv),

is defined for all ε ∈ R and forms a one–parameter subgroup of G, with

gε+δ = gε · gδ, g0 = e, g−1
ε = g−ε,

isomorphic to either R itself or the circle group SO(2). Conversely, any
connected 1D subgroup of G is generated by such a right–invariant vector–
field in the above manner [Olver (1986)].

For example, let G = GL(n) with Lie algebra gl(n), the space of all
n× n matrices with commutator as the Lie bracket. If A ∈ gl(n), then the
corresponding right–invariant vector–field vA on GL(n) has the expression
[Olver (1986)]

vA = aikx
k
j ∂xij .

The one–parameter subgroup exp(εvA) e is found by integrating the system
of n2 ordinary differential equations

dxij
dε

= aikx
k
j , xij(0) = δij , (i, j = 1, ..., n),

involving matrix entries of A. The solution is just the matrix exponential
X(ε) = eεA, which is the one–parameter subgroup of GL(n) generated by
a matrix A in gl(n).

Recall that the exponential map exp : g → G is get by setting ε = 1 in
the one–parameter subgroup generated by vector–field v :

exp(v) ≡ exp(v) e.

Its differential at 0,

d exp : Tg|0 ' g→ TG|e ' g

is the identity map.
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3.9.1.2 Lie Symmetry Groups and General DEs

Consider a system S of general differential equations (DEs, to be distin-
guished from ODEs) involving p independent variables x = (x1, ..., xp), and
q dependent variables u = (u1, ..., uq). The solution of the system will be of
the form u = f(x), or, in components, uα = fα(x1, ..., xp), α = 1, ..., q (so
that Latin indices refer to independent variables while Greek indices refer
to dependent variables). Let X = Rp, with coordinates x = (x1, ..., xp), be
the space representing the independent variables, and let U = Rq, with co-
ordinates u = (u1, ..., uq), represent dependent variables. A Lie symmetry
group G of the system S will be a local group of transformations acting on
some open subset M ⊂ X × U in such way that G transforms solutions of
S to other solutions of S [Olver (1986)].

More precisely, we need to explain exactly how a given transformation
g ∈ G, where G is a Lie group, transforms a function u = f(x). We firstly
identify the function u = f(x) with its graph

Γf ≡ {(x, f(x)) : x ∈ dom f ≡ Ω} ⊂ X × U,

where Γf is a submanifold ofX×U. If Γf ⊂Mg ≡ dom g, then the transform
of Γf by g is defined as

g · Γf = {(x̃, ũ) = g · (x, u) : (x, u) ∈ Γf} .

We write f̃ = g · f and call the function f̃ the transform of f by g.
For example, let p = 1 and q = 1, so X = R with a single independent

variable x, and U = R with a single dependent variable u, so we have a
single ODE involving a single function u = f(x). Let G = SO(2) be the
rotation group acting on X × U ' R2. The transformations in G are given
by

(x̃, ũ) = θ · (x, u) = (x cos θ − u sin θ, x sin θ + u cos θ).

Let u = f(x) be a function whose graph is a subset Γf ⊂ X × U . The
group SO(2) acts on f by rotating its graph.

In general, the procedure for finding the transformed function f̃ = g · f
is given by [Olver (1986)]:

g · f = [Φg ◦ (1× f)] ◦ [Ξg ◦ (1× f)]−1
, (3.65)

where Ξg = Ξg(x, u), Φg = Φg(x, u) are smooth functions such that

(x̃, ũ) = g · (x, u) = (Ξg(x, u), Φg(x, u)) ,
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while 1 denotes the identity function of X, so 1(x) = x. Formula (3.65)
holds whenever the second factor is invertible.

Let S be a system of DEs. A symmetry group of the system S is a local
Lie group of transformations G acting on an open subset M ⊂ X×U of the
space X × U of independent and dependent variables of the system with
the property that whenever u = f(x) is a solution of S, and whenever g · f
is defined for g ∈ G, then u = g · f(x) is also a solution of the system.

For example, in the case of the ODE uxx = 0, the rotation group SO(2)
is obviously a symmetry group, since the solutions are all linear functions
and SO(2) takes any linear function to another linear function. Another
easy example is given by the classical heat equation ut = uxx. Here the
group of translations

(x, t, u) 7→ (x+ εa, t+ εb, u), ε ∈ R,

is a symmetry group since u = f(x − εa, t − εb) is a solution to the heat
equation whenever u = f(x, t) is.

3.9.2 Prolongations

3.9.2.1 Prolongations of Functions

Given a smooth real–valued function u = f(x) = f(x1, ..., xp) of p indepen-
dent variables, there is an induced function u(n) = pr(n)f(x), called the
nth prolongation of f [Olver (1986)], which is defined by the equations

uJ = ∂Jf(x) =
∂kf(x)

∂xj1∂xj2...∂xjk
,

where the multi–index J = (j1, ..., jk) is an unordered k−tuple of integers,
with entries 1 ≤ jk ≤ p indicating which derivatives are being taken. More
generally, if f : X → U is a smooth function from X ' Rp to U ' Rq, so
u = f(x) = f(f1(x), ..., fq(x)), there are q · pk numbers

uαJ = ∂Jf
α(x) =

∂kfα(x)
∂xj1∂xj2...∂xjk

,

needed to represent all the different kth order derivatives of the components
of f at a point x. Thus pr(n)f : X → U (n) is a function from X to the
space U (n), and for each x ∈ X, pr(n)f(x) is a vector whose q · p(n) entries
represent the values of f and al its derivatives up to order n at the point x.

For example, in the case p = 2, q = 1 we have X ' R2 with coordinates
(x1, x2) = (x, y), and U ' R with the single coordinate u = f(x, y). The
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second prolongation u(2) = pr(2)f(x, y) is given by [Olver (1986)]

(u;ux, uy;uxx, uxy, uyy) =
(
f ;
∂f

∂x
,
∂f

∂y
;
∂2f

∂x2
,
∂2f

∂x∂y
,
∂2f

∂y2

)
, (3.66)

all evaluated at (x, y).
The nth prolongation pr(n)f(x) is also known as the n−jet of f . In other

words, the nth prolongation pr(n)f(x) represents the Taylor polynomial of
degree n for f at the point x, since the derivatives of order ≤ n determine
the Taylor polynomial and vice versa.

3.9.2.2 Prolongations of Differential Equations

A system S of nth order DEs in p independent and q dependent variables
is given as a system of equations [Olver (1986)]

∆r(x, u(n)) = 0, (r = 1, ..., l), (3.67)

involving x = (x1, ..., xp), u = (u1, ..., uq) and the derivatives of
u with respect to x up to order n. The functions ∆(x, u(n)) =
(∆1(x, u(n)), ...,∆l(x, u(n))) are assumed to be smooth in their arguments,
so ∆ : X×U (n) → Rl represents a smooth map from the jet space X×U (n)

to some lD Euclidean space (see section 4.14.12.5 below). The DEs them-
selves tell where the given map ∆ vanishes on the jet space X × U (n), and
thus determine a submanifold

S∆ =
{

(x, u(n)) : ∆(x, u(n)) = 0
}
⊂ X × U (n) (3.68)

of the total the jet space X × U (n).
We can identify the system of DEs (3.67) with its corresponding sub-

manifold S∆ (3.68). From this point of view, a smooth solution of the given
system of DEs is a smooth function u = f(x) such that [Olver (1986)]

∆r(x,pr(n)f(x)) = 0, (r = 1, ..., l),

whenever x lies in the domain of f . This is just a restatement of the fact
that the derivatives ∂Jfα(x) of f must satisfy the algebraic constraints
imposed by the system of DEs. This condition is equivalent to the statement
that the graph of the prolongation pr(n)f(x) must lie entirely within the
submanifold S∆ determined by the system:

Γ(n)
f ≡

{
(x,pr(n)f(x))

}
⊂ S∆ =

{
∆(x, u(n)) = 0

}
.
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We can thus take an nth order system of DEs to be a submanifold S∆ in the
n−jet space X×U (n) and a solution to be a function u = f(x) such that the
graph of the nth prolongation pr(n)f(x) is contained in the submanifold
S∆.

For example, consider the case of Laplace equation in the plane

uxx + uyy = 0 (remember, ux ≡ ∂xu).

Here p = 2 since there are two independent variables x and y, and q = 1
since there is one dependent variable u. Also n = 2 since the equation is
second–order, so S∆ ⊂ X × U (2) is given by (3.66). A solution u = f(x, y)
must satisfy

∂2f

∂x2
+
∂2f

∂y2
= 0

for all (x, y). This is the same as requiring that the graph of the second
prolongation pr(2)f lie in S∆.

3.9.2.3 Prolongations of Group Actions

Let G be a local group of transformations acting on an open subset
M ⊂ X ×U of the space of independent and dependent variables. There is
an induced local action of G on the n−jet space M (n), called the nth prolon-
gation pr(n)G of the action of G on M. This prolongation is defined so that
it transforms the derivatives of functions u = f(x) into the corresponding
derivatives of the transformed function ũ = f̃(x̃) [Olver (1986)].

More precisely, suppose (x0, u
(n)
0 ) is a given point in M (n). Choose any

smooth function u = f(x) defined in a neighborhood of x0, whose graph
Γf lies in M , and has the given derivatives at x0 :

u
(n)
0 = pr(n)f(x0), i.e., uαJ0 = ∂Jf

α(x0).

If g is an element of G sufficiently near the identity, the transformed func-
tion g·f as given by (3.65) is defined in a neighborhood of the corresponding
point (x̃0, ũ0) = g · (x0, u0), with u0 = f(x0) being the zeroth order com-
ponents of u(n)

0 . We then determine the action of the prolonged group of
transformations pr(n)g on the point (x0, u

(n)
0 ) by evaluating the derivatives

of the transformed function g · f at x̃0; explicitly [Olver (1986)]

pr(n)g · (x0, u
(n)
0 ) = (x̃0, ũ

(n)
0 ),
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where

ũ
(n)
0 ≡ pr(n)(g · f)(x̃0).

For example, let p = q = 1, so X × U ' R2, and consider the action of
the rotation group SO(2). To calculate its first prolongation pr(1)SO(2),
first note that X ×U (1) ' R3, with coordinates (x, u, ux). given a function
u = f(x), the first prolongation is [Olver (1986)]

pr(1)f(x) = (f(x), f ′(x)).

Now, given a point (x0, u0, u0
x) ∈ X × U (1), and a rotation in SO(2) char-

acterized by the angle θ as given above, the corresponding transformed
point

pr(1)θ · (x0, u0, u0
x) = (x̃0, ũ0, ũ0

x)

(provided it exists). As for the first–order derivative, we find

ũ0
x =

sin θ + ux cos θ
cos θ − ux sin θ

.

Now, applying the group transformations given above, and dropping the
0−indices, we find that the prolonged action pr(1)SO(2) on X × U (1) is
given by

pr(1)θ · (x, u, ux) =
(
x cos θ − u sin θ, x sin θ + u cos θ,

sin θ + ux cos θ
cos θ − ux sin θ

)
,

which is defined for |θ| < | arccotux|. Note that even though SO(2) is
a linear, globally defined group of transformations, its first prolongation
pr(1)SO(2) is both nonlinear and only locally defined. This fact demon-
strates the complexity of the operation of prolonging a group of transfor-
mations.

In general, for any Lie group G, the first prolongation pr(1)G acts on
the original variables (x, u) exactly the same way that G itself does; only
the action on the derivative ux gives an new information. Therefore, pr(0)G

agrees with G itself, acting on M (0) = M.

3.9.2.4 Prolongations of Vector Fields

Prolongation of the infinitesimal generators of the group action turn out to
be the infinitesimal generators of the prolonged group action [Olver (1986)].
Let M ⊂ X × U be open and suppose v is a vector–field on M , with
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corresponding local one–parameter group exp(εv). The nth prolongation
of v, denoted pr(n)v, will be a vector–field on the n−jet space M (n), and
is defined to be the infinitesimal generator of the corresponding prolonged
on–parameter group pr(n)[exp(εv)]. In other words,

pr(n)v|(x,u(n)) =
d

dε

∣∣∣∣
ε=0

pr(n)[exp(εv)](x, u(n)) (3.69)

for any (x, u(n)) ∈M (n).

For a vector–field v on M, given by

v = ξi(x, u)
∂

∂xi
+ φα(x, u)

∂

∂uα
, (i = 1, ..., p, α = 1, ..., q),

the nth prolongation pr(n)v is given by [Olver (1986)]

pr(n)v = ξi(x, u)
∂

∂xi
+ φαJ (x, u(n))

∂

∂uαJ
,

with φα0 = φα, and J a multiindex defined above.
For example, in the case of SO(2) group, the corresponding infinitesimal

generator is

v = −u ∂

∂x
+ x

∂

∂u
,

with

exp(εv)(x, u) = (x cos ε− u sin ε, x sin ε+ u cos ε) ,

being the rotation through angle ε. The first prolongation takes the form

pr(1)[exp(εv)](x, u, ux) =
(
x cos ε− u sin ε, x sin ε+ u cos ε,

sin ε+ ux cos ε
cos ε− ux sin ε

)
.

According to (3.69), the first prolongation of v is get by differentiating these
expressions with respect to ε and setting ε = 0, which gives

pr(1)v = −u ∂

∂x
+ x

∂

∂u
+ (1 + u2

x)
∂

∂ux
.

3.9.2.5 General Prolongation Formula

Let

v = ξi(x, u)
∂

∂xi
+ φα(x, u)

∂

∂uα
, (i = 1, ..., p, α = 1, ..., q), (3.70)
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be a vector–field defined on an open subset M ⊂ X × U. The nth prolon-
gation of v is the vector–field [Olver (1986)]

pr(n)v = v + φαJ (x, u(n))
∂

∂uαJ
, (3.71)

defined on the corresponding jet space M (n) ⊂ X × U (n). The coefficient
functions φαJ are given by the following formula:

φαJ = DJ

(
φα − ξiuαi

)
+ ξiuαJ,i , (3.72)

where uαi = ∂uα/∂xi, and uαJ,i = ∂uαJ/∂x
i. DJ is the total derivative with

respect to the multiindex J, i.e.,

DJ = Dj1Dj2 ...Djk ,

while the total derivative with respect to the ordinary index, Di, is defined
as follows. Let P (x, u(n)) be a smooth function of x, u and derivatives of u
up to order n, defined on an open subset M (n) ⊂ X×U (n). the total deriva-
tive of P with respect to xi is the unique smooth function DiP (x, u(n))
defined on M (n+1) and depending on derivatives of u up to order n + 1,
with the recursive property that if u = f(x) is any smooth function then

DiP (x,pr(n+1)f(x)) = ∂xi{P (x,pr(n)f(x))}.

For example, in the case of SO(2) group, with the infinitesimal generator

v = −u ∂

∂x
+ x

∂

∂u
,

the first prolongation is (as calculated above)

pr(1)v = −u ∂

∂x
+ x

∂

∂u
+ φx

∂

∂ux
,

where

φx = Dx(φ− ξux) + ξuxx = 1 + u2
x.

Also,

φxx = Dxφ
x − uxxDxξ = 3uxuxx,

thus the infinitesimal generator of the second prolongation pr(2)SO(2) act-
ing on X × U (2) is

pr(2)v = −u ∂

∂x
+ x

∂

∂u
+ (1 + u2

x)
∂

∂ux
+ 3uxuxx

∂

∂uxx
.
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Let v and w be two smooth vector–fields on M ⊂ X×U. Then their nth
prolongations, pr(n)v and pr(n)w respectively, have the linearity property

pr(n)(c1v + c2w) = c1pr(n)v + c2pr(n)w, (c1, c2 − constant),

and the Lie bracket property

pr(n)[v, w] = [pr(n)v,pr(n)w].

3.9.3 Generalized Lie Symmetries

Consider a vector–field (3.70) defined on an open subset M ⊂ X ×U. Pro-
vided the coefficient functions ξi and φα depend only on x and u, v will
generate a (local) one–parameter group of transformations exp(εv) acting
pointwise on the underlying space M . A significant generalization of the no-
tion of symmetry group is get by relaxing this geometrical assumption, and
allowing the coefficient functions ξi and φα to also depend on derivatives
of u [Olver (1986)].

A generalized vector–field is a (formal) expression

v = ξi[u]
∂

∂xi
+ φα[u]

∂

∂uα
, (i = 1, ..., p, α = 1, ..., q), (3.73)

in which ξi and φα are smooth functions. For example,

v = xux
∂

∂x
+ uxx

∂

∂u

is a generalized vector in the case p = q = 1.
According to the general prolongation formula (3.71), we can define the

prolonged generalized vector–field

pr(n)v = v + φαJ [u]
∂

∂uαJ
,

whose coefficients are as before determined by the formula (3.72). Thus, in
our previous example [Olver (1986)],

pr(n)v = xux
∂

∂x
+ uxx

∂

∂u
+ [uxxx − (xuxx + ux)ux]

∂

∂ux
.

Given a generalized vector–field v, its infinite prolongation (including
all the derivatives) is the formal expression

pr v = ξi
∂

∂xi
+ φαJ

∂

∂uαJ
.
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Now, a generalized vector–field v is a generalized infinitesimal symmetry of
a system S of differential equations

∆r[u] = ∆r(x, u(n)) = 0, (r = 1, ..., l),

iff

pr v[∆r] = 0

for every smooth solution m u = f(x) [Olver (1986)].
For example, consider the heat equation

∆[u] = ut − uxx = 0.

The generalized vector–field v = ux
∂
∂u has prolongation

pr v = ux
∂

∂u
+ uxx

∂

∂ux
+ uxt

∂

∂ut
+ uxxx

∂

∂uxx
+ ...

Thus

pr v(∆) = uxt − uxxx = Dx(ut − uxx) = Dx∆,

and hence v is a generalized symmetry of the heat equation.

3.9.3.1 Noether Symmetries

Here we present some results about Noether symmetries, in particular for
the first–order Lagrangians L(q, q̇) (see [Batlle et. al. (1989); Pons et. al.
(2000)]). We start with a Noether–Lagrangian symmetry ,

δL = Ḟ ,

and we will investigate the conversion of this symmetry to the Hamiltonian
formalism. Defining

G = (∂L/∂q̇i) δqi − F,

we can write

δiLδq
i + Ġ = 0, (3.74)

where δiL is the Euler–Lagrangian functional derivative of L,

δiL = αi −Wik q̈
k,
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where

Wik ≡
∂2L

∂q̇i∂q̇k
and αi ≡ −

∂2L

∂q̇i∂qk
q̇k +

∂L

∂qi
.

We consider the general case where the mass matrix, or Hessian (Wij),
may be a singular matrix. In this case there exists a kernel for the pull–back
FL∗ of the Legendre map, i.e., fibre–derivative FL, from the velocity phase–
space manifold TM (tangent bundle of the biodynamical manifold M) to
the momentum phase–space manifold T ∗M (cotangent bundle of M). This
kernel is spanned by the vector–fields

Γµ = γiµ
∂

∂q̇i
,

where γiµ are a basis for the null vectors of Wij . The Lagrangian time–
evolution differential operator can therefore be expressed as:

X = ∂t + q̇k
∂

∂qk
+ ak(q, q̇)

∂

∂q̇k
+ λµΓµ ≡ Xo + λµΓµ,

where ak are functions which are determined by the formalism, and λµ are
arbitrary functions. It is not necessary to use the Hamiltonian technique
to find the Γµ, but it does facilitate the calculation:

γiµ = FL∗
(
∂φµ
∂pi

)
, (3.75)

where the φµ are the Hamiltonian primary first class constraints.
Notice that the highest derivative in (3.74), q̈i, appears linearly. Because

δL is a symmetry, (3.74) is identically satisfied, and therefore the coefficient
of q̈i vanishes:

Wikδq
k − ∂G

∂q̇i
= 0. (3.76)

We contract with a null vector γiµ to find that

ΓµG = 0.

It follows that G is projectable to a function GH in T ∗Q; that is, it is the
pull–back of a function (not necessarily unique) in T ∗Q:

G = FL∗(GH).
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This important property is valid for any conserved quantity associated
with a Noether symmetry. Observe that GH is determined up to the addi-
tion of linear combinations of the primary constraints. Substitution of this
result in (3.76) gives

Wik

[
δqk − FL∗

(
∂GH

∂pk

)]
= 0,

and so the brackets enclose a null vector of Wik:

δqi − FL∗
(
∂GH

∂pi

)
= rµγiµ, (3.77)

for some rµ(t, q, q̇).
We shall investigate the projectability of variations generated by diffeo-

morphisms in the following section. Assume that an infinitesimal transfor-
mation δqi is projectable:

Γµδqi = 0.

If δqi is projectable, so must be rµ, so that rµ = FL∗(rµH). Then, using
(3.75) and (3.77), we see that

δqi = FL∗
(
∂(GH + rµHφµ)

∂pi

)
.

We now redefine GH to absorb the piece rµHφµ, and from now on we will
have

δqi = FL∗
(
∂GH

∂pi

)
.

Define

p̂i =
∂L

∂q̇i
;

after eliminating (3.76) times q̈i from (3.74), we get(
∂L

∂qi
− q̇k ∂p̂i

∂qk

)
FL∗(

∂GH

∂pi
) + q̇i

∂

∂qi
FL∗(GH) + FL∗∂tGH = 0,

which simplifies to

∂L

∂qi
FL∗(

∂GH

∂pi
) + q̇iFL∗(

∂GH

∂qi
) + FL∗∂tGH = 0. (3.78)
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Now let us invoke two identities [Batlle et. al. (1989)] that are at the core
of the connection between the Lagrangian and the Hamiltonian equations
of motion. They are

q̇i = FL∗(
∂H

∂pi
) + vµ(q, q̇)FL∗(

∂φµ
∂pi

),

and

∂L

∂qi
= −FL∗(

∂H

∂qi
)− vµ(q, q̇)FL∗(

∂φµ
∂qi

);

where H is any canonical Hamiltonian, so that FL∗(H) = q̇i(∂L/∂q̇i)−L =
Ê, the Lagrangian energy, and the functions vµ are determined so as to
render the first relation an identity. Notice the important relation

Γµvν = δνµ,

which stems from applying Γµ to the first identity and taking into account
that

Γµ ◦ FL∗ = 0.

Substitution of these two identities into (3.78) induces (where { , } denotes
the Poisson bracket)

FL∗{GH,H}+ vµFL∗{GH, φµ}+ FL∗∂tGH = 0.

This result can be split through the action of Γµ into

FL∗{GH,H}+ FL∗∂tGH = 0,

and

FL∗{GH, φµ} = 0;

or equivalently,

{GH,H}+ ∂tGH = pc,

and

{GH, φµ} = pc,

where pc stands for any linear combination of primary constraints. In
this way, we have arrived at a neat characterization for a generator GH of
Noether transformations in the canonical formalism.
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3.9.4 Application: Biophysical PDEs

In this subsection we consider two most important equations for biophysics:

(1) The heat equation, which has been analyzed in muscular mechanics
since the early works of A.V. Hill ([Hill (1938)]); and

(2) The Korteveg–de Vries equation, the basic equation for solitary models
of muscular excitation–contraction dynamics.

Suppose

S : ∆r(x, u(n)) = 0, (r = 1, ..., l),

is a system of DEs of maximal rank defined over M ⊂ X×U. If G is a local
group of transformations acting on M , and

pr(n)v[∆r(x, u(n))] = 0, whenever ∆(x, u(n)) = 0, (3.79)

(with r = 1, ..., l) for every infinitesimal generator v of G, then G is a
symmetry group of the system S [Olver (1986)].

3.9.4.1 The Heat Equation

Recall that the (1 + 1)D heat equation (with the thermal diffusivity nor-
malized to unity)

ut = uxx (3.80)

has two independent variables x and t, and one dependent variable u, so
p = 2 and q = 1. Equation (3.80) has the second–order, n = 2, and can be
identified with the linear submanifold M (2) ⊂ X × U (2) determined by the
vanishing of ∆(x, t, u(2)) = ut − uxx.

Let

v = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u

be a vector–field on X×U . According to (3.79) we need to now the second
prolongation

pr(2)v = v + φx
∂

∂ux
+ φt

∂

∂ut
+ φxx

∂

∂uxx
+ φxt

∂

∂uxt
+ φtt

∂

∂utt

of v. Applying pr(2)v to (3.80) we find the infinitesimal criterion (3.79) to
be

φt = φxx,
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which must be satisfied whenever ut = uxx.

3.9.4.2 The Korteveg–De Vries Equation

Recall that the Korteveg–de Vries equation

ut + uxxx + uux = 0 (3.81)

arises in physical systems in which both nonlinear and dispersive effects are
relevant. A vector–field

v = ξ(x, t, u)
∂

∂x
+ τ(x, t, u)

∂

∂t
+ φ(x, t, u)

∂

∂u

generates a one–parameter symmetry group iff

φt + φxxx + uφx + uxφ = 0,

whenever u satisfies (3.81), etc.

3.9.5 Lie–Invariant Geometric Objects

3.9.5.1 Robot Kinematics

It is well known (see [Blackmore and Leu (1992); Prykarpatsky (1996)]),
that motion planning, numerically controlled machining and robotics are
just a few of many areas of manufacturing automation in which the analysis
and representation of swept volumes plays a crucial role. The swept volume
modelling is also an important part of task-oriented robot motion planning.
A typical motion planning problem consists in a collection of objects moving
around obstacles from an initial to a final configuration. This may include
in particular, solving the collision detection problem.

When a solid object undergoes a rigid motion, the totality of points
through which it passed constitutes a region in space called the swept vol-
ume. To describe the geometrical structure of the swept volume we pose this
problem as one of geometric study of some manifold swept by surface points
using powerful tools from both modern differential geometry and nonlin-
ear dynamical systems theory [Ricca (1993); Langer and Perline (1994);
Prykarpatsky (1996); Groesen and Jager (1994)] on manifolds. For some
special cases of the Euclidean motion in the space R3 one can construct
a very rich hydrodynamic system [Blackmore and Leu (1992)] modelling a
sweep flow, which appears to be a completely integrable Hamiltonian system
having a special Lax type representation. To describe in detail these and
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other properties of swept volume dynamical systems, we develop Cartan’s
theory of Lie–invariant geometric objects generated by closed ideals in the
Grassmann’s algebra, following [Blackmore et. al. (1998)].

Let a Lie group G act on an analytical manifold Y in the transitive way,
that is the action G×Y ρ→ Y generates some nonlinear exact representation
of the Lie group G on the manifold Y . In the frame of the Cartan’s theory,
the representation G × Y ρ→ Y can be described by means of a system of
differential 1–forms (see section 5.8 below)

β̄
j = dyj + ξji ω̄

i(a, da) (3.82)

in the Grassmann algebra Λ(Y ×G) on the product Y ×G, where ω̄i(a, da) ∈
T ∗a (G), i = 1, ..., r = dimG is a basis of left–invariant Cartan’s forms of the
Lie group G at a point a ∈ G, y = {yj : j = 1, ..., n = dimY } ∈ Y and
ξji : Y ×G→ R are some smooth real valued functions.

The following Cartan Theorem (see [Blackmore et. al. (1998)]) is basic
in describing a geometric object invariant with respect to the mentioned
above group action G × Y ρ→ Y : The system of differential forms (3.82)
is a system of an invariant geometric object iff the following conditions are
fulfilled:

(1) The coefficients ξji ∈ Ck(Y ;R) for all i = 1, ..., r, j = 1, ..., n, are some
analytical functions on Y ; and

(2) The differential system (3.82) is completely integrable within the
Frobenius–Cartan criterion.

The Cartan’s Theorem actually says that the differential system (3.82)
can be written down as

β̄
j = dyj + ξji (y)ω̄i(a, da), (3.83)

where 1–forms {ω̄i(a, da) : i = 1, ..., r} satisfy the standard Maurer–Cartan
equations

Ω̄j = dω̄j +
1
2
cjikω̄

i ∧ ω̄k = 0, (3.84)

for all j = 1, ..., r on G, coefficients cjik ∈ R, i, j, k = 1, ..., r, being the
corresponding structure constants of the Lie algebra G of the Lie group G.
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3.9.5.2 Maurer–Cartan 1–Forms

Let be given a Lie group G with the Lie algebra G ' Te(G), whose basis
is a set {Ai ∈ G : i = 1, ..., r}, where r = dim G ≡ dim G. Let also a
set U0 ⊂ {ai ∈ R : i = 1, ..., r} be some open neighborhood of the zero
point in Rr. The exponential mapping exp : U0 → G0, where by definition
[Blackmore et. al. (1998)]

Rr ⊃ U0 3 (a1, . . . , ar) :
exp- exp

(
aiAi

)
= a ∈ G0 ⊂ G, (3.85)

is an analytical mapping of the whole U0 on some open neighborhood G0

of the unity element e ∈ G. From (3.85) it is easy to find that Te(G) =
Te(G0) ' G, where e = exp(0) ∈ G. Define now the following left–invariant
G−valued differential 1–form on G0 ⊂ G:

ω̄(a, da) = a−1da = ω̄j(a, da)Aj , (3.86)

where Aj ∈ G, ω̄j(a, da) ∈ T ∗a (G), a ∈ G0, j = 1, ..., r. To build effectively
the unknown forms {ω̄j(a, da) : j = 1, ..., r}, let us consider the follow-
ing analytical one–parameter 1–form ω̄t(a, da) = ω̄(at; dat) on G0, where
at = exp

(
taiAi

)
, t ∈ [0, 1], and differentiate this form with respect to the

parameter t ∈ [0, 1]. We will get [Blackmore et. al. (1998)]

dω̄t/dt = −ajAja−1
t dat+a−1

t atda
jAj+a−1

t data
jAj = −aj [Aj , ω̄t]+Ajdaj .

(3.87)
Having used the Lie identity [Aj , Ak] = cijkAi, j, k = 1, ..., r, and the right
hand side of (3.86) in form

ω̄j(a, da) = ω̄jk(a)dak, (3.88)

we ultimately get that

d

dt
(tω̄ji (ta)) = Ajktω̄

k
i (ta) + δji , (3.89)

where the matrix Aki , i, k = 1, ..., r, is defined as follows:

Aki = ckija
j . (3.90)

Thus, the matrix W j
i (t) = tω̄ji (ta), i, j = 1, ..., r, satisfies the following from

(3.89) differential equation [Chevalley (1955)]

dW/dt = AW + E, W |t=0 = 0, (3.91)
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where E = ‖δji‖ is the unity matrix. The solution of (3.91) is representable
as

W (t) =
∞∑
n=1

tn

n!
An−1 (3.92)

for all t ∈ [0, 1]. Whence, recalling the above definition of the matrix W (t),
we get easily that

ω̄jk(a) = W j
k (t)

∣∣∣
t=1

=
∞∑
n=1

(n!)−1An−1. (3.93)

Therefore, the following Theorem solves the problem of finding in an
effective algebraic way corresponding to a Lie algebra G the left–invariant 1–
form ω̄(a, da) ∈ T ∗a (G)⊗G at any a ∈ G : Let’s be given a Lie algebraG with
the structure constants ckij ∈ R, i, j, k = 1, ..., r = dim G, related to some
basis {Aj ∈ G : j = 1, ..., r}. Then the adjoint to G left–invariant Maurer–
Cartan 1–form ω̄(a, da) is built as follows [Blackmore et. al. (1998)]:

ω̄(a, da) = Ajω̄
j
k(a)dak, (3.94)

where the matrix W = ‖w̄jk(a)‖, j, k = 1, ..., r, is given exactly as

W =
∞∑
n=1

(n!)−1An−1, Ajk = cjkia
i. (3.95)

Below we shall try to use the experience gained above in solving an
analogous problem of the theory of connections over a principal fibre bundle
P (M ;G) as well as over associated with it a fibre bundle P (M ;Y,G).

3.9.5.3 General Structure of Integrable One–Forms

Given 2−forms generating a closed ideal I(α) in the Grassmann algebra
Λ(M), we will denote as above by I(α, β) an augmented ideal in Λ(M ;Y ),
where the manifold Y will be called in further the representation space of
some adjoint Lie group G action: G× Y ρ→ Y . We can find, therefore, the
determining relationships for the set of 1–forms {β} and 2–forms {α}

{α} = {αj ∈ Λ2(M) : j = 1, ...,mα},

{β} = {βj ∈ Λ1(M × Y ) : j = 1, ..., n = dimY },
(3.96)
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satisfying such equations [Blackmore et. al. (1998)]:

dαi = aik(α) ∧ αk,

dβj = f jkα
k + ωjs ∧ β

s,
(3.97)

where aik(α) ∈ Λ1(M), f jk ∈ Λ0(M × Y ) and ωjs ∈ Λ1(M × Y ) for all
i, k = 1, ...,mα, j, s = 1, ..., n. Since the identity d2βj ≡ 0 takes place for
all j = 1, ..., n, from (3.97) we deduce the following relationship:(

dωjk + ωjs ∧ ωsk
)
∧ βk +

(
df js + ωjkf

k
s + f jl a

l
s(α)

)
∧ αs ≡ 0. (3.98)

As a result of (3.98) we get [Blackmore et. al. (1998)]

dωjk + ωjs ∧ ωsk ∈ I(α, β),

df js + ωjkf
k
s + f jl a

l
s(α) ∈ I(α, β)

(3.99)

for all j, k = 1, ..., n, s = 1, ...,mα. The second inclusion in (3.99) gives a
possibility to define the 1–forms θjs = f jl a

l
s(α) satisfying the inclusion

dθjs + ωjk ∧ θ
k
s ∈ I(α, β)⊕ f jl c

l
s(α), (3.100)

which we obtained having used the identities d2αj ≡ 0, j = 1, ...,mα, in
the form cjs(α) ∧ αs ≡ 0,

cjs(α) = dajs(α) + ajl (α) ∧ als(α), (3.101)

following from (3.97). Let us suppose further that as s = s0 the 2–forms
cjs0(α) ≡ 0 for all j = 1, ...,mα. Then as s = s0, we can define a set of
1–forms θj = θjs0 ∈ Λ1(M ×Y ), j = 1, ..., n, satisfying the exact inclusions:

dθj + ωjk ∧ θ
k = Θj ∈ I(α, β) (3.102)

together with a set of inclusions for 1–forms ωjk ∈ Λ1(M × Y )

dωjk + ωjs ∧ ωsk = Ωjk ∈ I(α, β) (3.103)

As it follows from the general theory [Sulanke and Wintgen (1972)] of con-
nections on the fibred frame space P (M ;GL(n)) over a base manifold M ,
we can interpret the equations (3.103) as the equations defining the cur-
vature 2–forms Ωjk ∈ Λ2(P ), as well as interpret the equations (3.102) as
those, defining the torsion 2–forms Θj ∈ Λ2(P ). Since I(α) = 0 = I(α, β)
upon the integral submanifold M̄ ⊂ M , the reduced fibred frame space
P (M̄ ;GL(n)) will have the flat curvature and be torsion free, being as a
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result, completely trivialized on M̄ ⊂ M . Consequently, we can formulate
the following Theorem.

Let the condition above on the ideals I(α) and I(α, β) be fulfilled. Then
the set of 1–forms {β} generates the integrable augmented ideal I(α, β) ⊂
Λ(M×Y ) iff there exists some curvature 1–form ω ∈ Λ1(P )⊗Gl(n) and tor-
sion 1–form θ ∈ Λ1(P )⊗Rn on the adjoint fibred frame space P (M ;GL(n)),
satisfying the inclusions [Blackmore et. al. (1998)]

dω + ω ∧ ω ∈ I(α, β)⊗ Gl(n),

dθ + ω ∧ θ ∈ I(α, β)⊗ Rn.
(3.104)

Upon the reduced fibred frame space P (M̄ ;GL(n)) the corresponding cur-
vature and torsion are vanishing, where M̄ ⊂M is the integral submanifold
of the ideal I(α) ⊂ Λ(M).

3.9.5.4 Lax Integrable Dynamical Systems

Consider some set {β} defining a Cartan’s Lie group G invariant object on
a manifold M × Y :

βj = dyj + ξjk(y)bk(z), (3.105)

where i = 1, ..., n = dimY, r = dim G. The set (3.105) defines on the
manifold Y a set {ξ} of vector–fields, compiling a representation ρ : G → {ξ}
of a given Lie algebra G, that is vector–fields ξs = ξjs(y) ∂

∂yj ∈ {ξ}, s =
1, ..., r, enjoy the following Lie algebra G relationships

[ξs, ξl] = ckslξk (3.106)

for all s, l, k = 1, ..., r. We can now compute the differentials dβj ∈ Λ2(M×
Y ), j = 1, ..., n, using (3.105) and (3.106) as follows [Blackmore et. al.
(1998)]:

dβj = ∂ξjk(y)

∂yl

(
βl − ξls(y)bs(z)

)
∧ bk(z) + ξjk(y)dbk(z) (3.107)

which is equal to

∂ξjk(y)
∂yl

βl ∧ bk(z) + ξjl

(
dbl(z) +

1
2
clksdb

k(z) ∧ dbs(z)
)
,

where {α} ⊂ Λ2(M) is some a priori given integrable system of 2–forms
on M , vanishing upon the integral submanifold M̄ ⊂M . It is obvious that
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inclusions (3.107) take place iff the following conditions are fulfilled: for all
j = 1, ..., r

dbj(z) +
1
2
cjksdb

k(z) ∧ dbs(z) ∈ I(α). (3.108)

The inclusions (3.108) mean in particular, that upon the integral subman-
ifold M̄ ⊂M of the ideal I(α) ⊂ Λ(M) the equalities

µ∗ω̄j ≡ s∗bj (3.109)

are true, where ω̄j ∈ T ∗e (G), j = 1, ..., r, are the left–invariant Maurer–
Cartan forms on the invariance Lie group G. Thus, due to inclusions (3.108)
all conditions of Cartan’s Theorem are enjoyed, giving rise to a possibility
to get the set of forms bj(z) ∈ Λ1(M) in an explicit form. To do this, let
us define a G−valued curvature 1–form ω ∈ Λ1(P (M ;G)) ⊗ G as follows
[Blackmore et. al. (1998)]

ω = Ada−1

(
Ajb

j
)

+ ω̄ (3.110)

where ω̄ ∈ G is the standard Maurer–Cartan 1–form on G. This 1–form
satisfies followed by (3.108) the canonical structure inclusion for Γ = Ajb

j ∈
Λ1(M)⊗ G:

dΓ + Γ ∧ Γ ∈ I(α)⊗ G, (3.111)

serving as a main relationships determining the form (3.110).

3.9.5.5 Application: Burgers Dynamical System

Consider the Burgers dynamical system on a functional manifold M ⊂
Ck(R; R):

ut = uux + uxx, (3.112)

where u ∈ M and t ∈ R is an evolution (time) parameter. The flow of
(3.112) on M can be recast into a set of 2–forms {α} ⊂ Λ2(J(R2; R))
upon the adjoint jet–manifold J(R2; R) (see section 5.8 below) as follows
[Blackmore et. al. (1998)]:

{α} =
{
du(0) ∧ dt− u(1)dx ∧ dt = α1, du(0) ∧ dx+ u(0)du(0) ∧ dt

+du(1) ∧ dt = α2 :
(
x, t;u(0), u(1)

)τ ∈M4 ⊂ J1(R2; R)
}
,

(3.113)
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where M4 is a 4–D submanifold in J1(R2; R)) with coordinates (x, t, u(0) =
u, u(1) = ux). The set of 2–forms (3.113) generates the closed ideal I(α),
since

dα1 = dx ∧ α2 − u(0)dx ∧ α1, dα2 = 0, (3.114)

the integral submanifold M̄ = {x, t ∈ R} ⊂ M4 being defined by the
condition I(α) = 0. We now look for a reduced ‘curvature’ 1–form Γ ∈
Λ1(M4) ⊗ g, belonging to some (not yet determined) Lie algebra g. This
1–form can be represented using (3.113), as follows:

Γ = b(x)(u(0), u(1))dx+ b(t)(u(0), u(1))dt, (3.115)

where elements b(x), b(t) ∈ g satisfy [Blackmore et. al. (1998)]

∂b(x)

∂u(0) = g2,
∂b(x)

∂u(1) = 0, ∂b(t)

∂u(0) = g1 + g2u
(0),

∂b(t)

∂u(1) = g2, [b(x), b(t)] = −u(1)g1.
(3.116)

The set (3.116) has the following unique solution

b(x) = A0+A1u
(0), b(t) = u(1)A1+

u(0)2

2
A1+[A1, A0]u(0)+A2, (3.117)

where Aj ∈ g, j = 0, 2, are some constant elements on M of a Lie algebra
g under search, satisfying the next Lie structure equations:

[A0, A2] = 0,

[A0, [A1, A0]] + [A1, A2] = 0,

[A1, [A1, A0]] + 1
2 [A0, A1] = 0.

(3.118)

From (3.116) one can see that the curvature
2–form Ω ∈ spanR{A1, [A0, A1] : Aj ∈ g, j = 0, 1}. Therefore, reducing
via the Ambrose–Singer Theorem the associated principal fibered frame
space P (M ;G = GL(n)) to the principal fibre bundle P (M ;G(h)), where
G(h) ⊂ G is the corresponding holonomy Lie group of the connection Γ on
P , we need to satisfy the following conditions for the set g(h) ⊂ g to be a
Lie subalgebra in g : ∇mx ∇

n
t Ω ∈ g(h) for all m,n ∈ Z+.

Let us try now to close the above procedure requiring that [Blackmore
et. al. (1998)]

g(h) = g(h)0 = spanR{∇mx ∇
n
xΩ ∈ g : m+ n = 0} (3.119)
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This means that

g(h)0 = spanR{A1, A3 = [A0, A1]}. (3.120)

To satisfy the set of relations (3.118) we need to use expansions over the
basis (3.120) of the external elements A0, A2 ∈ g(h):

A0 = q01A1 + q13A3, A2 = q21A1 + q23A3. (3.121)

Substituting expansions (3.121) into (3.118), we get that q01 = q23 =
λ, q21 = −λ2/2 and q03 = −2 for some arbitrary real parameter λ ∈ R,
that is g(h) = spanR{A1, A3}, where

[A1, A3] = A3/2; A0 = λA1−2A3, A2 = −λ2A1/2+λA3. (3.122)

As a result of (3.122) we can state that the holonomy Lie algebra g(h)
is a real 2D one, assuming the following (2 × 2)−matrix representation
[Blackmore et. al. (1998)]:

A1 =
(

1/4 0
0 −1/4

)
, A3 =

(
0 1
0 0

)
,

A0 =
(
λ/4 −2
0 −λ/4

)
, A2 =

(
−λ2/8 λ

0 λ2/8

)
.

(3.123)

Thereby from (3.115), (3.117) and (3.123) we get the reduced curvature
1–form Γ ∈ Λ1(M)⊗ g,

Γ = (A0 + uA1)dx+ ((ux + u2/2)A1 − uA3 +A2)dt, (3.124)

generating parallel transport of vectors from the representation space Y of
the holonomy Lie algebra g(h):

dy + Γy = 0, (3.125)

upon the integral submanifold M̄ ⊂ M4 of the ideal I(α), generated by
the set of 2–forms (3.113). The result (3.125) means also that the Burgers
dynamical system (3.112) is endowed with the standard Lax type represen-
tation, having the spectral parameter λ ∈ R necessary for its integrability
in quadratures.
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3.10 Riemannian Manifolds and Their Applications

3.10.1 Local Riemannian Geometry

An important class of problems in Riemannian geometry is to understand
the interaction between the curvature and topology on a smooth manifold
(see [Cao and Chow (1999)]). A prime example of this interaction is the
Gauss–Bonnet formula on a closed surface M2, which says∫

M

K dA = 2π χ(M), (3.126)

where dA is the area element of a metric g on M , K is the Gaussian
curvature of g, and χ(M) is the Euler characteristic of M.

To study the geometry of a smooth manifold we need an additional
structure: the Riemannian metric tensor . The metric is an inner product
on each of the tangent spaces and tells us how to measure angles and dis-
tances infinitesimally. In local coordinates (x1, x2, · · · , xn), the metric g is
given by gij(x) dxi⊗dxj , where (gij(x)) is a positive definite symmetric ma-
trix at each point x. For a smooth manifold one can differentiate functions.
A Riemannian metric defines a natural way of differentiating vector–fields:
covariant differentiation. In Euclidean space, one can change the order of
differentiation. On a Riemannian manifold the commutator of twice co-
variant differentiating vector–fields is in general nonzero and is called the
Riemann curvature tensor , which is a 4−tensor–field on the manifold.

For surfaces, the Riemann curvature tensor is equivalent to the Gaussian
curvature K, a scalar function. In dimensions 3 or more, the Riemann cur-
vature tensor is inherently a tensor–field. In local coordinates, it is denoted
by Rijkl, which is anti-symmetric in i and k and in j and l, and symmetric
in the pairs {ij} and {kl}. Thus, it can be considered as a bilinear form on
2−forms which is called the curvature operator. We now describe heuris-
tically the various curvatures associated to the Riemann curvature tensor.
Given a point x ∈ Mn and 2−plane Π in the tangent space of M at x, we
can define a surface S in M to be the union of all geodesics passing through
x and tangent to Π. In a neighborhood of x, S is a smooth 2D submanifold
of M. We define the sectional curvature K(Π) of the 2−plane to be the
Gauss curvature of S at x:

K(Π) = KS(x).

Thus the sectional curvature K of a Riemannian manifold associates to each
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2−plane in a tangent space a real number. Given a line L in a tangent space,
we can average the sectional curvatures of all planes through L to get the
Ricci tensor Rc(L). Likewise, given a point x ∈M, we can average the Ricci
curvatures of all lines in the tangent space of x to get the scalar curvature
R(x). In local coordinates, the Ricci tensor is given by Rik = gjlRijkl and
the scalar curvature is given by R = gikRik, where (gij) = (gij)−1 is the
inverse of the metric tensor (gij).

3.10.1.1 Riemannian Metric on M

In this section we mainly follow [Petersen (1999); Petersen (1998)].
Riemann in 1854 observed that around each point m ∈M one can pick

a special coordinate system (x1, . . . , xn) such that there is a symmetric
(0, 2)−tensor–field gij(m) called the metric tensor defined as

gij(m) = g(∂xi , ∂xj ) = δij , ∂xkgij(m) = 0.

Thus the metric, at the specified point m ∈ M , in the coordinates
(x1, . . . , xn) looks like the Euclidean metric on Rn. We emphasize that
these conditions only hold at the specified point m ∈ M. When passing to
different points it is necessary to pick different coordinates. If a curve γ
passes through m, say, γ(0) = m, then the acceleration at 0 is defined by
firstly, writing the curve out in our special coordinates

γ(t) = (γ1(t), . . . , γn(t)),

secondly, defining the tangent, velocity vector–field, as

γ̇ = γ̇i(t) · ∂xi ,

and finally, the acceleration vector–field as

γ̈(0) = γ̈i(0) · ∂xi .

Here, the background idea is that we have a connection.
Recall that a connection on a smooth manifold M tells us how to paral-

lel transport a vector at a point x ∈M to a vector at a point x′ ∈M along
a curve γ ∈ M . Roughly, to parallel transport vectors along curves, it is
enough if we can define parallel transport under an infinitesimal displace-
ment: given a vector X at x, we would like to define its parallel transported
version X̃ after an infinitesimal displacement by εv, where v is a tangent
vector to M at x.
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More precisely, a vector–field X along a parameterized curve α : I →M

in M is tangent to M along α if X(t) ∈Mα(t) for all for t ∈ I ⊂ R. However,
the derivative Ẋ of such a vector–field is, in general, not tangent to M .
We can, nevertheless, get a vector–field tangent to M by projecting Ẋ(t)
orthogonally onto Mα(t) for each t ∈ I. This process of differentiating and
then projecting onto the tangent space to M defines an operation with the
same properties as differentiation, except that now differentiation of vector–
fields tangent to M induces vector–fields tangent to M . This operation is
called covariant differentiation.

Let γ : I →M be a parameterized curve in M , and let X be a smooth
vector–field tangent to M along α. The absolute covariant derivative of
X is the vector–field ˙̄X tangent to M along α, defined by ˙̄X = Ẋ(t) −
[Ẋ(t) ·N(α(t))]N(α(t)), where N is an orientation on M . Note that ˙̄X is
independent of the choice of N since replacing N by -N has no effect on
the above formula.

Lie bracket (3.7.2) defines a symmetric affine connection ∇ on any man-
ifold M :

[X,Y ] = ∇XY −∇YX.

In case of a Riemannian manifold M , the connection ∇ is also compat-
ible with the Riemannian metrics g on M and is called the Levi–Civita
connection on TM .

For a function f ∈ Ck(M,R) and a vector a vector–field X ∈ X k(M)
we always have the Lie derivative (3.7)

LXf = ∇Xf = df(X).

But there is no natural definition for ∇XY, where Y ∈ X k(M), unless
one also has a Riemannian metric. Given the tangent field γ̇, the acceler-
ation can then be computed by using a Leibniz rule on the r.h.s, if we can
make sense of the derivative of ∂xi in the direction of γ̇. This is exactly
what the covariant derivative ∇XY does. If Y ∈ TmM then we can write
Y = ai∂xi , and therefore

∇XY = LXai∂xi . (3.127)

Since there are several ways of choosing these coordinates, one must check
that the definition does not depend on the choice. Note that for two vector–
fields we define (∇YX)(m) = ∇Y (m)X. In the end we get a connection

∇ : X k(M)×X k(M)→ X k(M),
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which satisfies (for all f ∈ Ck(M,R) and X,Y, Z ∈ X k(M)):

(1) Y → ∇YX is tensorial, i.e., linear and ∇fYX = f∇YX.
(2) X → ∇YX is linear.
(3) ∇X(fY ) = (∇Xf)Y (m) + f(m)∇XY .
(4) ∇XY −∇YX = [X,Y ].
(5) LXg(Z, Y ) = g(∇XZ, Y ) + g(Z,∇XY ).

A semicolon is commonly used to denote covariant differentiation with
respect to a natural basis vector. If X = ∂xi , then the components of ∇XY
in (3.127) are denoted

Y k; i = ∂xiY
k + Γkij Y

j , (3.128)

where Γkij are Christoffel symbols defined in (3.129) below. Similar relations
hold for higher–order tensor–fields (with as many terms with Christoffel
symbols as is the tensor valence).

Therefore, no matter which coordinates we use, we can now define the
acceleration of a curve in the following way:

γ(t) = (γ1(t), . . . , γn(t)),

γ̇(t) = γ̇i(t)∂xi ,

γ̈(t) = γ̈i(t)∂xi + γ̇i(t)∇γ̇(t)∂xi .

We call γ a geodesic if γ(t) = 0. This is a second–order nonlinear ODE in
a fixed coordinate system (x1, . . . , xn) at the specified point m ∈M . Thus
we see that given any tangent vector X ∈ TmM, there is a unique geodesic
γX(t) with γ̇X(0) = X. If the manifold M is closed, the geodesic must exist
for all time, but in case the manifold M is open this might not be so. To
see this, take as M any open subset of Euclidean space with the induced
metric.

Given an arbitrary vector–field Y (t) along γ, i.e., Y (t) ∈ Tγ(t)M for all
t, we can also define the derivative Ẏ ≡ dY

dt in the direction of γ̇ by writing

Y (t) = ai(t)∂xi ,

Ẏ (t) = ȧi(t)∂xi + ai(t)∇γ̇(t)∂xi .

Here the derivative of the tangent field γ̇ is the acceleration γ. The field Y
is said to be parallel iff Ẏ = 0. The equation for a field to be parallel is a
first–order linear ODE, so we see that for any X ∈ Tγ(t0)M there is a unique
parallel field Y (t) defined on the entire domain of γ with the property that
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Y (t0) = X. Given two such parallel fields Y, Z ∈ X k(M), we have that

ġ(Y, Z) = Dγ̇g(Y,Z) = g(Ẏ , Z) + g(Y, Ż) = 0.

ThusX and Y are both of constant length and form constant angles along γ.
Hence, ‘parallel translation’ along a curve defines an orthogonal transforma-
tion between the tangent spaces to the manifold along the curve. However,
in contrast to Euclidean space, this parallel translation will depend on the
choice of curve.

An infinitesimal distance between the two nearby local points m and n
on M is defined by an arc–element

ds2 = gij dx
idxj ,

and realized by the curves xi(s) of shortest distance, called geodesics, ad-
dressed by the Hilbert 4th problem. In local coordinates (x1(s), ..., xn(s))
at a point m ∈M , the geodesic defining equation is a second–order ODE,

ẍi + Γijk ẋ
j ẋk = 0,

where the overdot denotes the derivative with respect to the affine param-
eter s, ẋi(s) = d

dsx
i(s) is the tangent vector to the base geodesic, while the

Christoffel symbols Γijk = Γijk(m) of the affine Levi–Civita connection ∇ at
the point m ∈M are defined, in a holonomic coordinate basis ei as

Γkij = gklΓijl, with gij = (gij)−1 and (3.129)

Γijk =
1
2

(∂xkgij + ∂xjgki − ∂xigjk).

Note that the Christoffel symbols (3.129) do not transform as tensors on
the tangent bundle. They are the components of an object on the second
tangent bundle, a spray. However, they do transform as tensors on the jet
space (see section 5.3 below).

In nonholonomic coordinates, (3.129) takes the extended form

Γikl =
1
2
gim (∂xlgmk + ∂xk∂gml − ∂xm∂gkl + cmkl + cmlk − cklm) ,

where cklm = gmpc
p
kl are the commutation coefficients of the basis, i.e.,

[ek, el] = cmklem.
The torsion tensor–field T of the connection ∇ is the function T :

X k(M)×X k(M)→ X k(M) given by

T (X,Y ) = ∇XY −∇YX − [X,Y ].



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

276 Applied Differential Geometry: A Modern Introduction

From the skew symmetry ([X,Y ] = −[Y,X]) of the Lie bracket, follows the
skew symmetry (T (X,Y ) = −T (Y,X)) of the torsion tensor. The mapping
T is said to be f−bilinear since it is linear in both arguments and also
satisfies T (fX, Y ) = fT (X,Y ) for smooth functions f . Since [∂xi , ∂xj ] = 0
for all 1 ≤ i, j ≤ n, it follows that

T (∂xi , ∂xj ) = (Γkij − Γkji)∂xk .

Consequently, torsion T is a (1, 2) tensor–field, locally given by

T = T ki j dx
i ⊗ ∂xk ⊗ dxj ,

where the torsion components T ki j are given by

T ki j = Γkij − Γkji.

Therefore, the torsion tensor gives a measure of the nonsymmetry of the
connection coefficients. Hence, T = 0 if and only if these coefficients are
symmetric in their subscripts. A connection ∇ with T = 0 is said to be
torsion free or symmetric.

The connection also enables us to define many other classical concepts
from calculus in the setting of Riemannian manifolds. Suppose we have a
function f ∈ Ck(M,R). If the manifold is not equipped with a Riemannian
metric, then we have the differential of f defined by df(X) = LXf, which
is a 1−form. The dual concept, the gradient of f, is supposed to be a
vector–field. But we need a metric g to define it. Namely, ∇f is defined by
the relationship

g(∇f,X) = df(X).

Having defined the gradient of a function on a Riemannian manifold, we
can then use the connection to define the Hessian as the linear map

∇2f : TM → TM, ∇2f(X) = ∇X∇f.

The corresponding bilinear map is then defined as

∇2f(X,Y ) = g(∇2f(X), Y ).

One can check that this is a symmetric bilinear form. The Laplacian of f ,
∆f, is now defined as the trace of the Hessian

∆f = Tr(∇2f(X)) = Tr(∇X∇f),
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which is a linear map. It is also called the Laplace–Beltrami operator , since
Beltrami first considered this operator on Riemannian manifolds.

Riemannian metric has the following mechanical interpretation. Let M
be a closed Riemannian manifold with the mechanical metric g = gijv

ivj ≡
〈v, v〉, with vi = ẋi. Consider the Lagrangian function

L : TM → R, (x, v) 7→ 1
2
〈v, v〉 − U(x) (3.130)

where U(x) is a smooth function on M called the potential. On a fixed
level of energy E, bigger than the maximum of U , the Lagrangian flow
generated by (3.130) is conjugate to the geodesic flow with metric ḡ =
2(e − U(x))〈v, v〉. Moreover, the reduced action of the Lagrangian is the
distance for g = 〈v, v〉 [Arnold (1989); Abraham et al. (1988)]. Both of
these statements are known as the Maupertius action principle.

3.10.1.2 Geodesics on M

For a Ck, k ≥ 2 curve γ : I →M, we define its length on I as

L (γ, I) =
∫
I

|γ̇| dt =
∫
I

√
g (γ̇, γ̇)dt.

This length is independent of our parametrization of the curve γ. Thus the
curve γ can be reparameterized, in such a way that it has unit velocity.
The distance between two points m1 and m2 on M, d (m1,m2) , can now be
defined as the infimum of the lengths of all curves from m1 to m2, i.e.,

L (γ, I)→ min .

This means that the distance measures the shortest way one can travel from
m1 to m2.

If we take a variation V (s, t) : (−ε, ε) × [0, `] → M of a smooth curve
γ (t) = V (0, t) parameterized by arc–length L and of length `, then the
first derivative of the arc–length function

L(s) =
∫ `

0

|V̇ | dt, is given by

dL(0)
ds

≡ L̇(0) = g (γ̇, X)|`0 −
∫ `

0

g (γ,X) dt, (3.131)

where X (t) = ∂V
∂s (0, t) is the so–called variation vector–field. Equation

(3.131) is called the first variation formula. Given any vector–field X along
γ, one can produce a variation whose variational field is X. If the variation
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fixes the endpoints, X (a) = X (b) = 0, then the second term in the formula
drops out, and we note that the length of γ can always be decreased as long
as the acceleration of γ is not everywhere zero. Thus the Euler–Lagrangian
equations for the arc–length functional are the equations for a curve to be
a geodesic.

Recall that in local coordinates xi ∈ U , where U is an open subset in the
Riemannian manifold M , the geodesics are defined by the geodesic equation

ẍi + Γijkẋ
j ẋk = 0, (3.132)

where overdot means derivative upon the line parameter s, while Γijk are
Christoffel symbols of the affine Levi–Civita connection ∇ on M . From
(3.132) it follows that the linear connection homotopy ,

Γ̄ijk = sΓijk + (1− s)Γijk, (0 ≤ s ≤ 1),

determines the same geodesics as the original Γijk.

3.10.1.3 Riemannian Curvature on M

The Riemann curvature tensor is a rather ominous tensor of type (1, 3);
i.e., it has three vector variables and its value is a vector as well. It is
defined through the Lie bracket (3.7.2) as

R (X,Y )Z =
(
∇[X,Y ] − [∇X ,∇Y ]

)
Z = ∇[X,Y ]Z −∇X∇Y Z +∇Y∇XZ.

This turns out to be a vector valued (1, 3)−tensor–field in the three variables
X,Y, Z ∈ X k(M). We can then create a (0, 4)−tensor,

R (X,Y, Z,W ) = g
(
∇[X,Y ]Z −∇X∇Y Z +∇Y∇XZ,W

)
.

Clearly this tensor is skew–symmetric in X and Y , and also in Z and
W ∈ X k(M). This was already known to Riemann, but there are some
further, more subtle properties that were discovered a little later by Bianchi.
The Bianchi symmetry condition reads

R(X,Y, Z,W ) = R(Z,W,X, Y ).

Thus the Riemann curvature tensor is a symmetric curvature operator

R : Λ2TM → Λ2TM.

The Ricci tensor is the (1, 1)− or (0, 2)−tensor defined by

Ric(X) = R(∂xi , X)∂xi , Ric(X,Y ) = g(R(∂xi , X)∂xi , Y ),
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for any orthonormal basis (∂xi). In other words, the Ricci curvature is a
trace of the curvature tensor. Similarly one can define the scalar curvature
as the trace

scal(m) = Tr (Ric) = Ric(∂xi , ∂xi).

When the Riemannian manifold has dimension 2, all of these curvatures
are essentially the same. Since dim Λ2TM = 1 and is spanned by X ∧ Y
where X,Y ∈ X k(M) form an orthonormal basis for TmM, we see that the
curvature tensor depends only on the scalar value

K(m) = R(X,Y,X, Y ),

which also turns out to be the Gaussian curvature. The Ricci tensor is a
homothety

Ric(X) = K(m)X, Ric(Y ) = K(m)Y,

and the scalar curvature is twice the Gauss curvature. In dimension 3 there
are also some redundancies as dimTM = dim Λ2TM = 3. In particular,
the Ricci tensor and the curvature tensor contain the same amount of in-
formation.

The sectional curvature is a kind of generalization of the Gauss curva-
ture whose importance Riemann was already aware of. Given a 2−plane
π ⊂ TmM spanned by an orthonormal basis X,Y ∈ X k(M) it is defined as

sec(π) = R(X,Y,X, Y ).

The remarkable observation by Riemann was that the curvature operator is
a homothety, i.e., looks like R = kI on Λ2TmM iff all sectional curvatures
of planes in TmM are equal to k. This result is not completely trivial, as
the sectional curvature is not the entire quadratic form associated to the
symmetric operator R. In fact, it is not true that sec ≥ 0 implies that the
curvature operator is nonnegative in the sense that all its eigenvalues are
nonnegative. What Riemann did was to show that our special coordinates
(x1, . . . , xn) at m can be chosen to be normal at m, i.e., satisfy the condition

xi = δijx
j , (δijx

j = gij)

on a neighborhood of m. One can show that such coordinates are actually
exponential coordinates together with a choice of an orthonormal basis for
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TmM so as to identify TmM with Rn. In these coordinates one can then
expand the metric as follows:

gij = δij −
1
3
Rikjlx

kxl +O
(
r3
)
.

Now the equations xi = gijx
j evidently give conditions on the curvatures

Rijkl at m.
If Γijk(m) = 0, the manifold M is flat at the point m. This means that

the (1, 3) curvature tensor, defined locally at m ∈M as

Rlijk = ∂xjΓlik − ∂xkΓlij + ΓlrjΓ
r
ik − ΓlrkΓrij ,

also vanishes at that point, i.e., Rlijk(m) = 0.
Now, the rate of change of a vector–field Ak on the manifold M along

the curve xi(s) is properly defined by the absolute covariant derivative

D

ds
Ak = ẋi∇iAk = ẋi

(
∂xiA

k + Γkij A
j
)

= Ȧk + Γkij ẋ
iAj .

By applying this result to itself, we can get an expression for the second
covariant derivative of the vector–field Ak along the curve xi(s):

D2

ds2
Ak =

d

ds

(
Ȧk + Γkij ẋ

iAj
)

+ Γkij ẋ
i(Ȧj + Γjmn ẋ

mAn).

In the local coordinates (x1(s), ..., xn(s)) at a point m ∈ M, if δxi =
δxi(s) denotes the geodesic deviation, i.e., the infinitesimal vector describing
perpendicular separation between the two neighboring geodesics, passing
through two neighboring points m,n ∈ M , then the Jacobi equation of
geodesic deviation on the manifold M holds:

D2δxi

ds2
+Rijkl ẋ

j δxk ẋl = 0. (3.133)

This equation describes the relative acceleration between two infinitesimally
close facial geodesics, which is proportional to the facial curvature (mea-
sured by the Riemann tensor Rijkl at a point m ∈M), and to the geodesic
deviation δxi. Solutions of equation (3.133) are called Jacobi fields.

In particular, if the manifold M is a 2D–surface in R3, the Riemann
curvature tensor simplifies into

Rijmn =
1
2
Rgik(gkm gjn − gkn gjm),
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where R denotes the scalar Gaussian curvature. Consequently the equation
of geodesic deviation (3.133) also simplifies into

D2

ds2
δxi +

R

2
δxi − R

2
ẋi(gjk ẋj δxk) = 0. (3.134)

This simplifies even more if we work in a locally Cartesian coordinate
system; in this case the covariant derivative D2

Ds2 reduces to an ordinary
derivative d2

ds2 and the metric tensor gij reduces to identity matrix Iij , so
our 2D equation of geodesic deviation (3.134) reduces into a simple second–
order ODE in just two coordinates xi (i = 1, 2)

ẍi +
R

2
δxi − R

2
ẋi(Ijk ẋj δxk) = 0.

3.10.2 Global Riemannian Geometry

3.10.2.1 The Second Variation Formula

Cartan also establishes another important property of manifolds with non-
positive curvature. First he observes that all spaces of constant zero cur-
vature have torsion–free fundamental groups. This is because any isometry
of finite order on Euclidean space must have a fixed point (the center of
mass of any orbit is necessarily a fixed point). Then he notices that one
can geometrically describe the L∞ center of mass of finitely many points
{m1, . . . ,mk} in Euclidean space as the unique minimum for the strictly
convex function

x→ max
i=1,··· ,k

1
2

{
(d (mi, x))2

}
.

In other words, the center of mass is the center of the ball of smallest radius
containing {m1, . . . ,mk} . Now Cartan’s observation from above was that
the exponential map is expanding and globally distance nondecreasing as a
map:

(TmM, Euclidean metric)→ (TmM, with pull–back metric) .

Thus distance functions are convex in nonpositive curvature as well as in
Euclidean space. Hence the above argument can in fact be used to conclude
that any Riemannian manifold of nonpositive curvature must also have
torsion free fundamental group.

Now, let us set up the second variation formula and explain how it
is used. We have already seen the first variation formula and how it can
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be used to characterize geodesics. Now suppose that we have a unit speed
geodesic γ (t) parameterized on [0, `] and consider a variation V (s, t) , where
V (0, t) = γ (t). Synge then shows that (L̈ ≡ d2L

ds2 )

L̈(0) =
∫ `

0

{g(Ẋ, Ẋ)− (g(Ẋ, γ̇))2 − g(R(X, γ̇)X, γ̇)}dt+ g(γ̇, A)|`0 ,

where X (t) = ∂V
∂s (0, t) is the variational vector–field, Ẋ = ∇γ̇X, and

A (t) = ∇ ∂V
∂s
X. In the special case where the variation fixes the endpoints,

i.e., s → V (s, a) and s → V (s, b) are constant, the term with A in it falls
out. We can also assume that the variation is perpendicular to the geodesic
and then drop the term g

(
Ẋ, γ̇

)
. Thus, we arrive at the following simple

form:

L̈(0) =
∫ `

0

{g(Ẋ, Ẋ)− g (R (X, γ̇)X, γ̇)}dt =
∫ `

0

{|Ẋ|2 − sec(γ̇, X) |X|2}dt.

Therefore, if the sectional curvature is nonpositive, we immediately observe
that any geodesic locally minimizes length (that is, among close–by curves),
even if it does not minimize globally (for instance γ could be a closed
geodesic). On the other hand, in positive curvature we can see that if a
geodesic is too long, then it cannot minimize even locally. The motivation
for this result comes from the unit sphere, where we can consider geodesics
of length > π. Globally, we know that it would be shorter to go in the
opposite direction. However, if we consider a variation of γ where the
variational field looks like X = sin

(
t · π`

)
E and E is a unit length parallel

field along γ which is also perpendicular to γ, then we get

L̈(0) =
∫ `

0

{∣∣∣Ẋ∣∣∣2 − sec (γ̇, X) |X|2
}
dt

=
∫ `

0

{(π
`

)2

· cos2
(
t · π
`

)
− sec (γ̇, X) sin2

(
t · π
`

)}
dt

=
∫ `

0

((π
`

)2

· cos2
(
t · π
`

)
− sin2

(
t · π
`

))
dt = − 1

2`
(
`2 − π2

)
,

which is negative if the length ` of the geodesic is greater than π. Therefore,
the variation gives a family of curves that are both close to and shorter than
γ. In the general case, we can then observe that if sec ≥ 1, then for the
same type of variation we get

L̈(0) ≤ − 1
2`
(
`2 − π2

)
.
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Thus we can conclude that, if the space is complete, then the diameter
must be ≤ π because in this case any two points are joined by a segment,
which cannot minimize if it has length > π. With some minor modifications
one can now conclude that any complete Riemannian manifold (M, g) with
sec ≥ k2 > 0 must satisfy diam(M, g) ≤ π · k−1. In particular, M must be
compact. Since the universal covering of M satisfies the same curvature
hypothesis, the conclusion must also hold for this space; hence M must
have compact universal covering space and finite fundamental group.

In odd dimensions all spaces of constant positive curvature must be
orientable, as orientation reversing orthogonal transformation on odd–
dimensional spheres have fixed points. This can now be generalized to
manifolds of varying positive curvature. Synge did it in the following way:
Suppose M is not simply–connected (or not orientable), and use this to
find a shortest closed geodesic in a free homotopy class of curves (that re-
verses orientation). Now consider parallel translation around this geodesic.
As the tangent field to the geodesic is itself a parallel field, we see that
parallel translation preserves the orthogonal complement to the geodesic.
This complement is now odd dimensional (even dimensional), and by as-
sumption parallel translation preserves (reverses) the orientation; thus it
must have a fixed point. In other words, there must exist a closed parallel
field X perpendicular to the closed geodesic γ. We can now use the above
second variation formula

L̈(0) =
∫ `

0

{|Ẋ|2 − |X|2 sec (γ̇, X)}dt+ g (γ̇, A)|`0 = −
∫ `

0

|X|2 sec (γ̇, X) dt.

Here the boundary term drops out because the variation closes up at the
endpoints, and Ẋ = 0 since we used a parallel field. In case the sectional
curvature is always positive we then see that the above quantity is negative.
But this means that the closed geodesic has nearby closed curves which are
shorter. However, this is in contradiction with the fact that the geodesic
was constructed as a length minimizing curve in a free homotopy class.

In 1941 Myers generalized the diameter bound to the situation where
one only has a lower bound for the Ricci curvature. The idea is that
Ric(γ̇, γ̇) =

∑n−1
i=1 sec (Ei, γ̇) for any set of vector–fields Ei along γ such

that γ̇, E1, . . ., En−1 forms an orthonormal frame. Now assume that the
fields are parallel and consider the n − 1 variations coming from the vari-
ational vector–fields sin

(
t · π`

)
Ei. Adding up the contributions from the
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variational formula applied to these fields then induces

n−1∑
i=1

L̈(0) =
n−1∑
i=1

∫ `

0

{(π
`

)2

· cos2
(
t · π
`

)
− sec (γ̇, Ei) sin2

(
t · π
`

)}
dt

=
∫ `

0

{
(n− 1)

(π
`

)2

· cos2
(
t · π
`

)
− Ric (γ̇, γ̇) sin2

(
t · π
`

)}
dt.

Therefore, if Ric(γ̇, γ̇) ≥ (n− 1) k2 (this is the Ricci curvature of Snk ), then

n−1∑
i=1

L̈(0) ≤ (n− 1)
∫ `

0

{(π
`

)2

· cos2
(
t · π
`

)
− k2 sin2

(
t · π
`

)}
dt

= − (n− 1)
1
2`
(
`2k2 − π2

)
,

which is negative when ` > π · k−1 (the diameter of Snk ). Thus at least one
of the contributions d2Li

ds2 (0) must be negative as well, implying that the
geodesic cannot be a segment in this situation.

3.10.2.2 Gauss–Bonnet Formula

In 1926 Hopf proved that in fact there is a Gauss–Bonnet formula for
all even–dimensional hypersurfaces H2n ⊂ R2n+1. The idea is that the
determinant of the differential of the Gauss map G : H2n → S2n is the
Gaussian curvature of the hypersurface. Moreover, this is an intrinsically
computable quantity. If we integrate this over the hypersurface, we get,

1
VolS2n

∫
H

det (DG) = deg (G) ,

where deg (G) is the Brouwer degree of the Gauss map. Note that this
can also be done for odd–dimensional surfaces, in particular curves, but
in this case the degree of the Gauss map will depend on the embedding
or immersion of the hypersurface. Instead one gets the so–called winding
number. Hopf then showed, as Dyck had earlier done for surfaces, that
deg (G) is always half the Euler characteristic of H, thus yielding

2
VolS2n

∫
H

det (DG) = χ (H) . (3.135)

Since the l.h.s of this formula is in fact intrinsic, it is natural to conjecture
that such a formula should hold for all manifolds.



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Applied Manifold Geometry 285

3.10.2.3 Ricci Flow on M

Ricci flow , or the parabolic Einstein equation, was introduced by R. Hamil-
ton in 1982 [Hamilton (1982)] in the form

∂tgij = −2Rij . (3.136)

Now, because of the minus sign in the front of the Ricci tensor Rij in
this equation, the solution metric gij to the Ricci flow shrinks in positive
Ricci curvature direction while it expands in the negative Ricci curvature
direction. For example, on the 2−sphere S2, any metric of positive Gaussian
curvature will shrink to a point in finite time. Since the Ricci flow (3.136)
does not preserve volume in general, one often considers the normalized
Ricci flow defined by

∂tgij = −2Rij +
2
n
rgij , (3.137)

where r =
∫
RdV

/ ∫
dV is the average scalar curvature. Under this nor-

malized flow, which is equivalent to the (unnormalized) Ricci flow (3.136)
by reparameterizing in time t and scaling the metric in space by a func-
tion of t, the volume of the solution metric is constant in time. Also that
Einstein metrics (i.e., Rij = cgij) are fixed points of (3.137).

Hamilton [Hamilton (1982)] showed that on a closed Riemannian
3−manifold M3 with initial metric of positive Ricci curvature, the solu-
tion g(t) to the normalized Ricci flow (3.137) exists for all time and the
metrics g(t) converge exponentially fast, as time t tends to the infinity, to
a constant positive sectional curvature metric g∞ on M3.

Since the Ricci flow lies in the realm of parabolic partial differential
equations, where the prototype is the heat equation, here is a brief review
of the heat equation [Cao and Chow (1999)].

Let (Mn, g) be a Riemannian manifold. Given a C2 function u : M → R,
its Laplacian is defined in local coordinates

{
xi
}

to be

∆u = Tr
(
∇2u

)
= gij∇i∇ju,

where ∇i = ∇∂xi is its associated covariant derivative (Levi–Civita connec-
tion). We say that a C2 function u : Mn × [0, T ) → R, where T ∈ (0,∞],
is a solution to the heat equation if

∂tu = ∆u.
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One of the most important properties satisfied by the heat equation is the
maximum principle, which says that for any smooth solution to the heat
equation, whatever pointwise bounds hold at t = 0 also hold for t > 0. Let
u : Mn × [0, T ) → R be a C2 solution to the heat equation on a complete
Riemannian manifold. If C1 ≤ u (x, 0) ≤ C2 for all x ∈ M, for some
constants C1, C2 ∈ R, then C1 ≤ u (x, t) ≤ C2 for all x ∈ M and t ∈ [0, T )
[Cao and Chow (1999)].

Now, given a smooth manifold M, a one–parameter family of metrics
g (t) , where t ∈ [0, T ) for some T > 0, is a solution to the Ricci flow if
(3.136) is valid at all x ∈M and t ∈ [0, T ). The minus sign in the equation
(3.136) makes the Ricci flow a forward heat equation [Cao and Chow (1999)]
(with the normalization factor 2).

In local geodesic coordinates {xi}, we have [Cao and Chow (1999)]

gij(x) = δij −
1
3
Ripjqx

pxq +O
(
|x|3
)
, therefore, ∆gij (0) = −1

3
Rij ,

where ∆ is the standard Euclidean Laplacian. Hence the Ricci flow is like
the heat equation for a Riemannian metric

∂tgij = 6∆gij .

The practical study of the Ricci flow is made possible by the following
short–time existence result: Given any smooth compact Riemannian man-
ifold (M, go), there exists a unique smooth solution g(t) to the Ricci flow
defined on some time interval t ∈ [0, ε) such that g(0) = go [Cao and Chow
(1999)].

Now, given that short–time existence holds for any smooth initial met-
ric, one of the main problems concerning the Ricci flow is to determine
under what conditions the solution to the normalized equation exists for
all time and converges to a constant curvature metric. Results in this di-
rection have been established under various curvature assumptions, most
of them being some sort of positive curvature. Since the Ricci flow (3.136)
does not preserve volume in general, one often considers, as we mentioned
in the Introduction, the normalized Ricci flow (3.137). Under this flow, the
volume of the solution g(t) is independent of time.

To study the long–time existence of the normalized Ricci flow, it is
important to know what kind of curvature conditions are preserved under
the equation. In general, the Ricci flow tends to preserve some kind of
positivity of curvatures. For example, positive scalar curvature is preserved
in all dimensions. This follows from applying the maximum principle to the
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evolution equation for scalar curvature R, which is

∂tR = ∆R+ 2 |Rij |2 .

In dimension 3, positive Ricci curvature is preserved under the Ricci flow.
This is a special feature of dimension 3 and is related to the fact that the
Riemann curvature tensor may be recovered algebraically from the Ricci
tensor and the metric in dimension 3. Positivity of sectional curvature
is not preserved in general. However, the stronger condition of positive
curvature operator is preserved under the Ricci flow.

3.10.2.4 Structure Equations on M

Let {Xa}ma=1, {Yi}ni=1 be local orthonormal framings on M , N respectively
and {ei}ni=1 be the induced framing on E defined by ei = Yi ◦φ, then there
exist smooth local coframings {ωa}ma=1, {ηi}ni=1 and {φ∗ηi}ni=1 on TM , TN
and E respectively such that (locally)

g =
m∑
a=1

ω2
a and h =

n∑
i=1

η2
i .

The corresponding first structure equations are [Mustafa (1999)]:

dωa = ωb ∧ ωba, ωab = −ωba,
dηi = ηj ∧ ηji, ηij = −ηji,

d(φ∗ηi) = φ∗ηj ∧ φ
∗ηji, φ∗ηij = −φ∗ηji,

where the unique 1–forms ωab, ηij , φ
∗ηij are the respective connection

forms. The second structure equations are

dωab = ωac ∧ ωcb + ΩMab , dηij = ηik ∧ ηkj + ΩNij ,

d(φ∗ηij) = φ∗ηik ∧ φ
∗ηkj + φ∗ΩNij ,

where the curvature 2–forms are given by

ΩMab = −1
2
RMabcdωc ∧ ωd and ΩNij = −1

2
RNijklηk ∧ ηl.

The pull back map φ∗ and the push forward map φ∗ can be written as
[Mustafa (1999)]

φ∗ηi = fiaωa
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for unique functions fia on U ⊂M , so that

φ∗ = ei ⊗ φ∗ηi = fiaei ⊗ ωa.

Note that φ∗ is a section of the vector bundle φ−1TN ⊗ T ∗M .
The covariant differential operators are represented as

∇MXa = ωab ⊗Xb, ∇NYi = ηij ⊗ Yj , ∇∗ωa = −ωca ⊗ ωc,

where ∇∗ is the dual connection on the cotangent bundle T ∗M .
Furthermore, the induced connection ∇φ on E is

∇φei =
(
ηij(Yk) ◦ φ

)
ej ⊗ fkaωa.

The components of the Ricci tensor and scalar curvature are defined
respectively by

RMab = RMacbc and RM = RMaa.

Given a function f : M → , there exist unique functions fcb = fbc such that

dfc − fbωcb = fcbωb , (3.138)

where fc = df(Xc) for a local orthonormal frame {Xc}mc=1. To prove this
we take the exterior derivative of df =

∑m
c=1 fcωc and using structure

equations, we have

0 = [dfc ∧ ωc + fbcωb ∧ ωbc] = [(dfc − fbωcb) ∧ ωc] .

Hence by Cartan’s lemma (cf. [Willmore (1993)]), there exist unique func-
tions fcb = fbc such that

dfc − fbωcb = fcbωb.

The Laplacian of a function f on M is given by

∆f = −Tr(∇df),

that is, negative of the usual Laplacian on functions.
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3.10.3 Application: Autonomous Lagrangian Dynamics

3.10.3.1 Basis of Lagrangian Dynamics

Recall that Riemannian metric g =<,> on the configuration manifold M

is a positive–definite quadratic form g : TM → R, given in local coordinates
qi ∈ U (U open in M) as

gij 7→ gij(q,m) dqidqj , where (3.139)

gij(q,m) = mµδrs
∂xr

∂qi
∂xs

∂qj
(3.140)

is the covariant material metric tensor defining a relation between internal
and external coordinates and including n segmental masses mµ. The quan-
tities xr are external coordinates (r, s = 1, . . . , 6n) and i, j = 1, . . . , N ≡
6n− h, where h denotes the number of holonomic constraints.

The Lagrangian of the system is a quadratic form L : TM → R depen-
dent on velocity v and such that L(v) = 1

2 < v, v >. It is locally given
by

L(v) =
1
2
gij(q,m) vivj .

On the velocity phase–space manifold TM exist:

(1) a unique 1−form θL, defined in local coordinates qi, vi = q̇i ∈ Uv (Uv
open in TM) by θL = Lvidq

i, where Lvi ≡ ∂L/∂vi; and
(2) a unique nondegenerate Lagrangian symplectic 2−form ωL, which is

closed (dωL = 0) and exact (ωL = dθL = dLvi ∧ dqi).

TM is an orientable manifold, admitting the standard volume given by

ΩωL =
(−1)

N(N+1)
2

N !
ωNL ,

in local coordinates qi, vi = q̇i ∈ Uv (Uv open in TM) it is given by

ΩL = dq1 ∧ · · · ∧ dqN ∧ dv1 ∧ · · · ∧ dvN .

On the velocity phase–space manifold TM we can also define the action
A : TM → R in local coordinates qi, vi = q̇i ∈ Uv (Uv open in TM) given
by A = viLvi , so E = viLvi − L. The Lagrangian vector–field XL on
TM is determined by the condition iXLωL = dE. Classically, it is given
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by the second–order Lagrangian equations

d

dt

∂L

∂vi
=

∂L

∂qi
. (3.141)

For a Lagrangian vector–field XL on M , there is a base integral curve
γ0(t) = (qi(t), vi(t)) iff γ0(t) is a geodesic. This is given by the contravari-
ant velocity equation

q̇i = vi, v̇i + Γijk v
jvk = 0. (3.142)

Here Γijk denote the Christoffel symbols of the Levi–Civita connection ∇
in an open chart U on M , defined on the Riemannian metric g =<,> by
(see section 3.10.1.1 above)

Γijk = gilΓjkl, Γijk =
1
2

(∂xigjk + ∂xjgki + ∂xkgij). (3.143)

The l.h.s ˙̄vi = v̇i + Γijk v
jvk in the second part of (3.142) represents

the Bianchi covariant derivative of the velocity with respect to t. Parallel
transport on M is defined by ˙̄vi = 0. When this applies, XL is called the
geodesic spray and its flow the geodesic flow .

For the dynamics in the gravitational potential field V : M → R, the
Lagrangian L : TM → R has an extended form

L(v, q) =
1
2
gijv

ivj − V (q),

A Lagrangian vector–field XL is still defined by the second–order La-
grangian equations (3.141, 3.142).

A general form of the forced, non–conservative Lagrangian equations is
given as

d

dt

∂L

∂vi
− ∂L

∂qi
= Fi(t, qi, vi)).

Here the Fi(t, qi, vi) represent any kind of covariant forces as a functions
of time, coordinates and momenta. In covariant form we have

q̇i = vi, gij(v̇i + Γijk v
jvk) = Fj(t, qi, vi)).
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3.10.3.2 Lagrange–Poincaré Dynamics

Euler–Poincaré Equations

Let G be a Lie group and let L : TG→ R be a left–invariant Lagrangian.
Let l : g → R be its restriction to the identity. For a curve g(t) ∈ G, let
ξ(t) = g(t)−1 · ġ(t); that is, ξ(t) = Tg(t)Lg(t)−1 ġ(t). Then the following are
equivalent [Marsden and Ratiu (1999)]:

(1) g(t) satisfies the Euler–Lagrangian equations for L on G;
(2) The variational principle holds,

δ

∫
L(g(t), ġ(t)) dt = 0

for variations with fixed endpoints;
(3) The Euler–Poincaré equations hold:

d

dt

∂l

∂ξ
= Ad∗ξ

δl

δξ
;

(4) The variational principle holds on g,

δ

∫
l(ξ(t)) dt = 0,

using variations of the form δξ = η̇ + [ξ, η], where η vanishes at the
endpoints.

Lagrange–Poincaré Equations

Here we follow [Marsden and Ratiu (1999)] and drop Euler–Lagrangian
equations and variational principles from a general velocity phase–space
TM to the quotient TM/G by an action of a Lie group G on M . If L
is a G−invariant Lagrangian on TM , it induces a reduced Lagrangian l

on TM/G. We introduce a connection A on the principal bundle M →
S = M/G, assuming that this quotient is nonsingular. This connection
allows one to split the variables into a horizontal and vertical part. Let
internal variables xα be coordinates for shape–space S = M/G, let ηa be
coordinates for the Lie algebra g relative to a chosen basis, let l be the
Lagrangian regarded as a function of the variables xα, ẋα, ηa and let Cadb
be the structure constants of the Lie algebra g of G.

If one writes the Euler–Lagrangian equations on TM in a local principal
bundle trivialization, with coordinates xα on the base and ηa in the fibre,
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then one gets the following system of Hamel equations:

d

dt

∂l

∂ẋα
=

∂l

∂xα
, and

d

dt

∂l

∂ηb
=

∂l

∂ηa
Cadbη

a.

However, this representation of the equations does not make global in-
trinsic sense. The introduction of a connection overcomes this, and one
can intrinsically and globally split the original variational principle relative
to horizontal and vertical variations. One gets from one form to the other
by means of the velocity shift given by replacing ηa by the vertical part
relative to the affine connection

ξa = Aaαẋ
α + ηa.

Here Aaα are the local coordinates of the connection A. This change of coor-
dinates is motivated from the mechanical point of view, since the variables
ξa have the interpretation of the locked angular velocity. The resulting
Lagrange–Poincaré equations have the following form:

d

dt

∂l

∂ẋα
− ∂l

∂xα
=

∂l

∂ξa

(
Baαβẋ

β +Baαdξ
d
)
,

d

dt

∂l

∂ξb
=

∂l

∂ξa

(
Babαẋ

α + Cadbξ
d
)
.

In these equations, Baαβ are the coordinates of the curvature B of A,

Badα = CadbA
b
α, and Babα = −Baαb.

The variables ξa may be regarded as the rigid part of the variables on the
original configuration space, while xα are the internal variables.

3.10.4 Core Application: Search for Quantum Gravity

3.10.4.1 What Is Quantum Gravity?

The landscape of fundamental physics has changed substantially during the
last few decades. Not long ago, our understanding of the weak and strong
interactions was very confused, while general relativity was almost totally
disconnected from the rest of physics and was empirically supported by
little more than its three classical tests. Then two things have happened.
The SU(3)×SU(2)×U(1) Standard Model has found a dramatic empirical
success, showing that quantum field theory (QFT) is capable of describing
all accessible fundamental physics, or at least all non–gravitational physics.
At the same time, general relativity (GR) has undergone an extraordinary
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‘renaissance’, finding widespread application in astrophysics and cosmology,
as well as novel vast experimental support – so that today GR is basic
physics needed for describing a variety of physical systems we have access
to, including advanced technological systems [Ashby (1997)].

These two parallel developments have moved fundamental physics to a
position in which it has rarely been in the course of its history: We have
today a group of fundamental laws, the Standard Model and GR, which
–even if it cannot be regarded as a satisfactory global picture of Nature–
is perhaps the best confirmed set of fundamental theories after Newton’s
universal gravitation and Maxwell’s electromagnetism. More importantly,
there aren’t today experimental facts that openly challenge or escape this
set of fundamental laws. In this unprecedented state of affairs, a large
number of theoretical physicists from different backgrounds have begun to
address the piece of the puzzle which is clearly missing: combining the
two halves of the picture and understanding the quantum properties of
the gravitational field. Equivalently, understanding the quantum proper-
ties of space–time. Interest and researches in quantum gravity have thus
increased sharply in recent years. And the problem of understanding what
is a quantum space–time is today at the core of fundamental physics.

Today we have some well developed and reasonably well defined tenta-
tive theories of quantum gravity. String theory and loop quantum gravity
are the two major examples. Within these theories definite physical results
have been obtained, such as the explicit computation of the ‘quanta of ge-
ometry’ and the derivation of the black hole entropy formula. Furthermore,
a number of fresh new ideas, like noncommutative geometry, have entered
quantum gravity. For an overview of the problem of quantum gravity, see
[Isham (1997)].

3.10.4.2 Main Approaches to Quantum Gravity

String theory

String theory is by far the research direction which is presently most
investigated. String theory presently exists at two levels. First, there is a
well developed set of techniques that define the string perturbation ex-
pansion over a given metric background. Second, the understanding of
the non–perturbative aspects of the theory has much increased in recent
years [Polchinski (1995)] and in the string community there is a widespread
faith, supported by numerous indications, in the existence of a yet-to-be-
found full non–perturbative theory, capable of generating the perturbation
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expansion. There are attempts of constructing this non–perturbative the-
ory, generically denoted M theory. The currently popular one is Matrix–
theory, of which it is far too early to judge the effectiveness [Matacz (2002);
Ishibashi et. al. (1997)].

The claim that string theory solves QG is based on two facts. First, the
string perturbation expansion includes the graviton. More precisely, one of
the string modes is a massless spin two, and helicity ±2, particle. Such a
particle necessarily couples to the energy–momentum tensor of the rest of
the fields [Weinberg (1964); Weinberg (1980)] and gives general relativity
to a first approximation. Second, the perturbation expansion is consistent
if the background geometry over which the theory is defined satisfies a cer-
tain consistency condition; this condition turns out to be a high energy
modification of the Einstein’s equations. The hope is that such a consis-
tency condition for the perturbation expansion will emerge as a full–fledged
dynamical equation from the yet–to–be–found non–perturbative theory.

From the point of view of the problem of quantum gravity, the relevant
physical results from string theory are two [Rovelli (1997)]:

Black hole entropy. The most remarkable physical results for quantum
gravity is the derivation of the Bekenstein–Hawking formula for the
entropy of a black hole as a function of the horizon area. This beautiful
result has been obtained by [Strominger and Vafa (1996)], and has then
been extended in various directions. The result indicates that there is
some unexpected internal consistency between string theory and QFT
on curved space.

Microstructure of space–time. There are indications that in string the-
ory the space–time continuum is meaningless below the Planck length.
An old set of results on very high energy scattering amplitudes indicates
that there is no way of probing the space–time geometry at very short
distances. What happens is that in order to probe smaller distance one
needs higher energy, but at high energy the string ‘opens up from being
a particle to being a true string’ which is spread over space–time, and
there is no way of focusing a string’s collision within a small space–time
region.

More recently, in the non–perturbative formulation of the Matrix–theory
[Matacz (2002)], the space–time coordinates of the string xi are replaced by
matrices (Xi)nm. This can perhaps be viewed as a new interpretation of the
space–time structure. The continuous space–time manifold emerges only
in the long distance region, where these matrices are diagonal and com-
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mute; while the space–time appears to have a noncommutative discretized
structure in the short distance regime. This features are still poorly under-
stood, but they have intriguing resonances with noncommutative geometry
[Connes et. al. (1997)] and loop quantum gravity [Rovelli (1998)].

A key difficulty in string theory is the lack of a complete non–
perturbative formulation. During the last year, there has been excitement
for some tentative non–perturbative formulations [Matacz (2002)]; but it
is far too early to understand if these attempts will be successful. Many
previously highly acclaimed ideas have been rapidly forgotten.

A distinct and even more serious difficulty of string theory is the lack
of a background independent formulation of the theory. In the words of Ed
Witten:

‘Finding the right framework for an intrinsic, background inde-
pendent formulation of string theory is one of the main problems in
string theory, and so far has remained out of reach... This problem
is fundamental because it is here that one really has to address the
question of what kind of geometrical object the string represents.’

Most of string theory is conceived in terms of a theory describing ex-
citations over this or that background, possibly with connections between
different backgrounds. This is also true for (most) non–perturbative for-
mulations such as Matrix theory. For instance, the (bosonic part of the)
Lagrangian of Matrix–theory is

L ∼ 1
2

Tr
(
Ẋ2 +

1
2

[Xi, Xj ]2
)
. (3.144)

The indices that label the matrices Xi are raised and lowered with a
Minkowski metric, and the theory is Lorentz invariant. In other words,
the Lagrangian is really

L ∼ 1
2

Tr
(
g00gijẊiẊj +

1
2
gikgjl[Xi, Xj ][Xk, Xl]

)
, (3.145)

where g is the flat metric of the background. This shows that there is a
non–dynamical metric, and an implicit flat background in the action of the
theory.

However, the world is not formed by a fixed background over which
things happen. The background itself is dynamical. In particular, for
instance, the theory should contain quantum states that are quantum su-
perpositions of different backgrounds – and presumably these states play



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

296 Applied Differential Geometry: A Modern Introduction

an essential role in the deep quantum gravitational regime, namely in situa-
tions such as the big bang or the final phase of black hole evaporation. The
absence of a fixed background in nature (or active diffeomorphism invari-
ance) is the key general lessons we have learned from gravitational theories
[Rovelli (1997)].

There has been a burst of recent activity in an outgrowth of string
theory denoted string cosmology by [Veneziano (1991)]. The aim of string
cosmology is to extract physical consequences from string theory by apply-
ing it to the big bang. The idea is to start from a Minkowski flat universe;
show that this is unstable and therefore will run away from the flat (false–
vacuum) state. The evolution then leads to a cosmological model that
starts off in an inflationary phase. This scenario is described using mini–
superspace technology, in the context of the low energy theory that emerge
as limit of string theory. Thus, first one freezes all the massive modes of
the string, then one freezes all massless modes except the zero modes (the
spatially constant ones), obtaining a finite dimensional theory, which can
be quantized non–perturbatively.

Loop quantum gravity

The second most popular approach to quantum gravity, and the most popu-
lar among relativists, is loop quantum gravity [Rovelli (1998)]. Loop quan-
tum gravity is presently the best developed alternative to string theory.
Like strings, it is not far from a complete and consistent theory and it
yields a corpus of definite physical predictions, testable in principle, on
quantum space–time.

Loop quantum gravity, however, attacks the problem from the opposite
direction than string theory. It is a non-perturbative and background in-
dependent theory to start with. In other words, it is deeply rooted into
the conceptual revolution generated by general relativity. In fact, successes
and problems of loop quantum gravity are complementary to successes and
problems of strings. Loop quantum gravity is successful in providing a
consistent mathematical and physical picture of non perturbative quan-
tum space–time; but the connection to the low energy dynamics is not yet
completely clear.

The general idea on which loop quantum gravity is based is the fol-
lowing. The core of quantum mechanics is not identified with the struc-
ture of (conventional) QFT, because conventional QFT presupposes a back-
ground metric space–time, and is therefore immediately in conflict with GR.
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Rather, it is identified with the general structure common to all quantum
systems. The core of GR is identified with the absence of a fixed observ-
able background space–time structure, namely with active diffeomorphism
invariance. Loop quantum gravity is thus a quantum theory in the con-
ventional sense: a Hilbert space and a set of quantum (field) operators,
with the requirement that its classical limit is GR with its conventional
matter couplings. But it is not a QFT over a metric manifold. Rather,
it is a ‘quantum field theory on a differentiable manifold’, respecting the
manifold’s invariances and where only coordinate independent quantities
are physical.

Technically, loop quantum gravity is based on two inputs [Rovelli (1998);
Rovelli (1997)]:

• The formulation of classical GR based on the Ashtekar connection
[Ashtekar (1986); Ashtekar (1987); Ashtekar (1991)]. The version of
the connection now most popular is not the original complex one, but
an evolution of the same, in which the connection is real.
• The choice of the holonomies of this connection, denoted loop vari-

ables, as basic variables for the quantum gravitational field [Rovelli
and Smolin (1988)].

This second choice determines the peculiar kind of quantum theory be-
ing built. Physically, it corresponds to the assumption that excitations
with support on a loop are normalizable states. This is the key technical
assumption on which everything relies.

It is important to notice that this assumption fails in conventional 4D
Yang–Mills theory , because loop-like excitations on a metric manifold are
too singular: the field needs to be smeared in more dimensions [Rovelli
(1997)]. Equivalently, the linear closure of the loop states is a ‘far too big’
non-separable state space. This fact is the major source of some particle
physicists’s suspicion at loop quantum gravity. What makes GR different
from 4D Yang–Mills theory, however, is non–perturbative diffeomorphism
invariance. The gauge invariant states, in fact, are not localized at all
– they are, pictorially speaking, smeared by the (gauge) diffeomorphism
group all over the coordinates manifold. More precisely, factoring away
the diffeomorphism group takes us down from the state space of the loop
excitations, which is ‘too big’, to a separable physical state space of the
right size. Thus, the consistency of the loop construction relies heavily
on diffeomorphism invariance. In other words, the diff–invariant invariant
loop states (more precisely, the diff–invariant spin network states) are not
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physical excitations of a field on space–time. They are excitations of space–
time itself.

Loop quantum gravity was briefly described by [Rovelli (1997)] as fol-
lows:

Definition of theory. The mathematical structure of the theory has been
put on a very solid basis. Early difficulties have been overcome. In
particular, there were three major problems in the theory: the lack of
a well defined scalar product, the overcompleteness of the loop basis,
and the difficulty of treating the reality conditions.

• The problem of the lack of a scalar product on the Hilbert space
has been solved with the definition of a diffeomorphism invariant
measure on a space of connections [Ashtekar and Lewandowski
(1995)]. Later, it has also became clear that the same scalar prod-
uct can be defined in a purely algebraic manner [DePietri and
Rovelli (1996)]. The state space of the theory is therefore a gen-
uine Hilbert space H.
• The overcompleteness of the loop basis has been solved by the in-

troduction of the spin network states [Rovelli and Smolin (1995)].
A spin network is a graph carrying labels (related to SU(2) rep-
resentations and called ‘colors’) on its links and its nodes.
Each spin network defines a spin network state, and the spin net-
work states form a (genuine, non-overcomplete) orthonormal basis
in H.
• The difficulties with the reality conditions have been circum-

vented by the use of the real formulation [Barbero (1994);
Barbero (1995a); Barbero (1995b); Thiemann (1996)].
The kinematics of loop quantum gravity is now defined with a
level of rigor characteristic of mathematical physics [Ashtekar and
Isham (1992); Ashtekar et. al. (1995)] and the theory can be
defined using various alternative techniques [DePietri and Rovelli
(1996); DePietri (1997)].

Hamiltonian constraint. A rigorous definition version of the Hamilto-
nian constraint equation has been constructed. This is anomaly free,
in the sense that the constraints algebra closes (but see later on). The
Hamiltonian has the crucial properties of acting on nodes only, which
implies that its action is naturally discrete and combinatorial [Rovelli
and Smolin (1988); Rovelli and Smolin (1994)]. This fact is at the roots
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of the existence of exact solutions [Rovelli and Smolin (1988)], and of
the possible finiteness of the theory

Matter. The old hope that QFT divergences could be cured by QG has
recently received an interesting corroboration. The matter part of the
Hamiltonian constraint is well–defined without need of renormalization.
Thus, a main possible stumbling block is over: infinities did not appear
in a place where they could very well have appeared [Rovelli (1997)].

Black hole entropy. The first important physical result in loop quantum
gravity is a computation of black hole entropy [Krasnov (1997); Rovelli
(1996a); Rovelli (1996b)].

Quanta of geometry. A very exciting development in quantum gravity in
the last years has been by the computations of the quanta of geometry.
That is, the computation of the discrete eigenvalues of area and volume.

In quantum gravity, any quantity that depends on the metric becomes
an operator. In particular, so do the area A of a given (physically defined)
surface, or the volume V of a given (physically defined) spatial region.
In loop quantum gravity, these operators can be written explicitly. They
are mathematically well defined self–adjoint operators in the Hilbert space
H. We know from quantum mechanics that certain physical quantities are
quantized, and that we can compute their discrete values by computing the
eigenvalues of the corresponding operator. Therefore, if we can compute
the eigenvalues of the area and volume operators, we have a physical pre-
diction on the possible quantized values that these quantities can take, at
the Planck scale. These eigenvalues have been computed in loop quantum
gravity. Here is for instance the main sequence of the spectrum of the area

A~j = 8πγ ~G
∑
i

√
ji(ji + 1). (3.146)

~j = (j1, . . . , jn) is an n−tuplet of half–integers, labeling the eigenvalues,
G and ~ are the Newton and Planck constants, and γ is a dimensionless
free parameter, denoted the so–called Immirzi parameter [Immirzi (1997)],
not determined by the theory. A similar result holds for the volume. The
spectrum (3.146) has been rederived and completed using various different
techniques [DePietri and Rovelli (1996)]. These spectra represent solid
results of loop quantum gravity. Under certain additional assumptions on
the behavior of area and volume operators in the presence of matter, these
results can be interpreted as a corpus of detailed quantitative predictions
on hypothetical Planck scale observations.
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Besides its direct relevance, the quantization of the area and thee volume
is of interest because it provides a physical picture of quantum space–time.
The states of the spin network basis are eigenstates of some area and volume
operators. We can say that a spin network carries quanta of area along its
links, and quanta of volume at its nodes. The magnitude of these quanta
is determined by the coloring. For instance, the half–integers j1 . . . jn in
(3.146) are the coloring of the spin network’s links that cross the given
surface. Thus, a quantum space–time can be decomposed in a basis of states
that can be visualized as made by quanta of volume (the intersections)
separated by quanta of area (the links). More precisely, we can view a
spin network as sitting on the dual of a cellular decomposition of physical
space. The nodes of the spin network sit in the center of the 3–cells, and
their coloring determines the (quantized) 3–cell’s volume. The links of the
spin network cut the faces of the cellular decomposition, and their color ~j
determine the (quantized) areas of these faces via equation (3.146).

3.10.4.3 Traditional Approaches to Quantum Gravity

Discrete Approaches

Discrete quantum gravity is the program of regularizing classical GR in
terms of some lattice theory, quantize this lattice theory, and then study
an appropriate continuum limit, as one may do in QCD. There are three
main ways of discretizing GR.

Regge Calculus

Regge introduced the idea of triangulating space–time by means of a sim-
plicial complex and using the lengths li of the links of the complex as
gravitational variables [Regge (1961)]. The theory can then be quantized
by integrating over the lengths li of the links. For a recent review and
extensive references see [Williams and Tuckey (1992)]. More recent work
has focused in problems such as the geometry of Regge superspace [Hartle
et. al. (1997)] and choice of the integration measure.

Dynamical Triangulations

Alternatively, one can keep the length of the links fixed, and capture
the geometry by means of the way in which the simplices are glued to-
gether, namely by the triangulation. The Einstein–Hilbert action of Eu-
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clidean gravity is approximated by a simple function of the total num-
ber of simplices and links, and the theory can be quantized summing over
distinct triangulations (for a detailed introduction, see [Ambjørn et. al.
(1998)]). There are two coupling constants in the theory, roughly cor-
responding to the Newton and cosmological constants. These define a
two dimensional space of theories. The theory has a nontrivial contin-
uum limit if in this parameter space there is a critical point correspond-
ing to a second order phase transition. The theory has phase transition
and a critical point. The transition separates a phase with crumpled
space–times from a phase with ‘elongated’ spaces which are effectively
2D, with characteristic of a branched polymer [Bakker and Smit (1995);
Ambjørn et. al. (2001a)]. This polymer structure is surprisingly the same
as the one that emerges from loop quantum gravity at short scale. Near
the transition, the model appears to produce ‘classical’ S4 space–times, and
there is evidence for scaling, suggesting a continuum behavior.

State Sum Models

A third road for discretizing GR was opened by a celebrated paper by [Pon-
zano and Regge (1968)]. They started from a Regge discretization of 3D GR
and introduced a second discretization, by posing the so–called Ponzano–
Regge ansatz that the lengths l assigned to the links are discretized as well,
in half–integers in Planck units

l = ~Gj, j = 0,
1
2
, 1, . . . (3.147)

(Planck length is ~G in 3D.) The half integers j associated to the links are
denoted ‘coloring’ of the triangulation. Coloring can be viewed as the as-
signment of a SU(2) irreducible representation to each link of the Regge tri-
angulation. The elementary cells of the triangulation are tetrahedra, which
have six links, colored with six SU(2) representations. SU(2) representa-
tion theory naturally assigns a number to a sextuplet of representations:
the Wigner 6−j symbol. Rather magically, the product over all tetrahedra
of these 6 − j symbols converges to (the real part of the exponent of) the
Einstein–Hilbert action. Thus, Ponzano and Regge were led to propose a
quantization of 3D GR based on the partition function

Z ∼
∑

coloring

∏
tetrahedra

6− j(color of the tetrahedron), (3.148)
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where we have neglected some coefficients for simplicity. They also provided
arguments indicating that this sum is independent from the triangulation
of the manifold.

The formula (3.148) is simple and elegant, and the idea has recently had
many surprising and interesting developments. 3D GR was quantized as a
topological field theory by Ed Witten in [Witten (1988c)] and using loop
quantum gravity in [Ashtekar et. al. (1989)]. The Ponzano–Regge quanti-
zation based on equation (3.148) was shown to be essentially equivalent to
the TQFT quantization in [Ooguri (1992a)], and to the loop quantum grav-
ity in [Rovelli (1993)] (for an extensive discussion of 3D quantum gravity,
see [Carlip and Nelson (1995)]).

It turns out that the Ponzano–Regge ansatz (3.147) can be derived from
loop quantum gravity [Rovelli (1993)]. Indeed, (3.147) is the 2D version of
the 3D formula (3.146), which gives the quantization of the area. There-
fore, a key result of quantum gravity of the last years, namely the quan-
tization of the geometry, derived in the loop formalism from a full fledged
non–perturbative quantization of GR, was anticipated as an ansatz by the
intuition of Ponzano and Regge.

Hawking’s Euclidean Quantum Gravity

Hawking’s Euclidean quantum gravity is the approach based on his formal
sum over Euclidean geometries (i.e., an Euclidean path integral, see chapter
6 below)

Z ∼ N
∫
D[g] e−

R
d4x

√
gR[g]. (3.149)

As far as we understand, Hawking and his close collaborators do not any-
more view this approach as an attempt to directly define a fundamental
theory. The integral is badly ill defined, and does not lead to any known
viable perturbation expansion. However, the main ideas of this approach
are still alive in several ways.

First, Hawking’s picture of quantum gravity as a sum–over–space–times,
continues to provide a powerful intuitive reference point for most of the re-
search related to quantum gravity. Indeed, many approaches can be seen
as attempts to replace the ill–defined and non–renormalizable formal inte-
gral (3.149) with a well defined expression. The dynamical triangulation
approach (see above) and the spin foam approach (see below) are examples
of attempts to realize Hawking’s intuition. Influence of Euclidean quantum
gravity can also be found in the Atiyah axioms for TQFT.
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Second, this approach can be used as an approximate method for de-
scribing certain regimes of non–perturbative quantum space–time physics,
even if the fundamental dynamics is given by a more complete theory. In
this spirit, Hawking and collaborators have continued the investigation of
phenomena such as, for instance, pair creation of black holes in a back-
ground de Sitter space–time.

Effective Perturbative Quantum Gravity

If we expand classical GR around, say, the Minkowski metric,

gµν(x) = ηµν + hµν(x),

and construct a conventional QFT for the field hµν(x), we get, as it is well
know, a non renormalizable theory. A small but intriguing group of papers
has recently appeared, based on the proposal of treating this perturbative
theory seriously, as a respectable low energy effective theory by its own.
This cannot solve the deep problem of understanding the world in general
relativistic quantum terms. But it can still be used for studying quantum
properties of space–time in some regimes. This view has been advocated
in a convincing way by John Donoghue, who has developed effective field
theory methods for extracting physics from non renormalizable quantum
GR [Donoghue (1996)].

QFT in Curved Space–Time

Quantum field theory in curved space–time is by now a reasonably
established theory (see, e.g., [Wald (1994); Birrel and Davies (1982);
Fulling (1989)], predicting physical phenomena of remarkable interest such
as particle creation, vacuum polarization effects and Hawking’s black-hole
radiance [Hawking (1975)]. To be sure, there is no direct nor indirect ex-
perimental observation of any of these phenomena, but the theory is quite
credible as an approximate theory, and many theorists in different fields
would probably agree that these predicted phenomena are likely to be real.

The most natural and general formulation of the theory is within the
algebraic approach [Haag (1992)], in which the primary objects are the local
observables and the states of interest may all be treated on equal footing
(as positive linear functionals on the algebra of local observables), even if
they do not belong to the same Hilbert space.

The great merit of QFT on curved space–time is that it has provided
us with some very important lessons. The key lesson is that in general
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one loses the notion of a single preferred quantum state that could be
regarded as the ‘vacuum’; and that the concept of ‘particle’ becomes vague
and/or observer-dependent in a gravitational context. In a gravitational
context, vacuum and particle are necessarily ill defined or approximate
concepts. It is perhaps regrettable that this important lesson has not been
yet absorbed by many scientists working in fundamental theoretical physics
[Rovelli (1997)].

3.10.4.4 New Approaches to Quantum Gravity

Noncommutative Geometry

Noncommutative geometry is a research program in mathematics and
physics which has recently received wide attention and raised much ex-
citement. The program is based on the idea that space–time may have a
noncommutative structure at the Planck scale. A main driving force of this
program is the radical, volcanic and extraordinary sequence of ideas of A.
Connes [Connes (1994)]. Connes observes that what we know about the
structure of space–time derives from our knowledge of the fundamental in-
teractions: special relativity derives from a careful analysis of Maxwell the-
ory; Newtonian space–time and general relativity, derived both from a care-
ful analysis of the gravitational interaction. Recently, we have learned to
describe weak and strong interactions in terms of the SU(3)×SU(2)×U(1)
Standard Model. Connes suggests that the Standard Model might hide in-
formation on the minute structure of space–time as well. By making the
hypothesis that the Standard Model symmetries reflect the symmetry of a
noncommutative microstructure of space–time, Connes and Lott are able
to construct an exceptionally simple and beautiful version of the Standard
Model itself, with the impressive result that the Higgs field appears auto-
matically, as the components of the Yang–Mills connection in the internal
‘noncommutative’ direction [Connes and Lott (1990)]. The theory admits
a natural extension in which the space–time metric, or the gravitational
field, is dynamical, leading to GR [Chamseddine and Connes (1996)].

The key idea behind a non-commutative space–time is to use algebra
instead of geometry in order to describe spaces. Consider a topological
(Hausdorf) space M . Consider all continuous functions f on M . These
form an algebra A, because they can be multiplied and summed, and the
algebra is commutative. According to a celebrated result, due to Gel’fand,
knowledge of the algebra A is equivalent to knowledge of the space M ,
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i.e., M can be reconstructed from A. In particular, the points x of the
manifold can be obtained as the 1D irreducible representations x of A,
which are all of the form x(f) = f(x). Thus, we can use the algebra
of the functions, instead of using the space. In a sense, notices Connes,
the algebra is more physical, because we never deal with space–time: we
deal with fields, or coordinates, over space–time. But one can capture
Riemannian geometry as well, algebraically. Consider the Hilbert space H
formed by all the spinor fields on a given Riemannian (spin) manifold. Let
D be the (curved) Dirac operator, acting on H. We can view A as an
algebra of (multiplicative) operators on H. Now, from the triple (H,A,D),
which Connes calls ‘spectral triple’, one can reconstruct the Riemannian
manifold. In particular, it is not difficult to see that the distance between
two points x and y can be obtained from these data by

d(x, y) = sup{f∈A,||D,f ||<1} |x(f)− y(f)|, (3.150)

a beautiful surprising algebraic definition of distance. A non-commutative
space–time is the idea of describing space–time by a spectral triple in which
the algebra A is a non-commutative algebra.

Remarkably, the gravitational field is captured, together with the Yang–
Mills field, and the Higgs fields, by a suitable Dirac operator D [Chamsed-
dine and Connes (1996)], and the full action is given simply by the trace of
a very simple function of the Dirac operator.

Even if we disregard noncommutativity and the Standard Model, the
above construction represents an intriguing re–formulation of conventional
GR, in which the geometry is described by the Dirac operator instead than
the metric tensor. This formulation has been explored in [Landi (1998)],
where it is noticed that the eigenvalues of the Dirac operator are diffeo-
morphism invariant functions of the geometry, and therefore represent true
observables in Euclidean GR. Their Poisson bracket algebra can be explic-
itly computed in terms of the energy–momentum eigenspinors. Surpris-
ingly, the Einstein equations turn out to be captured by the requirement
that the energy momentum of the eigen–spinors scale linearly with the
eigenvalues.

Variants of Connes’s version of the idea of non commutative geometry
and noncommutative coordinates have been explored by many authors (see,
e.g., [Doplicher et. al. (1994)]) and intriguing connections with string theory
have been suggested [Connes et. al. (1997); Fröhlich and Gawedzki (1994)].
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Null–Surface Formulation

A second new set of ideas comes from [Frittelli et. al. (1995)]. These au-
thors have discovered that the (conformal) information about the geometry
is captured by suitable families of null hypersurfaces in space–time, and
have been able to reformulate GR as a theory of self–interacting families
of surfaces. A remarkable aspect of the theory is that physical informa-
tion about the space–time interior is transferred to null infinity, along null
geodesics. Thus, the space–time interior is described in terms of how we
would (literally) ‘see it’ from outside. This description is diffeomorphism
invariant, and addresses directly the relational localization characteristic of
GR: the space–time location of a region is determined dynamically by the
gravitational field and is captured by when and where we see the space–
time region from infinity. This idea may lead to interesting and physically
relevant diffeomorphism invariant observables in quantum gravity. A dis-
cussion of the quantum gravitational fuzziness of the space–time points
determined by this perspective can be found in [Frittelli et. al. (1997)].

Spin Foam Models

From the mathematical point of view, the problem of quantum gravity is
to understand what is QFT on a differentiable manifold without metric. A
class of well understood QFT’s on manifolds exists. These are the topolog-
ical quantum field theories (TQFT). Topological field theories are particu-
larly simple field theories. They have as many fields as gauges and therefore
no local degree of freedom, but only a finite number of global degrees of
freedom. An example is GR in 3D, say on a torus (the theory is equivalent
to a Chern–Simons theory). In 3D, the Einstein equations require that
the geometry is flat, so there are no gravitational waves. Nevertheless, a
careful analysis reveals that the radii of the torus are dynamical variables,
governed by the theory. Witten has noticed that theories of this kind give
rise to interesting quantum models [Witten (1988a)], and [Atiyah (1989)]
has provided a beautiful axiomatic definition of a TQFT. Concrete exam-
ples of TQFT have been constructed using Hamiltonian, combinatorial and
path integral methods. The relevance of TQFT for quantum gravity has
been suggested by many and the recent developments have confirmed these
suggestions.

Recall that TQFT is a diffeomorphism invariant QFT. Sometimes, the
expression TQFT is used to indicate all diffeomorphism invariant QFT’s.
This has lead to a widespread, but incorrect belief that any diffeomorphism
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invariant QFT has a finite number of degrees of freedom, unless the invari-
ance is somehow broken, for instance dynamically. This belief is wrong.
The problem of quantum gravity is precisely to define a diffeomorphism
invariant QFT having an infinite number degrees of freedom and ‘local’
excitations. Locality in a gravity theory, however, is different from locality
in conventional field theory. This point is often source of confusion. Here
is Rovelli’s clarification [Rovelli (1997)]:

• In a conventional field theory on a metric space, the degrees of freedom
are local in the sense that they can be localized on the metric manifold
(an electromagnetic wave is here or there in Minkowski space).
• In a diffeomorphism invariant field theory such as general relativity, the

degrees of freedom are still local (gravitational waves exist), but they
are not localized with respect to the manifold. They are nevertheless
localized with respect to each other (a gravity wave is three meters
apart from another gravity wave, or from a black hole).
• In a topological field theory, the degrees of freedom are not localized at

all: they are global, and in finite number (the radius of a torus is not
in a particular position on the torus).

The first TQFT directly related to quantum gravity was defined by
[Turaev and Viro (1992)]. The Turaev–Viro model is a mathematically rig-
orous version of the 3D Ponzano-Regge quantum gravity model described
above. In the Turaev–Viro theory, the sum (3.148) is made finite by re-
placing SU(2) with quantum SU(2)q (with a suitable q). Since SU(2)q
has a finite number if irreducible representations, this trick, suggested by
[Ooguri (1992a); Ooguri (1992b)], makes the sum finite. The extension of
this model to four dimensions has been actively searched for a while and
has finally been constructed by [Crane and Yetter (1993)], again following
Ooguri’s ideas. The Crane–Yetter (CY) model is the first example of 4D
TQFT. It is defined on a simplicial decomposition of the manifold. The
variables are spins (‘colors’) attached to faces and tetrahedra of the sim-
plicial complex. Each 4–simplex contains 10 faces and 5 tetrahedra, and
therefore there are 15 spins associated to it. The action is defined in terms
of the quantum Wigner 15 − j symbols, in the same manner in which the
Ponzano–Regge action is constructed in terms of products of 6−j symbols.

Z ∼
∑

coloring

∏
4−simplices

15− j(color of the 4− simplex), (3.151)

(where we have disregarded various factors for simplicity). Crane and Yet-
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ter introduced their model independently from loop quantum gravity. How-
ever, recall that loop quantum gravity suggests that in 4 dimensions the
naturally discrete geometrical quantities are area and volume, and that it
is natural to extend the Ponzano–Regge model to 4D by assigning colors
to faces and tetrahedra.

The CY model is not a quantization of 4D GR, nor could it be, being a
TQFT in strict sense. Rather, it can be formally derived as a quantization
of SU(2) BF theory. BF theory is a topological field theory with two fields,
a connection A, with curvature F , and a 2–form B [Horowitz (1989)], with
action

S[A,B] =
∫
B ∧ F. (3.152)

However, there is a strict relation between GR and BF. If we add to SO(3, 1)
BF theory the constraint that the 2–form B is the product of two tetrad
1–forms

B = E ∧ E, (3.153)

we get precisely GR. This observation has lead many to suggest that a
quantum theory of gravity could be constructed by a suitable modification
of quantum BF theory [Baez (1996c)]. This suggestion has become very
plausible, with the following construction of the spin foam models.

The key step in development of the spin foam models was taken by [Bar-
bieri (1997)], studying the ‘quantum geometry’ of the simplices that play a
role in loop quantum gravity. Barbieri discovered a simple relation between
the quantum operators representing the areas of the faces of the tetrahedra.
This relation turns out to be the quantum version of the constraint (3.153),
which turns BF theory into GR. [Barret and Crane (1997)] added the Bar-
bieri relation to (the SO(3, 1) version of) the CY model. This is equivalent
to replacing the the 15-j Wigner symbol, with a different function ABC of
the colors of the 4–simplex. This replacement defines a ‘modified TQFT’,
which has a chance of having general relativity as its classical limit.

The Barret–Crane model is not a TQFT in strict sense. In particular,
it is not independent from the triangulation. Thus, a continuum theory has
to be formally defined by some suitable sum over triangulations

Z ∼
∑
triang

∑
coloring

∏
4−simplices

ABC(color of the 4− simplex). (3.154)

This essential aspect of the construction, however, is not yet understood.



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Applied Manifold Geometry 309

The Barret Crane model can virtually be obtained also from loop quan-
tum gravity. This is an unexpected convergence of two very different lines
of research. Loop quantum gravity is formulated canonically in the frozen
time formalism. While the frozen time formalism is in principle complete,
in practice it is cumbersome, and anti-intuitive. Our intuition is four di-
mensional, not three dimensional. An old problem in loop quantum gravity
has been to derive a space–time version of the theory. A space–time formu-
lation of quantum mechanics is provided by the sum over histories. A sum
over histories can be derived from the Hamiltonian formalism, as Feynman
did originally. Loop quantum gravity provides a mathematically well de-
fined Hamiltonian formalism, and one can therefore follow Feynman steps
and construct a sum over histories quantum gravity starting from the loop
formalism. This has been done in [Reisenberger and Rovelli (1997)]. The
sum over histories turns out to have the form of a sum over surfaces.

More precisely, the transition amplitude between two spin network
states turns out to be given by a sum of terms, where each term can be rep-
resented by a (2D) branched ‘colored’ surface in space–time. A branched
colored surface is formed by elementary surface elements carrying a label,
that meet on edges, also carrying a labelled; edges, in turn meet in vertices
(or branching points, see Figure 3.11). The contribution of one such sur-

Fig. 3.11 A branched surface with two vertices.
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faces to the sum over histories is the product of one term per each branching
point of the surface. The branching points represent the ‘vertices’ of this
theory, in the sense of Feynman. The contribution of each vertex can be
computed algebraically from the ‘colors’ (half integers) of the adjacent sur-
face elements and edges. Thus, space–time loop quantum gravity is defined
by the partition function

Z ∼
∑

surfaces

∑
colorings

∏
vertices

Aloop(color of the vertex) (3.155)

The vertex Aloop is determined by a matrix elements of the Hamiltonian
constraint. The fact that one obtains a sum over surfaces is not too surpris-
ing, since the time evolution of a loop is a surface. Indeed, the time evolu-
tion of a spin network (with colors on links and nodes) is a surface (with
colors on surface elements and edges) and the Hamiltonian constraint gen-
erates branching points in the same manner in which conventional Hamil-
tonians generate the vertices of the Feynman diagrams.

Now, (3.155) has the same structure of the Barret–Crane model (3.151).
To see this, simply notice that we can view each branched colored surface as
located on the lattice dual to a triangulation. Then each vertex correspond
to a 4-simplex; the coloring of the two models matches exactly (elemen-
tary surfaces → faces, edges → tetrahedra); and summing over surfaces
corresponds to summing over triangulations. The main difference is the
different weight at the vertices. The Barret–Crane vertex ABC can be read
as a covariant definition a Hamiltonian constraint in loop quantum gravity.

Thus, the space–time formulation of loop quantum GR is a simple modi-
fication of a TQFT. This approach provides a 4D pictorial intuition of quan-
tum space–time, analogous to the Feynman graphs description of quantum
field dynamics. John Baez has introduced the term ‘spin foam’ for the
branched colored surfaces of the model, in honor of John Wheeler’s in-
tuitions on the quantum microstructure of space–time. Spin foams are a
precise mathematical implementation of Wheeler’s ‘space–time foam’ sug-
gestions.

3.10.4.5 Black Hole Entropy

A focal point of the research in quantum gravity in the last years has
been the discussion of black hole (BH) entropy. This problem has been
discussed from a large variety of perspectives and within many different
research programs.
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Let us very briefly recall the origin of the problem. In classical GR,
future event horizons behave in a manner that has a peculiar thermody-
namical flavor. This remark, together with a detailed physical analysis of
the behavior of hot matter in the vicinity of horizons, prompted Bekenstein
to suggest that there is entropy associated to every horizon. The sugges-
tion was first consider ridicule, because it implies that a black hole is hot
and radiates. But then Steven Hawking, in a celebrated work [Hawking
(1975)], showed that QFT in curved space–time predicts that a black hole
emits thermal radiation, precisely at the temperature predicted by Beken-
stein, and Bekenstein courageous suggestion was fully vindicated. Since
then, the entropy of a BH has been indirectly computed in a surprising
variety of manners, to the point that BH entropy and BH radiance are
now considered almost an established fact by the community, although, of
course, they were never observed nor, presumably, they are going to be
observed soon. This confidence, perhaps a bit surprising to outsiders, is
related to the fact thermodynamics is powerful in indicating general prop-
erties of systems, even if we do not control its microphysics. Many hope
that the Bekenstein–Hawking radiation could play for quantum gravity a
role analogous to the role played by the black body radiation for quantum
mechanics. Thus, indirect arguments indicate that a Schwarzschild BH has
an entropy

S =
1
4

A

~G
(3.156)

The remaining challenge is to derive this formula from first principles [Rov-
elli (1997)].

Later in the book we will continue our exposition of various approaches
to quantum gravity.

3.10.5 Basics of Morse and (Co)Bordism Theories

3.10.5.1 Morse Theory on Smooth Manifolds

At the same time the variational formulae were discovered, a related tech-
nique, called Morse theory , was introduced into Riemannian geometry. This
theory was developed by Morse, first for functions on manifolds in 1925,
and then in 1934, for the loop space. The latter theory, as we shall see, sets
up a very nice connection between the first and second variation formulae
from the previous section and the topology of M. It is this relationship that
we shall explore at a general level here. In section 5 we shall then see how
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this theory was applied in various specific settings.
If we have a proper function f : M → R, then its Hessian (as a quadratic

form) is in fact well defined at its critical points without specifying an
underlying Riemannian metric. The nullity of f at a critical point is defined
as the dimension of the kernel of ∇2f, while the index is the number of
negative eigenvalues counted with multiplicity. A function is said to be
a Morse function if the nullity at any of its critical points is zero. Note
that this guarantees in particular that all critical points are isolated. The
first fundamental Theorem of Morse theory is that one can determine the
topological structure of a manifold from a Morse function. More specifically,
if one can order the critical points x1, . . . , xk so that f (x1) < · · · < f (xk)
and the index of xi is denoted λi, thenM has the structure of a CW complex
with a cell of dimension λi for each i. Note that in case M is closed then x1

must be a minimum and so λ1 = 0, while xk is a maximum and λk = n. The
classical example of Milnor of this Theorem in action is a torus in 3–space
and f the height function.

We are now left with the problem of trying to find appropriate Morse
functions. While there are always plenty of such functions, there does not
seem to be a natural way of finding one. However, there are natural choices
for Morse functions on the loop space to a Riemannian manifold. This
is, somewhat inconveniently, infinite–dimensional. Still, one can develop
Morse theory as above for suitable functions, and moreover the loop space
of a manifold determines the topology of the underlying manifold.

If m, p ∈ M , then we denote by Ωmp the space of all Ck paths from m

to p. The first observation about this space is that

πi+1 (M) = πi (Ωmp) .

To see this, just fix a path from m to q and then join this path to every
curve in Ωmp. In this way Ωmp is identified with Ωm, the space of loops fixed
at m. For this space the above relationship between the homotopy groups
is almost self-evident.

On the space Ωmp we have two naturally defined functions, the arc–
length and energy functionals:

L (γ, I) =
∫
I

|γ̇| dt, and E (γ, I) =
1
2

∫
I

|γ̇|2 dt.

While the energy functional is easier to work with, it is the arc–length
functional that we are really interested in. In order to make things work
out nicely for the arc–length functional, it is convenient to parameterize
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all curves on [0, 1] and proportionally to arc–length. We shall think of
Ωmp as an infinite–dimensional manifold. For each curve γ ∈ Ωmp the
natural choice for the tangent space consists of the vector–fields along γ

which vanish at the endpoints of γ. This is because these vector–fields are
exactly the variational fields for curves through γ in Ωmp, i.e., fixed endpoint
variations of γ. An inner product on the tangent space is then naturally
defined by

(X,Y ) =
∫ 1

0

g (X,Y ) dt.

Now the first variation formula for arc–length tells us that the gradient for
L at γ is -∇γ̇ γ̇. Actually this cannot be quite right, as -∇γ̇ γ̇ does not vanish
at the endpoints. The real gradient is gotten in the same way we find the
gradient for a function on a surface in space, namely, by projecting it down
into the correct tangent space. In any case we note that the critical points
for L are exactly the geodesics from m to p. The second variation formula
tells us that the Hessian of L at these critical points is given by

∇2L (X) = Ẍ +R (X, γ̇) γ̇,

at least for vector–fields X which are perpendicular to γ. Again we ignore
the fact that we have the same trouble with endpoint conditions as above.
We now need to impose the Morse condition that this Hessian is not allowed
to have any kernel. The vector–fields J for which J̈ + R (J, γ̇) γ̇ = 0 are
called Jacobi fields. Thus we have to Figure out whether there are any
Jacobi fields which vanish at the endpoints of γ. The first observation is
that Jacobi fields must always come from geodesic variations. The Jacobi
fields which vanish at m can therefore be found using the exponential map
expm . If the Jacobi field also has to vanish at p, then p must be a critical
value for expm . Now Sard’s Theorem asserts that the set of critical values
has measure zero. For given m ∈ M it will therefore be true that the
arc–length functional on Ωmp is a Morse function for almost all p ∈ M.

Note that it may not be possible to choose p = m, the simplest example
being the standard sphere. We are now left with trying to decide what the
index should be. This is the dimension of the largest subspace on which
the Hessian is negative definite. It turns out that this index can also be
computed using Jacobi fields and is in fact always finite. Thus one can
calculate the topology of Ωmp, and hence M, by finding all the geodesics
from m to p and then computing their index.
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In geometrical situations it is often unrealistic to suppose that one can
calculate the index precisely, but as we shall see it is often possible to given
lower bounds for the index. As an example, note that if M is not simply–
connected, then Ωmp is not connected. Each curve of minimal length in
the path components is a geodesic from m to p which is a local minimum
for the arc–length functional. Such geodesics evidently have index zero. In
particular, if one can show that all geodesics, except for the minimal ones
from m to p, have index > 0, then the manifold must be simply–connected.
We will apply Morse theory in biodynamics/robotic in section (3.13.5.2)
below.

3.10.5.2 (Co)Bordism Theory on Smooth Manifolds

(Co)bordism appeared as a revival of Poincaré’s unsuccessful 1895 attempts
to define homology using only manifolds. Smooth manifolds (without
boundary) are again considered as ‘negligible’ when they are boundaries
of smooth manifolds–with–boundary. But there is a big difference, which
keeps definition of ‘addition’ of manifolds from running into the difficulties
encountered by Poincaré; it is now the disjoint union. The (unoriented)
(co)bordism relation between two compact smooth manifolds M1,M2 of
same dimension n means that their disjoint union ∂W = M1 ∪M2 is the
boundary ∂W of an (n + 1)D smooth manifold–with–boundary W . This
is an equivalence relation, and the classes for that relation of nD manifolds
form a commutative group Nn in which every element has order 2. The
direct sum N• = ⊕n≥0Nn is a ring for the multiplication of classes deduced
from the Cartesian product of manifolds.

More precisely, a manifold M is said to be a (co)bordism from A to B
if exists a diffeomorphism from a disjoint sum, ϕ ∈ diff(A∗ ∪B, ∂M). Two
(co)bordisms M(ϕ) and M ′(ϕ′) are equivalent if there is a Φ ∈ diff(M,M ′)
such that ϕ′ = Φ ◦ ϕ. The equivalence class of (co)bordisms is denoted by
M(A,B) ∈ Cob(A,B) [Stong (1968)].

Composition cCob of (co)bordisms comes from gluing of manifolds [Baez
and Dolan (1995)]. Let ϕ′ ∈ diff(C∗ ∪ D, ∂N). One can glue (co)bordism
M with N by identifying B with C∗, (ϕ′)−1 ◦ ϕ ∈ diff(B,C∗). We get the
glued (co)bordism
(M ◦N)(A,D) and a semigroup operation,

c(A,B,D) : Cob(A,B)× Cob(B,D) −→ Cob(A,D).

A surgery is an operation of cutting a manifold M and gluing to cylin-
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ders. A surgery gives new (co)bordism: from M(A,B) into N(A,B). The
disjoint sum of M(A,B) with N(C,D) is a (co)bordism (M ∪ N)(A ∪
C,B ∪ D). We got a 2–graph of (co)bordism Cob with Cob0 = Mand,

Cob1 = Mand+1, whose 2–cells from Cob2 are surgery operations.
There is an n−category of (co)bordisms BO [Leinster (2003)] with:

• 0−cells: 0−manifolds, where ‘manifold’ means ‘compact, smooth, ori-
ented manifold’. A typical 0−cell is • • • • .
• 1−cells: 1−manifolds with corners, i.e., (co)bordisms between

0−manifolds, such as (this being a 1−cell from the
4−point manifold to the 2−point 0−manifold).

• 2−cells: 2−manifolds with corners, such as

• 3−cells, 4−cells,... are defined similarly;
• Composition is gluing of manifolds.

The (co)bordisms theme was taken a step further by [Baez and Dolan
(1995)], when when they started a programme to understand the subtle
relations between certain TMFT models for manifolds of different dimen-
sions, frequently referred to as the dimensional ladder. This programme is
based on higher–dimensional algebra, a generalization of the theory of cat-
egories and functors to n−categories and n−functors. In this framework a
topological quantum field theory (TMFT) becomes an n−functor from the
n−category BO of n−cobordisms to the n−category of n−Hilbert spaces.
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3.11 Finsler Manifolds and Their Applications

Recall that Finsler geometry is such a generalization of Riemannian geom-
etry, that is closely related to multivariable calculus of variations.

3.11.1 Definition of a Finsler Manifold

Let M be a real, smooth, connected, finite–dimensional manifold. The pair
(M,F ) is called a Finsler manifold iff there exists a fundamental function
F : TM → R, not necessary reversible (i.e., F (x,−y) need not be equal to
F (x, y)), that satisfies the following set of axioms (see, e.g., [Udriste and
Neagu (1999)]):

F1 F (x, y) > 0 for all x ∈M, y 6= 0.
F2 F (x, λy) = |λ|F (x, y) for all λ ∈ R, (x, y) ∈ TM .
F3 the fundamental metric tensor gij on M , given by

gij(x, y) =
1
2
∂2F 2

∂yi∂yj
,

is positive definite.
F4 F is smooth (C∞) at every point (x, y) ∈ TM with y 6= 0 and con-

tinuous (C0) at every (x, 0) ∈ TM . Then, the absolute Finsler energy
function is given by

F 2(x, y) = gij(x, y)yiyj .

Let c = c(t) : [a, b] → M be a smooth regular curve on M . For any
two vector–fields X(t) = Xi(t) ∂

∂xi

∣∣
c(t)

and Y (t) = Y i(t) ∂
∂xi

∣∣
c(t)

along the
curve c = c(t), we introduce the scalar (inner) product [Chern (1996)]

g(X,Y )(c) = gij(c, ċ)XiY j

along the curve c.
In particular, if X = Y then we have ‖X‖ =

√
g(X,X). The vector–

fields X and Y are orthogonal along the curve c, denoted by X⊥Y , iff
g(X,Y ) = 0.

Let CΓ(N) = (Lijk, N
i
j , C

i
jk) be the Cartan canonical N−linear metric

connection determined by the metric tensor gij(x, y). The coefficients of
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this connection are expressed by [Udriste and Neagu (1999)]

Lijk =
1
2
gim

(
δgmk
δxj

+
δgjm
δxk

− δgjk
δxm

)
, Cijk =

1
2
gim

(
∂gmk
∂yj

+
∂gjm
∂yk

− ∂gjk
∂ym

)
,

N i
j =

1
2
∂

∂yj
(
Γikly

kyl
)

=
1
2
∂Γi00
∂yj

, Γijk =
1
2
gim

(
∂gmk
∂xj

+
∂gjm
∂xk

− ∂gjk
∂xm

)
,

where
δ

δxi
=

∂

∂xi
+N j

i

∂

∂yj
.

Let X be a vector–field along the curve c expressed locally by X(t) =
Xi(t) ∂

∂xi

∣∣
c(t)

. Using the Cartan N−linear connection, we define the co-

variant derivative ∇X
dt of X(t) along the curve c(t), by [Udriste and Neagu

(1999)]

∇X
dt

= {Ẋi +Xm[Limk(c, ċ)ċk + Cimk(c, ċ)
δ

δt
(ċk)]} ∂

∂xi

∣∣∣∣
c(t)

.

Since
δ

δt
(ċk) = c̈k +Nk

l (c, ċ)ċl,

we have
∇X
dt

= {Ẋi +Xm[Γimk(c, ċ)ċk + Cimk(c, ċ)c̈k]} ∂

∂xi

∣∣∣∣
c(t)

,(3.157)

where Γimk(c, ċ) = Limk(c, ċ) + Ciml(c, ċ)N
l
k(c, ċ).

In particular, c is a geodesic iff
∇ċ
dt

= 0.

Since CΓ(N) is a metric connection, we have

d

dt
[g(X,Y )] = g

(
∇X
dt

, Y

)
+ g

(
X,
∇Y
dt

)
.

3.11.2 Energy Functional, Variations and Extrema

Let x0, x1 ∈ M be two points not necessarily distinct. We introduce the
Ω−set on M , as

Ω = {c : [0, 1]→M | c is piecewise C∞ regular curve, c(0) = x0, c(1) = x1}.

For every p ∈ R − {0}, we can define the p−energy functional on M
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[Udriste and Neagu (1999)]

Ep : Ω→ R+, as

Ep(c) =
∫ 1

0

[gij(c, ċ)ċiċj ]p/2dt =
∫ 1

0

[g(ċ, ċ)]p/2dt =
∫ 1

0

‖ċ‖pdt.

In particular, for p = 1 we get the length functional

L(c) =
∫ 1

0

‖ċ‖dt,

and for p = 2 we get the energy functional

E(c) =
∫ 1

0

‖ċ‖2dt.

Also, for any naturally parametrized curve (i.e., ‖ċ‖ = const) we have

Ep(c) = (L(c))p = (E(c))p/2.

Note that the p−energy of a curve is dependent of parametrization if p 6= 1.
For every curve c ∈ Ω, we define the tangent space TcΩ as

TcΩ = {X : [0, 1]→ TM | X is continuous, piecewise C∞, X(t) ∈ Tc(t)M,

for all t ∈ [0, 1], X(0) = X(1) = 0}.

Let (cs)s∈(−ε,ε) ⊂ Ω be a one–parameter variation of the curve c ∈ Ω. We
define

X(t) =
dcs
ds

(0, t) ∈ TcΩ.

Using the equality

g

(
∇ċs
∂s

, ċs

)
= g

(
∇
∂t

(
∂cs
∂s

)
, ċs

)
,

we can prove the following Theorem: The first variation of the p−energy is

1
p

dEp(cs)
ds

(0) = −
∑
t

g(X,∆t(‖ċ‖p−2ċ))

−
∫ 1

0

‖ċ‖p−4g

(
X, ‖ċ‖2∇ċ

dt
+ (p− 2)g

(
∇ċ
dt
, ċ

)
ċ

)
dt,

where ∆t(‖ċ‖p−2ċ) = (‖ċ‖p−2ċ)t+ − (‖ċ‖p−2ċ)t− represents the jump of
‖ċ‖p−2ċ at the discontinuity point t ∈ (0, 1) [Udriste and Neagu (1999)].

The curve c is a critical point of Ep iff c is a geodesic.
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In particular, for p = 1 the curve c is a reparametrized geodesic.
Now, let c ∈ Ω be a critical point for Ep (i.e., the curve c is a geodesic).

Let (cs1s2)s1,s2∈(−ε,ε) ⊂ Ω be a two–parameter variation of c. Using the
notations:

X(t) =
∂cs1s2
∂s1

(0, 0, t) ∈ TcΩ, Y (t) =
∂cs1s2
∂s2

(0, 0, t) ∈ TcΩ,

‖ċ‖ = v = constant, and Ip(X,Y ) =
∂2Ep(cs1s2)
∂s1∂s2

(0, 0),

we get the following Theorem: The second variation of the p−energy is

[Udriste and Neagu (1999)]

1
pvp−4

Ip(X,Y ) = −
∑
t

g

(
Y, v2∆t

(
∇X
dt

)
+ (p− 2)g

(
∆t

(
∇X
dt

)
, ċ

)
ċ

)
−
∫ 1

0

g

(
Y, v2

[
∇
dt

∇X
dt

+R2(X, ċ)ċ
]

+ (p− 2)g
([
∇
dt

∇X
dt

+R2(X, ċ)ċ
]
, ċ

)
ċ

)
dt,

where ∆t

(∇X
dt

)
=
(∇X
dt

)
t+
−
(∇X
dt

)
t−

represents the jump of ∇X
dt at the

discontinuity point t ∈ (0, 1); also, if Rlijk(c, ċ) represents the components
of the Finsler curvature tensor , then

R2(X, ċ)ċ = Rlijk(c, ċ)ċiċjXk ∂

∂xl
= Rljk(c, ċ)ċjXk ∂

∂xl
.

In particular, we have

Rijk =
δN i

j

δxk
−δN

i
k

δxj
, and Rihjk =

δLihj
δxk
−δL

i
hk

δxj
+LshjL

i
sk−LshkLisj+CihsRsjk.

Moreover, using the Ricci identities for the deflection tensors, we also have

Rijk = Rimjky
m = Ri0jk.

Ip(X,Y ) = 0 (for all Y ∈ TcΩ) iff X is a Jacobi field, i.e.,

∇
dt

∇X
dt

+R2(X, ċ)ċ = 0.

In these conditions we have the following definition: A point c(b) (0 ≤
a < b < 1) of a geodesic c ∈ Ω is called a conjugate point of a point c(a)
along the curve c(t), if there exists a non–zero Jacobi field which vanishes
at t ∈ {a, b}.
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Now, integrating by parts and using the property of metric connection,
we find

1
pvp−4

Ip(X,Y ) =
∫ 1

0

v2

[
g

(
∇X
dt

,
∇Y
dt

)
−R2(X, ċ, Y, ċ)

]
+ (p− 2)g

(
ċ,
∇X
dt

)
g

(
ċ,
∇Y
dt

)
dt,

where R2(X, ċ, Y, ċ) = g(R2(Y, ċ)ċ, X) = R0i0j(c(t), ċ(t))XiY j .

Let Rijk = gjmR
m
ik. In any Finsler space the following identity is satis-

fied,

Rijk +Rjki +Rkij = 0,

get by the Bianchi identities. As R0i0j = Ri0j = Rj0i = R0j0i we get
R2(X, ċ, Y, ċ) = R2(Y, ċ,X, ċ).

The quadratic form associated to the Hessian of the p−energy is given
by

Ip(X) = Ip(X,X) =
∫ 1

0

v2

[∥∥∥∥∇Xdt
∥∥∥∥2

−R2(X, ċ,X, ċ)

]
+(p−2)

[
g

(
ċ,
∇X
dt

)]2
dt.

Let

T⊥c Ω = {X ∈ TcΩ | g(X, ċ) = 0}, and

T
′

cΩ = {X ∈ TcΩ | X = f ċ, where f : [0, 1]→ R is continuous,

piecewise C∞, f(0) = f(1) = 0}.

Let c be a geodesic and p ∈ R − {0, 1}. Then Ip(T ′cΩ) ≥ 0 for p ∈
(−∞, 0) ∪ (1,∞), and Ip(T ′cΩ) ≤ 0 for p ∈ (0, 1). Moreover, in both cases:
Ip(X) = 0 iff X = 0. To prove it, let X = f ċ ∈ T ′cΩ. Then we have [Udriste
and Neagu (1999)]

1
vp−4

Ip(X) = p

∫ 1

0

{
v2
[
g(f ′ċ, f ′ċ)−R2(f ċ, ċ, f ċ, ċ)

]
+ (p− 2) [g(ċ, f ′ċ)]2

}
dt

= p

∫ 1

0

[
v4(f ′)2 + (p− 2)v4(f ′)2

]
dt =

∫ 1

0

p(p− 1)v4(f ′)2dt.

Moreover, if Ip(X) = 0, then f ′ = 0, which means that f is constant.
The conditions f(0) = f(1) = 0 imply that f = 0.
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As Ip(T ′cΩ) is positive definite for p ∈ (−∞, 0) ∪ (1,∞) and negative
definite for p ∈ (0, 1), it is sufficient to study the behavior of Ip restricted
to T⊥c Ω. Since X⊥ċ and the curve c is a geodesic it follows

g

(
ċ,
∇X
dt

)
= 0.

Hence, for all X ∈ T⊥c Ω, we have

1
pvp−2

Ip(X) =
∫ 1

0

[∥∥∥∥∇Xdt
∥∥∥∥2

−R2(X, ċ,X, ċ)

]
dt = I(X).

3.11.3 Application: Finsler–Lagrangian Field Theory

In this subsection we present generalized Finsler–Lagrangian field theory .
The geometrical background of this theory relies on the notion of generalized
Lagrangian space, GLn = (M, gij(xk, yk)), which is a real nD manifold M

with local coordinates {xi}, (i = 1, ..., n) and a symmetric fundamental
metric tensor–field gij = gij(xk, yk) of rank n and constant signature on T
[Miron et. al. (1988); Miron and Anastasiei (1994)].

From physical point of view, the fundamental metric tensor repre-
sents a unified gravitational field on TM , which consists of one exter-
nal (x)−gravitational field spanned by points {xi}, and the one internal
(y)−gravitational field spanned by directions {yi} and equipped with some
microscopic character of the space–time structure.

The field theory developed on a generalized Lagrangian space GLn relies
on a fixed a priori nonlinear connection Γ = (N i

j(x, y)) on the tangent bun-
dle TM . This plays the role of mapping operator of the internal (y)−field
onto the external (x)−field, and prescribes the interaction between (x)−
and (y)−fields. From geometrical point of view, the nonlinear connec-
tion allows the construction of the adapted bases [Miron et. al. (1988);
Miron and Anastasiei (1994)]{

δ

δxi
=

∂

∂xi
−N j

i

∂

∂yj
,
∂

∂yi

}
⊂ X (TM),

{dxi, δyi = dyi +N i
jdx

j} ⊂ X ∗(TM).

As to the spatial structure, the most important thing is to determine
the Cartan canonical connection CΓ = (Lijk, C

i
jk) with respect to gij , which
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comes from the metric conditions

gij|k =
δgij
δxk
−Lmikgmj−Lmjkgmi = 0, gij;k =

∂gij
∂yk
−Cmikgmj−Cmjkgmi = 0,

where “|k” and “;k” are the local h− and v− covariant derivatives of CΓ.
The importance of the Cartan connection comes from its main role played
in the generalized Finsler–Lagrangian theory of physical fields.

Regarding the unified field gij(x, y) of GLn, the authors of [Miron et. al.
(1988); Miron and Anastasiei (1994)] constructed a Sasakian metric on TM ,

G = gijdx
i ⊗ dxj + gijδy

i ⊗ δyj .

In this context, the Einstein equations for the gravitational potentials
gij(x, y) of a generalized Lagrangian space GLn, (n > 2), are postulated
as being the Einstein equations attached to CΓ and G,

Rij −
1
2
Rgij = KTHij ,

′Pij = KT 1
ij ,

Sij −
1
2
Sgij = KTVij ,

′′Pij = −KT 2
ij ,

where Rij = Rmijm, Sij = Smijm, ′Pij = Pmijm, ′′Pij = Pmimj are the Ricci
tensors of CΓ, R = gijRij and S = gijSij are the scalar curvatures, THij ,
TVij , T 1

ij , T
2
ij are the components of the energy–momentum tensor T, and

K is the Einstein constant (equal to 0 for vacuum). Moreover, the energy–
momentum tensors THij and TVij satisfy the conservation laws [Miron et. al.
(1988); Miron and Anastasiei (1994)]

KTH m
j|m = −1

2
(Phmjs Rshm + 2RsmjP

m
s ), KTV m

j|m = 0.

The generalized Lagrangian theory of electromagnetism relies on the
canonical Liouville vector–field C = yi ∂

∂yi and the Cartan connection CΓ
of the generalized Lagrangian space GLn. In this context, we can introduce
the electromagnetic two—form on TM [Miron and Anastasiei (1994)]

F = Fijδy
i ∧ dxj + fijδy

i ∧ δyj , where

Fij =
1
2

[(gimym)|j − (gjmym)|i], fij =
1
2

[(gimym);j − (gjmym);i].

Using the Bianchi identities attached to the Cartan connection CΓ, they
conclude that the electromagnetic components Fij and fij are governed by
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the following Maxwell–type equations

Fij|k + Fjk|i + Fki|j = −[Cimrym + (gimym)|r]Rrjk,

Fij;k + Fjk;i + Fki;j = −(fij|k + fjk|i + fki|j), fij;k + fjk;i + fki;j = 0.

3.11.4 Riemann–Finsler Approach to Information

Geometry

3.11.4.1 Model Specification and Parameter Estimation

Model as a Parametric Family of Probability Distributions

From a statistical standpoint, observed data is a random sample from
an unknown population. Ideally, the goal of modelling is to deduce the
population that generated the observed data. Formally, a model is defined
as a parametric family of probability distributions (see [Myung and Pitt
(2003)]).

Let us use f(y|w) to denote the probability distribution function that
gives the probability of observing data, y = (y1, . . . , ym), given the model’s
parameter vector, w = (w1, . . . , wk). Under the assumption that individual
observations, yi’s, are independent of one another, f(y|w) can be rewritten
as a product of individual probability distribution functions,

f (y = (y1, ..., ym) |w) = f (y1|w) f (y2|w) ... f (ym|w) . (3.158)

Parameter Estimation

Once a model is specified with its parameters and data have been col-
lected, the model’s ability to fit the data can be assessed. Model fit is
measured by finding parameter values of the model that give the ‘best’ fit
to the data in some defined sense – a procedure called parameter estimation
in statistics.

There are two generally accepted methods of parameter estimation:
least–squares estimation (LSE) and maximum likelihood estimation (MLE).
In LSE, we seek the parameter values that minimize the sum of squares er-
ror (SSE) between observed data and a model’s predictions:

SSE(w) =
m∑
i=1

(yi − yi,prd (w))2 ,

where yi,prd (w) denotes the model’s prediction for observation yi. In MLE,
we seek the parameter values that are most likely to have produced the data.
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This is obtained by maximizing the log–likelihood of the observed data:

loglik (w) =
m∑
i=1

ln f(yi|w).

By maximizing either the likelihood or the log–likelihood, the same solu-
tion is obtained because the two are monotonically related to each other.
In practice, the log–likelihood is preferred for computational ease. The pa-
rameters that minimize the sum of squares error or the log–likelihood are
called the LSE or MLE estimates, respectively.

For normally distributed data with constant variance, LSE and MLE
are equivalent in the sense that both methods yield the same parameter
estimates. For non–normal data such as proportions and response times,
however, LSE estimates tend to differ from MLE estimates. Although LSE
is often the ‘de facto’ method of estimation in cognitive psychology, MLE
is a preferred method of estimation in statistics, especially for non–normal
data. In particular, MLE is well–suited for statistical inference in hypoth-
esis testing and model selection. Finding LSE or MLE estimates generally
requires use of a numerical optimization procedure.

3.11.4.2 Model Evaluation and Testing

Qualitative Criteria

A model satisfies the explanatory adequacy criterion if its assumptions
are plausible and consistent with established findings, and importantly, the
theoretical account is reasonable for the cognitive process of interest. In
other words, the model must be able to do more than redescribe observed
data. The model must also be interpretable in the sense that the model
makes sense and is understandable. Importantly, the components of the
model, especially, its parameters, must be linked to psychological processes
and constructs. Finally, the model is said to be faithful to the extent that
the model’s ability to capture the underlying mental process originates
from the theoretical principles embodied in the model, rather than from
the choices made in its computational instantiation.

3.11.4.3 Quantitative Criteria

Falsifiability

This is a necessary condition for testing a model or theory, refers to
whether there exist potential observations that a model cannot describe [Pop-
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per (1959)]. If so, then the model is said to be falsifiable. An unfalsifiable
model is one that can describe all possible data patterns in a given experi-
mental situation. There is no point in testing an unfalsifiable model.

A heuristic rule for determining a model’s falsifiability is already familiar
to us: The model is falsifiable if the number of its free parameters is less than
the number of data observations. This counting rule, however, turns out to
be imperfect, in particular, for nonlinear models. To remedy limitations of
the counting rule, [Bamber and Santen (1985)] provided a formal rule for
assessing a model’s falsifiability, which yielded the counting rule as a special
case. The rule states that a model is falsifiable if the rank of its Jacobian
matrix is less than the number of data observations for all values of the
parameters. Recall that the Jacobian matrix is defined in terms of partial
derivatives as: Jij (w) = ∂E (yj) /∂wi (i = 1, ..., k; j = 1, ...,m) where E(x)
stands for the expectation of a random variable x.

Goodness of Fit

A model should also give a good description of the observed data. Good-
ness of fit refers to the model’s ability to fit the particular set of observed
data. Common examples of goodness of fit measures are the minimized
sum of squares error (SSE), the mean squared error (MSE), the root mean
squared error (RMSE), the percent variance accounted for (PVAF), and
the maximum likelihood (ML).

The first four of these, defined below, are related to one another in a
way that one can be written in terms of another:

MSE = SSE (w∗LSE) /m,

RMSE =
√
SSE (w∗LSE) /m,

PV AF = 100 (1− SSE (w∗LSE) /SST ) ,

ML = f (y|w∗MLE) .

Here w∗LSE is the parameter that minimizes SSE(w), that is, an LSE es-
timate, and SST stands for the sum of squares total defined as SST =∑
i (yi − ymean)2. ML is the probability distribution function maximized

with respect to the model’s parameters, evaluated at w∗MLE , which is ob-
tained through MLE.



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

326 Applied Differential Geometry: A Modern Introduction

Complexity

Not only should a model describe the data in hand well, but it should
also do so in the least complex (i.e., simplest) way. Intuitively, complexity
has to do with a model’s inherent flexibility that enables it to fit a wide
range of data patterns. There seem to be at least two dimensions of model
complexity, the number of parameters and the model’s functional form. The
latter refers to the way the parameters are combined in the model equation.
The more parameters a model has, the more complex it is. Importantly also,
two models with the same number of parameters but different functional
forms can differ significantly in their complexity. For example, it seems
unlikely that two one–parameter models, y = x + w and y = ewx are
equally complex. The latter is probably much better at fitting data than
the former.

It turns out that one can devise a quantitative measure of model com-
plexity that takes into account both dimensions of complexity and at the
same time is theoretically justified as well as intuitive. One example is the
geometric complexity (GC) of a model [Pitt et. al. (2002)] defined as:

GC =
k

2
ln

n

2π
+ ln

∫
dw
√

det I(w), (3.159)

or

GC = parametric complexity + functional complexity,

where k is the number of parameters, n is the sample size, I(w) is the
Fisher information matrix (or, covariance matrix ) defined as

Iij (w) = −E
[
∂2 ln f(y|w)/∂wi∂wj

]
, i, j = 1, ..., k, (3.160)

or

Iij = −Expect.Value(Hessian(loglik (w))).

Functional form effects of complexity are reflected in the second term
of GC through I(w). How do we interpret geometric complexity? The
meaning of geometric complexity is related to the number of ‘different’
(i.e., distinguishable) probability distributions that a model can account
for. The more distinguishable distributions that the model can describe by
finely tuning its parameter values, the more complex it is ([Myung et. al.
(2000a)]). For example, when geometric complexity is calculated for the
following two-parameter psychophysical models, Stevens’ law (y = w1x

w2)
and Fechner’s logarithmic law (y = w1 ln (x+ w2)), the former turns out
to be more complex than the latter [Pitt et. al. (2002)].
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Generalizability

The fourth quantitative criterion for model evaluation is generalizability.
This criterion is defined as a model’s ability to fit not only the observed data
at hand, but also new, as yet unseen data samples from the same probability
distribution. In other words, model evaluation should not be focused solely
on how well a model fits observed data, but how well it fits data generated
by the cognitive process underlying the data. This goal will be achieved
best when generalizability is considered.

To summarize, these four quantitative criteria work together to assist
in model evaluation and guide (even constrain) model development and
selection. The model must be sufficiently complex, but not too complex, to
capture the regularity in the data. Both a good fit to the data and good
generalizability will ensure an appropriate degree of complexity, so that the
model captures the regularity in the data. In addition, because of its broad
focus, generalizability will constrain the power of the model, thus making
it falsifiable. Although all four criteria are inter-related, generalizability
may be the most important. By making it the guiding principle in model
evaluation and selection, one cannot go wrong.

3.11.4.4 Selection Among Different Models

Since a model’s generalizability is not directly observable, it must be esti-
mated using observed data. The measure developed for this purpose trades
off a model’s fit to the data with its complexity, the aim being to select the
model that is complex enough to capture the regularity in the data, but not
overly complex to capture the ever-present random variation. Looked at in
this way, generalizability embodies the principle of Occam’s razor (or prin-
ciple of parsimony, i.e., the requirement of maximal simplicity of cognitive
models).

Model Selection Methods

Now, we describe specific measures of generalizability. Four representa-
tive generalizability criteria are introduced. They are the Akaike Informa-
tion Criterion (AIC), the Bayesian Information Criterion (BIC), crossvali-
dation (CV), and minimum description length (MDL) (see a special Journal
of Mathematical Psychology issue on model selection, in particular [Myung
et. al. (2000b)]). In all four methods, the maximized log–likelihood is used
as a goodness–of–fit measure, but they differ in how model complexity is
conceptualized and measured.
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AIC and BIC

AIC and BIC for a given model are defined as follows:

AIC = −2 ln f(y|w∗) + 2k,

BIC = −2 ln f(y|w∗) + k lnn,

where w∗ is a MLE estimate, k is the number of parameters and n is the
sample size. For normally distributed errors with constant variance, the
first term of both criteria, -2 ln f(y|w∗), is reduced to (n·ln(SSE(w∗))+co)
where co is a constant that does not depend upon the model. In each
criterion, the first term represents a lack of fit measure, the second term
represents a complexity measure, and together they represent a lack of
generalizability measure. A lower value of the criterion means better gen-
eralizability. Therefore, the model that minimizes a given criterion should
be chosen.

Complexity in AIC and BIC is a function of only the number of param-
eters. Functional form, another important dimension of model complexity,
is not considered. For this reason, these methods are not recommended for
comparing models with the same number of parameters but different func-
tional forms. The other two selection methods, CV and MDL, described
next, are sensitive to functional form as well as the number of parameters.

Cross–Validation

In CV, a model’s generalizability is estimated without defining an ex-
plicit measure of complexity. Instead, models with more complexity than
necessary to capture the regularity in the data are penalized through a
resampling procedure, which is performed as follows: The observed data
sample is divided into two sub–samples, calibration and validation. The
calibration sample is then used to find the best–fitting values of a model’s
parameters by MLE or LSE. These values, denoted by w∗cal, are then fixed
and fitted, without any further tuning of the parameters, to the valida-
tion sample, denoted by yval. The resulting fit to yval by w∗cal is called
as the model’s CV index and is taken as the model’s generalizability esti-
mate. If desired, this single–division–based CV index may be replaced by
the average CV index calculated from multiple divisions of calibration and
validation samples. The latter is a more accurate estimate of the model’s
generalizability, though it is also more computationally demanding.
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The main attraction of cross–validation is its ease of use. All that is
needed is a simple resampling routine that can easily be programmed on any
desktop computer. The second attraction is that unlike AIC and BIC, CV
is sensitive to the functional form dimension of model complexity, though
how it works is unclear because of the implicit nature of the method. For
these reasons, the method can be used in all modelling situations, including
the case of comparing among models that differ in functional form but have
the same number of parameters.

Minimum Description Length

MDL is a selection method that has its origin in algorithmic coding the-
ory in computer science. According to MDL, both models and data are
viewed as codes that can be compressed. The basic idea of this approach is
that regularities in data necessarily imply the existence of statistical redun-
dancy and that the redundancy can be used to compress the data [Grun-
wald (1999); Grunwald (2000); Grunwald et. al. (2005)]. Put another way,
the amount of regularity in data is directly related to the data description
length. The shorter the description of the data by the model, the better
the approximation of the underlying regularity, and thus, the higher the
model’s generalizability is. Formally, MDL is defined as:

MDL = − ln f(y|w∗) +
k

2
ln

n

2π
+ ln

∫
dw
√

det I(w), (3.161)

or

MDL = lack–of–fit measure + param. complexity + functional complexity,

where the first term is the same lack of fit measure as in AIC and BIC;
the second and third terms together represent the geometric complexity
measure (3.159). In coding theory, MDL is interpreted as the length in bits
of the shortest possible code that describes the data unambiguously with
the help of a model. The model with the minimum value of MDL encodes
the most regularity in the data, and therefore should be preferred.

The second term in (3.161), which captures the effects of model com-
plexity due to the number of parameter (k), is a logarithmic function of
sample size n. In contrast, the third term, which captures functional form
effects, is not sensitive to sample size. This means that as sample size in-
creases, the relative contribution of the effects due to functional form to
those due to the number of parameters will be gradually reduced. There-
fore, functional form effects can be ignored for sufficiently large n, in which
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case the MDL value becomes approximately equal to one half of the BIC
value.

Probably the most desirable property of MDL over other selection meth-
ods is that its complexity measure takes into account the effects of both
dimensions of model complexity, the number of parameters and functional
form. The MDL complexity measure, unlike CV, shows explicitly how both
factors contribute to model complexity. In short, MDL is a sharper and
more accurate method than these three competitors. The price that is paid
for MDL’s superior performance is its computational cost. MDL can be
laborious to calculate. First, the Fisher information matrix (3.160) must
be obtained by calculating the second derivatives (i.e., Hessian matrix)
of the log–likelihood function, ln f(y|w). This calculation can be non–
trivial, though not impossible. Second, the square–root of the determinant
of the Fisher information matrix must be integrated over the parameter
space. This generally requires use of a numerical integration method such
as Markov Chain Monte Carlo (see e.g., [Gilks et. al. (1996)]).

3.11.4.5 Riemannian Geometry of Minimum
Description Length

From a geometric perspective, a parametric model family of probability dis-
tributions (3.158) forms a Riemannian manifold embedded in the space of
all probability distributions (see [Amari (1985); Amari and Nagaoka (2000);
McCullagh (1987)]). Every distribution is a point in this space, and the
collection of points created by varying the parameters of the model induces
a manifold in which ‘similar’ distributions are mapped to ‘nearby’ points.
The infinitesimal distance between points separated by the infinitesimal pa-
rameter differences dwi is given by

ds2 = gij(w) dwidwj ,

where gij(w) is the Riemannian metric tensor. The Fisher information,
Iij(w), defined by (3.160), is the natural metric on a manifold of distribu-
tions in the context of statistical inference [Amari (1985)]. We argue that
the MDL measure of model fitness has an attractive interpretation in such
a geometric context.

The first term in MDL equation (3.161) estimates the accuracy of the
model since the likelihood f(y|w∗) measures the ability of the model to fit
the observed data. The second and third terms are supposed to penalize
model complexity; we will show that they have interesting geometric inter-
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pretations. Given the metric Iij(w) = gij(w) on the space of parameters,
the infinitesimal volume element on the parameter manifold is

dV = dw
√

det I(w) =
k∏
l=1

dwl
√

det I(w).

The Riemannian volume of the parameter manifold is obtained by integrat-
ing dV over the space of parameters:

VM =
∫
dV =

∫
dw
√

det I(w).

In other words, the third term (functional complexity) in MDL penalizes
models that occupy a large volume in the space of distributions.

In fact, the volume measure VM is related to the number of ‘distin-
guishable’ probability distributions indexed by the model. Because of the
way the model family is embedded in the space of distributions, two dif-
ferent parameter values can index very similar distributions. If complexity
is related to volumes occupied by model manifolds, the measure of volume
should count only different, or distinguishable, distributions, and not the
artificial coordinate volume. It is shown in [Myung et. al. (2000a)] that the
volume VM achieves this goal.

Selecting Among Qualitative Models

Application of any of the preceding selection methods requires that the
models are quantitative models, each defined as a parametric family of prob-
ability distributions.

Pseudo–probabilistic MDL Approach

The ‘pseudo–probabilistic’ approach [Grunwald (1999)] for selecting
among qualitative models derives a selection criterion that is similar to
the MDL criterion for quantitative models, but it is a formulation that is
closer to the original spirit of the MDL principle, which states:

‘Given a data set D and a model M , the description length of the data,
DLM (D), is given by the sum of (a) the description length of the data when
encoded with help of the model, DL(D|M), and (b) the description length
of the model itself, DL(M) : DLM (D) = DL(D|M)+DL(M). Among a set
of competing models, the best model is the one that minimizes DLM(D).’

The above MDL principle is broad enough to include the MDL criterion
for quantitative models as a specific instantiation. The first, lack–of–fit
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term of the quantitative criterion (-ln f (y|w∗)) can be seen as DL(D|M),
whereas the second and third terms (k2 ln n

2π +ln
∫
dw
√

det I (w)) represent
geometric complexity as DL(M). Likewise, a computable criterion that im-
plements the above principle can be obtained with the pseudo–probabilistic
approach. It is derived from the Kraft–Inequality Theorem in coding the-
ory ([Li and Vitanyi (1997)]). The Theorem proves that one can always
associate arbitrary models with their ‘equivalent’ probability distributions
in a procedure called entropification [Grunwald (1999)].

MDL Criterion for Qualitative Models

Entropification proceeds as follows. We first ‘construct’ a parametric
family of probability distributions for a given qualitative model in the fol-
lowing form:

p (y = (y1, ..., ym) |w) = exp

(
−w

m∑
i=1

Err (yi,obs − yi,prd (w))

)
/Z(w).

In this equation, Err(x) is an error function that measures the model’s
prediction performance such as Err(x) = |x| or x2, w is a scalar parameter,
and Z(w) is the normalizing factor defined as

Z(w) =
∑
y1

...
∑
ym

p (y = (y1, ..., ym) |w) .

The above formulation requires that each observation yi be represented by
a discrete variable that takes on a finite number of possible values repre-
senting the model’s qualitative (e.g., ordinal) predictions.

Once a suitable error function, Err(x), is chosen, the above probability
distribution function is then used to fit observed data, and the best–fitting
parameter w∗ is sought by MLE. The description length of the data encoded
with the help of the model is then obtained by taking the minus logarithm
of the maximum likelihood (ML),

DL (D|M) = − ln p (y|w∗) .

The second term, DL(M), the description length of the model itself, is
obtained by counting the number of different data patterns the model can
account for and then taking the logarithm of the resulting number. Putting
these together, the desired MDL criterion for a qualitative model is given
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by

MDLqual = w∗
m∑
i=1

Err (yi,obs − yi,prd (w∗)) + lnZ (w∗) + lnN,

where N is the number of all possible data patterns or data sets that the
model predicts.

3.11.4.6 Finsler Approach to Information Geometry

Recall that information geometry has emerged from investigating the ge-
ometrical structure of a family of probability distributions, and has been
applied successfully to various areas including statistical inference, con-
trol theory and multi–terminal information theory (see [Amari (1985);
Amari and Nagaoka (2000)]). In this subsection we give a brief review on a
more general approach to information geometry, based on Finsler geometry
(see subsection 3.11 above).

A parameter–space of probability distributions, defined by

M = {x : p = p(r, x) is a probability distribution on R}

represents a smooth manifold, called the probability manifold [Amari
(1985); Amari and Nagaoka (2000)]. On a probability manifold M we can
define a probability divergence D = D(x, y), as

D(x, y) =
∫
M

p(r, x)f(
p(r, y)
p(r, x)

) dr,

where f(·) is a convex function such that f(1) = 0, f ′′(1) = 1,

which satisfies the following conditions [Shen (2005)]

D(x, y) > 0 if x 6= y,

D(x, y) = 0 if x = y,

D(x, y) 6= D(y, x) in general.

On the other hand, if d = d(x, y) is a probability distance on a probability
manifold M , satisfying the following standard conditions:

d(x, x) = 0,

d(x, y) > 0, if x 6= y,

d(x, y) ≤ d(x, r) + d(r, y) (triangle inequality),
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then for any function ψ = ψ(h) with ψ(0) = 0, ψ(h) > 0 for h > 0, the
probability divergence on M is defined as

D(x, y) := ψ(d(x, y)). (3.162)

Recall that a Finsler metric L = L(x, y) is a function of tangent vectors
y at a point x ∈M , with the following properties:

L(x, ty) = t2L(x, y) for t > 0, (3.163)

gij(x, y) :=
1
2

∂2L

∂yi∂yj
(x, y) > 0,

Fx(y) :=
√
L(x, y), Fx(u+ v) ≤ Fx(u) + Fx(v).

This means that there is an inner product gy at a pint x ∈M , such that

gy(u, v) = gij(x, y)uivj ,

so that our Finsler metric L(x, y) ∈M , given by (3.163), becomes

L(x, y) = gy(u, v) = gij(x)yiyj .

Therefore, in a special case when gij(x, y) = gij(x) are independent of y, the
Finsler metric L(x, y) becomes a standard Riemannian metric gij(x)yiyj .
In this way, all the material from the previous subsection can be generalized
to Finsler geometry.

Now, D(x, y) ∈M , given by (3.162), is called the regular divergence, if

2D(x, x+ y) = L(x, y) +
1
2
Lxk(x, y)yk +

1
3
H(x, y) + o(|y|3),

where H = H(x, y) ∈M is homogenous function of degree 3 in y, i.e.,

H(x, ty) = t3H(x, y) for t > 0.

A pair {L,H} ∈M is called a Finsler information structure [Shen (2005)].
In a particular case when L(x, y) = gij(x)yiyj is a Riemannian metric,

and H(x, y) = Hijk(x)yiyjyk is a polynomial, then we have affine informa-
tion structure {L,H} ∈M , which is described by a family of affine connec-
tions, called α−connections by [Amari (1985); Amari and Nagaoka (2000)].
However, in general, the induced information structure {L,H} ∈M is not
affine, i.e., L(x, y) is not Riemannian and H(x, y) is not polynomial.
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3.12 Symplectic Manifolds and Their Applications

3.12.1 Symplectic Algebra

Symplectic algebra works in the category of symplectic vector spaces Vi and
linear symplectic mappings t ∈ L(Vi, Vj) [Puta (1993)].

Let V be a nD real vector space and L2(V,R) the space of all bilinear
maps from V × V to R. We say that a bilinear map ω ∈ L2(V,R) is
nondegenerate, i.e., if ω(v1, v2) = 0 for all v2 ∈ V implies v1 = 0.

If {e1, ..., en} is a basis of V and {e1, ..., en} is the dual basis, ωij =
ω(ei, ej) is the matrix of ω. A bilinear map ω ∈ L2(V,R) is nondegener-
ate iff its matrix ωij is nonsingular. The transpose ωt of ω is defined by
ωt(ei, ej) = ω(ej , ei). ω is symmetric if ωt = ω, and skew–symmetric if
ωt = −ω.

Let A2(V ) denote the space of skew–symmetric bilinear maps on V .
An element ω ∈ A2(V ) is called a 2−form on V . If ω ∈ A2(V ) is non-
degenerate then in the basis {e1, ..., en} its matrix ω(ei, ej) has the form

J =
(

0 In
−In 0

)
.

A symplectic form on a real vector space V of dimension 2n is a non-
degenerate 2−form ω ∈ A2(V ). The pair (V, ω) is called a symplectic
vector space. If (V1, ω1) and (V2, ω2) are symplectic vector spaces, a linear
map t ∈ L(V1, V2) is a symplectomorphism (i.e., a symplectic mapping) iff
t∗ω2 = ω1. If (V, ω) is a symplectic vector space, we have an orientation
Ωω on V given by

Ωω =
(−1)

n(n−1)
2

n!
ωn.

Let (V, ω) be a 2nD symplectic vector space and t ∈ L(V, V ) a sym-
plectomorphism. Then t is volume preserving, i.e., t∗(Ωω) = Ωω, and
detΩω (t) = 1.

The set of all symplectomorphisms t : V → V of a 2nD symplectic
vector space (V, ω) forms a group under composition, called the symplectic
group, denoted by Sp(V, ω).

In matrix notation, there is a basis of V in which the matrix of ω is

J =
(

0 In
−In 0

)
, such that J−1 = J t = −J , and J2 = −I. For t ∈ L(V, V )

with matrix T = [T ij ] relative to this basis, the condition t ∈ Sp(V, ω), i.e.,
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t∗ω = ω, becomes

T tJT = J.

In general, by definition a matrix A ∈M2n×2n(R) is symplectic iff AtJA =
J .

Let (V, ω) be a symplectic vector space, t ∈ Sp(V, ω) and λ ∈ C an
eigenvalue of t. Then λ−1, λ̄ and λ̄

−1 are eigenvalues of t.

3.12.2 Symplectic Geometry

Symplectic geometry is a globalization of symplectic algebra [Puta (1993)];
it works in the category Symplec of symplectic manifolds M and sym-
plectic diffeomorphisms f . The phase–space of a conservative dynamical
system is a symplectic manifold, and its time evolution is a one–parameter
family of symplectic diffeomorphisms.

A symplectic form or a symplectic structure on a smooth (i.e., Ck)
manifold M is a nondegenerate closed 2−form ω on M , i.e., for each x ∈
M ω(x) is nondegenerate, and dω = 0. A symplectic manifold is a pair
(M,ω) where M is a smooth 2nD manifold and ω is a symplectic form
on it. If (M1, ω1) and (M2, ω2) are symplectic manifolds then a smooth
map f : M1 → M2 is called symplectic map or canonical transformation if
f∗ω2 = ω1.

For example, any symplectic vector space (V, ω) is also a symplectic
manifold; the requirement dω = 0 is automatically satisfied since ω is a
constant map. Also, any orientable, compact surface Σ is a symplectic
manifold; any non–vanishing 2−form (volume element) ω on Σ is a sym-
plectic form on Σ.

If (M,ω) is a symplectic manifold then it is orientable with the standard
volume form

Ωω =
(−1)

n(n−1)
2

n!
ωn,

If f : M →M is a symplectic map, then f is volume preserving, detΩω (f) =
1 and f is a local diffeomorphism.

In general, if (M,ω) is a 2nD compact symplectic manifold then ωn is a
volume element on M , so the de Rham cohomology class [ωn] ∈ H2n(M,R)
is nonzero. Since [ωn] = [ω]n, [ω] ∈ H2(M,R) and all of its powers through
the nth must be nonzero as well. The existence of such an element of
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H2(M,R) is a necessary condition for the compact manifold to admit a
symplectic structure.

However, if M is a 2nD compact manifold without boundary, then there
does not exist any exact symplectic structure, ω = dθ on M , as its total
volume is zero (by Stokes’ Theorem),

∫
M

Ωω =
(−1)

n(n−1)
2

n!

∫
M

ωn =
(−1)

n(n−1)
2

n!

∫
M

d(θ ∧ ωn−1) = 0.

For example, spheres S2n do not admit a symplectic structure for n ≥
2, since the second de Rham group vanishes, i.e., H2(S2n,R) = 0. This
argument applies to any compact manifold without boundary and having
H2(M,R) = 0.

In mechanics, the phase–space is the cotangent bundle T ∗M of a con-
figuration space M . There is a natural symplectic structure on T ∗M that
is usually defined as follows. Let M be a smooth nD manifold and pick
local coordinates {dq1, ..., dqn}. Then {dq1, ..., dqn} defines a basis of the
tangent space T ∗qM , and by writing θ ∈ T ∗qM as θ = pidq

i we get local
coordinates {q1, ..., qn, p1, ..., pn} on T ∗M . Define the canonical symplectic
form ω on T ∗M by

ω = dpi ∧ dqi.

This 2−form ω is obviously independent of the choice of coordinates
{q1, ..., qn} and independent of the base point {q1, ..., qn, p1, ..., pn} ∈ T ∗qM ;
therefore, it is locally constant, and so dω = 0.

The canonical 1−form θ on T ∗M is the unique 1−form with the property
that, for any 1−form β which is a section of T ∗M we have β∗θ = θ.

Let f : M →M be a diffeomorphism. Then T ∗f preserves the canonical
1−form θ on T ∗M , i.e., (T ∗f)∗θ = θ. Thus T ∗f is symplectic diffeomor-
phism.

If (M,ω) is a 2nD symplectic manifold then about each point x ∈ M
there are local coordinates {q1, ..., qn, p1, ..., pn} such that ω = dpi ∧ dqi.
These coordinates are called canonical or symplectic. By the Darboux
Theorem, ω is constant in this local chart, i.e., dω = 0.
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3.12.3 Application: Autonomous Hamiltonian Mechanics

3.12.3.1 Basics of Hamiltonian Mechanics

In this section we present classical Hamiltonian dynamics. Let (M,ω) be a
symplectic manifold and H ∈ C∞(M,R) a smooth real valued function on
M . The vector–field XH determined by the condition

iXHω + dH = 0,

is called Hamiltonian vector–field with Hamiltonian energy function H. A
triple (M,ω,H) is called a Hamiltonian mechanical system [Marsden and
Ratiu (1999); Puta (1993)].

Nondegeneracy of ω guarantees that XH exists, but only in the nD case.
Let {q1, ..., qn, p1, ..., pn} be canonical coordinates on M , i.e., ω = dpi ∧

dqi. Then in these coordinates we have

XH =
(
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi

)
.

As a consequence,
(
(qi(t)), (pi(t))

)
is an integral curve of XH (for i =

1, ..., n) iff Hamiltonian equations hold,

q̇i = ∂piH, ṗi = −∂qiH. (3.164)

Let (M,ω,H) be a Hamiltonian mechanical system and let γ(t) be an
integral curve of XH . Then H (γ(t)) is constant in t. Moreover, if φt is the
flow of XH , then H ◦ φt = H for each t.

Let (M,ω,H) be a Hamiltonian mechanical system and φt be the flow of
XH . Then, by the Liouville Theorem, for each t, φ∗tω = ω, ( ddtφ

∗
tω = 0, so

φ∗tω is constant in t), that is, φt is symplectic, and it preserves the volume
Ωω.

A convenient criterion for symplectomorphisms is that they preserve the
form of Hamiltonian equations. More precisely, let (M,ω) be a symplectic
manifold and f : M → M a diffeomorphism. Then f is symplectic iff for
all H ∈ C∞(M,R) we have f∗(XH) = XH◦f .

A vector–field X ∈ X (M) on a symplectic manifold (M,ω) is called
locally Hamiltonian iff LXω = 0, where L denotes the Lie derivative. From
the equality L[X,Y ]ω = LXLY ω−LY LXω, it follows that the locally Hamil-
tonian vector–fields on M form a Lie subalgebra of X (M).

Let (M,ω) be a symplectic manifold and f, g ∈ C∞(M,R). The Poisson
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bracket of f and g is the function

{f, g}ω = −ω(Xf , Xg) = −LXf g = LXgf.

Also, for f0 ∈ C∞(M,R), the map g 7−→ {f0, g}ω is a derivation. The
connection between the Lie bracket and the Poisson bracket is

[Xf , Xg] = −X{f,g}ω ⇐⇒ dω = 0.

The real vector space C∞(M,R) together with the Poisson bracket on
it forms an infinite–dimensional Lie algebra called the algebra of classical
observables.

In canonical coordinates {q1, ..., qn, p1, ..., pn} on (M,ω) the Poisson
bracket of two functions f, g ∈ C∞(M,R) is given by

{f, g}ω =
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
.

From this definition follows:

{qi, qj}ω = 0, {pi, pj}ω = 0, {qi, pj}ω = δij .

Let (M,ω) be a symplectic manifold and f : M →M a diffeomorphism.
Then f is symplectic iff it preserves the Poisson bracket.

Let (M,ω,H) be a Hamiltonian mechanical system and φt the flow of
XH . Then for each function f ∈ C∞(M,R) we have the equations of motion
in the Poisson bracket notation:

d

dt
(f ◦ φt) = {f ◦ φt,H}ω = {f,H}ω ◦ φt.

Also, f is called a constant of motion, or a first integral , if it satisfies the
following condition

{f,H}ω = 0.

If f and g are constants of motion then their Poisson bracket is also a
constant of motion.

A Hamiltonian mechanical system (M,ω,H) is said to be integrable
if there exists n = 1

2 dim(M) linearly–independent functions K1 =
H,K2, ...,Kn such that for each i, j = 1, 2, ..., n:

{Ki,H}ω = 0, {Ki,Kj}ω = 0.
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Real 1−DOF Hamiltonian Dynamics

A vector–field X(t) on the momentum phase–space manifold M can be
given by a system of canonical equations of motion

q̇ = f(q, p, t, µ), ṗ = g(q, p, t, µ), (3.165)

where t is time, µ is a parameter, q ∈ S1, p ∈ R×S1 are coordinates and
momenta, respectively, while f and g are smooth functions on the phase–
space R×S1.

If time t does not explicitly appear in the functions f and g, the vector–
field X is called autonomous. In this case equation (3.165) simplifies as

q̇ = f(q, p, µ), ṗ = g(q, p, µ). (3.166)

By a solution curve of the vector–field X we mean a map x = (q, p),
from some interval I ⊂ R into the phase–space manifold M , such that
t 7→ x(t). The map x(t) = (q(t), p(t)) geometrically represents a curve in
M , and equations (3.165) or (3.166) give the tangent vector at each point
of the curve.

To specify an initial condition on the vector–field X, by

x(t, t0, x0) = (q(t, t0, q0), p(t, t0, p0)),

geometrically means to distinguish a solution curve by a particular point
x(t0) = x0 in the phase–space manifold M . Similarly, it may be use-
ful to explicitly display the parametric dependence of solution curves,
as x(t, t0, x0, µ) = (q(t, t0, q0, µq), p(t, t0, p0, µp)), where µq, µp denote
q−depen-dent and p−dependent parameters, respectively.

The solution curve x(t, t0, x0) of the vector–field X, may be also referred
as the phase trajectory through the point x0 at t = t0. Its graph over t is
refereed to as an integral curve; more precisely, graph
x(t, t0, x0) ≡ {(x, t) ∈M × R : x = x(t, t0, x0), t ∈ I ⊂ R}.

Let x0 = (q0, p0) be a point on M . By the orbit through x0, denoted
O(x0), we mean the set of points in M that lie on a trajectory passing
through x0; more precisely, for x0 ∈ U , U open in M , the orbit through x0

is given by O(x0) = {x ∈ R×S1 : x=x(t, t0, x0), t ∈ I ⊂ R}.
Consider a general autonomous vector–field X on the phase–space man-

ifold M , given by equation ẋ = f(x), x = (q, p) ∈M . An equilibrium so-
lution, singularity, or fixed point of X is a point x̄ ∈M such that f(x̄) = 0,
i.e., a solution which does not change in time.
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Any solution x̄(t) of an autonomous vector–field X on M is stable if
solutions starting ‘close’ to x̄(t) at a given time remain close to x̄(t) for all
later times. It is asymptotically stable if nearby solutions actually converge
to x̄(t) as t −→ ∞. In order to determine the stability of x̄(t) we must
understand the nature of solutions near x̄(t), which is done by lineariza-
tion of the vector–field X. The solution of the linearized vector–field Y

is asymptotically stable if all eigenvalues have negative real parts. In that
case the fixed point x = x̄ of associated nonlinear vector–field X is also
asymptotically stable. A fixed point x̄ is called hyperbolic point if none of
the eigenvalues of Y have zero real part; in that case the orbit structure
near x̄ is essentially the same for X and Y .

In the case of autonomous vector–fields on M we have also an important
property of Hamiltonian flow. If x(t) = (q(t), p(t)) is a solution of ẋ =
f(x), x ∈M , then so is x(t+ τ) for any τ ∈ R. Also, for any x0 ∈M there
exists only one solution of an autonomous vector–field passing through this
point. The autonomous vector–field

ẋ = f(x)

has the following properties (compare with the section (6.289) above):

(1) x(t, x0) is C∞;
(2) x(0, x0) = x0; and
(3) x(t+ s, x0) = x(t, x(s, x0)).

These properties show that the solutions of an autonomous vector–field
form a one–parameter group of diffeomorphisms of the phase–space mani-
fold M . This is refereed to as a phase–flow and denoted by φt(x) or φ(t, x).

Consider a flow φ(t, x) generated by vector–field ẋ = f(x). A point
x0 = (q0, p0) on M is called an ω−limit point of x,= (q, p) ∈M , denoted
ω(x), if there exists a sequence {ti}, ti 7→ ∞, such that φ(ti, x) 7→ x0.
Similarly, α−limit points are defined by taking a sequence {ti}, ti 7→ −∞.
The set of all ω−limit points of a flow is called the ω−limit set . The
α−limit set is similarly defined.

A point x0 = (q0, p0) on M is called nonwandering if for any open
neighborhood U ⊂M of x0, there exists some t 6= 0 such that φ(t, U)∩U 6=
0. The set of all nonwandering points of a flow is called the nonwandering
set of that particular map or flow.

A closed invariant subset A ⊂ M is called an attracting set if there is
some open neighborhood U ⊂M of A such that φ(t, x) ∈ U and φ(t, x) 7→
∞ for any x ∈ U and t ≥ 0. The domain or basin of attraction of A is given
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by ∪t≤0φ(t, U). In practice, a way of locating attracting sets is to first find
a trapping region, i.e., a closed, connected subset V ⊂M such that for any
t ≥ 0 φ(t, V ) ⊂ V . Then ∩t 0φ(t, V ) = A is an attracting set .

As a first example of one–DOF dynamical systems, let us consider a
vector–field x = (q, p) ∈ R×R of a simple harmonic oscillator, given by
equations

q̇ = p, ṗ = −q. (3.167)

Here, the solution passing through the point (q, p) = (1, 0) at t = 0 is
given by (q(t), p(t)) = (cos t, − sin t); the integral curve passing through
(q, p) = (1, 0) at t = 0 is given by {(q, p, t) ∈ R×R×R : (q(t), p(t)) =
(cos t, − sin t)}, for all t ∈ R; the orbit passing through (q, p) = (1, 0) is
given by the circle q2 + p2 = 1.

A one–DOF dynamical system is called Hamiltonian system if there
exists a first integral or a function of the dependent variables (q, p) whose
level curves give the orbits of the vector–field X = XH , i.e., a total–energy
Hamiltonian function H = H(q, p) : U → R, (U open set on the phase–
space manifold M), such that the vector–field XH is given by Hamiltonian
canonical equations (3.164). In (3.164), the first, q̇−equation, is called
the velocity equation and serves as a definition of the momentum, while
the second, ṗ−equation is called the force equation, and represents the
Newtonian second law of motion.

The simple harmonic oscillator (3.167) is a Hamiltonian system with a
Hamiltonian function H = p2

2 + q2

2 . It has a fixed point – center (having
purely imaginary eigenvalues) at (q, p) = (0, 0) and is surrounded by a
one–parameter family of periodic orbits given by the Hamiltonian H.

A nice example of one–DOF dynamical system with a Hamiltonian
structure is a damped Duffing oscillator (see, e.g., [Wiggins (1990)]). This
is a plane Hamiltonian vector–field x = (q, p) ∈ R2, given by Hamiltonian
equations

q̇ = p ≡ f(q, p), ṗ = q − q3 − δp ≡ g(q, p, δ), δ ≥ 0. (3.168)

For the special parameter value δ = 0, we have an undamped Duffing oscil-
lator with a first integral represented by Hamiltonian function H = p2

2 −
q2

2 + q4

4 , where p2

2 corresponds to the kinetic energy (with a mass scaled
to unity), and − q

2

2 + q4

4 ≡ V (x) corresponds to the potential energy of the
oscillator.

In general, if the first integral, i.e., a Hamiltonian function H, is defined
byH = p2

2 + V (x), then the momentum is given by p = ±
√

2
√
H − V (x).
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All one–DOF Hamiltonian systems are integrable and all the solutions lie on
level curves of the Hamiltonian function, which are topologically equivalent
with the circle S1. This is actually a general characteristic of all n−DOF
integrable Hamiltonian systems: their bounded motions lie on nD invariant
tori Tn = S1 × · · · × S1, or homoclinic orbits. The homoclinic orbit
is sometimes called a separatrix because it is the boundary between two
distinctly different types of motion.

For example, in case of a damped Duffing oscillator (3.168) with δ 6= 0,
we have

∂qf + ∂pg = −δ,

and according to the Bendixon criterion for δ > 0 it has no closed orbits.
The vector–field X given by equations (3.168) has three fixed points

given by (q, p) = (0, 0), (±1, 0). The eigenvalues λ1,2 of the associated
linearized vector–field are given by λ1,2 = −δ/2± 1

2

√
δ2 + 4, for the fixed

point (0, 0), and by λ1,2 = −δ/2 ± 1
2

√
δ2 − 8, for the fixed point (±1, 0).

Hence, for δ > 0, (0, 0) is unstable and (±1, 0) are asymptotically stable;
for δ = 0, (±1, 0) are stable in the linear approximation (see, e.g., [Wiggins
(1990)]).

Another example of one–DOF Hamiltonian systems is a simple pendu-
lum (again, all physical constants are scaled to unity), given by Hamilto-
nian function H = p2

2 − cos q. This is the first integral of the cylindrical
Hamiltonian vector–field (q, p) ∈ S1 × R, defined by canonical equations

q̇ = p, ṗ = − sin q.

This vector–field has fixed points at (0, 0), which is a center (i.e., the eigen-
values are purely imaginary), and at (±π, 0), which are saddles, but since
the phase–space manifold is the cylinder, these are really the same point.

The basis of human arm and leg dynamics represents the coupling of
two uniaxial, SO(2)−joints. The study of two DOF Hamiltonian dynam-
ics we shall start with the most simple case of two linearly coupled linear
undamped oscillators with parameters scaled to unity. Under general con-
ditions we can perform a change of variables to canonical coordinates (the
‘normal modes’) (qi, pi), i = 1, 2, so that the vector–field XH is given by

q̇1 = p1, q̇2 = p2, ṗ1 = −ω2
1q

1, ṗ2 = −ω2
2q

2.

This system is integrable, since we have two independent functions of
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(qi, pi), i.e., Hamiltonians

H1 =
p2
1

2
+
ω2

1(q1)2

2
, H2 =

p2
2

2
+
ω2

2(q2)2

2
.

The level curves of these functions are compact sets (topological circles);
therefore, the orbits in the 4D phase–space R4 actually lie on the two–torus
T 2. By making the appropriate change of variables, it can be shown (see,
e.g., [Wiggins (1990)]) that the whole dynamics of the two linearly coupled
linear undamped oscillators is actually contained in the equations

θ̇1 = ω1, θ̇2 = ω2, (θ1, θ2) ∈ S1 × S2 ≡ T 2. (3.169)

The flow on the two–torus T 2, generated by (3.169), is simple to calcu-
late and is given by

θ1(t) = ω1t + θ10 , θ1(t) = ω1t + θ10 , (mod 2π),

and θ1 and θ2 are called the longitude and latitude. However, orbits under
this flow will depend on how ω1 and ω2 are related. If ω1 and ω2 are
commensurate (i.e., the equation mω1+nω2 = 0, (n,m) ∈ Z has solutions),
then every phase curve of (3.169) is closed. However, if ω1 and ω2 are
incommensurate i.e., upper equation has no solutions), then every phase
curve of (3.169) is everywhere dense on T 2.

Somewhat deeper understanding of Hamiltonian dynamics is related to
the method of action–angle variables. The easiest way to introduce this idea
is to consider again a simple harmonic oscillator (3.167). If we transform
equations (3.167) into polar coordinates using q = r sin θ, p = r cos θ,
then the equations of the vector–field become ṙ = 0, θ̇ = 1, having the
obvious solution r = const, θ = t+θ0. For this example polar coordinates
work nicely because the system (3.167) is linear and, therefore, all of the
periodic orbits have the same period.

For the general, nonlinear one–DOF Hamiltonian system (3.164) we
will seek a coordinate transformation that has the same effect. Namely, we
will seek a coordinate transformation (q, p) 7→ (θ(q, p), I(q, p)) with inverse
transformation (θ, I) 7→ (q(I, θ), p(I, θ)) such that the vector–field (3.164)
in the action–angle (θ, I) coordinates satisfies the following conditions: (i)
İ = 0; (ii) θ changes linearly in time on the closed orbits with θ̇ = Ω(I).
We might even think of I and θ heuristically as ’nonlinear polar coordi-
nates’. In such a coordinate system Hamiltonian function takes the form
H = H(I), and also, Ω(I) = ∂IH, i.e., specifying I specifies a periodic
orbit.
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The action variable I(q, p) geometrically represents an area enclosed by
any closed curve, which is constant in time. It is defined as an integral I =
1
2π

∫
H
p dq, where H denotes the periodic orbit defined by H(q, p) = H =

const. If the period of each periodic orbit defined by H(q, p) = H = const
is denoted by T (H), the angle variable θ(q, p) is defined by

θ(q, p) =
2π

T (H)
t(q, p),

where t = t(q, p) represents the time taken for the solution starting from
(q0, p0) to reach (q, p).

For the system with Hamiltonian H = p2

2 + V (x) and momentum p =
±
√

2
√
H − V (x) the action is given by I =

√
2
π

∫ qmax
qmin

√
H − V (q) dq, and

the angle is given by θ(q, p) = 2π
T (H)

∫ qmax
qmin

dq√
2
√
H−V (q)

.

Closely related to the action–angle variables is the perturbation theory
(see [Nayfeh (1973)]). To explain the main idea of this theory, let us consider
an ε−perturbed vector–field periodic in t which can be in component form
given as (with (q, p) ∈ R2)

q̇ = f1(q, p) + εg1(q, p, t, ε), ṗ = f2(q, p) + εg2(q, p, t, ε). (3.170)

Setting ε = 0 we get the unperturbed Hamiltonian system with a smooth
scalar–valued function H(q, p) for which holds

f1(q, p) =
∂H(q, p)

∂p
, f2(q, p) = −∂H(q, p)

∂q
,

so, the perturbed system (3.170) gets the symmetric canonical form

q̇ =
∂H(q, p)

∂p
+ εg1(q, p, t, ε), ṗ = −∂H(q, p)

∂q
+ εg2(q, p, t, ε).

The perturbation (g1, g2) need not be Hamiltonian, although in the case
where perturbation is Hamiltonian versus the case where it is not, the
dynamics are very different.

Now, if we transform the coordinates of the perturbed vector–field using
the action–angle transformation for the unperturbed Hamiltonian vector–
field, we get

İ = ε

(
∂I

∂q
g1 +

∂I

∂p
g2

)
≡ εF (I, θ, t, ε), (3.171)

θ̇ = Ω(I) + ε

(
∂θ

∂q
g1 +

∂θ

∂p
g2

)
≡ Ω(I) + εG(I, θ, t, ε), where
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F (I, θ, t, ε) =
∂I

∂q
(q(I, θ), p(I, θ)) g1((q(I, θ), p(I, θ), t, ε)

+
∂I

∂p
(q(I, θ), p(I, θ)) g2((q(I, θ), p(I, θ), t, ε), and

G(I, θ, t, ε) =
∂θ

∂q
(q(I, θ), p(I, θ)) g1((q(I, θ), p(I, θ), t, ε)

+
∂θ

∂p
(q(I, θ), p(I, θ)) g2((q(I, θ), p(I, θ), t, ε).

Here, F and G are 2π periodic in θ and T = 2π/ω periodic in t.
Finally, we shall explain in brief the most important idea in the dy-

namical systems theory, the idea of Poincaré maps. The idea of reducing
the study of continuous time systems (flows) to the study of an associated
discrete time system (map) is due to Poincaré who first utilized it in the
end of the last Century in his studies of the three body problem in celestial
mechanics. Nowadays virtually any discrete time system that is associ-
ated with an ordinary differential equation is refereed to as a Poincaré map
[Wiggins (1990)]. This technique offers several advantages in the study of
dynamical systems, including dimensional reduction, global dynamics and
conceptual clarity. However, construction of a Poincaré map requires some
knowledge of the phase–space of a dynamical system. One of the techniques
which can be used for construction of Poincaré maps is the perturbation
method.

To construct the Poincaré map for the system (3.171), we have to rewrite
it as an autonomous system

İ = εF (I, θ, φ, ε), θ̇ = Ω(I) + εG(I, θ, φ, ε), φ̇ = ω, (3.172)

(where (I, θ, φ) ∈ R+×S1×S1. We construct a global cross–section Σ to
this vector–field defined as Σφ0 = {(I, θ, φ)|φ = φ0}. If we denote the
(I, θ) components of solutions of (3.172) by (Iε(t), θε(t)) and the (I, θ)
components of solutions of (3.172) for ε = 0 by (I0,Ω(I0)t + θ0), then
the perturbed Poincaré map is given by

Pε : Σφ0 → Σφ0 , (Iε(0), θε(0)) 7→ (Iε(T ), θε(T )),

and the mth iterate of the Poincaré map is given by

Pmε : Σφ0 → Σφ0 , (Iε(0), θε(0)) 7→ (Iε(mT ), θε(mT )).

Now we can approximate the solutions to the perturbed problem as



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Applied Manifold Geometry 347

linear, constant–coefficient approximation

Iε(t) = I0 + εI1(t) + O(ε2), θε(t) = θ0 + Ω(I0)t + εθ1(t) + O(ε2),

where we have chosen Iε(0) = I0, θε(0) = θ0.
As a last example of one–DOF Hamiltonian dynamics we shall analyze

a damped, forced Duffing oscillator , given by canonical equations [Wiggins
(1990)]

q̇ = p, ṗ = q − q3 − δp + γ cosωt, δ, γ, ω ≥ 0, (q, p) ∈ R2.

(3.173)
where δ, γ, and ω are real parameters physically meaning dissipation, am-
plitude of forcing and frequency, respectively.

The perturbed system (3.173) is given by

q̇ = p, ṗ = q − q3 + ε(γ cosωt − δp), (3.174)

where ε−perturbation is assumed small. Then the unperturbed system reads

q̇ = p, ṗ = q − q3.

It is conservative with Hamiltonian function

H(q, p) =
p2

2
− q2

2
+
q4

4
. (3.175)

In the unperturbed phase–space all orbits are given by the level sets of
the Hamiltonian (3.175). There are three equilibrium points at the following
coordinates: (q, p) = (±1, 0) – centers, and (q, p) = (0, 0) – saddle. The
saddle point is connected to itself by two homoclinic orbits given by

q0+(t) = (
√

2(cosh t)−1
, −
√

2(cosh t)−1 tanh t), q0−(t) = −q0+(t).

There are two families of periodic orbits qk±(t), where k represents the el-
liptic modulus related to the Hamiltonian by H(qk±(t)) ≡ H(k) = k2−1

(2−k2)2 ,
inside the corresponding homoclinic orbits q0±(t), with the period T (k) =
2K(k)

√
2− k2 (K(k) is the complete elliptic integral of the first kind.

Also, there exists a family of periodic orbits outside the homoclinic
orbits with the period T (k) = 4K(k)

√
k2 − 1.

The perturbed system (3.174) can be rewritten as a third–order au-
tonomous system

q̇ = p, ṗ = q − q3 + ε(γ cosφ − δp), φ̇ = ω,
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where (q, p, φ) ∈ R2×S1, S1 is the circle of length 2π/ω and φ(t) = ωt+ φ0.
We form the global cross–section to the flow

Σφ0 = {(q, p, φ)|φ = φ0 ∈ [0, 2π/ω]}

and the associated Poincaré map is given by

P : Σφ0 → Σφ0 , (q(0), p(0)) 7→ (q(2π/ω), p(2π/ω)).

A detailed analysis of the perturbed Poincaré map for the damped,
forced Duffing oscillator is related to the Melnikov function (see [Wiggins
(1990)]).

Complex 1–DOF Hamiltonian Dynamics

Recall that setting z = q + ip, z ∈ C, i =
√
−1, Hamiltonian

equations q̇ = ∂H/∂p, ṗ = −∂H/∂q may be written in complex no-
tation as [Abraham and Marsden (1978); Marsden and Ratiu (1999);
Wiggins (1990)]

ż = −2i
∂H

∂z̄
. (3.176)

Let U be an open set in the complex phase–space manifold MC (i.e.,
manifold M modelled on C). A C0 function γ : [a, b] → U ⊂ MC , t 7→
γ(t) represents a solution curve γ(t) = q(t) + ip(t) of a complex Hamilto-
nian system (3.176). For example, the curve γ(θ) = cos θ + i sin θ, 0 ≤
θ ≤ 2π is the unit circle. γ(t) is a parameterized curve. We call γ(a) the
beginning point, and γ(b) the end point of the curve. By a point on the
curve we mean a point w such that w = γ(t) for some t ∈ [a, b].

The derivative γ̇(t) is defined in the usual way, namely

γ̇(t) = q̇(t) + iṗ(t),

so that the usual rules for the derivative of a sum, product, quotient, and
chain rule are valid. The speed is defined as usual to be |γ̇(t)|. Also, if
f : U → MC represents a holomorphic, or analytic function, then the
composite f ◦ γ is differentiable (as a function of the real variable t) and
(f ◦ γ)′(t) = f ′(γ(t)) γ̇(t).

Recall that a path represents a sequence of C1−curves,

γ = {γ1, γ2, . . . , γn},
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such that the end point of γj , (j = 1, . . . , n) is equal to the beginning point
of γj+1. If γj is defined on the interval [aj , bj ], this means that

γj(bj) = γj+1(aj+1).

We call γ1(a1) the beginning point of γj , and γn(bn) the end point of γj .
The path is said to lie in an open set U ⊂ MC if each curve γj lies in U ,
i.e., for each t, the point γj(t) lies in U .

An open set U is connected if given two points α and β in U , there
exists a path γ = γ1, γ2, . . . , γn in U such that α is the beginning point
of γ1 and β is the end point of γn; in other words, if there is a path γ in
U which joins α to β. If U is a connected open set and f a holomorphic
function on U such that f ′ = 0, then f is a constant. If g is a function on
U such that f ′ = g, then f is called a primitive of g on U . Primitives can
be either find out by integration or written down directly.

Let f be a C0−function on an open set U , and suppose that γ is a curve
in U , meaning that all values γ(t) lie in U for a ≤ t ≤ b. The integral of f
along γ is defined as∫

γ

f =
∫
γ

f(z) =
∫ b

a

f(γ(t)) γ̇(t) dt.

For example, let f(z) = 1/z, and γ(θ) = eiθ. Then γ̇(θ) = ieiθ. We
want to find the value of the integral of f over the circle,

∫
γ
dz/z, so 0 ≤ θ ≤

2π. By definition, this integral is equal to
∫ 2π

0
ieiθ/eiθ dθ = i

∫ 2π

0
dθ = 2πi.

The length L(γ) is defined to be the integral of the speed, L(γ) =∫ b
a
|γ̇(t)| dt.
If γ = γ1, γ2, . . . , γn is a path, then the integral of a C0−function f on

an open set U is defined as
∫
γ
f =

∑n
i=1

∫
γi
f , i.e., the sum of the integrals

of f over each curve γi (i = 1, . . . , n of the path γ. The length of a path is
defined as L(γ) =

∑n
i=1 L(γi).

Let f be continuous on an open set U ⊂ MC , and suppose that f has
a primitive g, that is, g is holomorphic and g′ = f . Let α, β be two points
in U , and let γ be a path in U joining α to β. Then

∫
γ
f = g(β) − g(α);

this integral is independent of the path and depends only on the beginning
and end point of the path.

A closed path is a path whose beginning point is equal to its end point.
If f is a C0−function on an open set U ⊂ MC admitting a holomorphic
primitive g, and γ is any closed path in U , then

∫
γ
f = 0.

Let γ, η be two paths defined over the same interval [a, b] in an open set
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U ⊂MC . Recall (see Introduction) that γ is homotopic to η if there exists
a C0−function ψ : [a, b]× [c, d] → U defined on a rectangle [a, b]× [c, d] ⊂
U , such that ψ(t, c) = γ(t) and ψ(t, d) = η(t) for all t ∈ [a, b]. For
each number s ∈ [c, d] we may view the function |psis(t) = ψ(t, s) as a
continuous curve defined on [a, b], and we may view the family of continuous
curves ψs as a deformation of the path γ to the path η. It is said that the
homotopy ψ leaves the end points fixed if we have ψ(a, s) = γ(a) and
ψ(b, s) = γ(b) for all values of s ∈ [c, d]. Similarly, when we speak of a
homotopy of closed paths, we assume that each path ψs is a closed path.

Let γ, η be paths in an open set U ⊂MC having the same beginning and
end points. Assume that they are homotopic in U . Let f be holomorphic
on U . Then

∫
γ
f =

∫
η
f . The same holds for closed homotopic paths in U .

In particular, if γ is homotopic to a point in U , then
∫
γ
f = 0. Also, it is

said that an open set U ⊂MC is simply–connected if it is connected and if
every closed path in U is homotopic to a point.

In the previous example we found that

1
2πI

∫
γ

1
z
dz = 1,

if γ is a circle around the origin, oriented counterclockwise. Now we define
for any closed path γ its winding number with respect to a point α to be

W (γ, α) =
1

2πi

∫
γ

1
z − α

dz,

provided the path does not pass through α. If γ is a closed path, then
W (γ, α) is an integer.

A closed path γ ∈ U ⊂MC is homologous to 0 in U if∫
γ

1
z − α

dz = 0,

for every point α not in U , or in other words, W (γ, α) = 0 for every such
point.

Similarly, let γ, η be closed paths in an open set U ⊂MC . We say that
they are homologous in U , and write γ ∼ η, if W (γ, α) = W (η, α) for every
point α in the complement of U . We say that γ is homologous to 0 in U ,
and write γ ∼ 0, if W (γ, α) = 0 for every point α in the complement of U .

If γ and η are closed paths in U and are homotopic, then they are
homologous. If γ and η are closed paths in U and are close together, then
they are homologous.
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Let γ1, . . . , γn be curves in an open set U ⊂MC , and let m1, . . . ,mn be
integers. A formal sum γ = m1γ1 + · · ·+ mnγn =

∑n
i=1miγi is called a

chain in U . The chain is called closed if it is a finite sum of closed paths.
If γ is the chain as above, then

∫
γ
f =

∑
imi

∫
γi
f . If γ and η are closed

chains in U , then W (γ + η, α) = W (γ, α) + W (η, α). We say that γ and
η are homologous in U , and write γ ∼ η, if W (γ, α) = W (η, α) for every
point α in the complement of U . We say that γ is homologous to 0 in U ,
and write γ ∼ 0, if W (γ, α) = 0 for every point α in the complement of U .

Recall that the Cauchy Theorem states that if γ is a closed chain in an
open set U ⊂MC , and γ is homologous to 0 in U , then

∫
γ
f = 0. If γ and

η are closed chains in U , and γ ∼ η in U , then
∫
γ
f =

∫
η
f .

It follows from Cauchy’s Theorem that if γ and η are homologous, then∫
γ
f =

∫
η
f for all holomorphic functions f on U [Abraham and Marsden

(1978); Wiggins (1990)].

3.12.3.2 Library of Basic Hamiltonian Systems

In this subsection, we present some basic Hamiltonian systems used by
human–like biodynamics (for more details, see [Puta (1993)]).

1D Harmonic Oscillator

In this case we have {p, q} as canonical coordinates on R2

M = T ∗R ' R2, ω = dp ∧ dq,

H =
1
2
(
p2 + y

)
, XH = p

∂

∂q
− q ∂

∂p
,

and Hamiltonian equations read

q̇ = p, ṗ = −q.

For each f, g ∈ C∞(R2,R) the Poisson bracket is given by

{f, g}ω =
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
.

Complex Plane

Let T ∗R ' R2 have the canonical symplectic structure ω = dp ∧ dq.
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Writing z = q + ip, we have

ω =
1
2i
dz ∧ dz̄, XH = i

(
∂H

∂z

∂

∂z
− ∂H

∂z̄

∂

∂z̄

)
,

{f, g}ω =
i
2

(
∂f

∂z

∂g

∂z̄
− ∂f

∂z̄

∂g

∂z

)
,

so, the Hamiltonian equations, q̇ = ∂pH, ṗ = −∂qH, become

ż = −2i
∂H

∂z̄
.

2D Harmonic Oscillator

In this case we have {q1, y, p1, p2} as canonical coordinates on R4

M = T ∗R2' R4, ω = dp1 ∧ dq1 + dp2 ∧ dq2,

H =
1
2
[
p2
1 + p2

2 + (q1)2 + (y)2
]
.

The functions f = pipj + qiqj and g = piq
j + pjq

i, (for i, j = 1, 2), are
constants of motion.

nD Harmonic Oscillator

In this case we have (i = 1, ..., n)

M = T ∗Rn' R2n, ω = dpi ∧ dqi,

H =
1
2

n∑
i=1

[
p2
i + (qi)2

]
.

The system is integrable in an open set of T ∗Rn with:

K1 = H, K2 = p2
2 + (y)2, ..., Kn = p2

n + (qn)2.

Toda Molecule

Consider three mass–points on the line with coordinates qi, (i = 1, 2, 3),
and satisfying the ODEs:

q̈i = −∂qiU, where U = eq
1−q2 + eq

2−q3 − eq
3−q1 .
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This is a Hamiltonian system with {qi, pi} as canonical coordinates on R6,

M = T ∗R3' R6, ω = dpi ∧ dqi,

H =
1
2
(
p2
1 + p2

2 + p2
3

)
+ U.

The Toda molecule (3.12.3.2) is an integrable Hamiltonian system in an
open set of T ∗R3 with:

K1 = H, K2 = p1 + p2 + p3,

K3 =
1
9

(p1 + p2 + p3) (p2 + p3 − 2p1) (p3 + p1 − 2p2)− (p1 + p2 − 2p3) eq
1−q2

− (p2 + p3 − 2p1) eq
2−q3 − (p3 + p1 − 2p2) eq

3−q1 .

3–Point Vortex Problem

The motion of three–point vortices for an ideal incompressible fluid in
the plane is given by the equations:

q̇j = − 1
2π

∑
i 6=j

Γi (pj − pi) /r2ij ,

ṗj =
1

2π

∑
i 6=j

Γi
(
qi − qj

)
/r2ij ,

r2ij =
(
qi − qj

)2
+ (pj − pi)2 ,

where i, j = 1, 2, 3, and Γi are three nonzero constants. This mechanical
system is Hamiltonian if we take:

M = T ∗R3' R6, ω = dpi ∧ dqi, (i = 1, ..., 3),

H = − 1
4π

3∑
i,j=1

ΓiΓi ln (rij) .

Moreover, it is integrable in an open set of T ∗R3 with:

K1 = H, K2 =
3∑
i=1

Γi
[(
qi
)2

+ p2
i

]
,

K3 =

(
3∑
i=1

Γiqi
)2

+K2
2 .

The Newton’s Second Law as a Hamiltonian System
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In the case of conservative forces, Newton’s law of motion can be written
on R3n as

miq̈
i = −∂qiU, (i = 1, 2, ..., 3n).

Its symplectic formulation reads:

M = T ∗R3' R6, ω = dpi ∧ dqi,

H =
3n∑
i=1

p2
i

2mi
+ U.

The Hamiltonian vector–field XH is

XH =
(
pi
mi

∂qi − ∂qiU ∂pi
)
,

giving the Hamiltonian equations

q̇i =
pi
mi

, ṗi = −∂qiU.

Rigid Body Fixed in a Point

The configuration space of a rigid body fixed in a point is SO(3), the
group of proper orthogonal transformations of R3 to itself, while the corre-
sponding phase–space is its cotangent bundle, T ∗SO(3). The motion of a
rigid body is a geodesic with respect to a left–invariant Riemannian metric
(the inertia tensor) on SO(3). The momentum map J : P → R3 for the left
SO(3)−action is right translation to the identity. We identify so(3)∗ with
so(3) via the Killing form and identify R3 with so(3) via the map v 7→ v̂,
where v̂(w) = v×w (× being the standard cross product). Points in so(3)∗

are regarded as the left reduction of T ∗SO(3) by G = SO(3) and are the
angular momenta as seen from a body–fixed frame.

A Segment of a Human–Like Body

A rigid body with a fixed point is a basic model of a single segment of the
human (or robot) body. This is a left–invariant Hamiltonian mechanical
system on the phase–space T ∗SO(3). The differentiable structure on SO(3)
is defined using the traditional Euler angles {ϕ,ψ, θ}. More precisely, a local
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chart is

(ϕ,ψ, θ) ∈ R3 7−→ A ∈ SO(3), 0 < ϕ,ψ < 2π; 0 < θ < π, where

A =

 cosψ cosϕ− cos θ sinϕ sinψ cosψ cosϕ+ cos θ cosϕ sinψ sin θ sinψ
− sinψ cosϕ− cos θ sinϕ sinψ − sinψ sinϕ+ cos θ cosϕ cosψ sin θ cosψ

sin θ sinϕ − sin θ cosϕ cos θ


The corresponding conjugate momenta are denoted by pϕ, pψ, pθ, so

{ϕ,ψ, θ, pϕ, pψ, pθ} is the phase–space T ∗SO(3). Thus, we have

M = T ∗SO(3), ω = dpϕ ∧ dϕ+ dpψ ∧ dψ + dpθ ∧ dθ, H =
1
2
K,

K =
[(pϕ − pψ cos θ) sinψ + pθ sin θ cosψ]2

I1 sin2 θ

+
[(pϕ − pψ cos θ) cosψ − pθ sin θ sinψ]2

I2 sin2 θ
+
p2
ψ

I3
,

where I1, I2, I3 are the moments of inertia, diagonalizing the inertia tensor
of the body.

The Hamiltonian equations are

ϕ̇ =
∂H

∂pϕ
, ψ̇ =

∂H

∂pψ
, θ̇ =

∂H

∂pθ
,

ṗϕ = −∂H
∂ϕ

, ṗψ = −∂H
∂ψ

, ṗθ = −∂H
∂θ

.

For each f, g ∈ C∞(T ∗SO(3),R) the Poisson bracket is given by

{f, g}ω =
∂f

∂ϕ

∂g

∂pϕ
− ∂f

∂pϕ

∂g

∂ϕ
+
∂f

∂ψ

∂g

∂pψ
− ∂f

∂pψ

∂g

∂ψ

+
∂f

∂θ

∂g

∂pθ
− ∂f

∂pθ

∂g

∂θ
.

The Heavy Top – Continued

Recall (see (3.8.4.2) above) that the heavy top is by definition a rigid
body moving about a fixed point in a 3D space [Puta (1993)]. The rigidity
of the top means that the distances between points of the body are fixed
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as the body moves. In this case we have

M = T ∗SO(3),

ω = dpϕ ∧ dϕ+ dpψ ∧ dψ + dpθ ∧ dθ,

H =
1
2
K +mgl cos θ,

K =
[(pϕ − pψ cos θ) sinψ + pθ sin θ cosψ]2

I1 sin2 θ

+
[(pϕ − pψ cos θ) cosψ − pθ sin θ sinψ]2

I2 sin2 θ
+
p2
ψ

I3
,

where I1, I2, I3 are the moments of inertia, m is the total mass, g is the
gravitational acceleration and l is the length of the vector determining the
center of mass at t = 0.

The Hamiltonian equations are

ϕ̇ =
∂H

∂pϕ
, ψ̇ =

∂H

∂pψ
, θ̇ =

∂H

∂pθ
,

ṗϕ = −∂H
∂ϕ

, ṗψ = −∂H
∂ψ

, ṗθ = −∂H
∂θ

.

For each f, g ∈ C∞(T ∗SO(3),R) the Poisson bracket is given by

{f, g}ω =
∂f

∂ϕ

∂g

∂pϕ
− ∂f

∂pϕ

∂g

∂ϕ
+
∂f

∂ψ

∂g

∂pψ
− ∂f

∂pψ

∂g

∂ψ

+
∂f

∂θ

∂g

∂pθ
− ∂f

∂pθ

∂g

∂θ
.

The Hamiltonian H is invariant under rotations about the z−-
axis, i.e., ϕ is a cyclic variable, so pϕ is a constant of motion. The momen-
tum map for this S1−-action is J(ϕ,ψ, θ, pϕ, pψ, pθ) = pϕ. The reduced
phase–space J−1(pϕ)/S1 can be identified with T ∗S2 and it is parameter-
ized by {ψ, θ, pψ, pθ}. The equations of motion for ψ, θ are just Hamiltonian
equations for H with pϕ held constant.

Two Coupled Pendula

The configuration space of the system of two coupled pendula in the
plane is T 2 = {(θ1, θ2)}, where the θs are the two pendulum angles, the
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phase–space is T ∗T 2 with its canonical symplectic structure and the Hamil-
tonian H is given by [Puta (1993)]

H =
1
2

(p2
ϕ + p2

ψ) + V (
√

2ψ), where

ϕ =
θ1 + θ2√

2
, ψ =

θ1 − θ2√
2

.

The circle group S1 acts on a torus T 2 by θ ·(θ1 +θ2) = (θ+θ1, θ+θ2) and
hence the induced momentum map for the lifted action to T ∗T 2 is given by
J(ϕ,ψ, pϕ, pψ) = pϕ. Therefore, the reduced phase–space J−1(pϕ)/S1 is
symplectically diffeomorphic to T ∗S1 with its canonical symplectic struc-
ture ωµ = dpψ ∧ dψ. The reduced Hamiltonian Hµ is Hµ = 1

2p
2
ψ +

V (
√

2ψ), and Hamiltonian equations for Hµ are

ψ̇ = pψ, ṗψ = −
√

2V̇ (
√

2ψ).

The Plane 2–Body Problem

The plane two body problem can be formulated as the triple (M,ω,H)
where [Puta (1993)]

M = T ∗
(
(0,∞)× S1

)
, ω = dpr ∧ dr + dpθ ∧ dθ,

H = (p2
r + p2

θ)/r
2 − 1/r.

The Lie group G = SO(2) ' S1 acts on the configuration space M =
(0,∞)× S1 by rotations, i.e., if Rϕ ∈ SO(2) then

φ : (Rϕ, (r, θ)) 7→ (r, θ + ϕ, pr, pθ).

The corresponding momentum map is

J(r, θ, pr, pθ) = pθ.

The 3–Body Problem

There is a vast literature on the restricted three–body problem (see
[Meyer and Hall (1992)]). Among other things, there are investigations of
the equilibriums points and their stability, investigations of the existence,
stability and bifurcation of periodic orbits, and investigations of collisions
and ejection orbits. The restricted problem is said to be a limit of the full
three–body problem as one of the masses tends to zero, and so to each result



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

358 Applied Differential Geometry: A Modern Introduction

for the restricted problem there should be a corresponding result for the
full three–body problem.

The restricted three–body problem is a Hamiltonian system of differen-
tial equations which describes the motion of an infinitesimal particle (the
satellite) moving under the gravitational influence of two particles of finite
mass (the primaries) which are moving on a circular orbit of the Kepler
problem [Meyer (2005)].

Since the motion of the primaries is given, the restricted problem has
two DOF for the planar problem and three DOF for the spatial problem.
However, the full problem has six DOF in the planar case and nine DOF
in the spatial case. Thus, at first the restricted problem seems too small
to reflect the full complexity of the full problem; but when the symme-
tries of the full problem are taken into account the dimension gap narrows
considerably.

The Hamiltonian of the full problem is invariant under Euclidean mo-
tions, i.e., translations and rotations, which begets the integrals of linear
and angular momentum. Translations and rotations induce ignorable coor-
dinates. Holding the integrals fixed and dropping the ignorable coordinates
reduces the full problem from six to three DOF in the planar case and
from nine to four DOF in the spatial case. Thus the full problem on the
reduced space is only one DOF larger than the restricted problem in either
the planar or the spatial case [Meyer (2005)].

The full 3–body problem in 3D space has 9 DOF. By placing the center
of mass at the origin and setting linear momentum equal to zero the problem
reduces one with six DOF. This can be done using Jacobi coordinates. The
Hamiltonian of the full 3–body problem in rotating (about the z−-axis)
Jacobi coordinates (u0, u1, u2, v0, v1, v2) is

H =
‖ v0 ‖2

2M0
− uT0 Jv0 +

‖ v1 ‖2

2M1
− uT1 Jv1 −

m0m1

‖ u1 ‖

+
‖ v2 ‖2

2M2
− uT2 Jv2 −

m1m2

‖ u2 − α0u1 ‖
− m2m0

‖ u2 + α1u1 ‖

where ui, vi ∈ R3,

M0 = m0 +m1 +m2, M1 = m0m1/(m0 +m1),

M2 = m2(m0 +m1)/(m0 +m1 +m2),

α0 = m0/(m0 +m1), α1 = m1/(m0 +m1),
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and J =

(
0 1 0
−1 0 0
0 0 0

)
.

In these coordinates u0 is the center of mass, v0 is total linear momentum,
and total angular momentum is: A = u0 × v0 + u1 × v1 + u2 × v2. See
[Meyer and Hall (1992)] for further details.

n−DOF Hamiltonian Dynamics

Classically, n−DOF Hamiltonian dynamics combines the ideas of dif-
ferential equations and variational principles (see [Abraham and Marsden
(1978); Arnold (1989); Marsden and Ratiu (1999); Wiggins (1990)]). As
Hamiltonian first realized, many of the systems of mechanics and optics
can be put into the special form (compare (3.164))

q̇i =
∂H

∂pi
(qi, pi, t), ṗi = −∂H

∂qi
(qi, pi, t), (i = 1, . . . , n),

or an associated variational form (summing upon the repeated index is used
in the following text)

δ

∫
(pidqi − H) dt = 0.

Here the state of the system is given as a point (q1, . . . , qn, p1, . . . , pn) in
phase–space, the q’s are the configuration coordinates, the p’s are the mo-
menta, t is time, and H = H(qi, pi, t) is a total–energy function called
Hamiltonian. The variables (qi, pi) are called canonical coordinates.

If H = H(qi, pi) does not depend explicitly on time, the system is said
to be autonomous. In this case, it is easy to verify that H is conserved.
The search for other conserved quantities led to a new notion of solving
Hamiltonian systems. Instead of finding formulae for the coordinates as a
function of time, one searches for constants of the motion (integrals). If
one can find n integrals Ii(qi, pi) which are in involution:

[Ii, Ij ] =
∂Ii
∂qk

∂Ij
∂pk

− ∂Ii
∂pk

∂Ij
∂qk

= 0, (i 6= j),

and independent (the vectors ∇Ii are independent ‘almost everywhere’),
then associated variables φi can be derived which evolve linearly in time:
φ̇
i

= ∂H
∂Ii

(Ii).
Such a system is integrable in the sense of Liouville [Arnold (1989)]. If

the sets I = const are bounded, then they are nD tori Tn in phase–space.
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Choosing irreducible cycles, γi, on the tori, one can define a preferred set of
integrals Ji =

∫
γi
pidq

i, called action variables, for which the corresponding
φi are angle variables mod 1 on Tn. The quantities ωi(J) = ∂H

∂Ji
(Ji) are

called the frequencies on Tn.
Another feature of Hamiltonian systems noticed by Liouville is the

preservation of phase–space volume
∫

(dq)n(dp)n. A more general result
is that Poincaré’s integral

∫
pidq

i is conserved around any loop following
the flow [Arnold (1989)]. This is the property that really distinguishes
Hamiltonian differential equations from general ones.

The major problem with the notion of integrability is that most systems
are not integrable. This was first appreciated when Poincaré proved that
the circular restricted three–body problem has no integral analytic in the
mass ratio. The perturbation expansions which gave excellent predictions
of motion of the planets do not converge. The basic reason is that among
the invariant tori of integrable systems is a dense subset on which the
frequencies ωi are commensurate, i.e, miω

i = 0 for some non–zero integer
vector mi. However, most systems have no commensurate tori, because
they can be destroyed by arbitrarily small perturbation.

Poincaré went on to examine what really does happen. The key tech-
nique he used was geometrical analysis: instead of manipulating formulae
for canonical transformations as Jacobi and others did, he pictured the or-
bits in phase–space. An important step in this qualitative ODE theory was
the idea of surface of section. If Σ is a codimension–one surface (i.e., of
dimension one less than that of the phase–space) transverse to a flow, then
the sequence {xj} of successive intersections of an orbit with Σ gives a lot
of information about that orbit. For example, if {xj} is periodic then it cor-
responds to a periodic orbit. If {xj} is confined to a subset of codimension
m on Σ then so is the orbit of the flow, etc.. The flow induces a mapping
of Σ to itself; the map takes a point in Σ to the point at which it first
returns to Σ (assuming there is on). Since the surface of section has one
dimension less than the phase–space it is easier to picture the dynamics of
the return map than the flow. In fact, for Hamiltonian systems one can do
even better; since H is conserved, Σ decomposes into a one–parameter fam-
ily of codimension two surfaces parameterized by the value of the energy, a
reduction of two dimensions.

This led Poincaré to the ideas of stable and unstable manifolds for hy-
perbolic periodic orbits, which are extensions of the stable and unstable
eigenspaces for associated linear systems, and their intersections, known as
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hetero– and homo–clinic points, whose orbits converge to one periodic orbit
in the past and to another (or the same) in the future. He showed that hav-
ing intersected once, the invariant manifolds must intersect infinitely often.
Moreover the existence of one heteroclinic orbit implies the existence of an
infinity of others.

The distance between the stable and unstable manifolds can be quan-
tified by Melnikov’s integral. This leads to a technique for proving the
non–existence of integrals for a slightly perturbed, integrable Hamiltonian.

For integrable systems, nearby orbits separate linearly in time. However,
dynamical systems can have exponentially separating orbits. Let δx be a
tangent vector at the phase–space point x and δxt be the evolved vector
following the orbit of x. Then, recall that the average rate of exponentiation
of δxt is the Lyapunov exponent λ (see, e.g., [Chen and Dong (1998)])

λ(x, δx) = lim
t−→∞

1/t ln |δxt|.

If λ is nonzero, then the predictions one can make will be valid for a time
only logarithmic in the precision. Therefore, although deterministic in prin-
ciple, a system need not be predictable in practice.

A concrete example of the complexity of behavior of typical Hamiltonian
systems is provided by the ‘horseshoe’, a type of invariant set found near
homoclinic orbits. Its points can be labelled by doubly infinite sequences of
0’s and 1’s corresponding to which half of a horseshoe shaped set the orbit
is in at successive times. For every sequence, no matter how complicated,
there is an orbit which has that symbol sequence. This implies, e.g., that a
simple pendulum in a sufficiently strongly modulated time–periodic gravi-
tational field has an initial condition such that the pendulum will turn over
once each period when there is 1 in the sequence and not if there is a 0 for
any sequence of 0’s and 1’s.

3.12.3.3 Hamilton–Poisson Mechanics

Now, instead of using symplectic structures arising in Hamiltonian mechan-
ics, we propose the more general Poisson manifold (g∗, {F,G}). Here g∗ is
a chosen Lie algebra with a (±) Lie–Poisson bracket {F,G}±(µ)) and car-
ries an abstract Poisson evolution equation Ḟ = {F,H}. This approach
is well–defined in both the finite– and the infinite–dimensional case. It
is equivalent to the strong symplectic approach when this exists and of-
fers a viable formulation for Poisson manifolds which are not symplectic
(for technical details, see see [Weinstein (1990); Abraham et al. (1988);
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Marsden and Ratiu (1999); Puta (1993); Ivancevic and Pearce (2001a)]).
Let E1 and E2 be Banach spaces. A continuous bilinear functional

<,>: E1 × E2 −→ R is nondegenerate if < x, y >= 0 implies x = 0 and
y = 0 for all x ∈ E1 and y ∈ E2. We say E1 and E2 are in duality if there
is a nondegenerate bilinear functional <,>: E1×E2 −→ R. This functional
is also referred to as an L2−pairing of E1 with E2.

Recall that a Lie algebra consists of a vector space g (usually a Banach
space) carrying a bilinear skew–symmetric operation [, ] : g × g→ g, called
the commutator or Lie bracket. This represents a pairing [ξ, η] = ξη − ηξ

of elements ξ, η ∈ g and satisfies Jacobi identity

[[ξ, η], µ] + [[η, µ], ξ] + [[µ, ξ], η] = 0.

Let g be a (finite– or infinite–dimensional) Lie algebra and g∗ its dual
Lie algebra, that is, the vector space L2 paired with g via the inner product
<,>: g∗ × g → R. If g is nD, this pairing reduces to the usual action
(interior product) of forms on vectors. The standard way of describing any
nD Lie algebra g is to give its n3 Lie structural constants γkij , defined by
[ξi, ξj ] = γkijξk, in some basis ξi, (i = 1, . . . , n)

For any two smooth functions F : g∗ → R, we define the Fréchet deriva-
tive D on the space L(g∗,R) of all linear diffeomorphisms from g∗ to R as
a map DF : g∗ → L(g∗,R); µ 7→ DF (µ). Further, we define the functional
derivative δF/δµ ∈ g by

DF (µ) · δµ =< δµ,
δF

δµ
>

with arbitrary ‘variations’ δµ ∈ g∗.
For any two smooth functions F,G : g∗ → R, we define the (±) Lie–

Poisson bracket by

{F,G}±(µ) = ± < µ,

[
δF

δµ
,
δG

δµ

]
> . (3.1)

Here µ ∈ g∗, [ξ, µ] is the Lie bracket in g and δF/δµ, δG/δµ ∈ g are the
functional derivatives of F and G.

The (±) Lie–Poisson bracket (3.1) is clearly a bilinear and skew–
symmetric operation. It also satisfies the Jacobi identity

{{F,G},H}±(µ) + {{G,H}, F}±(µ) + {{H,F}, G}±(µ) = 0
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thus confirming that g∗ is a Lie algebra, as well as Leibniz’ rule

{FG,H}±(µ) = F{G,H}±(µ) + G{F,H}±(µ). (3.177)

If g is a nD phase–space manifold with structure constants γkij , the (±)
Lie–Poisson bracket (3.177) becomes

{F,G}±(µ) = ±µkγkij
δF

δµi

δG

δµj
. (3.178)

The (±) Lie–Poisson bracket represents a Lie–algebra generalization
of the classical nD Poisson bracket [F,G] = ω(Xf , Xg) on the symplectic
phase–space manifold (P, ω) for any two real–valued smooth functions F,G :
P −→ R.

As in the classical case, any two smooth functions F,G : g∗ −→ R are in
involution if {F,G}±(µ) = 0.

The Lie–Poisson Theorem states that a Lie algebra g∗ with a ± Lie–
Poisson bracket {F,G}±(µ) represents a Poisson manifold (g∗, {F,G}±(µ)).

Given a smooth Hamiltonian function H : g∗ → R on the Poisson
manifold (g∗, {F,G}±(µ)), the time evolution of any smooth function F :
g∗ → R is given by the abstract Poisson evolution equation

Ḟ = {F,H}. (3.179)

3.12.3.4 Completely Integrable Hamiltonian Systems

In order to integrate a system of 2n ODEs, we must know 2n first integrals.
It turns out that if we are given a canonical system of ODEs, it is often
sufficient to know only n first integrals [Arnold (1989)].

Liouville Theorem on Completely Integrable Systems

Recall that a function F is a first integral of a system Ξ with Hamiltonian
function H iff H and F are in involution on the system’s phase–space
P (which is the cotangent bundle of the system’s configuration manifold
T ∗M), i.e., iff the Poisson bracket of H and F is identically equal to zero
on P , {H,F} ≡ 0.

Liouville proved that if, in a system Ξ with n DOF (i.e., with a 2nD
phase–space P = T ∗M), n independent first integrals in involution are
known, then the system is integrable by quadratures.

Here is the exact formulation of the Liouville Theorem [Arnold (1989)]:
Suppose that we are given n functions in involution on a symplectic 2nD
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manifold:

F1, ..., Fn; {Fi, Fj} ≡ 0, (i, j = 1, ..., n).

Consider a level set of the functions Fi:

Mf = {x : Fi(x) = fi}, (i = 1, ..., n).

Assume that the n functions Fi are independent on Mf (i.e., the n 1−forms
dFi are linearly independent at each point of Mf ). Then

1. Mf is a smooth manifold, invariant under the phase–flow with Hamil-
tonian function H = F1.

2. If the manifold Mf is compact and connected, then it is diffeomorphic
to the n−torus

Tn = {(ϕ1, ..., ϕn) mod 2π}.

3. The phase–flow with Hamiltonian function H determines a condition-
ally periodic motion on Mf , i.e., in angular coordinates ϕi = (ϕ1, ..., ϕn)
we have

ϕ̇i = ωi, ωi = ωi(fi), (i = 1, ..., n).

4. The canonical equations with Hamiltonian function H can be inte-
grated by quadratures.

For the proof of this Theorem see [Arnold (1989)].
As an example with 3 DOF, we consider a heavy symmetrical La-

grangian top fixed at a point on its axis. Three first integrals are im-
mediately obvious: H, Mz and M3. It is easy to verify that the integrals
Mz and M3 are in involution. Furthermore, the manifold H = h in the
phase–space is compact. Therefore, we can say without any calculations
that the motion of the top is conditionally periodic: the phase trajectories
fill up the 3D torus T 3, given by: H = c1, Mz = c2, M3 = c3. The corre-
sponding three frequencies are called frequencies of fundamental rotation,
precession, and nutation.

Other examples arise from the following observation: if a canonical sys-
tem can be integrated by the method of Hamiltonian–Jacobi, then it has n
first integrals in involution. The method consists of a canonical transfor-
mation (pi, qi) → (Pi, Qi) such that the Qi are first integrals, while the
functions Qi and Qi are in involution.

The Liouville Theorem, as formulated above, covers all the problems of
dynamics which have been integrated to the present day [Arnold (1989)].
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Action–Angle Variables

Under the hypothesis of the Liouville Theorem, we can find symplectic
coordinates (Ii, ϕi) such that the first integrals Fi depend only on Ii and ϕi

(for i = 1, ..., n) are angular coordinates on the n−torus Tn ' Mf = {x :
Fi(x) = fi}, which is invariant with respect to the phase–flow. We choose
angular coordinates ϕi on Mf so that the phase–flow with Hamiltonian
function H = F1 takes an especially simple form [Arnold (1989)]:

ϕ̇i = ωi(fi), ϕi(t) = ϕi(0) + ωit.

Now we look at a neighborhood of the n−manifold Mf = Tn in the system’s
2nD phase–space P .

In the coordinates (Fi, ϕi) the phase–flow with Hamiltonian function
H = F1 can be written in the form of the simple system of 2n ODEs

Ḟi = 0, ϕ̇i = ωi(Fi), (i = 1, ..., n), (3.180)

which is easily integrated: Fi(t) = Fi(0), ϕi(t) = ϕi(0) + ωi (Fi(0)) t.
Thus, in order to integrate explicitly the original canonical system of

ODEs, it is sufficient to find the variables ϕi in explicit form. It turns
out that this can be done using only quadratures. A construction of the
variables ϕi is given below [Arnold (1989)].

In general, the variables (Fi, ϕi) are not symplectic coordinates. How-
ever, there are functions of Fi, which we denote by Ii = Ii(Fi), (i = 1, ..., n),
such that the variables (Ii, ϕi) are symplectic coordinates: the original sym-
plectic structure dpi∧dqi is expressed in them as dIi∧dϕi. The variables Ii
have physical dimensions of action and are called action variables; together
with the angle variables ϕi they form the action–angle system of canonical
coordinates in a neighborhood of Mf = Tn.

The quantities Ii are first integrals of the system with Hamiltonian
function H = F1, since they are functions of the first integrals Fi. In
turn, the variables Fi can be expressed in terms of Ii and, in particular,
H = F1 = H(Ii). In action–angle variables, the ODEs of our flow (3.180)
have the form

İi = 0, ϕ̇i = ωi(Ii), (i = 1, ..., n).

A system with one DOF in the phase plane (p, q) is given by the Hamil-
tonian function H(p, q). In order to construct the action–angle variables,
we look for a canonical transformation (p, q) → (I, ϕ) satisfying the two
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conditions:

I = I(h),
∮
Mh

dϕ = 2π. (3.181)

The action variable in the system with one DOF given by the Hamilto-
nian function H(p, q) is the quantity

I(h) =
1

2π
Π(h) =

1
2π

∮
Mh

pdq,

which is the area bounded by the phase curve H = h. Arnold states
the following Theorem: Set S(I, q) =

∫ q
q0
pdq|H=h(I) is a generating func-

tion. Then a canonical transformation (p, q)→ (I, ϕ) satisfying conditions
(3.181) is given by

p =
∂S(I, q)
∂q

, ϕ =
∂S(I, q)
∂I

, H

(
∂S(I, q)
∂q

, q

)
= h(I).

We turn now to systems with n DOF given in R2n = {(pi, qi), i =
1, ..., n} by a Hamiltonian function H(pi, qi) and having n first integrals in
involution F1 = H,F2..., Fn. Let γ1, ..., γn be a basis for the 1D cycles on
the torus Mf = Tn (the increase of the coordinate ϕi on the cycle γj is
equal to 2π if i = j and 0 if i 6= j). We set

Ii(fi) =
1

2π

∮
Mh

pidq
i, (i = 1, ..., n). (3.182)

The n quantities Ii(fi) given by formula (3.182) are called the action
variables [Arnold (1989)].

We assume now that, for the given values fi of the n integrals Fi, the
n quantities Ii are independent, det(∂Ii/∂fi)|fi 6= 0. Then in a neighbor-
hood of the torus Mf = Tn we can take the variables Ii, ϕi as symplectic
coordinates, i.e., the transformation (pi, qi)→ (Ii, ϕi) is canonical, i.e.,

dpi ∧ dqi = dIi ∧ dϕi, (i = 1, ..., n).

Now, let m be a point on Mf , in a neighborhood of which the n variables
qi are coordinates of Mf , such that the submanifold Mf ⊂ R2n is given by
n equations of the form pi = pi(Ii, qi), qi(m) = qi0. In a simply–connected
neighborhood of the point qi0 a single–valued function is defined,

S(Ii, qi) =
∫ q

q0

pi(Ii, qi) dqi,
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and we can use it as the generating function of a canonical transformation
(pi, qi)→ (Ii, ϕi):

pi =
∂S

∂qi
, ϕi =

∂S

∂Ii
.

A Universal Model for Completely Integrable Systems

A Hamiltonian system on a 2nD symplectic manifold M is said to be
completely integrable if it has n first integrals in involution, which are func-
tionally independent on some open dense submanifold of M . This definition
of a completely integrable system is usually found, with some minor vari-
ants, in any modern text on symplectic mechanics [Arnold (1989); Abraham
and Marsden (1978); Libermann and Marle (1987); Marmo et. al. (1995);
Thirring (1979)].

Starting with this definition, one uses the so–called Liouville–Arnold
Theorem to introduce action–angle variables and write the Hamiltonian
system in the form

İk = 0, φ̇k =
∂H

∂Ik
= νk(I),

where k ∈ {1, . . . , n}. The corresponding flow is given by

Ik(t) = Ik(0), φk(t) = φk(0) + νkt. (3.183)

The main interest in completely integrable systems relies on the fact that
they can be integrated by quadratures [Arnold (1989)].

However, it is clear that even if νkdI
k is not an exact (or even a

closed) 1–form, as long as ν̇k = 0, the system can always be integrated by
quadratures.

If we consider the Abelian Lie group Rn, we can construct a Hamiltonian
action of Rn on T ∗Rn induced by the group addition: Rn × T ∗Rn →
T ∗Rn. This can be generalized to the Hamiltonian action [Alekseevsky
et. al. (1997)]

Rn × T ∗(Rk × Tn−k)→ T ∗(Rk × Tn−k),

of Rn, where Tm stands for the mD torus, and reduces to Rn × T ∗Tn or
Tn × T ∗Tn, when k = 0.

By using the standard symplectic structure on T ∗Rn, we find the mo-
mentum map µ : T ∗Rn −→ (Rn)s, (q, p) 7→ p, induced by the natural
action of Rn on itself via translations, which is a Poisson map if (Rn)s is
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with the (trivial) natural Poisson structure of the dual of a Lie algebra.
It is now clear that any function on (Rn)s, when pulled back to T ∗Rn or
T ∗Tn, induces a Hamiltonian system which is completely integrable (in
the Liouville sense). Because the level sets of this function carry on the
action of Rn, the completely integrable system induces a 1D subgroup of
the action of Rn on the given level set. However, the specific subgroup will
depend on the particular level set, i.e., the ‘frequencies’ are first integrals.
The property of being integrable by quadratures is captured by the fact
that it is a subgroup of the Rn−action on each level set.

It is now clear, how we can preserve this property, while giving up the
requirement that our system is Hamiltonian. We can indeed consider any
1–form η on (Rn)s and pull it back to T ∗Rn or T ∗Tn, then associated
vector–field Γη = Λ0(µs(η)), where Λ0 is the canonical Poisson structure
in the cotangent bundle, is no more Hamiltonian, but it is still integrable
by quadratures. In action–angle variables, if η = νkdI

k is the 1–form on
(Rn)s, the associated equations of motion on T ∗Tn will be [Alekseevsky
et. al. (1997)]

İk = 0, φ̇k = νk,

with ν̇k = 0, therefore the flow will be as in (3.183), even though ∂Ijνk 6=
∂Ikνj .

We can now generalize this construction to any Lie group G. We con-
sider the Hamiltonian action G × T ∗G → T ∗G, of G on the cotangent
bundle, induced by the right action of G on itself. The associated momen-
tum map µ : T ∗G ' Gs × G −→ Gs. It is a Poisson map with respect to
the natural Poisson structure on Gs (see, e.g., [Alekseevsky et. al. (1994);
Libermann and Marle (1987)]).

Now, we consider any differential 1–form η on Gs which is annihi-
lated by the natural Poisson structure ΛG∗ on Gs associated with the Lie
bracket. Such form we call a Casimir form. We define the vector–field
Γη = Λ0(µs(η)). Then, the corresponding dynamical system can be writ-
ten as [Alekseevsky et. al. (1997)]

g−1ġ = η(g, p) = η(p), ṗ = 0,

since ω0 = d(< p, g−1dg >) (see [Alekseevsky et. al. (1994)]). Here we
interpret the covector η(p) on Gs as a vector of G. Again, our system can
be integrated by quadratures, because on each level set, get by fixing p’s
in Gs, our dynamical system coincides with a one–parameter group of the
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action of G on that particular level set.
We give a familiar example: the rigid rotator and its generalizations

[Alekseevsky et. al. (1997)]. In the case of G = SO(3) the (right) momen-
tum map

µ : T ∗SO(3) −→ so(3)∗

is a Poisson map onto so(3)∗ with the linear Poisson structure

Λso(3)∗ = εijkpi∂pj ⊗ ∂pk .

Casimir 1–forms for Λso(3)∗ read η = FdH0, where H0 =
∑
p2
i /2 is the

‘free Hamiltonian’ and F = F (p) is an arbitrary function. Clearly, FdH0 is
not a closed form in general, but (pi) are first integrals for the dynamical
system Γη = Λ0(µs(η)). It is easy to see that

Γη = F (p)Γ0 = F (p)piX̂i,

where X̂i are left–invariant vector–fields on SO(3), corresponding to the
basis (Xi) of so(3) identified with (dpi). Here we used the identification
T ∗SO(3) ' SO(3)×so(3)∗ given by the momentum map µ. In other words,
the dynamics is given by

ṗi = 0, g−1ġ = F (p)piXi ∈ so(3),

and it is completely integrable, since it reduces to left–invariant dynamics
on SO(3) for every value of p. We recognize the usual isotropic rigid rotator,
when F (p) = 1.

We can generalize our construction once more, replacing the cotangent
bundle T ∗G by its deformation, namely a group doubleD(G,ΛG) associated
with a Lie–Poisson structure ΛG on G (see e.g., [Lu (1990)]). This double,
denoted simply by D, carry on a natural Poisson tensor–field Λ+

D which
is non–degenerate on the open–dense subset D+ = G · Gs ∩ Gs · G of D
(here Gs ⊂ D is the dual group of G with respect to ΛG). We refer to D
as being complete if D+ = D. Identifying D with G×Gs if D is complete
(or D+ with an open submanifold of G × Gs in general case; we assume
completeness for simplicity) via the group product, we can write Λ+

D in
‘coordinates’ (g, u) ∈ G×Gs in the form [Alekseevsky et. al. (1997)]

Λ+
D(g, u) = ΛG(g) + ΛG∗(u)−X l

i(g) ∧ Y ri (u), (3.184)

where X l
i and Y ri are, respectively, the left– and right–invariant vector–

fields on G and Gs relative to dual bases Xi and Yi in the Lie algebras G
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and Gs, and where ΛG and ΛG∗ are the corresponding Lie–Poisson tensors
on G and Gs (see [Lu (1990)]). It is clear now that the projections µG∗
and µG of (D,Λ+

D) onto (G,ΛG) and (Gs,ΛG∗), respectively, are Poisson
maps. Note that we get the cotangent bundle (D,Λ+

D) = (T ∗G,Λ0) if we
put ΛG = 0.

The group G acts on (D,Λ+
D) by left translations which, in general

are not canonical transformations. However, this is a Poisson action with
respect to the inner Poisson structure ΛG onG, which is sufficient to develop
the momentum map reduction theory (see [Lu (1991)]). For our purposes,
let us take a Casimir 1–form η for ΛG∗ , i.e., ΛG∗(η) = 0. By means of the
momentum map
µG∗ : D −→ Gs, we define the vector–field onD [Alekseevsky et. al. (1997)]:

Γη = Λ+
D(µsG∗(η)).

In ‘coordinates’ (g, u), due to the fact that η is a Casimir, we get

Γη(g, u) =< Y ri , η > (u)X l
i(g),

so that Γη is associated with the Legendre map

Lη : D ' G×Gs −→ TG ' G× G, Lη(g, u) =< Y ri , η > (u)Xi,

which can be viewed also as a map Lη : Gs −→ G. Thus we get the following
Theorem [Alekseevsky et. al. (1997)]: The dynamics Γη on the group double
D(G,ΛG), associated with a 1–form η which is a Casimir for the Lie–Poisson
structure ΛG∗ on the dual group, is given by the system of equations

u̇ = 0, g−1ġ =< Y ri , η > (u)Xi ∈ G,

and is therefore completely integrable by quadratures.
We have seen that if we concentrate on the possibility of integrating our

system by quadratures, then we can do without the requirement that the
system is Hamiltonian.

By considering again the equations of motion in action–angle variables,
we classically have

İk = 0, φ̇k = νk(I).

Clearly, if we have

İk = Fk(I), φ̇k = Ajk(I)φj , (3.185)
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and we are able to integrate the first equation by quadratures, we again
have the possibility to integrate by quadratures the system (3.185), if only
the matrices (Ajk(I(t))) commute [Alekseevsky et. al. (1997)]:

φ(t) = exp
(∫ t

0

A(I(s))ds
)
φ0.

Because φk are discontinues functions on the torus, we have to be more
careful here. However, we show how this idea works for double groups. In
the case when the 1–form η on Gs is not a Casimir 1–form for the Lie–
Poisson structure ΛG∗ , we get, in view of (3.184),

Γη(g, u) =< Y ri , η > (u)X l
i(g) + ΛG∗(η)(u).

Now, the momenta evolve according to the dynamics ΛG∗(η) on Gs (which
can be interpreted, as we will see later, as being associated with an in-
teraction of the system with an external field) and ‘control’ the evolution
of the field of velocities on G (being left–invariant for a fixed time) by a
‘variation of constants’. Let us summarize our observations in the following
Theorem [Alekseevsky et. al. (1997)]: The vector–field Γη on the double
group D(G,ΛG), associated with a 1–form η on Gs, defines the following
dynamics

u̇ = ΛG∗(η)(u), g−1ġ =< Y ri , α > (u)Xi ∈ G, (3.186)

and is therefore completely integrable, if only we are able to integrate the
equation (3.186) and < Y ri , η > (u(t))Xi lie in a commutative subalgebra
of G for all t.

Finally, we can weaken the assumptions of the previous Theorem. It is
sufficient to assume [Alekseevsky et. al. (1997)] that

g−1ġ(t) = exp(tX)A(t) exp(−tX),

for some A(t), X ∈ G, such that X +A(t) lie in a commutative subalgebra
of G for all t (e.g., A(t) = const), to assure that (3.186) is integrable by
quadratures. Indeed, in the new variable

g1(t) = exp(−tX)g(t) exp(tX),

the equation (3.186) reads

ġ1(t) = g1(t)(X +A(t))−Xg1(t),
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and, since the right– and the left–multiplications commute, we find that
[Alekseevsky et. al. (1997)]

g(t) = g0 exp
(
tX +

∫ t

0

A(s)ds
)

exp(−tX).

This procedure is similar to what is known as the Dirac interaction picture
in the quantum evolution.

3.12.3.5 Momentum Map and Symplectic Reduction

Let (M,ω) be a connected symplectic manifold and φ : G ×M → M a
symplectic action of the Lie group G on M , that is, for each g ∈ G the map
φg : M →M is a symplectic diffeomorphism. If for each ξ ∈ g there exists
a globally defined function Ĵ(ξ) : M → R such that ξM = XĴ(ξ), then the
map J : M → g∗, given by

J : x ∈M 7→ J(x) ∈ g∗, J(x)(ξ) = Ĵ(ξ)(x)

is called the momentum map for φ [Marsden and Ratiu (1999); Puta (1993)].
Since φ is symplectic, φexp(tξ) is a one–parameter family of canonical

transformations, i.e., φ∗exp(tξ)ω = ω, hence ξM is locally Hamiltonian and
not generally Hamiltonian. That is why not every symplectic action has a
momentum map. φ : G×M → M is Hamiltonian iff Ĵ : g→ Ck (M,R) is
a Lie algebra homomorphism.

Let H : M → R be G − −invariant, that is H
(
φg(x)

)
= H(x) for

all x ∈ M and g ∈ G. Then Ĵ(ξ) is a constant of motion for dynamics
generated by H.

Let φ be a symplectic action of G on (M,ω) with the momentum map
J . Suppose H : M → R is G − −invariant under this action. Then the
Noether’s Theorem states that J is a constant of motion of H, i.e., J ◦φt =
J , where φt is the flow of XH .

A Hamiltonian action is a symplectic action with an Ad∗–equivariant
momentum map J , i.e.,

J
(
φg(x)

)
= Ad∗g−1 (J(x)) ,

for all x ∈M and g ∈ G.
Let φ be a symplectic action of a Lie group G on (M,ω). Assume that

the symplectic form ω on M is exact, i.e., ω = dθ, and that the action φ

of G on M leaves the one form θ ∈ M invariant. Then J : M → g∗ given
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by (J(x)) (ξ) =
(
iξM θ

)
(x) is an Ad∗−-equivariant momentum map of the

action.
In particular, in the case of the cotangent bundle (M = T ∗M, ω = dθ)

of a mechanical configuration manifold M , we can lift up an action φ of a
Lie group G on M to get an action of G on T ∗M. To perform this lift, let
G act on M by transformations φg : M → M and define the lifted action
to the cotangent bundle by (φg)∗ : T ∗M → T ∗M by pushing forward one
forms, (φg)∗(α) · v = α

(
Tφ−1

g v
)
,where α ∈ T ∗qM and v ∈ Tφg(q)M . The

lifted action (φg)∗ preserves the canonical one form θ on T ∗M and the
momentum map for (φg)∗ is given by

J : T ∗M → g∗, J (αq) (ξ) = αq (ξM (q)) .

For example, let M = Rn, G = Rn and let G act on Rn by translations:

φ : (t, q) ∈ Rn × Rn 7→ t+ q ∈ Rn.

Then g = Rn and for each ξ ∈ g we have ξRn(q) = ξ.
In case of the group of rotations in R3, M = R3, G = SO(3) and let

G act on R3 by φ(A, q) = A · q. Then g ' R3 and for each ξ ∈ g we have
ξR3(q) = ξ × q.

Let G act transitively on (M,ω) by a Hamiltonian action. Then J(M) =
{Ad∗g−1 (J(x)) |g ∈ G} is a coadjoint orbit.

Now, let (M,ω) be a symplectic manifold, G a Lie group and φ : G ×
M →M a Hamiltonian action of G on M with Ad∗–equivariant momentum
map J : M → g∗. Let µ ∈ g∗ be a regular value of J ; then J−1(µ) is
a submanifold of M such that dim

(
J−1(µ)

)
= dim (M) − dim (G). Let

Gµ = {g ∈ G|Ad∗gµ = µ} be the isotropy subgroup of µ for the coadjoint
action. By Ad∗−-equivariance, if x ∈ J−1(µ) then φg(x) = J−1(µ) for all
g ∈ G, i.e., J−1(µ) is invariant under the induced Gµ−-action and we can
form the quotient space Mµ = J−1(µ)/Gµ, called the reduced phase–space
at µ ∈ g∗.

Let (M,ω) be a symplectic 2nD manifold and let f1, ..., fk be k functions
in involution, i.e., {fi, fj}ω = 0, i = 1, ..., k. Because the flow of Xfi and
Xfj commute, we can use them to define a symplectic action of G = Rk on
M . Here µ ∈ Rk is in the range space of f1×...×fk and J = f1×...×fk is the
momentum map of this action. Assume that {df1, ..., dfk} are independent
at each point, so µ is a regular value for J . Since G is Abelian, Gµ = G so
we get a symplectic manifold J−1(µ)/G of dimension 2n− 2k. If k = n we
have integrable systems.
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For example, let G = SO(3) and (M,ω) =
(
R6,

∑3
i=1 dpi ∧ dqi

)
, and

the action of G on R6 is given by φ : (R, (q, p)) 7→ (Rq, Rp). Then the
momentum map is the well known angular momentum and for each µ ∈
g∗ ' R3µ 6= 0, Gµ ' S1 and the reduced phase–space (Mµ, ωµ) is (T ∗R,
ω = dpi ∧ dqi), so that dim (Mµ) = dim (M) − dim (G) − dim (Gµ). This
reduction is in celestial mechanics called by Jacobi ’the elimination of the
nodes’.

The equations of motion: ḟ = {f,H}ω on M reduce to the equations of
motion: ḟµ = {fµ,Hµ}ωµon Mµ (see [Marsden and Ratiu (1999)]).

3.12.4 Multisymplectic Geometry

Multisymplectic geometry constitutes the general framework for a geomet-
rical, covariant formulation of classical field theory. Here, covariant for-
mulation means that space–like and time–like directions on a given space–
time be treated on equal footing. With this principle, one can construct
a covariant form of the Legendre transformation which associates to ev-
ery field variable as many conjugated momenta, the multimomenta, as
there are space–time dimensions. These, together with the field vari-
ables, those of nD space–time, and an extra variable, the energy vari-
able, span the multiphase–space [Kijowski and Szczyrba (1976)]. For a
recent exposition on the differential geometry of this construction, see [Go-
tay (1991a)]. Multiphase–space, together with a closed, nondegenerate
differential (n + 1)−form, the multisymplectic form, is an example of a
multisymplectic manifold. Among the achievements of the multisymplec-
tic approach is a geometrical formulation of the relation of infinitesimal
symmetries and covariantly conserved quantities (Noether’s Theorem), see
[León et. al. (2004)] for a recent review, and [Gotay and Marsden (1992);
Forger and Römer (2004)] for a clarification of the improvement techniques
(‘Belinfante–Rosenfeld formula’) of the energy–momentum tensor in clas-
sical field theory. Multisymplectic geometry also gives convenient sets of
variational integrators for the numerical study of partial differential equa-
tions [Marsden et. al. (1998)].

Since in multisymplectic geometry, the symplectic two–form of clas-
sical mechanics is replaced by a closed differential form of higher tensor
degree, multivector–fields and differential forms have their natural appear-
ance. (See [Paufler and Römer (2002)] for an interpretation of multivector–
fields as describing solutions to field equations infinitesimally.) Multivector–
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fields form a graded Lie algebra with the Schouten bracket (see [Kosmann
(2004)] for a review and unified viewpoint). Using the multisymplectic
(n + 1)−form, one can construct a new bracket for the differential forms,
the Poisson forms [Forger et. al. (2004)], generalizing a well–known formula
for the Poisson brackets related to a symplectic two–form. A remarkable
fact is that in order to establish a Jacobi identity, the multisymplectic form
has to have a potential, a condition that is not seen in symplectic geometry.
Further, the admissible differential forms, the Poisson forms, are subject to
the rather strong restrictions on their dependence on the multimomentum
variables [Gotay (1991b)]. In particular, (n − 1)−forms in this context
can be shown to arise exactly from the covariantly conserved currents of
Noether symmetries, which allows their pairing with space–like hypersur-
faces to yield conserved charges in a geometrical way.

The Hamiltonian, infinite dimensional formulation of classical field the-
ory requires the choice of a space–like hypersurface (‘Cauchy surface’),
which manifestly breaks the general covariance of the theory at hand.
For (n − 1)−forms, the above new bracket reduces to the Peierls–deWitt
bracket after integration over the space–like hypersurface [Gotay and Nester
(1980)]. With the choice of a hypersurface, a constraint analysis a‘la Dirac
[Henneaux and Teitelboim (1992); Gotay et. al. (2004)] can be performed
[Landsman (1995)]. Again, the necessary breaking of general covariance
raises the need for an alternative formulation of all this [Marsden and We-
instein (1974)]; first attempts have been made to carry out a Marsden–
Weinstein reduction [Munteanu et. al. (2004)] for multisymplectic mani-
folds with symmetries. However, not very much is known about how to
quantize a multisymplectic geometry, see [Bashkirov and Sardanashvily
(2004)] for an approach using a path integral.

So far, everything was valid for field theories of first–order, i.e., where
the Lagrangian depends on the fields and their first derivatives. Higher
order theories can be reduced to first–order ones for the price of introducing
auxiliary fields. A direct treatment would involve higher order jet bundles
[Saunders (1989)]. A definition of the covariant Legendre transform and
the multiphase–space has been given for this case [Gotay (1991a)].

3.13 Application: Biodynamics–Robotics

Recall from [Ivancevic and Ivancevic (2006)] that modern unified geomet-
rical basis for both human biodynamics and humanoid robotics repre-
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sents the constrained SE(3)−group, i.e., the so–called special Euclidean
group of rigid–body motions in 3D space (see, e.g., [Murray et al. (1994);
Park and Chung (2005)]). In other words, during human movement, in each
movable human joint there is an action of a constrained SE(3)−group.
Therefore, constrained SE(3)−group represents general kinematics of
human–like joints. The corresponding nonlinear dynamics problem (re-
solved mainly for aircraft and spacecraft dynamics) is called the dynamics
on SE(3)−group, while the associated nonlinear control problem (resolved
mainly for general helicopter control) is called the control on SE(3)−group.

Recall that the Euclidean SE(3)−group is defined as a semidirect (non-
commutative) product of 3D rotations and 3D translations, SE(3) :=
SO(3) � R3 [Murray et al. (1994); Park and Chung (2005); Ivancevic and
Ivancevic (2006)]). Its most important subgroups are the following:

Subgroup Definition

SO(3), group of rotations in 3D
(a spherical joint)

Set of all proper orthogonal
3× 3− rotational matrices

SE(2), special Euclidean group in 2D
(all planar motions)

Set of all 3× 3−matrices: cos θ sin θ rx
− sin θ cos θ ry

0 0 1


SO(2), group of rotations in 2D

subgroup of SE(2)− group
(a revolute joint)

Set of all proper orthogonal
2× 2− rotational matrices
included in SE(2)− group

R3, group of translations in 3D
(all spatial displacements)

Euclidean 3D vector space

In the next subsection we give detailed analysis of these subgroups, as
well as the total SE(3)−group.

3.13.1 Muscle–Driven Hamiltonian Biodynamics

We will develop our Hamiltonian geometry on the configuration biodynam-
ical manifold M in three steps, following the standard symplectic geometry
prescription (see subsection 3.12 above):
Step A Find a symplectic momentum phase–space (P, ω).

Recall that a symplectic structure on a smooth manifold M is a nonde-
generate closed 2−form ω onM , i.e., for each x ∈M , ω(x) is nondegenerate,
and dω = 0.
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Let T ∗xM be a cotangent space to M at m. The cotangent bundle T ∗M
represents a union ∪m∈MT ∗xM , together with the standard topology on
T ∗M and a natural smooth manifold structure, the dimension of which is
twice the dimension of M . A 1−form θ on M represents a section θ : M →
T ∗M of the cotangent bundle T ∗M .

P = T ∗M is our momentum phase–space. On P there is a nondegen-
erate symplectic 2−form ω is defined in local joint coordinates qi, pi ∈ U ,
U open in P , as ω = dqi ∧ dpi (’∧’ denotes the wedge or exterior product).
In that case the coordinates qi, pi ∈ U are called canonical. In a usual
procedure the canonical 1−form θ is first defined as θ = pidq

i, and then
the canonical 2–form ω is defined as ω = −dθ.

A symplectic phase–space manifold is a pair (P, ω).
Step B Find a Hamiltonian vector–field XH on (P, ω).

Let (P, ω) be a symplectic manifold. A vector–field X : P → TP is
called Hamiltonian if there is a smooth function F : P −→ R such that
iXω = dF (iXω denotes the interior product or contraction of the vector–
field X and the 2–form ω). X is locally Hamiltonian if iXω is closed.

Let the smooth real–valued Hamiltonian function H : P → R, repre-
senting the total biodynamical energy H(q, p) = T (p) + V (q) (T and V

denote kinetic and potential energy of the system, respectively), be given
in local canonical coordinates qi, pi ∈ U , U open in P . The Hamiltonian
vector–field XH , condition by iXHω = dH, is actually defined via sym-
plectic matrix J , in a local chart U , as

XH = J∇H =
(
∂piH,−∂qiH

)
, J =

(
0 I
−I 0

)
,

where I denotes the n× n identity matrix and ∇ is the gradient operator.
Step C Find a Hamiltonian phase–flow φt of XH .

Let (P, ω) be a symplectic phase–space manifold and XH = J∇H a
Hamiltonian vector–field corresponding to a smooth real–valued Hamilto-
nian function H : P → R, on it. If a unique one–parameter group of
diffeomorphisms φt : P → P exists so that d

dt |t=0 φtx = J∇H(x), it is
called the Hamiltonian phase–flow.

A smooth curve t 7→
(
qi(t), pi(t)

)
on (P, ω) represents an integral curve

of the Hamiltonian vector–field XH = J∇H, if in the local canonical coor-
dinates qi, pi ∈ U , U open in P , Hamiltonian canonical equations (3.164)
hold.

An integral curve is said to be maximal if it is not a restriction of an
integral curve defined on a larger interval of R. It follows from the standard
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Theorem on the existence and uniqueness of the solution of a system of
ODEs with smooth r.h.s, that if the manifold (P, ω) is Hausdorff, then for
any point x = (qi, pi) ∈ U , U open in P , there exists a maximal integral
curve of XH = J∇H, passing for t = 0, through point x. In case XH is
complete, i.e., XH is Cp and (P, ω) is compact, the maximal integral curve
of XH is the Hamiltonian phase–flow φt : U → U .

The phase–flow φt is symplectic if ω is constant along φt, i.e., φ∗tω = ω

(φ∗tω denotes the pull–back of ω by φt),
iff LXHω = 0
(LXHω denotes the Lie derivative of ω upon XH).
Symplectic phase–flow φt consists of canonical transformations on

(P, ω), i.e., diffeomorphisms in canonical coordinates qi, pi ∈ U , U open
on all (P, ω) which leave ω invariant. In this case the Liouville Theorem
is valid: φt preserves the phase volume on (P, ω). Also, the system’s total
energy H is conserved along φt, i.e., H ◦ φt = φt.

Recall that the Riemannian metrics g =<,> on the configuration man-
ifold M is a positive–definite quadratic form g : TM → R, in local coor-
dinates qi ∈ U , U open in M , given by (3.139–3.140) above. Given the
metrics gij , the system’s Hamiltonian function represents a momentum
p−-dependent quadratic form H : T ∗M → R – the system’s kinetic en-
ergy H(p) = T (p) = 1

2 < p, p >, in local canonical coordinates qi, pi ∈ Up,
Up open in T ∗M , given by

H(p) =
1
2
gij(q,m) pipj , (3.187)

where gij(q,m) = g−1
ij (q,m) denotes the inverse (contravariant) material

metric tensor

gij(q,m) =
n∑
χ=1

mχδrs
∂qi

∂xr
∂qj

∂xs
.

T ∗M is an orientable manifold, admitting the standard volume form

ΩωH =
(−1)

N(N+1)
2

N !
ωNH .

For Hamiltonian vector–field, XH on M , there is a base integral curve
γ0(t) =

(
qi(t), pi(t)

)
iff γ0(t) is a geodesic, given by the one–form force

equation

˙̄pi ≡ ṗi + Γijk g
jlgkm plpm = 0, with q̇k = gkipi, (3.188)
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where Γijk denote Christoffel symbols of an affine Levi–Civita connection
on M , defined upon the Riemannian metric g =<,> by (3.143).

The l.h.s ˙̄pi of the covariant momentum equation (3.188) represents the
intrinsic or Bianchi covariant derivative of the momentum with respect
to time t. Basic relation ˙̄pi = 0 defines the parallel transport on TN ,
the simplest form of human–motion dynamics. In that case Hamiltonian
vector–field XH is called the geodesic spray and its phase–flow is called the
geodesic flow.

For Earthly dynamics in the gravitational potential field V : M → R,
the Hamiltonian H : T ∗M → R (3.187) extends into potential form

H(p, q) =
1
2
gijpipj + V (q),

with Hamiltonian vector–field XH = J∇H still defined by canonical equa-
tions (3.164).

A general form of a driven, non–conservative Hamiltonian equations
reads:

q̇i = ∂piH, ṗi = Fi − ∂qiH, (3.189)

where Fi = Fi(t, q, p) represent any kind of joint–driving covariant torques,
including active neuro–muscular–like controls, as functions of time, angles
and momenta, as well as passive dissipative and elastic joint torques. In
the covariant momentum formulation (3.188), the non–conservative Hamil-
tonian equations (3.189) become

˙̄pi ≡ ṗi + Γijk g
jlgkm plpm = Fi, with q̇k = gkipi.

3.13.2 Hamiltonian–Poisson Biodynamical Systems

Recall from subsection 3.12.3.3 above that Hamiltonian–Poisson mechanics
is a generalized form of classical Hamiltonian mechanics. Let (P, {}) be a
Poisson manifold and H ∈ C∞(P,R) a smooth real valued function on P .
The vector–field XH defined by

XH(F ) = {F,H},

is the Hamiltonian vector–field with energy function H. The triple
(P, {},H) we call the Hamiltonian–Poisson biodynamical system (HPBS)
[Marsden and Ratiu (1999); Puta (1993); Ivancevic and Pearce (2001a)].
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The map F 7→ {F,H} is a derivation on the space C∞(P,R), hence it de-
fines a vector–field on P . The map F ∈ C∞(P,R) 7→ XF ∈ X (P ) is a Lie
algebra anti–homomorphism, i.e., [XF , Xg] = −X{F,g}.

Let (P, {},H) be a HPBS and φt the flow of XH . Then for all F ∈
C∞(P,R) we have the conservation of energy :

H ◦ φt = H,

and the equations of motion in Poisson bracket form,

d

dt
(F ◦ φt) = {F,H} ◦ φt = {F ◦ φt,H},

that is, the above Poisson evolution equation (3.179) holds. Now, the func-
tion F is constant along the integral curves of the Hamiltonian vector–field
XH iff

{F,H} = 0.

φt preserves the Poisson structure.
Next we present two main examples of HPBS.

‘Ball–and–Socket’ Joint Dynamics in Euler Vector Form

The dynamics of human body–segments, classically modelled via La-
grangian formalism (see [Hatze (1977b); Ivancevic (1991); Ivancevic et al.
(1995); Ivancevic and Ivancevic (2006)]), may be also prescribed by Euler’s
equations of rigid body dynamics. The equations of motion for a free rigid
body, described by an observer fixed on the moving body, are usually given
by Euler’s vector equation

ṗ = p× w. (3.190)

Here p, w ∈ R3, pi = Iiwi and Ii (i = 1, 2, 3) are the principal moments
of inertia, the coordinate system in the segment is chosen so that the axes
are principal axes, w is the angular velocity of the body and p is the corre-
sponding angular momentum.

The kinetic energy of the segment is the Hamiltonian function H : R3 →
R given by [Ivancevic and Pearce (2001a)]

H(p) =
1
2
p · w

and is a conserved quantity for (3.190).
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The vector space R3 is a Lie algebra with respect to the bracket oper-
ation given by the usual cross product. The space R3 is paired with itself
via the usual dot product. So if F : R3 → R, then δF/δp = ∇F (p) and
the (–) Lie–Poisson bracket {F,G}−(p) is given via (3.178) by the triple
product

{F,G}−(p) = −p · (∇F (p)×∇G(p)).

Euler’s vector equation (3.190) represents a generalized Hamiltonian
system in R3 relative to the Hamiltonian function H(p) and the (–) Lie–
Poisson bracket {F,G}−(p). Thus the Poisson manifold (R3, {F,G}−(p)) is
defined and the abstract Poisson equation is equivalent to Euler’s equation
(3.190) for a body segment and associated joint.

Solitary Model of Muscular Contraction

Recall that the so–called sliding filament theory of muscular contrac-
tion was developed in 1950s by Nobel Laureate A. Huxley [Huxley and
Niedergerke (1954); Huxley (1957)]. At a deeper level, the basis of the
molecular model of muscular contraction is represented by oscillations
of Amid I peptide groups with associated dipole electric momentum in-
side a spiral structure of myosin filament molecules (see [Davydov (1981);
Davydov (1991)]).

There is a simultaneous resonant interaction and strain interaction gen-
erating a collective interaction directed along the axis of the spiral. The
resonance excitation jumping from one peptide group to another can be
represented as an exciton, the local molecule strain caused by the static
effect of excitation as a phonon and the resultant collective interaction as
a soliton.

The simplest model of Davydov’s solitary particle–waves is given by the
nonlinear Schrödinger equation [Ivancevic and Pearce (2001a)]

i∂tψ = −∂x2ψ + 2χ|ψ|2ψ, (3.191)

for -∞ < x < +∞. Here ψ(x, t) is a smooth complex–valued wave function
with initial condition ψ(x, t)|t=0 = ψ(x) and χ is a nonlinear parameter. In
the linear limit (χ = 0) (3.191) becomes the ordinary Schrödinger equation
for the wave function of the free 1D particle with mass m = 1/2.

We may define the infinite–dimensional phase–space manifold P =
{(ψ, ψ̄) ∈ S(R,C)}, where S(R,C) is the Schwartz space of rapidly–
decreasing complex–valued functions defined on R). We define also the
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algebra χ(P) of observables on P consisting of real–analytic functional
derivatives δF/δψ, δF/δψ̄ ∈ S(R,C).

The Hamiltonian function H : P −→ R is given by

H(ψ) =
∫ +∞

−∞

(∣∣∣∣∂ψ∂x
∣∣∣∣2 + χ|ψ|4

)
dx

and is equal to the total energy of the soliton. It is a conserved quantity
for (4.3) (see [Seiler (1995)]).

The Poisson bracket on χ(P) represents a direct generalization of the
classical nD Poisson bracket

{F,G}+(ψ) = i
∫ +∞

−∞

(
δF

δψ

δG

δψ̄
− δF

δψ̄

δG

δψ

)
dx. (3.192)

It manifestly exhibits skew–symmetry and satisfies Jacobi identity. The
functionals are given by δF/δψ = −i{F, ψ̄} and δF/δψ̄ = i{F,ψ}. There-
fore the algebra of observables χ(P) represents the Lie algebra and the
Poisson bracket is the (+) Lie–Poisson bracket {F,G}+(ψ).

The nonlinear Schrödinger equation (3.191) for the solitary particle–
wave is a Hamiltonian system on the Lie algebra χ(P) relative to the (+)
Lie–Poisson bracket {F,G}+(ψ) and Hamiltonian function H(ψ). There-
fore the Poisson manifold (χ(P), {F,G}+(ψ)) is defined and the abstract
Poisson evolution equation (3.179), which holds for any smooth function
F : χ(P)→R, is equivalent to equation (3.191).

A more subtle model of soliton dynamics is provided by the Korteveg–de
Vries equation [Ivancevic and Pearce (2001a)]

ft − 6ffx + fxxx = 0, (fx = ∂xf), (3.193)

where x ∈ R and f is a real–valued smooth function defined on R (compare
with (3.81) above). This equation is related to the ordinary Schrödinger
equation by the inverse scattering method [Seiler (1995); Ivancevic and
Pearce (2001a)].

We may define the infinite–dimensional phase–space manifold V = {f ∈
S(R)}, where S(R) is the Schwartz space of rapidly–decreasing real–valued
functions R). We define further χ(V) to be the algebra of observables
consisting of functional derivatives δF/δf ∈ S(R).

The Hamiltonian H : V → R is given by

H(f) =
∫ +∞

−∞
(f3 +

1
2
f2
x) dx
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and gives the total energy of the soliton. It is a conserved quantity for
(3.193) (see [Seiler (1995)]).

As a real–valued analogue to (3.192), the (+) Lie–Poisson bracket on
χ(V) is given via (3.177) by

{F,G}+(f) =
∫ +∞

−∞

δF

δf

d

dx

δG

δf
dx.

Again it possesses skew–symmetry and satisfies Jacobi identity. The func-
tionals are given by δF/δf = {F, f}.

The Korteveg–de Vries equation (KdV1), describing the behavior of the
molecular solitary particle–wave, is a Hamiltonian system on the Lie algebra
χ(V) relative to the (+) Lie–Poisson bracket {F,G}+(f) and the Hamil-
tonian function H(f). Therefore, the Poisson manifold (χ(V), {F,G}+(f))
is defined and the abstract Poisson evolution equation (3.179), which holds
for any smooth function F : χ(V)→R, is equivalent to (3.193).

3.13.3 Lie–Poisson Neurodynamics Classifier

A Lie–Poisson neuro–classifier is a tensor–field–system {µ} = (q, p, ω) on
a Poisson manifold (g∗, {F,H(µ)}±(µ)). Like a GBAM neuro–classifier, it
consists of continual activation (q, p)−dynamics and self–organized learning
ω–dynamics. In this case, both dynamics are defined by “neural activation
form” of the abstract Lie–Poisson evolution equation

Ḟ = {S(F ),H(µ)}, (3.194)

where S(·) = tanh(·) denotes the sigmoid activation function. A Hamilto-
nian function H(µ), representing the total network energy, is given in the
form

H(µ) =
1
2
ωijδ

ij +
1
2
ωijδij , (i, j = 1, ..., n),

where δij and δij are Kronecker tensors, while ωij = ωij(qi) and ωij =
ωij(pi) correspond to the contravariant and covariant components of the
functional–coupling synaptic tensor ω = ω(q, p), defined respectively by

ωij = ε qiqj , ωij = τ pipj ,

with random coefficients ε and τ .
Activation (q, p)−-dynamics are given by

q̇i = Ii + {S(qi),H(µ)}, ṗi = Ji + {S(pi),H(µ)},
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where Ii and Ji represent the two input features.
Two types of self–organized learning ω−-dynamics are presented and

compared:
Lie–Poisson learning dynamics, in which synaptic update law is given by

inhibitory–covariant and excitatory–contravariant form of equation (3.194):

ω̇ij = {S(ωij),H(µ)}, ω̇ij = {S(ωij),H(µ)},

respectively.
Differential Hebbian learning (see [Kosko (1992)] for details), in both

inhibitory–covariant and excitatory–contravariant learning form:

ω̇ij = −ωij + Φij(qi, pi), ω̇ij = −ωij + Φij(qi, pi),

with innovations defined in both variance–forms as:

Φij = Si(qi)Sj(pj) + Ṡi(qi)Ṡj(pj), Φij = Si(qi)Sj(pj) + Ṡi(qi)Ṡj(pj).

3.13.4 Biodynamical Functors

3.13.4.1 The Covariant Force Functor

Recall (see subsection 2.1.4.3 above) that int the realm of biodynamics
the central concept is the covariant force law , Fi = mgija

j [Ivancevic and
Ivancevic (2006)]. In categorical language, it represents the covariant force
functor F∗ defined by commutative diagram:

TT ∗M TTM-F∗
6

Fi = ṗi
6

ai = ˙̄vi

T ∗M = {xi, pi} TM = {xi, vi}

M = {xi}

pi
@

@
@

@I

vi = ẋi

�
�

�
��

which states that the force 1–form Fi = ṗi, defined on the mixed tangent–
cotangent bundle TT ∗M , causes the acceleration vector–field ai = ˙̄vi, de-
fined on the second tangent bundle TTM of the configuration manifold
M .
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The corresponding contravariant acceleration functor is defined as its
inverse map F∗ : TTM −→ TT ∗M .

In the following subsections we present several Lie functors, as they are
used in modern biodynamical research, all being different formulations of
the covariant force law, Fi = mgija

j , and giving different Lie representa-
tions of the fundamental covariant force functor F∗ : TT ∗M −→ TTM .

3.13.4.2 Lie–Lagrangian Biodynamical Functor

Now we develop the Lie–Lagrangian biodynamical functor using a mod-
ern, nonlinear formulation of the classical robotics structure (see [Ivancevic
(2005b); Ivancevic (2005c)]):

Kinematics → Dynamics → Control

Lie groups → Exterior Lagrangian → Lie derivative

The conservative part of generalized Lagrangian formalism, as used in
biodynamics, is derived from Lagrangian conservative energy function. It
describes the motion of the conservative skeleton, which is free of control
and dissipation. According to the Liouville Theorem, this conservative
dynamics is structurally unstable due to the phase–space spreading effect,
caused by the growth of entropy (see [Ivancevic (1991); Ivancevic et al.
(1995); Ivancevic and Snoswell (2001); Ivancevic and Ivancevic (2006)]. The
dissipative part is derived from nonlinear dissipative function, and describes
quadratic joint dampings, which prevent entropy growth. Its driving part
represents equivalent muscular torques Fi acting in all DOF (or just in
active joints, as used in the affine input control), in the form of force–time
and force–velocity signals.

Joint Kinematics

Recall that human joints represented by internal coordinates xi (i =
1, . . . , n), constitute an nD smooth biodynamical configuration manifold
M (see Figure 3.6). Now we are going to perform some categorical trans-
formations on the biodynamical configuration manifold M . If we apply
the functor Lie to the category •[SO(k)i] of rotational Lie groups SO(k)i

and their homomorphisms we get the category •[so(k)i] of corresponding
tangent Lie algebras so(k)i and their homomorphisms. If we further ap-
ply the isomorphic functor Dual to the category •[so(k)i] we get the dual
category ∗

•[so(k)∗i ] of cotangent, or, canonical Lie algebras so(k)∗i and their
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homomorphisms. To go directly from •[SO(k)i] to ∗
•[so(k)∗i ] we use the

canonical functor Can [Ivancevic and Snoswell (2001); Ivancevic (2002);
Ivancevic and Beagley (2005); Ivancevic (2005)]. Therefore we have a com-
mutative triangle

•[so(k)i] ∗
•[so(k)∗i ]--

∼=
Dual

•[SO(k)i]

Lie

�
�

�
�

�
�	

Can

@
@

@
@

@
@R

LGA

Both the tangent algebras so(k)i and the cotangent algebras so(k)∗i con-
tain infinitesimal group generators, angular velocities ẋi = ẋφi in the first
case and canonical angular momenta pi = pφi in the second. As Lie group
generators, angular velocities and angular momenta satisfy the respective
commutation relations [ẋφi , ẋψi ] = εφψθ ẋθi and [pφi , pψi ] = εθφψ pθi , where
the structure constants εφψθ and εθφψ constitute totally antisymmetric third–
order tensors.

In this way, the functor DualG : Lie ∼= Can establishes a geometrical
duality between kinematics of angular velocities ẋi (involved in Lagrangian
formalism on the tangent bundle of M) and that of angular momenta pi
(involved in Hamiltonian formalism on the cotangent bundle of M). This
is analyzed below. In other words, we have two functors Lie and Can

from a category of Lie groups (of which •[SO(k)i] is a subcategory) into a
category of their Lie algebras (of which •[so(k)i] and ∗

•[so(k)∗i ] are subcat-
egories), and a natural equivalence (functor isomorphism) between them
defined by the functor DualG. (As angular momenta pi are in a bijective
correspondence with angular velocities ẋi, every component of the functor
DualG is invertible.)

Applying the functor Lie to the biodynamical configuration manifold
M (Figure 3.6), we get the product–tree of the same anthropomorphic
structure, but having tangent Lie algebras so(k)i as vertices, instead of the
groups SO(k)i. Again, applying the functor Can to M , we get the product–
tree of the same anthropomorphic structure, but this time having cotangent
Lie algebras so(k)∗i as vertices.

The functor Lie defines the second–order Lagrangian formalism on the
tangent bundle TM (i.e., the velocity phase–space manifold) while the func-
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tor Can defines the first–order canonical Hamiltonian formalism on the
cotangent bundle T ∗M (i.e., the momentum phase–space manifold). As
these two formalisms are related by the isomorphic functor Dual, they are
equivalent. In this section we shall follow the Lagrangian functor Lie, using
the powerful formalism of exterior differential systems and integral vari-
ational principles [Griffiths (1983); Choquet-Bruhat and DeWitt-Morete
(1982)]. For the parallel, Hamiltonian treatment along the functor Can,
more suitable for chaos theory and stochastic generalizations, see [Ivance-
vic and Snoswell (2001); Ivancevic (2002)].

Exterior Lagrangian Dynamics

Let Ωp(M) =
∑
ωIdx

I denote the space of differential p−forms on M .
That is, if multi–index I ⊂ {1, . . . , n} is a subset of p elements then we
have a p−form dxI = dxi1 ∧ dxi2 ∧ · · · ∧ dxip on M . We define the exterior
derivative on M as dω =

∑
∂ωI

∂xp
dxp ∧ dxI (compare with (5.8) above).

Now, from exterior differential systems point of view (see subsection
3.6.2 above as well as [Griffiths (1983)]), human–like motion represents
an n DOF neuro–musculo–skeletal system Ξ, evolving in time on its nD
configuration manifold M , (with local coordinates xi, i = 1, ..., n) as well
as on its tangent bundle TM (with local coordinates (xi; ẋi)).

For the system Ξ we will consider a well–posed variational problem
(I, ω;ϕ), on an associated (2n+1)−-D jet space X = J1(R,M) ∼= R×TM ,
with local canonical variables (t;xi; ẋi).

Here, (I, ω) is called a Pfaffian exterior differential system on X (see
[Griffiths (1983)]), given locally as{

θi = dxi − ẋiω = 0
ω ≡ dt 6= 0

, (3.195)

with the structure equations

dθi = −dẋi ∧ ω.

Integral manifolds N ∈ J1(R,M) of the Pfaffian system (I, ω) are locally
one–jets t→ (t, x(t), ẋ(t)) of curves x = x(t) : R→M .

ϕ is a 1−form

ϕ = Lω, (3.196)

where L = L(t, x, ẋ) is the system’s Lagrangian function defined on X, hav-
ing both coordinate and velocity partial derivatives, respectively denoted
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by
Lxi ≡ ∂xiL, and Lẋi ≡ ∂ẋiL.

A variational problem (I, ω;ϕ) is said to be strongly non–degenerate,
or well–posed [Griffiths (1983)], if the determinant of the matrix of mixed
velocity partials of the Lagrangian is positive definite, i.e.,

det ‖Lẋiẋj‖ > 0.

The extended Pfaffian system
θi = 0

dLẋi − Lxi ω = 0
ω 6= 0

.

generates classical Euler–Lagrangian equations

d

dt
Lẋi = Lxi , (3.197)

describing the control–free, dissipation–free, conservative skeleton dynam-
ics.

If an integral manifold N satisfies the Euler–Lagrangian equations
(3.197) of a well–posed variational problem on X then

d

dt

(∫
Nt

ϕ

)
t=0

= 0

for any admissible variation Nt ∈ N that satisfies the endpoint conditions
ω = θi = 0.

Theorem: Under the above conditions, both the Lagrangian dynamics
with initial conditions {

d
dtLẋi = Lxi

x(t0) = x0, ẋ(t0) = ẋ0

and the Lagrangian dynamics with endpoint conditions{
d
dtLẋi = Lxi

x(t0) = x0, x(t1) = x1

have unique solutions. For the proof, see [Griffiths (1983)].
Now, if M is a smooth Riemannian manifold, its metric g =< . > is

locally given by a positive definite quadratic form

ds2 = gij(x) dxidxj , (3.198)



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Applied Manifold Geometry 389

where the metric tensor gij is a C∞ symmetric matrix g(x) = ‖gij(x)‖.
Kinetic energy of the system Ξ is a function T = T (x, ẋ) on the tangent

bundle TM , which induces a positive definite quadratic form in each fibre
TxM ⊂ TM . In local coordinates, it is related to the Riemannian metric
(3.198) by: T ω2 = 1

2 ds
2.

If potential energy of the system Ξ is a function U = U(x) on M , then
the autonomous Lagrangian is defined as L(x, ẋ) = T (x, ẋ) − U(x), i.e.,
kinetic minus potential energy.

The condition of well–posedness is satisfied, as

det ‖Lẋiẋj‖ = det ‖gij(x)‖ > 0.

Now, the covariant Euler–Lagrangian equations (3.197) expand as

d

dt

(
gij(x(t)) ẋj(t)

)
=

1
2
(
∂xigjk(x(t)) ẋj(t) ẋk(t)

)
− Fi(x(t)), (3.199)

where Fi(x(t)) = ∂U(x(t))
∂ẋi denote the gradient force 1–forms.

Letting
∥∥gij(x)

∥∥ be the inverse matrix to ‖gij(x)‖ and introducing the
Christoffel symbols

Γijk = gilΓjkl, Γjkl =
1
2

(∂xjgkl + ∂xkgjl − ∂xlgjk)

the equations (3.199) lead to the classical contravariant form (see [Ivancevic
(1991); Ivancevic and Pearce (2001b); Ivancevic and Ivancevic (2006)])

ẍi(t) + Γijk(x(t)) ẋj(t) ẋk(t) = −F i(x(t)), (3.200)

where F i(x(t)) = gij(x)∂U(x(t))
∂ẋj denote the gradient force vector–fields.

The above Theorem implies that both the Lagrangian dynamics with
initial conditions{

ẍi(t) + Γijk(x(t)) ẋj(t) ẋk(t) = −F i(x(t))
x(t0) = x0, ẋ(t0) = ẋ0

(3.201)

and the Lagrangian dynamics with endpoint conditions{
ẍi(t) + Γijk(x(t)) ẋj(t) ẋk(t) = −F i(x(t))

x(t0) = x0, x(t1) = x1
(3.202)

have unique solutions. We consider the system (3.201) to be the valid basis
of human–like dynamics, and the system (3.202) to be the valid basis of the
finite biodynamics control.
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Now, recall that any smooth n−manifold M induces an n−category
Πn(M), its fundamental n−groupoid. In Πn(M), 0–cells are points in M ;
1–cells are paths in M (i.e., parameterized smooth maps f : [0, 1] → M);
2–cells are smooth homotopies (denoted by ') of paths relative to endpoints
(i.e., parameterized smooth maps h : [0, 1]× [0, 1]→M); 3–cells are smooth
homotopies of homotopies of paths in M (i.e., parameterized smooth maps
j : [0, 1]× [0, 1]× [0, 1]→M). Categorical composition is defined by pasting
paths and homotopies, which gives the recursive homotopy dynamics (see
below).

On the other hand, to describe the biodynamical realism, we have to
generalize (3.200), so to include any other type of external contravariant
forces (including excitation and contraction dynamics of muscular–like ac-
tuators, as well as nonlinear dissipative joint forces) to the r.h.s of (3.200).
In this way, we get the general form of contravariant Lagrangian dynamics

ẍi(t) + Γijk(x(t)) ẋj(t) ẋk(t) = F i (t, x(t), ẋ(t)) , (3.203)

or, in exterior, covariant form

d

dt
Lẋi − Lxi = Fi (t, x(t), ẋ(t)) . (3.204)

Recursive homotopy dynamics:

0− cell : x0 • x0 ∈M ; in the higher cells below: t, s ∈ [0, 1];

1− cell : x0 •
f - •x1 f : x0 ' x1 ∈M,

f : [0, 1]→M, f : x0 7→ x1, x1 = f(x0), f(0) = x0, f(1) = x1;

e.g., linear path: f(t) = (1− t)x0 + t x1; or

e.g., Euler–Lagrangian f − dynamics with endpoint conditions (x0, x1) :
d

dt
fẋi = fxi , with x(0) = x0, x(1) = x1, (i = 1, ..., n);
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2− cell : x0 •

f

g

h
R

�∨
•x1 h : f ' g ∈M,

h : [0, 1]× [0, 1]→M, h : f 7→ g, g = h(f(x0)),

h(x0, 0) = f(x0), h(x0, 1) = g(x0), h(0, t) = x0, h(1, t) = x1

e.g., linear homotopy: h(x0, t) = (1− t) f(x0) + t g(x0); or

e.g., homotopy between two Euler–Lagrangian (f, g)− dynamics

with the same endpoint conditions (x0, x1) :
d

dt
fẋi = fxi , and

d

dt
gẋi = gxi with x(0) = x0, x(1) = x1;

3− cell : x0 •

f

g

h i
j

y x

>
R

�
•x1 j : h ' i ∈M,

j : [0, 1]× [0, 1]× [0, 1]→M, j : h 7→ i, i = j(h(f(x0)))

j(x0, t, 0) = h(f(x0)), j(x0, t, 1) = i(f(x0)),

j(x0, 0, s) = f(x0), j(x0, 1, s) = g(x0),

j(0, t, s) = x0, j(1, t, s) = x1

e.g., linear composite homotopy: j(x0, t, s) = (1− t)h(f(x0)) + t i(f(x0));

or, homotopy between two homotopies between above two Euler-

Lagrangian (f, g)− dynamics with the same endpoint conditions (x0, x1).

3.13.4.3 Lie–Hamiltonian Biodynamical Functor

The three fundamental and interrelated obstacles facing any researcher in
the field of human–like musculo–skeletal dynamics, could be identified as
[Ivancevic and Snoswell (2001)]:

(1) Deterministic chaos,
(2) Stochastic forces, and
(3) Imprecision of measurement (or estimation) of the system numbers

(SN): inputs, parameters and initial conditions.
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Recall that the deterministic chaos is manifested as an irregular and
unpredictable time evolution of purely deterministic nonlinear systems. If
a nonlinear system is started twice, from slightly different initial conditions,
its time evolution differs exponentially, while in case of a linear system, the
difference in time evolution is linear.

Again, recall that the stochastic dynamics is based on the concept of
Markov process7, which represents the probabilistic analogue to the deter-
ministic dynamics. The property of a Markov chain of prime importance
for human–motion dynamics is the existence of an invariant distribution of
states: we start with an initial state x0 whose absolute probability is 1.
Ultimately the states should be distributed according to a specified distri-
bution.

Recall that Brownian dynamics represents the phase–space trajectories
of a collection of particles that individually obey Langevin rate equations
(see [Gardiner (1985)]) in the field of force (i.e., the particles interact with
each other via some deterministic force). For one free particle the Langevin
equation of motion is given by

mv̇ = R(t) − βv,

where m denotes the mass of the particle and v its velocity. The r.h.s
represents the coupling to a heat bath; the effect of the random force R(t)
is to heat the particle. To balance overheating (on the average), the particle
is subjected to friction β.

Noe, between pure deterministic (in which all DOF of the system in
consideration are explicitly taken into account, leading to classical dynam-
ical equations like Hamiltonian) and pure stochastic dynamics (Markov
process), there is so–called hybrid dynamics, particularly the Brownian dy-
namics, in which some of DOF are represented only through their stochastic
influence on others.

System theory and artificial intelligence have long investigated the topic
of uncertainty in measurement, modelling and simulation. Research in
artificial intelligence has enriched the spectrum of available techniques
to deal with uncertainty by proposing a theory of possibility, based on
the theory of fuzzy sets (see [Yager (1987); Dubois and Prade (1980);
Cox (1992); Cox (1994)]). The field of qualitative reasoning and simu-
lation [Berleant and Kuipers (1992)] is also interested in modelling in-

7Recall that the Markov process is characterized by a lack of memory, i.e., the statisti-
cal properties of the immediate future are uniquely determined by the present, regardless

of the past (see [Gardiner (1985)]).
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completely known systems where qualitative values are expressed by in-
tervals. However, qualitative simulation techniques reveal a low predic-
tive power in presence of complex models. In this section we have com-
bined qualitative and quantitative methods, in spirit of [Bontempi (1995);
Ivancevic and Snoswell (2001)].

In this section we will deal with the general biodynamics from the point
of view that mathematically and logically approaches a general theory of
systems, i.e., that makes the unique framework for both linear and nonlin-
ear, discrete and continuous, deterministic and stochastic, crisp and fuzzy,
SISO and MIMO–systems, and generalizes the robot dynamics elaborated
in the literature (see [Vukobratovic (1970); Vukobratovic et al. (1970);
Vukobratovic and Stepanenko (1972); Vukobratovic and Stepanenko (1973);
Vukobratovic (1975); Igarashi and Nogai (1992); Hurmuzlu (1993); Shih
et al. (1993); Shih and Klein (1993)]), including all necessary DOF to
match the physiologically realistic human–like motion. Yet, we wish to
avoid all the mentioned fundamental system obstacles. To achieve this goal
we have formulated the general biodynamics functor machine, covering a
union of the three intersected frameworks:

(1) Muscle–driven, dissipative, Hamiltonian (nonlinear, both discrete and
continuous) MIMO–system;

(2) Stochastic forces (including dissipative fluctuations and ‘Master’
jumps); and

(3) Fuzzy system numbers.

The Abstract Functor Machine

In this subsection we define the abstract functor machine [Ivancevic and
Snoswell (2001)] (compare with [Anderson et al. (1976)]) by a two–step
generalization of the Kalman’s modular theory of linear MIMO–systems
[Kalman et. al. (1969); Kalman (1960)]. The first generalization puts
the Kalman’s theory into the category Vect of vector spaces and linear
operators (see [MacLane (1971)] for technical details about categorical lan-
guage), thus formulating the unique, categorical formalism valid both for
the discrete– and continuous–time MIMO–systems.

We start with the unique, continual–sequential state equation

ẋ(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t), (3.205)

where the nD vector spaces of state X 3 x, input U 3 u, and output
Y 3 y have the corresponding linear operators, respectively A : X → X,
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B : U → X, and C : X → Y . The modular system theory comprises the
system dynamics, given by a pair (X,A), together with a reachability map
e : U → X of the pair (B,A), and an observability map m : X → Y of
the pair (A,C). If the reachability map e is surjection the system dynamics
(X,A) is called reachable; if the observability map m is injection the system
dynamics (X,A) is called observable. If the system dynamics (X,A) is both
reachable and observable, a composition r = m ◦ e : U → Y defines the
total system’s response, which is given by solution of equation (3.205). If the
unique solution to the continual–sequential state equation exists, it gives
the answer to the (minimal) realization problem: find the system S that
realizes the given response r = m ◦ e : U → Y (in the smallest number of
discrete states and in the shortest time).

In categorical language, the system dynamics in the category Vect is a
pair (X,A), where X ∈ Ob(Vect) is an object in Vect and A : X → X ∈
Mor(Vect) is a Vect–morphism. A decomposable system in Vect is such a
sextuple S ≡ (X,A,U,B, Y, C) that (X,A) is the system dynamics in Vect,
a Vect−-morphism B : U → X is an input map, and a Vect–morphism
C : X → Y is an output map. Any object in Vect is characterized by
mutually dual8 notions of its degree (a number of its input morphisms) and
its codegree (a number of its output morphisms). Similarly, any decom-
posable system S in Vect has a reachability map given by an epimorphism
e = A ◦ B : U → X and its dual observability map given by a monomor-
phism m = C ◦ A : X → Y ; their composition r = m ◦ e : U → Y in
Mor(Vect) defines the total system’s response in Vect given by the unique
solution of the continual–sequential state equation (3.205).

The second generalization gives an extension of the continual–sequential
MIMO–system theory: from the linear category Vect – to an arbitrary
nonlinear category K. We do this extension (see [Ivancevic and Snoswell
(2001)]) by formally applying the action of the nonlinear process–functor
F : K ⇒ K on the decomposable system S ≡ (X,A,U,B, Y, C) in Vect.
Under the action of the process functor F the linear system dynamics (X,A)
in Vect transforms into a nonlinear F−-dynamics (F [X],F [A]) in K, cre-
ating the functor machine in K represented by a nonlinear decomposable
system F [S] ≡ (F [X],F [A],F [U ],F [B],F [Y ],F [C]). The reachability map
transforms into the input process F [e] = F [A]◦F [B] : F [U ]→ F [X], while
its dual, observability map transforms into the output process F [m] =

8Recall that in categorical language duality means reversing the (arrows of) mor-
phisms; the knowledge of one of the two mutually dual terms automatically implies the

knowledge of the other.
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F [C] ◦ F [A] : F [X]→ F [Y ]. In this way the total response of the linear
system r = m ◦ e : U → Y in Mor(Vect) transforms into the nonlinear
system behavior F [r] = F [m] ◦ F [e] : F [U ] → F [Y ] in Mor(K). Obviously,
F [r], if exists, is given by a nonlinear F−-transform of the linear state
equation (3.205).

The purpose of this section is to formulate a nonlinear F–transform
for the linear state equation (3.205) for biodynamics, i.e., the biodynamics
functor machine. In subsequent sections we give a three–step development
of a fuzzy–stochastic–Hamiltonian formulation for the biodynamics functor
machine F [S], with a corresponding nonlinear system behavior F [r].

Muscle–Driven, Dissipative, Hamiltonian Biodynamics

In this subsection we choose the functor Can, as the first–order Hamilto-
nian formalism is more suitable for both stochastic and fuzzy generalizations
to follow. Recall that the general deterministic Hamiltonian biodynamics,
representing the canonical functor Can : S•[SO(n)i]⇒ S∗• [so(n)∗i ], is given
by dissipative, driven δ−Hamiltonian equations,

q̇i =
∂H

∂pi
+
∂R

∂pi
, (3.206)

ṗi = Fi −
∂H

∂qi
+
∂R

∂qi
, (3.207)

qi(0) = qi0, pi(0) = p0
i , (3.208)

including contravariant equation (3.206) – the velocity vector–field, and
covariant equation (3.207) – the force 1−form, together with initial joint
angles and momenta (3.208). Here (i = 1, . . . , N), and R = R(q, p) de-
notes the Raileigh nonlinear (biquadratic) dissipation function, and Fi =
Fi(t, q, p) are covariant driving torques of equivalent muscular actuators, re-
sembling muscular excitation and contraction dynamics in rotational form.

The velocity vector–field (3.206) and the force 1−form (3.207) together
define the generalized Hamiltonian vector–field XH , which geometrically
represents the section of the momentum phase–space manifold T ∗M , which
is itself the cotangent bundle of the biodynamical configuration manifold
M ; the Hamiltonian (total energy) function H = H(q, p) is its generating
function.

As a Lie group, the configuration manifold M is Hausdorff [Abraham
et al. (1988); Marsden and Ratiu (1999); Postnikov (1986)]. Therefore, for
x = (qi, pi) ∈ Up, Up open in T ∗M , there exists a unique one–parameter
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group of diffeomorphisms φδt : T ∗M → T ∗M , the generalized deterministic
δ−Hamiltonian phase–flow

φδt : G1 × T ∗M → T ∗M : (p(0), q(0)) 7→ (p(t), q(t)), (3.209)

(φδt ◦ φδs = φδt+s , φδ0 = identity),

given by (3.206–3.208) such that

d

dt
|t=0 φδtx = J∇H(x).

The δ−Hamiltonian system (3.206–3.208), with its δ−Hamiltonian
phase–flow φδt (3.209), i.e., the canonical functor Can, represents our first,
continual–deterministic model for the biodynamics functor machine F [S]
with the nonlinear system behavior F [r]. In the two subsequent sections
we generalize this model to include discrete stochastic forces and fuzzy SN.

Stochastic–Lie–Hamiltonian Biodynamical Functor

In terms of the Markov stochastic process, we can interpret the de-
terministic δ−Hamiltonian biodynamical system (3.206–3.208) as deter-
ministic drift corresponding to the Liouville equation. Thus, we can
naturally (in the sense of Langevin) add the covariant vector σi(t) of
stochastic forces (diffusion fluctuations and discontinuous–Master jumps)
σi(t) = Bij [qi(t), t] dW j(t) to the canonical force equation. In this way we
get stochastic σ−Hamiltonian biodynamical system, a stochastic transfor-
mation Stoch[Can] of the canonical functor Can,

dqi =
(
∂H

∂pi
+
∂R

∂pi

)
dt, (3.210)

dpi =
(
Fi −

∂H

∂qi
+
∂R

∂qi

)
dt+ σi(t), (3.211)

σi(t) = Bij [qi(t), t] dW j(t), qi(0) = qi0, pi(0) = p0
i .

In our low–dimensional example–case of symmetrical 3D load–lifting,
the velocity and force σ−Hamiltonian biodynamics equations (3.210–3.211)
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become

dqi =

pi
[Ji]−1 +

mi

 i∑
j=1

Lj cos qj

2

−1+

∂R

∂pi

 dt,

dpi = Bij [qi(t), t] dW j(t) +

Fi − g 10−i∑
j=i

Ljmj sin qj

−
10−i∑
j=i

Lj sin qjpipj

mi

(
i∑

k=1

Lk cos qk
)3
−1

+
∂R

∂qi

 dt.

Recall that Ito quadratic cotangent bundle I∗QN is defined as a Whit-
ney sum

I∗QN = T ∗QN ⊕ SQN ,

where SQN corresponds to stochastic tensor bundle, whose elements are
2nd–order tensor–fields composed of continual diffusion fluctuations and
discontinuous jumps at every point of the manifold QN . On I∗QN is defined
a non–degenerate, stochastic 2−form α which is closed, i.e., dα = 0, and
exact, i.e., α = dβ, where 1−form β represents a section β : QN → I∗QN

of the Ito bundle I∗QN .
Now, the stochastic Hamiltonian vector–field ΞH represents a section

ΞH : QN → IQN of the Ito quadratic tangent bundle IQN , also defined as
a Whitney sum

IQN = TM ⊕ SQN .

The quadratic character of Ito stochastic fibre–bundles corresponds to
the second term (trace of the 2nd–order tensor–field) of associate stochastic
Taylor expansion (see [Elworthy (1982); Mayer (1981)]).

Through stochastic σ−Hamiltonian biodynamical system (3.210–3.211),
the deterministic δ−Hamiltonian phase–flow φδt (3.209), extends into
stochastic σ−Hamiltonian phase–flow φσt

φσt : G1 × I∗M → I∗M : (p(0), q(0)) 7→ (p(t), q(t)), (3.212)

(φσt ◦ φσs = φσt+s , φσ0
= identity),

where I∗M denotes Ito quadratic cotangent bundle (see [Elworthy (1982);
Mayer (1981)]) of biodynamical configuration manifold M.
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Besides the σ−Hamiltonian phase–flow φσt (3.212), including N indi-
vidual random–phase trajectories, we can also define (see [Elworthy (1982)])
an average or mean 〈σ〉− Hamiltonian flow 〈φ〉σt

〈φ〉σt : G1 × I∗M → I∗M : (〈p(0)〉 , 〈q(0)〉) 7→ (〈p(t)〉 , 〈q(t)〉),
(〈φ〉σt ◦ 〈φ〉σs = 〈φ〉σt+s , 〈φ〉σ0

= identity),

which stochastically corresponds to the trajectory of the center of
mass in the human–like dynamics, approximatively lumbo–sacral spinal
SO(3)−joint.

The necessary conditions for existence of a unique non–anticipating so-
lution of the σ−Hamiltonian biodynamical system in a fixed time inter-
val are Lipschitz condition and growth condition (see [Elworthy (1982);
Mayer (1981)]). For constructing an approximate solution a simple iterative
Cauchy–Euler procedure could be used to calculate (qik+1, p

k+1
i ) from the

knowledge of (qik, p
k
i ) on the mesh of time points tk, k = 1, . . . , s, by adding

discrete δ–Hamiltonian drift–terms Ai(qik)∆tk and Ai(pki )∆tk,as well as a
stochastic term Bij(qki , t

k)∆W j
k .

σ−Hamiltonian biodynamical system (3.210–
3.211), with its σ−Hamiltonian phase–flow φσt (3.212), i.e., the functor
Stoch[Can], represents our second, continual–discrete stochastic model for
the biodynamics functor machine F [S] with the nonlinear system behavior
F [r]. In the next section we generalize this model once more to include
fuzzy SN.

Fuzzy–Stochastic–Lie–Hamiltonian Functor

Generally, a fuzzy differential equation model (FDE–model, for short)
is a symbolic description expressing a state of incomplete knowledge of the
continuous world, and is thus an abstraction of an infinite set of ODEs
models. Qualitative simulation (see [Berleant and Kuipers (1992)]) pre-
dicts the set of possible behaviors consistent with a FDE model and an
initial state. Specifically, as a FDE we consider an ordinary deterministic
(i.e., crisp) differential equation (CDE) in which some of the parameters
(i.e., coefficients) or initial conditions are fuzzy numbers, i.e., uncertain and
represented in a possibilistic form. As a solution of a FDE we consider a
time evolution of a fuzzy region of uncertainty in the system’s phase–space,
which corresponds to its the possibility distribution.

Recall that a fuzzy number is formally defined as a convex, normalized
fuzzy set [Dubois and Prade (1980); Cox (1992); Cox (1994)]. The concept
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of fuzzy numbers is an extension of the notion of real numbers: it encodes
approximate quantitative knowledge. It is not probabilistic, but rather a
possibilistic distribution. The mathematics of fuzzy numbers is founded on
the extension principle, introduced by Zadeh [Yager (1987)]. This principle
gives a general method for extending standard mathematical concepts in
order to deal with fuzzy quantities [Dubois and Prade (1980)].

Let Φ : Y 1 × Y 2 × · · · × Y n → Z be a deterministic map such that
z = Φ(y1, y2, . . . , yn) for all z ∈ Z, yi ∈ Y i. The extension principle allows
us to induce from n input fuzzy sets ȳi on Y i an output fuzzy set z̄ on Z

through Φ given by

µz̄(t) = sup
t=Φ(s1,...,sn)

min(µȳ1(s1), . . . , µȳn(sn)),

or µz̄(t) = 0 if Φ−1(t) = ∅,

where Φ−1(t) denotes the inverse image of t and µȳi is the membership
function of ȳi, (i = 1, . . . , n).

The extension principle gives a method to calculate the fuzzy value
of a fuzzy map but, in practice, its application is not feasible because of
the infinite number of computations it would require. The simplest way
of efficiently applying the extension principle is in the form of iterative
repetition of several crisp Hamiltonian simulations (see [Bontempi (1995);
Ivancevic and Snoswell (2001); Pearce and Ivancevic (2003); Pearce and
Ivancevic (2004)]), within the range of included fuzzy SN.

Fuzzification of the crisp deterministic δ−Hamiltonian biodynamical
system (3.206–3.208) gives the fuzzified µ−-Hamiltonian biodynamical sys-
tem, namely δ−-Hamiltonian biodynamical system with fuzzy SN, i.e., the
fuzzy transformation Fuzzy[Can] of the canonical functor Can

q̇i =
∂H(q, p, σ)

∂pi
+
∂R

∂pi
, (3.213)

ṗi = F̄i(q, p, σ)− ∂H(q, p, σ)
∂qi

+
∂R

∂qi
, (3.214)

qi(0) = q̄i0, pi(0) = p̄0
i , (i = 1, . . . , N). (3.215)

Here σ = σµ (with µ ≥ 1) denote fuzzy sets of conservative parameters
(segment lengths, masses and moments of inertia), dissipative joint damp-
ings and actuator parameters (amplitudes and frequencies), while the bar
(̄.) over a variable (.) denotes the corresponding fuzzified variable.
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In our example–case of symmetrical 3D load–lifting, the fuzzified
µ−Hamil-tonian biodynamical system (3.213–3.215) becomes

q̇i = pi

[J̄i]−1 +

m̄i

 i∑
j=1

L̄j cos qj

2

−1+

∂R

∂pi
,

ṗi = F̄i(t, qi, pi, {σ}µ)− g
10−i∑
j=i

L̄jm̄j sin qj

−
10−i∑
j=i

L̄j sin qjpipj

m̄i

(
i∑

k=1

L̄k cos qk
)3
−1

+
∂R

∂qi

qi(0) = q̄i0, pi(0) = p̄0
i , (i = 1, . . . , 9).

In this way, the crisp δ−-Hamiltonian phase–flow φδt (3.209) extends
into fuzzy–deterministic µ−-Hamiltonian phase–flow φµt

φµt : G1 × T ∗M → T ∗M : (p̄0
i , q̄

i
0) 7→ (p(t), q(t)),

(φµt ◦ φµs = φµt+s , φµ0
= identity).

Similarly, fuzzification of crisp stochastic σ−Hamiltonian biodynamical
system (3.210–3.211) gives fuzzy–stochastic [µσ]−Hamiltonian biodynam-
ical system, namely stochastic σ−Hamiltonian biodynamical system with
fuzzy SN, i.e., the fuzzy–stochastic transformation Fuzzy[Stoch[Can]] of the
canonical functor Can

dqi =
(
∂H(q, p, σ)

∂pi
+
∂R

∂pi

)
dt, (3.216)

dpi = Bij [qi(t), t] dW j(t) +
(
F̄i(q, p, σ)− ∂H(q, p, σ)

∂qi
+
∂R

∂qi

)
dt, (3.217)

qi(0) = q̄i0, pi(0) = p̄0
i . (3.218)
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In our example–case of symmetrical 3D load–lifting, the velocity and
force [µσ]−Hamiltonian biodynamics equations (3.216–3.217) become

dqi =

pi
[J̄i]−1 +

m̄i

 i∑
j=1

L̄j cos qj

2

−1+

∂R

∂pi

 dt,

dpi = Bij [qi(t), t] dW j(t) +

F̄i(t, qi, pi, {σ}µ)− g
10−i∑
j=i

L̄jm̄j sin qj

−
10−i∑
j=i

L̄j sin qjpipj

m̄i

(
i∑

k=1

L̄k cos qk
)3
−1

+
∂R

∂qi

 dt.

In this way, the crisp stochastic σ−-Hamiltonian phase–flow φσt (3.212)
extends into fuzzy–stochastic [µσ]–Hamiltonian phase–flow φ[µσ]t

φ[µσ]t : G1 × I∗M → I∗M : (p̄0
i , q̄

i
0) 7→ (p(t), q(t)), (3.219)

(φ[µσ]t ◦ φ[µσ]s = φ[µσ]t+s , φ[µσ]0 = identity).

[µσ]−Hamiltonian biodynamical system (3.216–3.218), with its phase–
flow φ[µσ]t (3.219), i.e., the functor Fuzzy[Stoch[Can]], represents our final,
continual–discrete and fuzzy–stochastic model for the biodynamics functor
machine F [S] with the nonlinear system behavior F [r].

3.13.5 Biodynamical Topology

3.13.5.1 (Co)Chain Complexes in Biodynamics

In this section we present the category of (co)chain complexes, as used in
modern biodynamics. The central concept in cohomology theory is the
category S•(C) of generalized cochain complexes in an Abelian category C
[Dieudonne (1988)]. The objects of the category S•(C) are infinite sequences

A• : · · · −→ An−1 dn−1
- An

dn - An+1 −→ · · ·

where, for each n ∈ Z, An is an object of C and dn a morphism of C, with
the conditions

dn−1 ◦ dn = 0
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for every n ∈ Z. When An = 0 for n < 0, one speaks of cochain complexes.
The dn are called coboundary operators.

The morphisms of the category S•(C) are sequences f• = (fn) : A• →
B• where, for each n ∈ Z, fn : An → Bn is a morphism of C, and in the
diagram

· · · −→ An−1 dn−1
- An

dn - An+1 −→ · · ·

fn−1
|
↓ fn

|
↓ fn+1

|
↓ (3.220)

· · · −→ Bn−1 dn−1
- Bn

dn - Bn+1 −→ · · ·

all squares are commutative; one says the fn commute with the coboundary
operators. One has Im dn+1 ⊂ Ker dn ⊂ An for every n ∈ Z; the quotient
Hn(A•) = Ker dn/ Im dn+1 is called the nth cohomology object of A•. From
(3.220) it follows that there is a morphism

Hn(f•) : Hn(A•)→ Hn(B•)

deduced canonically from f•, and

(A•, f•)⇒ (Hn(A•),Hn(f•))

is a covariant functor from S•(C) to C.
The cohomology exact sequence: if three cochain complexes A•, B•, C•

are elements of a short exact sequence of morphisms

0 −→ A• −→ B• −→ C• −→ 0

then there exists an infinite sequence of canonically defined morphisms
dn : Hn(C•)→ Hn−1(A•) such that the sequence

· · · −→ Hn(A•) −→ Hn(B•) −→ Hn(C•) −→ Hn−1(A•) −→ · · ·

is exact, that is the image of each homomorphism in the sequence is exactly
the kernel of the next one.

The dual to the category S•(C) is the category of S•(C) of generalized
chain complexes. Its objects and morphisms are get by formal inversion of
all arrows and lowering all indices.
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Biodynamical (Co)Homologies

LetM• denote the Abelian category of cochains, (i.e., p−-forms) on the
biodynamical configuration manifold M (see Figure 3.7). When C =M•,
we have the category S•(M•) of generalized cochain complexes A• inM•,
and if A′ = 0 for n < 0 we have a subcategory S•DR(M•) of the de Rham
differential complexes in M•

A•DR : 0→ Ω0(M) d−→ Ω1(M) d−→ Ω2(M) · · · d−→ Ωn(M) d−→ · · · .

Here A′ = Ωn(M) is the vector space over R of all p–forms ω on M (for
p = 0 the smooth functions on M) and dn = d : Ωn−1(M)→ Ωn(M) is the
exterior differential. A form ω ∈ Ωn(M) such that dω = 0 is a closed form
or n–cocycle. A form ω ∈ Ωn(M) such that ω = dθ, where θ ∈ Ωn−1(M), is
an exact form or n–coboundary. Let Zn(M) = Ker d (resp. Bn(M) = Im d

denote a real vector space of cocycles (resp. coboundaries) of degree n.
Since dn+1 ◦ dn = d2 = 0, we have Bn(M) ⊂ Zn(M). The quotient vector
space

Hn
DR(M) = Ker d/ Im d = Zn(M)/Bn(M)

is the de Rham cohomology group. The elements of Hn
DR(M) represent

equivalence sets of cocycles. Two cocycles ω1, ω2 belong to the same
equivalence set, or are cohomologous (written ω1 ∼ ω2) iff they differ by a
coboundary ω1 − ω2 = dθ. The de Rham’s cohomology class of any form
ω ∈ Ωn(M) is [ω] ∈ Hn

DR(M). The de Rham differential complex (1) can
be considered as a system of second–order DEs d2θ = 0, θ ∈ Ωn−1(M)
having a solution represented by Zn(M) = Ker d.

Analogously let M• denote the Abelian category of chains on the con-
figuration manifold M . When C = M•, we have the category S•(M•) of
generalized chain complexes A• inM•, and if An = 0 for n < 0 we have a
subcategory SC• (M•) of chain complexes in M•

A• : 0← C0(M) ∂←− C1(M) ∂←− C2(M) · · · ∂←− Cn(M) ∂←− · · · .

Here An = Cn(M) is the vector space over R of all finite chains C on the
manifold M and ∂n = ∂ : Cn+1(M) → Cn(M). A finite chain C such
that ∂C = 0 is an n−cycle. A finite chain C such that C = ∂B is an
n−boundary. Let Zn(M) = Ker ∂ (resp. Bn(M) = Im ∂) denote a real
vector space of cycles (resp. boundaries) of degree n. Since ∂n+1 ◦ ∂n =
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∂2 = 0, we have Bn(M) ⊂ Zn(M). The quotient vector space

HC
n (M) = Ker ∂/ Im ∂ = Zn(M)/Bn(M)

is the n−homology group. The elements of HC
n (M) are equivalence sets

of cycles. Two cycles C1, C2 belong to the same equivalence set, or are
homologous (written C1 ∼ C2), iff they differ by a boundary C1−C2 = ∂B).
The homology class of a finite chain C ∈ Cn(M) is [C] ∈ HC

n (M).
The dimension of the n−cohomology (resp. n−homology) group equals

the nth Betti number bn (resp. bn) of the manifold M . Poincaré lemma
says that on an open set U ∈ M diffeomorphic to RN , all closed forms
(cycles) of degree p ≥ 1 are exact (boundaries). That is, the Betti numbers
satisfy bp = 0 (resp. b = 0), for p = 1, . . . , n.

The de Rham Theorem states the following. The map Φ: Hn×Hn → R
given by ([C], [ω])→ 〈C,ω〉 for C ∈ Zn,ω ∈ Zn is a bilinear nondegenerate
map which establishes the duality of the groups (vector spaces) Hn and Hn

and the equality bn = bn.

Configuration Manifold Reduction and its Euler Characteristic

Recall (see subsection (3.8.4.3) above), that for the purpose of high–
level control, the rotational biodynamical configuration manifold M (Figure
3.6), could be first, reduced to an n−torus, and second, transformed into
an n−cube ‘hyper–joystick’, using the following topological techniques (see
[Ivancevic and Pearce (2001b); Ivancevic (2002); Ivancevic (2005)]).

Let S1 denote the constrained unit circle in the complex plane, which
is an Abelian Lie group. Firstly, we propose two reduction homeomor-
phisms, using the noncommutative semidirect product ‘�’ of the con-
strained SO(2)−groups:

SO(3) & SO(2) � SO(2) � SO(2), and SO(2) ≈ S1.

Next, let In be the unit cube [0, 1]n in Rn and ‘∼’ an equivalence relation
on Rn get by ‘gluing’ together the opposite sides of In, preserving their
orientation. Therefore, the manifold M can be represented as the quotient
space of Rn by the space of the integral lattice points in Rn, that is an
oriented and constrained nD torus Tn:

Rn/Zn = In/ ∼≈
n∏
i=1

S1
i ≡ {(qi, i = 1, . . . , N) : mod 2π} = Tn. (3.221)

Now, using the de Rham Theorem and the homotopy Axiom for the de
Rham cohomologies, we can calculate the Euler–Poincaré characteristics
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for Tn as well as for its two bundles, TTn and T ∗Tn, as (see [Ivancevic
(2002); Ivancevic (2005)])

χ(Tn, TTn) =
n∑
p=1

(−1)pbp , where bp are the Betti numbers defined as

b0 = 1, b1 = n, . . . bp =
(
n

p

)
, . . . bn−1 = n, bn = 1, (p = 0, ..., n).

3.13.5.2 Morse Theory in Biodynamics

Morse Geometry of a Biodynamical Manifold

Recall that on any smooth manifold M there exist many Riemannian
metrics g. Each of these metrics is locally defined in a particular point q ∈M
as a symmetric (0, 2) tensor–field such that g|q : TqM ×TqM → R is a pos-
itively defined inner product for each point q ∈ M . In an open local chart
U ∈ M containing the point q, this metric is given as g|q 7→ gij(q) dqidqj .
With each metric g|q there is associated a local geodesic on M .

Now, two main global geodesics problems on the biodynamical configu-
ration manifold M with the Riemannian metrics g, can be formulated as
follows (compare with subsection 3.10.5.1 above):

(1) Is there a minimal geodesic γ0(t) between two points A and B on M? In
other words, does an arc of geodesic γ0(t) with extremities A,B actually
have minimum length among all rectifiable curves γ(t) = (qi(t), pi(t))
joining A and B?

(2) How many geodesic arcs are there joining two points A and B on M?

Locally these problems have a complete answer : each point of the bio-
dynamics manifold M has an open neighborhood V such that for any two
distinct points A,B of V there is exactly one arc of a geodesic contained
in V and joining A and B, and it is the unique minimal geodesic between
A and B.

Recall (see subsection (3.10.5.1) above), that seven decades ago, Morse
considered the set Ω = Ω(M ;A,B) of piecewise smooth paths on a Rie-
mannian manifold M having fixed extremities A,B, defined as continuous
maps γ : [0, 1]→M such that γ(0) = A, γ(1) = B, and there were a finite
number of points

t0 = 0 < t1 < t2 < · · · < tm−1 < tm = 1, (3.222)
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such that in every closed interval [ti, ti+1], γ was a C∞−function. The
parametrization was always chosen such that for tj ≤ t ≤ tj+1,

t− tj =
tj+1 − tj

lj

∫ t

tj

‖ dγ
du
‖ du, with lj =

∫ tj+1

tj

‖ dγ
du
‖ du.

(3.223)
In other words, t− tj was proportional to the length of the image of [tj , t]
by γ. Then

L(γ) =
m∑
j=0

lj ,

the length of γ, was a function of γ in Ω. A minimal arc from A to B should
be a path γ for which L(γ) is minimum in Ω, and a geodesic arc from A to
B should be a path that is a ‘critical point’ for the function L. This at first
has no meaning, since Ω is not a differential manifold; the whole of Morse’s
theory consists in showing that it is possible to substitute for Ω genuine
differential manifolds to which his results on critical points can be applied
([Morse (1934)]).

To study the geodesics joining two points A,B it is convenient, instead
of working with the length L(γ), to work with the energy of a path γ :
[A,B]→M , defined by ([Dieudonne (1988)])

EBA (γ) =
∫ B

A

‖ dγ
du
‖2 du. (3.224)

With the chosen parametrization (3.223), E(γ) = (B − A)L(γ)2, and the
extremals of E are again the geodesics, but the computations are easier
with E.

Morse theory can be divided into several steps (see [Milnor (1963)]).
Step 1 is essentially a presentation of the classical Lagrangian method

that brings to light the analogy with the critical points of a C∞− function
on M . No topology is put on Ω; a variation of a path γ ∈ Ω is a continuous
map α into M , defined in a product ] − ε, ε[× [0, 1] with the following
properties:

(1) α(0, t) = γ(t);
(2) α(u, 0) = A, α(u, 1) = B for -ε < u < ε; and
(3) There is a decomposition (3.222) such that α is C∞ in each set

]− ε, ε[× [ti, ti+1].
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A variation vector–field t 7→ W (t) is associated to each variation α,
where W (t) is a tangent vector in the tangent space Tγ(t)M to M , defined
by

W (t) = ∂uα(0, t). (3.225)

It is a continuous map of [0, 1] into the tangent bundle TM , smooth in each
interval [ti, ti+1]. These maps are the substitute for the tangent vectors at
the point γ; they form an infinite–dimensional vector space written TΩ(γ).

More generally the interval ]− ε, ε[ can be replaced in the definition of
a variation by a neighborhood of 0 in some Rn, defining an n−parameter
variation.

A critical path γ0 ∈ Ω for a function F : Ω −→ R is defined by the
condition that for every variation α of γ0 the function

u 7→ F (α(u, ·))

is derivable for u = 0 and its derivative is 0.
Step 2 is a modern presentation of the formulas of Riemannian geometry,

giving the first variation and second variation of the energy (3.224) of a
path γ0 ∈ Ω, which form the basis of Jacobi results.

First consider an arbitrary path ω0 ∈ Ω, its velocity ω̇(t) = dω/dt, and
its acceleration in the Riemannian sense

ω̈(t) = ∇tω̇(t),

where ∇t denotes the Bianchi covariant derivative. They belong to Tω(t)M

for each t ∈ [0, 1], are defined and continuous in each interval [ti, ti+1] in
which ω is smooth, and have limits at both extremities. Now let α be a
variation of ω and t 7→ W (t) be the corresponding variation vector–field
(3.225). The first variation formula gives the first derivative

1
2
d

du
E(α(u, ·))|u=0 = −

∑
i

(W (ti)|ω̇(ti+)− ω̇(ti−))−
∫ 1

0

(W (t)|ω̈(t)) dt,

where (x|y) denotes the scalar product of two vectors in a tangent space.
It follows from this formula that γ0 ∈ Ω is a critical path for E iff γ is a
geodesic.

Next, fix such a geodesic γ and consider a two–parameter variation:

α : U × [0, 1]→M,
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where U is a neighborhood of 0 in R2, so that

α(0, 0, t) = γ(t), ∂u1α(0, 0, t) = W1(t), ∂u2α(0, 0, t) = W2(t),

in which W1 and W2 are in TΩ(γ). The second variation formula gives the
mixed second derivative

1
2

∂2

∂u1∂u2
E(α(u1, u2, ·)))|(0,0) = −

∑
i

(W2(ti)|∇tW1(ti+)−∇tW1(ti−))

−
∫ 1

0

(W2(t)|∇2
tW1(t) +R(V (t) ∧W1(t)) · V (t)) dt, (3.226)

where Z 7→ R(X ∧ Y ) · Z is the curvature of the Levi–Civita connection.
The l.h.s of (3.226) is thus a bilinear symmetric form

(W1,W2) 7→ E∗∗(W1,W2)

on the product TΩ(γ)× TΩ(γ). For a one–parameter variation α

E∗∗(W,W ) =
1
2
d2

du2
E(α(u, ·))|u=0,

from which it follows that if γ is a minimal geodesic in Ω, E∗∗(W,W ) ≥ 0
in TΩ(γ). As usual, we shall speak of E∗∗ indifferently as a symmetric
bilinear form or as a quadratic form W 7→ E∗∗(W,W ).

Formula (3.226) naturally leads to the junction with Jacobi work (see
[Dieudonne (1988)]): consider the smooth vector–fields t 7→ J(t) along
γ ∈M , satisfying the equation

∇2
tJ(t) +R(V (t) ∧ J(t)) · V (t) = 0 for 0 ≤ t ≤ 1. (3.227)

With respect to a frame along γ moving by parallel translation onM this
relation is equivalent to a system of n linear homogeneous ODEs of order 2
with C∞−coefficients; the solutions J of (3.227) are called the Jacobi fields
along γ and form a vector space of dimension 2n. If for a value a ∈]0, 1] of
the parameter t there exists a Jacobi field along γ that is not identically 0
but vanishes for t = 0 and t = a, then the points A = γ(0) and r = γ(a)
are conjugate along γ with a multiplicity equal to the dimension of the
vector space of Jacobi fields vanishing for t = 0 and t = a.

Jacobi fields on the biodynamical configuration manifold M may also be
defined as variation vector–fields for geodesic variations of the path γ ∈M :
they are C∞−maps

α : ]− ε, ε[× [0, 1]→M,
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such that for any u ∈ ]− ε, ε[ , t 7→ α(u, t) is a geodesic and α(0, t) = γ(t).
It can be proved that the Jacobi fields along γ ∈ M that vanish at A

and B (hence belong to TΩ(γ)) are exactly the vector–fields J ∈ TΩ(γ)
such that

E∗∗(J,W ) = 0

for every W ∈ TΩ(γ). Although TΩ(γ) is infinite–dimensional, the form
E∗∗ is again called degenerate if the vector space of the Jacobi fields van-
ishing at A and B is note reduced to 0 and the dimension of that vector
space is called the nullity of E∗∗. Therefore, E∗∗ is thus degenerate iff A

and B are conjugate along γ and the nullity of E∗∗ is the multiplicity of B.
Step 3 is the beginning of Morse’s contributions (see [Milnor (1963)]).

He first considered a fixed geodesic γ : [0, 1] → M with extremities A =
γ(0), B = γ(1) and the bilinear symmetric form E∗∗ : TΩ(γ)×TΩ(γ)→ R.
By analogy with the finite–dimensional quadratic form, the index of E∗∗ is
defined as the maximum dimension of a vector subspace of TΩ(γ) in which
E∗∗ is strictly negative (i.e., nondegenerate and taking values E∗∗(W,W ) <
0 except for W = 0). Morse’s central result gives the value of the index of
E∗∗ and is known as the index Theorem.

Suppose a subdivision (3.222) is chosen such that each arc γ([ti−1, ti]) is
contained in an open set Ui ⊂M such that any two points of Ui are joined
by a unique geodesic arc contained in Ui that is minimal ; γ([ti−1, ti]) is
such an arc. In the infinite–dimensional vector space TΩ(γ), consider the
two vector subspaces:

(1) TΩ(γ; t0, t1, · · · , tm) consisting of all continuous vector–fields t 7→W (t)
along γ, vanishing for t = 0 and t = 1, such that each restriction
W |[ti−1, ti] is a Jacobi field (hence smooth) along γ([ti−1, ti]); that
subspace is finite–dimensional;

(2) T ′ consisting of the vector–fields t 7→W (t) along γ, such that W (t0) =
0, W (t1) = 0, · · · ,W (tm) = 0.

TΩ(γ) is then the direct sum TΩ(γ; t0, t1, · · · , tm)⊕ T ′; these two sub-
spaces are orthogonal for the bilinear form E∗∗, and E∗∗ is strictly positive
in T ′, so that the index of E∗∗ is equal to the index of its restriction to the
subspace TΩ(γ; t0, t1, · · · , tm).

To calculate the nullity and index of E∗∗, due to this decomposition,
apply their definitions either to vector subspaces of TΩ(γ) or to vector
subspaces of TΩ(γ; t0, t1, · · · , tm). The computation of the index of E∗∗ is
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done by considering the geodesic arc γτ : [0, τ ] → M , the restriction of γ
to [0, τ ], and its energy

E(γτ ) = τ

∫ τ

0

‖ dγ
du
‖2 du.

Eτ∗∗ is the corresponding quadratic form on TΩ(γτ ), and λ(τ) is its index;
one studies the variation of λ(τ) when tau varies from 0 to 1, and λ(1) is
the index of E∗∗.

The index Theorem says: the index of E∗∗ is the sum of the multiplic-
ities of the points conjugate to A along B and distinct from B.

We have seen that the dimension of TΩ(γ; t0, t1, · · · , tm) is finite; it
follows that the index of E∗∗ is always finite, and therefore the number of
points conjugate to A along γ is also finite.

Step 4 of Morse theory introduces a topology on the set Ω = Ω(M ;A,B).
On the biodynamical configuration manifold M the usual topology can be
defined by a distance ρ(A,B), the g.l.b. of the lengths of all piecewise
smooth paths joining A and B. For any pair of paths ω1, ω2 in Ω(M ;A,B),
consider the function d(ω1, ω2) ∈M

d(ω1, ω2) = sup
06t61

ρ(ω1(t), ω2(t)) +

√∫ 1

0

(ṡ1 − ṡ2)2 dt,

where s1(t) (resp. s2(t)) is the length of the path τ 7→ ω1(τ) (resp. τ 7→
ω2(τ)) defined in [0, t]. This distance on Ω such that the function ω 7→
EBA (ω) is continuous for that distance.

Morse Homology of a Biodynamical Manifold

Morse Functions and Boundary Operators. Let f : M → R
represents a C∞−function on the biodynamical configuration manifold M .
Recall that z = (q, p) ∈M is the critical point of f if df(z) ≡ df [(q, p)] = 0.
In local coordinates (x1, ..., xn) = (q1, ..., qn, p1, ..., pn) in a neighborhood
of z, this means ∂f

∂xi (z) = 0 for i = 1, ..., n. The Hessian of f at a critical
point z defines a symmetric bilinear form ∇df(z) = d2f(z) on TzM , in
local coordinates (x1, ..., xn) represented by the matrix

(
∂2f

∂xi∂xj

)
. Index

and nullity of this matrix are called index and nullity of the critical point
z of f .

Now, we assume that all critical points z1, ..., zn of f ∈ M are nonde-
generate in the sense that the Hessians d2f(zi), i = 1, ...,m, have maximal
rank. Let z be such a critical point of f of Morse index s (= number
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of negative eigenvalues of d2f(zi), counted with multiplicity). The eigen-
vectors corresponding to these negative eigenvalues then span a subspace
Vz ⊂ TzM of dimension s. We choose an orthonormal basis e1, ..., es of
Vz w.r.t. the Riemannian metric g on M (induced by the system’s kinetic
energy), with dual basis dx1, ..., dxs. This basis then defines an orientation
of Vz which we may also represent by the s−-form dx1 ∧ ... ∧ dxs. We now
let z′ be another critical point of f , of Morse index s − 1. We consider
paths γ(t) of the steepest descent of f from z to z′, i.e., integral curves of
the vector–field -∇f(γ). Thus γ(t) defines the gradient flow of f

γ̇(t) = −∇f (γ(t)) , with
{

limt→−∞ γ(t) = z,

limt→∞ γ(t) = z′
. (3.228)

A path γ(t) obviously depends on the Riemannian metric g on M as

∇f = gij ∂xif ∂xjf.

From [Smale (1960); Smale (1967)] it follows that for a generic metric g,
the Hessian ∇df(y) has only nondegenerate eigenvalues. Having a metric
g induced by the system’s kinetic energy, we let Ṽy ⊂ TyM be the space
spanned by the eigenvectors corresponding to the s− 1 lowest eigenvalues.
Since z′ has Morse index s−1, ∇df(z′) = d2f(z′) has precisely s−1 negative
eigenvalues. Therefore, Ṽz′ ≡ limt→∞ Ṽγ(t) = Vz′ , while the unit tangent
vector of γ at z′, i.e., limt→∞

γ̇(t)
‖γ̇(t)‖ , lies in the space of directions corre-

sponding to positive eigenvalues and is thus orthogonal to Vz′ . Likewise,
the unit tangent vector vz of γ at z, while contained in Vz, is orthogonal to
Ṽz, because it corresponds to the largest one among the s negative eigen-
values of d2f(z). Taking the interior product i(vz) dx1 ∧ ...∧ dxs defines an
orientation of Ṽz. Since Ṽy depends smoothly on y, we may transport the
orientation of Ṽz to Ṽz′ along γ. We then define nγ = +1 or -1, depending
on whether this orientation of Ṽz′ coincides with the chosen orientation of
Vz′ or not, and further define n(z, z′) =

∑
γ nγ , where the sum is taken

over all such paths γ of the steepest descent from p to p′.
Now, let Ms be the set of critical points of f of Morse index s, and let

Hs
f be the vector space over R spanned by the elements of Ms. We define

a boundary operator

δ : Hs−1
f → Hs

f , by putting, for z′ ∈Ms−1,

δ(z′) =
∑
n∈Ms

n(z′, z) z, and extending δ by linearity.
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This operator satisfies δ2 = 0 and therefore defines a cohomology theory.
Using Conley’s continuation principle, Floer [Floer (1988)] showed that
the resulting cohomology theories resulting from different choices of f are
canonically isomorphic.

In his QFT–based rewriting the Morse topology, Ed Witten [Witten
(1982)] considered also the operators:

dt = e−tfdetf , their adjoints : d∗t = etfde−tf ,

as well as their Laplacian: ∆t = dtd
∗
t + d∗t dt.

For t = 0, ∆0 is the standard Hodge–de Rham Laplacian, whereas for
t→∞, one has the following expansion

∆t = dd∗ + d∗d+ t2 ‖df‖2 + t
∑
k,j

∂2h

∂xk∂xj
[i ∂xk , dx

j ],

where (∂xk)k=1,...,n is an orthonormal frame at the point under considera-
tion. This becomes very large for t→∞, except at the critical points of f ,
i.e., where df = 0. Therefore, the eigenvalues of ∆t will concentrate near
the critical points of f for t→∞, and we get an interpolation between de
Rham cohomology and Morse cohomology.

Morse Homology on M . Now, following [Milinkovic (1999); Ivancevic
and Pearce (2006)], for any Morse function f on the configuration manifold
M we denote by Critp(f) the set of its critical points of index p and define
Cp(f) as a free Abelian group generated by Critp(f). Consider the gradient
flow generated by (3.228). Denote by Mf,g(M) the set of all γ : R → M

satisfying (3.228) such that∫ +∞

−∞

∣∣∣∣dγdt
∣∣∣∣2 dt <∞.

The spaces

Mf,g(x−, x+) = {γ ∈Mf,g(M) | γ(t)→ x± as t→ ±∞}

are smooth manifolds of dimension m(x+) −m(x−), where m(x) denotes
the Morse index of a critical point x. Note that

Mf,g(x, y) ∼= Wu
g (x) ∩W s

g (y),



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Applied Manifold Geometry 413

where W s
g (y) and Wu

g (x) are the stable and unstable manifolds of the gradi-
ent flow (3.228). For generic g the intersection above is transverse (Morse–
Smale condition). The group R acts on Mf,g(x, y) by γ 7→ γ(· + t). We
denote

M̂f,g(x, y) =Mf,g(x, y)/R.

The manifolds M̂f,g(x, y) can be given a coherent orientation σ

(see [Schwarz (1993)]).
Now, we can define the boundary operator, as

∂ : Cp(f)→ Cp−1(f), ∂x =
∑

y∈Critp−1(f)

n(x, y)y,

where n(x, y) is the number of points in 0D manifold M̂f,g(x, y) counted
with the sign with respect to the orientation σ. The proof of ∂ ◦ ∂ = 0 is
based on gluing and cobordism arguments [Schwarz (1993)]. Now Morse
homology groups are defined by

HMorse
p (f) = Ker(∂)/Im(∂).

For generic choices of Morse functions f1 and f2 the groups Hp(f1) and
Hp(f2) are isomorphic. Furthermore, they are isomorphic to the singular
homology group of M , i.e.,

HMorse
p (f) ∼= Hsing

p (M),

for generic f [Milnor (1965)].
The construction of isomorphism is given (see [Milinkovic (1999);

Ivancevic and Pearce (2006)]) as

hαβ : Hp(fα)→ Hp(fβ), (3.229)

for generic Morse functions fα, fβ . Consider the ‘connecting trajectories’,
i.e., the solutions of non–autonomous equation

γ̇ = −∇fαβt , (3.230)

where fαβt is a homotopy connecting fα and fβ such that for some R > 0

fαβt ≡
{
fα for t ≤ −R
fβ for t ≥ R .
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For xα ∈ Critp(fα) and xβ ∈ Critp(fβ) denote

Mfαβ ,g(x
α, xβ) = {γ : γ satisfies (3.230) and lim

t→−∞
γ = xα, lim

t→∞
γ = xβ}.

As before, Mfαβ ,g is a smooth finite–dimensional manifold. Now, define

(hαβ)] : Cp(fα)→ Cp(fβ), by

(hαβ)]xα =
∑

xβ∈Critp(fβ)

n(xα, xβ)xβ , for xα ∈ Critp(fα),

where n(xα, xβ) is the algebraic number of points in 0D manifold
Mfαβ ,g(xα, xβ) counted with the signs defined by the orientation of
Mfαβ ,g. Homomorphisms (hαβ)] commute with ∂ and thus define the ho-
momorphisms hαβ in homology which, in addition, satisfy hαβ ◦hβγ = hαγ .

Now, if we fix a Morse function f : M → R instead of a metric g,
we establish the isomorphism (see [Milinkovic (1999); Ivancevic and Pearce
(2006)])

hαβ : Hp(gα, f)→ Hp(gβ , f)

between the two Morse homology groups defined by means of two generic
metrics gα and gβ in a similar way, by considering the ‘connecting trajec-
tories’,

γ̇ = −∇g
αβ
t f. (3.231)

Here gαβt is a homotopy connecting gα and gβ such that for some R > 0

gαβt ≡
{
gα for t ≤ −R,
gβ for t ≥ R,

and ∇g is a gradient defined by metric g.
Note that f is decreasing along the trajectories solving autonomous

gradient equation (3.228). Therefore, the boundary operator ∂ preserves
the downward filtration given by level sets of f . In other words, if we denote

Critλp(f) = Critp(f) ∩ f−1((−∞, λ]), and

Cλp (f) = free Abelian group generated by Critλp(f),

then the boundary operator ∂ restricts to ∂λ : Cλp (f) → Cλp−1(f). Obvi-
ously, ∂λ ◦ ∂λ = 0, thus we can define the relative Morse homology groups

Hλ
p (f) = Ker(∂λ)/Im(∂λ).
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Following the standard algebraic construction, we define (relative)
Morse cohomology. We set

Cpλ(f) = Hom(Cλp (f),Z), and

δλ : Cpλ(f)→ Cp+1
λ (f), 〈δλa, x〉 = 〈a, ∂λx〉

and define

Hp
λ(f) = Ker(δλ)/Im(δλ).

Since Critp(f) is finite, we have Hλ
p (f) = Hp(f) and Hp

λ(f) = Hp(f).

3.13.5.3 Hodge–De Rham Theory in Biodynamics

Hodge Laplacian

A single biodynamical configuration manifold M can be equipped with
many different Riemannian metrics g in local coordinates (apart from the
one generated by its kinetic energy)

g = gij(u1, u2, ..., un) dui duj .

Beltrami had shown that it is always possible for such a metric to define
an operator (depending on the metric) that generalizes the usual Lapla-
cian on Rn and therefore induces the notion of harmonic functions on the
Riemannian manifold [Choquet-Bruhat and DeWitt-Morete (1982)].

Hodge theory was described by H. Weyl as ‘one of the landmarks in
the history of mathematics in the 20th Century’. Hodge showed that it was
possible to define a notion of harmonic exterior differential form: the metric
g on M canonically defines a metric on the tangent bundle TM , hence also,
by standard multilinear algebra, a metric on any bundle of tensors on M . In
particular, let (α, β) 7→ gp(α, β) be the positive nondegenerate symmetric
bilinear form defined on the vector space of p−forms on M . As M is
orientable, this defines a duality between p−forms and (n − p)−forms: to
each p−form α is associated a (n−p)−form ∗α, defined by the linear Hodge
star operator ∗ (see subsection 3.6.3.7), characterized by the relations

β ∧ (∗α) = gp(α, β) v, ∗ ∗ α = (−1)p(n−p)α,

for all p−forms α, β, where v is the volume form on the Riemannian mani-
fold M . If d is the exterior derivative, it has a transposed (adjoint) operator
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for that duality, the codifferential δ, defined as

δ = −(∗) ◦ d ◦ (∗),

which maps p−forms onto (p− 1)−forms, such that

δα = (−1)np+n+1 ∗ d ∗ α.

Recall (from subsection 3.6.2 above) that the Hodge Laplacian, defined
as

∆ = d ◦ δ + δ ◦ d,

transforms p−forms into p−forms and generalizes Beltrami’s Laplacian
(3.47), which is the special case for p = 0 (up to a sign). This defines
harmonic (real or complex valued) p−forms as those for which ∆α = 0, or
equivalently, dα = δα = 0.

In other words, let dv be the volume element of the chosen metric g.
Then for every p−form α we can define a norm functional

‖α‖ =
∫
X

(α, ∗α)gdv,

for which the Euler–Lagrangian equation becomes ∆α = 0.
Now, the pth Betti number of M can be defined as

bp = dim Ker ∆p,

so that the Euler–Poincaré characteristics of M is given by

χ(M) =
n∑
p=0

(−1)pbp =
n∑
p=0

(−1)p dim Ker ∆p. (3.232)

Finally, for any (p− 1)−form α, (p+ 1)−form β, and harmonic p−form
γ (∆γ = 0) on the biodynamical configuration manifold M , the celebrated
Hodge–de Rham decomposition of a p−form ω [Griffiths (1983b); Voisin
(2002)] gives

ω = dα+ δβ + γ.

Now, recall from section 3.14, that a large class of symplectic manifolds
is given by the Kähler manifolds. Let M be a smooth manifold and g

a Riemannian metric on M . Let J be a complex structure on M , that
is, J : TM → TM , J2 = −Id, and J is g−-orthogonal. M is called a
Kähler manifold if ∇j = 0, where ∇ is the Levi–Civita connection of g



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Applied Manifold Geometry 417

and J is regarded as a (1, 1) tensor–field. Define a 2−form ω on M by
ω(X,Y ) = g(JX, Y ), for each vector–field X,Y on M . Then (M,ω) is a
symplectic manifold.

Hodge theory takes place on the cohomology of the compact orientable
configuration manifold M and reflects the subtle interplay of the following
basic additional linear structures one can impose on M :

• Symplectic structure ω ∈ ΓC∞(M,Λ2T∨M ), where ω is nondegenerate,
dω = 0.
• Riemannian structure g ∈ ΓC∞(M,S2T∨M ), where g is positive definite.
• Complex structure J ∈ ΓC∞(M,End(TM )), where J2 = − id, and J is

integrable.

The data (M,ω, g, J) satisfy the Kähler condition if ω, g and J are
compatible in the sense that

ω(•, J(•)) = g(•, •),

where • is the strong compatibility condition allowing the comparison of
different cohomology theories.

Recall that the de Rham cohomology of (M,J) is defined as

Hk
DR(M) =

Ker
(

Ωk(M) d−→ Ωk+1(M)
)

Im
(

Ωk−1(M) d−→ Ωk(M)
) .

de Rham cohomology classes are represented by harmonic (natural) dif-
ferential forms.

Let (M, g) be a compact oriented (real or complex) Riemannian mani-
fold. Let dv be the volume element of g. Then for every k−form α we can
define

‖α‖ =
∫
M

(α, ᾱ)gdv.

The Euler–Lagrangian equation for the norm functional turns out to be
dα = δα = 0. A k−form α ∈ Ωk(M) is called harmonic if it satisfies one of
the following equivalent conditions:

• α is closed and ‖α‖ ≤ ‖α+ dβ‖ for all β ∈ Ωk−1(M).
• dα = δα = 0.
• ∆α = 0, where ∆ = dδ + δd is the Hodge Laplacian.
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Hodge–Weyl Theorem [Griffiths (1983b); Voisin (2002)] states that every
de Rham cohomology class has a unique harmonic representative.

Heat Kernel and Thermodynamics on M

Besides pure mechanical consideration of biodynamical system, there is
another biophysical point of view – thermodynamical, compatible with the
human motion [Hill (1938)]. Namely, the heat equation on the biodynamical
configuration manifold M ,

∂ta(t) = ∆a(t), with initial condition a(0) = α,

has a unique solution for every t ∈ [0,∞) and every p−form α on M .
If we think of α as an initial temperature distribution on M then as the
configuration manifold cools down, according to the classical heat equation,
the temperature should approach a steady state which should be harmonic
[Davies (1989)].

To prove this, we define a stationary and hence harmonic operator
H(α) = limt→∞ a(t). Also, a map α→ G(α) with

G(α) =
∫ ∞

0

a(t) dt

is orthogonal to the space of harmonic forms and satisfies

∆G(α) =
∫ ∞

0

∆a(t) dt = −
∫ ∞

0

∂ta(t) dt = α−H(α).

Here, the map α → H(α) is called harmonic projection and the map α →
G(α) is called Green’s operator.

In particular, for each p−form α we get a unique decomposition

α = H(α) + ∆G(α).

This proves the existence of a harmonic representative in every de Rham
cohomology class, as follows.

Let α ∈ Ωp(M) be a closed form. Then

α = H(α) + dd∗G(α) + d∗dG(α).

But the three terms in this sum are orthogonal and so

‖d∗dG(α)‖ = 〈d∗dG(α), α〉 = 〈dG(α), dα〉 = 0,

since α is closed. Thus H(α) is cohomologous to α.
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This thermal reflection on the biodynamics topology complies with the
basic biophysics of human muscles (see [Hill (1938)]).

3.13.5.4 Lagrangian–Hamiltonian Duality in Biodynamics

The present section uncovers the underlying dual geometro–topological
structure beneath the general biodynamics. It presents a parallel devel-
opment of Hamiltonian and Lagrangian formulations of biodynamics (see
[Ivancevic and Snoswell (2001); Ivancevic (2002); Ivancevic and Pearce
(2001b); Ivancevic and Pearce (2001b); Ivancevic (2005)]), proves both
differential–geometrical and algebraic–topo-logical dualities between these
two formulations, and finally establishes a unique functorial relation be-
tween biodynamics geometry and biodynamics topology.

Lagrangian formulation of biodynamics is performed on the tangent
bundle TM , while Hamiltonian formulation is performed on the cotangent
bundle T ∗M . Both Riemannian and symplectic geometry are used. The
geometrical duality (see [Kolar et al. (1993); Choquet-Bruhat and DeWitt-
Morete (1982)]) of Lie groups and algebras between these two biodynamics
formulations is proved as an existence of natural equivalence between Lie
and canonical functors. The topological duality (see [Dodson and Parker
(1997)]) between these two biodynamics formulations is proved as an exis-
tence of natural equivalence between Lagrangian and Hamiltonian functors
in both homology and cohomology categories. In the case of reduced con-
figuration manifold, the Betti numbers and Euler–Poincaré characteristic
are given.

Geometrical Duality Theorem for M

Theorem. There is a geometrical duality between rotational Lagrangian
and Hamiltonian biodynamical formulations on M (as given by Figure 3.6).
In categorical terms, there is a unique natural geometrical equivalence

DualG : Lie ∼= Can

in biodynamics (symbols are described in the next subsection).
Proof. The proof has two parts: Lie–functorial and geometrical.
Lie–Functorial Proof. If we apply the functor Lie on the category •[SO(n)i]
(for n = 2, 3 and i = 1, . . . , N) of rotational Lie groups SO(n)i (and their
homomorphisms) we get the category •[so(n)i] of corresponding tangent
Lie algebras so(n)i (and their homomorphisms). If we further apply the
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isomorphic functor Dual to the category •[so(n)i] we get the dual cate-
gory ∗

•[so(n)∗i ] of cotangent, or, canonical Lie algebras so(n)∗i (and their
homomorphisms). To go directly from •[SO(n)i] to ∗

•[so(n)∗i ] we use the
canonical functor Can. Therefore, we have a commutative triangle:

•[so(n)i]
∗
•[so(n)∗i ]--

∼=
DualA

•[SO(n)i]

Lie

�
�

�
�

�
�	

Can

@
@

@
@

@
@R

LGA

Applying the functor Lie on the biodynamical configuration manifold
M , we get the product–tree of the same anthropomorphic structure, but
having tangent Lie algebras so(n)i as vertices, instead of the groups SO(n)i.
Again, applying the functor Can on M , we get the product–tree of the same
anthropomorphic structure, but this time having cotangent Lie algebras
so(n)∗i as vertices. Both the tangent algebras so(n)i and the cotangent
algebras so(n)∗i contain infinitesimal group generators: angular velocities
q̇i = q̇φi – in the first case, and canonical angular momenta pi = pφi – in the
second case [Ivancevic and Snoswell (2001)]. As Lie group generators, both
the angular velocities and the angular momenta satisfy the commutation
relations: [q̇φi , q̇ψi ] = εφψθ q̇θi and [pφi , pψi ] = εθφψ pθi , respectively, where
the structure constants εφψθ and εθφψ constitute the totally antisymmetric
third–order tensors.

In this way, the functor DualG : Lie ∼= Can establishes the unique ge-
ometrical duality between kinematics of angular velocities q̇i (involved in
Lagrangian formalism on the tangent bundle of M) and kinematics of an-
gular momenta pi (involved in Hamiltonian formalism on the cotangent
bundle of M), which is analyzed below. In other words, we have two func-
tors, Lie and Can, from the category of Lie groups (of which •[SO(n)i] is
a subcategory) into the category of (their) Lie algebras (of which •[so(n)i]
and ∗

•[so(n)∗i ] are subcategories), and a unique natural equivalence between
them defined by the functor DualG. (As angular momenta pi are in a bi-
jective correspondence with angular velocities q̇i, every component of the
functor DualG is invertible.) �
Geometrical Proof. Geometrical proof is given along the lines of Rieman-
nian and symplectic geometry of mechanical systems, as follows (see 3.13.1
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above, as well as [Marsden and Ratiu (1999); Ivancevic and Snoswell (2001);
Ivancevic (2002); Ivancevic and Pearce (2001b); Ivancevic (2005)]). Recall
that the Riemannian metric g =<,> on the configuration manifold M is
a positive–definite quadratic form g : TM → R, given in local coordinates
qi ∈ U (U open in M) as

gij 7→ gij(q,m) dqidqj , where

gij(q,m) = mµδrs
∂xr

∂qi
∂xs

∂qj

is the covariant material metric tensor g, defining a relation between in-
ternal and external coordinates and including n segmental masses mµ.
The quantities xr are external coordinates (r, s = 1, . . . , 6n) and i, j =
1, . . . , N ≡ 6n− h, where h denotes the number of holonomic constraints.

The Lagrangian of the system is a quadratic form L : TM → R depen-
dent on velocity v and such that L(v) = 1

2 < v, v >. It is given by

L(v) =
1
2
gij(q,m) vivj

in local coordinates qi, vi = q̇i ∈ Uv (Uv open in TM). The Hamiltonian
of the system is a quadratic form H : T ∗M → R dependent on momentum
p and such that H(p) = 1

2 < p, p >. It is given by

H(p) =
1
2
gij(q,m) pipj

in local canonical coordinates qi, pi ∈ Up (Up open in T ∗M). The inverse
(contravariant) metric tensor g−1, is defined as

gij(q,m) = mµδrs
∂qi

∂xr
∂qj

∂xs
.

For any smooth function L on TM , the fibre derivative, or Legendre
transformation, is a diffeomorphism FL : TM → T ∗M , F(w) · v =<

w, v >, from the momentum phase–space manifold to the velocity phase–
space manifold associated with the metric g =<,>. In local coordinates
qi, vi = q̇i ∈ Uv (Uv open in TM), FL is given by (qi, vi) 7→ (qi, pi).

Recall that on the momentum phase–space manifold T ∗M exists:
(i) A unique canonical 1−form θH with the property that, for any 1−form
β on the configuration manifold M , we have β∗θH = β. In local canonical
coordinates qi, pi ∈ Up (Up open in T ∗M) it is given by θH = pidq

i.
(ii) A unique nondegenerate Hamiltonian symplectic 2−form ωH , which is
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closed (dωH = 0) and exact (ωH = dθH = dpi∧dqi). Each body segment
has, in the general SO(3) case, a sub–phase–space manifold T ∗SO(3) with

ω
(sub)
H = dpφ ∧ dφ + dpψ ∧ dψ + dpθ ∧ dθ.

Analogously, on the velocity phase–space manifold TM exists:
(i) A unique 1−form θL, defined by the pull–back θL = (FL) ∗ θH of θH
by FL. In local coordinates qi, vi = q̇i ∈ Uv (Uv open in TM) it is given
by θL = Lvidq

i, where Lvi ≡ ∂L/∂vi.
(ii) A unique nondegenerate Lagrangian symplectic 2−form ωL, defined by
the pull–back ωL = (FL) ∗ ωH of ωH by FL, which is closed (dωL = 0)
and exact (ωL = dθL = dLvi ∧ dqi).

Both T ∗M and TM are orientable manifolds, admitting the standard
volumes given respectively by

ΩωH ,=
(−1)

N(N+1)
2

N !
ωNH , and ΩωL =

(−1)
N(N+1)

2

N !
ωNL ,

in local coordinates qi, pi ∈ Up (Up open in T ∗M), resp. qi, vi = q̇i ∈ Uv
(Uv open in TM). They are given by

ΩH = dq1 ∧ · · · ∧ dqN ∧ dp1 ∧ · · · ∧ dpN , and

ΩL = dq1 ∧ · · · ∧ dqN ∧ dv1 ∧ · · · ∧ dvN .

On the velocity phase–space manifold TM we can also define the action
A : TM → R by A(v) = FL(v) · v and the energy E = A − L. In local
coordinates qi, vi = q̇i ∈ Uv (Uv open in TM) we have A = viLvi , so
E = viLvi − L. The Lagrangian vector–field XL on TM is determined
by the condition iXLωL = dE. Classically, it is given by the second–order
Lagrangian equations

d

dt
Lvi = Lqi . (3.233)

The Hamiltonian vector–field XH is defined on the momentum phase–
space manifold T ∗M by the condition iXHω = dH. The condition may be

expressed equivalently as XH = J∇H, where J =
(

0 I
−I 0

)
.

In local canonical coordinates qi, pi ∈ Up (Up open in T ∗M) the vector–
field XH is classically given by the first–order Hamiltonian canonical equa-
tions

q̇i = ∂piH, ṗi = − ∂qiH. (3.234)
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As a Lie group, the configuration manifold M is Hausdorff. There-
fore for x = (qi, pi) ∈ Up (Up open in T ∗M) there exists a unique
one–parameter group of diffeomorphisms φt : T ∗M → T ∗M such that
d
dt |t=0 φtx = J∇H(x). This is termed Hamiltonian phase–flow and rep-
resents the maximal integral curve t 7→ (qi(t), pi(t)) of the Hamiltonian
vector–field XH passing through the point x for t = 0.

The flow φt is symplectic if ωH is constant along it (that is, φ∗tωH = ωH)
iff its Lie derivative vanishes (that is, LXHωH = 0). A symplectic flow con-
sists of canonical transformations on T ∗M , that is, local diffeomorphisms
that leave ωH invariant. By Liouville Theorem, a symplectic flow φt pre-
serves the phase volume on T ∗M . Also, the total energy H = E of the
system is conserved along φt, that is, H ◦ φt = φt.

Lagrangian flow can be defined analogously (see [Abraham and Marsden
(1978); Marsden and Ratiu (1999)]).

For a Lagrangian (resp. a Hamiltonian) vector–field XL (resp. XH)
on M , there is a base integral curve γ0(t) = (qi(t), vi(t)) (resp. γ0(t) =
(qi(t), pi(t))) iffγ0(t) is a geodesic. This is given by the contravariant ve-
locity equation

q̇i = vi, v̇i + Γijk v
jvk = 0, (3.235)

in the former case, and by the covariant momentum equation

q̇k = gkipi, ṗi + Γijk g
jlgkm plpm = 0, (3.236)

in the latter. As before, Γijk denote the Christoffel symbols of an affine
connection ∇ in an open chart U on M , defined by the Riemannian metric
g =<,> as: Γijk = gilΓjkl, Γjkl = 1

2

(
∂qjgkl + ∂qkgjl − ∂qlgjk

)
.

The l.h.s ˙̄vi = v̇i + Γijk v
jvk (resp. ˙̄pi = ṗi + Γijk g

jlgkm plpm) in
the second parts of (3.235) and (3.236) represent the Bianchi covariant
derivative of the velocity (resp. momentum) with respect to t. Parallel
transport on M is defined by ˙̄vi = 0, (resp. ˙̄pi = 0). When this applies,
XL (resp. XH) is called the geodesic spray and its flow the geodesic flow.

For the dynamics in the gravitational potential field V : M → R, the
Lagrangian L : TM → R (resp. the Hamiltonian H : T ∗M → R) has an
extended form

L(v, q) =
1
2
gijv

ivj − V (q),

(resp. H(p, q) =
1
2
gijpipj + V (q)).
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A Lagrangian vector–field XL (resp. Hamiltonian vector–field XH) is
still defined by the second–order Lagrangian equations (3.233, 3.235) (resp.
first–order Hamiltonian equations (3.234, 3.236)).

The fibre derivative FL : TM → T ∗M thus maps Lagrangian equations
(3.233, 3.235) into Hamiltonian equations (3.234, 3.236). Clearly there
exists a diffeomorphism FH : T ∗M → TM , such that FL = (FH)−1. In
local canonical coordinates qi, pi ∈ Up (Up, open in T ∗M) this is given by
(qi, pi) 7→ (qi, vi) and thus maps Hamiltonian equations (3.234, 3.236) into
Lagrangian equations (3.233, 3.235).

A general form of the forced, non–conservative Hamiltonian equations
(resp. Lagrangian equations) is given as

q̇i =
∂H

∂pi
, ṗi = − ∂H

∂qi
+ Fi(t, qi, pi),

(resp.
d

dt

∂L

∂vi
− ∂L

∂qi
= Fi(t, qi, vi)).

Here the Fi(t, qi, pi) (resp. Fi(t, qi, vi)) represent any kind of covariant
forces, including dissipative and elastic joint forces, as well as actuator
drives and control forces, as a function of time, coordinates and momenta.
In covariant form we have

q̇k = gkipi, ṗi + Γijk g
jlgkm plpm = Fi(t, qi, pi),

(resp. q̇i = vi, v̇i + Γijk v
jvk = gij Fj(t, qi, vi)). �

This proves the existence of the unique natural geometrical equivalence

DualG : Lie ∼= Can

in the rotational biodynamics.

Topological Duality Theorem for M

In this section we want to prove that the general biodynamics can be
equivalently described in terms of two topologically dual functors Lag and
Ham, from Diff, the category of smooth manifolds (and their smooth maps)
of class Cp, into Bund, the category of vector bundles (and vector–bundle
maps) of class Cp−1, with p ≥ 1. Lag is physically represented by the
second–order Lagrangian formalism on TM ∈ Bund, while Ham is physically
represented by the first–order Hamiltonian formalism on T ∗M ∈ Bund.
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Theorem. There is a topological duality between Lagrangian and Hamil-
tonian formalisms onM (as given by Figure 3.6). In categorical terms, there
is a unique natural topological equivalence

DualT : Lag ∼= Ham

in the general biodynamics.
Proof. The proof has two parts: cohomological and homological.
Cohomological Proof. If C = H•M (resp. C = L•M) represents the
Abelian category of cochains on the momentum phase–space manifold
T ∗M (resp. the velocity phase–space manifold TM), we have the category
S•(H•M) (resp. S•(L•M)) of generalized cochain complexes A• in H•M
(resp. L•M) and if A′ = 0 for n < 0 we have a subcategory S•DR(H•M)
(resp. S•DR(L•M)) of de Rham differential complexes in S•(H•M) (resp.
S•(L•M))

A•DR : 0→ Ω0(T ∗M) d−→ Ω1(T ∗M) d−→
d−→ Ω2(T ∗M) d−→ · · · d−→ ΩN (T ∗M) d−→ · · ·

(resp. A•DR : 0→ Ω0(TM) d−→ Ω1(TM) d−→ Ω2(TM) d−→

· · · d−→ ΩN (TM) d−→ · · · ),

where A′ = ΩN (T ∗M) (resp. A′ = ΩN (TM)) is the vector space of all
N−-forms on T ∗M (resp. TM) over R.

Let ZN (T ∗M) = Ker(d) (resp. ZN (T ) = Ker(d)) and BN (T ∗M) =
Im(d) (resp. BN (TM) = Im(d)) denote respectively the real vector spaces
of cocycles and coboundaries of degree N . Since dN+1dN = d2 = 0, it
follows that BN (T ∗M) ⊂ ZN (T ∗M) (resp. BN (TM) ⊂ ZN (TM)). The
quotient vector space

HN
DR(T ∗M) = Ker(d)/ Im(d) = ZN (T ∗M)/BN (T ∗M)

(resp. HN
DR(TM) = Ker(d)/ Im(d) = ZN (TM)/BN (TM)),

we refer to as the de Rham cohomology group (vector space) of T ∗M (resp.
TM). The elements of HN

DR(T ∗M) (resp. HN
DR(TM)) are equivalence sets

of cocycles. Two cocycles ω1 and ω2 are cohomologous, or belong to the
same equivalence set (written ω1 ∼ ω2) iff they differ by a coboundary
ω1 − ω2 = dθ . Any form ωH ∈ ΩN (T ∗M) (resp. ωL ∈ ΩN (TM) has a de
Rham cohomology class [ωH ] ∈ HN

DR(T ∗M) (resp. [ωL] ∈ HN
DR(TM)).

Hamiltonian symplectic form ωH = dpi ∧ dqi on T ∗M (resp. La-
grangian symplectic form ωL = dLvi ∧ dqi on TM) is by definition both
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a closed 2−form or two–cocycle and an exact 2−form or two–coboundary.
Therefore the 2D–de Rham cohomology group of human motion is defined
as a quotient vector space

H2
DR(T ∗M) = Z2(T ∗M)/B2(T ∗M)

(resp. H2
DR(TM) = Z2(TM)/B2(TM)).

As T ∗M (resp. TM) is a compact Hamiltonian symplectic (resp. La-
grangian symplectic) manifold of dimension 2N , it follows that ωNH (resp.
ωNL ) is a volume element on T ∗M (resp. TM), and the 2ND de Rham’s co-
homology class

[
ωNH
]
∈ H2N

DR(T ∗M) (resp.
[
ωNL
]
∈ H2N

DR(TM)) is nonzero.
Since

[
ωNH
]

= [ωH ]N (resp.
[
ωNL
]

= [ωL]N ), then [ωH ] ∈ H2
DR(T ∗M)

(resp. [ωL] ∈ H2
DR(TM) ) and all of its powers up to the N−-th must be

zero as well. The existence of such an element is a necessary condition for
T ∗M (resp. TM) to admit a Hamiltonian symplectic structure ωH (resp.
Lagrangian symplectic structure ωL).

The de Rham complex A•DR on T ∗M (resp. TM) can be considered
as a system of second–order ODEs d2θH = 0, θH ∈ ΩN (T ∗M) (resp.
d2θL = 0, θL ∈ ΩN (TM)) having a solution represented by ZN (T ∗M)
(resp. ZN (TM)). In local coordinates qi, pi ∈ Up (Up open in T ∗M) (resp.
qi, vi ∈ Uv (Uv open in TM)) we have d2θH = d2(pidqi) = d(dpi∧dqi) =
0, (resp. d2θL = d2(Lvidqi) = d(dLvi ∧ dqi) = 0). �
Homological Proof. If C = H•M, (resp. C = L•M) represents an Abelian
category of chains on T ∗M (resp. TM), we have a category S•(H•M) (resp.
S•(L•M)) of generalized chain complexes A• in H•M (resp. L•M), and
if A = 0 for n < 0 we have a subcategory SC• (H•M) (resp. SC• (L•M)) of
chain complexes in H•M (resp. L•M)

A• : 0← C0(T ∗M) ∂←− C1(T ∗M) ∂←− C2(T ∗M) ∂←− · · ·

· · · ∂←− Cn(T ∗M) ∂←− · · ·

(resp. A• : 0← C0(TM) ∂←− C1(TM) ∂←− C2(TM) ∂←− · · ·
∂· · · ←− Cn(TM) ∂←− · · · ).

Here AN = CN (T ∗M) (resp. AN = CN (TM)) is the vector space of all
finite chains C on T ∗M (resp. TM) over R, and ∂N = ∂ : CN+1(T ∗M)→
CN (T ∗M) (resp. ∂N = ∂ : CN+1(TM) → CN (TM)). A finite chain C

such that ∂C = 0 is an N−cycle. A finite chain C such that C = ∂B

is an N−boundary. Let ZN (T ∗M) = Ker(∂) (resp. ZN (TM) = Ker(∂))
and BN (T ∗M) = Im(∂) (resp. BN (TM) = Im(∂)) denote respectively
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real vector spaces of cycles and boundaries of degree N . Since ∂N−1∂N =
∂2 = 0, then BN (T ∗M) ⊂ ZN (T ∗M) (resp. BN (TM) ⊂ ZN (TM)). The
quotient vector space

HC
N (T ∗M) = ZN (T ∗M)/BN (T ∗M)

(resp. HC
N (TM) = ZN (TM)/BN (TM))

represents an ND biodynamics homology group (vector space). The ele-
ments of HC

N (T ∗M) (resp. HC
N (TM)) are equivalence sets of cycles. Two

cycles C1 and C2 are homologous, or belong to the same equivalence set
(written C1 ∼ C2) iff they differ by a boundary C1 − C2 = ∂B. The ho-
mology class of a finite chain C ∈ CN (T ∗M) (resp. C ∈ CN (TM)) is
[C] ∈ HC

N (T ∗M) (resp. [C] ∈ HC
N (TM)). �

Lagrangian Versus Hamiltonian Duality

In this way, we have proved a commutativity of a triangle:

TanBund CotBund--
∼=

DualT

DiffMan

Lag

�
�

�
�

�
�	

Ham

@
@

@
@

@
@R

MFB

which implies the existence of the unique natural topological equivalence

DualT : Lag ∼= Ham

in the rotational biodynamics.

Globally Dual Structure of Rotational Biodynamics

Theorem. Global dual structure of the rotational biodynamics is defined
by the unique natural equivalence

Dyn : DualG ∼= DualT .
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Proof. This unique functorial relation, uncovering the natural equivalence
between geometrical and topological structures of biodynamics:

•[so(n)i] ∗
•[so(n)∗i ]--

∼=
DualG

•[SO(n)i]

Lie

�
�

�
�

�
�	

Can

@
@

@
@

@
@R

LGA

?

F
6
Ga

TanBund CotBund--
∼=

DualT

DiffMan

Lag

�
�

�
�

�
�	

Ham

@
@

@
@

@
@R

MFB

– has been established by parallel development of Lagrangian and Hamil-
tonian biodynamics formulations, i.e., functors Lag(Lie) and Ham(Can). �

3.14 Complex and Kähler Manifolds and Their
Applications

Just as a smooth manifold has enough structure to define the notion of
differentiable functions, a complex manifold is one with enough structure
to define the notion of holomorphic (or, analytic) functions f : X → C.
Namely, if we demand that the transition functions φj ◦ φ

−1
i in the charts

Ui on M (see Figure 3.12) satisfy the Cauchy–Riemann equations

∂xu = ∂yv, ∂yu = −∂xv,

then the analytic properties of f can be studied using its coordinate rep-
resentative f ◦ φ−1

i with assurance that the conclusions drawn are patch
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independent. Introducing local complex coordinates in the charts Ui on
M , the φi can be expressed as maps from Ui to an open set in Cn

2 , with
φj ◦ φ

−1
i being a holomorphic map from Cn

2 to Cn
2 . Clearly, n must be

even for this to make sense. In local complex coordinates, we recall that
a function h : Cn

2 → Cn
2 is holomorphic if h(z1, z̄1, ..., z

n
2 , z̄

n
2 ) is actually

independent of all the z̄j .
In a given patch on any even–dimensional manifold, we can always intro-

duce local complex coordinates by, for instance, forming the combinations
zj = xj + ix

n
2 +j , where the xj are local real coordinates on M . The real

test is whether the transition functions from one patch to another — when
expressed in terms of the local complex coordinates — are holomorphic
maps. If they are, we say that M is a complex manifold of complex dimen-
sion d = n/2. The local complex coordinates with holomorphic transition
functions give M with a complex structure (see [Greene (1996)]).

Fig. 3.12 The charts for a complex manifold M have complex coordinates (see text for

explanation).

Given a smooth manifold with even real dimension n, it can be a difficult
question to determine whether or not a complex structure exists. On the
other hand, if some smooth manifold M does admit a complex structure,
we are not able to decide whether it is unique, i.e., there may be numerous
inequivalent ways of defining complex coordinates on M .

Now, in the same way as a homeomorphism defines an equivalence be-
tween topological manifolds, and a diffeomorphism defines an equivalence
between smooth manifolds, a biholomorphism defines an equivalence be-
tween complex manifolds. If M and N are complex manifolds, we consider
them to be equivalent if there is a map φ : M → N which in addition
to being a diffeomorphism, is also a holomorphic map. That is, when ex-
pressed in terms of the complex structures on M and N respectively, φ is
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holomorphic. It is not hard to show that this necessarily implies that φ−1

is holomorphic as well and hence φ is known as a biholomorphism. Such a
map allows us to identify the complex structures on M and N and hence
they are isomorphic as complex manifolds.

These definitions are important because there are pairs of smooth man-
ifolds M and N which are homeomorphic but not diffeomorphic, as well as,
there are complex manifolds M and N which are diffeomorphic but not bi-
holomorphic. This means that if one simply ignored the fact that M and N
admit local complex coordinates (with holomorphic transition functions),
and one only worked in real coordinates, there would be no distinction be-
tween M and N . The difference between them only arises from the way in
which complex coordinates have been laid down upon them.

Again, recall that a tangent space to a manifold M at a point p is
the closest flat approximation to M at that point. A convenient basis for
the tangent space of M at p consists of the n linearly independent partial
derivatives,

TpM : {∂x1 |p, ..., ∂xn |p}. (3.237)

A vector v ∈ TpM can then be expressed as v = vα∂xα |p.
Also, a convenient basis for the dual, cotangent space T ∗pM , is the basis

of one–forms, which is dual to (3.237) and usually denoted by

T ∗pM : {dx1|p, ..., dxn|p}, (3.238)

where, by definition, dxi : TpM → R is a linear map with dxip(∂xj |p) = δij .
Now, if M is a complex manifold of complex dimension d = n/2, there is

a notion of the complexified tangent space of M , denoted by TpMC, which
is the same as the real tangent space TpM except that we allow complex
coefficients to be used in the vector space manipulations. This is often
denoted by writing TpM

C = TpM ⊗ C. We can still take our basis to
be as in (3.237) with an arbitrary vector v ∈ TpM

C being expressed as
v = vα ∂

∂xα |p, where the vα can now be complex numbers. In fact, it is
convenient to rearrange the basis vectors in (3.237) to more directly reflect
the underlying complex structure. Specifically, we take the following linear
combinations of basis vectors in (3.237) to be our new basis vectors:

TpM
C : {(∂x1 + i∂xd+1)|p, ..., (3.239)

(∂xd + i∂x2D )|p, (∂x1 − i∂xd+1)|p, ..., (∂xd − i∂x2D )|p}.
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In terms of complex coordinates we can write the basis (3.239) as

TpM
C : {∂z1 |p, ..., ∂zd |p, ∂z̄1 |p, ..., ∂z̄d |p}.

From the point of view of real vector spaces, ∂xj |p and i∂xj |p would be
considered linearly independent and hence TpMC has real dimension 4D.

In exact analogy with the real case, we can define the dual to TpM
C,

which we denote by T ∗pM
C = T ∗pM ⊗ C, with the one–forms basis

T ∗pM
C : {dz1|p, ..., dzd|p, dz̄1|p, ..., dz̄d|p}.

For certain types of complex manifolds M , it is worthwhile to refine the
definition of the complexified tangent and cotangent spaces, which pulls
apart the holomorphic and anti–holomorphic directions in each of these
two vector spaces. That is, we can write

TpM
C = TpM

(1,0) ⊕ TpM (0,1),

where TpM
(1,0) is the vector space spanned by {∂z1 |p, ..., ∂zd |p} and

TpM
(0,1) is the vector space spanned by {∂z̄1 |p, ..., ∂z̄d |p}. Similarly, we

can write

T ∗pM
C = T ∗pM

(1,0) ⊕ T ∗pM (0,1),

where T ∗pM
(1,0) is the vector space spanned by {dz1|p, ..., dzd|p} and

T ∗pM
(0,1) is the vector space spanned by {dz̄1|p, ..., dz̄d|p}. We call TpM (1,0)

the holomorphic tangent space; it has complex dimension d and we call
T ∗pM

1,0 the holomorphic cotangent space. It also has complex dimension
d. Their complements are known as the anti–holomorphic tangent and
cotangent spaces respectively [Greene (1996)].

Now, a complex vector bundle is a vector bundle π : E →M whose fiber
bundle π−1(x) is a complex vector space. It is not necessarily a complex
manifold, even if its base manifold M is a complex manifold. If a com-
plex vector bundle also has the structure of a complex manifold, and is
holomorphic, then it is called a holomorphic vector bundle.

3.14.1 Complex Metrics: Hermitian and Kähler

If M is a complex manifold, there is a natural extension of the metric g to
a map

g : TpMC × TpMC → C,
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defined in the following way. Let r, s, u, v be four vectors in the tangent
space TpM to a complex manifold M . Using them, we can construct, for
example, two vectors w(1) = r + is and w(2) = u + iv which lie in TpM

C.
Then, we evaluate g on w(1) and w(2) by linearity:

g(w(1), w(2)) = g(r + is, u+ iv) = g(r, u)− g(s, v) + i [g(r, v) + g(s, u)] .

We can define components of this extension of the original metric (which
we have called by the same symbol) with respect to complex coordinates
in the usual way: gij = g( ∂

∂zi ,
∂
∂zj ), gi̄ = g( ∂

∂zi ,
∂
∂z̄̄ ) and so forth. The

reality of our original metric g and its symmetry implies that in complex
coordinates we have gij = gji, gi̄ = g̄i and gij = gı̄̄, gi̄ = gı̄j .

Now, recall that a Hermitian metric on a complex vector bundle assigns
a Hermitian inner product to every fiber bundle. The basic example is the
trivial bundle π : U × C2 → U , where U is an open set in Rn. Then a
positive definite Hermitian matrix H defines a Hermitian metric by

〈v, w〉 = vTHw̄,

where w̄ is the complex conjugate of w. By a partition of unity, any complex
vector bundle has a Hermitian metric.

In local coordinates of a complex manifold M , a metric g is Hermitian
if gij = gı̄j̄ = 0. In this case, only the mixed type components of g are
nonzero and hence it can be written as

g = gi̄ dz
i ⊗ dz̄̄ + gı̄j dz̄

ı̄ ⊗ dzj .

With a little bit of algebra one can work out the constraint this implies for
the original metric written in real coordinates. Formally, if J is a complex
structure acting on the real tangent space TpM , i.e.

J : TpM → TpM with J2 = −I,

then the Hermiticity condition on g is g(Jv(1), Jv(2)) = g(v(1), v(2)).
On a holomorphic vector bundle with a Hermitian metric h, there is a

unique connection compatible with h and the complex structure. Namely,
it must be ∇ = ∂ + ∂̄.

In the special case of a complex manifold, the complexified tangent
bundle TM ⊗C may have a Hermitian metric, in which case its real part is
a Riemannian metric and its imaginary part is a nondegenerate alternating
multilinear form ω. When ω is closed, i.e., in this case a symplectic form,
then ω is called the Kähler form. Formally, given a Hermitian metric g on
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M , we can build a form in Ω1,1(M) — that is, a form of type (1, 1) in the
following way:

ω = igi̄ dz
i ⊗ dz̄̄ − ig̄i dz̄̄ ⊗ dzi.

By the symmetry of g, we can write this as

ω = igi̄ dz
i ∧ dz̄j .

Now, if ω is closed, that is, if dJ = 0, then ω is called a Kähler form and M
is called a Kähler manifold . At first sight, this Kählerity condition might
not seem too restrictive. However, it leads to remarkable simplifications in
the resulting differential geometry on M .

A Kähler structure on a complex manifold M combines a Riemannian
metric on the underlying real manifold with the complex structure. Such
a structure brings together geometry and complex analysis, and the main
examples come from algebraic geometry. When M has n complex dimen-
sions, then it has 2n real dimensions. A Kähler structure is related to the
unitary group U(n), which embeds in SO(2n) as the orthogonal matrices
that preserve the almost complex structure (multiplication by i). In a coor-
dinate chart, the complex structure of M defines a multiplication by i and
the metric defines orthogonality for tangent vectors. On a Kähler manifold ,
these two notions (and their derivatives) are related.

A Kähler manifold is a complex manifold for which the exterior deriva-
tive of the fundamental form ω associated with the given Hermitian metric
vanishes, so dω = 0. In other words, it is a complex manifold with a Kähler
structure. It has a Kähler form, so it is also a symplectic manifold. It has
a Kähler metric, so it is also a Riemannian manifold.

The simplest example of a Kähler manifold is a Riemann surface, which
is a complex manifold of dimension 1. In this case, the imaginary part of
any Hermitian metric must be a closed form since all 2−forms are closed
on a real 2D manifold.

In other words, a Kähler form is a closed two–form ω on a complex
manifold M which is also the negative imaginary part of a Hermitian metric
h = g−iw. In this case, M is called a Kähler manifold and g, the real part of
the Hermitian metric, is called a Kähler metric. The Kähler form combines
the metric and the complex structure, g(M,Y ) = ω(M,JY ),where ω is
the almost complex structure induced by multiplication by i. Since the
Kähler form comes from a Hermitian metric, it is preserved by ω, since
h(M,Y ) = h(JX, JY ). The equation dω = 0 implies that the metric and
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the complex structure are related. It gives M a Kähler structure, and has
many implications.

In particular, on C2, the Kähler form can be written as

ω = − i
2
(
dz1 ∧ dz1 + dz2 ∧ dz2

)
= dx1 ∧ dy1 + dx2 ∧ dy2,

where zn = xn + i yn. In general, the Kähler form can be written in
coordinates

ω = gij dzi ∧ dzj ,

where gij is a Hermitian metric, the real part of which is the Kähler metric.
Locally, a Kähler form can be written as i∂∂̄f , where f is a function called
a Kähler potential. The Kähler form is a real (1, 1)−complex form. The
Kähler potential is a real–valued function f on a Kähler manifold for which
the Kähler form ω can be written as ω = i∂∂̄f , where,

∂ = ∂zkdzk and ∂̄ = ∂z̄kdz̄k.

In local coordinates, the fact that dJ = 0 for a Kähler manifold M

implies

dJ = (∂ + ∂̄)igi̄ dzi ∧ dz̄̄ = 0.

This implies that

∂zlgi̄ = ∂zigl̄ (3.240)

and similary with z and z̄ interchanged. From this we see that locally we
can express gi̄ as

gi̄ =
∂2φ

∂zi∂z̄̄
.

That is, ω = i∂∂̄φ, where φ is a locally defined function in the patch whose
local coordinates we are using, which is known as the Kähler potential .

If ω on M is a Kähler form, the conditions (3.240) imply that there
are numerous cancellations in (3.240). so that the only nonzero Christoffel
symbols (of the standard Levi–Civita connection) in complex coordinates
are those of the form Γljk and Γl̄

̄k̄
, with all indices holomorphic or anti–

holomorphic. Specifically,

Γljk = gls̄ ∂zjgks̄ and Γl̄̄k̄ = gl̄s ∂z̄̄gk̄s.
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The curvature tensor also greatly simplifies. The only non–zero compo-
nents of the Riemann tensor , when written in complex coordinates, have
the form Ri̄kl̄ (up to index permutations consistent with symmetries of the
curvature tensor). And we have

Ri̄kl̄ = gis̄ ∂zkΓs̄̄l̄,

as well as the Ricci tensor

Rı̄j = Rk̄ı̄k̄j = −∂zjΓk̄ı̄k̄.

Since the Kähler form ω is closed, it represents a cohomology class in the
de Rham cohomology . On a compact manifold, it cannot be exact because
ωn/n! 6= 0 is the volume form determined by the metric. In the special case
of a projective variety, the Kähler form represents an integral cohomology
class. That is, it integrates to an integer on any 1D submanifold, i.e., an
algebraic curve. The Kodaira Embedding Theorem says that if the Kähler
form represents an integral cohomology class on a compact manifold, then
it must be a projective variety. There exist Kähler forms which are not
projective algebraic, but it is an open question whether or not any Kähler
manifold can be deformed to a projective variety (in the compact case).

A Kähler form satisfies Wirtinger’s inequality ,

|ω(M,Y )| ≤ |M ∧ Y | ,

where the r.h.s is the volume of the parallelogram formed by the tangent
vectors M and Y . Corresponding inequalities hold for the exterior powers
of ω. Equality holds iff M and Y form a complex subspace. Therefore, there
is a calibration form, and the complex submanifolds of a Kähler manifold
are calibrated submanifolds. In particular, the complex submanifolds are
locally volume minimizing in a Kähler manifold. For example, the graph
of a holomorphic function is a locally area–minimizing surface in C2 = R4.

Kähler identities is a collection of identities which hold on a Kähler
manifold, also called the Hodge identities. Let ω be a Kähler form, d = ∂+∂̄
be the exterior derivative, [A,B] = AB − BA be the commutator of two
differential operators, and A∗ denote the formal adjoint of A. The following
operators also act on differential forms α on a Kähler manifold:

L(α) = α ∧ ω, Λ(α) = L∗(α) = αcω, dc = −JdJ,

where J is the almost complex structure, J = −I, and c denotes the interior
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product. Then we have

[L, ∂̄] = [L, ∂] = 0, [Λ, ∂̄∗] = [Λ, ∂∗] = 0,

[L, ∂̄∗] = −i∂, [L, ∂∗] = i∂̄, [Λ, ∂̄] = −i∂∗, [Λ, ∂] = −i∂̄.

These identities have many implications. For example, the two operators

∆d = dd∗ + d∗d and ∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄

(called Laplacians because they are elliptic Laplacian–like operators) satisfy

∆d = 2∆∂̄ .

At this point, assume that M is also a compact manifold. Along with
Hodge’s Theorem, this equality of Laplacians proves the Hodge decomposi-
tion. The operators L and Λ commute with these Laplacians. By Hodge’s
Theorem, they act on cohomology, which is represented by harmonic forms.
Moreover, defining

H = [L,Λ] =
∑

(p+ q − n) Πp,q,

where Πp,q is projection onto the (p, q)−Dolbeault cohomology, they satisfy

[L,Λ] = H, [H,L] = −2L, [H,Λ] = 2L.

In other words, these operators give a group representation of the special
linear Lie algebra sl2(C) on the complex cohomology of a compact Kähler
manifold (Lefschetz Theorem).

3.14.2 Calabi–Yau Manifolds

A Calabi–Yau manifold is a Kähler manifold of complex dimension n with
a covariant constant holomorphic n−form. Equivalently it is a Riemannian
manifold with holonomy contained in SU(n).

It is convenient for our purposes to play down the role of the complex
structure in describing such manifolds and to emphasize instead the role
of three closed forms, satisfying certain algebraic identities. We have the
Kähler 2–form ω and the real and imaginary parts Ω1 and Ω2 of the co-
variant constant n−form. These satisfy some identities [Hitchin (1997);
Atiyah and Hitchin (1988)]:
(i) ω is non–degenerate
(ii) Ω1 + iΩ2 is locally decomposable and non-vanishing
(iii) Ω1 ∧ ω = Ω2 ∧ ω = 0
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(iv) (Ω1 + iΩ2) ∧ (Ω1 − iΩ2) = ωn (resp. iωn) if n is even (resp. odd)
(v) dω = 0, dΩ1 = 0, dΩ2 = 0.

These conditions (together with a positivity condition) we now show
serve to characterize CY manifolds. Firstly if Ωc = Ω1 + iΩ2 is locally
decomposable as θ1 ∧ θ2 ∧ ... ∧ θn, then take the subbundle Λ of T ∗M ⊗C
spanned by θ1, . . . , θn. By (iv) and the fact that ωn 6= 0, we have

θ1 ∧ · · · ∧ θn ∧ θ̄1 ∧ · · · ∧ θ̄n 6= 0

and so T ∗M = Λ + Λ̄ and we have an almost–complex structure. In this
description a 1−form θ is of type (1, 0) iff Ωc ∧ θ = 0. Since from (v)
dΩ1 = dΩ2 = 0, this means that Ωc ∧ dθ = 0. Writing

dθ =
∑

aijθi ∧ θj +
∑

bijθi ∧ θ̄j +
∑

cij θ̄i ∧ θ̄j (3.241)

we see that cij = 0. Thus the ideal generated by Λ is closed under exterior
differentiation, and (by the Newlander–Nirenberg Theorem) the structure
is integrable.

Similarly, applying the decomposition of 2–forms (3.241) to ω, (iii) im-
plies that the (0, 2)−component vanishes, and since ω is real, it is of type
(1, 1). It is closed by (v), so if the Hermitian form so defined is positive
definite, then we have a Kähler metric.

Since Ωc is closed and of type (n, 0) it is a non–vanishing holomorphic
section s of the canonical bundle. Relative to the trivialization s, the Her-
mitian connection has connection form given by ∂ ln(‖s‖2). But property
(iv) implies that it has constant length, so the connection form vanishes
and s = Ωc is covariant constant.

3.14.3 Special Lagrangian Submanifolds

A submanifold L of a symplectic manifold X is Lagrangian if ω restricts to
zero on L and dimX = 2 dimL. A submanifold of a CY manifold is special
Lagrangian if in addition Ω = Ω1 restricts to zero on L. This condition
involves only two out of the three forms, and in many respects what we
shall be doing is to treat them both, the 2–form ω and the n−form Ω, on
the same footing.

Here we need to emphasize the following remarks:
1. We could relax the definition a little since Ωc is a chosen holomorphic
n−form: any constant multiple of Ωc would also be covariant constant, so
under some circumstances we may need to say that L is special Lagrangian
if, for some non–zero c1, c2 ∈ R, c1Ω1 + c2Ω2 = 0.



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

438 Applied Differential Geometry: A Modern Introduction

2. On a special Lagrangian submanifold L, the n−form Ω2 restricts to a
non–vanishing form, so in particular L is always oriented.

Examples of special Lagrangian submanifolds are difficult to find, and
so far consist of three types [Hitchin (1997); Atiyah and Hitchin (1988)]:

• Complex Lagrangian submanifolds of hyperkähler manifolds;
• Fixed points of a real structure on a CY manifold;
• Explicit examples for non–compact CY manifolds;

The hyperkähler examples arise easily. In this case we have n = 2k and
three Kähler forms ω1, ω2, ω3 corresponding to the three complex structures
I, J,K of the hyperkähler manifold. With respect to the complex structure
I the form ωc = (ω2 + iω3) is a holomorphic symplectic form. If L is a
complex Lagrangian submanifold (i.e. L is a complex submanifold and ωc

vanishes on L), then the real and imaginary parts of this, ω2 and ω3, vanish
on L. Thus ω = ω2 vanishes and if k is odd (resp. even), the real (resp.
imaginary) part of Ωc = (ω3 + iω1)k vanishes. Using the complex structure
J instead of I, we see that L is special Lagrangian. For examples here, we
can take any holomorphic curve in a K3 surface S, or its symmetric product
in the Hilbert scheme S[m], which is hyperkähler from [Hitchin (1997);
Atiyah and Hitchin (1988)].

If X is a CY manifold with a real structure — an antiholomorphic
involution σ, for which σ∗ω = −ω and σ∗Ω = −Ω, then the fixed point
set (the set of real points of X) is easily seen to be a special Lagrangian
submanifold L. All CY metrics on compact manifolds are produced by the
existence Theorem of Yau. In particular T ∗Sn (with the complex structure
of an affine quadric) has a complete CY metric for which the zero section
is special Lagrangian.

3.14.4 Dolbeault Cohomology and Hodge Numbers

A generalization of the real–valued de Rham cohomology to complex man-
ifolds is called the Dolbeault cohomology . On complex mD manifolds, we
have local coordinates zi and z̄i. One can now study (p, q)−forms, which
are forms containing p factors of dzi and q factors of dz̄j :

ω = ωi1...ip,j1...jq (z, z̄) dz
i1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq .

Moreover, one can introduce two exterior derivative operators ∂ and ∂̄,
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where ∂ is defined by

∂ω ≡
∂ωi1...ip,j1...jq

∂zk
dzk ∧ dzi1 ∧ · · · ∧ dzip ∧ dz̄j1 ∧ · · · ∧ dz̄jq ,

and ∂̄ is defined similarly by differentiating with respect to z̄k and adding
a factor of dz̄k. Again, both of these operators square to zero. We can now
construct two cohomologies – one for each of these operators – but as we
will see, in the cases that we are interested in, the information contained
in them is the same. Conventionally, one uses the cohomology defined by
the ∂̄−operator.

For complex manifolds, the Hodge Theorem also holds: each cohomology
class Hp,q(M) contains a unique harmonic form. Here, a harmonic form
ωh is a form for which the complex Laplacian

∆∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄

has a zero eigenvalue: ∆∂̄ωh = 0. In general, this operator does not equal
the ordinary Laplacian, but one can prove that in the case where M is a
Kähler manifold,

∆ = 2∆∂̄ = 2∆∂ .

In other words, on a Kähler manifold the notion of a harmonic form is
the same, independently of which exterior derivative one uses. As a first
consequence, we find that the vector spaces Hp,q

∂ (M) and Hp,q

∂̄
(M) both

equal the vector space of harmonic (p, q)−forms, so the two cohomologies
are indeed equal. Moreover, every (p, q)−form is a (p + q)−form in the
de Rham cohomology, and by the above result we see that a harmonic
(p, q)−form can also be viewed as a de Rham harmonic (p + q)−form.
Conversely, any de Rham p−form can be written as a sum of Dolbeault
forms:

ωp = ωp,0 + ωp−1,1 + . . .+ ω0,p. (3.242)

Acting on this with the Laplacian, one sees that for a harmonic p−form,

∆ωp = ∆∂̄ωp = ∆∂̄ωp,0 + ∆∂̄ωp−1,1 + . . .+ ∆∂̄ω0,p = 0.

Since ∆∂̄ does not change the degree of a form, ∆∂̄ωp1,p2 is also a
(p1, p2)−form. Therefore, the r.h.s. can only vanish if each term van-
ishes separately, so all the terms on the r.h.s. of (3.242) must be harmonic
forms. Summarizing, we have shown that the vector space of harmonic de
Rham p−forms is a direct sum of the vector spaces of harmonic Dolbeault
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(p1, p2)−forms with p1+p2 = p. Since the harmonic forms represent the co-
homology classes in a 1–1 way, we find the important result that for Kähler
manifolds,

Hp(M) = Hp,0(M)⊕Hp−1,1(M)⊕ · · · ⊕H0,p(M).

That is, the Dolbeault cohomology can be viewed as a refinement of the de
Rham cohomology. In particular, we have

bp = hp,0 + hp−1,1 + . . .+ h0,p,

where hp,q = dimHp,q(M) are called the Hodge numbers of M .
The Hodge numbers of a Kähler manifold give us several topological

invariants, but not all of them are independent. In particular, the following
two relations hold:

hp,q = hq,p, hp,q = hm−p,m−q. (3.243)

The first relation immediately follows if we realize that ω 7→ ω maps
∂−harmonic (p, q)−forms to ∂̄−harmonic (q, p)−forms, and hence can be
viewed as an invertible map between the two respective cohomologies. As
we have seen, the ∂−cohomology and the ∂̄−cohomology coincide on a
Kähler manifold, so the first of the above two equations follows.

The second relation can be proved using the map

(α, ω) 7→
∫
M

α ∧ ω

from Hp,q ×Hm−p,m−q to C. It can be shown that this map is nondegen-
erate, and hence that Hp,q and Hm−p,m−q can be viewed as dual vector
spaces. In particular, it follows that these vector spaces have the same
dimension, which is the statement in the second line of (3.243).

Note that the last argument also holds for de Rham cohomology, in
which case we find the relation bp = bn−p between the Betti numbers.
We also know that Hn−p(M) is dual to Hn−p(M), so combining these
statements we find an identification between the vector spaces Hp(M)
and Hn−p(M). Recall that this identification between p−form cohomol-
ogy classes and (n − p)−cycle homology classes represents the Poincaré
duality . Intuitively, take a certain (n − p)−cycle Σ representing a homol-
ogy class in Hn−p. One can now try to define a ‘delta function’ δ(Σ) which
is localized on this cycle. Locally, Σ can be parameterized by setting p

coordinates equal to zero, so δ(Σ) is a ‘pD delta function’ – that is, it is an
object which is naturally integrated over pD submanifolds: a p−form. This
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intuition can be made precise, and one can indeed view the cohomology
class of the resulting ‘delta–function’ p−form as the Poincar é dual to Σ.

Going back to the relations (3.243), we see that the Hodge numbers of a
Kähler manifold can be nicely written in a so–called Hodge diamond form:

h0,0

h1,0 h0,1

... . . .
hm,0 · · · h0,m

. . . ...
hm,m−1 hm−1,m

hm,m

The integers in this diamond are symmetrical under the reflection in its
horizontal and vertical axes.

3.15 Conformal Killing–Riemannian Geometry

In this section we present some basic facts from conformal Killing–
Riemannian geometry . In mechanics it is well–known that symmetries of
Lagrangian or Hamiltonian result in conservation laws, that are used to
deduce constants of motion for the trajectories (geodesics) on the configu-
ration manifold M . The same constants of motion are get using geometrical
language, where a Killing vector–field is the standard tool for the descrip-
tion of symmetry [Misner et al. (1973)]. A Killing vector–field ξi is a
vector–field on a Riemannian manifold M with metrics g, which in coordi-
nates xj ∈M satisfies the Killing equation

ξi;j + ξj;i = ξ(i;j) = 0, or Lξigij = 0, (3.244)

where semicolon denotes the covariant derivative on M , the indexed bracket
denotes the tensor symmetry, and L is the Lie derivative.

The conformal Killing vector–fields are, by definition, infinitesimal con-
formal symmetries i.e., the flow of such vector–fields preserves the conformal
class of the metric. The number of linearly–independent conformal Killing
fields measures the degree of conformal symmetry of the manifold. This
number is bounded by 1

2 (n + 1)(n + 2), where n is the dimension of the
manifold. It is the maximal one if the manifold is conformally flat [Baum
(2000)].
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Now, to properly initialize our conformal geometry, recall that conformal
twistor spinor–fields ϕ were introduced by R. Penrose into physics (see
[Penrose (1967); Penrose and Rindler (1984); Penrose and Rindler (1986)])
as solutions of the conformally covariant twistor equation

∇SXϕ+
1
n
X ·Dϕ = 0,

for each vector–fields X on a Riemannian manifold (M, g), where D is the
Dirac operator. Each twistor spinor–field ϕ on (M, g) defines a conformal
vector–field Vϕ on M by

g(Vϕ, X) = ik+1 〈X · ϕ,ϕ〉.

Also, each twistor spinor–field ϕ that satisfies the Dirac equation on (M, g),

Dϕ = µϕ,

is called a Killing spinor–field . Each twistor spinor–field without zeros on
(M, g) can be transformed by a conformal change of the metric g into a
Killing spinor–field [Baum (2000)].

3.15.1 Conformal Killing Vector–Fields and Forms on M

The space of all conformal Killing vector–fields forms the Lie algebra of the
isometry group of a Riemannian manifold (M, g) and the number of lin-
early independent Killing vector–fields measures the degree of symmetry of
M . It is known that this number is bounded from above by the dimension
of the isometry group of the standard sphere and, on compact manifolds,
equality is attained if and only if the manifold M is isometric to the stan-
dard sphere or the real projective space. Slightly more generally one can
consider conformal vector–fields, i.e., vector–fields with a flow preserving a
given conformal class of metrics. There are several geometrical conditions
which force a conformal vector–field to be Killing [Semmelmann (2002)].

A natural generalization of conformal vector–fields are the conformal
Killing forms [Yano (1952)], also called twistor forms [Moroianu and Sem-
melmann (2003)]. These are p−forms α satisfying for any vector–field X

on the manifold M the Killing–Yano equation

∇X α − 1
p+1 X c dα + 1

n−p+1 X
∗ ∧ d∗α = 0, (3.245)

where n is the dimension of the manifold (M, g), ∇ denotes the covariant
derivative of the Levi–Civita connection on M , X∗ is 1−form dual to X and
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c is the operation dual to the wedge product on M . It is easy to see that
a conformal Killing 1−form is dual to a conformal vector–field. Coclosed
conformal Killing p−forms are called Killing forms. For p = 1 they are
dual to Killing vector–fields.

Let α be a Killing p−form and let γ be a geodesic on (M, g), i.e.,
∇ γ̇ γ̇ = 0. Then

∇γ̇ (γ̇cα) = (∇γ̇ γ̇)cα + γ̇c∇γ̇ α = 0,

i.e., γ̇cα is a (p− 1)−form parallel along the geodesic γ and in particular
its length is constant along γ.

The l.h.s of equation (3.245) defines a first–order elliptic differential
operator T , the so–caled twistor operator. Equivalently one can describe a
conformal Killing form as a form in the kernel of twistor operator T . From
this point of view conformal Killing forms are similar to Penrose’s twistor
spinors in Lorentzian spin geometry. One shared property is the conformal
invariance of the defining equation. In particular, any form which is parallel
for some metric g, and thus a Killing form for trivial reasons, induces non–
parallel conformal Killing forms for metrics conformally equivalent to g (by
a non–trivial change of the metric) [Semmelmann (2002)].

3.15.2 Conformal Killing Tensors and Laplacian

Symmetry

In an nD Riemannian manifold (M, g), a Killing tensor–field (of order 2)
is a symmetric tensor Kab satisfying (generalizing (3.244))

K(ab;c) = 0. (3.246)

A conformal Killing tensor–field (of order 2) is a symmetric tensor Qab

satisfying

Q(ab;c) = q(agbc), with qa = (Q,a + 2Qa;dd )/(n+ 2), (3.247)

where comma denotes partial derivative and Q = Qdd. When the associated
conformal vector qa is nonzero, the conformal Killing tensor will be called
proper and otherwise it is a (ordinary) Killing tensor. If qa is a Killing
vector, Qab is referred to as a homothetic Killing tensor. If the associated
conformal vector qa = q,a is the gradient of some scalar field q, then Qab

is called a gradient conformal Killing tensor. For each gradient conformal
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Killing tensor Qab there is an associated Killing tensor Kab given by

Kab = Qab − qgab, (3.248)

which is defined only up to the addition of a constant multiple of the inverse
metric tensor gab.

Some authors define a conformal Killing tensor as a trace–free tensor
P ab satisfying P (ab;c) = p(agbc). Note that there is no contradiction between
the two definitions: if P ab is a trace–free conformal Killing tensor then for
any scalar field λ, P ab + λgab is a conformal Killing tensor and conversely
if Qab is a conformal Killing tensor, its trace–free part Qab − 1

nQg
ab is a

trace–free Killing tensor [Rani et. al. (2003)].
Killing tensor–fields are of importance owing to their connection with

quadratic first integrals of the geodesic equations: if pa is tangent to an
affinely parameterized geodesic (i.e., pa;bp

b = 0) it is easy to see that
Kabp

apb is constant along the geodesic. For conformal Killing tensors
Qabp

apb is constant along null geodesics and here, only the trace–free part
of Qab contributes to the constants of motion. Both Killing tensors and
conformal Killing tensors are also of importance in connection with the sep-
arability of the Hamiltonian–Jacobi equations [Conway and Hopf (1964)]
(as well as other PDEs).

A Killing tensor is said to be reducible if it can be written as a con-
stant linear combination of the metric and symmetrized products of Killing
vectors,

Kab = a0gab + aIJξI(aξ|J|b), (3.249)

where ξI for I = 1 . . . N are the Killing vectors admitted by the manifold
(M, g) and a0 and aIJ for 1 ≤ I ≤ J ≤ N are constants. Generally one is
interested only in Killing tensors which are not reducible since the quadratic
constant of motion associated with a reducible Killing tensor is a constant
linear combination of papa and of pairwise products of the linear constants
of motion ξIap

a [Rani et. al. (2003)].
More generally, any linear differential operator on a Riemannian mani-

fold (M, g) may be written in the form [Eastwood (1991); Eastwood (2002)]

D = V bc···d∇b∇c · · ·∇d + lower order terms,

where V bc···d is symmetric in its indices, and ∇a = ∂/∂xa (differentiation in
coordinates). This tensor is called the symbol of D. We shall write φ(ab···c)

for the symmetric part of φab···c.
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Now, a conformal Killing tensor on (M, g) is a symmetric trace–free
tensor–field, with s indices, satisfying

the trace–free part of ∇(aV bc···d) = 0, (3.250)

or, equivalently,

∇(aV bc···d) = g(abT c···d), (3.251)

for some tensor–field T c···d or, equivalently,

∇(aV bc···d) = s
n+2s−2g

(ab∇eV c···d)e, (3.252)

where ∇a = gab∇b (the standard convention of raising and lowering indices
with the metric tensor gab). When s = 1, these equations define a conformal
Killing vector.

M. Eastwood proved the following Theorem: any symmetry D of the
Laplacian ∆ = ∇a∇a on a Riemannian manifold (M, g) is canonically
equivalent to one whose symbol is a conformal Killing tensor [Eastwood
(1991); Eastwood (2002)].

3.15.3 Application: Killing Vector and Tensor Fields in

Mechanics

Recall from subsection 3.15 above, that on a Riemannian manifold (M, g)
with the system’s kinetic energy metric tensor g = (gij), for any pair of
vectors V and T , the following relation holds9

∂s〈V, T 〉 = 〈∇sV, T 〉+ 〈V,∇sT 〉, (3.253)

where 〈V, T 〉 = gijV
iT j . If the curve γ(s) is a geodesic, for a generic vector

X we have

∂s〈X, γ̇〉 = 〈∇sX, γ̇〉+ 〈X,∇sγ̇〉 = 〈∇sX, γ̇〉 ≡ 〈∇γ̇X, γ̇〉, (3.254)

where

(∇γ̇X)i = ∂sx
l∂xlX

i + Γijk∂sx
jXk,

so that in components it reads

∂s(Xiẋ
i) = ẋi∇i(Xj ẋ

j).
9In this subsection, the overdot denotes the derivative upon the arc–length parameter

s, namely (̇) ≡ ∂s ≡ d/ds, while ∇s is the covariant derivative along a curve γ(s).
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Using the fact that Xj ẋ
i∇iẋj = Xj∇γ̇ γ̇j = 0, as well as the auto–

parallelism of the geodesics, this can be rewritten as

∂s(Xiẋ
i) =

1
2
ẋj ẋi(∇iXj +∇jXi), (i, j = 1, ..., N).

This means that the conservation of Xiẋ
i along a geodesic, i.e., ∂s(Xiẋ

i) =
0, is guaranteed by (see [Clementi and Pettini (2002)])

∇(iXj) ≡ ∇iXj +∇jXi = 0. (3.255)

If such a field exists on a manifold, it is the Killing vector–field . Recall
that (3.255) is equivalent to LXg = 0, where L is the Lie derivative. On
the biodynamical manifolds (M, g), being the unit vector q̇i – tangent to a
geodesic – proportional to the canonical momentum pi = ∂L

∂q̇i = q̇i, the exis-
tence of a Killing vector–field X implies that the corresponding momentum
map (see subsection 3.12.3.5 above),

J(q, p) = Xk(q)∂sqk =
1√

2(E − V (q))
Xk(q)q̇k =

1√
2T (q)

Xk(q)pk,

(3.256)
is a constant of motion along the geodesic flow. Thus, for an NDOF Hamil-
tonian system, a physical conservation law, involving a conserved quantity
linear in the canonical momenta, can always be related with a symmetry
on the manifold (M, g) due to the action of a Killing vector–field on the
manifold. These are the Noether conservation laws. The equation (3.255)
is equivalent to the vanishing of the Poisson brackets,

{H,J} =
(
∂H

∂qi
∂J

∂pi
− ∂H

∂pi

∂J

∂qi

)
= 0, (3.257)

which is the standard definition of a constant of motion J(q, p) (see, e.g.,
[Abraham and Marsden (1978)]).

However, if a 1–1 correspondence is to exist between conserved phys-
ical quantities along a Hamiltonian flow and suitable symmetries of the
biodynamical manifolds (M, g), then integrability will be equivalent to the
existence of a number of symmetries at least equal to the number of DOF,
which is equal to dim(M). If a Lie group G acts on the phase–space man-
ifold through completely canonical transformations, and there exists an
associated momentum map, then every Hamiltonian having G as a sym-
metry group, with respect to its action, admits the momentum map as
the constant of motion. These symmetries are usually referred to as hidden
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symmetries because, even though their existence is ensured by integrability,
they are not easily recognizable [Clementi and Pettini (2002)].

Let us now extend what has been presented so far about Killing vector–
fields, trying to generalize the form of the conserved quantity along a
geodesic flow from J = Xiẋ

i to J = Kj1j2...jr ẋ
j1 ẋj2 . . . ẋjr , with Kj1j2...jr

a tensor of rank r. Thus, we look for the conditions that entail

∂s(Kj1j2...jr ẋ
j1 ẋj2 . . . ẋjr ) = ẋj∇j(Kj1j2...jr ẋ

j1 ẋj2 . . . ẋjr ) = 0. (3.258)

In order to work out from this equation a condition for the existence of
a suitable tensor Kj1j2...jr , which is called a Killing tensor–field , let us
first consider the 2r rank tensor Kj1j2...jr ẋ

i1 ẋi2 . . . ẋir and its covariant
derivative along a geodesic [Clementi and Pettini (2002)]

ẋj∇j(Kj1j2...jr ẋ
i1 ẋi2 . . . ẋir ) = ẋi1 ẋi2 . . . ẋir ẋj∇jKj1j2...jr , (3.259)

where we have again used ẋj∇j ẋik = 0 along a geodesic, and a standard
covariant differentiation formula (see 3.10.1 above). Now, by contraction on
the indices ik and jk the 2r−rank tensor in (3.259) gives a new expression
for (3.258), which reads

∂s(Kj1j2...jr ẋ
j1 ẋj2 . . . ẋjr ) = ẋj1 ẋj2 . . . ẋjr ẋj∇(jKj1j2...jr), (3.260)

where ∇(jKj1j2...jr) = ∇jKj1j2...jr + ∇j1Kjj2...jr + · · · + ∇jrKj1j2...jr−1j .
The vanishing of (3.260), entailing the conservation ofKj1j2...jr ẋ

j1 ẋj2 . . . ẋjr

along a geodesic flow, is therefore guaranteed by the existence of a tensor–
field fulfilling the conditions [Clementi and Pettini (2002)]

∇(jKj1j2...jr) = 0. (3.261)

These equations generalize (3.255) and give the definition of a Killing
tensor–field on a Riemannian biodynamical manifold (M, g). These Nr+1

equations in (N + r − 1)!/r!(N − 1)! unknown independent components of
the Killing tensor constitute an overdetermined system of equations. Thus,
a‘priori, we can expect that the existence of Killing tensor–fields has to be
rather exceptional.

If a Killing tensor–field exists on a Riemannian manifold, then the scalar

Kj1j2...jr q̇
j1 q̇j2 . . . q̇jr

is a constant of motion for the geodesic flow on the same manifold. With
the only difference of a more tedious combinatorics, also in this case it turns
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out that the equations (3.261) are equivalent to the vanishing of the Poisson
brackets of J(q, p), that is

{H,J} = 0 is equivalent to ∇(jKj1j2...jr) = 0.

Thus, the existence of Killing tensor–fields, obeying (3.261), on a biodynam-
ical manifold (M, g) give the rephrasing of integrability of Newtonian equa-
tions of motion or, equivalently, of standard Hamiltonian systems, within
the Riemannian geometrical framework.

The first natural question to address concerns the existence of a Killing
tensor–field, on any biodynamical manifold (M, g), to be associated with
total energy conservation. Such a Killing tensor–field actually exists and
coincides with the metric tensor g, in fact it satisfies by definition (3.261).

One of the simplest case of integrable system is represented by a decou-
pled system described by a generic Hamiltonian

H =
N∑
i=1

[
p2
i

2
+ Vi(qi)

]
=

N∑
i=1

Hi(qi, pi)

for which all the energies Ei of the subsystems Hi, i = 1, . . . , N , are con-
served. On the associated biodynamical manifold, N second–order Killing
tensor–fields exist, they are given by

K
(i)
jk = δjk{Vi(qi)[E − V (qi)] + δij [E − V (qi)]2}.

In fact, these tensor–fields fulfil (3.261), which explicitly reads [Clementi
and Pettini (2002)]

∇kK(i)
lm +∇lK(i)

mk +∇mK(i)
kl

= ∂qkK
(i)
lm + ∂qlK

(i)
mk + ∂qmK

(i)
kl − 2ΓjklK

(i)
jm − 2ΓjkmK

(i)
jl − 2ΓjlmK

(i)
jk = 0.

The conserved quantities J (i)(q, p) are then get by saturation of the tensors
K(i) with the velocities q̇i,

J (i)(q, p) = K
(i)
jk q̇

j q̇k = Ei.

3.16 Application: Lax–Pair Tensors in Gravitation

Recall that many problems in general relativity require an understanding
of the global structure of the space–time. Currently discussed global prob-
lems include the occurrence of naked singularities [Ori and Piran (1987)]
and universality in gravitational collapse situations [Choptuik (1993)]. The
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study of global properties of space–times relies to a large extent on the
ability to integrate the geodesic equations. In the absence of exact so-
lutions numerical integration is often used to get a quantitative picture.
However, in the quest for a deeper understanding the exact and numerical
approaches should be viewed as complementary tools. To perform an ex-
act investigation of the global properties of a given space–time, not only
must the space–time itself be an exact solution of the Einstein equations,
but in addition the geodesic equations must be integrable. Usually, in a
d−dimensional space, integrability of the geodesic equations is connected
with the existence of at least d − 1 mutually commuting Killing vector
fields which span a hypersurface in the space–time. There are exceptions
however. The most well–known example is the Kerr space–time which has
only two commuting Killing vectors. In that case it is the existence of
an irreducible second rank Killing tensor which makes integration possible
[Walker and Penrose (1970)]. Another example is given by Ozsvath’s class
III cosmologies [Ozsvath (1970)]. In that case the geodesic system was in-
tegrated using the existence of a non–Abelian Lie algebra of Killing vectors
[Rosquist (1980)]. In general integrability can only be guaranteed if there
is a set of d constants of the motion in involution (i.e. mutually Poisson
commuting). Since the metric itself always provides one constant of the
motion corresponding to the squared length of the geodesic tangent vector,
the geodesic system will be integrable by Liouville’s theorem if there are
d− 1 additional Poisson commuting invariants.

Exact solutions of Einstein’s equations typically admit a number of
Killing vector fields. Some of these Killing vector fields may be motivated
by physical considerations. For example if one is interested in static stars
the space–time must have a time–like Killing vector. For such systems it
is also very reasonable to assume spherical spatial symmetry leading to a
total of four (non–commuting) Killing vectors. In most cases, the number
of Killing vectors is limited by the physics of the problem. In a spherically
symmetric collapse situation, for example, the space–time admits exactly
three non–commuting Killing vector fields which form an isometry group
with 2D orbits. That structure is not sufficient for an exact integration
of the geodesic equations. However, the physics of the problem does not
impose any a priori restrictions on higher rank (≥ 2) Killing tensors. A
Killing vector field, ξ, plays a double role; it is both an isometry for the met-
ric (Lξg = 0) and a geodesic symmetry. This last property means that it
can be interpreted as a symmetry transformation for the geodesic equations.
By contrast higher rank Killing tensors are only geodesic symmetries. They
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have no obvious geometric interpretation ([Rosquist (1989)]). Because of
the isometry property of the Killing vector fields, such symmetries can be
incorporated right from the start by assuming a particular form the metric.
In this way the field equations are actually simplified by the assumption
of Killing vector symmetries. On the other hand, the higher rank Killing
symmetries can at present not be used to simplify the form of the field
equations. Instead the Killing tensor equations must be imposed as extra
conditions thereby increasing both the number of dependent variables and
the number of equations.

The Lax tensors introduced in [Rosquist (1997)] provide a unifying
framework for Killing tensors of any rank and may lead to possibilities
to incorporate the higher Killing symmetries in the field equations them-
selves. A single Lax tensor may generate Killing tensors of varying ranks.
Lax tensors arise from a covariant formulation of the Lax pair equation [Lax
(1968)] for Riemannian and pseudo–Riemannian geometries. The standard
Lax pair formulation involves a pair of matrices. In the covariant formu-
lation on the other hand, the Lax pair is represented by two third rank
tensors. The first Lax matrix corresponds exactly to the first Lax tensor
while the second Lax matrix and the second Lax tensor differ by a term
which coincides with the Levi–Civita connection. The derivative part of
the tensorial Lax pair equation is identical to the Killing–Yano equation.
Therefore Killing–Yano tensors are special cases of Lax tensors for which
the second Lax tensor vanishes (the second Lax matrix however does not).
However, whereas Killing–Yano tensors are by definition totally antisym-
metric the Lax tensors have no a priori symmetry restrictions.

3.16.1 Lax–Pair Tensors

In this subsection we outline the approach to integrable geometries as given
in [Rosquist (1997)]. We consider a Riemannian or pseudo–Riemannian
manifold with metric

ds2 = gµνdq
µdqν .

The geodesic equations can be represented by the Hamiltonian

H =
1
2
gµνpµpν , (3.262)
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together with the natural Poisson bracket (denoted by {, }) on the cotan-
gent bundle. The geodesic system is given by

q̇α = {qα,H} = gαµpµ, ṗα = {pα,H} = Γµνα pµpν .

The complete integrability of this system can be shown with the help of
a pair of matrices L and A with entries defined on the phase space (the
cotangent bundle) and satisfying the Lax pair equation [Lax (1968)]

L̇ = {L,H} = [L,A]. (3.263)

It follows from (3.263) that the quantities Ik ≡ 1
kL

k are all constants of the
motion. If in addition they commute with each other {Ik, Ij} = 0 (Liouville
integrability) then it is possible to integrate the system completely at least
in principle (see e.g., [Arnold (1989)]). The Lax representation (3.263) is not
unique. In fact, the Lax pair equation is invariant under a transformation
of the form

L̃ = ULU−1, Ã = UAU−1 − U̇U−1. (3.264)

We see that L transforms as a tensor while A transforms as a connection.
As we will see, these statements acquire a more precise meaning in the
geometric formulation which we will now describe.

Typically, the Lax matrices are linear in the momenta and in the geomet-
ric setting they may also be assumed to be homogeneous. This motivates
the introduction of two third rank geometrical objects, Lαβγ and Aαβ

γ ,
such that the Lax matrices can be written in the form [Rosquist (1997)]

L = (Lαβ) = (Lαβµpµ) , A = (Aαβ) = (Aαβµpµ).

We will refer to Lαβγ and Aαβγ as the Lax tensor and the Lax connection,
respectively. Defining

B = (Bαβ ) = (Bαβµpµ) = A− Γ, where Γ = (Γαβ) = (Γαβµpµ)

is the Levi–Civita connection with respect to gαβ , it then follows that the
Lax pair equation takes the covariant form (see [Rosquist (1997)] for details)

Lαβ
(γ;δ) = Lαµ

(γB|µ|β
δ) −Bαµ(γL|µ|β

δ),

where Lαβγ and Bαβγ are tensorial objects. Note that the right–hand side
of this equation is traceless, so that upon contracting over α and β we
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get the Killing vector equation Lµµ(α;β) = 0. Splitting the Lax tensors in
symmetric and antisymmetric parts with respect to the first two indices,

Sαβγ = L(αβ)γ , Rαβγ = L[αβ]γ and
Pαβγ = B(αβ)γ , Qαβγ = B[αβ]γ ,

the Lax pair equation can be written as the system [Rosquist and Goliath
(1997)]

Sαβ(γ;δ) = −2S(α
µ(γQ

β)µ
δ) + 2R(α

µ(γP
β)µ

δ),

Rαβ(γ;δ) = −2R[α
µ(γQ

β]µ
δ) + 2S[α

µ(γP
β]µ

δ).

It is evident that this system is coupled via Pαβγ . Setting Pαβγ = 0 gives
the two separate sets of equations

Sαβ(γ;δ) = −2S(α
µ(γQ

β)µ
δ),

Rαβ(γ;δ) = −2R[α
µ(γQ

β]µ
δ).

We will see below that the Lax tensors Lαβγ and Bαβγ in a geometrized
version of the open Toda lattice are symmetric and antisymmetric respec-
tively and therefore satisfy (3.265). If Rαβγ is totally antisymmetric (with
respect to all three indices) and Qαβγ = 0, then the equations (3.265) are
identical to the third rank Killing–Yano equations [Yano (1952)]. Therefore
third rank Killing–Yano tensors are special cases of Lax tensors.

It is possible but not necessary to identify the invariant I2 with the
geodesic Hamiltonian (3.262). If such an identification is done then the
metric is given by gαβ = Lµν

αLνµ
β . Defining matrices Lµ with components

(Lµ)αβ = Lαβ
µ, the metric components are given by gαβ = (LαLβ), which

suggests using the components of the Lµ (or some internal variables from
which the Lµ are built) as the basic variables already in the formulation of
the field equations much like in the Ashtekar variable formalism [Ashtekar
(1988)].

3.16.2 Geometrization of the 3–Particle Open Toda Lattice

Integrable systems are usually discussed in the context of classical me-
chanics. Classical Hamiltonians typically consist of a flat positive–definite
kinetic energy together with a potential energy term. They are thus su-
perficially quite different from geometric Hamiltonians of the form (3.262).
However, any classical Hamiltonian with a quadratic kinetic energy can
be transformed to a geometric representation. One such geometrization



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Applied Manifold Geometry 453

results in the Jacobi Hamiltonian [Lanczos (1986)]. Another closely re-
lated geometrization was used in [Rosquist (1997)]. Both methods involve
a re–parameterization of the independent variable. Usually we will refer to
the independent variable as the time, although its physical interpretation
may vary. As a consequence of this feature, the original Lax representa-
tion is not preserved. It is known how to transform the invariants them-
selves under the time re–parameterization [Rosquist and Pucacco (1995);
Rosquist (1997)]. Given that the geometrized invariants are also in invo-
lution, the existence of a Lax representation is guaranteed [Babelon and
Viallet (1990)]. However, to actually find such a Lax representation is
non–trivial. Another geometrization scheme which does preserve the origi-
nal Lax representation is to apply a suitable canonical transformation. This
is however only possible for Hamiltonians with a potential of a special form.
One such system that we will consider in this paper is the 3–particle open
Toda lattice

H =
1
2
(
p̄1

2 + p̄2
2 + p̄3

2
)

+ e2(q̄1−q̄2) + e2(q̄2−q̄3). (3.265)

Below we will discuss two canonical transformations which correspond to in-
equivalent geometric representations of (3.265). For an explicit integration
of the Toda lattice, see e.g. [Perelomov (1990)]. The standard symmetric
Lax representation is [Perelomov (1990)]

L =

 p̄1 ā1 0
ā1 p̄2 ā2

0 ā2 p̄3

 , A =

 0 ā1 0
−ā1 0 ā2

0 −ā2 0

 ,

where ā1 = exp(q̄1 − q̄2), ā2 = exp(q̄2 − q̄3).

Note that the definitions of ā1 and ā2 differ from the ones used in [Rosquist
(1997)]. The Hamiltonian (3.265) admits the linear invariant, I1 = L = p̄1+
p̄2 + p̄3, corresponding to translational invariance. The Lax representation
also gives rise to the two invariants, I2 = 1

2L
2 = H and I3 = 1

3L
3. We will

assume that the tensorial Lax representation is linear and homogeneous in
the momenta. A homogeneous Lax representation can be obtained from
the standard representation by applying a canonical transformation of the
phase space.

3.16.2.1 Tensorial Lax Representation

Here we straightforwardly apply a simple canonical transformation that will
give a linear and homogeneous Lax representation [Rosquist and Goliath
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(1997)]

q̄1 = q1 + ln p1, p̄1 = p1,

q̄2 = q2, p̄2 = p2,

q̄3 = q3 − ln p3, p̄3 = p3.

The resulting Lax pair matrices are

L =

 p1 a1 p1 0
a1 p1 p2 a2 p3

0 a2 p3 p3

 , A =

 0 a1 p1 0
−a1 p1 0 a2 p3

0 −a2 p3 0

 ,

where a1 = exp(q1 − q2), a2 = exp(q2 − q3).

The Hamiltonian is now purely kinetic

H =
1
2
L2 =

1
2
[(

1 + 2a1
2
)
p1

2 + p2
2 +

(
1 + 2a2

2
)
p3

2
]
.

Using (3.262) we identify a metric

ds2 = g11(dq1)2 + (dq2)2 + g33(dq3)2, where
g11 =

(
1 + 2a1

2
)−1

, g33 =
(
1 + 2a2

2
)−1

.

The non–zero Levi–Civita connection coefficients, Γαβγ = Γα(βγ), of this met-
ric are

Γ1
11 = −2a1

2g11, Γ2
33 = 2a2

2(g33)2,
Γ1

12 = 2a1
2g11, Γ3

23 = −2a2
2g33,

Γ2
11 = −2a1

2(g11)2, Γ3
33 = 2a2

2g33.

Following the arguments above, the homogeneous Lax matrix should cor-
respond to a tensor with mixed indices Lαβ . It is a reasonable assumption
that the covariant Lax formulation inherits the symmetries of the standard
formulation we started with. We therefore expect Lαβ and Bαβ to have the
symmetries

L(αβ) = Lαβ and B[αβ] = Bαβ .

Note that the symmetry properties are not imposed on the Lax matrices,
Lαβ and Bαβ , themselves. In fact, the required symmetries are not consis-
tent with the representation (3.266). We can however perform a similarity
transformation (3.264) of the Lax matrix, L → L̃ in such a way that L̃αβ
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will be symmetric. Using the transformation matrix

U =

1/
√
g11 0 0

0 1 0
0 0 1/

√
g33

 ,

will get a new Lax pair

L =

 p1 a1/
√
g11 p1 0

a1
√
g11 p1 p2 a2

√
g33 p3

0 a2/
√
g33 p3 p3

 ,

A =

Γ11
1 p1 + Γ12

1 p2 a1/
√
g11 p1 0

−a1
√
g11 p1 0 a2

√
g33 p3

0 −a2/
√
g33 p3 Γ32

3 p2 + Γ33
3 p3

 ,

where L is such that Lαβ is symmetric. Defining L̂ = (Lαβ) and Â =
(Aαβ) by

L̂ = gL, Â = gA, where g = (gαβ), we get

L̂ =

 g11p1 a1
√
g11 p1 0

a1
√
g11 p1 p2 a2

√
g33 p3

0 a2
√
g33 p3 g33p3

 , and

Â =

Γ11
1p1 + Γ11

2p2 a1
√
g11 p1 0

−a1
√
g11 p1 0 a2

√
g33 p3

0 −a2
√
g33 p3 Γ33

2p2 + Γ33
3p3

 .

Note that the upper triangular parts of L̂ and Â coincide. This property
is peculiar to the open Toda lattice. We also define the corresponding
connection matrix , Γ̂ = gΓ, given by

Γ̂ =

Γ11
1p1 + Γ11

2p2 2a1
2g11p1 0

−2a1
2g11p1 0 2a2

2g33p3

0 −2a2
2g33p3 Γ33

2p2 + Γ33
3p3

 .

We see that the off–diagonal part of the matrix Γ̂ is antisymmetric like
that of Â and furthermore that their off–diagonal components are related
by the simple relation

Γαβγ = 2(Aαβγ)2, (for α < β).
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This gives the following relation between the upper triangular parts of L̂
and Â

Γαβγ = 2(Lαβγ)2, (for α < β).

Using the relation Â = Γ̂+B̂, where B̂ = gB, we find the following relation
between the upper triangular components of L̂ and B̂

Bαβ
γ = Lαβ

γ − 2(Lαβγ)2, (for α < β).

Finally expressing L̂ and B̂ in terms of Γ̂ we have for the upper triangular
parts

Lαβ
γ =

√
1
2

Γαβγ , Bαβ
γ = −Γαβγ +

√
1
2

Γαβγ , (for α < β).

Furthermore, the diagonal elements of Â and Γ̂ are identical. This implies
that B̂ is antisymmetric in agreement with our expectations.

3.16.3 4D Generalizations

Recall that we can get a 4D space–time simply by adding a time coordinate
according to the prescription [Rosquist and Goliath (1997)]

(4)ds2 = −(dq0)2 + ds2,

where ds2 is a 3D positive–definite metric. It follows that (4)Γ =
(

0 0
0 Γ

)
.

For the cases obtained above this will lead to inequivalent space–times. One
way to generalize the 3D Lax pair is

(4)L =
(
i p0 0
0 L

)
, (4)A =

(
0 0
0 A

)
,

for which (4)B =
(

0 0
0 B

)
.

This Lax pair gives the geodesic Hamiltonian of the corresponding space–
time metric as quadratic invariant.

3.16.3.1 Case I

Adding a time dimension to (3.266) we get the metric [Rosquist and Goliath
(1997)]

ds2 = −(dq0)2 + g11(dq1)2 + (dq2)2 + g33(dq3)2, where
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g11 =
(
1 + 2a1

2
)−1

, g33 =
(
1 + 2a2

2
)−1

, and
a1 = exp(q1 − q2), a2 = exp(q2 − q3).

This space–time is of Petrov type I. The nonzero components of the energy–
momentum tensor calculated in a Lorentz frame are (κ = 1)

T 00 = −((g11)2 T 11 + T 22 + (g33)2 T 33)
= −4a1

2(g11)2(a1
2 − 1) + 4a1

2a2
2g11g33 − 4a2

2(g33)2(a2
2 − 1),

T 11 = 4a1
2(a1

2 − 1), T 22 = −4a1
2a2

2g11g33,

T 33 = 4a2
2(a2

2 − 1).

3.16.3.2 Case II

Here we have the metric [Rosquist and Goliath (1997)]

ds2 = −(dq0)2 + g11(dq1)2 + (dq2)2 + (dq3)2, where

g11 =
[
1 + 2(a1

2 + a2
2)
]−1

, a1 = exp(
1√
2
q1 +

√
3
2
q2),

a2 = exp(
1√
2
q1 −

√
3
2
q2).

This space–time is of Petrov type D. The nonzero components of the
energy–momentum tensor calculated in a Lorentz frame are (κ = 1)

T 00 = 12 e2
√

2q1 g11
2
(

4− 2 sinh2(
√

6q2) + e−
√

2q1 cosh(
√

6q2)
)
,

T 11 = −(g11)2 T 00.

3.16.3.3 Energy–Momentum Tensors

In both of the above cases, the energy–momentum tensor takes the form
[Rosquist and Goliath (1997)]

Tαβ =


µ 0 0 0
0 p1 0 0
0 0 p2 0
0 0 0 p3

 ,

where µ ≡ T 00 is the energy density, and pi ≡ T ii, (i = 1, 2, 3) are
anisotropic pressures. Such an energy–momentum tensor is physically
meaningful if the weak energy condition [Hawking and Ellis (1973)]

µ ≥ 0, µ+ pi ≥ 0, (i = 1, 2, 3),
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is satisfied. For case I, there is an unbounded sub–domain of the space
coordinates (q1, q2, q3) for which the weak energy condition holds. For case
II, it is easily seen that the restrictions on the energy–momentum tensor
are inconsistent, so that the weak energy condition never holds.

3.17 Applied Unorthodox Geometries

3.17.1 Noncommutative Geometry

In this subsection we give review of noncommutative geometry and its main
gravitational applications. In the last section of the book, we will give its
applications to string theory.

3.17.1.1 Moyal Product and Noncommutative Algebra

Noncommutative geometry is concerned with the possible spatial interpre-
tations of algebraic structures for which the commutative law fails; that is,
for which xy does not always equal yx. The challenge of the theory is to
get around the lack of commutative multiplication, which is a requirement
of previous geometric theories of such structures (see [Connes (1994)]).

Recall that an ordinary differentiable manifold can be characterized by
the commutative algebra of smooth functions defined on it, and the space
of smooth sections of its tangent bundle, cotangent bundle and other fiber
bundles. All these spaces are modules over the commutative algebra of
smooth functions. The concepts of exterior derivative, Lie derivative and
covariant derivative are also important elements in understanding deriva-
tions over this algebra. In the noncommutative case, the algebras in ques-
tion are noncommutative. To handle differential forms, one must work with
the graded exterior algebra bundle of all p−forms under the wedge prod-
uct and look at its algebra of smooth sections. A ‘differential’ is taken to
be an anti–derivation (or, something more general) on this algebra, which
increases the grading by 1 and is quadratically nilpotent.

Historically first noncommutative product was the Moyal product
[Moyal (1949)],10 that is an associative, noncommutative ‘star’–product.
For any two functions f, g on a Poisson manifold M , the Moyal product ∗

10The Moyal product is also sometimes called Weyl–Moyal product.
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is defined as:

f ∗ g = fg +
∞∑
n=1

~nCn(f, g),

where each Cn is a bi–differential operator of order n with the following
properties:

1. f ∗ g = fg +O(~) – deformation of the pointwise product.
2. f ∗ g − g ∗ f = i{f, g}+O(~2) – deformation in the direction of the

Poisson bracket.
3. f ∗ 1 = 1 ∗ f = f – the 1 of the un–deformed algebra is the 1 in the

new algebra.
4. f ∗ g = g ∗ f – the complex conjugate is an anti–linear anti–

automorphism.
Let the Poisson structure on a symplectic manifold M be defined by

ω = ωij∂i ∧ ∂j .

If this structure is constant, that is, if ωij do not depend on the local
coordinates on M11, then the Moyal product of two functions f, g ∈M can
be defined as

f ∗ g = fg + ~ωij(∂if)(∂jg) +
~2

2
ωijωkm(∂i∂kf)(∂j∂mg) + . . .

where ~ is the (reduced) Planck constant .
For example, in Weyl deformation quantization [Weyl (1927)], the sym-

plectic phase–space of classical mechanics is deformed into a noncommuta-
tive phase–space generated by the position and momentum operators, using
the Moyal product.

3.17.1.2 Noncommutative Space–Time Manifolds

In physical field theories one usually considers differential space–time mani-
folds. Now, in the noncommutative realm, the notion of a point is no longer
well–defined and we have to give up the concept of differentiable manifolds.
However, the space of functions on a manifold forms an algebra. A general-
ization of this algebra can be considered in the noncommutative case. We
take the algebra freely generated by the noncommutative coordinates {x̂i},
which respects commutation relations of the type [Madore (1995)]

[x̂µ, x̂ν ] = Cµν(x̂) 6= 0. (3.266)
11Such a form can always be found at least locally by Darboux’s Theorem
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We can take the space of formal power series in the coordinates x̂i and
divide by the ideal generated by the above relations

Âx̂ = C〈〈x̂0, . . . , x̂n〉〉/([x̂µ, x̂ν ]− Cµν(x̂)) ,

where the function Cµν(x̂) is unknown. For physical reasons, Cµν(x̂) should
be a function that vanishes at large distances where we experience the
commutative world and may be determined by experiments. Nevertheless,
one can consider its power–series expansion [Meyer (2005)]

Cµν(x̂) = iθµν + iCµνρx̂ρ + (qR̂µνρσ − δνρδ
µ
σ)x̂ρx̂σ + . . . ,

where θµν , Cµνρ and qR̂µνρσ are constants, and study cases where the com-
mutation relations are constant, linear or quadratic in the x̂i−coordinates.
At very short distances, these cases provide a reasonable approximation for
Cµν(x̂) and lead to the following three structures:

(1) Canonical, or θ−deformed case:

[x̂µ, x̂ν ] = iθµν . (3.267)

(2) Lie–algebra case:

[x̂µ, x̂ν ] = iCµνρx̂ρ. (3.268)

(3) Quantum spaces case:

x̂µx̂ν = qR̂µνρσx̂
ρx̂σ. (3.269)

We denote by Â the algebra generated by noncommutative coordinates
x̂µ which are subject to the relations (3.267) and call it the algebra of
noncommutative functions. The algebra of the corresponding commuta-
tive functions will be denoted by A. We consider the θ−deformed case
(3.267), but we note that the algebraic construction presented here can be
generalized to more complicated noncommutative structures of the above
type, which possess the so–called Poincaré–Birkhoff–Witt property , which
states that the space of polynomials in noncommutative coordinates of a
given degree is isomorphic to the space of polynomials in the commutative
coordinates. Such an isomorphism between polynomials of a fixed degree
is given by an ordering prescription. One example is the symmetric Weyl
ordering , denoted W, which assigns to any monomial the totally symmetric
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ordered monomial [Meyer (2005)]

W : A → Â, xµ 7→ x̂µ, xµxν 7→ 1
2

(x̂µx̂ν + x̂ν x̂µ) · · · . (3.270)

To study the dynamics of physical fields we need a differential calculus
on the noncommutative algebra Â. Derivatives are maps on the deformed
coordinate space [Wess (2004)]

∂̂µ : Â → Â .

This means that they have to be consistent with the commutation relations
of the coordinates. In the θ−constant case a consistent differential calculus
can be defined very easily by12

[∂̂µ, x̂ν ] = δνµ(∂̂µx̂ν) = δνµ, [∂̂µ, ∂̂ν ] = 0. (3.271)

It is the fully undeformed differential calculus. The above definitions yield
the usual Leibniz-rule for the derivatives ∂̂µ

(∂̂µf̂ ĝ) = (∂̂µf̂)ĝ + f̂(∂̂µĝ). (3.272)

This is a special feature of the fact that θµν are constants. In the more com-
plicated examples of noncommutative structures this undeformed Leibniz-
rule usually cannot be preserved but one has to consider deformed Leibniz-
rules for the derivatives [Wess and Zumino (1991)]. Note that (3.271) also
implies that

(∂̂µf̂) = (̂∂µf). (3.273)

The Weyl ordering (3.270) can be formally implemented by the map

f 7→W (f) =
1

(2π)
n
2

∫
dnk eikµx̂

µ

f̃(k)

where f̃ is the Fourier transform of f

f̃(k) =
1

(2π)
n
2

∫
dnx e−ikµx

µ

f(x).

This is due to the fact that the exponential is a fully symmetric function.
Using the Baker–Campbell–Hausdorff formula one finds

eikµx̂
µ

eipν x̂
ν

= ei(kµ+pµ)x̂µ− i
2kµθ

µνpν . (3.274)
12We use brackets to distinguish the action of a differential operator from the multi-

plication in the algebra of differential operators.
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This immediately leads to the following observation

f̂ ĝ = W (f)W (g) =
1

(2π)n

∫
dnkdnp eikµx̂

µ

eipν x̂
ν

f̃(k)g̃(p) = (3.275)

1
(2π)n

∫
dnkdnp ei(kµ+pµ)x̂µe−

i
2kµθ

µνpν f̃(k)g̃(p) = W (µ ◦ e
i
2 θ
µν∂µ⊗∂νf ⊗ g),

where µ(f ⊗ g) := fg is the multiplication map. With (3.273) we deduce
from (3.275) the equation

µ ◦ e−
i
2 θ
µν ∂̂µ⊗∂̂ν f̂ ⊗ ĝ = f̂g. (3.276)

The above formula shows us how the commutative and the noncommutative
product are related. It will be important for us later on.

3.17.1.3 Symmetries and Diffeomorphisms on
Deformed Spaces

In general, the commutation relations (3.266) are not covariant with re-
spect to undeformed symmetries. For example, the canonical commutation
relations (3.267) break Lorentz symmetry if we assume that the noncom-
mutativity parameters θµν do not transform.

The question arises whether we can deform the symmetry in such a way
that it acts consistently on the deformed space (i.e., leaves the deformed
space invariant) and such that it reduces to the undeformed symmetry in
the commutative limit [Meyer (2005)]. The answer is yes: Lie algebras can
be deformed in the category of Hopf algebras.13 Important examples of such
deformations are q−deformations: there exists a q−deformation of the uni-
versal enveloping algebra of an arbitrary semisimple Lie algebra.14 Module
algebras of this q−deformed universal enveloping algebras are noncommu-
tative spaces with commutation relations of type (3.269). There exists also
a so–called κ−deformation of the Poincaré algebra (see [Dimitrijevic et al.
(2003); Dimitrijevic et al. (2004)]), which leads to a noncommutative space
of the Lie type (3.268).

Quantum group symmetries lead to new features of field theories on
noncommutative spaces. Because of its simplicity, θ−deformed spaces are
very well–suited to study them. For results on the consequences of the
θ−deformed Poincaré algebra, see [Chaichian et. al. (2004); Aschieri et. al.
(2005)].

13Hopf algebras coming from a Lie algebra are also called Quantum groups.
14It is called q−deformation since it is a deformation in terms of a parameter q.
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Now, recall that gravity is a theory invariant with respect to diffeomor-
phisms. However, to generalize the Einstein formalism to noncommutative
spaces in order to establish a noncommutative gravity theory , it is impor-
tant to first understand that diffeomorphisms possess more geometrical
structure than the algebraic one: They are naturally equipped with a Hopf
algebra structure.

Recall that diffeomorphisms are generated by vector–fields ξ. Acting
on functions, vector–fields are represented as linear differential operators
ξ = ξµ∂µ. Vector–fields form a Lie algebra Ξ over the field C with the Lie
bracket given by

[ξ, η] = ξ × η,

where ξ × η is defined by its action on functions

(ξ × η)(f) = (ξµ(∂µην)∂ν − ηµ(∂µξν)∂ν)(f).

The Lie algebra of infinitesimal diffeomorphisms Ξ can be embedded into
its universal enveloping algebra which we want to denote by U(Ξ) . The
universal enveloping algebra is an associative algebra and possesses a nat-
ural Hopf algebra structure. It is given by the following structure maps
[Meyer (2005)]:

• An algebra homomorphism called coproduct defined by

∆ : U(Ξ)→ U(Ξ)⊗U(Ξ), Ξ 3 ξ 7→ ∆(ξ) := ξ⊗ 1 + 1⊗ ξ. (3.277)

• An algebra homomorphism called counit defined by

ε : U(Ξ)→ C, Ξ 3 ξ 7→ ε(ξ) = 0. (3.278)

• An anti–algebra homomorphism called antipode defined by

S : U(Ξ)→ U(Ξ), Ξ 3 ξ 7→ S(ξ) = −ξ. (3.279)

For a precise definition and more details on Hopf algebras we refer the
reader to the text–books [Chari and Presley (1995); Klimyk and Schmüdgen
(1997)]. For our purposes it shall be sufficient to note that the coproduct
implements how the Hopf algebra acts on a product in a representation
algebra. It is now possible to study deformations of U(Ξ) in the category
of Hopf algebras. This leads to a deformed version of diffeomorphisms,
which is the fundamental building block of our approach to noncommutative
gravity theory.
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Recall that scalar fields are defined by their transformation property
with respect to infinitesimal coordinate transformations:

δξφ = −ξφ = −ξµ(∂µφ). (3.280)

The product of two scalar fields is transformed using the Leibniz rule

δξ(φψ) = (δξφ)ψ + φ(δξψ) = −ξµ(∂µφψ), (3.281)

such that the product of two scalar fields transforms again as a scalar. The
above Leibniz rule can be understood in mathematical terms as follows
[Meyer (2005)]: The Hopf algebra U(Ξ) is represented on the space of scalar
fields by infinitesimal coordinate transformations δξ. On scalar fields, the
action of δξ is explicitly given by the differential operator -ξµ∂µ. Recall
that the space of scalar fields is not only a vector space, as it possesses also
an algebra structure, such as U(Ξ) is not only an algebra, but also a Hopf
algebra, as it possesses in addition the co–structure maps defined above.
We say that a Hopf algebra H acts on an algebra A if A is a module with
respect to the algebra H and if in addition for all h ∈ H and a, b ∈ A

h(ab) = µ ◦∆h(a⊗ b), h(1) = ε(h).

Here µ is the multiplication map defined by µ(a⊗ b) = ab. In our concrete
example where H = U(Ξ) and A is the algebra of scalar fields we indeed
have that the algebra of scalar fields is a U(Ξ)−module algebra. This can
be seen easily if we rewrite (3.281) using (3.277) for the generators ξ ∈ Ξ
for U(Ξ):

δξ(φψ) = (δξφ)ψ + φ(δξψ) = µ ◦∆ξ(φ⊗ ψ).

It is also evident that

δξ1 = 0 = ε(ξ)1.

Now we are in the right mathematical framework: We study a Lie algebra
(here infinitesimal diffeomorphisms Ξ) and embed it in its universal en-
veloping algebra (here U(Ξ)). This universal enveloping algebra is a Hopf
algebra via a natural Hopf structure induced by (3.277,3.278,3.279).

Physical quantities live in representations of this Hopf algebras. For
instance, the algebra of scalar fields is a U(Ξ)−module algebra. The ac-
tion of U(Ξ) on scalar fields is given in terms of infinitesimal coordinate
transformations δξ.
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Similarly one studies tensor representations of U(Ξ). For example vector
fields are introduced by the transformation property

δξVα = −ξµ(∂µVα)− (∂αξµ)Vµ, δξV
α = −ξµ(∂µV α) + (∂µξα)V µ.

The generalization to arbitrary tensor fields is straight forward:

δξT
µ1···µn
ν1···νn = −ξµ(∂µT

µ1···µn
ν1···νn ) + (∂µξµ1)Tµ···µnν1···νn + · · ·+ (∂µξµn)Tµ1···µ

ν1···νn

−(∂ν1ξ
ν)Tµ1···µn

ν···νn − · · · − (∂νnξ
ν)Tµ1···µn

ν1···ν .

As for scalar fields, we also find that the product of two tensors trans-
forms like a tensor. Summarizing, we have seen that scalar fields, vector
fields and tensor fields are representations of the Hopf algebra U(Ξ), the
universal enveloping algebra of infinitesimal diffeomorphisms. The Hopf
algebra U(Ξ) acts via infinitesimal coordinate transformations δξ which are
subject to the relations:

[δξ, δη] = δξ×ηε(δξ) = 0, ∆δξ = δξ ⊗ 1 + 1⊗ δξS(δξ) = −δξ. (3.282)

The transformation operator δξ is explicitly given by differential operators
which depend on the representation under consideration. In case of scalar
fields this differential operator is given by -ξµ∂µ.

3.17.1.4 Deformed Diffeomorphisms

The above concepts can be deformed in order to establish a consistent
tensor calculus on the noncommutative space–time algebra (3.267). In this
context it is necessary to account the full Hopf algebra structure of the
universal enveloping algebra U(Ξ).

In our setting the algebra Â possesses a noncommutative product de-
fined by

[x̂µ, x̂ν ] = iθµν . (3.283)

We want to deform the structure maps (3.282) of the Hopf algebra U(Ξ) in
such a way that the resulting deformed Hopf algebra which we denote by
U(Ξ̂) consistently acts on Â. In the language introduced in the previous
section this means that we want Â to be a U(Ξ̂)−module algebra. We claim
that the following deformation of U(Ξ) does the job. Let U(Ξ̂) be generated
as algebra by elements δ̂ξ, ξ ∈ Ξ. We leave the algebra relation undeformed
and demand [Meyer (2005)]

[δ̂ξ, δ̂η] = δ̂ξ×η (3.284)



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

466 Applied Differential Geometry: A Modern Introduction

but we deform the co–sector

∆δ̂ξ = e−
i
2hθ

ρσ ∂̂ρ⊗∂̂σ (δ̂ξ ⊗ 1 + 1⊗ δ̂ξ)e
i
2hθ

ρσ ∂̂ρ⊗∂̂σ , (3.285)

where [∂̂ρ, δ̂ξ] = δ̂(∂ρξ).

The deformed coproduct (3.285) reduces to the undeformed one (3.282) in
the limit θ → 0. Antipode and counit remain undeformed

S(δ̂ξ) = −δ̂ξε(δ̂ξ) = 0.

We have to check whether the above deformation is a good one in the
sense that it leads to a consistent action on Â. First we need a differential
operator acting on fields in Â which represents the algebra (3.284). Let us
consider the differential operator

X̂ξ :=
∞∑
n=0

1
n!

(− i
2

)nθρ1σ1 · · · θρnσn(∂̂ρ1 · · · ∂̂ρn ξ̂
µ
)∂̂µ∂̂σ1 · · · ∂̂σn . (3.286)

This is to be understood like that: A vector–field ξ = ξµ∂µ is determined by
its coefficient functions ξµ. Before we have seen that there is a vectorspace
isomorphism W from the space of commutative to the space of noncommu-
tative functions which is given by the symmetric ordering prescription. The
image of a commutative function f under the isomorphism W is denoted
by f̂

W : f 7→W (f) = f̂ .

In (3.286) ξ̂
µ

is therefore to be interpreted as the image of ξµ with respect
to W . Then indeed we have

[X̂ξ, X̂η] = X̂ξ×η. (3.287)

To see this we use result (3.276) to rewrite (X̂ξφ̂) :

(X̂ξφ̂) =
∞∑
n=0

1
n!

(− i
2

)nθρ1σ1 · · · θρnσn(∂̂ρ1 · · · ∂̂ρn ξ̂
µ
)(∂̂µ∂̂σ1 · · · ∂̂σn φ̂) = (3.288)

∞∑
n=0

1
n!

(− i
2

)nθρ1σ1 · · · θρnσn(∂̂ρ1 · · · ∂̂ρn ξ̂
µ
)(∂̂σ1 · · · ∂̂σn ∂̂µφ) = ̂ξµ(∂µφ) = (̂ξφ).

From (3.288) it follows

(X̂ξ(X̂ηφ̂))− (X̂η(X̂ξφ̂)) = ̂([ξ, η]φ) = (X̂ξ×ηφ̂),
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which amounts to (3.287). It is therefore reasonable to introduce scalar
fields φ̂ ∈ Â by the transformation property

δ̂ξφ̂ = −(X̂ξφ̂).

The next step is to work out the action of the differential operators X̂ξ on
the product of two fields. A calculation [Aschieri et. al. (2005)] shows that

(X̂ξ(φ̂ψ̂)) = µ ◦ (e−
i
2hθ

ρσ ∂̂ρ⊗∂̂σ (X̂ξ ⊗ 1 + 1⊗ X̂ξ)e
i
2hθ

ρσ ∂̂ρ⊗∂̂σ φ̂⊗ ψ̂).

This means that the differential operators X̂ξ act via a deformed Leibniz
rule on the product of two fields. Comparing with (3.285) we see that
the deformed Leibniz rule of the differential operator X̂ξ is exactly the one
induced by the deformed coproduct (3.285):

δ̂ξ(φ̂ψ̂) = e−
i
2hθ

ρσ ∂̂ρ⊗∂̂σ (δ̂ξ ⊗ 1 + 1⊗ δ̂ξ)e
i
2hθ

ρσ ∂̂ρ⊗∂̂σ (φ̂ψ̂) = −X̂ξ . (φ̂ψ̂).

Hence, the deformed Hopf algebra U(Ξ̂) is indeed represented on scalar
fields φ̂ ∈ Â by the differential operator X̂ξ. The scalar fields form a
U(Ξ̂)−module algebra.

In analogy to the previous section we can introduce vector and tensor
fields as representations of the Hopf algebra U(Ξ̂). The transformation
property for an arbitrary tensor reads

δ̂ξT̂
µ1···µr
ν1···νs = −(X̂ξT̂

µ1···µn
ν1···νn ) + (X̂(∂µξµ1 )T̂

µ···µn
ν1···νn) + · · ·+ (X̂(∂µξµn )T̂

µ1···µ
ν1···νn)

−(X̂(∂ν1ξ
ν)T̂

µ1···µn
ν···νn )− · · · − (X̂(∂νnξ

ν)T̂
µ1···µn
ν1···ν ).

3.17.1.5 Noncommutative Space–Time Geometry

The deformed algebra of infinitesimal diffeomorphisms and the tensor cal-
culus covariant with respect to it is the fundamental building-block for the
definition of a noncommutative geometry on θ−deformed spaces. In this
section we sketch the important steps towards a deformed Einstein-Hilbert
action [Aschieri et. al. (2005)]. A first ingredient is the covariant deriva-
tive D̂µ. Algebraically, it can be defined by demanding that acting on a
vector-field it produces a tensor–field [Meyer (2005)]

δ̂ξD̂µV̂ν = −(X̂ξD̂µV̂ν)− (X̂(∂µξα)D̂αV̂ν)− (X̂(∂νξα)D̂µV̂α) (3.289)

The covariant derivative is given by a connection Γ̂µνρ

D̂µV̂ν = ∂̂µV̂ν − Γ̂µνρV̂ρ.
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From (3.289) it is possible to deduce the transformation property of Γ̂µνρ

δ̂ξΓ̂µνρ = (X̂ξΓ̂µνρ)−(X̂(∂µξα)Γ̂ανρ)−(X̂(∂νξα)Γ̂µαρ)+(X̂(∂αξρ)Γ̂µν
α)−(∂̂µ∂̂ν ξ̂

ρ
).

The metric Ĝµν is defined as a symmetric tensor of rank two. It can be
obtained for example by a set of vector–fields Êµa, a = 0, . . . , 3, where a is
to be understood as a mere label. These vector–fields are called vierbeins.
Then the symmetrized product of those vector–fields is indeed a symmetric
tensor of rank two

Ĝµν :=
1
2

(ÊµaÊνb + Êν
bÊµ

a)ηab.

Here ηab stands for the usual flat Minkowski space metric with signature
(−+ ++). Let us assume that we can choose the vierbeins Êµa such that
they reduce in the commutative limit to the usual vierbeins eµa. Then also
the metric Ĝµν reduces to the usual, undeformed metric gµν .

The inverse metric tensor we denote by upper indices

ĜµνĜ
νρ = δρµ.

We use Ĝµν respectively Ĝµν to raise and lower indices.
The curvature and torsion tensors are obtained by taking the commu-

tator of two covariant derivatives15

[D̂µ, D̂ν ]V̂ρ = R̂µνρ
αV̂α + T̂µν

αD̂αV̂ρ

which leads to the expressions

R̂µνρ
σ = ∂̂ν Γ̂µρσ − ∂̂µΓ̂νρσ + Γ̂νρβΓ̂µβσ − Γ̂µρβΓ̂νβσ

T̂µν
α = Γ̂νµα − Γ̂νµα.

If we assume the torsion–free case, i.e.,

Γ̂µνσ = Γ̂νµσ,

we find a unique expression for the metric connection (Christoffel symbols)
defined (by means of D̂αĜβγ = 0 ) in terms of the metric and its inverse

Γ̂αβσ =
1
2

(∂̂αĜβγ + ∂̂βĜαγ − ∂̂γĜαβ)Ĝγσ.

15The generalization of covariant derivatives acting on tensors is straight forward [As-
chieri et. al. (2005)].
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From the Riemann curvature tensor R̂µνρσ we get the Ricci curvature
scalar by contracting the indices

R̂ := ĜµνR̂νµρ
ρ.

R̂ indeed transforms as a scalar which may be checked explicitly by taking
the deformed coproduct (3.285) into account.

To get an integral which is invariant with respect to the Hopf algebra
of deformed infinitesimal diffeomorphisms we need a measure function Ê.
We demand the transformation property

δ̂ξÊ = −X̂ξÊ − X̂(∂µξµ)Ê. (3.290)

Then it follows with the deformed coproduct (3.285) that for any scalar
field Ŝ

δ̂ξÊŜ = −∂̂µ(X̂ξµ(ÊŜ)).

Hence, transforming the product of an arbitrary scalar field with a measure
function Ê we get a total derivative which vanishes under the integral. A
suitable measure function with the desired transformation property (3.290)
is for instance given by the determinant of the vierbein Êµ

a

Ê = det(Êµa) :=
1
4!
εµ1···µ4εa1···a4Êµ1

a1Êµ2
a2Êµ3

a3Êµ4
a4 .

That Ê transforms correctly can be shown by using that the product of
four Êµi

ai transforms as a tensor of fourth rank and some combinatorics.
Now we have all ingredients to write down the Einstein–Hilbert action.

Note that having chosen a differential calculus as in (3.271), the integral is
uniquely determined up to a normalization factor by requiring16[Douglas
and Nekrasov (2001)] ∫

∂̂µf̂ = 0

for all f̂ ∈ Â. Then we define the Einstein–Hilbert action on Â as

ŜEH :=
∫

det(Êµa)R̂+ complex conjugate.

16We consider functions that “vanish at infinity”.
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It is by construction invariant with respect to deformed diffeomorphisms
meaning that

δ̂ξŜEH = 0.

In this section we have presented the fundamentals of a noncommutative
geometry on the algebra Â and defined an invariant Einstein–Hilbert ac-
tion. There is however one important step missing which is subject of the
following section: We want to make contact of the noncommutative gravity
theory with Einstein’s gravity theory. This we achieve by introducing the
?−product formalism.

3.17.1.6 Star–Products and Expanded Einstein–Hilbert Action

To express the noncommutative fields in terms of their commutative coun-
terparts we first observe that we can map the whole algebraic construction
of the previous sections to the algebra of commutative functions via the
vector space isomorphism W introduced above. By equipping the algebra
of commutative functions with a new product denoted by ? be can render
W an algebra isomorphism. We define [Meyer (2005)]

f ? g : = W−1(W (f)W (g)) = W−1(f̂ ĝ), (3.291)

and get (A, ?) ∼= Â.

The ?−product corresponding to the symmetric ordering prescription W is
then given explicitly by the Moyal product17

f ? g = µ ◦ e
i
2 θ
µν∂µ⊗∂νf ⊗ g = fg +

i
2
θµν(∂µf)(∂νg) +O(θ2).

It is a deformation of the commutative point–wise product to which it
reduces in the limit θ → 0.

In virtue of the isomorphism W we can map all noncommutative fields
to commutative functions in A

F̂ 7→W−1(F̂ ) ≡ F.

We then expand the image F in orders of the deformation parameter θ

F = F (0) + F (1) + F (2) +O(θ3),

17This is an immediate consequence of (3.275).
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where the zeroth order always corresponds to the undeformed quantity.
Products of functions in Â are simply mapped to ?−products of the cor-
responding functions in A. The same can be done for the action of the
derivative ∂̂µ and consequently for an arbitrary differential operator acting
on Â [Aschieri et. al. (2005)].

The fundamental dynamical field of our gravity theory is the vierbein
field Êµ

a. All other quantities such as metric, connection and curvature
can be expressed in terms of it. Its image with respect to W−1 is denoted
by Eµ

a. In the first approximation, we study the case Eµ
a = eµ

a, where
eµ
a is the usual vierbein field. Then for instance the metric is given up to

second order in θ by

Gµν =
1
2

(Eµa ? Eνb + Eν
b ? Eµ

a)ηab =
1
2

(eµa ? eνb + eν
b ? eµ

a)ηab

= gµν −
1
8
θα1β1θα2β2(∂α1∂α2eµ

a)(∂β1
∂β2

eν
b)ηab + . . . ,

where gµν is the usual, undeformed metric. For the Christoffel symbol one
finds up to the second order [Meyer (2005)]:

(i) the 0th order is the undeformed expression

Γ(0)ρ
µν =

1
2

[pµgνγ + pνgµγ − pγgµν ]gγρ;

(ii) the first order reads

Γ(1)
µν

ρ =
i
2
θαβ(∂αΓ(0)σ

µν )gστ (∂βgτρ); and

(iii) the second order is

Γ(2)
µν

ρ = −1
8
θα1β1θα2β2((∂α1∂α2Γ(0)

µνσ)(∂β1
∂β2

gσρ)

−2(∂α1Γ(0)
µνσ)∂β1

((∂α2g
στ )(∂β2

gτξ)gξρ)

−Γ(0)
µνσ((∂α1∂α2g

στ )(∂β1
∂β2

gτξ) + gστ (∂α1∂α2eτ
a)(∂β1

∂β2
eξ
b)ηab (3.292)

−2∂α1((∂α2g
στ )(∂β2

gτλ)gλκ)(∂β1
gκξ))gξρ +

1
2

(∂µ((∂α1∂α2e
a
ν )(∂β1

∂β2
e bσ ))

+ ∂ν((∂α1∂α2e
a
σ )(∂β1

∂β2
e bµ ))− ∂σ((∂α1∂α2e

a
µ )(∂β1

∂β2
e bν )))ηabg

σρ),

where Γ(0)
µνσ = Γ(0)ρ

µν gρσ.
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The expressions for the curvature tensor now read

R(1)
µνρ

σ=− i
2
θκλ((∂κR(0)

µνρ
τ )(∂λgτγ)gγσ − (∂κΓ(0)

νρ
β)(Γ(0)

µβ
τ (∂λgτγ)gγσ

−Γ(0)
µτ

σ(∂λgβγ)gγτ + ∂µ((∂λgβγ)gγσ) + (∂λΓ(0)
µβ

σ))

+(∂κΓ(0)
µρ

β)(Γ(0)
νβ

τ (∂λgτγ)gγσ − Γ(0)
ντ

σ(∂λgβγ)gγτ

+∂ν [(∂λgβγ)gγσ] + (∂λΓ(0)
νβ

σ))), (3.293)

R(2)
µνρ

σ=∂νΓ(2)
µρ

σ + Γ(2)
νρ

γΓ(0)
µγ

σ + Γ(0)
νρ

γΓ(2)
µγ

σ

+
i
2
θαβ [(∂αΓ(1)

νρ
γ)(∂βΓ(0)

µγ
σ) + (∂αΓ(0)

νρ
γ)(∂βΓ(1)

µγ
σ)]

−1
8
θα1β1θα2β2(∂α1∂α2Γ(0)

νρ
γ)(∂β1

∂β2
Γ(0)
µγ

σ)− (µ↔ ν), (3.294)

where the second order is given implicitly in terms of the Christoffel sym-
bols.

The deformed Einstein–Hilbert action is given by

SEH =
1
2

∫
d4xdet?eµa ? R+ c.c.

=
1
2

∫
d4xdet?eµa ? (R+ R̄) =

1
2

∫
d4xdet?eµa(R+ R̄)

= S
(0)
EH +

∫
d4x (deteµa)R(2) + (det?eµa)(2)R(0), (3.295)

where we used that the integral together with the Moyal product (by partial
integration) has the property∫

d4x f ? g =
∫

d4x fg =
∫

d4x g ? f.

In (3.295) det?eµa is the ?−determinant

det?eµa =
1
4!
εµ1···µ4εa1···a4eµ1

a1?eµ2
a2?eµ3

a3?eµ4
a4 = deteµa+(det?eµa)(2)+. . . ,

where

(det?)(2) = −1
8

1
4!
θα1β1θα2β2εµ1...µ4εa1...a4 [(∂α1∂α2eµ1

a1)(∂β1
∂β2

eµ2
a2)eµ3

a3eµ4
a4 +

∂α1∂α2(eµ1
a1eµ2

a2)(∂β1
∂β2

eµ3
a3)eµ4

a4 + ∂α1∂α2(eµ1
a1eµ2

a2eµ3
a3)(∂β1

∂β2
eµ4

a4)].

The odd orders of θ vanish in (3.295) but the even orders of θ give nontrivial
contributions.
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3.17.2 Synthetic Differential Geometry

The sense in which we understand the word ‘synthetic’ in this context is
that we place ourselves in the certain category E of manifold–like objects
where everything is smooth. A main assumption about our category E is
that it is cartesian closed, meaning that functional spaces as well as methods
of classical functional analysis are available.

Recall that distributions are usually thought of as very non–smooth
functions, like the Heaviside function, or the Dirac δ−function. These so–
called generalized functions are commonly presented following the Sobolev–
Schwartz functional analysis, usually including the integral transforms of
Fourier, Laplace, Mellin, Hilbert, Cauchy–Bochner and Poisson. The main
application of the theory of generalized functions is the solution of classical
equations of mathematical physics (see e.g., [Vladimirov (1971); Vladimirov
(1986)]).

On the other hand, there is a viewpoint, firstly stressed by Lawvere
[Lawvere (1979)], and fully elaborated by A. Kock [Kock (1981); Kock and
Reyes (2003)], that distributions are extensive quantities, where functions
are intensive quantities. This viewpoint also makes it quite natural to
formulate partial equations of mathematical physics (like classical wave and
heat equations) – as ODEs describing the evolution over time of any initial
distributions. For example, the main construction in the theory of the wave
equation is the construction of the fundamental solution: the description
of the evolution of a point δ−distribution over time.

To say that distributions are extensive quantities implies that they
transform covariantly (in a categorical sense). To say that functions are
intensive quantities implies that they transform contravariantly. Distribu-
tions are here construed, as linear functionals on the space of (smooth) func-
tions. However, since all functions in the synthetic context are smooth, as
well as continuous, there is no distinction between distributions and Radon
measures.

In the category E one can define the vector space D′c(M) of distributions
of compact support on M , for each manifold–like object M ∈ E, namely
the object of −linear maps RM → R. We shall assume that elementary
differential calculus for functions R → R is available, as in all models of
synthetic differential geometry (SDG, see [Kock (1981); Moerdijk and Reyes
(1991)]). Following Kock [Kock (1981)], we shall also assume some integral
calculus, but only in the weakest possible sense, namely we assume that
for every ψ : R → R, there is a unique Ψ : R → R with Ψ′ = ψ and with
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Ψ(0) = 0. Using this result, intervals will be construed as distributions:
for a, b ∈ R, [a, b] denotes the distribution

ψ 7→
∫ b

a

ψ(x) dx = Ψ(b)−Ψ(a).

3.17.2.1 Distributions

Let us make the formula for covariant functorality D′c explicit. Let f : M →
N be a map. Then the corresponding map f∗ = D′c(f) : D′c(M) → D′c(N)
is described by declaring

< f∗(T ), φ >=< T, φ ◦ f >, (3.296)

where T is a distribution on M , and φ is a function on N . The brackets
denote evaluation of distributions on functions. If we similarly denote the
value of the contravariant functor M 7→ RM on a map f by f∗, the defining
equation for f∗ reads

< f∗(T ), φ >=< T, f∗(φ) > .

D′c(M) is an R−linear space, and all maps f∗ : D′c(M) → D′c(N) are
R−linear. Also D′c(M) is a Euclidean vector space V , meaning that the
basic differential calculus in available.

For any distribution T of compact support on M , one has its Total,
which is just the number < T, 1 >∈ R, where 1 denotes the function on M
with constant value 1. Since f∗(1) = 1 for any map f , it follows that f∗
preserves Totals.

Recall that a distribution T on M may be multiplied by any function
g : M → R, by the rule

< g · T , φ >=< T, g · φ > . (3.297)

A basic result from single–variable calculus, ‘integration by substitu-
tion’, in a pure ‘distribution’ form reads: Given any function g : R → R,
and given a, b ∈ R, we have

g∗(g′ · [a, b]) = [g(a), g(b)].

Let ψ be a test function, and let Ψ be a primitive of it, Ψ′ = ψ. Then

< [g(a), g(b)], ψ >= Ψ(g(b))−Ψ(g(a)).
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On the other hand, by the chain rule, Ψ ◦ g is a primitive of g′ · (ψ ◦ g), so

Ψ(g(a))−Ψ(g(b)) =< [a, b], g′·(ψ◦g) >=< g′·[a, b], ψ◦g >=< g∗(g′·[a, b]), ψ > .

The external product of distributions of compact support is defined as fol-
lows. If P is a distribution on M , and Q a distribution on N , we get a
distribution P ×Q on M ×N , by

< P ×Q,ψ >=< P, [m 7→< Q,ψ(m,−) >] > .

However, if [a, b] and [c, d] are intervals (viewed as distributions on R,
as described above), [a, b] × [c, d] = [a, b]×[c, d], as distributions on R2, by
an application of Fubini’s Theorem, (which holds in our context here as a
consequence of equality of mixed partial derivatives). Distributions arising
in this way on R2, are called rectangles. The obvious generalizations to
higher dimensions are called boxes. We have

< [a, b]× [c, d], ψ >=
∫ b

a

∫ d

c

ψ(x, y) dy dx,

in traditional notation. Here, we can define the boundary of the box [a, b]×
[c, d] as the obvious distribution on R2,

(p2
c)∗[a, b] + (p1

b)∗[c, d]− (p2
d)∗[a, b]− (p1

a)∗[c, d],

where p2
c(x) = (x, c), p1

b(y) = (b, y), etc.
By a singular box in a manifold–like object M , we understand the data

of a map γ : R2 → M and a box [a, b] × [c, d] in R2, and similarly for
singular intervals and singular rectangles. Such a singular box gives rise to
a distribution on M , namely g∗([a, b]× [c, d]).

By differential operator on an object M , we here understand just an
R−linear map D : RM → RM . If D is such an operator, and T is a
distribution on M , we define D(T ) by

< D(T ), ψ >=< T,D(ψ) >,

and in this way, D becomes a linear operator D′c(M)→ D′c(M).
In particular, if X is a vector–field on M , one defines the directional

(i.e., Lie) derivative DX(T ) of a distribution T on M by the formula

< DX(T ), ψ >=< T,DX(ψ) > . (3.298)

This in particular applies to the vector–field ∂/∂x on R, and reads here

< T ′, ψ >=< T,ψ′ >,
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where ψ′ denotes the ordinary derivative of the function ψ.
The following Proposition is an application of the covariant functorality

of the functor D′c, which will be used in connection with the wave (and
heat) equations in dimension 2. We consider the (orthogonal) projection
p : R3 → R2 onto the xy−plane; ∆ denotes the Laplace operator in the
relevant Rn, so for R3, ∆ is ∂2/∂x2+∂2/∂y2+∂2/∂z2. For any distribution
S (of compact support) on R3,

p∗(∆(S)) = ∆(p∗(S)).

This follows from the fact that for any ψ : R2 → R,

∆(p∗ψ)) = p∗(∆(ψ)),

namely, ∂2ψ/∂x2 + ∂2ψ/∂y2.

3.17.2.2 Synthetic Calculus in Euclidean Spaces

Recall that a vector space E (which in the present context means an
R−module) is called Euclidean if differential and integral calculus for func-
tions R → E is available (see [Kock (1981); Moerdijk and Reyes (1991)]).
The coordinate vector spaces are Euclidean, but so are also the vector spaces
RM , and D′c(M) for any M . To describe for instance the ‘time–derivative’
ḟ of a function f : R→ D′c(M), we put

< ḟ(t), ψ >=
d

dt
< f(t), ψ > .

Similarly, from the integration Axiom for R, one immediately proves that
D′c(M) satisfies the integration Axiom, in the sense that for any h : R →
D′c(M), there exists a unique H : R → D′c(M) satisfying H(0) = 0 and
H ′(t) = h(t) for all t. In particular, if h : R → D′c(M), the ‘integral’∫ b
a
h(u) du = H(b)−H(a) makes sense, and the Fundamental Theorem of

Calculus holds.
As a particular case of special importance, we consider a linear vector–

field on a Euclidean R−module V . To say that the vector field is linear is
to say that its principal–part formation V → V is a linear map, Γ, say. We
have then the following version of a classical result. By a formal solution
for an ordinary differential equation, we mean a solution defined on the set
D∞ of nilpotent elements in R (these form a subgroup of (R,+)).

Let a linear vector–field on a Euclidean vector space V be given by the
linear map Γ : V → V . Then the unique formal solution of the correspond-
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ing differential equation,

Ḟ (t) = Γ(F (t)),

with initial position v, is the map D∞ × V → V given by [Kock (1981);
Kock and Reyes (2003)]

(t, v) 7→ et·Γ(v), (3.299)

where the r.h.s here means the sum of the following ‘series’ (which has only
finitely many non–vanishing terms, since t is assumed nilpotent):

v + tΓ(v) +
t2

2!
Γ2(v) +

t3

3!
Γ3(v) + . . .

where Γ2(v) means Γ(Γ(v)), etc.
There is an analogous result for second order differential equations of

the form

F̈ (t) = Γ(F (t)).

The formal solution of this second order differential equation with initial
position v and initial velocity w, is given by [Kock (1981); Kock and Reyes
(2003)]

F (t) = v + t · w +
t2

2!
Γ(v) +

t3

3!
Γ(w) +

t4

4!
Γ2(v) +

t5

5!
Γ2(w) + ....

Also, given f : R→ V , where V is a Euclidean vector space, and given
g : R→ R. Then for any a, b ∈ R,∫ b

a

f(g(x)) · g′(x) dx =
∫ g(b)

g(a)

f(u) du.

Linear maps between Euclidean vector spaces preserve differentiation and
integration of functions R→ V ; we shall explicitly need the following par-
ticular assertion: Let F : V →W be a linear map between Euclidean vector
spaces. Then for any f : R→ V ,

F (
∫ b

a

f(t) dt) =
∫ b

a

F (f(t)) dt.
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3.17.2.3 Spheres and Balls as Distributions

For a, b ∈ R, we let [a, b] denote the distribution f 7→
∫ b
a
f(x) dx. Recall

that such distributions on the line we call intervals; the length of an interval
[a, b] is defined to be b − a. Let [a1, b1] and [a2, b2] be two such intervals.
They are equal as distributions if and only if they have same length, b1 −
a1 = b2 − a2 (= l, say), and l · (a1 − a2) = 0 (this then also implies
l · (b1 − b2) = 0).

We shall also consider such ‘balls’ in dimension 2 and 3, where, however,
t cannot in general be recovered from the distribution, unless t is strictly
positive.

We fix a positive integer n. We shall consider the sphere St of radius
t, and the ball Bt of radius t, for any t ∈ R, as distributions on Rn (of
compact support), in the following sense:

< St, ψ >=
∫
St

ψ(x)dx = tn−1

∫
S1

ψ(t · u) du,

< Bt, ψ >=
∫
Bt

ψ(x)dx = tn
∫
B1

ψ(t · u) du,

where du refers to the surface element of the unit sphere S1 in the first
equation and to the volume element of the unit ball B1 in the second. The
expressions involving

∫
St

and
∫
Bt

are to be understood symbolically, unless
t > 0; if t > 0, they make sense literally as integrals over sphere and ball,
respectively, of radius t, with dx denoting surface-, resp. volume element.
The expression on the right in both equations makes sense for any t, and so
the distributions St and Bt are defined for all t; in particular, for nilpotent
ones.

It is natural to consider also the following distributions St and Bt on
Rn (again of compact support):

< St, ψ >=
∫
S1

ψ(t · u) du,

< Bt, ψ >=
∫
B1

ψ(t · u) du.

For t > 0, they may, modulo factors of the type 4π, be considered as
‘average over St’ and ‘average over Bt’, respectively, since St differs from
St by a factor tn−1, which is just the surface area of St (modulo the factor
of type 4π), and similarly for Bt.
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Note that S1 = S1 and B1 = B1. And also note that the definition of
St and Bt can be formulated as

St = Ht(S1) , Bt = Ht(B1),

where Ht : Rn → Rn is the homothetic transformation u 7→ t ·u, and where
we are using the covariant functoriality of distributions of compact support.

For low dimensions, we shall describe the distributions St, Bt, St and
Bt explicitly:

Dimension 1:

< St, ψ >= ψ(−t) + ψ(t), < Bt, ψ >=
∫ t

−t
ψ(s) ds,

< St, ψ >= ψ(−t) + ψ(t), < Bt, ψ >=
∫ 1

−1

ψ(t · s) ds.

Dimension 2:

< St, ψ >=
∫ 2π

0

ψ(t cos θ, t sin θ) t dθ,

< Bt, ψ >=
∫ t

0

∫ 2π

0

ψ(s cos θ, s sin θ) s dθ ds,

< St, ψ >=
∫ 2π

0

ψ(t cos θ, t sin θ) dθ,

< Bt, ψ >=
∫ 1

0

∫ 2π

0

ψ(ts cos θ, t s sin θ) s dθ ds.

Dimension 3:

< St, ψ >=
∫ π

0

∫ 2π

0

ψ(t cos θ sinφ, t sin θ sinφ, t cosφ)t2 sinφ dθ dφ,

< Bt, ψ >=
∫ t

0

∫ π

0

∫ 2π

0

ψ(s cos θ sinφ, s sin θ sinφ, s cosφ) s2 sinφ dθ dφ ds,

< St, ψ >=
∫ π

0

∫ 2π

0

ψ(t cos θ sinφ, t sin θ sinφ, t cosφ) sinφ dθ dφ,

< Bt, ψ >=
∫ 1

0

∫ π

0

∫ 2π

0

ψ(ts cos θ sinφ, ts sin θ sinφ, ts cosφ) s2 sinφ dθ dφ ds.

These formulas make sense for all t, whereas set–theoretically St and Bt
(as point sets) only make good sense for t > 0.
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3.17.2.4 Stokes Theorem for Unit Sphere

Recall that the main Theorem of vector calculus is the Stokes Theorem:∫
∂γ

ω =
∫
γ

dω,

for ω an (n−1)−form, γ a suitable n−dimensional figure (with appropriate
measure on it) and ∂γ its geometric boundary. In the synthetic context,
the Theorem holds at least for any singular cubical chain γ : In → M (In

the n−dimensional coordinate cube), because the Theorem may then be
reduced to the fundamental Theorem of calculus, which is the only way
integration enters in the elementary synthetic context; measure theory not
being available therein (see [Moerdijk and Reyes (1991)] for details). Below,
we shall apply the result not only for singular cubes, but also for singular
boxes, like the usual (γ : R2 → R2, [0, 2π]× [0, 1]), ‘parameterizing the unit
disk B by polar coordinates’,

γ(θ, r) = (r cos θ, r sin θ). (3.300)

We shall need from vector calculus the Green–Gauss–Ostrogradsky Diver-
gence Theorem

flux of F over ∂γ =
∫
γ

(divergence of F),

with F a vector–field, for the geometric ‘figure’ γ = the unit ball in Rn. For
the case of the unit ball in Rn, the reduction of the Divergence Theorem
to Stokes’ Theorem is a matter of the differential calculus of vector fields
and differential forms. For the convenience of the reader, we recall the case
n = 2.

Given a vector–field F(x, y) = (F (x, y), G(x, y)) in R2, apply Stokes’
Theorem to the differential form

ω = −G(x, y)dx+ F (x, y)dy,

for the singular rectangle γ given by (3.300) above.
We also need that the trigonometric functions cos and sin should be

present. We assume that they are given as part of the data, and that they
satisfy cos2 + sin2 = 1, and cos′ = − sin, sin′ = cos. Also as part of the
data, we need specified an element π ∈ R so that cosπ = −1, cos 0 = 1.
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Then we have 
γ∗(dx) = cos θdr − r sin θdθ
γ∗(dy) = sin θdr + r cos θdθ
γ∗(dx ∧ dy) = r (dr ∧ dθ)

.

Since

dω = (∂G/∂y + ∂F/∂x) dx ∧ dy = div (F) dx ∧ dy,

then

γ∗(dω) = div (F) r (dr ∧ dθ).

On the other hand,

γ∗ω = (F sin θ −G cos θ)dr + (F r cos θ +G r sin θ) dθ, (3.301)

(all F , G, and F to be evaluated at (r cos θ, r sin θ)). Therefore∫
γ

dω =
∫ 2π

0

∫ 1

0

div(F) r dr dθ;

this is
∫
B1

div (F) dA. On the other hand, by Stokes’ Theorem
∫
γ
dω =∫

∂γ
ω, which is a curve integral of the 1–form (3.301) around the boundary

of the rectangle [0, 2π] × [0, 1]. This curve integral is a sum of four terms
corresponding to the four sides of the rectangle. Two of these (correspond-
ing to the sides θ = 0 and θ = 2π) cancel, and the term corresponding to
the side where r = 0 vanishes because of the r in r (dr∧dθ), so only the side
with r = 1 remains, and its contribution is, with the correct orientation,∫ 2π

0

(F (cos θ, sin θ) cos θ +G(cos θ, sin θ) sin θ) dθ =
∫
S1

F · n ds ,

where n is the outward unit normal of the unit circle. This expression is
the flux of F over the unit circle, which thus equals the divergence integral
calculated above.

3.17.2.5 Time Derivatives of Expanding Spheres

We now combine vector calculus with the calculus of the basic ball– and
sphere–distributions, to get the following result [Kock and Reyes (2003)]:

In Rn (for any n), we have, for any t,

d

dt
St = t ·∆(Bt),
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where ∆ denotes the Laplacian operator (see [Kock (2001)] for ‘synthetic’
analysis of the Laplacian).

We collect some further information about t−derivatives of some of the
t−parameterized distributions considered:

d

dt
(Bt) = St. (3.302)

In dimension 1, we have

d

dt
(St) = ∆(Bt), (3.303)

for

d

dt
< St, ψ >=

d

dt
< ψ(t) + ψ(−t) >= ψ′(t)− ψ′(−t),

whereas

< ∆Bt, ψ >=< Bt, ψ
′′ >=

∫ t

−t
ψ′′(t) dt,

and the result follows from the Fundamental Theorem of calculus.
The equation (3.303) implies the following equation if n = 1, while in

[Kock and Reyes (2003)] it was proved that it also holds if n ≥ 2:

t · d
dt

(St) = (n− 1)St + t ·∆(Bt). (3.304)

3.17.2.6 The Wave Equation

Let ∆ denote the Laplacian operator
∑
∂2/∂x2

i on Rn (see [Kock (2001)]).
We shall consider the wave equation (WE) in Rn, (for n = 1, 2, 3),

d2

dt2
Q(t) = ∆Q(t) (3.305)

as a second order ordinary differential equation on the Euclidean vector
space D′c(Rn) of distributions of compact support; in other words, we are
looking for functions

Q : R→ D′c(Rn),

so that for all t ∈ R, Q̈(t) = ∆(Q(t)), viewing ∆ as a map D′c(Rn) →
D′c(Rn) [Kock and Reyes (2003)].

Consider a function f : R → V , where V is a Euclidean vector space
(we are interested in V = D′c(Rn)). Then we call the pair of vectors in V



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Applied Manifold Geometry 483

consisting of f(0) and ḟ(0) the initial state of f . We can now, for each of
the cases n = 1, n = 3, and n = 2 describe fundamental solutions to the
wave equations. By fundamental solutions, we mean solutions whose initial
state is either a constant times (δ(0, 0)), or a constant times (0, δ(0).

In dimension 1 : The function R→ D′c(R) given by

t 7→ St(= St)

is a solution of the WE; its initial state is 2(δ(0), 0).
The function R→ D′c(R) given by

t 7→ Bt

is a solution of the WE with initial state 2(0, δ(0)).
In dimension 3: The function R→ D′c(R3) given by

t 7→ St + t2∆(Bt)

is a solution of the WE with initial state 4πδ(0), 0). The function R →
D′c(R3) given by

t 7→ t · St

is a solution of the WE with initial state 4π(0, δ(0)).
In dimension 2: The function R→ D′c(R2) given by

t 7→ p∗(St + t2∆(Bt))

is a fundamental solution of the WE in dimension 2; its initial state is
4π(δ(0), 0). The function R→ D′c(R2) given by

t 7→ p∗(t · St)

is a fundamental solution of the WE in dimension 2; its initial state is
4π(0, δ(0)).
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Chapter 4

Applied Bundle Geometry

4.1 Intuition Behind a Fibre Bundle

Recall that tangent and cotangent bundles, TM and T ∗M , are special
cases of a more general geometrical object called fibre bundle, where the
word fiber V of a map π : Y −→ X denotes the preimage π−1(x) of an
element x ∈ X. It is a space which locally looks like a product of two
spaces (similarly as a manifold locally looks like Euclidean space), but may
possess a different global structure. To get a visual intuition behind this
fundamental geometrical concept, we can say that a fibre bundle Y is a
homeomorphic generalization of a product space X × V (see Figure 4.1),
where X and V are called the base and the fibre, respectively. π : Y → X

is called the projection, Yx = π−1(x) denotes a fibre over a point x of
the base X, while the map f = π−1 : X → Y defines the cross–section,
producing the graph (x, f(x)) in the bundle Y (e.g., in case of a tangent
bundle, f = ẋ represents a velocity vector–field) (see [Steenrod (1951)]).

Fig. 4.1 A sketch of a fibre bundle Y ≈ X × V as a generalization of a product space

X × V ; left – main components; right – a few details (see text for explanation).

The main reason why we need to study fibre bundles is that all dy-

485
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namical objects (including vectors, tensors, differential forms and gauge
potentials) are their cross–sections, representing generalizations of graphs
of continuous functions.

4.2 Definition of a Fibre Bundle

Let M denote an n−manifold with an atlas ΨM consisting of local coordi-
nates xα ∈M, (α = 1, ...,dimM), given by

ΨM = {Uξ, φξ}, φξ(x) = xαeα, (for all x ∈ Uξ ⊂M),

where {eα} is a fixed basis of Rm. Its tangent and cotangent bundles,
TM and T ∗M , respectively, admit atlases of induced coordinates (xα, ẋα)
and (xα, ẋα), relative to the holonomic fibre bases {∂α} and {dxα}, respec-
tively. For all elements (i.e., points) p ∈ TM and p∗ ∈ T ∗M, we have
(see [Sardanashvily (1993); Sardanashvily (1995); Giachetta et. al. (1997);
Mangiarotti and Sardanashvily (2000a); Sardanashvily (2002a)])

p = ẋα∂α, p∗ = ẋαdx
α, ∂αcdxα = δαα, (α = 1, ...,dimM).

Also, we will use the notation

ω = dx1 ∧ · · · ∧ dxn, ωα = ∂αcω, ωµα = ∂µc∂αcω. (4.1)

If f : M →M ′ is a smooth manifold map, we define the induced tangent
map Tf over f , given by

Tf : TM −→ TM ′, ẋ′
α ◦ Tf =

∂fα

∂xα
ẋα. (4.2)

Given a manifold product M ×N , π1 and π2 denote the natural projec-
tions (i.e., canonical surjections),

π1 : M ×N →M, π2 : M ×N → N.

Now, as a homeomorphic generalization of a product space, a fibre bun-
dle can be viewed either as a topological or a geometrical (i.e., coordinate)
construction. As a topological construction, a fibre bundle is a class of more
general fibrations. To have a glimpse of this construction, let I = [0, 1]. A
map π : Y → X is said to have the homotopy lifting property (HLP, see
[Switzer (1975)]) with respect to a topological space Z if for every map
f : Z → Y and homotopy H : Z × I → X of π ◦ f there is a homotopy
V : Z× I → Y with f = V0 and π ◦V = H. V is said to be a lifting of H. π
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is called a fibration if it has the HLP for all spaces Z and a weak fibration
if it has the HLP for all disks Dn, (n ≥ 0). If x ∈ X is the base point, then
V = π−1(x) is called the fibre of the fibration π. The projection onto the
first factor, π1 : X × V → X, is clearly a fibration and is called the trivial
fibration over X with the fibre V .

However, for the sake of applying differential and integral dynamics
on fibre bundles, we will rather use Steenrod’s coordinate bundle defini-
tion (see [Steenrod (1951)]), which defines fibre bundle Y as a sextuple
(Y,X, π, V,G,ΨY ), with:

(1) a space Y called the total space, bundle space (or simply bundle),
(2) a space X called the base space,
(3) a surjection π : Y −→ X called the projection,
(4) a space V ⊂ Y called the fibre,
(5) an effective topological (or Lie) transformation group G of V called the

group of the bundle, and
(6) a bundle atlas ΨY .

Some standard examples of fibre bundles include any Cartesian product
X × V → X (which is a bundle over X with fibre V ), the Möbius strip
(which is a nontrivial fibre bundle over the circle S1 with fibre given by the
unit interval I = [0, 1]; the corresponding trivial bundle is a cylinder), the
Klein bottle (which can be viewed as a ‘twisted’ circle bundle over another
circle; thus, the corresponding trivial bundle is a torus, S1×S1), a 3–sphere
S3 (which is a bundle over S2 with fibre S1; more generally, a sphere bundle
is a fiber bundle whose fiber is an n−sphere), while a covering space is a
fiber bundle whose fiber is a discrete space.

Main properties of graphs of functions f : X → V carry over to fibre
bundles. A graph of such a function, (x, f(x)), sits in the product space
X × V, or in its homeomorphic generalization bundle. A graph is always
1–1 and projects onto the base X.

A special class of fibre bundle is the vector bundle, in which the fibre is
a vector space. Special cases of fibre bundles that we will use in dynamics
of complex systems are: vector, affine, and principal bundles.

A fibre bundle also comes with a group G action on its fibre V , so it
can also be called a G−bundle. This group action represents the different
ways the fibre V can be viewed as equivalent (e.g., the group G might be
the group of homeomorphisms (topological group) or diffeomorphisms (Lie
group) of the fibre V ; or, the group G on a vector bundle is the group of
invertible linear maps, which reflects the equivalent descriptions of a vector



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

488 Applied Differential Geometry: A Modern Introduction

space using different vector–space bases). A principal bundle is G−bundle
where the fiber can be identified with the group G itself and where there is
a right action of G on the bundle space which is fiber preserving.

Fibre bundles are not always used to generalize functions. Sometimes
they are convenient descriptions of interesting manifolds. A common ex-
ample is a torus bundle on the circle.

More specifically, a fibre bundle, or fibre bundle Y over an nD base X
is defined as a manifold surjection

π : Y → X, (4.3)

where Y admits an atlas ΨY of fibre coordinates

(xα, yi), xα → x′
α(xµ), yi → y′

i(xµ, yj), (4.4)

compatible with the fibration (4.3), i.e., such that xα are coordinates on the
base X,

π : Y 3 (xα, yi) 7→ xα ∈ X.

This condition is equivalent to π being a submersion, which means that its
tangent map Tπ : TY → TX is a surjection. This also implies that π is an
open map.

A fibre bundle Y → X is said to be trivial if it is equivalent to the
Cartesian product of manifolds, Y ∼= X × V , i.e., defined as π1 : X × V →
X.1 A fibre bundle over a contractible base is always trivial [Steenrod
(1951)].

A fibre bundle Y → X is said to be locally trivial if there exists a fibred
coordinate atlas ΨY over an open covering {π−1(Uξ)} ∈ Y of the bundle
space Y where {Uξ} ∈ X is an open covering of the base space X. In
other words, all points of the same fibre Yx = π−1(x) of a bundle Y can be
covered by the same fibred coordinate chart ψξ ∈ ΨY , so that we have the
standard fibre–manifold V for all local bundle splittings

ψξ : π−1(Uξ)→ Uξ × V.

For the purpose of our general dynamics, the most important fibre bun-
dles are those which are at the same time smooth manifolds. A fibre bundle
Y → X is said to be smooth (C∞) if there exist a typical fibre–manifold

1A trivial fibre bundle admits different trivializations Y ∼= X × V that differ from

each other in surjections Y → V .
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V and an open covering {Uξ} of X such that Y is locally diffeomorphic to
the splittings

ψξ : π−1(Uξ)→ Uξ × V, (4.5)

glued together by means of smooth transition functions

ρξζ = ψξ ◦ ψ
−1
ζ : Uξ ∩ Uζ × V → Uξ ∩ Uζ × V (4.6)

on overlaps Uξ ∩ Uζ . It follows that fibres Yx = π−1(x), (for all x ∈ X), of
a fibre bundle are its closed imbedded submanifolds. Transition functions
ρξζ fulfil the cocycle condition

ρξζ ◦ ρζι = ρξι (4.7)

on all overlaps Uξ ∩ Uζ ∩ Uι. Trivialization charts (Uξ, ψξ) together with
transition functions ρξζ (4.6) constitute a bundle atlas

ΨY = {(Uξ, ψξ), ρξζ} (4.8)

of a fibre bundle Y → X. Two bundle atlases are said to be equivalent if
their union is also a bundle atlas, i.e., there exist unique transition functions
between trivialization charts of different atlases. A fibre bundle Y → X is
uniquely defined by a bundle atlas, and all its atlases are equivalent. Every
smooth fibre bundle Y → X admits a bundle atlas ΨY over a finite covering
{Uξ} of X.

If Y → X is a fibre bundle, the fibre coordinates (xα, yi) ∈ Y are
assumed to be bundle coordinates associated with a bundle atlas ΨY , that
is,

yi(y) = (vi ◦ π2 ◦ ψξ)(y), (π(y) ∈ Uξ ⊂ X), (4.9)

where vi ∈ V ⊂ Y are coordinates of the standard fibre V of Y .
Maps of fibre bundles (or, bundle maps), by definition, preserve their

fibrations, i.e., send a fibre to a fibre. Namely, a bundle map of a fibre
bundle π : Y → X to a fibre bundle π′ : Y ′ → X ′ is defined as a pair (Φ, f)
of manifold maps such that the following diagram commutes

X X ′-
f

Y Y ′-Φ

?

π

?

π′
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i.e., Φ is a fibrewise map over f which sends a fibre Yx, (for all x ∈ X),
to a fibre Y ′f(x), (for all f(x) ∈ X ′). A bundle diffeomorphism is called
an automorphism if it is an isomorphism to itself. In field theory, any
automorphism of a fibre bundle is treated as a gauge transformation.

Given a bundle Y → X, every map f : X ′ → X induces a bundle
Y ′ = f∗Y over X ′ which is called the pull–back of the bundle Y by f , such
that the following diagram commutes

X X ′�
f

Y Y ′� f∗

?

π

?

π′

In particular, the product Y × Y ′ over X of bundles π : Y → X and π′ :
Y ′ → X is the pull–back

Y × Y ′ = π∗Y ′ = π′
∗
Y.

Classical fields are described by sections of fibre bundles. A (global)
section of a fibre bundle Y → X is defined as a π−inverse manifold injection
s : X → Y, s(x) 7→ Yx, such that π ◦ s = IdX . That is, a section s sends
any point x ∈ X into the fibre Yx ⊂ Y over this point. A section s

is an imbedding, i.e., s(X) ⊂ Y is both a submanifold and a topological
subspace of Y . It is also a closed map, which sends closed subsets of X onto
closed subsets of Y . Similarly, a section of a fibre bundle Y → X over a
submanifold ofX is defined. Given a bundle atlas ΨY and associated bundle
coordinates (xα, yi), a section s of a fibre bundle Y → X is represented by
collections of local functions {si = yi ◦ψξ ◦s} on trivialization sets Uξ ⊂ X.

A fibre bundle Y → X whose typical fibre is diffeomorphic to an Eu-
clidean space Rm has a global section. More generally, its section over a
closed imbedded submanifold (e.g., a point) of X is extended to a global
section [Steenrod (1951)].

In contrast, by a local section is usually meant a section over an open
subset of the base X. A fibre bundle admits a local section around each
point of its base, but need not have a global section.

For any n ≥ 1 the normal bundle NSn of the n−sphere Sn is the fibre
bundle (Sn, p′, E′,R1), where E′ = {(x, y) ∈ Rn+1 × Rn+1 : ‖x‖ = 1, y =
λx, λ ∈ R1} and p′ : E′ → Sn is defined by p′(x, y) = x [Switzer (1975)].
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4.3 Vector and Affine Bundles

The most important fibre bundles are vector and affine bundles, which
give a standard framework in both classical and quantum dynamics and
field theory (e.g., matter fields are sections of vector bundles, while gauge
potentials are sections of affine bundles).

Recall that both the tangent bundle (TM, πM ,M) and the cotangent
bundle (T ∗M , π∗M ,M) are examples of a more general notion of vector
bundle (E, π,M) of a manifold M , which consists of manifolds E (the total
space) and M (the base), as well as a smooth map π : E → M (the
projection) together with an equivalence class of vector bundle atlases (see
[Kolar et al. (1993)]). A vector bundle atlas (Uα, φα)α∈A for (E, π,M) is a
set of pairwise compatible vector bundle charts (Uα, φα) such that (Uα)α∈A
is an open cover of M . Two vector bundle atlases are called equivalent, if
their union is again a vector bundle atlas.

On each fibre Em = π−1(m) corresponding to the point m ∈M there is
a unique structure of a real vector space, induced from any vector bundle
chart (Uα, φα) with m ∈ Uα. A section u of (E, π,M) is a smooth map
u : M → E with π ◦ u = IdM .

Let (E, πM ,M) and (F, πN , N) be vector bundles. A vector bundle
homomorphism Φ : E → F is a fibre respecting, fibre linear smooth map
induced by the smooth map ϕ : M → N between the base manifolds M
and N , i.e., the following diagram commutes:

M N-
ϕ

E F-Φ

?

πM

?

πN

We say that Φ covers ϕ. If Φ is invertible, it is called a vector bundle
isomorphism.

All smooth vector bundles together with their homomorphisms form a
category VB.

If (E, π,M) is a vector bundle which admits a vector bundle atlas
(Uα, φα)α∈A with the given open cover, then, we have φα ◦ φ

−1
β (m, v) =(

m,φαβ(m)v
)

for Ck−transition functions φαβ : Uαβ = Uα ∩Uβ → GL(V )
(where we have fixed a standard fibre V ). This family of transition maps
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satisfies the cocycle condition{
φαβ(m) · φβγ(m) = φαγ(m) for each m ∈ Uαβγ = Uα ∩ Uβ ∩ Uγ ,

φαα(m) = e for all m ∈ Uα.

The family (φαβ) is called the cocycle of transition maps for the vector
bundle atlas (Uα, φα) .

Now, let us suppose that the same vector bundle (E, π,M) is described
by an equivalent vector bundle atlas (Uα, ψα)α∈A with the same open cover
(Uα). Then the vector bundle charts (Uα, φα) and (Uα, ψα) are compatible
for each α, so ψα ◦ φ

−1
β (m, v) = (m, τα(m)v) for some τα : Uα → GL(V ).

We get

τα(m)φαβ(m) = φαβ(m) τβ(m) for all m ∈ Uαβ ,

and we say that the two cocycles (φαβ) and (ψαβ) of transition maps over
the cover (Uα) are cohomologous. If GL(V ) is an Abelian group, i.e., if the
standard fibre V is of real or complex dimension 1, then the cohomology
classes of cocycles (φαβ) over the open cover (Uα) form a usual cohomology
group H1 (M,GL(V )) with coefficients in the sheaf GL(V ) [Kolar et al.
(1993)].

Let (E, π,M) be a vector bundle and let ϕ : N →M be a smooth map
between the base manifolds N and M . Then there exists the pull–back
vector bundle (ϕ∗E,ϕ∗π, ϕ∗N) with the same typical fibre and a vector
bundle homomorphism, given by the commutative diagram [Kolar et al.
(1993)]:

N M-
ϕ

ϕ∗E E-π∗ϕ

?

ϕ∗π

?

π

The vector bundle (ϕ∗E,ϕ∗π, ϕ∗N) is constructed as follows. Let E =
V B(φαβ) denote that E is described by a cocycle (φαβ) of transition maps
over an open cover (Uα) of M . Then (φαβ ◦ ϕ) is a cocycle of transition
maps over the open cover

(
ϕ−1(Uα)

)
of N and the bundle is given by

ϕ∗E = V B(φαβ ◦ ϕ).
In other words, a vector bundle is a fibre bundle which admits an at-

las of linear bundle coordinates. Typical fibres of a smooth vector bundle
π : Y → X are vector spaces of some finite dimension (called the fibre
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dimension, fdimY of Y ), and Y admits a bundle atlas ΨY (4.8) where
trivialization maps ψξ(x) and transition functions ρξζ(x) are linear isomor-
phisms of vector spaces. The corresponding bundle coordinates (yi) obey
a linear coordinate transformation law

y′
i = ρij(x)yj .

We have the decomposition y = yiei(π(y)), where

{ei(x)} = ψ−1
ξ (x){vi}, x = π(y) ∈ Uξ,

are fibre bases (or frames) for fibres Yx of Y and {vi} is a fixed basis for
the typical fibre V of Y .

There are several standard constructions of new vector bundles from old
ones:

• Given two vector bundles Y and Y ′ over the same baseX, their Whitney
sum Y ⊕ Y ′ is a vector bundle over X whose fibres are the direct sums
of those of the vector bundles Y and Y ′.
• Given two vector bundles Y and Y ′ over the same base X, their tensor

product Y ⊗ Y ′ is a vector bundle over X whose fibres are the tensor
products of those of the vector bundles Y and Y ′. In a similar way the
exterior product Y ∧Y of vector bundles is defined, so that the exterior
bundle of Y is defined as

∧Y = X × R⊕ Y ⊕ ∧2Y ⊕ · · · ⊕ ∧mY, (m = fdimY ).

• Let Y → X be a vector bundle. By Y ∗ → X is denoted the dual vector
bundle whose fibres are the duals of those of Y . The interior product
(or contraction) of Y and Y ∗ is defined as a bundle map

c : Y ⊗ Y ∗ → X × R.

Given a linear bundle map Φ : Y ′ → Y of vector bundles over X, its
kernel Ker Φ is defined as the inverse image Φ−1(0̂(X)) of the canonical
zero section 0̂(X) of Y . If Φ is of constant rank, its kernel Ker Φ and its
image Im Φ are subbundles of the vector bundles Y ′ and Y , respectively.
For example, monomorphisms and epimorphisms of vector bundles fulfil
this condition. If Y ′ is a subbundle of the vector bundle Y → X, the factor
bundle Y/Y ′ over X is defined as a vector bundle whose fibres are the
quotients Yx/Y ′x, x ∈ X.
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Consider the short exact sequence of vector bundles over X,

0→ Y ′
i−→ Y

j−→Y ′′ → 0, (4.10)

which means that i is a bundle monomorphism, j is a bundle epimorphism,
and Ker j = Im i. Then Y ′′ is the factor bundle Y/Y ′. One says that
the short exact sequence (4.10) admits a splitting if there exists a bundle
monomorphism s : Y ′′ → Y such that j ◦ s = IdY ′′ , i.e.,

Y = i(Y ′)⊕ s(Y ′′) ∼= Y ′ ⊕ Y ′′.

Vector bundles of rank 1 are called line bundles.
The only two vector bundles with base space B a circle and 1D fibre

F are the Mőbius band and the annulus, but the classification of all the
different vector bundles over a given base space with fibre of a given di-
mension is quite difficult in general. For example, when the base space is
a high–dimensional sphere and the dimension of the fibre is at least three,
then the classification is of the same order of difficulty as the fundamental
but still largely unsolved problem of computing the homotopy groups of
spheres [Hatcher (2002)].

Now, there is a natural direct sum operation for vector bundles over
a fixed base space X, which in each fibre reduces just to direct sum of
vector spaces. Using this, one can get a weaker notion of isomorphism of
vector bundles by defining two vector bundles over the same base space X
to be stably isomorphic if they become isomorphic after direct sum with
product vector bundles X×Rn for some n, perhaps different n’s for the two
given vector bundles. Then it turns out that the set of stable isomorphism
classes of vector bundles over X forms an Abelian group under the direct
sum operation, at least if X is compact Hausdorff. The traditional notation
for this group is K̃O(X). It is the basis for K–theory (see below). In the
case of spheres the groups K̃O(Sn) have the quite unexpected property
of being periodic in n. This is called Bott Periodicity , and the values of
K̃O(Sn) are given by the following table [Hatcher (2002)]:

nmod 8 1 2 3 4 5 6 7 8
K̃O(Sn) Z2 Z2 0 Z 0 0 0 Z

For example, K̃O(S1) is Z2, a cyclic group of order two, and a generator
for this group is the Mőbius bundle. This has order two since the direct
sum of two copies of the Mőbius bundle is the product S1×R1, as one can
see by embedding two Mőbius bands in a solid torus so that they intersect
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orthogonally along the common core circle of both bands, which is also the
core circle of the solid torus.

The complex version of K̃O(X), called K̃(X), is constructed in the same
way as K̃O(X) but using vector bundles whose fibers are vector spaces over
C rather than R. The complex form of Bott Periodicity asserts that K̃(Sn)
is Z for n even and 0 for n odd, so the period is two rather than eight.

The groups K̃(X) and K̃O(X) for varying X share certain formal prop-
erties with the cohomology groups studied in classical algebraic topology
[Hatcher (2002)]. Using a more general form of Bott periodicity, it is in
fact possible to extend the groups K̃(X) and K̃O(X) to a full cohomology
theory, families of Abelian groups K̃n(X) and K̃O

n
(X) for n ∈ Z that

are periodic in n of period two and eight, respectively. However, there
is more algebraic structure here than just the additive group structure.
Namely, tensor products of vector spaces give rise to tensor products of
vector bundles, which in turn give product operations in both real and
complex K−theory similar to cup product in ordinary cohomology. Fur-
thermore, exterior powers of vector spaces give natural operations within
K−theory (for more development, see next section, below).

4.3.1 The Second Vector Bundle of the Manifold M

Let (E, π,M) be a vector bundle over the biodynamical manifold M with
fibre addition +E : E×M E → E and fibre scalar multiplication mE

t : E →
E. Then (TE, πE , E), the tangent bundle of the manifold E, is itself a
vector bundle, with fibre addition denoted by +TE and scalar multiplication
denoted by mTE

t . The second vector bundle structure on (TE, Tπ, TM), is
the ‘derivative’ of the original one on (E, π,M). In particular, the space
{Ξ ∈ TE : Tπ.Ξ = 0 ∈ TM} = (Tp)−1(0) is denoted by V E and is called
the vertical bundle over E. Its main characteristics are vertical lift and
vertical projection (see [Kolar et al. (1993)] for details).

All of this is valid for the second tangent bundle T 2M = TTM of a
manifold, but here we have one more natural structure at our disposal.
The canonical flip or involution κM : T 2M → T 2M is defined locally by

(T 2φ ◦ κM ◦ T 2φ−1)(x, ξ; η, ζ) = (x, η; ξ, ζ).

where (U, φ) is a local chart on M (this definition is invariant under changes
of charts). The flip κM has the following properties (see [Kolar et al.
(1993)]):
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(1) κM ◦ T 2f = T 2f ◦ κM for each f ∈ Ck(M,N);
(2) T (πM ) ◦ κM = πTM ;
(3) πTM ◦ κM = T (πM );
(4) κ−1

M = κM ;
(5) κM is a linear isomorphism from the bundle (TTM,T (πM ), TM) to

(TTM, πTM , TM), so it interchanges the two vector bundle structures
on TTM ;

(6) κM is the unique smooth map TTM → TTM which, for each γ : R→
M , satisfies

∂t∂sγ(t, s) = κM∂t∂sγ(t, s).

In a similar way the second cotangent bundle of a manifold M can be
defined. Even more, for every manifold there is a geometrical isomorphism
between the bundles TT ∗M = T (T ∗M) and T ∗TM = T ∗(TM) [Modugno
and Stefani (1978)].

4.3.2 The Natural Vector Bundle

In this section we mainly follow [Michor (2001); Kolar et al. (1993)].
A vector bundle functor or natural vector bundle is a functor F which

associates a vector bundle (F(M), πM ,M) to each n−manifold M and a
vector bundle homomorphism

M N-
ϕ

F(M) F(N)-F(ϕ)

?

πM

?

πN

to each ϕ : M → N in M, which covers ϕ and is fiberwise a linear isomor-
phism. Two common examples of the vector bundle functor F are tangent
bundle functor T and cotangent bundle functor T ∗ (see section 3.5).

The space of all smooth sections of the vector bundle (E, πM ,M) is de-
noted by Γ (E, πM ,M). Clearly, it is a vector space with fiberwise addition
and scalar multiplication.

Let F be a vector bundle functor on M. Let M be a smooth manifold
and let X ∈ X (M) be a vector–field on M . Then the flow Ft of X for fixed
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t, is a diffeomorphism defined on an open subset of M . The map

M M-
Ft

F(M) F(M)-F(Ft)

?

πM

?

πM

is then a vector bundle isomorphism, defined over an open subset of M .
We consider a tensor–field τ (3.6), which is a section τ ∈ Γ (F(M)) of

the vector bundle (F(M), πM ,M) and we define for t ∈ R

F ∗t τ = F(F−t) ◦ τ ◦ Ft,

a local section of the bundle F(M). For each point m ∈ M the value
F ∗t τ(x) ∈ F(M)m is defined, if t is small enough (depending on x). So,
in the vector space F(M)m the expression d

dt |t=0 F
∗
t τ(x) makes sense and

therefore the section

LXτ =
d

dt
|t=0 F

∗
t τ

is globally defined and is an element of Γ (F(M)). It is called the Lie
derivative of the tensor–field τ along a vector–field X ∈ X (M) (see section
3.7, for details on Lie derivative).

In this situation we have:

(1) F ∗t F
∗
r τ = F ∗t+rτ , whenever defined.

(2) d
dtF

∗
t τ = F ∗t LXτ = LX (F ∗t τ), so

[LX , F ∗t ] = LX ◦ F ∗t − F ∗t ◦ LX = 0, whenever defined.
(3) F ∗t τ = τ for all relevant t iff LXτ = 0.

Let F1 and F2 be two vector bundle functors onM. Then the (fiberwise)
tensor product (F1 ⊗F2) (M) = F1(M)⊗F2(M) is again a vector bundle
functor and for τ i ∈ Γ (Fi(M)) with i = 1, 2, there is a section τ1 ⊗ τ2 ∈
Γ (F1 ⊗F2) (M), given by the pointwise tensor product.

Also in this situation, for X ∈ X (M) we have

LX (τ1 ⊗ τ2) = LX τ1 ⊗ τ2 + τ1 ⊗ LX τ2.

In particular, for f ∈ Ck(M,R) we have LX (f τ) = df(X) τ + f LX τ .
For any vector bundle functor F on M and X,Y ∈ X (M) we have:

[LX ,LY ] = LX ◦ LY − LY ◦ LX = L[X,Y ] : Γ (F(M))→ Γ (F(M)) .



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

498 Applied Differential Geometry: A Modern Introduction

4.3.3 Vertical Tangent and Cotangent Bundles

4.3.3.1 Tangent and Cotangent Bundles Revisited

Recall (from section 3.5 above) that the most important vector bundles are
familiar tangent and cotangent bundles. The fibres of the tangent bundle
πM : TM →M of a manifold M are tangent spaces to M . The peculiarity
of the tangent bundle TM in comparison with other vector bundles over
M lies in the fact that, given an atlas ΨM = {(Uξ, φξ)} of a manifold
M , the tangent bundle of M admits the holonomic atlas Ψ = {(Uξ, ψξ =
Tφξ)}, where by Tφξ is denoted the tangent map to φξ. Namely, given
coordinates xα on a manifold M , the associated bundle coordinates on TM
are holonomic coordinates (ẋα) with respect to the holonomic frames {∂α}
for tangent spaces TxM , x ∈M . Their transition functions read

ẋ′α =
∂x′α

∂xµ
ẋµ.

Every manifold map f : M →M ′ induces the linear bundle map over f of
the tangent bundles (4.2).

The cotangent bundle of a manifold M is the dual π∗M : T ∗M →
M of the tangent bundle TM → M . It is equipped with the holonomic
coordinates (xα, ẋα) with respect to the coframes {dxα} for T ∗M which
are the duals of {∂α}. Their transition functions read

ẋ′α =
∂xµ

∂x′α
ẋµ.

Recall that a tensor product of tangent and cotangent bundles over M ,

T = (⊗mTM)⊗ (⊗kT ∗M), (m, k ∈ N), (4.11)

is called a tensor bundle. Given two vector bundles Y and Y ′ over the same
base X, their tensor product Y ⊗Y ′ is a vector bundle over X whose fibres
are the tensor products of those of the vector bundles Y and Y ′.

Tangent, cotangent and tensor bundles belong to the category BUN of
natural fibre bundles which admit the canonical lift of any diffeomorphism
f of a base to a bundle automorphism, called the natural automorphism
[Kolar et al. (1993)]. For example, the natural automorphism of the tangent
bundle TM over a diffeomorphism f of its base M is the tangent map Tf

(4.2) over f . In view of the expression (4.2), natural automorphisms are
also called holonomic transformations or general covariant transformations
(in gravitation theory).
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Let TY → Y be the tangent bundle of a bundle Y → X. The following
diagram commutes

Y X-
π

TY TX-Tπ

?

πY

?

πX

where Tπ : TY → TX is a fibre bundle. Note that Tπ is still the bundle
map of the bundle TY → Y to TX over π and the fibred map of the bundle
TY → X to TX over X. There is also the canonical surjection

πT : TY −→ TX −→ Y, given by πT = πX ◦ Tπ = π ◦ πY .

Now, given the fibre coordinates (xα, yi) of a fibre bundle Y , the corre-
sponding induced coordinates of TY are

(xα, yi, ẋα, ẏi), ẏ′
i =

∂y′
i

∂yj
ẏj .

This expression shows that the tangent bundle TY → Y of a fibre bundle
Y has the vector subbundle

V Y = KerTπ

where Tπ is regarded as the fibred map of TY → X to TX over X. The
subbundle V Y consists of tangent vectors to fibres of Y . It is called the
vertical tangent bundle of Y and provided with the induced coordinates
(xα, yi, ẏi) with respect to the fibre bases {∂i}.

The vertical cotangent bundle V ∗Y → Y of a fibre bundle Y → X is
defined as the dual of the vertical tangent bundle V Y → Y . Note that it
is not a subbundle of the cotangent bundle T ∗Y , but there is the canonical
surjection

ζ : T ∗Y −→ V ∗Y, ẋαdx
α + ẏidy

i 7→ ẏidy
i, (4.12)

where {dyi} are the bases for the fibres of V ∗Y which are duals of the
holonomic frames {∂i} for the vertical tangent bundle V Y .

With V Y and V ∗Y , we have the following short exact sequences of
vector bundles over a fibre bundle Y → X:

0→ V Y ↪→ TY → Y × TX → 0, (4.13)

0→ Y × T ∗X ↪→ T ∗Y → V ∗Y → 0 (4.14)
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Every splitting

Y × TX ↪→ TY, ∂α 7→ ∂α + Γiα(y)∂i,

of the exact sequence (4.13) and

V ∗Y → T ∗Y, d
i 7→ dyi − Γiα(y)dxα,

of the exact sequence (4.14), by definition, corresponds to a certain connec-
tion on the bundle Y → X, and vice versa.

Let Φ be a fibred map of a bundle Y → X to a bundle Y ′ → X ′ over
f : X → X ′. The tangent map TΦ : TY → TY ′ to Φ reads

(ẋ′α, ẏ′i) ◦ TΦ = (∂µfαẋµ, ∂µΦiẋµ + ∂jΦiẏj). (4.15)

It is both the linear bundle map over Φ, given by the commutativity diagram

Y Y ′-
Φ

TY TY ′-TΦ

?

πY

?

πY ′

as well as the fibred map over the tangent map Tf to f , given by the
commutativity diagram

TX TX ′-
Tf

TY TY ′-TΦ

? ?

4.3.4 Affine Bundles

Given a vector bundle Y → X, an affine bundle modelled over Y is a
fibre bundle Y → X whose fibres Yx, (for all x ∈ X), are affine spaces
modelled over the corresponding fibres Y x of the vector bundle Y , and Y

admits a bundle atlas ΨY (4.8) whose trivialization morphisms ψξ(x) and
transition functions functions ρξζ(x) are affine maps. The corresponding
bundle coordinates (yi) possess an affine coordinate transformation law

y′
i = ρij(x

α)yj + ρi(xα).
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In other words, an affine bundle admits an atlas of affine bundle coordinates
(xα, yi) such that

r : (xα, yi)× (xα, yi) 7→ (xα, yi + yi)

where (xα, yi) are linear bundle coordinates of the vector bundle Y . In
particular, every vector bundle Y has the canonical structure of an affine
bundle modelled on Y itself by the map

r : (y, y′) 7→ y + y′.

Every affine bundle has a global section.
One can define a direct sum Y ⊕ Y ′ of a vector bundle Y ′ → X and an

affine bundle Y → X modelled over a vector bundle Y → X, as is an affine
bundle modelled over the Whitney sum of vector bundles Y ′ ⊕ Y .

Affine bundles are subject to affine bundle maps which are affine fibre-
wise maps. Any affine bundle map Φ : Y → Y ′ from an affine bundle Y
modelled over a vector bundle Y to an affine bundle Y ′ modelled over a
vector bundle Y ′, induces the linear bundle map of these vector bundles

Φ : Y → Y ′, y′
i ◦ Φ =

∂Φi

∂yj
yj . (4.16)

4.4 Application: Semi–Riemannian Geometrical Mechanics

In this subsection we develop a Finsler–like approach to semi–Riemannian
geometrical dynamics.

4.4.1 Vector–Fields and Connections

Let M be an nD smooth manifold. Recall that a smooth (C∞) vector–field
X on M defines the flow

ẋ = X(x). (4.17)

By definition, a semi–Riemannian metric g on M is a smooth symmetric
tensor–field of type (0, 2) which assigns to each point x ∈M a nondegener-
ate inner product g(x) on the tangent space TxM of signature (r, s). The
pair (M, g) is called a semi–Riemannian manifold.

The vector–field X and the semi–Riemannian metric g determine the
energy f : M → R,given by f = 1

2g(X,X). The vector–field X (and its
flow) on (M, g) is called [Udriste (2000)]:
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(1) time–like, if f < 0;
(2) nonspacelike or causal, if f ≤ 0;
(3) null or lightlike, if f = 0;
(4) space–like, if f > 0.

Let ∇ be the Levi–Civita connection of (M, g). Using the semi–
Riemannian version of the covariant derivative operator (3.157), we get
the prolongation

∇
dt
ẋ = ∇ẋX (4.18)

of the differential system (4.17) or of any perturbation of the system (4.17)
get adding to the second member X a parallel vector–field Y with respect to
the covariant derivative ∇. The prolongation by derivation represents the
general dynamics of the flow. The vector–field Y can be used to illustrate
a progression from stable to unstable flows, or converse.

The vector–field X, the metric g, and the connection ∇ determine the
external (1, 1)−tensor–field

F = ∇X − g−1 ⊗ g(∇X), Fj
i = ∇jXi − gihgkj∇hXk,

(with i, j, h, k = 1, ..., n), which characterizes the helicity of vector–field X

and its flow.
First we write the differential system (4.18) in the equivalent form

∇
dt
ẋ = g−1 ⊗ g(∇X) (ẋ) + F (ẋ) . (4.19)

Successively we modify the differential system (4.19) as follows [Udriste
(2000)]:

∇
dt
ẋ = g−1 ⊗ g(∇X)(X) + F (ẋ) , (4.20)

∇
dt
ẋ = g−1 ⊗ g(∇X) (ẋ) + F (X), (4.21)

∇
dt
ẋ = g−1 ⊗ g(∇X)(X) + F (X). (4.22)

Obviously, the second–order systems (4.20), (4.21), (4.22) are prolongations
of the first–order system (4.17). Each of them is connected either to the
dynamics of the field X or to the dynamics of a particle which is sensitive
to the vector–field X. Since

g−1 ⊗ g(∇X)(X) = grad f,
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we shall show that the prolongation (4.20) describes a conservative dynam-
ics of the vector–field X or of a particle which is sensitive to the vector–field
X. The physical phenomenon produced by (4.21) or (4.22) was not yet
studied [Udriste (2000)].

In the case F = 0, the kinematic system (4.17) prolongs to a potential
dynamical system with n degrees of freedom, namely

∇
dt
ẋ = grad f. (4.23)

In the case F 6= 0, the kinematic system (4.17) prolongs to a non–
potential dynamical system with n degrees of freedom, namely

∇
dt
ẋ = grad f + F (ẋ) . (4.24)

Let us show that the dynamical systems (4.23) and (4.24) are conser-
vative. To simplify the exposition we identity the tangent bundle TM

with the cotangent bundle T ∗M using the semi–Riemann metric g [Udriste
(2000)]. The trajectories of the dynamical system (4.23) are the extremals
of the Lagrangian

L =
1
2
g (ẋ, ẋ) + f(x).

The trajectories of the dynamical system (4.24) are the extremals of the
Lagrangian

L =
1
2
g (ẋ−X, ẋ−X) =

1
2
g (ẋ, ẋ)− g (X, ẋ) + f(x).

The dynamical systems (4.23) and (4.24) are conservative, the Hamil-
tonian being the same for both cases, namely

H =
1
2
g (ẋ, ẋ)− f(x).

The restriction of the Hamiltonian H to the flow of the vector–field X is
zero.

4.4.2 Hamiltonian Structures on the Tangent Bundle

Let (N,ω) be a 2nD symplectic phase–space manifold, and H : N → R be
a C∞ real function. We define the Hamiltonian gradient XH as being the
vector–field which satisfies

ωp(XH(x), v) = dH(x)(v), (for all v ∈ TxN),
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and the Hamiltonian equations as

ẋ = XH(x).

Let (M, g) be a semi–Riemann nD manifold. Let X be a C∞ vector–
field on M , and ω = g ◦ F the two–form associated to the tensor–field
F = ∇X − g−1 ⊗ g(∇X) via the metric g.

The tangent bundle is usually equipped with the Sasakian metric G,
induced by g,

G = gijdx
i ⊗ dxj + gijδy

i ⊗ δyj .

If (xi, yi) are the coordinates of the point (x, y) ∈ TM and Γijk are the
components of the connection induced by gij , then we have the following
dual frames [Udriste (2000)](

δ

δxi
=

∂

∂xi
− Γhijy

j ∂

∂yh
,

∂

∂yi

)
⊂ X (TM), and

(dxj , δyj = dyj + Γjhky
kdxh) ⊂ X ∗(TM).

The dynamical system (4.23) lifts to TM as a Hamiltonian dynamical
system with respect to the

Hamiltonian H =
1
2
g(ẋ, ẋ)− f(x), and

symplectic two–form Ω1 = gijdx
iωδyj .

This can be verified by putting η1 = gijy
idxj , and dη1 = −Ω1.

The dynamical system (4.24) lifts to TM as a Hamiltonian dynamical
system with respect to the above Hamiltonian function and the symplectic
two–form

Ω2 =
1
2
ωijdx

iωdxj + gijdx
iωδyj .

This can be verified by putting η2 = −gijXidxj+gijyidxj , and dη2 = −Ω2.

In the remainder of this subsection, we give three examples in Euclidean
spaces, so we can put all indices down (still summing over repeated indices).
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Pendulum Geometry

We use the Riemannian manifold (R2, δij). The small oscillations of a plane
pendulum are described as solutions of the following differential system
giving the plane pendulum flow,

ẋ1 = −x2, ẋ2 = x1. (4.25)

In this case, the set {x1(t) = 0, x2(t) = 0, (t ∈ R)} is the equilibrium
point and

x1(t) = c1 cos t+ c2 sin t, x2(t) = c1 sin t− c2 cos t

is the general solution, which is a family of circles with a common center.

Let X = (X1, X2), X1(x1, x2) = −x2, X2(x1, x2) = x1,

f(x1, x2) =
1
2

(x2
1 + x2

2), curlX = (0, 0, 2), divX = 0.

The pendulum flow conserves the areas. The prolongation by derivation
of the kinematic system (4.25) is [Udriste (2000)]

ẍi =
∂Xi

∂xj
ẋj , (i, j = 1, 2)

or ẍ1 = −ẋ2, ẍ2 = ẋ1.

This prolongation admits a family of circles as the general solution

x1(t) = a1 cos t+a2 sin t+h, x2(t) = a1 sin t−a2 cos t+k, (t ∈ R).

The pendulum geometrodynamics is described by

ẍi =
∂f

∂xi
+
(
∂Xi

∂xj
− ∂Xj

∂xi

)
ẋj , (i, j = 1, 2),

or ẍ1 = x1 − 2ẋ2, ẍ2 = x2 + 2ẋ1, (4.26)

with a family of spirals as the general solution

x1(t) = b1 cos t+ b2 sin t+ b3t cos t+ b4t sin t,

x2(t) = b1 sin t− b2 cos t+ b3t sin t− b4t cos t, (t ∈ R).
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Using

L =
1
2

[
(ẋ1)2 + (ẋ2)2

]
+ x2ẋ1 − x1ẋ2 + f,

H =
1
2

[
(ẋ1)2 + (ẋ2)2

]
− f, gij = (H + f)δij ,

Nj
i = −Fji = −δihFjh, Fij =

∂Xj

∂xi
− ∂Xi

∂xj
, (i, j, h = 1, 2),

the solutions of the differential system (4.26) are horizontal pregeodesics of
the Riemann–Jacobi–Lagrangian manifold (R2 \ {0}, gij , Nji).

Geometry of the Lorenz Flow

We use the Riemannian manifold (R3, δij). The Lorenz flow is a first dis-
sipative model with chaotic behavior discovered in numerical experiment.
Its state equations are (see [Lorenz (1963); Sparrow (1982)])

ẋ1 = −σx1 + σx2, ẋ2 = −x1x3 + rx1 − x2, ẋ3 = x1x2 − bx3,

where σ, r, b are real parameters. Usually σ, b are kept fixed whereas r is
varied. At

r > r0 =
σ(σ + b+ 3)
σ − b− 1

chaotic behavior is observed [Udriste (2000)].

Let X = (X1, X2, X3), X1(x1, x2, x3) = −σx1 + σx2,

X2(x1, x2, x3) = −x1x3 + rx1 − x2, X3(x1, x2, x3) = x1x2 − bx3,

f =
1
2

[(−σx1 + σx2)2 + (−x1x3 + rx1 − x2)2 + (x1x2 − bx3)2],

curlX = (2x1, −x2, r − x3 − σ).

The Lorenz dynamics is described by

ẍi =
∂f

∂xi
+
(
∂Xi

∂xj
− ∂Xj

∂xi

)
ẋj , (i, j = 1, 2, 3), or

ẍ1 =
∂f

∂x1
+ (σ + x3 − r)ẋ2 − x2ẋ3, ẍ2 =

∂f

∂x2
+ (r − x3 − σ)ẋ1 − 2x1ẋ3,

ẍ3 =
∂f

∂x3
+ x2ẋ1 + 2x1ẋ2. (4.27)
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Using L =
1
2

3∑
i=1

(ẋi)
2 −

3∑
i=1

Xiẋi + f, H =
1
2

3∑
i=1

(ẋi)
2 − f,

gij = (H + f)δij , Nj
i = −Fji = −δihFjh, Fij =

∂Xj

∂xi
− ∂Xi

∂xj
,

(i, j, h = 1, 2, 3), the solutions of the differential system (4.27) are hor-
izontal pregeodesics of the Riemann–Jacobi–Lagrangian manifold (R3 \
E, gij , Nj

i), where E is the set of equilibrium points.

Geometry of the ABC Flow

We use the Riemannian manifold (R3, δij). One example of a fluid velocity
that contains exponential stretching and hence instability is the ABC flow,
named after Arnold, Beltrami and Childress,

ẋ1 = A sinx3+C cosx2, ẋ2 = B sinx1+A cosx3, ẋ3 = C sinx2+B cosx1.

For nonzero values of the constants A,B,C the preceding system is not
globally integrable. The topology of the flow lines is very complicated and
can only be investigated numerically to reveal regions of chaotic behavior.
The ABC flow conserves the volumes since the ABC field is solenoidal.

The ABC geometrodynamics is described by [Udriste (2000)]

ẍi =
∂f

∂xi
+
(
∂Xi

∂xj
− ∂Xj

∂xi

)
ẋj , (i, j = 1, 2, 3).

Since f = 1
2 (A + B + C + 2AC sinx3 cosx2 + 2BA sinx1 cosx3 +

2CB sinx2 cosx1), and curlX = X, the ABC geometrodynamics is given
by the system,

ẍ1 = AB cosx1 cosx3 −BC sinx1 sinx2

− (B cosx1 + C sinx2)ẋ2 + (B sinx1 +A cosx3)ẋ3,

ẍ2 = −AC sinx2 sinx3 +BC cosx1 cosx2

+ (B cosx1 + C sinx2)ẋ1 − (A sinx3 + C cosx2)ẋ2,

ẍ3 = AC cosx3 cosx2 −BA sinx1 sinx3

− (B sinx1 +A cosx3)ẋ1 + (C cosx2 +A sinx3)ẋ2.
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Using

L =
1
2
ẋiẋi −Xiẋi + f, H =

1
2
ẋiẋi − f, (i, j, h = 1, 2, 3),

gij = (H + f)δij , Nj
i = −Fji = −δihFjh, Fij =

∂Xj

∂xi
− ∂Xi

∂xj
,

the solutions of the above differential system are horizontal pregeodesics of
the Riemann–Jacobi–Lagrangian manifold (R3 \ E, gij , Nji), where E is
the set of equilibrium points, which is included in the surface of equation

sinx1 sinx2 sinx3 + cosx1 cosx2 cosx3 = 0.

4.5 K−Theory and Its Applications

Recall from [Dieudonne (1988)] that the 1930s were the decade of the de-
velopment of the cohomology theory , as several research directions grew to-
gether and the de Rham cohomology , that was implicit in Poincaré’s work,
became the subject of definite theorems. The development of algebraic
topology from 1940 to 1960 was very rapid, and the role of homology the-
ory was often as ‘baseline’ theory, easy to compute and in terms of which
topologists sought to calculate with other functors. The axiomatization of
homology theory by Eilenberg and Steenrod (celebrated Eilenberg–Steenrod
Axioms) revealed that what various candidate homology theories had in
common was, roughly speaking, some exact sequences (in particular, the
Mayer–Vietoris Theorem and the Dimension Axiom that calculated the
homology of the point).

4.5.1 Topological K−Theory

Now, K–theory is an extraordinary cohomology theory , which consists of
topological K−theory and algebraic K−theory. The topological K–theory
was founded to study vector bundles on general topological spaces, by
means of ideas now recognisee as (general) K−theory that were introduced
by Alexander Grothendieck. The early work on topological K−theory was
due to Michael Atiyah and Friedrich Hirzebruch.

Let X be a compact Hausdorff space and k = R or k = C. Then Kk(X)
is the Grothendieck group of the commutative monoid2 which elements are

2Recall that a monoid is an algebraic structure with a single, associative binary
operation and an identity element; a monoid whose operation is commutative is called a
commutative monoid (or, an Abelian monoid); e.g., every group is a monoid and every
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the isomorphism classes of finite dimensional k−vector bundles on X with
the operation

[E ⊕ F ] := [E]⊕ [F ]

for vector bundles E,F .3 Usually, Kk(X) is denoted KO(X) in real case
and KU(X) in the complex case.

More precisely, the stable equivalence, i.e., the equivalence relation on
bundles E and F on X of defining the same element in K(X), occurs when
there is a trivial bundle G, so that E⊕G ∼= F ⊕G. Under the tensor prod-
uct of vector bundles, K(X) then becomes a commutative ring . The rank
of a vector bundle carries over to the K−group define the homomorphism:
K(X) → Ȟ0(X,Z), where Ȟ0(X,Z) is the 0−group of the Chech coho-
mology which is equal to group of locally constant functions with values in
Z.

The constant map X −→ {x0}, x0 ∈ X defines the reduced K−group
(of reduced homology)

K̃(X) = Coker(K(X) −→ {x0}).

In particular, when X is a connected space, then

K̃(X) ∼= Ker(K(X)→ Ȟ0(X,Z) = Z).

4.5.1.1 Bott Periodicity Theorem

An important property in the topological K−theory is the Bott Periodicity
Theorem [Bott (1959)]4, which can be formulated this way:

Abelian group a commutative monoid.
3The Grothendieck group construction in abstract algebra constructs an Abelian

group from a commutative monoid ‘in the best possible way’.
4The Bott Periodicity Theorem is a result from homotopy theory discovered by Raoul

Bott during the latter part of the 1950s, which proved to be of foundational significance

for much further research, in particular in K−theory of stable complex vector bundles,
as well as the stable homotopy groups of spheres. Bott periodicity can be formulated
in numerous ways, with the periodicity in question always appearing as a period 2

phenomenon, with respect to dimension, for the theory associated to the unitary group.
The context of Bott periodicity is that the homotopy groups of spheres, which would be
expected to play the basic part in algebraic topology by analogy with homology theory,

have proved elusive (and the theory is complicated). The subject of stable homotopy
theory was conceived as a simplification, by introducing the suspension (smash product

with a circle) operation, and seeing what (roughly speaking) remained of homotopy

theory once one was allowed to suspend both sides of an equation, as many times as
one wished. The stable theory was still hard to compute with, in practice. What Bott

periodicity offered was an insight into some highly non-trivial spaces, with central status
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(1) K(X×S2) = K(X)⊗K(S2), and K(S2) = [H]/(H−1)2, where H is
the class of the tautological bundle on the S2 = P 1, i.e., the Riemann
sphere as complex projective line;

(2) K̃n+2(X) = K̃n(X);
(3) Ω2BU ' BU× Z.

In real K−theory there is a similar periodicity, but modulo 8.

4.5.2 Algebraic K−Theory

On the other hand, the so–called algebraic K–theory is an advanced part
of homological algebra concerned with defining and applying a sequence
Kn(R) of functors from rings to Abelian groups, for n = 0, 1, 2, .... Here,
for traditional reasons, the cases of K0 and K1 are thought of in some-
what different terms from the higher algebraic K−groups Kn for n ≥ 2. In
fact K0 generalizes the construction of the ideal class group, using projec-
tive modules; and K1 as applied to a commutative ring is the unit group
construction, which was generalized to all rings for the needs of topology
(simple homotopy theory) by means of elementary matrix theory. There-
fore the first two cases counted as relatively accessible; while after that
the theory becomes quite noticeably deeper, and certainly quite hard to
compute (even when R is the ring of integers).

Historically, the roots of the theory were in topological K–theory (based
on vector bundle theory); and its motivation the conjecture of Serre5 that
now is the Quillen–Suslin Theorem.6

Applications of K−groups were found from 1960 onwards in surgery

in topology because of the connection of their cohomology with characteristic classes,

for which all the (unstable) homotopy groups could be calculated. These spaces are the
(infinite, or stable) unitary, orthogonal and symplectic groups U,O and Sp.

5Jean–Pierre Serre used the analogy of vector bundles with projective modules to

found in 1959 what became algebraic K−theory. He formulated the Serre’s Conjecture,
that projective modules over the ring of polynomials over a field are free modules; this
resisted proof for 20 years.

6The Quillen–Suslin Theorem is a Theorem in abstract algebra about the relationship
between free modules and projective modules. Projective modules are modules that are
locally free. Not all projective modules are free, but in the mid–1950s, Jean–Pierre Serre

found evidence that a limited converse might hold. He asked the question: Is every
projective module over a polynomial ring over a field a free module? A more geometric

variant of this question is whether every algebraic vector bundle on affine space is trivial.

This was open until 1976, when Daniel Quillen and Andrei Suslin independently proved
that the answer is yes. Quillen was awarded the Fields Medal in 1978 in part for his

proof.
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theory for manifolds, in particular; and numerous other connections with
classical algebraic problems were found. A little later a branch of the the-
ory for operator algebras was fruitfully developed. It also became clear that
K−theory could play a role in algebraic cycle theory in algebraic geometry:
here the higher K−groups become connected with the higher codimension
phenomena, which are exactly those that are harder to access. The prob-
lem was that the definitions were lacking (or, too many and not obviously
consistent). A definition of K2 for fields by John Milnor, for example, gave
an attractive theory that was too limited in scope, constructed as a quo-
tient of the multiplicative group of the field tensored with itself, with some
explicit relations imposed; and closely connected with central extensions
[Milnor and Stasheff (1974)].

Eventually the foundational difficulties were resolved (leaving a deep
and difficult theory), by a definition of D. Quillen:

Kn(R) = πn(BGL(R)+).

This is a very compressed piece of abstract mathematics. Here πn is an nth
homotopy group, GL(R) is the direct limit of the general linear groups over
R for the size of the matrix tending to infinity, B is the classifying space
construction of homotopy theory, and the + is Quillen’s plus construction.

4.5.3 Chern Classes and Chern Character

An important properties in K–theory are the Chern classes and Chern
character [Chern (1946)]. The Chern classes are a particular type of char-
acteristic classes (topological invariants, see [Milnor and Stasheff (1974)]).
associated to complex vector bundles of a smooth manifold. Recall that
a characteristic class is a way of associating to each principal bundle on a
topological space X a cohomology class of X. The cohomology class mea-
sures the extent to which the bundle is ‘twisted’ – particularly, whether it
possesses sections or not. In other words, characteristic classes are global
invariants which measure the deviation of a local product structure from a
global product structure. They are one of the unifying geometric concepts
in algebraic topology, differential geometry and algebraic geometry.7

7Recall that characteristic classes are in an essential way phenomena of cohomology
theory – they are contravariant functors, in the way that a section is a kind of function

on a space, and to lead to a contradiction from the existence of a section we do need

that variance. In fact cohomology theory grew up after homology and homotopy theory,
which are both covariant theories based on mapping into a space; and characteristic

class theory in its infancy in the 1930s (as part of obstruction theory) was one major
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If we describe the same vector bundle on a manifold in two different
ways, the Chern classes will be the same, i.e., if the Chern classes of a
pair of vector bundles do not agree, then the vector bundles are differ-
ent (the converse is not true, though). In topology, differential geometry,
and algebraic geometry, it is often important to count how many linearly
independent sections a vector bundle has. The Chern classes offer some
information about this through, for instance, the Riemann–Roch Theorem
and the Atiyah-Singer Index Theorem. Chern classes are also feasible to
calculate in practice. In differential geometry (and some types of algebraic
geometry), the Chern classes can be expressed as polynomials in the coef-
ficients of the curvature form.

In particular, given a complex hermitian vector bundle V of complex
rank n over a smooth manifold M , a representative of each Chern class
(also called a Chern form) ck(V ) of V are given as the coefficients of the
characteristic polynomial

det
(

itΩ
2π

+ I

)
= ck(V )tk,

reason why a ‘dual’ theory to homology was sought. The characteristic class approach

to curvature invariants was a particular reason to make a theory, to prove a general
Gauss–Bonnet Theorem.

When the theory was put on an organized basis around 1950 (with the definitions

reduced to homotopy theory) it became clear that the most fundamental characteristic
classes known at that time (the Stiefel–Whitney class, the Chern class, and the Pon-

tryagin class) were reflections of the classical linear groups and their maximal torus

structure. What is more, the Chern class itself was not so new, having been reflected in
the Schubert calculus on Grassmannians, and the work of the Italian school of algebraic

geometry. On the other hand there was now a framework which produced families of

classes, whenever there was a vector bundle involved.
The prime mechanism then appeared to be this: Given a space X carrying a vector

bundle, implied in the homotopy category a mapping from X to a classifying space

BG, for the relevant linear group G. For the homotopy theory, the relevant information
is carried by compact subgroups such as the orthogonal groups and unitary groups of

G. Once the cohomology H∗(BG) was calculated, once and for all, the contravariance
property of cohomology meant that characteristic classes for the bundle would be defined
in H∗(X) in the same dimensions. For example, the Chern class is really one class with

graded components in each even dimension.
This is still the classic explanation, though in a given geometric theory it is profitable

to take extra structure into account. When cohomology became ‘extra–ordinary’ with
the arrival of K−theory and Thom’s cobordism theory from 1955 onwards, it was really
only necessary to change the letter H everywhere to say what the characteristic classes

were.
Characteristic classes were later found for foliations of manifolds; they have (in a

modified sense, for foliations with some allowed singularities) a classifying space theory

in homotopy theory.
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of the curvature form Ω of V , which is defined as

Ω = dω +
1
2

[ω, ω],

with ω the connection form and d the exterior derivative, or via the same
expression in which ω is a gauge form for the gauge group of V . The
scalar t is used here only as an indeterminate to generate the sum from
the determinant, and I denotes the n× n identity matrix. To say that the
expression given is a representative of the Chern class indicates that ‘class’
here means up to addition of an exact differential form. That is, Chern
classes are cohomology classes in the sense of de Rham cohomology . It can
be shown that the cohomology class of the Chern forms do not depend on
the choice of connection in V .

For example, let CP 1 be the Riemann sphere: a 1D complex projective
space. Suppose that z is a holomorphic local coordinate for the Riemann
sphere. Let V = TCP 1 be the bundle of complex tangent vectors having the
form a∂/∂z at each point, where a is a complex number. In the following
we prove the complex version of the Hairy Ball Theorem: V has no section
which is everywhere nonzero.

For this, we need the following fact: the first Chern class of a trivial
bundle is zero, i.e., c1(CP 1 × C) = 0. This is evinced by the fact that a
trivial bundle always admits a flat metric. So, we will show that c1(V ) 6= 0.

Consider the Kähler metric

h =
dzdz̄

(1 + |z|2)
..

One can show that the curvature 2–form is given by

Ω =
2dz ∧ dz̄

(1 + |z|2)2
.

Furthermore, by the definition of the first Chern class

c1 =
i

2π
Ω..

We need to show that the cohomology class of this is non–zero. It suffices
to compute its integral over the Riemann sphere:∫

c1 =
i
π

∫
dz ∧ dz̄

(1 + |z|2)2
= 2,
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after switching to polar coordinates. By Stokes Theorem, an exact form
would integrate to 0, so the cohomology class is nonzero. This proves that
TCP 1 is not a trivial vector bundle.

An important special case occurs when V is a line bundle. Then the
only nontrivial Chern class is the first Chern class, which is an element
of H2(X;Z)−the second cohomology group of X. As it is the top Chern
class, it equals the Euler class of the bundle. The first Chern class turns
out to be a complete topological invariant with which to classify complex
line bundles. That is, there is a bijection between the isomorphism classes
of line bundles over X and the elements of H2(X;Z), which associates to a
line bundle its first Chern class. Addition in the second cohomology group
coincides with tensor product of complex line bundles.

In algebraic geometry, this classification of (isomorphism classes of)
complex line bundles by the first Chern class is a crude approximation
to the classification of (isomorphism classes of) holomorphic line bundles
by linear equivalence classes of divisors. For complex vector bundles of
dimension greater than one, the Chern classes are not a complete invariant.

The Chern classes can be used to construct a homomorphism of rings
from the topological K−theory of a space to (the completion of) its rational
cohomology. For line bundles V , the Chern character ch is defined by

ch(V ) = exp[c1(V )].

For sums of line bundles, the Chern character is defined by additivity. For
arbitrary vector bundles, it is defined by pretending that the bundle is a
sum of line bundles; more precisely, for sums of line bundles the Chern
character can be expressed in terms of Chern classes, and we use the same
formulas to define it on all vector bundles. For example, the first few terms
are

ch(V ) = dim(V ) + c1(V ) + c1(V )2/2− c2(V ) + ...

If V is filtered by line bundles L1, ..., Lk having first Chern classes x1, ..., xk,
respectively, then

ch(V ) = ex1 + · · ·+ exk ..

If a connection is used to define the Chern classes, then the explicit form
of the Chern character is

ch(V ) = Tr
[
exp

(
iΩ
2π

)]
,
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where Ω is the curvature of the connection.
The Chern character is useful in part because it facilitates the compu-

tation of the Chern class of a tensor product. Specifically, it obeys the
following identities:

ch(V ⊕W ) = ch(V ) + ch(W ), ch(V ⊗W ) = ch(V )ch(W ).

Using the Grothendieck Additivity Axiom for Chern classes, the first of
these identities can be generalized to state that ch is a homomorphism of
Abelian groups from the K−theory K(X) into the rational cohomology of
X. The second identity establishes the fact that this homomorphism also
respects products in K(X), and so ch is a homomorphism of rings. The
Chern character is used in the Hirzebruch–Riemann–Roch Theorem.

The so–called twisted K–theory a particular variant of K−theory, in
which the twist is given by an integral 3D cohomology class. In physics,
it has been conjectured to classify D−branes, Ramond–Ramond field
strengths and in some cases even spinors in type II string theory.

4.5.4 Atiyah’s View on K−Theory

According to Michael Atiyah [Atiyah and Anderson (1967); Atiyah (2000)],
K–theory may roughly be described as the study of additive (or, Abelian)
invariants of large matrices. The key point is that, although matrix multi-
plication is not commutative, matrices which act in orthogonal subspaces
do commute. Given ‘enough room’ we can put matrices A and B into the
block form (

A 0
0 1

)
,

(
1 0
0 B

)
,

which obviously commute. Examples of Abelian invariants are traces and
determinants.

The prime motivation for the birth ofK−theory came from Hirzebruch’s
generalization of the classical Riemann–Roch Theorem (see [Hirzebruch
(1966)]). This concerns a complex projective algebraic manifold X and
a holomorphic (or algebraic) vector bundle E over X. Then one has the
sheaf cohomology groups Hq(X,E), which are finite–dimensional vector
spaces, and the corresponding Euler characteristics

χ(X,E) =
n∑
q=0

(−1)q dimHq(X,E),
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where n is the complex dimension of X. One also has topological invariants
of E and of the tangent bundle of X, namely their Chern classes. From
these one defines a certain explicit polynomial T (X,E) which by evaluation
on X becomes a rational number. Hirzebruch’s Riemann–Roch Theorem
asserts the equality: χ(X,E) = T (X,E).

It is an important fact, easily proved, that both χ and T are additive
for exact sequences of vector bundles:

0→ E′ → E → E′′ → 0,

χ(X,E) = χ(X,E′) + χ(X,E′′), T (X,E) = T (X,E′) + T (X,E′′).

This was the starting point of the Grothendieck’s generalization.
Grothendieck defined an Abelian group K(X) as the universal additive
invariant of exact sequences of algebraic vector bundles over X, so that χ
and T both gave homomorphisms of K(X) into the integers (or rationals).

More precisely, Grothendieck defined two different K−groups, one aris-
ing from vector bundles (denoted by K0) and the other using coherent
sheaves (denoted by K0). These are formally analogous to cohomology and
homology respectively. Thus K0(X) is a ring (under tensor product) while
K0(X) is a K0(X)−module. Moreover, K0 is contravariant while K0 is
covariant (using a generalization of χ). Finally, Grothendieck established
the analogue of Poincaré duality . While K0(X) and K0(X) can be de-
fined for an arbitrary projective variety X, singular or not, the natural map
K0(X)→ K0(X) is an isomorphism if X is non–singular.

The Grothendieck’s Riemann–Roch Theorem concerns a morphism f :
X → Y and compares the direct image of f in K−theory and cohomology.
It reduces to the Hirzeburch’s version when Y is a point.

Topological K−theory started with the famous Bott Periodicity The-
orem [Bott (1959)], concerning the homotopy of the large unitary groups
U(N) (for N → ∞). Combining Bott’s Theorem with the formalism of
Grothendieck, Atiyah and Hirzebruch, in the late 1950’s, developed a K−-
theory based on topological vector bundles over a compact space [Atiyah
and Hirzebruch (1961)]. Here, in addition to a group K0(X), they also
introduced an odd counterpart K1(X), defined as the group of homotopy
classes of X into U(N), for N large. Putting these together,

K∗(X) = K0(X)⊕K1(X),

they obtained a periodic ‘generalized cohomology theory’. Over the ratio-
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nals, the Chern character gave an isomorphism:

ch : K∗(X)⊗Q ∼= H∗(X,Q).

But, over the integers, K−theory is much more subtle and it has had many
interesting topological applications. Most notable was the solution of the
vector fields on spheres problem by Frank Adams, using real K−theory
(based on the orthogonal groups) [Adams (1962)].

An old generalisation of K−theory is related to projective bundles
[Atiyah and Anderson (1967); Atiyah (2000)]. Given a vector bundle V

over a space X, we can form the bundle P (V ) whose fibre at x ∈ X is the
projective space P (Vx). In terms of groups and principal bundles, this is
the passage from GL(n,C) to PGL(n,C), or from U(n) to PU(n). We have
two exact sequences of groups:

1→ U(1)→ U(n) → PU(n)→ 1
1→ Zn → SU(n)→ PU(n)→ 1

.

The first gives rise to an obstruction α ∈ H3(X,Z) to lifting a projec-
tive bundle to a vector bundle, while the second gives an obstruction
β ∈ H2(X,Zn) to lifting a projective bundle to a special unitary bundle.
They are related by

α = δ(β), where δ : H2(X,Zn)→ H3(X,Z)

is the coboundary operator . This shows that nα = 0. In fact, one can
show that any α ∈ H3(X,Z) of order dividing n arises in this way.

Can we define an appropriate K−theory for projective bundles with
α 6= 0 ? The answer is yes. For each fixed α of finite order we can
define an Abelian group Kα(X). Moreover this is a K(X) module. We will
now indicate how these twisted K–groups (i.e., twisted K−theory) can be
defined.

Note first that, for any vector space V, EndV = V ⊗ V ∗ depends only
P (V ). Hence, given a projective bundle P over X, we can define the as-
sociated bundle E(P ) of endomorphism (matrix) algebras. The sections of
E(P ) form a non–commutative C∗−algebra and one can define its K−group
by using finitely–generated projective modules. This K−group turns out
to depend not on P but only on its obstruction class α ∈ H3(X,Z) and so
can be denoted by Kα(X).
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In addition to the K(X)−module structure of Kα(X) there are multi-
plications

Kα(X)⊗Kβ(X)→ Kα+β(X).

Today, there are many variants and generalizations of K−theory, some-
thing which is not surprising given the universality of linear algebra and
matrices [Atiyah and Anderson (1967); Atiyah (2000)]. In each case there
are specific features and techniques relevant to the particular area.

First, as already mentioned, is the real K−theory based on real vector
bundles and the Bott periodicity theorems for the orthogonal groups: here
the period is 8 rather than 2.

Next there is equivariant theory KG(X), where G is a a compact Lie
group acting on the space X. If X is a point, we just get the representation
or character ring R(G) of the group G. In general KG(X) is a module
over R(G) and this can be exploited in terms of the fixed–point sets in X

of elements of G.
If we pass from the space X to the ring C(X) of continuous complex–

valued functions on X then K(X) can be defined purely algebraically in
terms of finitely–general projective modules over X. This then lends it-
self to a major generalization if we replace C(X), which is a commutative
C∗−algebra, by a non–commutative C∗−algebra. This has become a rich
theory linked to many basic ideas in functional analysis, in particular to
the von Neumann dimension theory .

4.5.5 Atiyah–Singer Index Theorem

We shall recall here very briefly some essential results of Atiyah–Singer
Index Theory. The reader who is not familiar with the topological and an-
alytic properties of the index of elliptic operators is urged to gain some fa-
miliarity with the Atiyah–Singer Index Theorem [Atiyah and Singer (1963);
Atiyah and Singer (1968)]8 (for technical details, see also [Boos and Bleecker

8In the geometry of manifolds and differential operators, the Atiyah—Singer Index
Theorem is an important unifying result that connects topology and analysis. It deals
with elliptic differential operators (such as the Laplacian) on compact manifolds. It finds

numerous applications, including many in theoretical physics. When Michael Atiyah and
Isadore Singer were awarded the Abel Prize by the Norwegian Academy of Science and

Letters in 2004, the prize announcement explained the Atiyah—Singer Index Theorem

in these words:

“Scientists describe the world by measuring quantities and forces that vary over

time and space. The rules of nature are often expressed by formulas, called
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(1985)]).
A differential operator of order m, mapping the smooth sections of a

vector bundle E over a compact manifold Y to those of another such bundle
F , can be described in local coordinates and local trivializations of the
bundles as

D =
∑
|α|≤m

aα(x)Dα,

with α = (α1, . . . , αn). The coefficients aα(x) are matrices of smooth
functions that represent elements of Hom(E,F ) locally; and Dα =
∂

∂x
α1
1
· · · ∂

∂xαnn
.

The principal symbol associated to the operator D is the expression

σm(D)(x, p) =
∑
|α|=m

aα(x)pα.

Given the differential operator D : Γ(Y,E) → Γ(Y, F ), the principal
symbol with the local expression above defines a global map σm : π∗(E)→
π∗(F ), where T ∗Y π→ Y is the cotangent bundle; that is, the variables (x, p)
are local coordinates on T ∗Y .

Consider bundles Ei, i = 1 . . . k, over a compact nD manifold Y such
that there is a complex Γ(Y,E) formed by the spaces of sections Γ(Y,Ei)
and differential operators di of order m:

0→ Γ(Y,E1) d1→ · · · dk−1→ Γ(Y,Ek)→ 0.

Construct the principal symbols σm(di); these determine an associated
symbol complex

0→ π∗(E1)
σm(d1)→ · · · σm(dk−1)→ π∗(Ek)→ 0.

The complex Γ(Y,E) is elliptic iff the associated symbol complex is
exact.

differential equations, involving their rates of change. Such formulas may have
an ‘index’, the number of solutions of the formulas minus the number of restric-

tions that they impose on the values of the quantities being computed. The
Atiyah–Singer index Theorem calculated this number in terms of the geometry
of the surrounding space. A simple case is illustrated by a famous paradoxical
etching of M. C. Escher, ‘Ascending and Descending’, where the people, go-

ing uphill all the time, still manage to circle the castle courtyard. The index
Theorem would have told them this was impossible.”
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In the case of just one operator, this means that σm(d) is an isomorphism
off the zero section.

Recall that the Hodge Theorem states that the cohomology of the com-
plex Γ(Y,E) coincides with the harmonic forms, i.e.,

Hi(E) =
Ker(di)

Im(di−1)
∼= Ker(∆i), where ∆i = d∗i di + di−1d

∗
i−1.

Without loss of generality, by passing to the assembled complex

E+ = E1 ⊕ E3 ⊕ · · · , E− = E2 ⊕ E4 ⊕ · · · ,

we can always think of one elliptic operator

D : Γ(Y,E+)→ Γ(Y,E−), D =
∑
i

(d2i−1 + d∗2i).

The Index Theorem states: Consider an elliptic complex over a compact,
orientable, even dimensional manifold Y without boundary. The index of
D, which is given by

Ind(D) = dim[Ker(D)]−dim[Coker(D)] =
∑
i

(−1)i dim[Ker ∆i] = −χ(E),

χ(E) being the Euler characteristic of the complex, can be expressed in
terms of characteristic classes as:

Ind(D) = (−1)n/2
〈

ch(
∑
i(−1)i[Ei])
e(Y )

td(TYC), [Y ]
〉
.

Here, ch is the Chern character, e is the Euler class of the tangent bundle
of Y , td(TYC) is the Todd class of the complexified tangent bundle. The
Atiyah–Singer Index Theorem, which computes the index of of a family of
elliptic differential operators, is naturally formulated in terms of K−theory
and is an extension of the Riemann–Roch Theorem.

4.5.6 The Infinite–Order Case

Topological K−theory turned out to have a very natural link with the the-
ory of operators in quantum Hilbert space. If H is an infinite–dimensional
complex Hilbert space and B(H) the space of bounded operators on H with
the uniform norm, then one defines the subspace F(H) ⊂ B(H) of Fred-
holm operators T, by the requirement that both Ker(T ) and Coker(T ) have
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finite–dimensions. The Atiyah–Singer index is then defined by

Ind(T ) = dim[Ker(T )]− dim[Coker(T )],

and it has the key property that it is continuous, and therefore constant on
each connected component of F(H). Moreover, Ind : F → Z identifies
the components of F .

This has a generalization to any compact space X. To any continuous
map X → F (i.e., a continuous family of Fredholm operators parametrized
by X) one can assign an index in K(X). Moreover one gets in this way
an isomorphism Ind : [X,F ] → K(X), where [X,F ] denotes the set of
homotopy classes of maps of X into F . A notable example of a Fredholm
operator is an elliptic differential operator on a compact manifold (these
are turned into bounded operators by using appropriate Sobolev norms).

Now, in the quantum–physical situation, one meets infinite–order ele-
ments α ∈ H3(X,Z) and the question arises of whether one can still define
a ‘twisted’ group Kα(X). It turns out that it is possible to do this and one
approach is being developed by [Atiyah and Segal (1971)].

Since an α of order n arises from an obstruction problem involving
nD vector bundles, it is plausible that, for α of infinite order, we need to
consider bundles of Hilbert spaces H. But here we have to be careful not
to confuse the ‘small’ unitary group

U(∞) = lim
N→∞

U(N)

with the ‘large’ group U(H) of all unitary operators in Hilbert space. The
small unitary group has interesting homotopy groups given by Bott’s pe-
riodicity Theorem, but U(H) is contractible, by Kuiper’s Theorem. This
means that all Hilbert space bundles (with U(H)) as structure group) are
trivial. This implies the following homotopy equivalences:

PU(H) = U(H)/U(1) ∼ CP∞ = K(Z, 2), BPU(H) ∼ K(Z, 3),

where B denotes here the classifying space and on the right we have the
Eilenberg–MacLane spaces. It follows that P (H)−bundles over X are clas-
sified completely by H3(X,Z). Thus, for each α ∈ H3(X,Z), there is an
essentially unique bundle Pα over X with fibre P (H).

As in finite dimensions. B(H) depends only on P (H), we can define a
bundle Bα of algebras over X. We now let Fα ⊂ Bα be the corresponding
bundle of Fredholm operators. Finally we define

Kα(X) = Homotopy classes of sections of Fα.
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This definition works for all α. If α is of finite order, then Pα contains a
finite–dimensional sub–bundle, but if α is of infinite order this is not true.
Thus we are essentially in an infinite–dimensional analytic situation.

To get the twisted odd groups we recall that F1 ⊂ F , the space of self–
adjoint Fredholm operators, is a classifying space for K1 and so we take F1

α

⊂ Fα to define

K1
α(X) = Homotopy classes of sections of F1

α.

One peculiar feature of the infinite–order case is that all sections of Fa
lie in the zero–index component, or equivalently that the restriction map

Kα(X)→ Kα(point)

is zero.
Now, what can we say about the relation between twisted K−groups

and cohomology? Over the rationals, if α is of finite order, nothing much
changes [Atiyah and Anderson (1967); Atiyah (2000)]. In particular the
Chern character induces an isomorphism. However if α is of infinite order
something new happens. We can now consider the operation u → αu on
H∗(X,Q) as a differential dα (α2 = 0 since α has odd dimension). We can
then form the cohomology with respect to this differential

Ha = Ker dα/ Im dα.

One can then prove that there is an isomorphism

K∗
α(X)⊗Q ∼= Hα.

In the usual Atiyah–Hirzebruch spectral sequence [Atiyah and Hirzebruch
(1961)], relating K−theory to integral cohomology, all differentials are of
finite order and so vanish over Q. In particular, d3 = Sq3, the Steenrod
operation. However for Kα one finds

d3u = Sq3u+ αu

and this explains why an α of infinite–order gives the isomorphism above
over the rationals.

Chern classes over the integers are a more delicate matter. One can
proceed as follows. In F there are various subspaces Fr,s (of finite codi-
mension) where

dim[Ker] = r, dim[Coker] = s,
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and these lie in the component of Ind(r − s).
Since the Fr,s ⊂ F are invariant under the action of U(H), it follows

that they can be defined fibrewise and this shows that the classes cr,s can
be defined for Kα(X). However the classes for r = s (and so of index zero)
are not sufficient to generate all Chern classes. It is a not unreasonable
conjecture that the cr,r are the only integral characteristic classes for the
twisted K−theories [Atiyah and Anderson (1967); Atiyah (2000)].

While the use of Hilbert spaces H and the corresponding projective
spaces P (H) may not come naturally to a topologist, these are perfectly
natural in physics. Recall that P (H) is the space of quantum states. Bun-
dles of such arise naturally in quantum field theory.

4.5.7 Twisted K−Theory and the Verlinde Algebra

Twistings of cohomology theories are most familiar for ordinary cohomol-
ogy [Freed (2001); Freed et. al. (2003)]. Let M be a smooth manifold.
Then a flat real vector bundle E →M determines twisted real cohomology
groups H•(M ;E). In differential geometry these cohomology groups are
defined by extending the de Rham complex to forms with coefficients in E
using the flat connection. The sorts of twistings of K−theory we consider
are 1D, so analogous to the case when E is a line bundle. There are also
1D twistings of integral cohomology, determined by a local system Z →M .
This is a bundle of groups isomorphic to Z, so is determined up to isomor-
phism by an element of H1 (M ; Aut(Z)) ∼= H1(M ; Z mod 2), since the only
nontrivial automorphism of Z is multiplication by −1. The twisted integral
cohomology H•(M ;Z) may be thought of as sheaf cohomology, or defined
using a cochain complex. We give a Čech description as follows. Let {Ui}
be an open covering of M and

gij : Ui ∩ Uj −→ {±1} (4.28)

a cocycle defining the local system Z. Then an element of Hq(M ;Z) is
represented by a collection of q−cochains ai ∈ Zq(Ui) which satisfy

aj = gij ai on Uij = Ui ∩ Uj . (4.29)

We can use any model of co–chains, since the group Aut(Z) ∼= {±1} al-
ways acts. In place of co–chains we represent integral cohomology classes
by maps to an Eilenberg–MacLane space K(Z, q). The cohomology group is
the set of homotopy classes of maps, but here we use honest maps as repre-
sentatives. The group Aut(Z) acts on K(Z, q). One model of K(Z, 0) is the
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integers, with−1 acting by multiplication. The circle is a model forK(Z, 1),
and −1 acts by reflection. Using the action of Aut(Z) on K(Z, q) and the
cocycle (4.28) we build an associated bundle Hq → M with fiber K(Z, q).
Equation (4.29) says that twisted cohomology classes are represented by
sections of Hq →M ; the twisted cohomology group Hq(M ;Z) is the set of
homotopy classes of sections of Hq →M .

Twistings may be defined for any generalized cohomology theory; our
interest is in complex K−theory [Freed (2001); Freed et. al. (2003)]. In
homotopy theory one regards K as a marriage of a ring and a space (more
precisely, spectrum), and it makes sense to ask for the units in K, de-
noted GL1(K). In the previous paragraph we used the units in integral
cohomology, the group Z mod 2. For complex K−theory there is a richer
group of units

GL1(K) ∼ Zmod2× CP∞ ×BSU. (4.30)

In our problem the last factor does not enter and all the interest is in the
first two, which we denote GL1(K)′. As a first approximation, view K

as the category of all finite dimensional Z mod 2–graded complex vector
spaces. Then CP∞ is the subcategory of even complex lines, and it is a
group under tensor product. It acts on K by tensor product as well. The
nontrivial element of Z mod 2 in (4.30) acts on K by reversing the parity
of the grading. This model is deficient since there is not an appropriate
topology. One may consider instead complexes of complex vector spaces,
or spaces of operators as we do below. Of course, there are good topological
models of CP∞, for example the space of all 1D subspaces of a fixed complex
Hilbert space H. For a manifold M the twistings of K−theory of interest
are classified up to isomorphism by

H1 (M ;GL1(K)′) ∼= H1(M ; Zmod2)×H3(M ; Z).

In this paper we will not encounter twistings from the first factor and will
focus exclusively on the second. These twistings are represented by co–
cycles gij with values in the space of lines, in other words by complex line
bundles Lij → Uij which satisfy a cocycle condition. This is the data often
given to define a gerbe.9

9Recall that a gerbe is a construct in homological algebra. It is defined as a stack

over a topological space which is locally isomorphic to the Picard groupoid of that space.

Recall that the Picard groupoid on an open set U is the category whose objects are line
bundles on U and whose morphisms are isomorphisms. A stack refers to any category

acting like a moduli space with a universal family (analogous to a classifying space)
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Now, let X = G be a compact Lie group and, for simplicity, we shall
assume that it is simply connected, though the theory works in the general
case. We consider G as G−space, the group acting on itself by conjugation.

Since H3(G,Z) ∼= Z we can construct twisted K−theories for each
integer k. Moreover, we can also do this equivariantly, thus obtaining
Abelian groups K∗

G,k(G). These will all be R(G)−modules.
Now, the group multiplication map µ : G×G→ G is compatible with

conjugation and so is a G−map. In addition, to the pull back µ∗, we can
also consider the push–forward µ∗. This depends on Poincaré duality for
K−theory and it works also, when appropriately formulated, in the present
context.

If dim(G) is even, this gives us a commutative multiplication on
K0
G,k(G), while for dim(G) odd, our multiplication is on K1

G,k(G). In either
case we get a ring.

The claim of [Freed (2001); Freed et. al. (2003)] is that this ring (ac-
cording to the parity of dim(G) is naturally isomorphic to the Verlinde
algebra of G at level k− h (where h is the Coxeter number). The Verlinde
algebra is a key tool in certain quantum field theories and it has been much
studied by physicists, topologists, group theorists and algebraic geometers.
The K−theory approach is totally new and much more direct than most
other ways.

The Verlinde algebra is defined in the theory of loop groups. Let G be
a compact Lie group. There is a version of the Theorem for any compact
group G, but here for the most part we focus on connected, simply con-
nected, and simple groups—G = SU2 is the simplest example. In this case
a central extension of the free loop group LG is determined by the level ,
which is a positive integer k. There is a finite set of equivalence classes
of positive energy representations of this central extension; let Vk(G) de-
note the free Abelian group they generate. One of the influences of 2D
conformal field theory on the theory of loop groups is the construction of
an algebra structure on Vk(G), the fusion product . This is the Verlinde
algebra [Verlinde (1988)].

More precisely, let G act on itself by conjugation. Then with our as-
sumptions the equivariant cohomology group H3

G(G) is free of rank one. Let
h(G) be the dual Coxeter number of G, and define ζ(k) ∈ H3

G(G) to be
k + h(G) times a generator. We will see that elements of H3 may be used
to twist K−theory, and so elements of equivariant H3 twist equivariant

parameterizing a family of related mathematical objects such as schemes or topological

spaces, especially when the members of these families have nontrivial automorphisms.
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K−theory.
The Freed–Hopkins–Teleman Theorem [Freed (2001); Freed et. al.

(2003)] states: There is an isomorphism of algebras

Vk(G) ∼= K
dimG+ζ(k)
G (G),

where the right hand side is the ζ(k)−twisted equivariant K−theory in
degree dim(G). The group structure on the right–hand side is induced
from the multiplication map G×G→ G.

For an arbitrary compact Lie group G the level k is replaced by a class
in H4(BG; Z) and the dual Coxeter number h(G) is pulled back from a
universal class in H4(BSO; Z) via the adjoint representation. The twisting
class is obtained from their sum by transgression.

4.5.8 Application: K−Theory in String Theory

In string theory, K−theory has been conjectured to classify the al-
lowed Ramond–Ramond field strengths;10 and also the charges of stable
D−branes.

4.5.8.1 Classification of Ramond–Ramond Fluxes

In the classical limit of type II string theory, which is type II supergrav-
ity, the Ramond–Ramond (RR) field strengths are differential forms. In the
quantum theory the well–definedness of the partition functions ofD−branes
implies that the RR–field strengths obey Dirac quantization conditions
when space–time is compact, or when a spatial slice is compact and one con-
siders only the (magnetic) components of the field strength which lie along
the spatial directions. This led twentieth century physicists to classify RR
field strengths using cohomology with integral coefficients.

However, some authors have argued that the cohomology of space–time
with integral coefficients is too big. For example, in the presence of Neveu–
Schwarz (NS) H−flux, or non–spin cycles, some RR–fluxes dictate the pres-
ence of D−branes. In the former case this is a consequence of the super-

10Recall that Ramond–Ramond (RR) fields are differential–form fields in the 10D

space–time of type II supergravity theories, which are the classical limits of type II
string theory. The ranks of the fields depend on which type II theory is considered. As

Joe Polchinski argued in 1995, D−branes are the charged objects that act as sources for

these fields, according to the rules of p−form electrodynamics. It has been conjectured
that quantum RR fields are not differential forms, but instead are classified by twisted

K−theory.
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gravity equation of motion which states that the product of a RR–flux with
the NS 3–form is a D−brane charge density. Thus the set of topologically
distinct RR–field strengths that can exist in brane–free configurations is
only a subset of the cohomology with integral coefficients.

This subset is still too big, because some of these classes are related by
large gauge transformations. In QED there are large gauge transformations
which add integral multiples of 2π to Wilson loops.11

11Recall that in gauge theory, a Wilson loop (named after Ken Wilson) is a gauge–
invariant observable obtained from the holonomy of the gauge connection around a given

loop. In the classical theory, the collection of all Wilson loops contains sufficient informa-

tion to reconstruct the gauge connection, up to gauge transformation. In quantum field
theory, the definition of Wilson loops observables as bona fide operators on Fock space

(actually, Haag’s Theorem states that Fock space does not exist for interacting QFTs)

is a mathematically delicate problem and requires regularization, usually by equipping
each loop with a framing. The action of Wilson loop operators has the interpretation of

creating an elementary excitation of the quantum field which is localized on the loop. In

this way, Faraday’s ”flux tubes” become elementary excitations of the quantum electro-
magnetic field.

Wilson loops were introduced in the 1970s in an attempt at a non–perturbative formu-

lation of quantum chromodynamics (QCD), or at least as a convenient collection of vari-
ables for dealing with the strongly–interacting regime of QCD. The problem of confine-

ment, which Wilson loops were designed to solve, remains unsolved to this day. The fact
that strongly–coupled quantum gauge field theories have elementary non–perturbative

excitations which are loops motivated Alexander Polyakov to formulate the first string

theories, which described the propagation of an elementary quantum loop in spacetime.
Wilson loops played an important role in the formulation of loop quantum gravity, but

there they are superseded by spin networks, a certain generalization of Wilson loops.

In particle physics and string theory, Wilson loops are often called Wilson lines, es-
pecially Wilson loops around non–contractible loops of a compact manifold.

A Wilson line WC is a quantity defined by a path–ordered exponential of a gauge field

Aµ

WC = TrP exp i

I
C
Aµdx

µ.

Here, C is a contour in space, P is the path–ordering operator, and the trace Tr guaran-

tees that the operator is invariant under gauge transformations. Note that the quantity
being traced over is an element of the gauge Lie group and the trace is really the char-

acter of this element with respect to an irreducible representation, which means there
are infinitely many traces, one for each irrep.

Precisely because we’re looking at the trace, it doesn’t matter which point on the loop

is chosen as the initial point. They all give the same value.
Actually, if A is viewed as a connection over a principal G−bundle, the equation above

really ought to be ‘read’ as the parallel transport of the identity around the loop which

would give an element of the Lie group G.
Note that a path–ordered exponential is a convenient shorthand notation common

in physics which conceals a fair number of mathematical operations. A mathematician

would refer to the path–ordered exponential of the connection as ‘the holonomy of the
connection’ and characterize it by the parallel–transport differential equation that it

satisfies.
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The p− form potentials in type II supergravity theories also enjoy
these large gauge transformations, but due to the presence of Chern–
Simons terms in the supergravity actions these large gauge transforma-
tions transform not only the p−form potentials but also simultaneously the
(p + 3)−form field strengths. Thus to get the space of inequivalent field
strengths from the forementioned subset of integral cohomology we must
quotient by these large gauge transformations.

The Atiyah–Hirzebruch spectral sequence constructs twisted K−theory,
with a twist given by the NS 3−form field strength, as a quotient of a
subset of the cohomology with integral coefficients. In the classical limit,
which corresponds to working with rational coefficients, this is precisely
the quotient of a subset described above in supergravity. The quantum
corrections come from torsion classes and contain mod 2 torsion corrections
due to the Freed–Witten anomaly.

Thus twisted K−theory classifies the subset of RR–field strengths that
can exist in the absence of D−branes quotiented by large gauge transfor-
mations.

4.5.8.2 Classification of D−Branes

Now, in many applications one wishes to add sources for the RR fields.
These sources are called D−branes. As in classical electromagnetism, one
may add sources by including a coupling CpJ10−p of the p−form potential
to a (10 − p)−form current J10−p in the Lagrangian (density). The usual
convention in the string theory literature appears to be to not write this
term explicitly in the action.

The current J10−p modifies the equation of motion that comes from
the variation of Cp. As is the case with magnetic monopoles in electro-
magnetism, this source also invaliditates the dual Bianchi identity as it is
a point at which the dual field is not defined. In the modified equation
of motion Jp+2 appears on the left hand side of the equation of motion
instead of zero. For simplicity, we will also interchange p and 7 − p, then
the equation of motion in the presence of a source is

J9−p = d2C7−p = dG8−p = dF8−p +H ∧Gp−1.

The (9−p)−form J9−p is the Dp−brane current, which means that it is
Poincaré dual to the world–volume of a (p+ 1)−D extended object called

In finite temperature QCD, the expectation value of the Wilson line distinguishes

between the ‘confined phase’ and the ‘deconfined phase’ of the theory.
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a Dp−brane. The discrepency of one in the naming scheme is historical
and comes from the fact that one of the p + 1 directions spanned by the
Dp−brane is often time–like, leaving p spatial directions.

The above Bianchi identity is interpreted to mean that the Dp−brane
is, in analogy with magnetic monopoles in electromagnetism, magnetically
charged under the RR p−form C7−p. If instead one considers this Bianchi
identity to be a field equation for Cp+1, then one says that the Dp−brane
is electrically charged under the (p+ 1)−form Cp+ 1.

The above equation of motion implies that there are two ways to derive
the Dp−brane charge from the ambient fluxes. First, one may integrate
dG8−p over a surface, which will give the Dp−brane charge intersected by
that surface. The second method is related to the first by Stoke’s Theorem.
One may integrate G8−p over a cycle, this will yield the Dp−brane charge
linked by that cycle. The quantization of Dp−brane charge in the quantum
theory then implies the quantization of the field strengths G, but not of the
improved field strengths F .

It has been conjectured that twisted K−theory classifies classifies
D−branes in noncompact space–times, intuitively in space–times in which
we are not concerned about the flux sourced by the brane having nowhere
to go. While the K−theory of a 10D space–time classifies D−branes as
subsets of that space–time, if the space–time is the product of time and
a fixed 9−manifold then K−theory also classifies the conserved D−brane
charges on each 9D spatial slice. While we were required to forget about
RR potentials to get the K−theory classification of RR field strengths,
we are required to forget about RR field strengths to get the K−theory
classification of D−branes.

We will continue exposition on K−theory applications to string theory
in the last section of the book.

4.6 Principal Bundles

Recall that a principal bundle is a special case of a fibre bundle where the
fibre is a group G. More specifically, G is usually a Lie group. A principal
bundle is a total bundle space Y along with a surjective map π : Y → X

to a base manifold X. Any fibre π−1(x) is a space isomorphic to G. More
specifically, G acts freely and transitively without fixed point on the fibers,
and this makes a fibre into a homogeneous space. It follows that the orbits
of the G−action are precisely the fibers of π : Y → X and the orbit space
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Y/G is homeomorphic the base space X. To say that G acts freely and
transitively on the fibers means that the fibers take on the structure of
G−torsors.12

For example, in the case of a circle bundle (G = S1 ≡ {eit}), the
fibers are circles, which can be rotated, although no point in particular
corresponds to the identity. Near every point, the fibers can be given the
group structure of G in the fibers over a neighborhood by choosing an
element in each fibre to be the identity element. However, the fibers cannot
be given a group structure globally, except in the case of a trivial bundle.

An important principal bundle is the frame bundle on a Riemannian
manifold. This bundle reflects the different ways to give an orthonormal
basis for tangent vectors.

In general, any fibre bundle corresponds to a principal bundle where the
group (of the principal bundle) is the group of isomorphisms of the fibre (of
the fibre bundle). Given a principal bundle π : Y → X and an action of G
on a space V , which could be a group representation, this can be reversed
to give an associated fibre bundle.

A trivialization of a principal bundle, an open set U in X such that the
bundle π−1(U) over U , is expressed as U × G, has the property that the
group G acts on the left and transition functions take values in G, acting
on the fibers by right multiplication (so that the action of G on a fibre V
is independent of coordinate chart).

More precisely, a principal bundle πP : P → Q of a configuration mani-
fold Q, with a structure Lie group G, is a general affine bundle modelled on
the right on the trivial group bundle Q×G where the group G acts freely
and transitively on P on the right,

RG : P ×G→ P, Rg : p 7→pg, (p ∈ P, g ∈ G). (4.31)

We call P a principal G−bundle. A typical fibre of a principal G−bundle
is isomorphic to the group space of G, and P/G = Q. The structure group
G acts on the typical fibre by left multiplications which do not preserve
the group structure of G. Therefore, the typical fibre of a principal bundle
is only a group space, but not a group. Since the left action of transition
functions on the typical fibre G commutes with its right multiplications,
a principal bundle admits the global right action (4.31) of the structure
group.

12A G−torsor is a space which is homeomorphic to G but lacks a group structure since

there is no preferred choice of an identity element.
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A principal G−bundle P is equipped with a bundle atlas

ΨP = {(Uα, ψPα , ραβ)}, (4.32)

whose trivialization maps

ψPα : π−1
P (Uα)→ Uα ×G

obey the equivariance condition

(π2 ◦ ψPα )(pg) = (π2 ◦ ψPα )(p)g, (g ∈ G, p ∈ π−1
P (Uα)). (4.33)

Due to this property, every trivialization map ψPα determines a unique local
section zα of P over Uα such that

π2 ◦ ψPα ◦ zα = 1,

where 1 is the unit element of G. The transformation rules for zα read

zβ(q) = zα(q)ραβ(q), (q ∈ Uα ∩ Uβ), (4.34)

where ραβ(q) are G−valued transition functions of the atlas ΨP . Con-
versely, the family {(Uα, zα)} of local sections of P with the transition
functions (4.34) determines a unique bundle atlas of P . In particular, it
follows that only trivial principal bundles have global sections.

Note that the pull–back of a principal bundle is also a principal bundle
with the same structure group.

The quotient of the tangent bundle TP → P and that of the vertical
tangent bundle V P of P by the tangent prolongation TRG of the canonical
action RG (4.31) are vector bundles

TGP = TP/G, VGP = V P/G (4.35)

over Q. Sections of TGP → Q are naturally identified with G-invariant
vector–fields on P , while those of VGP → Q are G-invariant vertical vector–
fields on P . Therefore, the Lie bracket of G-invariant vector–fields on P

goes to the quotients (4.35), and induces the Lie brackets of their sections.
Let us write these brackets in an explicit form.

Owing to the equivariance condition (4.33), any bundle atlas (4.32)
of P induces the associated bundle atlases {Uα, TψPα/G)} of TGP and
{Uα, V ψPα/G)} of VGP . Given a basis {εp} for the right Lie algebra gr,
let {∂α, ep} and {ep}, where ep = (ψPα/G)−1(εp), be the corresponding lo-
cal fibre bases for the vector bundles TGP and VGP , respectively. Relative
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to these bases, the Lie bracket of sections

ξ = ξα∂α + ξpep, η = ηµ∂µ + ηqeq

of the vector bundle TGP → Q reads

[ξ, η] = (ξµ∂µηα − ηµ∂µξα)∂α + (ξα∂αηr − ηα∂αξr + crpqξ
pηq)er. (4.36)

Putting ξα = 0 and ηµ = 0, we get the Lie bracket

[ξ, η] = crpqξ
pηqer (4.37)

of sections of the vector bundle VG → P .
A principal bundle P is also the general affine bundle modelled on the

left on the associated group bundle P̃ with the standard fibreG on which the
structure group G acts by the adjoint representation. The corresponding
bundle map reads

P̃ × P −→ P, (p̃, p) 7→ p̃p.

Note that the standard fibre of the group bundle P̃ is the group G, while
that of the principal bundle P is the group space of G on which the structure
group G acts on the left.

A principal bundle P → Q with a structure Lie group G possesses the
canonical trivial vertical splitting

α : V P → P × gl, π2 ◦ α ◦ em = Jm,

where {Jm} is a basis for the left Lie algebra gl and em denotes the corre-
sponding fundamental vector–fields on P . Given a principal bundle P → Q,
the bundle TP → TQ is a principal bundle

TP × T (Q×G)→ TP

with the structure group TG = G × gl where gl is the left Lie algebra of
left–invariant vector–fields on the group G.

If P → Q is a principal bundle with a structure group G, the exact
sequence (4.13) can be reduced to the exact sequence

0→ V GP ↪→ TGP → TQ→ 0, (4.38)

where TGP = TP/G, V GP = V P/G

are the quotients of the tangent bundle TP of P and the vertical tangent
bundle V P of P respectively by the canonical action (4.31) of G on P on the
right. The bundle V GP → Q is called the adjoint bundle. Its standard fibre
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is the right Lie algebra gr of the right–invariant vector–fields on the group
G. The group G acts on this standard fibre by the adjoint representation.

4.7 Distributions and Foliations on Manifolds

Let M be an nD smooth manifold. A smooth distribution T of codimension
k on M is defined as a subbundle of rank n− k of the tangent bundle TM .
A smooth distribution T is called the involutive distribution if [u, u′] is a
section of T whenever u and u′ are sections of T .

Let T be a k−codimensional distribution on M . Its annihilator T ∗ is
a kD subbundle of T ∗M called the Pfaffian system. It means that, on a
neighborhood U of every point x ∈ M , there exist k linearly independent
sections s1, . . . , sk of T ∗ such that

Tx |U= ∩jKer sj .

Let C(T ) be the ideal of ∧(M) generated by sections of T ∗.
A smooth distribution T is involutive iff the ideal C(T ) is differential,

that is, dC(T ) ⊂ C(T ).
Given an involutive k−codimensional distribution T on M , the quotient

TM/T is a kD vector bundle called the transversal bundle of T . There is
the exact sequence

0→ T ↪→ TM → TM/T → 0. (4.39)

Given a bundle Y → X, its vertical tangent bundle V Y exemplifies an
involutive distribution on Y .

A submanifold N of M is called the integral manifold of a distribution T
on M if the tangent spaces to N coincide with the fibres of this distribution
at each point of N .

Let T be a smooth involutive distribution on M . For any point x ∈M ,
there exists a maximal integral manifold of T passing through x [Kamber
and Tondeur (1975)]. In view of this fact, involutive distributions are also
called completely integrable distributions.

Every point x ∈ M has an open neighborhood U which is a domain of
a coordinate chart (x1, . . . , xn) such that the restrictions of T and T ∗ to U
are generated by the n− k vector–fields ∂

∂x1 , . . . ,
∂

∂xn−k
and the k Pfaffian

forms dxn−k+1, . . . , dxn respectively.
In particular, it follows that integral manifolds of an involutive distri-

bution constitute a foliation. Recall that a k−codimensional foliation on



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

534 Applied Differential Geometry: A Modern Introduction

an nD manifold M is a partition of M into connected leaves Fι with the
following property: every point of M has an open neighborhood U which is
a domain of a coordinate chart (xα) such that, for every leaf Fι, the compo-
nents Fι ∩U are described by the equations xn−k+1 = const,..., xn = const
[Kamber and Tondeur (1975)]. Note that leaves of a foliation fail to be
imbedded submanifolds in general.

For example, every projection π : M → X defines a foliation whose
leaves are the fibres π−1(x), for all x ∈ X. Also, every nowhere vanishing
vector–field u on a manifold M defines a 1D involutive distribution on
M . Its integral manifolds are the integral curves of u. Around each point
x ∈ M , there exist local coordinates (x1, . . . , xn) of a neighborhood of x
such that u is given by u = ∂

∂xi .

4.8 Application: Nonholonomic Mechanics

Let TM = ∪x∈MTxM , be the tangent bundle of a smooth nD mechanical
manifold M . Recall (from the subsection 4.7 above) that sub–bundle V =
∪x∈MVx, where Vx is a vector subspace of TxM , smoothly dependent on
points x ∈ M , is called the distribution. If the manifold M is connected,
dimVx is called the dimension of the distribution. A vector–field X on
M belongs to the distribution V if X(x) ⊂ Vx. A curve γ is admissible
relatively to V , if the vector–field γ̇ belongs to V . A differential system
is a linear space of vector–fields having a structure of C∞(M) – module.
Vector–fields which belong to the distribution V form a differential system
N(V ). A kD distribution V is integrable if the manifold M is foliated to kD
sub–manifolds, having Vx as the tangent space at the point x. According
to the Frobenius Theorem, V is integrable iff the corresponding differential
system N(V ) is involutive, i.e., if it is a Lie sub–algebra of the Lie algebra
of vector–fields on M . The flag of a differential system N is a sequence of
differential systems: N0 = N, N1 = [N,N ], . . . , Nl = [Nl−1, N ], . . . .

The differential systems Ni are not always differential systems of some
distributions Vi, but if for every i, there exists Vi, such that Ni = N(Vi),
then there exists a flag of the distribution V : V = V0 ⊂ V1 . . . . Such
distributions, which have flags, will be called regular. Note that the se-
quence N(Vi) is going to stabilize, and there exists a number r such that
N(Vr−1) ⊂ N(Vr) = N(Vr+1). If there exists a number r such that
Vr = TM , the distribution V is called completely nonholonomic, and min-
imal such r is the degree of non–holonomicity of the distribution V .
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Now, let us see the mechanical interpretation of these geometrical ob-
jects. Consider a nonholonomic mechanical system corresponding to a Rie-
mannian manifold (M, g), where g is a metric defined by the system’s ki-
netic energy [Dragovic and Gajic (2003)]. Suppose that the distribution V
is defined by (n−m) one–forms ωα; in local coordinates q = (q1, ..., qn) on
M

ωρ(q)(q̇) = aρi(q) q̇i = 0, (ρ = m+ 1, . . . , n; i = 1, . . . , n).

A virtual displacement is a vector–field X on M , such that ωρ(X) = 0, i.e.,
X belongs to the differential system N(V ).

Differential equations of motion of a given mechanical system follow
from the D’Alambert–Lagrangian principle: trajectory γ of the given system
is a solution of the equation

〈∇γ̇ γ̇ −Q,X〉 = 0, (4.40)

where X is an arbitrary virtual displacement, Q a vector–field of internal
forces, and ∇ is the affine Levi–Civita connection for the metric g.

The vector–field R(x) on M , such that R(x) ∈ V ⊥x , V ⊥x ⊕Vx = TxM , is
called reaction of ideal nonholonomic connections. (4.40) can be rewritten
as

∇γ̇ γ̇ −Q = R, ωα(γ̇) = 0. (4.41)

If the system is potential, by introducing L = T − U , where U is the
potential energy of the system (Q = − gradU), then in local coordinates q
on M , equations (4.41) becomes the forced Lagrangian equation:

d

dt
Lq̇ − Lq = R̃, ωα(q̇) = 0.

Now R̃ is a one–form in (V ⊥), and it can be represented as a linear combi-
nation of one–forms ωm+1, . . . , ωn which define the distribution, R̃ = λαωα.

Suppose e1, . . . , en are the vector–fields on M , such that e1(x), . . . , en(x)
form a base of the vector space TxM at every point x ∈M , and e1, . . . , em
generate the differential system N(V ). Express them through the coordi-
nate vector–fields:

ei = Aji (q)∂qj , (i, j = 1, . . . , n).

Denote by p a projection p : TM → V orthogonal according to the
metric g. Corresponding homomorphism of C∞−modules of sections of
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TM and V is

p∂qi = pai ea, (a = 1, . . . ,m, i = 1, . . . , n).

Projecting by p the equations (4.41), from R(x) ∈ V ⊥(x), we get p(R) = 0,
and denoting p(Q) = Q̃ we get

∇̃γ̇ γ̇ = Q̃,

where ∇̃ is the projected connection [DragovicandGajic(2003)]. A rela-
tionship between standard Christoffel symbols Γkij and coefficients Γ̃cab of
the connection ∇̃, defined by

∇̃eaeb = Γ̃cabec, is given by Γ̃cab = ΓkijA
i
aA

j
bp
c
k +Aia ∂qiA

j
b p

c
j .

If the motion takes place under the inertia (Q = Q̃ = 0), the trajectories
of nonholonomic mechanical problem are the geodesics for ∇̃.

Now, let V be a distribution on M . Denote a C∞(M)−module of
sections on V by Γ(V ). A nonholonomic connection on the sub–bundle V
of TM is a map ∇ : Γ(V )× Γ(V )→ Γ(V ) with the properties:

∇X(Y + Z) = ∇XY +∇XZ, ∇X(f · Y ) = X(f)Y + f∇XY ,
∇fX+gY Z = f∇XZ + g∇Y Z, (X,Y, Z ∈ Γ(V ); f, g ∈ C∞(M)).

Having a morphism of vector bundles p0 : TM → V , formed by the
projection on V , denote by q0 = 1TM − p0 the projection on W , V ⊕W =
TM .

The tensor–field T∇ : Γ(V )× Γ(V )→ Γ(V ) defined by

T∇(X,Y ) = ∇XY −∇YX − p0[X,Y ], (X,Y ∈ Γ(V )),

is called the torsion tensor for the connection ∇.
Suppose there is a positively defined metric tensor g = gij on V . Given

a distribution V , with p0 and g, there exists a unique nonholonomic con-
nection ∇ with the properties [Dragovic and Gajic (2003)]

∇Xg(Y, Z) = X(g(Y, Z))− g(∇XY,Z)− g(Y,∇XZ) = 0, T∇ = 0.

These conditions can be rewritten in the form:

∇XY = ∇YX + p0[X,Y ], Z(g(X,Y )) = g(∇ZX,Y ) + g(X,∇ZY ).
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By cyclic permutation of X,Y, Z and summing we get:

g(∇XY, Z) =
1
2
{X(g(Y, Z)) + Y (g(Z,X))− Z(g(X,Y )) (4.42)

+ g(Z, p0[X,Y ]) + g(Y, p0[Z,X])− g(X, p0[Y,Z]}.

Let qi, (i = 1, . . . , n) be local coordinates on M , such that the first m
coordinate vector–fields ∂qj are projected by projection p0 into vector–
fields ea, (a = 1, . . . ,m), generating the distribution V : p0∂qj = pai (q)ea.
Vector–fields ea can be expressed in the basis ∂qj as ea = Bia∂qj , with
Biap

b
i = δba. Now we give coordinate expressions for the coefficients of the

connection Γcab, defined as ∇eaeb = Γcabec. From (4.42) we get

Γcab = {cab}+ gaeg
cdΩebd + gbeg

cdΩead − Ωcab,

where Ω is get from p0[ea, eb] = −2Ωcabec as

2Ωcab = pciea(Bib)− pcieb(Bia),

and {cab} = 1
2g
ce(ea(gbe) + eb(gae)− ee(gab)).

4.9 Application: Geometrical Nonlinear Control

4.9.1 Introduction to Geometrical Nonlinear Control

In this section we give a brief introduction to geometrical nonlinear control
systems. Majority of techniques developed under this name consider the so–
called affine nonlinear MIMO–systems of the form (see [Isidori (1989); Ni-
jmeijer and van der Schaft (1990); Lewis (1995); Lewis and Murray (1997);
Lewis (1998)])

ẋ(t) = f0(x(t)) + ui(t)fi(x(t)), (i = 1, ...,m) (4.43)

where t 7→ x(t) is a curve in a system’s state manifold M . The vector–field
f0 is called the drift vector–field , describing the dynamics of the system
in the absence of controls, and the vector–fields f1, ..., fm are the input
vector–fields or control vector–fields, indicating how we are able to actuate
the system. The vector–fields f0, f1, ..., fm are assumed to be real analytic.
We do not ask for any sort of linear independence of the control vector–
fields f1, ..., fm. We shall suppose that the controls u : [0, T ] → U are
locally integrable with U some subset of Rm. We allow the length T of the
interval on which the control is defined to be arbitrary. It is convenient
to denote by τ(u) the right endpoint of the interval for a given control
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u. For a fixed U we denote by U the collection of all measurable controls
taking their values in U . To be concise about this, a control affine system
is a triple Σ = (M,F = {f0, f1, ..., fm}, U), with all objects as defined
above. A controlled trajectory for Σ is a pair (c, u), where u ∈ U and where
c : [0, τ(u)]→M is defined so that

ċ(t) = f0(c(t)) + ui(t)fi(c(t)).

One can show that for admissible controls, the curve c will exist at least for
sufficiently small times, and that the initial condition c(0) = x0 uniquely
defines c on its domain of definition.

For x ∈M and T > 0 we define several types of reachable sets as:

RΣ(x, T ) = {c(T ) :

(c, u) is a controlled trajectory for Σ with τ(u) = T and c(0) = x},
RΣ(x,≤ T ) = ∪t∈[0,T ]RΣ(x, t), RΣ(x) = ∪t≥0RΣ(x, t),

that allow us to give several definitions of controllability as follows. Let
Σ = (M,F , U) be a control affine system and let x ∈M . We say that:

(1) Σ is accessible from x if int(RΣ(x)) 6= 0.
(2) Σ is strongly accessible from x if int(RΣ(x, T )) 6= 0 for each T > 0.
(3) Σ is locally controllable from x if x ∈ int(RΣ(x)).
(4) Σ is small–time locally controllable (STLC) from x if there exists T > 0

so that x ∈ int(RΣ(x,≤ T )) for each t ∈ [0, T ].
(5) Σ is globally controllable from x if (RΣ(x)) = M .

For example, a typical simple system that is accessible but not control-
lable is given by the following data:

M = R2, m = 1, U = [−1, 1],

ẋ = u, ẏ = x2.

This system is (not obviously) accessible from (0, 0), but is (obviously) not
locally controllable from that same point. Note that although RΣ((0, 0),≤
T ) has nonempty interior, the initial point (0, 0) is not in that interior.
Thus this is a system that is not controllable in any sense. Note that the
system is also strongly accessible.
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4.9.2 Feedback Linearization

Recall that the core of control theory is the idea of the feedback. In case of
nonlinear control, this implies feedback linearization.

Exact Feedback Linearization

The idea of feedback linearization is to algebraically transform the non-
linear system dynamics into a fully or partly linear one so that the linear
control techniques can be applied. Note that this is not the same as a con-
ventional linearization using Jacobians. In this subsection we will present
the modern, geometrical, Lie–derivative based techniques for exact feedback
linearization of nonlinear control systems.

The Lie Derivative and Lie Bracket in Control Theory. Recall
(see (3.7) above) that given a scalar function h(x) and a vector–field f(x),
we define a new scalar function, Lfh = ∇hf , which is the Lie derivative
of h w.r.t. f , i.e., the directional derivative of h along the direction of the
vector f . Repeated Lie derivatives can be defined recursively:

L0
fh = h, Lifh = Lf

(
Li−1
f h

)
= ∇

(
Li−1
f h

)
f, (for i = 1, 2, ...)

Or given another vector–field, g, then LgLfh(x) is defined as

LgLfh = ∇ (Lfh) g.

For example, if we have a control system

ẋ = f(x), y = h(x),

with the state x = x(t) and the output y, then the derivatives of the output
are:

ẏ =
∂h

∂x
ẋ = Lfh, and ÿ =

∂Lfh

∂x
ẋ = L2

fh.

Also, recall that the curvature of two vector–fields, g1, g2, gives a non–
zero Lie bracket, [g1, g2] ( (3.7.2) see Figure 4.2). Lie bracket motions can
generate new directions in which the system can move.

In general, the Lie bracket of two vector–fields, f(x) and g(x), is defined
by

[f, g] = Adfg = ∇gf −∇fg =
∂g

∂x
f − ∂f

∂x
g,
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Fig. 4.2 The so–called ‘Lie bracket motion’ is possible by appropriately modulating the

control inputs (see text for explanation).

where ∇f = ∂f/∂x is the Jacobian matrix. We can define Lie brackets
recursively,

Ad0
fg = g, Adifg = [f,Adi−1

f g], (for i = 1, 2, ...)

Lie brackets have the properties of bilinearity, skew–commutativity and
Jacobi identity.

For example, if

f =
(

cosx2

x1

)
, g =

(
x1

1

)
,

then we have

[f, g] =
(

1 0
0 0

)(
cosx2

x1

)
−
(

0 − sinx2

1 0

)(
x1

1

)
=
(

cosx2 + sinx2

−x1

)
.

Input/Output Linearization. Given a single–input single–output
(SISO) system

ẋ = f(x) + g(x)u, y = h(x), (4.44)

we want to formulate a linear–ODE relation between output y and a new
input v. We will investigate (see [Isidori (1989); Sastri and Isidori (1989);
Wilson (2000)]):

• How to generate a linear input/output relation.
• What are the internal dynamics and zero–dynamics associated with the

input/output linearization?
• How to design stable controllers based on the I/O linearization.
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This linearization method will be exact in a finite domain, rather than
tangent as in the local linearization methods, which use Taylor series ap-
proximation. Nonlinear controller design using the technique is called exact
feedback linearization.

Algorithm for Exact Feedback Linearization. We want to find
a nonlinear compensator such that the closed–loop system is linear (see
Figure 4.3). We will consider only affine SISO systems of the type (4.44),
i.e, ẋ = f(x) + g(x)u, y = h(x), and we will try to construct a control law
of the form

u = p(x) + q(x) v, (4.45)

where v is the setpoint, such that the closed–loop nonlinear system

ẋ = f(x) + g(x) p(x) + g(x) q(x) v, y = h(x),

is linear from command v to y.

Fig. 4.3 Feedback linearization (see text for explanation).

The main idea behind the feedback linearization construction is to find
a nonlinear change of coordinates which transforms the original system into
one which is linear and controllable, in particular, a chain of integrators.
The difficulty is finding the output function h(x) which makes this con-
struction possible.

We want to design an exact nonlinear feedback controller. Given the
nonlinear affine system, ẋ = f(x) + g(x), y = h(x),.we want to find the
controller functions p(x) and q(x). The unknown functions inside our con-
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troller (4.45) are given by:

p(x) =
−
(
Lrfh(x) + β1Lr−1

f h(x) + ...+ βr−1Lfh(x) + βrh(x)
)

LgLr−1
f h(x)

,

q(x) =
1

LgLr−1
f h(x)

, (4.46)

which are comprised of Lie derivatives, Lfh(x). Here, the relative order, r,
is the smallest integer r such that LgLr−1

f h(x) 6= 0. For linear systems r is
the difference between the number of poles and zeros.

To get the desired response, we choose the r parameters in the β poly-
nomial to describe how the output will respond to the setpoint, v (pole–
placement).

dry

dtr
+ β1

dr−1y

dtr−1
+ ...+ βr−1

dy

dt
+ βry = v.

Here is the proposed algorithm [Isidori (1989); Sastri and Isidori (1989);
Wilson (2000)]):

(1) Given nonlinear SISO process, ẋ = f(x, u), and output equation y =
h(x), then:

(2) Calculate the relative order, r.
(3) Choose an rth order desired linear response using pole–placement tech-

nique (i.e., select β). For this could be used a simple rth order low–pass
filter such as a Butterworth filter.

(4) Construct the exact linearized nonlinear controller (4.46), using Lie
derivatives and perhaps a symbolic manipulator (Mathematica or
Maple).

(5) Close the loop and get a linear input–output black–box (see Figure
4.3).

(6) Verify that the result is actually linear by comparing with the desired
response.

Relative Degree

A nonlinear SISO system

ẋ = f(x) + g(x)u, y = h(x),

is said to have relative degree r at a point xo if (see [Isidori (1989); Nijmeijer
and van der Schaft (1990)])
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(1) LgL
k
fh(x) = 0 for all x in a neighborhood of xo and all k < r − 1; and

(2) LgL
r−1
f h(xo) 6= 0.

For example, controlled Van der Pol oscillator has the state–space form

ẋ = f(x) + g(x)u =
[

x2

2ωζ (1− µx2
1)x2 − ω2x1

]
+
[

0
1

]
u.

Suppose the output function is chosen as y = h(x) = x1. In this case we
have

Lgh(x) =
∂h

∂x
g(x) =

[
1 0
] [0

1

]
= 0, and

Lfh(x) =
∂h

∂x
f(x) =

[
1 0
] [ x2

2ωζ (1− µx2
1)x2 − ω2x1

]
= x2.

Moreover

LgLfh(x) =
∂(Lfh)
∂x

g(x) =
[

0 1
] [0

1

]
= 1,

and thus we see that the Vand der Pol oscillator system has relative degree
2 at any point xo.

However, if the output function is, for instance y = h(x) = sinx2, then
Lgh(x) = cosx2. The system has relative degree 1 at any point xo, provided
that (xo)2 6= (2k + 1)π/2. If the point xo is such that this condition is
violated, no relative degree can be defined.

As another example, consider a linear system in the state–space form

ẋ = Ax+B u, y = C x.

In this case, since f(x) = Ax, g(x) = B, h(x) = C x, it can be seen that

Lkfh(x) = C Ak x, and therefore,

LgL
k
fh(x) = C Ak B.

Thus, the integer r is characterized by the conditions

C Ak B = 0, for all k < r − 1

C Ar−1B 6= 0, otherwise.

It is well–known that the integer satisfying these conditions is exactly equal
to the difference between the degree of the denominator polynomial and the
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degree of the numerator polynomial of the transfer function

H(s) = C (sI −A)−1B

of the system.

Approximative Feedback Linearization

Consider a SISO system

ẋ = f(x) + g(x)u, (4.47)

where f and g are smooth vector–fields defined on a compact contractible
region M of Rn containing the origin. (Typically, M is a closed ball in Rn.)
We assume that f(0) = 0, i.e., that the origin is an equilibrium for ẋ = f(x).
The classical problem of feedback linearization can be stated as follows: find
in a neighborhood of the origin a smooth change of coordinates z = Φ(x)
(a local diffeomorphism) and a smooth feedback law u = k(x) + l(x)unew
such that the closed–loop system in the new coordinates with new control
is linear,

ż = Az +B unew,

and controllable (see [Banaszuk and Hauser (1996)]). We usually require
that Φ(0) = 0. We assume that the system (4.47) has the linear controlla-
bility property

dim(span{g,Adfg, ..., Adn−1
f g}) = n, for all x ∈M (4.48)

(where Adif are iterated Lie brackets of f and g). We define the character-
istic distribution for (4.47)

D = span{g,Adfg, ..., Adn−2
f g},

which is an (n− 1)D smooth distribution by assumption of linear control-
lability (4.48). We call any nowhere vanishing 1−form ω annihilating D a
characteristic 1−form for (4.47). All the characteristic 1−forms for (4.47)
can be represented as multiples of some fixed characteristic 1−form ω0 by a
smooth nowhere vanishing function (zero–form) β. Suppose that there is a
non–vanishing β so that βω0 is exact, i.e., βω0 = dα for some smooth func-
tion α, where d denotes the exterior derivative. Then ω0 is called integrable
and is called an integrating factor for ω0. The following result is standard
in nonlinear control: Suppose that the system (4.47) has the linear con-
trollability property (4.48) on M . Let D be the characteristic distribution
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and ω0 be a characteristic 1−form for (4.47). The following statements are
equivalent:

(1) Equation (4.47) is feedback linearizable in a neighborhood of the origin
in M ;

(2) D is involutive in a neighborhood of the origin in M ; and
(3) ω0 is integrable in a neighborhood of the origin in M .

As is well known, a generic nonlinear system is not feedback lineariz-
able for n > 2. However, in some cases, it may make sense to consider
approximate feedback linearization.

Namely, if one can find a feedback linearizable system close to (4.47),
there is hope that a control designed for the feedback linearizable system
and applied to (4.47) will give satisfactory performance if the feedback
linearizable system is close enough to (4.47). The first attempt in this
direction goes back to [Krener (1984)], where it was proposed to apply to
(4.47) a change of variables and feedback that yield a system of the form

ż = Az +B unew +O(z, unew),

where the term O(z, unew) contains higher–order terms. The aim was to
make O(z, unew) of as high order as possible. Then we can say that the
system (4.47) is approximately feedback linearized in a small neighborhood
of the origin. Later [Hunt and Turi (1993)] introduced a new algorithm to
achieve the same goal with fewer steps.

Another idea has been investigated in [Hauser et al. (1992)]. Roughly
speaking, the idea was to neglect nonlinearities in (4.47) responsible for
the failure of the involutivity condition in above Theorem. This ap-
proach happened to be successful in the ball–and–beam system, when
neglect of centrifugal force acting on ball yielded a feedback linearizable
system. Application of a control scheme designed for the system with cen-
trifugal force neglected to the original system gave much better results
than applying a control scheme based on classical Jacobian linearization.
This approach has been further investigated in [Xu and Hauser (1994);
Xu and Hauser (1995)] for the purpose of approximate feedback lineariza-
tion about the manifold of constant operating points. However, a general
approach to deciding which nonlinearities should be neglected to get the
best approximation has not been set forth.

All of the above–mentioned work dealt with applying a change of coor-
dinates and a preliminary feedback so that the resulting system looks like
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linearizable part plus nonlinear terms of highest possible order around an
equilibrium point or an equilibrium manifold. However, in many applica-
tions one requires a large region of operation for the nonlinearizable system.
In such a case, demanding the nonlinear terms to be neglected to be of high-
est possible order may, in fact, be quite undesirable. One might prefer that
the nonlinear terms to be neglected be small in a uniform sense over the
region of operation. In tis section we propose an approach to approximate
feedback linearization that uses a change of coordinates and a preliminary
feedback to put a system (4.47) in a perturbed Brunovsky form,

ż = Az +B unew + P (z) +Q(z)unew), (4.49)

where P (z) and Q(z) vanish at z = 0 and are ‘small’ on M . We get upper
bounds on uniform norms of P and Q (depending on some measures of
noninvolutivity of D) on any compact, contractible M .

A different, indirect approach was presented in [Banaszuk and Hauser
(1996)]. In this section, the authors present an approach for finding feed-
back linearizable systems that approximate a given SISO nonlinear system
on a given compact region of the state–space. First, they it is shown that
if the system is close to being involutive, then it is also close to being lin-
earizable. Rather than working directly with the characteristic distribution
of the system, the authors work with characteristic 1−forms, i.e., with the
1−forms annihilating the characteristic distribution. It is shown that ho-
motopy operators can be used to decompose a given characteristic 1−form
into an exact and an antiexact part. The exact part is used to define a
change of coordinates to a normal form that looks like a linearizable part
plus nonlinear perturbation terms. The nonlinear terms in this normal
form depend continuously on the antiexact part, and they vanish whenever
the antiexact part does. Thus, the antiexact part of a given characteristic
1−form is a measure of nonlinearizability of the system. If the nonlinear
terms are small, by neglecting them we get a linearizable system approxi-
mating the original system. One can design control for the original system
by designing it for the approximating linearizable system and applying it
to the original one. We apply this approach for design of locally stabilizing
feedback laws for nonlinear systems that are close to being linearizable.

Let us start with approximating characteristic 1−forms by exact forms
using homotopy operators (compare with equation (3.44) above). Namely,
on any contractible region M one can define a linear operator H that sat-
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isfies

ω = d(Hω) +Hdω (4.50)

for any form ω. The homotopy identity (4.50) allows to decompose any
given 1−form into the exact part d(Hω) and an ‘error part’ ε = Hdω,
which we call the antiexact part of ω. For given ω0 annihilating D and
a scaling factor β we define αβ = Hβw0 and εβ = Hdβw0. The 1−form
εβ measures how exact ωβ = βw0 is. If it is zero, then ωβ is exact and
the system (4.47) is linearizable, and the zero–form αβ and its first n − 1
Lie derivatives along f are the new coordinates. In the case that ω0 is
not exactly integrable, i.e., when no exact integrating factor β exists, we
choose β so that dβw0 is smallest in some sense (because this also makes
εβ small). We call this β an approximate integrating factor for ω0. We
use the zero–form αβ and its first n− 1 Lie derivatives along f as the new
coordinates as in the linearizable case. In those new coordinates the system
(4.47) is in the form

ż = Az +Bru+Bp+ Eu,

where r and p are smooth functions, r 6= 0 around the origin, and the term
E (the obstruction to linearizablity) depends linearly on εβ and some of its
derivatives. We choose u = r−1(unew − p), where unew is a new control
variable. After this change of coordinates and control variable the system
is of the form (4.49) with Q = r−1E, P = −r−1pE. We get estimates on
the uniform norm of Q and P (via estimates on r, p, and E) in terms of the
error 1−form εβ , for any fixed β, on any compact, contractible manifold
M . Most important is that Q and P depend in a continuous way on εβ and
some of its derivatives, and they vanish whenever ε does (see [Banaszuk
and Hauser (1996)]).

4.9.3 Nonlinear Controllability

Linear Controllability

Recall that a system is said to be controllable if the set of all states it
can reach from initial state x0 = x(0) at the fixed time t = T contains a
ball B around x0. Again, a system is called small time locally controllable
(STLC) iff the ball B for t ≤ T contains a neighborhood of x0.13

13The above definition of controllability tells us only whether or not something can

reach an open neighborhood of its starting point, but does not tell us how to do it. That



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

548 Applied Differential Geometry: A Modern Introduction

In the case of a linear system in the standard state–space form (see
subsection (3.13.4.3) above)

ẋ = Ax+Bu, (4.51)

where A is the n × n state matrix and B is the m × n input matrix, all
controllability definitions coincide, i.e.,

0→ x(T ), x(0)→ 0, x(0)→ x(T ),

where T is either fixed or free.
Rank condition states: System (4.51) is controllable iff the matrix

Wn =
(
BAB ... An−1B

)
has full rank.

In the case of nonlinear systems the corresponding result is get using the
formalism of Lie brackets, as Lie algebra is to nonlinear systems as matrix
algebra is to linear systems.

Nonlinear Controllability

Nonlinear MIMO–systems are generally described by differential equa-
tions of the form (see [Isidori (1989); Nijmeijer and van der Schaft (1990);
Goodwine (1998)]):

ẋ = f(x) + gi(x)ui, (i = 1, ..., n), (4.52)

defined on a smooth n−manifold M , where x ∈ M represents the state of
the control system, f(x) and gi(x) are vector–fields on M and the ui are
control inputs, which belong to a set of admissible controls, ui ∈ U . The
system (4.52) is called driftless, or kinematic, or control linear if f(x) is
identically zero; otherwise, it is called a system with drift, and the vector–
field f(x) is called the drift term. The flow φgt (x0) represents the solution of
the differential equation ẋ = g(x) at time t starting from x0. Geometrical
way to understand the controllability of the system (4.52) is to understand
the geometry of the vector–fields f(x) and gi(x).

Example: Car–Parking Using Lie Brackets In this popular exam-
ple, the driver has two different transformations at his disposal. He/she can
turn the steering wheel, or he/she can drive the car forward or back. Here,
we specify the state of a car by four coordinates: the (x, y) coordinates
is the point of the trajectory generation.
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of the center of the rear axle, the direction θ of the car, and the angle φ
between the front wheels and the direction of the car. L is the constant
length of the car. Therefore, the configuration manifold of the car is 4D,
M = (x, y, θ, φ).

Using (4.52), the driftless car kinematics can be defined as:

ẋ = g1(x)u1 + g2(x)u2, (4.53)

with two vector–fields g1, g2 ∈ X k(M).
The infinitesimal transformations will be the vector–fields

g1(x) ≡ drive = cos θ
∂

∂x
+ sin θ

∂

∂y
+

tanφ
L

∂

∂θ
≡


cos θ
sin θ

1
L tanφ

0

 ,

and g2(x) ≡ steer =
∂

∂φ
≡


0
0
0
1

 .

Now, steer and drive do not commute; otherwise we could do all
your steering at home before driving of on a trip. Therefore, we have a Lie
bracket

[g2, g1] ≡ [steer,drive] =
1

L cos2 φ
∂

∂θ
≡ rotate.

The operation [g2, g1] ≡ rotate ≡ [steer,drive] is the infinitesimal ver-
sion of the sequence of transformations: steer, drive, steer back, and drive
back, i.e.,

{steer,drive, steer−1,drive−1}.

Now, rotate can get us out of some parking spaces, but not tight ones: we
may not have enough room to rotate out. The usual tight parking space
restricts the drive transformation, but not steer. A truly tight parking
space restricts steer as well by putting your front wheels against the curb.

Fortunately, there is still another commutator available:

[g1, [g2, g1]] ≡ [drive, [steer,drive]] = [[g1, g2], g1] ≡

[drive,rotate] =
1

L cos2 φ

(
sin θ

∂

∂x
− cos θ

∂

∂y

)
≡ slide.



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

550 Applied Differential Geometry: A Modern Introduction

The operation [[g1, g2], g1] ≡ slide ≡ [drive,rotate] is a displacement at
right angles to the car, and can get us out of any parking place. We just
need to remember to steer, drive, steer back, drive some more, steer, drive
back, steer back, and drive back:

{steer,drive, steer−1,drive, steer,drive−1, steer−1,drive−1}.

We have to reverse steer in the middle of the parking place. This is not
intuitive, and no doubt is part of the problem with parallel parking.

Thus from only two controls u1 and u2 we can form the vector–fields
drive ≡ g1, steer ≡ g2, rotate ≡ [g2, g1], and slide ≡ [[g1, g2], g1],
allowing us to move anywhere in the configuration manifold M . The car
kinematics ẋ = g1u1 + g2u2 is thus expanded as:

ẋ

ẏ

θ̇

φ̇

 = drive · u1 + steer · u2 ≡


cos θ
sin θ

1
L tanφ

0

 · u1 +


0
0
0
1

 · u2 .

The parking Theorem says: One can get out of any parking lot that is
larger than the car.

Fig. 4.4 Classical unicycle problem (see text for explanation).

The Unicycle Example. Now, consider the unicycle example (see
Figure 4.4). Here we have

g1 =

 cosx3

sinx3

0

 , g2 =

0
0
1

 , [g1, g2] =

 sinx3

− cosx3

0

 .

The unicycle system is full rank and therefore controllable.
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Controllability Condition

Nonlinear controllability is an extension of linear controllability. The
nonlinear MIMO system

ẋ = f(x) + g(x)u is controllable

if the set of vector–fields {g, [f, g], ..., [fn−1, g]} is independent.
For example, for the kinematic car system of the form (4.53), the non-

linear controllability criterion reads: If the Lie bracket tree:
g1, g2, [g1, g2], [[g1, g2], g1], [[g1, g2], g2], [[[g1, g2], g1], g1],

[[[g1, g2], g1], g2], [[[g1, g2], g2], g1], [[[g1, g2], g2], g2], ...
– has full rank then the system is controllable [Isidori (1989); Nijmeijer and
van der Schaft (1990); Goodwine (1998)]. In this case the combined input

(u1, u2) =


(1, 0), t ∈ [0, ε]
(0, 1), t ∈ [ε, 2ε]

(−1, 0), t ∈ [2ε, 3ε]
(0,−1), t ∈ [3ε, 4ε]

gives the motion x(4ε) = x(0) + ε2 [g1, g2] + O(ε3), with the flow given by
(see (3.49) below)

F
[g1,g2]
t = lim

n→∞

(
F−g2√

t/n
F−g1√

t/n
F g2√

t/n
F g1√

t/n

)n
.

Distributions

In control theory, the set of all possible directions in which the sys-
tem can move, or the set of all points the system can reach, is of obvious
fundamental importance. Geometrically, this is related to distributions.

Recall from subsection 4.7 above that a distribution ∆ ⊂ X k(M) on a
smooth nD manifold M is a subbundle of its tangent bundle TM , which
assigns a subspace of the tangent space TxM to each point x ∈ M in a
smooth way. The dimension of ∆(x) over R at a point x ∈ M is called the
rank of ∆ at x.

A distribution ∆ is involutive if, for any two vector–fields X,Y ∈ ∆,
their Lie bracket [X,Y ] ∈ ∆.

A function f ∈ C∞(M) is called an integral of ∆ if df(x) ∈ ∆0(x) for
each x ∈ M . An integral manifold of ∆ is a submanifold N of M such
that TxN ⊂ ∆(x) for each x ∈ N . A distribution ∆ is integrable if, for
any x ∈ M , there is a submanifold N ⊂ M, whose dimension is the same
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as the rank of ∆ at x,.containing x such that the tangent bundle, TN , is
exactly ∆ restricted to N , i.e., TN = ∆|N . Such a submanifold is called
the maximal integral manifold through x.

It is natural to consider distributions generated by the vector–fields
appearing in the sequence of flows (3.48). In this case, consider the distri-
bution defined by

∆ = span{f ; g1...gm},

where the span is taken over the set of smooth real–valued functions. De-
note by ∆̄ the involutive closure of the distribution ∆, which is the closure
of ∆ under bracketing. Then, ∆̄ is the smallest subalgebra of X k(M) which
contains {f ; g1...gm}. We will often need to ‘add’ distributions. Since dis-
tributions are, pointwise, vector spaces, define the sum of two distributions,

(∆1 + ∆2)(x) = ∆1(x) + ∆2(x).

Similarly, define the intersection

(∆1 ∩∆2)(x) = ∆1(x) ∩∆2(x).

More generally, we can arrive at a distribution via a family of vector–
fields, which is a subset V ⊂ X k(M). Given a family of vector–fields V, we
may define a distribution on M by

∆V(x) = 〈X(x)|X ∈ V〉R.

Since X k(M) is a Lie algebra, we may ask for the smallest Lie subalgebra
of X k(M) which contains a family of vector–fields V. It will be denoted as
Lie(V), and will be represented by the set of vector–fields on M generated
by repeated Lie brackets of elements in V. Let V(0) = V and then iteratively
define a sequence of families of vector–fields by

V(i+1) = V(i) ∪ {[X,Y ]|X ∈ V(0) = V and Y ∈ V(i)}.

Now, every element of Lie(V) is a linear combination of repeated Lie brack-
ets of the form

[Zk, [Zk−1, [· · ·, [Z2, Z1] · ··]]]

where Zi ∈ V for i = 1, ..., k.
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Foliations

Recall that related to integrable distributions are foliations.
The Frobenius Theorem asserts that integrability and involutivity are

equivalent, at least locally. Thus, associated with an involutive distribution
is a partition Φ of M into disjoint connected immersed submanifolds called
leaves. This partition Φ is called a foliation. More precisely, a foliation F
of a smooth manifold M is a collection of disjoint immersed submanifolds
of M whose disjoint union equals M . Each connected submanifold of F
is called a leaf of the foliation. Given an integrable distribution ∆, the
collection of maximal integral manifolds for ∆ defines a foliation on M ,
denoted by FD.

A foliation F of M defines an equivalence relation on M whereby two
points in M are equivalent if they lie in the same leaf of F . The set of
equivalence classes is denoted M/F and is called the leaf space of F . A
foliation F is said to be simple if M/F inherits a manifold structure so that
the projection from M to M/F is a surjective submersion.

In control theory, foliation leaves are related to the set of points that a
control system can reach starting from a given initial condition. A foliation
Φ of M defines an equivalence relation on M whereby two points in M are
equivalent if they lie in the same leaf of Φ. The set of equivalence classes
is denoted M/Φ and is called the leaf space of Φ.

Philip Hall Basis

Given a set of vector–fields {g1...gm}, define the length of a Lie product
as

l(gi) = 1, l([A,B]) = l(A) + l(B), (for i = 1, ...,m),

where A and B may be Lie products. A Philip Hall basis is an ordered set
of Lie products H = {Bi} satisfying:

(1) gi ∈ H, (i = 1, ...,m);
(2) If l(Bi) < l(Bj), then Bi < Bj ; and
(3) [Bi, Bj ] ∈ H iff

(a) Bi, Bj ∈ H and Bi < Bj , and
(b) either Bj = gk for some k or Bj = [Bl, Br] with Bl, Br ∈ H

and Bl ≤ Bi.

Essentially, the ordering aspect of the Philip Hall basis vectors accounts
for skew symmetry and Jacobi identity to determine a basis.
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4.9.4 Geometrical Control of Mechanical Systems

Much of the existing work on control of mechanical systems has relied
on the presence of specific structure. The most common examples of the
types of structure assumed are symmetry (conservation laws) and con-
straints. While it may seem counter–intuitive that constraints may help
in control theory, this is sometimes in fact the case. The reason is that
the constraints give extra forces (forces of constraint) which can be used
to advantage. probably, the most interesting work is done from the La-
grangian (respectively Hamiltonian) perspective where we study systems
whose Lagrangians are ‘kinetic energy minus potential energy’ (resp. ‘ki-
netic energy plus potential energy’). For these simple mechanical control
systems, the controllability questions are different than those typically asked
in nonlinear control theory. In particular, one is often more interested in
what happens to configurations rather than states, which are configura-
tions and velocities (resp. momenta) for these systems (see [Lewis (1995);
Lewis and Murray (1997)]).

4.9.4.1 Abstract Control System

In general, a nonlinear control system Σ can be represented as a triple
(Σ,M, f), where M is the system’s state–space manifold with the tangent
bundle TM and the general fibre bundle E, and f is a smooth map, such
that the following bundle diagram commutes [Manikonda (1998)]

E TM-ψ

M

π
@

@
@
@R

πM
�

�
�

�	

where ψ : (x, u) 7→ (x, f(x, u)), πM is the natural projection of TM on
M, the projection π : E → M is a smooth fibre bundle, and the fibers of
E represent the input spaces. If one chooses fibre–respecting coordinates
(x, u) for E, then locally this definition reduces to ψ : (x, u) 7→ (x, ψ(x, u)),
i.e.,

ẋ = ψ(x, u).

The specific form of the map ψ, usually used in nonlinear control, is
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ψ : (x, u) 7→ (x, f(x) + g(x, u)), with g(x, 0) = 0, producing standard
nonlinear system equation

ẋ = f(x) + g(x, u).

4.9.4.2 Global Controllability of Linear Control
Systems

Consider a linear biodynamical control system:

ẋ(t) = Ax(t) +Bu(t), (4.54)

where x ∈ Rn , u ∈ Rm , A ∈ L(Rn ,Rn ), and B ∈ L(Rm ,Rn ). One should
think of t 7→ u(t) as being a specified input signal, i.e., a function on the
certain time interval, [0, T ]. Now, control theory wants to design the signal
to make the state t 7→ x(t) do what we want. What this is may vary,
depending on the situation at hand. For example, one may want to steer
from an initial state xi to a final state xf , perhaps in an optimal way. Or,
one may wish to design u : Rn → Rm so that some state, perhaps x = 0,
is stable for the dynamical system ẋ(t) = Ax+Bu(x), which is called state
feedback (often one asks that u be linear). One could also design u to be a
function of both x and t, etc.

One of the basic control questions is controllability, which comes in many
guises. Basically we are asking for ‘reachable’ points. In particular,

R(0) = spanR{[B|AB|...|An−1B]},

which is the smallest A−invariant subspace containing Im(B), denotes the
set of points reachable from 0 ∈ Rn . For the linear system (4.54), the basic
controllability questions have definite answers. We want to do something
similar for a class of simple mechanical systems [Lewis (1995); Lewis and
Murray (1997)].

4.9.4.3 Local Controllability of Affine Control Systems

The nonlinear control system that we most often consider in humanoid
robotics (see next section) has state–space M , a smooth n−manifold, and
is affine in the controls. Thus it has the form (see [Lewis (1995); Lewis and
Murray (1997)])

ẋ = f(x) + uaga(x), (x ∈M), (4.55)
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where f, g1, ..., gm are vector–fields on M . The drift vector–field f = f(x)
describes how the system would evolve in the absence of any inputs. Each
of the control vector–fields g1, ..., gm specifies a direction in which one
can supply actuation. To fully specify the control system properly, one
should also specify the type of control action to be considered. Here
we consider our controls to be taken from the set: U = {u : R →
Rm |u is piecewise constant}. This class of controls is sufficient to deal with
all analytic control systems. More generally, one may wish to consider mea-
surable functions which take their values in a subset of Rm.

Given an affine control system (4.55), it is possible to define a family of
vector–fields on M by: VΣ = {f + uaga |u ∈ Rm}.

A solution of the system (4.55) is a pair (γ, u), where γ : [0, T ]→M is
a piecewise smooth curve on M and u ∈ U such that

γ̇(t) = f(γ(t)) + ua(t) ga(γ(t)), for each t ∈ [0, T ].

The reachable set from x0 in time T is

R(x0, T ) = {x|∃γ : [0, T ]→M and

u : [0, T ]→ Rm satisfying (4.55)

with γ(0) = x0 and γ(T ) = x}.

Note that since the system has drift f , when we reach the point γ(T ) we
will not remain there if this is not an equilibrium point for f . Also, we
have, R(x0,≤ T ) = ∪0<t≤TR(x0, T ).

Let x0 ∈M , let V be a neighborhood of x0, and let T > 0. We say that
equation (4.55) represents a locally accessible system at x0 if R(x0,≤ T )
contains an open subset of M for each V and for each T sufficiently small.
Furthermore, we say that the system (4.55) is small–time local control-
lability (STLC, see [Sussmann (1983); Sussmann (1987)]), if it is locally
accessible and if x0 is in the interior of R(x0,≤ T ) for each V and for each
T sufficiently small.

4.9.4.4 Lagrangian Control Systems

Simple Mechanical Control Systems

As a motivation/prototype of a simple mechanical control system, con-
sider a simple robotic leg (see Figure 4.5), in which inputs are: (1) an
internal torque F 1 moving the leg relative to the body and (2) a force F 2

extending the leg. This system is ‘controllable’ in the sense that, starting
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from rest, one can reach any configuration from a given initial configu-
ration. However, as a traditional control system, it is not controllable
because of conservation of angular momentum. If one asks for the states
(i.e., configurations and velocities) reachable from configurations with zero
initial velocity, one finds that not all states are reachable. This is a conse-
quence of the fact that angular momentum is conserved, even with inputs.
Thus if one starts with zero momentum, the momentum will remain zero
(this is what enables one to treat the system as nonholonomic). Neverthe-
less, all configurations are accessible. This suggests that the question of
controllability is different depending on whether one is interested in con-
figurations or states. We will be mainly interested in reachable configu-
rations. Considering the system with just one of the two possible input
forces is also interesting. In the case where we are just allowed to use
F 2, the possible motions are quite simple; one can only move the ball on
the leg back and forth. With just the force F 1 available, things are a
bit more complicated. But, for example, one can still say that no matter
how you apply the force, the ball with never move ‘inwards’ [Lewis (1995);
Lewis and Murray (1997)].

Fig. 4.5 A simple robotic leg (see text for explanation).

In general, simple mechanical control systems are characterized by:

• An nD configuration manifold M ;
• A Riemannian metric g on M ;
• A potential energy function V on M ; and
• m linearly independent 1−forms, F 1, ..., Fm on M (input forces; e.g.,

in the case of the simple robotic leg, F 1 = dθ − dψ and F 2 = dr).

When we say these systems are not amenable to liberalization–based
methods, we mean that their liberalizations at zero velocity are not con-
trollable, and that they are not feedback linearizable. This makes simple
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mechanical control systems a non–trivial class of nonlinear control systems,
especially from the point of view of control design.

As a basic example to start with, consider a planar rigid body (see Figure
4.6), with coordinates (x, y, θ). Inputs are (1) force pointing towards center
of mass, F 1 = cos θdx + sin θdy, (2) force orthogonal to line to center of
mass, F 2 = − sin θdx + cos θdy − hdθ, and (3) torque at center of mass
F 3 = dθ. The planar rigid body, although seemingly quite simple, can be
actually interesting. Clearly, if one uses all three inputs, the system is fully
actuated, and so boring for investigating reachable configurations. But if
one takes various combinations of one or two inputs, one gets a pretty nice
sampling of what can happen for these systems. For example, all possible
combinations of two inputs allow one to reach all configurations. Using
F 1 or F 3 alone give simple, 1D reachable sets, similar to using F 2 for the
robotic leg (as we are always starting with zero initial velocity). However,
if one is allowed to only use F 2, then it is not quite clear what to expect,
at least just on the basis of intuition.

Fig. 4.6 Coordinate systems of a planar rigid body.

It turns out that our simplifying assumptions, i.e., zero initial velocity
and restriction of our interest to configurations (i.e., as all problem data is
on M , we expect answers to be describable using data on M), makes our
task much simpler. In fact, the computations without these assumptions
have been attempted, but have yet to yield coherent answers.

Now, we are interested in how do the input 1−forms F 1, ..., Fm inter-
act with the unforced mechanics of the system as described by the kinetic
energy Riemannian metric. That is, what is the analogue of linear sys-
tem’s ‘the smallest A−invariant subspace containing Im(B)’ – for simple
mechanical control systems?
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Motion and Controllability in Affine Connections

If we start with the local Riemannian metric form g 7−→ gij(q) dqidqj ,
then we have a kinetic energy Lagrangian L(q, v) = gij(q) q̇iq̇j , and conse-
quently the Euler–Lagrangian equations read

d

dt
∂q̇iL−∂qiL ≡ gij q̈j+

(
∂qkgij −

1
2
∂qigjk

)
q̇j q̇k = uaF

a
i , (i = 1, ..., n).

Now multiply this by gli and take the symmetric part of the coefficient
of q̇j q̇k to get q̈l + Γljk q̇

j q̇k = uaY la , (l = 1, ..., n,), where Γijk are the
Christoffel symbols (3.143) for the Levi–Civita connection ∇ (see (3.10.1.1)
above). So, the equations of motion an be rewritten

∇γ̇(t)γ̇(t) = ua(t)Ya (γ(t)) , (a = 1, ...,m),

where Ya = (F a)], while ] : T ∗M → TM is the ‘sharp’–isomorphism asso-
ciated with the Riemannian metric g.

Now, there is nothing to be gained by using a Levi–Civita connection,
or by assuming that the vector–fields come from 1−forms. At this point,
perhaps the generalization to an arbitrary affine connection seems like a
senseless abstraction. However, as we shall see, this abstraction allows us
to include another large class of mechanical control systems. So we will
study the control system

∇γ̇(t)γ̇(t) = ua(t)Ya (γ(t)) [+Y0 (γ(t))] , (4.56)

with ∇ a general affine connection on M , and Y1..., Ym linearly independent
vector–fields on M . The ‘optional’ term Y0 = Y0 (γ(t)) in (4.56) indicates
how potential energy may be added. In this case Y0 = − gradV (how-
ever, one looses nothing by considering a general vector–field instead of a
gradient) [Lewis (1998)].

A solution to (4.56) is a pair (γ, u) satisfying (4.56) where γ : [0, T ]→M

is a curve and u : [0;T ]→ Rm is bounded and measurable.
Let U be a neighborhood of q0 ∈ M and denote by RUM (q0, T ) those

points in M for which there exists a solution (γ, u) with the following prop-
erties:

(1) γ(t) ∈ U for t ∈ [0, T ];
(2) γ̇(0) = 0q; and
(3) γ(T ) ∈ TqM .
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Also RUM (q0,≤ T ) = ∪0≤t≤TRUM (q0, t). Now, regarding the local con-
trollability, we are only interested in points which can be reached without
taking ‘large excursions’. Control problems which are local in this way have
the advantage that they can be characterized by Lie brackets. So, we want
to describe our reachable set RUM (q,≤ T ) for the simple mechanical control
system (4.56). The system (4.56) is locally configuration accessible (LCA)
at q if there exists T > 0 so that RUM (q,≤ t) contains a non–empty open
subset of M for each neighborhood U of q and each t ∈]0, T ]. Also, (4.56)
is locally configuration controllable (LCC) at q if there exists T > 0 so that
RUM (q,≤ t) contains a neighborhood of q for each neighborhood U of q
and each t ∈]0, T ]. Although sound very similar, the notions of local con-
figuration accessibility and local configuration controllability are genuinely
different (see Figure 4.7). Indeed, one need only look at the example of
the robotic leg with the F 1 input. In this example one may show that the
system is LCA, but is not LCC [Lewis (1998)].

Fig. 4.7 Difference between the notions of local configuration accessibility (a), and local

configuration controllability (b).

Local Configuration Accessibility

The accessibility problem is solved by looking at Lie brackets. For this
we need to recall the definition of the vertical lift [Lewis (1998)]:

verlift(Y (vq)) =
d

dt

∣∣∣∣
t=0

(vq + tY (q)),

in local coordinates, if Y = Y i∂qi , then verlift(Y ) = Y i∂vi . Now we can
rewrite (4.56) in the first–order form:

v̇ = Z(v) + ua verlift(Ya(v)),
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where Z is the geodesic spray for ∇.
We evaluate all brackets at 0q (recall that T0qTM ' TqM⊕TqM). Here,

the first component we think of as being the ‘horizontal’ bit which is tangent
to the zero section in TM , and we think of the second component as being
the ‘vertical’ bit which is the tangent space to the fibre of τM : TM →M .

To get an answer to the local configuration accessibility problem, we
employ standard nonlinear control techniques involving Lie brackets. Doing
so gives us our first look at the symmetric product, 〈X : Y 〉 = ∇XY +∇YX.
Our sample brackets suggest that perhaps the only things which appear in
the bracket computations are symmetric products and Lie brackets of the
input vector–fields Y1, ..., Ym.

Here are some sample brackets:

(i) [Z, verlift(Ya)](0q) = (−Ya(q), 0);
(ii) [verlift(Ya), [Z, verlift(Yb)]](0q) = (0, 〈Ya : Yb〉 (q));
(iii) [[Z, verlift(Ya)], [Z, verlift(Yb)]](0q) = ([Ya, Yb](q), 0).

Now, let Cver be the closure of span{Y1, ..., Ym} under symmetric prod-
uct. Also, let Chor be the closure of Cver under Lie bracket. So, we assume
Cver and Chor to be distributions (i.e., of constant rank) on M . The closure
of span{Z, verlift(Y1), ..., verlift(Ym)} under Lie bracket, when evaluated at
0q, is then the distribution

q 7→ Chor(q)⊕ Cver(q) ⊂ TqM ⊕ TqM.

Proving that the involutive closure of span{Z, verlift(Y1), ..., verlift(Ym)} is
equal at 0q to Chor(q)⊕Cver(q) is a matter of computing brackets, samples
of which are given above, and seeing the patterns to suggest an inductive
proof. The brackets for these systems are very structured. For example,
the brackets of input vector–fields are identically zero. Many other brackets
vanish identically, and many more vanish when evaluated at 0q.

Chor is integrable: let Λq be the maximal integral manifold through
q ∈ M . Then, RUM (q,≤ T ) is contained in Λq, and RUM (q,≤ T ) contains
a non–empty open subset of Λq. In particular, if rank(Chor) = n then
(4.56) is LCA [Lewis (1995); Lewis and Murray (1997)]. This Theorem
gives a ‘computable’ description of the reachable sets (in the sense that we
can calculate Λq by solving some over–determined nonlinear PDE’s). But it
does not give the kind of insight that we had with the ‘smallest A−invariant
subspace containing Im(B)’.

Recall that a submanifold N of M is totally geodesic if every geodesic
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with initial velocity tangent to N remains on N . This can be weakened to
distributions: a distribution D on M is geodesically invariant if for every
geodesic γ : [0, T ]→M , γ̇(0) ∈ Dγ(0) implies γ̇(t) ∈ Dγ(t) for t ∈]0, T ].

D is geodesically invariant i it is closed under symmetric product [Lewis
(1998)]. This Theorem says that the symmetric product plays for geodesi-
cally invariant distributions the same role the Lie bracket plays for in-
tegrable distributions. This result was key in providing the geometrical
description of the reachable configurations.

An integrable distribution is geodesically generated distribution if it is
the involutive closure of a geodesically invariant distribution. This basically
means that one may reach all points on a leaf with geodesics lying in some
subdistribution. The picture one should have in mind with the geometry of
the reachable sets is a foliation of M by geodesically generated (immersed)
submanifolds onto which the control system restricts if the initial velocity is
zero. The idea is that when we start with zero velocity we remain on leaves
of the foliation defined by Chor [Lewis and Murray (1997); Lewis (2000a)].
Note that for cases when the affine connection possesses no geodesically
invariant distributions, the system (4.56) is automatically LCA. This is
true, for example, of S2 with the affine connection associated with its round
metric.

Clearly Cver is the smallest geodesically invariant distribution con-
taining span{Y1, ..., Ym}. Also, Chor is geodesically generated by span
span{Y1, ..., Ym}. Thus RUM is contained in, and contains a non–empty
open subset of, the distribution geodesically generated by span{Y1, ..., Ym}.
Note that the pretty decomposition we have for systems with no potential
energy does not exist at this point for systems with potential energy.

Local Configuration Controllability

The problem of configuration controllability is harder than the one of
configuration accessibility. Following [Lewis and Murray (1999); Lewis
(2000a)], we will call a symmetric product in {Y1, ..., Ym} bad if it con-
tains an even number of each of the input vector–fields. Otherwise we will
call it good. The degree is the total number of vector–fields. For example,
〈〈Ya : Yb〉 : 〈Ya : Yb〉〉 is bad and of degree 4, and 〈Ya : 〈Yb : Yb〉〉 is good and
of degree 3. If each bad symmetric product at q is a linear combination of
good symmetric products of lower degree, then (4.56) is LCC at q.

Now, the single–input case can be solved completely: The system (4.56)
with m = 1 is LCC iff dim(M) = 1 [Lewis and Murray (1999)].
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Systems With Nonholonomic Constraints

Let us now add to the data a distribution D defining nonholonomic con-
straints. One of the interesting things about this affine connection approach
is that we can easily integrate into our framework systems with nonholo-
nomic constraints. As a simple example, consider a rolling disk (see Figure
4.8), with two inputs: (1) a ‘rolling’ torque, F 1 = dθ and (2) a ‘spinning’
torque, F 2 = dφ. It can be analyzed as a nonholonomic system (see [Lewis
(1999); Lewis (2000a)]).

Fig. 4.8 Rolling disk problem (see text for explanation).

The control equations for a simple mechanical control system with con-
straints are:

∇γ̇(t)γ̇(t) = λ(t) + ua(t)Ya (γ(t)) [− gradV (γ(t))] , γ̇(t) ∈ Dγ(t),

where λ(t) ∈ D⊥
γ(t) are Lagrangian multipliers.

Examples

1. Recall that for the simple robotic leg (Figure 4.5) above, Y1 was
internal torque and Y2 was extension force. Now, in the following three
cases:
(i) both inputs active – this system is LCA and LCC (satisfies sufficient
condition);
(ii) Y1 only, it is LCA but not LCC; and
(iii) Y2 only, it is not LCA.
In theses three cases, Chor is generated by the following linearly indepen-
dent vector–fields:
(i) both inputs: {Y1, Y2, [Y1, Y2]};
(ii) Y1 only: {Y1, 〈Y1 : Y1〉 , 〈Y1 : 〈Y1 : Y1〉〉}; and
(iii) Y2 only: 〈Y2〉.
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Recall that with both inputs the system was not accessible in TM as a con-
sequence of conservation of angular momentum. With the input Y2 only,
the control system behaves very simply when given zero initial velocity.
The ball on the end of the leg just gets moved back and forth. This reflects
the foliation of M by the maximal integral manifolds of Chor, which are
evidently 1D in this case. With the Y1 input, recall that the ball will always
go ‘outwards’ no matter what one does with the input. Thus the system
is not LCC. But apparently (since rank(Chor) = dim(M)) one can reach a
non–empty open subset of M . The behavior exhibited in this case is typical
of what one can expect for single–input systems with no potential energy.

2. For the planar rigid body (Figure 4.6) above, we have the following
five cases:
(i) Y1 and Y2 active, this system is LCA and LCC (satisfies sufficient con-
dition);
(ii) Y1 and Y3, it is LCA and LCC (satisfies sufficient condition);
(iii) Y1 only or Y3 only, not LCA;
(iv) Y2 only, LCA but not LCC; and
(v) Y2 and Y3: LCA and LCC (fails sufficient condition).

Now, with the inputs Y1 or Y3 alone, the motion of the system is simple.
In the first case the body moves along the line connecting the point of
application of the force and the center of mass, and in the other case the
body simply rotates. The equations in (x, y, θ) coordinates are

ẍ =
cos θ
m

u1 − sin θ
m

u2, ÿ =
sin θ
m

u1 +
cos θ
m

u2, θ̈ =
1
J

(
u3 − hu2

)
,

which illustrates that the θ−equation decouples when only Y3 is applied.
We make a change of coordinates for the case where we have only Y1:
(ξ, η, ψ) = (x cos θ + y sin θ,−x sin θ + y cos θ, θ). In these coordinates we
have

ξ̈ − 2η̇ψ̇ − ξψ̇
2

=
1
m
u1, η̈ + 2ξ̇ψ̇ − ηψ̇

2
= 0, ψ̇ = 0,

which illustrates the decoupling of the ξ−equation in this case.
Chor has the following generators:

(i) Y1 and Y2: {Y1, Y2, [Y1, Y2]};
(ii) Y1 and Y3: {Y1, Y3, [Y1, Y3]};
(iii) Y1 only or Y3 only: {Y1} or {Y3};
(iv) Y2 only: {Y2, 〈Y2 : Y2〉 , 〈Y2 : 〈Y2 : Y2〉〉};
(v) Y2 and Y3 {Y2, Y3, [Y2, Y3]}.
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3. Recall that for the rolling disk (Figure 4.8) above, Y1 was ‘rolling’
input and Y2 was ‘spinning’ input. Now, in the following three cases:
(i) Y1 and Y2 active, this system is LCA and LCC (satisfies sufficient con-
dition);
(ii) Y1 only: not LCA; and
(iii) Y2 only: not LCA.
In theses three cases, Chor has generators:
(i) Y1 and Y2: {Y1, Y2, [Y1, Y2], [Y2, [Y1, Y2]]};
(ii) Y1 only: {Y1}; and
(iii) Y2 only: {Y2}.
The rolling disk passes the good/bad symmetric product test. Another way
to show that it is LCC is to show that the inputs allow one to follow any
curve which is admitted by the constraints. Local configuration controlla-
bility then follows as the constraint distribution for the rolling disk has an
involutive closure of maximal rank [Lewis (1999)].

Categorical Structure of Control Affine Systems

Control affine systems make a category CAS (see [Elkin (1999)]). The
category CAS has the following data:

• An object in CAS is a pair
∑

= (M,F = {f0, f1, ..., fm}) where F is a
family of vector–fields

ẋ(t) = f0(x(t)) + ua(t)fa(x(t))

on the manifold M.

• A morphism sending
∑

= (M,F = {f0, f1, ..., fm}) to
∑′ = (M ′,F′ =

{f ′0, f ′1, ..., f ′m′}) is a triple (ψ, λ0,Λ) where ψ : M → M ′, λ0 : M →
Rm′

, and Λ : M → L(Rm,Rm′
) are smooth maps satisfying:

(1) Txψ(fa(x)) = Λαa (x)f ′α(ψ(x)), a ∈ {1, ...,m}, and
(2) Txψ(f0(x)) = f ′0(ψ(x)) + λα0 f

′
α(ψ(x)).

This corresponds to a change of state–input by

(x, u) 7−→ (ψ(x), λ0(x) + Λ(x)u).

Elkin [Elkin (1999)] discusses equivalence, inclusion, and factorization
in the category CAS. Using categorical language, he considers local equiv-
alence for various classes of nonlinear control systems, including single–
input systems, systems with involutive input distributions, and systems
with three states and two inputs.
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4.9.4.5 Lie–Adaptive Control

In this subsection we develop the concept of machine learning in the frame-
work of Lie derivative control formalism (see (4.9.2) above). Consider an
nD, SISO system in the standard affine form (4.44), rewritten here for
convenience:

ẋ(t) = f(x) + g(x)u(t), y(t) = h(x), (4.57)

As already stated, the feedback control law for the system (4.57) can be
defined using Lie derivatives Lfh and Lgh of the system’s output h along
the vector–fields f and g.

If the SISO system (4.57) is a relatively simple (quasilinear) system with
relative degree r = 1 it can be rewritten in a quasilinear form

ẋ(t) = γi(t) fi(x) + dj(t) gj(x)u(t), (4.58)

where γi (i = 1, ..., n) and dj (j = 1, ...,m) are system’s parameters, while
fi and gj are smooth vector–fields.

In this case the feedback control law for tracking the reference signal
yR = yR(t) is defined as (see [Isidori (1989); Nijmeijer and van der Schaft
(1990)])

u =
−Lfh+ ẏR + α (yR − y)

Lgh
, (4.59)

where α denotes the feedback gain.
Obviously, the problem of reference signal tracking is relatively simple

and straightforward if we know all the system’s parameters γi(t) and dj(t)
of (4.58). The question is can we apply a similar control law if the system
parameters are unknown?

Now we have much harder problem of adaptive signal tracking. However,
it appears that the feedback control law can be actually cast in a similar
form (see [Sastri and Isidori (1989); Gómez (1994)]):

û =
−L̂fh+ ẏR + α (yR − y)

L̂gh
, (4.60)

where Lie derivatives Lfh and Lgh of (4.59) have been replaced by their
estimates L̂fh and L̂gh, defined respectively as

L̂fh = γ̂i(t)Lfih, L̂gh = d̂j(t)Lgih,

in which γ̂i(t) and d̂j(t) are the estimates for γi(t) and dj(t).
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Therefore, we have the straightforward control law even in the uncertain
case, provided that we are able to estimate the unknown system parameters.
Probably the best known parameter update law is based on the so–called
Lyapunov criterion (see [Sastri and Isidori (1989)]) and given by

ψ̇ = −γ εW, (4.61)

where ψ = {γi − γ̂i, dj − d̂j} is the parameter estimation error, ε = y − yR
is the output error, and γ is a positive constant, while the matrix W is
defined as:

W =
[
WT

1 WT
2

]T
, with

W1 =

Lf1h...
Lfnh

 , W2 =

 Lg1h...
Lgmh

 · −L̂fh+ ẏR + α (yR − y)

L̂gh
.

The proposed adaptive control formalism (4.60–4.61) can be efficiently
applied wherever we have a problem of tracking a given signal with an
output of a SISO–system (4.57–4.58) with unknown parameters.

4.9.5 Hamiltonian Optimal Control and Maximum

Principle

4.9.5.1 Hamiltonian Control Systems

Hamiltonian control system on a symplectic manifold (P, ω) is defined as an
affine control system whose drift and control vector–fields are Hamiltonian.
It can be written as

ṗ = XH(p) + uaXa(p),

where the vector–fields Xa are assumed to be Hamiltonian with Hamilto-
nian Ha for a = 1, ...,m. Examples of systems which are (at least locally)
Hamiltonian control systems are those which evolve on the symplectic man-
ifold T ∗M and where the control Hamiltonians are simply coordinate func-
tions on M .

Alternatively, Hamiltonian control systems can be defined on Poisson
manifolds. However, for the purposes of this subsection, it will be more
natural to work within the Poisson context. Recall that given a smooth
Hamiltonian function h : M → R, on the Poisson manifold M, the Poisson
bracket {, } : C∞(M) × C∞(M) → C∞(M) (such that {f, g} = −{g, f},
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{f, {g, h}}}+{g, {h, f}}+{h, {f, g}} = 0, and {fg, h} = {f, h}g+f{g, h})
allows us to get a Hamiltonian vector–field Xh with Hamiltonian h through
the equality

LXhf = {f, h}, for all f ∈ C∞(M),

where LXhf is the Lie derivative of f along Xh. Note that the vector–field
Xh is well defined since the Poisson bracket verifies the Leibniz rule and
therefore defines a derivation on C∞(M) (see [Marsden and Ratiu (1999)]).
Furthermore C∞(M) equipped with a Poisson bracket is a Lie algebra,
called a Poisson algebra. Also, we say that the Poisson structure on M is
nondegenerate if the {, }−associated map B# : T ∗M → TM defined by

dg(B#(x)(df)) = B(x)(df, dg),

(where df denotes the exterior derivative of f) is an isomorphism for every
x ∈M .

An affine Hamiltonian control system Σ = (U,M, h) consists of a
smooth manifold U (the input space), a Poisson manifold M with non-
degenerate Poisson bracket (the state–space), and a smooth function H :
M × U → R (the controlled Hamiltonian). Furthermore, H is locally of
the form H = h0 + hiu

i (i = 1, ..., n), with hi locally defined smooth real
valued maps and ui local coordinates for U [Tabuada and Pappas (2001)].

Using the controlled Hamiltonian and the Poisson structure on M we
can recover the familiar system map F : M × U → TM, locally given by

F = Xh0 +Xhiu
i,

and defines an affine distribution on M given by

DM (x) = Xh0(x) + span{Xh1(x), Xh2(x), ..., Xhn(x)}.

This distribution captures all the possible directions of motion available
at a certain point x, and therefore describes a control system, up to a
parametrization by control inputs. This affine distribution will is our main
object of interest here, and we will assume that the rank of DM does not
change with x. Furthermore, we denote an affine distribution DM by X+∆,
whereX is a vector–field and ∆ a distribution. When this affine distribution
is defined by a Hamiltonian control system we have X = Xh0 and ∆ =
span{Xh1(x), Xh2(x), ..., Xhn(x)}. A similar reasoning is possible at the
level of Hamiltonians. Locally, we can define the following affine space of
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smooth maps

HM = h0 + spanR{h1, h1, ..., hn},

which defines DM by the equality

DM = B#(dHM ),

where we used the notation dHM to denote the set ∪h∈HMdh. We also use
the notation HM = h0 +H∆ for an affine space of smooth maps where h0

is a smooth map and H∆ a linear space of smooth maps.
Having defined Hamiltonian control systems we turn to their trajectories

or solutions: A smooth curve γ : I → M , I ⊆ R+
0 is called a trajectory of

control system Σ = (U,M,H), iff there exists a curve γU : I → U satisfying
[Tabuada and Pappas (2001)]

ẏ(t) = F (γ(t), γU (t)), for every t ∈ I.

Now, given a Hamiltonian control system and a desired property, an ab-
stracted Hamiltonian system is a reduced system that preserves the prop-
erty of interest while ignoring modelling detail (see [Tabuada and Pappas
(2001)]). Property preserving abstractions of control systems are important
for reducing the complexity of their analysis or design. From an analysis
perspective, given a large scale control system and a property to be veri-
fied, one extracts a smaller abstracted system with equivalent properties.
Checking the property on the abstraction is then equivalent to checking the
property on the original system. From a design perspective, rather than
designing a controller for the original large scale system, one designs a con-
troller for the smaller abstracted system, and then refines the design to the
original system while incorporating modelling detail.

This approach critically depends on whether we are able to construct
hierarchies of abstractions as well as characterize conditions under which
various properties of interest propagate from the original to the abstracted
system and vice versa. In [Pappas et al. (2000)], hierarchical abstractions
of linear control systems were extracted using computationally efficient con-
structions, and conditions under which controllability of the abstracted sys-
tem implied controllability of the original system were obtained. This led
to extremely efficient hierarchical controllability algorithms. In the same
spirit, abstractions of nonlinear control affine systems were considered in
[Pappas and Simic (2002)], and the canonical construction for linear sys-
tems was generalized to nonlinear control affine systems.
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In [Tabuada and Pappas (2001)], abstractions of Hamiltonian control
systems are considered, which are control systems completely specified by
controlled Hamiltonians. This additional structure allows to simplify the
abstraction process by working with functions instead of vector–fields or
distributions as is the case for general nonlinear systems [Pappas and Simic
(2002)]. This is possible since the controlled Hamiltonian contains all the
relevant information that must be captured by the abstracted system. On
the other hand, to be able to relate the dynamics induced by the controlled
Hamiltonians, we need to restrict the class of abstracting maps to those that
preserve the Hamiltonian structure. More precisely, given a Hamiltonian
control system on a Poisson manifold M , and a (quotient) Poisson map φ :
M → N , one presents a canonical construction that extracts an abstracted
Hamiltonian control system on N . One then characterizes abstracting maps
for which the original and abstracted system are equivalent from a local
accessibility point of view [Tabuada and Pappas (2001)].

4.9.5.2 Pontryagin’s Maximum Principle

Recall that the Pontryagin Maximum Principle (PMP, see [Pontryagin et al.
(1986); Iyanaga and Kawada (1980)]) applies to a general optimization
problem called a Bolza problem. To apply PMP to optimal control, we
need to define Hamiltonian function:

H(ψ, x, u) = (ψ, f(x, u)) = ψif
i(x, u), (i = 1, ..., n). (4.62)

Then in order for a control u(t) and a trajectory x(t) to be optimal, it is
necessary that there exist a nonzero absolutely continuous vector function
ψ(t) = (ψ0(t), ψ1(t), ..., ψn(t)) corresponding to the functions u(t) and x(t)
such that:

(1) The function H(ψ(t), x(t), u(t)) attains its maximum at the point u =
u(t) almost everywhere in the interval t0 ≤ t ≤ T ,

H(ψ(t), x(t), u(t)) = max
u∈U

H(ψ(t), x(t), u(t)).

(2) At the terminal time T , the following relations are satisfied:
ψ0(T ) ≤ 0 and H(ψ(T ), x(T ), u(T )) = 0.

PMP states the following algorithm: To maximize the set of steering
functions γixi(t) (with n constants γi) for controlling the changes in the
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state variables

ẋi(t) = f i(xi, uk), (i = 0, 1, ..., n, k = 1, ...,m),

we maximize at each instant the Hamiltonian function (4.62), where

ψ̇i = −ψj
∂f j

∂xi
and ψi(T ) = γi.

4.9.5.3 Affine Control Systems

Now, let us look at PMP as applied to the affine control system (see [Lewis
(2000b)])

ẏ(t) = f0(γ(t)) + ua(t) fa(γ(t)),

with γ(t) ∈M , u taking values in U ⊂ Rm, and objective function L(x, u).
We need to have the control Hamiltonian on U × T ∗M :

H(αx, u) = αx(f0(x))︸ ︷︷ ︸
H1

+ αx(uafa(x))︸ ︷︷ ︸
H2

− L(x, u)︸ ︷︷ ︸
H3

.

One of several consequences of the PMP is that if (u, γ) is a minimizer
then there exists a 1−form field λ along γ with the property that t 7→ λ(t) is
an integral curve for the time–dependent Hamiltonian (αx, u) 7→ H(αx, u).
The Hamiltonian H(αx, u) is a sum of three terms, and so too will be the
Hamiltonian vector–field.

Let us look at the first term, that with (old) Hamiltonian H1 =
αx(f0(x)). In local coordinates XH1 is written as

ẋi = f i0(x), ṗi = −∂f
j
0 (x)
∂xi

pj . (4.63)

XH1 is the cotangent lift of f0 and, following [Lewis (2000b)], we denote it
fT

∗

0 . So we want to understand fT
∗

0 on TM with f0 = Z.

Let f0 be a vector–field on a general manifold N with fT0 its tangent lift
defined by

fT0 (vx) =
d

dt

∣∣∣∣
t=0

TxFt(vx),

where Ft denotes the flow of f0. Therefore, fT0 is the ‘linearization’ of f0
and in local coordinates it is given by (compare with (4.63))

ẋi = f i0(x), v̇i = −∂f
i
0(x)
∂xj

vj .
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The flow of fT0 measures how the integral curves of f0 change as we change
the initial condition in the direction of vx.

Now, perhaps we can understand ZT on TM with f0 = Z in the discus-
sion of tangent lift. Let γ(t) be a geodesic. By varying the initial condition
for the geodesic we generate an ‘infinitesimal variation’ which satisfies the
extended Jacobi equation,

∇2
ẏ(t)ξ(t) +R(ξ(t), ẏ(t)) ẏ(t) +∇ẏ(t) (T (ξ(t), ẏ(t))) = 0. (4.64)

To make the ‘connection’ between ZT and the Jacobi equation, we perform
constructions on the tangent bundle using the spray Z. ∇ comes from a
linear connection on M which induces an Ehresmann connection on τM :
TM → M . Thus we may write TvqTM ' TqM ⊕ TqM . Now, if IM :
TTM → TTM is the canonical involution then I∗MZ

T is a spray. We use
I∗MZ

T to induce an Ehresmann connection on τTM : TTM → TM. Thus,

TXvqTTM ' TvqTM ⊕ TvqTM ' TqM ⊕ TqM︸ ︷︷ ︸
geodesic equations

⊕ TqM ⊕ TqM︸ ︷︷ ︸
variation equations

.

One represents ZT in this splitting and determines that the Jacobi equation
sits ‘inside’ one of the four components. Now one applies similar construc-
tions to T ∗TM and ZT

∗
to derive a 1−form version of the Jacobi equation

(4.64), the so–called adjoint Jacobi equation [Lewis (2000b)]:

∇2
ẏ(t)λ(t) +R∗(λ(t), ẏ(t)) ẏ(t)− T ∗

(
∇ẏ(t)λ(t), ẏ(t)

)
= 0, (4.65)

where we have used 〈R∗(α, u)v;ω〉 = 〈α;R(ω, u)v〉, and 〈T ∗(α, u);ω〉 =
〈α;T (ω, u)〉 .

The adjoint Jacobi equation forms the backbone of a general statement
of the PMP for affine connection control systems. When objective function
is the Lagrangian L(u, vq) = 1

2g(vq, vq), when ∇ is the Levi–Civita connec-
tion for the Riemannian metric g, and when the system is fully actuated,
then we recover the equation of [Noakes et al. (1989)]

∇3
ẏ(t) ẏ(t) +R

(
∇ẏ(t)ẏ(t), ẏ(t)

)
= 0.

Therefore, the adjoint Jacobi equation (4.65) captures the interesting
part of the Hamiltonian vector–field ZT

∗
, which comes from the PMP, in

terms of affine geometry, i.e., from ZT
∗

follows

∇ẏ(t)ẏ(t) = 0, ∇2
ẏ(t)λ(t) +R∗(λ(t), ẏ(t)) ẏ(t)−T ∗

(
∇ẏ(t)λ(t), ẏ(t)

)
= 0.
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The geometry of Z on TM gives a way of globally pulling out the adjoint
Jacobi equation from the PMP in an intrinsic manner, which is not generally
possible in the PMP [Lewis (2000b)].

4.9.6 Brain–Like Control Functor in Biodynamics

In this final section we propose our most recent model [Ivancevic and Bea-
gley (2005)] of the complete biodynamical brain–like control functor . This
is a neurodynamical reflection on our covariant force law , Fi = mgija

j ,
and its associated covariant force functor F∗ : TT ∗M → TTM (see section
3.13.4.1 above).

Recall that traditional hierarchical robot control (see, e.g., [Vukobra-
tovic and Stokic (1982); Vukobratovic et al. (1990)]) consists of three lev-
els: the executive control–level (at the bottom) performs tracking of nomi-
nal trajectories in internal–joint coordinates, the strategic control–level (at
the top) performs ‘planning’ of trajectories of an end–effector in external–
Cartesian coordinates, and the tactical control–level (in the middle) con-
nects other two levels by means of inverse kinematics.

The modern version of the hierarchical robot control includes decision–
making done by the neural (or, neuro–fuzzy) classifier to adapt the (ma-
nipulator) control to dynamically changing environment.

On the other hand, the so–called ‘intelligent’ approach to robot control
typically represents a form of function approximation, which is itself based
on some combination of neuro–fuzzy–genetic computations. Many special
issues and workshops focusing on physiological models for robot control
reflect the increased attention for the development of cerebellar models [van
der Smagt (1999); Schaal and Atkeson (1998); Schaal (1999); Schaal (1998);
Arbib (1998)] for learning robot control with functional decomposition,
where the main result could be formulated as: the cerebellum is more then
just the function approximator.

In this section we try to fit between these three approaches for hu-
manoid control, emphasizing the role of muscle–like robot actuators. We
propose a new, physiologically based, tensor–invariant, hierarchical force
control (FC, for short) for the physiologically realistic biodynamics. We
consider the muscular torque one–forms Fi as the most important compo-
nent of human–like motion; therefore we propose the sophisticated hierar-
chical system for the subtle Fi−-control: corresponding to the spinal, the
cerebellar and cortical levels of human motor control. Fi are first set–up
as testing input–signals to biodynamics, and then covariantly updated as
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feedback 1−forms ui on each FC–level. On the spinal FC–level the nom-
inal joint–trajectory tracking is proposed in the form of affine Hamilto-
nian control; here the driving torques are given corrections by spinal–reflex
controls. On the cerebellar FC–level, the relation is established between
canonical joint coordinates qi, pi and gradient neural–image coordinates
xi, yi, representing bidirectional, self–organized, associative memory ma-
chine; here the driving torques are given the cerebellar corrections. On the
cortical FC–level the topological ‘hyper–joystick’ is proposed as the central
FC command–space, selector, with the fuzzy–logic feedback–control map
defined on it, giving the cortical corrections to the driving torques.

The model of the spinal FC–level formulated here resembles autogenetic
motor servo, acting on the spinal–reflex level of the human locomotor con-
trol. The model of the cerebellar FC–level formulated here mimics the
self–organizing, associative function of the excitatory granule cells and the
inhibitory Purkinje cells of the cerebellum [Houk et al. (1996)]. The model
of the cortical FC–level presented in this section mimics the synergistic
regulation of locomotor conditioned reflexes by the cerebellum [Houk et al.
(1996)].

We believe that (already mentioned) extremely high order of the driving
force redundancy in biodynamics justifies the formulation of the three–level
force control system. Also, both brain–like control systems can be easily
extended to give SE(3)−based force control for moving inverse kinematics
(IK) chains of legs and arms.

4.9.6.1 Functor Control Machine

In this subsection we define the functor control–machine (compare with
section (3.13.4.2) above), for the learning control with functional decom-
position, by a two–step generalization of the Kalman’s theory of linear
MIMO–feedback systems. The first generalization puts the Kalman’s the-
ory into the pair of mutually dual linear categories Vect and Vect∗ of vector
spaces and linear operators, with a ‘loop–functor’ representing the closed–
loop control, thus formulating the unique, categorical formalism valid both
for the discrete and continual MIMO–systems.

We start with the unique, feedforward continual–sequential state equa-
tion

ẋ(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t), (4.66)

where the nD vector spaces of state X 3 x, input U 3 u, and output
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Y 3 y have the corresponding linear operators, respectively A : X → X,
B : U → X, and C : X → Y . The modular system theory comprises the
system dynamics, given by a pair (X,A), together with a reachability map
e : U → X of the pair (B,A), and an observability map m : X → Y of
the pair (A,C). If the reachability map e is surjection the system dynamics
(X,A) is called reachable; if the observability map m is injection the system
dynamics (X,A) is called observable. If the system dynamics (X,A) is both
reachable and observable, a composition r = m ◦ e : U → Y defines the
total system’s response, which is given by solution of equation (4.66). If the
unique solution to the continual–sequential state equation exists, it gives
the answer to the (minimal) realization problem: find the system S that
realizes the given response r = m ◦ e : U → Y (in the smallest number of
discrete states and in the shortest time).

The inverse map r−1 = e−1 ◦ m−1 : Y → U of the total system’s
response r : U → Y defines the linear feedback operator K : Y → U , given
by standard feedback equation

u(t) = Ky(t). (4.67)

In categorical language, the feedforward system dynamics in the cat-
egory Vect is a pair (X,A), where X ∈ Ob(Vect) is an object in Vect

and A : X → X ∈ Mor(Vect) is a Vect−-morphism. A feedforward de-
composable system in Vect is such a sixtuple S ≡ (X,A,U,B, Y, C) that
(X,A) is the system dynamics in Vect, a Vect–morphism B : U → X is
an input map, and a Vect–morphism C : X → Y is an output map. Any
object in Vect is characterized by mutually dual notions of its degree (a
number of its input morphisms) and its codegree (a number of its output
morphisms). Similarly, any decomposable system S in Vect has a reach-
ability map given by an epimorphism e = A ◦ B : U → X and its dual
observability map given by a monomorphism m = C ◦ A : X → Y ; their
composition r = m ◦ e : U → Y in Mor(Vect) defines the total system’s
response in Vect given by the unique solution of the continual–sequential
state equation (4.66) [Ivancevic and Snoswell (2001)].

The dual of the total system’s response, defined by the feedback equa-
tion (4.67), is the feedback morphism K = e−1 ◦m−1 : Y → U belonging to
the dual category Vect∗.

In this way, the linear, closed–loop, continual–sequential MIMO–system
(4.66–4.67) represents the linear iterative loop functor L : Vect⇒ Vect∗.

Our second generalization represents a natural system process Ξ[L], that
transforms the linear loop functor L : Vect ⇒ Vect∗ – into the nonlinear
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loop functor NL : CAT ⇒ CAT ∗ between two mutually dual nonlinear
categories CAT and CAT ∗. We apply the natural process Ξ, separately

(1) To the feedforward decomposable system
S ≡ (X,A,U,B, Y, C) in Vect, and

(2) To the feedback morphism K = e−1 ◦m−1 : Y → U in Vect∗.

Under the action of the natural process Ξ, the linear feedforward sys-
tem dynamics (X,A) in Vect transforms into a nonlinear feedforward Ξ−-
dynamics (Ξ[X],Ξ[A]) in CAT , represented by a nonlinear feedforward de-
composable system, Ξ[S] ≡ (Ξ[X],Ξ[A],Ξ[U ],Ξ[B],Ξ[Y ],Ξ[C]).

The reachability map transforms into the input process Ξ[e] = Ξ[A] ◦
Ξ[B] : Ξ[U ] −→ Ξ[X], while its dual, observability map transforms into the
output process Ξ[m] = Ξ[C] ◦ Ξ[A] : Ξ[X] −→ Ξ[Y ]. In this way the total
response of the linear system r = m ◦ e : U → Y in Mor(Vect) transforms
into the nonlinear system behavior, Ξ[r] = Ξ[m] ◦ Ξ[e] : Ξ[U ] −→ Ξ[Y ] in
Mor(CAT ). Obviously, Ξ[r], if exists, is given by a nonlinear Ξ−-transform
of the linear state equations (4.66–4.67).

Analogously, the linear feedback morphism K = e−1 ◦ m−1 : Y → U

in Mor(Vect∗) transforms into the nonlinear feedback morphism Ξ[K] =
Ξ[e−1] ◦ Ξ[m−1] : Ξ[Y ]→ Ξ[U ] in Mor(CAT ∗).

In this way, the natural system process Ξ : L V NL is established.
That means that the nonlinear loop functor L = Ξ[L] : CAT ⇒ CAT ∗ is
defined out of the linear, closed–loop, continual–sequential MIMO–system
(4.66).

In this section we formulate the nonlinear loop functor L = Ξ[L] :
CAT ⇒ CAT ∗ for various hierarchical levels of muscular–like FC.

4.9.6.2 Spinal Control Level

Our first task is to establish the nonlinear loop functor L = Ξ[L] : EX ⇒
EX ∗ on the category EX of spinal FC–level.

Recall that our dissipative, driven δ−Hamiltonian biodynamical system
on the configuration manifold M is, in local canonical–symplectic coordi-
nates qi, pi ∈ Up on the momentum phase–space manifold T ∗M, given by
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autonomous equations

q̇i =
∂H0

∂pi
+
∂R

∂pi
, (i = 1, . . . , N) (4.68)

ṗi = Fi −
∂H0

∂qi
+
∂R

∂qi
, (4.69)

qi(0) = qi0, pi(0) = p0
i , (4.70)

including contravariant equation (4.68) – the velocity vector–field, and co-
variant equation (4.69) – the force 1−form, together with initial joint angles
qi0 and momenta p0

i . Here the physical Hamiltonian function H0 : T ∗M →
R represents the total biodynamical energy function, in local canonical co-
ordinates qi, pi ∈ Up on T ∗M given by

H0(q, p) =
1
2
gij pi pj + V (q),

where gij = gij(q,m) denotes the contravariant material metric tensor.
Now, the control Hamiltonian function Hγ : T ∗M → R of FC is in local

canonical coordinates on T ∗M defined by [Nijmeijer and van der Schaft
(1990)]

Hγ(q, p, u) = H0(q, p)− qi ui, (i = 1, . . . , N) (4.71)

where ui = ui(t, q, p) are feedback–control 1−forms, representing the spinal
FC–level u−corrections to the covariant torques Fi = Fi(t, q, p).

Using δ−Hamiltonian biodynamical system (4.68–4.70) and the control
Hamiltonian function (4.71), control γδ−Hamiltonian FC–system can be
defined as

q̇i =
∂Hγ(q, p, u)

∂pi
+
∂R(q, p)
∂pi

,

ṗi = Fi −
∂Hγ(q, p, u)

∂qi
+
∂R(q, p)
∂qi

,

oi = −∂Hγ(q, p, u)
∂ui

, (i = 1, . . . , N)

qi(0) = qi0, pi(0) = p0
i ,

where oi = oi(t) represent FC natural outputs which can be different from
commonly used joint angles.

If nominal reference outputs oiR = oiR(t) are known, the simple PD
stiffness–servo [Whitney (1987)] could be formulated, via error function
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e(t) = oj − ojR, in covariant form

ui = Koδij(oj − ojR) +Kȯδij(ȯj − ȯjR), (4.72)

where Ks are the control–gains and δij is the Kronecker tensor.
If natural outputs oi actually are the joint angles and nominal canonical

trajectories
(
qiR = qiR(t), pRi = pRi (t)

)
are known, then the stiffness–servo

(4.72) could be formulated in canonical form as

ui = Kqδij(qi − qiR) +Kp(pi − pRi ).

Now, using the fuzzified µ−Hamiltonian biodynamical system with
fuzzy system numbers (i.e, imprecise segment lengths, masses and moments
of inertia, joint dampings and muscular actuator parameters)

q̇i =
∂H0(q, p, σµ)

∂pi
+
∂R

∂pi
, (4.73)

ṗi = F̄i −
∂H0(q, p, σµ)

∂qi
+
∂R

∂qi
, (4.74)

qi(0) = q̄i0, pi(0) = p̄0
i , (i = 1, . . . , N), (4.75)

(see 3.13.4.3 above) and the control Hamiltonian function (4.71),
γµ−Hamiltonian FC–system can be defined as

q̇i =
∂Hγ(q, p, u, σµ)

∂pi
+
∂R(q, p)
∂pi

,

ṗi = F̄i −
∂Hγ(q, p, u, σµ)

∂qi
+
∂R(q, p)
∂qi

,

ōi = −∂Hγ(q, p, u, σµ)
∂ui

, qi(0) = q̄i0, pi(0) = p̄0
i ,

where ōi = ōi(t) represent the fuzzified natural outputs.
Finally, applying stochastic forces (diffusion fluctuations Bij [qi(t), t] and

discontinuous jumps in the form of ND Wiener process W j(t)), i.e., using
the fuzzy–stochastic [µσ]−Hamiltonian biodynamical system

dqi =
(
∂H0(q, p, σµ)

∂pi
+
∂R

∂pi

)
dt, (4.76)

dpi = Bij [qi(t), t] dW j(t) +(
F̄i −

∂H0(q, p, σµ)
∂qi

+
∂R

∂qi

)
dt, (4.77)

qi(0) = q̄i0, pi(0) = p̄0
i . (4.78)
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(see 3.13.4.3 above), and the control Hamiltonian function (4.71),
γµσ−Hamiltonian FC–system can be defined as

dqi =
(
∂Hγ(q, p, u, σµ)

∂pi
+
∂R(q, p)
∂pi

)
dt,

dpi = Bij [qi(t), t] dW j(t) +(
F̄i −

∂Hγ(q, p, u, σµ)
∂qi

+
∂R(q, p)
∂qi

)
dt,

dōi = −∂Hγ(q, p, u, σµ)
∂ui

dt, (i = 1, . . . , N)

qi(0) = q̄i0, pi(0) = p̄0
i .

If we have the case that not all of the configuration joints on the con-
figuration manifold M are active in the specified robot task, we can in-
troduce the coupling Hamiltonians Hj = Hj(q, p), j = 1, . . . , M ≤ N ,
corresponding to the system’s active joints, and we come to affine Hamil-
tonian function Ha : T ∗M → R, in local canonical coordinates on T ∗M

given as [Nijmeijer and van der Schaft (1990)]

Ha(q, p, u) = H0(q, p)−Hj(q, p)uj . (4.79)

Using δ−Hamiltonian biodynamical system (4.68–4.70) and the affine
Hamiltonian function (4.79), affine aδ−Hamiltonian FC–system can be de-
fined as

q̇i =
∂H0(q, p)

∂pi
− ∂Hj(q, p)

∂pi
uj +

∂R

∂pi
, (4.80)

ṗi = Fi −
∂H0(q, p)

∂qi
+
∂Hj(q, p)

∂qi
uj +

∂R

∂qi
, (4.81)

oi = −∂Ha(q, p, u)
∂ui

= Hj(q, p), (4.82)

qi(0) = qi0, pi(0) = p0
i , (4.83)

(i = 1, . . . , N ; j = 1, . . . , M ≤ N).

Using the Lie–derivative exact feedback linearization (see (4.9.2) above),
and applying the constant relative degree r (see [Isidori (1989); Sastri and
Isidori (1989)]) to all N joints of the affine aδ−Hamiltonian FC–system
(4.80–4.83), the control law for asymptotic tracking the reference outputs
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ojR could be formulated as

uj =
ȯ
(r)j
R − L(r)

f Hj +
∑r
s=1 γs−1(o(s−1)j

R − L(s−1)
f Hj)

LgL(r−1)
f Hj

,

where standard MIMO–vector–fields f and g are given by

f =
(
∂H0

∂pi
, −∂H0

∂qi

)
, g =

(
−∂H

j

∂pi
,
∂Hj

∂qi

)
and γs−1 are the coefficients of linear differential equation of order r for
the error function e(t) = oj − ojR

e(r) + γr−1e(r−1) + · · ·+ γ1e(1) + γ0e = 0.

Using the fuzzified µ−Hamiltonian biodynamical system (4.73–4.75)
and the affine Hamiltonian function (4.79), affine aµ−Hamiltonian FC–
system can be defined as

q̇i =
∂H0(q, p, σµ)

∂pi
− ∂Hj(q, p, σµ)

∂pi
uj +

∂R(q, p)
∂pi

,

ṗi = F̄i −
∂H0(q, p, σµ)

∂qi
+
∂Hj(q, p, σµ)

∂qi
uj +

∂R(q, p)
∂qi

,

ōi = −∂Ha(q, p, u, σµ)
∂ui

= Hj(q, p, σµ),

qi(0) = q̄i0, pi(0) = p̄0
i , (i = 1, . . . , N ; j = 1, . . . , M ≤ N).

Using the fuzzy–stochastic [µσ]−Hamiltonian biodynamical sys-
tem (4.76–4.78) and the affine Hamiltonian function (4.79), affine
aµσ−Hamiltonian FC–system can be defined as

dqi =
(
∂H0(q, p, σµ)

∂pi
− ∂Hj(q, p, σµ)

∂pi
uj +

∂R(q, p)
∂pi

)
dt,

dpi = Bij [qi(t), t] dW j(t) +(
F̄i −

∂H0(q, p, σµ)
∂qi

+
∂Hj(q, p, σµ)

∂qi
uj +

∂R(q, p)
∂qi

)
dt,

dōi = −∂Ha(q, p, u, σµ)
∂ui

dt = Hj(q, p, σµ) dt,

qi(0) = q̄i0, pi(0) = p̄0
i , (i = 1, . . . , N ; j = 1, . . . , M ≤ N).

Being high–degree and highly nonlinear, all of these affine control sys-
tems are extremely sensitive upon the variation of parameters, inputs,
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and initial conditions. The sensitivity function S of the affine Hamilto-
nian Ha(q, p, u) upon the parameters βi (representing segment lengths Li,
masses mi, moments of inertia Ji and joint dampings bi, see [Ivancevic
and Snoswell (2001); Ivancevic (1991)]), is in the case of aδ−Hamiltonian
FC–system defined as

S(H,β) =
βi

Ha(q, p, u)
∂Ha(q, p, u)

∂βi
,

and similarly in other two aµ− and aµσ− cases.
The three affine FC–level systems aδ, aµ and aµσ, resemble (in a fuzzy–

stochastic–Hamiltonian form), Houk’s autogenetic motor servo of muscle
spindle and Golgi tendon proprioceptors [Houk (1979)], correcting the co-
variant driving torques Fi = Fi(t, q, p) by local ‘reflex controls’ ui(t, q, p).
They form the nonlinear loop functor L = Ξ[L] : EX ⇒ EX ∗.

4.9.6.3 Cerebellar Control Level

Our second task is to establish the nonlinear loop functor L = Ξ[L] : T A ⇒
T A∗ on the category T A of the cerebellar FC–level. Here we propose an os-
cillatory neurodynamical (x, y,ω)−-system (adapted from [Ivancevic et al.
(1999a)]), a bidirectional, self–organized, associative–memory machine, re-
sembling the function of a set of excitatory granule cells and inhibitory
Purkinje cells in the middle layer of the cerebellum (see [Eccles et al. (1967);
Houk et al. (1996)]). The neurodynamical (x, y,ω)−-system acts on
neural–image manifold MN

im of the configuration manifold MN as a pair of
smooth, ‘1 − 1’ and ‘onto’ maps (Ψ,Ψ−1), where Ψ : MN → MN

im repre-
sents the feedforward map, and Ψ−1 : MN

im →MN represents the feedback
map. Locally, it is defined in Riemannian neural coordinates xi, yi ∈ Vy on
MN
im, which are in bijective correspondence with symplectic joint coordi-

nates qi, pi ∈ Up on T ∗M .
The (x, y,ω)−-system is formed out of two distinct, yet nonlinearly–

coupled neural subsystems, with Ai(q) (4.86) and Bi(p) (4.87) as system
inputs, and the feedback–control 1−forms ui (4.92) as system outputs:

(1) Granule cells excitatory (contravariant) and Purkinje cells inhibitory
(covariant) activation (x, y)−-dynamics (4.84–4.87), defined respec-
tively by a vector–field xi = xi(t) : M → TM , representing a cross–
section of the tangent bundle TM , and a 1−form yi = yi(t) : M →
T ∗M , representing a cross–section of the cotangent bundle T ∗M ; and
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(2) Excitatory and inhibitory unsupervised learning (ω)–dynamics (4.87–
4.89) generated by random differential Hebbian learning process (4.90–
4.92), defined respectively by contravariant synaptic tensor–field ωij =
ωij(t) : M → TTMN

im and covariant synaptic tensor–field ωij = ωij(t) :
M → T ∗T ∗M, representing cross–sections of contravariant and covari-
ant tensor bundles, respectively.

The system equations are defined as

ẋi = Ai(q) + ωij fj(y)− xi, (4.84)

ẏi = Bi(p) + ωij f
j(x)− yi, (4.85)

Ai(q) = Kq(qi − qiR), (4.86)

Bi(p) = Kp(pRi − pi), (4.87)

ω̇ij = −ωij + Iij(x, y), (4.88)

ω̇ij = −ωij + Iij(x, y), (4.89)

Iij = f i(x) f j(y) + ḟ i(x) ḟ j(y) + σij , (4.90)

Iij = fi(x) fj(y) + ḟi(x) ḟj(y) + σij , (4.91)

ui =
1
2

(δij xi + yi), (i, j = 1, . . . , N). (4.92)

Here ω is a symmetric 2nd order synaptic tensor–field; Iij = Iij(x, y, σ)
and Iij = Iij(x, y, σ) respectively denote contravariant–excitatory and
covariant–inhibitory random differential Hebbian innovation–functions with
tensorial Gaussian noise σ (in both variances); fs and ḟs denote sig-
moid activation functions (f = tanh(.)) and corresponding signal velocities
(ḟ = 1− f2), respectively in both variances;

Ai(q) and Bi(p) are contravariant–excitatory and covariant–inhibitory
neural inputs to granule and Purkinje cells, respectively; ui are the correc-
tions to the feedback–control 1−forms on the cerebellar FC–level.

Nonlinear activation (x, y)−-dynamics (4.84–4.87), describes a two–
phase biological neural oscillator field, in which excitatory neural field
excites inhibitory neural field, which itself reciprocally inhibits the exci-
tatory one. (x, y)−-dynamics represents a nonlinear extension of a linear,
Lyapunov–stable, conservative, gradient system, defined in local neural co-
ordinates xi, yi ∈ Vy on T ∗M as

ẋi = − ∂Φ
∂yi

= ωijyj − xi, ẏi = − ∂Φ
∂xi

= ωijx
j − yi. (4.93)

The gradient system (4.93) is derived from scalar, neuro-synaptic action
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potential Φ : T ∗M → R, given by a negative, smooth bilinear form in
xi, yi ∈ Vy on T ∗M as

− 2Φ = ωijx
ixj + ωijyiyj − 2xiyi, (i, j = 1, . . . , N), (4.94)

which itself represents a Ψ−-image of the Riemannian metrics g : TM → R
on the configuration manifold M .

The nonlinear oscillatory activation (x, y)−-dynamics (4.84–4.87) is get
from the linear conservative dynamics (4.93) by adding configura-tion–
dependent inputs Ai and Bi, as well as sigmoid activation functions fj
and f j , respectively. It represents an interconnected pair of excitatory and
inhibitory neural fields.

Both variant–forms of learning (ω)−-dynamics (4.88–4.89) are given by
generalized unsupervised (self–organizing) Hebbian learning scheme (see
[Kosko (1992)]) in which ω̇ij (resp. ω̇ij) denotes the new–update value, -ωij
(resp. -ωij) corresponds to the old value and Iij(xi, yj) (resp. Iij(xi, yj))
is the innovation function of the symmetric 2nd order synaptic tensor-field
ω. The nonlinear innovation functions Iij and Iij are defined by random
differential Hebbian learning process (4.90–4.91). As ω is symmetric and
zero-trace coupling synaptic tensor, the conservative linear activation dy-
namics (4.93) is equivalent to the rule that the state of each neuron (in both
neural fields) is changed in time iff the scalar action potential Φ (4.94), is
lowered. Therefore, the scalar action potential Φ represents the monotoni-
cally decreasing Lyapunov function (such that Φ̇ ≤ 0) for the conservative
linear dynamics (4.93), which converges to a local minimum or ground state
of Φ. That is to say, the system (4.93) moves in the direction of decreasing
the scalar action potential Φ, and when both ẋi = 0 and ẏi = 0 for all
i = 1, . . . , N , the steady state is reached.

In this way, the neurodynamical (x, y,ω)−system acts as tensor–
invariant self–organizing (excitatory / inhibitory) associative memory ma-
chine, resembling the set of granule and Purkinje cells of cerebellum [Houk
et al. (1996)].

The feedforward map Ψ : M → M is realized by the inputs Ai(q) and
Bi(p) to the (x, y,ω)−-system, while the feedback map Ψ−1 : M → M is
realized by the system output, i.e., the feedback–control 1−forms ui(x, y).
These represent the cerebellar FC–level corrections to the covariant torques
Fi = Fi(t, q, p).

The tensor–invariant form of the oscillatory neurodynamical (x, y,ω)−-
system (4.84–4.92) resembles the associative action of the granule and Purk-
inje cells in the tunning of the limb cortico–rubro–cerebellar recurrent net-
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work [Houk et al. (1996)], giving the cerebellar correction ui(x, y) to the
covariant driving torques Fi = Fi(t, q, p). In this way (x, y,ω)−-system
forms the nonlinear loop functor L = Ξ[L] : T A ⇒ T A∗.

4.9.6.4 Cortical Control Level

Our third task is to establish the nonlinear loop functor L = Ξ[L] : ST ⇒
ST ∗ on the category ST of the cortical FC–level.

Recall that for the purpose of cortical control, the purely rotational
biodynamical manifold M could be firstly reduced to N−-torus and sub-
sequently transformed to N−-cube (‘hyper–joystick’), using the following
geometrical techniques (see (3.8.4.3) above).

Denote by S1 the constrained unit circle in the complex plane. This is
an Abelian Lie group. We have two reduction homeomorphisms

SO(3) & SO(2) � SO(2) � SO(2), and SO(2) ≈ S1,

where ‘�’ denotes the noncommutative semidirect product.
Next, let IN be the unit cube [0, 1]N in RN and ‘∼’ an equivalence

relation on RN get by ‘gluing’ together the opposite sides of IN , preserving
their orientation. Therefore, M can be represented as the quotient space of
RN by the space of the integral lattice points in RN , that is a constrained
torus TN :

RN/ZN = IN/ ∼∼=
N∏
i=1

S1
i ≡ {(qi, i = 1, . . . , N) : mod 2π} = TN .

In the same way, the momentum phase–space manifold T ∗M can be repre-
sented by T ∗TN .

Conversely by ‘ungluing’ the configuration space we get the primary
unit cube. Let ‘∼∗’ denote an equivalent decomposition or ‘ungluing’ rela-
tion. By the Tychonoff product–topology Theorem, for every such quotient
space there exists a ‘selector’ such that their quotient models are homeo-
morphic, that is, TN/ ∼∗≈ AN/ ∼∗. Therefore INq represents a ‘selector’
for the configuration torus TN and can be used as an N−-directional ‘q̂−-
command–space’ for FC. Any subset of DOF on the configuration torus TN

representing the joints included in the general biodynamics has its simple,
rectangular image in the rectified q̂−-command space – selector INq , and
any joint angle qi has its rectified image q̂i.

In the case of an end–effector, q̂i reduces to the position vector in
external–Cartesian coordinates zr (r = 1, . . . , 3). If orientation of the end–



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Applied Bundle Geometry 585

effector can be neglected, this gives a topological solution to the standard
inverse kinematics problem.

Analogously, all momenta p̂i have their images as rectified momenta
p̂i in the p̂−-command space – selector INp . Therefore, the total momen-

tum phase–space manifold T ∗TN gets its ‘cortical image’ as the (̂q, p)−-
command space, a trivial 2ND bundle INq × INp .

Now, the simplest way to perform the feedback FC on the cortical
(̂q, p)−-command space INq × INp , and also to mimic the cortical–like be-
havior [1,2], is to use the 2ND fuzzy–logic controller, in pretty much
the same way as in popular ‘inverted pendulum’ examples [Kosko (1992);
Kosko (1996)].

We propose the fuzzy feedback–control map Ξ that maps all the rectified
joint angles and momenta into the feedback–control 1−forms

Ξ : (q̂i(t), p̂i(t)) 7→ ui(t, q, p), (4.95)

so that their corresponding universes of discourse, M̂ i = (q̂imax − q̂imin),
P̂i = (p̂maxi − p̂mini ) and Ui = (umaxi − umini ), respectively, are mapped as

Ξ :
N∏
i=1

M̂M i ×
N∏
i=1

P̂i →
N∏
i=1

Ui. (4.96)

The 2N−-D map Ξ (4.95–4.96) represents a fuzzy inference system,
defined by (adapted from [Ivancevic et al. (1999b)]):

(1) Fuzzification of the crisp rectified and discretized angles, momenta and
controls using Gaussian–bell membership functions

µk(χ) = exp[− (χ−mk)2

2σk
], (k = 1, 2, . . . , 9),

where χ ∈ D is the common symbol for q̂i, p̂i and ui(q, p) and
D is the common symbol for M i, P̂i and i; the mean values mk of
the seven partitions of each universe of discourse D are defined as
mk = λkD + χmin, with partition coefficients λk uniformly spanning
the range of D, corresponding to the set of nine linguistic variables
L = {NL,NB,NM,NS,ZE, PS, PM,PB,PL}; standard deviations
are kept constant σk = D/9. Using the linguistic vector L, the 9 × 9
FAM (fuzzy associative memory) matrix (a ‘linguistic phase–plane’), is
heuristically defined for each human joint, in a symmetrical weighted
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form

µkl = $kl exp{−50[λk + u(q, p)]2}, (k, l = 1, 2, . . . , 9)

with weights $kl ∈ {0.6, 0.6, 0.7, 0.7, 0.8, 0.8, 0.9, 0.9, 1.0}.
(2) Mamdani inference is used on each FAM–matrix µkl for all human

joints:
(i) µ(q̂i) and µ(p̂i) are combined inside the fuzzy IF–THEN rules using
AND (Intersection, or Minimum) operator,

µk[ūi(q, p)] = min
l
{µkl(q̂i), µkl(p̂i)}.

(ii) the output sets from different IF–THEN rules are then combined us-
ing OR (Union, or Maximum) operator, to get the final output, fuzzy–
covariant torques,

µ[ui(q, p)] = max
k
{µk[ūi(q, p)]}.

(3) Defuzzification of the fuzzy controls µ[ui(q, p)] with the ‘center of grav-
ity’ method

ui(q, p) =
∫
µ[ui(q, p)] dui∫

dui
,

to update the crisp feedback–control 1−forms ui = ui(t, q, p). These
represent the cortical FC–level corrections to the covariant torques Fi =
Fi(t, q, p).

Operationally, the construction of the cortical (̂q, p)−-command space
INq × INp and the 2ND feedback map Ξ (4.95–4.96), mimic the regulation
of locomotor conditioned reflexes by the motor cortex [Houk et al. (1996)],
giving the cortical correction to the covariant driving torques Fi. Together
they form the nonlinear loop functor NL = Ξ[L] : ST ⇒ ST ∗.

A sample output from the leading human–motion simulator, Human
Biodynamics Engine (developed by the authors in Defence Science & Tech-
nology Organisation, Australia), is given in Figure 4.9, giving the sophis-
ticated 264 DOF analysis of adult male running with the speed of 5 m/s.
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Fig. 4.9 Sample output from the Human Biodynamics Engine: running with the
speed of 5 m/s.

4.9.6.5 Open Liouville Neurodynamics and Biodynamical Self–
Similarity

Recall (see [Ivancevic and Ivancevic (2006)]) that neurodynamics has its
physical behavior both at the macroscopic, classical, inter–neuronal level,
and at the microscopic, quantum, intra–neuronal level. At the macroscopic
level, various models of neural networks (NNs, for short) have been pro-
posed as goal–oriented models of the specific neural functions, like for in-
stance, function–approximation, pattern–recognition, classification, or con-
trol (see, e.g., [Haykin (1994)]). In the physically–based, Hopfield–type
models of NNs [Hopfield (1982); Hopfield (1984)] the information is stored
as a content–addressable memory in which synaptic strengths are modified
after the Hebbian rule (see [Hebb (1949)]. Its retrieval is made when the
network with the symmetric couplings works as the point–attractor with
the fixed points. Analysis of both activation and learning dynamics of
Hopfield–Hebbian NNs using the techniques of statistical mechanics [Do-
many et al. (1991)], gives us with the most important information of storage
capacity, role of noise and recall performance.

On the other hand, at the general microscopic intra–cellular level, en-
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ergy transfer across the cells, without dissipation, had been first conjec-
tured to occur in biological matter by [Frölich and Kremer (1983)]. The
phenomenon conjectured by them was based on their 1D superconductivity
model: in 1D electron systems with holes, the formation of solitonic struc-
tures due to electron–hole pairing results in the transfer of electric current
without dissipation. In a similar manner, Frölich and Kremer conjectured
that energy in biological matter could be transferred without dissipation,
if appropriate solitonic structures are formed inside the cells. This idea has
lead theorists to construct various models for the energy transfer across the
cell, based on the formation of kink classical solutions (see [Satarić et al.
(1993); Satarić et al. (1998)].

The interior of living cells is structurally and dynamically organized
by cytoskeletons, i.e., networks of protein polymers. Of these struc-
tures, microtubules (MTs, for short) appear to be the most fundamen-
tal (see [Dustin (1984)]). Their dynamics has been studied by a number
of authors in connection with the mechanism responsible for dissipation–
free energy transfer. Hameroff and Penrose [Hameroff (1987)] have con-
jectured another fundamental role for the MTs, namely being responsi-
ble for quantum computations in the human neurons. [Penrose (1989);
Penrose (1994); Penrose (1997)] further argued that the latter is associ-
ated with certain aspects of quantum theory that are believed to occur
in the cytoskeleton MTs, in particular quantum superposition and sub-
sequent collapse of the wave function of coherent MT networks. These
ideas have been elaborated by [Mavromatos and Nanopoulos (1995a);
Mavromatos and Nanopoulos (1995b)] and [Nanopoulos (1995)], based on
the quantum–gravity EMN–language of [Ellis et al. (1992); Ellis et al.
(1999)] where MTs have been physically modelled as non-critical (SUSY)
bosonic strings. It has been suggested that the neural MTs are the mi-
crosites for the emergence of stable, macroscopic quantum coherent states,
identifiable with the preconscious states; stringy–quantum space–time ef-
fects trigger an organized collapse of the coherent states down to a specific
or conscious state. More recently, [Tabony et al. (1999)] have presented
the evidence for biological self–organization and pattern formation during
embryogenesis.

Now, we have two space–time biophysical scales of neurodynamics. Nat-
urally the question arises: are these two scales somehow inter–related, is
there a space–time self–similarity between them?

The purpose of this subsection is to prove the formal positive answer
to the self–similarity question. We try to describe neurodynamics on both
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physical levels by the unique form of a single equation, namely open Li-
ouville equation: NN–dynamics using its classical form, and MT–dynamics
using its quantum form in the Heisenberg picture. If this formulation is
consistent, that would prove the existence of the formal neurobiological
space–time self–similarity.

Hamiltonian Framework

Suppose that on the macroscopic NN–level we have a conservative
Hamiltonian system acting in a 2ND symplectic phase–space T ∗Q =
{qi(t), pi(t)}, (i = 1 . . . N) (which is the cotangent bundle of the NN–
configuration manifold Q = {qi}), with a Hamiltonian function H =
H(qi, pi, t) : T ∗Q× R → R. The conservative dynamics is defined by clas-
sical Hamiltonian canonical equations (3.34). Recall that within the con-
servative Hamiltonian framework, we can apply the formalism of classical
Poisson brackets: for any two functions A = A(qi, pi, t) and B = B(qi, pi, t)
their Poisson bracket is defined as

[A,B] =
(
∂A

∂qi
∂B

∂pi
− ∂A

∂pi

∂B

∂qi

)
.

Conservative Classical System

Any function A(qi, pi, t) is called a constant (or integral) of motion of
the conservative system (3.34) if

Ȧ ≡ ∂tA+ [A,H] = 0, which implies ∂tA = −[A,H] . (4.97)

For example, if A = ρ(qi, pi, t) is a density function of ensemble phase–
points (or, a probability density to see a state x(t) = (qi(t), pi(t)) of en-
semble at a moment t), then equation

∂tρ = −[ρ,H] = −iLρ (4.98)

represents the Liouville Theorem, where L denotes the (Hermitian) Liou-
ville operator

iL = [..., H] ≡
(
∂H

∂pi

∂

∂qi
− ∂H

∂qi
∂

∂pi

)
= div(ρẋ),

which shows that the conservative Liouville equation (4.98) is actually
equivalent to the mechanical continuity equation

∂tρ+ div(ρẋ) = 0. (4.99)
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Conservative Quantum System

We perform the formal quantization of the conservative equation (4.98)
in the Heisenberg picture: all variables become Hermitian operators (de-
noted by ‘∧’), the symplectic phase–space T ∗Q = {qi, pi} becomes the
Hilbert state–space H = Hq̂i ⊗ Hp̂i (where Hq̂i = Hq̂1 ⊗ ... ⊗ Hq̂N and
Hp̂i = Hp̂1 ⊗ ... ⊗ Hp̂N ), the classical Poisson bracket [ , ] becomes the
quantum commutator { , } multiplied by -i/~

[ , ] −→ −i{ , } (~ = 1 in normal units) . (4.100)

In this way the classical Liouville equation (4.98) becomes the quantum
Liouville equation

∂tρ̂ = i{ρ̂, Ĥ} , (4.101)

where Ĥ = Ĥ(q̂i, p̂i, t) is the Hamiltonian evolution operator, while

ρ̂ = P (a)|Ψa >< Ψa|, with Tr(ρ̂) = 1,

denotes the von Neumann density matrix operator, where each quantum
state |Ψa > occurs with probability P (a); ρ̂ = ρ̂(q̂i, p̂i, t) is closely related
to another von Neumann concept: entropy S = −Tr(ρ̂[ln ρ̂]).

Open Classical System

We now move to the open (nonconservative) system: on the macroscopic
NN–level the opening operation equals to the adding of a covariant vector
of external (dissipative and/or motor) forces Fi = Fi(qi, pi, t) to (the r.h.s
of) the covariant Hamiltonian force equation, so that Hamiltonian equations
get the open (dissipative and/or forced) form

q̇i =
∂H

∂pi
, ṗi = Fi −

∂H

∂qi
. (4.102)

In the framework of the open Hamiltonian system (4.102), dynamics of any
function A(qi, pi, t) is defined by the open evolution equation:

∂tA = −[A,H] + Φ,

where Φ = Φ(Fi) represents the general form of the scalar force term.
In particular, if A = ρ(qi, pi, t) represents the density function of en-

semble phase–points, then its dynamics is given by the (dissipative/forced)
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open Liouville equation:

∂tρ = −[ρ,H] + Φ . (4.103)

In particular, the scalar force term can be cast as a linear Poisson–
bracket form

Φ = Fi[A, qi] , with [A, qi] = − ∂A
∂pi

. (4.104)

Now, in a similar way as the conservative Liouville equation (4.98) re-
sembles the continuity equation (4.99) from continuum dynamics, also the
open Liouville equation (4.103) resembles the probabilistic Fokker–Planck
equation from statistical mechanics. If we have a ND stochastic process
x(t) = (qi(t), pi(t)) defined by the vector Itô SDE

dx(t) = f(x, t) dt+G(x, t) dW,

where f is a ND vector function, W is a KD Wiener process, and G is a
N×KD matrix valued function, then the corresponding probability density
function ρ = ρ(x, t|ẋ, t′) is defined by the ND Fokker–Planck equation (see,
e.g., [Gardiner (1985)])

∂tρ = −div[ρ f(x, t)] +
1
2

∂2

∂xi∂xj
(Qij ρ) , (4.105)

where Qij =
(
G(x, t)GT (x, t)

)
ij

. It is obvious that the Fokker–Planck
equation (4.105) represents the particular, stochastic form of our general
open Liouville equation (4.103), in which the scalar force term is given by
the (second–derivative) noise term

Φ =
1
2

∂2

∂xi∂xj
(Qij ρ) .

Equation (4.103) will represent the open classical model of our macro-
scopic NN–dynamics.

Continuous Neural Network Dynamics

The generalized NN–dynamics, including two special cases of graded
response neurons (GRN) and coupled neural oscillators (CNO), can be
presented in the form of a stochastic Langevin rate equation

σ̇i = fi + ηi(t), (4.106)
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where σi = σi(t) are the continual neuronal variables of ith neurons
(representing either membrane action potentials in case of GRN, or os-
cillator phases in case of CNO); Jij are individual synaptic weights;
fi = fi(σi, Jij) are the deterministic forces (given, in GRN–case, by
fi =

∑
j Jij tanh[γσj ] − σi + θi, with γ > 0 and with the θi represent-

ing injected currents, and in CNO–case, by fi =
∑
j Jij sin(σj − σi) + ωi,

with ωi representing the natural frequencies of the individual oscillators);
the noise variables are given as ηi(t) = lim∆→0 ζi(t)

√
2T/∆ where ζi(t)

denote uncorrelated Gaussian distributed random forces and the param-
eter T controls the amount of noise in the system, ranging from T = 0
(deterministic dynamics) to T =∞ (completely random dynamics).

More convenient description of the neural random process (4.106) is
provided by the Fokker–Planck equation describing the time evolution of
the probability density P (σi)

∂tP (σi) = − ∂

∂σi
(fiP (σi)) + T

∂2

∂σ2
i

P (σi). (4.107)

Now, in the case of deterministic dynamics T = 0, equation (4.107)
can be put into the form of the conservative Liouville equation (4.98), by
making the substitutions: P (σi) → ρ, fi = σ̇i, and [ρ,H] = div(ρ σ̇i) ≡∑
i
∂
∂σi

(ρ σ̇i), where H = H(σi, Jij). Further, we can formally identify

the stochastic forces, i.e., the second–order noise–term T
∑
i
∂2

∂σ2
i
ρ with

F i[ρ, σi] , to get the open Liouville equation (4.103).
Therefore, on the NN–level deterministic dynamics corresponds to the

conservative system (4.98). Inclusion of stochastic forces corresponds to
the system opening (4.103), implying the macroscopic arrow of time.

Open Quantum System

By formal quantization of equation (4.103) with the scalar force term
defined by (4.104), in the same way as in the case of the conservative
dynamics, we get the quantum open Liouville equation

∂tρ̂ = i{ρ̂, Ĥ}+ Φ̂, with Φ̂ = −iF̂i{ρ̂, q̂i}, (4.108)

where F̂i = F̂i(q̂i, p̂i, t) represents the covariant quantum operator of exter-
nal friction forces in the Hilbert state–space H = Hq̂i ⊗Hp̂i .

Equation (4.108) will represent the open quantum–friction model of our
microscopic MT–dynamics. Its system–independent properties are [Ellis
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et al. (1992); Ellis et al. (1999); Mavromatos and Nanopoulos (1995a);
Mavromatos and Nanopoulos (1995b); Nanopoulos (1995)]:

(1) Conservation of probability P

∂tP = ∂t[Tr(ρ̂)] = 0.

(2) Conservation of energy E, on the average

∂t 〈〈E〉〉 ≡ ∂t[Tr(ρ̂ E)] = 0.

(3) Monotonic increase in entropy

∂tS = ∂t[−Tr(ρ̂ ln ρ̂)] ≥ 0,

and thus automatically and naturally implies a microscopic arrow of
time, so essential in realistic biophysics of neural processes.

Non–Critical Stringy MT–Dynamics

In EMN–language of non–critical (SUSY) bosonic strings, our MT–
dynamics equation (4.108) reads

∂tρ̂ = i{ρ̂, Ĥ} − iĝij{ρ̂, q̂i}ˆ̇qj , (4.109)

where the target–space density matrix ρ̂(q̂i, p̂i) is viewed as a function of
coordinates q̂i that parameterize the couplings of the generalized σ−models
on the bosonic string world–sheet, and their conjugate momenta p̂i, while
ĝij = ĝij(q̂i) is the quantum operator of the positive definite metric in the
space of couplings. Therefore, the covariant quantum operator of external
friction forces is in EMN–formulation given as F̂i(q̂i, ˆ̇qi) = ĝij ˆ̇qj .

Equation (4.109) establishes the conditions under which a large–scale
coherent state appearing in the MT–network, which can be considered re-
sponsible for loss–free energy transfer along the tubulins.

Equivalence of Neurodynamic Forms

It is obvious that both the macroscopic NN–equation (4.103) and the
microscopic MT–equation (4.108) have the same open Liouville form, which
implies the arrow of time. These proves the existence of the formal neuro–
biological space–time self–similarity.

In this way, we have described neurodynamics of both NN and MT
ensembles, belonging to completely different biophysical space–time scales,
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by the unique form of open Liouville equation, which implies the arrow of
time. The existence of the formal neuro–biological self–similarity has been
proved.

4.9.7 Brain–Mind Functorial Machines

In this section we propose two models of the brain–mind functorial ma-
chines: the first one is a psychologically–motivated top–down machine,
while the second one is physically–motivated bottom–up solitary machine.

4.9.7.1 Neurodynamical 2−Functor

Here we define the goal–directed cognitive neurodynamics as an evolution
2−functor E given by

C D-
k

A B-f

?

h

?

g
CURRENT
NEURAL
STATE

E -
-

E(C) E(D)-
E(k)

E(A) E(B)-E(f)

?

E(h)

?

E(g)
DESIRED
NEURAL

STATE

(4.110)
In (4.110), E represents a projection map from the source 2−category of
the current neural state, defined as a commutative square of small cate-
gories A,B,C,D, . . . of current neural ensembles and their causal inter-
relations f, g, h, k, . . ., onto the target 2−category of the desired neural
state, defined as a commutative square of small categories E(A), E(B),
E(C), E(D), . . . of evolved neural ensembles and their causal interrelations
E(f), E(g), E(h), E(k).

The evolution 2−functor E can be horizontally decomposed in the fol-
lowing three neurodynamic components (see [Lewin (1997); Aidman and
Leontiev (1991)]):

(1) Intention, defined as a 3−cell:

Need1 ∗Need3

Need2 ∗Need4

Motive1,2 Motive3,4
INTENTION

y x

>
R

�
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(2) Action, defined as a 1−cell:
ACTION

-

(3) Locomotion, defined as a 2−cell:

Initial

Sustain

Monitor

-?

6

N

�

LOCOMOTION

Now, each causal arrow in (4.110), say f : A → B, stands for a generic
‘neuro–morphism’, representing a self–organized, oscillatory neurodynamic
system. We define a generic neuro–morphism f to be a nonlinear tensor–
field (x, y,ω)−-system (4.111–4.116), acting as a bidirectional associative
memory machine on a ND Riemannian manifold MN of the human cortex.
It is formed out of two distinct, yet nonlinearly–coupled neural subsystems:

(1) Activation (x, y)−-dynamics (4.111–4.112), defined as an interplay of
an excitatory vector–field xi = xi(t) : MN → TM , representing a
cross–section of the tangent bundle TM , and and an inhibitory 1−form
yi = yi(t) : MN → T ∗M , representing a cross–section of the cotangent
bundle T ∗M .

(2) Excitatory and inhibitory unsupervised learning (ω)–dynamics (4.113–
4.116) generated by random differential Hebbian learning process
(4.115–4.116), defined respectively by contravariant synaptic tensor–
field ωij = ωij(t) : MN → TTMN

im and covariant synaptic tensor–
field ωij = ωij(t) : MN → T ∗T ∗M, representing cross–sections of con-
travariant and covariant tensor bundles, respectively.

(x, y,ω)−-system is analytically defined as a set ofN coupled neurodynamic
equations:

ẋi = Ai + ωij fj(y)− xi, (4.111)

ẏi = Bi + ωij f
j(x)− yi, (4.112)

ω̇ij = −ωij + Iij(x, y), (4.113)

ω̇ij = −ωij + Iij(x, y), (4.114)

Iij = f i(x) f j(y) + ḟ i(x) ḟ j(y) + σij , (4.115)

Iij = fi(x) fj(y) + ḟi(x) ḟj(y) + σij , (4.116)

(i, j = 1, . . . , N).

Here ω is a symmetric, second–order synaptic tensor–field; Iij = Iij(x, y, σ)
and Iij = Iij(x, y, σ) respectively denote contravariant–excitatory and
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covariant–inhibitory random differential Hebbian innovation–functions with
tensorial Gaussian noise σ (in both variances); fs and ḟs denote sig-
moid activation functions (f = tanh(.)) and corresponding signal velocities
(ḟ = 1 − f2), respectively in both variances; Ai = Ai(t) and Bi = Bi(t)
are contravariant–excitatory and covariant–inhibitory neural inputs to the
corresponding cortical cells, respectively;

Nonlinear activation (x, y)−-dynamics, describes a two–phase biologi-
cal neural oscillator field, in which the excitatory neural field excites the
inhibitory neural field, which itself reciprocally inhibits the excitatory one.
(x, y)−-dynamics represents a nonlinear extension of a linear, Lyapunov–
stable, conservative, gradient system, defined in local neural coordinates
xi, yi ∈ Vy on T ∗M as

ẋi = − ∂Φ
∂yi

= ωijyj − xi, ẏi = − ∂Φ
∂xi

= ωijx
j − yi. (4.117)

The gradient system (4.117) is derived from scalar, neuro–synaptic action
potential Φ : T ∗M → R, given by a negative, smooth bilinear form in
xi, yi ∈ Vy on T ∗M as

−2Φ = ωijx
ixj + ωijyiyj − 2xiyi, (i, j = 1, . . . , N),

which itself represents a Ψ−-image of the Riemannian metrics g : TM → R
on the configuration manifold MN .

The nonlinear oscillatory activation (x, y)−-dynamics (4.111–4.114) is
get from the linear conservative dynamics (4.117), by adding configuration
dependent inputs Ai and Bi, as well as sigmoid activation functions fj
and f j , respectively. It represents an interconnected pair of excitatory and
inhibitory neural fields.

Both variant–forms of learning (ω)−-dynamics (4.113–4.114) are given
by a generalized unsupervised (self–organizing) Hebbian learning scheme
(see [Kosko (1992)]) in which ω̇ij (resp. ω̇ij) denotes the new–update
value, -ωij (resp. ωij) corresponds to the old value and Iij(xi, yj) (resp.
Iij(xi, yj)) is the innovation function of the symmetric 2nd order synaptic
tensor–field ω. The nonlinear innovation functions Iij and Iij are defined
by random differential Hebbian learning process (4.115–4.116). As ω is a
symmetric and zero–trace coupling synaptic tensor, the conservative linear
activation dynamics (4.117) is equivalent to the rule that ‘the state of each
neuron (in both neural fields) is changed in time if, and only if, the scalar
action potential Φ (52), is lowered’. Therefore, the scalar action potential
Φ represents the monotonically decreasing Lyapunov function (such that
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Φ̇ ≤ 0) for the conservative linear dynamics (4.117), which converges to
a local minimum or ground state of Φ. That is to say, the system (4.117)
moves in the direction of decreasing the scalar action potential Φ, and when
both ẋi = 0 and ẏi = 0 for all i = 1, . . . , N , the steady state is reached.

4.9.7.2 Solitary ‘Thought Nets’ and ‘Emerging Mind’

Synergetic ‘Thought Solitons’

Recall that synergetics teaches us that order parameters (and their
spatio–temporal evolution) are patterns, emerging from chaos. In our opin-
ion, the most important of these order parameters, both natural and man
made, are solitons, because of their self–organizing quality to create order
out of chaos. From this perspective, nonlinearity – the essential characteris-
tic of nature – is the cause of both chaos and order. Recall that the solitary
particle–waves, also called the ‘light bullets’, are localized space–time ex-
citations Ψ(x, t), propagating through a certain medium Ω with constant
velocities vj . They describe a variety of nonlinear wave phenomena in one
dimension and playing important roles in optical fibers, many branches of
physics, chemistry and biology.

To derive our solitary network we start with modelling the conservative
‘thought solitons’, using the following three classical nonlinear equations,
defining the time evolution of the spatio–temporal wave function Ψ(x, t)
(which is smooth, and either complex–, or real–valued) (see [Novikov et al.
(1984); Fordy (1990); Ablowitz and Clarkson (1991); Ivancevic and Pearce
(2001a)]; also compare with (3.13.2) above):

(1) Nonlinear Schrödinger (NS) equation

iΨt = 2µ|Ψ|2Ψ−Ψxx , (4.118)

where Ψ = Ψ(x, t) is a complex-valued wave function with initial con-
dition Ψ(x, t)|t=0 = Ψ(x) and µ is a nonlinear parameter representing
field strength. In the linear limit (a = 0) NS becomes the ordinary
Schrödinger equation for the wave function of the free 1D particle with
mass m = 1/2. Its Hamiltonian function

HNS =
∫ +∞

−∞

(
µ|Ψ|4 + |Ψx|2

)
dx,

is equal to the total and conserved energy of the soliton. NS describes,
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for example, nonlinear Faraday resonance in a vertically oscillating wa-
ter, an easy–plane ferromagnet with a combination of a stationary and
a high–frequency magnetic fields, and the effect of phase–sensitive am-
plifiers on solitons propagating in optical fibers.

(2) Korteveg–de Vries (KdV) equation

Ψt = 6ΨΨx −Ψxxx ,

with Hamiltonian (total conserved energy) given by

HKdV =
∫ +∞

−∞

(
Ψ3 +

1
2

Ψ2
x

)
dx.

KdV is related to the ordinary Schrödinger equation by the inverse
scattering method. KdV is a well–known model of 1D turbulence that
was derived in various physical contexts, including chemical–reaction
waves, propagation of combustion fronts in gases, surface waves in a
film of a viscous liquid flowing along an inclined plane, patterns in
thermal convection, rapid solidification, and others. Its discretization
gives the Lotka–Voltera equation

ẋj(t) = xj(t)
(
xj+1(t)− xj−1(t)

)
,

which appears in a model of struggle for existence of biological species.
(3) Sine–Gordon (SG) equation

Ψtt = Ψxx − sin Ψ,

with Hamiltonian (total conserved enegy) given by

HSG =
∫ +∞

−∞

(
Ψ2
t + Ψ2

x + cos Ψ
)
dx.

SG gives one of the simplest models of the unified field theory, can be
found in the theory of dislocations in metals, in the theory of Josephson
junctions and so on. It can be used also in interpreting certain biolog-
ical processes like DNA dynamics. Its discretization gives a system of
coupled pendulums.

Discrete solitons exist also in the form of the soliton celular automata
(SCA) [Park et al. (1986)]. SCA is a 1(space)+1(time)–dimensional ‘box
and ball system’ made of infinite number of zeros (or, boxes) and finite
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number of ones (or, balls). The value of the jth SCA cell ajt at a discrete
time time t, is given as

ajt+1 =


1, if ajt = 0 and

∑j−1
i=−∞ uit >

∑j−1
i=−∞ ait+1 ,

0, otherwise,

where ajt = 0 is assumed for |j| � 1. Any state of the SCA consists purely
of solitons (particularly, KdV–solitons), possessing conserved quantities of
the form of HKdV . All of these properties have motivated a number of
suggestive applications for a new kind of computational architecture that
will use these evolution patterns of SCA in order to give a ‘gateless’ imple-
mentation of logical operations.

In practice, both SCA and KdV are usually approximated by the Toda
lattice equation,

q̈i = eq
i+1−qi − eq

i−qi−1
, (i = 1, ..., N) (4.119)

with quasiperiodic qN+i(t) = qi(t) + c, or,

fast–dacaying boundary conditions lim
i→−∞

qi(t) = 0, lim
i→+∞

qi(t) = c.

The Toda equation (4.119) is a gradient Newtonian equation of motion

q̈i = −∂iqV, V (q) =
N∑
i=1

eq
i+1−qi .

Otherwise, the Toda equation represents a Hamiltonian system

q̇i = pi, ṗi = eq
i+1−qi − eq

i−qi−1
,

with the phase–space P = R2N with coordinates (pi, qi), standard Poisson
structure

{pi, pj} = {qi, qj} = 0, {pi, qj} = δji ,

and Hamiltonian function H =
N∑
i=1

(
1
2
p2
i + eq

i+1−qi), (i, j = 1, ..., N).

Next, to make our conservative thought solitons open to the environ-
ment, we have to modify them by adding:

1. Input from the senses, in the form of the Weber–Fechner’s law,

S(t) = ar log sr(t), (r = 1, ..., 5), (4.120)
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where S = S(t) is the sensation, sr = sr(t) the vector of stimuli from the
five senses, and ar a constant vector; and

2. Disturbances, in the form of additive, zero–mean Gaussian white
noise η = η(t), independent from the main soliton–signal.

In this way, we get the modified solitary equations:

MNS : iΨt = 2µ|Ψ|2Ψ−Ψxx + ar log srΨ + η,

MKdV : Ψt = 6ΨΨx −Ψxxx + ar log srΨ + η,

MSG : Ψtt = Ψxx − sin Ψ + ar log srΨ + η,

representing the three different models of the thought units.
Now we will form a single emerging order–parameter, the general factor,

that we call the Mind. It behaves like an orchestrated ensemble of thought
solitons, defined as systems of trainable, coupled soliton equations. Their
tensor couplings perform self–organizing associative learning by trial and
error, similar to that of the neural ensemble.

The dynamics of the soliton ensemble, representing our model of the
‘mind’ can be described as one of the following three soliton systems; each
of them performs learning, growing and competing between each other, and
communicates with environment through the sensory inputs and the heating
noise:

1. Coupled modified nonlinear Schrödinger equations

iΨk
t = −Ψk

xx + 2µk
∑
j 6=k

|Ψk|2Wj
k S

j(Ψj)

+ νkΨk(1− εkΨk) + ar log srΨk + ηk,

2. Coupled modified Korteveg–de Vries equations

Ψk
t = 6Ψk

x Ψk −Ψk
xxx +

∑
j 6=k

Wj
k S

j(Ψj)

+ νkΨk(1− εkΨk) + ar log srΨk + ηk,

3. Coupled modified Sine–Gordon equations

Ψk
tt = Ψk

xx − sin Ψk +
∑
j 6=k

+νkΨk(1− εkΨk) + ar log srΨk + ηk,
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where Ψk = Ψk(x, t), (k = 1, ..., n) is the set of wave functions of the
solitary thoughts, S(·) represents the sigmoidal threshold functions, νk and
εk are growing and competition parameters.

Wj
k = Wj

k(Ψ) are tensorial learning couplings, evolving according to
the Hebbian learning scheme (see [Kosko (1992)]):

Ẇj
k = −Wj

k + Φjk(Ψk,Ψj),

with innovation defined in tensor signal form (here Ṡ(·) = 1− tanh(·))

Φjk = Sj(Ψj)Sk(Ψk) + Ṡj(Ψj) Ṡk(Ψk).

Emerging Categorical Structure: MATTER⇒ LIFE ⇒MIND

The solitary
thought nets effectively simulate the following 3−categorical structure of
MIND, emerging from the 2−categorical structure of LIFE, which is itself
emerging from the 1−categorical structure of MATTER:
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4.9.8 Geometrodynamics of Human Crowd

In this subsection we formulate crowd representation model as an emotion–
field induced collective behavior of individual autonomous agents [Ivancevic
and Snoswell (2000)].

It is well–known that crowd behavior is more influenced by collective
emotion than by cognition. Recall from previous subsection that accord-
ing to Lewinian psychodynamics, human behavior is largely determined by
underlying forces (needs). For him, a force–field is defined as ‘the totality
of coexisting motivational facts which are conceived of as mutually inter-
dependent’ [Lewin (1997)]. He also stresses psychological direction and
velocity of behavior.

On the other hand, a number of factor–analysis based studies show
that human emotion is not a single quantity, but rather a multidimensional
space. For example, in [Skiffington (1998)], authors assessed emotions with
single adjective descriptors using standard linear factor analysis, by exam-
ining semantic as well as cognitive, motivational, and intensity features of
emotions. The focus was on seven negative emotions common to several
emotion typologies: anger, fear, sadness, shame, pity, jealousy, and con-
tempt. For each of these emotions, seven items were generated correspond-
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ing to cognitive appraisal about the self, cognitive appraisal about the envi-
ronment, action tendency, action fantasy, synonym, antonym, and intensity
range of the emotion, respectively. These findings set the groundwork for
the construction of an instrument to assess emotions multicomponentially.

4.9.8.1 Crowd Hypothesis

We consider a human crowd C as a group of m autonomous agents Ai
(i = 1, ...,m), each of which carries its own nD motivational factor–
structure. This nonlinear factor structure, which can be get using mod-
ern nonlinear factor analysis techniques (see [Yalcin and Amemiya (2001);
Amemiya (1993); Wall and Amemiya (1998); Wall and Amemiya (2000)];
also compare with subsection 3.11.4 below), is defined by n hypothetical
motivational factor–coordinates qi = {qµi }, (µ = 1, . . . , n), spanning the
smooth nD motivational factor manifold Mi for each autonomous agent
Ai.

We understand crowd representation as an environmental field–induced
collective behavior of individual autonomous agents. To model it in a gen-
eral geometrodynamical framework, we firstly define the behavior of each
agent Ai as a motion πi along his motivational manifold Mi, caused by his
own emotion field Φi, which is an active (motor) subset of Mi.

Secondly, we formulate a collective geometrodynamical model for the
crowd, considered as a union C = ∪iAi,in the form of a divergence equation
for the total crowd’s SEM–tensor C.14

4.9.8.2 Geometrodynamics of Individual Agents

To formulate individual agents’ geometrodynamics, we firstly derive two
higher geometrical structures from a motivational factor manifold Mi cor-
responding to an agent Ai: (i) the agent’s velocity phase–space, defined as a
tangent bundle TMi, and (ii) the agent’s momentum phase–space, defined
as a cotangent bundle T ∗Mi.

Now, the sections of TMi we call the agent’s vector–fields vi, which can
be expanded in terms of the basis vector–fields {eiµ ≡ ∂qµi }, as vi = vµi e

i
µ.

Similarly, the sections of T ∗Mi we call the agent’s one–forms αi, which can
be expanded in terms of the basis one–forms {ωµi ≡ dqµi }, as αi = αiµ ω

µ
i .

Here d denotes the exterior derivative (such that dd = 0). In particular,
14Throughout the text we use the following index convention: we label individual

agents using Latin indices, and individual motivational factors using Greek indices; sum-

mation convention is applied only to Greek factor indices.
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the velocity vector–fields q̇i are defined on TMi as q̇i = q̇µi e
i
µ,while the

momentum one–forms πi are defined on T ∗Mi as πi = πiµ ω
µ
i .

Also, all factor–configuration manifolds Mi are assumed to be Rieman-
nian, admitting the metrics gi = 〈ωµi , ω

η
i 〉, determined by kinetic ener-

gies Ti = 〈q̇µi , q̇
η
i 〉 of individual agents Ai, each with the metric tensor

gi = giµη ω
µ
i ⊗ ω

η
i . This implies that all vector–fields vi and one–forms αi

are related by g−induced scalar products
〈
ωµi , e

i
η

〉
= δiµη .

Emotional/Environmental Fields and Induced Agents’ Mo-
tions

Now, for each autonomous agent Ai three additional geometrodynami-
cal objects are defined as:

(1) Emotional/environmental potential one–form αi = αiµ ω
µ
i , which is the

gradient of some scalar function fi = fµi (qµi ) on Mi,

αi = dfi, in components, αiµ = ∂qµi f
µ
i ω

µ
i .

(2) Psycho–physical current vector–field Ji = Jµi e
i
µ on Mi, defined through

its motivational charge ei as

Jµi = ei

∫
ti

q̇µi δ
n [qµi (ti)] dti,

where δn = δn [qµi (ti)] denotes the nD impulse delta–function defined
on Mi.

(3) Emotional/environmental psycho–physical field is a two–form

Φi = Φiµη ω
µ
i ⊗ ω

η
i =

1
2

Φiµη ω
µ
i ∧ ω

η
i

on Mi, defined as the exterior derivative (i.e., curl) of the
emotional/enviro-nmental potential αi,

Φi = dαi, in components, Φiµη = αiη;µ − αiµ;η.

The emotional/environmental psycho–physical field Φi is governed by
two standard field equations:

dΦi = ddαi = 0, in components, Φi[µη;ν] = 0, (4.121)

and

div Φi = giJi, in components, Φi;ηµη = giµη J
η
i , (4.122)
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where [µη; ν] ≡ µη; ν + ην;µ+ vµ; η. The first field equation (4.121) states
that for each agent Ai the motivational tension–field Φi is curl–free, while
the second field equation (4.122) states that the environmental psycho–
physical field Φi has its source in the psycho–physical current Ji.

Now, the behavioral equation for each agent Ai, induced by his/her
environmental psycho–physical field Φi, reads

π̇i = eiΦiq̇i, in components, π̇iµ = eiΦiµη q̇
η
i .

This equation states that the force of an individual agent’s motion, or
his/her behavior, equals the product of his/her psycho–physical charge,
environmental psycho–physical field, and velocity (speed) of behavior.

4.9.8.3 Collective Crowd Geometrodynamics

Now we define the total crowd’s geometrodynamics as a union C = ∪iAi of
all individual agents’ geometrodynamics, to model their emotion–induced
behavior. For this we use the total crowd’s energy–momentum tensor
(CEM) and its divergence equation of motion.

As a union of individual Riemannian manifolds, the total crowd’s man-
ifold M = ∪iMi is also Riemannian, with the metrics g =

∑
i g

i equal
to the sum of individual metrics gi = giµη ω

µ
i ⊗ ωηi . Now, the crowd’s

CEM tensor C = Cµη ω
µ
M ⊗ ωηM = 1

2Cµη ω
µ
M ∧ ω

η
M (where ωµM denote

the basis one–forms on M) has two parts, C = C(E) + C(B), in compo-
nents, Cµη = C

(E)
µη +C

(B)
µη , corresponding to the total crowd’s emotion and

behavior, which we define respectively as follows:

(1) The CEM’s emotional part C(E) is in components defined as a sum of
individual agents’ motivational–tension fields,

C(E)
µη =

M∑
i=1

(
ΦiµνΦνiη − giµηΦiνλΦνλi

)
,

so the equation of the crowd’s emotion is defined in the form of the
divergence equation

C(E);η
µη =

M∑
i=1

ΦiµηΦη;νiν = −
M∑
i=1

Φiµη J
η
i .

This equation says that CEM’s emotional part C(E) is a collective
motivational field with a sink.
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(2) The CEM’s behavioral part C(B) as a sum of individual agents’
motivational–currents times momenta:

C(B)
µη =

M∑
i=1

giµη

∫
ti

πiη(ti) q̇
η
i (ti) δn [qµi (ti)] dti,

so the equation of the crowd’s behavior is defined in the form of the
divergence equation

C(B);η
µη =

M∑
i=1

giµη

∫
ti

πiη(ti) q̇
η
i (ti) ∂qηi δ

n [qµi (ti)] dti

=
M∑
i=1

ei

∫
ti

Φiµη q̇
η
i δ

n [qµi (ti)] dti =
M∑
i=1

Φiµη J
η
i .

This equation says that CEM’s behavioral part C(B) is a collective
behavioral field with a source.

Therefore, the divergence equation for the total crowd’s CEM tensor,
represents the crowd’s motivation–behavior conservation law

div C = div
(
C(E) + C(B)

)
= 0, in components, C(E);η

µη +C(B);η
µη = 0.

This gives our basic representation of an isolated crowd as a conservative
spatio–temporal dynamical system. Naturally, additional crowd’s energy–
momentum sources and sinks can violate this basic motivational–behavior
conservation law.

4.10 Multivector–Fields and Tangent–Valued Forms

Recall that a vector–field on a manifold M is defined as a global section
of the tangent bundle TM → M . The set V1(M) of vector–fields on M is
a real Lie algebra with respect to the Lie bracket [Sardanashvily (1993);
Sardanashvily (1995); Giachetta et. al. (1997); Mangiarotti and Sar-
danashvily (2000a); Sardanashvily (2002a)]

[v, u] = (vα∂αuµ − uα∂αvµ)∂µ, v = vα∂α, u = uα∂α. (4.123)

Every vector–field on a manifold M can be seen as an infinitesimal gen-
erator of a local 1–parameter Lie group of diffeomorphisms of M as follows
[Kobayashi and Nomizu (1963/9)]. Given an open subset U ⊂ M and an
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interval (−ε, ε) ∈ R, by a local 1–parameter group of diffeomorphisms of M
defined on (−ε, ε)× U is denoted a map

G→M, (t, x) 7→ Gt(x)

such that:

(1) for each t ∈ (−ε, ε), the map Gt is a diffeomorphism of U onto the open
subset Gt(U) ⊂M ; and

(2) Gt+t′(x) = (Gt ◦Gt′)(x) if t, t′, t+ t′ ∈ (−ε, ε) and Gt′(x), x ∈ U .

Any local 1–parameter group of diffeomorphisms G on U ⊂ M defines
a local vector–field u on U by setting u(x) to be the tangent vector to the
curve x(t) = Gt(x) at t = 0. Conversely, if u is a vector–field on a manifold
M , there exists a unique local 1–parameter group Gu of diffeomorphisms on
a neighborhood of every point x ∈M which defines u. We call Gu a flow of
the vector–field u. A vector–field u on a manifold M is called complete if its
flow is a 1–parameter group of diffeomorphisms of M . In particular, every
vector–field on a compact manifold is complete [Kobayashi and Nomizu
(1963/9)].

A vector–field u on a fibre bundle Y −→ X is an infinitesimal generator
of a local 1–parameter group Gu of isomorphisms of Y −→ X iff it is a
projectable vector–field on Y . A vector–field u on a fibre bundle Y −→ X

is called projectable if it projects onto a vector–field on X, i.e., there exists
a vector–field τ on X such that the following diagram commutes:

X TX-
τ

Y TY-u

?

π

?

Tπ

A projectable vector–field has the coordinate expression

u = uα(xµ)∂α + ui(xµ, yj)∂i,

where uα are local functions on X. A projectable vector–field is said to be
vertical if it projects onto the zero vector–field τ = 0 on X, i.e., u = ui∂i
takes its values in the vertical tangent bundle V Y .

For example, in field theory, projectable vector–fields on fibre bundles
play a role of infinitesimal generators of local 1–parameter groups of gauge
transformations.
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In general, a vector–field τ = τα∂α on a base X of a fibre bundle Y → X

induces a vector–field on Y by means of a connection on this fibre bundle.
Nevertheless, every natural fibre bundle Y → X admits the canonical lift τ̃
onto Y of any vector–field τ on X. For example, if Y is the tensor bundle
(4.11), the above canonical lift reads

τ̃ = τµ∂µ + [∂ντα1 ẋνα2···αm
β1···βk

+ . . .− ∂β1
τν ẋα1···αm

νβ2···βk
− . . .] ∂

∂ẋα1···αm
β1···βk

. (4.124)

In particular, we have the canonical lift onto the tangent bundle TX,

τ̃ = τµ∂µ + ∂ντ
αẋν

∂

∂ẋα
(4.125)

and another one onto the cotangent bundle T ∗X,

τ̃ = τµ∂µ − ∂βτν ẋν
∂

∂ẋβ
. (4.126)

A multivector–field ϑ of degree r (or simply a r-vector–field) on a man-
ifold M , by definition, is a global section of the bundle ∧rTM → M . It is
given by the coordinate expression

ϑ = ϑα1...αr∂α1 ∧ · · · ∧ ∂αr , |ϑ| = r,

where summation is over all ordered collections (λ1, ..., λr).
Similarly, an exterior r−form on a manifold M with local coordinates

xα, by definition, is a global section of the skew–symmetric tensor bundle
(exterior product) ∧rT ∗M →M ,

φ =
1
r!
φα1...αrdx

α1 ∧ · · · ∧ dxαr , |φ| = r.

The 1–forms are also called the Pfaffian forms.
The vector space Vr(M) of r−vector–fields on a manifold M admits the

Schouten–Nijenhuis bracket (or, SN bracket)

[., .]SN : Vr(M)×Vs(M)→ Vr+s−1(M)

which generalizes the Lie bracket of vector–fields (4.123). The SN–bracket
has the coordinate expression:

ϑ = ϑα1...αr∂α1 ∧ · · · ∧ ∂αr , υ = υα1...αs∂α1 ∧ · · · ∧ ∂αs ,
[ϑ, υ]SN = ϑ ? υ + (−1)|ϑ||υ|υ ? ϑ, where

ϑ ? υ = ϑµα1...αr−1∂µυ
α1...αs∂α1 ∧ · · · ∧ ∂αr−1 ∧ ∂α1 ∧ · · · ∧ ∂αs .
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The following relations hold for the SN–bracket:

[ϑ, υ]SN = (−1)|ϑ||υ|[υ, ϑ]SN ,

[ν, ϑ ∧ υ]SN = [ν, ϑ]SN ∧ υ + (−1)|ν||ϑ|+|ϑ|ϑ ∧ [ν, υ]SN ,

(−1)|ν||ϑ|+|ν|[ν, ϑ ∧ υ]SN + (−1)|ϑ||ν|+|ϑ|[ϑ, υ ∧ ν]SN
+ (−1)|υ||ϑ|+|υ|[υ, ν ∧ ϑ]SN = 0.

In particular, let w = wµν∂µ ∧ ∂ν be a bivector–field. We have

[w,w]SN = wµα1∂µw
α2α3∂α1 ∧ ∂α2 ∧ ∂α3 . (4.127)

Every bivector–field w on a manifold M induces the ‘sharp’ bundle map
w] : T ∗M → TM defined by

w](p)cq := w(x)(p, q), w](p) = wµν(x)pµ∂ν , (p, q ∈ T ∗xM).
(4.128)

A bivector–field w whose bracket (4.127) vanishes is called the Poisson
bivector–field .

Let ∧r(M) denote the vector space of exterior r−forms on a manifold
M . By definition, ∧0(M) = C∞(M) is the ring of smooth real functions
on M . All exterior forms on M constitute the N−graded exterior algebra
∧∗(M) of global sections of the exterior bundle ∧T ∗M with respect to the
exterior product ∧. This algebra admits the exterior differential

d : ∧r(M)→ ∧r+1(M),

dφ = dxµ ∧ ∂µφ =
1
r!
∂µφα1...αrdx

µ ∧ dxα1 ∧ · · · dxαr ,

which is nilpotent, i.e., d ◦ d = 0, and obeys the relation

d(φ ∧ σ) = d(φ) ∧ σ + (−1)|φ|φ ∧ d(σ).

The interior product (or, contraction) of a vector–field u = uµ∂µ and an
exterior r−form φ on a manifold M is given by the coordinate expression

ucφ =
r∑

k=1

(−1)k−1

r!
uαkφα1...αk...αr

dxα1 ∧ · · · ∧ d̂x
αk ∧ · · · ∧ dxαr(4.129)

=
1

(r − 1)!
uµφµα2...αrdx

α2 ∧ · · · ∧ dxαr ,
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where the caret ·̂ denotes omission. The following relations hold:

φ(u1, . . . , ur) = urc · · ·u1cφ, (4.130)

uc(φ ∧ σ) = ucφ ∧ σ + (−1)|φ|φ ∧ ucσ, (4.131)

[u, u′]cφ = ucd(u′cφ)− u′cd(ucφ)− u′cucdφ, (φ ∈ ∧1(M)). (4.132)

Recall from section 3.7 above, that the Lie derivative Luσ of an exterior
form σ along a vector–field u is defined by the Cartan relation

Luσ = ucdσ + d(ucσ).

It satisfies the relation

Lu(φ ∧ σ) = Luφ ∧ σ + φ ∧ Luσ.

In particular, if f is a function, then

Luf = u(f) = ucdf.

It is important for dynamical applications that an exterior form φ is in-
variant under a local 1–parameter group of diffeomorphisms Gt of M (i.e.,
G∗tφ = φ) iff its Lie derivative Luφ along the vector–field u, generating Gt,
vanishes.

Let Ω be a two–form on M . It defines the ‘flat’ bundle map Ω[, as

Ω[ : TM → T ∗M, Ω[(v) = −vcΩ(x), (v ∈ TxM). (4.133)

In coordinates, if Ω = Ωµνdxµ ∧ dxν and v = vµ∂µ, then

Ω[(v) = −Ωµνvµdxν .

One says that Ω is of constant rank k if the corresponding map (4.133) is
of constant rank k (i.e., k is the greatest integer n such that Ωn is not the
zero form). The rank of a nondegenerate two–form is equal to dimM . A
nondegenerate closed two–form is called the symplectic form.

Given a manifold map f : M → M ′, any exterior k-form φ on M ′

induces the pull–back exterior form f∗φ on M by the condition

f∗φ(v1, . . . , vk)(x) = φ(Tf(v1), . . . , T f(vk))(f(x))

for an arbitrary collection of tangent vectors v1, · · · , vk ∈ TxM . The fol-
lowing relations hold:

f∗(φ ∧ σ) = f∗φ ∧ f∗σ, df∗φ = f∗(dφ).
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In particular, given a fibre bundle π : Y → X, the pull–back onto Y of
exterior forms on X by π gives the monomorphism of exterior algebras

π∗ : ∧∗(X)→ ∧∗(Y ).

Elements of its image π∗ ∧∗ (X) are called basic forms. Exterior forms
on Y such that ucφ = 0 for an arbitrary vertical vector–field u on Y are
said to be horizontal forms. They are generated by horizontal 1–forms
{dxα}. For example, basic forms are horizontal forms with coefficients in
C∞(X) ⊂ C∞(Y ). A horizontal form of degree n = dimX is called a
density. For example, Lagrangians in field theory are densities.

Elements of the tensor product ∧r(M)⊗V1(M) are called the tangent–
valued r−forms on M . They are sections

φ =
1
r!
φµα1...αrdx

α1 ∧ · · · ∧ dxαr ⊗ ∂µ

of the tensor bundle

∧rT ∗M ⊗ TM →M.

Tangent-valued 1–forms are usually called the (1,1) tensor–fields.
In particular, there is the 1–1 correspondence between the tangent–

valued 1–forms on M and the linear bundle maps over M ,

φ : TM → TM, φ : TxM 3 v 7→ vcφ(x) ∈ TxM. (4.134)

In particular, the canonical tangent–valued one–form θM = dxα⊗∂α defines
the identity map of TM .

Tangent-valued forms play a prominent role in jet formalism and theory
of connections on fibre bundles. In particular, tangent–valued 0-forms are
vector–fields on M . Also, there is 1–1 correspondence between the tangent–
valued 1–forms φ on a manifold M and the linear bundle endomorphisms

φ̂ : TM → TM, φ̂ : TxM 3 v 7→ vcφ(x) ∈ TxM, (4.135)

φ̂
∗

: T ∗M → T ∗M, φ̂
∗

: T ∗xM 3 v∗ 7→ φ(x)cv∗ ∈ T ∗xM, (4.136)

over M . For example, the canonical tangent–valued 1–form on M ,

θM = dxα ⊗ ∂α , (4.137)

corresponds to the identity maps (4.135) and (4.136).



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

612 Applied Differential Geometry: A Modern Introduction

We shall deal with the following particular types of vector–fields and
differential forms on a bundle Y −→ X [Sardanashvily (1993); Sardanashvily
(1995); Giachetta et. al. (1997); Mangiarotti and Sardanashvily (2000a)]:

• a projectable vector–field on Y ,

u = uµ(x)∂µ + ui(y)∂i,

which covers a vector–field τu = uµ(x)∂µ on the base X such that the
following diagram commutes:

X TX-
τu

Y TY-u

?

π

?

Tπ

• a vertical vector–field , u : Y → V Y, given by u = ui(y)∂i, is a
projectable vector–field which covers τu = 0;
• an exterior horizontal form, φ : Y → ∧rT ∗X, given by

φ =
1
r!
φα1...αr (y)dxα1 ∧ · · · ∧ dxαr ;

• a tangent–valued horizontal form, φ : Y → ∧rT ∗X ⊗ TY, given by

φ =
1
r!
dxα1 ∧ · · · ∧ dxαr ⊗ [φµα1...αr (y)∂µ + φiα1...αr (y)∂i];

• a vertical–valued horizontal form, φ : Y → ∧rT ∗X ⊗ V Y, given by

φ =
1
r!
φiα1...αr (y)dxα1 ∧ · · · ∧ dxαr ⊗ ∂i.

• a vertical-valued soldering form, σ : Y → T ∗X ⊗ V Y, given by

σ = σiα(y)dxα ⊗ ∂i (4.138)

and, in particular, the canonical soldering form on TX,

θX = dxα ⊗ ∂α.
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The pull–back–valued forms on a bundle Y → X are the following two
maps:15

Y → ∧rT ∗Y ⊗ TX, φ =
1
r!
φµα1...αr (y)dxα1 ∧ · · · ∧ dxαr ⊗ ∂µ,

and (4.139)

Y → ∧rT ∗Y ⊗ V ∗X, φ =
1
r!
φα1...αri(y)dxα1 ∧ · · · ∧ dxαr ⊗ dyi.

The pull–back-valued forms (4.139) are exemplified by the canonical
bundle monomorphism

∧nT ∗X ⊗ V ∗Y ↪→ ∧n+1T ∗Y, ω ⊗ dyi 7→ ω∧dyi.

All horizontal n−forms on a bundle Y −→ X are called horizontal den-
sities.

For any vector–field τ on X, we can define its pull–back on Y ,

π∗τ = τ ◦ π : Y −→ TX.

This is not a vector–field on Y , for the tangent bundle TX of X fails to be
a subbundle of the tangent bundle TY of Y . One needs a connection on Y
−→ X in order to set the imbedding TX ↪→ TY .

The space ∧∗(M) ⊗ V1(M) of tangent–valued forms admits the
Frölicher–Nijenhuis bracket (or, FN bracket)

[., .]FN : ∧r(M)⊗ V1(M)× ∧s(M)⊗ V1(M)→ ∧r+s(M)⊗ V1(M),

[φ, σ]FN =
1
r!s!

(φνα1...αr∂νσ
µ
αr+1...αr+s − σ

ν
αr+1...αr+s∂νφ

µ
α1...αr − (4.140)

rφµα1...αr−1ν∂αrσ
ν
αr+1...αr+s + sσµναr+2...αr+s∂αr+1φ

ν
α1...αr )dx

α1

∧ · · · ∧ dxαr+s ⊗ ∂µ.
15The forms (4.139) are not tangent–valued forms. The pull–backs

φ =
1

r!
φµα1...αr

(x)dxα1 ∧ · · · ∧ dxαr ⊗ ∂µ

of tangent–valued forms on X onto Y by π exemplify the pull–back-valued forms (4.139).

In particular, we shall refer to the pull–back π∗θX of the canonical form θX on the base
X onto Y by π. This is a pull–back-valued horizontal one–form on Y which we denote

by the same symbol

θX : Y → T ∗X ⊗ TX, θX = dxα ⊗ ∂α.
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The following relations hold for the FN–bracket:

[φ, ψ]FN = (−1)|φ||ψ|+1[ψ, φ]FN , (4.141)

[φ, [ψ, θ]FN ]FN = [[φ, ψ]FN , θ]FN + (−1)|φ||ψ|[ψ, [φ, θ]FN ]FN .

Given a tangent–valued form θ, the Nijenhuis differential , dθσ, along θ
on ∧∗(M)⊗ V1(M) is defined as

dθσ = [θ, σ]FN . (4.142)

By virtue of the relation (4.141), it has the property

dφ[ψ, θ]FN = [dφψ, θ]FN + (−1)|φ||ψ|[ψ, dφθ]FN .

In particular, if θ = u is a vector–field, the Nijenhuis differential becomes
the Lie derivative of tangent–valued forms

Luσ = duσ = [u, σ]FN = (uν∂νσµα1...αs − σ
ν
α1...αs∂νu

µ (4.143)

+ sσµνα2...αs∂α1u
ν)dxα1 ∧ · · · ∧ dxαs ⊗ ∂µ, (σ ∈ ∧s(M)⊗ V(M)).

4.11 Application: Geometrical Quantization

4.11.1 Quantization of Hamiltonian Mechanics

Recall that classical Dirac quantization states [Dirac (1982)]:

{f, g} =
1
i~

[f̂ , ĝ],

which means that the quantum Poisson brackets (i.e., commutators) have
the same values as the classical Poisson brackets. In other words, we can
associate smooth functions defined on the symplectic phase–space manifold
(M,ω) of the classical biodynamic system with operators on a Hilbert space
H in such a way that the Poisson brackets correspond. Therefore, there is a
functor from the category Symplec to the category Hilbert. This functor
is called prequantization.

Let us start with the simplest symplectic manifold (M = T ∗Rn, ω =
dpi ∧ dqi) and state the Dirac problem: A prequantization of (T ∗Rn, ω =
dpi ∧ dqi) is a map δ : f 7→ δf , taking smooth functions f ∈ C∞(T ∗Rn,R)
to Hermitian operators δf on a Hilbert space H, satisfying the Dirac con-
ditions:

(1) δf+g = δf + δg, for each f, g ∈ C∞(T ∗Rn,R);



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Applied Bundle Geometry 615

(2) δλf = λδf , for each f ∈ C∞(T ∗Rn,R) and λ ∈ R;
(3) δ1Rn = IdH; and
(4) [δf , δg] = (δf ◦ δg − δg ◦ δf ) = i~δ{f,g}ω , for each f, g ∈ C∞(T ∗Rn,R);

The pair (H, δ), where

H = L2(Rn,C); δ : f ∈ C∞(T ∗Rn,R) 7→ δf : H → H;

δf = −i~Xf − θ(Xf ) + f ; θ = pidq
i,

gives a prequantization of (T ∗Rn, dpi ∧ dqi), or equivalently, the answer to
the Dirac problem is affirmative [Puta (1993)].

Now, let (M = T ∗Q,ω) be the cotangent bundle of an arbitrary mani-
fold Q with its canonical symplectic structure ω = dθ. The prequantization
of M is given by the pair

(
L2(M,C),δθ

)
, where for each f ∈ C∞(M,R),

the operator δθf : L2(M,C)→L2(M,C) is given by

δθf = −i~Xf − θ(Xf ) + f.

Here, symplectic potential θ is not uniquely determined by the condition
ω = dθ; for instance θ′ = θ+du has the same property for any real function
u on M . On the other hand, in the general case of an arbitrary symplectic
manifold (M,ω) (not necessarily the cotangent bundle) we can find only
locally a 1–form θ such that ω = dθ.

In general, a symplectic manifold (M,ω = dθ) is quantizable (i.e., we can
define the Hilbert representation space H and the prequantum operator δf
in a globally consistent way) if ω defines an integral cohomology class. Now,
by the construction Theorem of a fiber bundle, we can see that this condition
on ω is also sufficient to guarantee the existence of a complex line bundle
Lω = (L, π,M) over M , which has exp(i uji/~) as gauge transformations
associated to an open cover U = {Ui|i ∈ I} of M such that θi is a symplectic
potential defined on Ui (i.e., dθi = ω and θi = θi + d uji on Ui ∩ Uj).

In particular, for exact symplectic structures ω (as in the case of cotan-
gent bundles with their canonical symplectic structures) an integral coho-
mology condition is automatically satisfied, since then we have only one set
Ui = M and do not need any gauge transformations.

Now, for each vector–field X ∈ M there exists an operator ∇ωX on the
space of sections Γ(Lω) of Lω,

∇ωX : Γ(Lω)→ Γ(Lω), given by ∇ωXf = X(f)− i
~
θ(X)f,
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and it is easy to see that ∇ω is a connection on Lω whose curvature is ω/i~.
In terms of this connection, the definition of δf becomes

δf = −i~∇ωXf + f.

The complex line bundle Lω = (L, π,M) together with its compatible
connection and Hermitian structure is usually called the prequantum bundle
of the symplectic manifold (M,ω).

If (M,ω) is a quantizable manifold then the pair (H, δ) defines its pre-
quantization.

Examples

Each exact symplectic manifold (M,ω = dθ) is quantizable, for the coho-
mology class defined by ω is zero. In particular, the cotangent bundle, with
its canonical symplectic structure is always quantizable.

Let (M,ω = dθ) be an exact symplectic manifold. Then it is quantizable
with the prequantum bundle given by [Puta (1993)]:

Lω = (M × C, pr1,M);

Γ(Lω) ' C∞(M,C); ∇ωXf = X(f)− i
~
θ(X)f ;

((x, z1), (x, z2))x = z̄1z2; δf = −i~[Xf −
i

~
θ(Xf )] + f.

Let (M,ω) = (T ∗R, dp ∧ dq). It is quantizable with [Puta (1993)]:

Lω = (R2 × C, pr1,R2); Γ(Lω) = C∞(R2,C);

∇ωXf = X(f)− i
~
pdq(X)f ; ((x, z1) , (x, z2))x = z̄1z2;

δf = −i~
[
∂f

∂p

∂

∂q
− ∂f

∂q

∂

∂p

]
− p∂f

∂p
+ f.

Therefore,

δq = i~
∂

∂p
+ q, δp = −i~

∂

∂q
,

which differs from the classical result of the Schrödinger quantization:

δq = q, δp = −i~
∂

∂q
.

Let H be a complex Hilbert space and Ut : H → H a continuous one–
parameter unitary group, i.e., a homomorphism t 7→ Ut from R to the group
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of unitary operators on H such that for each x ∈ H the map t 7→ Ut(x) is
continuous. Then we have the self–adjoint generator A of Ut, defined by

Ax =
1
i
d

dt
Ut(x) =

1
i

lim
h→0

Uh(x)− x
h

.

Let
(
R2, ω = dp ∧ dq, H = 1

2 (p2 + q2
)

be the Hamiltonian structure of
the 1D harmonic oscillator.

If we take θ = 1
2 (pdq − qdp) as the symplectic potential of ω, then

the spectrum of the prequantum operator δH = i~
(
q ∂∂p − p

∂
∂q

)
is [Puta

(1993)]
Spec(δH) = {...,−2~,−~, 0, ~, 2~, ...}, where each eigenvalue occurs with
infinite multiplicity.

Let g be the vector space spanned by the prequantum operators
δq, δp, δH , given by

δq = i~
∂

∂p
+ q, δp = −i~

∂

∂q
, δH = i~

(
q
∂

∂p
− p ∂

∂q

)
,

and Id. Then we have [Puta (1993)]:

(1) g is a Lie algebra called the oscillator Lie algebra, given by:

[δp, δq] = i~δ{p,q}ω = i~ Id,
[δH , δq] = i~δ{H,q}ω = −i~δp,
[δH , δp] = i~δ{H,p}ω = i~δq,

(2) [g, g] is spanned by δq, δp, δH and Id, or equivalently, it is a Heisenberg
Lie algebra.

(3) The oscillator Lie algebra g is solvable.

4.11.2 Quantization of Relativistic Hamiltonian Mechanics

Given a symplectic manifold (Z,Ω) and a Hamiltonian H on Z, a Dirac
constraint system on a closed imbedded submanifold iN : N −→ Z of Z is de-
fined as a Hamiltonian system on N admitting the pull–back presymplectic
form ΩN = i∗NΩ and the pull–back Hamiltonian i∗NH [Gotay et. al. (1978);
Mangiarotti and Sardanashvily (1998); Muñoz and Román (1992)]. Its so-
lution is a vector–field γ on N which fulfils the equation

γcΩN + i∗NdH = 0.
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Let N be coisotropic. Then a solution exists if the Poisson bracket {H, f}
vanishes on N whenever f is a function vanishing on N . It is the Hamilto-
nian vector–field of H on Z restricted to N [Sardanashvily (2003)].

Recall that a configuration space of non–relativistic time–dependent
mechanics (henceforth NRM) ofm degrees of freedom is an (m+1)D smooth
fibre bundle Q −→ R over the time axis R [Mangiarotti and Sardanashvily
(1998); Sardanashvily (1998)]. It is coordinated by (qα) = (q0, qi), where
q0 = t is the standard Cartesian coordinate on R. Let T ∗Q be the cotangent
bundle of Q equipped with the induced coordinates (qα, pα = q̇α) with
respect to the holonomic coframes {dqα}. The cotangent bundle T ∗Q plays
the role of a homogeneous momentum phase–space of NRM, admitting the
canonical symplectic form

Ω = dpα ∧ dqα. (4.144)

Its momentum phase–space is the vertical cotangent bundle V ∗Q of the
configuration bundle Q −→ R, coordinated by (qα, qi). A Hamiltonian H
of NRM is defined as a section p0 = −H of the fibre bundle T ∗Q −→ V ∗Q.
Then the momentum phase–space of NRM can be identified with the image
N of H in T ∗Q which is the one-codimensional (consequently, coisotropic)
imbedded submanifold given by the constraint

HT = p0 +H(qα, pk) = 0.

Furthermore, a solution of a non–relativistic Hamiltonian system with a
Hamiltonian H is the restriction γ to N ∼= V ∗Q of the Hamiltonian vector–
field of HT on T ∗Q. It obeys the equation γcΩN = 0 [Mangiarotti and
Sardanashvily (1998); Sardanashvily (1998)]. Moreover, one can show that
geometrical quantization of V ∗Q is equivalent to geometrical quantization
of the cotangent bundle T ∗Q where the quantum constraint ĤTψ = 0
on sections ψ of the quantum bundle serves as the Schrödinger equation
[Sardanashvily (2003)].

A configuration space of relativistic mechanics (henceforth RM) is an
oriented pseudo–Riemannian manifold (Q, g), coordinated by (t, qi). Its
momentum phase–space is the cotangent bundle T ∗Q provided with the
symplectic form Ω (4.144). Note that one also considers another symplectic
form Ω + F where F is the strength of an electromagnetic field [Sniatycki
(1980)]. A relativistic Hamiltonian is defined as a smooth real function
H on T ∗Q [Mangiarotti and Sardanashvily (1998); Sardanashvily (1998)].
Then a relativistic Hamiltonian system is described as a Dirac constraint
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system on the subspace N of T ∗Q given by the equation

HT = gµν∂
µH∂νH − 1 = 0. (4.145)

To perform geometrical quantization of NRM, we give geometrical quan-
tization of the cotangent bundle T ∗Q and characterize a quantum relativis-
tic Hamiltonian system by the quantum constraint

ĤTψ = 0. (4.146)

We choose the vertical polarization on T ∗Q spanned by the tangent vectors
∂α. The corresponding quantum algebra A ⊂ C∞(T ∗Q) consists of affine
functions of momenta

f = aα(qµ)pα + b(qµ) (4.147)

on T ∗Q. They are represented by the Schrödinger operators

f̂ = −iaα∂α −
i
2
∂αa

α − i
4
aα∂α ln(−g) + b, (g = det(gαβ)) (4.148)

in the space C∞(Q) of smooth complex functions on Q.
Note that the function HT (4.145) need not belong to the quantum

algebra A. Nevertheless, one can show that, if HT is a polynomial of
momenta of degree k, it can be represented as a finite composition

HT =
∑
i

f1i · · · fki (4.149)

of products of affine functions (4.147), i.e., as an element of the enveloping
algebra A of the Lie algebra A [Giachetta et. al. (2002b)]. Then it is
quantized

HT 7→ ĤT =
∑
i

f̂1i · · · f̂ki (4.150)

as an element of A. However, the representation (4.149) and, consequently,
the quantization (4.150) fail to be unique.

The space of relativistic velocities of RM on Q is the tangent bundle TQ
of Q equipped with the induced coordinates (t, qi, q̇α) with respect to the
holonomic frames {∂α}. Relativistic motion is located in the subbundle Wg

of hyperboloids [Mangiarotti and Sardanashvily (1998); Mangiarotti and
Sardanashvily (2000b)]

gµν(q)q̇µq̇ν − 1 = 0 (4.151)
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of TQ. It is described by a second–order dynamical equation

q̈α = Ξα(qµ, q̇µ) (4.152)

on Q which preserves the subbundle (4.151), i.e.,

(q̇α∂α + Ξα∂̇α)(gµν q̇µq̇ν − 1) = 0, (∂̇α = ∂/∂q̇α).

This condition holds if the r.h.s. of the equation (4.152) takes the form

Ξα = Γαµν q̇
µq̇ν + Fα,

where Γαµν are Christoffel symbols of a metric g, while Fα obey the relation
gµνF

µq̇ν = 0. In particular, if the dynamical equation (4.152) is a geodesic
equation,

q̈α = Kα
µ q̇

µ

with respect to a (non-linear) connection on the tangent bundle TQ→ Q,

K = dqα ⊗ (∂α +Kµ
α ∂̇µ),

this connections splits into the sum

Kα
µ = Γαµν q̇

ν + Fαµ (4.153)

of the Levi–Civita connection of g and a soldering form

F = gλνFµνdq
µ ⊗ ∂̇α, Fµν = −Fνµ.

As was mentioned above, the momentum phase–space of RM on Q is
the cotangent bundle T ∗Q provided with the symplectic form Ω (4.144).
Let H be a smooth real function on T ∗Q such that the map

H̃ : T ∗Q −→ TQ, q̇µ = ∂µH (4.154)

is a bundle isomorphism. Then the inverse image N = H̃−1(Wg) of the
subbundle of hyperboloids Wg (4.151) is a one-codimensional (consequently,
coisotropic) closed imbedded subbundle of T ∗Q given by the constraint
HT = 0 (4.145). We say that H is a relativistic Hamiltonian if the Poisson
bracket {H,HT } vanishes on N . This means that the Hamiltonian vector–
field

γ = ∂αH∂α − ∂αH∂α (4.155)
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of H preserves the constraint N and, restricted to N , it obeys the Hamil-
tonian equation

γcΩN + i∗NdH = 0 (4.156)

of a Dirac constraint system on N with a Hamiltonian H.
The map (4.154) sends the vector–field γ (4.155) onto the vector–field

γT = q̇α∂α + (∂µH∂α∂µH − ∂µH∂α∂µH)∂̇α

on TQ. This vector–field defines the second–order dynamical equation

q̈α = ∂µH∂α∂µH − ∂µH∂α∂µH (4.157)

on Q which preserves the subbundle of hyperboloids (4.151).
The following is a basic example of relativistic Hamiltonian systems.

Put

H =
1

2m
gµν(pµ − bµ)(pν − bν),

where m is a constant and bµdq
µ is a covector–field on Q. Then HT =

2m−1H − 1 and {H,HT } = 0. The constraint HT = 0 defines a closed
imbedded one-codimensional subbundle N of T ∗Q. The Hamiltonian equa-
tion (4.156) takes the form γcΩN = 0. Its solution (4.155) reads

q̇α =
1
m
gαν(pν − bν),

ṗα = − 1
2m

∂αg
µν(pµ − bµ)(pν − bν) +

1
m
gµν(pµ − bµ)∂αbν .

The corresponding second–order dynamical equation (4.157) on Q is

q̈α = Γαµν q̇
µq̇ν − 1

m
gλνFµν q̇

µ, (4.158)

Γαµν = −1
2
gλβ(∂µgβν + ∂νgβµ − ∂βgµν), Fµν = ∂µbν − ∂νbµ.

It is a geodesic equation with respect to the affine connection

Kα
µ = Γαµν q̇

ν − 1
m
gλνFµν

of type (4.153). For example, let g be a metric gravitational field and let
bµ = eAµ, where Aµ is an electromagnetic potential whose gauge holds
fixed. Then the equation (4.158) is the well–known equation of motion of
a relativistic massive charge in the presence of these fields.
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Let us now perform the quantization of RM, following the standard
geometrical quantization of the cotangent bundle (see [Blattner (1983);
Sniatycki (1980); Woodhouse (1992)]). As the canonical symplectic form
Ω (4.144) on T ∗Q is exact, the prequantum bundle is defined as a trivial
complex line bundle C over T ∗Q. Note that this bundle need no metaplec-
tic correction since T ∗X is with canonical coordinates for the symplectic
form Ω. Thus, C is called the quantum bundle. Let its trivialization

C ∼= T ∗Q× C (4.159)

hold fixed, and let (t, qi, pα, c), with c ∈ C, be the associated bundle co-
ordinates. Then one can treat sections of C (4.159) as smooth complex
functions on T ∗Q. Note that another trivialization of C leads to an equiv-
alent quantization of T ∗Q.

Recall that the Kostant–Souriau prequantization formula associates to
each smooth real function f ∈ C∞(T ∗Q) on T ∗Q the first–order differential
operator

f̂ = −i∇ϑf + f (4.160)

on sections of C, where ϑf = ∂αf∂α − ∂αf∂α is the Hamiltonian vector–
field of f and ∇ is the covariant differential with respect to a suitable
U(1)−principal connection A on C. This connection preserves the Hermi-
tian metric g(c, c′) = cc′ on C, and its curvature form obeys the prequan-
tization condition R = iΩ. For the sake of simplicity, let us assume that Q
and, consequently, T ∗Q is simply–connected. Then the connection A up to
gauge transformations is

A = dpα ⊗ ∂α + dqα ⊗ (∂α + icpα∂c), (4.161)

and the prequantization operators (4.160) read

f̂ = −iϑf + (f − pα∂αf). (4.162)

Let us choose the vertical polarization on T ∗Q. It is the vertical tangent
bundle V T ∗Q of the fibration π : T ∗Q→ Q. As was mentioned above, the
corresponding quantum algebra A ⊂ C∞(T ∗Q) consists of affine functions
f (4.147) of momenta pα. Its representation by operators (4.162) is defined
in the space E of sections ρ of the quantum bundle C of compact support
which obey the condition ∇ϑρ = 0 for any vertical Hamiltonian vector–field
ϑ on T ∗Q. This condition takes the form

∂αf∂
αρ = 0, (f ∈ C∞(Q)).
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It follows that elements of E are independent of momenta and, conse-
quently, fail to be compactly supported, unless ρ = 0. This is the well–
known problem of Schrödinger quantization which is solved as follows [Blat-
tner (1983); Giachetta et. al. (2002b)].

Let iQ : Q −→ T ∗Q be the canonical zero section of the cotangent bundle
T ∗Q. Let CQ = i∗QC be the pull–back of the bundle C (4.159) over Q. It
is a trivial complex line bundle CQ = Q × C provided with the pull–back
Hermitian metric g(c, c′) = cc′ and the pull–back

AQ = i∗QA = dqα ⊗ (∂α + icpα∂c)

of the connection A (4.161) on C. Sections of CQ are smooth complex
functions on Q, but this bundle need metaplectic correction.

Let the cohomology group H2(Q; Z2) of Q be trivial. Then a metalinear
bundle D of complex half-forms on Q is defined. It admits the canonical
lift of any vector–field τ on Q such that the corresponding Lie derivative of
its sections reads

Lτ = τα∂α +
1
2
∂ατ

α.

Let us consider the tensor product Y = CQ ⊗D over Q. Since the Hamil-
tonian vector–fields

ϑf = aα∂α − (pµ∂αaµ + ∂αb)∂α

of functions f (4.147) are projected onto Q, one can assign to each element
f of the quantum algebra A the first–order differential operator

f̂ = (−i∇πϑf + f)⊗ Id + Id⊗Lπϑf = −iaα∂α −
i
2
∂αa

α + b

on sections ρQ of Y . For the sake of simplicity, let us choose a trivial met-
alinear bundle D → Q associated to the orientation of Q. Its sections can be
written in the form ρQ = (−g)1/4ψ, where ψ are smooth complex functions
on Q. Then the quantum algebra A can be represented by the operators
f̂ (4.148) in the space C∞(Q) of these functions. It can be justified that
these operators obey the Dirac condition

[f̂ , f̂ ′] = −i{̂f, f ′}.

One usually considers the subspace EQ ⊂ C∞(Q) of functions of com-
pact support. It is a pre–Hilbert space with respect to the non–degenerate
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Hermitian form

〈ψ|ψ′〉 =
∫
Q

ψψ′(−g)1/2dm+1q

Note that f̂ (4.148) are symmetric operators f̂ = f̂∗ in EQ, i.e., 〈f̂ψ|ψ′〉 =
〈ψ|f̂ψ′〉. However, the space EQ gets no physical meaning in RM.

As was mentioned above, the function HT (4.145) need not belong to
the quantum algebra A, but a polynomial function HT can be quantized
as an element of the enveloping algebra A by operators ĤT (4.150). Then
the quantum constraint (4.146) serves as a relativistic quantum equation.

Let us again consider a massive relativistic charge whose relativistic
Hamiltonian is

H =
1

2m
gµν(pµ − eAµ)(pν − eAν).

It defines the constraint

HT =
1
m2

gµν(pµ − eAµ)(pν − eAν)− 1 = 0. (4.163)

Let us represent the function HT (4.163) as symmetric product of affine
functions of momenta,

HT =
(−g)−1/4

m
(pµ − eAµ)(−g)1/4gµν(−g)1/4(pν − eAν)

(−g)−1/4

m
− 1.

It is quantized by the rule (4.150), where

(−g)1/4 ◦ ∂̂α ◦ (−g)−1/4 = −i∂α.

Then the well–known relativistic quantum equation

(−g)−1/2[(∂µ − ieAµ)gµν(−g)1/2(∂ν − ieAν) +m2]ψ = 0. (4.164)

is reproduced up to the factor (−g)−1/2.

4.12 Symplectic Structures on Fiber Bundles

In this section, following [Lalonde et al. (1998); Lalonde et al. (1999);
Lalonde and McDuff (2002)], we analyze general symplectic structures on
fiber bundles. We first discuss how to characterize Hamiltonian bundles and
their automorphisms, and then describe their main properties, in particular
deriving conditions under which the cohomology of the total space splits as



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Applied Bundle Geometry 625

a product. Finally we state some applications to the action of Ham(M) on
M and to non–Hamiltonian symplectic bundles.

4.12.1 Hamiltonian Bundles

4.12.1.1 Characterizing Hamiltonian Bundles

Recall that a fiber bundle M → P → B is said to be symplectic fibre
bundle if its structural group reduces to the group of symplectomorphisms
Symp(M,ω) of the closed symplectic manifold (M,ω). In this case, each
fiber Mb = π−1(b) is equipped with a well defined symplectic form ωb such
that (Mb, ωb) is symplectomorphic to (M,ω). Our first group of results es-
tablish geometric criteria for a symplectic bundle to be Hamiltonian, i.e., for
the structural group to reduce to Ham(M,ω). Quite often we simplify the
notation by writing Ham(M) and Symp0(M) (or even Ham and Symp0)
instead of Ham(M,ω) and Symp0(M,ω) (see [Lalonde et al. (1998);
Lalonde et al. (1999); Lalonde and McDuff (2002)]).

Recall that the group Ham(M,ω) is a connected normal subgroup of
the identity component Symp0(M,ω) of the group of symplectomorphisms,
and fits into the exact sequence

{Id} → Ham(M,ω)→ Symp0(M,ω) Flux−→ H1(M,R)/Γω → {0},

where Γω is the flux group. As Ham(M) is connected, every Hamiltonian
bundle is symplectically trivial over the 1−skeleton of the base. The follow-
ing proposition was proved in [McDuff and Salamon (1998)]: A symplectic
bundle π : P → B is Hamiltonian iff the following conditions hold:

(i) the restriction of π to the 1−skeleton B1 of B is symplectically trivial,
and

(ii) there is a cohomology class a ∈ H2(P,R) that restricts to [ωb] on
Mb.

There is no loss of generality in assuming that the bundle π : P → B

is smooth. Then recall from [Guillemin et. al. (1998)] that any 2−form τ

on P that restricts to ωb on each fiber Mb defines a connection 5τ on P

whose horizontal distribution Horτ is just the τ−orthogonal complement
of the tangent spaces to the fibers:

Horτ (x) = {v ∈ TxP : τ(v, w) = 0 for all w ∈ Tx(Mπ(x))}.

Such forms τ are called connection forms. The closedness of τ is a suf-
ficient (but not necessary) condition for the holonomy of 5τ to be sym-
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plectic. A simple argument due to [McDuff and Salamon (1998)] shows
that the cohomological condition (ii) above is equivalent to the existence
of a closed extension τ of the forms ωb. Condition (i) is then equivalent to
requiring that the holonomy of 5τ around any loop in B belongs to the
identity component Symp0(M) of Symp(M). Hence the above result can
be rephrased in terms of such closed extensions τ as follows: A symplectic
bundle π : P → B is Hamiltonian iff the forms ωb on the fibers have a
closed extension τ such that the holonomy of 5τ around any loop in B lies
in the identity component Symp0(M) of Symp(M).

This is a slight extension of a result of [Guillemin et. al. (1998)], who
called a specific choice of τ the coupling form. As we show below, the
existence of τ is the key to the good behavior of Hamiltonian bundles under
composition.

When M is simply connected, Ham(M) is the identity component
Symp0(M) of Symp(M), and so a symplectic bundle is Hamiltonian iff
condition (i) above is satisfied, i.e., iff it is trivial over the 1−skeleton B1.
In this case, as observed by [Gotay et. al. (1983)], it is known that (i)
implies (ii) for general topological reasons to do with the behavior of evalu-
ation maps. More generally, (i) implies (ii) for all symplectic bundles with
fiber (M,ω) iff the flux group Γω vanishes.

4.12.1.2 Hamiltonian Structures

The question then arises as to what a Hamiltonian structure on a fiber
bundle actually is [Lalonde et al. (1998); Lalonde et al. (1999); Lalonde
and McDuff (2002)]. That is, how many Hamiltonian structures can one
put on a given symplectic bundle π : P → B? And, what does one mean
by an automorphism of such a structure?

In homotopy theoretic terms, a Hamiltonian structure on a symplectic
bundle π : P → B is simply a lift g̃ to BHam(M) of the classifying map
g : B → B Symp(M,ω) of the underlying symplectic bundle, i.e., it is a
homotopy commutative diagram
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Hamiltonian structures are in bijective correspondence with homotopy
classes of such lifts. There are two stages to choosing the lift g̃: one first
lifts g to a map ĝ into B Symp0(M,ω), where Symp0 is the identity com-
ponent of Symp, and then to a map g̃ into BHam(M,ω). As we will show
below, choosing ĝ is equivalent to fixing the isotopy class of an identifi-
cation of (M,ω) with the fiber (Mb0 , ωb0) over the base point b0. If B is
simply connected, in particular if B is a single point, there is then a unique
Hamiltonian structure on P , i.e., a unique choice of lift g̃. Before describing
what happens in the general case, we discuss properties of the extensions
τ .

Let τ ∈ Ω2(P ) be a closed extension of the symplectic forms on the
fibers. Given a loop, γ : S1 → B, based at b0, and a symplectic trivialization
Tγ : γ∗(P )→ S1× (M,ω) that extends the given identification of Mb0 with
M , push forward τ to a form (Tγ)∗τ on S1× (M,ω). Its characteristic flow
round S1 is transverse to the fibers and defines a symplectic isotopy φt of
(M,ω) = (Mb0 , ωb0) whose flux, as a map from H1(M) → R, is equal to
(Tγ)∗[τ ]([S1] ⊗ ·). This flux depends only on the cohomology class a of τ .
Moreover, as we mentioned above, any extension a of the fiber class [ω] can
be represented by a form τ that extends the ωb. Thus, given Tγ and an
extension a = [τ ] ∈ H2(P ) of the fiber symplectic class [ω], it makes sense
to define the flux class f(Tγ , a) ∈ H1(M,R) by

f(Tγ , a)(δ) = (Tγ)∗(a)(γ ⊗ δ) for all δ ∈ H1(M).

The equivalence class [f(Tγ , a)] ∈ H1(M,R)/Γω does not depend on the
choice of Tγ : indeed two such choices differ by a loop φ in Symp0(M,ω)
and so the difference

f(Tγ , a)− f(T ′γ , a) = f(Tγ , a) ◦ Trφ = ω ◦ Trφ

belongs to Γω. The following lemma is elementary: If π : P → B is a
symplectic bundle satisfying the above conditions, there is an extension a
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of the symplectic fiber class that has a trivial flux

[f(Tγ , a)] = 0 ∈ H1(M,R)/Γω around each loop γ ∈ B.

An extension a of the symplectic fiber class [ωb0 ] is normalized if it
satisfies the conclusions of the above lemma. Two such extensions a and
a′ are equivalent (in symbols, a ∼ a′) iff they have equal restrictions to
π−1(B1), or, equivalently, iff a− a′ ∈ π∗(H2(B)).

We show below that Hamiltonian structures are in one-to-one corre-
spondence with symplectic trivializations of the 1−skeleton B1 of B, with
two such trivializations being equivalent iff they differ by Hamiltonian
loops. If two trivializations Tγ , T ′γ differ by a Hamiltonian loop φ then
f(Tγ , a)−f(T ′γ , a) = 0. In terms of fluxes of closed extensions, we therefore
get the following theorem: Assume that a symplectic bundle π : P → B can
be symplectically trivialized over B1. Then a Hamiltonian structure exists
on P iff there is a normalized extension a of ω. Such a structure consists of
an isotopy class of symplectomorphisms (M,ω)→ (Mb0 , ωb0) together with
an equivalence class {a} of normalized extensions of the fiber symplectic
class.

In other words, with respect to a fixed trivialization over B1, Hamil-
tonian structures are in one–to–one correspondence with homomorphisms
π1(B)→ Γω , given by the fluxes fγ(T, a) of monodromies round the loops
of the base. We will call {a} the Hamiltonian extension class, and will
denote the Hamiltonian structure on P by the triple (P, π, {a}).

We now turn to the question of describing automorphisms of Hamilto-
nian structures [Lalonde et al. (1998); Lalonde et al. (1999)]. It is conve-
nient to distinguish between symplectic and Hamiltonian automorphisms,
just as we distinguish between Symp(M,ω) and Ham(M,ω) in the case
when B = pt. Notice that if P → B is a symplectic bundle, there is a natu-
ral notion of symplectic automorphism. This is a fiberwise diffeomorphism
Φ : P → P that covers the identity map on the base and restricts on each
fiber to an element Φb of the group Symp(Mb, ωb). Because Ham(M,ω)
is a normal subgroup of Symp(M,ω), it also makes sense to require that
Φb ∈ Ham(Mb, ωb) for each b. Such automorphisms are called Hamiltonian
automorphisms of the symplectic bundle P → B. Let us write Symp(P, π)
and Ham(P, π) for the groups of such automorphisms. Observe that the
group Ham(P, π) may not be connected. Because the fibers of Hamilto-
nian bundles are identified with (M,ω) up to isotopy, we shall also need
to consider the (not necessarily connected) group Symp0(P, π) of symplec-
tomorphisms of (P, π) where Φb ∈ Symp0(Mb, ωb) for one and hence all
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b.
Let us consider automorphisms of Hamiltonian bundles [Lalonde and

McDuff (2002)]. As a guide note that in the trivial case when B = pt, a
Hamiltonian structure on P is an identification of P with M up to sym-
plectic isotopy. Hence the group of automorphisms of this structure can
be identified with Symp0(M,ω). In general, if {a} is a Hamiltonian struc-
ture on (P, π) and Φ ∈ Symp0(P, π) then Φ∗({a}) = {a} iff Φ∗(a) = a for
some a in the class {a}, because Φ induces the identity map on the base
and a − a′ ∈ π∗(H2(B)) when a ∼ a′. We therefore make the following
definition.

Let (P, π, {a}) be a Hamiltonian structure on the symplectic bundle
P → B and let Φ ∈ Symp(P, π). Then Φ is an automorphism of the
Hamiltonian structure (P, π, {a}) if Φ ∈ Symp0(P, π) and Φ∗({a}) = {a}.
The group formed by these elements is denoted by Aut(P, π, {a}).

The following result is not hard to prove, but is easiest to see in the
context of a discussion of the action of Ham(M) on H∗(M).

Let P → B be a Hamiltonian bundle and Φ ∈ Symp0(P, π). Then the
following statements are equivalent [Lalonde and McDuff (2002)]:

(i) Φ is isotopic to an element of Ham(P, π);
(ii) Φ∗({a}) = {a} for some Hamiltonian structure {a} on P ;
(iii) Φ∗({a}) = {a} for all Hamiltonian structures {a} on P .
For any Hamiltonian bundle P → B, the group Aut(P, π, {a}) does not

depend on the choice of the Hamiltonian structure {a} put on P . Moreover,
it contains Ham(P, π) and each element of Aut(P, π, {a}) is isotopic to an
element in Ham(P, π).

The following characterization is now obvious:
Let P be the product B×M and {a} any Hamiltonian structure. Then:
(i) Ham(P, π) consists of all maps from B to Ham(M,ω).
(ii) Aut(P, π, {a}) consists of all maps Φ : B → Symp0(M,ω) for which

the following composition is trivial

π1(B) Φ∗−→ π1(Symp0(M)) Fluxω−→ H1(M,R).

The basic reason why the above proposition holds is that Hamiltonian
automorphisms of (P, π) act trivially on the set of extensions of the fiber
symplectic class. This need not be true for symplectic automorphisms. For
example, if

π : P = S1 ×M → S1
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is a trivial bundle and Φ is given by a non–Hamiltonian loop φ in
Symp0(M), then Φ is in Symp0(P, π) but it preserves no Hamiltonian
structure on P since

Φ∗(a) = a+ [dt]⊗ Flux(φ).

In general, if we choose a trivialization of P over B1, there are exact
sequences

{Id} → Aut(P, π, {a})→ Symp0(P, π)→ Hom(π1(B),Γω)→ {id},
{Id} → Ham(P, π, {a})→ Aut(P, π, {a})→ H1(M,R)/Γω → {0}.

In particular, the subgroup of Aut(P, π, {a}) consisting of automor-
phisms that belong to Ham(Mb0 , ωb0) at the base point b0 retracts to
Ham(P, π, {a}).

4.12.1.3 Marked Hamiltonian Structures

Another approach to characterizing a Hamiltonian structure is to define it
in terms of a structure on the fiber that is preserved by elements of the
Hamiltonian group [Lalonde and McDuff (2002)].

The so–called marked symplectic manifold (M,ω, [L]) is a pair consisting
of a closed symplectic manifold (M,ω) together with a marking [L]. Here
L is a collection {`1, . . . , `k} of loops `i : S1 → M in M that projects
to a minimal generating set GL = {[`1], . . . , [`k]} for H1(M,Z)/torsion. A
marking [L] is an equivalence class of generating loops L, where L ∼ L′ if
for each i there is an singular integral 2−chain ci whose boundary modulo
torsion is `′i − `i such that

∫
ci
ω = 0.

The symplectomorphism group acts on the space L of markings. More-
over, it is easy to check that if a symplectomorphism φ fixes one marking
[L] it fixes them all. Hence the group

LHam(M,ω) = LHam(M,ω, [L]) = {φ ∈ Symp(M,ω) : φ∗[L] = [L]}

independent of the choice of [L]. Its identity component is Ham(M,ω).
There is a forgetful map [L] → GL from the space L of markings to

the space of minimal generating sets for the group H1(M,Z), and it is not
hard to check that its fiber is (R/P)k, where is the image of the period
homomorphism

I[ω] : H2(M,Z)→ R.
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If P is not discrete, there is no nice topology one can put on L. However, it
has a pseudotopology, i.e., one can specify which maps of finite polyhedra
X into L are continuous, namely: f : X → L is continuous iff every x ∈ X
has a neighborhood Ux such that f : Ux → L lifts to a continuous map into
the space of generating loops L.

Now, let us fix a marking [L] on (M,ω). A Hamiltonian structure on
a symplectic bundle π : P → B is an isotopy class of symplectomorphisms
(M,ω, [L])→ (Mb0 , ωb0 , [L0]) together with a continuous choice of marking
[Lb] on each fiber (Mb, ωb) that is trivial over the 1−skeleton B1 of B in
the sense that there is a symplectic trivialization

Φ : π−1(B1)→ B1 × (M,ω, [L])

that respects the markings on each fiber.
Here is another way of thinking of a Hamiltonian structure due to

Polterovich. He observed that there is an exact sequence

0→ R/P → SH1(M,ω)→ H1(M,Z)→ 0,

where SH1(M,ω) is the so–called strange homology group formed by quo-
tienting the space of integral 1−cycles by the image under d of the space of
integral 2−chains with zero symplectic area. The group Symp(M,ω) acts
on SH1(M,ω). Moreover, if φ ∈ Symp0(M) and ã ∈ SH1(M) projects to
a ∈ H1(M), then φ∗(ã) − ã ∈ R/P can be thought of as the value of the
class Flux(φ) ∈ H1(M,R)/Γω on a. It is easy to see that LHam(M,ω) is
the subgroup of Symp(M,ω) that acts trivially on SH1(M,Z). Further, a
marking on (M,ω) is a pair consisting of a splitting of the above sequence
together with a generating set L for H1(M,Z)/torsion.

Given any symplectic bundle P −→ B there is an associated bundle of
abelian groups with fiber SH1(M,ω). A Hamiltonian structure on P −→ B

is a flat connection on this bundle that is trivial over the 1-skeleton B1,
under an appropriate equivalence relation.

These ideas can obviously be generalized to bundles that are not trivial
over the 1−skeleton. Equivalently, one can consider bundles with discon-
nected structural group. This group could be the whole of LHam(M,ω).
One could also restrict to elements acting trivially on H∗(M) and/or to
those that act trivially on the groups

SH2k−1(M,ω) =
integral (2k − 1)−cycles

d(2k−chains in the kernel of ωk)
.
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These generalizations of SH1(M,ω) are closely connected to Reznikov’s
Futaki type characters [Reznikov (1997)]. It is not yet clear what is the
most natural disconnected extension of Ham(M,ω).

4.12.1.4 Stability

Another important property of Hamiltonian bundles is stability [Lalonde
and McDuff (2002)]. A symplectic (resp. Hamiltonian) bundle π : P → B

with fiber (M,ω) is said to be stable if π may be given a symplectic (resp.
Hamiltonian) structure with respect to any symplectic form ω′ on M that
is sufficiently close to (but not necessarily cohomologous to) ω, in such a
way that the structure depends continuously on ω′.

Using Moser’s homotopy argument , it is easy to prove that any symplec-
tic bundle is stable. The following characterization of Hamiltonian stability
is an almost immediate consequence of above theorem:

A Hamiltonian bundle π : P → B is stable iff the restriction map
H2(P,R)→ H2(M,R) is surjective.

The following result is less immediate: Every Hamiltonian bundle is
stable.

The proof uses the (difficult) stability property for Hamiltonian bundles
over S2 that was established in [Lalonde et al. (1999); McDuff (2000)] as
well as the (easy) fact that the image of the evaluation map π2(Ham(M))
−→ π2(M) lies in the kernel of [ω].

4.12.1.5 Cohomological Splitting

We next extend the splitting results of [Lalonde et al. (1999); McDuff
(2000)], which prove that the rational cohomology of every Hamiltonian
bundle π : P → S2 splits additively, i.e., there is an additive isomorphism

H∗(P ) ∼= H∗(S2)⊗H∗(M).

For short we will say in this situation that π is c−split. This is a deep
result, that requires the use of Gromov–Witten invariants for its proof.16

The results of the present subsection provide some answers to the following
16Recall that Gromov–Witten invariants are rational numbers that count pseudo–

holomorphic curves meeting prescribed conditions in a given symplectic manifold. These

invariants may be packaged as a homology or cohomology class in an appropriate space,

or as the deformed cup product of quantum cohomology. They have been used to dis-
tinguish symplectic manifolds that were previously indistinguishable. They also play a

crucial role in closed type IIA string theory.
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question [Lalonde and McDuff (2002)]: Does any Hamiltonian fiber bundle
over a compact CW–complex c−split?

A special case is when the structural group of P → B can be reduced
to a compact Lie subgroup G of Ham(M). Here c−splitting over any base
follows from the work of Atiyah–Bott [Atiyah and Bott (1984)]. In this
context, one usually discusses the universal Hamiltonian G−bundle with
fiber M

M −→ MG = EG×GM −→ BG.

The cohomology of P = MG is known as the equivariant cohomology
H∗
G(M) of M . Atiyah–Bott show that if G is a torus T that acts in a

Hamiltonian way on M then the bundle MT → BT is c−split. The result
for a general compact Lie group G follows by standard arguments [Lalonde
and McDuff (2002)].

The following theorem describes conditions on the base B that imply
c−splitting. Let (M,ω) be a closed symplectic manifold, and M ↪→ P → B

a bundle with structure group Ham(M) and with base a compact CW–
complex B. Then the rational cohomology of P splits in each of the follow-
ing cases:

(i) the base has the homotopy type of a coadjoint orbit or of a product of
spheres with at most three of dimension 1;

(ii) the base has the homotopy type of a complex blow up of a product of
complex projective spaces;

(iii) dim(B) ≤ 3.

Case (ii) is a generalization of the foundational example B = S2 and is
proved by similar analytic methods. The idea is to show that the map
ι : H∗(M) → H∗(P ) is injective by showing that the image ι(a) in P

of any class a ∈ H∗(M) can be detected by a nonzero Gromov–Witten
invariant of the form nP (ι(a), c1, . . . , cn;σ), where ci ∈ H∗(P ) and σ ∈
H2(P ) is a spherical class with nonzero image in H2(B). The proof should
generalize to the case when all one assumes about the base is that there is a
nonzero invariant of the form nB(pt, pt, c1, . . . , ck;A) [Lalonde et al. (1998);
Lalonde et al. (1999)].

The proofs of parts (i) and (iii) start from the fact of c−splitting over
S2 and proceed using purely topological methods. The following fact about
compositions of Hamiltonian bundles is especially useful. Let M ↪→ P →
B be a Hamiltonian bundle over a simply connected base B and assume
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that all Hamiltonian bundles over M as well as over B c−split. Then
any Hamiltonian bundle over P c−splits too.17 This provides a powerful
recursive argument which allows one to establish c−splitting over CPn by
induction on n, and is an essential tool in all arguments here [Lalonde and
McDuff (2002)].

It is natural to wonder whether c−splitting is a purely homotopy–
theoretic property. A c−symplectic manifold (M,aM ) is defined to be a
2n−manifold together with a class aM ∈ H2(M) such that anM > 0. In view
of above theorem one could define a c−Hamiltonian bundle over a simply
connected base manifold B to be a bundle P → B with c−symplectic fiber
(M,aM ) in which the symplectic class aM extends to a class a ∈ H2(P ).
A variety of results about symplectic torus actions were discussed in [All-
day (1998)], some of which do extend to the c−symplectic case and some
of which do not. The next lemma shows that c−splitting in general
is a geometric rather than a homotopy–theoretic property: There is a
c−Hamiltonian bundle over S2 that is not c−split.

It is also worth noting that it is essential to restrict to finite dimensional
spaces: c−splitting does not always hold for ‘Hamiltonian’ bundles with
infinite dimensional fiber [Lalonde and McDuff (2002)].

4.12.1.6 Homological Action of Ham(M) on M

The action Ham(M)×M →M gives rise to mutually dual maps [Lalonde
and McDuff (2002)]

Trφ : Hk(Ham(M))⊗H∗(M) −→ Hk+∗(M), (φ,Z) 7→ Trφ(Z), and

Tr∗φ : Hk(Ham(M))→ Hom(H∗(M),H∗−k(M)), (k ≥ 0).

In this language, the flux of a loop φ ∈ π1(Ham(M)) is precisely the ele-
ment Tr∗φ([ω]) ∈ H1(M). (Here we should use real rather than rational coef-
ficients so that [ω] ∈ H∗(M).) The following result is a consequence of above
theorem: The maps Trφ and Tr∗φ are zero for all φ ∈ Hk(Ham(M)), k > 0.

The argument goes as follows. Recall that the cohomology ring of
Ham(M) is generated by elements dual to its homotopy. It therefore suf-
fices to consider the restriction of Trk to the spherical elements φ. But
in this case it is not hard to see that the Trk are precisely the connect-
ing homomorphisms in the Wang sequence of the bundle Pφ → Sk+1 with
clutching function φ. These vanish because all Hamiltonian bundles over

17This fact is based on the characterization of Hamiltonian bundles in terms of closed

extensions of the symplectic form.
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spheres are c−split [Lalonde and McDuff (2002)].
In particular, looking at the action on H0(M), we see that the point

evaluation map

ev : Ham(M)→M : ψ 7→ ψ(x)

induces the trivial map on rational (co)homology. It also induces the trivial
map on π1. However, the map on πk, k > 1, need not be trivial. To see this,
consider the action of Ham(M) on the symplectic frame bundle SFr(M)
of M and the corresponding point evaluation maps. The obvious action of
SO(3) ' Ham(S2) on SFr(S2) ' RP3 induces an isomorphism

H3(SO(3)) ∼= H3(SFr(S2)),

showing that these evaluation maps are not homologically trivial. Moreover,
its composite with the projection SFr(S2) → S2 gives rise to a nonzero
map

π3(SO(3)) = π3(Ham(S2))→ π3(S2).

Thus the corresponding Hamiltonian fibration over S4 with fiber S2, though
c−split, does not have a section.

Note, however, that the extended evaluation map

π2`(XX) ev→ π2`(X)→ H2`(X,Q), ` > 0,

is always zero, if X is a finite CW complex and XX is its space of self–
maps. Indeed, because the cohomology ring H∗(XX ,Q) is freely generated
by elements dual to π∗(XX) ⊗ Q, there would otherwise be an element
a ∈ H2`(X) that would pull back to an element of infinite order in the
cohomology ring of the H−space XX . Hence a itself would have to have
infinite order, which is impossible. A more delicate argument shows that
the integral evaluation π2`(XX)→ H2`(X,Z) is zero [Gottlieb (1975)].

A Hamiltonian automorphism of the product Hamiltonian bundle B ×
M → B is simply a map B → B × Ham(M) of the form b 7→ (b, φb). If
B is a closed manifold we will see that any Hamiltonian automorphism of
the product bundle acts as the identity map on the rational cohomology
of B ×M . The natural generalization of this result would claim that a
Hamiltonian automorphism of a bundle P acts as the identity map on the
rational cohomology of P . We do not know yet whether this is true in
general. However, we can show that it is closely related to the c−splitting
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of Hamiltonian bundles. Thus we can establish it only under conditions
similar to the conditions under which c−splitting holds.

4.12.1.7 General Symplectic Bundles

Consider the Wang sequence for a symplectic bundle π : P → S2 with
clutching map φ ∈ π1(Symp(M)):

· · · −→ Hk(M) ∂−→ Hk−1(M) u−→ Hk+1(P ) restr−→ Hk+1(M) −→ · · ·

Here the map u may be realized in de Rham cohomology by choosing any
extension of a given closed form α on M and then wedging it with the
pullback of a normalized area form on the base. Further, as pointed out
above, the boundary map ∂ = ∂φ is just Tr∗φ. Therefore, the bundle is
Hamiltonian iff

Tr∗φ([ω]) = ∂([ω]) = 0.

In the Hamiltonian case the above splitting theorem implies that ∂ is identi-
cally 0. In the general case, we know that the map ∂ : H∗(M)→ H∗−1(M)
is a derivation, i.e.,

∂(ab) = ∂(a)b+ (−1)deg(a)a∂(b).

The following result is an easy consequence of the fact that the action of

π2(Ham(M)) = π2(Symp(M)) on H∗(M)

is trivial: The boundary map ∂ in the Wang rational cohomology sequence
of a symplectic bundle over S2 has the basic property: ∂ ◦ ∂ = 0.

The above result holds trivially when φ corresponds to a smooth (not
necessarily symplectic) S1−action since then ∂ is given in the de Rham
cohomology by contraction ιX by the generating vector field X. Moreover,
the authors know of no smooth bundle over S2 for which the above proposi-
tion does not hold, though it is likely that they exist. Such a bundle would
have no extension over CP2.

One consequence is the following result about the boundary map ∂ = ∂φ
in the case when the loop φ is far from being Hamiltonian. Recall (e.g.,
from [Lalonde et al. (1999)]) that π1(Ham(M)) is included in (but not
necessarily equal to) the kernel of the evaluation map π1(Symp(M)) →
π1(M). Any loop whose evaluation is homologically essential can therefore



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Applied Bundle Geometry 637

be thought of as ‘very non–Hamiltonian’. We have the following corollary:

Ker ∂ = Im ∂

iff the image of φ under the evaluation map π1(Symp(M))→ H1(M,Q) is
nonzero. A similar result was obtained by [Allday (1998)] concerning S1

actions on c−symplectic manifolds. He was considering manifolds M that
satisfy the weak Lefschetz condition, i.e., manifolds such that

∧[ω]n−1 : H1(M,R)→ H2n−1(M,R)

is an isomorphism, in which case every non–Hamiltonian loop is ‘very non–
Hamiltonian’.

4.12.1.8 Existence of Hamiltonian Structures

Geometric proofs (such as those in [McDuff and Salamon (1998)]) apply
when P and B are smooth manifolds and π is a smooth surjection. However,
as the following lemma makes clear, this is no restriction.

Suppose that π : Q → W is a locally trivial bundle over a finite CW
complex W with compact fiber (M,ω) and suppose that the structural
group G is equal either to Symp(M,ω) or to Ham(M,ω). Then there
is a smooth bundle π : P → B as above with structural group G and a
homeomorphism f of W onto a closed subset of B such that π : Q→W is
homeomorphic to the pullback bundle f∗(P )→W .

Let us embed W into some Euclidean space and let B be a suitable small
neighborhood of W . Then W is a retract of B so that the classifying map
W → BG extends to B. It remains to approximate this map B → BG

by a smooth map. To get a relation between the existence of the class a
and the structural group it seems necessary to use the idea of a symplectic
connection. We begin with an easy lemma.

Let P → B be a symplectic bundle with closed connection form τ . Then
the holonomy of the corresponding connection 5τ round any contractible
loop in B is Hamiltonian.

To prove it, suffices to consider the case when B = D2. Then the
bundle π : P → D2 is symplectically trivial and so may be identified with
the product D2 ×M in such a way that the symplectic form on each fiber
is simply ω. Use this trivialization to identify the holonomy round the
loop s 7→ e2πis ∈ ∂D2 with a family of diffeomorphisms Φs : M → M, s ∈
[0, 1]. Since this holonomy is simply the flow along the null directions (or
characteristics) of the closed form τ on the hypersurface ∂P , a standard
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calculation shows that the Φs are symplectomorphisms. Given a 1−cycle
δ : S1 →M in the fiber M over 1 ∈ ∂D2, consider the closed 2−cycle that
is the union of the following two cylinders:

c1 : [0, 1]× S1 → ∂D2 ×M : (s, t) 7→ (e2πis,Φs(δ(t))),

c2 : [0, 1]× S1 → 1×M : (s, t) 7→ (1,Φ1−s(δ(t))).

This cycle is obviously contractible. Hence,

τ(c1) = −τ(c2) = Flux({Φs})(δ).

But τ(c1) = 0 since the characteristics of τ |∂P are tangent to c1. Applying
this to all δ, we see that the holonomy round ∂D2 has zero flux and so is
Hamiltonian.

If π1(B) = 0 then a symplectic bundle π : P → B is Hamiltonian iff the
class [ωb] ∈ H2(M) extends to a ∈ H∗(P ).

Suppose first that the class a exists. We can work in the smooth cate-
gory. Then Thurston’s convexity argument allows us to construct a closed
connection form τ on P and hence a horizontal distribution Horτ . The
previous lemma shows that the holonomy around every contractible loop
in B is Hamiltonian. Since B is simply connected, the holonomy round all
loops is Hamiltonian. Using this, it is easy to reduce the structural group of
P → B to Ham(M). For more details, see [McDuff and Salamon (1998)].

Next, suppose that the bundle is Hamiltonian. We need to show that
the fiber symplectic class extends to P . The proof in [McDuff and Salamon
(1998)] does this by the method of [Guillemin et. al. (1998)] and constructs
a closed connection form τ , called the coupling form, starting from a con-
nection with Hamiltonian holonomy. This construction uses the curvature
of the connection and is quite analytic. In contrast, we shall now use topo-
logical arguments to reduce to the cases B = S2 and B = S3. These cases
are then dealt with by elementary arguments.

Consider the Leray–Serre cohomology spectral sequence for M → P →
B. Its E2 term is a product: Ep,q2 = Hp(B)⊗Hq(M).18 We need to show
that the class [ω] ∈ E0,2

2 survives into the E∞ term, which happens iff it is
in the kernel of the two differentials d0,2

2 , d0,2
3 . Now

d0,2
2 : H2(M)→ H2(B)⊗H1(M)

is essentially the same as the flux homomorphism. More precisely, if c :
S2 → B represents some element (also called c) in H2(B), then the pullback

18Here H∗ denotes cohomology over R.
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of the bundle π : P → B by c is a bundle over S2 that is determined by
a loop φc ∈ π1(Ham(M)) that is well defined up to conjugacy. Moreover,
for each λ ∈ H1(M),

d0,2
2 ([ω])(c, λ) = Tr∗φc(λ),

where Tr∗ is as above. Hence d0,2
2 ([ω]) = 0 because φc is Hamiltonian

[Lalonde and McDuff (2002)].
To deal with d3 observe first that because the inclusion of the 3−skeleton

B3 into B induces an injection Hq(B) → Hq(B3) for q ≤ 3, d0,2
3 ([ω])

vanishes in the spectral sequence for P → B if it vanishes for the pullback
bundle over B3. Therefore we may suppose that B is a 3−dimensional
CW–complex whose 2−skeleton B2 is a wedge of 2 spheres, as π1(B) = 0.
Further, we can choose the cell decomposition so that the first k 3−cells
span the kernel of the boundary map C3 → C2 in the cellular chain complex
of B3. Because H2(B2) = π2(B2), the attaching maps of these first k−cells
are null homotopic. Hence there is a wedge B′ of 2−spheres and 3−spheres
and a map B′ → B3 that induces a surjection on H3. It therefore suffices
to show that d0,2

3 ([ω]) vanishes in the pullback bundle over B′. This will
clearly be the case if it vanishes in every Hamiltonian bundle over S3.

Now, a Hamiltonian fiber bundle over S3 is determined by a map

I2/∂I2 = S2 −→ Ham(M) : (s, t) 7→ φs,t,

and it is easy to see that d0,2
3 ([ω]) = 0 exactly when the the evaluation map

evx : Ham(M) −→M : φ 7→ φ(x)

takes π2(Ham(M)) into the kernel of ω.
Given a smooth map Ψ : (I2, ∂I2) → (Ham(M), Id) and x ∈ M , let

Ψx : (I2, ∂I2) → M be the composite of Ψ with evaluation at x. Then we
have ∫

I2
(Ψx)∗ω = 0, for all x ∈M.

For each s, t let Xs,t (resp. Ys,t) be the Hamiltonian vector field on M

that is tangent to the flow of the isotopy s 7→ Ψx(s, t), (resp. t 7→ Ψx(s, t).)
Then ∫

I2
(Ψx)∗ω =

∫ ∫
ω(Xs,t(Ψx(s, t)), Ys,t(Ψx(s, t))) dsdt.
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The first observation is that this integral is a constant c that is independent
of x, since the maps Ψx : S2 →M are all homotopic. Secondly, recall that
for any Hamiltonian vector fields X,Y on M∫

M

ω(X,Y )ωn = n

∫
M

ω(X, ·)ω(Y, ·)ωn−1 = 0,

since ω(X, ·), ω(Y, ·) are exact 1−forms. Taking Xs,t = Xs,t(Ψx(s, t)) and
similarly for Y , we have∫

c ωn =
∫
I2

(∫
M

ω(Xs,t, Ys,t)ωn
)
ds dt = 0.

Hence c = 0. This lemma can also be proved by purely topological methods
[Lalonde and McDuff (2002)].

Suppose that πB : P → B is Hamiltonian. It is classified by a map
B → BHam(M). Because BHam(M) is simply connected this factors
through a map C → BHam(M), where C is obtained by collapsing the
1−skeleton of B to a point. In particular condition (i) is satisfied. To
verify (ii), let πC : Q → C be the corresponding Hamiltonian bundle, so
that there is a commutative diagram

B C = B/B1
-

P Q-

?

πB

?

πC

There is a class aC ∈ H2(Q) that restricts to [ω] on the fibers. Its pullback
to P is the desired class a.

Conversely, suppose that conditions (i) and (ii) are satisfied. By (i),
the classifying map B → B Symp(M) factors through a map f : C →
B Symp(M), where C is as above. This map f depends on the choice of a
symplectic trivialization of π over the 1−skeleton B1 of B. We now show
that f can be chosen so that (ii) holds for the associated symplectic bundle
Qf → C.

We need to show that the differentials (dC)0,22 , (dC)0,23 in the spectral
sequence for Qf → C both vanish on [ω]. Let

· · · → Ck(B) ∂→ Ck−1(B)→ · · ·

be the cellular chain complex for B, and choose 2−cells e1, . . . , ek in B

whose attaching maps α1, . . . , αk form a basis over Q for the image of ∂
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in C1(B). Then the obvious maps Ck(B)→ Ck(C) (which are the identity
for k > 1) give rise to an isomorphism

H2(B,Q)
⊕
⊕iQ[ei] ∼= H2(C,Q).

By the naturality of spectral sequences, the vanishing of (dB)0,22 ([ω]) implies
that (dC)0,22 ([ω]) vanishes on all cycles in H2(C,Q) coming from H2(B,Q).
Therefore we just need to check that it vanishes on the cycles ei. For this,
we have to choose the trivialization over B1 so that its pullback by each αi
gives rise to a Hamiltonian bundle over ei. For this it would suffice that its
pullback by each αi is the “natural trivialization”, i.e the one that extends
over the 2-cell ei. To arrange this, choose any symplectic trivialization over
B1 = ∨jγj . Then comparing this with the natural trivialization gives rise
to a homomorphism

Φ : ⊕iZei → π1Symp(M,Z) Flux−→ H1(M,R).

Since the boundary map ⊕iZei → C1(B) ⊗ Q is injective, we can now
change the chosen trivializations over the 1−cells γj in B1 to make Φ = 0.

This ensures that d0,2
2 = 0 in the bundle over C. Since the map

Hq(C) → Hq(B) is an isomorphism when q ≥ 3, the vanishing of d0,2
3

for B implies that it vanishes for C. Therefore (ii) holds for Q → C. By
the previous result, this implies that the structural group of Q→ C reduces
to Ham(M). Therefore, the same holds for P → B.

So we have established the following result [Lalonde and McDuff (2002)]:
Let C be the CW complex obtained by collapsing the 1−skeleton of B to a
point and f : B → C be the obvious map. Then any Hamiltonian bundle
P → B is the pullback by f of some Hamiltonian bundle over C.

The above theorem shows that there are two obstructions to the ex-
istence of a Hamiltonian structure on a symplectic bundle. Firstly, the
bundle must be symplectically trivial over the 1−skeleton B1, and secondly
the symplectic class on the fiber must extend. The first obstruction obvi-
ously depends on the 1−skeleton B1 while the second, in principle, depends
on its 3−skeleton (since we need d2 and d3 to vanish on [ω]). However, in
fact, it only depends on the 2−skeleton, as is shown in the following lemma:
Every symplectic bundle over a 2−connected base B is Hamiltonian. Note
that we just have to show that d0,2

3 ([ω]) = 0. Alternatively, let Symp0 (resp.
H̃am) denote the universal cover of the group Symp0 = Symp0(M,ω) (resp
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Ham(M)), and set πS = π1(Symp0) so that there are fibrations

H̃am→ Symp0
Flux→ H1(M,R), B(πS)→ B Symp0 → B Symp0.

The existence of the first fibration shows that H̃am is homotopy equivalent
to Symp0 so that B H̃am ' B Symp0, while the second implies that there
is a fibration

B Symp0 → B Symp0 → K(πS , 2),

where K(πS , 2) is an Eilenberg–MacLane space. A symplectic bundle over
B is equivalent to a homotopy class of maps B → B Symp0. If B is
2−connected, the composite B → B Symp0 → K(πS , 2) is null homotopic,
so that the map B → B Symp0 lifts to B Symp0 and hence to the homo-
topic space B H̃am. Composing this map B → B H̃am with the projection
B H̃am → BHam we get a Hamiltonian structure on the given bundle
over B.

Equivalently, use the existence of the fibration H̃am → Symp0 →
H1(M,R) to deduce that the subgroup π1(Ham) of H̃am injects
into π1(Symp0). This implies that the relative homotopy groups
πi(Symp0,Ham) vanish for i > 1, so that

πi(B Symp0, B Ham) = πi−1(Symp0,Ham) = 0, (i > 2).

The desired conclusion now follows by obstruction theory . The second proof
does not directly use the sequence

0 −→ Ham −→ Symp0 −→ H1/Γω −→ 0,

since the flux group Γω may not be a discrete subgroup of H1.

4.12.1.9 Classification of Hamiltonian Structures

The previous subsection discussed the question of the existence of Hamilto-
nian structures on a given bundle. We now look at the problem of describing
and classifying them.

Let π : P → B be a symplectic bundle satisfying the above condi-
tions and fix an identification of (M,ω) with (Mb0 , ωb0). Let a be any
closed extension of [ω], γ1, . . . , γk be a set of generators of the first rational
homology group of B, {ci} the dual basis of H1(B) and T1, . . . , Tk sym-
plectic trivializations round the γi. Assume for the moment that each class
f(Ti, a) ∈ H1(Mb0) = H1(M) has an extension f̃(Ti, a) to P . Subtracting
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from a the class
∑k
i=1 π

∗(ci) ∪ f̃(Ti, a), we get a closed extension a′ whose
corresponding classes f(Ti, a′) belong to Γω.

There remains to prove that the extensions of the f(Ti, a)’s exist in
Hamiltonian bundles. It is enough to prove that the fiber inclusion M → P

induces an injection on the first homology group. One only needs to prove
this over the 2−skeleton B2 of B, and we can assume as well that B2 is a
wedge of 2−spheres. Hence this is a consequence of the easy fact that the
evaluation of a Hamiltonian loop on a point of M gives a 1−cycle of M
that is trivial in rational homology, i.e., that the differential d0,1

2 vanishes in
the cohomology spectral sequence for P → B (see [Lalonde et al. (1999)],
where this is proved by elementary methods).

The following result extends the above lemma: Let P → B be a sym-
plectic bundle with a given symplectic trivialization of P over B1, and let
a ∈ H2(P ) be a normalized extension of the fiber symplectic class. Then
the restriction of a to π−1(B1) defines and is defined by a homomorphism
Φ from π1(B) to Γω.

As above, we can use the given trivialization to identify the holonomy
round some loop s 7→ γ(s) ∈ B1 with a family of symplectomorphisms
Φγs : M → M, s ∈ [0, 1]. Given a 1−cycle δ : S1 → M in the fiber M over
1 ∈ ∂D2, consider the closed 2−cycle C(γ, δ) = c1 ∪ c2 as before. Since
τ(c1) = 0,

τ(C(γ, δ)) = τ(c2) = −Flux({Φγs})(δ).

If we now set

Φ(γ) = −Flux({Φγs}),

it is easy to check that Φ is a homomorphism [Lalonde and McDuff (2002)].
Its values are in Γω by the definition of normalized extension classes.

The next task is to prove the above theorem that characterizes Hamilto-
nian structures. Thus we need to understand the homotopy classes of lifts g̃
of the classifying map g : B → B Symp(M,ω) of the underlying symplectic
bundle to BHam(M). We first consider the intermediate lift ĝ of g into
B Symp0(M,ω). In view of the fibration sequence

π0(Symp)→ B Symp0 → B Symp→ B(π0(Symp))

in which each space is mapped to the homotopy fiber of the subsequent map,
a map g : B → B Symp lifts to ĝ : B → B Symp0 iff the symplectic bundle
given by g can be trivialized over the 1−skeleton B1 of B. Moreover such
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lifts are in bijective correspondence with the elements of π0(Symp) and so
correspond to an identification (up to symplectic isotopy) of (M,ω) with
the fiber (Mb0 , ωb0) at the base point b0 (recall that B is always assumed
to be connected).

To understand the full lift g̃, recall the above exact sequence

{Id} −→ Ham(M,ω) −→ Symp0(M,ω) Flux−→ H1(M,R)/Γω −→ {0}.

If Γω is discrete, then the space H1(M,R)/Γω is homotopy equivalent to a
torus and we can investigate the liftings g̃ by homotopy theoretic arguments
about the fibration

H1(M,R)/Γω → BHam(M,ω)→ B Symp0(M,ω).

Now, suppose that a symplectic bundle π : P → B is given that satis-
fies the above conditions. Fix an identification of (M,ω) with (Mb0 , ωb0).
We have to show that lifts from B Symp0 to BHam are in bijective corre-
spondence with equivalence classes of normalized extensions a of the fiber
symplectic class. There is a lift iff there is a normalized extension class
a. Therefore, it remains to show that the equivalence relations correspond.
The essential reason why this is true is that the induced map

πi(Ham(M,ω))→ πi(Symp0(M,ω))

is an injection for i = 1 and an isomorphism for i > 1. This, in turn, follows
from the exactness of the sequence (∗).

{Id} −→ Ham(M,ω) −→ Symp0(M,ω) Flux−→ H1(M,R)/Γω −→ {0}.

Let us spell out a few more details, first when B is simply connected.
Then the classifying map from the 2−skeleton B2 to B Symp0 has a lift to
BHam iff the image of the induced map

π2(B2)→ π2(B Symp0(M)) = π1Symp0(M)

lies in the kernel of the flux homomorphism

Flux : π1(Symp0(M)) −→ Γω.

Since π1(Ham(M,ω)) injects into π1(Symp0(M,ω)), there is only one such
lift up to homotopy. Standard arguments now show that this lift can be
extended uniquely to the rest of B. Hence in this case there is a unique
lift. Correspondingly there is a unique equivalence class of extensions a
[Lalonde and McDuff (2002)].
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Now let us consider the general case: We are given a map g : B →
B Symp0 and want to identify the different homotopy classes of liftings of
g to BHam. Let C = B/B1 as above. There is a symplectic trivialization
T over B1 that is compatible with the given identification of the base fiber
and induces a map C → B Symp0 which lifts to BHam. Since this lifting
gT,C of C → B Symp0 is unique, each isotopy class T of such trivializations
over B1 gives rise to a unique homotopy class gT of maps B → BHam,
namely

gT : B −→ C
gT,C−→ BHam.

Note that gT is a lifting of f and that every lifting occurs this way.
Standard arguments show that two such isotopy classes differ by a ho-

momorphism

π1(B) −→ π1(Symp0).

Moreover, the corresponding maps gT and g′T are homotopic iff T and T ′

differ by a homomorphism with values in π1(Ham). Thus homotopy classes
of liftings of g to BHam are classified by homomorphisms π1(B) → Γω.
These homomorphisms are precisely what defines the equivalence classes of
extensions a.

4.12.2 Properties of General Hamiltonian Bundles

The key to extending results about Hamiltonian bundles over S2 to higher–
dimensional bases is their functorial properties, in particular their behavior
under composition. Before discussing this, it is useful to establish the fact
that this class of bundles is stable under small perturbations of the sym-
plectic form on M [Lalonde and McDuff (2002)].

4.12.2.1 Stability

Moser’s argument implies that for every symplectic structure ω on M there
is a Serre fibration

Symp(M,ω) −→ Diff(M) −→ Sω,

where Sω is the space of all symplectic structures on M that are diffeo-
morphic to ω. At the level of classifying spaces, this gives a homotopy
fibration

Sω ↪→ BSymp(M,ω) −→ BDiff(M).
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Any smooth fiber bundle P → B with fiber M is classified by a map B →
BDiff(M), and isomorphism classes of symplectic structures on it with
fiber (M,ω) correspond to homotopy classes of sections of the associated
fibration W (ω)→ B with fiber Sω. We will suppose that π is described by
a finite set of local trivializations Ti : π−1(Vi)→ Vi×M with the transition
functions φij : Vi ∩ Vj → Diff(M).

Suppose that M → P → B is a smooth fibration constructed from a
cocycle (T,φij) with the following property: there is a symplectic form ω

on M such that for each x ∈ M the convex hull of the finite set of forms
{φ∗ij(ω) : x ∈ Vi ∩ Vj} lies in the set Sω of symplectic forms diffeomorphic
to ω. Then (M,ω) → P → B may be given the structure of a symplectic
bundle [Lalonde and McDuff (2002)].

It suffices to construct a section σ of W (ω)→ B. The hypothesis implies
that for each x the convex hull of the set of forms Ti(x)∗(ω), x ∈ Vi, lies in
the fiber of W (ω) at x. Hence we may take σ(x) = ρiT

∗
i (ω), where ρi is a

partition of unity subordinate to the cover Vi.
Let P −→ B be a symplectic bundle with closed fiber (M,ω) and com-

pact base B. There is an open neighborhood of ω in the space (M) of all
symplectic forms on M such that, for all ω′ ∈ U , the structural group of
π : P −→ B may be reduced to Symp(M,ω′).

Trivialize P −→ B so that φ∗ij(ω) = ω for all i, j. Then the hypothesis
of the lemma is satisfied for all ω′ sufficiently close to ω by the openness of
the symplectic condition.

Thus the set π(M) of symplectic forms on M , with respect to which π is
symplectic, is open. The aim of this section is to show that a corresponding
statement is true for Hamiltonian bundles. The following example shows
that the Hamiltonian property need not survive under large perturbations
of ω.

Here is an example of a smooth family of symplectic bundles that is
Hamiltonian at all times 0 ≤ t < 1 but is non–Hamiltonian at time 1. Let
ht (0 ≤ t ≤ 1) be a family of diffeomorphisms of M with h0 = Id and define

Q = M × [0, 1]× [0, 1]/(x, 1, t) ≡ (ht(x), 0, t).

Thus we can think of Q as a family of bundles π : Pt → S1 with monodromy
ht at time t. It was shown in [Seidel (1997)] that there are smooth families of
symplectic forms ωt and diffeomorphisms ht ∈ Symp(M,ωt) for t ∈ [0, 1]
such that ht is not in the identity component of Symp(M,ωt) for t = 1
but is in this component for t < 1. For such ht each bundle Pt → S1 is
symplectic. Moreover, it is symplectically trivial and hence Hamiltonian
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for t < 1 but is non–Hamiltonian at t = 1.
We have the following result [Lalonde and McDuff (2002)]: A Hamilto-

nian bundle π : P → B is stable iff the restriction map H2(P ) → H2(M)
is surjective. If π : P → B is Hamiltonian with respect to ω′ then [ω′] is in
the image of H2(P )→ H2(M). If π is stable, then [ω′] fills out a neighbor-
hood of [ω] which implies surjectivity. Conversely, suppose that we have
surjectivity. To check (i) let γ : S1 → B be a loop in B and suppose that
γ∗(P ) is identified symplectically with the product bundle S1 × (M,ω).
Let ωt, 0 ≤ t ≤ ε, be a (short) smooth path with ω0 = ω. Then, because
P → B has the structure of an ωt−symplectic bundle for each t, each fiber
Mb has a corresponding smooth family of symplectic forms ωb,t of the form
g∗b,tψ

∗
b(ωt), where ψb is a symplectomorphism (Mb, ωb) → (M,ω). Hence,

for each t, γ∗(P ) can be symplectically identified with

∪s∈[0,1]({s} × (M, g∗s,t(ωt))), where g∗1,t(ωt) = ωt

and the gs,t lie in an arbitrarily small neighborhood U of the identity in
Diff(M). By Moser’s homotopy argument, we can choose U so small that
each g1,t is isotopic to the identity in the group Symp(M,ωt).

Now, the pullback of a stable Hamiltonian bundle is stable [Lalonde and
McDuff (2002)]. Suppose that P −→ B is the pullback of P ′ −→ B′ via B
−→ B′ so that there is a commutative diagram

B B′-

P P ′-

? ?

By hypothesis, the restriction H2(P ′) −→ H2(M) is surjective. But this
map factors as H2(P ′) −→ H2(P ) −→ H2(M). Hence H2(P ) −→ H2(M) is
also surjective. Fe have the following lemma:

(i) Every Hamiltonian bundle over S2 is stable.
(ii) Every symplectic bundle over a 2−connected base B is Hamiltonian

stable.
(i) holds because every Hamiltonian bundle over S2 is c−split, in par-

ticular the restriction map H2(P )→ H2(M) is surjective .
The above theorem states that every Hamiltonian bundle is stable. To

prove this, first observe that we can restrict to the case when B is simply
connected. For the map B → BHam(M) classifying P factors through a
map C → BHam(M), where C = B/B1 as before, and the stability of the
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induced bundle over C implies that for the original bundle.
Next observe that a Hamiltonian bundle P → B is stable iff the dif-

ferentials d0,2
k : E0,2

k → Ek,3−kk in its Leray cohomology spectral sequence
vanish on the whole of H2(M) for k = 2, 3. We can reduce the statement
for d0,2

2 to the case B = S2. Thus d0,2
2 = 0. Similarly, we can reduce the

statement for d0,2
3 to the case B = S3.

4.12.2.2 Functorial Properties

We begin with some trivial observations and then discuss composites of
Hamiltonian bundles. The first lemma is true for any class of bundles with
specified structural group [Lalonde and McDuff (2002)].

Suppose that π : P → B is Hamiltonian and that g : B′ → B is a
continuous map. Then the induced bundle π′ : g∗(P )→ B′ is Hamiltonian.

Recall that any extension τ of the forms on the fibers is called a con-
nection form.

If P → B is a smooth Hamiltonian fiber bundle over a symplectic base
(B, σ) and if P is compact then there is a connection form Ωκ on P that is
symplectic.

The bundle P carries a closed connection form τ . Since P is compact,
the form Ωκ = τ + κπ∗(σ) is symplectic for large κ.

Observe that the deformation type of the form Ωκ is unique for suffi-
ciently large κ since given any two closed connection forms τ , τ ′ the linear
isotopy

tτ + (1− t)τ ′ + κπ∗(σ), 0 ≤ t ≤ 1,

consists of symplectic forms for sufficiently large κ. However, it can happen
that there is a symplectic connection form τ such that τ + κπ∗(σ) is not
symplectic for small κ > 0, even though it is symplectic for large κ. (For
example, suppose P = M × B and that τ is the sum ω + π∗(ωB) where
ωB + σ is not symplectic.)

Let us now consider the behavior of Hamiltonian bundles under compo-
sition. If

(M,ω)→ P
πP→ X, and (F, σ)→ X

πX→ B

are Hamiltonian fiber bundles, then the restriction

πP : W = π−1
P (F ) −→ F
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is a Hamiltonian fiber bundle. Since F is a manifold, we can assume with-
out loss of generality that W → F is smooth. Moreover, since (F, σ) is
symplectic, the manifold W carries a symplectic connection form ΩκW , and
it is natural to ask when the composite map π : P → B with fiber (W,ΩκW )
is itself Hamiltonian.

Suppose in the above situation that B is simply connected and that P
is compact. Then π = πX ◦πP : P → B is a Hamiltonian fiber bundle with
fiber (W,ΩκW ), where

ΩκW = τW + κπ∗P (σ),

τW is any symplectic connection form on W , and κ is sufficiently large.
By above lemma, we may assume that the base B as well as the fi-

brations are smooth. We first show that there is some symplectic form on
W for which π is Hamiltonian and then show that it is Hamiltonian with
respect to the given form ΩκW .

Let τP (resp. τX) be a closed connection form with respect to the
bundle πP , (resp. πX), and let τW be its restriction to W . Then ΩκW is
the restriction to W of the closed form

ΩκP = τP + κπ∗P (τX).

By increasing κ if necessary we can ensure that ΩκP restricts to a sym-
plectic form on every fiber of π not just on the the chosen fiber W . This
shows firstly that π : P → B is symplectic, because there is a well defined
symplectic form on each of its fibers, and secondly that it is Hamiltonian
with respect to this form ΩκW on the fiber W . Hence H2(P ) surjects onto
H2(W ).

Now suppose that τW is any closed connection form on πP : W → F .
Because the restriction map H2(P )→ H2(W ) is surjective, the cohomology
class [τW ] is the restriction of a class on P and so, by Thurston’s construc-
tion, the form τW can be extended to a closed connection form τP for the
bundle πP . Therefore the previous argument applies in this case too.

We know that the restriction map H2(P ) → H2(M) is surjective, so
that the cohomology class [τW ] of the connection form τW of W → F is
the restriction of a class on P , and by Thurston’s construction the form τW
can be extended to a closed connection form τP for the bundle πP . Choose
also a closed connection form τX for the bundle πX . Then ΩκW is the
restriction to W of the closed form ΩκP = τP + κπ∗P (τX). By increasing
κ if necessary we can ensure that ΩκP restricts to a symplectic form on
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every fiber of π not just on the the chosen fiber W . This shows firstly that
π : P → B is symplectic, because there is a well defined symplectic form on
each of its fibers, and secondly that it is Hamiltonian with respect to this
form ΩκW on the fiber W . Hence H2(P ) surjects onto H2(W ).

Now suppose that τW is any closed connection form on πP : W → F .
Because the restriction map H2(P )→ H2(W ) is surjective, the cohomology
class [τW ] is the restriction of a class on P and so, by Thurston’s construc-
tion, the form τW can be extended to a closed connection form τP for the
bundle πP . Therefore the previous argument applies in this case too.

Now let us consider the general situation, when π1(B) 6= 0. The proof
of the lemma above applies to show that the composite bundle π : P → B

is symplectic with respect to suitable ΩκW and that it has a symplectic
connection form. However, even though πX : X → B is symplectically
trivial over the 1-skeleton of B the same may not be true of the composite
map π : P → B. Moreover, in general it is not clear whether triviality with
respect to one form ΩκW implies it for another. Therefore, we may conclude
the following: If

(M,ω)→ P
πP→ X and (F, σ)→ X

πX→ B

are Hamiltonian fiber bundles and P is compact, then the composite π =
πX ◦πP : P → B is a symplectic fiber bundle with respect to any form ΩκW
on its fiber W = π−1(pt), provided that κ is sufficiently large. Moreover
if π is symplectically trivial over the 1−skeleton of B with respect to ΩκW
then π is Hamiltonian.

In practice, we will apply these results in cases where π1(B) = 0. We
will not specify the precise form on W , assuming that it is ΩκW for a suitable
κ.

4.12.2.3 Splitting of Rational Cohomology

We write H∗(X),H∗(X) for the rational (co)homology of X. Recall that a
bundle π : P → B with fiber M is said to be c−split if

H∗(P ) ∼= H∗(B)⊗H∗(M).

This happens iff H∗(M) injects into H∗(P ). Dually, it happens iff the
restriction map H∗(P )→ H∗(M) is onto. Note also that a bundle P → B

c−splits iff the E2 term of its cohomology spectral sequence is a product
and all the differentials dk, k ≥ 2, vanish [Lalonde and McDuff (2002)].
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The following surjection lemma is obvious but useful: Consider a com-
mutative diagram

B′ B-

P ′ P-

? ?

where P ′ is the induced bundle. Then:
(i) If P → B is c−split so is P ′ → B′.
(ii) If P ′ → B′ is c−split and H∗(B′) → H∗(B) is surjective, then

P → B is c−split.
To prove (i), we can use the fact that P → B is c−split iff the map

H∗(M) → H∗(P ) is injective. To prove (ii), the induced map on the
E2−term of the cohomology spectral sequences is injective. Therefore the
existence of a nonzero differential in the spectral sequence P → B implies
one for the pullback bundle P ′ → B′.

As a corollary, suppose that P →W is a Hamiltonian fiber bundle over
a symplectic manifold W and that its pullback to some blowup Ŵ of W is
c−split. Then P →W is c−split.

This follows immediately from (ii) above since the map H∗(Ŵ ) →
H∗(W ) is surjective.

If (M,ω) π→ P → B is a compact Hamiltonian bundle over a simply
connected CW–complex B and if every Hamiltonian fiber bundle over M
and B is c−split, then every Hamiltonian bundle over P is c−split.

Let πE : E → P be a Hamiltonian bundle with fiber F and let
F → W → M be its restriction over M . Then by assumption the latter
bundle c−splits so that H∗(F ) injects into H∗(W ). The above composition
lemma implies that the composite bundle E → B is Hamiltonian with fiber
W and therefore also c−splits. Hence H∗(W ) injects into H∗(E). Thus
H∗(F ) injects into H∗(E), as required.

If Σ is a closed orientable surface then any Hamiltonian bundle over
S2 × . . .× S2 × Σ is c−split.

Consider any degree one map f from Σ → S2. Because Ham(M,ω)
is connected, BHam(M,ω) is simply connected, and therefore any homo-
topy class of maps from Σ → BHam(M,ω) factors through f . Thus any
Hamiltonian bundle over Σ is the pullback by f of a Hamiltonian bundle
over S2. Because such bundles c−split over S2, the same is true over Σ.

Any Hamiltonian bundle over S2 × . . . × S2 × S1 is c−split. For each
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k ≥ 1, every Hamiltonian bundle over Sk c−splits.
There is for each k a k−dimensional closed manifold X such that every

Hamiltonian bundle over X c−splits. Given any Hamiltonian bundle P →
Sk consider its pullback to X by a map f : X → Sk of degree 1. Since the
pullback c−splits, the original bundle does too by the surjection lemma.

As we shall see this result implies that the action of the homology groups
of Ham(M) on H∗(M) is always trivial. Here are some other examples of
situations in which Hamiltonian bundles are c−split.

Every Hamiltonian bundle over CPn1 × . . .×CPnk c−splits.
Let us prove first that it splits over CPn. Use induction over n. Again

it holds when n = 1. Assuming the result for n let us prove it for n + 1.
Let B be the blowup of CPn+1 at one point. Then B fibers over CPn with
fiber CP1. Thus every Hamiltonian bundle over B c−splits.

Every Hamiltonian bundle whose structural group reduces to a subtorus
T ⊂ Ham(M) c−splits [Lalonde and McDuff (2002)]. It suffices to consider
the universal model

M −→ ET ×T M −→ BT,

and hence to show that all Hamiltonian bundles over BT are c−split. But
this is equal to CP∞ × . . . × CP∞ and the proof that the ith group of
homology of the fiber injects in P → CP∞ × . . . ×CP∞ may be reduced
to the proof that it injects in the restriction of the bundle P over CPj ×
. . .×CPj for a sufficiently large j.

Note that the proof of the above corollary shows that every Hamiltonian
bundle over CP∞× . . .×CP∞ c−splits. Since the structural group of such
a bundle can be larger than the torus T , the result presented here extends
the Atiyah-Bott splitting theorem for Hamiltonian bundles with structural
group T .

For completeness, we show how the above corollary leads to a proof of
the splitting of G−equivariant cohomology where G is a Lie subgroup of
Ham(M,ω).

If G is a compact connected Lie group that acts in a Hamiltonian way
on M then any bundle P → B with fiber M and structural group G is
c−split. In particular,

H∗
G(M) ∼= H∗(M)⊗H∗(BG).

We only need to prove the second statement, since

MG = EG×GM −→ BG
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is the universal bundle. Every compact connected Lie group G is the image
of a homomorphism T ×H → G, where the torus T maps onto the identity
component of the center of G and H is the semi–simple Lie group corre-
sponding to the commutator subalgebra [Lie(G), Lie(G)] in the Lie algebra
Lie(G). It is easy to see that this homomorphism induces a surjection on
rational homology BT × BH → BG. Therefore, we may suppose that
G = T × H. Let Tmax = (S1)k be the maximal torus of the semi–simple
group H. Then the induced map on cohomology

H∗(BH)→ H∗(BTmax) = Q[a1, . . . , ak]

takes H∗(BH) bijectively onto the set of polynomials in H∗(BTmax) that
are invariant under the action of the Weyl group, by the Borel–Hirzebruch
theorem. Hence the maps

BTmax → BH and BT ×BTmax → BG

induce a surjection on homology. Therefore the desired result follows from
the surjection lemma and the Atiyah–Bott theorem.

We have the following lemma [Lalonde and McDuff (2002)]: Every
Hamiltonian bundle over a coadjoint orbit c−splits.

This is an immediate consequence of the results by [Grossberg and
Karshon (1994)] on Bott towers. Recall that a Bott tower is an iterated
fibration of Kähler manifolds

Mk →Mk−1 → · · · →M1 = S2

where each map Mi+1 → Mi is a fibration with fiber S2. They show that
any coadjoint orbit X can be blown up to a manifold that is diffeomorphic
to a Bott tower Mk. Moreover the blow–down map Mk → X induces
a surjection on rational homology. Every Hamiltonian bundle over Mk

c−splits. Hence the result follows from the surjection lemma.
Every Hamiltonian bundle over a 3−complex X c−splits. As in the

proof of stability given above, we can reduce this to the cases X = S2 and
X = S3. The only difference from the stability result is that we now require
the differentials d0,q

2 , d0,q
3 to vanish for all q rather than just at q = 2.

Every Hamiltonian bundle over a product of spheres c−splits, provided
that there are no more than 3 copies of S1.

By hypothesis,

B =
∏
i∈I

S2mi ×
∏
j∈J

S2ni+1 × T k,
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where ni > 0 and 0 ≤ k ≤ 3. Set

B′ =
∏
i∈I

CPmi ×
∏
j∈J

CPni × T |J| × T `,

where ` = k if k+ |J | is even, and = k+1 otherwise. Since CPni×S1 maps
onto S2ni+1 by a map of degree 1, there is a homology surjection B′ → B

that maps the factor T ` to T k. By the surjection lemma, it suffices to show
that the pullback bundle P ′ → B′ is c−split.

Consider the fibration

T |J| × T ` → B′ →
∏
i∈I

CPmi ×
∏
j∈J

CPni .

Since |J |+` is even, we can think of this as a Hamiltonian bundle. Moreover,
by construction, the restriction of the bundle P ′ → B′ to T |J| × T ` is the
pullback of a bundle over T k, since the map T |J| → B is nullhomotopic.
(Note that each S1 factor in T |J| goes into a different sphere in B.) Because
k ≤ 3, the bundle over T k c−splits. Hence we can conclude that P ′ → B′

c−splits.
Every Hamiltonian bundle whose fiber has cohomology generated by H2

is c−split. This is an immediate consequence of the stability theorem.
Any Hamiltonian fibration c−splits if its base B is the image of a homol-

ogy surjection from a product of spheres and projective spaces, provided
that there are no more than three S1 factors. One can also consider iterated
fibrations of projective spaces, rather than simply products. However, we
have not yet managed to deal with arbitrary products of spheres. In order
to do this, it would suffice to show that every Hamiltonian bundle over a
torus Tm c−splits. This question has not yet been resolved for m ≥ 4.

4.12.2.4 Hamiltonian Bundles and Gromov–Witten Invariants

We begin by sketching an alternate proof that every Hamiltonian bundle
over B = CPn is c−split that generalizes the arguments in [McDuff (2000)].
We will use the language of [McDuff (1999)], which is based on the Liu–
Tian [Liu and Tian (1998)] approach to general Gromov–Witten invariants.
Clearly, any treatment of general Gromov–Witten invariants could be used
instead.

We have the fundamental result: [Lalonde and McDuff (2002)] Every
Hamiltonian bundle over CPn is c−split. To prove this, the basic idea is to
show that the inclusion ι : H∗(M)→ H∗(P ) is injective by showing that for
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every nonzero a ∈ H∗(M) there is b ∈ H∗(M) and σ ∈ H2(P ; Z) for which
the Gromov–Witten invariant nP (ι(a), ι(b);σ) is nonzero. Intuitively speak-
ing, this invariant ‘counts the number of isolated J−holomorphic curves in
P that represent the class σ and meet the classes ι(a), ι(b).’ More correctly,
it is defined to be the intersection number of the image of the evaluation
map

ev :M ν
0,2(P, J, σ) −→ P × P,

with the class ι(a) × ι(b), where M ν
0,2(P, J, σ) is a virtual moduli cycle

made from perturbed J−holomorphic curves with 2 marked points, and ev
is given by evaluating at these two points. As explained in [McDuff (1999);
McDuff (2000)], Mν = M ν

0,2(P, J, σ) is a branched pseudo–manifold, i.e.,
a kind of stratified space whose top dimensional strata are oriented and
have rational labels. Roughly speaking, one can think of it as a finite
simplicial complex, whose dimension d equals the ‘formal dimension’ of
the moduli space, i.e., the index of the relevant operator. The elements
of Mν are stable maps [Σ, h, z1, z2] where z1, z2 are two marked points on
the nodal, genus 0, Riemann surface Σ, and the map h : Σ → P satisfies
a perturbed Cauchy–Riemann equation M Jh = νh. The perturbation ν

can be arbitrarily small, and is chosen so that each stable map in Mν is
a regular point for the appropriate Fredholm operator. Hence Mν is often
called a regularization of the unperturbed moduli spaceM =M 0,2(P, J, σ)
of all J−holomorphic stable maps.

Given any Hamiltonian bundle PS → S2 and any a ∈ H∗(M), it was
shown in [Lalonde et al. (1999); McDuff (2000)] that there is b ∈ H∗(M)
and a lift σS ∈ H2(PS ; Z) of the fundamental class of S2 to PS such that

nPS (ιS(a), ιS(b);σS) 6= 0,

where ιS denotes the inclusion into PS . Therefore, if PS is identified with
the restriction of P to a complex line L0 in B and if a, b and σS are as
above, it suffices to prove that

nPS (ιS(a), ιS(b);σS) = nP (ι(a), ι(b);σ)

where σ is the image of σS in P . Note that a direct count shows that the
dimensions of the appropriate virtual moduli spacesM ν

0,2(PS , JS , σS) and
M ν

0,2(P, J, σ) differ by the codimension of PS ×PS in P ×P (which equals
the codimension of CP1×CP1 in CPn×CPn) so that the both sides are
well–defined.
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As was shown in [McDuff (2000)], one can construct the virtual moduli
cycle Mν(PS) = M ν

0,2(PS , JS , σS) using an almost complex structure JS
and a perturbation ν that are compatible with the bundle. In particular,
this implies that the projection PS → S2 is (JS , j)−holomorphic (where j
is the usual complex structure on S2) and that every element of Mν(PS)
projects to a j−holomorphic stable map in S2.

Following [Lalonde and McDuff (2002)], we claim that this is also true
for the bundle P → B. In other words, we can choose J so that the
projection (P, J) → (B, j) is holomorphic, where j is the usual complex
structure on B = CPn, and we can choose ν so that every element in
Mν(P ) projects to a j−holomorphic stable map in B. The proof is exactly
as before [McDuff (2000)]. The essential point is that every element of the
unperturbed moduli spaceM 0,2(CPn, j, [CP1]) is regular. In fact, the top
stratum in M 0,2(CPn, j, [CP1]) is the space L = M 0,2(CPn, j, [CP1])
of all lines in CPn with 2 distinct marked points. The other stratum
completes this space by adding in the lines with two coincident marked
points, which are represented as stable maps by a line together with a
ghost bubble containing the two points.

It follows that there is a projection map

proj : M ν
0,2(P, J, σ) −→M 0,2(CPn, j, [CP1]).

Moreover the inverse image of a line L ∈ can morally speaking be identified
with M ν

0,2(PS , JS , σS). The latter statement would be correct if we were
considering ordinary moduli spaces of stable maps, but the virtual moduli
space is not usually built in such a way that the fibers (proj)−1(L) have the
needed structure of a branched pseudo–manifold. However, we can choose
to construct M ν

0,2(P, J, σ) so that this is true for all lines near a fixed line
L0. A detailed recipe is given in [McDuff (2000)] for constructingMν from
the unperturbed moduli spaceM . The construction is based on the choice
of suitable covers {Ui}, {VI} of M and of perturbations νi over each Ui.
Because regularity is an open condition, one can make these choices first
for all stable maps that project to the fixed line L0 and then extend to the
set of stable maps that project to nearby lines in such a way that Mν is
locally a product near the fiber over L0 (see the proof of [McDuff (2000)]
for a very similar construction).

Once this is done, the rest of the argument is easy. If we identify PS with
π−1(L0) and choose a representative α×β of ιS(a)× ιS(b) in PS ×PS that
is transverse to the evaluation map from M ν

0,2(PS , JS , σS), its image in
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P ×P will be transverse to the evaluation map fromM ν
0,2(P, J, σ) because

proj is a submersion at L0. Moreover, by [McDuff (2000)], we may suppose
that α and β lie in distinct fibers of the projection PS → S2. Let xa, xb
be the corresponding points of CPn under the identification S2 = L0.
Then every stable map that contributes to nP (ι(a), ι(b);σ) projects to an
element of M 0,2(CPn, j, [CP1]) whose marked points map to the distinct
points xa, xb. Since there is a unique line in CPn through two given points,
in this case L0, every stable map that contributes to nP (ι(a), ι(b);σ) must
project to L0 and hence be contained in M ν

0,2(PS , JS , σS). One can then
check that

nPS (ιS(a), ιS(b);σS) = nP (ι(a), ι(b);σ),

as claimed. The only delicate point here is the verify that the sign of each
stable map on the left hand side is the same as the sign of the corresponding
map on the right hand side. But this is also a consequence of the local
triviality of the above projection map (see [Lalonde et al. (1998); Lalonde
et al. (1999)] for more details).

The above argument generalizes easily to the case when B is a complex
blowup of CPn.

Let B be a blowup of CPn along a disjoint union Q =
∐
Qi of complex

submanifolds, each of complex codimension ≥ 2. Then every Hamiltonian
bundle B is c−split.

The above argument applies almost verbatim in the case when Q is a
finite set of points. The top stratum of M 0,2(B, j, [CP1]) still consists of
lines marked by two distinct points, and again all elements of this unper-
turbed moduli space are regular.

In the general case, there is a blow-down map ψ : B → CPn which is
bijective over CPn −Q, and we can choose j on B so that the exceptional
divisors ψ−1(Q) are j−holomorphic, and so that j is pulled back from the
usual structure on CPn outside a small neighborhood of ψ−1(Q). Let L0 be
a complex line in CPn−Q. Then its pullback to B is still j−holomorphic.
Hence, although the unperturbed moduli spaceM 0,2(B, j, [CP1]) may con-
tain nonregular and hence ‘bad’ elements, its top stratum does contain an
open set UL0 consisting of marked lines near L0 that are regular. Moreover,
if we fix two points xa, xb on L0, every element ofM 0,2(B, j, [CP1]) whose
marked points map sufficiently close to xa, xb actually lies in this open
set UL0 . We can then regularize M 0,2(B, j, [CP1]) to a virtual moduli
cycle that contains the open set UL0 as part of its top stratum. More-
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over, because the construction of the regularization is local with respect to
M 0,2(B, j, [CP1]), this regularizationM ν

0,2(B, j, [CP1]) will still have the
property that each of its elements whose marked points map sufficiently
close to xa, xb actually lies in this open set UL0 .

We can now carry out the previous argument, choosing J on P to be
fibered, and constructing ν to be compatible with the fibration on that
part of M 0,2(P, J, σ) that projects to UL0

[Lalonde and McDuff (2002)].
Let X = #kCP2#`M2 be the connected sum of k copies of CP2 with `

copies of M2. If one of k, ` is ≤ 1 then every bundle over X is c−split.
By reversing the orientation of X we can suppose that k ≤ 1. The case

k = 1 is covered in the previous proposition. When k = 0, pull the bundle
back over the blowup of X at one point and then use the surjection lemma.

The previous proof can easily be generalized to the case of a sym-
plectic base B that has a spherical 2-class A with Gromov–Witten in-
variant of the form nB(pt, pt, c1, . . . , ck;A) absolutely equal to 119. Here
c1, . . . , ck are arbitrary homology classes of B and we assume that k ≥ 0.
Again the idea is to construct the regularizations M ν

0,2+k(P, J, σ) and
M ν

0,2+k(B, j,A) so that there is a projection from one to the other which is
a fibration at least near the element ofM ν

0,2+k(B, j,A) that contributes to
nB(pt, pt, c1, . . . , ck;A). Thus B could be the blowup of CPn along a sym-
plectic submanifold Q that is disjoint from a complex line. One could also
take similar blowups of products of projective spaces, or, more generally, of
iterated fibrations of projective spaces. For example, if B = CPm ×CPn

with the standard complex structure then there is one complex line in the
diagonal class [CP1] + [CP1] passing through any two points and a cycle
H1 × H2, where Hi is the hyperplane class, and one could blow up along
any symplectic submanifold that did not meet one such line.

It is also very likely that this argument can be extended to ap-
ply when all we know about B is that some Gromov–Witten invariant
nB(pt, pt, c1, . . . , ck;A) is nonzero, for example, if B is a blowup of CPn

along arbitrary symplectic submanifolds. There are two new problems here:
(a) we must control the construction ofM ν

0,2+k(P, J, σ) in a neighborhood
of all the curves that contribute to nB(pt, pt, c1, . . . , ck;A) and (b) we must
make sure that the orientations are compatible so that curves in P pro-
jecting over different and noncancelling curves in B do not cancel each
other in the global count of the Gromov–Witten invariant in P . Note

19By this we mean that for some generic j on B the relevant moduli space contains
exactly one element, which moreover parametrizes an embedded curve in B.
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that the bundles given by restricting P to the different curves counted
in nB(pt, pt, c1, . . . , ck;A) are diffeomorphic, since, this being a homotopy
theoretic question, we can always replace X by the simply connected space
X/(X1) in which these curves are homotopic [McDuff (2000)].

4.12.2.5 Homotopy Reasons for Splitting

In this section we discuss c−splitting in a homotopy-theoretic context. Re-
call that a c−Hamiltonian bundle is a smooth bundle P → B together with
a class a ∈ H2(P ) whose restriction aM to the fiber M is c−symplectic, i.e.,
(aM )n 6= 0 where 2n = dim(M). Further a closed manifold M is said to sat-
isfy the hard Lefschetz condition with respect to the class aM ∈ H2(M,R)
if the following maps are isomorphisms,

∪(aM )k : Hn−k(M,R)→ Hn+k(M,R), (1 ≤ k ≤ n).

In this case, elements in Hn−k(M) that vanish when cupped with (aM )k+1

are called primitive, and the cohomology of M has an additive basis con-
sisting of elements of the form b ∪ (aM )` where b is primitive and ` ≥ 0.20

Let M → P → B be a c−Hamiltonian bundle such that π1(B) acts
trivially on H∗(M,R). If in addition M satisfies the hard Lefschetz condi-
tion with respect to the c−symplectic class aM , then the bundle c−splits
[Blanchard (1956)].

The proof is by contradiction. Consider the Leray spectral sequence in
cohomology and suppose that dp is the first non zero differential. Then,
p ≥ 2 and the Ep term in the spectral sequence is isomorphic to the E2 term
and so can be identified with the tensor product H∗(B)⊗H∗(M). Because
of the product structure on the spectral sequence, one of the differentials
d0,i
p must be nonzero. So there is b ∈ E0,i

p
∼= Hi(M) such that d0,i

p (b) 6= 0.
We may assume that b is primitive (since these elements together with aM
generate H∗(M).) Then b ∪ an−iM 6= 0 but b ∪ an−i+1

M = 0.
We can write

dp(b) =
∑
j

ej⊗fj , where ej ∈ H∗(B) and fj ∈ H`(M) (with ` < i).

Hence fj∪an−i+1
M 6= 0 for all j by the Lefschetz property. Moreover, because

the Ep term is a tensor product

(dp(b)) ∪ an−i+1
M =

∑
j

ej ⊗ (fj ∪ an−i+1
M ) 6= 0.

20These manifolds are sometimes called ‘cohomologically Kähler manifolds.’



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

660 Applied Differential Geometry: A Modern Introduction

But this is impossible since this element is the image via dp of the trivial
element b ∪ an−i+1

M
[Lalonde and McDuff (2002)].

Here is a related argument due to [Kedra (2000)]. Every Hamiltonian
bundle with 4-dimensional fiber c−splits.

Consider the spectral sequence as above. We know that d2 = 0 and
d3 = 0. Consider d4. We just have to check that d0,3

4 = 0 since d0,i
4 = 0

for i = 1, 2 for dimensional reasons, and = 0 for i = 4 since the top class
survives.

Suppose d4(b) 6= 0 for some b ∈ H3(M). Let c ∈ H1(M) be such
that b ∪ c 6= 0. Then d4(c) = 0 and d4(b ∪ c) = d4(b) ∪ c 6= 0 since
d4(b) ∈ H4(B) ⊗ H0(M). But we need d4(b ∪ c) = 0 since the top class
survives. So d4 = 0 and then dk = 0, k > 4 for reasons of dimension.

Here is an example of a c−Hamiltonian bundle over S2 that is not
c−split. This shows that c−splitting is a geometric rather than a topological
(or homotopy–theoretic) property.

Observe that if S1 acts on manifolds X,Y with fixed points pX , pY
then we can extend the S1 action to the connected sum X#Y opp at pX , pY
whenever the S1 actions on the tangent spaces at pX and pY are the same.21

Now let S1 act on X = S2 × S2 × S2 by the diagonal action in the first
two spheres (and trivially on the third) and let the S1 action on Y be the
example constructed in [McDuff (1988)] of a non–Hamiltonian S1 action
that has fixed points. The fixed points in Y form a disjoint union of 2−tori
and the S1 action in the normal directions has index ±1. In other words,
there is a fixed point pY in Y at which we can identify TpY Y with C ⊕
C ⊕ C, where θ ∈ S1 acts by multiplication by eiθ in the first factor, by
multiplication by e−iθ in the second and trivially in the third. Since there
is a fixed point on X with the same local structure, the connected sum
Z = X#Y opp does support an S1− action. Moreover Z is a c−symplectic
manifold. There are many possible choices of c−symplectic class: under
the obvious identification of H2(Z) with H2(X) +H2(Y ) we will take the
c−symplectic class on Z to be given by the class of the symplectic form on
X.

Let PX → S2, PY → S2 and PZ → S2 be the corresponding bundles.
Then PZ can be thought of as the connect sum of PX with PY along the
sections corresponding to the fixed points. By analyzing the corresponding
Mayer–Vietoris sequence, it is easy to check that the c−symplectic class on
Z extends to PZ . Further, the fact that the symplectic class in Y does not

21Here Y opp denotes Y with the opposite orientation.
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extend to PY implies that it does not extend to PZ either. Hence PZ → S2

is not c−split.

4.12.2.6 Action of the Homology of (M) on H∗(M)

The action Ham(M)×M →M gives rise to maps

Hk(Ham(M))×H∗(M)→ H∗+k(M) : (φ,Z) 7→ Trφ(Z).

We have the following result: These maps are trivial when k ≥ 1.
To see this, let us first consider the action of a spherical element

φ : Sn → Ham(M).

It is not hard to check that the homomorphisms

Trφ : Hk(M)→ Hk+n(M)

are precisely the connecting homomorphisms in the Wang sequence of the
bundle Pφ → Sk+1 with clutching function φ, i.e., there is an exact sequence

. . .Hk(M)
Trφ→ Hk+n(M)→ Hk+n(P )

∩[M ]→ Hk−1(M)→ . . .

Thus the fact that Pφ → Sk+1 is c−split immediately implies that the Trφ
are trivial [Lalonde and McDuff (2002)].

Next recall that in a H-space the rational cohomology ring is generated
by elements dual to the rational homotopy. It follows that there is a basis
for H∗(Ham(M)) that is represented by cycles of the form

φ1 × · · · × φk : S1 × . . .× Sk → Ham(M),

where the Sjs are spheres and one defines the product of maps by using
the product structure in Ham(M). Therefore it suffices to show that these
product elements act trivially. However, if a ∈ H∗(M) is represented by
the cycle α, then TrSk(α) is null-homologous, and so equals the boundary
∂β of some chain β. Therefore,

∂
(
TrS1×...×Sk−1(β)

)
= ±TrS1×...×Sk−1(∂β)

= ±TrS1×...×Sk−1(TrSk(α)) = TrS1×...×Sk(α).

Hence TrS1×...×Sk(a) = 0.
Let P → B be a trivial symplectic bundle. Then any Hamiltonian

automorphism Φ ∈ Ham(P, π) acts as the identity map on H∗(P ).
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An element Φ ∈ Ham(P, π) is a map of the form

Φ : B ×M → B ×M : (b, x) 7→ (b,Φb(x)),

where Φb ∈ Ham(M) for all b ∈ B. Let us denote the induced map
B×M →M : (b, x) 7→ Φb(x) by αΦ. The previous proposition implies that
if B is a closed manifold of dimension > 0, or, more generally, if it carries
a fundamental cycle [B] of degree > 0,

(αΦ)∗([B]⊗m) = Tr[B](m) = 0, for all m ∈ H∗(M).

We can also think of Φ : B ×M → B ×M as the composite

B ×M diagB×IdM−→ B ×B ×M IdB×αΦ−→ B ×M.

The diagonal class in B ×B can be written as

[B]⊗ [pt] +
∑
i∈I

bi ⊗ b′i, where bi, b
′
i ∈ H∗(B) with dim(b′i) > 0.

Hence

Φ∗([B]⊗m) = [B]⊗m+
∑
i∈I

bi ⊗ Trb′i(m) = [B]⊗m.

More generally, given any class b ∈ H∗(B), represent it by the image of the
fundamental class [X] of some polyhedron under a suitable map X → B

and consider the pullback bundle PX → X. Since the class Φ∗([X] ⊗m)
is represented by a cycle in X ×M for any m ∈ H∗(M), we can work out
what it is by looking at the pullback of Φ to X ×M . The argument above
then applies to show that Φ∗([X] ⊗m) = [X] ⊗m whenever b has degree
> 0. Thus Φ∗ = Id on all cycles in H∗>0(B)⊗H∗(M). However, it clearly
acts as the identity on H0(B) ⊗ H∗(M) since the restriction of Φ to any
fiber is isotopic to the identity.

We now show that there is a close relation between this question and
the problem of c−splitting of bundles. Given an automorphism Φ of a
symplectic bundle M → P → B we define PΦ = (P × [0, 1])/Φ to be
the corresponding bundle over B × S1. If the original bundle and the
automorphism are Hamiltonian, so is PΦ → B × S1, though the associated
bundle PΦ → B × S1 → S1 over S1 will not be, except in the trivial case
when Φ is in the identity component of Ham(P, π).

Assume that a given Hamiltonian bundle M → P → B c−splits. Then
a Hamiltonian automorphism Φ ∈ Ham(P, π) acts trivially (i.e., as the
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identity) on H∗(P ) iff the corresponding Hamiltonian bundle PΦ → B×S1

c−splits.
Clearly, the fibration P → B c−splits iff every basis of the Q−vector

space H∗(M) can be extended to a set of classes in H∗(P ) that form a basis
for a complement to the kernel of the restriction map. We will call such a
set of classes a Leray–Hirsch basis. It corresponds to a choice of splitting
isomorphism H∗(P ) ∼= H∗(B) ⊗ H∗(M). Now, the only obstruction to
extending a Leray–Hirsch basis from P to P ′ is the nontriviality of the
action of Φ on H∗(P ). This shows the “only if ” part.

Conversely, suppose that PΦ c−splits and let ej , j ∈ J, be a Leray–
Hirsch basis for H∗(PΦ). Then H∗(PΦ) has a basis of the form ej ∪
π∗(bi), ej ∪ π∗(bi × [dt]) where bi runs through a basis for H∗(B) and [dt]
generates H1(S1). Identify P with P × {0} in PΦ and consider some cy-
cle Z ∈ H∗(P ). Since the cycles Φ∗(Z) and Z are homologous in PΦ, the
classes ej ∪ π∗(bi) have equal values on Φ∗(Z) and Z. But the restriction
of these classes to P forms a basis for H∗(P ). It follows that [Φ∗(Z)] = [Z]
in H∗(P ).

Let P → B be a Hamiltonian bundle. Then the group Ham(P, π) acts
trivially on H∗(P ) if the base:

(i) has dimension ≤ 2, or
(ii) is a product of spheres and projective spaces with no more than two

S1 factors, or
(iii) is simply connected and has the property that all Hamiltonian bun-

dles over B are c−split.
In all cases, the hypotheses imply that P → B c−splits. Therefore

the previous proposition applies and (i), (ii) follow immediately from the
splitting theorem. To prove (iii), suppose that B is a simply connected
compact CW complex over which every Hamiltonian fiber bundle c−splits.
Let M ↪→ P → B × S1 be any Hamiltonian bundle – in particular one
of the form PΦ → B × S1. Consider its pull-back P ′ by the projection
map B × T 2 → B × S1. This is still a Hamiltonian bundle. To show
that P c−splits, it is sufficient, to show that P ′ c−splits. B × T 2 may be
considered as a smooth compact Hamiltonian fibration T 2 ↪→ (B×T 2)→ B

with simply connected base, so P ′ c−splits since any Hamiltonian bundle
over B or over T 2 c−splits [Lalonde and McDuff (2002)].

Finally, we prove the above statements about the automorphism groups
of Hamiltonian structures.

We have to show that the following statements are equivalent for any
Φ ∈ Symp0(P, π):
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(i) Φ is isotopic to an element of Ham(P, π);
(ii) Φ∗({a}) = {a} for some Hamiltonian structure {a} on P ;
(iii) Φ∗({a}) = {a} for all Hamiltonian structures {a} on P .
Recall that the relative homotopy groups πi(Symp(M),Ham(M)) all

vanish for i > 1. Using this together with the fact that a ∈ H2(P ), we can
reduce to the case when B is a closed oriented surface.

Let us prove this first in the case where P → B is trivial, so that Φ is a
map B → Symp0(M,ω). Suppose that Φ∗(a) = a for some extension class
a. By isotoping Φ if necessary, we can suppose that Φ takes the base point
b0 of B to the identity map. Then, the composite

π1(B) Φ∗−→ π1(Symp0(M)) Flux−→ H1(M,R)

must vanish. Thus the restriction of Φ : B → Symp0(M) to the
1−skeleton of B homotops into Ham(M). Since the relative homotopy
groups πi(Symp(M),Ham(M)) all vanish for i > 1, this implies that φ
homotops to a map in Ham(M), as required [Lalonde and McDuff (2002)].

Therefore, it remains to show that we can reduce the proof that (ii)
implies (i) to the case when P → B is trivial. To this end, isotop Φ so that
it is the identity map on all fibers Mb over some disc D ⊂ B. Since P → B is
trivial over X = B−D, we can decompose P → B into the fiber connected
sum of a trivial bundle PB over B (where B is thought of as the space
obtained from X by identifying its boundary to a point) and a nontrivial
bundle Q over S2 = D/∂D. Further, this decomposition is compatible with
Φ, which can be thought of as the fiber sum of some automorphism ΦB of
PB together with the trivial automorphism of Q. Clearly, this reduces the
proof that (ii) implies (i) to the case ΦB : PB → PB on trivial bundles, if
we note that when ΦB is the identity over some disc D ⊂ B, the isotopy
between Φ and an element in Ham(PB) can be constructed so that it
remains equal to the identity over D.

4.12.2.7 Cohomology of General Symplectic Bundles

Now we discuss some consequences for general symplectic bundles of the
above results on Hamiltonian bundles. First, we prove the above proposi-
tion, which states that the boundary map ∂ in the rational homology Wang
sequence of a symplectic bundle over S2 has ∂ ◦ ∂ = 0.



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Applied Bundle Geometry 665

The map

∂ ◦ ∂ : Hk(M)→ Hk+2(M) is given by a 7→ Ψ∗([T 2]⊗ a),

where Ψ : T 2 ×M →M : (s, t, x) 7→ φsφt(x).

Let b(s, t) = φ−1
s+tφsφt. The map (s, t) 7→ b(s, t) factors through

T 2 −→ S2 = T 2/{s = 0} ∪ {t = 0}.

Let Z →M represent a k−cycle. We have a map

T 2 × Z A1→ S1 × S2 × Z A2→M, given by

(s, t, z) 7→ (φs+t, b(s, t), z) 7→ φs+tb(s, t)z = φsφt(z),

and want to calculate∫
T 2×Z

A∗1A
∗
2(α) =

∫
(A1)∗[T 2×Z]

A∗2(α),

for some k + 2−form α on M . But (A1)∗[T 2 × Z] ∈ H2(S2) ⊗ Hk(Z).22

Now observe that A∗2(α) vanishes on H2(S2)⊗Hk(Z).
The previous lemma is trivially true for any smooth (not necessarily

symplectic) bundle over S2 that extends to CP2. For the differential d2 in
the Leray cohomology spectral sequence can be written as

d2(a) = ∂(a) ∪ u ∈ E2,q−1
2 ,

where a ∈ Hq(M) ≡ E0,q
2 and u generates H2(CP2) ≡ E2,0

2 . Hence

0 = d2(d2(a)) = d2(∂(a) ∪ u) = d2(∂(a)) ∪ u = ∂(∂(a))⊗ u2.

If π : P → B is any symplectic bundle over a simply connected base,
then d3 ≡ 0.

As above we can reduce to the case when B is a wedge of S2s and S3s.
The differential d3 is then given by restricting to the bundle over ∨S3. Since
this is Hamiltonian, d3 ≡ 0.

The next lemma describes the Wang differential ∂ = ∂φ in the case of
a symplectic loop φ with nontrivial image in H1(M): Suppose that φ is a
symplectic loop such that [φt(x)] 6= 0 in H1(M). Then Ker∂ = Im∂, where
∂ = ∂φ : Hk(M)→ Hk−1(M) is the corresponding Wang differential.

22Note that there is no component in H3(S1 × S2) ⊗Hk−1(Z) since A1 = Id on the

Z factor.
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Let α ∈ H1(M) be such that α([φt(x)]) = 1. So ∂α = 1. Then, for every
β ∈ Ker∂, ∂(α∪β) = β. As ∂◦∂ = 0, this means that [Lalonde et al. (1998);
Lalonde et al. (1999); Lalonde and McDuff (2002)]

Ker∂ ⊂ Im∂ =⇒ Ker∂ = Im∂.

Moreover, the map

α∪ : Hk(M)→ Hk+1(M)

is injective on Ker ∂ and H∗(M) decomposes as the direct sum Ker ∂⊕ (α∪
Ker ∂).

The above corollary claims that for a symplectic loop φ,

Ker ∂ = Im ∂ iff [φt(x)] 6= 0 in H1(M).

Since 1 ∈ H0(M) is in Ker ∂ it must equal ∂(α) for some α ∈ H1(M). This
means that α([φt(x)]) 6= 0 so that [φt(x)] 6= 0. Note that the only place
that the symplectic condition enters in the above proof is in the claim that
∂ ◦ ∂ = 0. Since this is always true when the loop comes from a circle
action, this lemma holds for all, not necessarily symplectic, circle actions.
In this case, we can interpret the result topologically. For the hypothesis
[φt(x)] 6= 0 in H1(X) implies that the action has no fixed points, so that
the quotient M/S1 is an orbifold with cohomology isomorphic to ker ∂.
Thus, the argument shows that M has the same cohomology as the product
(M/S1)× S1.

4.13 Clifford Algebras, Spinors and Penrose Twistors

4.13.1 Clifford Algebras and Modules

In this subsection, mainly following [Yang (1995)], we provide the general
theory of Clifford algebra and subsequently consider its special 4D case.

Let V be a vector space over R with a quadratic form Q on it. The Clif-
ford algebra of (V,Q), denoted by C(V,Q), is the algebra over R generated
by V with the relations

v1 · v2 + v2 · v1 = −2Q(v1, v2), (for all v1, v2 ∈ V ).

Since Q is symmetric, we have v2 = −Q(v) for all v ∈ V .
For fixed Q, we may abbreviate C(V,Q) and Q(v1, v2) into C(V ) and

(v1, v2) respectively.
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It is a basic fact in algebra that the Clifford algebra is the unique (up
to isomorphism) solution to the following universal problem.

If A is an algebra and c : V −→ A is a linear map satisfying

c(v2)c(v1) + c(v1)c(v2) = −2Q(v1, v2), (for all v1, v2 ∈ V ),

then there is a unique algebra homomorphism from C(V,Q) to A extending
the map c.

The Clifford algebra may be realized as the quotient T (V )/IQ where

T (V ) =
∞⊕
k=1

T k(V )

is the tensor algebra of V with T k(V ) generated by

{ v1 ⊗ v2 ⊗ · · · ⊗ vk | v1, v2, . . . , vk ∈ V }

and IQ is generated by

{v1 ⊗ v2 + v2 ⊗ v1 + 2Q(v1, v2) | v1, v2 ∈ V }

The tensor algebra T (V ) has a Z2−grading obtained from the natural
N−grading after reduction mod 2:

T (V ) = T+(V ) + T−(V ), where

T+(V ) = R⊕ T 2(V )⊕ T 4(V )⊕ · · · ⊕ T 2k(V )⊕ . . . ,
T−(V ) = V ⊕ T 3(V )⊕ T 5(V )⊕ · · · ⊕ T 2k+1(V )⊕ . . .

Therefore it forms a super–algebra.
Similarly, for k = 0, 1, 2, 3, . . . , let

Ck(V ) = T k(V )/IQ, and let

C+(V ) = R⊕ C2(V )⊕ C4(V )⊕ · · · ⊕ C2k(V )⊕ . . . ,
C−(V ) = V ⊕ C3(V )⊕ C5(V )⊕ · · · ⊕ C2k+1(V )⊕ . . .

Since the ideal IQ is generated by elements from the evenly graded
subalgebra T+(V ), C(V ) is itself a superalgebra and we have the grading

C(V ) = C+(V ) + C−(V ).

Let E be a module over R or C which is Z2−graded,

E = E+ ⊕ E−.
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E is called a Clifford module over a Clifford algebra C(V ) if there is a
Clifford action

C(V )× E
·
c−→ E

( a , e ) 7−→ a ·
c
e

or equivalently, an algebra homomorphism

C(V ) c−→ End(E)
a 7−→ c(a)

with c(a) (e) = a ·
c
e,

which is even with respect to this grading:

C+(V ) ·
c
E± ⊂ E±, C−(V ) ·

c
E∓ ⊂ E∓.

Let O(V,Q) be the group of linear transformations of V which preserve
Q. That means for all φ ∈ O(V,Q) and v1, v2 ∈ V,

Q(φ v1 , φv2) = Q(v1 , v2).

The action of O(V,Q) on generators of T (V ) is defined by

φ(v1 ⊗ v2 ⊗ · · · ⊗ vk) =
k∑
i=1

v1 ⊗ · · · ⊗ φ(vi)⊗ · · · ⊗ vk

and extends to the whole T (V ) linearly.
IQ is invariant under the action of O(V,Q). Hence C(V,Q) carries a

natural action of O(V,Q).
Let ∗ : a 7→ a∗ be the anti–automorphism of T (V ) induced by v 7→ −v

on T , and satisfies

(a1a2)∗ = a∗2 a
∗
1.

Hence,

(v1v2 . . . vk)∗ =

{
(vkvk−1 . . . v1), if k is even,

−(vkvk−1 . . . v1), if k is odd.

Since

v∗1 ⊗ v∗2 + v∗2 ⊗ v∗1 + 2Q(v∗1 , v
∗
2)

= (−v1)⊗ (−v2) + (−v2)⊗ (−v1) + 2Q(−v1,−v2)

= v1 ⊗ v2 + v2 ⊗ v1 + 2Q(v1, v2),
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IQ is invariant under ∗. So it induces an anti–isomorphism a 7→ a∗ of C(V ).
If Q is a positive–definite quadratic form, then a Clifford module E of

C(V ) with an inner product is said to be self–adjoint if c(a∗) = c(a)∗,
where c(v) denote the action of v ∈ V on a Clifford module of C(V ) (which
may be C(V ) itself).

The inner product on E must be C(V )− invariant:

( c(a)e1 , c(a)e2 ) = ( e1 , e2 ), (for all a ∈ C(V ), e1, e2 ∈ E).

Hence for a self–dual module E,

(c(a)e1, e2) = (e1, c(a)∗e2) = (e1, c(a∗)e2).

Especially, we have

(c(v)e1, e2) = (e1, c(v∗)e2) = (e1,−c(v)e2), (for all v ∈ V, e1, e2 ∈ E).

That means c(v) is skew–adjoint for all v ∈ V .
Let E be a Z2−graded Clifford module over the Clifford algebra C(V ).

We denote by EndC(V )(E) the algebra of homomorphisms of E supercom-
muting with the action of C(V ).

4.13.1.1 The Exterior Algebra

The first interesting example of Clifford module is the exterior algebra.
The exterior algebra ΛV of a vector space V is defined to be

T (V )/I∗, where I∗ is the ideal generated by elements of the form

( v1 ⊗ · · · ⊗ vi ⊗ vi+1 ⊗ · · · ⊗ vk ) + ( v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vk ),

or equivalently,

ΛV =
∞⊕
k=1

ΛkV, where ΛkV = T k(V )/I∗.

Let

ε : V −→ Hom( ΛkV , Λk+1V )

be the action of V on ΛV by exterior product , i.e., for all v ∈ V ,

ε(v) : ΛkV −→ Λk+1V

w 7−→ v ∧ w .
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Explicitly,

ε(v) (v1 ∧ · · · ∧ vk) = v ∧ v1 ∧ · · · ∧ vk.

Let

ι : V −→ Hom( ΛkV , Λk−1V )

be the action of V on ΛV by interior product (or contraction), i.e., for all
v ∈ V ,

ι(v) : ΛkV −→ Λk−1V

w 7−→ Q(v, w)
.

Explicitly,

ι(v) (v1 ∧ · · · ∧ vk) =
k∑
i=1

(−1)i−1Q(v, vi) v1 ∧ · · · ∧ v̂i ∧ · · · ∧ vk.

The Clifford action of v ∈ V on w ∈ ΛV is given by

v ·
c
w = c(v)w = ε(v)w − ι(v)w.

For any v, w in V , we have

ε(v) ι(w) + ι(w) ε(v) = Q(v , w).

The action c : V −→ End(ΛV ) extends to an action of the Clifford
algebra C(V ) on ΛV .

The symbol map σ : C(V ) −→ ΛV is defined by σ(a) = c(a) 1ΛV , where
1ΛV ∈ Λ0V is the identity in the exterior algebra ΛV .

If 1
C(V ) denotes the identity in C(V ), then σ(1

C(V )) is the identity
1End(ΛV ) in End(ΛV ).

The Clifford algebra C(V ) is isomorphic to the tensor algebra ΛV and
is therefore a 2dimV dimensional vector space with generators

{(c1)n1(c2)n2 . . . (cdimV
)ndimV | (n1, n2, . . . , ndimV

) ∈ {0, 1}dimV }.

If we consider C(V ) and ΛV as Z2−graded O(V )−modules, then σ and
preserve the Z2−graded and the O(V ) action. Hence they are isomorphisms
of Z2−graded O(V )−modules.

There is a natural increasing filtration

C0(V ) ⊆ C1(V ) ⊆ . . . ⊆ Ck(V ) ⊆ . . . ⊆
∞⋃
i=0

Ci(V ) = C(V ),
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where

Ci(V ) = C0(V ) ⊕ C1(V ) ⊕ C2(v) ⊕ . . . ⊕ Ci(V )

and C0(V ) = R. It follows that

Ci(V ) = span{ v1 . . . vk | vj ∈ V ↪→ C(V ) for j = 1, . . . , k ≤ i }.

The Clifford algebra C(V ) with this filtration is called the associated
graded algebra of C(V ) and is denoted by grC(V ). The ith grading of
grC(V ) is denoted by gri C(V ).

The associated graded algebra grC(V ) is naturally isomorphic to
the exterior algebra ΛV , where the isomorphism is given by sending
gri(v1 . . . vi) ∈ gri C(V ) to v1Λ . . .Λvi ∈ ΛiV . The symbol map σ extends
the symbol map

σi : Ci(V ) −→ gri C(V ) ∼= ΛiV,

in the sense that if a ∈ Ci(V ), then σ(a)[i] = σi(a). The filtration Ci(V )
may be written as

Ci(V ) =
i∑

j=0

q(ΛiV ).

Hence the Clifford algebra C(V ) may be identified with the exterior algebra
ΛV with a twisted, or quantized multiplication α ·

Q
β.

If v ∈ V ↪→ C(V ) and a ∈ C+(V ), then σ( [v, a] ) = −2 ι(v)σ(a).
The space C2(V ) = q(Λ2V ) is a Lie subalgebra of C(V ), where the

Lie bracket is just the commutator in C(V ). It is isomorphic to the Lie
algebra (V ), under the map τ : C2(V ) −→ so(V ), where any a ∈ C2(V ) is
mapped into τ(a) which acts on any v ∈ V ∼= C1(V ) by the adjoint action:
τ(a) v = [ a , v ]. Here the bracket is the bracket of the Lie super–algebra
C(V ), i.e.,

[ a1 , a2 ] = a1a2−(−1)|a1| |a2| a2a1, (for a1 ∈ C |a1|(V ), a2 ∈ C |a2|(V )).

It satisfies the following Axioms of Lie super–algebra:

Supercommutativity [ a1 , a2 ] + (−1)|a1| |a2| [ a2 , a1 ] = 0, and
Jacobi’s identity

[ a1 , [a2, a3] ] = [ [a1, a2] , a3 ] + (−1)|a1| |a2| [ a2 , [a1, a3] ].
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We usually identify A ∈ so(V ) with∑
i<j

(Aei , ej ) ei∧ej ∈ Λ2V, so that we have q (A) =
∑
i<j

(Aei , ej ) cicj ,

which is twice of τ−1(A).

4.13.1.2 The Spin Group

For any a in the Lie algebra C(V ), we may form its exponential in C(V )
by

exp(a) = 1
C(V ) + a +

1
2
a2 +

1
3!
a3 + . . . +

1
n!
an + . . . ,

which is an element in the associated Lie group of C(V ).
For any v1, v2 in V ↪→ C(V ) satisfying

Q( v1 , v1 ) = Q( v2 , v2 ) = 1, Q( v1 , v2 ) = 0,

we have the following formula

exp[t ( v1 v2 )] = (cos t) 1
C(V ) + (sin t) v1 v2,

where t ∈ R. In fact, t is well–defined mod 2π. Consequently, this formula
is satisfied for some vectors in V whenever dimV > 1.

Let the Spin group of the vector space V be the Lie group associated
to the Lie subalgebra C2(V ) of the Clifford algebra C(V ), i.e., Spin(V ) =
expC2(V ).

The adjoint action τ of the Lie algebra C2(V ) on V may be expo-
nentiated to an orthogonal action of conjugation which is denoted by τ .
Explicitly, for g ∈ Spin(V ) and v ∈ V , there is a fundamental relation:
τ(g) v = g v g−1.

Indeed, writing g = exp(a) for some a ∈ C2(V ), then

[ a , v ] = τ(a) v implies exp(a) v (exp(a))−1 = exp( τ(a) ) v.

If dimV > 1, then the homomorphism τ : Spin(V ) −→ SO(V ) is a
double covering.

4.13.1.3 4D Case

Now consider the most interesting case when V ∼= R4. Fix a basis
{ e1, e2, e3, e4 } which is orthonormal with respect to the fixed quadratic
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form Q. Then any vector v ∈ V may be written as v = vkek and the
Clifford algebra is

C(R4) = span{ cn1
1 cn2

2 cn3
3 cn4

4 |ni ∈ {0, 1} }, where ci = q( ei ).

For convenience, we may denote ci by ei without ambiguity. Especially,

C2(R4) = span{ e1e2 , e1e3 , e1e4 , e2e3 , e2e4 , e3e4 }

Now consider the isomorphism τ : C2(R4) −→ so(4) = so(R4). And the
corresponding τ : Spin(4) −→ so(4). We have

τ(eiej) · v = [ eiej ,
4∑
k=1

vk ek ] =
4∑
k=1

vk [ eiej , ek ] =
4∑
k=1

vk ( eiejek − ekeiej )

=
4∑
k=1

vk ( eiejek + eiekej − eiekej − ekeiej )

=
4∑
k=1

vk (−2Q( ej , ek ) ei + 2Q( ek , ei ) ej ) = −2 vj ei + 2 vi ej .

Hence τ ( eiej ) corresponds to 2 · m(i, j) ∈ so(4) where m(i, j) =
(m(i, j)αβ) is a matrix with entries

m(i, j)αβ =


1, if α = j and β = i,

−1, if α = i and β = j,

0, otherwise.

Explicitly, we have

τ( e1e2 ) = 2


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 τ( e1e3 ) = 2


0 0 −1 0
0 0 0 0
1 0 0 0
0 0 0 0



τ( e1e4 ) = 2


0 0 0 −1
0 0 0 0
0 0 0 0
1 0 0 0

 τ( e2e3 ) = 2


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


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τ( e2e4 ) = 2


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 τ( e3e4 ) = 2


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

 .

Notice that for t ∈ [0, 2π), τ( t2 eiej ) corresponds to the matrix t ·m(i, j)
and

(t ·m(i, j)αβ)2 = −t2 ·∆(i, j),

(t ·m(i, j)αβ)4 = t4 ·∆(i, j),

where ∆(i, j) is a matrix with

∆(i, j)αβ =

{
1, if α = β = i or α = β = j,

0, otherwise.

Therefore, we have

exp τ (
t

2
eiej ) = (cos t− 1) ·∆(i, j) + 1

SO(4) + (sin t)m(i, j).

Since we have the commutative relation τ · exp = exp · τ , it follows
that

τ exp ( t eiej ) = exp τ ( teiej ) = (cos 2t−1)·∆(i, j) + 1
SO(4) + (sin 2t)m(i, j).

Explicitly, we have

τ( exp( t e1e2 ) ) =


cos 2t − sin 2t 0 0
sin 2t cos 2t 0 0

0 0 1 0
0 0 0 1



τ( exp( t e1e3 ) ) =


cos 2t 0 − sin 2t 0

0 1 0 0
sin 2t 0 cos 2t 0

0 0 0 1



τ( exp( t e1e4 ) ) =


cos 2t 0 0 − sin 2t

0 1 0 0
0 0 1 0

sin 2t 0 0 cos 2t


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τ( exp( t e2e3 ) ) =


1 0 0 0
0 cos 2t − sin 2t 0
0 sin 2t cos 2t 0
0 0 0 1



τ( exp( t e2e4 ) ) =


1 0 0 0
0 cos 2t 0 − sin 2t
0 0 1 0
0 sin 2t 0 cos 2t



τ( exp( t e3e4 ) ) =


1 0 0 0
0 1 0 0
0 0 cos 2t − sin 2t
0 0 sin 2t cos 2t

 .

4.13.2 Spinors

In this subsection, mainly following [Yang (1995)], we define spinors and
the spinor representation of the Clifford algebras.

4.13.2.1 Basic Properties

Let {ei}i=1,...,dimV be an oriented, orthonormal basis of V , that means there
is a preferred ordering of the basis elements modulo even permutations. The
chirality operator23 is

Γ = ip e1 . . . edimV
∈ C(V )⊗ C, where

p =
[

dimV + 1
2

]
=

{
dimV

2 if dimV is even,
dimV+1

2 if dimV is odd.

The Chirality operator satisfies: Γ2 = 1
C(V ) , and it super–

anticommutes with elements v ∈ V , i.e., Γ v + (−1)dimV v Γ = 0.
For dimV odd, Γ is in the center of C(V )⊗ C.

23Also known as the volume element or the complex unit. Physicists also denote it as
γ5 for the four dimensional case.
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For dimV even, every complex Clifford module E has a Z2−grading
defined by the ±1 eigen–spaces of the chirality operator:

E± = {v ∈ E |Γv = ±v }.

Especially, for dimV ≡ 0 mod 4,Γ ∈ C(V ), so in this case, the real Clifford
modules are also Z2−graded.

A polarization of a complex vector space V ⊗C is a subspace P ⊂ V ⊗C
which is isotropic, i.e.,

Q( v , v ) = 0, (for all v ∈ P ),

and we have a spliting

V ⊗ C = P ⊕ P.

Here the quadratic form Q extends from V to V ⊗C complex linearly, i.e.,

Q( a+ ib , c+ id ) = Q( a , c ) + i (Q( a , d ) + Q( b , c )) − Q( b , d )

A polarization is called oriented, if there is an oriented orthonormal
basis {ei} of V , such that P is spanned by the vectors

{wi =
( e2i−1 − ie2i )√

2
| 1 ≤ i ≤ dimV

2
},

and therefore the complement P is spanned by the vectors

{wi =
( e2i−1 + ie2i )√

2
| 1 ≤ i ≤ dimV

2
}.

The basis {wi}i=1,..., dimV
2

and the corresponding conjugate
{wi}i=1,..., dimV

2
satisfy the following equations: For 1 ≤ i ≤ dimV

2 ,

wiwi = wiwi = 0, wiwi + wiwi = −2.

For 1 ≤ i 6= j ≤ dimV
2 ,

wiwj = −wjwi, wiwj = −wjwi, wiwj = −wjwi.

If V is an even–dimensional oriented Euclidean vector space, then there
is a unique Z2−graded Clifford module: S = S+ ⊕ S− called the spinor
module, such that C(V )⊗C ∼= End(S). Elements in S+ and S− are called
positive and negative spinors respectively.

In particular, we have

dimC(S) = 2( dimV
2 ), and dimC(S+) = dimC(S−) = 2( dimV

2 −1).
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4.13.2.2 4D Case

Now we look at the spinors in four dimensional vector space.
Consider an oriented orthonormal basis {e1, e2, e3, e4} of the Euclidean

vector space R4. Then the standard oriented polarization P of C4 ∼= R4⊗C
is generated by

{w1 =
e1 − i e2√

2
, w2 =

e3 − i e4√
2

}, and we have

S+ = spanC〈 1ΛP , w1 ∧ w2 〉, S− = spanC〈w1 , w2 〉.

Together, we have the following standard basis of S = S+ ⊕ S−:

{ 1ΛP , w1 ∧ w2 , w1 , w2 }.

Under this basis, any spinor s ∈ S may be written as a column vector
with components

s =


s1
s2
s3
s4



and we have a spliting

s = s+ ⊕ s− =

s+1
s+2

 ⊕
s−1
s−2

 =

s1
s2

 ⊕
s3
s4

 .

Since S ∼= C4, we have a representation: C(V ) ⊗ C ↪→ End(C4). To
find out the exact correspondencs, let’s consider the Clifford action of wi
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and wi on S:

c(w1 ) :



1ΛP

w1 ∧ w2

w1

w2

7→



√
2 w1

0

0
√

2 w1 ∧ w2

c(w2 ) :



1ΛP

w1 ∧ w2

w1

w2

7→



√
2 w2

0

−
√

2 w1 ∧ w2

0

c(w1 ) :



1ΛP

w1 ∧ w2

w1

w2

7→



0

−
√

2 w2

−
√

2 1ΛP

0

c(w2 ) :



1ΛP

w1 ∧ w2

w1

w2

7→



0
√

2 w1

0

−
√

2 1ΛP

.
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Therefore we have the following correspondence:

w1 =
√

2


0 0 0 0

0 0 0 1

1 0 0 0

0 0 0 0



w2 =
√

2


0 0 0 0

0 0 −1 0

0 0 0 0

1 0 0 0



w1 =
√

2


0 0 −1 0

0 0 0 0

0 0 0 0

0 −1 0 0



w2 =
√

2


0 0 0 −1

0 0 0 0

0 1 0 0

0 0 0 0

 .

Now, by the relations

e2i−1 =
(wi + wi )√

2
, e2i =

(−wi + wi )√
2 i

,
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we can deduce the corresponding matrices:

e1 =


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0



e2 =


0 0 i 0
0 0 0 i
i 0 0 0
0 i 0 0



e3 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0



e4 =


0 0 0 i
0 0 −i 0
0 −i 0 0
i 0 0 0

 .

As a result, we have the following Theorem: There are isomorphisms

Hom(S+ , S− ) ∼= Λ1
C, Hom(S− , S+ ) ∼= Λ1

C.

The elements in C2(V ) correspond to the matrices

e1e2 =


−i 0 0 0
0 i 0 0
0 0 i 0
0 0 0 −i

 e3e4 =


−i 0 0 0
0 i 0 0
0 0 −i 0
0 0 0 i



e1e3 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 e4e2 =


0 −1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0



e1e4 =


0 i 0 0
i 0 0 0
0 0 0 i
0 0 i 0

 e2e3 =


0 i 0 0
i 0 0 0
0 0 0 −i
0 0 −i 0

 .

There is a representation

Spin(4) −→ End(C4), which splits into: SU(2) × SU(2).
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4.13.2.3 (Anti) Self Duality

There is an operator on the exterior algebra which is similar to the chirality
operator.

Let the Hodge star operator

? : ΛV −→ ΛV,

with respect to Q, be given by the following relation:

ei1 ∧ · · · ∧ eik ∧ ?(ei1 ∧ · · · ∧ eik) = εi1...ike1 ∧ · · · ∧ edimV
,

where {ei}i=1,...,dimV is orthonormal with respect to Q and

εi1...ik = sgn
(

1 2 . . . . . . . . . . dimV

i1 . . . ik ik+1 . . . idimV

)
with

(ik+1, . . . , idimV
) = (1, 2, . . . , î1, . . . , îk, . . . ,dimV ).

Now we consider the case when dimV = 4.
For a four dimensional vector space V , the restriction of the square of

the Hodge star operator satisfies:

?2|
C±(V )

= ± 1
End(C±(V ) )

.

For a 4D vector space V , Λ2V splits into ±1 eigen–spaces of ?:

Λ2
+V = { (1 + ?)

2
w |w ∈ ΛV }

and

Λ2
−V = { (1− ?)

2
w |w ∈ ΛV },

which are called the space of self–dual (SD) or anti–self–dual (ASD) 2–
forms and are simplified as Λ+ and Λ− respectively.

The standard basis for Λ+ and Λ− are the self–dual basis:

{w+
1 = e1∧e2 +e3∧e4 , w+

2 = e1∧e3 +e4∧e2 , w+
3 = e1∧e4 +e2∧e3},

and the anti–self–dual basis:

{w−1 = e1∧e2−e3∧e4 , w−2 = e1∧e3−e4∧e2 , w−3 = e1∧e4−e2∧e3},

respectively.
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Notice that in the above corollary, the notation w±
i refers to elements

of C(V ) ⊗ C. If we consider w±
i as elements of ΛCV = ΛV ⊗ C, then we

have

w+
1 = i (w1 ∧ w1 + w2 ∧ w2 )

w+
2 =w1 ∧ w2 + w1 ∧ w2

w+
3 = i (w1 ∧ w2 − w1 ∧ w2 )

w−1 = i (w1 ∧ w1 − w2 ∧ w2 )

w−2 =w1 ∧ w2 + w1 ∧ w2

w−3 = i (w1 ∧ w2 − w1 ∧ w2 ).

The difference in the two interpretations of w+
1 arises from the fact that

wiwi = wiwi = −1
C(V ) ∈ C(V )⊗ C, but

wi ∧ wi = wi ∧ wi = 0 ∈ ΛCV.

By using the self-dual and anti-self dual basis, we can express our pre-
vious results again in a ‘better’ way:

The map τ : Spin(4) −→ SO(4) has the following images:

τ( exp( tw+
1 ) ) =


cos 2t − sin 2t 0 0
sin 2t cos 2t 0 0

0 0 cos 2t − sin 2t
0 0 sin 2t cos 2t



τ( exp( tw+
2 ) ) =


cos 2t 0 − sin 2t 0

0 cos 2t 0 sin 2t
sin 2t 0 cos 2t 0

0 − sin 2t 0 cos 2t



τ( exp( tw+
3 ) ) =


cos 2t 0 0 − sin 2t

0 cos 2t − sin 2t 0
0 sin 2t cos 2t 0

sin 2t 0 0 cos 2t


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τ( exp( tw−1 ) ) =


cos 2t − sin 2t 0 0
sin 2t cos 2t 0 0

0 0 cos 2t sin 2t
0 0 − sin 2t cos 2t



τ( exp( tw−2 ) ) =


cos 2t 0 − sin 2t 0

0 cos 2t 0 − sin 2t
sin 2t 0 cos 2t 0

0 sin 2t 0 cos 2t



τ( exp( tw−3 ) ) =


cos 2t 0 0 − sin 2t

0 cos 2t sin 2t 0
0 − sin 2t cos 2t 0

sin 2t 0 0 cos 2t

 .

The map C+(R4) −→ H⊕H has the following images

1 7→ 1 ⊕ 1, Γ = −e1e2e3e4 7→ 1 ⊕ −1

w+
1 7→ −2 i ⊕ 0, w−1 7→ 0 ⊕ 2 i

w+
2 7→−2 j ⊕ 0, w−2 7→ 0 ⊕ −2 j

w+
3 7→ 2 k ⊕ 0, w−3 7→ 0 ⊕ 2 k,

while the inverse H ⊕ H −→ C+(R4) has the following images

1 ⊕ 0 7→ 1 + Γ
2

, 0⊕ 1 7→ 1 − Γ
2

i ⊕ 0 7→ −w+
1

2
, 0⊕ i 7→ w−1

2

j ⊕ 0 7→ −w+
2

2
, 0⊕ j 7→ −w−2

2

k ⊕ 0 7→ w+
3

2
, 0⊕ k 7→ w−3

2
.

So, the map Spin(4) −→ SU(2)× SU(2) has

exp( tΛ+ ) −→ SU(2)× 1
SU(2) , exp( tΛ− ) −→ 1

SU(2) × SU(2),
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given by

exp( tw+
1 ) 7→

(
exp(−i2t) 0

0 exp(i2t)

)
⊕
(

1 0
0 1

)
exp( tw+

2 ) 7→
(

cos 2t − sin 2t
sin 2t cos 2t

)
⊕
(

1 0
0 1

)
exp( tw+

3 ) 7→
(

cos 2t sin 2t i
sin 2t i cos 2t

)
⊕
(

1 0
0 1

)
exp( tw−1 ) 7→

(
1 0
0 1

)
⊕
(

exp(i2t) 0
0 exp(−i2t)

)
exp( tw−2 ) 7→

(
1 0
0 1

)
⊕
(

cos 2t − sin 2t
sin 2t cos 2t

)
exp( tw−3 ) 7→

(
1 0
0 1

)
⊕
(

cos 2t sin 2t i
sin 2t i cos 2t

)
.

The action of w±i in C(V )⊗ C on S ∼= ΛP is given by

w+
1 = 2


−i 0 0 0
0 i 0 0
0 0 0 0
0 0 0 0

 w−1 = 2


0 0 0 0
0 0 0 0
0 0 i 0
0 0 0 −i



w+
2 = 2


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 w−2 = 2


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0



w+
3 = 2


0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 w−3 = 2


0 0 0 0
0 0 0 0
0 0 0 i
0 0 i 0

 .

Therefore, Λ+ acts on S+ while Λ− acts on S−.
Now consider the complexified algebra of self–dual and anti–self–dual

two forms

Λ±C = Λ± ⊗ C.
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Usually, we use the following basis for Λ+C:

w1 ∧ w1 + w2 ∧ w2 = − i w+
1

w1 ∧ w2 =
w+

2 − i w+
3

2

w1 ∧ w2 =
w+

2 + i w+
3

2

and the following basis for Λ−C:

w1 ∧ w1 − w2 ∧ w2 = − i w−1

w1 ∧ w2 =
w−2 − i w−3

2

w1 ∧ w2 =
w−2 + i w−3

2
.
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Their quantization acts on S as

q(w1 ∧ w1 + w2 ∧ w2) = 2


−1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



q(w1 ∧ w2) = 2


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0



q(w1 ∧ w2) = 2


0 −1 0 0
0 0 0 0
0 0 0 0
0 0 0 0



q(w1 ∧ w1 − w2 ∧ w2) = 2


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1



q(w1 ∧ w2) = 2


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0



q(w1 ∧ w2) = 2


0 0 0 0
0 0 0 0
0 0 0 −1
0 0 0 0

 .

As a result, we have the following Theorem: there are isomorphisms

End(S+ ) ∼= Λ0
C ⊕ Λ+C, End(S− ) ∼= Λ0

C ⊕ Λ−C.

4.13.2.4 Hermitian Structure on the Spinors

There is a canonical Hermitian structure on the space of positive spinors
S+ given by the Hermitian inner product 〈 · , · 〉, which takes the value

〈 s+ , t+ 〉 = s+1 t
+
1 + s+2 t

+
2
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on the spinors

s+ =

s+1
s+2

 and t+ =

t+1
t+2

 ∈ S+.

The above Hermitian form is Spin(4)−invariant.
The dual vector space S+∗ consists of complex linear functionals

φ : S+ −→ C.

S+∗ is generated by the dual complex basis

{ 1∗
C(V )

, (w1 ∧ w2)∗ }, which satisfies

1∗
C(V )

( 1
C(V ) ) = 1, 1∗

C(V )
(w1 ∧ w2 ) = 0,

(w1 ∧ w2)∗( 1
C(V ) ) = 0, (w1 ∧ w2)∗(w1 ∧ w2 ) = 1.

There is a Hermitian Riesz representation

S+ ∼=−→ S+∗,

with the following identifications+1
s+2

 7→ 〈
s+1
s+2

 , · 〉.

The Hermitian Riesz representation S+ −→ S+∗ is given bys+1
s+2

 7→
s+1
s+2

∗

,

which implies s+1
s+2

∗

= 〈

s+1
s+2

 , · 〉.

By using the Hermitian Riesz representation, we have

S+ ⊗ S+ ∼= End(S+ ).

Also, by using the Hermitian Riesz representation, we have

S+ ⊗ S+ ∼= Λ0
C ⊕ Λ+C.
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Now consider the negative spinors S−. With respect to the standard
basis {w1 , w2 } we can define a similar Spin(4)− invariant Hermitian inner
product, which takes the value

〈 s− , t− 〉 = s−1 t
−
1 + s−2 t

−
2

on the spinors

s− =

s−1
s−2

 and t− =

t−1
t−2

 ∈ S−.

We have a similar Hermitian Riesz representation on S−:

S−
∼=−→ S−∗,

with the following identifications−1
s−2

 7→ 〈
s−1
s−2

 , · 〉,

which, as in S+, satisfiess−1
s−2

∗

= 〈

s−1
s−2

 , · 〉.

As in S+, by using the Hermitian Riesz representation, we have:

S− ⊗ S− ∼= End(S− ),

S− ⊗ S− ∼= Λ0
C ⊕ Λ−C,

S+ ⊗ S−
∼=−→ Hom(S+ , S− ),

S+ ⊗ S− ∼= Λ1
C.

Similarly, by interchanging S+ and S−, and by using the Hermitian
Riesz representation, we have:

S− ⊗ S+ ∼= Hom(S− , S+ ),

S− ⊗ S+ ∼= Λ1
C.
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4.13.2.5 Symplectic Structure on the Spinors

There is a canonical symplectic structure on the space of positive spinors
S+ given by the symplectic form { · , · }, which takes the value

{s+ , t+} = s+1 t
+
2 − s+2 t

+
1

on the spinors

s+ =

s+1
s+2

 and t+ =

t+1
t+2

 ∈ S+.

The above symplectic form is Spin(4)−invariant.
There is a symplectic Riesz representation

S+ ∼=−→ S+∗

with the following identifications+1
s+2

 7→ {
s+1
s+2

 , ·}.

The symplectic Riesz representation

S+ −→ S+∗

is given by s+1
s+2

 7→
−s+2
s+1

∗

.

That means s+1
s+2

∗

= {

 s+2

−s+1

 , ·}.

Just like the Hermitian case, we also have the following.
By using the symplectic Riesz representation, we have

S+ ⊗ S+ ∼= End(S+ ),

S+ ⊗ S+ ∼= Λ0
C ⊕ Λ+C.
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Now consider the negative spinors S−. With respect to the standard
basis {w1 , w2 } we can define a similar Spin(4)−invariant symplectic
form which takes the value

{s− , t−} = s−1 t
−
2 − s−2 t

−
1

on the spinors

s− =

s−1
s−2

 and t− =

t−1
t−2

 ∈ S−.

We have a similar symplectic Riesz representation on S−:

S−
∼=−→ S−∗

with the following identifications−1
s−2

 7→ {
s−1
s−2

 , ·},

which, as in S+, satisfiess−1
s−2

∗

= {

 s−2

−s−1

 , ·}.

As in S+, by using the symplectic Riesz representation, we have:

S− ⊗ S− ∼= End(S− ),

S− ⊗ S− ∼= Λ0
C ⊕ Λ−C,

S+ ⊗ S−
∼=−→ Hom(S+ , S− ),

S+ ⊗ S− ∼= Λ1
C.

Similarly, by interchanging S+ and S−, and by using the symplectic
Riesz representation, we have

S− ⊗ S+ ∼= Hom(S− , S+ ),

S− ⊗ S+ ∼= Λ1
C.
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4.13.3 Penrose Twistor Calculus

Recall that the twistor theory, originally developed by Roger Penrose in
1967, is the mathematical theory which maps the geometric objects of the
4D Minkowski space–time into the geometric objects in the 4D complex
space with the metric signature (2, 2). The coordinates in such a space are
called twistors.

The twistor approach appears to be especially natural for solving the
equations of motion of massless fields of arbitrary spin.

Recently, Ed Witten used twistor theory to understand certain Yang–
Mills amplitudes, by relating them to a certain string theory, the topological
B model, embedded in twistor space. This field has come to be known as
twistor string theory.

4.13.3.1 Penrose Index Formalism

Except where otherwise indicated we use Penrose’s abstract index notation
[Penrose and Rindler (1984)] which allows for easy explicit calculations
without involving a choice of basis. Thus we may write, vA or vB for a
section of the unprimed fundamental spinor bundle EA. Similarly wA′ could
denote a section of the primed fundamental spinor bundle EA′ . We write EA
for the dual bundle to EA and EA′ for the dual to EA′ . The tensor products
of these bundles yield the general spinor objects such as EAB := EA ⊗ EB ,
EABC′A′B′ and so forth. The tensorial indices are also abstract indices. Recall
that Ea = EAA′ is the tangent bundle, so Ea = EA′A is the cotangent bundle
and we may use the terms ‘spinor’ or ‘section of a spinor bundle’ to describe
tensor fields [Gover and Slovak (1999)].

A spinor object on which some indices have been contracted will be
termed a spinor contraction (of the underlying spinor). For example,
vABC

′

BC′DE is a contraction of vABC
′

DD′EF . In many cases the underlying spinor
of interest is a tensor product of lower valence spinors. For example,
vABwC

′

B uACD is a contraction of vABwC
′

C uDEF . The same conventions
are used for the tensor indices and the twistor indices; the latter are to
introduced below. Standard notation is also used for the symmetrizations
and antisymmetrizations over some indices.

Weights and scales

We define line bundles of densities or weighted functions as follows [Gover
and Slovak (1999)]. The weight -1 line bundle E [−1] over M is identified
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with E

p︷ ︸︸ ︷
|A′B′ · · ·C ′|. Then, for integral w, the weight w line bundle E [w]

is defined to be (E [−1])−w. In the case of AG–geometries corresponding to
the real–split form SL(p + q,R) we can (locally) extend this definition to
weights w ∈ R, by locally selecting a ray fibre subbundle of E [−1]. Calling
this say E+[−1], we can then define the ray bundles E+[w] := (E [−1])−w.
Finally these may be canonically extended to line bundles in the obvious
way. In any case we write EA′ [w] for EA′⊗E [w] and so on, whenever defined.
In view of the defining isomorphism

h : ∧qEA '−→ ∧pEA′ , we also have (4.165)

E [−1] ∼= E|AB · · ·C|︸ ︷︷ ︸
q

, E [1] ∼= E

q︷ ︸︸ ︷
||AB · · ·C| ∼= E|A′B′ · · ·C ′|︸ ︷︷ ︸

p

.

We write εA
′B′···C′ for the tautological section of E [A′B′···C′][1] giving the

mapping E [−1] '−→ ∧pEA′ by

f 7→ fεA
′B′···C′ , (4.166)

and εD···E for similar object giving E [−1] '−→ ∧qEA. A scale for the AG–
structure is a nowhere vanishing section ξ of E [1]. Note that such a choice
is equivalent to a choice of spinor ‘volume’ form

εA
′···C′

ξ := ξ−1εA
′···C′ , or to a choice of form, εξD···E := ξ−1εD···E .

Distinguished connections

A connection∇a onM belongs to the given AG–structure (this really means
∇a comes from a principal connection on the bundle G0 described below)
iff it satisfies two conditions [Gover and Slovak (1999)]:

• ∇a is the tensor product of linear connections (both of which we shall
also denote ∇a) on the spinor bundles EA and EA′ , and
• The defining isomorphism h in (4.165) is covariantly constant, i.e.,
∇ah = 0.

Our conventions for the torsion Tabc and curvature Rabcd of a connection
∇a on the tangent bundle TM are determined by the following equation,

2∇[a∇b]vc = Tab
d∇dvc +Rab

c
dv
d.



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Applied Bundle Geometry 693

Since Tabc is skew on its lower indices, Tabc = T[ab]
c, it can be written

as a sum of two terms

Tab
c = Fab

c + F̃ab
c, where

Fab
c = : FA

′B′C
ABC′ = F

[A′B′]C
(AB)C′ , F̃ab

c =: F̃A
′B′C

ABC′ = F
(A′B′)C
[AB]C′ .

The Cartan bundle G over the manifold M has the quotient G0, a prin-
cipal fibre bundle with structure group G0. By the general theory, each
G0−equivariant section σ : G0 → G of the quotient projection defines the
distinguished principal connection on G0, the pullback of the g0−part of ω.
The whole class of these connections consists precisely of connections on G0

with the unique torsion taking values in the kernel of ∂∗. A straightforward
computation shows that the latter condition is equivalent to the condition
that both F̃ and F be completely trace–free. Each principal connection
on G0 induces the induced connection on the bundle E [1] \ {0} which is
associated to G0 and, moreover, the resulting correspondence between the
sections σ and the latter connections is bijective. In particular, each sec-
tion ξ of the bundle E [1] \ {0} defines uniquely a reduction σ, such that the
corresponding distinguished connection leaves ξ horizontal.

Therefore, given a scale ξ on an AG–structure there are unique connec-
tions on EA and EA′ such that FA

′B′C
ABC′ and F̃A

′B′C
ABC′ are totally trace–free,

the induced covariant derivative preserves the isomorphism h of (4.165),
and ∇aξ = 0. The torsion components Fabc and F̃ab

c of the induced con-
nection on TM are invariants of the so–called AG–structures [Bailey and
Eastwood (1991)].

Note that in the special case of the four-dimensional conformal geome-
tries, there is always a connection with vanishing torsion on G0 and so both
F and F̃ are zero. The scales correspond to a choice of metric from the
conformal class while the general distinguished connections (corresponding
to the reduction parameter σ being not necessarily exact) are just the Weyl
geometries.

We may write ∇ξa to indicate a connection as determined by the The-
orem, although mostly we omit the ξ. Thus we might write ∇ξ̂a or simply
∇̂a to indicate the connection corresponding to a scale ξ̂ and similar con-
ventions will be used for other operators and tensors that depend on ξ.

In what follows, for the purpose of explicit calculations, we shall often
choose a scale and work with the corresponding connections. Objects are
then well defined, or invariant, (on the AG-structure) if they are indepen-
dent of the choice of scale. Note that if we change the scale according to
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ξ 7→ ξ̂ = Ω−1ξ, where Ω is a smooth non–vanishing function, then the
connection transforms as follows [Gover and Slovak (1999)]:

EA : ∇̂
A′

A u
C = ∇A

′

A u
C + δCAΥA′

B u
B

EA′ : ∇̂
A′

A uC′ = ∇A
′

A uC′ + δA
′

C′Υ
B′

A uB′

EB : ∇̂
A′

A vB = ∇A
′

A vB −ΥA′

B vA

EB′ : ∇̂
A′

A v
B′ = ∇A

′

A v
B′ −ΥB′

A vA
′

(4.167)

where Υa := Ω−1∇aΩ. Consequently

∇̂af = ∇af + wΥaf if f ∈ E [w]. (4.168)

Given a choice of scale ξ, we write RabCD (or R(ξ)
ab

C
D to emphasise the

choice of scale) for the curvature of ∇a on EA and RabC
′

D′ for the curvature
of ∇a on EA′ , that is

(2∇[a∇b] − Tabe∇e)vC = Rab
C
Dv

D, (2∇[a∇b] − Tabe∇e)wD′ = −RabC
′

D′wC′ .

Then the curvature of the induced linear connection on TM is

Rab
c
d = Rab

C′

D′δ
C
D +Rab

C
Dδ

C′

D′ .

Note that since ∇a preserves the volume forms εξA′···C′ and εξD···E it follows
that RabCD and Rab

C′

D′ are trace–free on the spinor indices displayed. Thus
the equations

Rab
C
D = Uab

C
D−δ

C
BP

A′B′

AD +δCAP
B′A′

BD , Rab
C′

D′ = Uab
C′

D′+δ
B′

D′P
A′C′

AB −δ
A′

D′P
B′C′

BA

determine the objects UabCD, UabC
′

D′ and the Rho–tensor , Pab, if we require
that UA

′B′C
ACD = 0 = UA

′D′C′

ABD′ . In this notation we have,

Rab
c
d = Uab

c
d + δD

′

C′ δ
C
AP

B′A′

BD − δD
′

C′ δ
C
BP

A′B′

AD − δCDδ
A′

C′P
B′D′

BA + δCDδ
B′

C′P
A′D′

AB ,(4.169)

where Uab
c
d = Uab

C
Dδ

D′

C′ + Uab
D′

C′ δ
C
D. (4.170)

In the case of p = 2 = q this agrees with the usual decomposition of
the curvature of the Levi–Civita connection into the conformally invariant
(and trace–free) Weyl tensor part and the remaining part given by the Rho–
tensor (see e.g., [Bailey et. al. (1994)]). Note that U ’s are 2–forms valued
in g0 coming from the curvature of the canonical Cartan connection and
so they are in the kernel of ∂∗. This is the source of the condition on the
trace, but they are not trace–free in general:

Uab
C
C = −UabC

′

C′ = 2P[ab]. (4.171)
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On the other hand, it follows from the Bianchi identity,

R[ab
d
c] +∇[aTbc]

d + T[ab
eTc]e

d = 0, that

2(p+ q)P[ab] = −∇cTabc.

The Rho–tensor Pab has the transformation equation

P̂A
′B′

AB = PA
′B′

AB −∇A
′

A ΥB′

B + ΥB′

A ΥA′

B . (4.172)

We are most interested in the special case p = 2. Then the whole
component Fabc is irreducible and so it vanishes by our condition on the
trace, while the other component F̃abc of the torsion, together with the
trace–free part of U [A′B′]D

(ABC) are the only local invariants of the structures.
In all other cases 2 < p ≤ q, the two components of the torsion are the only
invariants.

The totally symmetrized covariant derivatives of the Rho–tensors play
a special role. We use the notation

Sa···b := ∇(a∇b · · ·∇dPef)︸ ︷︷ ︸
s

for s = 2, 3 · · · .

Twistors

Via the Cartan bundle G over M any P−module V gives rise to a natural
bundle (or induced bundle) V. Sections of V are identified with functions
f : G → V such that f(x.p) = ρ(p−1)f(x), where x 7→ x.p gives the action
of p ∈ P on x ∈ G while ρ is the action defining the P−module structure.

Recall also that the Cartan bundle is equipped with a canonical con-
nection, the so called normal Cartan connection ω. In view of this it is
in our interests to work, where possible, with natural bundles V induced
from V where this is not merely a P−module but in fact a G−module.
Then the Cartan connection induces an invariant linear connection on V.
Let us write V α for the module corresponding to the standard represen-
tation of G on Rp+q and write Vα for the dual module. The index α

is another Penrose-type abstract index and we write Eα and Eα for the
respective bundles induced by these G-modules. All finite dimensional
G−modules are submodules in tensor products of the fundamental rep-
resentations V α and Vα. Thus the bundles Eα and Eα play a special role
and we term these (local) twistor bundles [Bailey and Eastwood (1991);
Penrose and Rindler (1986)]. In fact in line with the use of the word
“tensor” we also describe any explicit subbundle of a tensor product of
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these bundles as a twistor bundle and sections of such bundles as local
twistors. In particular observe that there is a canonical completely skew
local–twistor (p + q)−form hαβ···γ on Eα which is equivalent to the iso-
morphism (4.165). We write hαβ···γ for the dual completely skew twistor
satisfying hαβ···γhαβ···γ = (p+ q)!.

All finite dimensional P−modules enjoy filtrations which split com-
pletely as G0−modules. V α and Vα, give the simplest cases and, as
P−modules, admit filtrations

V α = V A + V A
′
, Vα = VA′ + VA.

(Our notational convention is that the ‘right ends’ in the formal sums are
submodules while the ‘left ends’ are quotients.) These determine filtrations
of the twistor bundles

Eα = EA + EA
′
, Eα = EA′ + EA.

We write Xα
A′ for the canonical section of EαA′ which gives the injecting

morphism EA′ → Eα via

vA
′
7→ Xα

A′v
A′ . (4.173)

Similarly Y Aα describes the injection of EA into dual twistors,

EA 3 uA 7→ Y Aα uA ∈ Eα. (4.174)

It follows from standard representation theory that a choice of splitting
of the exact sequence,

0→ V A
′
→ V α → V A → 0

is equivalent to the choice of subgroup of P which is isomorphic to G0. It
follows immediately that a choice of splitting of the twistor bundle Eα is
equivalent to a reduction from G to G0. Such a splitting is a G0−equivariant
homomorphism ξ : Eα → EA′ . We can regard ξ here as a section of Eα ⊗
EA′ = EA′α and then in our index notation the homomorphism is determined
by vα 7→ ξA

′

α v
α, for any section vα of Eα. The composition of ξ with the

monomorphism EA′ → Eα must be the identity so we have,

ξA
′

β X
β
B′ = δA

′

B′ .

A splitting ξA
′

α of Eα determines a dual splitting λαA of Eα, λαA : Eα → EA.
Given such splittings we have Eα = EA ⊕ EA′ and Eα = EA′ ⊕ EA, so we
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may write sections of these bundles as a “matrices” such as

[uα]ξ =
(
uA

uA
′

)
∈ [ΓEα]ξ [vα]ξ = (vA :: vA′) ∈ [ΓEα]ξ.

We will always work with splittings determined by a choice of scale ξ ∈ E [1],
as discussed earlier. If uα and vα, as displayed, are expressed by such a
scale then the change of scale ξ 7→ ξ̂ = Ω−1ξ yields a transformation of
these splittings. For example [uα] 7→ [uα]bξ where

[uα]bξ =
(
ûA

ûA
′

)
=
(

uA

uA
′ −ΥA′

B u
B

)
.

With this understood we henceforth drop the notation [·]ξ and simply write,
for example, vα 7→ v̂α where

v̂α = (v̂A :: v̂A′) = (vA + ΥB′

A vB′ :: vA′),

for the corresponding transformation of vα. In particular, the objects ξB
′

α ,
λβA are not invariant and

ξ̂
B′

α = ξB
′

α − Y Aα ΥB′

A , λ̂
β

A = λβA +Xβ
B′Υ

B′

A .

However, note that, in the splittings they determine, ξB
′

α and λβA are given

ξB
′

α =
(

0 :: δB
′

A′

)
, λβA =

(
δBA
0

)
.

In any such splitting the invariant objects Xα
B′ and Y Aβ are given by

Xα
B′ =

(
0
δA

′

B′

)
, Y Aβ =

(
δAB :: 0

)
.

The first four identities of the following display are immediate, while the
final two items are useful definitions:

Y Aβ X
β
A′ = 0, ξA

′

β λ
β
A = 0,

Y Aβ λ
β
B = δAB , ξ

A′

β X
β
B′ = δA

′

B′ ,

Y Aβ λ
γ
A =: λγβ , ξ

A′

β X
γ
A′ =: ξγβ .

(4.175)

We shall mostly deal with weighted twistors, i.e., tensor products of the
form Eα...βγ...δ [w] = Eα...βγ...δ ⊗E [w]. All the above algebraic machinery works for
the weighted twistors. In fact we shall often omit the word ‘weighted’ even
though, of course, these bundles do not come from G−modules for w 6= 0.
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Finally, we observe that via this machinery any spinorial quantity may
be identified with a (weighted) twistor. For example, valence 1 spinors in
EA′ [w1] or EA[w2] may be dealt with via (4.173) or (4.174) respectively.
This determines an identification for tensor powers by treating each factor
in this way. This does all cases since, via (4.166),

EA ∼= E|B · · ·D|︸ ︷︷ ︸
q−1

[1], EA′ ∼= E

p−1︷ ︸︸ ︷
|B′ · · ·C ′|[−1].

Now, any irreducible representation of G0 is given as a tensor product of
two irreducible components in tensor products of the fundamental spinors
(viewed as representations of the special linear groups, adjusted by a
weight). Applying the corresponding Young symmetrizers [Penrose and
Rindler (1984); Fulton and Harris (1991)] to the tensor products of Eα and
Eβ , we get the explicit realization of each irreducible spinor bundle as the
subbundle of the (weighted) twistor bundle which is isomorphic to the in-
jecting part of the twistor bundle. Thus a section of a weighted irreducible
spinor bundle V may be identified with a twistor object which is zero in all
its composition factors except the first. So, in fact, this non–zero factor is
also the projecting part of the twistor. We write Ṽ for this twistor (sub–
)bundle satisfying V ∼= Ṽ. Altogether, we have established the following
result [Gover and Slovak (1999)]: Any irreducible spinor object v can be
identified with the twistor ṽ which has the spinor as its projecting part.
This identification is provided in a canonical algebraic way.

4.13.3.2 Twistor Calculus

Given a choice of scale ξ, a twistor connection ∇a on Eα and Eα is given
by [Penrose and MacCallum (1972); Dighton (1974); Bailey and Eastwood
(1991)]

∇P
′

A

(
vB

vB
′

)
=

(
∇P

′

A v
B + δBAv

P ′

∇P
′

A v
B′ − PP ′B′AB vB

)
(4.176)

and

∇P
′

A (uB :: uB′) = (∇P
′

A uB + PP
′B′

AB uB′ ::: ∇P
′

A uB′ − δ
P ′

B′uA). (4.177)

Notice that whereas on the left hand side∇ indicates the twistor connection,
on the right hand side the symbol ∇ indicates the usual spinor connection
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determined by the choice of scale. Although we have fixed a choice of
scale to present explicit formulae for these connections, it is easily verified
directly using the formulae (4.167) that the twistor connections are in fact
independent of the choice of scale.

A straightforward calculation gives

([∇a,∇b]− Tabd∇d)
(
vC

vC
′

)
=

=

(
Uab

C
Dv

D − TabCD′vD
′

−2∇[aPb]
C′

D v
D + Tab

E
E′P

E′C′

ED vD + Uab
C′

D′v
D′

)
.

Thus the curvature of the twistor connection is given, in this scale, by

Wab
γ
δ =

(
Uab

C
D −TabCD′

−2QabC
′

D Uab
C′

D′

)
, where Qabc := ∇[aPb]c −

1
2
Tab

ePec.

(4.178)
Note that since the twistor connection is invariant it follows that this twistor
curvature Wab

γ
δ is invariant. In fact, viewed as a g−valued 2–form on the

Cartan bundle G, this is just the curvature of the normal Cartan connection.
In particular, we know that the structures are torsion–free (in the sense of
the Cartan connection) if and only if the torsion part Tabc vanishes and
they are locally flat if and only if the whole Wab

γ
δ vanishes.

The D−operators

If f ∈ E [w] then it follows easily from (4.168) that the spinor–twistor object

DA′

β f := (∇A
′

B f wδA
′

B′f)

is invariant. We may regard this as an injecting part of the invariant twistor
object Dα

βf := Xα
A′D

A′

β f . By regarding, in this formula for Dα
β , ∇ to be

the coupled twistor–spinor connection it is easily verified that the operator
Dα
β is well defined and invariant on sections of the weighted twistor bundles
Eρ···µα···γ [w]. The invariant operators Dα

β : Eρ···µδ···γ [w]→ Eαρ···µβδ···γ [w] are called the
twistor–D operators.

For many calculations, where a choice of scale is made, it is useful to
allow Dα

β to operate on spinors and their tensor products, although in this
case the result is not independent of the scale. For example, if vC ∈ EC [w]
then

DA′

β vC := (∇A
′

B vC wδA
′

B′vC).
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Since the operator Dα
β and its concatenations will have an important

role in the following discussions we develop notation for their target spaces.
First let Fρ be defined as follows,

Fρ := Ker(Y Aρ :: Eρ → EA).

Then we write

Fρ···σα···β := Fρ ⊗ · · · ⊗ Fσ ⊗ Eα ⊗ · · · ⊗ Eβ ,

and Fρ···σα···β [w] = Fρ···σα···β ⊗ E [w]. Finally let

Sρ···σ
α · · ·β︸ ︷︷ ︸

k

[w] := (�kFρα)⊗ E [w].

Note that sections of Fαρ (= Sαρ ) are not generally trace–free, but that Fαρ
is in a complement to the trace–part of Eαρ .

Now if f ∈ E [w] then Dρ
αf ∈ Fρα[w]. Similarly observe that if vσ ∈ Fσ

then

Dρ
αv

σ − δσαvρ

is in Fρσα . Thus

Dρσ
αβ :=

1
2

(Dρ
αD

σ
β +Dσ

βD
ρ
α − δ

σ
αD

ρ
β − δ

ρ
βD

σ
α)

gives an invariant operator

Dρσ
αβ : Eµ···νγ···δ [w]→ Sρσαβ ⊗ E

µ···ν
γ···δ [w].

Similarly we define Dρσµ
αβγ by

Dρσµ
αβγ :=

1
3

((Dρ
αD

σµ
βγ +Dσ

βD
ρµ
αγ +Dµ

γD
ρσ
αβ − δ

ρ
αD

σµ
βγ − δ

σ
βD

ρµ
αγ − δ

µ
γD

ρσ
αβ)

and so on forDα···δ
ρ···ν . Notice that the construction of these is designed in such

a way that the resulting operators are annihilated if composed (contracted)
with Y Bν on any index.

The Splitting Machinery

In terms of the algebraic projectors and embeddings introduced in the last
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section, the twistor–D operator is given by

Dρ
αf = Xρ

R′Y
A
α ∇

R′

A f + wξραf, (4.179)

where f is any weighted twistor-spinor object. Using this and the expres-
sions (4.176), (4.177) for the twistor connection, the following identities are
easily established:

Dρ
αX

β
C′ = Xρ

C′λ
β
KY

K
α Dρ

αY
C
β = −Y Cα X

ρ
K′ξ

K′

β

Dρ
αξ
S′

β = P ρS
′

αβ Dρ
αλ

σ
B = −P ρσαB

Xα
B′D

γ
αf = wXγ

B′f Y Bγ D
γ
αf = 0

ξB
′

γ Dγ
αf = DB′

α f λαBD
B′

α f = ∇B
′

B f,

(4.180)

where, again, f is any weighted twistor-spinor and we write
P ρσαβ := PR

′S′

AB Xρ
R′X

σ
S′Y

A
α Y

B
β , P ρS

′

αβ := PR
′S′

AB Xρ
R′Y

A
α Y

B
β , P ρσαB :=

PR
′S′

AB Xρ
R′X

σ
S′Y

A
α , etc.

Notice also that the objects ξB
′

α and λβA describing the splitting of the
twistors can be viewed as the projecting parts of ξβα := ξ−1Dβ

αξ and
δβα − ξ

β
α, respectively.

D−Curvature

For f ∈ E [w] the projecting part of Dρ
αf is 1

pX
α
P ′D

P ′

α f = wf . Although
this is 0th order in f , this part of Dρ

αf behaves like a first order operator
because of the weight factor, w. In particular 1

pX
α
P ′D

P ′

α satisfies a Leibniz
rule and so therefore so does Dρ

α. It follows immediately that, acting on
Eµ[w], [Dρ

α, D
σ
β ] decomposes into a 0th order curvature part and a 1st order

torsion part. In fact it is easy using the identities (4.171) and (4.180) to
verify that

[Dρ
α, D

σ
β ]vµ = W ρσµ

αβγ v
γ −W ρσν

αβγD
γ
νv

µ + δσαD
ρ
βv

µ − δρβD
σ
αv

µ,

where W ρσµ
αβγ = Xρ

A′X
σ
B′Y

A
α Y

B
β W

A′B′µ
ABγ .

4.13.4 Application: Rovelli’s Loop Quantum Gravity

4.13.4.1 Introduction to Loop Quantum Gravity

Recall (from subsection 3.10.4 above) that Carlo Rovelli developed (in the
last decade of the 20th Century) the so–called loop approach to quantum



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

702 Applied Differential Geometry: A Modern Introduction

gravity (see [Rovelli (1998)] and references therein). The first announce-
ment of this approach was given in [Rovelli and Smolin (1987)]. Together
with string theory, this approach provides another serious candidate theory
of quantum gravity. It provides a physical picture of Planck scale quantum
geometry, calculation techniques, definite quantitative predictions, and a
tool for discussing classical problems such as black hole thermodynamics.

String theory and loop quantum gravity differ not only because they
explore distinct physical hypotheses, but also because they are expressions
of two separate communities of scientists, which have sharply distinct prej-
udices, and view the problem of quantum gravity in surprisingly different
manners. As Rovelli says: “I heard the following criticism to loop quantum
gravity: ‘Loop quantum gravity is certainly physically wrong, because:
(1) it is not supersymmetric, and
(2) is formulated in four dimensions’.
But experimentally, the world still insists on looking four–dimensional and
not supersymmetric. In my opinion, people should be careful of not be-
ing blinded by their own speculation, and mistaken interesting hypotheses
(such as supersymmetry and high–dimensions) for established truth. But
string theory may claim extremely remarkable theoretical successes and is
today the leading and most widely investigated candidate theory of quan-
tum gravity” [Rovelli (1998)].

High energy physics has obtained spectacular successes during this Cen-
tury, culminated with the (far from linear) establishment of quantum field
theory as the general form of dynamics and with the comprehensive suc-
cess of the SU(3)×SU(2)×U(1) Standard Model . Thanks to this success,
now a few decades old, physics is in a condition in which it has been very
rarely: there are no experimental results that clearly challenge, or clearly
escape, the present fundamental theory of the world. The theory we have
encompasses virtually everything – except gravitational phenomena. From
the point of view of a particle physicist, gravity is then simply the last and
weakest of the interactions. It is natural to try to understand its quan-
tum properties using the strategy that has been so successful for the rest
of microphysics, or variants of this strategy. The search for a conventional
quantum field theory capable of embracing gravity has spanned several
decades and, through an adventurous sequence of twists, moments of ex-
citement and disappointments, has lead to string theory. The foundations
of string theory are not yet well understood; and it is not yet entirely clear
how a supersymmetric theory in 10 or 11 dimensions can be concretely used
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for deriving comprehensive univocal predictions about our world.
In string theory, gravity is just one of the excitations of a string (or

other extended object) living over some background metric space. The
existence of such background metric space, over which the theory is defined,
is needed for the formulation and for the interpretation of the theory, not
only in perturbative string theory, but in the recent attempts of a non-
perturbative definition of the theory, such as M theory, as well, in my
understanding. Thus, for a physicist with a high energy background, the
problem of quantum gravity is now reduced to an aspect of the problem
of understanding what is the mysterious non–perturbative theory that has
perturbative string theory as its perturbation expansion, and how to extract
information on Planck scale physics from it.

For a relativist, on the other hand, the idea of a fundamental description
of gravity in terms of physical excitations over a background metric space
sounds physically very wrong. The key lesson learned from general rela-
tivity is that there is no background metric over which physics happens.
The world is more complicated than that. Indeed, for a relativist, general
relativity is much more than the field theory of a particular force. Rather,
it is the discovery that certain classical notions about space and time are
inadequate at the fundamental level; they require modifications which are
possibly as basics as the ones that quantum mechanics introduced. One
of such inadequate notions is precisely the notion of a background metric
space (flat or curved), over which physics happens. This profound concep-
tual shift has led to the understanding of relativistic gravity, to the discovery
of black holes, to relativistic astrophysics and to modern cosmology.

From Newton to the beginning of this Century, physics has had a solid
foundation in a small number of key notions such as space, time, causality
and matter. In spite of substantial evolution, these notions remained rather
stable and self-consistent. In the first quarter of this Century, quantum the-
ory and general relativity have modified this foundation in depth. The two
theories have obtained solid success and vast experimental corroboration,
and can be now considered as established knowledge. Each of the two the-
ories modifies the conceptual foundation of classical physics in a (more or
less) internally consistent manner, but we do not have a novel conceptual
foundation capable of supporting both theories. This is why we do not yet
have a theory capable of predicting what happens in the physical regime
in which both theories are relevant, the regime of Planck scale phenomena,
10−33 cm.

General relativity has taught us not only that space and time share the
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property of being dynamical with the rest of the physical entities, but also
(more crucially) that space–time location is relational only. Quantum me-
chanics has taught us that any dynamical entity is subject to Heisenberg’s
uncertainty at small scale. Thus, we need a relational notion of a quan-
tum space–time, in order to understand Planck scale physics. Thus, for
a relativist, the problem of quantum gravity is the problem of bringing a
vast conceptual revolution, started with quantum mechanics and with gen-
eral relativity, to a conclusion and to a new synthesis (see [Rovelli (1997);
Smolin (1997)].) In this synthesis, the notions of space and time need to be
deeply reshaped, in order to keep into account what we have learned with
both our present ‘fundamental’ theories.

Unlike perturbative or non–perturbative string theory, loop quantum
gravity is formulated without a background space–time, and is thus a gen-
uine attempt to grasp what is quantum space–time at the fundamental
level. Accordingly, the notion of space–time that emerges from the theory
is profoundly different from the one on which conventional quantum field
theory or string theory are based.

According to Rovelli, the main merit of string theory is that it provides a
superbly elegant unification of known fundamental physics, and that it has
a well defined perturbation expansion, finite order by order. Its main in-
completeness is that its non–perturbative regime is poorly understood, and
that we do not have a background–independent formulation of the string
theory. In a sense, we do not really know what is the theory we are talking
about. Because of this poor understanding of the non perturbative regime
of the theory, Planck scale physics and genuine quantum gravitational phe-
nomena are not easily controlled: except for a few computations, there is
not much Planck scale physics derived from string theory so far. There
are, however, two sets of remarkable physical results. The first is given
by some very high energy scattering amplitudes that have been computed.
An intriguing aspect of these results is that they indirectly suggest that
geometry below the Planck scale cannot be probed –and thus in a sense
does not exist– in string theory. The second physical achievement of string
theory (which followed the D–branes revolution) is the derivation of the
Bekenstein–Hawking black hole entropy formula for certain kinds of black
holes.

On the other hand, the main merit of loop quantum gravity is that
it provides a well–defined and mathematically rigorous formulation of a
background–independent non–perturbative generally covariant quantum
field theory. The theory provides a physical picture and quantitative pre-
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dictions on the world at the Planck scale. The main incompleteness of the
theory regards the dynamics, formulated in several variants. The theory
has lead to two main sets of physical results. The first is the derivation of
the (Planck scale) eigenvalues of geometrical quantities such as areas and
volumes. The second is the derivation of black hole entropy for ‘normal’
black holes (but only up to the precise numerical factor).

The main physical hypotheses on which loop quantum gravity relies
are only general relativity and quantum mechanics. In other words, loop
quantum gravity is a rather conservative ‘quantization’ of general relativity,
with its traditional matter couplings. In this sense, it is very different from
string theory, which is based on a strong physical hypothesis with no direct
experimental support ‘that the world is made by strings’.

Finally, strings and loop gravity, may not necessarily be competing the-
ories: there might be a sort of complementarity, at least methodological,
between the two. This is due to the fact that the open problems of string
theory regard its background–independent formulation, and loop quantum
gravity is precisely a set of techniques for dealing non–perturbatively with
background independent theories. Perhaps the two approaches might even,
to some extent, converge. Undoubtedly, there are similarities between the
two theories: first of all the obvious fact that both theories start with the
idea that the relevant excitations at the Planck scale are one dimensional
objects – call them loops or strings. [Smolin (1997)] also explored the pos-
sible relations between string theory and loop quantum gravity.

Loop quantum gravity is a quantum field theory on a differentiable
4–manifold. We have learned with general relativity that the space–time
metric and the gravitational field are the same physical entity. Thus, a
quantum theory of the gravitational field is a quantum theory of the space–
time metric as well. It follows that quantum gravity cannot be formulated
as a quantum field theory over a metric manifold , because there is no
(classical) metric manifold whatsoever in a regime in which gravity (and
therefore the metric) is a quantum variable [Rovelli (1998)].

One could conventionally split the space–time metric into two terms:
one to be consider as a background, which gives a metric structure to space–
time; the other to be treated as a fluctuating quantum field. This, indeed,
is the procedure on which old perturbative quantum gravity, perturbative
strings, as well as current non-perturbative string theories (M–theory), are
based. In following this path, one assumes, for instance, that the causal
structure of space–time is determined by the underlying background met-
ric alone, and not by the full metric. Contrary to this, in loop quantum
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gravity we assume that the identification between the gravitational field
and the metric–causal structure of space–time holds, and must be taken
into account, in the quantum regime as well. Thus, no split of the metric
is made, and there is no background metric on space–time.

We can still describe space–time as a (differentiable) manifold (a space
without metric structure), over which quantum fields are defined. A clas-
sical metric structure will then be defined by expectation values of the
gravitational field operator. Thus, the problem of quantum gravity is the
problem of understanding what is a quantum field theory on a manifold,
as opposed to quantum field theory on a metric space. This is what gives
quantum gravity its distinctive flavor, so different than ordinary quantum
field theory. In all versions of ordinary quantum field theory, the metric
of space–time plays an essential role in the construction of the basic the-
oretical tools (creation and annihilation operators, canonical commutation
relations, gaussian measures, propagators ); these tools cannot be used in
quantum field over a manifold.

Technically, the difficulty due to the absence of a background metric is
circumvented in loop quantum gravity by defining the quantum theory as
a representation of a Poisson algebra of classical observables, which can be
defined without using a background metric. The idea that the quantum
algebra at the basis of quantum gravity is not the canonical commutation
relation algebra, but the Poisson algebra of a different set of observables
has long been advocated by [Isham (1984)], whose ideas have been very
influential in the birth of loop quantum gravity. The algebra on which loop
gravity is the loop algebra [Rovelli and Smolin (1990)].

In choosing the loop algebra as the basis for the quantization, we are
essentially assuming that Wilson loop operators are well defined in the
Hilbert space of the theory. In other words, that certain states concen-
trated on one dimensional structures (loops and graphs) have finite norm.
This is a subtle non trivial assumptions entering the theory. It is the key
assumption that characterizes loop gravity. If the approach turned out to
be wrong, it will likely be because this assumption is wrong. The Hilbert
space resulting from adopting this assumption is not a Fock space. Physi-
cally, the assumption corresponds to the idea that quantum states can be
decomposed on a basis of Faraday lines–excitations (as Minkowski QFT
states can be decomposed on a particle basis).

Furthermore, this is an assumption that fails in conventional quantum
field theory, because in that context well defined operators and finite norm
states need to be smeared in at least three dimensions, and 1D objects are
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too singular. The fact that at the basis of loop gravity there is a mathemat-
ical assumption that fails for conventional Yang–Mills quantum field theory
is probably at the origin of some of the resistance that loop quantum gravity
encounters among some high energy theorists. What distinguishes gravity
from Yang–Mills (YM) theories, however, and makes this assumption vi-
able in gravity even if it fails for YM theory is diffeomorphism invariance.
The loop states are singular states that span a ‘huge’ non–separable state
space. Non–perturbative diffeomorphism invariance plays two roles. First,
it wipes away the infinite redundancy. Second, it ‘smears’ a loop state into
a knot state, so that the physical states are not really concentrated in one
dimension, but are, in a sense, smeared all over the entire manifold by the
non–perturbative diffeomorphisms [Rovelli (1998)].

Conventional field theories are not invariant under a diffeomorphism
acting on the dynamical fields. Every field theory, suitably formulated, is
trivially invariant under a diffeomorphism acting on everything. General
relativity, on the contrary is invariant under such transformations. More
precisely, every general relativistic theory has this property. Thus, diffeo-
morphism invariance is not a feature of just the gravitational field: it is
a feature of physics, once the existence of relativistic gravity is taken into
account. Thus, one can say that the gravitational field is not particularly
‘special’ in this regard, but that diffeomorphism invariance is a property
of the physical world that can be disregarded only in the approximation in
which the dynamics of gravity is neglected.

Now, diffeomorphism invariance is the technical implementation of a
physical idea, due to Einstein. The idea is a deep modification of the pre–
general–relativistic (pre–GR) notions of space and time. In pre–GR physics,
we assume that physical objects can be localized in space and time with
respect to a fixed non–dynamical background structure. Operationally,
this background space–time can be defined by means of physical reference–
system objects, but these objects are considered as dynamically decoupled
from the physical system that one studies. This conceptual structure fails
in a relativistic gravitational regime. In general relativistic physics, the
physical objects are localized in space and time only with respect to each
other. Therefore if we ‘displace’ all dynamical objects in space–time at once,
we are not generating a different state, but an equivalent mathematical
description of the same physical state. Hence, diffeomorphism invariance.

Accordingly, a physical state in GR is not ‘located’ somewhere. Pic-
torially, GR is not physics over a stage, it is the dynamical theory of (or
including) the stage itself. Loop quantum gravity is an attempt to imple-
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ment this subtle relational notion of space–time localization in quantum
field theory. In particular, the basic quantum field theoretical excitations
cannot be localized somewhere as, say, photons are. They are quantum
excitations of the ‘stage’ itself, not excitations over a stage. Intuitively,
one can understand from this discussion how knot theory plays a role in
the theory. First, we define quantum states that correspond to loop–like
excitations of the gravitational field, but then, when factoring away diffeo-
morphism invariance, the location of the loop becomes irrelevant. The only
remaining information contained in the loop is then its knotting (a knot is
a loop up to its location). Thus, diffeomorphism invariant physical states
are labelled by knots. A knot represent an elementary quantum excitation
of space. It is not here or there, since it is the space with respect to which
here and there can be defined. A knot state is an elementary quantum of
space. In this manner, loop quantum gravity ties the new notion of space
and time introduced by general relativity with quantum mechanics.

4.13.4.2 Formalism of Loop Quantum Gravity

The starting point is classical general relativity formulated in terms of the
Ashtekar phase–space formalism (see [Ashtekar (1991)]). Recall that classi-
cal general relativity can be formulated in the phase–space form as follows.

We fix a 3D manifold M (compact and without boundaries) and con-
sider a smooth real SU(2)−connection Aia(x) and a vector density Ẽai (x)
(transforming in the vector representation of SU(2)) on M . We use
a, b, . . . = 1, 2, 3 for spatial indices and i, j, . . . = 1, 2, 3 for internal in-
dices. The internal indices can be viewed as labelling a basis in the Lie
algebra of SU(2) or the three axis of a local triad. We indicate coordinates
on M with x. The relation between these fields and conventional metric
gravitational variables is as follows: Ẽai (x) is the (densitized) inverse triad,
related to the 3D metric gab(x) of constant–time surfaces by

g gab = Ẽai Ẽ
b
i , (4.181)

where g is the determinant of gab; and

Aia(x) = Γia(x) + γkia(x); (4.182)

Γia(x) is the spin connection associated to the triad,
(defined by ∂[ae

i
b] = Γi[aeb]j , where eia is the triad).

kia(x) is the extrinsic curvature of the constant time three surface.
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In (4.182), γ is a constant, denoted the Immirzi parameter, that can
be chosen arbitrarily (it will enter the Hamiltonian constraint). Differ-
ent choices for γ yield different versions of the formalism, all equivalent
in the classical domain. If we choose γ to be equal to the imaginary unit,
γ =
√
−1, then A is the standard Ashtekar connection, which can be shown

to be the projection of the self–dual part of the 4D spin connection on the
constant time surface. If we choose γ = 1, we get the real Barbero con-
nection. The Hamiltonian constraint of Lorentzian general relativity has
a particularly simple form in the γ =

√
−1 formalism, while the Hamil-

tonian constraint of Euclidean general relativity has a simple form when
expressed in terms of the γ = 1 real connection. Other choices of γ are
viable as well. In particular, it has been argued that the quantum theory
based on different choices of γ are genuinely physical inequivalent, because
they yield ‘geometrical quanta’ of different magnitude [Rovelli (1998)]. Ap-
parently, there is a unique choice of γ yielding the correct 1/4 coefficient in
the Bekenstein–Hawking formula.

The spinorial version of the Ashtekar variables is given in terms of the
Pauli matrices σi, i = 1, 2, 3, or the su(2) generators τ i = − i

2 σi, by

Ẽa(x) = −i Ẽai (x)σi = 2Ẽai (x) τ i, (4.183)

Aa(x) = − i
2
Aia(x)σi = Aia(x) τ i . (4.184)

Thus, Aa(x) and Ẽa(x) are 2× 2 anti–Hermitian complex matrices.
The theory is invariant under local SU(2) gauge transformations, three-

dimensional diffeomorphisms of the manifold on which the fields are defined,
as well as under (coordinate) time translations generated by the Hamilto-
nian constraint. The full dynamical content of general relativity is captured
by the three constraints that generate these gauge invariances (see [Ashtekar
(1991)]).

4.13.4.3 Loop Algebra

Certain classical quantities play a very important role in the quantum the-
ory. These are: the trace of the holonomy of the connection, which is
labelled by loops on the three manifold; and the higher order loop vari-
ables, obtained by inserting the E field (in n distinct points, or ‘hands’)
into the holonomy trace. More precisely, given a loop α in M and the points
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s1, s2, . . . , sn ∈ α we define:

T [α] = −Tr[Uα], (4.185)

T a[α](s) = −Tr[Uα(s, s)Ẽa(s)] (4.186)

and, in general

T a1a2 [α](s1, s2) = −Tr[Uα(s1, s2)Ẽa2(s2)Uα(s2, s1)Ẽa1(s1)], (4.187)

T a1...aN [α](s1 . . . sN ) = −Tr[Uα(s1, sN )ẼaN (sN )Uα(sN , sN−1) . . . Ẽa1(s1)]

where Uα(s1, s2) ∼ P exp{
∫ s2
s1
Aa(α(s))ds} is the parallel propagator of

Aa along α, defined by

d

ds
Uα(1, s) =

dαa(s)
ds

Aa(α(s)) Uα(1, s). (4.188)

These are the loop observables, previously introduced in YM theories.
The loop observables coordinate the phase space and have a closed

Poisson algebra, denoted the loop algebra. This algebra has a remark-
able geometrical flavor. For instance, the Poisson bracket between T [α]
and T a[β](s) is non vanishing only if β(s) lies over α; if it does, the result
is proportional to the holonomy of the Wilson loops obtained by joining
α and β at their intersection (by rerouting the 4 legs at the intersection).
More precisely

{T [α], T a[β](s)} = ∆a[α, β(s)]
[
T [α#β]− T [α#β−1]

]
. (4.189)

Here

∆a[α, x] =
∫
ds

dαa(s)
ds

δ3(α(s), x) (4.190)

is a vector distribution with support on α and α#β is the loop obtained
starting at the intersection between α and β, and following first α and then
β. β−1 is β with reversed orientation.

A (non–SU(2) gauge invariant) quantity that plays a role in certain
aspects of the theory, particularly in the regularization of certain operators,
is obtained by integrating the E field over a two dimensional surface S

E[S, f ] =
∫
S

dSaẼ
a
i f

i, (4.191)

where f is a function on the surface S, taking values in the Lie algebra of
SU(2). In alternative to the full loop observables (4.185,4.186,4.187), one
also can take the holonomies and E[S, f ] as elementary variables.
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4.13.4.4 Loop Quantum Gravity

The kinematic of a quantum theory is defined by an algebra of ‘elementary’
operators (such as x and i~d/dx, or creation and annihilation operators)
on a Hilbert space H. The physical interpretation of the theory is based on
the connection between these operators and classical variables, and on the
interpretation of H as the space of the quantum states. The dynamics is
governed by a Hamiltonian, or, as in general relativity, by a set of quantum
constraints, constructed in terms of the elementary operators. To assure
that the quantum Heisenberg equations have the correct classical limit,
the algebra of the elementary operator has to be isomorphic to the Poisson
algebra of the elementary observables. This yields the heuristic quantization
rule: ‘promote Poisson brackets to commutators’. In other words, define
the quantum theory as a linear representation of the Poisson algebra formed
by the elementary observables. The kinematics of the quantum theory is
defined by a unitary representation of the loop algebra.

We can start à la Schrödinger, by expressing quantum states by means
of the amplitude of the connection, namely by means of functionals Ψ(A) of
the (smooth) connection. These functionals form a linear space, which we
promote to a Hilbert space by defining a inner product. To define the inner
product, we choose a particular set of states, which we denote ‘cylindrical
states’ and begin by defining the scalar product between these.

Pick a graph Γ, say with n links, denoted γ1 . . . γn, immersed in the
manifold M . For technical reasons, we require the links to be analytic.
Let Ui(A) = Uγi , i = 1, . . . , n be the parallel transport operator of the
connection A along γi. Ui(A) is an element of SU(2). Pick a function
f(g1 . . . gn) on [SU(2)]n. The graph Γ and the function f determine a
functional of the connection as follows

ψΓ,f (A) = f(U1(A), . . . , Un(A)), (4.192)

(these states are called cylindrical states because they were previously in-
troduced as cylindrical functions for the definition of a cylindrical measure).
Notice that we can always ‘enlarge the graph’, in the sense that if Γ is a
subgraph of Γ′ we can write

ψΓ,f (A) = ψΓ′,f ′(A), (4.193)

by simply choosing f ′ independent from the Ui’s of the links which are in
Γ′ but not in Γ. Thus, given any two cylindrical functions, we can always
view them as having the same graph (formed by the union of the two
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graphs). Given this observation, we define the scalar product between any
two cylindrical functions, by

(ψΓ,f , ψΓ,h) =
∫
SU(2)n

dg1 . . . dgn f(g1 . . . gn)h(g1 . . . gn). (4.194)

where dg is the Haar measure on SU(2). This scalar product extends by
linearity to finite linear combinations of cylindrical functions. It is not
difficult to show that (4.194) defines a well defined scalar product on the
space of these linear combinations. Completing the space of these linear
combinations in the Hilbert norm, we get a Hilbert space H. This is the
(unconstrained) quantum state space of loop gravity.24 H carries a natural
unitary representation of the diffeomorphism group and of the group of the
local SU(2) transformations, obtained transforming the argument of the
functionals. An important property of the scalar product (4.194) is that it
is invariant under both these transformations.
H is non-separable. At first sight, this may seem as a serious obstacle

for its physical interpretation. But we will see below that after factor-
ing away diffeomorphism invariance we may get a separable Hilbert space.
Also, standard spectral theory holds on H, and it turns out that using spin
networks (discussed below) one can express H as a direct sum over finite
dimensional subspaces which have the structure of Hilbert spaces of spin
systems; this makes practical calculations very manageable.

Finally, we will use a Dirac notation and write

Ψ(A) = 〈A|Ψ〉, (4.195)

in the same manner in which one may write ψ(x) = 〈x|Ψ〉 in ordinary
quantum mechanics. As in that case, however, we should remember that
|A〉 is not a normalizable state.

4.13.4.5 Loop States and Spin Network States

A subspace H0 of H is formed by states invariant under SU(2) gauge
transformations. We now define an orthonormal basis in H0. This ba-

24This construction of H as the closure of the space of the cylindrical functions of
smooth connections in the scalar product (4.194) shows thatH can be defined without the
need of recurring to C∗ algebraic techniques, distributional connections or the Ashtekar-
Lewandowski measure. The casual reader, however, should be warned that the resulting

H topology is different than the natural topology on the space of connections: if a
sequence Γn of graphs converges point–wise to a graph Γ, the corresponding cylindrical
functions ψΓn,f

do not converge to ψΓ,f in the H Hilbert space topology.
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sis represents a very important tool for using the theory. It was in-
troduced in [Rovelli and Smolin (1995)] and developed in [Baez (1996a);
Baez (1996b)]; it is denoted spin network basis.

First, given a loop α in M , there is a normalized state ψα(A) in H,
which is obtained by taking Γ = α and f(g) = −Tr(g). Namely

ψα(A) = −Tr(Uα(A)). (4.196)

We introduce a Dirac notation for the abstract states, and denote this state
as |α〉. These sates are called loop states. Using Dirac notation, we can
write

ψα(A) = 〈A|α〉, (4.197)

It is easy to show that loop states are normalizable. Products of loop states
are normalizable as well. Following tradition, we denote with α also a multi–
loop, namely a collection of (possibly overlapping) loops {α1, . . . , αn, }, and
we call

ψα(A) = ψα1
(A)× . . .× ψαn(A) (4.198)

– a multi–loop state. Multi–loop states represented the main tool for loop
quantum gravity before the discovery of the spin network basis. Linear
combinations of multi–loop states over–span H, and therefore a generic
state ψ(A) is fully characterized by its projections on the multi–loop states,
namely by

ψ(α) = (ψα, ψ). (4.199)

The ‘old’ loop representation was based on representing quantum states
in this manner, namely by means of the functionals ψ(α) over loop space
defined in(4.199).

Next, consider a graph Γ. A ‘coloring’ of Γ is given by the following.

(1) Associate an irreducible representation of SU(2) to each link of Γ.
Equivalently, we may associate to each link γi a half integer number
si, the spin of the irreducible, or, equivalently, an integer number pi,
the ‘color’ pi = 2si.

(2) Associate an invariant tensor v in the tensor product of the representa-
tions s1 . . . sn, to each node of Γ in which links with spins s1 . . . sn meet.
An invariant tensor is an object with n indices in the representations
s1 . . . sn that transform covariantly. If n = 3, there is only one invari-
ant tensor (up to a multiplicative factor), given by the Clebsh–Gordon
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coefficient. An invariant tensor is also called an intertwining tensor .
All invariant tensors are given by the standard Clebsch–Gordon theory.
More precisely, for fixed s1 . . . sn, the invariant tensors form a finite di-
mensional linear space. Pick a basis vj is this space, and associate one
of these basis elements to the node. Notice that invariant tensors exist
only if the tensor product of the representations s1 . . . sn contains the
trivial representation. This yields a condition on the coloring of the
links. For n = 3, this is given by the well known Clebsh–Gordan con-
dition: each color is not larger than the sum of the other two, and the
sum of the three colors is even.

We indicate a colored graph by {Γ, ~s,~v}, or simply S = {Γ, ~s,~v}, and
denote it a ‘spin network’. (It was R. Penrose who first had the intuition
that this mathematics could be relevant for describing the quantum prop-
erties of the geometry, and who gave the first version of spin network theory
[Penrose (1971a); Penrose (1971b)].)

Given a spin network S, we can construct a state ΨS(A) as follows. We
take the propagator of the connection along each link of the graph, in the
representation associated to that link, and then, at each node, we contract
the matrices of the representation with the invariant tensor. We get a state
ΨS(A), which we also write as

ψS(A) = 〈A|S〉. (4.200)

One can then show the following.

• The spin network states are normalizable. The normalization factor is
computed in [DePietri and Rovelli (1996)].

• They are SU(2) gauge invariant.
• Each spin network state can be decomposed into a finite linear combi-

nation of products of loop states.
• The (normalized) spin network states form an orthonormal basis for

the gauge SU(2) invariant states in H (choosing the basis of invariant
tensors appropriately).
• The scalar product between two spin network states can be easily com-

puted graphically and algebraically.

The spin network states provide a very convenient basis for the quantum
theory.

The spin network states defined above are SU(2) gauge invariant. There
exists also an extension of the spin network basis to the full Hilbert space.
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4.13.4.6 Diagrammatic Representation of the States

A diagrammatic representation for the states in H is very useful in concrete
calculations. First, associate to a loop state |α〉 a diagram in M , formed
by the loop α itself. Next, notice that we can multiply two loop states, ob-
taining a normalizable state. We represent the product of n loop states by
the diagram formed by the set of the n (possibly overlapping) correspond-
ing loops (we denote this set ‘multi–loop’). Thus, linear combinations of
multi–loops diagrams represent states in H. Representing states as linear
combinations of multi–loops diagrams makes computation in H easy.

Now, the spin network state defined by the graph with no nodes α,
with color 1, is clearly, by definition, the loop state |α〉, and we represent
it by the diagram α. The spin network state |α, n〉 determined by the
graph without nodes α, with color n can be obtained as follows. Draw n

parallel lines along the loop α; cut all lines at an arbitrary point of α, and
consider the n! diagrams obtained by joining the legs after a permutation.
The linear combination of these n! diagrams, taken with alternate signs
(namely with the sign determined by the parity of the permutation) is
precisely the state |α, n〉. The reason of this key result can be found in
the fact that an irreducible representation of SU(2) can be obtained as the
totally symmetric tensor product of the fundamental representation with
itself (for details, see [DePietri and Rovelli (1996)]).

Next, consider a graph Γ with nodes. Draw ni parallel lines along
each link γi. Join pairwise the end points of these lines at each node
(in an arbitrary manner), in such a way that each line is joined with a
line from a different link. In this manner, one get a multi–loop diagram.
Now antisymmetrize the ni parallel lines along each link, obtaining a linear
combination of diagrams representing a state in H. One can show that this
state is a spin network state, where ni is the color of the links and the
color of the nodes is determined by the pairwise joining of the legs chosen
[DePietri and Rovelli (1996)]. Again, simple SU(2) representation theory
is behind this result.

More in detail, if a node is trivalent (has 3 adjacent links), then we
can join legs pairwise only if the total number of the legs is even, and if
the number of the legs in each link is smaller or equal than the sum of
the number of the other two. This can be immediately recognized as the
Clebsch–Gordan condition. If these conditions are satisfied, there is only a
single way of joining legs. This corresponds to the fact that there is only
one invariant tensor in the product of three irreducible of SU(2). Higher
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valence nodes can be decomposed in trivalent ‘virtual’ nodes, joined by
‘virtual’ links. Orthogonal independent invariant tensors are obtained by
varying over all allowed colorings of these virtual links (compatible with the
Clebsch–Gordan conditions at the virtual nodes). Different decompositions
of the node give different orthogonal bases. Thus the total (links and nodes)
coloring of a spin network can be represented by means of the coloring of
the real and the virtual links (see Figure 4.10).

Fig. 4.10 Construction of ‘virtual’ nodes links over an n−valent node in a graph Γ.

Viceversa, multi–loop states can be decomposed in spin network states
by simply symmetrizing along (real and virtual) nodes. This can be done
particularly easily diagrammatically, as illustrated by the graphical formu-
lae in [Rovelli and Smolin (1995); DePietri and Rovelli (1996)]. These are
standard formulae. In fact, it is well known that the tensor algebra of the
SU(2) irreducible representations admits a completely graphical notation.
This graphical notation has been widely used for instance in nuclear and
atomic physics. The application of this diagrammatic calculus to quantum
gravity is described in detail in [DePietri and Rovelli (1996)].

4.13.4.7 Quantum Operators

Now, we define the quantum operators, corresponding to the T −variables,
as linear operators on H. These form a representation of the loop variables
Poisson algebra. The operator T [α] acts diagonally

T [α]Ψ(A) = −TrUα(A) Ψ(A),

(recall that products of loop states and spin–network states are normaliz-
able states). In diagrammatic notation, the operator simply adds a loop to
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a (linear combination of) multi–loops

T [α] |Ψ〉 = |α〉|Ψ〉.

Higher order loop operators are expressed in terms of the elementary
‘grasp’ operation. Consider first the operator T a(s)[α], with one hand in
the point α(s). The operator annihilates all loop states that do not cross
the point α(s). Acting on a loop state |β〉, it gives

T a(s)[α] |β〉 = l20 ∆a[β, α(s)]
[
|α#β〉 − |α#β−1〉

]
, (4.201)

where we have introduced the elementary length l0 by

l20 = ~G =
16π~GNewton

c3
= 16π l2Planck (4.202)

and ∆a and # were defined above. This action extends by linearity, conti-
nuity and by the Leibniz rule to products and linear combinations of loop
states, and to the full H. In particular, it is not difficult to compute its
action on a spin network state [DePietri and Rovelli (1996)]. Higher order
loop operators act similarly. It is easy to verify that these operators provide
a representation of the classical Poisson loop algebra.

All the operators in the theory are then constructed in terms of these
basics loop operators, in the same way in which in conventional QFT one
constructs all operators, including the Hamiltonian, in terms of creation
and annihilation operators. The construction of the composite operators
requires the development of regularization techniques that can be used in
the absence of a background metric.

4.13.4.8 Loop v.s. Connection Representation

Imagine we want to quantize the one dimensional harmonic oscillator. We
can consider the Hilbert space of square integrable functions ψ(x) on the
real line, and express the momentum and the Hamiltonian as differential
operators. Denote the eigenstates of the Hamiltonian as ψn(x) = 〈x|n〉. It
is well known that the theory can be expressed entirely in algebraic form in
terms of the states |n〉. In doing so, all elementary operators are algebraic:
x̂|n〉 = 1√

2
(|n− 1〉+ (n+ 1)|n+ 1〉), p̂|n〉 = −i√

2
(|n− 1〉 − (n+ 1)|n+ 1〉).

Similarly, in quantum gravity we can directly construct the quantum theory
in the spin–network (or loop) basis, without ever mentioning functionals of
the connections. This representation of the theory is denoted the loop
representation.
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A section of the first paper on loop quantum gravity by [Rovelli and
Smolin (1990)] was devoted to a detailed study of ‘transformation theory’
(in the sense of Dirac) on the state space of quantum gravity, and in par-
ticular on the relations between the loop states

ψ(α) = 〈α|ψ〉 (4.203)

and the states ψ(A) giving the amplitude for a connection field configuration
A, and defined by

ψ(A) = 〈A|ψ〉. (4.204)

Here |A〉 are ‘eigenstates of the connection operator’, or, more precisely
(since the operator corresponding to the connection is ill defined in the
theory) the generalized states that satisfy

T [α] |A〉 = −Tr[Pe
R
α
A] |A〉. (4.205)

However, at the time of [Rovelli and Smolin (1990)] the lack of a scalar
product made transformation theory quite involved.

On the other hand, the introduction of the scalar product (4.194) gives
a rigorous meaning to the loop transform. In fact, we can write, for every
spin network S, and every state ψ(A)

ψ(S) = 〈S|ψ〉 = (ψS , ψ). (4.206)

This equation defines a unitary mapping between the two presentations
of H: the ‘loop representation’, in which one works in terms of the basis
|S〉; and the ‘connection representation’, in which one uses wave functionals
ψ(A).

The development of the connection representation followed a winding
path through C∗−algebraic and measure theoretical methods. The work of
[DePietri (1997)] has proven the unitary equivalence of the two formalisms.

4.14 Application: Seiberg–Witten Monopole Field Theory

Some of the most important physical problems of contemporary theoretical
physics concern the behavior of gauge theories and string theory at strong
coupling. For gauge theories, these include the problems of confinement
of color, of dynamical chiral symmetry breaking, of the strong coupling
behavior of chiral gauge theories, of the dynamical breaking of supersym-
metry. In each of these areas, major advances have been achieved over the
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past few years, and a useful resolution of some of these difficult problems
appears to be within sight. For string theory, these include the problems
of dynamical compactification of the 10D theory to string vacua with 4D
and of supersymmetry breaking at low energies. Already, it has become
clear that, at strong coupling, the string spectrum is radically altered and
effectively derives from the unique 11D M–theory.

This rapid progress was driven in large part by the Seiberg–Witten (SW)
solution ofN = 2 supersymmetric Yang–Mills (YM) theory for SU(2) gauge
group [Seiberg and Witten (1994a); Seiberg and Witten (1994b)] and by
the discovery of D−branes in string theory. Some of the key ingredients
underlying these developments are [D’Hoker and Phong (1998a); D’Hoker
and Phong (1997)]:

• Restriction to solving for the low energy behavior of the non–
perturbative dynamics, summarized by the low energy effective action
of the theory.
• High degrees of supersymmetry. This has the effect of imposing certain

holomorphicity constraints on parts of the low energy effective action,
and thus of restricting its form considerably. For gauge theories in 4D,
the following degrees of supersymmetry can be distinguished:

(1) N = 1 supersymmetry supports chiral fermions and is the starting
point for the Minimal Supersymmetric Standard Model, the sim-
plest extension of the Standard Model to include supersymmetric
partners.

(2) N = 2 supersymmetry only supports non–chiral fermions and is
thus less realistic as a particle physics model, but appears better
‘solvable’. This is where the SW–solution was constructed.

(3) N = 4 is the maximal amount of supersymmetry, and a special
case of N = 2 supersymmetry with only non–chiral fermions and
vanishing renormalization group β−function. Dynamically, the
latter theory is the simplest amongst 4D gauge theories, and offers
the best hopes for admitting an exact solution.

• Electric–magnetic and Montonen–Olive duality [Montonen and Olive
(1977)]. Recall that the free Maxwell equations are invariant under
electric–magnetic duality when ~E → ~B and ~B → − ~E. In the presence
of matter, duality will require the presence of both electric charge e
and magnetic monopole charge g whose magnitude is related by Dirac
quantization: e · g ∼ ~. Thus, weak electric coupling is related to
large magnetic coupling. Conversely, problems of large electric coupling
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(such as confinement of the color electric charge of quarks) are mapped
by duality into problems of weak magnetic charge. It was conjectured
by [Montonen and Olive (1977)] that the N = 4 supersymmetric YM
theory for any gauge algebra g is mapped under the interchange of
electric and magnetic charges, i.e., under e↔ 1/e into the theory with
dual gauge algebra g∨. When combined with the shift–invariance of
the instanton angle θ this symmetry is augmented to the duality group
SL(2,Z), or a subgroup thereof.

Of central interest to many of these exciting developments is the 4D
supersymmetric YM theory with maximal supersymmetry, N = 4, and
with arbitrary gauge algebra g. As an N = 2 supersymmetric theory,
the theory has a g−gauge multiplet, and a hypermultiplet in the adjoint
representation of g with mass m.

This generalized theory enjoys many of the same properties as the
N = 4 theory: it has the same field contents; it is ultra–violet finite; it has
vanishing renormalization group β−function, and it is expected to have
Montonen–Olive duality symmetry. For vanishing hypermultiplet mass
m = 0, the N = 4 theory is recovered. For m −→ ∞, it is possible to
choose dependences of the gauge coupling and of the gauge scalar expec-
tation values so that the limiting theory is one of many interesting N = 2
supersymmetric YM theories. Amongst these possibilities for g = SU(N)
for example, are the theories with any number of hypermultiplets in the
fundamental representation of SU(N), or with product gauge algebras
SU(N1) × SU(N2) × · · · × SU(Np), and hypermultiplets in fundamental
and bi-fundamental representations of these product algebras.

An outstanding problem in non–Abelian gauge theory has been to make
reliable predictions about the (non–perturbative) strong coupling region.
N. Seiberg and E. Witten in [Seiberg and Witten (1994a); Seiberg and
Witten (1994b)] studied N = 2 supersymmetric gauge theories in 4D with
matter multiplets. For all such models for which the gauge group is SU(2),
they derived the exact metric on the moduli space of quantum vacua and
the exact spectrum of the stable massive states. Seiberg and Witten have
shown that the local part of the effective action is governed by a single
analytic function F of a complex variable; they made an Ansatz for the F
that satisfies all the physical criteria and embodies electromagnetic duality,
thus directly connecting the weak to the strong coupling regions. A number
of new physical phenomena occurred, such as chiral symmetry breaking
that was driven by the condensation of magnetic monopoles that carried
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global quantum numbers. For those cases in which conformal invariance
was broken only by mass terms, their formalism automatically gave results
that were invariant under electric–magnetic duality.

4.14.1 SUSY Formalism

4.14.1.1 N = 2 Supersymmetry

First, recall the essentials of the N = 2 supersymmetry algebra (for details
see, e.g., [West (1990)]). The algebra is given by [Flume et. al. (1996)]

{Qiα, Q̄kβ} = δikσ
µ
αβPµ, {Qiα, Qkβ} = εikεαβZ,

plus the Hermitian conjugate of the second relation, where i, k = 1, 2 and
Z is a central charge. This algebra is realized on the simplest possible
non–trivial super–multiplet: Ψ ⊃ {φ, ψ,Aµ;F ,D}, where φ is a complex
scalar field, ψ is a Dirac spinor, Aµ is a gauge–field, while F and D are
complex and real dummy–fields respectively. This N = 2 superfield ac-
tually consists of two N = 1 superfields: Φ ⊃ {φ, q,F} and V ⊃
{Aµ, f,D} or Wα ⊃ {Fµν , f,D}, where φ and V/Wα are chiral and vec-
tor multiplets respectively, the q and f fields being Weyl spinors of opposite
chirality. Since the gauge–field Aµ belongs to the adjoint representation of
the gauge group G and all the fields belong to the same multiplet, they
must all belong to the adjoint representation of G.

4.14.1.2 N = 2 Super–Action

The super–action for the N = 2 superfield just described is given by [Flume
et. al. (1996)]

A = Im Tr
∫
d4xd2θαd

2θ̄β

(
Ψ
)2

.

On expanding this action in terms of the N = 1 superfields, it becomes

A = Im
∫
d4xd2θαd

2θ̄β

(
Āe−2goVA

)
+ τo

∫
d4xd2θα

(
WαWα

)
, (4.207)

where τo =
θo
2π

+
4πi
g2
o

,

the parameter go is the usual gauge–coupling constant and θo is the
QCD−vacuum–angle. The exponential in the first term is just the su-
persymmetric generalization of the covariant derivative. Expanding this



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

722 Applied Differential Geometry: A Modern Introduction

action further in terms of conventional fields, we get [Flume et. al. (1996)]

A = Tr
∫
d4x
{1

2
(φ†D2φ) + ψ̄Dψ + go(φ[ψ̄, γ5ψ]) + g2

o [φ†, φ]2
}

+ Tr
∫
d4x
{ 1

4g2
o

FµνFµν +
θo
32
F̃µνFµν

}
. (4.208)

The action (4.208) can be recognized as the standard action for a Quark–
Gluon–Higgs system in which all the fields are in the adjoint representation
and the coupling constants are reduced to g and θ by the supersymmetry.
Thus it is not very exotic. Indeed it could be the QCD action except for
the fact that the quarks are in the adjoint and presence of the scalar field.

The action (4.208) embodies all the properties of quantum gauge theory
that have surfaced over the past thirty years and could even be used as a
model to teach quantum gauge theory. It might be worthwhile to list these
properties [Flume et. al. (1996)]:

1. It contains a gauge–field coupled to matter

2. It is asymptotically free

3. It is scale–invariant, but with a scale–anomaly

4. It has spontaneous symmetry breaking

5. It has central charges (Z and Z̄)

6. It admits both instantons (see [Belavin et. al. (1975)]) and monopoles

Because of the supersymmetry it has some further special properties, whose
significance will become clear later, namely,

7. It generalizes the Montonen–Olive mass formula [Montonen and Olive
(1977)] for gauge–fields and monopoles:

from M = |v|
(
Ne +

1
g2
nm

)
to M = |Z|,

where Z = (ane + adnm),

where ne and nm denote the gauge–field and monopole charges respectively,
while the so–called prepotential coefficients a and ad will be explained later.

8. It is symmetric with respect to a Z4 symmetry, which is the relic of
the R−symmetry: (θα → eiεθα), which itself survives the axial anomaly
breakdown.
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9. It has a holomorphic structure

10. It has a duality that connects the weak and strong coupling regimes

12. The duality generalizes to an SL(2,Z) symmetry.

4.14.1.3 Spontaneous Symmetry–Breaking

For SU(2) this concept is very simple. From the form of the Higgs poten-
tial in (4.208) we see that there is a Higgs vacuum for φ = vσ where v is
any complex number and σ is any fixed generator of SU(2). Furthermore,
for v 6= 0 this breaks the gauge-symmetry from SU(2) to U(1). For other
gauge-groups G the corresponding statement is that v must lie in the Car-
tan subalgebra of G. On the other hand there is no spontaneous breakdown
of supersymmetry. Thus the full breakdown is

SU(2) → U(1) : N = 2 supersymmetry unbroken.

Indeed it is the fact that the supersymmetry is unbroken that gives the
model its nice properties, since otherwise the classical properties would not
be preserved after quantization.

After the spontaneous breakdown the restriction of the N = 1 form of the
classical action (4.207) to the massless U(1) fields takes the form

A = Im
∫
d4xd2θαd

2θ̄β

(
ĀA
)

+ τoIm
∫
d4xd2θα

(
WαWα

)
.

Since the adjoint representation of U(1) is trivial this action is a free-field
one. However, in the quantum theory this does not mean that the effective
Lagrangian is also free because, through the quantum fluctuations, the
massive fields induce interaction term for the massless ones. The first great
virtue of the SW model is that these interactions have a very specific form.
In fact, they have shown that, due to the N = 2 supersymmetry the local
part of the effective Lagrangian can only be of the form

A =
1
2

∫
d4xd2θd2θ̄

(
ĀAd − ĀdA

)
+ Im

∫
d4xd2θ(τ(A))

(
WαWα

)
, (4.209)

where Ad = F ′(A) and τ(A) = F ′′(A),

for some function F(A). Thus the effective Lagrangian is completely gov-
erned by the single function F(A). Note that (4.209) is very similar to the
classical action (4.207) which is the special case for which F(A) = 1

2τoA
2.
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The SW solution is actually a special Ansatz for the functional form of
F(A) [Flume et. al. (1996)].

4.14.1.4 Holomorphy and Duality

It is now easy to quantify what is meant by holomorphy and duality. Holo-
morphy is simply the statement that F(A) depends only on A and not on Ā.
Duality means that the physics described by the effective action (4.209) is
invariant with respect to the duality transformation [Flume et. al. (1996)]:(

A

Ad

)
→
(

0 1
−1 0

)(
A

Ad

)
, DαWα → Dα̇Wα̇, τ(A)→ (τ(A))−1.

(4.210)
Note that the duality transformation is closely linked to the Legendre trans-
form of F(A) with respect to A. By noting that in the free classical theory
with θo = 0 the transformation (4.210) reduces to

~E → ~B and g → 1
g
,

we see that it is the generalization of the well–known Maxwell–Dirac duality .
Thus the action (4.209) not only generalizes Maxwell–Dirac duality, but
puts it into a genuine dynamical model. Furthermore, the duality (4.210)
generalizes to(

A

Ad

)
→
(
p q

r s

)(
A

Ad

)
and τ(A)→ pτ(A) + q

rτ(A) + s
,

where the matrix with entries (p, q, r, s) is in SL(2,Z). The integer–
valuedness of the transformation follows from the requirement that, in the
perturbation theory at least, it should change the θ angle only by multiples
of 2π and leaves the mass–formula form–invariant.

4.14.1.5 The SW Prepotential

The formulation of the SW solution [Seiberg and Witten (1994a); Seiberg
and Witten (1994b)] itself is relatively simple, as follows (see, e.g., [Mar-
shakov (1997)]). Supersymmetry requires the metric on moduli space of
massless complex scalars from N = 2 vector supermultiplets to be of ‘spe-
cial Kähler form’, i.e., the Kähler potential

K(a, ā) = Im
∑
i

āi
∂F
∂ai
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needs to be expressed through a certain holomorphic function F = F(a),
called a prepotential . Then the Coulomb–branch, low–energy, effective ac-
tion for the 4D N = 2 SUSY YM vector multiplets can be described in
terms of an auxiliary Riemann surface (i.e., a complex curve) Σ, equipped
with a meromorphic 1–form dS. The required Riemann surface Σ has some
peculiar properties:

• The number of ‘live’ moduli (of complex structure) of Σ is strongly
restricted (roughly ‘3 times’ less than for a generic Riemann surface).
The genus of Σ for the SU(N) gauge theories is exactly equal 25 to the
rank of gauge group – i.e., to the number of independent moduli.
• The variation of generating 1–form dS over these moduli gives holo-

morphic differentials.
• The periods of the generating 1–form

a =
∮
A

dS and aD =
∮
B

dS

give the set of ‘dual’ masses, the W−bosons and the monopoles, while
the period matrix Tij(Σ) represents the set of couplings in the low–
energy effective theory. The prepotential F = F(a) is a function of half
of the variables (a, aD), so that we have

aiD =
∂F
∂ai

and Tij =
∂aiD
∂aj

=
∂2F
∂ai∂aj

.

These data mean that the effective SW theory is formulated in terms of
a classical finite–gap integrable system (see, e.g., [Dubrovin et. al. (1985)])
and their Whitham deformations [Marshakov (1997)].

4.14.2 Clifford Actions, Dirac Operators and Spinor Bun-

dles

Recall that the SW monopole equations were written in terms of a section
of a Spinor bundle and a U(1) connection on a line bundle L. The first

25For generic gauge groups one should speak instead of genus (i.e., dimension of Ja-
cobian of a spectral curve) – about the dimension of Prym–variety. Practically it means
that for other than AN−type gauge theories one should consider the spectral curves with
involution and only the invariant under the involution cycles possess physical meaning.

We consider in detail only the AN theories, the generalization to the other gauge groups is
straightforward: for example, instead of periodic Toda chains [Toda (1981)], correspond-
ing to AN theories, one has to consider the ‘generalized’ Toda chains, first introduced

for different Lie–algebraic series (B, C, D, E, F and G) in [Bogoyavlensky (1981)].
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equation just says that the spinor section ψ has to be in the kernel of the
Dirac operator . The second equation describes a relation between the self–
dual part of the curvature associated to the connection A and the section
ψ in terms of the Clifford action.

The mathematical setting for Witten’s gauge theory is considerably sim-
pler than Donaldson’s analogue: first of all it deals with U(1)−principal
bundles (Hermitian line bundles) rather than with SU(2)−bundles, and
the Abelian structure group allows simpler calculations; moreover the equa-
tion, which plays a role somehow analogous to the previous anti–self–dual
equation for SU(2)−instantons (see [Donaldson and Kronheimer (1990)]),
involves Dirac operators and Spinc−structures, which are well known and
long developed mathematical tools (see [Roe (1988)] or [Libermann and
Marle (1987)]).

The main differences between the two theories arise when it comes to
the properties of the moduli space of solutions of the monopole equation up
to gauge transformations. The SW invariant, which depends on the Chern
class of the line bundle L, is given by the number of points, counted with
orientation, in a zero–dimensional moduli space.

In Witten’s paper [Witten (1994)] the monopole equation is introduced,
and the main properties of the moduli space of solutions are deduced.

The dimension of the moduli space is computed by an index theory tech-
nique, following an analogous proof for Donaldson’s theory, as in [Atiyah
et. al. (1978)]; and the circumstances under which the SW invariants pro-
vide a topological invariant of the four–manifold are illustrated in a similar
way to the analogous result regarding the Donaldson polynomials.

The tool that is of primary importance in proving the results about the
moduli space of Abelian instantons is the Weitzenböck formula for the Dirac
operator on the Spinc−bundle S+⊗L: such a formula is a well known (see
[Roe (1988)]) decomposition of the square of the Dirac operator on a spin
bundle twisted with a line bundle L.

A first property which follows from the Weitzenböck formula is a bound
on the number of solutions: the moduli space is empty for all but finitely
many choices of the line bundle L.

Moreover, as shown in [Kronheimer and Mrowka (1994a)], the moduli
space is always compact: a fact that avoids the complicated analytic tech-
niques that were needed for the compactification of the moduli space of
SU(2)−instantons (see [Donaldson and Kronheimer (1990)]).

Another advantage of this theory is that the singularities of the moduli
space (again this is shown in [Kronheimer and Mrowka (1994a)]) only ap-
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pear at the trivial section ψ ≡ 0, since elsewhere the action of the gauge
group is free. Hence, by perturbing the equation, it is possible to get a
smooth moduli space.

The analogue of the vanishing Theorem for Donaldson polynomials on
a manifold that splits as a connected sum can be proven, reinforcing the
intuitive feeling that the two sets of invariants ought to be the same.

Moreover, explicit computations can be done in the case of Kähler man-
ifolds, by looking at the SW invariants associated to the canonical line
bundle.

The latter result has a generalization due to [Taubes (1994)], where it
is shown that the value ±1 of the SW invariants is achieved on symplectic
four–manifolds, with respect to the canonical line bundle, by a technique
that involves estimates of solutions of a parametrized family of perturbed
monopole equations.

4.14.2.1 Clifford Algebras and Dirac Operators

Recall that the Clifford algebra C(V ) of a (real or complex) vector space V
with a symmetric bilinear form (, ) is the algebra generated by the elements
[Marcolli (1995)] {eε11 · · · eεnn , }, where εi = 0, or 1 and {ei} is an orthogonal
basis of V , subject to the relations e·e′+e′·e = −2(e, e′). The multiplication
of elements of V in the Clifford algebra is called Clifford multiplication.

In particular given a differentiable manifold X we shall consider the
Clifford algebra associated to the tangent space at each point. The Clifford
algebra of the tangent bundle of X is the bundle that has fibre over each
point x ∈ X the Clifford algebra C(TxX). We shall denote this bundle
C(TX).

If dimV = 2m, there is a unique irreducible representation of the Clif-
ford algebra C(V ). This representation has dimension 2m.

A spinor bundle over a Riemannian manifold X is the vector bundle
associated to C(TX) via this irreducible representation, endowed with a
Hermitian structure such that the Clifford multiplication is skew–symmetric
and compatible with the Levi–Civita connection on X (see [Roe (1988)]).

Not all manifolds admit a spinor bundle; it has been proved in [Roe
(1988)] that the existence of such a bundle is equivalent to the existence of
a Spinc–structure on the manifold X: we shall discuss Spinc−-structures
in the next paragraph. If such a bundle exists, it splits as a direct sum
of two vector bundles, S = S+ ⊕ S−, where the splitting is given by the
internal grading of the Clifford algebra.
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Let X be a manifold that admits a spinor bundle S. Let {ei} be a local
orthonormal basis of sections of the tangent bundle TX and 〈 , 〉 be the
Hermitian structure as in the above definition of spinors. Then, for any
section ψ ∈ Γ(X,S), the expression 〈eiejψ,ψ〉 is purely imaginary at each
point x ∈ X. As a proof, by skew–adjointness of Clifford multiplication
and the fact that the basis is orthonormal,

〈eiejψ,ψ〉 = −〈ejψ, eiψ〉 = 〈ψ, ejeiψ〉 − 〈ψ, eiejψ〉 = −〈eiejψ,ψ〉.

Given a spinor bundle S over X, the Dirac operator on S is a first order
differential operator on the smooth sections D : Γ(X,S+) → Γ(X,S−),
defined as the composition

D : Γ(X,S+) ∇→ Γ(X,S+)⊗ T ∗X g→ Γ(X,S+)⊗ TX •→ Γ(X,S−),

where the first map is the covariant derivative, with the Spin–connection
induced by the Levi–Civita connection on X (see [Roe (1988)]), the second
is the Legendre transform given by the Riemannian metric, and the third
is Clifford multiplication.

It is easy to check (for details see [Roe (1988)]) that this corresponds to
the following expression in coordinates: Ds = ek · ∇ks.

An essential tool in Spin geometry, which is very useful in SW gauge
theory (see e.g. [Jost et. al. (1995); Kronheimer and Mrowka (1994a);
Taubes (1994); Witten (1994)]), is the Weitzenböck formula.

Given a smooth vector bundle E over a Spinc−-manifold X and a
connection A on E, the twisted Dirac operator DA : Γ(X,S+ ⊗ E) →
Γ(X,S−⊗E) is the operator acting on a section s⊗e as the Dirac operator
on s and the composite of the covariant derivative ∇̃A and the Clifford
multiplication on e:

DA : Γ(X,S+ ⊗ E) ∇⊗1+1⊗∇̃A→ Γ(X,S+ ⊗ E ⊗ T ∗X)
g→

g→ Γ(X,S+ ⊗ E ⊗ TX) •→ Γ(X,S− ⊗ E).

The twisted Dirac operator DA satisfies the Weitzenböck formula:

D2
As = (∇∗A∇A +

κ

4
+
−i
4
FA)s,

where ∇∗A is the formal adjoint of the covariant derivative with respect
to the Spin−-connection on the Spinor bundle, and with respect to the
connection A on E, ∇A = ∇ ⊗ 1 + 1 ⊗ ∇̃A; κ is the scalar curvature on
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X, FA is the curvature of the connection A, and s ∈ Γ(X,S+ ⊗ E). As a
proof, in local coordinates (i ≤ j)

D2
As = ei∇Ai(ej∇Ajs) = eiej∇Ai∇Ajs = −∇A2

i s+eiej(∇Ai∇Aj−∇Aj∇Ai)s,

where ∇A = ∇⊗ 1 + 1 ⊗ ∇̃A. The first summand is ∇∗A∇A [Roe (1988)],
and the second splits into a term which corresponds to the scalar curvature
on X [Roe (1988)] and the curvature -iFA of the connection A (note that
here we identify the Lie algebra of U(1) with iR).

4.14.2.2 Spin and Spinc Structures

The group Spin(n) is the universal covering of SO(n).
The group Spinc(n) is defined via the following extension:

1→ Z2 → Spinc(n)→ SO(n)× U(1)→ 1, (4.211)

i.e., Spinc(n) = (Spin(n)× U(1))/Z2.
The extension (4.211) determines the exact sheaf–cohomology sequence:

· · · → H1(X;Spinc(n))→ H1(X;SO(n))⊕H1(X;U(1)) δ→ H2(X; Z2).
(4.212)

By the standard fact that H1(X;G) represents the equivalence classes
of principal G−-bundles over X, we see that the connecting homomorphism
of the sequence (4.212) is given by

δ : (PSO(n), PU(1)) 7→ w2(PSO(n)) + c̄1(PU(1)),

where c̄1(PU(1)) is the reduction mod 2 of the first Chern class of the line
bundle associated to the principal bundle PU(1) by the standard represen-
tation and w2 is the second Stiefel–Whitney class.

A manifold X has a Spinc−structure if the frame bundle lifts to a
principal Spinc(n) bundle. It has a Spin−structure if it lifts to a Spin(n)
principal bundle.

From the above considerations on the cohomology sequence (4.212), and
analogous considerations on the group Spin(n), it follows that a manifold X
admits a Spinc−-structure iff w2(X) is the reduction mod 2 of an integral
class. It has a Spin−-structure iff w2(X) = 0. Different Spinc−-structures
on X are parametrized by 2H2(X; Z) ⊕ H1(X; Z2). This follows directly
form (4.212): see [Libermann and Marle (1987)].



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

730 Applied Differential Geometry: A Modern Introduction

With this characterization of Spinc−structures we have the following
Theorem, which has been proved in [Hirzebruch and Hopf (1958)]: Every
oriented 4–manifold admits a Spinc−structure.

4.14.2.3 Spinor Bundles

Both Spin(n) and Spinc(n) can be thought of as lying inside the Clifford
algebra C(Rn), [Roe (1988); Libermann and Marle (1987)]. Therefore to a
principal Spin(n) or Spinc(n) bundle we can associate a vector bundle via
the unique irreducible representation of the Clifford algebra. This will be
the bundle of Spinors over X associated to the Spinc or Spin structure, as
defined in the definition of spinors above.

This can be given an explicit description in terms of transition func-
tions (see [Libermann and Marle (1987)]). In fact let gαβ be the transition
functions of the frame bundle over X, which take values in SO(n). Then
locally they can be lifted to functions g̃αβ which take values in Spin(n),
since on a differentiable manifold it is always possible to choose open sets
with contractible intersections that trivialise the bundle.

However, if we have a Spinc−-manifold that is not Spin, the g̃αβ will
not form a cocycle, as g̃αβ g̃βγ g̃γα = 1 means exactly that the second Stiefel–
Whitney class vanishes.

Because of the Spinc structure we know that w2 is the reduction of an
integral class c ∈ H2(X,Z), which represents a complex line bundle, say
with transition functions λαβ with values in U(1). Such functions will have
a square root λ1/2

αβ locally; however, the line bundle will not have a square

root globally (which is to say that the λ1/2
αβ won’t form a cocycle), since by

construction the first Chern class is not divisible by 2.
However, the relation w2(X)+c = 0 mod 2 that comes from (4.212) says

that the product g̃αβλ
1/2
αβ is a cocycle. These are the transition functions

of S ⊗ L, where S would be the Spinor bundle of a Spin structure and L

would be the square root of a line bundle: neither of these objects is defined
globally, but the tensor product is. This is the description of the Spinor
Bundle of a Spinc structure that we shall use in the following.

Also, note that symplectic geometry plays a prominent role in the
SW gauge theory. Many computations are possible for the case of sym-
plectic 4–manifolds ([Taubes (1994)], [Taubes (1995a)], [Kotschik et. al.
(1995)]); moreover, although the invariants are defined in terms of U(1)−-
connections, and sections of Spinor bundles, as we shall illustrate be-
low, they turn out to be strictly related to invariants of symplectic man-
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ifolds, known as Gromov invariants (see [Gromov and Lawson (1980);
Taubes (1995b)]). The fact that the SW invariants have a ‘more basic’
structure also led to a conjecture, suggested by Taubes, that symplectic
manifolds may be among the most basic building blocks of the whole ge-
ometry of 4–manifolds.

4.14.2.4 The Gauge Group and Its Equations

Recall that the gauge group of a G−-bundle is defined as the group of self
equivalences of the bundle, namely the group of smooth maps

λα : Uα → G, λβ = gβαλαgαβ ,

where the bundle is trivial over Uα and has transition functions gαβ . It is
often useful to consider this space of maps endowed with Sobolev norms,
and, by completing with respect to the norm, to consider gauge groups of L2

k

functions, as in [Donaldson and Kronheimer (1990); Freed and Uhlenbeck
(1984)].

The gauge group is an infinite dimensional manifold; if the structure
group is Abelian then it has a simpler description as G = M(X,G), the
space of maps from X to G.

In the case G = U(1), the set of connected components of the gauge
group G is H1(X,Z).

The equations of the gauge theory are given in terms of a pair (A,ψ) of
indeterminates, of which A is a connection on L and ψ is a smooth section
of S+ ⊗ L.

The equations are

DAψ = 0, (F+
A )ij =

1
4
〈eiejψ,ψ〉 ei ∧ ej ,

where DA is the Dirac operator twisted by the connection A, and F+
A is the

self–dual part of the curvature associated to A. Here {ei} is a local basis
of TX that acts on ψ by Clifford multiplication, {ei} is the dual basis of
T ∗X, and <,> is the inner product on the fibres of S+ ⊗ L.

The gauge group of L is well defined although L is not globally defined
as a line bundle, since the definition of the gauge group is given just in
terms of the transition functions. In particular, as in the case of a line
bundle, G =M(X,U(1)).

There’s an action of the gauge group on the space of pairs (A,ψ), where
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A is a connection on L and ψ a section of S+ ⊗ L, given by

λ : (A,ψ) 7→ (A− 2iλ−1dλ, iλψ). (4.213)

The action defined in (4.213) induces an action of G on the space of
solutions to the SW equations. As a proof, it is enough to check that

DA−2iλ−1dλ(λψ) = iλDAψ + idλ · ψ − 2idλ · ψ + idλ · ψ,

and in the second equation

F+
A−2iλ−1dλ

= F+
A − 2D+(iλ−1dλ) = F+

A ,

and 〈eiejλψ, λψ〉 =| λ |2 〈eiejψ,ψ〉 = 〈eiejψ,ψ〉.
It is clear from (4.213) that the action of G on the space of solutions is

free iff ψ is not identically zero; while for ψ ≡ 0 the stabiliser of the action
is U(1), the group of constant gauge transformations.

4.14.3 Original SW Low Energy Effective Field Action

Now, let us examine the original SW theory [Seiberg and Witten (1994a);
Seiberg and Witten (1994b)] in more detail. Recall that the classical po-
tential of the pure N = 2 theory (without hypermultiplets) is

V (φ) =
1
g2

Tr[φ, φ†]2. (4.214)

For this to vanish, it is not necessary that φ should vanish; it is enough
that φ and φ† commute. The classical theory therefore has a family of
vacuum states. For instance, if the gauge group is SU(2), then up to gauge
transformation we can take φ = 1

2aσ
3, with σ3 = diag(1,−1) and a a

complex parameter labelling the vacua. The Weyl group of SU(2) acts
by a ↔ −a, so the gauge invariant quantity parameterizing the space of
vacua is u = 1

2a
2 = Trφ2. For non–zero a the gauge symmetry is broken

to U(1) and the global Z8 symmetry is broken to Z4. The residual Z4

acts trivially on the u plane since the U(1)R charge of u is 4. The global
symmetry group acts on the u plane as a spontaneously broken Z2, acting
by u ↔ −u. Classically, there is a singularity at u = 0, where the full
SU(2) gauge symmetry is restored and more fields become massless.

The next thing studied in [Seiberg and Witten (1994a); Seiberg and
Witten (1994b)] was the low energy effective action of the light fields on the
moduli space. For generic 〈φ〉 the low energy effective Lagrangian contains
a single N = 2 vector multiplet, A. The terms with at most two derivatives
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and not more than four fermions are constrained by N = 2 supersymmetry.
They are expressed in terms of a single holomorphic function F(A). In
N = 1 superspace, the Lagrangian is

1
4π

Im
[∫

d4θ
∂F(A)
∂A

Ā+
∫
d2θ

1
2
∂2F(A)
∂A2

WαW
α

]
, (4.215)

where A is the N = 1 chiral multiplet in the N = 2 vector multiplet A
whose scalar component is a. Here, Seiberg and Witten made the following
comments:

1. For large a, asymptotic freedom takes over and the theory is weakly
coupled. Moreover, since it is impossible to add an N = 2 invariant super-
potential to (4.215), the vacuum degeneracy cannot be removed quantum
mechanically. Therefore, the quantum theory has a non–trivial moduli
space which is in fact a complex 1D Kähler manifold . The Kähler potential
can be written in terms of the effective low energy F function as

K = Im
(
∂F(A)
∂A

Ā

)
.

The metric is thus concretely

(ds)2 = Im
(
∂2F(a)
∂a2

da dā

)
. (4.216)

In the classical theory, F can be read off from the tree level Lagrangian
of the SU(2) gauge theory and is F(A) = 1

2τ clA
2 with τ cl = θ

2π + i 4πg2 .
Asymptotic freedom means that this formula is valid for large a if g2 is
replaced by a suitable effective coupling. The small a behavior will however
turn out to be completely different. Classically, the θ parameter has no
consequences. Quantum mechanically, the physics is θ dependent, but since
there is an anomalous symmetry, it can be absorbed in a redefinition of the
fields. Therefore, we can set θ = 0.

2. The formula for the Kähler potential does not look covariant – the
Kähler potential can be written in this way only in a distinguished class
of coordinate systems. In fact, A is related by N = 2 supersymmetry to
the ‘photon’ Aµ, which has a natural linear structure; this gives a natural
coordinate system (or what will turn out to be a natural class of coordinate
systems) for A.

3. The low energy values of the gauge coupling constant and theta
parameter can be read off from the Lagrangian. If we combine them in
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the form τ = θ
2π + i 4πg2 , and denote the effective couplings in the vacuum

parametrized by a as τ(a), then τ(a) = ∂2F
∂a2 .

4. The generalization to an arbitrary compact gauge group G of rank
r is as follows. The potential is always given by (4.214), so the classical
vacua are labelled by a complex adjoint–valued matrix φ with [φ, φ†] = 0.
The unbroken gauge symmetry at the generic point on the moduli space is
the Cartan subalgebra and therefore the complex dimension of the moduli
space is r. The low energy theory is described in terms of r Abelian chiral
multiplets Ai, and the generalization of (4.215) is

1
4π

Im
[∫

d4θ
∂F(A)
∂Ai

Āi +
∫
d2θ

1
2
∂2F(A)
∂Ai∂Aj

W i
αW

αj

]
. (4.217)

Here i labels the generators in the Cartan subalgebra and locally F is an
arbitrary holomorphic function of r complex variables.

5. The SU(2) theory, studied on the flat direction with u 6= 0, has in
addition to the massless chiral or vector multiplet A, additional charged
massive vector multiplets. One can easily write a gauge invariant effective
action for the triplet of chiral multiplets Aa, a = 1 . . . 3, which reduces at
low energies to (4.215) for the massless fields and incorporates the massive
ones. Using the same function F as above, we set F(

√
A · A) = H(A · A)

and write

1
2π

Im
[∫

d4θH′Aa
(
eV
)
ab
Āb +

∫
d2θ

1
2

(
H′δab + 2H′′AaAb

)
W a
αW

b
α

]
,

(4.218)
where the SU(2)−invariant metric δab has been used to raise and lower
indices. (4.218) has N = 2 supersymmetry and manifest gauge invariance,
and reduces at low energies to (4.218).

6. The Lagrangian (4.218) is unchanged if we add to F terms linear in
A. This has the effect of shifting ∂F/∂A by a constant.

As already mentioned, classically the F function is

F0 =
1
2
τ clA2. (4.219)

The one–loop contributions add up to

Fone−loop = i
1

2π
A2 ln

A2

Λ2
, (4.220)

where Λ is the dynamically generated scale. This logarithm is related to the
one–loop beta function and also ensures the anomalous transformation laws
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under U(1)R. Higher order perturbative corrections are absent. Instantons
lead to new terms. The anomaly and the instanton action suggest that

F = i
1

2π
A2 ln

A2

Λ2
+

∞∑
k=1

Fk
(

Λ
A

)4k

A2,

where the k’th term arises as a contribution of k instantons. A detailed
calculation of the k = 1 term indicates that F1 6= 0. Also, corrections to
the classical formula 4.219 are related to the beta function, and for N =
4 supersymmetric YM theory, whose beta function vanishes, the formula
(4.219) is exact.

4.14.4 QED With Matter

Following the original SW approach [Seiberg and Witten (1994a); Seiberg
and Witten (1994b)], we first consider Abelian gauge theories with N = 2
supersymmetry and charged matter hypermultiplets – that is, the N = 2
analog of ordinary QED.

The ‘photon’, Aµ is accompanied by its N = 2 superpartners – two
neutral Weyl spinors λ and ψ that are often called ‘photinos’, and a complex
neutral scalar a. They form an irreducible N = 2 representation that can
be decomposed as a sum of two N = 1 representations: a and ψ are in
a chiral representation, A, while Aµ and λ are in a vector representation,
Wα.

We take the charged fields, the ‘electrons’, to consist of k hypermulti-
plets of electric charge one. Each hypermultiplet, for i = 1 . . . k, consists of
two N = 1 chiral multiplets M i and M̃i with opposite electric charge; such
an N = 1 chiral multiplet contains a Weyl fermion and a complex scalar.

The renormalizable N = 2 invariant Lagrangian is described in an N =
1 language by canonical kinetic terms and minimal gauge couplings for all
the fields as well as a superpotential

W =
√

2AM iM̃i +
∑
i

miM
iM̃i. (4.221)

The first term in related by N = 2 supersymmetry to the gauge coupling
and the second one leads to N = 2 invariant mass terms.

The classical moduli space of the N = 2, SU(2) gauge theory is
parametrized by u = 〈Tr(φ2)〉 where φ is a complex scalar field in the
adjoint representation of the gauge group. For u 6= 0 the gauge symmetry
is broken to U(1). At u = 0 the space is singular and the gauge symmetry
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is unbroken. Our main goal is to determine – as quantitatively as possible
– how this picture is modified quantum mechanically.

The quantum moduli space is described by the global supersym-
metry version of special geometry. The Kähler potential , K =
Im(aD(u)ā(ū)), determines the metric (or, equivalently the kinetic terms).
The pair (aD, a) is a holomorphic section of an SL(2,Z) bundle over the
punctured complex u plane. They are related by N = 2 supersymmetry to
a U(1) gauge multiplet. a is related by N = 2 to the semiclassical ‘photon’
while aD is related to its dual – ‘the magnetic photon’. The gauge kinetic
energy is proportional to ∫

d2θ
∂aD
∂a

W 2
α. (4.222)

In this N = 2 theory, the one–loop approximation to K is exact (there are
no higher order perturbative corrections and there are no U(1) instantons
on R4) leading to

aD = − ik
2π
a log(a/Λ).

The lack of asymptotic freedom appears here as a breakdown of the theory
at |a| = Λ/e, where the metric on the moduli space Im(∂aD∂a ) vanishes and
the effective gauge coupling is singular. This is the famous Landau pole.

For large |u| the theory is semiclassical and

a ∼=
√

2u, aD ∼= i
2
π
a log a. (4.223)

These expressions are modified by instanton corrections. The exact expres-
sions were determined as the periods on a torus

y2 = (x2 − Λ4)(x− u) (4.224)

of the meromorphic 1–form λ =
√

2
2π

dx (x−u)
y . In (4.224), Λ is the dynami-

cally generated mass scale of the theory.
The spectrum contains dyons labelled by various magnetic and electric

charges. Stable states with magnetic and electric charges (nm, ne) have
masses given by the BPS formula

M2 = 2|Z|2 = 2|nea(u) + nmaD(u)|2. (4.225)

There are two singular points on the quantum moduli space at u = ±Λ2;
they are points at which a magnetic monopole becomes massless. When an
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N = 2 breaking but N = 1 preserving mass term is added to the theory,
these monopoles condense, leading to confinement (see below).

When the masses in (4.221) are not zero, the moduli space changes.
The singularities on the Coulomb branch can move. Whenever a = − 1√

2
mi

one of the electrons becomes massless. Therefore

aD = − i
2π

∑
i

(a+mi/
√

2) log

(
a+mi/

√
2

Λ

)
.

If some of the masses are equal, the corresponding singularities on the
Coulomb branch coincide and there are more massless particles there. In
this case a Higgs branch with non–zero expectation values for these elec-
trons touches the Coulomb branch at the singularity. When there is only
one massless electron hypermultiplet, the |D|2 term in the potential pre-
vents a Higgs branch from developing.

4.14.5 QCD With Matter

Following ([Seiberg and Witten (1994a); Seiberg and Witten (1994b)]), we
now turn to QCD with an SU(2) gauge group. The gluons are accompanied
by Dirac fermions and complex scalars φ in the adjoint representation of the
gauge group. We also add Nf hypermultiplets of quarks in the fundamental
representation. As in the previous subsection, each hypermultiplet contains
a Dirac fermion and four real scalars. In terms of N = 1 superfields the
hypermultiplets contain two chiral superfields Qia and Q̃ia (i = 1, ..., Nf
is the flavor index and a = 1, 2 the color index) and the N = 2 gauge
multiplets include N = 1 gauge multiplets and chiral multiplets Φ. The
superpotential for these chiral superfields is

W =
√

2Q̃iΦQi +
∑
i

miQ̃iQ
i.

We now begin the analysis of the quantum moduli space. The first
basic fact is that for large fields, the theory is weakly coupled and the
quantum moduli space is well approximated by the classical moduli space.
We parameterize the Coulomb branch by the gauge invariant coordinate
u = 〈Tr φ2〉.

For Nf = 0, the metric and the dyon masses are determined by a
holomorphic section of an SL(2,Z) bundle:

a =
1
2

√
2u+ . . . , aD = i

4−Nf
2π

a(u) log
u

Λ2
Nf

+ . . . ,



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

738 Applied Differential Geometry: A Modern Introduction

where the ellipses represent instanton corrections and ΛNf is the dy-
namically generated scale of the theory with Nf flavors. The metric is
ds2 = Im(a′Dā

′)du dū and the dyon masses M2 = 2|Z2| are expressed in
terms of Z = nea + nmaD, where nm, ne are the magnetic and electric
charges, respectively.

4.14.6 Duality

Next, Seiberg and Witten performed SL(2,Z) duality transformation on
the low energy fields. Although they are non–local on the photon field Aµ,
they act simply on (aD, a). Several new issues appeared when matter fields
were present.

First, consider the situation of one massive quark with mass mNf and
examine what happens when a approaches mNf /

√
2 where one of the el-

ementary quarks becomes massless. Loop diagrams in which this quark
propagates make a logarithmic contribution to aD. The behavior near
a = mNf /

√
2 is thus

a ≈ a0, aD ≈ c−
i

2π
(a− a0) ln(a− a0),

with a0 = mNf /
√

2 and c a constant. The monodromy26 around a = a0 is

26Recall that monodromy is the study of how geometrical objects behave as they ‘run
around’ a singularity. It is closely associated with covering maps and their degeneration

into ramification; the aspect giving rise to monodromy phenomena is that certain func-

tions we may wish to define fail to be single–valued as we ‘run around’ a path encircling a
singularity. The failure of monodromy is best measured by defining a monodromy group:

a group of transformations acting on the data that codes what does happen as we ‘run

around’.
In the case of a covering map, we look at monodromy as a special case of a fibration,

and use the homotopy lifting property to ‘follow’ paths on the base space X (we assume
it is path–connected, for simplicity) as they are lifted up into the cover C. If we follow
round a loop based at a point x ∈ X, which we lift to start at c above x, we end at some

c∗ again above x; it is quite possible that c 6= c∗, and to code this, one considers the
action of the fundamental group π1(X,x) as a permutation group on the set of all c, as
a monodromy group in this context.

An analogous geometrical role is played by parallel transport. In a principal bundle B
over a smooth manifold M , a connection allows ‘horizontal’ movement from fibers above

a point m ∈ M to adjacent ones. The effect when applied to loops based at m is to
define a holonomy group of translations of the fiber at m; if the structure group of B
is G, it is a subgroup of G that measures the deviation of B from the product bundle

M ×G.
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thus

a→ a, aD → aD + a− a0 = aD + a−
mNf√

2
. (4.226)

Thus, under monodromy, the pair (aD, a) is not simply transformed by
SL(2,Z); they also pick up additive constants. This possibility is not real-
ized for the pure N = 2 gauge theory. The above simple consideration of a
massless quark shows that this possibility does enter for Nf > 0.

If one arranges aD, a, and the bare mass m as a 3D column vector
(m/
√

2, aD, a), then the monodromy in (4.226) can be written in the general
form

M =

1 0 0
r k l

q n p

 , (4.227)

with detM = kp − nl = 1. This is the most general form permitted by
the low energy analysis. The specific form of the first row in (4.227) means
that m is monodromy–invariant; intuitively this reflects the fact that m is
a ‘constant’, not a ‘field’. Now, if one arranges the charges as a row vector
W = (S, nm, ne), then W transforms by W →WM−1. Explicitly,

M−1 =

 1 0 0
lq − pr p −l
nr − kq −n k


Thus, the electric and magnetic charges ne and nm mix among themselves
but do not get contributions proportional to the global symmetry charge S.
On the other hand, the S charge can get contributions proportional to gauge
charges ne or nm. Equivalently, the global symmetry can be transformed
to a linear combination of itself and a gauge symmetry but not the other
way around. Notice that the monodromy matrix mixing the charges in this
way survives even if the bare mass m vanishes.

Now, it was noted above that locally, by virtue of N = 2 supersymmetry,
the metric on the moduli space is of the form

(ds)2 = Im(τ(a) da dā), (4.228)

with τ(a) the holomorphic function τ = ∂2F/∂a2. The one–loop formula
(4.220) shows that for large |a|, τ(a) ≈ i

(
ln(a2/Λ2) + 3

)
/π is a multivalued

function whose imaginary part is single–valued and positive. However, if
Im[τ(a)] is globally defined it cannot be positive definite as the harmonic
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function Im(τ) cannot have a minimum. This indicates that the above
description of the metric must be valid only locally.

To what extent is it possible to change variables from a to some other
local parameter, while leaving the metric in the form (4.228)? The answer
to this question is at the heart of the physics. We define aD = ∂F/∂a. The
metric can then be written

(ds)2 = Im(daD dā) = − i
2

(daDdā− da dāD) . (4.229)

This formula is completely symmetric in a and aD, so if we use aD as the
local parameter, the metric will be in the same general form as (4.228),
with a different harmonic function replacing Im(τ). This transformation
corresponds to electric–magnetic duality.

4.14.6.1 Witten’s Formalism

Now, following [Seiberg and Witten (1994a); Seiberg and Witten (1994b)],
to be able to treat the formalism in a way that is completely symmetric
between a and aD, we introduce an arbitrary local holomorphic coordinate
u, and treat a and aD as functions of u, which is a local coordinate on a
complex manifoldM – the moduli space of vacua of the theory. Eventually
we pick u to be the expectation value of Tr(φ2) – a good physical parameter
– but for now u is arbitrary.

Introduce a 2D complex space X ∼= C2 with coordinates (aD, a). Endow
X with the symplectic form ω = Im(daD∧dā). The functions (aD(u), a(u))
give a map f from M to X. The metric on M is

(ds)2 = Im
(
daD
du

dā

dū

)
dudū = − i

2

(
daD
du

dā

dū
− da

du

dāD
dū

)
dudū. (4.230)

This formula is valid for an arbitrary local parameter u onM. If one picks
u = a, one gets back the original formula (4.216) for the metric.27 Notice
that ω had no particular positivity property and thus, if a(u) and aD(u)
are completely arbitrary local holomorphic functions, the metric (4.230) is
not positive. We will eventually construct a(u) and aD(u) in a particular
way that will ensure positivity.

It is easy to see what sort–of transformations preserve the general struc-
ture of the metric. If we set aα = (aD, a), α = 1, 2, and let εαβ be the

27This formula can be described in a coordinate–free way by saying that the Kähler
form of the induced metric on M is f∗(ω).
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antisymmetric tensor with ε12 = 1, then

(ds)2 = − i
2
εαβ

daα

du

dāβ

dū
dudū. (4.231)

This is manifestly invariant under linear transformations that preserve ε and
commute with complex conjugation (the latter condition ensures that aα

and āα transform the same way). These transformations make the group
SL(2,R) (or equivalently Sp(2,R)). Also, (4.231) is obviously invariant
under adding a constant to aD or a. So if we arrange (aD, a) as a column
vector v, the symmetries that preserve the general structure are: v →
Mv+ c, where M is a 2× 2 matrix in SL(2,R), and c is a constant vector.
In general, this group of transformations can be thought of as the group of

3× 3 matrices of the form
„

1 0
c M

«
, acting on the three objects (1, aD, a).

Generalization to Dimension Greater than One

Now, let us briefly discuss the generalization to other gauge groups. If the
gauge group G has rank r, thenM has complex dimension r. Locally, from
(4.217), it follows that the metric is

(ds)2 = Im
(

∂2F
∂ai∂aj

)
daidāj ,

with distinguished local coordinates ai and a holomorphic function F . We
again reformulate this by introducing

aD,j =
∂F
∂aj

. (4.232)

Then we can write

(ds)2 = Im
∑
i

daD,i dā
i.

To formulate this invariantly, we introduce a complex space X ∼= C2r with
coordinates ai, aD,j . We endow X with the symplectic form

ω =
i
2

∑
i

(
dai ∧ dāD,i − daD,i ∧ dāi

)
of type (1, 1) and also with the holomorphic 2–form

ωh =
∑
i

dai ∧ daD,i .
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Then we introduce arbitrary local coordinates us, (s = 1, . . . , r), on the
moduli space M, and describe a map f : M → X by functions ai(u),
aD,j(u). We require f to be such that f∗(ωh) = 0; this precisely ensures
that locally, if we pick ui = ai, then aD,j must be of the form in (4.232)
with some holomorphic function F . Then we take the metric on M to be
the one whose Kähler form is f∗(ω), i.e.,

(ds)2 = Im
∑
s,t,i

∂aD,i
∂us

∂āi

∂ūt
dusdūt.

If again we arrange a, aD as a 2r−component column vector v, then the
formalism is invariant under transformations v → Mv + c, with M a
matrix in Sp(2r,R) and c a constant vector. Again, considerations involving
the charges will eventually require that M be in Sp(2r,Z) and impose
restrictions on c.

Physical Interpretation via Duality

So far we have seen that the spin zero component of the N = 2 multiplet
has a Kähler metric of a very special sort, constructed using a distinguished
set of coordinate systems. This rigid structure is related by N = 2 super-
symmetry to the natural linear structure of the gauge field. We have found
that, for the spin zero component, the distinguished parametrization is not
completely unique; there is a natural family of parameterizations related
by SL(2,R). How does this SL(2,R) (which will actually be reduced to
SL(2,Z)) act on the gauge fields?

SL(2,R) is generated by the transformations

Tb =
(

1 b
0 1

)
, and S =

(
0 1
−1 0

)
,

with real b. The former acts as aD → aD + ba, a → a; this acts trivially
on the distinguished coordinate a, and can be taken to act trivially on the
gauge field. By inspection of (4.218), the effect of aD → aD + ba on the
gauge kinetic energy is just to shift the θ angle by 2πb; in the Abelian
theory, this has no effect until magnetic monopoles (or at least non–trivial
U(1) bundles) are considered. Once that is done, the allowed shifts in the
θ angle are by integer multiples of 2π; that is why b must be integral and
gives essentially our first derivation of the reduction to SL(2,Z).

The remaining challenge is to understand what S means in terms of the
gauge fields. We will see that it corresponds to electric-magnetic duality. To
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see this, let us see how duality works in Lagrangians of the sort introduced
above.

We work in Minkowski space and consider first the purely bosonic
terms involving only the gauge fields. We use conventions such that
F2
µν = −(∗F)2µν and ∗(∗F) = −F where ∗F denotes the dual of F . The

relevant terms are

1
32π

Im
∫
τ(a) · (F + i∗F)2 =

1
16π

Im
∫
τ(a) · (F2 + i∗FF). (4.233)

Duality is carried out as follows. The constraint dF = 0 (which in the
original description follows from F = dA) is implemented by adding a
Lagrange multiplier vector field VD. Then F is treated as an independent
field and integrated over. The normalization is set as follows. The U(1) ⊂
SU(2) is normalized such that all SO(3) fields have integer charges (matter
multiplets in the fundamental representation of SU(2) therefore have half
integer charges). Then, a magnetic monopole corresponds to ε0µνρ∂µFνρ =
8πδ(3)(x). For VD to couple to it with charge one, we add to (4.233)

1
8π

∫
VDµε

µνρσ∂νFρσ =
1

8π

∫
∗FDF =

1
16π

Re
∫

(∗FD − iFD)(F + i∗F),

where FDµν = ∂µVDν − ∂νVDµ is the the field strength of VD. We can now
perform the Gaussian functional integral over F and find an equivalent
Lagrangian for VD,

1
32π

Im
(
−1
τ

)
(FD + i∗FD)2 =

1
16π

Im
(
−1
τ

)
(F2

D + i∗FDFD).

We now repeat these steps in N = 1 superspace. We treat Wα in

1
8π

Im
∫
d2θτ(A)W 2

as an independent chiral field. The superspace version of the Bianchi iden-
tity dF = 0 is

Im(DW ) = 0,

where D is the supercovariant derivative. It can be implemented by a real
vector superfield VD Lagrange multiplier. We add to the action

1
4π

Im
∫
d4xd4θVDDW =

1
4π

Re
∫
d4xd4θiDVDW = − 1

4π
Im
∫
d4xd2θWDW.
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Performing the Gaussian integral over W we find an equivalent Lagrangian

1
8π

Im
∫
d2θ
−1
τ(A)

W 2
D. (4.234)

To proceed further, we need to transform the N = 1 chiral multiplet A
to AD. The kinetic term

Im
∫
d4θh(A)Ā is transformed by

AD = h(A) to Im
∫
d4θhD(AD)ĀD,

where hD(h(A)) = −A is minus the inverse function. Then using h′(A) =
τ(A) the coefficient of the gauge kinetic term (4.234) becomes

− 1
τ(A)

= − 1
h′(A)

= h′D(AD) = τD(AD).

Note that a shift of h by a constant does not affect the Lagrangian. There-
fore, the duality transformation has a freedom to shift AD by a constant.

The relations AD = h(A) and hD = −A mean that the duality trans-
formation precisely implements the missing SL(2,Z) generator S. The
function τ = h′ is mapped by τD(AD) = − 1

τ(A) . Remembering that

τ(a) = θ(a)
2π +i 4π

g(a)2 , we see that the duality transformation inverts τ rather
than the low energy gauge coupling g(a).

It is important to stress that unlike τ → τ+1, the duality transformation
is not a symmetry of the theory. It maps one description of the theory to
another description of the same theory.

For other gauge groups G the low energy Lagrangian has several Abelian
fields, Ai, in the Cartan subalgebra.

Then (AD)i = hi(Ai) = ∂iF(Ai),

which leads to hiD(hj(Ak)) = −Ai, and the ‘metrics’

τ ij(A) = ∂i∂jF(A) = ∂jhi(A), τ ijD(AD) = ∂i∂jFD(AD) = ∂jhiD(AD)

satisfy fijf
jk
D = −δki .

The above transformation together with the more obvious shifts: ADi →
ADi +MijA

j – generate Sp(2r,Z).
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Coupling to Gravity

Now, we would like to compare the structure we have found to the ‘spe-
cial geometry’ that appears if the chiral multiplet is coupled to N = 2
supergravity. In N = 2 supergravity, the general Kähler metric for a sys-
tem of r chiral superfields is described locally by a holomorphic function
G0(a1, . . . , ar) of r complex variables ai. The Kähler potential is

Kgrav = − ln

(
2i(G0 − Ḡ0) +

i
2

∑
i

(
āi
∂G0

∂ai
− ai ∂Ḡ0

∂āi

))
. (4.235)

In global supersymmetry we had a local holomorphic function F with

K =
−i
2

∑
i

(
āi
∂F
∂ai
− ai ∂F̄

∂āi

)
. (4.236)

One would expect that there is some limit in which gravitational effects are
small and (4.235) would reduce to (4.236). How does this occur?

It suffices to set

G0 = −i
MPl

2

4
+ F , (4.237)

with MPl the Planck mass. Then if MPl is much larger than all relevant
parameters, we get

Kgrav = − lnMPl
2 +

K

MPl
2

+O(MPl
−4).

The constant term -lnMPl
2 does not contribute to the Kähler metric, so

up to a normalization factor of 1/M2
Pl, the Kähler metric with supergravity

reduces to that of global N = 2 supersymmetry as MPl → ∞ keeping
everything else fixed.

More fundamentally, we would like to compare the allowed monodromy
groups. In supergravity, the global structure is exhibited as follows. One
introduces an additional variable a0 and sets G = (a0)2G0. One also in-
troduces aD,j = ∂G/∂aj for j = 0, . . . , r. Then one finds that the special
Kähler structure of (4.235) allows Sp(2r + 2,R) transformations acting on
(aDi, aj).28 Now, in decoupling gravity, we consider G to be of the special
form in (4.237). In that case, aD,0 = −iMPl

2 . The other ai, aD,j are inde-
pendent of MPl. To preserve this situation in which MPl appears only in

28In the gauge fields this is reduced to Sp(2r + 2,Z). The symplectic form preserved
by Sp(2r + 2,R) becomes the usual one

P
i da

i ∧ daD,i.
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aD,0, we must consider only those Sp(2r + 2,R) transformations in which
the transformations of all fields are independent of aD,0. These transforma-
tions all leave a0 invariant. There is no essential loss then in scaling the a’s
so that a0 = 1. Arrange the aD,i, aj with i, j = 1 . . . r as a column vector
v. The Sp(2r + 2,R) transformations that leave invariant a0 = 1 act on v

by v →Mv + c where M ∈ Sp(2r,R) and c is a constant. This is precisely
the duality group that we found in the global N = 2 theory.

4.14.7 Structure of the Moduli Space

4.14.7.1 Singularity at Infinity

It is actually quite easy to see explicitly the appearance of non–trivial
monodromies. In fact, asymptotic freedom implies a non–trivial mon-
odromy at infinity. The renormalization group corrected classical formula
Fone loop = iA2 ln(A2/Λ2)/2π gives for large a

aD =
∂F
∂a
≈ 2ia

π
ln(a/Λ) +

ia
π
. (4.238)

It follows that aD is not a single-valued function of a for large a. If we
recall that the physical parameter is really u = 1

2a
2 (at least for large u and

a), then the monodromy can be determined as follows. Under a circuit of
the u plane at large u, one has lnu→ lnu+2πi, and hence ln a→ ln a+πi.
So the transformation is aD → −aD + 2a, a → −a. Thus, there is a
non–trivial monodromy at infinity in the u plane,

M∞ = PT−2 =
((
−1 2
0 −1

))
, (4.239)

where P is the element -1 of SL(2,Z), and as usual T =

„
1 1
0 1

«
.

The factor of P in the monodromy exists already at the classical level.
As we said above, a and -a are related by a gauge transformation (the
Weyl subgroup of the SU(2) gauge group) and therefore we work on the
u plane rather than its double cover, the a plane. In the anomaly free
Z8 subgroup of the R symmetry group U(1)R, there is an operation that
acts on a by a → −a; when combined with a Weyl transformation, this is
the unbroken symmetry that we call P . Up to a gauge transformation it
acts on the bosons by φ → −φ, so it reverses the sign of the low energy
electromagnetic field which in terms of SU(2) variables is proportional to
Tr (φF). Hence it reverses the signs of all electric and magnetic charges and
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acts as -1 ∈ SL(2,Z). The P monodromy could be removed by (perhaps
artificially) working on the a plane instead of the u plane.

The main new point here is the factor of T−2 which arises at the quan-
tum level. This factor of T−2 has a simple physical explanation in terms of
the electric charge of a magnetic monopole. Magnetic monopoles labelled
by (nm, ne) have anomalous electric charge ne + θeff

2π nm. The appropriate
effective theta parameter is the low energy one

θeff = 2πRe[τ(a)] = 2πRe
(
daD
da

)
= 2πRe

(
daD/du

da/du

)
.

For large |a|, we have θeff ≈ −4 arg(a), which can be understood from the
anomaly in the U(1)R symmetry. The monodromy at infinity transforms
the row vector (nm, ne) to (−nm,−ne − 2nm), which implies that (aD, a)
transforms to (−aD+2a,−a). The electric charge of the magnetic monopole
can in fact be seen in the formula for Z, which if we take aD from (4.238)
and set a = a0e−iθeff/4 (with a0 > 0) is

Z ≈ a0e−iθeff/4

{(
ne +

θeffnm
2π

)
+ inm

(
2 ln a0/Λ + 1

π

)}
.

The monodromy under θeff → θeff +4π is easily seen from this formula to
transform (nm, ne) in the expected fashion. Obviously, this simple formula
depended on the semiclassical expression (4.238) for aD; with the exact
expressions we presently propose, the results are much more complicated,
in part because the effective theta angle is no longer simply the argument
of a.

4.14.7.2 Singularities at Strong Coupling

The monodromy at infinity means that there must be an additional singu-
larity somewhere in the u−plane. If M′ is the moduli space of vacua with
all singularities deleted, then the monodromies must give a representation
of the fundamental group of M′ in SL(2,Z). Can this representation be
Abelian? If the monodromies all commute with PT−2, then a2 is a good
global complex coordinate, and the metric is globally of the form (4.228)
with a global harmonic function Im τ(a). As we have already noted, such
a metric could not be positive.

The alternative is to assume a non–Abelian representation of the fun-
damental group. This requires at least two more punctures of the u plane
(in addition to infinity). Since there is a symmetry u ↔ −u acting on
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the u plane, the minimal assumption is that there are precisely two more
punctures exchanged by this symmetry.

The most natural physical interpretation of singularities in the u plane is
that some additional massless particles are appearing at a particular value
of u. For instance, in the classical theory, at u = a = 0, the SU(2) gauge
symmetry is restored; all the gluons become massless. In fact classically
aD = 4πia/g2 also vanishes at this point, and the monopoles and dyons
become massless as well. One might be tempted to believe that the missing
singularity comes from an analogous point in the quantum theory at which
the gauge boson masses vanish. Though this behavior might seem unusual
in asymptotically free theories in general, there are good indications that
someN = 1 theories have an infrared fixed point with massless non–Abelian
gluons.

4.14.7.3 Effects of a Massless Monopole

Now, following [Seiberg and Witten (1994a); Seiberg and Witten (1994b)],
let us analyze the behavior of the effective Lagrangian near a point u0 on the
moduli space where magnetic monopoles become massless, that is, where

aD(u0) = 0.

Since monopoles couple in a non-local way to the original photon, we cannot
use that photon in our effective Lagrangian. Instead, we should perform a
duality transformation and write the effective Lagrangian in terms of the
dual vector multiplet AD. The low energy theory is therefore an Abelian
gauge theory with matter (an N = 2 version of QED). The unusual fact
that the light matter fields are magnetically charged rather than electrically
charged does not make any difference to the low energy physics. The only
reason we call these particles monopoles rather than electrons is that this
language is appropriate at large |u| where the theory is semiclassical.

The dominant effect on the low energy gauge coupling constant is due
to loops of light fields. In our case, these are the light monopoles. The low
energy theory is not asymptotically free and therefore its gauge coupling
constant becomes smaller as the mass of the monopoles becomes smaller.
Since the mass is proportional to aD, the low energy coupling goes to zero as
u→ u0. The electric coupling constant which is the inverse of the magnetic
one diverges at that point.

More quantitatively, using the one–loop beta function, near the point
where aD = 0, the magnetic coupling is τD ≈ − i

π ln aD. Since aD is a
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good coordinate near that point, aD ≈ c0(u−u0), with some constant c0.
Using τD = dhD/daD, we learn that

a(u) = −hD(u) ≈ a0 +
i
π
aD ln aD ≈ a0 +

i
π
c0(u− u0) ln(u− u0),

for some constant a0 = a(u = u0). This constant a0 cannot be zero because
if it had been zero, all the electrically charged particles would have been
massless at u = u0 and the computation using light monopoles only would
not be valid.

Now we can read off the monodromy. When u circles around u0,

so ln(u− u0)→ ln(u− u0) + 2πi,

then one has aD → aD, a→ a− 2aD. (4.240)

This effect is a sort–of dual of the monodromy at infinity. Near infinity,
the monopole gains electric charge, and near u = u0, the electron gains
magnetic charge. (4.240) can be represented by the 2 × 2 monodromy
matrix

M1 = ST 2S−1 =
(

1 0
−2 1

)
. (4.241)

4.14.7.4 The Third Singularity

With our assumption that there are only three singularities (counting u =
∞) and with two of the three monodromies determined in (4.239) and
(4.241), we can now determine the third monodromy, which we call M−1.
With all of the monodromies taken in the counter clockwise direction, the
monodromies must obey M1M−1 = M∞, and from this we get

M−1 = (TS)T 2(TS)−1 =
(
−1 2
−2 3

)
.

The matrix M−1 is conjugate to M1. Actually,

If A = TM1 =
(
−1 1
−2 1

)
, (4.242)

Then M−1 = AM1A
−1. (4.243)

Hence, M−1 can arise from a massless particle, just like M1. (4.243) would
also hold if Ais replaced by AM1

r for any integer r.
What kind of particle should become massless to generate this singu-

larity? If one arranges the charges as a row vector q = (nm, ne), then
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the massless particle that produces a monodromy M has qM = q. For
instance, monodromy M1 arises from a massless monopole of charge vector
q1 = (1, 0), and using the known form of M1, one has q1M1 = q1. Duality
symmetry implies that this must be so not just for the particular mon-
odromy M1but for any monodromy coming from a massless particle. Upon
setting q−1 = (1,−1), we get q−1M−1 = q−1, and hence the monodromy
M−1 arises from vanishing mass of a dyon of charges (1,−1).

It seems that we are seeing massless particles of charges (1, 0) or (1,−1).
However, there is in fact a complete democracy among dyons. The BPS-
saturated dyons that exist semiclassically have charges (1, n) (or (−1,−n))
for arbitrary integer n. The monodromy at infinity brings about a shift
(1, n)→ (1, n− 2). If one carries out this shift ntimes before proceeding to
the singularity at u = 1 or u = −1, the massless particles producing those
singularities would have charges (1,−2n) and (1,−1 − 2n), respectively.
This amounts to conjugating the representation of the fundamental group
by M∞

n.
The particular matrix A in (4.242) obeys A2 = −1, which is equiv-

alent to the identity as an automorphism of SL(2,Z). Conjugation by
Aimplements the underlying Z2 symmetry of the quantum moduli space,
which according to our assumptions, exchanges the two singularities. The
Z2 maps M1 → M ′

1 = M−1, M−1 → M ′
−1 = M1 and M∞ → M ′

∞ =
M ′

1M
′
−1 = M−1M1. Note that M ′

∞ is not just obtained from M∞ by con-
jugation, but the relation M∞ = M1M−1 is preserved. The reason for that
is that (as in any situation in which one is considering a representation of
the fundamental group of a manifold in a non–Abelian group), the defi-
nition of the monodromies requires a choice of base point. The operation
u → −u acts on the base point, and this has to be taken into account in
determining how M∞ transforms under Z2.

One can go farther and show that if one assumes the existence of a Z2

symmetry between M1and M−1, then they must be conjugate to T 2, and
not some other power of T . In our derivation of the monodromy (4.241),
the 2 came from something entirely independent of the assumption of a Z2

symmetry, namely, from the charges and multiplicities of the monopoles
that exist semiclassically.

4.14.7.5 Monopole Condensation and Confinement

We recall that the underlying N = 2 chiral multiplet A decomposes under
N = 1 supersymmetry as a vector multiplet Wα and a chiral multiplet
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Φ. Breaking N = 2 down to N = 1, one can add a superpotential W =
mTr(Φ2) for the chiral multiplet. This gives a bare mass to Φ, reducing the
theory at low energies to a pure N = 1 gauge theory. The low energy theory
has a Z4 chiral symmetry. This theory is strongly believed to generate a
mass gap, with confinement of charge and spontaneous breaking of Z4 to
Z2. Furthermore, there is no vacuum degeneracy except what is produced
by this symmetry breaking, so that there are precisely two vacuum states.

How can this be mimicked in the low energy effective N = 2 theory?
That theory has a moduli space M of quantum vacua. The massless spec-
trum at least semiclassically consists solely of the Abelian chiral multiplet
A of the unbroken U(1) subgroup of SU(2). If those are indeed the only
massless particles, the effect in the low energy theory of turning on m can
be analyzed as follows. The operator Tr( Φ2) is represented in the low en-
ergy theory by a chiral superfield U . Its first component is the scalar field
u whose expectation value is

〈u〉 = 〈Tr(φ2)〉,

where φ is the θ = 0 component of the superfield Φ. This is a holomorphic
function on the moduli space. At least for small m we should add to our
low energy Lagrangian an effective superpotential Weff = mU .

Turning on the superpotential mU would perhaps eliminate almost all of
the vacua and in the surviving vacua give a mass to the scalar components
of A. But if there are no extra degrees of freedom in the discussion, the
gauge field in Awould remain massless. To get a mass for the gauge field,
as is needed since the microscopic theory has a mass gap for m 6= 0, one
needs either

(i) extra light gauge fields, giving a non–Abelian gauge theory and pos-
sible strong coupling effects, or

(ii) light charged fields, making possible a Higgs mechanism.
Thus we learn, as we did in discussing the monodromies, that somewhere

on Mextra massless states must appear. The option (i) does not seem
attractive, for reasons that we have already discussed. Instead we consider
option (ii), with the further proviso, from our earlier discussion, that the
light charged fields in question are monopoles and dyons.

Near the point at which there are massless monopoles, the monopoles
can be represented in an N = 1language by ordinary (local) chiral super-
fields Mand M̃ , as long as we describe the gauge field by the dual to the
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original photon, AD. The superpotential is

Ŵ =
√

2ADMM̃ +mU(AD), (4.244)

where the first term is required by N = 2 invariance of the m = 0 the-
ory, and the second term is the effective contribution to the superpotential
induced by the microscopic perturbation mTr(Φ2).

The presence of a term mTr( Φ2) in the microscopic superpotential
shows that the parameter m carries charge two. The low energy super-
potential is holomorphic in its variables Ŵ (m,MM̃,AD) and should have
charge two under U(1)J . Imposing that it is regular at m = MM̃ = 0, we
find that it is of the form Ŵ = mf1(AD) +MM̃f2(AD). The functions f1
and f2 are independent of m and can be determined by examining the limit
of small m, leading to (4.244).

The low energy vacuum structure is easy to analyze. Vacuum states
correspond to solutions of dŴ = 0 (up to gauge transformation), which
obey the additional condition |M | = |M̃ | (we denote by M and M̃ both
the superfields and their first components). The latter condition comes
from vanishing of the D terms. Implementing these conditions, one finds if
m = 0 that vacuum states correspond to M = M̃ = 0 with arbitrary aD;
this is simply the familiar moduli space M. If m 6= 0 the result is quite
different. We get

√
2MM̃ +m

du

daD
= 0, aDM = aDM̃ = 0.

Assuming that du 6= 0, the first equation requires M,M̃ 6= 0, while the
second equation requires aD = 0.

Expanding around this vacuum, it is easy to see that there is a mass
gap. For instance, the gauge field gets a mass by the Higgs mechanism,
since M,M̃ 6= 0. The Higgs mechanism in question is a magnetic Higgs
mechanism, since the fields with expectation values are monopoles! Con-
densation of monopoles will induce confinement of electric charge. Thus,
we get an explanation in terms of the low energy effective action of why the
microscopic theory becomes confining when the mTr( Φ2) superpotential is
added.

4.14.8 Masses and Periods

The particle masses and the low energy metric and couplings were in
[Seiberg and Witten (1994a); Seiberg and Witten (1994b)] determined by
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equating a and aD with periods of a certain meromorphic 1–form λ on the
curve E. λ has two characteristics:

(i) λ may have poles but (as long as the monodromies are in SL(2,Z))
its residues vanish; and

(ii) To achieve positivity of the metric on the quantum moduli space,
its derivative with respect to u is proportional to dx

y .
Condition (i) means that the definition of a and aD by contour integrals

a =
∮
γ1

λ, aD =
∮
γ2

λ,

(with γ1 and γ2 some contours on E) is invariant under deformation of the
γi, even across poles of λ. This ensures that only the homology classes of
the γi matter and reduces the monodromies to a group SL(2,Z) that acts
on H1(E,Z). In the presence of bare masses, this is too strong a condition
since when the bare masses are non–zero the monodromies are not quite in
SL(2,Z).

As for condition (ii), the differential form dx
y has no poles and represents

a cohomology class on E of type (1, 0). Having dλ/du = f(u) dx/y leads
to positivity of the metric. The function f(u) is determined by requiring
the right behavior at the singularities, for instance a ≈ 1

2

√
2u for large u,

while f is a constant. The proper relation is in fact

dλ

du
=
√

2
8π

dx

y
. (4.245)

Up to an inessential sign, this is 1/2 the value in the ‘old’ conventions.
By integration with respect to u, (4.245) determines λ (once the curve is
known) for all values of Nf . This relation is only supposed to hold up to a
total differential in x; λ is supposed to be meromorphic in x.

The massless Nf = 3 curve is given by

y2 = x2(x− u)− (x− u)2.

The polynomial on the right hand side has zeroes at x0 = u and at

x± =
1
2
(
1±
√

1− 4u
)
.

In particular, at u = 1/4, x+ = x−, giving the singularity that we have
attributed to a massless state of (nm, ne) = (2, 1). To show that this state
is semiclassical, we interpolate on the positive u axis from the semiclassical
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regime of u −→ ∞ to the singularity at u = 1/4. For u > 1/4, x+ and x−
are complex conjugates.

We have

da

du
=
∮
γ1

dλ

du
=
∮
γ1

ω,
daD
du

=
∮
γ2

dλ

du
=
∮
γ2

ω,

where ω = (
√

2/8π)dx/y, γ1 is a circle in the x plane that loops around x+

and x− but not x0, and γ2 is a contour that loops round x0 and x+ but
not x−. Complex conjugation leaves x0 alone and exchanges x+ with x−;
hence γ1 is invariant under complex conjugation, but complex conjugation
turns γ2 into a contour γ3 that loops around x0 and x− while avoiding x+.
So a is real but the complex conjugate of aD is given by

daD
du

=
∫
γ3

ω. (4.246)

γ3, however, is homotopic to the sum of -γ1 and −γ2 (the minus sign comes
from keeping track of the orientations of the contours). Hence, (4.246) gives

aD = −a− aD.

In other words,29

aD = −a
2

+ imaginary.

4.14.9 Residues

Since the jumps in a or aD are integral linear combinations of mi/
√

2 (with
mi the bare masses) and are 2πi times the residues of λ, the residues of λ
should be of the form

Resλ =
∑
i

nimi

2πi
√

2
, with ni ∈ Z.

The Nf = 4 theory is controlled by a curve y2 = F(x, u,mi, τ) and a

29This equation has the following interpretation. The curve is real for real u, that
is, the coefficients in the equation are real. There are two types of real elliptic curve:
τ can have real part zero or 1/2. (Thus τ is either invariant or transformed by the

SL(2,Z) transformation τ → τ − 1 under the complex conjugation operation τ → −τ̄ .)
The two possibilities correspond in a suitable basis to a real, aD imaginary, or a real,
aD = −a/2 + imaginary. For u > 1/4 we have the second possibility.
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differential form λ obeying

dλ

du
= ω + exact form in x, (4.247)

with ω =
√

2
8π

dx

y
.

For N = 4 the structure is the same, except that 8π is replaced by 4π. F
should be such that the residues of λ are linear in the quark bare masses.
This is a severe restriction on F ; we see that it determines F uniquely (up
to the usual changes of variables) independently of most of the arguments
that we have used up to this point.

Let us write (4.247) in a more symmetrical form. If λ = dx a(x, u), then
(4.247) means

√
2

8π
dx

y
= dx

∂a

∂u
+ dx

∂

∂x
f(x, u); (4.248)

the arbitrary total x−derivative dx ∂f/∂x is allowed here because it does
not contribute to the periods. (4.248) can be understood much better if
written symmetrically in x and u. Henceforth, instead of using a 1–form
ω = (

√
2/8π) · dx/y, we use a 2–form

ω =
√

2
8π

dx du

y
.

Similarly, we combine the functions a, f appearing in (4.248) into a 1–form
λ = −a(x, u)dx + f(x, u)du. The change in notation for ω and λ should
cause no confusion. Then equation (4.248) can be more elegantly written
as

ω = dλ. (4.249)

The meaning of the problem of finding λ can now be stated. Let X be
the (noncompact) complex surface defined by the equation y2 = F(x, u)
(we suppress the parameters mi and τ). Being closed, ω defines an element
[ω] ∈ H2(X,C). A smooth differential λ obeying (4.249) exists if and only
if [ω] = 0. Moreover, by standard theorems, in the absence of restrictions
on the growth of λ at infinity, if λ exists it can be chosen to be holomorphic
and of type (1, 0).

If on the other hand [ω] 6= 0, then (4.249) has no smooth, much less
holomorphic, solution. However, X has the property that if one throws
away a sufficient number of complex curves Ca, then X ′ = X − ∪aCa
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has H2(X ′,C) = 0. (The necessary Ca are explicitly described later.) So
if we restrict to X ′, the cohomology class of ω vanishes and λ exists. λ

may however have poles on the Ca, perhaps with residues, which we call
ResCa(λ).30 If λ does have residues, then dλ contains delta functions, and
if one works on X instead of X ′, one really has not (4.249) but

ω = dλ− 2πi
∑
a

ResCa(λ) · [Ca] (4.250)

where [Ca] (which represents the cohomology class known as the Poincaré
dual of Ca) is a delta function supported on Ca.

In cohomology, (4.250) simply means

[ω] = −2πi
∑
a

ResCa(λ) · [Ca]. (4.251)

Thus, if we pick the Ca so that the [Ca] are a basis of H2(X,C), then
the residues ResCa(λ) are simply the coefficients of the expansion of [ω]
in terms of the [Ca]. To find the residues we need not actually find λ; it
suffices to understand the cohomology class of ω by any method that may
be available.

For instance, if X were compact, we could proceed as follows. First
compute the intersection matrix

Mab = #(Ca · Cb)

(that is, the number of intersection points of Ca and Cb, after perhaps
perturbing the Ca so that they intersect generically). This is an invertible
matrix. Second, calculate the periods

ca =
∫
Ca

ω.

Then

[ω] =
∑
a,b

caM
−1
ab [Cb].

Comparing to (4.246), we get

ResCa(λ) = − 1
2πi

∑
b

M−1
ab cb.

30The residues of λ along Ca are constants, since dResCa (λ) = ResCadλ = ResCaω =

0.
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4.14.10 SW Monopole Equations and Donaldson Theory

Developments in the understanding of N = 2 supersymmetric YM theory in
4D suggest a new point of view about Donaldson theory [Donaldson (1990);
Donaldson (1986); Donaldson (1987); Donaldson and Kronheimer (1990)] of
four manifolds: instead of defining 4–manifold invariants by counting SU(2)
instantons, one can define equivalent 4–manifold invariants by counting
solutions of a nonlinear equation with an Abelian gauge group. This is a
‘dual’ equation in which the gauge group is the dual of the maximal torus
of SU(2). This new viewpoint, proposed by Witten in [Witten (1994)],
suggests many new results about the Donaldson invariants.

Let X be an oriented, closed 4–manifold on which we pick a Riemannian
structure with metric tensor g. ΛpT ∗X, or simply Λp, will denote the
bundle of real–valued p−forms, and Λ2,± will be the sub–bundle of Λ2

consisting of self–dual or anti–self–dual forms.
The monopole equations relevant to SU(2) or SO(3) Donaldson theory

can be described as follows. If w2(X) = 0, then X is a spin manifold and
one can pick positive and negative spin bundles S+ and S−, of rank two.31

In that case, introduce a complex line bundle L; the data in the monopole
equation will be a connection A on L and a section M of S+ ⊗ L. The
curvature 2–form of A will be called F or F(A); its self–dual and anti–self–
dual projections will be called F+ and F−.

If X is not spin, the S± do not exist, but their projectivizations PS±

do exist (as bundles with fibers isomorphic to CP 1). A Spinc structure
(which exists on any oriented four-manifold can be described as a choice
of a rank two complex vector bundle, which we write as S+ ⊗ L, whose
projectivization is isomorphic to PS+. In this situation, L does not exist as
a line bundle, but L2 does;32 the motivation for writing the Spinc bundle as
S+⊗L is that the tensor powers of this bundle obey isomorphisms suggested
by the notation. For instance, (S+⊗L)⊗2 ∼= L2⊗ (Λ0⊕Λ2,+). The data of
the monopole equation are now a section M of S+⊗L and a connection on
S+ ⊗ L that projects to the Riemannian connection on PS+. The symbol
F(A) will now denote 1/2 the trace of the curvature form of S+ ⊗ L.

Since L2 is an ordinary line bundle, one has an integral cohomology
class x = −c1(L2) ∈ H2(X,Z). Note that x reduces modulo two to w2(X);

31If there is more than one spin structure, the choice of a spin structure will not matter
as we ultimately sum over twistings by line bundles.

32One might be tempted to call this bundle L and write the Spinc bundle as S+⊗L1/2;
that amounts to assigning magnetic charge 1/2 to the monopole and seems unnatural

physically.
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in particular, if w2(X) = 0, then L exists as a line bundle and x = −2c1(L).
To write the monopole equations, recall that S+ is symplectic or pseudo-

real, so that if M is a section of S+ ⊗ L, then the complex conjugate M̄
is a section of S+ ⊗ L−1. The product M ⊗ M̄ would naturally lie in
(S+ ⊗L)⊗ (S+ ⊗L−1) ∼= Λ0 ⊕Λ2,+. F+ also takes values in Λ2,+ making
it possible to write the following equations. Introduce Clifford matrices Γi
(with anticommutators {Γi,Γj} = 2gij), and set Γij = 1

2 [Γi,Γj ]. Then the
equations are33

F+
ij = − i

2
M̄ΓijM,

∑
i

ΓiDiM = 0.

In the second equation,
∑
i ΓiDi is the Dirac operator D that maps sections

of S+ ⊗L to sections of S− ⊗L. We will sometimes abbreviate the first as
F+ = (MM̄)+. Alternatively, if positive spinor indices are written A,B,C,
and negative spinor indices as A′, B′, C ′, 34 the equations can be written as

FAB =
i
2
(
MAM̄B +MBM̄A

)
, DAA′M

A = 0.

As a first step in understanding these equations, let us work out the
virtual dimension of the moduli space M of solutions of the equations up
to gauge transformation. The linearization of the monopole equations fits
into an elliptic complex

0→ Λ0 s→ Λ1 ⊕ (S+ ⊗ L) t→ Λ2,+ ⊕ (S− ⊗ L)→ 0.

Here t is the linearization of the monopole equations, and s is the map from
zero forms to deformations in A,M given by the infinitesimal action of the
gauge group. Since we wish to work with real operators and determine the
real dimension ofM, we temporarily think of S±⊗L as real vector bundles
(of rank four). Then an elliptic operator

T : Λ1 ⊕ (S+ ⊗ L) −→ Λ0 ⊕ Λ2,+ ⊕ (S− ⊗ L)

is defined by T = s∗ ⊕ t. The virtual dimension of the moduli space is
given by the index of T . By dropping terms in T of order zero, T can be

33To physicists the connection form A on a unitary line bundle is real; the covariant

derivative is dA = d+ iA and the curvature is F = dA or in components Fij = ∂iAj −
∂jAi.

34Spinor indices are raised and lowered using the invariant tensor in Λ2S+. In com-
ponents, if MA = (M1,M2), then MA = (−M2,M1). One uses the same operation in
interpreting M̄ as a section of S+ ⊗ L, so M̄A = (M̄2,−M̄1). Also FAB = 1

4
FijΓijAB .
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deformed to the direct sum of the operator d+ d∗ 35 from Λ1 to Λ0 ⊕Λ2,+

and the Dirac operator from S+⊗L to S−⊗L. The index of T is the index
of d+ d∗ plus twice what is usually called the index of the Dirac operator;
the factor of two comes from looking at S± ⊗ L as real bundles of twice
the dimension. Let χ and σ be the Euler characteristic and signature of
X. Then the index of d + d∗ is -(χ + σ)/2, while twice the Dirac index
is -σ/4 + c1(L)2. The virtual dimension of the moduli space is the sum of
these or

W = −2χ+ 3σ
4

+ c1(L)2.

When this number is negative, there are generically no solutions of the
monopole equations. When W = 0, that is, when x = −c1(L2) = −2c1(L)
obeys

x2 = 2χ+ 3σ, (4.252)

then the virtual dimension is zero and the moduli space generically consists
of a finite set of points Pi,x, i = 1 . . . tx. With each such point, one can
associate a sign εi,x = ±1 – the sign of the determinant of T as we discuss
momentarily. Once this is done, define for each x obeying (4.252) an integer
nx by

nx =
∑
i

εi,x.

We will see later that nx = 0 – indeed, the moduli space is empty – for all
but finitely many x. Under certain conditions that we discuss in a moment,
the nx are topological invariants.

Note that W = 0 iff the index of the Dirac operator is

∆ =
χ+ σ

4
.

In particular, ∆ must be an integer to have non–trivial nx. Similarly, ∆
must be integral for the Donaldson invariants to be non–trivial (otherwise
SU(2) instanton moduli space is odd–dimensional).

For the sign of the determinant of T to make sense one must trivialize
the determinant line of T . This can be done by deforming T as above to
the direct sum of d + d∗ and the Dirac operator. If the Dirac operator,
which naturally has a non–trivial complex determinant line, is regarded as
a real operator, then its determinant line is naturally trivial – as a complex

35What is meant here is a projection of the d+ d∗ operator to self–dual forms.
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line has a natural orientation. The d+d∗ operator is independent of A and
M (as the gauge group is Abelian), and its determinant line is trivialized
once and for all by picking an orientation of H1(X,R)⊕H2,+(X,R). Note
that this is the same data needed by Donaldson [Donaldson (1987)] to orient
instanton moduli spaces for SU(2); this is an aspect of the relation between
the two theories.

If one replaces L by L−1, A by -A, and M by M̄ , the monopole equations
are invariant, but the trivialization of the determinant line is multiplied by
(−1)δ with δ the Dirac index. Hence the invariants for L and L−1 are
related by

n−x = (−1)∆nx.

For W < 0, the moduli space is generically empty. For W > 0 one can
try, as in Donaldson theory, to define topological invariants that involve
integration over the moduli space. Donaldson theory does not detect those
invariants at least in known situations. We will see below that even when
W > 0, the moduli space is empty for almost all x.

4.14.10.1 Topological Invariance

In general, the number of solutions of a system of equations weighted by
the sign of the determinant of the operator analogous to T is always a
topological invariant if a suitable compactness holds. If as in the case
at hand one has a gauge invariant system of equations, and one wishes
to count gauge orbits of solutions up to gauge transformations, then one
requires (i) compactness; and (ii) free action of the gauge group on the
space of solutions.

Compactness fails if a field or its derivatives can go to infinity. To
explain the contrast with Donaldson theory, note that for SU(2) instantons
compactness fails precisely because an instanton can shrink to zero size.
This is possible because

(i) the equations are conformally invariant,
(ii) they have non–trivial solutions on a flat R4, and
(iii) embedding such a solution, scaled to very small size, on any four-

manifold gives a highly localized approximate solution of the instanton
equations (which can sometimes be perturbed to an exact solution). The
monopole equations by contrast are scale invariant but they have no non-
constant L2 solutions on flat R4 (or after dimensional reduction on flat Rn
with 1 ≤ n ≤ 3). So there is no analog for the monopole equations of the
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phenomenon where an instanton shrinks to zero size.
On the other hand, an obstruction does arise, just as in Donaldson

theory from the question of whether the gauge group acts freely on the
space of solutions of the monopole equations. The only way for the gauge
group to fail to act freely is that there might be a solution with M = 0, in
which case a constant gauge transformation acts trivially. A solution with
M = 0 necessarily has F+ = 0, that is, it is an Abelian instanton.

Since F/2π represents the first Chern class of the line bundle L, it is
integral; in particular if F+ = 0 then F/2π lies in the intersection of the
integral lattice in H2(X,R) with the anti-self–dual subspace H2,−(X,R).
As long as b+2 ≥ 1, so that the self–dual part of H2(X,R) is non-empty, the
intersection of the anti-self–dual part and the integral lattice generically
consists only of the zero vector. In this case, for a generic metric on X,
there are no Abelian instantons (except for x = 0, which we momentarily
exclude) and nx is well–defined.

To show that the nx are topological invariants, one must further show
that any two generic metrics on X can be joined by a path along which
there is never an Abelian instanton. As in Donaldson theory, this can fail if
b+2 = 1. In that case, the self–dual part of H2(X,R) is 1D, and in a generic
one–parameter family of metrics on X, one may meet a metric for which
there is an Abelian instanton. When this occurs, the nx can jump. Let
us analyze how this happens, assuming for simplicity that b1 = 0. Given
b1 = 0 and b2

+ = 1, one has W = 0 precisely if the index of the Dirac
equation is 1. Therefore, there is generically a single solution M0 of the
Dirac equation DM = 0.

The equation F+(A) = 0 cannot be obeyed for a generic metric on X,
but we want to look at the behavior near a special metric for which it does
have a solution. Consider a one–parameter family of metrics parametrized
by a real parameter ε, such that at ε = 0 the self–dual subspace in H2(X,R)
crosses a ‘wall’ and a solution A0 of F+(A) = 0 appears. Hence for ε = 0,
we can solve the monopole equations with A = A0, M = 0. Let us see
what happens to this solution when ε is very small but non-zero. We set
M = mM0, with m a complex number, to obey DM = 0, and we write
A = A0 + εδA. The equation F+(A)− (MM̄)+ = 0 becomes

F+(A0) + (dδA)+ − |m|2(M0M̄0)+ = 0. (4.253)

As the cokernel of A −→ F+(A) is 1D, δA can be chosen to project the
left hand side of equation (4.253) into a 1D subspace (as b1 = 0, this can
be done in a unique way up to a gauge transformation). The remaining
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equation looks near ε = 0 like cε − mm̄ = 0, with c a constant. The ε
term on the left comes from the fact that F+(A0) is proportional to ε.

Now we can see what happens for ε 6= 0 to the solution that at ε = 0 has
A = A0, M = M0. Depending on the sign of c, there is a solution for m,
uniquely determined up to gauge transformation, for ε > 0 and no solution
for ε < 0, or vice–versa. Therefore nx jumps by ±1, depending on the sign
of c, in passing through ε = 0.

The trivial Abelian instanton with x = 0 is an exception to the above
discussion, since it cannot be removed by perturbing the metric. To define
n0, perturb the equation FAB = i

2 (MAM̄B +MBM̄A) to

FAB =
i
2

(MAM̄B +MBM̄A)− pAB , (4.254)

with p a self–dual harmonic 2–form; with this perturbation, the gauge group
acts freely on the solution space. Then define n0 as the number of gauge
orbits of solutions of the perturbed equations weighted by sign in the usual
way. This is invariant under continuous deformations of p for p 6= 0; as
long as b+2 > 1, so that the space of possible p’s is connected, the integer
n0 defined this way is a topological invariant.

The perturbation just pointed out will be used later in the case that p is
the real part of a holomorphic 2–form to compute the invariants of Kähler
manifolds with b+2 > 1. It probably has other applications; for instance,
the case that p is a symplectic form is of interest.

4.14.10.2 Vanishing Theorems

Some of the main properties of the monopole equations can be understood
by means of vanishing theorems. The general strategy in deriving such
vanishing theorems is quite standard, but some unusual cancellations (re-
quired by the Lorentz invariance of the underlying untwisted theory) lead
to unusually strong results.

If we set s = F+ −MM̄ , k = DM , then a small calculation gives∫
X

d4x
√
g

(
1
2
|s|2 + |k|2

)
= (4.255)∫

X

d4x
√
g

(
1
2
|F+|2 + gijDiM

ADjM̄A +
1
2
|M |4 +

1
4
R|M |2

)
.

Here g is the metric of X, R the scalar curvature, and d4x
√
g the Rieman-

nian measure. A salient feature here is that a term FABMAM̄B , which
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appears in either |s|2 or |k|2, cancels in the sum. This sharpens the im-
plications of the formula, as we see. One can also consider the effect here
of the perturbation in (4.254); the sole effect of this is to replace 1

2 |M |
4 in

(4.255) by

∫
X

d4x
√
g

F+ ∧ p+
∑
A,B

∣∣∣∣12(MAM̄B +MBM̄A)− pAB
∣∣∣∣2
 . (4.256)

The second term is non-negative, and the first is simply the intersection
pairing

2πc1(L) · [p]. (4.257)

An obvious inference from (4.255) is that if X admits a metric whose
scalar curvature is positive, then for such a metric any solution of the
monopole equations must have M = 0 and F+ = 0. But if b2+ > 0, then
after a generic small perturbation of the metric (which will preserve the
fact that the scalar curvature is positive), there are no Abelian solutions of
F+ = 0 except flat connections. Therefore, for such manifolds and metrics,
a solution of the monopole equations is a flat connection with M = 0.
These too can be eliminated using the perturbation in (4.254).36 Hence a
four-manifold for which b+2 > 0 and nx 6= 0 for some x does not admit a
metric of positive scalar curvature.

We can extend this to determine the possible four-manifolds X with
b+2 > 0, some nx 6= 0, and a metric of non–negative scalar curvature.37 If
X obeys those conditions, then for any metric of R ≥ 0, any basic class x
is in H2,− modulo torsion (so that L admits a connection with F+ = 0,
enabling (4.255) to vanish); in particular if x is not torsion then x2 < 0.
Now consider the effect of the perturbation (4.254). As x ∈ H2,−, (4.257)
vanishes; hence if R ≥ 0, R must be zero, M must be covariantly constant
and (MM̄)+ = p. For M covariantly constant, (MM̄)+ = p implies that p
is covariantly constant also; but for all p ∈ H2,+ to be covariantly constant
implies that X is Kähler with b+2 = 1 or is hyper-Kähler. Hyper-Kähler
metrics certainly have R = 0, and there are examples of metrics with R = 0
on Kähler manifolds with b+2 = 1 [LeBrun (1991)].

36Flat connections can only arise if c1(L) is torsion; in that case, c1(L) · [p] = 0.
37If b+2 = 1, the nx are not all topological invariants, and we interpret the hypothesis

to mean that with at least one sign of the perturbation in (4.254), the nx are not all
zero.
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As an example, for a Kähler manifold with b+2 ≥ 3, the canonical divisor
K always arises as a basic class, so except in the hyper-Kähler case, such
manifolds do not admit a metric of non-negative scalar curvature.

Even if the scalar curvature is not positive, we can get an explicit bound
from (4.255) showing that there are only finitely many basic classes. Since∫

X

d4x
√
g

(
1
2
|M |4 +

1
4
R|M |2

)
≥ − 1

32

∫
X

d4x
√
gR2, (4.258)

it follows from (4.255), even if we throw away the term |DiM |2, that∫
X

d4x
√
g|F+|2 ≤ 1

16

∫
X

d4x
√
gR2.

On the other hand, basic classes correspond to line bundles L with c1(L)2 =
(2χ+ 3σ)/4, or

1
(2π)2

∫
d4x
√
g
(
|F+|2 − |F−|2

)
=

2χ+ 3σ
4

. (4.259)

Therefore, for a basic class both I+ =
∫
d4x
√
g|F+|2 and I− =∫

d4x
√
g|F−|2 are bounded. For a given metric, there are only finitely

many isomorphism classes of line bundles admitting connections with given
bounds on both I+ and I−, so the set of basic classes is finite.

The basic classes correspond to line bundles on which the moduli space
of solutions of the monopole equations is of zero virtual dimension. We
can analyze in a similar way components of the moduli space of positive
dimension. Line bundles L such that c1(L)2 < (2χ+ 3σ)/4 are not of much
interest in that connection, since for such line bundles the moduli space
has negative virtual dimension and is generically empty. But if c1(L)2 >
(2χ+ 3σ)/4, then (4.259) is simply replaced by the stronger bound

1
(2π)2

∫
d4x
√
g
(
|F+|2 − |F−|2

)
>

2χ+ 3σ
4

.

The set of isomorphism classes of line bundles admitting a connection obey-
ing this inequality as well as (4.258) is once again finite. So we conclude
that for any given metric on X, the set of isomorphism classes of line bun-
dles for which the moduli space is non–empty and of non–negative virtual
dimension is finite; for a generic metric on X, there are only finitely many
non–empty components of the moduli space.

For further consequences of (4.255), we turn to a basic case in the study
of four-manifolds: the case that X is Kähler.
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4.14.10.3 Computation on Kähler Manifolds

If X is Kähler and spin, then S+ ⊗ L has a decomposition S+ ⊗ L ∼=
(K1/2 ⊗ L)⊕ (K−1/2 ⊗ L), where K is the canonical bundle and K1/2 is a
square root. If X is Kähler but not spin, then S+⊗L, defined as before, has
a similar decomposition where now K1/2 and L are not defined separately
and K1/2 ⊗ L is characterized as a square root of the line bundle K ⊗ L2.

We denote the components of M in K1/2⊗L and in K−1/2⊗L as α and
-iβ̄, respectively. The equation F+(A) = MM̄ can now be decomposed as

F2,0 = αβ, F1,1
ω = −ω

2
(
|α|2 − |β|2

)
, F0,2 = ᾱβ̄. (4.260)

Here ω is the Kähler form and F1,1
ω is the (1, 1) part of F+. (4.255) can be

rewritten∫
X

d4x
√
g

(
1
2
|s|2 + |k|2

)
=
∫
X

d4x
√
g

(
1
2
|F+|2 + gijDiᾱDjα+ gijDiβ̄Djβ

+
1
2

(|α|2 + |β|2)2 +
1
4
R(|α|2 + |β|2)

)
. (4.261)

The right hand side of (4.261) is not manifestly non-negative (unless
R ≥ 0), but the fact that it is equal to the left hand side shows that it
is non-negative and zero precisely for solutions of the monopole equations.
Consider the operation

A −→ A, α −→ α, β −→ −β. (4.262)

This is not a symmetry of the monopole equations. But it is a symmetry
of the right hand side of (4.261). Therefore, given a zero of the right
hand side of (4.261) – that is, a solution of the monopole equations – the
operation (4.262) gives another zero of the right hand side of (4.261) – that
is, another solution of the monopole equations. So, though not a symmetry
of the monopole equations, the transformation (4.262) maps solutions of
those equations to other solutions.

Vanishing of αβ means that α = 0 or β = 0. If α = 0, then the Dirac
equation for M reduces to

∂̄Aβ = 0,

where ∂̄A is the ∂̄ operator on L. Similarly, if β = 0, then the Dirac equation
gives

∂̄Aα = 0.
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Knowing that either α or β is zero, we can deduce which it is. Integrating
the (1, 1) part of (4.260) gives

1
2π

∫
X

ω ∧ F = − 1
4π

∫
X

ω ∧ ω
(
|α|2 − |β|2

)
. (4.263)

The left hand side of (4.263) is a topological invariant which can be inter-
preted as

J = [ω] · c1(L).

The condition that there are no non–trivial Abelian instantons is that J is
non-zero; we only wish to consider metrics for which this is so. If J < 0,
we must have α 6= 0, β = 0, and if J > 0, we must have α = 0, β 6= 0.

The equation that we have not considered so far is the (1, 1) part of
(4.260). This equation can be interpreted as follows. Suppose for example
that we are in the situation with β = 0. The space of connections A and
sections α of K1/2 ⊗ L can be interpreted as a symplectic manifold, the
symplectic structure being defined by

〈δ1A, δ2A〉 =
∫
X

ω∧δ1A∧δ2A, 〈δ1α, δ2α〉 = −i
∫
X

ω∧ω (δ1αδ2α− δ2ᾱδ1α) .

On this symplectic manifold acts the group of U(1) gauge transformations.
The moment map µ for this action is the quantity that appears in the (1, 1)
equation that we have not yet exploited, that is

µω = F1,1
ω + ω|α|2.

By analogy with many similar problems, setting to zero the moment map
and dividing by the group of U(1) gauge transformations should be equiv-
alent to dividing by the complexification of the group of gauge transfor-
mations. In the present case, the complexification of the group of gauge
transformations acts by α −→ tα, ∂̄A −→ t∂̄At

−1, where t is a map from X

to C∗.
Conjugation by t has the effect of identifying any two A’s that define

the same complex structure on L. This can be done almost uniquely: the
ambiguity is that conjugation by a constant t does not change A. Obviously,
a gauge transformation by a constant t rescales α by a constant. The result
therefore, for J < 0, is that the moduli space of solutions of the monopole
equations is the moduli space of pairs consisting of a complex structure on
L and a non-zero holomorphic section, defined up to scaling, of K1/2 ⊗ L.
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For J > 0, it is instead β that is non-zero, and K1/2 ⊗ L is replaced by
K1/2 ⊗ L−1.

This result can be stated particularly nicely if X has b1 = 0. Then the
complex structure on L, assuming that it exists, is unique. The moduli
space of solutions of the monopole equations is therefore simply a complex
projective space, PH0(X,K1/2 ⊗ L) or PH0(X,K1/2 ⊗ L−1), depending
on the sign of J .

Identifying The Basic Classes

We would now like to identify the basic classes. The above description of
the moduli space gives considerable information: basic classes are of the
form x = −2c1(L), where L is such that J < 0 and H0(X,K1/2 ⊗ L) is
non-empty, or J > 0 and H0(X,K1/2⊗L−1) is non-empty. This, however,
is not a sharp result.

That is closely related to the fact that the moduli spaces PH0(X,K1/2⊗
L±1) found above very frequently have a dimension bigger than the ‘generic’
dimension of the moduli space as predicted by the index Theorem. In fact,
Kähler metrics are far from being generic. In case the expected dimension
is zero, one would have always nx > 0 if the moduli spaces behaved ‘generi-
cally’ (given the complex orientation, an isolated point on the moduli space
would always contribute +1 to nx; this is a special case of a discussion be-
low). Since the nx are frequently negative, moduli spaces of non–generic
dimension must appear.

When the moduli space has greater than the generically expected di-
mension, one can proceed by integrating over the bosonic and fermionic
collective coordinates in the path integral. This gives a result that can be
described topologically: letting T be the operator that arises in lineariz-
ing the monopole equations, the cokernel of T is a vector bundle V (the
‘bundle of antighost zero modes’) over the moduli spaceM; its Euler class
integrated over M is the desired nx.

Alternatively, one can perturb the equations to more generic ones. We
use the same perturbation as before. For a Kähler manifold X, the con-
dition b+2 > 1 is equivalent to H2,0(X) 6= 0, so we can pick a non-zero
holomorphic 2–form η. We perturb the monopole equations (4.260) to

F2,0 = αβ − η, F1,1
ω = −ω

(
|α|2 − |β|2

)
, F0,2 = ᾱβ̄ − η̄, (4.264)

leaving unchanged the Dirac equation for M .
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It suffices to consider the case that the first Chern class of L is of type
(1, 1), since the unperturbed moduli space vanishes otherwise. That being
so, we have

0 =
∫
X

F 2,0 ∧ η̄ =
∫
X

F 0,2 ∧ η.

Using this, one finds that (4.261) generalizes to∫
X

d4x
√
g

(
1
2
|s|2 + |k|2

)
=
∫
X

d4x

(
1
2
|F+|2 + gijDiᾱDjα+ gijDiβ̄Djβ

+
1
2

(|α|2 − |β|2)2 + 2|αβ − η|2 +
R

4
(|α|2 + |β|2)

)
. (4.265)

Witten now makes an argument of a sort we have already seen: the
transformation

A −→ A, α −→ α, β −→ −β, η −→ −η, (4.266)

though not a symmetry of (4.264), is a symmetry of the right hand side of
(4.265). As solutions of (4.264) are the same as zeroes of the right hand
side of (4.265), we deduce that the solutions of (4.264) with a 2–form η are
transformed by (4.266) to the solutions with -η. The terms in (4.264) even
or odd under the transformation must therefore separately vanish, so any
solution of (4.264) has

0 = F0,2 = F2,0 = αβ − η.

The condition F0,2 = 0 means that the connection still defines a holomor-
phic structure on L.

The condition αβ = η gives our final criterion for determining the
basic classes: they are of the form x = −2c1(L) where, for any choice of
η ∈ H0(X,K), one has a factorization η = αβ with holomorphic sections
α and β of K1/2 ⊗ L±1, and x2 = c1(K)2.

To make this completely explicit, suppose the divisor of η is a union of
irreducible components Ci of multiplicity ri. Thus the canonical divisor is

c1(K) =
∑
i

ri[Ci],

where [Ci] denotes the cohomology class that is Poincaré dual to the curve
Ci. The existence of the factorization η = αβ means that the divisor of
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K1/2 ⊗ L is

c1(K1/2 ⊗ L) =
∑
i

si[Ci],

where si are integers with 0 ≤ si ≤ ri. The first Chern class of L is therefore

c1(L) =
∑
i

(si −
1
2
ri)[Ci].

And the basic classes are of the form x = −2c1(L) or

x = −
∑
i

(2si − ri)[Ci].

An x of this form is is of type (1, 1) and congruent to c1(K) modulo two,
but may not obey x2 = c1(K)2. It is actually possible to prove using the
Hodge index Theorem that for x as above, x2 ≤ c1(K)2. This is clear from
the monopole equations: perturbed to η 6= 0, these equations have at most
isolated solutions (from the isolated factorization η = αβ) and not a moduli
space of solutions of positive dimension. So, for Kähler manifolds, the non–
empty perturbed moduli spaces are at most of dimension zero; invariants
associated with monopole moduli spaces of higher dimension vanish.

4.14.11 SW Theory and Integrable Systems

Remarkably, the SW theory for N = 2 supersymmetric YM theory for
arbitrary gauge algebra g appears to be intimately related with the exis-
tence of certain classical mechanics integrable systems. This relation was
first suspected on the basis of the similarity between the SW curves and
the spectral curves of certain integrable models [Gorskii et. al. (1995);
Nakatsu and Takasaki (1996)]. Then, arguments were developed that SW
theory naturally produces integrable structures [Donagi and Witten (1996)].

For the N = 2 supersymmetric YM theory with massive hypermulti-
plet, the relevant integrable system appears to be the elliptic Calogero–
Moser system [Calogero (1975); Moser (1975)]. For SU(N) gauge group,
Donagi and Witten [Donagi and Witten (1996)] proposed that the spec-
tral curves of the SU(N) Hitchin system should play the role of the
SW curves. [Nekrasov (1996)] recognized that the SU(N) Hitchin sys-
tem spectral curves are identical to those of the SU(N) elliptic Calogero–
Moser (CM) integrable system. That the SU(N) elliptic CM–curves (and
associated SW differential) do indeed provide the SW solution for the
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N = 2 theory with one massive hypermultiplet was fully established by
the authors in [D’Hoker and Phong (1998a); D’Hoker and Phong (1998b);
D’Hoker and Phong (1998c)], where it was shown that:

(i) The resulting effective prepotential F (and thus the low energy ef-
fective action) reproduces correctly the logarithmic singularities predicted
by perturbation theory.

(ii) F satisfies a renormalization group type equation which determines
explicitly and efficiently instanton contributions to any order.

(iii) The prepotential in the limit of large hypermultiplet mass m (as well
as large gauge scalar expectation value and small gauge coupling) correctly
reproduces the prepotentials for N = 2 super–YM theory with any number
of hypermultiplets in the fundamental representation of the gauge group.

The N = 2 theory for arbitrary gauge algebra g and with one mas-
sive hypermultiplet in the adjoint representation was one such outstand-
ing case when g 6= SU(N). Actually, as discussed previously, upon tak-
ing suitable limits, this theory contains a very large number of models
with smaller hypermultiplet representations R, and in this sense has a
universal aspect. It appeared difficult to generalize directly the Donagi–
Witten construction of Hitchin systems to arbitrary g, and it was thus
natural to seek this generalization directly amongst the elliptic CM inte-
grable systems. It has been known now for a long time, thanks to the
work of Olshanetsky and Perelomov [Olshanetsky and Perelomov (1976);
Olshanetsky and Perelomov (1981)], that CM–systems can be defined for
any simple Lie algebra. Olshanetsky and Perelomov also showed that the
CM–systems for classical Lie algebras were integrable, although the ex-
istence of a spectral curve (or, a Lax pair with a spectral parameter) as
well as the case of exceptional Lie algebras remained open. Thus several
immediate questions are:

(i) Does the elliptic CM–system for general Lie algebra g admit a Lax
pair with spectral parameter?

(ii) Does it correspond to the N = 2 supersymmetric gauge theory with
gauge algebra g and a hypermultiplet in the adjoint representation?

(ii) Can this correspondence be verified in the limiting cases when the
mass m tends to 0 with the theory acquiring N = 4 supersymmetry and
when m → ∞, with the hypermultiplet decoupling in part to smaller rep-
resentations of g?

According to [D’Hoker and Phong (1998a); D’Hoker and Phong (1998b);
D’Hoker and Phong (1998c)], the answers to these questions can be stated
succinctly as follows:
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(i) The elliptic CM–systems defined by an arbitrary simple Lie algebra
g do admit Lax pairs with spectral parameters.

(ii) The correspondence between elliptic g CM–systems and N = 2
supersymmetric g gauge theories with matter in the adjoint representation
holds directly when the Lie algebra g is simply–laced. When g is not simply–
laced, the correspondence is with new integrable models, the twisted elliptic
CM–systems.

(iii) The new twisted elliptic CM–systems also admit a Lax pair with
spectral parameter.

(iv) In the scaling limit m = Mq−
1
2 δ →∞, (with M fixed), the twisted

(respectively untwisted) elliptic g CM–systems tend to the Toda system for
(g(1))∨ (respectively g(1)) for δ = 1

h∨g
(respectively δ = 1

hg
). Here hg and

h∨g are the Coxeter and the dual Coxeter numbers of g.

4.14.11.1 SU(N) Elliptic CM System

The original elliptic CM–system is the system defined by the Hamiltonian

H(x, p) =
1
2

N∑
i=1

p2
i −

1
2
m2
∑
i 6=j

℘(xi − xj). (4.267)

Here m is a mass parameter, and ℘(z) is the Weierstrass ℘−function, de-
fined on a torus C/(2ω1Z + 2ω2Z). As usual, we denote by τ = ω2/ω1 the
moduli of the torus, and set q = e2πiτ . The well–known trigonometric and
rational limits with respective potentials

−1
2
m2
∑
i 6=j

1
4 sh2 (xi−xj2 )

and − 1
2
m2
∑
i 6=j

1
(xi − xj)2

,

arise in the limits ω1 = −iπ, ω2 →∞ and ω1, ω2 →∞. All these systems
have been shown to be completely integrable in the sense of Liouville, i.e.,
they all admit a complete set of integrals of motion which are in involution.

However, we require a notion of integrability which is in some sense more
stringent, namely the existence of a Lax pair L(z), M(z) with spectral
parameter z. The Hamiltonian system (4.267) is equivalent to the Lax
equation

L̇(z) = [L(z),M(z)], (4.268)
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with L(z) and M(z) given by the following N ×N matrices

Lij(z) = piδij −m(1− δij)Φ(xi − xj , z), (4.269)

Mij(z) = mδij
∑
k 6=i

℘(xi − xk)−m(1− δij)Φ′(xi − xj , z).

The function Φ(x, z) is defined by

Φ(x, z) =
σ(z − x)
σ(z)σ(x)

exζ(z), (4.270)

where σ(z), ζ(z) are the usual Weierstrass σ and ζ functions on the torus
C/(2ω1Z+2ω2Z). The function Φ(x, z) satisfies the key functional equation

Φ(x, z)Φ′(y, z)− Φ(y, z)Φ′(x, z) = (℘(x)− ℘(y))Φ(x+ y, z). (4.271)

It is well–known that functional equations of this form are required for
the Hamilton equations of motion to be equivalent to the Lax equation
(4.268) with a Lax pair of the form (4.269). Often, solutions had been
obtained under additional parity assumptions in x (and y), which prevent
the existence of a spectral parameter. The solution Φ(x, z) with spectral
parameter z is obtained by dropping such parity assumptions for general
z. Conversely, general functional equations of the form (4.271) essentially
determine Φ(x, z).

4.14.11.2 CM Systems Defined by Lie Algebras

The Hamiltonian system (4.267) is only one example of a whole series of
Hamiltonian systems associated with each simple Lie algebra. More pre-
cisely, given any simple Lie algebra g, we have the system with Hamiltonian
[Olshanetsky and Perelomov (1976); Olshanetsky and Perelomov (1976)]

H(x, p) =
1
2

r∑
i=1

p2
i −

1
2

∑
α∈R(g)

m2
|α|℘(α · x), (4.272)

where r is the rank of g, R(g) denotes the set of roots of g, and the m|α|
are mass parameters. To preserve the invariance of the Hamiltonian (4.272)
under the Weyl group, the parameters m|α| depend only on the orbit |α| of
the root α, and not on the root α itself. In the case of AN−1 = SU(N), it
is common practice to use N pairs of dynamical variables (xi, pi), since the
roots of AN−1 lie conveniently on a hyperplane in CN . The dynamics of the
system are unaffected if we shift all xi by a constant, and the number of de-
grees of freedom is effectively N−1 = r. Now the roots of SU(N) are given
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by α = ei−ej , 1 ≤ i, j ≤ N , i 6= j. Thus we recognize the original elliptic
CM–system as the special case of (4.272) corresponding to AN−1. As in the
original case, the elliptic systems (4.272) admit rational and trigonometric
limits. Olshanetsky and Perelomov [Olshanetsky and Perelomov (1976);
Olshanetsky and Perelomov (1976)] succeeded in constructing a Lax pair
for all these systems in the case of classical Lie algebras, albeit without
spectral parameter.

4.14.11.3 Twisted CM–Systems Defined by Lie Algebras

It turns out that the Hamiltonian systems (4.272) are not the only natural
extensions of the basic elliptic CM–system. A subtlety arises for simple Lie
algebras g which are not simply–laced, i.e., algebras which admit roots of
uneven length. This is the case for the algebras Bn, Cn, G2, and F4 in Car-
tan’s classification. For these algebras, the following twisted elliptic CM–
systems were introduced by the authors in [D’Hoker and Phong (1998a);
D’Hoker and Phong (1998b); D’Hoker and Phong (1998c)]

Htwisted
g =

1
2

r∑
i=1

p2
i −

1
2

∑
α∈R(g)

m2
|α|℘ν(α)(α · x). (4.273)

Here the function ν(α) depends only on the length of the root α. If g is
simply–laced, we set ν(α) = 1 identically. Otherwise, for g non simply–
laced, we set ν(α) = 1 when α is a long root, ν(α) = 2 when α is a short
root and g is one of the algebras Bn, Cn, or F4, and ν(α) = 3 when α is a
short root and g = G2. The twisted Weierstrass function ℘ν(z) is defined
by

℘ν(z) =
ν−1∑
σ=0

℘(z + 2ωa
σ

ν
), (4.274)

where ωa is any of the half–periods ω1, ω2, or ω1+ω2. Thus the twisted and
untwisted CM–systems coincide for g simply laced. The original motivation
for twisted CM–systems was based on their scaling limits.
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4.14.11.4 Scaling Limits of CM–Systems

For the standard elliptic CM–systems corresponding to AN−1, in the scaling
limit we have [Inozemtsev (1989a); Inozemtsev (1989b)]

m = Mq−
1

2N , q → 0, (4.275)

xi = Xi − 2ω2
i

N
, 1 ≤ i ≤ N, (4.276)

where M is kept fixed, the elliptic AN−1 CM Hamiltonian tends to the
following Hamiltonian

HToda =
1
2

N∑
i=1

p2
i −

1
2

(
N−1∑
i=1

eXi+1−Xi + eX1−XN

)
. (4.277)

The roots ei− ei+1, 1 ≤ i ≤ N −1, and eN − e1 can be recognized as the
simple roots of the affine algebra A(1)

N−1. Thus (4.277) can be recognized as
the Hamiltonian of the Toda system defined by A(1)

N−1.

Scaling Limits based on the Coxeter Number

The key feature of the above scaling limit is the collapse of the sum over
the entire root lattice of AN−1 in the CM Hamiltonian to the sum over only
simple roots in the Toda Hamiltonian for the Kac–Moody algebra A(1)

N−1.
Our task is to extend this mechanism to general Lie algebras. For this, we
consider the following generalization of the preceding scaling limit

m = Mq−
1
2 δ, x = X − 2ω2δρ

∨, (4.278)

Here x = (xi), X = (Xi) and ρ∨ are rD vectors. The vector x is the
dynamical variable of the CM–system. The parameters δ and ρ∨ depend
on the algebra g and are yet to be chosen. As for M and X, they have the
same interpretation as earlier, namely as respectively the mass parameter
and the dynamical variables of the limiting system. Setting ω1 = −iπ, the
contribution of each root α to the CM potential can be expressed as

m2℘(α · x) =
1
2
M2

∞∑
n=−∞

e2δω2

ch(α · x− 2nω2)− 1
. (4.279)

It suffices to consider positive roots α. We shall also assume that 0 ≤
δ α · ρ∨ ≤ 1. The contributions of the n = 0 and n = −1 summands in
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(4.279) are proportional to e2ω2(δ−δ α·ρ∨) and e2ω2(δ−1+δ α·ρ∨), respectively.
Thus the existence of a finite scaling limit requires that

δ ≤ δ α · ρ∨ ≤ 1− δ. (4.280)

Let αi, 1 ≤ i ≤ r be a basis of simple roots for g. If we want all simple
roots αi to survive in the limit, we must require that

αi · ρ∨ = 1, 1 ≤ i ≤ r.

This condition characterizes the vector ρ∨ as the level vector . Next, the
second condition in (4.274) can be rewritten as δ{1 + maxα (α · ρ∨)} ≤ 1.
But

hg = 1 + maxα (α · ρ∨) (4.281)

is precisely the Coxeter number of g, and we must have δ ≤ 1
hg

. Thus when
δ < 1

hg
, the contributions of all the roots except for the simple roots of g

tend to 0. On the other hand, when δ = 1
hg

, the highest root α0 realizing
the maximum over α in (4.281) survives. Since -α0 is the additional simple
root for the affine Lie algebra g(1), we arrive in this way at the following
Theorem:

Under the limit (4.278), with δ = 1
hg

, and ρ∨ given by the level vector,
the Hamiltonian of the elliptic CM–system for the simple Lie algebra g

tends to the Hamiltonian of the Toda system for the affine Lie algebra g(1).

Scaling Limit based on the Dual Coxeter Number

If the SW–spectral curve of the N = 2 supersymmetric gauge theory with
a hypermultiplet in the adjoint representation is to be realized as the spec-
tral curve for a CM–system, the parameter m in the CM–system should
correspond to the mass of the hypermultiplet. In the gauge theory, the
dependence of the coupling constant on the mass m is given by

τ =
i

2π
h∨g ln

m2

M2
⇐⇒ m = Mq

− 1
2h∨g , (4.282)

where h∨g is the quadratic Casimir function of the Lie algebra g. This shows
that the correct physical limit, expressing the decoupling of the hypermul-
tiplet as it becomes infinitely massive, is given by (4.271), but with δ = 1

h∨g
.

To establish a closer parallel with our preceding discussion, we recall that
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the quadratic Casimir h∨g coincides with the dual Coxeter number of g,
defined by

h∨g = 1 + maxα (α∨ · ρ), (4.283)

where α∨ = 2α
α2 is the coroot associated to α, and ρ = 1

2

∑
α>0 α is the

well–known Weyl vector .
For simply laced Lie algebras g (ADE algebras), we have hg = h∨g , and

the preceding scaling limits apply. However, for non simply–laced algebras
(Bn, Cn, G2, F4), we have hg > h∨g , and our earlier considerations show that
the untwisted elliptic CM Hamiltonians do not tend to a finite limit, q → 0,
M is kept fixed. This is why the twisted Hamiltonian systems (4.273) have
to be introduced. The twisting produces precisely to an improvement in
the asymptotic behavior of the potential which allows a finite, non–trivial
limit. More precisely, we can write

m2℘ν(x) =
ν2

2

∞∑
n=−∞

m2

ch ν(x− 2nω2)− 1
. (4.284)

We have the following Theorem:
Under the limit

x = X + 2ω2
1
h∨g
ρ, m = Mq

− 1
2h∨g ,

with ρ the Weyl vector and q → 0, the Hamiltonian of the twisted elliptic
CM–system for the simple Lie algebra g tends to the Hamiltonian of the
Toda system for the affine Lie algebra (g(1))∨.

So far we have discussed only the scaling limits of the Hamiltonians.
However, similar arguments show that the Lax pairs constructed below
also have finite, non–trivial scaling limits whenever this is the case for the
Hamiltonians. The spectral parameter z should scale as ez = Zq

1
2 , with Z

fixed. The parameter Z can be identified with the loop group parameter
for the resulting affine Toda system.

4.14.11.5 Lax Pairs for CM–Systems

Let the rank of g be n, and d be its dimension. Let Λ be a representation of
g of dimension N , of weights λI , 1 ≤ I ≤ N . Let uI ∈ CN be the weights
of the fundamental representation of GL(N,C). Project orthogonally the
uI ’s onto the λI ’s as suI = λI + uI and λI ⊥ vJ . It is easily verified
that s2 is the second Dynkin index . Then αIJ = λI − λJ is a weight of
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Λ⊗Λ∗ associated to the root uI −uJ of GL(N,C). The Lax pairs for both
untwisted and twisted CM–systems will be of the form

L = P +X, M = D +X,

where the matrices P,X,D, and Y are given by

X =
∑
I 6=J

CIJΦIJ(αIJ , z)EIJ , Y =
∑
I 6=j

CIJΦ′IJ(αIJ , z)EIJ

and by P = p · h, D = d · (h⊕ h̃) + ∆.

Here h is in a Cartan subalgebra Hg for g, h̃ is in the Cartan–Killing
orthogonal complement of Hg inside a Cartan subalgebra H for GL(N,C),
and ∆ is in the centralizer of Hg in GL(N,C). The functions ΦIJ(x, z)
and the coefficients CIJ are yet to be determined. We begin by stating
the necessary and sufficient conditions for the pair L(z), M(z) of (4.275)
to be a Lax pair for the (twisted or untwisted) CM–systems. For this, it is
convenient to introduce the following notation

ΦIJ = ΦIJ(αIJ · x),

℘′IJ = ΦIJ(αIJ · x, z)Φ′JI(−αIJ · x, z)− ΦIJ(−αIJ · x, z)Φ′JI(αIJ · x, z).

Then the Lax equation L̇(z) = [L(z),M(z)] implies the CM–system if
and only if the following three identities are satisfied (K 6= I 6= J)

CIJCJI℘
′
IJαIJ = s2

∑
α∈R(g)

m2
|α|℘ν(α)(α · x), CIJCJI℘

′
IJ(vI − vJ) = 0,

CIKCKJ(ΦIKΦ′KJ − Φ′IKΦKJ) =

sCIJΦIJd · (vI − vJ) + ∆IJCKJΦKJ − CIKΦIK∆KJ

We have the following Theorem [D’Hoker and Phong (1998b)]:
A representation Λ, functions ΦIJ , and coefficients CIJ with a spectral

parameter z satisfying (4.280–4.281) can be found for all twisted and un-
twisted elliptic CM–systems associated with a simple Lie algebra g, except
possibly in the case of twisted G2. In the case of E8, we have to assume
the existence of a ±1 cocycle.

Lax Pairs for Untwisted CM Systems

Here are some important features of the Lax pairs obtained in this manner
[D’Hoker and Phong (1998a); D’Hoker and Phong (1998b); D’Hoker and
Phong (1998c)]:
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In the case of the untwisted CM–systems, we can choose ΦIJ(x, z) =
Φ(x, z), ℘IJ(x) = ℘(x) for all g.

∆ = 0 for all g, except for E8.
For An, the Lax pair (4.269–4.270) corresponds to the choice of the

fundamental representation for Λ. A different Lax pair can be found by
taking Λ to be the antisymmetric representation.

For the BCn system, the Lax pair is obtained by imbedding Bn in
GL(N,C) with N = 2n + 1. When z = ωa (half-period), the Lax pair
obtained this way reduces to the Lax pair obtained in [Olshanetsky and
Perelomov (1976); Olshanetsky and Perelomov (1976)].

For the Bn and Dn systems, additional Lax pairs with spectral param-
eter can be found by taking Λ to be the spinor representation.

For G2, a first Lax pair with spectral parameter can be obtained by the
above construction with Λ chosen to be the 7 of G2. A second Lax pair
with spectral parameter can be obtained by restricting the 8 of B3 to the
7⊕ 1 of G2.

For F4, a Lax pair can be obtained by taking Λ to be the 26⊕ 1 of F4,
viewed as the restriction of the 27 of E6 to its F4 subalgebra.

For E6, Λ is the 27 representation.

Lax Pairs for Twisted CM Systems

Recall that the twisted and untwisted CM–systems differ only for non-
simply laced Lie algebras, namely Bn, Cn, G2 and F4. These are the only
algebras we discuss in this paragraph. The construction (4.277–4.281) gives
then Lax pairs for all of them, with the possible exception of twisted G2.
Unlike the case of untwisted Lie algebras however, the functions ΦIJ have
to be chosen with care, and differ for each algebra.

For Bn, the Lax pair is of dimension N = 2n, admits two independent
couplings m1 and m2, and

ΦIJ(x, z) =
{

Φ(x, z), if I − J 6= 0,±n;
Φ2( 1

2x, z), if I − J = ±n.

Here a new function Φ2(x, z) is defined by

Φ2(
1
2
x, z) =

Φ( 1
2x, z)Φ( 1

2x+ ω1, z)
Φ(ω1, z)

.

For Cn, the Lax pair is of dimension N = 2n+2, admits one independent
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coupling m2, and

ΦIJ(x, z) = Φ2(x+ ωIJ , z),

where ωIJ are given by

ωIJ =


0, if I 6= J = 1, ..., 2n+ 1;

ω2, if 1 ≤ I ≤ 2n, J = 2n+ 2;
−ω2, if 1 ≤ J ≤ 2n, I = 2n+ 2.

For F4, the Lax pair is of dimension N = 24, two independent couplings
m1 and m2,

Φλµ(x, z) =


Φ(x, z), if λ · µ = 0;

Φ1( 1
2x, z), if λ · µ = 1

2 ;
Φ2( 1

2x, z), if λ · µ = −1.

where the function Φ1(x, z) is defined by

Φ1(x, z) = Φ(x, z)− eπiζ(z)+η1zΦ(x+ ω1, z).

Here it is more convenient to label the entries of the Lax pair directly by
the weights λ = λI and µ = λJ instead of I and J .

4.14.11.6 CM and SW Theory for SU(N)

The correspondence between SW theory for N = 2 super–YM theory
with one hypermultiplet in the adjoint representation of the gauge alge-
bra, and the elliptic CM–systems was first established in [D’Hoker and
Phong (1998a)], for the gauge algebra g = SU(N). We describe it here
in some detail (see also [D’Hoker and Phong (1998b); D’Hoker and Phong
(1998c)]).

All that we shall need here of the elliptic CM–system is its Lax operator
L(z), whose N ×N matrix elements are given by

Lij(z) = piδij −m(1− δij)Φ(xi − xj , z). (4.285)

Notice that the Hamiltonian is simply given in terms of L by H(x, p) =
1
2TrL(z)2 + C℘(z) with C = − 1

2m
2N(N − 1).

The correspondence between the data of the elliptic CM–system and
those of the SW theory is as follows:

(i) The parameter m in (4.285) is the hypermultiplet mass;
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(ii) The gauge coupling g and the θ−angle are related to the modulus
of the torus Σ = C/(2ω1Z + 2ω2Z) by

τ =
ω2

ω1
=

θ

2π
+

4πi
g2

;

(iii) The SW curve Γ is the spectral curve of the elliptic CM model,
defined by

Γ = {(k, z) ∈ C× Σ, det(kI − L(z)) = 0}

and the SW 1–orm is dλ = k dz. Γ is invariant under the Weyl group of
SU(N).

(iv) Using the Lax equation L̇ = [L,M ], it is clear that the spectral curve
is independent of time, and can be dependent only upon the constants of
motion of the CM–system, of which there are only N . These integrals of
motion may be viewed as parametrized by the quantum moduli of the SW
system.

(v) Finally, dλ = kdz is meromorphic, with a simple pole on each of the
N sheets above the point z = 0 on the base torus. The residue at each of
these poles is proportional to m, as required by the general set–up of SW
theory.

Four Fundamental Theorems

1. The spectral curve equation det(kI − L(z)) = 0 is equivalent to

ϑ1

(
1

2ω1
(z −m ∂

∂k
)|τ
)
H(k) = 0,

where H(k) is a monic polynomial in k of degree N , whose zeros (or equiv-
alently whose coefficients) correspond to the moduli of the gauge theory. If
H(k) =

∏N
i=1(k − ki), then

lim
q→0

1
2πi

∮
Ai

kdz = ki −
1
2
m.

Here, ϑ1 is the Jacobi ϑ−function, which admits a simple series expansion
in powers of the instanton factor q = e2πiτ , so that the curve equation may
also be rewritten as a series expansion∑

n∈Z
(−)nq

1
2n(n−1)enzH(k − n ·m) = 0, (4.286)



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Applied Bundle Geometry 781

where we have set ω1 = −iπ without loss of generality. The series ex-
pansion (4.286) is superconvergent and sparse in the sense that it receives
contributions only at integers that grow like n2.

2. The prepotential of the SW theory obeys a renormalization group–
type equation that simply relates F to the CM Hamiltonian, expressed in
terms of the quantum order parameters aj

aj =
1

2πi

∮
Aj

dλ,
∂F
∂τ
|aj = H(x, p) =

1
2

TrL(z)2 + C℘(z). (4.287)

Furthermore, in an expansion in powers of the instanton factor q = e2πiτ ,
the quantum order parameters aj may be computed by residue methods in
terms of the zeros of H(k). The proof of (4.287) requires Riemann surface
deformation theory. The fact that the quantum order parameters may be
evaluated by residue methods arises from the fact that Aj−cycles may be
chosen on the spectral curve Γ in such a way that they will shrink to zero
as q → 0. As a result, contour integrals around full-fledged branch cuts
Aj reduce to contour integrals around poles at single points, which may be
calculated by residue methods only. Knowing the quantum order parame-
ters in terms of the zeros kj of H(k) = 0 is a relation that may be inverted
and used in (4.287) to get a differential relation for all order instanton cor-
rections. It is now only necessary to evaluate explicitly the τ−independent
contribution to F , which in field theory arises from perturbation theory.
This may be done easily by retaining only the n = 0 and n = 1 terms in
the expansion of the curve (4.286), so that z = lnH(k)− lnH(k−m). The
results of the calculations to two instanton order may be summarized in
the following Theorem:

3. The prepotential, to 2 instanton order is given by F = Fpert+F (1) +
F (2). The perturbative contribution is given by

Fpert =
τ

2

∑
i

a2
i−

1
8πi

∑
i,j

[
(ai − aj)2 ln(ai − aj)2 − (ai − aj −m)2 ln(ai − aj −m)2

]
,

(4.288)
while all instanton corrections are expressed in terms of a single function

Si(a) =

∏N
j=1[(ai − aj)2 −m2]∏

j 6=i(a− aj)2
, as follows:
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F (1) =
q

2πi

∑
i

Si(ai), (4.289)

F (2) =
q2

8πi

∑
i

Si(ai)∂2
i Si(ai) + 4

∑
i 6=j

Si(ai)Sj(aj)
(ai − aj)2

− Si(ai)Sj(aj)
(ai − aj −m)2

 .
The perturbative corrections to the prepotential of (4.288) indeed precisely
agree with the predictions of asymptotic freedom. The formulas (4.289) for
the instanton corrections F (1) and F (2) are new, as they have not yet been
computed by direct field theory methods. The moduli ki, 1 ≤ i ≤ N , of the
gauge theory are evidently integrals of motion of the system. To identify
these integrals of motion, denote by S be any subset of {1, · · · , N}, and
let S∗ = {1, · · · , N} \ S, ℘(S) = ℘(xi − xj) when S = {i, j}. Let also pS
denote the subset of momenta pi with i ∈ S.

4. For any K, 0 ≤ K ≤ N , let σK(k1, · · · , kN ) = σK(k) be the K−th
symmetric polynomial of (k1, · · · , kN ), defined by

H(u) =
N∑
K=0

(−)KσK(k)uN−K . Then

σK(k) = σK(p) +
[K/2]∑
l=1

m2l
∑

|Si∩Sj |=2δij
1≤i,j≤l

σK−2l(p(∪li=1Si)
∗)

l∏
i=1

[℘(Si) +
η1

ω1
].

4.14.11.7 CM and SW Theory for General Lie Algebra

Now, we consider the N = 2 supersymmetric gauge theory for a general
simple gauge algebra g and a hypermultiplet of mass m in the adjoint
representation. Then we have the following results [D’Hoker and Phong
(1998d)].

The SW curve of the theory is given by the spectral curve

Γ = {(k, z) ∈ C× Σ; det(kI − L(z)) = 0}

of the twisted elliptic CM–system associated to the Lie algebra g. The SW
differential dλ is given by dλ = kdz.

The function R(k, z) = det(kI−L(z)) is polynomial in k and meromor-
phic in z. The spectral curve Γ is invariant under the Weyl group of g.
It depends on n complex moduli, which can be thought of as independent
integrals of motion of the CM–system.

The differential dλ = kdz is meromorphic on Γ, with simple poles.
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The position and residues of the poles are independent of the moduli. The
residues are linear in the hypermultiplet mass m (unlike the case of SU(N),
their exact values are difficult to determine for general g.)

In the m → 0 limit, the CM–system reduces to a free system, the
spectral curve Γ is just the producr of several unglued copies of the base
torus Σ, indexed by the constant eigenvalues of L(z) = p · h. Let ki,
1 ≤ i ≤ n, be n independent eigenvalues, and Ai, Bi be the A and B cycles
lifted to the corresponding sheets. For each i, we readily get

ai =
1

2πi

∮
Ai

dλ =
ki
2πi

∮
A

dz =
2ω1

2πi
ki,

aDi =
1

2πi

∮
Bi

dλ =
ki
2πi

∮
B

dz =
2ω1

2πi
τki.

Thus the prepotential F is given by F = τ
2

∑n
i=1 a

2
i . This is the classi-

cal prepotential and hence the correct answer, since in the m → 0 limit,
the theory acquires an N = 4 supersymmetry, and receives no quantum
corrections.

The m → ∞ limit is the crucial consistency check, which motivated
the introduction of the twisted CM–systems in the first place. In the limit
m→∞, q → 0, with

x = X + 2ω2
1
h∨g
ρ, m = Mq

− 1
2h∨g ,

with X and M kept fixed, the Hamiltonian and spectral curve for the
twisted elliptic CM–system with Lie algebra g reduce to the Hamiltonian
and spectral curve for the Toda system for the affine Lie algebra (g(1))∨.
This is the correct answer. Indeed, in this limit, the gauge theory with
adjoint hypermultiplet reduces to the pure YM theory, and the SW spectral
curves for pure YM with gauge algebra g have been shown to be the spectral
curves of the Toda system for (g(1))∨. The effective prepotential can be
evaluated explicitly in the case of g = Dn for n ≤ 5. Its logarithmic
singularity does reproduce the logarithmic singularities expected from field
theory considerations.

As in the known correspondences between SW theory and integrable
models, we expect the following equation to hold [D’Hoker and Phong
(1998d)]

∂F
∂τ

= Htwisted
g (x, p).
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Note that the left hand side can be interpreted in the gauge theory as a
renormalization group equation.

For simple laced g, the curves R(k, z) = 0 are modular invariant. Phys-
ically, the gauge theories for these Lie algebras are self–dual. For non
simply–laced g, the modular group is broken to the congruence subgroup
Γ0(2) for g = Bn, Cn, F4, and to Γ0(3) for G2. The Hamiltonians of the
twisted CM–systems for non–simply laced g are also transformed under
Landen transformations into the Hamiltonians of the twisted CM–system
for the dual algebra g∨. It would be interesting to determine whether such
transformations exist for the spectral curves or the corresponding gauge
theories themselves.

4.14.12 SW Theory and WDVV Equations

As presented above, N. Seiberg and E. Witten proposed in [Seiberg and
Witten (1994a); Seiberg and Witten (1994b)] a new way to deal with the
low–energy effective actions of N = 2 4D supersymmetric gauge theories,
both pure gauge theories (i.e., containing only vector super–multiplet) and
those with matter hypermultiplets. Among other things, they have shown
that the low–energy effective actions (the end–points of the renormalization
group flows) fit into universality classes depending on the vacuum of the
theory. If the moduli space of these vacua is a finite–dimensional variety,
the effective actions can be essentially described in terms of system with
finite–dimensional phase space (number of degrees of freedom is equal to
the rank of the gauge group), although the original theory lives in a many–
dimensional space–time.

4.14.12.1 WDVV Equations

Now, it turns out that the prepotential of SW effective theory satisfies the
following set of Witten–Dijkgraaf–Verlinde–Verlinde (WDVV) equations:

FiF−1
k Fj = FjF−1

k Fi (i, j, k = 1, . . . , n), (4.290)

where Fi are the matrices on a moduli space M of third order derivatives

(Fi)jk =
∂3F

∂ai∂aj∂ak

of a function F(a1, . . . , an), with the prepotential variables ai.
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Although generally there is a lot of solutions to the matrix equations
(4.290), it is extremely non–trivial task to express all the matrix elements
through the only function F . In fact, there have been only known the two
different classes of the non–trivial solutions to the WDVV equations, both
being intimately related to the 2D topological theories of type A (quan-
tum cohomologies) and of type B (N = 2 SUSY Landau-Ginzburg (LG)
theories). Thus, the existence of a new class of solutions connected with
the 4D theories looks quite striking. It is worth noting that both the 2D
topological theories and the SW theories reveal the integrability structures
related to the WDVV equations.

This system of nonlinear equations is satisfied by the SW prepotential
defining the low-energy effective action. Moreover the leading perturba-
tive approximation to this exact SW prepotential should satisfy this set of
equations by itself. For instance, for the gauge group SU(n) the expression
[Mironov (1998)]

Fpert =
1
4

∑
i≤i<j≤n−1

(ai − aj)2 log(ai − aj)2 +
1
2

n−1∑
i=1

a2
i log a2

i

defines a solution of the generalized WDVV-system (4.290).
Clearly, other gauge groups may be considered and more general so-

lutions may be proposed for classical Lie groups. So although extremely
difficult to solve in general, this overdetermined system of nonlinear equa-
tions admit exact solutions. Martini [Martini and Gragert (1999)] proved
that a substantial class of solutions for the system (4.290) could be con-
structed from root systems of semisimple Lie algebras. Precisely, let R be
the root system of a semisimple Lie algebra g. Then the function

F =
1
4

∑
α∈R

(α, a)2 log(α, a)2,

defined on the Cartan subalgebra h of g satisfies the generalized WDVV
equations (4.290). Here the bracket represents the Killing form of g.

Now, to give some more insight of the general structure of the WDVV
equations, let us consider the simplest non–trivial examples of n = 3 WDVV
equations in topological theories. The first example is the N = 2 SUSY
LG theory with the superpotential W ′(λ) = λ3 − q. In this case, the
prepotential reads as

F =
1
2
a1a

2
2 +

1
2
a2
1a3 +

q

2
a2a

2
3 (4.291)
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and the matrices Fi (the third derivatives of the prepotential) are

F1 =

0 0 1
0 1 0
1 0 0

 , F2 =

0 1 0
1 0 0
0 0 q

 , F3 =

1 0 0
0 0 q
0 q 0

 .

The second example is the quantum cohomologies of CP 2. In this case,
the prepotential is given by the formula

F =
1
2
a1a

2
2 +

1
2
a2
1a3 +

∞∑
k=1

Nka
3k−1
3

(3k − 1)!
eka2 , (4.292)

where the coefficients Nk (describing the rational Gromov–Witten classes)
count the number of the rational curves in CP 2 and are to be calculated.
Since the matrices Fi have the form

F1 =

0 0 1
0 1 0
1 0 0

 , F2 =

0 1 0
1 F222 F223

0 F223 F233

 , F3 =

1 0 0
0 F223 F233

0 F233 F333

 ,

the WDVV equations are equivalent to the identity [Mironov (1998)]

F333 = F2
223 −F222F233,

which, in turn, results into the recurrent relation defining the coefficients
Nk:

Nk
(3k − 4)!

=
∑
a+b=k

a2b(3b− 1)b(2a− b)
(3a− 1)!(3b− 1)!

NaNb.

The crucial feature of the presented examples is that, in both cases, there
exists a constant matrix F1. One can consider it as a flat metric on the
moduli space. In fact, in its original version, the WDVV equations have
been written in a slightly different form, that is, as the associativity condi-
tion of some algebra. Having distinguished the (constant) metric η ≡ F1,
one can naturally rewrite (4.290) as the equations

CiCj = CjCi (4.293)

for the matrices (Ci)jk ≡ η−1Fi, i.e., Cjik = ηjlFilk. Formula (4.293)
is equivalent to (4.290) with j = 1. Moreover, this particular relation
is already sufficient to reproduce the whole set of the WDVV equations
(4.290).
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Let us also note that, although the WDVV equations can be fulfilled
only for some specific choices of the coordinates ai on the moduli space,
they still admit any linear transformation. This defines the flat structures
on the moduli space, and we often call ai flat coordinates.

4.14.12.2 Perturbative SW Prepotentials

Before going into the discussion of the WDVV equations for the complete
SW prepotentials, let us note that the leading perturbative part of them
should satisfy the equations (4.290) by itself (since the classical quadratic
piece does not contribute into the third derivatives). On the other hand,
if the WDVV equations are fulfilled for perturbative prepotential, it is a
necessary condition for them to hold for complete prepotential.

To determine the one–loop perturbative prepotential from the field the-
ory calculation, let us note that there are two origins of masses in N = 2
SUSY YM models: first, they can be generated by vacuum values of the
scalar φ from the gauge super–multiplet. For a super–multiplet in repre-
sentation R of the gauge group G this contribution to the prepotential is
given by the analog of the Coleman-Weinberg formula (from now on, we
omit the classical part of the prepotential from all expressions):

FR = ±1
4

TrR φ2 log φ, (4.294)

and the sign is ‘+’ for vector super–multiplets (normally they are in the
adjoint representation) and ‘−’ for matter hypermultiplets. Second, there
are bare masses mR which should be added to φ in (4.294). As a result,
the general expression for the perturbative prepotential is

F =
1
4

∑
vector
mplets

TrA(φ+MnIA)2 log(φ+MnIA)−

− 1
4

∑
hyper
mplets

TrR(φ+mRIR)2 log(φ+mRIR) + f(m), (4.295)

where the term f(m), depending only on masses, is not fixed by the (per-
turbative) field theory, but can be read off from the non-perturbative de-
scription, and IR denotes the unit matrix in the representation R.

As an example, consider the SU(n) gauge group. Then, e.g., perturba-
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tive prepotential for the pure gauge theory acquires the form

FpertV =
1
4

∑
ij

(ai − aj)2 log (ai − aj) .

This formula states that when eigenvalues of the scalar fields in the gauge
super–multiplet are non-vanishing (perturbatively ar are eigenvalues of the
vacuum expectation matrix 〈φ〉), the fields in the gauge multiplet acquire
masses mrr′ = ar − ar′ (the pair of indices (r, r′) label a field in the ad-
joint representation of G). In the SU(n) case, the eigenvalues are subject
to the condition

∑
i ai = 0. Analogous formulas for the adjoint matter

contribution to the prepotential is

FpertA = −1
4

∑
ij

(ai − aj +M)2 log (ai − aj +M) ,

while the contribution of the fundamental matter reads

FpertF = −1
4

∑
i

(ai +m)2 log (ai +m) .

The perturbative prepotentials have the following characteristics
[Mironov (1998)]:

(i) The WDVV equations always hold for the pure gauge theories:
Fpert = FpertV .

(ii) If one considers the gauge super–multiplets interacting with the mat-
ter hypermultiplets in the first fundamental representation with masses mα

Fpert = FpertV + rF pertF +KfF (m) (where r and K are some undetermined
coefficients), the WDVV equations do not hold unless

K = r2/4, fF (m) =
1
4

∑
α,β

(mα −mβ)2 log (mα −mβ) ,

the masses being regarded as moduli (i.e., the equations (4.290) contain the
derivatives with respect to masses).

(iii) If in the theory the adjoint matter hypermultiplets are presented,
i.e., Fpert = FpertV + FpertA + fA(m), the WDVV equations never hold.

From the investigation of the WDVV equations for the perturbative
prepotentials, one can learn the following lessons:

• Masses are to be regarded as moduli.
• As an empiric rule, one may say that the WDVV equations are satisfied

by perturbative prepotentials which depend only on the pairwise sums
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of the type (ai ± bj), where moduli ai and bj are either periods or
masses38. This is the case for the models that contain either massive
matter hypermultiplets in the first fundamental representation (or its
dual), or massless matter in the square product of those. Troubles arise
in all other situations because of the terms with ai ± bj ± ck ± . . ..
• At value r = 2, like ai’s lying in irrep of G, masses mα’s can be regarded

as lying in irrep of some G̃ so that if G = An, Cn, Dn, G̃ = An, Dn,
Cn accordingly. This correspondence ‘explains’ the form of the mass
term in the prepotential f(m).

4.14.12.3 Associativity Conditions

In the context of the 2D LG topological theories, the WDVV equations
arose as associativity condition of some polynomial algebra. Mironov has
proved in [Mironov (1998)] that the equations in the SW theories have the
same origin.

In this case, one deals with the chiral ring formed by a set of polynomials
{Φi(λ)} and two co-prime (i.e., without common zeroes) fixed polynomials
Q(λ) and P (λ). The polynomials Φ form the associative algebra with the
structure constants Ckij given with respect to the product defined by modulo
P ′:

ΦiΦj = CkijΦkQ
′ + (∗)P ′ −→ CkijΦkQ

′, (4.296)

the associativity condition being

(ΦiΦj) Φk = Φi (ΦjΦk) , (4.297)

i.e., CiCj = CjCi, (Ci)
j
k = Cjik. (4.298)

Now, in order to get from these conditions the WDVV equations, one needs
to choose properly the flat moduli:

ai = − n

i(n− i)
Res

(
P i/ndQ

)
, n = ord(P ).

Then, there exists the prepotential whose third derivatives are given by the
residue formula

Fijk =
1

2πi
Res
P ′=0

ΦiΦjΦk
P ′

. (4.299)

38This general rule can be easily interpreted in D–brane terms, since the interaction
of branes is caused by strings between them. The pairwise structure (ai ± bj) exactly

reflects this fact, ai and bj should be identified with the ends of string.
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On the other hand, from the associativity condition (4.298) and residue
formula (4.299), one obtains that

Fijk = (Ci)
l
j FQ′lk, i.e., Ci = FiF−1

Q′ . (4.300)

Substituting this formula for Ci into (4.298), one finally reaches the equa-
tions of the WDVV type. The choice Q′ = Φl gives the standard equations
(4.290). In 2D topological theories, there is always the unity operator that
corresponds to Q′ = 1 and leads to the constant metric FQ′ .

Thus, from this short study of the WDVV equations in the LG theories,
we can get three main ingredients necessary for these equations to hold.
These are:

• associative algebra
• flat moduli (coordinates)
• residue formula

In the SW theory only the first ingredient requires a non–trivial check.

4.14.12.4 SW Theories and Integrable Systems

Now we turn to the WDVV equations in the SW construction [Seiberg
and Witten (1994a); Seiberg and Witten (1994b)] and show how they are
related to an integrable system underlying the corresponding SW theory.
The most important result of [Seiberg and Witten (1994a); Seiberg and
Witten (1994b)], from this point of view, is that the moduli space of vacua
and low energy effective action in SYM theories are completely given by
the following input data:

• Riemann surface C
• moduli space M (of the curves C)
• meromorphic 1–form dS on C

This input can be naturally described in the framework of some underlying
integrable system. Let us consider a concrete example: the SU(n) pure
gauge SYM theory that can be described by the periodic Toda chain with
n sites. This integrable system is entirely given by the Lax operator

L(w) =


p1 eq1−q2 w

eq1−q2 p2

...

. . .
. . .

...
1
w . . . pn

 . (4.301)
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The Riemann surface C of the SW data is nothing but the spectral curve
of the integrable system, which is given by the equation: det (L(w)− λ) =
0. Taking into account (4.301), one can get from this formula the equation

w +
1
w

= P (λ) =
n∏
i=1

(λ− λi) ,
∑
i

λi = 0, (4.302)

where the ramification points λi are Hamiltonians (i.e., integrals of motion)
parametrizing the moduli spaceM of the spectral curves. The substitution
Y ≡ w − 1/w transforms the curve (4.302) to the standard hyper–elliptic
form Y 2 = P 2 − 4, the genus of the curve being n− 1.

As to the meromorphic 1–form

dS = λ
dw

w
= λ

dP

Y
,

it is just the shorten action ‘pdq’ along the non–contractible contours on the
Hamiltonian tori. Its defining property is that the derivatives of dS with
respect to the moduli (ramification points) are holomorphic differentials on
the spectral curve.

Now, following [Mironov (1998)], let us describe the general integrable
framework for the SW construction and start with the theories without
matter hypermultiplets. First, matter hypermultiplets. First, we introduce
bare spectral curve E that is torus: y2 = x3 + g2x

2 + g3 for the UV finite
SYM theories with the associated holomorphic 1–form: dω = dx/y. This
bare spectral curve degenerates into the double–punctured sphere (annulus)
for the asymptotically free theories:
x −→ w + 1/w, y −→ w − 1/w, dω = dw/w. On this bare curve, there is
given a matrix–valued Lax operator L(x, y). The dressed spectral curve is
defined from the formula det(L− λ) = 0. This spectral curve is a ramified
covering of E given by the equation

P(λ;x, y) = 0 (4.303)

In the case of the gauge group G = SU(n), the function P is a polynomial
of degree n in λ.

Thus, the moduli space M of the spectral curve is given just by co-
efficients of P. The generating 1-form dS ∼= λdω is meromorphic on C
(hereafter the equality modulo total derivatives is denoted by ‘∼=’).
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The prepotential and other ‘physical’ quantities are defined in terms of
the cohomology class of dS:

ai =
∮
Ai

dS, aDi ≡
∂F
∂ai

=
∮
Bi

dS, AI ◦BJ = δIJ . (4.304)

The first identity defines here the appropriate flat moduli, while the second
one – the prepotential. The derivatives of the generating differential dS
give holomorphic 1–differentials:

∂dS

∂ai
= dωi (4.305)

and, therefore, the second derivative of the prepotential is the period matrix
of the curve C:

∂2F
∂ai∂aj

= Tij .

The latter formula allows one to identify prepotential with logarithm of the
τ−function of Whitham hierarchy: F = log τ .

So far we reckoned without massive hypermultiplets. In order to include
them, one just needs to consider the surface C with punctures. Then, the
masses are proportional to residues of dS at the punctures, and the moduli
space has to be extended to include these mass moduli. The correspondence
between SYM theories and integrable systems is built through the SW
construction in most of known cases that are collected in the following
table [Mironov (1998)].

SUSY 4D pure gauge 4D SYM with 4D SYM with 5d pure gauge
physical SYM theory, fundamental adjoint matter SYM theory
theory gauge group G matter

Underlying Toda chain Rational Calogero–Moser Relativistic
integrable for the dual spin chain system Toda chain

system affine Ĝ∨ of XXX type

Bare
spectral sphere sphere torus sphere
curve

Dressed
spectral hyper–elliptic hyper–elliptic non-hyper–elliptic hyper–elliptic
curve

Generating
meromorphic λ dw

w
λ dw
w

λ dx
y

log λ dw
w

1–form dS

Correspondence: SUSY gauge theories ⇐⇒ integrable systems
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To complete this table, we describe the dressed spectral curves in each case
in more explicit terms. Let us note that in all but adjoint matter cases the
curves are hyper–elliptic and can be described by the general formula

P(λ,w) = 2P (λ)− w − Q(λ)
w

. (4.306)

Here P (λ) is characteristic polynomial of the algebra G itself, i.e.,

P (λ) = det(G− λI) =
∏
i

(λ− λi),

where determinant is taken in the first fundamental representation and λi’s
are the eigenvalues of the algebraic element G. For the pure gauge theories
with the classical groups, Q(λ) = λ2s and

An−1 : P (λ) =
n∏
i=1

(λ− λi), s = 0; (4.307)

Bn : P (λ) = λ

n∏
i=1

(λ2 − λ2
i ), s = 2; (4.308)

Cn : P (λ) =
n∏
i=1

(λ2 − λ2
i ), s = −2; (4.309)

Dn : P (λ) =
n∏
i=1

(λ2 − λ2
i ), s = 2 (4.310)

For exceptional groups, the curves arising from the characteristic polyno-
mials of the dual affine algebras do not acquire the hyper–elliptic form.
Therefore, in this case, the line ‘dressed spectral curve’ in the table has to
be corrected.

In order to include nF massive hypermultiplets in the first fundamental
representation, one can just change λ2s for Q(λ) = λ2s∏nF

ι=1(λ − mι) if
G = An and for Q(λ) = λ2s∏nF

ι=1(λ2 −m2
ι ) if G = Bn, Cn, Dn.

At last, the 5D theory is just described by Q(λ) = λn/2.
In the Calogero–Moser case, the spectral curve is non–hyper–elliptic,

since the bare curve is elliptic. Therefore, it can be described as some
covering of the hyper–elliptic curve.

4.14.12.5 WDVV Equations in SW Theories

As we already discussed, in order to derive the WDVV equations along the
line used in the context of the LG theories, we need three crucial ingredients:
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flat moduli, residue formula and associative algebra. However, the first
two of these are always contained in the SW construction provided the
underlying integrable system is known. Indeed, one can derive (see [4,5])
the following residue formula

Fijk = Res
dω=0

dωidωjdωk
dωdλ

, (4.311)

where the proper flat moduli ai’s are given by formula (4.304). Thus, the
only point is to be checked is the existence of the associative algebra. The
residue formula (4.311) hints that this algebra is to be the algebra Ω1 of
the holomorphic differentials dωi. In the forthcoming discussion we restrict
ourselves to the case of pure gauge theory, the general case being treated
in complete analogy.

Let us consider the algebra Ω1 and fix three differentials dQ, dω, dλ ∈
Ω1. The product in this algebra is given by the expansion

dωidωj = CkijdωkdQ+ (∗)dω + (∗)dλ (4.312)

that should be factorized over the ideal spanned by the differentials dω and
dλ. This product belongs to the space of quadratic holomorphic differen-
tials:

Ω1 · Ω1 ∈ Ω2 ∼= Ω1 · (dQ⊕ dω ⊕ dλ) . (4.313)

Since the dimension of the space of quadratic holomorphic differentials is
equal to 3g − 3, the l.h.s. of (6.6) with arbitrary dωi’s is the vector space
of dimension 3g − 3. At the same time, at the r.h.s. of (6.6) there are g
arbitrary coefficients Ckij in the first term (since there are exactly so many
holomorphic 1–forms that span the arbitrary holomorphic 1–form Ckijdωk),
g−1 arbitrary holomorphic differentials in the second term (one differential
should be subtracted to avoid the double counting) and g − 2 holomorphic
1–forms in the third one. Thus, totally we get that the r.h.s. of (6.6) is
spanned also by the basis of dimension g + (g − 1) + (g − 2) = 3g − 3.

This means that the algebra exists in the general case of the SW con-
struction. However, this algebra generally is not associative. This is be-
cause, unlike the LG case, when it was the algebra of polynomials and,
therefore, the product of the two belonged to the same space (of polynomi-
als), product in the algebra of holomorphic 1–differentials no longer belongs
to the same space but to the space of quadratic holomorphic differentials.
Indeed, to check associativity, one needs to consider the triple product of
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Ω1:

Ω1 · Ω1 · Ω1 ∈ Ω3 = Ω1 · (dQ)2 ⊕ Ω2 · dω ⊕ Ω2 · dλ (4.314)

Now let us repeat our calculation: the dimension of the l.h.s. of this
expression is 5g − 5 that is the dimension of the space of holomorphic
3–differentials. The dimension of the first space in expansion of the
r.h.s. is g, the second one is 3g − 4 and the third one is 2g − 4. Since
g + (3g − 4) + (2g − 4) = 6g − 8 is greater than 5g − 5 (unless g ≤ 3),
formula (4.314) does not define the unique expansion of the triple product
of Ω1 and, therefore, the associativity spoils.

The situation can be improved if one considers the curves with addi-
tional involutions. As an example, let us consider the family of hyper–
elliptic curves: y2 = Pol2g+2(λ). In this case, there is the involution,
σ : y −→ −y and Ω1 is spanned by the σ−odd holomorphic 1–forms xi−1dx

y ,
i = 1, ..., g. Let us also note that both dQ and dω are σ−odd, while dλ is
σ−even. This latter fact means that dλ can be only meromorphic unless
there are punctures on the surface (which is, indeed, the case in the pres-
ence of the mass hypermultiplets). Thus, formula (6.6) can be replaced by
that without dλ

Ω2
+ = Ω1

− · dQ⊕ Ω1
− · dω, (4.315)

where we have expanded the space of holomorphic 2–forms into the parts
with definite σ−parity: Ω2 = Ω2

+ ⊕ Ω2
−, which are manifestly given by

the differentials xi−1(dx)2

y2 , i = 1, ..., 2g − 1 and xi−1(dx)2

y , i = 1, ..., g − 2
respectively. Now it is easy to understand that the dimensions of the l.h.s.
and r.h.s. of (4.315) coincide and are equal to 2g − 1.

Analogously, in this case, one can check the associativity. It is given by
the expansion

Ω3
− = Ω1

− · (dQ)2 ⊕ Ω2
+ · dω,

where both the l.h.s. and r.h.s. have the same dimension: 3g − 2 = g +
(2g− 2). Thus, the algebra of holomorphic 1–forms on hyper–elliptic curve
is really associative [Mironov (1998)].
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Chapter 5

Applied Jet Geometry

Modern formulation of generalized Lagrangian and Hamiltonian dynam-
ics on fibre bundles is developed in the language of jet spaces, or jet
manifolds (see [Kolar et al. (1993); Saunders (1989); Griffiths (1983);
Bryant et. al. (1991); Bryant et al. (2003); Giachetta et. al. (1997);
Mangiarotti et. al. (1999); Mangiarotti and Sardanashvily (2000a); Saun-
ders (1989); Sardanashvily (1993); Sardanashvily (1995); Sardanashvily
(2002a)]).

Roughly speaking, given two smooth manifolds M and N , the two
smooth maps f, g : M → N between them are said to determine the same
k−jet at a point x ∈M , if they have the kth order contact (or, the kth or-
der tangency) at x [Kolar et al. (1993); Arnold (1988a)]. A set of all k−jets
from M to N is a jet space Jk(M,N). It is a generalization of a tangent
bundle that makes a new smooth fiber bundle out of a given smooth fiber
bundle – following the recursive n−categorical process. It makes it possible
to write differential equations on sections of a fiber bundle in an invariant
form. Historically, jet spaces are attributed to C. Ehresmann, and were an
advance on the method of prolongation of E. Cartan, of dealing geometri-
cally with higher derivatives, by imposing differential form conditions on
newly–introduced formal variables.

5.1 Intuition Behind a Jet Space

The concept of jet space is based on the idea of higher–order tangency , or
higher–order contact , at some designated point on a smooth manifold (see
[Arnold (1988a); Kolar et al. (1993)]). Namely, a pair of smooth manifold

797



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

798 Applied Differential Geometry: A Modern Introduction

maps (see Figure 5.1),

f1, f2 : M → N

are said to be k−tangent (or tangent of order k, or have a kth order contact)
at a point x on a domain manifold M , denoted by f1 ∼ f2, iff

f1(x) = f2(x) called 0− tangent,

∂xf1(x) = ∂xf2(x), called 1− tangent,

∂xxf1(x) = ∂xxf2(x), called 2− tangent,

... etc. to the order k.

Fig. 5.1 An intuitive geometrical picture behind the k−jet concept, based on the idea

of higher–order tangency or contact (see text for explanation).

In this way defined k−tangency is an equivalence relation, i.e.,

f1 ∼ f2 ⇒ f2 ∼ f1, f1 ∼ f2 ∼ f3 ⇒ f1 ∼ f3, f1 ∼ f1.

Now a k−jet (or, a jet of order k), denoted by jkxf , of a smooth map
f : M → N at a point x ∈M (see Figure 5.1), is defined as an equivalence
class of k−tangent maps at x,

jkxf = {f ′ : f ′ is k − tangent to f at x}.

The point x is called the source and the point f(x) is the target of the
k−jet jkxf .

We choose local coordinates on M and N in the neighborhood of the
points x and f(x), respectively. Then the k−jet jkxf of any map close to
f , at any point close to x, can be given by its Taylor–series expansion at
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x, with coefficients up to degree k. Therefore, in a fixed coordinate chart,
a k−jet can be identified with the collection of Taylor coefficients up to
degree k.

The set of all k−jets of smooth maps from M to N is called the k−jet
space and denoted by Jk(M,N). It has a natural smooth manifold struc-
ture. Also, a map from a k−jet space Jk(M,N) to a smooth manifold M

or N is called a jet bundle (we will make this notion more precise later).
For example, consider a simple function f : X → Y, x 7→ y = f(x),

mapping the X−axis into the Y−axis. In this case, M = X is a domain
and N = Y is a codomain. A 0−jet at a point x ∈ X is given by its graph
(x, f(x)). A 1−jet is given by a triple (x, f(x), f ′(x)), a 2−jet is given
by a quadruple (x, f(x), f ′(x), f ′′(x)), and so on up to the order k (where
f ′(x) = df(x)

dx , etc.). The set of all k−jets from X to Y is called the k−jet
space Jk(X,Y ).

Fig. 5.2 Common spaces associated with a function f on a smooth manifold M (see
text for explanation).

In case of a function of two variables, f(x, y), the common spaces related
to f , including its 1–jet j1f , are depicted in Figure 5.2 (see [Omohundro
(1986)]). Recall that a hypersurface is a codimension–1 submanifold. Given
a sample function f(x, y) = x2 + y2 in M = R2, then: (a) shows its graph
as a hypersurface in R ×M ; (b) shows its level sets in M ; (c) shows its
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differential form df = 2xdx+ 2ydy in the cotangent bundle T ∗M ; and (d)
shows a tangent hyperplane at a point (x0, yy) ∈M to its graph in R×M ,
which is a 1–jet j1(x0,y0)

f to f at (x0, yy). Note that j1(x0,y0)
f is parallel to

df , which means that its 1–jet space J1(R,M) is an (n+ 1)D extension of
the cotangent bundle T ∗M .

In mechanics we will consider a pair of maps f1, f2 : R → M from the
real line R, representing the time t−axis, into a smooth nD (configuration)
manifold M . We say that the maps f1 = f1(t) and f2 = f2(t) have the
same k−jet jkxf at a specified time instant t0 ∈ R, iff:

(1) f1(t) = f2(t) at t0 ∈ R, and also
(2) the first k terms of their Taylor–series expansion around t0 ∈ R are

equal.

The k−jet space Jk(R,M) is the set of all k−jets jkxf from R to M .
Now, the fundamental geometrical construct in time–dependent mechan-

ics is its configuration fibre bundle (see section 5.6 below). Given a config-
uration fibre bundle M → R over the time axis R, we say that the 1−jet
space J1(R,M) is the set of equivalence classes j1t s of sections si : R→M

of the bundle M → R, which are identified by their values si(t), and by the
values of their partial derivatives ∂tsi = ∂ts

i(t) at time points t ∈ R. The
1–jet space J1(R,M) is coordinated by (t, xi, ẋi), so the 1–jets are local
coordinate maps

j1t s : t 7→ (t, xi, ẋi).

Similarly, the 2−jet space J2(R,M) is the set of equivalence classes j2t s
of sections si : R → M of the bundle M → R, which are identified by
their values si(t), as well as the values of their first and second partial
derivatives, ∂tsi and ∂ttsi, at time points t ∈ R. The 2–jet space J2(R,M)
is coordinated by (t, xi, ẋi, ẍi), so the 2–jets are local coordinate maps

j2t s : t 7→ (t, xi, ẋi, ẍi).

Generalization to the k−jet space Jk(R,M) is obvious. This mechanical
jet formalism will be developed in section 5.6 below.

More generally, in a physical field context, instead of the mechanical
configuration bundle over the time axis R, we have some general physical
fibre bundle Y → X over some smooth manifold (base) X. In this general
context, the k−jet space Jk(X,Y ) of a bundle Y → X is the set of equiva-
lence classes jkxs of sections si : X → Y , which are identified by their values
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si(x), as well as the first k terms of their Taylor–series expansion at points
x ∈ X. This has two important physical consequences:

(1) The k−jet space of sections si : X → Y of a fibre bundle Y → X is
itself an nD smooth manifold, and

(2) A kth–order differential operator on sections si(x) of a fibre bundle
Y → X can be described as a map of Jk(X,Y ) to a vector bundle over
the base X.

A map from a k−jet space Jk(X,Y ) to a smooth manifold Y or X is called
a jet bundle.

As a consequence, the dynamics of mechanical and physical field sys-
tems is played out on nD configuration and phase manifolds. Moreover, this
dynamics can be phrased in geometrical terms due to the 1–1 correspon-
dence between sections of the jet bundle J1(X,Y ) → Y and connections
on the fibre bundle Y → X.

In the framework of the standard first–order Lagrangian formalism, the
nD configuration space of sections si : X → Y of a fibre bundle Y → X

is the 1–jet space J1(X,Y ), coordinated by (xα, yi, yiα), where (xα, yi) are
fibre coordinates of Y , while yiα are the so–called ‘derivative coordinates’ or
‘velocities’. A first–order Lagrangian density1 on the configuration manifold
J1(X,Y ) is given by an exterior one–form (the so–called horizontal density)

L = L(xα, yi, yiα)ω, with ω = dx1 ∧ ... ∧ dxn.

This physical jet formalism will be developed below.

5.2 Definition of a 1–Jet Space

As introduced above, a 1–jet is defined as an equivalence class of functions
having the same value and the same first derivatives at some designated
point of the domain manifold (see Figure 5.1). Recall that in mechanical

1Recall that in classical field theory, a distinction is made between the Lagrangian L,

of which the action is the time integral S[xi] =
R
L[xi, ẋi]dt and the Lagrangian density

L, which one integrates over all space–time to get the action S[ϕk] =
R
L[ϕk[xi]]d4x.

The Lagrangian is then the spatial integral of the Lagrangian density. However, L is also

frequently simply called the Lagrangian, especially in modern use; it is far more useful in
relativistic theories since it is a locally defined, Lorentz scalar field. Both definitions of

the Lagrangian can be seen as special cases of the general form, depending on whether

the spatial variable xi is incorporated into the index i or the parameters s in ϕk[xi].
Quantum field theories are usually described in terms of L, and the terms in this form

of the Lagrangian translate quickly to the rules used in evaluating Feynman diagrams.
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settings, the 1–jets are local coordinate maps

j1t s : t 7→ (t, xi, ẋi).

More generally, given a fibre bundle Y → X with bundle coordinates
(xα, yi), consider the equivalence classes j1xs of its sections si : X → Y ,
which are identified by their values si(x) and the values of their first–order
derivatives ∂αsi = ∂αs

i(x) at a point x on the domain (base) manifold X.
They are called the 1–jets of sections si at x ∈ X. One can justify that
the definition of jets is coordinate–independent by observing that the set
J1(X,Y ) of 1–jets j1xs is a smooth manifold with respect to the adapted
coordinates (xα, yi, yiα), such that [Sardanashvily (1993); Sardanashvily
(1995); Giachetta et. al. (1997); Mangiarotti and Sardanashvily (2000a);
Sardanashvily (2002a)]

yiα(j1xs) = ∂αs
i(x), y′iα =

∂xµ

∂x′α
(∂µ + yjµ∂j)y

′i.

J1(X,Y ) is called the 1−jet space of the fibre bundle Y → X.
In other words, the 1–jets j1xs : xα 7→ (xα, yi, yiα), which are first–order

equivalence classes of sections of the fibre bundle Y → X, can be identified
with their codomain set of adapted coordinates on J1(X,Y ),

j1xs ≡ (xα, yi, yiα).

Note that in a section 5.7 below, the mechanical 1–jet space J1(R,M) ≡
R×TM will be regarded as a fibre bundle over the base product–manifold
R × M (see [Neagu and Udrişte (2000a); Udriste (2000); Neagu (2002);
Neagu and Udrişte (2000b); Neagu (2000)] for technical details).

The jet space J1(X,Y ) admits the natural fibrations

π1 : J1(X,Y ) 3 j1xs 7→ x ∈ X, and (5.1)

π1
0 : J1(X,Y ) 3 j1xs 7→ s(x) ∈ Y, (5.2)

which form the commutative triangle:

J1(X,Y ) Y-π1
0

X

π1
@

@
@
@R

π
�

�
�

�	
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It is convenient to call π1 (5.1) the jet bundle, while π1
0 (5.2) is called the

affine jet bundle. Note that, if Y → X is a vector or an affine bundle, it
also holds for the jet bundle π1 (5.1) [Sardanashvily (1993); Sardanashvily
(1995); Giachetta et. al. (1997); Mangiarotti and Sardanashvily (2000a);
Sardanashvily (2002a)].

There exist several equivalent ways in order to give the 1–jet space
J1(X,Y ) with the smooth manifold structure. Let Y → X be a fibre
bundle with fibred coordinate atlases (4.4). The 1–jet space J1(X,Y ) of
the bundle Y → X admits the adapted coordinate atlases

(xα, yi, yiα), (xα, yi, yiα)(j1xs) = (xα, si(x), ∂αsi), (5.3)

y′iα = (
∂y′

i

∂yj
yjµ +

∂y′
i

∂xµ
)
∂xµ

∂x′α
, (5.4)

and thus satisfies the conditions which are required of a manifold. The
surjection (5.1) is a bundle. The surjection (5.2) is a bundle. If Y → X is
a bundle, so is the surjection (5.1).

The transformation law (5.4) shows that the jet bundle J1(X,Y )→ Y

is an affine bundle. It is modelled on the vector bundle T ∗X ⊗ V Y → Y.

In particular, if Y is the trivial bundle

π2 : V × Rm −→ Rm,

the corresponding jet bundle J1(X,Y ) −→ Rm (5.1) is a trivial bundle.
There exist the following two canonical bundle monomorphisms of the

jet bundle J1(X,Y ) −→ Y [Sardanashvily (1993); Sardanashvily (1995);
Giachetta et. al. (1997); Mangiarotti and Sardanashvily (2000a); Sar-
danashvily (2002a)]:

• the contact map

λ : J1(X,Y ) ↪→ T ∗X ⊗ TY, λ = dxα ⊗ ∂̂α = dxα ⊗ (∂α + yiα∂i),
(5.5)

• the complementary map

θ : J1(X,Y ) ↪→ T ∗Y ⊗V Y, θ = d̂yi⊗∂i = (dyi−yiαdxα)⊗∂i. (5.6)

These canonical maps enable us to express the jet–space machinery in terms
of tangent–valued differential forms (see section 4.10 above).

The operators

∂̂α = ∂α + yiα∂i
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are usually called the total derivatives, or the formal derivatives, while the
forms

d̂yi = dyi − yiαdxα

are conventionally called the contact forms.
Identifying the 1–jet space J1(X,Y ) to its images under the canonical

maps (5.5) and (5.6), one can represent 1–jets j1xs ≡ (xα, yi, yiα) by tangent–
valued forms

dxα ⊗ (∂α + yiα∂i), and (dyi − yiαdxα)⊗ ∂i. (5.7)

There exists a jet functor J : Bun → Jet, from the category Bun

of fibre bundles to the category Jet of jet spaces. It implies the natural
prolongation of maps of bundles to maps of jet spaces.

Every bundle map Φ : Y −→ Y ′ over a diffeomorphism f of X has the
1–jet prolongation to the bundle map j1Φ : J1(X,Y ) −→ J1(X,Y )′, given
by

j1Φ : j1xs 7→ j1f(x)(Φ ◦ s ◦ f
−1), (5.8)

y′
i
α ◦ j1Φ = ∂α(Φi ◦ f−1) + ∂j(Φiyjα ◦ f−1).

It is both an affine bundle map over Φ and a fibred map over the diffeo-
morphism f . The 1–jet prolongations (5.8) of fibred maps satisfy the chain
rules

j1(Φ ◦ Φ′) = j1Φ ◦ j1Φ′, j1(IdY ) = IdJ1(X,Y ) .

If Φ is a surjection (resp. an injection), so is j1Φ.
In particular, every section s of a bundle Y → X admits the 1–jet

prolongation to the section j1xs of the jet bundle J1(X,Y )→ X, given by

(yi, yiα) ◦ j1xs = (si(x), ∂αsi).

We have

λ ◦ j1xs = Ts,

where λ is the contact map (5.5).
Every projectable vector–field u on a fibre bundle Y → X,

u = uα(x)∂α + ui(y)∂i
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has the 1−jet lift to the projectable vector–field j1u on the 1–jet space
J1(X,Y ), given by

j1u ≡ u = r1 ◦ j1u : J1(X,Y )→ TJ1(X,Y ),

j1u ≡ u = uα∂α + ui∂i + (dαui − yiµ∂αuµ)∂αi . (5.9)

Geometrical applications of jet spaces are based on the canonical map
over J1(X,Y ),

J1(X,Y )× TX → J1(X,Y )× TY,

which means the canonical horizontal splitting of the tangent bundle TY
determined over J1(X,Y ) as follows [Sardanashvily (1993); Sardanashvily
(1995); Giachetta et. al. (1997); Mangiarotti and Sardanashvily (2000a);
Sardanashvily (2002a)].

The canonical maps (5.5) and (5.6) induce the bundle monomorphisms

λ̂ : J1(X,Y )× TX → J1(X,Y )× TY, ∂α 7→ ∂̂α = ∂αcλ (5.10)

θ̂ : J1(X,Y )× V ∗Y → J1(X,Y )× T ∗Y, dyi 7→ d̂yi = θcdyi(5.11)

The map (5.10) determines the canonical horizontal splitting of the pull–
back

J1(X,Y )× TY = λ̂(TX)⊕ V Y, (5.12)

ẋα∂α + ẏi∂i = ẋα(∂α + yiα∂i) + (ẏi − ẋαyiα)∂i.

Similarly, the map (5.11) induces the dual canonical horizontal splitting of
the pull–back

J1(X,Y )× T ∗Y = T ∗X ⊕ θ̂(V ∗Y ), (5.13)

ẋαdx
α + ẏidy

i = (ẋα + ẏiy
i
α)dxα + ẏi(dyi − yiαdxα).

Building on the canonical splittings (5.12) and (5.13), one gets the fol-
lowing canonical horizontal splittings of

• a projectable vector–field on a fibre bundle Y → X,

u = uα∂α + ui∂i = uH + uV = uα(∂α + yiα∂i) + (ui − uαyiα)∂i, (5.14)

• an exterior 1–form

σ = σαdx
α + σidy

i = (σα + yiασi)dx
α + σi(dyi − yiαdxα),
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• a tangent–valued projectable horizontal form

φ = dxα1 ∧ · · · ∧ dxαr ⊗ (φµα1...αr∂µ + φiα1...αr∂i)

= dxα1 ∧ · · · ∧ dxαr ⊗ [φµα1...αr (∂µ + yiµ∂i) + (φiα1...αr − φ
µ
α1...αry

i
µ)∂i]

and, e.g., the canonical 1–form

θY = dxα ⊗ ∂α + dyi ⊗ ∂i = α+ θ = dxα ⊗ ∂̂α + d̂yi ⊗ ∂i
= dxα ⊗ (∂α + yiα∂i) + (dyi − yiαdxα)⊗ ∂i. (5.15)

The splitting (5.15) implies the canonical horizontal splitting of the
exterior differential

d = dθY = dH + dV = dα + dθ. (5.16)

Its components dH and dV act on the pull–backs

φα1...αr (y)dxα1 ∧ · · · ∧ dxαr

of horizontal exterior forms on a bundle Y → X onto J1(X,Y ) by π01. In
this case, dH makes the sense of the total differential

dHφα1...αr (y)dxα1∧· · ·∧dxαr = (∂µ+yiµ∂i)φα1...αr (y)dxµ∧dxα1∧· · ·∧dxαr ,

whereas dV is the vertical differential

dV φα1...αr (y)dxα1∧· · ·∧dxαr = ∂iφα1...αr (y)(dyi−yiµdxµ)∧dxα1∧· · ·∧dxαr .

If φ = φ̃ω is an exterior horizontal density on Y → X, we have

dφ = dV φ = ∂iφ̃dy
i ∧ ω.

5.3 Connections as Jet Fields

Recall that one can introduce the notion of connections on a general fibre
bundle Y −→ X in several equivalent ways. In this section, following [Gi-
achetta et. al. (1997); Kolar et al. (1993); Mangiarotti and Sardanashvily
(2000a); Saunders (1989)], we start from the traditional definition of a con-
nection as a horizontal splitting of the tangent space to Y at every point
y ∈ Y .

A connection on a fibre bundle Y → X is usually defined as a linear
bundle monomorphism

Γ : Y × TX → TY, Γ : ẋα∂α 7→ ẋα(∂α + Γiα(y)∂i), (5.17)
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which splits the exact sequence (4.13), i.e.,

πT ◦ Γ = IdY×TX .

The image HY of Y × TX by a connection Γ is called the horizontal dis-
tribution. It splits the tangent bundle TY as

TY = HY ⊕ V Y, giving (5.18)

ẋα∂α + ẏi∂i = ẋα(∂α + Γiα∂i) + (ẏi − ẋαΓiα)∂i.

Similarly, horizontal splitting of the cotangent bundle,

T ∗Y = T ∗X ⊕ Γ(V ∗X), gives

ẋαdx
α + ẏidy

i = (ẋα + Γiαẏi)dx
α + ẏi(dyi − Γiαdx

α).

Alternatively, a connection on a fibre bundle Y −→ X can be defined
as a jet field , i.e., a section of the affine jet bundle J1(X,Y ) −→ Y . This
connection is called the Ehresmann connection, and historically it was a
primary reason for C. Ehresmann to develop the concept of jet spaces.

Due to the Theorem that says [Hirzebruch (1966)]: Every exact sequence
of vector bundles (4.10) is split, a jet–field connection on a fibre bundle
always exists.

A connection on a fibre bundle Y −→ X is defined to be a tangent–
valued projectable horizontal one–form Γ on Y such that Γcφ = φ for all
exterior horizontal 1–forms φ on Y . It is given by the coordinate expression

Γ = dxα ⊗ (∂α + Γiα(y)∂i), Γ′iα = (
∂y′

i

∂yj
Γjµ +

∂y′
i

∂xµ
)
∂xµ

∂x′α
, (5.19)

such that Γ(∂α) = ∂αcΓ. Conversely, every horizontal tangent–valued 1–
form on a fibre bundle Y −→ X which projects onto the canonical tangent–
valued form θX (4.137) on X defines a connection on Y −→ X.

In an equivalent way, the horizontal splitting (5.18) is given by the
vertical–valued form

Γ = (dyi − Γiαdx
α)⊗ ∂i, (5.20)

which determines the epimorphism

Γ : TY → V Y, ẋα∂α + ẏi∂i 7→ (ẋα∂α + ẏi∂i)cΓ = (ẏi − ẋαΓiα)∂i.

Let Y → X be a vector bundle. A linear connection on Y reads

Γ = dxα ⊗ [∂α − Γijα(x)yj∂i]. (5.21)
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Let Y → X be an affine bundle modelled on a vector bundle Y → X. An
affine connection on Y reads

Γ = dxα ⊗ [∂α + (−Γijα(x)yj + Γiα(x))∂i], where

Γ = dxα ⊗ [∂α − Γijα(x)yj∂i] is a linear connection on Y .

Since the affine jet bundle J1(X,Y ) −→ Y is modelled on the vector
bundle Y −→ X, Ehresmann connections on Y −→ X constitute an affine
space modelled on the linear space of soldering forms on Y . If Γ is a
connection and σ is a soldering form (4.138) on Y , its sum

Γ + σ = dxα ⊗ [∂α + (Γiα + σiα)∂i]

is a connection on Y . Conversely, if Γ and Γ′ are connections on Y , then

Γ− Γ′ = (Γiα − Γ′iα)dxα ⊗ ∂i

is a soldering form.
Given a connection Γ, a vector–field u on a fibre bundle Y −→ X is

called horizontal if it lives in the horizontal distribution HY , i.e., takes the
form

u = uα(y)(∂α + Γiα(y)∂i). (5.22)

Any vector–field τ on the base X of a fibre bundle Y −→ X admits the
horizontal lift

Γτ = τcΓ = τα(∂α + Γiα∂i) (5.23)

onto Y by means of a connection Γ on Y −→ X.
Given the splitting (5.17), the dual splitting of the exact sequence (4.14)

is

Γ : V ∗Y → T ∗Y, dyi 7→ Γcdyi = dyi − Γiαdx
α, (5.24)

where Γ is the vertical-valued form (5.20).
There is 1–1 correspondence between the connections on a fibre bundle

Y → X and the jet fields, i.e., global sections of the affine jet bundle
J1(X,Y ) → Y . Indeed, given a global section Γ of J1(X,Y ) → Y , the
tangent–valued form

λ ◦ Γ = dxα ⊗ (∂α + Γiα∂i)
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gives the horizontal splitting (5.18) of TY . Therefore, the vertical–valued
form

θ ◦ Γ = (dyi − Γiαdx
α)⊗∂i

leads to the dual splitting (5.24).
It follows immediately from this definition that connections on a fibre

bundle Y → X constitute an affine space modelled over the vector space
of soldering forms σ (4.138). They obey the coordinate transformation law
[Giachetta et. al. (1997); Saunders (1989)]

Γ′iα =
∂xµ

∂x′α
(∂µ + Γjµ∂j)y

′i.

In particular, a linear connection K on the tangent bundle TX of a
manifold X and the dual connection K∗ to K on the cotangent bundle
T ∗X are given by the coordinate expressions

Kα
β = −Kα

νβ(x)ẋν , K∗
αβ = Kν

αβ(x)ẋν . (5.25)

Also, given a connection Γ on Y → X, the vertical tangent map V Γ :
V Y → J1(R, V )Y induces the vertical connection

V Γ = dxα ⊗ (∂α + Γiα∂yi + ∂V Γiα∂ẏi), ∂V Γiα = ẏj∂jΓiα, (5.26)

on the bundle V Y → X. The connection V Γ is projectable to the con-
nection Γ on Y , and it is a linear bundle map over Γ. The dual covertical
connection on the bundle V ∗Y → X reads

V ∗Γ = dxα ⊗ (∂α + Γiα∂yi − ∂jΓiαẏi∂ẏi). (5.27)

Connections on a bundle Y → X constitute the affine space modelled
on the linear space of soldering 1–forms on Y . It means that, if Γ is a
connection and σ is a soldering form on a bundle Y , its sum

Γ + σ = dxα ⊗ [∂α + (Γiα + σiα)∂i]

is a connection on Y . Conversely, if Γ and Γ′ are connections on a bundle
Y , then their difference

Γ− Γ′ = (Γiα − Γ′iα)dxα ⊗ ∂i

is a soldering form on Y .
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Given a fibre bundle Y → X, let f : X ′ → X be a manifold map and
f∗Y the pull–back of Y over X ′. Any connection Γ (5.20) on Y → X

induces the pull–back connection

f∗Γ = (dyi − Γiα(fµ(x′ν), yj)
∂fα

∂x′µ
dx′µ)⊗ ∂i (5.28)

on the pull–back fibre bundle f∗Y → X ′.
Since the affine jet bundle J1(X,Y ) −→ Y is modelled on the vector

bundle Y −→ X, connections on a fibre bundle Y constitute the affine space
modelled on the linear space of soldering forms on Y . It follows that, if Γ
is a connection and

σ = σiαdx
α ⊗ ∂i

is a soldering form on a fibre bundle Y , its sum

Γ + σ = dxα ⊗ [∂α + (Γiα + σiα)∂i]

is a connection on Y . Conversely, if Γ and Γ′ are connections on a fibre
bundle Y , then

Γ− Γ′ = (Γiα − Γ′iα)dxα ⊗ ∂i

is a soldering form on Y .
The key point for physical applications lies in the fact that every con-

nection Γ on a fibre bundle Y −→ X induces the first–order differential
operator

DΓ : J1(X,Y )→ T ∗X ⊗ V Y, DΓ = λ− Γ ◦ π1
0 = (yiα − Γiα)dxα ⊗ ∂i,

(5.29)
called the covariant differential relative to the connection Γ. If s : X → Y

is a section, one defines its covariant differential

∇Γs = DΓ ◦ j1s = (∂αsi − Γiα ◦ s)dxα ⊗ ∂i (5.30)

and its covariant derivative

∇Γ
τ s = τc∇Γs (5.31)

along a vector–field τ on X. A (local) section s of Y → X is said to be an
integral section of a connection Γ (or parallel with respect to Γ) if s obeys
the equivalent conditions

∇Γs = 0 or j1s = Γ ◦ s. (5.32)
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Furthermore, if s : X → Y is a global section, there exists a connection
Γ such that s is an integral section of Γ. This connection is defined as
an extension of the local section s(x) 7→ j1s(x) of the affine jet bundle
J1(X,Y )→ Y over the closed imbedded submanifold s(X) ⊂ Y .

Note that every connection Γ on the bundle Y −→ X defines a system of
first–order differential equations on Y (in the spirit of [Bryant et. al. (1991);
Krasil’shchik et. al. (1985); Pommaret (1978)]) which is an imbedded sub-
bundle Γ(Y ) = KerDΓ of the jet bundle J1(X,Y ) −→ Y . It is given by the
coordinate relations

yiα = Γi(y). (5.33)

Integral sections for Γ are local solutions of (5.33), and vice versa.
We can introduce the following basic forms involving a connection Γ

and a soldering form σ:

• the curvature of a connection Γ is given by the horizontal vertical-
valued two–form:

R =
1
2
dΓΓ =

1
2
Riαµdx

α ∧ dxµ ⊗ ∂i,

Riαµ = ∂αΓiµ − ∂µΓiα + Γjα∂jΓ
i
µ − Γjµ∂jΓ

i
α; (5.34)

• the torsion of a connection Γ with respect to σ:

Ω = dσΓ = dΓσ =
1
2

Ωiαµdx
α ∧ dxµ ⊗ ∂i

= (∂ασiµ + Γjα∂jσ
i
µ − ∂jΓiασjµ)dxα ∧ dxµ ⊗ ∂i; (5.35)

• the soldering curvature of σ:

ε =
1
2
dσσ =

1
2
εiαµdx

α ∧ dxµ ⊗ ∂i

=
1
2

(σjα∂jσ
i
µ − σjµ∂jσil)dxα∧dxµ ⊗ ∂i. (5.36)

They satisfy the following relations:

Γ′ = Γ + σ, R′ = R+ ε+ Ω, Ω′ = Ω + 2ε.

In particular, the curvature (5.34) of the linear connection (5.21) reads

Riαµ(y) = −Rijαµ(x)yj ,

Rijαµ = ∂αΓijµ − ∂µΓijα + ΓkjµΓikα − ΓkjαΓikµ.



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

812 Applied Differential Geometry: A Modern Introduction

Let Y and Y ′ be vector bundles over X. Given linear connections Γ and
Γ′ on Y and Y ′ respectively, there is the unique linear connection Γ⊗Γ′ on
the tensor product Y ⊗Y ′ → X, such that the following diagram commutes:

Y × Y ′ Y ⊗ Y ′-
⊗

J1(X,Y )× J1(X,Y )′ J1(Y ⊗ Y ′)-J1⊗

?

Γ× Γ′

?

Γ⊗ Γ′

It is called the tensor–product connection and has the coordinate expression

(Γ⊗ Γ′)ikα = Γijαyjk + Γ′kjαyij .

Every connection Γ on Y → X, by definition, induces the horizontal
distribution on Y ,

Γ : TX ↪→ TY, locally given by ∂α 7→ ∂α + Γiα(y)∂i.

It is generated by horizontal lifts

τΓ = τα(∂α + Γiα∂i)

onto Y of vector–fields τ = τα∂α on X. The associated Pfaffian system is
locally generated by the forms (dyi − Γiαdx

α).
The horizontal distribution Γ(TX) is involutive iff Γ is a curvature–free

connection. As a proof, straightforward calculations show that [τΓ, τ
′
Γ] =

([τ , τ ′])Γ iff the curvature R (5.34) of Γ vanishes everywhere.
Not every bundle admits a curvature–free connection. If a principal bun-

dle over a simply–connected base (i.e., its first homotopy group is trivial)
admits a curvature–free connection, this bundle is trivializable [Kobayashi
and Nomizu (1963/9)].

The horizontal distribution defined by a curvature–free connection is
completely integrable. The corresponding foliation on Y is transversal to
the foliation defined by the fibration π : Y −→ X. It is called the horizontal
foliation. Its leaf through a point y ∈ Y is defined locally by the integral
section sy of the connection Γ through y. Conversely, let Y admits a hor-
izontal foliation such that, for each point y ∈ Y , the leaf of this foliation
through y is locally defined by some section sy of Y −→ X through y. Then,
the following map is well defined

Γ : Y −→ J1(X,Y ), Γ(y) = j1ssy, π(y) = x.
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This is a curvature–free connection on Y . There is the 1–1 correspondence
between the curvature–free connections and the horizontal foliations on a
bundle Y −→ X.

Given a horizontal foliation on Y −→ X, there exists the associated atlas
of bundle coordinates (xα, yi) of Y such that (i) every leaf of this foliation is
local generated by the equations yi = const, and (ii) the transition functions
yi −→ y′

i(yj) are independent on the coordinates xα of the base X [Kamber
and Tondeur (1975)]. It is called the atlas of constant local trivializations.
Two such atlases are said to be equivalent if their union also is an atlas of
constant local trivializations. They are associated with the same horizontal
foliation.

There is the 1–1 correspondence between the curvature–free connections
Γ on a bundle Y −→ X and the equivalence classes of atlases Ψc of constant
local trivializations of Y such that Γiα = 0 relative to the coordinates of the
corresponding atlas Ψc [Canarutto (1986)].

Connections on a bundle over a 1D base X1 are curvature–free connec-
tions.

In particular, let Y −→ X1 be such a bundle (X1 = R or X1 = S1). It
is coordinated by (t, yi), where t is either the canonical parameter of R or
the standard local coordinate of S1 together with the transition functions
t′ = t+const. Relative to this coordinate, the base X1 admits the standard
vector–field ∂t and the standard one–form dt. Let Γ be a connection on Y

−→ X1. Such a connection defines a horizontal foliation on Y −→ X1. Its
leaves are the integral curves of the horizontal lift

τΓ = ∂t + Γi∂i (5.37)

of ∂t by Γ. The corresponding Pfaffian system is locally generated by the
forms (dyi − Γidt). There exists an atlas of constant local trivializations
(t, yi) such that Γi = 0 and τΓ = ∂t relative to these coordinates.

A connection Γ on Y → X1 is called complete if the horizontal vector–
field (5.37) is complete. Every trivialization of Y → R defines a complete
connection. Conversely, every complete connection on Y → R defines a
trivialization Y ' R×M . The vector–field (5.37) becomes the vector–
field ∂t on R×M . As a proof, every trivialization of Y → R defines a 1–
parameter group of isomorphisms of Y → R over IdR, and hence a complete
connection. Conversely, let Γ be a complete connection on Y → R. The
vector–field τΓ (5.37) is the generator of a 1–parameter group GΓ which acts
freely on Y . The orbits of this action are the integral sections of τΓ. Hence
we get a projection Y → M = Y/GΓ which, together with the projection
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Y → R, defines a trivialization Y ' R×M .
Let us consider a bundle π : Y → X which admits a composite fibration

Y → Σ→ X, (5.38)

where Y → Σ and Σ → X are bundles. It is equipped with the bundle
coordinates (xα, σm, yi) together with the transition functions

xα → x′
α(xµ), σm → σ′

m(xµ, σn), yi → y′
i(xµ, σn, yj),

where (xµ, σm) are bundle coordinates of Σ → X. For example, we have
the composite bundles

TY → Y → X, V Y → Y → X, J1(X,Y )→ Y → X.

Let

A = dxα ⊗ (∂α +Aiα∂i) + dσm ⊗ (∂m +Aim∂i) (5.39)

be a connection on the bundle Y −→ Σ and

Γ = dxα ⊗ (∂α + Γmα ∂m)

a connection on the bundle Σ −→ X. Given a vector–field τ on X, let us
consider its horizontal lift τΓ onto Σ by Γ and then the horizontal lift (τΓ)A
of τΓ onto Y by the connection (5.39).

There exists the connection

γ = dxα ⊗ [∂α + Γmα ∂m + (AimΓmα +Aiα)∂i]. (5.40)

on Y → X such that the horizontal lift τγ onto Y of any vector–field τ on
X consists with the above lift (τΓ)A [Sardanashvily (1993); Sardanashvily
(1995)]. It is called the composite connection.

Given a composite bundle Y (5.38), the exact sequence

0→ V YΣ ↪→ V Y → Y × V Σ→ 0

over Y take place, where V YΣ is the vertical tangent bundle of Y → Σ.
Every connection (5.39) on the bundle Y → Σ induces the splitting

V Y = V YΣ ⊕ (Y × V Σ), given by

ẏi∂i + σ̇m∂m = (ẏi −Aimσ̇m)∂i + σ̇m(∂m +Aim∂i).
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Due to this splitting, one can construct the first–order differential operator

D̃ = π1 ◦Dγ : J1(X,Y )→ T ∗X ⊗ V Y → T ∗X ⊗ V YΣ,

D̃ = dxα ⊗ (yiα −Aiα −Aimσmα )∂i, (5.41)

on the composite manifold Y , where Dγ is the covariant differential (5.29)
relative to the composite connection (5.40). We call D̃ the vertical covariant
differential .

5.3.1 Principal Connections

The above general approach to connections as jet fields is suitable to for-
mulate the classical concept of principal connections. In this section, a
structure group G of a principal bundle is assumed to be a real finite–
dimensional Lie group (of positive dimension dimG > 0).

A principal connection A on a principal bundle P → Q is defined to be
a G−equivariant global jet field on P such that

j1Rg ◦A = A ◦Rg

for each canonical map (4.31). We have

A ◦Rg = j1Rg ◦A, (g ∈ G), (5.42)

A = dqα ⊗ (∂α +Amα (p)em), (p ∈ P ),

Amα (qg) = Amα (p)adg−1(em).

A principal connection A determines splitting TQ ↪→ TGP of the exact
sequence (4.38). We will refer to

A = A− θQ = Amα dq
α ⊗ em (5.43)

as a local connection form.
Let J1(Q,P ) be the 1–jet space of a principal bundle P → Q with a

structure Lie group G. The jet prolongation

J1(Q,P )× J1(Q×G)→ J1(Q,P )

of the canonical action (4.31) brings the jet bundle J1(Q,P ) → Q into a
general affine bundle modelled on the group bundle

J1(Q×G) = G× (T ∗Q⊗ gl) (5.44)

over Q. However, the jet bundle J1(Q,P )→ Q fails to be a principal bundle
since the group bundle (5.44) is not a trivial bundle over Q in general. At
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the same time, J1(Q,P ) is the G principal bundle C × P → C over the
quotient

C = J1(Q,P )/G (5.45)

of the jet bundle J1(Q,P )→ P by the 1–jet prolongations of the canonical
maps (4.31).

Let J1(Q,P ) be the 1–jet space of a principal G−bundle P → Q. Its
quotient (5.45) by the jet prolongation of the canonical action RG (4.31) is
a fibre bundle over Q.

Given a bundle atlas of P and the associated bundle atlas of VGP , the
affine bundle C admits affine bundle coordinates (t, qi, aqα), and its elements
are represented by TGP−valued 1–forms

a = dqα ⊗ (∂α + aqαeq) (5.46)

on Q. One calls C (5.45) the connection bundle because its sections are
naturally identified with principal connections on the principal bundle P →
Q as follows.

There is the 1–1 correspondence between the principal connections on
a principal bundle P → Q and the global sections of the quotient bundle

C = J1(Q,P )/G −→ Q.

We shall call C the principal connection bundle. It is an affine bundle
modelled on the vector bundle

C = T ∗Q⊗ V GP, (5.47)

and there is the canonical vertical splitting

V C = C × C.

Given a bundle atlas ΨP of P , the principal connection bundle C admits
the fibre coordinates (qµ, kmµ ) so that

(kmµ ◦A)(q) = Amµ (q)

are coefficients of the local connection one–form (5.43). The 1–jet space
J1(Q,C) of C is with the adapted coordinates

(qµ, kmµ , k
m
µλ). (5.48)
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The affine jet bundle J1(Q,C)→ C is modelled on the vector bundle

T ∗Q⊗ (C × T ∗Q⊗ V GP ).

There exists the canonical splitting

J1(Q,C) = (J2P/G)⊗ (∧2T ∗Q⊗ V GP ) (5.49)

over C where

C− = C × ∧2T ∗Q⊗ V GP

and C+ → C is the affine bundle modelled on the vector bundle

C+ = ∧2T ∗Q⊗ V GP.

In the coordinates (5.48), the splitting (5.49) reads

kmµλ =
1
2

(kmµλ + kmλµ + cmnlk
n
αk

l
µ) +

1
2

(kmµλ − kmλµ − cmnlknαklµ)

where ckmn are structure constants of the Lie algebra gr with respect to its
basis {Im}.

There are the corresponding canonical projections given by

S = π1 : J1(Q,C)→ C+, Smλµ = kmµλ + kmλµ + cmnlk
n
αk

l
µ,

and F = π2 : J1(Q,C)→ C−, with

F =
1
2
Fmλµdqα ∧ dqµ ⊗ Im, Fmλµ = kmµλ − kmλµ − cmnlknαklµ.

For every principal connection A, we observe that

F◦j1A = F, F =
1
2
Fmλµdq

α∧dqµ⊗Im, Fmλµ = ∂αA
m
µ −∂µAmα −cmnkAnαAkµ,

is the strength of A.
Given a symmetric linear connection K∗ on the cotangent bundle T ∗Q

of Q, every principal connection A on a principal bundle P induces the
connection

SA : C → C+, SA ◦A = S ◦ j1A,

on the principal connection bundle C. In the coordinates (5.48), the con-
nection SA reads

SA
m
µλ =

1
2

[cmnlk
n
αk

l
µ+∂µAmα +∂αAmµ −cmnl(knµAlα+knαA

l
µ)]−Kβ

µλ(Amβ −kmβ ).

(5.50)
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The P−associated bundle Y admits atlases Ψ = {Uξ, ψξ} associated
with atlases ΨP = {Uξ, zξ} of the principal bundle P as follows:

ψ−1
ξ (q × V ) = [zξ(q)]V (V ), (q ∈ Uξ),

where by [p]V is denoted the restriction of the canonical map P × V → Y

to the subset p× V .
Every principal connection A on a principal bundle P induces the as-

sociated connection Γ on a P−associated bundle Y such that the following
diagram commutes:

P × V Y-

J1(Q,P )× V J1(X,Y )-

?

A× IdV
?

Γ

We call it the associated principal connection. With respect to the associ-
ated atlases Ψ of Y and ΨP of P , this connection is written

Γ = dqα ⊗ [∂α +Amµ (q)Imijyj∂i] (5.51)

where Amµ (q) are coefficients of the local connection one–form (5.43) and
Im are generators of the structure group G on the standard fibre V of the
bundle Y . The curvature of the connection (5.51) reads

Riλµ = FmλµIm
i
jy
i.

5.4 Definition of a 2–Jet Space

As introduced above, a 2−jet is defined as a second–order equivalence class
of functions having the same value and the same first derivatives at some
designated point of the domain manifold. Recall that in mechanical set-
tings, the 2–jets are local coordinate maps

j2t s : t 7→ (t, xi, ẋi, ẍi).

In general, if we recursively apply the jet functor J : Bun→ Jet to the
jet bundles, we come to the higher order jet spaces (see [Kolar et al. (1993);
Sardanashvily (1993); Sardanashvily (1995); Giachetta et. al. (1997);
Mangiarotti and Sardanashvily (2000a); Sardanashvily (2002a)]).
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In particular, taking the 1–jet space of the 1–jet bundle J1(X,Y ) −→ X,
we get the repeated jet space J1(X, J1(X,Y )), which admits the adapted
coordinates

(xα, yi, yiα, ŷ
i
µ, y

i
µα)

with transition functions

ŷ′
i
α =

∂xα

∂x′α
dαy

′i, y′
i
µα =

∂xα

∂x′µ
dαy

′i
α, dα = ∂α + ŷjα∂j + yjνα∂

ν
j .

The 2−jet space J2(X,Y ) of a fibre bundle Y → X is coordinated
by (xα, yi, yiα, y

i
αµ), with the local symmetry condition yiαµ = yiµα. The

manifold J2(X,Y ) is defined as the set of equivalence classes j2xs of sections
si : X → Y of the bundle Y → X, which are identified by their values si(x)
and the values of their first and second–order partial derivatives at points
x ∈ X, respectively,

yiα(j2xs) = ∂αs
i(x), yiαµ(j2xs) = ∂α∂µs

i(x).

In other words, the 2–jets j2xs : xα 7→ (xα, yi, yiα, y
i
αµ), which are second–

order equivalence classes of sections of the fibre bundle Y → X, can be
identified with their codomain set of adapted coordinates on J2(X,Y ),

j2xs ≡ (xα, yi, yiα, y
i
αµ).

Let s be a section of a fibre bundle Y → X, and let j1s be its 1–jet
prolongation to a section of the jet bundle J1(X,Y ) → X. The latter
induces the section j1j1s of the repeated jet bundle J1(X, J1(X,Y ))→ X.
This section takes its values into the 2–jet space J2(X,Y ). It is called the
2–jet prolongation of the section s, and is denoted by j2s.

We have the following affine bundle monomorphisms

J2(X,Y ) ↪→ Ĵ2(X,Y )(X,Y ) ↪→ J1(X, J1(X,Y ))

over J1(X,Y ) and the canonical splitting

Ĵ2(X,Y )(X,Y ) = J2(X,Y )⊕ (∧2T ∗X ⊗ V Y ), given locally by

yiαµ =
1
2

(yiαµ + yiµα) + (
1
2

(yiαµ − yiµα).

In particular, the repeated jet prolongation j1j1s of a section s : X → Y

of the fibre bundle Y → X is a section of the jet bundle J1(X, J1(X,Y ))→
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X. It takes its values into J2(X,Y ) and consists with the 2–jet prolongation
j2s of s:

j1j1s(x) = j2s(x) = j2xs.

Given a 2–jet space J2(X,Y ) of the fibre bundle Y → X, we have
(i) the fibred map r2 : J2(Y, TY )→ TJ2(X,Y ), given locally by

(ẏiα, ẏ
i
αµ) ◦ r2 = ((ẏi)α − yiµẋµα, (ẏi)αµ − yiµẋµαµ − yiαµẋµα),

where J2(Y, TY ) is the 2–jet space of the tangent bundle TY, and
(ii) the canonical isomorphism V J2(X,Y ) = J2(X,V Y ), where V J2(X,Y )
is the vertical tangent bundle of the fibre bundle J2(X,Y ) → X, and
J2(X,V Y ) is the 2–jet space of the fibre bundle V Y → X.

As a consequence, every vector–field u on a fibre bundle Y → X admits
the 2−jet lift to the projectable vector–field

j2u = r2 ◦ j2u : J2(X,Y )→ TJ2(X,Y ).

In particular, if u = uα∂α + ui∂i is a projectable vector–field on Y , its
2–jet lift reads

j2u = uα∂α + ui∂i + (∂αui + yjα∂ju
i − yiµ∂αuµ)∂αi (5.52)

+ [(∂α + yjα∂j + yjβα∂
β
j )(∂α + ykα∂k)ui − yiµẋ

µ
αβ − y

i
µβẋ

µ
α]∂αβi .

Generalizations of the contact and complementary maps (5.5–5.6) to
the 2–jet space J2(X,Y ) read

λ : J2(X,Y )→ T ∗X ⊗ TJ1(X,Y ) is locally given by

λ = dxα ⊗ ∂̂α = dxα ⊗ (∂α + yiα∂i + yiµα∂
µ
i ), while (5.53)

θ : J2(X,Y )→ T ∗J1(X,Y )⊗ V J1(X,Y ) is locally given by

θ = (dyi − yiαdxα)⊗ ∂i + (dyiµ − yiµαdxα)⊗ ∂µi . (5.54)

The contact map (5.53) defines the canonical horizontal splitting of the
exact sequence

0→ V J1(X,Y ) ↪→ TJ1(X,Y )→ J1(X,Y )× TX → 0.

Hence, we get the canonical horizontal splitting of a projectable vector–field
j1u ≡ u on J1(X,Y ) over J2(X,Y ):

j1u = uH + uV = uα[∂α + yiα + yiµα] + [(ui − yiαuα)∂i + (uiµ − yiµαuα)∂µi ].
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Building on the maps (5.53) and (5.54), one can get the horizontal
splittings of the canonical tangent–valued 1–form on J1(X,Y ),

θJ1(X,Y ) = dxα ⊗ ∂α + dyi ⊗ ∂i + dyiµ ⊗ ∂
µ
i = α+ θ

and the associated exterior differential

d = dθJ1(X,Y )
= dα + dθ = dH + dV . (5.55)

They are similar to the horizontal splittings (5.15) and (5.16).
A 2–jet field (resp. a 2–connection) Γ on a fibre bundle Y → X is defined

to be a 1–jet field (resp. a 1–connection) on the jet bundle J1(X,Y )→ X,
i.e., Γ is a section (resp. a global section) of the bundle J1(X, J1(X,Y ))→
J1(X,Y ).

In the coordinates (yiα, y
i
(µ), y

i
αµ) of the repeated jet space

J1(X, J1(X,Y )), a 2–jet field Γ is given by the expression

(yiα, y
i
(µ), y

i
αµ) ◦ Γ = (yiα,Γ

i

(µ),Γ
i

αµ).

Using the contact map (5.53), one can represent it by the tangent–valued
horizontal 1–form on the jet bundle J1(X,Y )→ X,

Γ = dxµ ⊗ (∂µ + Γ
i

(µ)∂i + Γ
i

αµ∂
α
i ). (5.56)

A 2–jet field Γ on a fibre bundle Y → X is called a sesquiholonomic
(resp. holonomic) 2–jet field if it takes its values into the subbundle
Ĵ2(X,Y ) (resp. J2(X,Y )) of J1(X, J1(X,Y )). We have the coordinate
equality Γ

i

(µ) = yiµ for a sesquiholonomic 2–jet field and the additional

equality Γ
i

αµ = Γ
i

µα for a holonomic 2–jet field.
Given a symmetric connection K on the cotangent bundle T ∗X, every

connection Γ on a fibre bundle Y → X induces the connection

jΓ = dxµ ⊗ [∂µ + Γiµ∂i + (∂αΓiµ + ∂jΓiµy
j
α −Kα

αµ(yiα − Γiα))∂αi ]

on the jet bundle J1(X,Y )→ X. Note that the curvature R of a connection
Γ on a fibre bundle Y → X induces the soldering form σR on J1(X,Y )→
X,

σR = Riαµdx
µ ⊗ ∂αi .
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5.5 Higher–Order Jet Spaces

The notion of 1– and 2–jet spaces is naturally extended to higher–order jet
spaces. The k−jet space Jk(X,Y ) of a fibre bundle Y → X is defined as
the disjoint union of the equivalence classes jkxs of sections si : X → Y of
the fibre bundle Y → X, identified by their values and the values of the first
k terms of their Taylor–series expansion at points xi in the domain (base)
manifold X. Jk(X,Y ) is a smooth manifold with the adapted coordinates
(xα, yiαk...α1

), where

yiαk···α1
(jkxs) = ∂αk · · · ∂α1s

i(x), (0 ≤ k ≤ k).

The transformation law of these coordinates reads

y′
i
α+αk...α1

=
∂xµ

∂′xα
dµy

′i
αk...α1

, (5.57)

where α+ αk . . . α1 = (ααk . . . α1) and

dα = ∂α +
∑

|αk...α1|<k

yiα+αk...α1
∂αk...α1
i = ∂α + yiα∂i + yiαµ∂

µ
i + · · ·

are higher–order total derivatives. These derivatives act on exterior forms
on Jk(X,Y ) and obey the relations

dα(φ ∧ σ) = dα(φ) ∧ σ + φ ∧ dα(σ), dα(dφ) = d(dα(φ)).

For example,

dα(dxµ) = 0, dα(dyiαk...α1
) = dyiα+αk...α1

.

Let us also mention the following two operations: the horizontal projec-
tion h0 given by the relations

h0(dxα) = dxα, h0(dyiαk···α1
) = yiµαk...α1

dxµ, (5.58)

and the horizontal differential

dH(φ) = dxα ∧ dα(φ), dH ◦ dH = 0, h0 ◦ d = dH ◦ h0.

In a similar way, one can describe the infinite–order jet space, J∞(X,Y ),
which can be coordinated by (xα, yi, . . . , yiα1...αr , . . .), where α1 . . . αr are
collections of numbers modulo rearrangements, but it fails to be a well–
behaved manifold in general. At the same time, one can introduce the
sheaf of smooth functions on J∞(X,Y ) and define the differential calculus
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on J∞(X,Y ), with suitable notation for vector–fields, derivatives and differ-
ential forms just as like as in the finite order case (see [Sardanashvily (1993);
Sardanashvily (1995); Giachetta et. al. (1997); Mangiarotti and Sar-
danashvily (2000a); Sardanashvily (2002a)]).

A vector–field uk on the k−-jet space Jk(X,Y ) is called projectable
vector–field if for any l < k there exists a vector–field uk on J l(X,Y )→ X

such that

ul ◦ πkl = Tπkl ◦ uk.

The tangent map Tπkl sends projectable vector–fields on Jk(X,Y ) onto the
projectable vector–fields on J l(X,Y ).

Now consider projectable vector–fields uk which are extension to the
higher–order jet spaces of infinitesimal transformations of the fibre bun-
dle Y → X. The linear space of projectable vector–fields on J∞(X,Y )
is defined as the limit of the inverse system of projectable vector–fields
on k−jet spaces. As a consequence, every projectable vector–field on the
bundle Y → X,

u = uα∂α + ui∂i,

induces a projectable vector–field u∞ on J∞(X,Y ). We have its canonical
decomposition

u∞ = u∞H + u∞V ,

u∞H = uα∂̂∞α = uα(∂α + yiα∂i + ...), (5.59)

u∞V =
∞∑
k=0

∂̂kαk ...∂̂
1
α1
uV

i∂α1...αk
i ,

where uV is the vertical part of the splitting (5.14) of π1∗
0 u. In particular,

u∞H is the canonical lift of the vector–field τ = uα∂α on X onto J∞(X,Y ).
By the same limiting process we can introduce the notions of inner

product of exterior forms and projectable vector–fields, the Lie bracket of
projectable vector–fields and the Lie derivative of exterior forms by pro-
jectable vector–fields on J∞(X,Y ). All the usual identities are satisfied.

In particular, the notion of contact forms is extended to the forms

d̂yiα1...αr = dyiα1...αr − y
i
α1...αrνdx

ν .

Let Ωr,k denote the space of exterior forms on J∞(X,Y ) which are of the
order r in the horizontal forms dxν and of the order k in the contact forms.
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Then, the space Ωn of exterior n−forms on J∞(X,Y ) admits the unique
decomposition

Ωn = Ωn,0 ⊕ Ωn−1,1 ⊕ . . .⊕ Ω0,n. (5.60)

An exterior form is called a k−contact form if it belongs to the space Ωr,k.
In particular, we have the k−contact projection hk : Ωn −→ Ωn−k,k. For
example, the horizontal projection h0 performs the replacement dyiα1...αk

−→ yiα1...αkν
dxν .

The exterior differential d on exterior forms on J∞(X,Y ) is decomposed
into the sum

d = dH + dV (5.61)

of the total differential operator

dHφ = ∂̂∞µ φ...dx
µ ∧ . . .

and the vertical differential operator

dV φ =
∂φ...

∂yiα1...αr

d̂yiα1...αr ∧ . . .

These differentials satisfy the cohomology properties

dHdH = 0, dV dV = 0, dV dH + dHdV = 0.

Note that if σ is an exterior form on the k−jet space Jk(X,Y ), the
decomposition (5.61) is reduced to

πr+1∗
r dσ = dHσ + dV σ, which implies

h0(dσ) = dHh0(σ).

5.6 Application: Jets and Non–Autonomous
Dynamics

As complex nonlinear mechanics is the most exact basis of all complex
nonlinear dynamical systems considered in this book, we give here the first
glimpse of mechanics on jet spaces.

Recall that in ordinary (autonomous) mechanics we have a configura-
tion manifold M and the corresponding velocity phase–space manifold is
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its tangent bundle TM . However, in modern geometrical settings of non–
autonomous (see [Giachetta et. al. (1997); Mangiarotti et. al. (1999); Man-
giarotti and Sardanashvily (2000a); Saunders (1989); Sardanashvily (1993);
Sardanashvily (1995); Sardanashvily (2002a)]), the configuration manifold
of time–dependent mechanics is a fibre bundle Q → R, called the configu-
ration bundle, coordinated by (t, qi), where t ∈ R is a Cartesian coordinate
on the time axis R with the transition functions t′ = t+const. The corre-
sponding velocity phase–space is the 1–jet space J1(R, Q), which admits
the adapted coordinates (t, qi, qit). It was proved in [Giachetta (1992);
León et. al. (1996); Mangiarotti and Sardanashvily (1998)] that ev-
ery dynamical equation ξ defines a connection on the affine jet bundle
J1(R, Q)→ Q, and vice versa.

Due to the canonical imbedding J1(R, Q)→ TQ, every dynamical con-
nection induces a nonlinear connection on the tangent bundle TQ→ Q, and
vice versa. As a consequence, every dynamical equation on Q induces an
equivalent geodesic equation on the tangent bundle TQ→ Q in accordance
with the following proposition. Given a configuration bundle Q→ R, coor-
dinated by (t, qi), and its 2–jet space J2(R, Q), coordinated by (t, qi, qit, q

i
tt),

any dynamical equation ξ on the configuration bundle Q→ R,

qitt = ξi(t, qi, qit) (5.62)

is equivalent to the geodesic equation with respect to a connection K̃ on
the tangent bundle TQ→ Q,

ṫ = 1, ẗ = 0, q̈i = K̃i
0 + K̃i

j q̇
j ,

which fulfills the conditions

K̃0
α = 0, ξi = K̃i

0 + qjt K̃
i
j |ṫ=1,q̇i=qit

. (5.63)

Recall that the 1–jet space J1(R, Q) is defined as the set of equivalence
classes j1t c of sections ci : R → Q of the fibre bundle Q → R, which are
identified by their values ci(t) and the values of their partial derivatives
∂tc

i = ∂tc
i(t) at time points t ∈ R. Also recall that there is the canonical

imbedding

λ : J1(R, Q) ↪→ TQ, locally given by λ = dt = ∂t + qit∂i, (5.64)

where dt denotes the total time derivative. From now on, we will identify
J1(R, Q) with its image in the tangent bundle TQ. This is an affine bundle
modelled over the vertical tangent bundle V Q of Q→ R.
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As a consequence of (5.64), every connection Γ on a fibre bundle Q→ R,

Γ : Q→ J1(R, Q), locally given by Γ = dt⊗ (∂t + Γi∂i), (5.65)

is identified with the nowhere vanishing vector–field on Q [Mangiarotti and
Sardanashvily (1998); Mangiarotti et. al. (1999)],

Γ : Q→ J1(R, Q) ⊂ TQ, locally given by Γ = ∂t + Γi∂i. (5.66)

This is the horizontal lift of the standard vector–field ∂t on R by means of
the connection (5.65). Conversely, any vector–field Γ on Q such that dtcΓ =
1 defines a connection on Q → R. Therefore, the covariant differential
associated with a connection Γ on Q→ R reads

DG : J1(R, Q)→ V Q, locally given by q̇i ◦DG = qit − Γi.

Let J1(R, J1(R, Q)) denote the (repeated) 1–jet space of the jet bundle
J1(R, Q) → R, coordinated by (t, qi, qit, q

i
(t), q

i
tt). The corresponding 2–jet

space J2(R, Q) of the fibre bundle Q → R is the holonomic subbundle
qit = qi(t) of J1(R, J1(R, Q)), coordinated by (t, qi, qit, q

i
tt). There are the

imbeddings

J2(R, Q) λ̊−→ TJ1(R, Q) Tλ−→ TTQ, with

λ̊ : (t, qi, qit, q
i
tt) 7→ (t, qi, qit, ṫ = 1, q̇i = qit, q̇

i
t = qitt). (5.67)

Tλ ◦ λ̊ : (t, qi, qit, q
i
tt) 7→ (t, qi, ṫ = 1, q̇i = qit, ẗ = 0, q̈i = qitt), (5.68)

where (t, qi, q̇i, q̈i) are holonomic coordinates on the second tangent bundle
TTQ. This global geometrical structure of time–dependent mechanics is
depicted in Figure 5.3.

Therefore, a dynamical equation ξ on a configuration bundle Q → R,
given in local coordinates by (5.62), is defined as the geodesic equa-
tion KerDξ ⊂ J2(R, Q) for a holonomic connection ξ on the jet bundle
J1(R, Q) → R. Due to the map (5.67), a holonomic connection ξ is repre-
sented by the horizontal vector–field on J1(R, Q),

ξ = ∂t + qit∂i + ξi(qµ, qit)∂
t
i . (5.69)

A dynamical equation ξ is said to be conservative if there exists a trivial-
izationQ ∼= R×M such that the vector–field ξ (5.69) on J1(R, Q) ∼= R×TM
is projectable onto TM . Then this projection

Ξξ = q̇i∂i + ξi(qj , q̇j)∂̇i
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Fig. 5.3 Hierarchical geometrical structure of time–dependent mechanics. Note that

(for simplicity) intermediate jet spaces, J1(R, J1(R, Q)) and TJ1(R, Q), are not shown.

is a second–order dynamical equation on a typical fibre M of Q→ R,

q̈i = Ξiξ. (5.70)

Conversely, every second–order dynamical equation Ξ (5.70) on a manifold
M can be seen as a conservative dynamical equation

ξΞ = ∂t + q̇i∂i + ui∂̇i

on the trivial fibre bundle R×M → R.
Now we can explore the fundamental relationship between the holo-

nomic connections ξ (5.69) on the 1−jet bundle J1(R, Q) → R and the
dynamical connections γ on the affine 1−jet bundle J1(R, Q) → Q, given
by

γ = dqα ⊗ (∂α + γiα∂
t
i ), (qα ≡ (t, qi), ∂α ≡ (∂t, ∂i)). (5.71)

Any dynamical connection γ (5.71) defines the holonomic connection ξγ
on J1(R, Q)→ R [Mangiarotti and Sardanashvily (1998)]

ξγ = ∂t + qit∂i + (γi0 + qjtγ
i
j)∂

t
i .

Conversely, any holonomic connection ξ (5.69) on J1(R, Q) → R defines
the dynamical connection

γξ = dt⊗ [∂t + (ξi − 1
2
qjt∂

t
jξ
i)∂ti ] + dqj ⊗ [∂j +

1
2
∂tjξ

i∂ti ]. (5.72)
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It follows that every dynamical connection γ (5.71) induces the dynam-
ical equation (5.62) on the configuration bundle Q → R, rewritten here
as

qitt = γi0 + qjtγ
i
j . (5.73)

Different dynamical connections may lead to the same dynamical equation
(5.73). The dynamical connection γξ (5.72), associated with a dynamical
equation, possesses the property

γki = ∂tiγ
k
0 + qjt∂

t
iγ
k
j ,

which implies the relation ∂tjγ
k
i = ∂tiγ

k
j . Such a dynamical connection is

called symmetric. Let γ be a dynamical connection (5.71) and ξγ the corre-
sponding dynamical equation (5.6). Then the connection (5.72), associated
with ξγ , takes the form

γξγ
k
i =

1
2

(γki + ∂tiγ
k
0 + qjt∂

t
iγ
k
j ), γξγ

k
0 = ξk − qitγξγ

k
i .

Note that γ = γξγ iff γ is symmetric.
To explore the relation between the connections γ (5.71) on the affine

jet bundle J1(R, Q)→ Q and the connections

K = dqα ⊗ (∂α +Kβ
α ∂̇β) (5.74)

on the tangent bundle TQ→ Q, consider the diagram

J1(R, Q) TQ-
λ

J1(R, J1(R, Q)) J1(Q,TQ)-j1λ

?

γ

?

K

(5.75)

where J1(Q,TQ) is the 1–jet space of the tangent bundle TQ→ Q, coordi-
nated by (qα, q̇α, q̇αµ ). The jet prolongation j1λ of the canonical imbedding
λ (5.64) over Q reads

j1λ : (t, qi, qit, q
i
µt) 7→ (t, qi, ṫ = 1, q̇i = qit, ṫµ = 0, q̇iµ = qiµt).

We have

j1λ ◦ γ : (t, qi, qit) 7→ (t, qi, ṫ = 1, q̇i = qit, ṫµ = 0, q̇iµ = γiµ),

K ◦ λ : (t, qi, qit) 7→ (t, qi, ṫ = 1, q̇i = qi0, ṫµ = K0
µ, q̇

i
µ = Ki

µ).
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It follows that the diagram (5.75) can be commutative only if the compo-
nents K0

µ of the connection K on TQ → Q vanish. Since the transition
functions t→ t′ are independent of qi, a connection

K̃ = dqα ⊗ (∂α +Ki
α∂̇i) (5.76)

with the components K0
µ = 0 can exist on the tangent bundle TQ→ Q. It

obeys the transformation law

K ′i
α = (∂jx′iKj

µ + ∂µẋ
′i)

∂qµ

∂x′α
. (5.77)

Now the diagram (5.75) becomes commutative if the connections γ and K̃

fulfill the relation

γiµ = Ki
µ(t, qi, ṫ = 1, q̇i = qit),

which holds globally since the substitution of q̇i = qit into (5.77) restates
the coordinate transformation law of γ.

Every dynamical equation (5.62) on the configuration bundle Q → R
can be written in the form

qitt = Ki
0 ◦ λ+ qjtK

i
j ◦ λ, (5.78)

where K̃ is a connection (5.76) on the tangent bundle TQ→ Q. Conversely,
each connection K̃ (5.76) on TQ→ Q defines the dynamical equation (5.78)
on Q→ R.

Consider the geodesic equation (5.6) on TQ with respect to the con-
nection K̃. Its solution is a geodesic curve c(t) which also satisfies the
dynamical equation (5.62), and vice versa.

From the physical viewpoint, a reference frame in mechanics on a con-
figuration bundle Q → R sets a tangent vector at each point of Q which
characterizes the velocity of an ‘observer’ at this point. Then any connec-
tion Γ on Q → R is said to be such a reference frame [Echeverŕıa et. al.
(1995); Mangiarotti and Sardanashvily (1998); Massa and Pagani (1994);
Sardanashvily (1998)].

Each connection Γ on a fibre bundle Q → R defines an atlas of local
constant trivializations of Q → R whose transition functions are indepen-
dent of t, and vice versa. One finds Γ = ∂t with respect to this atlas. In
particular, there is 1–1 correspondence between the complete connections
Γ (5.66) on Q→ R and the trivializations of this bundle.
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Given a reference frame Γ, any connection K (5.74) on the tangent
bundle TQ→ Q defines the dynamical equation

ξi = (Ki
α − ΓiK0

α)q̇α |ṫ=1,q̇i=qit
. (5.79)

Given a connection Γ on the fibre bundle Q → R and a connection K

on the tangent bundle TQ → Q, there is the connection K̃ on TQ → Q

with the components

K̃0
α = 0, K̃i

α = Ki
α − ΓiK0

α.

5.6.1 Geodesics

In this subsection we continue our study of non–autonomous, time–
dependent mechanics on a configuration bundle Q→ R, that we started in
subsection 5.6 above. Recall that R is the time axis, while the correspond-
ing velocity phase–space manifold is the 1–jet space J1(R, Q) of sections
s : R −→ Q of the bundle Q→ R. Also, recall that second–order dynamical
equation (dynamical equation, for short) on a fibre bundle Q → R is de-
fined as a first–order dynamical equation on the jet bundle J1(R, Q)→ R,
given by a holonomic connection ξ on J1(R, Q)→ R which takes its values
in the 2–jet space J2(R, Q) ⊂ J1(R, J1(R, Q)) (see [León et. al. (1996);
Mangiarotti and Sardanashvily (1998); Massa and Pagani (1994); Man-
giarotti and Sardanashvily (1999)]). The global geometrical structure of
time–dependent mechanics is depicted in Figure 5.3 above.

Since a configuration bundle Q→ R is trivial, the existent formulations
of mechanics often imply its preliminary splitting Q = R ×M [Cariñena
and F.Núñez (1993); Echeverŕıa et. al. (1991); León et. al. (1996);
Morandi et. al. (1990)]. This is not the case of mechanical systems sub-
ject to time–dependent transformations, including inertial frame transfor-
mations. Recall that different trivializations of Q → R differ from each
other in projections Q → M . Since a configuration bundle Q → R has
no canonical trivialization in general, mechanics on Q → R is not a rep-
etition of mechanics on R ×M , but implies additionally a connection on
Q → R which is a reference frame [Mangiarotti and Sardanashvily (1998);
Sardanashvily (1998)]. Considered independently on a trivialization of
Q→ R, mechanical equations make the geometrical sense of geodesic equa-
tions.

We now examine quadratic dynamical equations in details. In this
case, the corresponding dynamical connection γ on J1(R, Q) → Q is
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affine, while the connection K̃ (5.63) on TQ → Q is linear. Then the
equation for Jacobi vector–fields along the geodesics of the connection
K̃ can be considered. This equation coincides with the existent equa-
tion for Jacobi fields of a Lagrangian system [Dittrich and Reuter (1994);
Mangiarotti and Sardanashvily (1998)] in the case of non–degenerate
quadratic Lagrangians, when they can be compared. We will consider
more general case of quadratic Newtonian systems characterized by a
pair (ξ, µ) of a quadratic dynamical equation ξ and a Riemannian in-
ertia tensor µ which satisfy a certain compatibility condition. Given a
reference frame, a Riemannian inertia tensor µ is extended to a Rieman-
nian metric on the configuration space Q. Then conjugate points of so-
lutions of the dynamical equation ξ can be examined in accordance with
the well–known geometrical criteria [Mangiarotti and Sardanashvily (1998);
Sardanashvily (1998)].

5.6.2 Quadratic Dynamical Equations

From the physical viewpoint, the most interesting dynamical equations are
the quadratic ones, i.e.,

ξi = aijk(qµ)qjt q
k
t + bij(q

µ)qjt + f i(qµ). (5.80)

This property is coordinate–independent due to the affine transformation
law of coordinates qit. Then, it is clear that the corresponding dynamical
connection γξ (5.72) is affine:

γ = dqα ⊗ [∂α + (γiλ0(qν) + γiλj(q
ν)qjt )∂

t
i ],

and vice versa. This connection is symmetric iff γiλµ = γiµλ.
There is 1–1 correspondence between the affine connections γ on the

affine jet bundle J1(R, Q)→ Q and the linear connections K̃ (5.76) on the
tangent bundle TQ→ Q.

This correspondence is given by the relation

γiµ = γiµ0 + γiµjq
j
t , γiµλ = Kµ

i
α.

In particular, if an affine dynamical connection γ is symmetric, so is the
corresponding linear connection K̃.

Any quadratic dynamical equation

qitt = aijk(qµ)qjt q
k
t + bij(q

µ)qjt + f i(qµ) (5.81)
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is equivalent to the geodesic equation

ṫ = 1, ẗ = 0,

q̈i = aijk(qµ)q̇iq̇j + bij(q
µ)q̇j ṫ+ f i(qµ)ṫṫ. (5.82)

for the symmetric linear connection

K̃ = dqα ⊗ (∂α +Kµ
αν(t, qi)q̇ν ∂̇µ)

on TQ→ Q, given by the components

K0
αν = 0, K0

i
0 = f i, K0

i
j = Kj

i
0 =

1
2
bij , Kj

i
k = aijk. (5.83)

Conversely, any linear connection K on the tangent bundle TQ → Q

defines the quadratic dynamical equation

qitt = Kj
i
kq
j
t q
k
t + (K0

i
j +Kj

i
0)qjt +K0

i
0,

written with respect to a given reference frame (t, qi) ≡ qµ.
However, the geodesic equation (5.82) is not unique for the dynamical

equation (5.81). Any quadratic dynamical equation (5.80), being equivalent
to the geodesic equation with respect to the linear connection K̃ (5.83), is
also equivalent to the geodesic equation with respect to an affine connection
K ′ on TQ → Q which differs from K̃ (5.83) in a soldering form σ on
TQ→ Q with the local components

σ0
α = 0, σik = hik + (s− 1)hik q̇

0, σi0 = −shik q̇k − hi0q̇0 + hi0,

where s and hiα are local functions on Q.

5.6.3 Equation of Free–Motion

We say that the dynamical equation (5.62), that is: qitt = ξi(t, qi, qit),
is a free motion equation iff there exists a reference frame (t, qi) on the
configuration bundle Q→ R such that this equation reads

qitt = 0. (5.84)

With respect to arbitrary bundle coordinates (t, qi), a free motion equation
takes the form

qitt = dtΓi + ∂jΓi(q
j
t − Γj)− ∂qi

∂qµ
∂qµ

∂qj∂qk
(qjt − Γj)(qkt − Γk), (5.85)
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where Γi = ∂tq
i(t, qj) is the connection associated with the initial frame

(t, qi). One can think of the r.h.s. of the equation (5.85) as being the general
coordinate expression of an inertial force in mechanics. The corresponding
dynamical connection γ on the affine jet bundle J1(R, Q)→ Q reads

γik = ∂kΓi − ∂qi

∂qµ
∂qµ

∂qj∂qk
(qjt − Γj), γi0 = ∂tΓi + ∂jΓiq

j
t − γikΓk. (5.86)

This affine dynamical connection defines a linear connection K on the tan-
gent bundle TQ → Q whose curvature is necessarily zero. Thus, we come
to the following criterion for a dynamical equation to be a free motion equa-
tion: if ξ is a free motion equation, it is quadratic and the corresponding
linear symmetric connection (5.83) on the tangent bundle TQ→ Q is flat.
A free motion equation on a configuration bundle Q → R exists iff the
typical fibre M of Q admits a curvature–free linear symmetric connection.

5.6.4 Quadratic Lagrangian and Newtonian Systems

Recall that a Lagrangian of an nD mechanical system on Q→ R is defined
as a function on the velocity phase–space J1(R, Q). In particular, let us
consider a non–degenerate quadratic Lagrangian

L =
1
2
µij(q

µ)qitq
j
t + ki(qµ)qit + f(qµ), (5.87)

where µij (i, j = 1, ..., n) is a Riemannian fibre metric tensor in the vertical
tangent bundle V Q, called the inertial metric tensor . As for quadratic
dynamical equations, this property is coordinate–independent, namely one
can show that any quadratic polynomial on J1(R, Q) ⊂ TQ is extended to
a bilinear form on TQ, so that the Lagrangian L (5.87) can be written as

L =
1
2
γαµq

α
t q

µ
t , (with q0t = 1),

where γ is the (degenerate) fibre metric in the tangent bundle TQ, given
by

γ00 = 2f, γ0i = ki, γij = µij . (5.88)

The associated Lagrangian equation takes the form

qitt = (µ−1)ikΓλkνqαt q
ν
t , (5.89)

where Γλµν = −1
2

(∂αγµν + ∂νγµλ − ∂µγλν)
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are the Christoffel symbols of the first–kind of the metric γαµ given in
components by (5.88). The corresponding geodesic equation (5.82) on TQ

reads

q̈i = (µ−1)ikΓλkν q̇αq̇ν , ṫ = 1, ẗ = 0, (5.90)

such that K̃ (5.63) is a linear connection with the following components

K̃0
αν = 0, K̃i

αν = (µ−1)ikΓλkν .

We have the relation

q̇α(∂αµij +Ki
αν q̇

ν) = 0. (5.91)

One can show that an arbitrary Lagrangian system on a configuration
bundle Q → R is a particular Newtonian system on Q → R. The latter
is defined as a pair (ξ, µ) of a dynamical equation ξ and a (degenerate)
fibre metric µ in the fibre bundle VQJ1(R, Q) → J1(R, Q) which satisfy
the symmetry condition ∂tkµij = ∂tjµik and the compatibility condition
[Mangiarotti and Sardanashvily (1998); Mangiarotti et. al. (1999)]

ξcdµij + µikγ
k
j + µjkγ

k
i = 0, (5.92)

where γξ is the dynamical connection (5.72), i.e.,

γξ = dt⊗ [∂t + (ξi − 1
2
qjt∂

t
jξ
i)∂ti ] + dqj ⊗ [∂j +

1
2
∂tjξ

i∂ti ].

We restrict our consideration to non–degenerate quadratic Newtonian
systems when ξ is a quadratic dynamical equation (5.80) and µ is a Rie-
mannian fibre metric in V Q, i.e., µ is independent of qit and the symmetry
condition becomes trivial. In this case, the dynamical equation (5.81) is
equivalent to the geodesic equation (5.82) with respect a symmetric lin-
ear connection K̃ (5.83), while the compatibility condition (5.92) takes the
form (5.91).

Given a symmetric linear connection K̃ (5.83) on the tangent bundle
TQ → Q, one can consider the equation for Jacobi vector–fields along
geodesics of this connection, i.e., along solutions of the dynamical equation
(5.81). If Q admits a Riemannian metric, the conjugate points of these
geodesic can be investigated.
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5.6.5 Jacobi Fields

Let us consider the quadratic dynamical equation (5.81) and the equivalent
geodesic equation (5.82) with respect to the symmetric linear connection
K̃ (5.83). Its Riemann curvature tensor

Rλµ
α
β = ∂λKµ

α
β − ∂µKα

λ β +Kγ
λβKµ

α
γ −Kµ

γ
βK

α
λ γ

has the temporal component

Rλµ
0
β = 0. (5.93)

Then the equation for a Jacobi vector–field u along a geodesic c reads

q̇β q̇µ(∇β(∇µuα)−Rλµαβuλ) = 0, ∇β q̇α = 0, (5.94)

where ∇µ denotes the covariant derivative relative to the connection K̃ (see
[Kobayashi and Nomizu (1963/9)]). Due to the relation (5.93), the equation
(5.94) for the temporal component u0 of a Jacobi field takes the form

q̇β q̇µ(∂µ∂βu0 +Kµ
γ
β∂γu

0) = 0.

We chose its solution

u0 = 0, (5.95)

because all geodesics obey the constraint ṫ = 0.
Note that, in the case of a quadratic Lagrangian L, the equation (5.94)

coincides with the Jacobi equation

ujd0(∂j ∂̇iL) + d0(u̇j ∂̇i∂̇jL)− uj∂i∂jL = 0

for a Jacobi field on solutions of the Lagrangian equations for L. This
equation is the Lagrangian equation for the vertical extension LV of the La-
grangian L (see [Dittrich and Reuter (1994); Mangiarotti and Sardanashvily
(1998); Mangiarotti et. al. (1999)]).

Let us consider a quadratic Newtonian system with a Riemannian in-
ertia tensor µij . Given a reference frame (t, qi) ≡ qα, this inertia tensor is
extended to the following Riemannian metric on Q

g00 = 1, g0i = 0, gij = µij .

However, its covariant derivative with respect to the connection K̃ (5.83)
does not vanish in general. Nevertheless, due to the relations (5.91) and
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(5.95), we get the well–known formula for a Jacobi vector–field u along a
geodesic c: ∫ b

a

(
gλµ(q̇α∇αuλ)(q̇β∇βuµ) +Rλµανu

λuαq̇µq̇ν
)
dt

+ gλµq̇
α∇αuλu′µ|t=a − gλµq̇α∇αuλu′µ|t=b = 0.

Therefore, the following assertions also remain true [Kobayashi and No-
mizu (1963/9)]: (i) if the sectional curvature Rλµανuλuαq̇µq̇ν is positive
on a geodesic c, this geodesic has no conjugate points; (ii) if the sectional
curvature Rλµανu

λuαvµvν , where u and v are arbitrary unit vectors on
a Riemannian manifold Q less than k < 0, then, for every geodesic, the
distance between two consecutive conjugate points is at most π/

√
k.

For example, let us consider a 1D motion described by the Lagrangian

L =
1
2

(q̇1)2 − φ(q1),

where φ is a potential. The corresponding Lagrangian equation is equivalent
to the geodesic one on the 2D Euclidean space R2 with respect to the
connection K̃ whose non–zero component is K̃0

1
0 = −∂1φ. The curvature

of K̃ has the non–zero component

R10
1
0 = ∂1K̃0

1
0 = −∂2

1φ.

Choosing the particular Riemannian metric g with components

g11 = 1, g01 = 0, g00 = 1,

we come to the formula∫ b

a

[(q̇µ∂µu1)2 − ∂2
1φ(u1)2]dt = 0

for a Jacobi vector–field u, which vanishes at points a and b. Then we get
that, if ∂2

1φ < 0 at points of c, this motion has no conjugate points. In
particular, let us consider the oscillator φ = k(q1)2/2. In this case, the
sectional curvature is R0101 = −k, while the half–period of this oscillator
is exactly π/

√
k.

5.6.6 Constraints

Recall that symplectic and Poisson manifolds give an adequate Hamilto-
nian formulation of classical and quantum conservative mechanics. This
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is also the case of presymplectic Hamiltonian systems. Recall that ev-
ery presymplectic form can be represented as a pull–back of a sym-
plectic form by a coisotropic imbedding (see e.g., [Gotay (1982); Man-
giarotti and Sardanashvily (1998)]), a presymplectic Hamiltonian sys-
tems can be seen as Dirac constraint systems [Cariñena et. al. (1995);
Mangiarotti and Sardanashvily (1998)]. An autonomous Lagrangian sys-
tem also exemplifies a presymplectic Hamiltonian system where a presym-
plectic form is the exterior differential of the Poincaré–Cartan form,
while a Hamiltonian is the energy function [Cariñena and Rañada (1993);
León et. al. (1996); Mangiarotti and Sardanashvily (1998); Muñoz and
Román (1992)]. A generic example of conservative Hamiltonian mechanics
is a regular Poisson manifold (Z,w) where a Hamiltonian is a real function
H on Z. Given the corresponding Hamiltonian vector–field ϑH = w](df),
the closed subbundle ϑH(Z) of the tangent bundle TZ is an autonomous
first–order dynamical equation on a manifold Z, called the Hamiltonian
equations. The evolution equation on the Poisson algebra C∞(Z) is the
Lie derivative LϑHf = {H, f}, expressed into the Poisson bracket of the
Hamiltonian H and functions f on Z. However, this description cannot be
extended in a straightforward manner to time–dependent mechanics subject
to time–dependent transformations.

The existent formulations of time–dependent mechanics imply usually a
preliminary splitting of a configuration space Q = R×M and a momentum
phase–space manifold Π = R×Z, where Z is a Poisson manifold [Cariñena
and F.Núñez (1993); Chinea et. al. (1994); Echeverŕıa et. al. (1991);
Hamoui and Lichnerowicz (1984); Morandi et. al. (1990); León and Marrero
(1993)]. From the physical viewpoint, this means that a certain reference
frame is chosen. In this case, the momentum phase–space Π is with the
Poisson product of the zero Poisson structure on R and the Poisson struc-
ture on Z. A Hamiltonian is defined as a real function H on Π. The
corresponding Hamiltonian vector–field ϑH on Π is vertical with respect to
the fibration Π→ R. Due to the canonical imbedding

Π× TR→ TΠ, (5.96)

one introduces the vector–field

γH = ∂t + ϑH, (5.97)

where ∂t is the standard vector–field on R [Hamoui and Lichnerowicz
(1984)]. The first–order dynamical equation γH(Π) ⊂ TΠ on the mani-
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fold Π plays the role of Hamiltonian equations. The evolution equation on
the Poisson algebra C∞(Π) is given by the Lie derivative

LγHf = ∂tf + {H, f}.

This is not the case of mechanical systems subject to time–dependent
transformations. These transformations, including canonical and inertial
frame transformations, violate the splitting R×Z. As a consequence, there
is no canonical imbedding (5.96), and the vector–field (5.97) is not well
defined. At the same time, one can treat the imbedding (5.96) as a triv-
ial connection on the bundle Π −→ R, while γH (5.97) is the sum of the
horizontal lift onto Π of the vector–field ∂t by this connection and of the
vertical vector–field ϑH.

Let Q → R be a fibre bundle coordinated by (t, qi), and J1(R, Q)
its 1–jet space, equipped with the adapted coordinates (t, qi, qit). Recall
that there is a canonical imbedding λ given by (5.64) onto the affine
subbundle of TQ → Q of elements υ ∈ TQ such that υcdt = 1.
This subbundle is modelled over the vertical tangent bundle V Q → Q.
As a consequence, there is a 1–1 correspondence between the connec-
tions Γ on the fibre bundle Q → R, treated as sections of the affine
jet bundle π1

0 : J1(R, Q) → Q [Mangiarotti et. al. (1999)], and the
nowhere vanishing vector–fields Γ = ∂t + Γi∂i on Q, called horizontal
vector–fields, such that Γcdt = 1 [Mangiarotti and Sardanashvily (1998);
Mangiarotti et. al. (1999)]. The corresponding covariant differential reads

DΓ = λ− Γ : J1(R, Q) −→ V Q, qi ◦DΓ = qit − Γi.

Let us also recall the total derivative dt = ∂t + qit∂i + · · · and the exterior
algebra homomorphism

h0 : φdt+ φidy
i 7→ (φ+ φiq

i
t)dt (5.98)

which sends exterior forms on Q → R onto the horizontal forms on
J1(R, Q)→ R, and vanishes on contact forms θi = dyi − qitdt.

Lagrangian time–dependent mechanics follows directly Lagrangian field
theory (see [Giachetta (1992); Krupkova (1997); León et. al. (1997);
Mangiarotti and Sardanashvily (1998); Massa and Pagani (1994)], as well
as subsection 5.9 below). This means that we have a configuration space
Q→ R of a mechanical system, and a Lagrangian is defined as a horizontal
density on the velocity phase–space J1(R, Q),

L = Ldt, with L : J1(R, Q)→ R. (5.99)



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Applied Jet Geometry 839

A generic momentum phase–space manifold of time–dependent mechan-
ics is a fibre bundle Π −→ R with a regular Poisson structure whose charac-
teristic distribution belongs to the vertical tangent bundle VΠ of Π −→ R
[Hamoui and Lichnerowicz (1984)]. However, such a Poisson structure can-
not give dynamical equations. A first–order dynamical equation on Π −→ R,
by definition, is a section of the affine jet bundle J1(R,Π) −→ Π, i.e., a con-
nection on Π −→ R. Being a horizontal vector–field, such a connection
cannot be a Hamiltonian vector–field with respect to the above Poisson
structure on Π.

One can overcome this difficulty as follows. Let Q→ R be a configura-
tion bundle of time–dependent mechanics. The corresponding momentum
phase–space is the vertical cotangent bundle Π = V ∗Q → R, called the
Legendre bundle, while the cotangent bundle T ∗Q is the homogeneous mo-
mentum phase–space. T ∗Q admits the canonical Liouville form Ξ and the
symplectic form dΞ, together with the corresponding non–degenerate Pois-
son bracket {, }T on the ring C∞(T ∗Q). Let us consider the subring of
C∞(T ∗Q) which comprises the pull–backs ζ∗f onto T ∗Q of functions f on
the vertical cotangent bundle V ∗Q by the canonical fibration

ζ : T ∗Q→ V ∗Q. (5.100)

This subring is closed under the Poisson bracket {, }T , and V ∗Q admits the
regular Poisson structure {, }V such that [Vaisman (1994)]

ζ∗{f, g}V = {ζ∗f, ζ∗g}T .

Its characteristic distribution coincides with the vertical tangent bundle
V V ∗Q of V ∗Q→ R. Given a section h of the bundle (5.100), let us consider
the pull–back forms

Θ = h∗(Ξ ∧ dt), Ω = h∗(dΞ ∧ dt) (5.101)

on V ∗Q, but these forms are independent of a section h and are canonical
exterior forms on V ∗Q. The pull–backs h∗Ξ are called the Hamiltonian
forms. With Ω, the Hamiltonian vector–field ϑf for a function f on V ∗Q

is given by the relation

ϑfcΩ = −df ∧ dt,

while the Poisson bracket (5.6.6) is written as

{f, g}V dt = ϑgcϑfcΩ.
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The pair (V ∗Q,Ω) is the particular polysymplectic phase–space of
the covariant Hamiltonian field theory (see [Cariñena et. al. (1991);
Giachetta et. al. (1997); Gotay (1991a); Sardanashvily (1995)] for a sur-
vey). Following its general scheme, we can formulate the Hamiltonian time–
dependent mechanics as follows [Mangiarotti and Sardanashvily (1998);
Sardanashvily (1998)].

Recall that connection γ on the Legendre bundle V ∗Q −→ R is called
canonical if the corresponding horizontal vector–field is canonical for the
Poisson structure on V ∗Q, i.e., the form γcΩ is closed. Such a form is
necessarily exact. A canonical connection γ is a said to be a Hamiltonian
connection if

γcΩ = dH, (5.102)

where H is a Hamiltonian form on V ∗Q. Every Hamiltonian form admits
a unique Hamiltonian connection γH , while any canonical connection is
locally a Hamiltonian one. Given a Hamiltonian form H, the kernel of the
covariant differential DγH , associated with the Hamiltonian connection γH ,
is a closed imbedded subbundle of the jet bundle J1(R, V ∗Q) −→ R, and
so is the system of first–order PDEs on the Legendre bundle V ∗Q −→ R.
These are the Hamiltonian equations in time–dependent mechanics, while
the Lie derivative

LγHf = γHcdf (5.103)

defines the evolution equation on C∞(V ∗Z). This Hamiltonian dynamics
is equivalent to the Lagrangian one for hyperregular Lagrangians, while a
degenerate Lagrangian involves a set of associated Hamiltonian forms in
order to exhaust solutions of the Lagrangian equations [Giachetta et. al.
(1997); Sardanashvily (1994); Sardanashvily (1995)].

Since γH is not a vertical vector–field, the r.h.s. of the evolution equa-
tion (5.103) is not expressed into the Poisson bracket in a canonical way,
but contains a frame–dependent term. Every connection Γ on the configu-
ration bundle Q→ R is an affine section of the bundle (5.100), and defines
the Hamiltonian form HΓ = Γ∗Ξ on V ∗Q. The corresponding Hamiltonian
connection is the canonical lift V ∗Γ of Γ onto the Legendre bundle V ∗Q [Gi-
achetta et. al. (1997); Mangiarotti et. al. (1999)]. Then any Hamiltonian
form H on V ∗Q admits splittings

H = HΓ − H̃Γdt, with γH = V ∗Γ + ϑ eHΓ
, (5.104)
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where ϑ eHΓ
is the vertical Hamiltonian field for the function H̃Γ, which the

energy function with respect to the reference frame Γ. With the splitting
(5.104), the evolution equation (5.103) takes the form

LγHf = V ∗ΓcH + {H̃Γ, f}V . (5.105)

Let the configuration bundle Q −→ R with an mD typical fibre M be co-
ordinated by (t, qi). Then Legendre bundle V ∗Q and the cotangent bundle
T ∗Q admit holonomic coordinates (t, qi, pi = q̇i) and (t, qi, pi, p), respec-
tively. Relative to these coordinates, a Hamiltonian form H on V ∗Q reads

H = h∗Ξ = pidq
i −Hdt. (5.106)

It is the well–known integral invariant of Poincaré–Cartan, where H is a
Hamiltonian in time–dependent mechanics. The expression (5.106) shows
that H fails to be a scalar under time–dependent transformations. There-
fore, the evolution equation (5.105) takes the local form

LγH = ∂tf + {H, f}V , (5.107)

but one should bear in mind that the terms in its r.h.s., taken separately,
are not well–behaved objects under time–dependent transformations. In
particular, the equality {H, f}V = 0 is not preserved under time–dependent
transformations.

Every Lagrangian L defines the Legendre map

L̂ : J1(R, Q) −→ V ∗Q, locally given by pi ◦ L̂ = πi, (5.108)

whose image NL = L̂(J1(R, Q)) ⊂ V ∗Q is called the Lagrangian constraint
space. We state the comprehensive relationship between solutions of the
Lagrangian equations for an almost regular Lagrangian L and solutions in
NL of the Hamiltonian equations for associated Hamiltonian forms.

5.6.7 Time–Dependent Lagrangian Dynamics

Given a Lagrangian L on the velocity phase–space J1(R, Q), we follow
the first variational formula of [Giachetta et. al. (1997); Mangiarotti and
Sardanashvily (1998); Sardanashvily (1997)], which gives the canonical de-
composition of the Lie derivative

Lj1uL = (j1ucL) dt (5.109)
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of L along a projectable vector–field u on Q −→ R. We have

j1ucL = uV cEL + dt(ucHL),

where uV = (ucθi)∂i,

HL = L+ πiθ
i, πi = ∂tiL, (5.110)

is the Poincaré–Cartan form and

EL : J2(R, Q) −→ V ∗Q, EL = (∂i − dtπi)Ldqi

is the Euler–Lagrangian operator associated with L. The kernel Ker EL ⊂
J2(R, Q) of EL defines the Lagrangian equations on Q, given by the coor-
dinate relations

(∂i − dtπi)L = 0. (5.111)

On–shell, the first variational formula (5.109) leads to the weak identity

Lj1uL ≈ dt(ucHL)dt,

and then, if Lj1uL = 0, to the weak conservation law

dt(ucHL) = −dtJ ≈ 0

of the symmetry current J , given by

J = −(ucHL) = −πi(utq̇i − ui)− utL.

Being the Lepagean equivalent of the Lagrangian L on J1(R, Q) (i.e.,
L = h0(HL) where h0 is the map (5.98), see [Giachetta et. al. (1997); Man-
giarotti and Sardanashvily (1998); Sardanashvily (1997)]), the Poincaré–
Cartan form HL (5.110) is also the Lepagean equivalent of the Lagrangian
on the repeated jet space J1(R, J1(R, Q)),

L = ĥ0(HL) = (L+ ( ̂̇qi − q̇i)πi)dt, ĥ0(dyi) = q̂itdt,

coordinated by (t, qi, q̇i, ̂̇qi, q̈i). The Euler–Lagrangian operator
EL : J1(R, J1(R, Q))→ V ∗J1(R, Q) for L is locally given by

EL = (∂iL − d̂tπi + ∂iπj( ̂̇qj − q̇j))dqi + ∂tiπj( ̂̇qj − q̇j)dq̇i, (5.112)

with d̂t = ∂t + ̂̇qi∂i + q̈i∂ti .

Its kernel Ker EL ⊂ J1(R, J1(R, Q)) defines the Cartan equations

∂tiπj( ̂̇qj − q̇j) = 0, ∂iL − d̂tπi + ( ̂̇qj − q̇j)∂iπj = 0. (5.113)
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Since EL |J2(R,Q)= EL, the Cartan equations (5.113) are equivalent to the
Lagrangian equations (5.111) on integrable sections c = ċ of J1(R, Q)→ R.
These equations are equivalent in the case of regular Lagrangians.

On sections c : R −→ J1(R, Q), the Cartan equations (5.113) are equiv-
alent to the relation

c∗(ucdHL) = 0, (5.114)

which is assumed to hold for all vertical vector–fields u on J1(R, Q) −→ R.
With the Poincaré–Cartan form HL (5.110), we have the Legendre map

ĤL : J1(R, Q) −→ T ∗Q, (pi, p) ◦ ĤL = (πi,L − πiq̇i).

Let ZL = ĤL(J1(R, Q)) be an imbedded subbundle iL : ZL ↪→ T ∗Q of
T ∗Q→ Q. It admits the pull–back de Donder form i∗LΞ. We have

HL = Ĥ∗
LΞL = Ĥ∗

L(i∗LΞ).

By analogy with the Cartan equations (5.114), the Hamilton–de Donder
equations for sections r of T ∗Q→ R are written as

r∗(ucdΞL) = 0 (5.115)

where u is an arbitrary vertical vector–field on T ∗Q→ R [Lopez and Mars-
den (2003)].

Let the Legendre map ĤL : J1(R, Q) −→ ZL be a submersion. Then
a section c of J1(R, Q) −→ R is a solution of the Cartan equations (5.114)
iff ĤL ◦ c is a solution of the Hamilton–de Donder equations (5.115), i.e.,
Cartan and Hamilton–de Donder equations are quasi–equivalent [Gotay
(1991a); Lopez and Marsden (2003)].

5.6.8 Time–Dependent Hamiltonian Dynamics

Let the Legendre bundle V ∗Q → R be provided with the holonomic co-
ordinates (t, qi, q̇i). Relative to these coordinates, the canonical 3–form Ω
(5.101) and the canonical Poisson structure on V ∗Q read

Ω = dpi ∧ dqi ∧ dt, (5.116)

{f, g}V = ∂if∂ig − ∂ig∂if, (f, g ∈ C∞V ∗Q). (5.117)

The corresponding symplectic foliation coincides with the fibration V ∗Q→
R. The symplectic forms on the fibres of V ∗Q → R are the pull–backs
Ωt = dpi ∧ dqi of the canonical symplectic form on the typical fibre
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T ∗M of the Legendre bundle V ∗Q → R with respect to trivialization
maps [Cariñena and Rañada (1989); Hamoui and Lichnerowicz (1984);
Sardanashvily (1998)]. Given such a trivialization, the Poisson structure
(5.117) is isomorphic to the product of the zero Poisson structure on R and
the canonical symplectic structure on T ∗M .

An automorphism ρ of the Legendre bundle V ∗Q → R is a canonical
transformation of the Poisson structure (5.117) iff it preserves the canon-
ical 3–form Ω (5.116). Let us emphasize that canonical transformations
are compatible with the fibration V ∗Q → R, but not necessarily with the
fibration πQ : V ∗Q→ Q.

With respect to the Poisson bracket (5.117), the Hamiltonian vector–
field ϑf for a function f on the momentum phase–space manifold V ∗Q is
given by

ϑf = ∂if∂i − ∂if∂i.

A Hamiltonian vector–field, by definition, is canonical. Conversely, every
vertical canonical vector–field on the Legendre bundle V ∗Q −→ R is locally
a Hamiltonian vector–field.

To prove this, let σ be a one–form on V ∗Q. If σ ∧ dt is closed form, it
is exact. Since V ∗Q is diffeomorphic to R × T ∗M , we have the de Rham
cohomology group

H2(V ∗Q) = H0(R)⊗H2(T ∗M)⊕H1(R)⊗H1(T ∗M).

The form σ ∧ dt belongs to its second item which is zero.
If the two–form σ ∧ dt is exact, then σ ∧ dt = dg ∧ dt locally [Giachetta

et. al. (1997)].
Let γ = ∂t + γi∂i + γi∂

i be a canonical connection on the Legendre
bundle V ∗Q −→ R. Its components obey the relations

∂iγj − ∂jγi = 0, ∂iγj − ∂jγi = 0, ∂jγ
i + ∂iγj = 0.

Canonical connections constitute an affine space modelled over the vector
space of vertical canonical vector–fields on V ∗Q −→ R.

If γ is a canonical connection, then the form γcΩ is exact. Every con-
nection Γ on Q→ R induces the connection on V ∗Q→ R,

V ∗Γ = ∂t + Γi∂i − pi∂jΓi∂j ,

which is a Hamiltonian connection for the frame Hamiltonian form

V ∗ΓcΩ = dHΓ, HΓ = pidq
i − piΓidt. (5.118)
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Thus, every canonical connection γ on V ∗Q defines an exterior one–
form H modulo closed forms so that dH = γcΩ. Such a form is called a
locally Hamiltonian form.

Every locally Hamiltonian form on the momentum phase–space V ∗Q is
locally a Hamiltonian form modulo closed forms. Given locally Hamiltonian
forms Hγ and Hγ′ , their difference σ = Hγ − Hγ′ is a one–form on V ∗Q

such that the two–form σ ∧ dt is closed. The form σ ∧ dt is exact and
σ = fdt+dg locally. Put Hγ′ = HΓ where Γ is a connection on V ∗Q −→ R.
Then Hγ modulo closed forms takes the local form Hγ = HΓ + fdt, and
coincides with the pull–back of the Liouville form Ξ on T ∗Q by the local
section p = −piΓi + f of the fibre bundle (5.100).

Conversely, each Hamiltonian form H on the momentum phase–space
V ∗Q admits a unique canonical connection γH on V ∗Q −→ R such that the
relation (5.102) holds. Given a Hamiltonian form H, its exterior differential

dH = h∗dΞ = (dpi + ∂iHdt) ∧ (dqi − ∂iHdt)

is a presymplectic form of constant rank 2m since the form

(dH)m = (dpi ∧ dqi)m −m(dpi ∧ dqi)m−1 ∧ dH ∧ dt

is nowhere vanishing. It is also seen that (dH)m∧dt 6= 0. It follows that the
kernel of dH is a 1D distribution. Then the desired Hamiltonian connection

γH = ∂t + ∂iH∂i − ∂iH∂i (5.119)

is a unique vector–field γH on V ∗Q such that γHcdH = 0 and γHcdt = 1.
Hamiltonian forms constitute an affine space modelled over the vec-

tor space of horizontal densities fdt on V ∗Q → R, i.e., over C∞(V ∗Q).
Therefore Hamiltonian connections γH form an affine space modelled over
the vector space of Hamiltonian vector–fields. Every Hamiltonian form H

defines the associated Hamiltonian map

Ĥ = j1πQ ◦ γH : ∂t + ∂iH : V ∗Q→ J1(R, Q). (5.120)

With the Hamiltonian map (5.120), we have another Hamiltonian form

H bH = −ĤcΘ = pidq
i − pi∂iH.

Note that H bH = H iff H is a frame Hamiltonian form.
Given a Hamiltonian connection γH (5.119), the corresponding Hamil-

tonian equations DγH = 0 take the coordinate form

q̇i = ∂iH, ṗi = −∂iH. (5.121)
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Their classical solutions are integral sections of the Hamiltonian connection
γH , i.e., ṙ = γH ◦ r. On sections r of the Legendre bundle V ∗Q −→ R, the
Hamiltonian equations (5.121) are equivalent to the relation

r∗(ucdH) = 0 (5.122)

which is assumed to hold for any vertical vector–field u on V ∗Q −→ R.
A Hamiltonian form H (5.118) is the Poincaré–Cartan form for the

Lagrangian on the jet space J1(R, V )∗Q,

LH = h0(H) = (piq̇i −H)ω. (5.123)

Given a projectable vector–field u on the configuration bundle Q −→ R and
its lift onto the Legendre bundle V ∗Q −→ R,

ũ = ut∂t + ui∂i − ∂iujpj∂i, we have

LeuH = LJ1euLH . (5.124)

Note that the Hamiltonian equations (5.121) for H are exactly the La-
grangian equations for LH , i.e., they characterize the kernel of the Euler–
Lagrangian operator

EH : J1(R, V )∗Q→ V ∗V ∗Q, EH = (q̇i − ∂iH)dpi − (ṗi + ∂iH)dqi

for the Lagrangian LH , called the Hamiltonian operator for H.
Using the relation (5.124), let us get the Hamiltonian conservation laws

in time–dependent mechanics. As in field theory, by gauge transformations
in time–dependent mechanics are meant automorphism of the configuration
bundle Q→ R, but only over translations of the base R. Then, projectable
vector–fields on V ∗Q→ R,

u = ut∂t + ui∂i, ucdt = ut = const, (5.125)

can be seen as generators of local 1–parameter groups of local gauge trans-
formations. Given a Hamiltonian form H (5.165), its Lie derivative (5.124)
reads

LeuH = Lj1euLH = (−ut∂tH+ pi∂tu
i − ui∂iH+ ∂ju

ipi∂
jH)dt. (5.126)

The first variational formula (5.109) applied to the Lagrangian LH (5.123)
leads to the weak identity LeuH ≈ dt(ucH)dt. If the Lie derivative (5.126)
vanishes, we have the conserved symmetry current

Ju = ucdH = piu
i − utH, (5.127)
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along u. Every vector–field (5.125) is a superposition of a vertical vector–
field and a reference frame on Q→ R. If u is a vertical vector–field, Ju is
the Nöther current

Ju(q) = ucq = piu
i, (q = pidq

i ∈ V ∗Q). (5.128)

The symmetry current along a reference frame Γ, given by

JΓ = piΓi −H = −H̃Γ,

is the energy function with respect to the reference frame Γ, taken with
the sign minus [Echeverŕıa et. al. (1995); Mangiarotti and Sardanashvily
(1998); Sardanashvily (1998)]. Given a Hamiltonian form H, the energy
functions H̃Γ constitute an affine space modelled over the vector space of
Nöther currents. Also, given a Hamiltonian form H, the conserved currents
(5.127) form a Lie algebra with respect to the Poisson bracket

{Ju,Ju′}V = J[u,u′].

The second of the above constructions enables us to represent the r.h.s.
of the evolution equation (5.107) as a pure Poisson bracket. Given a Hamil-
tonian form H = h∗Ξ, let us consider its pull–back ζ∗H onto the cotangent
bundle T ∗Q. Note that the difference Ξ− ζ∗H is a horizontal one–form on
T ∗Q→ R, while

H∗ = ∂tc(Ξ− ζ∗H) = p+H (5.129)

is a function on T ∗Q. Then the relation

ζ∗(LγHf) = {H∗, ζ∗f}T (5.130)

holds for every function f ∈ C∞(V ∗Q). In particular, given a projectable
vector–field u (5.125), the symmetry current Ju (5.127) is conserved iff

{H∗, ζ∗Ju}T = 0.

Moreover, let ϑH∗ be the Hamiltonian vector–field for the function H∗
(5.129) with respect to the canonical Poisson structure {, }T on T ∗Q. Then

Tζ(ϑH∗) = γH .
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5.6.9 Time–Dependent Constraints

The relation (5.130) enables us to extend the constraint algorithm of conser-
vative mechanics and time–dependent mechanics on a product R×M (see
[Chinea et. al. (1994); León and Marrero (1993)]) to mechanical systems
subject to time–dependent transformations.

Let H be a Hamiltonian form on the momentum phase–space manifold
V ∗Q. In accordance with the relation (5.130), a constraint f ∈ IN is
preserved if the bracket in (5.130) vanishes. It follows that the solutions of
the Hamiltonian equations (5.121) do not leave the constraint space N if

{H∗, ζ∗IN}T ⊂ ζ∗IN . (5.131)

If the relation (5.131) fails to hold, let us introduce secondary constraints
{H∗, ζ∗f}T , f ∈ IN , which belong to ζ∗C∞(V ∗Q). If the collection of
primary and secondary constraints is not closed with respect to the relation
(5.131), let us add the tertiary constraints {H∗, {H∗, ζ∗fa}T }T and so on.

Let us assume that N is a final constraint space for a Hamiltonian
form H. If a Hamiltonian form H satisfies the relation (5.131), so is a
Hamiltonian form

Hf = H − fdt, (5.132)

where f ∈ I ′N is a first class constraint. Though Hamiltonian forms H and
Hf coincide with each other on the constraint space N , the corresponding
Hamiltonian equations have different solutions on the constraint space N
because dH|N 6= dHf |N . At the same time, d(i∗NH) = d(i∗NHf ). Therefore,
let us introduce the constrained Hamiltonian form

HN = i∗NHf , (5.133)

which is the same for all f ∈ I ′N . Note that HN (5.133) is not a true
Hamiltonian form on N −→ R in general. On sections r of the fibre bundle
N −→ R, we can write the equations

r∗(uNcdHN ) = 0, (5.134)

where uN is an arbitrary vertical vector–field on N −→ R. They are called
the constrained Hamiltonian equations.

For any Hamiltonian form Hf (5.132), every solution of the Hamilto-
nian equations which lives in the constraint space N is a solution of the
constrained Hamiltonian equations (5.134). The constrained Hamiltonian
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equations can be written as

r∗(uNcdi∗NHf ) = r∗(uNcdHf |N ) = 0. (5.135)

They differ from the Hamiltonian equations (5.122) for Hf restricted to N
which read

r∗(ucdHf |N ) = 0, (5.136)

where r is a section of N → R and u is an arbitrary vertical vector–field
on V ∗Q → R. A solution r of the equations (5.136) satisfies the weaker
condition (5.135).

One can also consider the problem of constructing a generalized Hamil-
tonian system, similar to that for Dirac constraint system in conservative
mechanics [Mangiarotti and Sardanashvily (1998)]. Let H satisfies the con-
dition {H∗, ζ∗I ′N}T ⊂ IN , whereas {H∗, ζ∗I ′N}T 6⊂ IN . The goal is to find
a constraint f ∈ IN such that the modified Hamiltonian H − fdt would
satisfy both the conditions

{H∗ + ζ∗f, ζ∗I ′N}T ⊂ ζ∗IN , {H∗ + ζ∗f, ζ∗IN}T ⊂ ζ∗IN .

The first of them is fulfilled for any f ∈ IN , while the latter is an equation
for a second–class constraint f .

Note that, in contrast with the conservative case, the Hamiltonian
vector–fields ϑf for the first class constraints f ∈ I ′N in time–dependent
mechanics are not generators of gauge symmetries of a Hamiltonian form in
general. At the same time, generators of gauge symmetries define an ideal
of constraints as follows.

5.6.10 Lagrangian Constraints

Let us consider the Hamiltonian description of Lagrangian mechanical sys-
tems on a configuration bundle Q → R. If a Lagrangian is degenerate, we
have the Lagrangian constraint subspace of the Legendre bundle V ∗Q and
a set of Hamiltonian forms associated with the same Lagrangian. Given a
Lagrangian L (5.99) on the velocity phase–space J1(R, Q), a Hamiltonian
form H on the momentum phase–space V ∗Q is said to be associated with
L if H satisfies the relations

L̂ ◦ Ĥ ◦ L̂ = L̂, and H = H bH + Ĥ∗L (5.137)
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where Ĥ and L̂ are the Hamiltonian map (5.120) and the Legendre map
(5.108), respectively. Here, L̂ ◦ Ĥ is the projector

pi(z) = πi(t, qi, ∂jH(z)), (z ∈ NL), (5.138)

from Π onto the Lagrangian constraint space NL = L̂(J1(R, Q)). Therefore,
Ĥ ◦ L̂ is the projector from J1(R, Q) onto Ĥ(NL). A Hamiltonian form is
called weakly associated with a Lagrangian L if the condition (5.137) holds
on the Lagrangian constraint space NL.

If a bundle map Φ : V ∗Q → J1(R, Q) obeys the relation (5.137), then
the Hamiltonian form H = −ΦcΘ + Φ∗L is weakly associated with the
Lagrangian L. If Φ = Ĥ, then H is associated with L [Giachetta et. al.
(1997)].

Any Hamiltonian form H weakly associated with a Lagrangian L obeys
the relation

H|NL = Ĥ∗HL|NL , (5.139)

where HL is the Poincaré–Cartan form (5.110). The relation (5.137) takes
the coordinate form

H(z) = pi∂
iH−L(t, qi, ∂jH(z)), (z ∈ NL). (5.140)

Substituting (5.138) and (5.140) in (5.165), we get the relation (5.139).
The difference between associated and weakly associated Hamiltonian

forms lies in the following. Let H be an associated Hamiltonian form, i.e.,
the equality (5.140) holds everywhere on V ∗Q. The exterior differential of
this equality leads to the relations

∂tH(z) = −(∂tL) ◦ Ĥ(z), ∂iH(z) = −(∂iL) ◦ Ĥ(z),

(pi − (∂tiL)(t, qi, ∂jtH))∂it∂
a
tH = 0, (z ∈ NL).

The last of them shows that the Hamiltonian form is not regular outside
the Lagrangian constraint space NL. In particular, any Hamiltonian form is
weakly associated with the Lagrangian L = 0, while the associated Hamil-
tonian forms are only HΓ.

Here we restrict our consideration to almost regular Lagrangians L, i.e.,
if: (i) the Lagrangian constraint space NL is a closed imbedded subbundle
iN : NL −→ V ∗Q of the bundle V ∗Q −→ Q, (ii) the Legendre map L̂ :
J1(R, Q) −→ NL is a fibre bundle, and (iii) the pre-image L̂−1(z) of any
point z ∈ NL is a connected submanifold of J1(R, Q).
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A Hamiltonian form H weakly associated with an almost regular La-
grangian L exists iff the fibre bundle J1(R, V )∗Q −→ NL admits a global
section.

The condition (iii) leads to the following property [Giachetta et. al.
(1997); Mangiarotti and Sardanashvily (1998)]. The Poincaré–Cartan form
HL for an almost regular Lagrangian L is constant on the connected pre–
image L̂−1(z) of any point z ∈ NL.

An immediate consequence of this fact is the following assertion [Gia-
chetta et. al. (1997)]. All Hamiltonian forms weakly associated with an
almost regular Lagrangian L coincide with each other on the Lagrangian
constraint space NL, and the Poincaré–Cartan form HL for L is the pull–
back

HL = L̂∗H, πiq̇
i − L = H(t, qj , πj),

of any such a Hamiltonian form H.
It follows that, given Hamiltonian forms H an H ′ weakly associated

with an almost regular Lagrangian L, their difference is fdt, (f ∈ IN ).
Above proposition enables us to connect Lagrangian and Cartan equations
for an almost regular Lagrangian L with the Hamiltonian equations for
Hamiltonian forms weakly associated with L [Giachetta et. al. (1997)].

Let a section r of V ∗Q −→ R be a solution of the Hamiltonian equations
(5.121) for a Hamiltonian form H weakly associated with an almost regular
Lagrangian L. If r lives in the constraint space NL, the section c = πQ ◦ r
of Q −→ R satisfies the Lagrangian equations (5.111), while c = Ĥ ◦ r obeys
the Cartan equations (5.113).

Given an almost regular Lagrangian L, let a section c of the jet bundle
J1(R, Q) −→ R be a solution of the Cartan equations (5.113). Let H be a
Hamiltonian form weakly associated with L, and let H satisfy the relation

Ĥ ◦ L̂ ◦ c = j1(π1
0 ◦ c). (5.141)

Then, the section r = L̂ ◦ c of the Legendre bundle V ∗Q −→ R is a solution
of the Hamiltonian equations (5.121) for H. Since Ĥ ◦ L̂ is a projection
operator, the condition (5.141) implies that the solution s of the Cartan
equations is actually an integrable section c = ċ where c is a solution of the
Lagrangian equations.

Given a Hamiltonian form H weakly associated with an almost regular
Lagrangian L, let us consider the corresponding constrained Hamiltonian
form HN (5.133). HN is the same for all Hamiltonian forms weakly associ-
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ated with L, and HL = L̂∗HN .
For any Hamiltonian form H weakly associated with an almost regular

Lagrangian L, every solution of the Hamiltonian equations which lives in the
Lagrangian constraint spaceNL is a solution of the constrained Hamiltonian
equations (5.134).

Using the equality HL = L̂∗HN , one can show that the constrained
Hamiltonian equations (5.134) are equivalent to the Hamilton–de Donder
equations (5.115) and are quasi–equivalent to the Cartan equations (5.114)
[Giachetta et. al. (1997); Mangiarotti and Sardanashvily (1998); Lopez and
Marsden (2003)].

5.6.11 Quadratic Degenerate Lagrangian Systems

Given a configuration bundleQ→ R, let us consider a quadratic Lagrangian
L which has the coordinate expression

L =
1
2
aij q̇

iq̇j + biq̇
i + c, (5.142)

where a, b and c are local functions on Q. This property is coordinate–
independent due to the affine transformation law of the coordinates q̇i.
The associated Legendre map

pi ◦ L̂ = aij q̇
j + bi (5.143)

is an affine map over Q. It defines the corresponding linear map

L : V Q −→ V ∗Q, pi ◦ L = aij q̇
j . (5.144)

Let the Lagrangian L (5.142) be almost regular, i.e., the matrix func-
tion aij is of constant rank. Then the Lagrangian constraint space NL =
L̂(J1(R, Q)) is an affine subbundle of the bundle V ∗Q −→ Q, modelled over
the vector subbundle NL (5.144) of V ∗Q −→ Q. Hence, NL −→ Q has a
global section. For the sake of simplicity, let us assume that it is the canon-
ical zero section 0̂(Q) of V ∗Q −→ Q. Then NL = NL. Therefore, the kernel
of the Legendre map (5.143) is an affine subbundle of the affine jet bundle
J1(R, Q) −→ Q, modelled over the kernel of the linear map L (5.144). Then
there exists a connection Γ on the fibre bundle Q −→ R, given by

Γ : Q −→ Ker L̂ ⊂ J1(R, Q), with aijΓjµ + bi = 0.
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Connections Γ constitute an affine space modelled over the linear space of
vertical vector–fields υ on Q −→ R, satisfying the conditions

aijυ
j = 0 (5.145)

and, as a consequence, the conditions υibi = 0. If the Lagrangian (5.142)
is regular, the connection Γ is unique.

There exists a linear bundle map

σ : V ∗Q −→ V Q, q̇i ◦ σ = σijpj ,

such that L◦σ◦iN = iN . The map σ is a solution of the algebraic equations

aijσ
jkakb = aib.

There exist the bundle splitting

V Q = Ker a⊕ E′ (5.146)

and a nonholonomic atlas of this bundle such that transition functions of
Ker a and E′ are independent. Since a is a non–degenerate fibre metric in
E′, there exists an atlas of E′ such that a is brought into a diagonal matrix
with non–vanishing components aAA. Due to the splitting (5.146), we have
the corresponding bundle splitting

V ∗Q = (Ker a)∗ ⊕ Im a. (5.147)

Then the desired map σ is represented by a direct sum σ1 ⊕ σ0 of an
arbitrary section σ1 of the bundle ∨2 Ker a∗ → Q and the section σ0 of the
bundle ∧2E′ → Q, which has non–vanishing components σAA = (aAA)−1

with respect to the above atlas of E′. Moreover, σ satisfies the particular
relations

σ0 = σ0 ◦ L ◦ σ0, a ◦ σ1 = 0, σ1 ◦ a = 0. (5.148)

The splitting (5.146) leads to the splitting

J1(R, Q) = S(J1(R, Q))⊕F(J1(R, Q)) = Ker L̂⊕ Im(σ ◦ L̂),(5.149)

q̇i = Si + F i = [q̇i − σik0 (akj q̇j + bk)] + [σik0 (akj q̇j + bk)], (5.150)

while the splitting (5.147) can be written as

V ∗Q = R(V ∗Q)⊕ P(V ∗Q) = Kerσ0 ⊕NL, (5.151)

pi = Ri + Pi = [pi − aijσjk0 pk] + [aijσ
jk
0 pk]. (5.152)



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

854 Applied Differential Geometry: A Modern Introduction

Note that, with respect to the coordinates Siα and F iα (5.150), the La-
grangian (5.142) reads

L =
1
2
aijF iFj + c′,

while the Lagrangian constraint space is given by the reducible constraints

Ri = pi − aijσjk0 pk = 0.

Given the linear map σ and the connection Γ as defined above, let us
consider the affine Hamiltonian map

Φ = Γ̂ + σ : V ∗Q −→ J1(R, Q), Φi = Γi + σijpj , (5.153)

and the Hamiltonian form

H = HΦ + Φ∗L = pidq
i − [piΓi +

1
2
σ0
ijpipj + σ1

ijpipj − c′]dt(5.154)

= (Ri + Pi)dqi − [(Ri + Pi)Γi +
1
2
σij0 PiPj + σij1 pipj − c′]dt.

In particular, if σ1 is non–degenerate, so is the Hamiltonian form H.
The Hamiltonian forms of the type H, parameterized by connections Γ,

are weakly associated with the Lagrangian (5.142) and constitute a com-
plete set. Then H is weakly associated with L. Let us write the correspond-
ing Hamiltonian equations (5.121) for a section r of the Legendre bundle
V ∗Q −→ R. They are

ċ = (Γ̂ + σ) ◦ r, c = πQ ◦ r. (5.155)

Due to the surjections S and F (5.150), the Hamiltonian equations (5.155)
break in two parts

S ◦ ċ = Γ ◦ c, ṙi − σik(akj ṙj + bk) = Γi ◦ c, (5.156)

F ◦ ċ = σ ◦ r, σik(akj ṙj + bk) = σikrk. (5.157)

Let c be an arbitrary section of Q −→ R, e.g., a solution of the Lagrangian
equations. There exists a connection Γ such that the relation (5.156) holds,
namely, Γ = S ◦ Γ′, where Γ′ is a connection on Q −→ R which has c as an
integral section.

If σ1 = 0, then Φ = Ĥ and the Hamiltonian forms H are associated with
the Lagrangian (5.142). Thus, for different σ1, we have different complete
sets of Hamiltonian forms H, which differ from each other in the term
υiRi, where υ are vertical vector–fields (5.145). This term vanishes on the
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Lagrangian constraint space. The corresponding constrained Hamiltonian
form HN = i∗NH and the constrained Hamiltonian equations (5.134) can
be written.

For every Hamiltonian form H, the Hamiltonian equations (5.121) and
(5.157) restricted to the Lagrangian constraint space NL are equivalent to
the constrained Hamiltonian equations.

Due to the splitting (5.151), we have the corresponding splitting of the
vertical tangent bundle VQV ∗Q of the bundle V ∗Q −→ Q. In particular,
any vertical vector–field u on V ∗Q −→ R admits the decomposition

u = [u− uTN ] + uTN , with uTN = ui∂i + aijσ
jk
0 uk∂

i,

such that uN = uTN |NL is a vertical vector–field on the Lagrangian con-
straint space NL −→ R. Let us consider the equations

r∗(uTNcdH) = 0

where r is a section of V ∗Q −→ R and u is an arbitrary vertical vector–field
on V ∗Q −→ R. They are equivalent to the pair of equations

r∗(aijσ
jk
0 ∂

icdH) = 0, (5.158)

r∗(∂icdH) = 0. (5.159)

Restricted to the Lagrangian constraint space, the Hamiltonian equa-
tions for different Hamiltonian forms H associated with the same quadratic
Lagrangian (5.142) differ from each other in the equations (5.156). These
equations are independent of momenta and play the role of gauge–type con-
ditions.

5.6.12 Time–Dependent Integrable Hamiltonian Systems

Recall that the configuration space of a time–dependent mechanical system
is a fibre bundle M → R over the time axis R equipped with the bundle
coordinates qα ≡ (t, qk), for k = 1, . . . ,m. The corresponding momen-
tum phase–space is the vertical cotangent bundle V ∗M of M → R with
holonomic bundle coordinates (t, qk, pk).

Recall that the cotangent bundle T ∗M of M is coordinated by [Man-
giarotti and Sardanashvily (1998); Giachetta et. al. (1997)]

(t, qk, p0 = p, pk), p′ = p+
∂qk

∂t
pk, (5.160)
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and plays the role of the homogeneous momentum phase–space of time–
dependent mechanics. It admits the canonical Liouville form Ξ = pαdq

α,
the canonical symplectic form ΩT = dΞ, and the corresponding Poisson
bracket

{f, f ′}T = ∂αf∂αf
′ − ∂αf∂αf ′, (f, f ′ ∈ C∞(T ∗M)). (5.161)

There is a canonical 1D fibre bundle

ζ : T ∗M → V ∗M, (5.162)

whose kernel is the annihilator of the vertical tangent bundle VM ⊂ TM .
The transformation law (5.160) shows that it is a trivial affine bundle.
Indeed, given a global section h of ζ, one can equip T ∗M with the fibre
coordinate r = p− h possessing the identity transition functions.

The fibre bundle (5.162) gives the vertical cotangent bundle V ∗M with
the canonical Poisson structure {, }V such that

ζ∗{f, f ′}V = {ζ∗f, ζ∗f ′}T , (5.163)

{f, f ′}V = ∂kf∂kf
′ − ∂kf∂kf ′, (5.164)

for all f, f ′ ∈ C∞(V ∗M). The corresponding symplectic foliation coincides
with the fibration V ∗M → R.

However, the Poisson structure (5.164) fails to give any dynamical equa-
tion on the momentum phase–space V ∗M because Hamiltonian vector–
fields

ϑf = ∂kf∂k − ∂kf∂k, ϑfcdf ′ = {f, f ′}V , (f, f ′ ∈ C∞(V ∗M)),

of functions on V ∗M are vertical. Hamiltonian dynamics of time–
dependent mechanics is described in a different way as a particular Hamil-
tonian dynamics on fibre bundles [Mangiarotti and Sardanashvily (1998);
Giachetta et. al. (1997)].

A Hamiltonian on the momentum phase–space V ∗M → R of time–
dependent mechanics is defined as a global section

h : V ∗M → T ∗M, p ◦ h = −H(t, qj , pj),

of the affine bundle ζ (5.162). It induces the pull–back Hamiltonian form

H = h∗Ξ = pkdq
k −Hdt, (5.165)
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on V ∗M . Given H (5.165), there exists a unique vector–field γH on V ∗M

such that

γHcdt = 1, γHcdH = 0. (5.166)

This vector–field reads

γH = ∂t + ∂kH∂k − ∂kH∂k. (5.167)

It defines the first–order Hamiltonian equation

ṫ = 1, q̇k = ∂kH, ṗk = −∂kH (5.168)

on V ∗M , where (t, qk, pk, ṫ, q̇k, ṗk) are holonomic coordinates on the tangent
bundle TV ∗M . Solutions of this equation are trajectories of the vector–field
γH . They assemble into a (regular) foliation of V ∗M .

A first integral of the Hamiltonian equation (5.168) is defined as a
smooth real function F on V ∗M whose Lie derivative

LγHF = γHcdF = ∂tF + {H, F}V

along the vector–field γH (5.167) vanishes, i.e., the function F is constant on
trajectories of the vector–field γH . A time–dependent Hamiltonian system
(V ∗M,H) on V ∗M is said to be completely integrable if the Hamiltonian
equation (5.168) admits m first integrals Fk which are in involution with
respect to the Poisson bracket {, }V (5.164) and whose differentials dFk
are linearly independent almost everywhere. This system can be extended
to an autonomous completely integrable Hamiltonian system on T ∗M as
follows.

Let us consider the pull–back ζ∗H of the Hamiltonian form H = h∗Ξ
onto the cotangent bundle T ∗M . Note that the difference Ξ − ζ∗h∗Ξ is a
horizontal 1–form on T ∗M → R and that

H∗ = ∂tc(Ξ− ζ∗h∗Ξ)) = p+H (5.169)

is a function on T ∗M [Sniatycki (1980)]. Let us regard H∗ (5.169) as
a Hamiltonian of an autonomous Hamiltonian system on the symplectic
manifold (T ∗M,ΩT ). The Hamiltonian vector–field of H∗ on T ∗M reads

γT = ∂t − ∂tH∂0 + ∂kH∂k − ∂kH∂k.

It is projected onto the vector–field γH (5.167) on V ∗M , and the relation

ζ∗(LγHf) = {H∗, ζ∗f}T , (f ∈ C∞(V ∗M)).
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holds. An immediate consequence of this relation is the following.
Let (V ∗M,H;Fk) be a time–dependent completely integrable Hamilto-

nian system with first integrals {Fk} on V ∗M . Then (T ∗M ;H∗, ζ∗Fk) is an
autonomous completely integrable Hamiltonian system on T ∗M whose first
integrals {H∗, ζ∗Fk} are in involution with respect to the Poisson bracket
{, }T (5.161). Furthermore, let N be a connected invariant manifold of the
time–dependent completely integrable Hamiltonian system (V ∗M,H;Fk).
Then h(N) ⊂ T ∗M is a connected invariant manifold of the completely in-
tegrable Hamiltonian system (T ∗M ;H∗, ζ∗Fk) on T ∗M . If N contains no
critical points of first integrals Fk, then {H∗, ζ∗Fk} have no critical points
in h(N).

5.6.13 Time–Dependent Action–Angle Coordinates

Let us introduce time–dependent action–angle coordinates around an in-
variant manifold N of a time–dependent completely integrable Hamiltonian
system (V ∗M,H) as those induced by the action–angle coordinates around
the invariant manifold h(N) of the autonomous completely integrable sys-
tem (T ∗M,H∗).

Let M ′ be a connected invariant manifold of an autonomous completely
integrable system (Fα), α = 1, . . . , n, on a symplectic manifold (Z,ΩZ), and
let the Hamiltonian vector–fields of first integrals Fα on M ′ be complete.
Let there exist a neighborhood U of M ′ such that Fα have no critical points
in U and the submersion ×Fα : U → Rn is a trivial fibre bundle over a
domain V ′ ⊂ Rn. Then U is isomorphic to the symplectic annulus

W = V ′ × (Rn−m × Tm),

provided with the generalized action–angle coordinates

(I1, . . . , In;x1, . . . , xn−m;φ1, . . . , φm)

such that the symplectic form on W reads

ΩZ = dIi ∧ xi + dIn−m+k ∧ dφk,

and the first integrals Fα are functions of the action coordinates (Iα) only.
In particular, let M ′ be a compact invariant manifold of a completely in-

tegrable system {Fα}, α = 1, . . . , n, on a symplectic manifold (Z,ΩZ) which
does not contain critical points of the first integrals Fα. Let the vector–
field γH (5.167) be complete. Let a connected invariant manifold N of a
time–dependent completely integrable Hamiltonian system (V ∗M,H;Fk)
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contain no critical points of first integrals Fk, and let its projection N0

onto the fibre V ∗0 M along trajectories of γH be compact. Then the in-
variant manifold h(N) of the completely integrable Hamiltonian system
(T ∗M ;H∗, ζ∗Fk) has an open neighborhood U .

Now, the open neighborhood U of the invariant manifold h(N) of the
completely integrable Hamiltonian system (T ∗M ;H∗, ζ∗Fk) is isomorphic
to the symplectic annulus

W ′ = V ′ × (R× Tm), V ′ = (−ε, ε)× V, (5.170)

provided with the generalized action–angle coordinates

(I0, . . . , Im; t, φ1, . . . , φm). (5.171)

Moreover, we find that J0 = r, aα0 = δα0 and, as a consequence,

a0
0 =

∂I0
∂J0

= 1, a0
i =

∂Ii
∂J0

= 0,

i.e., the action coordinate I0 is linear in the coordinate r, while Ii are
independent of r. With respect to the coordinates (5.171), the symplectic
form on W ′ reads

ΩT = dI0 ∧ dt+ dIk ∧ dφk,

the Hamiltonian H∗ is an affine function H∗ = I0 +H′(Ij) of the action
coordinate I0, while the first integrals ζ∗Fk depends only on the action
coordinates Ii. The Hamiltonian vector–field of the Hamiltonian H∗ is

γT = ∂t + ∂iH′∂i. (5.172)

Since the action coordinates Ii are independent on the coordinate r, the
symplectic annulus W ′ (5.170) inherits the composite fibration

W ′ → V × (R× Tm)→ R. (5.173)

Therefore, one can regard W = V × (R × Tm) as a momentum phase–
space of the time–dependent Hamiltonian system in question around the
invariant manifold N . It is coordinated by (Ii, t, φi), which we agree to call
the time–dependent action–angle coordinates. By the relation similar to
(5.163), W can be equipped with the Poisson structure

{f, f ′}W = ∂if∂if
′ − ∂if∂if ′,
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while the global section h′ : W →W ′ such that I0 ◦h′ = −H′, of the trivial
bundle ζ (5.173), gives W with the Hamiltonian form

H ′ = Iidφ
i −H′(Ij)dt.

The associated vector–field γH (5.166) is exactly the projection onto W

of the Hamiltonian vector–field γT (5.172), and takes the same coordinate
form. It defines the Hamiltonian equation on W ,

Ii = const, φ̇
i

= ∂iH′(Ij).

One can think of this equation as being the Hamiltonian equation of a time–
dependent Hamiltonian system around the invariant manifold N relative to
time–dependent action–angle coordinates.

5.6.14 Lyapunov Stability

The notion of the Lyapunov stability of a dynamical equation on a smooth
manifold implies that this manifold is equipped with a Riemannian metric.
At the same time, no preferable Riemannian metric is associated to a first–
order dynamical equation. Here, we aim to study the Lyapunov stability of
first–order dynamical equations in non–autonomous mechanics with respect
to different (time–dependent) Riemannian metrics.

Let us recall that a solution s(t), for all t ∈ R, of a first–order dynamical
equation is said to be Lyapunov stable (in the positive direction) if for
t0 ∈ R and any ε > 0, there is δ > 0 such that, if s′(t) is another solution
and the distance between the points s(t0) and s′(t0) is inferior to δ, then
the distance between the points s(t) and s′(t) for all t > t0 is inferior to ε.
In order to formulate a criterion of the Lyapunov stability with respect to a
time–dependent Riemannian metric, we introduce the notion of a covariant
Lyapunov tensor as generalization of the well–known Lyapunov matrix.
The latter is defined as the coefficient matrix of the variation equation
[Gallavotti (1983); Hirsch and Smale (1974)], and fails to be a tensor under
coordinate transformations, unless they are linear and time–independent.
On the contrary, the covariant Lyapunov tensor is a true tensor–field, but
it essentially depends on the choice of a Riemannian metric. The following
was shown in [Sardanashvily (2002b)]:

(i) If the covariant Lyapunov tensor is negative definite in a tubular
neighborhood of a solution s at points t ≥ t0, this solution is Lyapunov
stable.
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(ii) For any first–order dynamical equation, there exists a (time–
dependent) Riemannian metric such that every solution of this equation
is Lyapunov stable.

(iii) Moreover, the Lyapunov exponent of any solution of a first–order
dynamical equation can be made equal to any real number with respect
to the appropriate (time–dependent) Riemannian metric. It follows that
chaos in dynamical systems described by smooth (C∞) first–order dynam-
ical equations can be characterized in full by time–dependent Riemannian
metrics.

5.6.15 First–Order Dynamical Equations

Let R be the time axis provided with the Cartesian coordinate t and
transition functions t′ = t+const. In geometrical terms [Mangiarotti and
Sardanashvily (1998)], a (smooth) first–order dynamical equation in non–
autonomous mechanics is defined as a vector–field γ on a smooth fibre
bundle

π : Y −→ R (5.174)

which obeys the condition γcdt = 1, i.e.,

γ = ∂t + γk∂k. (5.175)

The associated first–order dynamical equation takes the form

ṫ = 1, ẏk = γk(t, yj)∂k, (5.176)

where (t, yk, ṫ, ẏk) are holonomic coordinates on TY . Its solutions are tra-
jectories of the vector–field γ (5.175). They assemble into a (regular) folia-
tion F of Y . Equivalently, γ (5.175) is defined as a connection on the fibre
bundle (5.174).

A fibre bundle Y (5.174) is trivial, but it admits different trivializations

Y ∼= R×M, (5.177)

distinguished by fibrations Y −→M . For example, if there is a trivialization
(5.177) such that, with respect to the associated coordinates, the compo-
nents γk of the connection γ (5.175) are independent of t, one says that γ
is a conservative first–order dynamical equation on M .

Hereafter, the vector–field γ (5.175) is assumed to be complete, i.e.,
there is a unique global solution of the dynamical equation γ through each
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point of Y . For example, if fibres of Y −→ R are compact, any vector–field
γ (5.175) on Y is complete.

If the vector–field γ (5.175) is complete, there exists a trivialization
(5.177) of Y , with an atlas Ψ = {(U ; t, ya)} of a fibre bundle Y −→ R with
time–independent transition functions y′a(yb), such that any solution s of
γ reads

sa(t) = const, (for all t ∈ R),

with respect to associated bundle coordinates (t, ya). If γ is complete, the
foliation F of its trajectories is a fibration ζ of Y along these trajectories
onto any fibre of Y , e.g., Yt=0

∼= M . This fibration induces a desired
trivialization [Mangiarotti and Sardanashvily (1998)].

One can think of the coordinates (t, ya) as being the initial–date coordi-
nates because all points of the same trajectory differ from each other only
in the temporal coordinate.

Let us consider the canonical lift V γ of the vector–field γ (5.175) onto
the vertical tangent bundle V Y of Y −→ R. With respect to the holonomic
bundle coordinates (t, yk, yk) on V Y , it reads

V γ = γ + ∂jγ
kyj∂k, where ∂k =

∂

∂yk
.

This vector–field obeys the condition V γcdt = 1, and defines the first–order
dynamical equation

ṫ = 1, ẏk = γk(t, yi), (5.178)

ẏt
k

= ∂jγ
k(t, yi)yj (5.179)

on V Y . The equation (5.178) coincides with the initial one (5.176). The
equation (5.179) is the well–known variation equation. Substituting a so-
lution s of the initial dynamical equation (5.178) into (5.179), one gets a
linear dynamical equation whose solutions s are Jacobi fields of the solu-
tion s. In particular, if Y −→ R is a vector bundle, there are the canonical
splitting V Y ∼= Y ×Y and the map V Y −→ Y so that s+s obeys the initial
dynamical equation (5.178) modulo the terms of order > 1 in s.
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5.6.16 Lyapunov Tensor and Stability

5.6.16.1 Lyapunov Tensor

The collection of coefficients

lj
k = ∂jγ

k (5.180)

of the variation equation (5.179) is called the Lyapunov matrix. Clearly, it
is not a tensor under bundle coordinate transformations of the fibre bundle
Y (5.174). Therefore, we introduce a covariant Lyapunov tensor as follows.

Let a fibre bundle Y → R be provided with a Riemannian fibre metric
g, defined as a section of the symmetrized tensor product

∨2 V ∗Y → Y (5.181)

of the vertical cotangent bundle V ∗Y of Y → R. With respect to the
holonomic coordinates (t, yk, yk) on V ∗Y , it takes the coordinate form

g =
1
2
gij(t, yk)dyi ∨ dyj ,

where {dyi} are the holonomic fibre bases for V ∗Y .
Given a first–order dynamical equation γ, let

V ∗γ = γ − ∂jγkyk∂
j
, where ∂

j
=

∂

∂yj
. (5.182)

be the canonical lift of the vector–field γ (5.175) onto V ∗Y . It is a connec-
tion on V ∗Y −→ R. Let us consider the Lie derivative Lγg of the Rieman-
nian fibre metric g along the vector–field V ∗γ (5.182). It reads

Lij = (Lγg)ij = ∂tgij + γk∂kgij + ∂iγ
kgkj + ∂jγ

kgik. (5.183)

This is a section of the fibre bundle (5.181) and, consequently, a tensor with
respect to any bundle coordinate transformation of the fibre bundle (5.174).
We agree to call it the covariant Lyapunov tensor. If g is an Euclidean
metric, it becomes the following symmetrization of the Lyapunov matrix
(5.180),

Lij = ∂iγ
j + ∂jγ

i = li
j + lj

i.

Let us point the following two properties of the covariant Lyapunov
tensor.
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(i) Written with respect to the initial–date coordinates, the covariant
Lyapunov tensor is given by

Lab = ∂tgab.

(ii) Given a solution s of the dynamical equation γ and a solution s of
the variation equation (5.179), we have

Lij(t, sk(t))sisj = ∂t(gij(t, sk(t))sisj).

The definition of the covariant Lyapunov tensor (5.183) depends on the
choice of a Riemannian fibre metric on the fibre bundle Y .

If the vector–field γ is complete, there is a Riemannian fibre metric on
Y such that the covariant Lyapunov tensor vanishes everywhere. Let us
choose the atlas of the initial–date coordinates. Using the fibration ζ : Y
−→ Yt=0, one can give Y with a time–independent Riemannian fibre metric

gab(t, yc) = h(t)gab(0, yc) (5.184)

where gab(0, yc) is a Riemannian metric on the fibre Yt=0 and h(t) is a
positive smooth function on R. The covariant Lyapunov tensor with respect
to the metric (5.184) is given by

Lab = ∂thgab.

Putting h(t) = 1, we get L = 0.

5.6.16.2 Lyapunov Stability

With the covariant Lyapunov tensor (5.183), we get the following criterion
of the stability condition of Lyapunov.

Recall that, given a Riemannian fibre metric g on a fibre bundle Y

−→ R, the instant–wise distance ρt(s, s′) between two solutions s and s′ of
a dynamical equation γ on Y at an instant t is the distance between the
points s(t) and s′(t) in the Riemannian space (Yt, g(t)).

Let s be a solution of a first–order dynamical equation γ. If there exists
an open tubular neighborhood U of the trajectory s where the covariant
Lyapunov tensor (5.183) is negative-definite at all instants t ≥ t0, then
there exists an open tubular neighborhood U ′ of s such that

lim
t′→∞

[ρt′(s, s
′)− ρt(s, s′)] < 0
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for any t > t0 and any solution s′ crossing U ′. Since the condition and the
statement are coordinate–independent, let us choose the following chart of
initial–date coordinates that covering the trajectory s. Put t = 0 with-
out a loss of generality. There is an open neighborhood U0 ⊂ Y0 ∩ U of
s(0) in the Riemannian manifold (Y0, g(0)) which can be provided with the
normal coordinates (xa) defined by the Riemannian metric g(0) in Y0 and
centralized at s(0). Let us consider the open tubular U ′ = ζ−1(U0) with
the coordinates (t, xa). It is the desired chart of initial–date coordinates.
With respect to these coordinates, the solution s reads sa(t) = 0. Let
s′a(t) = ua = const be another solution crossing U ′. The instant–wise dis-
tance ρt(s, s′), t ≥ 0, between solutions s and s′ is the distance between the
points (t, 0) and (t, u) in the Riemannian manifold (Yt, g(t)). This distance
does not exceed the length

ρt(s, s
′) =

[∫ 1

0

gab(t, τuc)uaubdτ
]1/2

(5.185)

of the curve

xa = τua, (τ ∈ [0, 1]) (5.186)

in the Riemannian space (Yt, g(t)), while ρ0(s, s′) = ρ0(s, s′). The temporal
derivative of the function ρt(s, s′) (5.185) reads

∂tρt(s, s
′) =

1
2(ρt(s, s′))1/2

∫ 1

0

∂tgab(t, τuc)uaubdτ . (5.187)

Since the bilinear form ∂tgab = Lab, t ≥ 0, is negative-definite at all points
of the curve (5.186), the derivative (5.187) at all points t ≥ t0 is also
negative. Hence, we get

ρt>0(s, s′) < ρt>0(s, s′) < ρ0(s, s′) = ρ0(s, s′).

The solution s is Lyapunov stable with respect to the Riemannian fibre
metric g. One can think of the solution s as being isometrically Lyapunov
stable. Being Lyapunov stable with respect a Riemannian fibre metric g, a
solution s need not be so with respect to another Riemannian fibre metric
g′, unless g′ results from g by a time–independent transformation.

For any first–order dynamical equation defined by a complete vector–
field γ (5.175) on a fibre bundle Y −→ R, there exists a Riemannian fibre
metric on Y such that each solution of γ is Lyapunov stable. This property
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obviously holds with respect to the Riemannian fibre metric (5.184) where
h = 1.

Let λ be a real number. Given a dynamical equation γ defined by a
complete vector–field γ (5.175), there is a Riemannian fibre metric on Y

such that the Lyapunov spectrum of any solution of γ reduces to λ. To
prove this, recall that the (upper) Lyapunov exponent of a solution s′ with
respect to a solution s is defined as the limit

K(s, s′) =
−

lim
t→∞

1
t

ln(ρt(s, s
′)). (5.188)

Let us give Y with the Riemannian fibre metric (5.184) where h = exp(λt).
A simple computation shows that the Laypunov exponent (5.188) with
respect to this metric is exactly λ.

If the upper limit

λ =
−

lim
ρt=0(s,s

′)−→0
K(s, s′)

is negative, the solution s is said to be exponentially Lyapunov stable. If
there exists at least one positive Lyapunov exponent, one speaks about
chaos in a dynamical system [Gutzwiller (1990)]. This shows that chaos in
smooth dynamical systems can be characterized in full by time–dependent
Riemannian metrics.

Example

Here is a simple example which shows that solutions of a smooth first–
order dynamical equation can be made Lyapunov stable at will by the choice
of an appropriate time–dependent Riemannian metric.

Let R be the time axis provided with the Cartesian coordinate t. In
geometrical terms, a (smooth) first–order dynamical equation in non–
autonomous mechanics is defined as a vector–field γ on a smooth fibre
bundle Y −→ R which obeys the condition γcdt = 1. With respect to
bundle coordinates (t, yk) on Y , this vector–field becomes (5.175). The
associated first–order dynamical equation takes the form

ẏk = γk(t, yj)∂k,

where (t, yk, ṫ, ẏk) are holonomic coordinates on the tangent bundle TY of
Y . Its solutions are trajectories of the vector–field γ (5.175).

Let a fibre bundle Y → R be provided with a Riemannian fibre metric g,
defined as a section of the symmetrized tensor product ∨2V ∗Y → Y of the
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vertical cotangent bundle V ∗Y of Y → R. With respect to the holonomic
coordinates (t, yk, yk) on V ∗Y , it takes the coordinate form

g =
1
2
gij(t, yk)dyi ∨ dyj ,

where {dyi} are the holonomic fibre bases for V ∗Y .
Recall that above we have proposed the following: Let λ be a real

number. Given a dynamical equation defined by a complete vector–field γ

(5.175), there exists a Riemannian fibre metric on Y such that the Lyapunov
spectrum of any solution of γ is λ. The following example aims to illustrate
this fact.

Let us consider 1D motion on the axis R defined by the first–order
dynamical equation

ẏ = y (5.189)

on the fibre bundle Y = R×R −→ R coordinated by (t, y). Solutions of the
equation (5.189) read

s(t) = c exp(t), (with c = const). (5.190)

Let eyy = 1 be the standard Euclidean metric on R. With respect to this
metric, the instant–wise distance between two arbitrary solutions

s(t) = c exp(t), s′(t) = c′ exp(t) (5.191)

of the equation (5.189) is

ρt(s, s
′)e = |c− c′| exp(t).

Hence, the Lyapunov exponent K(s, s′) (5.188) equals 1, and so is the
Lyapunov spectrum of any solution (5.190) of the first–order dynamical
equation (5.189).

Let now λ be an arbitrary real number. There exists a coordinate
y′ = y exp(−t) on R such that, written relative to this coordinate, the
solutions (5.190) of the equation (5.189) read s(t) = const. Let us choose the
Riemannian fibre metric on Y → R which takes the form gy′y′ = exp(2λt)
with respect to the coordinate y′. Then relative to the coordinate y, it
reads

gyy =
∂y′

∂y

∂y′

∂y
gy′y′ = exp(2(λ− 1)t). (5.192)
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The instant–wise distance between the solutions s and s′ (5.191) with re-
spect to the metric g (5.192) is

ρt(s, s
′) = [gyy(s(t)− s′(t))2]1/2 = |c− c′| exp(λt).

One at once gets that the Lyapunov spectrum of any solution of the differ-
ential equation (5.189) with respect to the metric (5.192) is λ.

5.7 Application: Jets and Multi–Time Rheonomic
Dynamics

Recall that a number of geometrical models in mechanics and physics are
based on the notion of ordinary, autonomous Lagrangian (i.e., a smooth
real function on R× TM). In this sense, we recall that a Lagrangian space
Ln = (M,L(x, y)) is defined as a pair which consists of a real, smooth,
nD manifold M with local coordinates xi, (i = 1, ..., n) and a regular La-
grangian L : TM → R. The geometry of Lagrangian spaces is now used in
various fields to study natural phenomena where the dependence on posi-
tion, velocity or momentum is involved [Kamron and Olver (1989)]. Also,
this geometry gives a model for both the gravitational and electromag-
netic field theory, in a very natural blending of the geometrical structure
of the space with the characteristic properties of the physical fields. Again,
there are many problems in physics and variational calculus in which time–
dependent Lagrangians are involved.

In the context exposed in [Miron et. al. (1988); Miron and Anastasiei
(1994)], the energy action functional E, attached to a given time–dependent
Lagrangian,

L : R× TM → R, (t, xi, vi) 7→ L(t, xi, vi), (i = 1, ..., n)

not necessarily homogenous with respect to the direction {vi}, is of the
form

E(c) =
∫ b

a

L(t, xi(t), ẋi(t)) dt, (5.193)

where [a, b] ⊂ R, and c : [a, b]→M is a smooth curve, locally expressed by
t 7→ xi(t), and having the velocity ẋ = (ẋi(t)). It is obvious that the non–
homogeneity of the Lagrangian L, regarded as a smooth function on the
product manifold R × TM , implies that the energy action functional E is
dependent of the parametrizations of every curve c. In order to remove this
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difficulty, [Miron et. al. (1988); Miron and Anastasiei (1994)] regard the
space R× TM like a fibre bundle over M . In this context, the geometrical
invariance group of R× TM is given by

t̄ = t, x̄i = x̄i(xj), v̄i =
∂x̄i

∂xj
vj . (5.194)

The structure of the gauge group (5.194) emphasizes the absolute character
of the time t from the classical rheonomic Lagrangian mechanics. At the
same time, we point out that the gauge group (5.194) is a subgroup of the
gauge group of the configuration bundle J1(R,M), given as

t̄ = t̄(t), x̄i = x̄i(xj), v̄i =
∂x̄i

∂xj
dt

dt̄
vj . (5.195)

In other words, the gauge group (5.195) of the jet bundle J1(R,M), from
the relativistic rheonomic Lagrangian mechanics is more general than that
used in the classical rheonomic Lagrangian mechanics, which ignores the
temporal reparametrizations. A deep exposition of the physical aspects
of the classical rheonomic Lagrangian geometry is done by [Ikeda (1990)],
while the classical rheonomic Lagrangian mechanics is done by [Matsumoto
(1982)].

Therefore, to remove the parametrization dependence of E, they ignore
the temporal repametrizations on R× TM . Naturally, in these conditions,
their energy functional becomes a well defined one, but their approach
stands out by the ‘absolute’ character of the time t.

In a more general geometrical approach, [Neagu and Udrişte (2000a);
Udriste (2000); Neagu (2002)] tried to remove this inconvenience. Following
this approach, we regard the mechanical 1–jet space J1(R,M) ≡ R× TM
as a fibre bundle over the base product–manifold R×M . The gauge group
of this bundle of configurations is given by 5.195. Consequently, our gauge
group does not ignore the temporal reparametrizations, hence, it stands
out by the relativistic character of the time t. In these conditions, using a
given semi–Riemannian metric h11(t) on R, we construct the more general
and natural energy action functional, setting

E(c) =
∫ b

a

L(t, xi(t), ẋi(t))
√
|h11| dt. (5.196)

Obviously, E is well defined and is independent of the curve parametriza-
tions.
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5.7.1 Relativistic Rheonomic Lagrangian Spaces

In order to develop the time–dependent Lagrangian geometry, following
[Neagu and Udrişte (2000a); Udriste (2000); Neagu (2002); Neagu and
Udrişte (2000b); Neagu (2000)], we consider L : J1(R,M) → R to be a
smooth Lagrangian function on the 1–jet bundle J1(R,M) → R, locally
expressed by (t, xi, vi) 7→ L(t, xi, vi). The so–called vertical fundamental
metrical d−tensor of L is defined by

G
(1)(1)
(i)(j) =

1
2

∂2L

∂vi∂vj
. (5.197)

Let h = (h11) be a semi–Riemannian metric on the temporal manifold
R.

A Lagrangian function L : J1(R,M) → R whose vertical fundamental
metrical d−tensor is of the form

G
(1)(1)
(i)(j) (t, xk, vk) = h11(t)gij(t, xk, vk), (5.198)

where gij(t, xk, vk) is a d−tensor on J1(R,M), symmetric, of rank n and
having a constant signature on J1(R,M), is called a Kronecker h−regular
Lagrangian function, with respect to the temporal semi–Riemannian metric
h = (h11).

A pair RLn = (J1(R,M), L), where n = dimM , which consists of
the 1−jet space J1(R,M) and a Kronecker h−regular Lagrangian function
L : J1(T,M)→ R is called a relativistic rheonomic Lagrangian space.

In our geometrization of the time–dependent Lagrangian function L that
we will construct, all entities with geometrical or physical meaning will
be directly arisen from the vertical fundamental metrical d−tensor G(1)(1)

(i)(j) .
This fact points out the metrical character (see [Gotay et. al. (1998)])
and the naturalness of the subsequent relativistic rheonomic Lagrangian
geometry.

For example, suppose that the spatial manifold M is also equipped
with a semi–Riemannian metric g = (gij(x)). Then, the time–dependent
Lagrangian function L1 : J1(R,M)→ R defined by

L1 = h11(t)gij(x)vivj (5.199)

is a Kronecker h−regular time–dependent Lagrangian function. Conse-
quently, the pair RLn = (J1(R,M), L1) is a relativistic rheonomic La-
grangian space. We underline that the Lagrangian L1 = L1

√
|h11| is exactly
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the energy Lagrangian whose extremals are the harmonic maps between the
semi–Riemannian manifolds (R, h) and (M, g). At the same time, this La-
grangian is a basic object in the physical theory of bosonic strings (compare
with subsection 6.7 below).

In above notations, taking U
(1)
(i) (t, x) as a d−tensor–field on J1(R,M)

and F : R×M → R a smooth map, the more general Lagrangian function
L2 : J1(R,M)→ R defined by

L2 = h11(t)gij(x)vivj + U
(1)
(i) (t, x)vi + F (t, x) (5.200)

is also a Kronecker h−regular Lagrangian. The relativistic rheonomic La-
grangian space RLn = (J1(R,M), L2) is called the autonomous relativistic
rheonomic Lagrangian space of electrodynamics because, in the particular
case h11 = 1, we recover the classical Lagrangian space of electrodynamics
[Miron et. al. (1988); Miron and Anastasiei (1994)] which governs the move-
ment law of a particle placed concomitantly into a gravitational field and an
electromagnetic one. From a physical point of view, the semi–Riemannian
metric h11(t) (resp. gij(x)) represents the gravitational potentials of the
space R (resp. M), the d−tensor U (1)

(i) (t, x) stands for the electromagnetic
potentials and F is a function which is called potential function. The non-
dynamical character of spatial gravitational potentials gij(x) motivates us
to use the term of ‘autonomous’.

More general, if we consider gij(t, x) a d−tensor–field on J1(R,M),
symmetric, of rank n and having a constant signature on J1(R,M), we can
define the Kronecker h−regular Lagrangian function L3 : J1(R,M) → R,
setting

L3 = h11(t)gij(t, x)vivj + U
(1)
(i) (t, x)vi + F (t, x). (5.201)

The pair RLn = (J1(R,M), L3) is a relativistic rheonomic Lagrangian space
which is called the non–autonomous relativistic rheonomic Lagrangian
space of electrodynamics. Physically, we remark that the gravitational po-
tentials gij(t, x) of the spatial manifold M are dependent of the temporal
coordinate t, emphasizing their dynamical character.

5.7.2 Canonical Nonlinear Connections

Let us consider h = (h11) a fixed semi–Riemannian metric on R and a
rheonomic Lagrangian space RLn = (J1(R,M), L), where L is a Kronecker
h−regular Lagrangian function. Let [a, b] ⊂ R be a compact interval in
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the temporal manifold R. In this context, we can define the energy action
functional of RLn, setting

E : C∞(R,M)→ R, E(c) =
∫ b

a

L(t, xi, vi)
√
|h|dt,

where the smooth curve c is locally expressed by (t)→ (xi(t)) and vi = dxi

dt .
The extremals of the energy functional E verifies the Euler–Lagrangian

equations

2G(1)(1)
(i)(j) ẍ

j +
∂2L

∂xj∂vi
ẋj − ∂L

∂xi
+

∂2L

∂t∂vi
+
∂L

∂vi
H1

11 = 0, (i = 1, ..., n),

(5.202)
where H1

11 are the Christoffel symbols of the semi–Riemannian metric h11.
Taking into account the Kronecker h−regularity of the Lagrangian func-

tion L, it is possible to rearrange the Euler–Lagrangian equations (5.202)
of the Lagrangian L = L

√
|h|, in the Poisson form [Neagu and Udrişte

(2000a)]

∆hx
i + 2Gi(t, xi, vi) = 0, (i = 1, ..., n), where (5.203)

∆hx
i = h11

{
ẍi −H1

11v
i
}
, vi = ẋi,

2Gi =
gii

2

{
∂2L

∂xj∂vi
vj − ∂L

∂xi
+

∂2L

∂t∂vi
+
∂L

∂vi
H1

11 + 2gijh11H1
11v

j

}
.

Denoting G(r)
(1)1 = h11G

r, the geometrical object G = (G(r)
(1)1) is a spa-

tial spray on J1(R,M). By a direct calculation, we deduce that the local
geometrical entities of J1(R,M)

2Sk =
gki

2

{
∂2L

∂xj∂vi
vj − ∂L

∂xi

}
,

2Hk =
gki

2

{
∂2L

∂t∂vi
+
∂L

∂vi
H1

11

}
, 2Jk = h11H1

11v
j ,

verify the following transformation rules

2Sp = 2S̄r ∂x
p

∂x̄r
+ h11 ∂x

p

∂x̄l
dt̄

dt

∂x̄lγ
∂xj

vj , 2Hp = 2H̄r ∂x
p

∂x̄r
+ h11 ∂x

p

∂x̄l
dt̄

dt

∂v̄l

∂t
,

2Jp = 2J̄ r ∂x
p

∂x̄r
− h11 ∂x

p

∂x̄l
dt̄

dt

∂v̄l

∂t
.

Consequently, the local entities 2Gp = 2Sp + 2Hp + 2Jp can be modified
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by the transformation laws

2Ḡr = 2Gp ∂x̄
r

∂xp
− h11 ∂x

p

∂x̄j
∂x̄rµ
∂xp

v̄j . (5.204)

The extremals of the energy functional attached to a Kronecker
h−regular Lagrangian function L on J1(R,M) are harmonic curves of the
time–dependent spray (H,G), with respect to the semi–Riemannian metric
h, defined by the temporal components

H
(i)
(1)1 = −1

2
H1

11(t)vi

and the local spatial components

G
(i)
(1)1 =

h11g
ik

4

[
∂2L

∂xj∂vk
vj − ∂L

∂xk
+

∂2L

∂t∂vk
+

∂L

∂xk
H1

11 + 2h11H1
11gklv

l

]
.

The time–dependent spray (H,G) constructed from the previous Theo-
rem is called the canonical time–dependent spray attached to the relativistic
rheonomic Lagrangian space RLn.

In the particular case of an autonomous electrodynamics relativistic rheo-
nomic Lagrangian space (i.e., gij(t, xk, vk) = gij(xk)), the canonical spatial
spray G is given by the components

G
(i)
(1)1 =

1
2
γijkv

jvk +
h11g

li

4

U (1)
(l)jv

j +
∂U

(1)
(l)

∂t
+ U

(1)
(l) H

1
11 −

∂F

∂xl

 , (5.205)

where U (1)
(i)j =

∂U
(1)
(i)

∂xj −
∂U

(1)
(j)

∂xi .

We have the following Theorem: The pair of local functions Γ =
(M (i)

(1)1, N
(i)
(1)j), which consists of the temporal components

M
(i)
(1)1 = 2H(i)

(1)1 = −H1
11v

i, (5.206)

and the spatial components

N
(i)
(1)j =

∂Gi(1)1

∂vj
, (5.207)

where H(i)
(1)1 and G(i)

(1)1 are the components of the canonical time–dependent
spray of RLn, represents a nonlinear connection on J1(R,M).
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The nonlinear connection Γ = (M (i)
(1)1, N

(i)
(1)j) from the preceding The-

orem is called the canonical nonlinear connection of the relativistic rheo-
nomic Lagrangian space RLn.

In the case of an autonomous electrodynamics relativistic rheonomic La-
grangian space (i.e., gij(t, xk, vk) = gij(xk)), the canonical nonlinear con-
nection becomes Γ = (M (i)

(1)1, N
(i)
(1)j), where

M
(i)
(1)1 = −H1

11v
i, N

(i)
(1)j = γijkv

k +
h11g

ik

4
U

(1)
(k)j . (5.208)

5.7.3 Cartan’s Canonical Connections

The main Theorem of this paper is the Theorem of existence of the Car-
tan canonical h−normal linear connection CΓ which allow the subsequent
development of the relativistic rheonomic Lagrangian geometry of physical
fields, which will be exposed in the next sections.

On the relativistic rheonomic Lagrangian space RLn = (J1(R,M), L)
equipped with its canonical nonlinear connection Γ there is a unique
h−normal Γ−linear connection

CΓ = (H1
11, G

k
j1, L

i
jk, C

i(1)
j(k))

having the metrical properties:

(i) gij|k = 0, gij |(1)(k) = 0,

(ii) Gkj1 = gki

2
δgij
δt , Lkij = Lkji, C

i(1)
j(k) = C

i(1)
k(j).

To prove this Theorem, let CΓ = (Ḡ1
11, G

k
j1, L

i
jk, C

i(1)
j(k)) be a h−normal

Γ−linear connection whose coefficients are defined by Ḡ1
11 = H1

11, G
k
j1 =

gki

2
δgij
δt , and

Lijk =
gim

2

(
δgjm
δxk

+
δgkm
δxj

− δgjk
δxm

)
, C

i(1)
j(k) =

gim

2

(
∂gjm
∂vk

+
∂gkm
∂vj

− ∂gjk
∂vm

)
.

By computations, one can verify that CΓ satisfies the conditions (i) and
(ii).

Conversely, let us consider C̄Γ = ( ¯̄G1
11, Ḡ

k
j1, L̄

i
jk, C̄

i(1)
j(k)) a h−normal

Γ−linear connection which satisfies (i) and (ii). It follows directly that

¯̄G1
11 = H1

11, and Ḡkj1 =
gki

2
δgij
δt

.
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The condition gij|k = 0 is equivalent with

δgij
δxk

= gmjL̄
m
ik + gimL̄

m
jk.

Applying the Christoffel process to the indices {i, j, k}, we find

L̄ijk =
gim

2

(
δgjm
δxk

+
δgkm
δxj

− δgjk
δxm

)
.

By analogy, using the relations Ci(1)j(k) = C
i(1)
k(j) and gij |(1)(k) = 0, following

a Christoffel process applied to the indices {i, j, k}, we get

C̄
i(1)
j(k) =

gim

2

(
∂gjm
∂vk

+
∂gkm
∂vj

− ∂gjk
∂vm

)
.

As a rule, the Cartan canonical connection of a relativistic rheonomic
Lagrangian space RLn verifies also the properties

h11/1 = h11|k = h11|(1)(k) = 0 and gij/1 = 0. (5.209)

The torsion d−tensor T of the Cartan canonical connection of a rela-
tivistic rheonomic Lagrangian space is determined by only six local compo-
nents, because the properties of the Cartan canonical connection imply the
relations Tmij = 0 and S

(i)(1)(1)
(1)(j)(k) = 0. At the same time, we point out that

the number of the curvature local d−tensors of the Cartan canonical con-
nection not reduces. In conclusion, the curvature d−tensor R of the Cartan
canonical connection is determined by five effective local d−tensors. The
torsion and curvature d−tensors of the Cartan canonical connection of an
RLn are called the torsion and curvature of RLn.

All torsion d−tensors of an autonomous relativistic rheonomic La-
grangian space of electrodynamics vanish, except

R
(m)
(1)1j = −h11g

mk

4

H1
11U

(1)
(k)j +

∂U
(1)
(k)j

∂t

 ,
R

(m)
(1)ij = rmijkv

k +
h11g

mk

4

[
U

(1)
(k)i|j + U

(1)
(k)j|i

]
,

where rmijk are the curvature tensors of the semi–Riemannian metric gij .
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5.7.4 General Nonlinear Connections

Recall that a nonlinear connection (i.e., a supplementary–horizontal dis-
tribution of the vertical distribution of J1(R,M)) offers the possibility of
construction of the vector or covector adapted bases on J1(R,M)) [Neagu
and Udrişte (2000a)]. A nonlinear connection Γ on J1(R,M) is determined
by a pair of local function sets M (i)

(1)1 and N (i)
(1)j which modify by the trans-

formation laws

M̄
(j)
(1)1

dt̄

dt
= M

(k)
(1)1

dt

dt̄

∂x̄j

∂xk
− ∂v̄j

∂t
, N̄

(j)
(1)k

∂x̄k

∂xi
= N

(k)
(1)i

dt

dt̄

∂x̄j

∂xk
− ∂v̄j

∂xi
.

(5.210)
A set of local functions M (i)

(1)1 (resp. N (i)
(1)j) on J1(R,M), which trans-

form by the rules (5.210) is called a temporal nonlinear connection (resp.
spatial nonlinear connection) on J1(R,M).

For example, studying the transformation rules of the local components

M
(i)
(1)1 = −H1

11v
i, N

(i)
(1)j = γijkv

k,

where H1
11 (resp. γijk) are the Christoffel symbols of a temporal (resp.

spatial) semi–Riemannian metric h (resp. ϕ), we conclude that Γ0 =
(M (i)

(1)1, N
(i)
(1)j) represents a nonlinear connection on J1(R,M), which is

called the canonical nonlinear connection attached to the metric pair (h, ϕ).
If M (i)

(1)1 are the components of a temporal nonlinear connection, then

the components H(i)
(1)1 = 1

2M
(i)
(1)1 represent a temporal spray. Conversely, if

H
(i)
(1)1 are the components of a temporal spray, then M

(i)
(1)1 = 2H(i)

(1)1 are

the components of a temporal nonlinear connection. If G(i)
(1)1 are the com-

ponents of a spatial spray, then the components N (i)
(1)j =

∂Gi(1)1
∂vj represent a

spatial nonlinear connection.
Conversely, the spatial nonlinear connection N

(i)
(1)j induces the spatial

spray 2G(i)
(1)1 = N

(i)
(1)jv

j .

The previous theorems allow us to conclude that a time–dependent
spray (H,G) induces naturally a nonlinear connection Γ on J1(R,M),
which is called the canonical nonlinear connection associated to the time–
dependent spray (H,G). We point out that the canonical nonlinear connec-
tion Γ attached to the time–dependent spray (H,G) is a natural generaliza-
tion of the canonical nonlinear connection N induced by a time–dependent
spray G from the classical rheonomic Lagrangian geometry [Miron et. al.
(1988); Miron and Anastasiei (1994)].
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Let Γ = (M (i)
(1)1N

(i)
(1)j) be a nonlinear connection on J1(R,M). Let us

consider the geometrical objects,

δ

δt
=

∂

∂t
−M (j)

(1)1

∂

∂vj
,

δ

δxi
=

∂

∂xi
−N (j)

(1)i

∂

∂vj
, δvi = dyi+M (i)

(1)1dt+N
(i)
(1)jdx

j .

One can deduce that the set of vector–fields
{
δ
δt ,

δ
δxi ,

∂
∂vi

}
⊂ X (J1(R,M))

and of covector–fields {dt, dxi, δvi} ⊂ X ∗(J1(R,M)) are dual bases. These
are called the adapted bases on J1(R,M), determined by the nonlinear
connection Γ. The big advantage of the adapted bases is that the transfor-
mation laws of its elements are simple and natural. The transformation laws
of the elements of the adapted bases attached to the nonlinear connection
Γ are

δ

δt
=
dt̄

dt

δ

δt̄
,

δ

δxi
=
∂x̄j

∂xi
δ

δx̄j
,

∂

∂vi
=
∂x̄j

∂xi
dt

dt̄

δ

δv̄j
,

dt =
dt

dt̄
dt̄, dxi =

∂xi

∂x̄j
dx̄j , δvi =

∂xi

∂x̄j
dt̄

dt
δv̄j .

5.8 Jets and Action Principles

Recall that in the classical calculus of variations one studies functionals of
the form

FL(z) =
∫

Ω

L(x, z,∇z) dx, (with Ω ⊂ Rn), (5.211)

where x = (x1, . . . , xn), dx = dx1 ∧ · · · ∧ dxn, z = z(x) ∈ C1(Ω̄), and the
Lagrangian L = L(x, z, p) is a smooth function of x, z, and p = (p1, . . . , pn).
The corresponding Euler–Lagrangian equation, describing functions z(x)
that are stationary for such a functional, is represented by the second–
order PDE [Bryant et al. (2003)]

∆z(x) = F ′(z(x)).

For example, we may identify a function z(x) with its graph N ⊂ Rn+1,
and take the Lagrangian

L =
√

1 + ||p||2,

whose associated functional FL(z) equals the area of the graph, regarded
as a hypersurface in Euclidean space. The Euler–Lagrangian equation de-
scribing functions z(x) stationary for this functional is H = 0, where H is
the mean curvature of the graph N .
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To study these Lagrangians and Euler–Lagrangian equations geomet-
rically, we have to choose a class of admissible coordinate changes, and
there are four natural candidates. In increasing order of generality, they
are [Bryant et al. (2003)]:

• Classical transformations, of the form x′ = x′(x), z′ = z′(z); in this
situation, we think of (x, z, p) as coordinates on the space J1(Rn,R) of
1−jets of maps Rn → R.
• Gauge transformations, of the form x′ = x′(x), z′ = z′(x, z); here, we

think of (x, z, p) as coordinates on the space of 1−jets of sections of
a bundle Rn+1 → Rn, where x = (x1, . . . , xn) are coordinates on the
base Rn and z ∈ R is a fibre coordinate.
• Point transformations, of the form x′ = x′(x, z), z′ = z′(x, z); here, we

think of (x, z, p) as coordinates on the space of tangent hyperplanes

{dz − pidxi}⊥ ⊂ T(xi,z)(Rn+1)

of the manifold Rn+1 with coordinates (x1, . . . , xn, z).
• Contact transformations, of the form x′ = x′(x, z, p), z′ = z′(x, z, p),
p′ = p′(x, z, p), satisfying the equation of differential 1−forms

dz′ − p′idxi′ = f · (dz − pidxi)

for some function f(x, z, p) 6= 0.

Classical calculus of variations primarily concerns the following features
of the functional FL (5.211).

The first variation δFL(z) is analogous to the derivative of a function,
where z = z(x) is thought of as an independent variable in an infinite–
dimensional space of functions. The analog of the condition that a point
be critical is the condition that z(x) be stationary for all fixed–boundary
variations. Formally, we write

δFL(z) = 0,

which will give us a second–order scalar PDE for the unknown function
z(x) of the form

∂zL− ∂xi(∂piL) = 0, (5.212)

namely the Euler–Lagrangian equation of the Lagrangian L(x, z, p).
In this section we will study the PDE (5.212) in an invariant, geomet-

rical setting, following [Bryant et al. (2003)]. As a motivation for this
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geometrical approach, we note the fact that Lagrangian is invariant under
the large class of contact transformations. Also, note that the Lagrangian
L determines the functional FL, but not vice versa. To see this, observe
that if we add to L(x, z, p) a divergence term and consider

L′(x, z, p) = L(x, z, p) +
∑

(∂xiKi(x, z) + ∂zK
i(x, z)pi)

for functions Ki(x, z), then by the Green’s Theorem, the functionals FL
and FL′ differ by a constant depending only on values of z on ∂Ω. L and
L′ have the same Euler–Lagrangian equations.

Also, there is a relationship between symmetries of a Lagrangian L

and conservation laws for the corresponding Euler–Lagrangian equations,
described by the Noether Theorem. A subtlety here is that the group of
symmetries of an equivalence class of Lagrangians may be strictly larger
than the group of symmetries of any particular representative. We will
investigate how this discrepancy is reflected in the space of conservation
laws, in a manner that involves global topological issues.

Finally, one considers the second variation δ2FL, analogous to the Hes-
sian of a smooth function, usually with the goal of identifying local minima
of the functional. There has been a great deal of analytic work done in this
area for classical variational problems, reducing the problem of local min-
imization to understanding the behavior of certain Jacobi operators, but
the geometrical theory is not as well–developed as that of the first variation
and the Euler–Lagrangian equations.

Now we turn to multi–index notation [Griffiths (1983); Bryant et al.
(2003); Choquet-Bruhat and DeWitt-Morete (1982)]. An exterior differ-
ential system (EDS) is a pair (M, E) consisting of a smooth manifold M

and a homogeneous, differentially closed ideal E ⊆ Ω∗(M) in the algebra
of smooth differential forms on M . Some of the EDSs that we study are
differentially generated by the sections of a smooth subbundle I ⊆ T ∗M

of the cotangent bundle of M ; this subbundle, and sometimes its space of
sections, is called a Pfaffian system on M . It will be useful to use the no-
tation {α, β, . . .} for the (two–sided) algebraic ideal generated by forms α,
β,. . . , and to use the notation {I} for the algebraic ideal generated by the
sections of a Pfaffian system I ⊆ T ∗M . An integral manifold of an EDS
(M, E) is a submanifold immersion ι : N ↪→ M for which ϕN

def
= ι∗ϕ = 0

for all ϕ ∈ E. Integral manifolds of Pfaffian systems are defined similarly.
A differential form ϕ on the total space of a fibre bundle π : E → B

is said to be semibasic if its contraction with any vector–field tangent to
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the fibers of π vanishes, or equivalently, if its value at each point e ∈ E is
the pull–back via π∗e of some form at π(e) ∈ B. Some authors call such a
form horizontal. A stronger condition is that ϕ be basic, meaning that it is
locally (in open subsets of E) the pull–back via π∗ of a form on the base B
[Bryant et al. (2003)].

If (ω1, . . . , ωn) is an ordered basis for a vector space V , then correspond-
ing to a multi–index I = (i1, . . . , ik) is the k−vector

ωI = ωi1 ∧ · · · ∧ ωik ∈ ∧k(V ).

and for the complete multi–index we define

ω = ω1 ∧ · · · ∧ ωn.

Letting (e1, . . . , en) be a dual basis for V ∗, we also define the (n−k)−vector

ω(I) = eIcω = eikc(eik−1c · · · (ei1cω) · · · ).

This ω(I) is, up to sign, just ωIc , where Ic is a multi–index complementary
to I.

Recall that a contact manifold (M, I) is a smooth manifold M of dimen-
sion 2n+ 1, with a distinguished line subbundle I ⊂ T ∗M of the cotangent
bundle which is non–degenerate in the sense that for any local 1−form θ

generating I,

θ ∧ (dθ)n 6= 0.

For example, A 1−jet is an equivalence class of functions having the
same value and the same first derivatives at some designated point of the
domain. On the space J1(Rn,R) of 1−jets of functions, we can take coordi-
nates (xi, z, pi) corresponding to the jet at (xi) ∈ Rn of the linear function
f(x̄) = z + pi(x̄i − xi). Then we define the contact form

θ = dz − pidxi,

for which

dθ = −dpi ∧ dxi,

so the non–degeneracy condition θ ∧ (dθ)n 6= 0 is apparent. In fact, the
Pfaff Theorem [Bryant et al. (2003)] implies that every contact manifold is
locally isomorphic to this example; that is, every contact manifold (M, I)
has local coordinates (xi, z, pi) for which the form θ = dz− pidxi generates
I.
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Let (M, I) be a contact manifold of dimension 2n+ 1, and assume that
I is generated by a global, non–vanishing section θ ∈ Γ(I); this assumption
only simplifies our notation, and would in any case hold on a double–cover
of M . Sections of I generate the contact differential ideal

I = {θ, dθ} ⊂ Ω∗(M)

in the exterior algebra of differential forms on M . A Legendre submanifold
of M is an immersion ι : N ↪→ M of an nD submanifold N such that
ι∗θ = 0 for any contact form θ ∈ Γ(I); in this case ι∗dθ = 0 as well,
so a Legendre submanifold is the same thing as an integral manifold of
the differential ideal I. In Pfaff coordinates with θ = dz − pidx

i, one
such integral manifold is N0 = {z = pi = 0}. To see other Legendre
submanifolds ‘near’ this one, note than any submanifold C1−close to N0

satisfies the independence condition [Bryant et al. (2003)]

dx1 ∧ · · · ∧ dxn 6= 0,

and can therefore be described locally as a graph

N = {(xi, z(x), pi(x))}.

In this case, we have

θ|N = 0 iff pi(x) = ∂xiz(x).

Therefore, N is determined by the function z(x), and conversely, every
function z(x) determines such an N ; we informally say that ‘the generic
Legendre submanifold depends locally on one arbitrary function of n vari-
ables’. Legendre submanifolds of this form, with dx|N 6= 0, are called
transverse.

Now, we are interested in functionals given by triples (M, I,Λ), where
(M, I) is a (2n + 1)D contact manifold, and Λ ∈ Ωn(M) is a differential
form of degree n on M ; such a Λ will be referred to as a Lagrangian on
(M, I) [Bryant et al. (2003)]. We then define a functional on the set of
smooth, compact Legendre submanifolds N ⊂ M , possibly with boundary
∂N , by

FΛ(N) =
∫
N

Λ.

The classical variational problems described above may be recovered from
this notion by taking M = J1(Rn,R) ∼= R2n+1 with coordinates (xi, z, pi),
I generated by θ = dz − pidxi, and Λ = L(xi, z, pi)dx. This formulation
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also admits certain functionals depending on second derivatives of z(x),
because there may be dpi−terms in Λ. Later, we will restrict attention to a
class of functionals which, possibly after a contact transformation, can be
expressed without second derivatives.

Suppose given a Lagrangian Λ ∈ Ωn(M) on a contact manifold (M, I),
and a fixed–boundary variation of Legendre submanifold F : N × [0, 1] →
M ; we wish to calculate d

dt (
∫
Nt

Λ).
To do this, first recall the calculation of the Poincaré–Cartan form for

the equivalence class [Λ] ∈ H̄n. Because In+1 = Ωn+1(M), we can write
[Bryant et al. (2003)]

dΛ = θ ∧ α+ dθ ∧ β = θ ∧ (α+ dβ) + d(θ ∧ β),

and then

Π = θ ∧ (α+ dβ) = d(Λ− θ ∧ β). (5.213)

We are looking for conditions on a Legendre submanifold f : N ↪→ M to
be stationary for [Λ] under all fixed–boundary variations, in the sense that
d
dt

∣∣
t=0

(
∫
Nt

Λ) = 0 whenever F |t=0 = f . We calculate

∂t

∫
Nt

Λ = ∂t

∫
Nt

(Λ− θ ∧ β) =
∫
Nt

L∂t(Λ− θ ∧ β) =
∫
Nt

∂tcΠ.

One might express this result as

δ(FΛ)N (v) = intNvcf∗Π,

where the variational vector–field v, lying in the space Γ0(f∗TM) of sections
of f∗TM vanishing along ∂N , plays the role of ∂t. The condition Π ≡
0(mod{I}) allows us to write Π = θ ∧Ψ for some n−form Ψ, not uniquely
determined, and we have [Bryant et al. (2003)]

d

dt

∣∣∣∣
t=0

∫
Nt

Λ =
∫
N

g f∗Ψ,

where g = (∂tcF ∗θ)|t=0. It was shown previously that this g could locally
be chosen arbitrarily in the interior No, so the necessary and sufficient
condition for a Legendre submanifold f : N ↪→M to be stationary for FΛ

is that f∗Ψ = 0.
In the particular classical situation where M = {(xi, z, pi)}, θ = dz −

pidx
i, and Λ = L(x, z, p)dx, we have

dΛ = Lzθ ∧ dx+ Lpidpi ∧ dx = θ ∧ Lzdx− dθ ∧ Lpidx(i),
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so referring to (5.213),

Π = θ ∧ (Lzdx− d(Lpidx(i))) = θ ∧Ψ.

Now, for a transverse Legendre submanifold N = {(xi, z(x), zxi(x))}, we
have Ψ|N = 0 iff (5.212) is valid along N .

Later, (see section 5.10 below) we will extend the jet–action formalism
presented here – to the rigorous (and elegant) jet formulation of path–
integrals in physical field systems.

5.9 Application: Jets and Lagrangian Field Theory

In this subsection we will apply the jet formalism defined in subsection
4.14.12.5 above, and already applied for development of the time–dependent
mechanics in subsection 5.6.1 above, to formulate the first–order Lagrangian
field theory on fibre bundles (see [Sardanashvily (1993); Sardanashvily
(1995); Giachetta et. al. (1997); Mangiarotti and Sardanashvily (2000a);
Sardanashvily (2002a)] for details).

Recall that the configuration space of the first–order Lagrangian field
theory on a fibre bundle Y → X, coordinated by (xα, yi, yiα), is the 1–jet
space J1(X,Y ) of the bundle Y → X, coordinated by (xα, yi, yiα). There-
fore, a first–order Lagrangian L : J1(X,Y )→ ∧nT ∗X is defined as a hori-
zontal density on J1(X,Y ),

L = L(xα, yi, yiα)ω, with ω = dx1∧ ...∧dxn, (n = dimX). (5.214)

Let us follow the standard formulation of the variational problem on fi-
bre bundles where deformations of sections of a fibre bundle Y → X

are induced by local 1–parameter groups of automorphisms of Y → X

over X (the so-called vertical gauge transformations). Here, we will not
study the calculus of variations in depth, but apply in a straightfor-
ward manner the first variational formula (5.109) (for technical details,
see [Sardanashvily (1993); Sardanashvily (1995); Giachetta et. al. (1997);
Mangiarotti and Sardanashvily (2000a); Sardanashvily (2002a)]).

Recall that a projectable vector–field u on a fibre bundle Y → X is an
infinitesimal generator of a local 1–parameter group of gauge transforma-
tions of Y → X. Therefore, one can think of its jet prolongation j1u (5.9)
as being the infinitesimal generator of gauge transformations of the config-
uration space J1(X,Y ). Let the Lie derivative of a Lagrangian L along j1u
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be given by

Lj1uL = [∂αuαL+ (uα∂α + ui∂i + (dαui − yiµ∂αuµ)∂αi )L]ω. (5.215)

The first variational formula (5.109) gives its canonical decomposition (in
accordance with the general variational problem), which reads

Lj1uL = uV cEL + dHh0(ucHL) (5.216)

= (ui − yiµuµ)(∂i − dα∂αi )Lω − dα[παi (uµyiµ − ui)− uαL]ω.

In the canonical decomposition (5.216), uV = (ucθi)∂i; the map

EL : J2(X,Y )→ T ∗Y ∧ (∧nT ∗X), given by EL = (∂iL − dαπαi )θi ∧ ω,
(5.217)

(with παi = ∂αi L) is the Euler–Lagrangian operator associated to the La-
grangian L; and the map

HL : J1(X,Y )→MY = T ∗Y ∧ (∧n−1T ∗X), given by (5.218)

HL = L+ παi θ
i ∧ ωα = παi dy

i ∧ ωα + (L − παi yiα)ω, (5.219)

is called the Poincaré–Cartan form.
The kernel of the Euler–Lagrangian operator EL (5.217) defines the

system of second–order Euler–Lagrangian equations, in local coordinates
given by

(∂i − dα∂αi )L = 0, (5.220)

A solution of these equations is a section s : X −→ Y of the fibre bundle Y
−→ X, whose second–order jet prolongation j2s lives in (5.220), i.e.,

∂iL ◦ s− (∂α + ∂αs
j∂j + ∂α∂µs

j∂µj )∂αi L ◦ s = 0. (5.221)

Different Lagrangians L and L′ can lead to the same Euler–Lagrangian
operator EL if their difference L0 = L − L′ is a variationally trivial La-
grangian, whose Euler–Lagrangian operator vanishes identically. A La-
grangian L0 is called variationally trivial iff

L0 = h0(ϕ), (5.222)

where ϕ is a closed n−-form on Y . We have at least locally ϕ = dξ, and
then

L0 = h0(dξ) = dH(h0(ξ) = dαh0(ξ)αω, h0(ξ) = h0(ξ)αωα.
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The Poincaré–Cartan form HL (5.218) is called a Lepagean equivalent
of a Lagrangian L if h0(HL) = L. In contrast with other Lepagean forms
(see [Giachetta et. al. (1997); Mangiarotti and Sardanashvily (2000a)]), HL

is a horizontal form on the affine jet bundle J1(X,Y )→ Y .
The fibre bundle MY = T ∗Y ∧ (∧n−1T ∗X), figuring in the Poincaré–

Cartan form (5.218) is called the homogeneous Legendre bundle. It has
holonomic local coordinates (xα, yi, pαi , p) with transition functions

p′
α
i = det(

∂xε

∂x′ν
)
∂yj

∂y′i
∂x′

α

∂xµ
pµj , p′ = det(

∂xε

∂x′ν
)(p− ∂yj

∂y′i
∂y′

i

∂xµ
pµj ).

(5.223)
Relative to these coordinates, the map (5.218) reads

(pµi , p) ◦HL = (πµi ,L − π
µ
i y

i
µ).

The transition functions (5.223) shows that MY is a 1D affine bundle

πMΠ : MY → Π (5.224)

over the Legendre bundle

Π = ∧nT ∗X ⊗ V ∗Y ⊗ TX = V ∗Y ∧ (∧n−1T ∗X), (5.225)

with holonomic coordinates (xα, yi, pαi ). Then the composition

L̂ = πMΠ◦HL : J1(X,Y ) −→ Π, (xα, yi, pαi )◦L̂ = (xα, yi, παi ), (5.226)

is the well–known Legendre map. One can think of pαi as being the covariant
momenta of field functions, and the Legendre bundle Π (5.225) plays the
role of a finite–dimensional momentum phase–space of fields in the covariant
Hamiltonian field theory (see subsection 5.10 below).

The first variational formula (5.216) gives the standard procedure for
the study of differential conservation laws in Lagrangian field theory as
follows.

Let u be a projectable vector–field on a fibre bundle Y → X treated as
the infinitesimal generator of a local 1–parameter group Gu of gauge trans-
formations. On–shell, i.e., on the kernel (5.220) of the Euler–Lagrangian
operator EL, the first variational formula (5.216) leads to the weak identity

Lj1uL ≈ −dαJαω, where (5.227)

J = Jαωα, Jα = παi (uµyiµ − ui)− uαL, (5.228)
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is the symmetry current along the vector–field u. Let a Lagrangian L be
invariant under the gauge group Gu. This implies that the Lie derivative
Lj1uL (5.215) vanishes. Then we get the weak conservation law

dαJα ≈ 0 (5.229)

of the symmetry current J (5.228).2

The weak conservation law (5.229) leads to the differential conservation
law

∂α(Jα ◦ s) = 0 (5.230)

on solutions s : X −→ Y (5.221) of the Euler–Lagrangian equations (5.220).
It implies the integral conservation law∫

∂N

s∗J = 0, (5.231)

where N is a compact nD submanifold of X with the boundary ∂N .
In gauge theory, the symmetry current J (5.228) takes the form

J = W + dHU = (Wα + dµU
µα)ωα, (5.232)

where the term W depends only on the variational derivatives

δiL = (∂i − dα∂αi )L, (5.233)

i.e., W ≈ 0. The tensor–field U = Uµαωµα : J1(X,Y ) → ∧n−2T ∗X is
a horizontal (n − 2)−-form on J1(X,Y ) → X. Then one says that J

reduces to the superpotential U (see [Fatibene et. al. (1994); Giachetta et. al.
(1997); Sardanashvily (1997)]). On–shell, such a symmetry current reduces
to a dH−-exact form (5.232). In this way, the differential conservation law
(5.230) and the integral conservation law (5.231) become tautological. At
the same time, the superpotential form (5.232) of J implies the following
integral relation ∫

Nn−1
s∗J =

∫
∂Nn−1

s∗U, (5.234)

2The first variational formula defines the symmetry current (5.228) modulo the terms

dµ(cµαi (yiνu
ν −ui)), where cµαi are arbitrary skew–symmetric functions on Y [Giachetta

et. al. (1997)]. Here, we set aside these boundary terms which are independent of a

Lagrangian L.
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where Nn−1 is a compact oriented (n − 1)D submanifold of X with the
boundary ∂Nn−1. One can think of this relation as being a part of the
Euler–Lagrangian equations written in an integral form.

Let us consider conservation laws in the case of gauge transformations
which preserve the Euler–Lagrangian operator EL, but not necessarily a
Lagrangian L. Let u be a projectable vector–field on Y → X, which is
the infinitesimal generator of a local 1–parameter group of such transfor-
mations, i.e.,

Lj2uEL = 0,

where j2u is the second–order jet prolongation of the vector–field u. There
is the useful relation [Giachetta et. al. (1997)]

Lj2uEL = ELj1uL. (5.235)

Then, in accordance with (5.222), we have locally

Lj1uL = dαh0(ξ)αω. (5.236)

In this case, the weak identity (5.227) reads

dα(h0(ξ)α − Jα) ≈ 0, (5.237)

where J is the symmetry current (5.228).
Background fields, which do not live in the dynamical shell (5.220),

violate conservation laws as follows. Let us consider the product

Ytot = Y × Y ′ (5.238)

of a fibre bundle Y −→ X, coordinated by (xα, yi), whose sections are
dynamical fields and of a fibre bundle Y ′ −→ X, coordinated by (xα, yA),
whose sections are background fields that take the background values

yB = φB(x), and yBα = ∂αφ
B(x).

A Lagrangian L of dynamical and background fields is defined on the to-
tal configuration space J1(X,Y )tot. Let u be a projectable vector–field on
Ytot which also projects onto Y ′ because gauge transformations of back-
ground fields do not depend on dynamical fields. This vector–field takes
the coordinate form

u = uα(xµ)∂α + uA(xµ, yB)∂A + ui(xµ, yB , yj)∂i. (5.239)
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Substitution of u (5.239) in the formula (5.216) leads to the first variational
formula in the presence of background fields:

∂αu
αL+ [uα∂α + uA∂A + ui∂i + (dαuA − yAµ ∂αuµ)∂αA(5.240)

+(dαui − yiµ∂αuµ)∂αi ]L = (uA − yAαuα)∂AL+ παAdα(uA − yAµ uµ)

+(ui − yiαuα)δiL − dα[παi (uµyiµ − ui)− uαL].(5.241)

Then we have on the shell (5.220) the weak identity

∂αu
αL+ [uα∂α + uA∂A + ui∂i + (dαuA − yAµ ∂αuµ)∂αA + (dαui − yiµ∂αuµ)∂αi ]L

≈ (uA − yAαuα)∂AL+ παAdα(uA − yAµ uµ)− dα[παi (uµyiµ − ui)− uαL].

If a total Lagrangian L is invariant under gauge transformations of Ytot, we
get the weak identity

(uA − yAµ uµ)∂AL+ παAdα(uA − yAµ uµ) ≈ dαJα, (5.242)

which is the transformation law of the symmetry current J in the presence
of background fields.

5.9.1 Lagrangian Conservation Laws

In the first–order Lagrangian field theory, we have the following differential
transformation and conservation laws on solutions s : X −→ Y (5.221) of
the Euler–Lagrangian equations (5.220).

Recall that given fibre coordinates (xα, yi) of Y , the jet space J1(X,Y )
is equipped with the adapted coordinates (xα, yi, yiα), while the first–order
Lagrangian density on J1(X,Y ) is defined as the map

L : J1(X,Y )→ ∧nT ∗X, (n = dimX),

L = L(xα, yi, yiα)ω, with ω = dx1 ∧ ... ∧ dxn.

The corresponding first–order Euler–Lagrangian equations for sections s :
X −→ J1(X,Y ) of the jet bundle J1(X,Y )→ X read

∂αs
i = siα, ∂iL − (∂α + sjα∂j + ∂αs

j
α∂

α
j )∂αi L = 0. (5.243)

We consider the Lie derivatives of Lagrangian densities in order to get
differential conservation laws. Let

u = uα(x)∂α + ui(y)∂i
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be a projectable vector–field on Y → X and u its jet lift (5.9) onto
J1(X,Y ) → X. Given L, let us computer the Lie derivative LuL. We
get the identity

s∗LuL ≈ −
d

dxα
[παi (uαsiα − ui)− uαL]ω, παi = ∂αi L, (5.244)

modulo the Euler–Lagrangian equations (5.243).
Let L be a Lagrangian density on the jet space J1(X,Y ). For the sake

of simplicity, we shall denote the pull–back π1∗
0 L of L onto J2(X,Y ) by the

same symbol L.
Let u be a projectable vector–field on Y −→ X and u its jet lift (5.9)

onto the configuration bundle J1(X,Y ) −→ X. Recall that the vector–field
u is associated with some 1–parameter group of transformations of Y .

Let us calculate the Lie derivative LuL of the horizontal density L when
its Lepagian equivalent is chosen to be the Poincaré–Cartan form ΞL, given
by the coordinate expression

ΞL = Lω + παi (dyi − yiαdxα) ∧ ωα. (5.245)

In this case we recover the first variational formula (5.216) for projectable
vector–fields on Y as (see [Giachetta and Mangiarotti (1990); Sardanashvily
(1997)])

LuL = uV cEL + h0(ducΞL). (5.246)

Since the Poincaré–Cartan form ΞL is a horizontal form on the jet bun-
dle J1(X,Y ) −→ Y , the formula (5.246) takes the form

LuL = uV cEL + dHh0(ucΞL). (5.247)

Being restricted to the kernel

[∂i − (∂α + yjα∂j + yjαλ∂
α
j )∂αi ]L = 0

of the Euler–Lagrangian operator EL (5.217), the equality (5.247) reduces
to the weak identity

LuL ≈ dHh0(ucΞL), (5.248)

∂αu
αL+[uα∂α+ui∂i+(∂αui+yjα∂ju

i−yiα∂αuα)∂αi ]L ≈ ∂̂α[παi (ui−uαyiα)+uαL],

∂̂α = ∂α + yiα∂i + yiαλ∂
α
i .
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On solutions s of the Euler–Lagrangian equations, the weak identity
(5.248) becomes the weak differential transformation law

s∗LuL ≈ d(s∗ucΞL) (5.249)

which takes the coordinate form (5.244).
Note that, in order to get the differential transformation laws on solu-

tions s of a given system of Euler–Lagrangian equations, one can exam-
ine other Lepagian equivalents ρL of the Lagrangian density L, besides the
Poincaré–Cartan form ΞL. In this case, the first variational formula (5.246)
and the corresponding weak identity

LuL ≈ h0(ducρL)

differ from relations (5.246) and (5.248) respectively in the strong identity

0 = h0(ducε) = dHh0(ucε), (5.250)

where ρL = ΞL+ε. From the physical point of view, it means that different
Lepagian equivalents result in different superpotentials h0(ucε).

The form ε in the identity (5.250) has the coordinate expression

ε = −(∂̂νcανi d̂yi + cανi d̂yiν) ∧ ωα + χ.

It is the general local expression for Lepagian equivalents of the zero La-
grangian density. We have

h0(ucε) = ∂̂ν [(ui − yiαuα)cανi ]ωα.

One can consider also other Lagrangian densities L′ which possess the
same Euler–Lagrangian operator EL. Then the first variational formula and
the corresponding weak identity differ from relations (5.246) and (5.248)
respectively in the strong identity

Luh0(ε) = h0(ducε) (5.251)

where ε is some closed exterior form on Y . However, if the form h0(ε)
possesses the same symmetries as the Lagrangian density L only, the con-
tribution of the strong identity (5.251) into the weak identity (5.248) is not
tautological.

Note that the weak identity (5.248) is linear in the vector–field u, and we
can consider superposition of different weak identities (5.248) corresponding
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to different vector–fields u. For example, if u and u′ are projectable vector–
fields on the bundle Y −→ X which are projected onto the same vector–
field on the base X, their difference u − u′ is a vertical vector–field on Y

−→ X. Therefore, the difference of the weak identity (5.248) with respect
the vector–fields u and u′ results in the weak identity (5.248) with respect
to the vertical vector–field u− u′.

Now let us consider the case when a Lagrangian density L depends on
background fields. We define such a Lagrangian density as the pull–back of
the Lagrangian density Ltot on the total configuration space by some fixed
sections φ(x) describing background fields.

Let us again consider the product (5.238), namely Ytot = Y × Y ′, of
the bundle Y whose sections are dynamical fields and the bundle Y ′ whose
sections φ play the role of background fields. Let the bundles Y and Y ′ be
coordinated by (xα, yi) and (xα, yA) respectively. The Lagrangian density
Ltot is defined on the total configuration space J1(X,Y )tot.

Let u be a projectable vector–field on Ytot which is also projectable with
respect to projection Y × Y ′ → Y ′. It has the coordinate form

u = uα(x)∂α + uA(xα, yB)∂A + ui(xα, yB , yj)∂i,

showing that transformations of background fields are independent on dy-
namical fields.

Calculating the Lie derivative of the Lagrangian density Ltot by this
vector–field, we get the equality

∂αu
αLtot + [uα∂α + uA∂A + ui∂i + (∂αuA + yBα ∂Bu

A − yAα ∂αuα)∂αA
+(∂αui + yBα ∂Bu

i + yjα∂ju
i − yiα∂αuα)∂αi ]Ltot = ∂̂α[παi (ui − uαyiα) + uαLtot]

+(ui − yiαuα)(∂i − ∂̂α∂αi )Ltot + (uA − yAαuα)∂ALtot + παA∂̂α(uA − yAαuα),

which can be rewritten as

∂αu
αLtot + [uα(∂α + yBα ∂B + yBαλ∂

α
B)L+ ui∂i + (∂̂αui − yiα∂αuα)∂αi ]Ltot

= ∂̂α[παi (ui − uαyiα) + uαLtot] + (ui − yiαuα)(∂i − ∂̂α∂αi )Ltot.

The pull–back of this equality to the bundle Y −→ X by sections φA(x) of
the bundle Y ′ which describe the background fields results in the familiar
expression (5.247) and the familiar weak identity (5.248) for the Lagrangian
density L = φ∗Ltot. Now the partial derivative ∂α can be written as

∂α = ∂̃α + ∂αφ
B∂B + ∂α∂αφ

B∂αB ,
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where ∂̃α denote the partial derivatives with respect to the coordinates xα

on which the Lagrangian density Ltot depends explicitly.
Note that Lagrangian densities of field models almost never depend ex-

plicitly on the world coordinates xα. At the same time, almost all field
models describe fields in the presence of a background world metric g on
the base manifold X, except topological field theories whose classical La-
grangian densities are independent on g [Birmingham et. al. (1991)] and
the gravitation theory where a world metric g is a dynamical field.

By a world metric on X is denoted a nondegenerate fibre metric gαν

in cotangent and tangent bundles of X. In this case, the partial derivative
∂αL in the weak identity (5.248) contains the term ∂L

∂gαν ∂αg
αν , so that the

metric stress–energy–momentum tensor of fields (SEM–tensor, for short,
see subsection 5.12.1 below)

tαν
√
| g | = 2

∂L
∂gαν

, | g |=| det(gαν) | .

is called into play.
The weak identity (5.248) and the weak transformation law (5.249) are

basic for our analysis of differential transformation and conservation laws
in field theory.

In particular, one says that an isomorphism Φ of the fibre bundle Y
−→ X is an invariant transformation if its jet prolongation j1Φ preserves
the Lagrangian density L, i.e.,

j1∗ΦL = L.

Let u be a projectable vector–field on Y −→ X. The corresponding local 1–
parameter groups of isomorphisms of Y are invariant transformations iff the
strong equality : LuL = 0 holds. In this case, we have the corresponding
weak conservation law

d(s∗ucΞL) ≈ 0. (5.252)

An isomorphism Φ of the bundle Y −→ X is called the generalized
invariant transformation if it preserves the Euler–Lagrangian operator EL.
Let u be a projectable vector–field on Y −→ X. The corresponding local
isomorphisms of Y are generalized invariant transformations iff LuL =
h0(ε), where ε is a closed n−-form on the bundle Y −→ X. In this case,
the weak transformation law (5.249) reads

s∗ε ≈ d(s∗ucΞL)
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for every critical section s of Y −→ X. In particular, if ε = dε is an exact
form, we get the weak conservation law

d(s∗(ucΞL − ε)) ≈ 0.

In particular, gauge transformations in gauge theory on a 3D base X are
the invariant transformations if L is the Yang–Mills Lagrangian density and
they are the generalized invariant transformations if L is the Chern–Simons
Lagrangian density .

5.9.2 General Covariance Condition

Now we consider the class of bundles T −→ X which admit the canonical
lift of vector–fields τ on X. They are called the bundles of geometrical
objects. In fact, such canonical lift is the particular case of the horizontal
lift of a field τ with respect to the suitable connection on the bundle T
−→ X [Giachetta et. al. (2005)].

Let τ = τα∂α be a vector–field on the manifold X. There exists the
canonical lift

τ̃ = Tτ = τα∂α + ∂ντ
αẋν

∂

∂ẋα
(5.253)

of τ onto the tangent bundle TX of X. This lift consists with the horizontal
lift of τ by means the symmetric connection K on the tangent bundle which
has τ as the integral section or as the geodesic field:

∂ντ
α +Kα

αντ
α = 0.

Generalizing the canonical lift (5.253), one can construct the canonical
lifts of a vector–field τ on X onto the following bundles over X. For the
sake of simplicity, we denote all these lifts by the same symbol τ̃ . We have:

• the canonical lift of τ onto the cotangent bundle T ∗X, given by

τ̃ = τα∂α − ∂βτν ẋν
∂

∂ẋβ
;

• the canonical lift of τ onto the tensor bundle T kmX = (⊗mTX) ⊗
(⊗kT ∗X), given by

τ̃ = τα∂α + [∂ντα1 ẋνα2···αm
β1···βk

+ . . .− ∂β1
τν ẋα1···αm

νβ2···βk
− . . .] ∂

∂ẋα1···αm
β1···βk

;
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• the canonical lift of τ onto the bundle C of the linear connections on
TX, given by

τ̃ = τα∂α + [∂νταkνβα − ∂βτνkανα − ∂ατνkαβν − ∂βατα]
∂

∂kαβα
.

One can think of the vector–fields τ̃ on a bundle of geometrical objects
T as being the vector–fields associated with local 1–parameter groups of
the holonomic isomorphisms of T induced by diffeomorphisms of its base
X. In particular, if T = TX they are the tangent isomorphisms. We call
these isomorphisms the general covariant transformations.

Let T be the bundle of geometrical objects and L a Lagrangian density
on the configuration space J1(X,T ). Given a vector–field τ on the base X
and its canonical lift τ̃ onto T , one may use the first variational formula
(5.247) in order to get the corresponding SEM transformation law. The
left side of this formula can be simplified if the Lagrangian density satisfies
the general covariance condition.

Note that, if the Lagrangian density L depends on background fields, we
should consider the corresponding total bundle (5.238) and the Lagrangian
density Ltot on the total configuration space J1(X,T )tot. We say that the
Lagrangian density L satisfies the general covariance condition if Ltot is
invariant under 1–parameter groups of general covariant transformations of
Ttot induced by diffeomorphisms of the base X. It takes place iff, for any
vector–field τ on X, the Lagrangian density Ltot obeys the equality

Lj10eτLtot = 0 (5.254)

where τ̃ is the canonical lift of τ onto Ttot and j10 τ̃ is the jet lift of τ̃ onto
J1(X,T )tot.

If the Lagrangian density L does not depend on background fields, the
equality (5.254) becomes

Lj10eτL = 0. (5.255)

Substituting it in the first variational formula (5.247), we get the week
conservation law

dHh0(τ̃cΞL) ≈ 0. (5.256)

One can show that the conserved quantity is reduced to a superpotential
term.

Here, we verify this fact in case of a tensor bundle T −→ X. Let it be
coordinated by (xα, yA) where the collective index A is employed. Given a
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vector–field τ on X, its canonical lift τ̃ on T reads

τ̃ = τα∂α + uAβα∂βτ
α∂A.

Let a Lagrangian density L on the configuration space J1(X,T ) be
invariant under general covarian transformations. Then, it satisfies the
equality (5.255) which takes the coordinate form

∂α(ταL) + uAβα∂βτ
α∂AL+ ∂̂α(uAβα∂βτ

α)∂αAL − yAα ∂βτα∂
β
AL = 0. (5.257)

Due to the arbitrariness of the functions τα, the equality (5.257) is equiv-
alent to the system of the equalities

∂αL = 0,

δβαL+ uAβα∂AL+ ∂̂α(uAβα)∂αAL − yAα ∂
β
AL = 0, (5.258)

uAβα∂
α
AL+ uAαα∂

β
AL = 0. (5.259)

Note that the equality (5.258) can be brought into the form

δβαL+ uAβαδAL+ ∂̂α(uAβα∂
α
AL) = yAα ∂

β
AL, (5.260)

where δAL are the variational derivatives of the Lagrangian density L.
Substituting the relations (5.260) and (5.259) into the weak identity

∂̂α[(uAβα∂βτ
α − yAα τα)∂αAL+ ταL] ≈ 0,

we get the conservation law

∂̂α[−uAααδALτα − ∂̂α(uAαα∂
α
ALτα)] ≈ 0, (5.261)

where the conserved current is reduced to the superpotential term

Qeτα = −uAααδALτα − ∂̂α(uAαα∂
α
ALτα). (5.262)

For general field models, we have the product T × Y of a bundle T →
X of geometrical objects and some other bundle Y → X. The lift of a
vector–field τ on the base X onto the corresponding configuration space
J1(X,T )× J1(X,Y ) reads

τ = j10 τ̃ + ταΓiα∂i + (∂α(ταΓiα) + ταyjα∂jΓ
i
α − yiα∂ατα)∂αi

where Γ is a connection on the fibre bundle Y → X.
In this case, we cannot say anything about the general covariance condi-

tion independently on the invariance of a Lagrangian density with respect
to the internal symmetries.
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On the other hand, in gauge theory (see subsection 5.11 below), several
types of gauge transformations are considered. To get the Noether conser-
vation laws, we restrict our consideration to vertical isomorphisms of the
principal bundle P . These are the G−equivariant isomorphism Φ of P over
IdX , that is,

rg ◦ Φ = Φ ◦ rg, (g ∈ G). (5.263)

We call them the gauge isomorphisms. As is well–known, they yield the
vertical isomorphisms of the bundle of principal connections C and the
P−associated bundle E.

For example, let P −→ X be a principal bundle with the structure Lie
group G. Let us consider general gauge isomorphisms Φ of this princi-
pal bundle over diffeomorphisms of the base X. They satisfy the relation
(5.263). We denote by uG the projectable vector–fields on P correspond-
ing to local 1–parameter groups of such isomorphisms. There is the 1–
1 correspondence between these vector–fields and sections of the bundle
TGP = TP/G. They are called the general principal vector–fields (see [Gi-
achetta and Mangiarotti (1990)]). In particular, one can show that, given a
vector–field τ on the base X, its horizontal lift onto the principal bundle P
by means of a principal connection on P is a general principal vector–field.

General gauge isomorphisms of the principal bundle P , as like as its
vertical isomorphisms, yield the corresponding isomorphisms of the associ-
ated bundles E and the bundle of principal connections C. We denote by
the same symbol uG the corresponding general principal vector–fields on
these bundles.

Consider the product S = C × E × T, where T → X is a bundle of
geometrical objects. Let a Lagrangian density L on the corresponding con-
figuration space J1(T, S) be invariant under the isomorphisms of the bundle
S which are general gauge isomorphisms of C ×E over diffeomorphisms of
the base X and the general covariant transformations of T induced by these
diffeomorphisms of X. In particular, vertical isomorphisms of S consist of
vertical isomorphisms of C × E only. It should be emphasized that the
general gauge isomorphisms of the bundle C × E and those of the bundle
T taken separately are not the bundle isomorphisms of the product S be-
cause they must covering the same diffeomorphisms of the base X of Y .
At the same time, one can say that the Lagrangian density L satisfies the
general covariance condition in the sense that it is invariant under general
isomorphisms of the bundle S [Giachetta and Mangiarotti (1990)].
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This is phrased in terms of the Lie derivatives as follows. Let

uG = τα∂α + uA∂A

be a general principal vector–field on the product C×E which is projected
onto the vector–field τ = τα∂α on the base X. The corresponding general
principal vector–field on the bundle Y reads

ũG = τ̃ + uA∂A, (5.264)

where τ̃ is the canonical lift of τ onto the bundle of geometrical objects
T . A Lagrangian density L is invariant under general isomorphisms of the
bundle S iff

Lj10 euGL = 0, (5.265)

where the jet lift j10 ũG of the vector–field ũG takes the coordinate form

j10 ũG = j10 τ̃ − yAα ∂αuA∂αA + uA∂A + ∂̂αu
A∂αA.

There are the topological field theories, besides the gravitation theory,
where we can use the condition (5.265) (see subsection 5.11.8 below).

5.10 Application: Jets and Hamiltonian Field Theory

Recall that the Hamiltonian counterpart of the classical Lagrangian field
theory (see subsection 5.9 above) is the covariant Hamiltonian field theory,
in which momenta correspond to derivatives of fields with respect to all
world coordinates. It is well–known that classical Lagrangian and covari-
ant Hamiltonian field theories are equivalent in the case of a hyperregu-
lar Lagrangian, and they are quasi–equivalent if a Lagrangian is almost–
regular (see [Sardanashvily (1993); Sardanashvily (1995); Giachetta et. al.
(1997); Giachetta et. al. (1999); Mangiarotti and Sardanashvily (2000a);
Sardanashvily (2002a)]). Further, in order to quantize covariant Hamilto-
nian field theory, one usually attempts to construct and quantize a multi-
symplectic generalization of the Poisson bracket. The path–integral quan-
tization of covariant Hamiltonian field theory was recently suggested in
[Bashkirov and Sardanashvily (2004)].

Recall that the symplectic Hamiltonian technique applied to field theory
leads to instantaneous Hamiltonian formalism on an infinite–dimensional
phase–space coordinated by field functions at some instant of time (see [Go-
tay (1991a)] for the strict mathematical exposition of this formalism). The
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true Hamiltonian counterpart of classical first–order Lagrangian field the-
ory is covariant Hamiltonian formalism, where canonical momenta pµi cor-
respond to derivatives yiµ of fields yi with respect to all world coordinates
xµ. This formalism has been developed since the 1970s in its polysym-
plectic, multisymplectic and Hamilton–de Donder variants (see [Giachetta
et. al. (1997); Lopez and Marsden (2003)]). In order to quantize covariant
Hamiltonian field theory, one usually attempts to construct multisymplectic
generalization of the Poisson bracket with respect to the derivatives ∂/∂yi

and ∂/∂pµi [Kanatchikov (1998)].
We can also quantize covariant Hamiltonian field theory in path–integral

terms following [Bashkirov and Sardanashvily (2004)]. A polysymplectic
Hamiltonian system with a Hamiltonian H(xµ, yi, pµi ) is equivalent to a
Lagrangian system with the Lagrangian

LH(xµ, yi, pµi , y
i
α) = pαi y

i
α −H(xµ, yi, pµi , y

i
α) (5.266)

of the variables yi and pµi . In subsection 6.3.10 below we will quantize this
Lagrangian system in the framework of perturbative quantum field theory.
Briefly, if there is no constraint and the matrix ∂2H/∂pµi ∂pνj is nondegen-
erate and positive–definite, this quantization is given by the generating
functional

Z = N−1

∫
exp{

∫
(LH + Λ + iJiy

i + iJ iµp
µ
i )dx}

∏
x

[dp(x)][dy(x)] (5.267)

of Euclidean Green functions, where Λ comes from the normalization con-
dition ∫

exp{
∫

(−1
2
∂iµ∂

j
νHp

µ
i p
ν
j + Λ)dx}

∏
x

[dp(x)] = 1.

If a Hamiltonian H is degenerate, the Lagrangian LH (5.266) may admit
gauge symmetries. In this case, integration of a generating functional along
gauge group orbits must be finite. If there are constraints, the Lagrangian
system with a Lagrangian LH (5.266) restricted to the constraint manifold
is quantized.

In order to verify this path–integral quantization scheme, we apply it
to Hamiltonian field systems associated to Lagrangian field systems with
quadratic Lagrangians

L =
1
2
aλµij y

i
αy

j
µ + bαi y

i
α + c, (5.268)
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where a, b and c are functions of world coordinates xµ and field variables
yi. Note that, in the framework of perturbative quantum field theory, any
Lagrangian is split into the sum of a quadratic Lagrangian (5.268) and an
interaction term quantized as a perturbation.

For example, let the Lagrangian (5.268) be hyperregular, i.e., the matrix
function a is nondegenerate. Then there exists a unique associated Hamil-
tonian system whose Hamiltonian H is quadratic in momenta pµi , and so
is the Lagrangian LH (5.266). If the matrix function a is positive–definite
on an Euclidean space–time, the generating functional (5.267) is a Gaus-
sian integral of momenta pµi (x). Integrating Z with respect to pµi (x), one
restarts the generating functional of quantum field theory with the orig-
inal Lagrangian L (5.268). We extend this result to field theories with
almost–regular Lagrangians L (5.268), e.g., Yang–Mills gauge theory . The
key point is that, though such a Lagrangian L induces constraints and ad-
mits different associated Hamiltonians H, all the Lagrangians LH coincide
on the constraint manifold, and we have a unique constrained Hamiltonian
system which is quasi–equivalent to the original Lagrangian one [Giachetta
et. al. (1997)].

5.10.1 Covariant Hamiltonian Field Systems

To develop the covariant Hamiltonian field theory suitable for path–
integral quantization, we start by following the geometrical formulation
of classical field theory (see [Sardanashvily (1993); Sardanashvily (1995);
Giachetta et. al. (1997); Mangiarotti and Sardanashvily (2000a); Sar-
danashvily (2002a)]), in which classical fields are represented by sections of
fibre bundles. Let Y → X be a smooth fibre bundle provided with bundle
coordinates (xµ, yi). Recall from subsection 5.9 above, that the configura-
tion space of Lagrangian field theory on Y is the 1–jet space J1(X,Y ) of
Y . It is equipped with the bundle coordinates (xµ, yi, yiµ) compatible with
the composite fibration

J1(X,Y )
π1

0−→ Y
π−→ X.

Any section s : X −→ Y of a fibre bundle Y → X is prolonged to the
section j1s : X −→ J1(X,Y ) of the jet bundle J1(X,Y ) → X, such that
yiµ ◦ j1s = ∂µs

i.
Also, recall that the first–order Lagrangian is defined as a horizontal
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density

L = Lω : J1(X,Y )→ ∧nT ∗X, (ω = dx1 ∧ · · · dxn, n = dimX),
(5.269)

on the jet space J1(X,Y ). The corresponding Euler–Lagrangian equations

(∂i − dα∂αi )L = 0, dα = ∂α + yiα∂i + yiλµ∂
µ
i , (5.270)

represent the subset of the 2–jet space J2(X,Y ) of Y , coordinated by
(xµ, yi, yiα, y

i
λµ). A section s of Y → X is a solution of these equations

if its second jet prolongation j2s lives in the subset (5.270).
The phase–space of covariant (polysymplectic) Hamiltonian field theory

on a fibre bundle Y −→ X is the Legendre bundle (see (5.225) above)

Π = ∧nT ∗X ⊗ V ∗Y ⊗ TX = V ∗Y ∧(∧n−1T ∗X), (5.271)

where V ∗Y is the vertical cotangent bundle of Y → X. The Legendre
bundle Π is equipped with the holonomic bundle coordinates (xα, yi, pµi )
compatible with the composite fibration

Π πY−→ Y
π−→ X, (5.272)

admitting the canonical polysymplectic form

Ω = dpαi ∧ dyi ∧ ω ⊗ ∂α.

A covariant Hamiltonian H on Π (5.272) is defined as a section p = −H of
the trivial line bundle (i.e., 1D fibre bundle)

ZY = T ∗Y ∧ (∧n−1T ∗X)→ Π, (5.273)

equipped with holonomic bundle coordinates (xα, yi, pµi , p). This fibre bun-
dle admits the canonical multisymplectic Liouville form

Ξ = pω + pαi dy
i ∧ ωα, with ωα = ∂αcω.

The pull–back of Ξ onto Π by a Hamiltonian H gives the Hamiltonian form

H = H∗ΞY = pαi dy
i ∧ ωα −Hω (5.274)

on Π. The corresponding covariant Hamiltonian equations on Π,

yiα = ∂iαH, pαλi = −∂iH, (5.275)
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represent the closed submanifold of the jet space J1(X,Π) of Π. A section
r of Π→ X is a solution of these equations if its jet prolongation j1r lives
in the submanifold (5.275).

A section r of Π −→ X is a solution of the covariant Hamiltonian equa-
tions (5.275) iff it satisfies the condition r∗(ucdH) = 0 for any vertical
vector–field u on Π −→ X.

Alternatively, a section r of Π −→ X is a solution of the covariant Hamil-
tonian equations (5.275) iff it is a solution of the Euler–Lagrangian equa-
tions for the first–order Lagrangian LH on J1(X,Π),

LH = h0(H) = LHω = (pαi y
i
α −H)ω, (5.276)

where h0 sends exterior forms on Π onto horizontal exterior forms on
J1(X,Π) −→ X, using the rule h0(dyi) = yiαdx

α.
Note that, for any section r of Π −→ X, the pull–backs r∗H and j1r∗LH

coincide. This fact motivated [Bashkirov and Sardanashvily (2004)] to
quantize covariant Hamiltonian field theory with a Hamiltonian H on Π
as a Lagrangian system with the Lagrangian LH (5.276).

Furthermore, let iN : N −→ Π be a closed imbedded subbundle of the
Legendre bundle Π −→ Y which is regarded as a constraint space of a co-
variant Hamiltonian field system with a Hamiltonian H. This Hamiltonian
system is restricted to N as follows. Let HN = i∗NH be the pull–back of the
Hamiltonian form H (5.274) onto N . The constrained Hamiltonian form
HN defines the constrained Lagrangian

LN = h0(HN ) = (j1iN )∗LH (5.277)

on the jet space J1(X,NL) of the fibre bundle NL −→ X. The Euler–
Lagrangian equations for this Lagrangian are called the constrained Hamil-
tonian equations.

Note that, the Lagrangian LH (5.276) is the pull–back onto J1(X,Π)
of the horizontal form LH on the bundle product Π× J1(X,Y ) over Y by
the canonical map J1(X,Π) → Π × J1(X,Y ). Therefore, the constrained
Lagrangian LN (5.277) is the restriction of LH to N × J1(X,Y ).

A section r of the fibre bundle N −→ X is a solution of constrained
Hamiltonian equations iff it satisfies the condition r∗(uNcdH) = 0 for any
vertical vector–field uN on N −→ X.

Any solution of the covariant Hamiltonian equations (5.275) which lives
in the constraint manifold N is also a solution of the constrained Hamilto-
nian equations on N . This fact motivates us to quantize covariant Hamil-



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

902 Applied Differential Geometry: A Modern Introduction

tonian field theory on a constraint manifold N as a Lagrangian system with
the pull–back Lagrangian LN (5.277).

Since a constraint manifold is assumed to be a closed imbedded subman-
ifold of Π, there exists its open neighborhood U which is a fibre bundle U
−→ N . If Π is a fibre bundle πN : Π −→ N over N , it is often convenient to
quantize a Lagrangian system on Π with the pull–back Lagrangian π∗NLN ,
but integration of the corresponding generating functional along the fibres
of Π −→ N must be finite.

In order to verify this quantization scheme, let us associate to a La-
grangian field system on Y a covariant Hamiltonian system on Π, then let
us quantize this Hamiltonian system and compare this quantization with
that of an original Lagrangian system.

5.10.2 Associated Lagrangian and Hamiltonian Systems

In order to relate classical Lagrangian and covariant Hamiltonian field the-
ories, let us recall that, besides the Euler–Lagrangian equations, a La-
grangian L (5.269) also induces the Cartan equations which are given by
the subset

(yjµ − yjµ)∂αi ∂
µ
j L = 0, (5.278)

∂iL − dα∂αi L+ (yjµ − yjµ)∂i∂
µ
j L = 0, dα = ∂α + yiα∂i + yiλµ∂

µ
i ,

of the repeated jet space J1J1(X,Y ) coordinated by (xµ, yi, yiλ, y
i
α, y

i
λµ). A

solution of the Cartan equations is a section s of the jet bundle J1(X,Y )
−→ X whose jet prolongation j1s lives in the subset (5.278). Every solution
s of the Euler–Lagrangian equations (5.270) defines the solution j1s of
the Cartan equations (5.278). If s is a solution of the Cartan equations
and s = j1s, then s is a solution of the Euler–Lagrangian equations. If a
Lagrangian L is regular, the equations (5.270) and (5.278) are equivalent.

Recall that any Lagrangian L (5.269) induces the Legendre map (5.226),
i.e.,

L̂ : J1(X,Y ) −→ Π, pαi ◦ L̂ = ∂αi L, (5.279)

over IdY whose image NL = L̂(J1(X,Y )) is called the Lagrangian con-
straint space. A Lagrangian L is said to be hyperregular if the Legen-
dre map (5.279) is a diffeomorphism. A Lagrangian L is called almost–
regular if the Lagrangian constraint space is a closed imbedded subbun-
dle iN : NL → Π of the Legendre bundle Π → Y and the surjection
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L̂ : J1(X,Y ) → NL is a submersion (i.e., a fibre bundle) whose fibres are
connected. Conversely, any Hamiltonian H induces the Hamiltonian map

Ĥ : Π→ J1(X,Y ), yiα ◦ Ĥ = ∂iαH. (5.280)

A Hamiltonian H on Π is said to be associated to a Lagrangian L on
J1(X,Y ) if H satisfies the following relations (with (xµ, yi, pµi ) ∈ NL)

L̂ ◦ Ĥ ◦ L̂ = L̂, pµi = ∂µi L(xµ, yi, ∂jαH), (5.281)

Ĥ∗LH = Ĥ∗L, pµi ∂
i
µH−H = L(xµ, yj , ∂jαH). (5.282)

If an associated Hamiltonian H exists, the Lagrangian constraint space NL
is given by the coordinate relations (5.281) and Ĥ ◦ L̂ is a projector from
Π onto NL.

For example, any hyperregular Lagrangian L admits a unique associated
Hamiltonian H such that

Ĥ = L̂−1, H = pµi L̂
i
µ

−1
− L(xα, yi, L̂iα

−1
).

In this case, any solution s of the Euler–Lagrangian equations (5.270) de-
fines the solution r = L̂ ◦ j1s, of the covariant Hamiltonian equations
(5.275). Conversely, any solution r of these Hamiltonian equations induces
the solution s = πY ◦ r of the Euler–Lagrangian equations (5.270).

A degenerate Lagrangian need not admit an associated Hamiltonian. If
such a Hamiltonian exists, it is not necessarily unique. Let us restrict our
consideration to almost–regular Lagrangians. From the physical viewpoint,
the most of Lagrangian field theories is of this type. From the mathematical
one, this notion of degeneracy is particularly appropriate for the study
of relations between Lagrangian and covariant Hamiltonian formalisms as
follows [Bashkirov and Sardanashvily (2004)].

Let L be an almost–regular Lagrangian and H an associated Hamilto-
nian. Let a section r of Π −→ X be a solution of the covariant Hamiltonian
equations (5.275) for H. If r lives in the constraint manifold NL, then
s = πY ◦ r satisfies the Euler–Lagrangian equations (5.270) for L, while
s = Ĥ ◦ r obeys the Cartan equations (5.278). Conversely, let s be a
solution of the Cartan equations (5.278) for L. If H satisfies the relation

Ĥ ◦ L̂ ◦ s = j1(π1
0 ◦ s),

the section r = L̂ ◦ s of the Legendre bundle Π −→ X is a solution of the
Hamiltonian equations (5.275) forH. If s = j1s, we get the relation between
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solutions the Euler–Lagrangian equations and the covariant Hamiltonian
ones.

Due to this Theorem, one need a set of different associated Hamiltonians
in order to recover all solutions of the Euler–Lagrangian and Cartan equa-
tions for an almost–regular Lagrangian L. We can overcome this ambiguity
as follows.

LetH, H′ be two different Hamiltonians associated to an almost–regular
Lagrangian L. Let H, H ′ be the corresponding Hamiltonian forms (5.274).
Their pull–backs i∗NH and i∗NH

′ onto the Lagrangian constraint manifold
NL coincide with each other.

It follows that, if an almost–regular Lagrangian admits associated
Hamiltonians H, it defines a unique constrained Hamiltonian form HN =
i∗NH on the Lagrangian constraint manifold NL and a unique constrained
Lagrangian LN = h0(HN ) (5.277) on the jet space J1(X,NL) of the fibre
bundle NL −→ X. For any Hamiltonian H associated to L, every solution
r of the Hamiltonian equations which lives in the Lagrangian constraint
space NL is a solution of the constrained Hamiltonian equations for LN .

Let an almost–regular Lagrangian L admit associated Hamiltonians. A
section s of the jet bundle J1(X,Y )→ X is a solution of the Cartan equa-
tions for L iff L̂◦s is a solution of the constrained Hamiltonian equations. In
particular, any solution r of the constrained Hamiltonian equations gives
the solution s = Ĥ ◦ r of the Cartan equations. This Theorem shows
that the constrained Hamiltonian equations and the Cartan equations are
quasi–equivalent. Thus, one can associate to an almost–regular Lagrangian
L (5.269) a unique constrained Lagrangian system on the constraint La-
grangian manifold NL. Let us compare quantizations of these Lagrangian
systems on Y and NL ⊂ Π in the case of an almost–regular quadratic
Lagrangian L.

5.10.3 Evolution Operator

Recall that the covariant Hamiltonian field theory is mainly developed in
its multisymplectic and polysymplectic variants, related to the two different
Legendre maps in the first–order calculus of variations on fibre bundles
[Sardanashvily (2002c)] (also, see [Gotay (1991a)] for a survey of symplectic
formalism).

Recall that, given a fibre bundle Y → X coordinated by (xα, yi), every
first–order Lagrangian L : J1(X,Y )→ ∧nT ∗X is given by L = Lω, ω =
dx1 ∧ · · · dxn, (n = dimX), and induces the Legendre map of the 1–jet
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space J1(X,Y ) to the Legendre bundle

Π = ∧nT ∗X ⊗ V ∗Y ⊗ TX, (5.283)

coordinated by (xα, yi, pαi ). The Π admits the canonical polysymplectic
form

ΩΠ = dpαi ∧ dyi ∧ ω ⊗ ∂α, (5.284)

and is regarded as the polysymplectic phase–space of fields.
The multisymplectic phase–space of fields is the homogeneous Legendre

bundle

Z = T ∗Y ∧ (∧n−1T ∗X), (5.285)

coordinated by (xα, yi, pαi , p) and equipped with the canonical multisym-
plectic form

Ω = dΞ = dp ∧ ω + dpαi ∧ dyi ∧ ωα, with ωα = ∂αcω. (5.286)

It is natural that one attempts to generalize a Poisson bracket on sym-
plectic manifolds to polysymplectic and multisymplectic manifolds in order
to get the covariant canonical quantization of field theory. Different variants
of such a bracket have been suggested. However, it seems that no canonical
bracket corresponds to the TX−-valued polysymplectic form (5.284), un-
less dimX = 1. On the contrary, using the exterior multisymplectic form
(5.286), one can associate multivector–fields to exterior forms on the fibre
bundle Z (6.212) (but not to all of them), and can introduce a desired
bracket of these forms via the Schouten–Nijenhuis bracket of multivector–
fields.

Note that no bracket determines the evolution operator in polysym-
plectic and multisymplectic Hamiltonian formalism, including the case of
dimX = 1 of the time–dependent mechanics (see subsection 5.6.1 above).
Written as a bracket, the evolution operator can be quantized, and it de-
termines the Heisenberg equation.3

3Recall that in the (Lorentz–invariant) Heisenberg quantum picture, the state vector
|ψ > does not change with time, and an observable A satisfies the Heisenberg equation
of motion

Ȧ = (i~)−1[A,H] + (∂tA)classic,

which becomes the classical Poisson equation if we replace its commutator [A,H] by the

Poisson bracket A,H.
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Recall the following relationship between first–order dynamical equa-
tions, connections, multivector–fields and evolution operators on a fibre
bundle.

(i) Let π : Q→ X be a fibre bundle coordinated by (xµ, qa). As a section
γ : Q −→ J1(X,Q) of the 1–jet bundle J1(X,Q)→ Q, any connection

γ = dxµ ⊗ (∂µ + γaµ∂a), (5.287)

on Q→ X defines the first–order differential operator

D : J1(X,Q)→ T ∗X ⊗ V Q, (xµ, qa, qaµ)→ (xµ, qa, qaµ − γaµ(xν , qb))
(5.288)

on Q→ X called the covariant differential with respect to γ. The kernel of
this differential operator is a closed imbedded subbundle of J1(X,Q)→ X,
given by the first–order dynamical equation

qaµ − γaµ(xν , qb) = 0 (5.289)

on a fibre bundle Q → X. Conversely, any first–order dynamical equation
on Q→ X is of this type.

(ii) Let HQ ⊂ TQ be the horizontal distribution defined by a connection
γ. If X is orientable, there exists a nowhere vanishing global section of the
exterior product ∧nHQ → Q. It is a locally decomposable π−transverse
n−vector–field on Q. Conversely, every multivector–field of this type on
Q → X induces a connection and, consequently, a first–order dynamical
equation on this fibre bundle [Echeverŕıa et. al. (1998)].

(iii) Given a first–order dynamical equation γ on a fibre bundle Q→ X,
the corresponding evolution operator dγ is defined as the pull–back dγ onto
the shell of the horizontal differential

dH = dxµ(∂µ + qaµ∂a)

acting on smooth real functions on Q. It reads

dγf = (∂µ + γaµ∂a)fdxµ, (f ∈ C∞(Q)). (5.290)

This expression shows that dγ is projected onto Q, and it is a first–order dif-
ferential operator on functions on Q. In particular, if a function f obeys the
evolution equation dγf = 0, it is constant on any solution of the dynamical
equation (5.289).

In Hamiltonian dynamics on Q, a problem is to represent the evolution
operator (5.290) as a bracket of f with some exterior form on Q.



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Applied Jet Geometry 907

First of all, let us study the case of fibre bundles Y −→ X over a 1D
orientable connected manifold X (i.e., X is either R or S1). In this case, the
Legendre bundle Π (5.283) is isomorphic to the vertical cotangent bundle
V ∗Y of Y −→ X coordinated by (x, yi, pi), and the polysymplectic form ΩΠ

(5.284) on V ∗Y reads

ΩΠ = dpi ∧ dyi ∧ dx⊗ ∂x. (5.291)

Therefore, the homogeneous Legendre bundle (6.212) is the cotangent bun-
dle T ∗Y , coordinated by (x, yi, p, pi), and the multisymplectic form (5.286)
becomes the canonical symplectic form on T ∗Y , given by

Ω = dp ∧ dx+ dpi ∧ dyi. (5.292)

The vertical cotangent bundle V ∗Y admits the canonical Poisson
bracket

{f, f ′}V = ∂if∂if
′ − ∂if∂if ′, (f, f ′ ∈ C∞(V ∗Y )), (5.293)

given by the relation

ζ∗{f, f ′}V = {ζ∗f, ζ∗f ′},

where {, } is the canonical Poisson bracket on T ∗Y [Mangiarotti and Sar-
danashvily (1998); Sardanashvily (1998)]. However, the Poisson struc-
ture (5.293) fails to determine Hamiltonian dynamics on the fibre bundle
V ∗Q→ X because all Hamiltonian vector–fields with respect to this struc-
ture are vertical. At the same time, in accordance with general polysym-
plectic formalism [Giachetta et. al. (1997)], a section h, p ◦ h = −H, of the
fibre bundle V ∗Y −→ T ∗Y induces a polysymplectic Hamiltonian form on
V ∗Y ,

H = pidy
i −Hdx. (5.294)

The associated Hamiltonian connection on V ∗Y −→ X with respect to the
polysymplectic form (5.291) is

γH = dx⊗ (∂x + ∂iH∂i − ∂iH∂i). (5.295)

It defines the Hamiltonian equation on V ∗Y ,

yix = ∂iH, pix = −∂iH.

The corresponding evolution operator (5.290) takes the local form

dγf = (∂xf + {H, f}V )dx, (f ∈ C∞(V ∗Q)). (5.296)
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The bracket {H, f}V in this expression is not globally defined because H is
not a function on V ∗Q. Therefore, the evolution operator (5.296) does not
reduce to the Poisson bracket (5.293).

Let us now consider the pull–back ζ∗H of the Hamiltonian form H

(5.294) onto T ∗Y . Then the difference

H∗ = Ξ− ζ∗H = (p+H)dx (5.297)

is a horizontal density on the fibre bundle T ∗Y → X. It is a multisymplectic
Hamiltonian form. The corresponding Hamiltonian connection γ on T ∗Y →
X is given by the condition

γ(Ω) = dH∗, (5.298)

where the map

γ(Ω) = dx ∧ [(∂x + γp∂p + γi∂i + γi∂
i)cΩ]

is induced by an endomorphism of T ∗Y determined by the tangent–valued
form γ. We get

γ = dx⊗ (∂x + γp∂p + ∂iH∂i − ∂iH∂i), (5.299)

where the coefficient γp is arbitrary. Note that this connection projects to
the connection γH (5.295) on V ∗Y → X. As a consequence, it defines the
evolution operator whose restriction to the pull–back of functions on V ∗Q

is exactly the evolution operator (5.296). But now this operator locally
reduces to the Poisson bracket on T ∗Y ,

dγf = {p+H, f}dx, (f ∈ C∞(V ∗Y )). (5.300)

However, this bracket is not globally defined, too, since p+H is a horizontal
density, but not a function on T ∗Y .

Let us introduce the function E = ρ−1(p + H) on T ∗Y , where ρdx is
some nowhere vanishing density on X. The Hamiltonian vector–field of E
with respect to the symplectic form Ω on T ∗Y reads

ϑE = ρ−1∂x − ∂xE∂p + ∂iE∂i − ∂iE∂i.

This vector–field is horizontal with respect to the connection (5.299), where
γp = −ρ∂xE , and it determines this connection in the form

γ = dx⊗ (∂x − ρ∂xE∂p + ρ∂iE∂i − ρ∂iE∂i).
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Therefore, the evolution operator (5.300) is rewritten as

dγf = ρ{E , f}dx, (5.301)

The bracket {E , f} is well–defined, but dγ does not equal this bracket be-
cause of the factor ρ.

The multisymplectic bracket with the horizontal density H∗ (5.297) also
cannot help us since there is no Hamiltonian multivector–field associated
to H∗ relative to the symplectic form Ω.

The manifolds X = R and X = S1 can be equipped with coordinates x
possessing transition functions x′ = x+const, and one can always choose the
density ρ = 1. Then the evolution operator (5.301) reduces to a Poisson
bracket in full. If X = R, this is the case of time–dependent mechanics
where time reparametrization is forbidden [Mangiarotti and Sardanashvily
(2000b); Giachetta et. al. (2002a)].

Now we turn to the general case of dimX > 1. In the framework
of polysymplectic formalism [Giachetta et. al. (1997)], a polysymplectic
Hamiltonian form on the Legendre bundle Π (5.283) reads

H = pαi dy
i ∧ ωα −Hω. (5.302)

The associated Hamiltonian connection

γH = dxα ⊗ (∂α + γiα∂i + γµiλ∂
i
µ)

fails to be uniquely determined, but obeys the equations

γiα = ∂iαH, γαiλ = −∂iH.

The values of these connections assemble into a closed imbedded subbubdle

yiα = ∂iαH, pαiλ = −∂iH

of the jet bundle J1(X,Π) −→ X which is the first–order polysymplectic
Hamiltonian equation on Π. This equation is not algebraically solved for
the highest order derivatives and, therefore, it is not a dynamical equation.
As a consequence, the evolution operator depends on the jet coordinates pαiµ
and, therefore, it is not a differential operator on functions on Π. Clearly,
no bracket on Π can determine such an operator.
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5.10.4 Quadratic Degenerate Systems

Given a fibre bundle Y → X, let us consider a quadratic Lagrangian
L (5.268), where a, b and c are local functions on Y . This property is
coordinate–independent since J1(X,Y ) → Y is an affine bundle modelled
over the vector bundle T ∗X ⊗ V Y , where V Y denotes the vertical tangent
bundle of Y → X. The associated Legendre map (5.279) reads

pαi ◦ L̂ = aαµij y
j
µ + bαi . (5.303)

Let a Lagrangian L (5.268) be almost–regular, i.e., the matrix function
a is a linear bundle map

a : T ∗X ⊗ V Y → Π, pαi = aαµij y
j
µ, (5.304)

of constant rank, where (xα, yi, yiα) are bundle coordinates on T ∗X ⊗ V Y .
Then the Lagrangian constraint space NL (5.303) is an affine subbundle of
the Legendre bundle Π→ Y (5.283). Hence, NL → Y has a global section.
For the sake of simplicity, let us assume that it is the canonical zero section
0̂(Y ) of Π → Y . The kernel of the Legendre map (5.303) is also an affine
subbundle of the affine jet bundle J1(X,Y ) → Y . Therefore, it admits a
global section

Γ : Y → Ker L̂ ⊂ J1(X,Y ), aαµij Γjµ + bαi = 0, (5.305)

which is a connection on Y → X. If the Lagrangian (5.268) is regular, the
connection (5.305) is unique.

There exists a linear bundle map

σ : Π −→ T ∗X ⊗ V Y, yiα ◦ σ = σijαµp
µ
j , (5.306)

such that

a ◦ σ ◦ a = a, aαµij σ
jk
µαa

αν
kb = aανib . (5.307)

Note that σ is not unique, but it falls into the sum σ = σ0 + σ1 such
that

σ0 ◦ a ◦ σ0 = σ0, a ◦ σ1 = σ1 ◦ a = 0, (5.308)

where σ0 is uniquely defined. For example, there exists a nondegenerate
map σ (5.306).
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Recall that there are the splittings

J1(X,Y ) = S(J1(X,Y ))⊕F(J1(X,Y )) = Ker L̂⊕ Im(σ0 ◦ L̂),(5.309)

yiα = Siα + F iα = [yiα − σ0
ik
αµ(aαµkj y

j
µ + bαk )] + [σ0

ik
αµ(aαµkj y

j
µ + bαk )],

Π = R(Π)⊕ P(Π) = Kerσ0 ⊕NL, (5.310)

pαi = Rαi + Pαi = [pαi − a
αµ
ij σ0

jk
µαp

α
k ] + [aαµij σ0

jk
µαp

α
k ].

The relations (5.308) lead to the equalities

aαµij S
j
µ = 0, σ0

jk
µαRαk = 0, σ1

jk
µαPαk = 0, Rαi F iα = 0. (5.311)

Due to these equalities, the Lagrangian (5.268) takes the form

L = Lω, L =
1
2
aαµij F

i
αFjµ + c′. (5.312)

One can show that, this Lagrangian admits a set of associated Hamiltonians

HΓ = (Rαi + Pαi )Γiα +
1
2
σ0
ij
αµPαi P

µ
j +

1
2
σ1
ij
αµRαi R

µ
j − c

′ (5.313)

indexed by connections Γ (5.305). Therefore, the Lagrangian constraint
manifold (5.303) is given by the reducible constraints

Rαi = pαi − a
αµ
ij σ0

jk
µαp

α
k = 0. (5.314)

Given a Hamiltonian HΓ, the corresponding Lagrangian (5.276) reads

LHΓ = Rαi (Siα − Γiα) +Pαi F iα −
1
2
σ0
ij
αµPαi P

µ
j −

1
2
σ1
ij
αµRαi R

µ
j + c′. (5.315)

Its restriction (5.277) to the Lagrangian constraint manifold NL (5.314) is

LN = LNω, LN = Pαi F iα −
1
2
σ0
ij
αµPαi P

µ
j + c′. (5.316)

It is independent of the choice of a Hamiltonian (5.313). Note that the
Lagrangian LN may admit gauge symmetries due to the term Pαi F iα.

The Hamiltonian HΓ induces the Hamiltonian map ĤΓ (5.280) and the
projector

T = L̂ ◦ ĤΓ, pαi ◦ T = Tαjiµ p
µ
j = aανik σ0

kj
νµp

µ
j = Pαi , (5.317)

from Π onto its summand NL in the decomposition (5.310). It obeys the
relations

σ ◦ T = σ0, T ◦ a = a. (5.318)
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The projector T (5.317) is a linear map over IdY . Therefore, T : Π → NL
is a vector bundle. Let us consider the pull–back LΠ = T ∗LN of the
constrained Lagrangian LN (5.316) onto Π. Due to the relations (5.311),
it is given by the coordinate expression

LΠ = LΠω, LΠ = pαi F iα −
1
2
σ0
ij
αµp

α
i p

µ
j + c′. (5.319)

This Lagrangian is gauge–invariant under the subgroup of the gauge group
of vertical automorphisms Φ of the affine bundle Π→ Y such that T ◦Φ =
T . This subgroup coincides with the gauge group Aut Kerσ0 of vertical
automorphisms of the vector bundle Kerσ0 → Y .

Note that the splittings (5.309) and (5.310) result from the splitting of
the vector bundle

T ∗X ⊗ V Y = Ker a⊕ E,

which can be provided with the adapted coordinates (ya, yA) such that a
(5.304) is brought into a diagonal matrix with non–vanishing components
aAA. Then the Legendre bundle Π→ Y (5.283) admits the dual (nonholo-
nomic) coordinates (pa, pA), where pA are coordinates on the Lagrangian
constraint manifold NL, given by the irreducible constraints pa = 0. Writ-
ten relative to these coordinates, σ0 becomes the diagonal matrix

σAA0 = (aAA)−1, σaa0 = 0, (5.320)

while σAa1 = σAB1 = 0. Moreover, one can choose the coordinates ya (ac-
cordingly, pa) and the map σ (5.306) such that σ1 becomes a diagonal
matrix with non–vanishing positive components σaa1 = V−1, where Vω is a
volume form on X. We further follow this choice of the adapted coordinates
(pa, pA). Let us write

pa = Ma
i
αp

α
i , pA = MA

i
αp

α
i , (5.321)

where M are the matrix functions on Y obeying the relations

Ma
i
αa

αµ
ij = 0, M−1αa

i σ0
i
α = 0, Ma

i
αPαi = 0, MA

i
αRαi = 0.

Then the Lagrangian LN (5.316) with respect to the adapted coordinates
(pa, pA) takes the form

LN = M−1αA
i pAF iα −

1
2

∑
A

(aAA)−1(pA)2 + c′, (5.322)
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5.11 Application: Gauge Fields on Principal Connections

5.11.1 Connection Strength

Given a principal G−bundle P → Q, the Frölicher–Nijenhuis bracket
(4.140) on the space ∧∗(P )⊗ V1(P ) of tangent–valued forms on P is com-
patible with the canonical action RG (4.31) of G on P , and induces the
Frölicher–Nijenhuis bracket on the space ∧∗(Q)⊗ TGP (Q) of TGP−valued
forms on Q. Its coordinate form issues from the Lie bracket (4.36).

Then any principal connection A ∈ ∧1(Q) ⊗ TGP (Q) (5.42) sets the
Nijenhuis differential

dA : ∧r(Q)⊗ TGP (Q)→ ∧r+1(Q)⊗ VGP (Q),

dAφ = [A,φ]FN , φ ∈ ∧r(Q)⊗ TGP (Q), (5.323)

on the space ∧∗(Q)⊗ TGP (Q).
The curvature R (5.34) can be equivalently defined as the Nijenhuis

differential

R : Y → ∧2T ∗Q⊗ V Y, given by R =
1
2
dΓΓ =

1
2

[Γ,Γ]FN . (5.324)

Let us define the strength of a principal connection A, as

FA =
1
2
dAA =

1
2

[A,A]FN ∈ ∧2(Q)⊗VGP (Q), (5.325)

FA =
1
2
F rλµdq

α ∧ dqµ⊗er, F rλµ = ∂αA
r
µ − ∂µArα + crpqA

p
αA

q
µ.(5.326)

It is locally given by the expression

FA = dA +
1
2

[A,A] = dA + A ∧A, (5.327)

where A is the local connection form (5.43). By definition, the strength
(5.325) of a principal connection obeys the second Bianchi identity

dAFA = [A,FA]FN = 0. (5.328)

It should be emphasized that the strength FA (5.325) is not the standard
curvature (5.34) of a connection on P , but there are the local relations
ψPζ FA = z∗ζΘ, where

Θ = dÃ+
1
2

[Ã, Ã] (5.329)
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is the gl−valued curvature form on P (see the expression (5.333) below).
In particular, a principal connection is flat iff its strength vanishes.

5.11.2 Associated Bundles

Given a principal G−bundle πP : P → Q, let V be a manifold provided
with an effective left action G × V → V, (g, v) 7→ gv of the Lie group
G. Let us consider the quotient

Y = (P × V )/G (5.330)

of the product P × V by identification of elements (p, v) and (pg, g−1v) for
all g ∈ G. We will use the notation (pG,G−1v) for its points. Let [p] denote
the restriction of the canonical surjection

P × V → (P × V )/G (5.331)

to the subset {p} × V so that [p](v) = [pg](g−1v). Then the map Y → Q,

[p](V ) 7→ πP (p), makes the quotient Y (5.330) to a fibre bundle over Q.
Let us note that, for any G−bundle, there exists an associated principal

G−bundle [Steenrod (1951)]. The peculiarity of the G−bundle Y (5.330)
is that it appears canonically associated to a principal bundle P . Indeed,
every bundle atlas ΨP = {(Uα, zα)} of P determines a unique associated
bundle atlas

Ψ = {(Uα, ψα(q) = [zα(q)]−1)}

of the quotient Y (5.330), and each automorphism of P also induces the
corresponding automorphism (5.346) of Y .

Every principal connection A on a principal bundle P → Q induces
a unique connection on the associated fibre bundle Y (5.330). Given the
horizontal splitting of the tangent bundle TP relative to A, the tangent map
to the canonical map (5.331) defines the horizontal splitting of the tangent
bundle TY of Y and, consequently, a connection on Y → Q [Kobayashi and
Nomizu (1963/9)]. This is called the associated principal connection or a
principal connection on a P−associated bundle Y → Q. If Y is a vector
bundle, this connection takes the form

A = dqα ⊗ (∂α −ApαIpijyj∂i), (5.332)

where Ip are generators of the linear representation of the Lie algebra gr in
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the vector space V . The curvature (5.34) of this connection reads

R = −1
2
F pλµIp

i
jy
jdqα∧dqµ ⊗ ∂i, (5.333)

where F pλµ are coefficients (5.326) of the strength of a principal connection
A.

In particular, any principal connection A induces the associated linear
connection on the gauge algebra bundle VGP → Q. The corresponding
covariant differential ∇Aξ (5.30) of its sections ξ = ξpep reads

∇Aξ : Q→ T ∗Q⊗ VGP, ∇Aξ = (∂αξr + crpqA
p
αξ
q)dqα ⊗ er.

It coincides with the Nijenhuis differential

dAξ = [A, ξ]FN = ∇Aξ (5.334)

of ξ seen as a VGP−valued 0–form, and is given by the local expression
given by the local expression

∇Aξ = dξ + [A, ξ], (5.335)

where A is the local connection form (5.43).

5.11.3 Classical Gauge Fields

Since gauge potentials are represented by global sections of the connection
bundle C → Q (5.45), its 1–jet space J1(Q,C) plays the role of a configu-
ration space of classical gauge theory. The key point is that the jet space
J1(Q,C) admits the canonical splitting over C which leads to a unique
canonical Yang–Mills Lagrangian density of gauge theory on J1(Q,C).

Let us describe this splitting. One can show that the principal
G−bundle

J1(Q,P )→ J1(Q,P )/G = C (5.336)

is canonically isomorphic to the trivial pull–back bundle

PC = C × P → C, (5.337)

and that the latter admits the canonical principal connection [Garćıa
(1977); Giachetta et. al. (1997)]

A = dqα ⊗ (∂α + apαep) + darα ⊗ ∂αr ∈ O1(C)⊗ TG(PC)(C). (5.338)
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Since C (5.45) is an affine bundle modelled over the vector bundle

C = T ∗Q⊗ VGP → Q,

the vertical tangent bundle of C possesses the canonical trivialization

V C = C × T ∗Q⊗ VGP, where (5.339)

VGPC = VG(C × P ) = C × VGP.

Then the strength FA of the connection (5.338) is the VGP−valued hori-
zontal 2–form on C,

FA =
1
2
dAA =

1
2

[A,A]FN ∈ ∧2(C)⊗ VGP (Q),

FA = (darµ ∧ dqµ +
1
2
crpqa

p
αa

q
µdq

α ∧ dqµ)⊗ er. (5.340)

Note that, given a global section connection A of the connection bundle
C → Q, the pull–back A∗FA = FA is the strength (5.325) of the principal
connection A.

Let us take the pull–back of the form FA onto J1(Q,C) with respect to
the fibration (5.336), and consider the VGP−valued horizontal 2–form

F = h0(FA) =
1
2
Frλµdqα ∧ dqµ ⊗ er,

Frλµ = arλµ − arµλ + crpqa
p
αa

q
µ, (5.341)

where h0 is the horizontal projection (5.58). Note that

F/2 : J1(Q,C)→ C × ∧2T ∗Q⊗ VGP (5.342)

is an affine map over C of constant rank. Hence, its kernel C+ = KerF
is the affine subbundle of J1(Q,C) → C, and we have a desired canonical
splitting

J1(Q,C) = C+ ⊕ C− = C+ ⊕ (C × ∧2T ∗Q⊗VGP ), (5.343)

arλµ =
1
2

(arλµ + arµλ − crpqapαaqµ) +
1
2

(arλµ − arµλ + crpqa
p
αa

q
µ), (5.344)

over C of the jet space J1(Q,C). The corresponding canonical projections
are

π1 = S : J1(Q,C)→ C+, Srλµ =
1
2

(arλµ + arµλ − crpqapαaqµ), (5.345)

and π2 = F/2 given by (5.342).
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5.11.4 Gauge Transformations

In classical gauge theory, several classes of gauge transformations are exam-
ined [Giachetta et. al. (1997); Marathe and Martucci (1992); Socolovsky
(1991)]. A most general gauge transformation is defined as an automor-
phism ΦP of a principal G−bundle P which is equivariant under the canon-
ical action (4.31) of the group G on G, i.e.,

Rg ◦ ΦP = ΦP ◦Rg, (g ∈ G).

Such an automorphism of P induces the corresponding automorphism

ΦY : (pG,G−1v)→ (ΦP (p)G,G−1v) (5.346)

of the P−associated bundle Y (5.330) and the corresponding automorphism

ΦC : J1(Q,P )/G→ J1ΦP (J1(Q,P ))/G (5.347)

of the connection bundle C.
Every vertical automorphism of a principal bundle P is represented as

ΦP (p) = pf(p), (p ∈ P ), (5.348)

where f is a G−valued equivariant function on P , i.e.,

f(pg) = g−1f(p)g, (g ∈ G). (5.349)

There is a 1–1 correspondence between these functions and the global sec-
tions s of the group bundle

PG = (P ×G)/G, (5.350)

whose typical fibre is the group G, subject to the adjoint representation
of the structure group G. Therefore, PG (5.350) is also called the adjoint
bundle. There is the canonical fibre–to–fibre action of the group bundle
PG on any P−associated bundle Y by the law

PG × Y → Y, ((pG,G−1gG), (pG,G−1v)) 7→ (pG,G−1gv).

Then the above–mentioned correspondence is given by the relation

PG × P → P, (s(πP (p)), p) 7→ pf(p),

where P is a G−bundle associated to itself. Hence, the gauge group G(P )
of vertical automorphisms of a principal G−bundle P → Q is isomorphic
to the group of global sections of the P−associated group bundle (5.350).
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In order to study the gauge invariance of one or another object in
gauge theory, it suffices to examine its invariance under an arbitrary 1–
parameter subgroup [ΦP ] of the gauge group. Its infinitesimal generator is
a G−invariant vertical vector–field ξ on a principal bundle P or, equiva-
lently, a section

ξ = ξp(x)ep (5.351)

of the gauge algebra bundle VGP → Q (4.35). We will call it a gauge
vector–field. One can think of its components ξp(q) as being gauge param-
eters. Gauge vector–fields (5.351) are transformed under the infinitesimal
generators of gauge transformations (i.e., other gauge vector–fields) ξ′ by
the adjoint representation

Lξ′ξ = [ξ′, ξ] = cprqξ
′rξqep, (ξ, ξ′ ∈ VGP (Q)).

Therefore, gauge parameters are subject to the coadjoint representation

ξ′ : ξp 7→ − cprqξ′
r
ξq. (5.352)

Given a gauge vector–field ξ (5.351) seen as the infinitesimal generator
of a 1–parameter gauge group [ΦP ], let us get the gauge vector–fields on a
P−associated bundle Y and the connection bundle C.

The corresponding gauge vector–field on the P−associated vector bun-
dle Y → Q issues from the relation (5.346), and reads

ξY = ξpIip∂i,

where Ip are generators of the group G, acting on the typical fibre V of Y .
The gauge vector–field ξ (5.351) acts on elements a (5.46) of the con-

nection bundle by the law

Lξa = [ξ, a]FN = (−∂αξr + crpqξ
paqα)dqα ⊗ er.

In view of the vertical splitting (5.339), this quantity can be regarded as
the vertical vector–field

ξC = (−∂αξr + crpqξ
paqα)∂αr (5.353)

on the connection bundle C, and is the infinitesimal generator of the 1–
parameter group [ΦC ] of vertical automorphisms (5.347) of C, i.e., a desired
gauge vector–field on C.
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5.11.5 Lagrangian Gauge Theory

Classical gauge theory of unbroken symmetries on a principal G−bundle
P → Q deals with two types of fields. These are gauge potentials identified
to global sections of the connection bundle C → Q (5.45) and matter fields
represented by global sections of a P−associated vector bundle Y (5.330),
called a matter bundle. Therefore, the total configuration space of classical
gauge theory is the product of jet bundles

J1(X,Y )tot = J1(X,Y )× J1(Q,C). (5.354)

Let us study a gauge–invariant Lagrangian on this configuration space.
A total gauge vector–field on the product C × Y reads

ξY C = (−∂αξr + crpqξ
paqα)∂αr + ξpIip∂i = (uAλp ∂αξ

p + uAp ξ
p)∂A, (5.355)

where we use the collective index A, and put the notation

uAλp ∂A = −δrp∂αr , uAp ∂A = crqpa
q
α∂

α
r + Iip∂i.

A Lagrangian L on the configuration space (5.354) is said to be gauge–
invariant if its Lie derivative LJ1ξY C

L along any gauge vector–field ξ (5.351)
vanishes. Then the first variational formula (5.109) leads to the strong
equality

0 = (uAp ξ
p + uAµp ∂µξ

p)δAL+ dα[(uAp ξ
p + uAµp ∂µξ

p)παA], (5.356)

where δAL are the variational derivatives (5.233) of L and the total deriva-
tive reads

dα = ∂α + apλµ∂
µ
p + yiα∂i.

Due to the arbitrariness of gauge parameters ξp, this equality falls into the
system of strong equalities

uAp δAL+ dµ(uAp π
µ
A) = 0, (5.357)

uAµp δAL+ dα(uAµp παA) + uAp π
µ
A = 0, (5.358)

uAλp πµA + uAµp παA = 0. (5.359)

Substituting (5.358) and (5.359) in (5.357), we get the well–known con-
straints

uAp δAL − dµ(uAµp δAL) = 0

for the variational derivatives of a gauge–invariant Lagrangian L.
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Treating the equalities (5.357) – (5.359) as the equations for a gauge–
invariant Lagrangian, let us solve these equations for a Lagrangian

L = L(t, qi, arµ, a
r
λµ)ω : J1(Q,C)→ ∧nT ∗Q (5.360)

without matter fields. In this case, the equations (5.357) – (5.359) read

crpq(a
p
µ∂

µ
r L+ apλµ∂

λµ
r L) = 0, (5.361)

∂µq L+ crpqa
p
α∂

µλ
r L = 0, (5.362)

∂µλp L+ ∂λµp L = 0. (5.363)

Let rewrite them relative to the coordinates (aqµ,Srµλ,Frµλ) (5.341) and
(5.345), associated to the canonical splitting (5.343) of the jet space
J1(Q,C). The equation (5.363) reads

∂L
∂Srµλ

= 0. (5.364)

Then a simple computation brings the equation (5.362) into the form

∂µq L = 0. (5.365)

The equations (5.364) and (5.365) shows that the gauge–invariant La-
grangian (5.360) factorizes through the strength F (5.341) of gauge po-
tentials. As a consequence, the equation (5.361) takes the form

crpqF
p
λµ

∂L
∂Frλµ

= 0.

It admits a unique solution in the class of quadratic Lagrangians which is
the conventional Yang–Mills Lagrangian LYM of gauge potentials on the
configuration space J1(Q,C). In the presence of a background world metric
g on the base Q, it reads

LYM =
1

4ε2
aGpqg

λµgβνFpλβF
q
µν

√
|g|ω, (where g = det(gµν)), (5.366)

where aG is a G−invariant bilinear form on the Lie algebra of gr and ε is
a coupling constant.

5.11.6 Hamiltonian Gauge Theory

Let us consider gauge theory of principal connections on a principal bundle
P −→ X with a structure Lie group G. Principal connections on P −→ X
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are represented by sections of the affine bundle

C = J1(Q,P )/G −→ X, (5.367)

modelled over the vector bundle T ∗X ⊗ VGP [Giachetta et. al. (1997)].
Here, VGP = V P/G is the fibre bundle in Lie algebras g of the group G.
Given the basis {εr} for g, we get the local fibre bases {er} for VGP . The
connection bundle C (5.367) is coordinated by (xµ, arµ) such that, written
relative to these coordinates, sections A = Arµdx

µ ⊗ er of C −→ X are the
familiar local connection 1–forms, regarded as gauge potentials.

There is 1–1 correspondence between the sections ξ = ξrer of VGP
−→ X and the vector–fields on P which are infinitesimal generators of 1–
parameter groups of vertical automorphisms (gauge transformations) of P .
Any section ξ of VGP −→ X induces the vector–field on C, given by

u(ξ) = ukµ
∂

∂arµ
= (crpqa

p
µξ
q + ∂µξ

r)
∂

∂arµ
, (5.368)

where crpq are the structure constants of the Lie algebra g.
The configuration space of gauge theory is the jet space J1(Q,C)

equipped with the coordinates (xα, amα , a
m
µλ). It admits the canonical split-

ting (5.309) given by the coordinate expression

arµλ = Srµλ + Frµλ =
1
2

(arµλ + arλµ − crpqapµaqα) +
1
2

(arµλ − arλµ + crpqa
p
µa

q
α),

where F is the strength of gauge fields up to the factor 1/2. The Yang–Mills
Lagrangian LYM on the configuration space J1(Q,C) is given by

LYM = aGpqg
λµgβνFpλβF

q
µν

√
|g|ω, (g = det(gµν)), (5.369)

where aG is a non–degenerate G−invariant metric in the dual of the Lie
algebra of g and g is a pseudo–Riemannian metric on X.

The phase–space Π (5.271) of the gauge theory is with the canonical
coordinates (xα, apα, p

µλ
q ). It admits the canonical splitting (5.310) given by

the coordinate expression

pµλm = Rµλm +Pµλm = p(µλ)
m + p[µλ]

m =
1
2

(pµλm + pλµm ) +
1
2

(pµλm − pλµm ). (5.370)

With respect to this splitting, the Legendre map induced by the Lagrangian
(5.369) takes the form

p(µλ)
m ◦ L̂YM = 0, (5.371)

p[µλ]
m ◦ L̂YM = 4aGmng

µαgλβFnαβ
√
|g|. (5.372)
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The equalities (5.371) define the Lagrangian constraint space NL of Hamil-
tonian gauge theory. Obviously, it is an imbedded submanifold of Π, and
the Lagrangian LYM is almost–regular.

In order to construct an associated Hamiltonian, let us consider a con-
nection Γ (5.305) on the fibre bundle C → X which take their values into
Ker L̂, i.e.,

Γrλµ − Γrµλ + crpqa
p
λa
q
µ = 0.

Given a symmetric linear connection K on X and a principal connection
B on P → X, this connection reads

Γrλµ =
1
2

[∂µBrα + ∂αB
r
µ − crpqapαaqµ + crpq(a

p
αB

q
µ + apµB

q
α)]−Kα

β
µ(arβ −Brβ).

The corresponding Hamiltonian (5.313) associated to LYM is

HΓ = pλµr Γrλµ + amnG gµνgλβp
[µλ]
m p[νβ]

n

√
|g|.

Then we get the Lagrangian

LN = p[λµ]
r Frλµ − amnG gµνgλβp

[µλ]
m p[νβ]

n

√
|g|

(5.316) on the Lagrangian constraint manifold (5.371) and its pull–back

LΠ = LΠω, LΠ = pλµr Frλµ − amnG gµνgλβp
[µλ]
m p[νβ]

n

√
|g|, (5.373)

(5.319) onto Π.
Both the Lagrangian LYM (5.369) on C and the Lagrangian LΠ (5.373)

on Π are invariant under gauge transformations whose infinitesimal gener-
ators are the lifts

j1u(ξ) = (crpqa
p
µξ
q + ∂µξ

r)
∂

∂arµ
+ (crpq(a

p
λµξ

q + apµ∂αξ
q) + ∂α∂µξ

r)
∂

∂arλµ
,

u(ξ) = j1u(ξ)− crpqpλµr ξq
∂

∂pλµp
,

of the vector–fields (5.368) onto J1(Q,C) and Π × J1(Q,C), respectively.
We have the transformation laws

j1u(ξ)(Frλµ) = crpqF
p
λµξ

q, j1u(ξ)(Srλµ) = crpqS
p
λµξ

q+crpqa
p
µ∂αξ

q+∂α∂µξr.

Therefore, one can choose the gauge conditions

gλµSrλµ(x)− αr(x) =
1
2
gλµ(∂αarµ(x) + ∂µa

r
α(x))− αr(x) = 0,
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which are the familiar generalized Lorentz gauge. The corresponding
second-order differential operator (6.95) reads

Mr
s ξ
s = gλµ(

1
2
crpq(∂αa

r
µ + ∂µa

r
α)ξq + crpqa

p
µ∂αξ

q + ∂α∂µξ
r).

Passing to the Euclidean space and repeating the above quantization pro-
cedure, we come to the generating functional

Z = N−1

∫
exp{

∫
(pαµr Frαµ − amnG gµνgαβp

µα
m pνβn

√
|g|

− 1
8
aGrsg

ανgαµ(∂αarν + ∂νa
r
α)(∂αasµ + ∂µa

s
α)

− gαµcr(
1
2
crpq(∂αa

r
µ + ∂µa

r
α)cq + crpqa

p
µc
q
α + crαµ)

+ iJµr a
r
µ + iJrµαp

µα
r )ω}

∏
x

[dc][dc][dp(x)][da(x)].

Its integration with respect to momenta restarts the familiar generating
functional of gauge theory.

5.11.7 Gauge Conservation Laws

On–shell, the strong equality (5.356) becomes the weak Noether conserva-
tion law

dα[(uAp ξ
p + uAµp ∂µξ

p)παA] ≈ 0 (5.374)

of the Noether current

Jα = −(uAp ξ
p + uAµp ∂µξ

p)παA. (5.375)

Therefore, the equalities (5.357) – (5.359) on–shell lead to the familiar
Noether identities

dµ(uAp π
µ
A) ≈ 0, (5.376)

dα(uAµp παA) + uAp π
µ
A ≈ 0, (5.377)

uAαp πµA + uAµp παA = 0 (5.378)

for a gauge–invariant Lagrangian L. They are equivalent to the weak equal-
ity (5.374) due to the arbitrariness of the gauge parameters ξp(q).

The expressions (5.374) and (5.375) shows that both the Noether con-
servation law and the Noether current depend on gauge parameters. The
weak identities (5.376) – (5.378) play the role of the necessary and sufficient



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

924 Applied Differential Geometry: A Modern Introduction

conditions in order that the Noether conservation law (5.374) is maintained
under changes of gauge parameters. This means that, if the equality (5.374)
holds for gauge parameters ξ, it does so for arbitrary deviations ξ + δξ of
ξ. In particular, the Noether conservation law (5.374) is maintained un-
der gauge transformations, when gauge parameters are transformed by the
coadjoint representation (5.352).

It can be seen that the equalities (5.376) – (5.378) are not mutually
independent, but (5.376) is a corollary of (5.377) and (5.378). This property
reflects the fact that, in accordance with the strong equalities (5.358) and
(5.359), the Noether current (5.375) is brought into the superpotential form

Jα = ξpuAαp δAL − dµ(ξpuAµp παA), Uµα = −ξpuAµp παA,

(5.232). Since a matter field Lagrangian is independent of the jet coor-
dinates apαµ, the Noether superpotential, Uµα = ξpπµαp , depends only on
gauge potentials. The corresponding integral relation (5.234) reads∫

Nn−1
s∗Jαωα =

∫
∂Nn−1

s∗(ξpπµαp )ωµα, (5.379)

where Nn−1 is a compact oriented (n − 1)D submanifold of Q with the
boundary ∂Nn−1. One can think of (5.379) as being the integral relation
between the Noether current (5.375) and the gauge field, generated by this
current. In electromagnetic theory seen as a U(1) gauge theory, the similar
relation between an electric current and the electromagnetic field generated
by this current is well known. However, it is free from gauge parameters
due to the peculiarity of Abelian gauge models.

Note that the Noether current (5.375) in gauge theory takes the super-
potential form (5.232) because the infinitesimal generators of gauge trans-
formations (5.355) depend on derivatives of gauge parameters.

5.11.8 Topological Gauge Theories

The field models that we have investigated so far show that when a back-
ground world metric is present, the stress–energy–momentum (SEM) trans-
formation law becomes the covariant conservation law of the metric SEM–
tensor (see subsection on SEM–tensors 5.12.1 below). Topological gauge
theories exemplify the field models in the absence of a world metric [Gia-
chetta et. al. (2005)].

Let us consider the Chern–Simons gauge theory on a 3D base manifold
X3 [Birmingham et. al. (1991); Witten (1988a)]. Physical interpretation
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of this fundamental model will be given in subsection 6.7.4 below.
Let P −→ X3 be a principal bundle with a structure semisimple Lie

group G and C the corresponding bundle of principal connections which is
coordinated by (xα, kmα ). The Chern–Simons Lagrangian density is given
by the coordinate expression

LCS =
1
2k
aGmnε

αλµkmα (Fnλµ +
1
3
cnpqk

p
αk

q
µ)d3x (5.380)

where εαλµ is the skew–symmetric Levi–Civita tensor.
Note that the Lagrangian density (5.380) is not gauge–invariant and

globally defined. At the same time, it gives the globally defined Euler–
Lagrangian operator

ELCS =
1
k
aGmnε

αλµFnλµdkmα ω.

Thus, the gauge transformations in the Chern–Simons model appear to be
the generalized invariant transformations which keep invariant the Euler–
Lagrangian equations, but not the Lagrangian density. Solutions of these
equations are the curvature–free principal connections A on the principal
bundle P −→ X3.

Though the Chern–Simons Lagrangian density is not invariant under
gauge transformations, we still have the Noether–type conservation law
(5.374) in which the total conserved current is the standard Noether current
(5.375) plus the additional term as follows.

Let ug be the principal vector–field (5.353) on the bundle of principal
connections C. We calculate the Lie derivative

LugLCS =
1
k
aGmnε

αλµ∂α(αm∂αAnµ)d3x.

Hence, the Noether transformation law (5.374) becomes the conservation
law

dαTCS
α = dα(Tα +

1
k
aGmnε

αλµαm∂αA
n
µ) ≈ 0, where (5.381)

Tα = πµλn ug
n
µ =

1
k
aGmnε

αλµAmα ug
n
µ

is the standard Noether current . After simplification, the conservation law
(5.381) takes the form

dα(
1
k
aGmnε

αλµαmFnαµ) ≈ 0.
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In the Chern–Simons model, the total conserved current TCS is equal to
zero. At the same time, if we add the Chern–Simons Lagrangian density
to the Yang–Mills one, TCS plays the role of the massive term and makes
the contribution into the standard Noether current of the Yang–Mills gauge
theory.

Let τ be a vector–field on the base X and τB its lift onto the bundle
C by means of a section B of C. Remind that the vector–fields τB are the
general principal vector–fields associated with local 1–parameter groups of
general gauge isomorphisms of C. We calculate

LτBLCS =
1
k
aGmnε

αλµ∂α(τνBmν ∂αA
n
µ) d3x.

The corresponding SEM transformation law takes the form

dαJCSα = dα(J α − 1
2k
aGmnε

αλµτνBmν ∂αA
n
µ) ≈ 0, where (5.382)

J α = πµλn [τν∂νAmµ − τν(∂µBnν − cnpqApµBqν)− ∂µτν(Bnν −Anν )]− δαν τνLCS

is the standard SEM–tensor relative to the lift τB of the vector–field τ .
Let A be a critical section. We consider the lift of the vector–field τ

on X onto C by means of the principal connection B = A. Then, the
energy–momentum conservation law (5.382) becomes the conservation law

dα[
1
k
aGmnτ

νεαλµAmα Fnνµ−ταLCS ] = dα(− 1
6k
ταεανµcnpqA

n
αA

p
νA

q
µ) ≈ 0.

(5.383)
Note that, since the gauge symmetry of the Chern–Simons Lagrangian

density is broken, the energy–momentum conservation law (5.383) fails to
be invariant under gauge transformations.

Let us consider Lagrangian densities of topological gauge models which
are invariant under the general gauge isomorphisms of the bundle C.
Though they imply the zero Euler–Lagrangian operators, the correspond-
ing strong identities may be used as the superpotential terms when such a
topological Lagrangian density is added to the Yang–Mills one.

Let P −→ X be a principal bundle with the structure Lie group G. Let
us consider the bundle J1(Q,P ) −→ C. This also is a G principal bundle.
Due to the canonical vertical splitting V P = P × gl, where gl is the
left Lie algebra of the group G, the complementary map (5.6) of J1(Q,P )
defines the canonical G−valued one–form θ on J1(Q,P ). This form is the
connection form of the canonical principal connection on the principal bun-
dle J1(Q,P ) −→ C [Garćıa (1972)]. Moreover, if ΓA : P −→ J1(Q,P ) is
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a principal connection on P and A the corresponding connection form, we
have Γ∗Aθ = A. If Ω and RA are the curvature 2–forms of the connections
θ and A respectively, then Γ∗AΩ = RA.

Local connection 1–forms on C associated with the canonical connection
θ are given by the coordinate expressions kmµ dx

µ⊗ Im. The corresponding
curvature two–form on C reads

ΩC = (dkmµ ∧ dxµ −
1
2
cmnlk

n
µk

l
νdx

ν ∧ dxµ)⊗ Im.

Let I(g) be the algebra of real G−invariant polynomial on the Lie alge-
bra g of the group G. Then, there is the well–known Weyl homomorphism
of I(g) into the de Rham cohomology algebra H∗(C,R). Using this isomor-
phism, every k−linear element r ∈ I(g) is represented by the cohomology
class of the closed characteristic 2k−form r(ΩC) on C. If A is a section of
C, we have A∗r(ΩC) = r(F ), where F is the strength of A and r(F ) is
the corresponding characteristic form on X.

Let dimX be even and a characteristic n−form r(ΩC) on C exist. This
is a Lepagian form which defines a gauge–invariant Lagrangian density

Lr = h0(r(ΩC))

on the jet space J1(Q,C). The Euler–Lagrangian operator associated with
Lr is equal to zero. Then, for any projectable vector–field u on C, we have
the strong relation (5.251):

Luh0(r(ΩC)) = h0(ducr(ΩC)).

If u is a general principal vector–field on C, this relation takes the form

dH(ucr(ΩC)) = 0.

For example, let dimX = 4 and the group G be semisimple. Then, the
characteristic Chern–Pontryagin 4–form

r(ΩC) = aGmnΩnC ∧ ΩmC .

It is the Lepagian equivalent of the Chern–Pontryagin Lagrangian density

L =
1
k
aGmnε

αβµνFnαβFmµνd4x

of the topological Yang–Mills theory.
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5.12 Application: Modern Geometrodynamics

In this subsection we present some modern developments of the classical
Einstein–Wheeler geometrodynamics that we briefly reviewed as a motiva-
tion to our geometrical machinery.

5.12.1 Stress–Energy–Momentum Tensors

While in analytical mechanics there exists the conventional differential en-
ergy conservation law, in field theory it does not exist (see [Sardanashvily
(1998)]). Let F be a smooth manifold. In time–dependent mechanics on
the phase–space R × T ∗F coordinated by (t, yi, ẏi) and on the configura-
tion space R×TF coordinated by (t, yi, ẏi), the Lagrangian energy and the
construction of the Hamiltonian formalism require the prior choice of a con-
nection on the bundle R× F −→ R. However, such a connection is usually
hidden by using the natural trivial connection on this bundle. Therefore,
given a Hamiltonian function H on the phase–space manifold R× T ∗F , we
have the usual energy conservation law

dH
dt
≈ ∂H

∂t
(5.384)

where by ‘≈’ is meant the weak identity modulo the Hamiltonian equations.
Given a Lagrangian function L on the configuration manifold R×TF , there
exists the fundamental identity

∂L
∂t

+
d

dt
(ẏi(t)

∂L
∂ẏi
− L) ≈ 0 (5.385)

modulo the equations of motion. It is the energy conservation law in the
following sense. Let L̂ be the Legendre morphism given by ẏi ◦ L̂ =
∂ẏiL, and Q = Im L̂ the Lagrangian constraint manifold. Let H be a
Hamiltonian function associated with L and Ĥ the momentum morphism,
ẏi ◦ Ĥ = ∂ẏiH. Every solution r of the Hamiltonian equations of H which
lives on Q yields the solution Ĥ ◦ r of the Euler–Lagrangian equations of
L. Then, the identity (5.385) on Ĥ ◦ r recovers the energy transformation
law (5.384) on r.4

4There are different Hamiltonian functions associated with the same singular La-

grangian function as a rule. Given such a Hamiltonian function, the Lagrangian con-
straint space Q plays the role of the primary constraint space, and the Dirac procedure
can be used in order to get the final constraint space where a solution of the Hamiltonian

equations exists [Gotay et. al. (1978); León and Marrero (1993)].
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Recall that in field theory, classical fields are described by sections of
a fibre bundle Y −→ X, while their dynamics is phrased in terms of jet
spaces. We restrict ourselves to the first–order Lagrangian formalism when
the configuration space is J1(X,Y ). Given fibred coordinates (xµ, yi) of Y ,
the jet space J1(X,Y ) is equipped with the adapted coordinates (xµ, yi, yiµ).
Recall that the first–order Lagrangian density on J1(X,Y ) is defined to be
the morphism

L : J1(X,Y )→ ∧nT ∗X, (n = dimX),

L = L(xµ, yi, yiµ)ω, with ω = dx1 ∧ ... ∧ dxn,

while the corresponding first–order Euler–Lagrangian equations for sections
s of the jet bundle J1(X,Y )→ X read

∂αs
i = siα, ∂iL − (∂α + sjα∂j + ∂αs

j
µ∂

µ
j )∂αi L = 0. (5.386)

As before, we consider the Lie derivatives of Lagrangian densities in
order to get differential conservation laws. Let u = uµ(x)∂µ+ui(y)∂i be a
projectable vector–field on Y → X and u its jet lift (5.9) onto J1(X,Y )→
X. Given L, let us calculate the Lie derivative LuL. We get the identity

s∗LuL ≈ −
d

dxα
[παi (uµsiµ − ui)− uαL]ω, with πµi = ∂µi L, (5.387)

modulo the Euler–Lagrangian equations (5.386). In particular, if u is a
vertical vector–field this identity becomes the current conservation law ex-
emplified by the Noether identities in gauge theory [Sardanashvily (1994)].

Let now τ = τα∂α be a vector–field on X and

τΓ = τµ(∂µ + Γiµ∂i) (5.388)

its horizontal lift onto Y by a connection Γ on Y → X. In this case, the
identity (5.387) takes the form

s∗LτΓL ≈ −
d

dxα
[τµJΓ

α
µ(s)]ω, (5.389)

where JΓ
α
µ(s) = [παi (yiµ − Γiµ)− δαµL] ◦ siµ

is the stress–energy–momentum (SEM) tensor on a field s relative to the
connection Γ. We here restrict ourselves to this particular case of SEM–
tensors [Kijowski and Tulczyjew (1979)].
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For example, let us choose the trivial local connection Γiµ = 0. In this
case, the identity (5.389) recovers the well–known conservation law

∂L
∂xα

+
d

dxα
J αµ(s) ≈ 0

of the canonical energy–momentum tensor

J αµ(s) = παi s
i
µ − δ

α
µL. (5.390)

Physicists often lose sight of the fact that (5.390) fails to be a mathemat-
ical well–behaved object. The crucial point lies in the fact that the Lie
derivative

LτΓL = {∂µτµL+[τµ∂µ+τµΓiµ∂i+(∂α(τµΓiµ)+τµyjα∂jΓ
i
µ−yiµ∂ατµ)∂αi ]L}ω

is almost never equal to zero. Therefore, it is not obvious how to choose
the true energy–momentum tensor.

The canonical energy–momentum tensor (5.390) in gauge theory is sym-
metrized by hand in order to get the gauge–invariant one. In gauge theory
in the presence of a background world metric g, the identity (5.389) is
brought into the covariant conservation law for the metric SEM–tensor ,

∇αtαµ ≈ 0. (5.391)

In Einstein’s general relativity, the covariant conservation law (5.391)
issues directly from the gravitation equations. It is concerned with the
zero-spin matter in the presence of the gravitational field generated by this
matter, though the matter is not required to satisfy the motion equations.
The total energy–momentum conservation law for matter and gravity is
introduced by hand. It is usually written as

d

dxµ
[(−g)N (tλµ + tg

λµ))] ≈ 0, (5.392)

where the energy–momentum pseudotensor tgλµ of a metric gravitational
field is defined to satisfy the relation

(−g)N (tλµ + tg
λµ) ≈ 1

2κ
∂σ∂α[(−g)N (gλµgσα − gσµgλα]

modulo the Einstein equations. However, the conservation law (5.392) ap-
pears satisfactory only in cases of asymptotic–flat gravitational fields and
of a background metric.
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Moreover, the covariant conservation law (5.391) fails to take place in
the affine–metric gravitation theory and in the gauge gravitation theory,
e.g., in the presence of fermion fields.

Thus, we have not any conventional energy–momentum conservation
law in Lagrangian field theory. In particular, one may take different SEM–
tensors for different field models and, moreover, different SEM–tensors for
different solutions of the same field equations. Just the latter in fact is
the above-mentioned symmetrization of the canonical energy–momentum
tensor in gauge theory.

Gauge theory exemplifies constraint field theories. Contemporary field
models are almost always the constraint ones. To describe them, let us turn
to the Hamiltonian formalism.

When applied to field theory, the conventional Hamiltonian formalism
takes the form of the instantaneous Hamiltonian formalism where canonical
variables are field functions at a given instant of time. The corresponding
phase–space is infinite–dimensional, so that the Hamiltonian equations in
the bracket form fail to be differential equations.

The true partners of the Lagrangian formalism in classical field the-
ory are polysymplectic and multisymplectic Hamiltonian machineries where
canonical momenta correspond to derivatives of fields with respect to all
world coordinates, not only the temporal one [Cariñena et. al. (1991);
Sardanashvily (1993)]. We here follow the multimomentum Hamiltonian
formulation of field theory when the phase–space of fields is the Legendre
bundle over Y

Π = ∧nT ∗X ⊗ TX ⊗ V ∗Y, (5.393)

which is coordinated by (xα, yi, pαi ) [Sardanashvily (1993); Sardanashvily
(1994)]. Every Lagrangian density L on J1(X,Y ) implies the Legendre
morphism

L̂ : J1(X,Y ) −→ Π, pµi ◦ L̂ = πµi .

The Legendre bundle (5.393) carries the polysymplectic form

Ω = dpαi ∧ dyi ∧ ω ⊗ ∂α. (5.394)

Recall that one says that a connection γ on the fibred Legendre manifold
Π → X is a Hamiltonian connection if the form γcΩ is closed. Then, a
Hamiltonian form H on Π is defined to be an exterior form such that

dH = γcΩ (5.395)
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for some Hamiltonian connection γ. The key point lies in the fact that
every Hamiltonian form admits the following splitting

H = pαi dy
i ∧ ωα − pαi Γiαω − H̃Γω = pαi dy

i ∧ ωα −Hω, ωα = ∂αcω,
(5.396)

where Γ is a connection on Y → X.
Given the splitting (5.396), the equality (5.395) becomes the Hamilto-

nian equations

∂αr
i = ∂iαH, ∂αr

α
i = −∂iH (5.397)

for sections r of Π −→ X.
The Hamiltonian equations (5.397) are the multimomentum generaliza-

tion of the standard Hamiltonian equations in mechanics. The correspond-
ing multimomentum generalization of the conventional energy conservation
law (5.384) is the weak identity

τµ[(∂µ + Γiµ∂i − ∂iΓjµrαj ∂iλ)H̃Γ −
d

dxα
TΓ

α
µ(r)] ≈ τµrαi Riλµ, (5.398)

TΓ
α
µ(r) = [rαi ∂

i
µH̃Γ − δαµ(rαi ∂

i
αH̃Γ − H̃Γ)], (5.399)

where Riλµ = ∂αΓiµ − ∂µΓiα + Γjα∂jΓ
i
µ − Γjµ∂jΓ

i
α

is the curvature of the connection Γ. One can think of the tensor (5.399)
as being the Hamiltonian SEM–tensor.

If a Lagrangian density is regular, the multimomentum Hamiltonian
formalism is equivalent to the Lagrangian formalism, otherwise in case
of degenerate Lagrangian densities. In field theory, if a Lagrangian den-
sity is not regular, the Euler–Lagrangian equations become underdeter-
mined and require supplementary gauge–type conditions. In gauge the-
ory, they are the familiar gauge conditions. However, in general case,
the gauge–type conditions remain elusive. In the framework of the
multimomentum Hamiltonian formalism, they appear automatically as
a part of the Hamiltonian equations. The key point consists in the
fact that, given a degenerate Lagrangian density, one must consider a
family of different associated Hamiltonian forms in order to exhaust all
solutions of the Euler–Lagrangian equations [Cariñena et. al. (1991);
Sardanashvily (1993)].

Lagrangian densities of all realistic field models are quadratic or affine
in the velocity coordinates yiµ. Complete family of Hamiltonian forms asso-
ciated with such a Lagrangian density always exists [Sardanashvily (1993);
Sardanashvily (1994)]. Moreover, these Hamiltonian forms differ from each
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other only in connections Γ in the splitting (5.396). Different connections
are responsible for different gauge–type conditions mentioned above. They
are also the connections which one should use in construction of the Hamil-
tonian SEM–tensors (5.399).

The identity (5.398) remains true in the first–order Lagrangian theo-
ries of gravity. In this work, we examine the metric-affine gravity where
independent dynamical variables are world metrics and general linear con-
nections. The energy–momentum conservation law in the affine–metric
gravitation theory is not widely discussed. We construct the Hamiltonian
SEM–tensor for gravity. In case of the affine Hilbert–Einstein Lagrangian
density, it is equal to

Tαµ =
1

2κ
δαµR
√
−g

and the total conservation law (5.398) for matter and gravity is reduced
to the conservation law for matter in the presence of a background world
metric, otherwise in case of quadratic Lagrangian densities.

Lagrangian SEM–Tensors

Given a Lagrangian density L, the jet space J1(X,Y ) carries the asso-
ciated Poincaré–Cartan form [Sardanashvily (1998)]

ΞL = παi dy
i ∧ ωα − παi yiαω + Lω (5.400)

and the Lagrangian polysymplectic form

ΩL = (∂jπαi dy
j + ∂µj π

α
i dy

j
µ) ∧ dyi ∧ ω ⊗ ∂α.

Using the pull–back of these forms onto the repeated jet space J1J1(X,Y ),
one can construct the exterior generating form on J1J1(X,Y ),

ΛL = dΞL − λcΩL = [yi(λ) − y
i
α)dπαi + (∂i − ∂̂α∂αi )Ldyi] ∧ ω,(5.401)

λ = dxα ⊗ ∂̂α, ∂̂α = ∂α + yi(λ)∂i + yiµλ∂
µ
i .

Its restriction to the sesquiholonomic jet space Ĵ2(X,Y ) defines the first–
order Euler–Lagrangian operator

E ′L : Ĵ2(X,Y ) −→ ∧n+1T ∗Y, given by

E ′L = δiLdyi ∧ ω = [∂i − (∂α + yiα∂i + yiµλ∂
µ
i )∂αi ]Ldyi ∧ ω, (5.402)
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corresponding to L. The restriction of the form (5.401) to the second–order
jet space J2(X,Y ) of Y recovers the familiar variational Euler–Lagrangian
operator

EL : J2(X,Y ) −→ ∧n+1T ∗Y,

given by the expression (5.402), but with symmetric coordinates yiµλ = yiλµ.
Let s be a section of the jet bundle J1(X,Y ) −→ X such that its jet

prolongation j1s takes its values into Ker E ′L given by the coordinate rela-
tions

∂iL − (∂α + yjα∂j + yjµλ∂
µ
j )∂αi L = 0.

Then, s satisfies the first–order Euler–Lagrangian equations (5.386). These
equations are equivalent to the second–order Euler–Lagrangian equations

∂iL − (∂α + ∂αs
j∂j + ∂α∂µs

j∂µj )∂αi L = 0. (5.403)

for sections s of Y −→ X where s = j1s.
We have the following differential conservation laws on solutions of the

first–order Euler–Lagrangian equations.
Given a Lagrangian density L on J1(X,Y ), let us consider its pull–back

onto Ĵ2(X,Y ). Let u be a projectable vector–field on Y −→ X and u its
jet lift (5.9) onto J1(X,Y ) −→ X. Its pull–back onto J1J1(X,Y ) has the
canonical horizontal splitting (5.14) given by the expression

u = uH+uV = uα(∂α+yi(λ)∂i+y
i
µλ∂

µ
i )+[(ui−yi(λ)u

α)∂i+(uiµ−yiµλuα)∂µi ].

Let us calculate the Lie derivative LuL. We have

LuL = ∂̂α[πλi (ui − uµyiµ) + uαL]ω + uV cE ′L, (5.404)

∂̂α = ∂α + yiα∂i + yiµλ∂
µ
i .

Being restricted to Ker E ′L, the equality (5.404) is written

∂αu
αL+ [uα∂α + ui∂i + (∂αui + yjα∂ju

i − yiµ∂αuµ)∂αi ]L (5.405)

≈ ∂̂α[παi (ui − uµyiµ) + uαL].

On solutions s of the first–order Euler–Lagrangian equations, the weak
identity (5.405) becomes the differential conservation law

s∗LuL ≈ d(ucΞL ◦ s),

which takes the coordinate form (5.387).
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In particular, let τΓ be the horizontal lift (5.388) of a vector–field τ on
X onto Y → X by a connection Γ on Y . In this case, the identity (5.405)
is written

τµ{[∂µ+Γiµ∂i+(∂αΓiµ+yjα∂jΓ
i
µ)∂αi ]L+∂̂α[παi (yiµ−Γiµ)−δαµL] ≈ 0. (5.406)

On solutions s of the first–order Euler–Lagrangian equations, the identity
(5.406) becomes the differential conservation law (5.389) where JΓ

α
µ(s) are

coefficients of the T ∗X−valued form on X,

JΓ(s) = −(ΓcΞL) ◦ s = [παi (siµ − Γiµ)− δαµL] dxµ ⊗ ωα. (5.407)

This conservation law takes the coordinate form

τµ{[∂µ + Γiµ∂i + (∂αΓiµ + sjα∂jΓ
i
µ)∂αi ]L+

d

dxα
[παi (siµ − Γiµ)− δαµL] ≈ 0.

SEM Conservation Laws

Every projectable vector–field u on the bundle Y −→ X which covers
a vector–field τ on the base X is represented as the sum of a vertical
vector–field on Y −→ X and some lift of τ onto Y . Hence, any differential
transformation law (5.249) can be represented as a superposition of some
transformation law associated with a vertical vector–field on the bundle
Y −→ X and the one induced by the lift of a vector–field on the base X
onto Y . Therefore, we can reduce our consideration to transformation laws
associated with these two types of vector–fields on Y .

Vertical vector–fields result in transformation and conservation laws of
Noether currents. In general case, a vector–field τ on a base X induces a
vector–field on Y only by means of some connection on the bundle Y −→ X.
Such lifts result in the transformation laws of the SEM–tensors.

Given a bundle Y → X, let τ be a vector–field on X and

τΓ = τcΓ = τµ(∂µ + Γiµ∂i)

its horizontal lift onto Y → X by means of a connection on Y , given by

Γ = dxµ ⊗ (∂µ + Γiµ∂i).

In this case, the weak identity (5.405) is written

∂µτ
µL+ [τµ∂µ + τµΓiµ∂i + (∂α(τµΓiµ) + τµyjα∂jΓ

i
µ − yiµ∂ατµ)∂αi ]L

− ∂̂α[παi (τµΓiµ − τµyiµ) + δαµτ
µL] ≈ 0. (5.408)



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

936 Applied Differential Geometry: A Modern Introduction

One can simplify it as follows:

τµ{[∂µ + Γiµ∂i + (∂αΓiµ + yjα∂jΓ
i
µ)∂αi ]L − ∂̂α[παi (Γiµ − yiµ) + δαµL] ≈ 0.

Let us emphasize that this relation takes place for arbitrary vector–field τ

on X. Therefore, it is equivalent to the system of the weak identities

[∂µ + Γiµ∂i + (∂αΓiµ + yjα∂jΓ
i
µ)∂αi ]L− ∂̂α[παi (Γiµ − yiµ) + δαµL] ≈ 0. (5.409)

On solutions s of the Euler–Lagrangian equations, the weak identity
(5.408) becomes the weak transformation law

s∗LτΓL+
d

dxα
[τµJΓ

α
µ(s)]ω ≈ 0

and to the equivalent system of the weak transformation laws

[∂µ+Γiµ∂i+(∂αΓiµ+∂αsj∂jΓiµ)∂αi ]L+
d

dxα
[παi (∂µsi−Γiµ)−δαµL] ≈ 0 (5.410)

where JΓ
α
µ(s) is the SEM–tensor given by the components of the

T ∗X−valued (n− 1)−form on X,

JΓ(s) = −(ΓcΞL) ◦ s = [παi (∂µsi − Γiµ)− δαµL]dxµ ⊗ ωα.

It is clear that the first and the second terms in (5.410) taken separately
fail to be well–behaved objects. Therefore, only their combination may
result in the satisfactory transformation or conservation law.

For example, let a Lagrangian density L depend on a background metric
g on the base X. In this case, we have

∂µL = −tαβ
√
|g|Γβµα, where tαβ = gαγtγβ

is the metric SEM–tensor (by definition), while Γβµα are the Christoffel
symbols of the metric g. Then, the weak transformation law (5.410) takes
the form

−tαβ
√
|g|Γβµα + [Γiµ∂i + (∂αΓiµ + ∂αs

j∂jΓiµ)∂αi ]L

+
d

dxα
[παi (∂µsi − Γiµ)− δαµL] ≈ 0,

and, under suitable conditions of symmetries of the Lagrangian density L,
it may become the covariant conservation law ∇αtαβ = 0 where ∇α denotes
the covariant derivative relative to the connection Γβµα.
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Note that, if we consider another Lepagian equivalent of the Lagrangian
density L, the SEM transformation law takes the form

s∗LτΓL+
d

dxα
[τµJ ′Γαµ(s)]ω ≈ 0,

where J ′Γαµ = JΓ
α
µ −

d

dxν
[(∂µsi − Γiµ)cλνi ],

that is, the SEM–tensors J ′Γαµ and JΓ
α
µ differ from each other in the

superpotential–type term: − d
dxν [(∂µsi − Γiµ)cλνi ].

In particular, if the bundle Y has a fibre metric aYij , one can choose

cµνi = aYijg
µαgνβRjαβ ,

where R is the curvature of the connection Γ on the bundle Y and g is a
metric on X. In this case, the superpotential contribution into the SEM–
tensor is equal to − d

dxν [aYijg
λαgνβ(∂µsi − Γiµ)Rjαβ ].

Let us now consider the weak identity (5.408) when a vector–field τ on
the base X induces a vector–field on Y by means of different connections
Γ and Γ′ on Y −→ X. Their difference result in the weak identity

[τµσiµ∂i + (∂α(τµσiµ) + yjα∂j(τ
µσiµ))∂αi ]L − ∂̂α[παi τ

µσiµ] ≈ 0 (5.411)

where σ = Γ′ − Γ is a soldering form on the bundle Y −→ X and

τcσ = τµσiµ∂i (5.412)

is a vertical vector–field. It is clear that the identity (5.411) is exactly the
weak identity (5.405) in case of the vertival vector–field (5.412).

It follows that every SEM transformation law contains a Noether trans-
formation law. Conversely, every Noether transformation law associated
with a vertical vector–field uV on Y −→ X can be get as the difference of two
SEM transformation laws if the vector–field uV takes the form uV = τcσ,
where σ is some soldering form on Y and τ is a vector–field on X. In
field theory, this representation fails to be unique. On the contrary, in
Newtonian mechanics there is the 1–1 correspondence between the vertical
vector–fields and the soldering forms on the bundle R× F −→ F.

Note that one can consider the pull–back of the first–order Lagrangian
density L and their Lepagian equivalents onto the infinite order jet space
J∞Y . In this case, there exists the canonical lift τ∞H (5.59) of a vector–field
τ on X onto J∞Y . One can treat this lift as the horizontal lift of τ by
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means of the canonical connection on the bundle J∞Y −→ X, given by

Γ∞ = dxµ⊗(∂µ + yi∂i + yiα∂
α
i + · · · ).

Multimomentum Hamiltonian Formalism

Let Π be the Legendre bundle (5.393) coordinated by (xα, yi, pαi ). By
J1(X,Π) is meant the first–order jet space of Π −→ X. It is coordinated by
(xα, yi, pαi , y

i
(µ), p

α
iµ). The Legendre manifold Π carries the generalized Li-

ouville form

θ = −pαi dyi ∧ ω ⊗ ∂α

and the polysymplectic form Ω (5.394).
The Hamiltonian formalism in fibred manifolds is formulated intrin-

sically in terms of Hamiltonian connections which play the role similar to
that of Hamiltonian vector–fields in the symplectic geometry [Sardanashvily
(1993)].

We say that a jet field (resp. a connection)

γ = dxα ⊗ (∂α + γi(λ)∂i + γµiλ∂
i
µ)

on the Legendre manifold Π −→ X is a Hamiltonian jet field (resp. a
Hamiltonian connection) if the following exterior form is closed:

γcΩ = dpαi ∧ dyi ∧ ωα + γαiλdy
i ∧ ω − γi(λ)dp

α
i ∧ ω.

An exterior n−form H on the Legendre manifold Π is called a Hamil-
tonian form if, on an open neighborhood of each point of Π, there exists
a Hamiltonian jet–field satisfying the equation γcΩ = dH, i.e., if there ex-
ists a Hamiltonian connection satisfying the equation (5.395). Hamiltonian
connections constitute an affine subspace of connections on Π → X. The
following construction shows that this subspace is not empty.

Every connection Γ on Y → X is lifted to the connection

γ = Γ̃ = dxα⊗ [∂α+Γiα(y)∂i+(−∂jΓiα(y)pµi −K
µ
νλ(x)pνj +Kα

αλ(x)pµj )∂jµ]

on Π→ X, where

K = dxα ⊗ (∂α +Kµ
νλẋµ

∂

∂ẋν
)

is a linear symmetric connection on T ∗X. We have the equality

Γ̃cΩ = d(Γcθ).
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This equality shows that Γ̃ is a Hamiltonian connection and

HΓ = Γcθ = pαi dy
i ∧ ωα − pαi Γiαω

is a Hamiltonian form.
Let H be a Hamiltonian form. For any exterior horizontal density H̃ =

H̃ω on Π −→ X, the form H + H̃ is a Hamiltonian form. Conversely, if
H and H ′ are Hamiltonian forms, their difference H − H ′ is an exterior
horizontal density on Π −→ X.

Thus, Hamiltonian forms constitute an affine space modelled on a linear
space of the exterior horizontal densities on Π −→ X. It follows that every
Hamiltonian form on Π can be given by the expression (5.396) where Γ
is some connection on Y −→ X. Moreover, a Hamiltonian form has the
canonical splitting (5.396) as follows.

Every Hamiltonian form H implies the momentum map

Ĥ : Π −→ J1(X,Y ), yiα ◦ Ĥ = ∂iαH,

and the associated connection ΓH = Ĥ ◦ 0̂ on Y where 0̂ is the global zero
section of Π→ Y . As a consequence, we have the canonical splitting

H = HΓH − H̃.

The Hamiltonian operator EH of a Hamiltonian form H is defined to be
the first–order differential operator on Π→ X,

EH : j1Π→ ∧n+1T ∗Π,

EH = dH − Ω̂ = [(yi(λ) − ∂
i
αH)dpαi − (pαiλ + ∂iH)dyi] ∧ ω(5.413)

where Ω̂ = dpαi ∧ dyi∧ωα + pαiλdy
i ∧ ω − yi(λ)dp

α
i ∧ ω

is the pull–back of the multisymplectic form (5.394) onto j1Π.
For any connection γ on Π→ X, we have

EH ◦ γ = dH − γcΩ.

It follows that γ is a Hamiltonian connection for a Hamiltonian form H iff
it takes its values into Ker EH given by the coordinate relations

yi(λ) = ∂iαH, pαiλ = −∂iH. (5.414)

Let a Hamiltonian connection γ has an integral section r of Π −→ X,
that is, γ ◦ r = j1r. Then, the algebraic equations (5.414) are brought into
the first–order differential Hamiltonian equations (5.397).
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Now we consider relations between Lagrangian and Hamiltonian for-
malisms. A Hamiltonian form H is defined to be associated with a La-
grangian density L if it satisfies the relations

L̂ ◦ Ĥ|Q = IdQ, Q = L̂(J1(X,Y )),

H = H bH + L ◦ Ĥ,

which take the coordinate form

∂µi L(xα, yj , ∂jαH) = pµi , L(xα, yj , ∂jαH) = pµi ∂
i
µH−H.

Note that there are different Hamiltonian forms associated with the same
singular Lagrangian density.

Bearing in mind physical application, we restrict our consideration to
so–called semiregular Lagrangian densities L when the preimage L̂−1(q) of
each point of q ∈ Q is the connected submanifold of J1(X,Y ). In this case,
all Hamiltonian forms associated with a semiregular Lagrangian density L
coincide on the Lagrangian constraint space Q, and the Poincaré–Cartan
form ΞL is the pull–back

ΞL = H ◦ L̂, παi y
i
α − L = H(xµ, yi, παi ),

of any associated multimomentum Hamiltonian form H by the Legendre
morphism L̂ [Zakharov (1992)]. Also the generating form (5.401) is the
pull–back of

ΛL = EH ◦ J1L̂

of the Hamiltonian operator (5.413) of any Hamiltonian form H associ-
ated with a semiregular Lagrangian density L. As a consequence, we get
the following correspondence between solutions of the Euler–Lagrangian
equations and the Hamiltonian equations [Sardanashvily (1994); Zakharov
(1992)].

Let a section r of Π −→ X be a solution of the Hamiltonian equations
(5.397) for a Hamiltonian form H associated with a semiregular Lagrangian
density L. If r lives on the Lagrangian constraint space Q, the section
s = Ĥ ◦ r of J1(X,Y ) −→ X satisfies the first–order Euler–Lagrangian
equations (5.386). Conversely, given a semiregular Lagrangian density L,
let s be a solution of the first–order Euler–Lagrangian equations (5.386).
Let H be a Hamiltonian form associated with L so that

Ĥ ◦ L̂ ◦ s = s. (5.415)
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Then, the section r = L̂ ◦ s of Π −→ X is a solution of the Hamiltonian
equations (5.397) for H. For sections s and r, we have the relations

s = j1s, and s = πΠY ◦ r,

where s is a solution of the second–order Euler–Lagrangian equations
(5.403).

We shall say that a family of Hamiltonian forms H associated with a
semiregular Lagrangian density L is complete if, for each solution s of the
first–order Euler–Lagrangian equations (5.386), there exists a solution r of
the Hamiltonian equations (5.397) for some Hamiltonian form H from this
family so that

r = L̂ ◦ s, s = Ĥ ◦ r, s = J1(πΠY ◦ r). (5.416)

Such a complete family exists iff, for each solution s of the Euler–Lagrangian
equations for L, there exists a Hamiltonian form H from this family so that
the condition (5.415) holds.

We do not discuss here existence of solutions of Euler–Lagrangian and
Hamiltonian equations. Note that, in contrast with mechanics, there are
different Hamiltonian connections associated with the same multimomen-
tum Hamiltonian form in general. Moreover, in field theory when the pri-
mary constraint space is the Lagrangian constraint space Q, there is a
family of Hamiltonian forms associated with the same Lagrangian density
as a rule. In practice, one can choose either the Hamiltonian equations or
solutions of the Hamiltonian equations such that these solutions live on the
constraint space.

Hamiltonian SEM–Tensors

Let H be a Hamiltonian form on the Legendre bundle Π over a fibre
bundle Y −→ X. We have the following differential conservation law on
solutions of the Hamiltonian equations [Sardanashvily (1998)].

Let r be a section of the fibred Legendre manifold Π −→ X. Given a
connection Γ on Y −→ X, we consider the T ∗X−valued (n− 1)−form

TΓ(r) = −(ΓcH) ◦ r, (5.417)

TΓ(r) = [rαi (∂µri − Γiµ)− δαµ(rαi (∂αri − Γiα)− H̃Γ)]dxµ ⊗ ωα,

on X where H̃Γ is the Hamiltonian density in the splitting (5.396) of H
with respect to the connection Γ.
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Let τ = τα∂α be a vector–field on X. Given a connection Γ on Y → X,
it induces the projectable vector–field

τ̃Γ = τα∂α + ταΓiα∂i + (−τµpαj ∂iΓjµ − pαi ∂µτµ + pµi ∂µτ
α)∂iα

on the Legendre bundle Π. Let us calculate the Lie derivative LeτΓH̃Γ on a
section r. We have

(LeτΓH̃Γ) ◦ r = {∂αταH̃Γ + [τα∂α
+ ταΓiα∂i + (−τµrαj ∂iΓjµ − rαi ∂µτµ + rµi ∂µτ

α)∂iα]H̃Γ}ω
= τµrαi R

i
λµω + d(τµTΓ

α
µ(r)ωα)− (τ̃ΓV cEH) ◦ r, (5.418)

where τ̃ΓV is the vertical part of the canonical horizontal splitting (5.14)
of the vector–field τ̃V on Π over j1Π. If r is a solution of the Hamiltonian
equations, the equality (5.418) becomes the conservation law (5.398). The
form (5.417) modulo the Hamiltonian equations reads

TΓ(r) ≈ [rαi (∂iµH− Γiµ)− δαµ(rαi ∂
i
αH−H)]dxµ ⊗ ωα. (5.419)

For example, if X = R and Γ is the trivial connection, we have
TΓ(r) = Hdt, where H is a Hamiltonian function. Then, the identity
(5.398) becomes the conventional energy conservation law (5.384) in me-
chanics.

Unless n = 1, the identity (5.398) cannot be regarded directly as the
energy–momentum conservation law. To clarify its physical meaning, we
turn to the Lagrangian formalism.

Let a Hamiltonian form H be associated with a semiregular Lagrangian
density L. Let r be a solution of the Hamiltonian equations of H which
lives on the Lagrangian constraint space Q and s the associated solution
of the first–order Euler–Lagrangian equations of L so that they satisfy the
conditions (5.416). Then, we have

TΓ(r) = JΓ(H̃ ◦ r), TΓ(L̃ ◦ s) = JΓ(s),

where JΓ is the SEM–tensor (5.407).
It follows that, on the Lagrangian constraint space Q, the form (5.419)

can be treated the Hamiltonian SEM–tensor relative to the connection Γ
on Y −→ X.

At the same time, the examples below show that, in several field models,
the equality (5.398) is brought into the covariant conservation law (5.391)
for the metric SEM–tensor.
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In the Lagrangian formalism, the metric SEM–tensor is defined to be

√
−gtαβ = 2

∂L
∂gαβ

.

In case of a background world metric g, this object is well–behaved. In the
framework of the multimomentum Hamiltonian formalism, one can intro-
duce the similar tensor

√
−gtHαβ = 2

∂H
∂gαβ

. (5.420)

If a Hamiltonian form H is associated with a semiregular Lagrangian
density L, there are the equalities

tH
αβ(q) = −gαµgβνtµν(xα, yi, ∂iαH(q)), (q ∈ Q),

tH
αβ(xα, yi, παi (z)) = −gαµgβνtµν(z), Ĥ ◦ L̂(z) = z.

In view of these equalities, we can think of the tensor (5.420) restricted
to the Lagrangian constraint space Q as being the Hamiltonian metric
SEM–tensor. On Q, the tensor (5.420) does not depend upon choice of a
Hamiltonian form H associated with L. Therefore, we shall denote it by
the common symbol t. Set

tλα = gανt
λν .

In the presence of a background world metric g, the identity (5.398) takes
the form

tλα{αλµ}
√
−g + (Γiµ∂i − ∂iΓjµrαj ∂iα)H̃Γ ≈

d

dxα
TΓ

α
µ + rαi R

i
αµ , (5.421)

where by {αλµ} are meant the Christoffel symbols of the world metric g.

SEM Tensors in Gauge Theory

In this subsection, following [Sardanashvily (1998)] we consider the
gauge theory of principal connections treated as gauge potentials. Here,
the manifold X is assumed to be oriented and provided with a nondegen-
erate fibre metric gµν in the tangent bundle of X. We denote g = det(gµν).

Let P → X be a principal bundle with a structure Lie group G which
acts freely and transitively on P on the right: rg : p 7→ pg, (p ∈ P, g ∈
G).
A principal connection A on P → X is defined to be a G-equivariant con-
nection on P such that j1rg ◦A = A◦rg for each canonical morphism rg.
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Recall that there is the 1–1 correspondence between the principal connec-
tions on a principal bundle P → X and the global sections of the quotient
bundle

C = J1(X,P )/G→ X. (5.422)

The bundle (5.422) is the affine bundle modelled on the vector bundle
C = T ∗X ⊗ (V P/G). Given a bundle atlas ΨP of P , the bundle C has the
fibred coordinates (xµ, kmµ ) so that (kmµ ◦ A)(x) = Amµ (x) are coefficients
of the local connection 1–form of a principal connection A with respect to
the atlas ΨP . The 1–jet space J1(X,C) of the fibre bundle C −→ X is
coordinated by (xµ, kmµ , k

m
µλ).

There exists the canonical splitting over C, given by

J1(X,C) = C+ ⊕ C− = (J2P/G)⊕ (∧2T ∗X ⊗ V GP ), (5.423)

kmµλ =
1
2

(kmµλ + kmλµ + cmnlk
n
αk

l
µ) +

1
2

(kmµλ − kmλµ − cmnlknαklµ).

The corresponding surjections read:

S : J1(X,C)→ C+, Smλµ = kmµλ + kmλµ + cmnlk
n
αk

l
µ,

F : J1(X,C)→ C−, Fmλµ = kmµλ − kmλµ − cmnlknαklµ.

On the configuration space (5.423), the conventional Yang–Mills La-
grangian density LYM of gauge potentials in the presence of a background
world metric is given by the expression

LYM =
1

4ε2
aGmng

λµgβνFmλβFnµν
√
|g|ω, (5.424)

where aG is a nondegenerate G−invariant metric in the Lie algebra g of G.
The Legendre morphism associated with the Lagrangian density (5.424)
takes the form

p(µλ)
m ◦ L̂YM = 0, (5.425)

p[µλ]
m ◦ L̂YM = ε−2aGmng

λαgµβFnαβ
√
|g|. (5.426)

The equation (5.425) defines the constraint space of gauge theory.
Given a symmetric connection K on the tangent bundle TX, every

principal connection B on P induces the connection

Γmµλ = ∂µB
m
α − cmnlknµBlα −Kβ

µλ(Bmβ − kmβ ) (5.427)

on the bundle of principal connections C.
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Let τ be a vector–field on the base X and

τBK = τα{∂α + [∂µBmα − cmnlknµBlα −Kβ
µλ(Bmβ − kmβ )]∂µm} (5.428)

its horizontal lift onto C by means of the connection (5.427). For every
vector–field τ , one can choose the connection K on the tangent bundle TX
which has τ as the geodesic field. In this case, the horizontal lift (5.428) of
the vector–field τ becomes its canonical lift

τB = τα∂α + [τα(∂µBmα − cmnlknµBlα) + ∂µτ
α(Bmα − kmα )]∂µm , (5.429)

by means of the principal connection B on the principal bundle P [Gia-
chetta and Mangiarotti (1990)]. The vector–field (5.429) is just the general
principal vector–field on C that has been mentioned in the previous Sec-
tion. Hence, the Lie derivative of the Lagrangian density (5.424) by the jet
lift τB of the field τB becomes

LτBLYM = (∂αταLYM + τα∂αLYM −Fmµν∂ατµπνλm )ω.

The corresponding SEM transformation law takes the form

∂ατ
αLYM − τµtαβ

√
|g|Γβµα −Fmµν∂ατµπνλm ≈ (5.430)

∂̂α[πνλm (τµ(∂νBmµ − cmnlknνBlµ) + ∂ντ
µ(Bmµ − kmµ )− τµkmνµ) + δαµτ

µLYM ],

where

tαβ =
1√
|g|

(πναm Fmβν − δ
α
βLYM )

is the metric SEM–tensor of gauge potentials.
Note that, in general case of the principal connection B, the correspond-

ing SEM transformation law (5.430) differs from the covariant conservation
law in the Noether conservation law

∂̂α(πνλm ug
m
ν ) ≈ 0, where

ug = (∂ναm + cmnlk
l
να

n)∂νm, αm = τµ(Bmµ −Amµ )

is the principal vector–field (5.353) on C.
Following the general procedure [Sardanashvily (1993); Sardanashvily

(1994)], let us consider connections on the fibre bundle C −→ X which take
their values into Ker L̂YM :

Γ : C → C+, Γmµλ − Γmλµ − cmnlknαklµ = 0. (5.431)
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Moreover, we can restrict ourselves to connections of the following type.
Every principal connection B on P induces the connection ΓB (5.431) on
C such that

ΓB ◦B = S ◦ j1B,

ΓBmµλ =
1
2

[cmnlk
n
αk

l
µ + ∂µB

m
α + ∂αB

m
µ − cmnl(knµBlα + knαB

l
µ)]− Γβµλ(Bmβ − kmβ ).

For all these connections, the following Hamiltonian forms

HB = pµλm dkmµ ∧ ωα − pµλm ΓBmµλω − H̃YMω, (5.432)

H̃YM =
ε2

4
amnG gµνgλβp

[µλ]
m p[νβ]

n |g|−1/2,

are associated with the Lagrangian density LYM and constitute a complete
family. The corresponding Hamiltonian equations for sections r of Π −→ X

read

∂αp
µλ
m = −cnlmklνp[µν]

n + cnmlB
l
νp

(µν)
n − Γµλνp

(λν)
m , (5.433)

∂αk
m
µ + ∂µk

m
α = 2ΓBm(µλ), (5.434)

plus the equation (5.426). The equations (5.426) and (5.433) restricted to
the constraint space (5.425) are the familiar Yang–Mills equations. Differ-
ent Hamiltonian forms (5.432) lead to the different equations (5.434). The
equation (5.434) is independent of canonical momenta and plays the role of
the gauge–type condition. Its solution is k(x) = B.

Let A be a solution of the Yang–Mills equations. There exists the Hamil-
tonian form HB=A (5.432) such that rA = L̂YM ◦ A is a solution of the
corresponding Hamiltonian equations (5.433), (5.434) and (5.426) on the
constraint space (5.425).

On the solution rA, the curvature of the connection ΓA is reduced to

Rmλαµ =
1
2

(∂αFmαµ − cmqnkqαFnαµ − ΓβαλF
m
βµ − ΓβµλF

m
αβ) =

1
2

[(∂αFmλµ − cmqnkqαFnλµ − ΓβλαF
m
µβ)− (∂µFmλα − cmqnkqµFnλα − ΓβλµF

m
αβ)]

where F = F ◦A is the strength of A. If we set

Sαµ = p[αλ]
m ∂mαµH̃YM =

ε2

2
√
|g|
amnG gµνgαβp

[αλ]
m p[βν]

n ,

then we have

Sαµ =
1
2
p[αλ]Fmµα, H̃YM =

1
2
Sαα.
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Using (5.425), (5.426) and (5.433), we get the relations

∂βnΓAmαµp
αλ
m ∂nβλH̃YM = ΓβαµS

α
β , rA

[λα]
m Rmλαµ = ∂αS

α
µ(rA)−ΓβµλS

α
β(rA)

and we find that

tαµ
√
|g| = 2Sαµ −

1
2
δαµS

α
α, TΓA

α
µ(rA) = Sαµ(rA)− 1

2
δαµS

α
α(rA),

tαµ(rA)
√
|g| = TαΓAµ(rA) + Sλµ(rA).

Hence, the identity (5.421) in gauge theory is brought into the covariant
energy–momentum conservation law

∇αtαµ(rA) ≈ 0.

The Lagrangian partner of the Hamiltonian SEM–tensor TΓA(rA) is the
SEM–tensor JΓA(A) (5.407) on the solution A relative to the connection
ΓA on the bundle C. This is exactly the familiar symmetrized canonical
energy–momentum tensor of gauge potentials.

SEM Tensors of Matter Fields

In gauge theory, matter fields possessing only internal symmetries are
described by sections of a vector bundle Y = (P × V )/G, associated with
a principal bundle P [Sardanashvily (1998)]. It has a G−invariant fibre
metric aY . Because of the canonical vertical splitting V Y = Y × Y , the
metric aY is a fibre metric in the vertical tangent bundle V Y → X. Ev-
ery principal connection A on a principal bundle P yields the associated
connection

Γ = dxα ⊗ [∂α +Amµ (x)Imijyj∂i], (5.435)

where Amµ (x) are coefficients of the local connection 1–form and Im are
generators of the structure group G on the standard fibre V of the bundle
Y .

On the configuration space J1(X,Y ), the regular Lagrangian density of
matter fields in the presence of a background connection Γ on Y reads

L(m) =
1
2
aYij [g

µν(yiµ − Γiµ)(yjν − Γjν)−m2yiyj ]
√
|g|ω. (5.436)

The Legendre bundle of the vector bundle Y −→ X is Π = ∧nT ∗X ⊗
TX ⊗ Y ∗. The unique Hamiltonian form on Π associated with the La-
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grangian density L(m) (5.436) is written

H(m) = pαi dy
i ∧ ωα − pαi Γiαω −

1
2

(aijY gµνp
µ
i p
ν
j |g|−1 +m2aYijy

iyj)
√
|g|ω,
(5.437)

where aY is the fibre metric in V ∗Y dual to aY . There is the 1–1 correspon-
dence between the solutions of the first–order Euler–Lagrangian equations
of the regular Lagrangian density (5.436) and the solutions of the Hamil-
tonian equations of the Hamiltonian form (5.437).

To examine the conservation law (5.421), let us take the same Hamil-
tonian SEM–tensor relative to the connection Γ (5.435) for all solutions r
of the Hamiltonian equations. The following equality motivates the option
above. We have

TαΓ µ(r) = tαµ(r)
√
|g| = [aijY gµνr

α
i p

ν
j |g|−1

−1
2
δαµ(aijY gανr

α
i r

ν
j |g|−1 +m2aYijr

irj)]
√
|g|.

The gauge invariance condition Im
j
ir
α
j ∂

i
αH̃ = 0 also takes place. Then, it

can be observed that the identity (5.421) reduces to the familiar covariant
energy–momentum conservation law√

|g|∇αtαµ(r) ≈ −rαi FmλµImijyj .

SEM Tensors in Affine–Metric Gravitation Theory

Now we can apply the Hamiltonian SEM–tensor machinery to gravi-
tation theory [Sardanashvily (1998); Giachetta and Sardanashvily (1996)].
Here, X4 is a 4D world manifold which obeys the well–known topological
conditions in order that a gravitational field exists on X4.

Recall that the contemporary concept of gravitational interaction is
based on the gauge gravitation theory with two types of gravitational
fields: tetrad gravitational fields and Lorentz gauge potentials. In absence
of fermion matter, one can choose by gravitational variables a pseudo–
Riemannian metric g on a world space–time manifold X4 and a general
linear connections K on the tangent bundle of X4. We call them a world
metric and a world connection respectively. Here we are not concerned
with the matter interacting with a general linear connection, for it is non–
Lagrangian and hypothetical as a rule.

Let LX −→ X4 be the principal bundle of linear frames in the tangent
spaces to X4. Its structure group is GL+(4,R). The world connections are
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associated with the principal connections on the principal bundle LX −→
X4. Hence, there is the 1–1 correspondence between the world connections
and the global sections of the quotient bundle

C = J1(X4, LX)/GL+(4,R). (5.438)

We therefore can apply the standard procedure of the Hamiltonian gauge
theory in order to describe the configuration and phase–spaces of world
connections [Sardanashvily (1993); Sardanashvily (1994)].

Also, there is the 1–1 correspondence between the world metrics g on
X4 and the global sections of the bundle Σ of pseudo–Riemannian bilin-
ear forms in tangent spaces to X4. This bundle is associated with the
GL4−principal bundle LX. The 2–fold covering of the bundle Σ is the
quotient bundle LX/SO(3, 1).

The total configuration space of the affine–metric gravitational variables
is the product

J1(X4, C)× J1(X4,Σ). (5.439)

coordinated by (xµ, gαβ , kαβµ, gαβα, kαβµλ). Also, the total phase–space
Π of the affine–metric gravity is the product of the Legendre bundles over
the above–mentioned bundles C and Σ. It has the corresponding canonical
coordinates (xµ, gαβ , kαβµ, pαβα, pαβµλ).

On the configuration space (5.439), the Hilbert–Einstein Lagrangian
density of general relativity reads

LHE = − 1
2κ
gβλFαβαλ

√
−gω, with (5.440)

Fαβνλ = kαβλν − kαβνλ + kαενk
ε
βλ − kαελkεβν .

The corresponding Legendre morphism is given by the expressions

pαβ
α ◦ L̂HE = 0,

pα
βνλ ◦ L̂HE = πα

βνλ =
1

2κ
(δναg

βλ − δααgβν)
√
−g, (5.441)

which define the constraint space of general relativity in the affine–metric
variables.

Now, let us consider the following connections on the bundle C × Σ in
order to construct a complete family of Hamiltonian forms associated with
the Lagrangian density (5.440).
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Let K be a world space–time connection and

ΓKαβνλ =
1
2

[kαενkεβλ − kαελkεβν + ∂αK
α
βν + ∂νK

α
βλ

−2Kε
(νλ)(Kα

βε − kαβε) +Kε
βλk

α
εν +Kε

βνk
α
ελ −Kα

ελk
ε
βν −Kα

ενk
ε
βλ]

be the corresponding connection on the bundle C (5.438). Let K ′ be an-
other symmetric world connection. Building on these connections, we set
up the following connection on the bundle C × Σ,

Γαβα = −K ′α
ελg

εβ −K ′β
ελg

αε,

Γαβνλ = ΓKαβνλ −
1
2
Rαβνλ , (5.442)

where Rαβνλ is the Riemann curvature tensor of K.
For all connections (5.442), the following Hamiltonian forms are associ-

ated with the Lagrangian density LHE and constitute a complete family:

HHE = (pαβαdgαβ + pα
βνλdkαβν) ∧ ωα −HHEω,

HHE = −pαβα(K ′α
ελg

εβ +K ′β
ελg

αε)

+ pα
βνλΓKαβνλ −

1
2
Rαβνλ(pαβνλ − παβνλ)

= −pαβα(K ′α
ελg

εβ +K ′β
ελg

αε) + pα
βνλΓαβνλ + H̃HE ,

H̃HE =
1

2κ
R
√
−g. (5.443)

Given the Hamiltonian form HHE (5.443) plus a Hamiltonian form HM

for matter, we have the corresponding Hamiltonian equations

∂αg
αβ +K ′α

ελg
εβ +K ′β

ελg
αε = 0, (5.444)

∂αk
α
βν = ΓKαβνλ −

1
2
Rαβνλ, (5.445)

∂αpαβ
α = pεβ

σK ′ε
ασ + pεα

σK ′ε
βσ (5.446)

− 1
2κ

(Rαβ −
1
2
gαβR)

√
−g − ∂HM

∂gαβ
,

∂αpα
βνλ = −pαε[νγ]kβεγ + pε

β[νγ]kεαγ − pαβεγKν
(εγ)

−pαε(νγ)Kβ
εγ + pε

β(νγ)Kε
αγ , (5.447)

plus the motion equations of matter. The Hamiltonian equations (5.444)
and (5.445) are independent of canonical momenta and so, reduce to the
gauge–type conditions. The equation (5.445) breaks into the following two
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parts,

Fαβλν = Rαβνλ, and (5.448)

∂ν(Kα
βλ − kαβλ) + ∂α(Kα

βν − kαβν)− 2Kε
(νλ)(Kα

βε − kαβε)
+ Kε

βλk
α
εν + Kε

βνk
α
ελ −Kα

ελk
ε
βν −Kα

ενk
ε
βλ = 0, (5.449)

where F is the curvature of the connection k(x). It is clear that the gauge–
type conditions (5.444) and (5.445) are satisfied by

k(x) = K, K ′α
βλ = Γαβλ. (5.450)

When restricted to the constraint space (5.441), the Hamiltonian equa-
tions (5.446) and (5.447) become

1
κ

(Rαβ −
1
2
gαβR)

√
−g = −∂HM

∂gαβ
, (5.451)

Dα(
√
−ggνβ)− δναDα(

√
−ggλβ) +

√
−g[gνβ(kααλ − kαλα)

+ gλβ(kνλα − kναλ) + δναg
λβ(kµµλ − kµλµ)] = 0, (5.452)

where Dαg
αβ = ∂αg

αβ + kαµλg
µβ + kβµλg

αµ.

Substituting the equation (5.448) into the equation (5.451), we get the
Einstein equations

1
κ

(Fαβ −
1
2
gαβF ) = −tαβ , (5.453)

where tαβ is the metric SEM–tensor of matter. The equations(5.452) and
(5.453) are the familiar equations of affine–metric gravity. In particular,
the former is the equation for torsion and nonmetricity terms of the general
linear connection k(x). In the absence of matter sources of a general linear
connection, it admits the well–known solution

kαβν = Γαβν −
1
2
δανVβ , Dαg

βγ = Vαg
βγ ,

where Vα is an arbitrary covector–field corresponding to the well–known
projective freedom.

Let s = (k(x), g(x)) be a solution of the Euler–Lagrangian equations
of the first–order Hilbert–Einstein Lagrangian density (5.440) and r the
corresponding solution of the Hamiltonian equations of the Hamiltonian
form (5.443) where K and K ′ are given by the expressions (5.450). For this
solution r, let us take the SEM–tensor Ts (5.399) relative to the connection
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(5.442) where K and K ′ are given by the expressions (5.450). It reads

Ts
α
µ = δαµH̃HE =

1
2κ
δαµR
√
−g

and the identity (5.398) takes the form

(∂µ + Γαβµ∂αβ + Γiµ∂i − ∂iΓjµpαj ∂iλ)(H̃HE + H̃M )

≈ d

dxα
(Tsαµ + TM

α
µ) + pα

βνλRαβνλµ + pαi R
i
λµ (5.454)

where TM is the SEM–tensor for matter.
One can verify that the SEM–tensor Ts meets the condition

(∂µ + Γαβµ∂αβ)H̃HE =
d

dxα
Ts
α
µ, (5.455)

so that on solutions (5.450), the curvature of the connection (5.442) van-
ishes. Hence, the identity (5.454) is reduced to the conservation law (5.421)
of matter in the presence of a background metric. The gravitation SEM–
tensor is eliminated from the conservation law because the Hamiltonian
form HHE is affine in all canonical momenta. Note that only gauge–type
conditions (5.444), (5.445) and the motion equations of matter have been
used.

At the same time, since the canonical momenta pαβα of the world metric
are equal to zero, the Hamiltonian equation (5.446) on the Lagrangian
constraint space becomes

∂αβ(H̃HE + H̃M ) = 0.

Hence, the equality (5.454) takes the form

πα
βνλ∂µR

α
βνλ+(∂µ+Γiµ∂i−∂iΓjµpαj ∂iλ)H̃M ≈

d

dxα
(Tsαµ+TMλ

µ)+pαi R
i
λµ.

(5.456)
This is the form of the energy–momentum conservation law which we ob-
serve also in case of quadratic Lagrangian densities of affine–metric gravity.
Substituting the equality (5.455) into (5.456), we get the above result.

As a test case of quadratic Lagrangian densities of affine–metric gravity,
let us examine the sum

L = (− 1
2κ
gβλFαβαλ +

1
4ε
gαγg

βσgνµgλεFαβνλFγσµε)
√
−gω (5.457)
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of the Hilbert–Einstein Lagrangian density and the Yang–Mills one. The
corresponding Legendre map reads

pαβ
α ◦ L̂ = 0, (5.458)

pα
β(νλ) ◦ L̂ = 0, (5.459)

pα
β[νλ] ◦ L̂ = πα

βνλ +
1
ε
gαγg

βσgνµgλεFγσεµ
√
−g. (5.460)

The relations (5.458) and (5.459) defines the Lagrangian constraint space.
Let us consider two connections on the bundle C × Σ,

Γαβα = −K ′α
ελg

εβ −K ′β
ελg

αε, and Γαβνλ = ΓKαβνλ, (5.461)

where the notations of the expression (5.442) are used. The corresponding
Hamiltonian forms

H = (pαβαdgαβ + pα
βνλdkαβν) ∧ ωα −Hω,

H = −pαβα(K ′α
ελg

εβ +K ′β
ελg

αε) + pα
βνλΓKαβνλ + H̃,

H̃ =
ε

4
gαγgβσgνµgλε(pαβ[νλ] − παβνλ)(pγσ[µε] − πγβµε), (5.462)

are associated with the Lagrangian density (5.457) and constitute a com-
plete family.

Given the Hamiltonian form (5.462) plus the Hamiltonian form HM for
matter, we have the corresponding Hamiltonian equations

∂αg
αβ +K ′α

ελg
εβ +K ′β

ελg
αε = 0, (5.463)

∂αk
α
βν = ΓαKβνλ + εgαγgβσgνµgλε(pγσ[µε] − πγβµε), (5.464)

∂αpαβ
α = − ∂H

∂gαβ
− ∂HM
∂gαβ

, (5.465)

∂αpα
βνλ = −pαε[νγ]kβεγ + pε

β[νγ]kεαγ

−pαβεγKν
(εγ) − pαε(νγ)Kβ

εγ + pε
β(νγ)Kε

αγ (5.466)

plus the motion equations for matter. The equation (5.464) breaks into the
equation (5.460) and the gauge–type condition (5.449). The gauge–type
conditions (5.463) and (5.449) have the solution (5.450). Substituting the
equation (5.464) into the equation (5.465) on the constraint space (5.458),
we get the quadratic Einstein equations. Substitution of the equations
(5.459) and (5.460) into the equation (5.466) results into the Yang–Mills
generalization of the equation (5.452),

∂αpα
βνλ + pα

ε[νγ]kβεγ − pεβ[νγ]kεαγ = 0.
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Consider now the splitting of the Hamiltonian form (5.462) with respect
to the connection (5.442) and the Hamiltonian density

H̃Γ = H̃+
1
2
pα

βνλRαβνλ.

Let s = (k(x), g(x)) be a solution of the Euler–Lagrangian equations
of the Lagrangian density (5.457) and r the corresponding solution of the
Hamiltonian equations of the Hamiltonian form (5.462) where K and K ′

are given by the expressions (5.450). For this solution r, let us take the
SEM–tensor Ts (5.399) relative to the connection (5.442) where K and K ′

are given by the expressions (5.450). It reads

Ts
α
µ =

1
2
pα

β[νλ]Rαβνµ +
ε

2
gαγgβσgνδgµεpα

β[νλ](pγσ[δε] − πγσδε)

−δαµ(H̃+
ε

2
gαγgβσgνδgτεπα

βντ (pγσ[δε] − πγσδε))

and is equal to

1
ε
Rα

βνλRαβνµ + πα
βνλRαβνµ − δαµ(

1
4ε
Rα

βνλRαβνλ +
1

2κ
R).

The weak identity (5.398) now becomes

(∂µ + Γαβµ∂αβ + Γiµ∂i − ∂iΓjµpαj ∂iλ − pαβνλ
∂

∂kσγδ
ΓKαβνµ

∂

∂Pσγδλ
)(H̃Γ + H̃M )

≈ d

dxα
(Tsαµ + TM

α
µ) + pα

βνλRαβνλµ + pαi R
i
λµ

and can be simplified to

(∂µ + Γiµ∂i − ∂iΓjµpαj ∂iλ)H̃M − pαβνλ
∂

∂kσγδ
ΓKαβνµ

∂

∂pσγδλ
H̃Γ

≈ d

dxα
(Tsαµ + TM

α
µ) + pαi R

i
λµ , where (5.467)

pα
βνλ ∂

∂kσγδ
ΓKαβνµ

∂

∂pσγδλ
H̃Γ (5.468)

=
1
κ
kγβµ(gβνRαγαν − gανRβανγ)

√
−g − kγ(βµ)pα

νβλRανγλ.

Let us choose the local geodetic coordinate system at a point x ∈ X.
Relative to this coordinate system, the equality (5.467) at x becomes the
conservation law

(∂µ + Γiµ∂i − ∂iΓjµpαj ∂iλ)H̃M ≈
d

dxα
(Tsαµ + TM

α
µ) + pαi R

i
λµ.
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For example, in gauge theory, we have

d

dxα
(TΓ

α
µ + tM

α
µ) = 0,

where tM is the metric SEM–tensor of matter.

5.12.2 Gauge Systems of Gravity and Fermion Fields

In physical reality, one observes three types of field systems: gravitational
fields, fermion fields, and gauge fields associated with internal symmetries
(see [Giachetta and Sardanashvily (1997)]). If the gauge invariance under
internal symmetries is kept in the presence of a gravitational field, La-
grangian densities of gauge fields must depend on a metric gravitational
field only.

In the gauge gravitation theory, gravity is represented by pairs (h,Ah)
of gravitational fields h and associated Lorentz connections Ah [Hehl et. al.
(1995); Sardanashvily (1992)]. The connection Ah is usually identified with
both a connection on a world manifold X and a spinor connection on the
spinor bundle Sh → X whose sections describe Dirac fermion fields ψh in
the presence of the gravitational field h. The problem arises when Dirac
fermion fields are described in the framework of the affine–metric gravita-
tion theory. In this case, the fact that a world connection is some Lorentz
connection may result from the field equations, but it cannot be assumed
in advance. There are models where the world connection is not a Lorentz
connection [Hehl et. al. (1995)]. Moreover, it may happen that a world
connection is the Lorentz connection with respect to different gravitational
fields [Thompson (1993)]. At the same time, a Dirac fermion field can be
regarded only in a pair (h, ψh) with a certain gravitational field h.

One has to define the representation of cotangent vectors to X by the
Dirac’s γ−matrices in order to construct the Dirac operator. Given a tetrad
gravitational field h(x), we have the representation

γh : dxµ 7→ d̂xµ = hµaγ
a.

However, different gravitational fields h and h′ yield the nonequivalent rep-
resentations γh and γh′ .

It follows that fermion–gravitation pairs (h, ψh) are described by sec-
tions of the composite spinor bundle

S → Σ→ X, (5.469)
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where Σ → X is the bundle of gravitational fields h where values of h
play the role of parameter coordinates, besides the familiar world coordi-
nates [Sardanashvily (1992)]. In particular, every spinor bundle Sh → X

is isomorphic to the restriction of S → Σ to h(X) ⊂ Σ. Performing this
restriction, we come to the familiar case of a field model in the presence
of a gravitational field h(x). The feature of the dynamics of field systems
on the composite bundle (5.469) lies in the fact that we have the modi-
fied covariant differential of fermion fields which depend on derivatives of
gravitational fields h.

As a consequence, we get the following covariant derivative of Dirac
fermion fields in the presence of a gravitational field h(x):

D̃α = ∂α −
1
2
Aabcµ(∂αhµc +Kµ

νλh
ν
c )Iab, (5.470)

Aabcµ =
1
2

(ηcahbµ − ηcbhaµ),

where K is a general linear connection on a world manifold X,5 η is the
Minkowski metric, and Iab = 1

4 [γa, γb] are generators of the spinor Lie
group Ls = SL(2,C).

The covariant derivative (5.470) has been considered by [Aringazin
and Mikhailov (1991); Ponomarev and Obukhov (1982); Tucker and Wang
(1995)]. The relation (5.472) correspond to the canonical decomposition of
the Lie algebra of the general linear group. By the well–known Theorem
[Kobayashi and Nomizu (1963/9)], every general linear connection being
projected onto the Lie algebra of the Lorentz group induces a Lorentz con-
nection.

In our opinion, the advantage of the covariant derivative (5.470), consists
in the fact that, being derived in the framework of the gauge gravitation
theory, it may be also applied to the affine–metric gravitation theory and

5The connection eKab
α = Aabcµ(∂αh

µ
c +Kµ

νλh
ν
c ) (5.471)

is not the connection

Kk
mλ = hkµ(∂αh

µ
m +Kµ

νλh
ν
m) = Kab

α(ηamδ
k
b − ηbmδ

k
a)

written with respect to the reference frame ha = haαdx
α, but there is the relation

eKab
α =

1

2
(Kab

α −Kba
α). (5.472)

If K is a Lorentz connection Ah, then the connection eK given by (5.471) is consistent

with K itself.
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the conventional Einstein’s gravitation theory. We are not concerned here
with the general problem of equivalence of metric, affine and affine–metric
theories of gravity [Ferraris and Kijowski (1982)]. At the same time, when
K is the Levi–Civita connection of h, the Lagrangian density of fermion
fields which uses the covariant derivative (5.470) becomes that in the Ein-
stein’s gravitation theory. It follows that the configuration space of metric
(or tetrad) gravitational fields and general linear connections may play the
role of the universal configuration space of realistic gravitational models.
In particular, one then can think of the generalized Komar superpoten-
tial as being the universal superpotential of energy–momentum of gravity
[Giachetta and Sardanashvily (1995)].

We follow [Giachetta and Sardanashvily (1997)] in the geometrical ap-
proach to field theory when classical fields are described by global sections
of a fibre bundle Y −→ X over a smooth world space–time manifold X.
Their dynamics is phrased in terms of jet spaces [Sardanashvily (1993);
Saunders (1989)]. Recall that a kth–order differential operator on sections
of a fibre bundle Y −→ X is defined to be a bundle morphism of the jet
bundle Jk(X,Y ) −→ X to a vector bundle over X.

In particular, given bundle coordinates (xµ, yi) of a fibre bundle Y −→
X, the 1–jet space J1(X,Y ) of Y has the adapted coordinates (xµ, yi, yiµ),
where yiµ(j1xs) = ∂µs

i(x).
There is the 1–1 correspondence between the connections on the fibre

bundle Y → X and the global sections Γ = dxα⊗ (∂α + Γiα∂i) of the affine
jet bundle J1(X,Y ) → Y . Every connection Γ on Y → X induces the
first–order differential operator on Y ,

DΓ : J1(X,Y ) −→ T ∗X ⊗ V Y, DΓ = (yiα − Γiα)dxα ⊗ ∂i,

which is called the covariant differential relative to the connection Γ.
Recall that in the first–order Lagrangian formalism, the 1–jet space

J1(X,Y ) of Y plays the role of the finite–dimensional configuration space
of fields represented by sections s of a bundle Y → X. A first–order La-
grangian density L : J1(X,Y ) −→ ∧nT ∗X is defined to be a horizon-
tal density L = L(xµ, yi, yiµ)ω on the jet bundle J1(X,Y ) → X, where
ω = dx1 ∧ ... ∧ dxn, (n = dimX). Since the jet bundle J1(X,Y ) → Y is
affine, every polynomial Lagrangian density of field theory factors through
L : J1(X,Y ) D−→ T ∗X ⊗ V Y → ∧nT ∗X, where D is the covariant differ-
ential on Y , and V Y is the vertical tangent bundle of Y .

Let us consider the gauge theory of gravity and fermion fields. By X
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is further meant an oriented 4D world manifold which satisfies the well–
known topological conditions in order that gravitational fields and spinor
structure can exist on X. To summarize these conditions, we assume that
X is not compact and that the tangent bundle of X is trivial [Giachetta
and Sardanashvily (1997)].

Let LX be the principal bundle of oriented linear frames in tangent
spaces to X. In gravitation theory, its structure group GL+(4,R) is reduced
to the connected Lorentz group L = SO(1, 3). It means that there exists a
reduced subbundle LhX of LX whose structure group is L. In accordance
with the well–known Theorem, there is the 1–1 correspondence between the
reduced L subbundles LhX of LX and the global sections h of the quotient
bundle

Σ = LX/L −→ X. (5.473)

These sections h describe gravitational fields on X, for the bundle (5.473)
is the 2–folder covering of the bundle of pseudo–Riemannian metrics on X.

Given a section h of Σ, let Ψh be an atlas of LX such that the corre-
sponding local sections zhξ of LX take their values into LhX. With respect
to Ψh and a holonomic atlas ΨT = {ψTξ } of LX, a gravitational field h can
be represented by a family of GL4−valued tetrad functions

hξ = ψTξ ◦ zhξ , dxα = hαa (x)ha. (5.474)

By the Lorentz connections Ah associated with a gravitational field h

are meant the principal connections on the reduced subbundle LhX of LX.
They give rise to principal connections on LX and to spinor connections
on the Ls−lift Ph of LhX.

Given a Minkowski space M , let Cl1,3 be the complex Clifford algebra6

generated by elements of M . A spinor space V is defined to be a minimal
6Recall that Clifford algebras are a type of associative algebra, named after English

geometer W. Clifford. They can be thought of as one of the possible generalizations
of the complex numbers and quaternions. The theory of Clifford algebras is intimately

connected with the theory of quadratic forms and orthogonal transformations. The
most important Clifford algebras are those over R and C equipped with nondegenerate
quadratic forms. Recall that every nondegenerate quadratic form on a finite–dimensional

real vector space is equivalent to the standard diagonal form Q(x) = x2
1+· · ·+x2

p−x2
p+1−

· · · − x2
p+q , where n = p + q is the dimension of the vector space. The pair of integers

(p, q) is called the signature of the quadratic form. Similarly, one can define Clifford

algebras on complex vector spaces. Every nondegenerate quadratic form on a complex

vector space is equivalent to the standard diagonal form Q(z) = z21 + z22 + · · · + z2n, so
there is essentially only one Clifford algebra in each dimension. One can show that the

complex Clifford algebra may be obtained as the complexification of the real one.
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left ideal of Cl1,3 on which this algebra acts on the left. We have the
representation γ : M ⊗ V → V of elements of the Minkowski space
M ⊂ Cl1,3 by Dirac’s matrices γ on V .

Let us consider a bundle of complex Clifford algebras Cl1,3 over X

whose structure group is the Clifford group of invertible elements of Cl1,3.
Its subbundles are both a spinor bundle SM −→ X and the bundle YM
−→ X of Minkowski spaces of generating elements of Cl1,3. To describe
Dirac fermion fields on a world manifold X, one must require YM to be
isomorphic to the cotangent bundle T ∗X of X. It takes place if there exists
a reduced L subbundle LhX such that

YM = (LhX ×M)/L.

Then, the spinor bundle

SM = Sh = (Ph × V )/Ls (5.475)

is associated with the Ls−lift Ph of LhX. In this case, there exists the
representation

γh : T ∗X⊗Sh = (Ph×(M⊗V ))/Ls −→ (Ph×γ(M×V ))/Ls = Sh (5.476)

of cotangent vectors to a world manifold X by Dirac’s γ−matrices on ele-
ments of the spinor bundle Sh. As a shorthand, one can write

d̂xα = γh(dxα) = hαa (x)γa.

Given the representation (5.476), we shall say that sections of the spinor
bundle Sh describe Dirac fermion fields in the presence of the gravitational
field h. Let a principal connection on Sh be given by

Ah = dxα ⊗ (∂α +
1
2
AabαIab

A
Bψ

B∂A).

Given the corresponding covariant differential D and the representation γh
(5.476), one can construct the Dirac operator on the spinor bundle Sh, as

Dh = γh ◦D : J1Sh → T ∗X ⊗ V Sh → V Sh, (5.477)

ẏA ◦ Dh = hαaγ
aA

B(yBα −
1
2
AabαIab

A
By

B).

Different gravitational fields h and h′ define nonequivalent representa-
tions γh and γh′ . It follows that a Dirac fermion field must be regarded only
in a pair with a certain gravitational field. There is the 1–1 correspondence
between these pairs and sections of the composite spinor bundle (5.469).
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Recall that we have a composite bundle

Y → Σ→ X (5.478)

of a bundle Y → X denoted by YΣ and a bundle Σ→ X. It is coordinated
by (xα, σm, yi) where (xµ, σm) are coordinates of Σ and yi are the fibre
coordinates of YΣ. We further assume that Σ has a global section.

The application of composite bundles to field theory is founded on the
following [Sardanashvily (1992)]. Given a global section h of Σ, the re-
striction Yh of YΣ to h(X) is a subbundle of Y → X. There is the 1–1
correspondence between the global sections sh of Yh and the global sec-
tions of the composite bundle (5.478) which cover h. Therefore, one can
think of sections sh of Yh as describing fermion fields in the presence of a
background parameter field h, whereas sections of the composite bundle Y
describe all the pairs (sh, h). The configuration space of these pairs is the
1–jet space J1(X,Y ) of the composite bundle Y .

Every connection

AΣ = dxα ⊗ (∂α + Ãiα∂i) + dσm ⊗ (∂m +Aim∂i)

on the bundle YΣ induces the horizontal splitting

V Y = V YΣ ⊕ (Y × V Σ), locally given by

ẏi∂i + σ̇m∂m = (ẏi −Aimσ̇m)∂i + σ̇m(∂m +Aim∂i).

Using this splitting, one can construct the first–order differential operator
(5.41) on the composite bundle Y , namely

D̃ : J1(X,Y )→ T ∗X⊗V YΣ, D̃ = dxα⊗(yiα−Ãiα−Aimσmα )∂i. (5.479)

This operator possess the following property. Given a global section h of
Σ, let Γ be a connection on Σ whose integral section is h, that is, Γ ◦ h =
j1h. Note that the differential (5.479) restricted to J1(X,Y )h ⊂ J1(X,Y )
becomes the familiar covariant differential relative to the connection on Yh,

Ah = dxα ⊗ [∂α + (Aim∂αh
m + Ãiα)∂i].

Thus, it is D̃ that we may use in order to construct a Lagrangian density

L : J1(X,Y )
eD−→ T ∗X ⊗ V YΣ → ∧nT ∗X

for sections of the composite bundle Y .
In particular, in gravitation theory, we have the composite bundle

LX → Σ → X, where Σ is the quotient bundle (5.473) and LXΣ =
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LX → Σ is the L−principal bundle. Let PΣ be the Ls−principal lift of
LXΣ such that PΣ/Ls = Σ and LXΣ = r(PΣ). In particular, there is
the imbedding of the Ls−lift Ph of LhX onto the restriction of PΣ to h(X)
[Giachetta and Sardanashvily (1997)].

Let us consider the composite spinor bundle (5.469) where SΣ = (PΣ×
V )/Ls is associated with the Ls−principal bundle PΣ. Note that, given a
global section h of Σ, the restriction SΣ to h(X) is the spinor bundle Sh
(5.475) whose sections describe Dirac fermion fields in the presence of the
gravitational field h.

Let us give the principal bundle LX with a holonomic atlas {ψTξ , Uξ}
and the principal bundles PΣ and LXΣ with associated atlases {zsε , Uε} and
{zε = r ◦ zsε}. With respect to these atlases, the composite spinor bundle
is equipped with the bundle coordinates (xα, σµa , ψ

A) where (xα, σµa) are
coordinates of the bundle Σ such that σµa are the matrix components of the
group element (ψTξ ◦ zε)(σ), σ ∈ Uε, πΣX(σ) ∈ Uξ. Given a section h of Σ,
we have (σαa ◦h)(x) = hαa (x), where hαa (x) are the tetrad functions (5.474).

Let us consider the bundle of Minkowski spaces (LX ×M)/L→ Σ as-
sociated with the L−principal bundle LXΣ. Since LXΣ is trivial, it is
isomorphic to the pull–back Σ×T ∗X which we denote by the same symbol
T ∗X. Then, one can define the bundle morphism γΣ over Σ, given by

γΣ : T ∗X ⊗ SΣ → SΣ, d̂xα = γΣ(dxα) = σαaγ
a. (5.480)

When restricted to h(X) ⊂ Σ, the map (5.480) becomes the morphism
γh (5.476). We use this morphism in order to construct the total Dirac
operator on the composite spinor bundle S (5.469).

Let

Ã = dxα ⊗ (∂α + ÃBα ∂B) + dσµa ⊗ (∂aµ +ABaµ∂B)

be a principal connection on the bundle SΣ and D̃ the corresponding dif-
ferential (5.479). We have the first–order differential operator on S, given
by

D = γΣ ◦ D̃ : J1S → T ∗X ⊗ V SΣ → V SΣ,

ψ̇
A
◦ D = σαaγ

aA
B(ψBα − ÃBα −ABaµσ

µ
aλ).

One can think of it as being the total Dirac operator since, for every section
h, the restriction of D to J1Sh ⊂ J1S becomes the Dirac operator Dh
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(5.477) relative to the connection on the bundle Sh, given by

Ah = dxα ⊗ [∂α + (ÃBα +ABaµ∂αh
µ
a)∂B ].

In order to construct the differential D̃ (5.479) on J1(X,S) in explicit
form, let us consider the principal connection on the bundle LXΣ which is
given by the local connection form

Ã = (Ãabµdxµ +Aabcµdσ
µ
c )⊗ Iab, (5.481)

Ãabµ =
1
2
Kν

λµσ
α
c (ηcaσbν − ηcbσaν),

Aabcµ =
1
2

(ηcaσbµ − ηcbσaµ), (5.482)

where K is a general linear connection on TX and (5.482) corresponds
to the canonical left–invariant connection on the bundle GL+(4,R) −→
GL+(4,R)/L.
Therefore, the differential D̃ relative to the connection (5.481) reads

D̃ = dxα ⊗ [∂α −
1
2
Aabcµ(σµcλ +Kµ

νλσ
ν
c )IabABψB∂A]. (5.483)

Given a section h, the connection Ã (5.481) is reduced to the Lorentz
connection K̃ (5.471) on LhX, and the differential (5.483) leads to the
covariant derivatives of fermion fields (5.470). We will use the differential
(5.483) in order to construct a Lagrangian density of Dirac fermion fields.
Their Lagrangian density is defined on the configuration space J1(X,S ⊕
S+) coordinated by (xµ, σµa , ψ

A, ψ+
A, σ

µ
aλ, ψ

A
α , ψ

+
Aλ). It reads

Lψ = { i
2

[ψ+
A(γ0γα)AB(ψBα −

1
2
Aabcµ(σµcλ +Kµ

νλσ
ν
c )IabBCψC)

− (ψ+
Aλ −

1
2
Aabcµ(σµcλ +Kµ

νλσ
ν
c )ψ+

CI
+
ab
C
A)(γ0γα)ABψB ] (5.484)

− mψ+
A(γ0)ABψB}σ−1ω,

where γµ = σµaγ
a, and σ = det(σµa), while ψ+

A(γ0)ABψB is the Lorentz–
invariant fibre metric in the bundle S ⊕ S∗ [Crawford (1991)].

One can show that

∂Lψ
∂Kµ

νλ
+

∂Lψ
∂Kµ

λν
= 0.

Hence, the Lagrangian density (5.484) depends on the torsion of the gen-
eral linear connection K only. In particular, it follows that, if K is the
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Levi–Civita connection of a gravitational field h(x), after the substitu-
tion σνc = hνc (x), the Lagrangian density (5.484) becomes the familiar La-
grangian density of fermion fields in the Einstein’s gravitation theory.

5.12.3 Hawking–Penrose Quantum Gravity and Black

Holes

In their search for quantum gravity, S. Hawking and R. Penrose use the
straightforward application of quantum theory to general relativity [Hawk-
ing and Israel (1979); Penrose (1989); Hawking and Penrose (1996)], rather
than following the more fashioned string theory approach (described be-
low).

According to Hawking, “Einstein’s general relativity is a beautiful the-
ory that agrees with every observation that has been made so far. It might
require modifications on the Planck scale, and it might be only a low en-
ergy approximation to some more fundamental theory, like e.g., superstring
theory, but it will not affect many of the predictions that can be get from
gravity...” [Hawking and Israel (1979)].

Space–Time Manifold, Gravity, Black Holes and Big Bang

The crucial technique for investigating Hawking–Penrose singularities
and black holes, has been the study of the global causal structure of space–
time [Hawking and Israel (1979)]. Define I+(p) to be the set of all points of
the space–time manifold M that can be reached from the point p by future
directed time like curves. One can think of I+(p) as the set of all events that
can be influenced by what happens at p. One now considers the boundary
İ+(S) of the future of a set S. It is easy to see that this boundary cannot
be time–like. For in that case, a point q just outside the boundary would
be to the future of a point p just inside. Nor can the boundary of the future
be space–like, except at the set S itself. For in that case every past directed
curve from a point q, just to the future of the boundary, would cross the
boundary and leave the future of S. That would be a contradiction with
the fact that q is in the future of S. Therefore, the boundary of the future
is null apart from at S itself.

To show that each generator of the boundary of the future has a past
end point on the set, one has to impose some global condition on the causal
structure. The strongest and physically most important condition is that of
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global space–time hyperbolicity .7 The significance of global hyperbolicity for
singularity theorems stems from the following [Hawking and Israel (1979);
Hawking and Penrose (1996)]. Let U be globally hyperbolic and let p and
q be points of U that can be joined by a time like or null curve. Then there
is a time–like or null–geodesic between p and q which maximizes the length
of time like or null curves from p to q. The method of proof is to show
the space of all time like or null curves from p to q is compact in a certain
topology. One then shows that the length of the curve is an upper semi–
continuous function on this space. It must therefore attain its maximum
and the curve of maximum length will be a geodesic because otherwise a
small variation will give a longer curve.

One can now consider the second variation of the length of a geodesic
γ. One can show that γ can be varied to a longer curve if there is an
infinitesimally neighboring geodesic from p which intersects γ again at a
point r between p and q. The point r is said to be conjugate to p. One can
illustrate this by considering two points p and q on the surface of the Earth.
Without loss of generality one can take p to be at the north pole. Because
the Earth has a positive definite metric rather than a Lorentzian one, there
is a geodesic of minimal length, rather than a geodesic of maximum length.
This minimal geodesic will be a line of longitude running from the north
pole to the point q. But there will be another geodesic from p to q which
runs down the back from the north pole to the south pole and then up to
q. This geodesic contains a point conjugate to p at the south pole where all
the geodesics from p intersect. Both geodesics from p to q are stationary
points of the length under a small variation. But now in a positive definite
metric the second variation of a geodesic containing a conjugate point can
give a shorter curve from p to q. Thus, on the Earth, the geodesic that goes
down to the south pole and then comes up is not the shortest curve from p

to q.
The reason one gets conjugate points in space–time is that gravity is an

attractive force. It therefore curves space–time in such a way that neigh-
boring geodesics are bent towards each other rather than away. One can

7Recall that an open set U is said to be globally hyperbolic if:

(1) For every pair of points p and q in U the intersection of the future of p and the past
of q has compact closure. In other words, it is a bounded diamond shaped region.

(2) Strong causality holds on U . That is, there are no closed or almost closed time–like
curves contained in U .
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see this from the Newman–Penrose equation

dρ

dv
= ρ2 + σijσij +

1
n
Rαβl

αlβ , (α, β = 0, 1, 2, 3)

where n = 2 for null geodesics and n = 3 for time–like geodesics. Here v is
an affine parameter along a congruence of geodesics, with tangent vector lα

which are hypersurface orthogonal. The quantity ρ is the average rate of
convergence of the geodesics, while σ measures the shear. The term Rαβl

αlβ

gives the direct gravitational effect of the matter on the convergence of the
geodesics. By the Einstein equation (3.1), it will be non–negative for any
null vector lα if the matter obeys the so–called weak energy condition, which
says that the energy density T00 is non–negative in any frame, i.e.,

Tαβv
αvβ ≥ 0, (5.485)

for any time–like vector vα, is obeyed by the classical SEM–tensor of
any reasonable matter [Hawking and Israel (1979); Hawking and Penrose
(1996)].

Suppose the weak energy condition holds, and that the null geodesics
from a point p begin to converge again and that ρ has the positive value
ρ0. Then the Newman–Penrose equation would imply that the convergence
ρ would become infinite at a point q within an affine parameter distance
1
ρ0

if the null geodesic can be extended that far. If ρ = ρ0 at v = v0 then
ρ ≥ 1

ρ−1+v0−v . Thus there is a conjugate point before v = v0 + ρ−1.
Infinitesimally neighboring null geodesics from p will intersect at q. This

means the point q will be conjugate to p along the null geodesic γ joining
them. For points on γ beyond the conjugate point q there will be a variation
of γ that gives a time like curve from p. Thus γ cannot lie in the boundary
of the future of p beyond the conjugate point q. So γ will have a future end
point as a generator of the boundary of the future of p.

The situation with time–like geodesics is similar, except that the strong
energy condition [Hawking and Israel (1979); Hawking and Penrose (1996)],

Tαβv
αvβ ≥ 1

2
vαvαT, (5.486)

that is required to make Rαβlαlβ non–negative for every time like vector
lα, is rather stronger than the weak energy condition (5.485). However,
it is still physically reasonable, at least in an averaged sense, in classical
theory. If the strong energy condition holds, and the time like geodesics
from p begin converging again, then there will be a point q conjugate to p.
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Finally there is the generic energy condition, which says:

(1) The strong energy condition holds.
(2) Every time–like or null geodesic has a point where l[aRb]cd[elf ]l

cld 6= 0.

One normally thinks of a space–time singularity as a region in which
the curvature becomes unboundedly large. However, the trouble with this
definition is that one could simply leave out the singular points and say
that the remaining manifold was the whole of space–time. It is therefore
better to define space–time as the maximal manifold on which the metric is
suitably smooth. One can then recognize the occurrence of singularities by
the existence of incomplete geodesics that cannot be extended to infinite
values of the affine parameter.

Hawking–Penrose Singularity Theorems

Hawking–Penrose Singularity is defined as follows [Hawking and Israel
(1979); Penrose (1989); Hawking and Penrose (1996)]:

A space–time manifold is singular if it is time–like or null geodesically
incomplete but cannot be embedded in a larger space–time manifold.

This definition reflects the most objectionable feature of singularities,
that there can be particles whose history has a beginning or end at a finite
time. There are examples in which geodesic incompleteness can occur with
the curvature remaining bounded, but it is thought that generically the
curvature will diverge along incomplete geodesics. This is important if one
is to appeal to quantum effects to solve the problems raised by singularities
in classical general relativity.

Singularity Theorems include:

(1) Energy condition (i.e., weak (5.485), strong (5.486), or generic (5.12.3)).
(2) Condition on global structure (e.g., there should not be any closed

time–like curves).
(3) Gravity strong enough to trap a region (so that nothing could escape).

The various singularity theorems show that space–time must be time like
or null geodesically incomplete if different combinations of the three kinds
of conditions hold. One can weaken one condition if one assumes stronger
versions of the other two. The Hawking–Penrose Singularity theorems have
the generic energy condition, the strongest of the three energy conditions.
The global condition is fairly weak, that there should be no closed time like
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curves. And the no escape condition is the most general, that there should
be either a trapped surface or a closed space like three surface.

The theorems predict singularities in two situations. One is in the fu-
ture in the gravitational collapse of stars and other massive bodies. Such
singularities would be an end of time, at least for particles moving on the in-
complete geodesics. The other situation in which singularities are predicted
is in the past at the beginning of the present expansion of the universe.

The prediction of singularities means that classical general relativity is
not a complete theory. Because the singular points have to be cut out of
the space–time manifold one cannot define the field equations there and
cannot predict what will come out of a singularity. With the singularity
in the past the only way to deal with this problem seems to be to appeal
to quantum gravity. But the singularities that are predicted in the future
seem to have a property that Penrose has called, Cosmic Censorship. That
is they conveniently occur in places like black holes that are hidden from
external observers. So any break down of predictability that may occur
at these singularities will not affect what happens in the outside world, at
least not according to classical theory.

Hawking Cosmic Censorship Hypothesis says: “Nature abhors a naked
singularity” [Hawking and Israel (1979); Hawking and Penrose (1996)].
However, there is unpredictability in the quantum theory. This is related
to the fact that gravitational fields can have intrinsic entropy which is not
just the result of coarse graining. Gravitational entropy, and the fact that
time has a beginning and may have an end, are the two main themes of
Hawking’s research, because they are the ways in which gravity is distinctly
different from other physical fields.

The fact that gravity has a quantity that behaves like entropy was first
noticed in the purely classical theory. It depends on Penrose’s Cosmic
Censorship Conjecture. This is unproved but is believed to be true for
suitably general initial data and state equations.

One makes the approximation of treating the region around a collapsing
star as asymptotically flat. Then, as Penrose showed, one can conformally
embed the space–time manifold M in a manifold with boundary M̄ . The
boundary ∂M will be a null surface and will consist of two components,
future and past null infinity, called I+ and I−. One says that weak Cosmic
Censorship holds if two conditions are satisfied. First, it is assumed that the
null geodesic generators of I+ are complete in a certain conformal metric.
This implies that observers far from the collapse live to an old age and are
not wiped out by a thunderbolt singularity sent out from the collapsing
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star. Second, it is assumed that the past of I+ is globally hyperbolic.
This means there are no naked singularities that can be seen from large
distances. Penrose has also a stronger form of Cosmic Censorship which
assumes that the whole space–time is globally hyperbolic.

Weak Cosmic Censorship Hypothesis reads:

(1) I+ and I− are complete.
(2) I−(I+) is globally hyperbolic.

If weak Cosmic Censorship holds, the singularities that are predicted
to occur in gravitational collapse cannot be visible from I+. This means
that there must be a region of space–time that is not in the past of I+.
This region is said to be a black hole because no light or anything else can
escape from it to infinity. The boundary of the black hole region is called
the event horizon. Because it is also the boundary of the past of I+ the
event horizon will be generated by null–geodesic segments that may have
past end points but don’t have any future end points. It then follows that
if the weak energy condition holds the generators of the horizon cannot be
converging. For if they were they would intersect each other within a finite
distance [Hawking and Israel (1979); Penrose (1989); Hawking and Penrose
(1996)].

This implies that the area of a cross section of the event horizon can
never decrease with time and in general will increase. Moreover if two
black holes collide and merge together the area of the final black hole will
be greater than the sum of the areas of the original black holes. This is
very similar to the behavior of entropy according to the Second Law of
Thermodynamics:8.

Second Law of Black Hole Mechanics: δA ≥ 0.
Second Law of Thermodynamics: δS ≥ 0.
The similarity with thermodynamics is increased by what is called the

First Law of Black Hole Mechanics, which relates the change in mass of a
black hole to the change in the area of the event horizon and the change
in its angular momentum and electric charge. One can compare this to the
First Law of Thermodynamics which gives the change in internal energy in
terms of the change in entropy and the external work done on the system
[Hawking and Israel (1979); Hawking and Penrose (1996)]:

First Law of Black Hole Mechanics: δE = κ
8π δA+ ΩδJ + ΦδQ.

First Law of Thermodynamics: δE = TδS + PδV.
8Recall that Second Law of Thermodynamics states: Entropy can never decrease and

the entropy of a total system is greater than the sum of its constituent parts
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One sees that if the area A of the event horizon is analogous to entropy
S then the quantity analogous to temperature is what is called the surface
gravity of the black hole κ. This is a measure of the strength of the grav-
itational field on the event horizon. The similarity with thermodynamics
is further increased by the so–called Zeroth Law of Black Hole Mechanics:
the surface gravity is the same everywhere on the event horizon of a time
independent black hole [Hawking and Israel (1979)].

Zeroth Law of Black Hole Mechanics:
κ is the same everywhere on the horizon of a time independent black hole.

Zeroth Law of Thermodynamics:
T is the same everywhere for a system in thermal equilibrium.

Encouraged by these similarities Bekenstein proposed that some mul-
tiple of the area of the event horizon actually was the entropy of a black
hole. He suggested a generalized Second Law: the sum of this black hole
entropy and the entropy of matter outside black holes would never decrease
(see [Strominger and Vafa (1996)]).

Generalized Second Law: δ(S + cA) ≥ 0.
However, this proposal was not consistent. If black holes have an en-

tropy proportional to horizon area A they should also have a non zero
temperature proportional to surface gravity.

Path–Integral Model for Black Holes

Recall that the fact that gravity is attractive means that it will tend
to draw the matter in the universe together to form objects like stars and
galaxies. These can support themselves for a time against further contrac-
tion by thermal pressure, in the case of stars, or by rotation and internal
motions, in the case of galaxies. However, eventually the heat or the an-
gular momentum will be carried away and the object will begin to shrink.
If the mass is less than about one and a half times that of the Sun the
contraction can be stopped by the degeneracy pressure of electrons or neu-
trons. The object will settle down to be a white dwarf or a neutron star
respectively. However, if the mass is greater than this limit there is nothing
that can hold it up and stop it continuing to contract. Once it has shrunk
to a certain critical size the gravitational field at its surface will be so
strong that the light cones will be bent inward [Hawking and Israel (1979);
Hawking and Penrose (1996)].

If the Cosmic Censorship Conjecture is correct the trapped surface and
the singularity it predicts cannot be visible from far away. Thus there must
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be a region of space–time from which it is not possible to escape to infinity.
This region is said to be a black hole. Its boundary is called the event
horizon and it is a null surface formed by the light rays that just fail to get
away to infinity. As we saw in the last subsection, the area A of a cross
section of the event horizon can never decrease, at least in the classical
theory. This, and perturbation calculations of spherical collapse, suggest
that black holes will settle down to a stationary state.

Recall that the Schwarzschild metric form, given by

ds2 = −(1− 2M
r

)dt2 + (1− 2M
r

)−1dr2 + r2(dθ2 + sin2 θdφ2),

represents the gravitational field that a black hole would settle down to if
it were non rotating. In the usual r and t coordinates there is an apparent
singularity at the Schwarzschild radius r = 2M . However, this is just
caused by a bad choice of coordinates. One can choose other coordinates
in which the metric is regular there.

Now, if one performs the Wick rotation, t = iτ , one gets a positive
definite metric, usually called Euclidean even though they may be curved.
In the Euclidean–Schwarzschild metric

ds2 = x2

(
dτ

4M

)2

+
(

r2

4M2

)2

dx2 + r2(dθ2 + sin2 θdφ2)

there is again an apparent singularity at r = 2M . However, one can define
a new radial coordinate x to be 4M(1− 2Mr−1)

1
2 .

The metric in the x − τ plane then becomes like the origin of polar
coordinates if one identifies the coordinate τ with period 8πM . Similarly,
other Euclidean black hole metrics will have apparent singularities on their
horizons which can be removed by identifying the imaginary time coordinate
with period 2π

κ .
To see the significance of having imaginary time identified with some

period β, let us consider the amplitude to go from some field configuration
φ1 on the surface t1 to a configuration φ2 on the surface t2. This will be
given by the matrix element of eiH(t2−t1). However, one can also represent
this amplitude as a path integral over all fields φ between t1 and t2 which
agree with the given fields φ1 and φ2 on the two surfaces,

< φ2, t2|φ1, t1 >=< φ2| exp(−iH(t2 − t1))|φ1 >=
∫
D[φ] exp(iA[φ]).

One now chooses the time separation (t2− t1) to be pure imaginary and
equal to β. One also puts the initial field φ1 equal to the final field φ2 and
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sums over a complete basis of states φn. On the left one has the expectation
value of e−βH summed over all states. This is just the thermodynamic
partition function Z at the temperature T = β−1,

Z =
∑

< φn| exp(−βH)|φn >=
∫
D[φ] exp(−A[φ]). (5.487)

On the r.h.s. of this equation one has a path integral (see chapter 6).
One puts φ1 = φ2 and sums over all field configurations φn. This means
that effectively one is doing the path integral over all fields φ on a space–
time that is identified periodically in the imaginary time direction with
period β. Thus the partition function for the field φ at temperature T

is given by a path integral over all fields on a Euclidean space–time. This
space–time is periodic in the imaginary time direction with period β = T−1

[Hawking and Israel (1979); Hawking and Penrose (1996)].
If one calculates the path integral in flat space–time identified with

period β in the imaginary time direction one gets the usual result for the
partition function of black body radiation. However, as we have just seen,
the Euclidean–Schwarzschild solution is also periodic in imaginary time
with period 2π

κ . This means that fields on the Schwarzschild background
will behave as if they were in a thermal state with temperature κ

2π .
The periodicity in imaginary time explained why the messy calculation

of frequency mixing led to radiation that was exactly thermal. However,
this derivation avoided the problem of the very high frequencies that take
part in the frequency mixing approach. It can also be applied when there
are interactions between the quantum fields on the background. The fact
that the path integral is on a periodic background implies that all physical
quantities like expectation values will be thermal. This would have been
very difficult to establish in the frequency mixing approach [Hawking and
Israel (1979); Hawking and Penrose (1996)].

One can extend these interactions to include interactions with the grav-
itational field itself. One starts with a background metric g0 such as the
Euclidean–Schwarzschild metric that is a solution of the classical field equa-
tions. One can then expand the action A in a power series in the pertur-
bations δg about g0, as

A[g] = A[g0] +A2(δg)2 +A3(δg)3 + ...

Here, the linear term vanishes because the background is a solution of the
field equations. The quadratic term can be regarded as describing gravitons
on the background while the cubic and higher terms describe interactions
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between the gravitons. The path integral over the quadratic terms are finite.
There are non renormalizable divergences at two loops in pure gravity but
these cancel with the fermions in super–gravity theories. It is not known
whether super–gravity theories have divergences at three loops or higher
because no one has been brave or foolhardy enough to try the calculation.
Some recent work indicates that they may be finite to all orders. But even
if there are higher loop divergences they will make very little difference
except when the background is curved on the scale of the Planck length
(10−33 cm).

More interesting than the higher order terms is the zeroth order term,
the action of the background metric g0 [Hawking and Israel (1979); Hawking
and Penrose (1996)],

A = − 1
16π

∫
R(−g)

1
2 d4x+

1
8π

∫
K(±h)

1
2 d3x.

Recall that the usual Einstein–Hilbert action for general relativity is the
volume integral of the scalar curvature R. This is zero for vacuum solutions
so one might think that the action of the Euclidean-Schwarzschild solution
was zero. However, there is also a surface term in the action proportional to
the integral of K, the trace of the second fundamental form of the boundary
surface. When one includes this and subtracts off the surface term for flat
space one finds the action of the Euclidean–Schwarzschild metric is β2

16π

where β is the period in imaginary time at infinity. Thus the dominant
contribution to the path integral for the partition function Z given by
(5.487), is e

−β2

16π ,

Z =
∑

exp(−βEn) = exp
(
− β2

16π

)
.

If one differentiates logZ with respect to the period β one gets the
expectation value of the energy, or in other words, the mass,

< E >= − d

dβ
(logZ) =

β

8π
.

So this gives the mass M = β
8π . This confirms the relation between the mass

and the period, or inverse temperature, that we already knew. However,
one can go further. By standard thermodynamic arguments, the log of
the partition function is equal to minus the free energy F divided by the
temperature T , i.e., logZ = −FT . And the free energy is the mass or energy
plus the temperature times the entropy S, i.e., F =< E > +TS. Putting
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all this together one sees that the action of the black hole gives an entropy
of 4πM2,

S =
β2

16π
= 4πM2 =

1
4
A.

This is exactly what is required to make the laws of black holes the same
as the laws of thermodynamics [Hawking and Israel (1979); Hawking and
Penrose (1996)]. The reason why does one get this intrinsic gravitational
entropy which has no parallel in other quantum field theories, is that gravity
allows different topologies for the space–time manifold.

In the case we are considering the Euclidean–Schwarzschild solution
has a boundary at infinity that has topology S2 × S1. The S2 is a large
space like two sphere at infinity and the S1 corresponds to the imaginary
time direction which is identified periodical. One can fill in this boundary
with metrics of at least two different topologies. One is the Euclidean–
Schwarzschild metric. This has topology R2 × S2, that is the Euclidean
two plane times a two sphere. The other is R3 × S1, the topology of
Euclidean flat space periodically identified in the imaginary time direction.
These two topologies have different Euler numbers. The Euler number
of periodically identified flat space is zero, while that of the Euclidean–
Schwarzschild solution is two,

Total action = M(τ2 − τ1).

The significance of this is as follows: on the topology of periodically iden-
tified flat space one can find a periodic time function τ whose gradient is
no where zero and which agrees with the imaginary time coordinate on
the boundary at infinity. One can then work out the action of the region
between two surfaces τ1 and τ2. There will be two contributions to the
action, a volume integral over the matter Lagrangian, plus the Einstein–
Hilbert Lagrangian and a surface term. If the solution is time independent
the surface term over τ = τ1 will cancel with the surface term over τ = τ2.
Thus the only net contribution to the surface term comes from the bound-
ary at infinity. This gives half the mass times the imaginary time interval
(τ2 − τ1). If the mass is non–zero there must be non–zero matter fields to
create the mass. One can show that the volume integral over the matter
Lagrangian plus the Einstein–Hilbert Lagrangian also gives 1

2M(τ2 − τ1).
Thus the total action is M(τ2 − τ1). If one puts this contribution to the
log of the partition function into the thermodynamic formulae one finds
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the expectation value of the energy to be the mass, as one would expect.
However, the entropy contributed by the background field will be zero.

However, the situation is different with the Euclidean–Schwarzschild
solution, which says:

Total action including corner contribution = M(τ2 − τ1)

Total action without corner contribution =
1
2
M(τ2 − τ1)

Because the Euler number is two rather than zero one cannot find a
time function τ whose gradient is everywhere non–zero. The best one can
do is choose the imaginary time coordinate of the Schwarzschild solution.
This has a fixed two sphere at the horizon where τ behaves like an an-
gular coordinate. If one now works out the action between two surfaces
of constant τ the volume integral vanishes because there are no matter
fields and the scalar curvature is zero. The trace K surface term at infin-
ity again gives 1

2M(τ2 − τ1). However there is now another surface term
at the horizon where the τ1 and τ2 surfaces meet in a corner. One can
evaluate this surface term and find that it also is equal to 1

2M(τ2 − τ1).
Thus the total action for the region between τ1 and τ2 is M(τ2 − τ1).
If one used this action with τ2 − τ1 = β one would find that the en-
tropy was zero. However, when one looks at the action of the Euclidean
Schwarzschild solution from a 4−dimensional point of view rather than a
3 + 1, there is no reason to include a surface term on the horizon because
the metric is regular there. Leaving out the surface term on the horizon
reduces the action by one quarter the area of the horizon, which is just the
intrinsic gravitational entropy of the black hole [Hawking and Israel (1979);
Hawking and Penrose (1996)].

Quantum Cosmology

According to Hawking, cosmology used to be considered a pseudo–
science and the preserve of physicists who may have done useful work in
their earlier years but who had gone mystic in their dotage. There is a se-
rious objection that cosmology cannot predict anything about the universe
unless it makes some assumption about the initial conditions. Without such
an assumption, all one can say is that things are as they are now because
they were as they were at an earlier stage. Yet many people believe that
science should be concerned only with the local laws which govern how the
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universe evolves in time. They would feel that the boundary conditions
for the universe that determine how the universe began were a question
for metaphysics or religion rather than science [Hawking and Israel (1979);
Hawking and Penrose (1996)].

Hawking–Penrose theorems showed that according to general relativity
there should be a singularity in our past. At this singularity the field equa-
tions could not be defined. Thus classical general relativity brings about its
own downfall: it predicts that it cannot predict the universe. For Hawking
this sounds rally disturbing: If the laws of physics could break down at the
beginning of the universe, why couldn’t they break down any where. In
quantum theory it is a principle that anything can happen if it is not ab-
solutely forbidden. Once one allows that singular histories could take part
in the path integral they could occur any where and predictability would
disappear completely. If the laws of physics break down at singularities,
they could break down any where.

The only way to have a scientific theory is if the laws of physics hold
everywhere including at the beginning of the universe. One can regard this
as a triumph for the Principle of Democracy : Why should the beginning
of the universe be exempt from the laws that apply to other points. If all
points are equal one cannot allow some to be more equal than others.

To implement the idea that the laws of physics hold everywhere, one
should take the path integral only over non–singular metrics. One knows
in the ordinary path integral case that the measure is concentrated on non–
differentiable paths. But these are the completion in some suitable topology
of the set of smooth paths with well defined action. Similarly, one would
expect that the path integral for quantum gravity should be taken over the
completion of the space of smooth metrics. What the path integral cannot
include is metrics with singularities whose action is not defined.

In the case of black holes we saw that the path integral should be taken
over Euclidean, that is, positive definite metrics. This meant that the
singularities of black holes, like the Schwarzschild solution, did not appear
on the Euclidean metrics which did not go inside the horizon. Instead
the horizon was like the origin of polar coordinates. The action of the
Euclidean metric was therefore well defined. One could regard this as a
quantum version of Cosmic Censorship: the break down of the structure at
a singularity should not affect any physical measurement.

It seems, therefore, that the path integral for quantum gravity should be
taken over non–singular Euclidean metrics. But what should the bound-
ary conditions be on these metrics. There are two, and only two, nat-
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ural choices. The first is metrics that approach the flat Euclidean met-
ric outside a compact set. The second possibility is metrics on manifolds
that are compact and without boundary. Therefore, the natural choices
for path integral for quantum gravity are [Hawking and Israel (1979);
Hawking and Penrose (1996)]: (i) asymptotically Euclidean metrics, and
(ii) compact metrics without boundary. The first class of asymptotically
Euclidean metrics is appropriate for scattering calculations. In these one
sends particles in from infinity and observes what comes out again to infin-
ity. All measurements are made at infinity where one has a flat background
metric and one can interpret small fluctuations in the fields as particles in
the usual way. One doesn’t ask what happens in the interaction region in
the middle. That is why one does a path integral over all possible histories
for the interaction region, that is, over all asymptotically Euclidean metrics.
However, in cosmology one is interested in measurements that are made in
a finite region rather than at infinity. We are on the inside of the universe
not looking in from the outside. To see what difference this makes let us
first suppose that the path integral for cosmology is to be taken over all
asymptotically Euclidean metrics.

The so–called No Boundary Proposal of Hartle and Hawking reads
[Hawking and Israel (1979); Hawking and Penrose (1996)]: The path in-
tegral for quantum gravity should be taken over all compact Euclidean
metrics. One can paraphrase this as: the boundary condition of the uni-
verse is that it has no boundary. According to Hawking, this no boundary
proposal seems to account for the universe we live in. That is an isotropic
and homogeneous expanding universe with small perturbations. We can ob-
serve the spectrum and statistics of these perturbations in the fluctuations
in the microwave background. The results so far agree with the predictions
of the no boundary proposal. It will be a real test of the proposal and the
whole Euclidean quantum gravity program when the observations of the
microwave background are extended to smaller angular scales.

In order to use the no boundary proposal to make predictions, it is
useful to introduce a concept that can describe the state of the universe at
one time:

Probability of induced metric hij on Σ =
∫

metrics on M that
induce hij on Σ

d[g] exp(−A[g]).

Consider the probability that the space–time manifold M contains an
embedded three dimensional manifold Σ with induced metric hij . This
is given by a path integral over all metrics gab on M that induce hij
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on Σ. If M is simply–connected, which we will assume, the surface Σ
will divide M into two parts M+ and M− [Hawking and Israel (1979);
Hawking and Penrose (1996)],

Probability of hij = Ψ+(hij)×Ψ−(hij), where

Ψ+(hij) =
∫

metrics on M+ that
induce hij on Σ

d[g] exp(−A[g]).

In this case, the probability for Σ to have the metric hij can be factorized.
It is the product of two wave functions Ψ+ and Ψ−. These are given by
path integrals over all metrics on M+ and M− respectively, that induce
the given three metric hij on Σ. In most cases, the two wave functions will
be equal and we will drop the superscripts + and +. Ψ is called the wave
function of the universe. If there are matter fields φ, the wave function
will also depend on their values φ0 on Σ. But it will not depend explicitly
on time because there is no preferred time coordinate in a closed universe.
The no boundary proposal implies that the wave function of the universe is
given by a path integral over fields on a compact manifold M+ whose only
boundary is the surface Σ. The path integral is taken over all metrics and
matter fields on M+ that agree with the metric hij and matter fields φ0 on
Σ.

One can describe the position of the surface Σ by a function τ of three
coordinates xi on Σ. But the wave function defined by the path integral
cannot depend on τ or on the choice of the coordinates xi. This implies
that the wave function Ψ has to obey four functional differential equations.
Three of these equations are called the momentum constraint One can
describe the position of the surface Σ by a function τ of three coordinates
xi on Σ. But the wave function defined by the path integral cannot depend
on τ or on the choice of the coordinates xi. This implies that the wave
function Ψ has to obey four functional differential equations. Three of
these equations are called the momentum constraint equation:

(
∂Ψ
∂hij

)
;j

=

0. They express the fact that the wave function should be the same for
different 3 metrics hij that can be get from each other by transformations
of the coordinates xi. The fourth equation is called the Wheeler–DeWitt
equation (

Gijkl
∂2

∂hij∂hkl
− h 1

2 3R

)
Ψ = 0.

It corresponds to the independence of the wave function on τ . One can
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think of it as the Schrödinger equation for the universe. But there is no
time derivative term because the wave function does not depend on time
explicitly.

In order to estimate the wave function of the universe, one can use the
saddle point approximation to the path integral as in the case of black holes.
One finds a Euclidean metric g0 on the manifold M+ that satisfies the field
equations and induces the metric hij on the boundary Σ. One can then
expand the action A in a power series around the background metric g0,

A[g] = A[g0] +
1
2
δgA2δg + ...

As before, the term linear in the perturbations vanishes. The quadratic
term can be regarded as giving the contribution of gravitons on the back-
ground and the higher order terms as interactions between the gravitons.
These can be ignored when the radius of curvature of the background is
large compared to the Planck scale. Therefore, according to [Hawking and
Israel (1979); Hawking and Penrose (1996)] we have

Ψ ≈ 1
(det A2)

1
2

exp(−A[go]).

Consider now a situation in which there are no matter fields but there is a
positive cosmological constant Λ. Let us take the surface Σ to be a three
sphere and the metric hij to be the round three sphere metric of radius a.
Then the manifold M+ bounded by Σ can be taken to be the four ball. The
metric that satisfies the field equations is part of a four sphere of radius 1

H

where H2 = Λ
3 ,

A =
1

16π

∫
(R− 2Λ)(−g)

1
2 d4x+

1
8π

∫
K(±h)

1
2 d3x.

For a 3–sphere Σ of radius less than 1
H there are two possible Euclidean

solutions: either M+ can be less than a hemisphere or it can be more.
However there are arguments that show that one should pick the solution
corresponding to less than a hemisphere.

One can interpret the wave function Ψ as follows. The real time solution
of the Einstein equations with a Λ term and maximal symmetry is de Sitter
space (see, e.g., [Witten (1998b)]). This can be embedded as a hyperboloid
in five dimensional Minkowski space. Here, we have two choices:
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(1) Lorentzian–de Sitter metric,

ds2 = −dt2 +
1
H2

coshHt(dr2 + sin2 r(dθ2 + sin2 θdφ2)).

One can think of it as a closed universe that shrinks down from infinite
size to a minimum radius and then expands again exponentially. The
metric can be written in the form of a Friedmann universe with scale
factor coshHt. Putting τ = it converts the cosh into cos giving the
Euclidean metric on a four sphere of radius 1

H .
(2) Euclidean metric,

ds2 = dτ2 +
1
H2

cosHτ(dr2 + sin2 r(dθ2 + sin2 θdφ2)).

Thus one gets the idea that a wave function which varies exponentially
with the three metric hij corresponds to an imaginary time Euclidean
metric. On the other hand, a wave function which oscillates rapidly
corresponds to a real time Lorentzian metric.

Hawking says: “The Euclidean path integral over all topologically trivial
metrics can be done by time slicing and so is unitary when analytically
continued to the Lorentzian. On the other hand, the path integral over all
topologically non–trivial metrics is asymptotically independent of the initial
state. Thus the total path integral is unitary and information is not lost
in the formation and evaporation of black holes. The way the information
gets out seems to be that a true event horizon never forms, just an apparent
horizon.”

Like in the case of the pair creation of black holes, one can describe the
spontaneous creation of an exponentially expanding universe. One joins the
lower half of the Euclidean four sphere to the upper half of the Lorentzian
hyperboloid.

Unlike the black hole pair creation, one couldn’t say that the de Sitter
universe was created out of field energy in a pre–existing space. Instead, it
would quite literally be created out of nothing: not just out of the vacuum
but out of absolutely nothing at all because there is nothing outside the
universe. In the Euclidean regime, the de Sitter universe is just a closed
space like the surface of the Earth but with two more dimensions ([Witten
(1998b)]). If the cosmological constant is small compared to the Planck
value, the curvature of the Euclidean four sphere should be small. This will
mean that the saddle point approximation to the path integral should be
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good, and that the calculation of the wave function of the universe will not
be affected by our ignorance of what happens in very high curvatures.

One can also solve the field equations for boundary metrics that aren’t
exactly the round three sphere metric. If the radius of the three sphere is
less than 1

H , the solution is a real Euclidean metric. The action will be real
and the wave function will be exponentially damped compared to the round
three sphere of the same volume. If the radius of the three sphere is greater
than this critical radius there will be two complex conjugate solutions and
the wave function will oscillate rapidly with small changes in hij .

Any measurement made in cosmology can be formulated in terms of
the wave function. Thus the no boundary proposal makes cosmology into
a science because one can predict the result of any observation. The case
we have just been considering of no matter fields and just a cosmological
constant does not correspond to the universe we live in. Nevertheless, it
is a useful example, both because it is a simple model that can be solved
fairly explicitly and because, as we shall see, it seems to correspond to the
early stages of the universe.

Although it is not obvious from the wave function, a de Sitter universe
has thermal properties rather like a black hole. One can see this by writing
the de Sitter metric in a static form (rather like the Schwarzschild solution)

ds2 = −(1−H2r2)dt2 + (1−H2r2)−1dr2 + r2(dθ2 + sin2 θdφ2).

There is an apparent singularity at r = 1
H . However, as in the Schwarzschild

solution, one can remove it by a coordinate transformation and it corre-
sponds to an event horizon.

If one returns to the static form of the de Sitter metric and put τ = it

one gets a Euclidean metric. There is an apparent singularity on the
horizon. However, by defining a new radial coordinate and identifying
τ with period 2π

H , one gets a regular Euclidean metric which is just the
four sphere. Because the imaginary time coordinate is periodic, de Sit-
ter space and all quantum fields in it will behave as if they were at a
temperature H

2π . As we shall see, we can observe the consequences of
this temperature in the fluctuations in the microwave background. One
can also apply arguments similar to the black hole case to the action
of the Euclidean–de Sitter solution [Witten (1998b)]. One finds that it
has an intrinsic entropy of π

H2 , which is a quarter of the area of the
event horizon. Again this entropy arises for a topological reason: the
Euler number of the four sphere is two. This means that there cannot
be a global time coordinate on Euclidean–de Sitter space. One can in-
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terpret this cosmological entropy as reflecting an observers lack of knowl-
edge of the universe beyond his event horizon [Hawking and Israel (1979);
Hawking and Penrose (1996)]:

Euclidean metric periodic with period
2π
H
⇒

{
Temperature T = H

2π
,

Area A of event horizon = 4π
H2 ,

Entropy S = π
H2 .
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Chapter 6

Geometrical Path Integrals and Their
Applications

The machinery of applied differential geometry, as presented so far, is: (i)
rigorous, (ii) elegant, and (iii) powerful – as a tool for understanding, pre-
diction and control of complex nonlinear systems. However, due to its
smooth nature, it is limited to modelling of deterministic and continuous–
time dynamical systems only. Naturally, the question arises: is it possible
to extend this smooth machinery, so to be able to effectively deal also
with probabilistic and discrete–time dynamical systems, like e.g., Markov
chains? And the answer is: Yes. Namely, in the very core of the XX Cen-
tury geometrodynamics, there is a powerful conceptual and computational
tool that is ‘by default’ used as a starting point for virtually every new phys-
ical theory – the celebrated Feynman path integral . In the path–integral
formalism, we first formulate the specific classical action of a new the-
ory, and subsequently perform its quantization by means of the associated
amplitude. This action–amplitude picture is the core structure in any new
physical theory. Unlike mathematical manifolds, bundles and jets, the path
integral is an invention of the physical mind of Richard (Dick) Feynman.
Its virtual paths are in general neither deterministic not smooth, although
they include bundles and jets of deterministic and smooth paths, as well as
Markov chains. Yet, it is essentially an applied differential geometry, with
its Riemannian and symplectic versions, among many others. At the begin-
ning, it worked only for conservative physical systems. Today it includes
also dissipative structures, as well as various sources and sinks. Its smooth
part reveals all celebrated equations of the 20th Century, both classical
and quantum. It is the core of modern quantum gravity and string theory.
It is arguably the most important construct of mathematical physics. At
the edge of a new millennium, if you asked a typical theoretical physicist:
what will be your main research tool in the new millennium, he/she would

983
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most probably say: path integral. And today, we see it moving out from
physics, into the realm of social sciences. Finally, since Feynman’s fairly
intuitive invention of the path integral [Feynman (1951)], a lot of research
has been done to make it mathematically rigorous (see e.g., [Loo (1999);
Loo (2000); Albeverio et. al. (1986); Klauder (1997); Klauder (2000);
Shabanov and Klauder (1998)]).

6.1 Intuition Behind a Path Integral

6.1.1 Classical Probability Concept

Recall that a random variable X is defined by its distribution function f(x).
Its probabilistic description is based on the following rules: (i) P (X = xi)
is the probability that X = xi; and (ii) P (a ≤ X ≤ b) is the probability
that X lies in a closed interval [a, b]. Its statistical description is based
on: (i) µX or E(X) is the mean or expectation of X; and (ii) σX is the
standard deviation of X. There are two cases of random variables: discrete
and continuous, each having its own probability (and statistics) theory.

6.1.2 Discrete Random Variable

A discrete random variable X has only a countable number of values {xi}.
Its distribution function f(xi) has the following properties:

P (X = xi) = f(xi), f(xi) ≥ 0,
∑
i

f(xi) dx = 1.

Statistical description of X is based on its discrete mean value µX and
standard deviation σX , given respectively by

µX = E(X) =
∑
i

xif(xi), σX =
√
E(X2)− µ2

X .

6.1.3 Continuous Random Variable

Here f(x) is a piecewise continuous function such that:

P (a ≤ X ≤ b) =
∫ b

a

f(x) dx, f(x) ≥ 0,
∫ ∞

−∞
f(x) dx =

∫
R
f(x) dx = 1.

Statistical description of X is based on its continuous mean µX and
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standard deviation σX , given respectively by

µX = E(X) =
∫ ∞

−∞
xf(x) dx, σX =

√
E(X2)− µ2

X .

Now, let us observe the similarity between the two descriptions. The
same kind of similarity between discrete and continuous quantum spectrum
stroke Dirac when he suggested the combined integral approach, that he

denoted by
∫
Σ – meaning ‘both integral and sum at once’: summing over

discrete spectrum and integration over continuous spectrum.
To emphasize this similarity even further, as well as to set–up the stage

for the path integral, recall the notion of a cumulative distribution function
of a random variable X, that is a function F : R −→ R, defined by

F (a) = P (X) ≤ a.

In particular, suppose that f(x) is the distribution function of X. Then

F (x) =
∑
xi≤x

f(xi), or F (x) =
∫ ∞

−∞
f(t) dt,

according to as x is a discrete or continuous random variable. In either
case, F (a) ≤ F (b) whenever a ≤ b. Also,

lim
x−→−∞

F (x) = 0 and lim
x−→∞

F (x) = 1,

that is, F (x) is monotonic and its limit to the left is 0 and the limit to the
right is 1. Furthermore, its cumulative probability is given by

P (a ≤ X ≤ b) = F (b)− F (a),

and the Fundamental Theorem of Calculus tells us that, in the continuum
case,

f(x) = ∂xF (x).

6.1.4 General Markov Stochastic Dynamics

Recall that Markov stochastic process is a random process characterized by
a lack of memory, i.e., the statistical properties of the immediate future
are uniquely determined by the present, regardless of the past [Gardiner
(1985)].

For example, a random walk is an example of the Markov chain, i.e.,
a discrete–time Markov process, such that the motion of the system in
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consideration is viewed as a sequence of states, in which the transition from
one state to another depends only on the preceding one, or the probability
of the system being in state k depends only on the previous state k − 1.
The property of a Markov chain of prime importance in biodynamics is
the existence of an invariant distribution of states: we start with an initial
state x0 whose absolute probability is 1. Ultimately the states should be
distributed according to a specified distribution.

Between the pure deterministic dynamics, in which all DOF of the sys-
tem in consideration are explicitly taken into account, leading to classical
dynamical equations, for example in Hamiltonian form (3.34), i.e.,

q̇i = ∂piH, ṗi = −∂qiH

– and pure stochastic dynamics (Markov process), there is so–called hybrid
dynamics, particularly Brownian dynamics, in which some of DOF are rep-
resented only through their stochastic influence on others. As an example,
suppose a system of particles interacts with a viscous medium. Instead
of specifying a detailed interaction of each particle with the particles of
the viscous medium, we represent the medium as a stochastic force act-
ing on the particle. The stochastic force reduces the dimensionally of the
dynamics.

Recall that the Brownian dynamics represents the phase–space trajec-
tories of a collection of particles that individually obey Langevin rate equa-
tions in the field of force (i.e., the particles interact with each other via
some deterministic force). For a free particle, the Langevin equation reads
[Gardiner (1985)]:

mv̇ = R(t) − βv,

where m denotes the mass of the particle and v its velocity. The right–hand
side represent the coupling to a heat bath; the effect of the random force
R(t) is to heat the particle. To balance overheating (on the average), the
particle is subjected to friction β. In humanoid dynamics this is performed
with the Rayleigh–Van der Pol’s dissipation. Formally, the solution to the
Langevin equation can be written as

v(t) = v(0) exp
(
− β
m
t

)
+

1
m

∫ t

0

exp[−(t− τ)β/m]R(τ) dτ,

where the integral on the right–hand side is a stochastic integral and the
solution v(t) is a random variable. The stochastic properties of the solu-
tion depend significantly on the stochastic properties of the random force
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R(t). In the Brownian dynamics the random force R(t) is Gaussian dis-
tributed. Then the problem boils down to finding the solution to the
Langevin stochastic differential equation with the supplementary condition
(mean zero and variance)

< R(t) >= 0, < R(t)R(0) >= 2βkBTδ(t),

where < . > denotes the mean value, T is temperature, kB−equipartition
(i.e., uniform distribution of energy) coefficient, Dirac δ(t)−function.

Algorithm for computer simulation of the Brownian dynamics (for a
single particle) can be written as [Heermann (1990)]:

(1) Assign an initial position and velocity.
(2) Draw a random number from a Gaussian distribution with mean zero

and variance.
(3) Integrate the velocity to get vn+1.
(4) Add the random component to the velocity.

Another approach to taking account the coupling of the system to a heat
bath is to subject the particles to collisions with virtual particles [Heermann
(1990)]. Such collisions are imagined to affect only momenta of the particles,
hence they affect the kinetic energy and introduce fluctuations in the total
energy. Each stochastic collision is assumed to be an instantaneous event
affecting only one particle.

The collision–coupling idea is incorporated into the Hamiltonian model
of dynamics (3.34) by adding a stochastic force Ri = Ri(t) to the ṗ equation

q̇i = ∂piH, ṗi = −∂qiH +Ri(t).

On the other hand, the so–called Ito stochastic integral represents a
kind of classical Riemann–Stieltjes integral from linear functional analysis,
which is (in 1D case) for an arbitrary time–function G(t) defined as the
mean square limit∫ t

t0

G(t)dW (t) = ms lim
n→∞

{
n∑
i=1

G(ti−1[W (ti)−W (ti−1]}.

Now, the general ND Markov process can be defined by Ito stochastic
differential equation (SDE),

dxi(t) = Ai[xi(t), t]dt+Bij [xi(t), t] dW j(t),

xi(0) = xi0, (i, j = 1, . . . , N)
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or corresponding Ito stochastic integral equation

xi(t) = xi(0) +
∫ t

0

dsAi[xi(s), s] +
∫ t

0

dW j(s)Bij [xi(s), s],

in which xi(t) is the variable of interest, the vector Ai[x(t), t] denotes deter-
ministic drift, the matrix Bij [x(t), t] represents continuous stochastic diffu-
sion fluctuations, and W j(t) is an N−variable Wiener process (i.e., general-
ized Brownian motion) [Wiener (1961)], and dW j(t) = W j(t+dt)−W j(t).

Now, there are three well–known special cases of the Chapman–
Kolmogorov equation (see [Gardiner (1985)]):

(1) When both Bij [x(t), t] and W (t) are zero, i.e., in the case of pure
deterministic motion, it reduces to the Liouville equation

∂tP (x′, t′|x′′, t′′) = −
∑
i

∂

∂xi
{Ai[x(t), t]P (x′, t′|x′′, t′′)} .

(2) When only W (t) is zero, it reduces to the Fokker–Planck equation

∂tP (x′, t′|x′′, t′′) = −
∑
i

∂

∂xi
{Ai[x(t), t]P (x′, t′|x′′, t′′)}

+
1
2

∑
ij

∂2

∂xi∂xj
{Bij [x(t), t]P (x′, t′|x′′, t′′)} .

(3) When both Ai[x(t), t] and Bij [x(t), t] are zero, i.e., the state–space con-
sists of integers only, it reduces to the Master equation of discontinuous
jumps

∂tP (x′, t′|x′′, t′′) =∫
dx {W (x′|x′′, t)P (x′, t′|x′′, t′′)−W (x′′|x′, t)P (x′, t′|x′′, t′′)} .

The Markov assumption can now be formulated in terms of the con-
ditional probabilities P (xi, ti): if the times ti increase from right to left,
the conditional probability is determined entirely by the knowledge of the
most recent condition. Markov process is generated by a set of conditional
probabilities whose probability–density P = P (x′, t′|x′′, t′′) evolution obeys
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the general Chapman–Kolmogorov integro–differential equation

∂tP = −
∑
i

∂

∂xi
{Ai[x(t), t]P}

+
1
2

∑
ij

∂2

∂xi∂xj
{Bij [x(t), t]P}+

∫
dx {W (x′|x′′, t)P −W (x′′|x′, t)P}

including deterministic drift, diffusion fluctuations and discontinuous
jumps (given respectively in the first, second and third terms on the r.h.s.).

It is this general Chapman–Kolmogorov integro–differential equation,
with its conditional probability density evolution, P = P (x′, t′|x′′, t′′), that
we are going to model by various forms of the Feynman path integral,
providing us with the physical insight behind the abstract (conditional)
probability densities.

6.1.5 Quantum Probability Concept

An alternative concept of probability, the so–called quantum probability, is
based on the following physical facts (elaborated in detail in this section):

(1) The time–dependent Schrödinger equation represents a complex–valued
generalization of the real–valued Fokker–Planck equation for describing
the spatio–temporal probability density function for the system exhibit-
ing continuous–time Markov stochastic process.

(2) The Feynman path integral
∫
Σ is a generalization of the time–dependent

Schrödinger equation, including both continuous–time and discrete–
time Markov stochastic processes.

(3) Both Schrödinger equation and path integral give ‘physical description’
of any system they are modelling in terms of its physical energy, instead
of an abstract probabilistic description of the Fokker–Planck equation.

Therefore, the Feynman path integral
∫
Σ, as a generalization of the time–

dependent Schrödinger equation, gives a unique physical description for
the general Markov stochastic process, in terms of the physically based
generalized probability density functions, valid both for continuous–time
and discrete–time Markov systems.

Basic consequence: a different way for calculating probabilities. The
difference is rooted in the fact that sum of squares is different from the

square of sums, as is explained in the following text.
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Namely, in Dirac–Feynman quantum formalism, each possible route
from the initial system state A to the final system state B is called a
history. This history comprises any kind of a route (see Figure 6.1), rang-
ing from continuous and smooth deterministic (mechanical–like) paths to
completely discontinues and random Markov chains (see, e.g., [Gardiner
(1985)]). Each history (labelled by index i) is quantitatively described by
a complex number1 zi called the ‘individual transition amplitude’. Its ab-
solute square, |zi|2, is called the individual transition probability. Now,
the total transition amplitude is the sum of all individual transition am-
plitudes,

∑
i zi, called the sum–over–histories. The absolute square of this

sum–over–histories, |
∑
i zi|2, is the total transition probability.

In this way, the overall probability of the system’s transition from some
initial state A to some final state B is given not by adding up the probabil-
ities for each history–route, but by ‘head–to–tail’ adding up the sequence
of amplitudes making–up each route first (i.e., performing the sum–over–
histories) – to get the total amplitude as a ‘resultant vector’, and then
squaring the total amplitude to get the overall transition probability.

Fig. 6.1 Two ways of physical transition from an initial state A to the corre-
sponding final state B. (a) Classical physics proposes a single deterministic
trajectory, minimizing the total system’s energy. (b) Quantum physics proposes
a family of Markov stochastic histories, namely all possible routes from A to
B, both continuous–time and discrete–time Markov chains, each giving an equal
contribution to the total transition probability.

1Recall that a complex number z = x + iy, where i =
√
−1 is the imaginary unit, x

is the real part and y is the imaginary part, can be represented also in its polar form,
z = r(cos θ+ i sin θ), where the radius vector in the complex plane, r = |z| =

p
x2 + y2,

is the modulus or amplitude, and angle θ is the phase; as well as in its exponential form
z = reiθ. In this way, complex numbers actually represent 2D vectors with usual vector
‘head–to–tail’ addition rule.
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6.1.6 Quantum Coherent States

Recall that a quantum coherent state is a specific kind of quantum state
of the quantum harmonic oscillator whose dynamics most closely resemble
the oscillating behavior of a classical harmonic oscillator. It was the first
example of quantum dynamics when Erwin Schrödinger derived it in 1926
while searching for solutions of the Schrödinger equation that satisfy the
correspondence principle. The quantum harmonic oscillator and hence, the
coherent state, arise in the quantum theory of a wide range of physical
systems. For instance, a coherent state describes the oscillating motion of
the particle in a quadratic potential well. In the quantum electrodynam-
ics and other bosonic quantum field theories they were introduced by the
2005 Nobel Prize winning work of Roy Glauber in 1963 [Glauber (1963a);
Glauber (1963b)]. Here the coherent state of a field describes an oscillat-
ing field, the closest quantum state to a classical sinusoidal wave such as a
continuous laser wave.

In classical optics, light is thought of as electromagnetic waves radiating
from a source. Specifically, coherent light is thought of as light that is
emitted by many such sources that are in phase. For instance, a light
bulb radiates light that is the result of waves being emitted at all the
points along the filament. Such light is incoherent because the process is
highly random in space and time. On the other hand, in a laser, light is
emitted by a carefully controlled system in processes that are not random
but interconnected by stimulation and the resulting light is highly ordered,
or coherent. Therefore a coherent state corresponds closely to the quantum
state of light emitted by an ideal laser. Semi–classically we describe such
a state by an electric field oscillating as a stable wave. Contrary to the
coherent state, which is the most wave–like quantum state, the Fock state
(e.g., a single photon) is the most particle–like state. It is indivisible and
contains only one quanta of energy. These two states are examples of the
opposite extremes in the concept of wave–particle duality . A coherent state
distributes its quantum–mechanical uncertainty equally, which means that
the phase and amplitude uncertainty are approximately equal. Conversely,
in a single–particle state the phase is completely uncertain.

Formally, the coherent state |α〉 is defined to be the eigenstate of the
annihilation operator a, i.e., a|α〉 = α|α〉. Note that since a is not Hermi-
tian, α = |α|eiθ is complex. |α| and θ are called the amplitude and phase
of the state.

Physically, a|α〉 = α|α〉 means that a coherent state is left unchanged
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by the detection (or annihilation) of a particle. Consequently, in a coherent
state, one has exactly the same probability to detect a second particle.
Note, this condition is necessary for the coherent state’s Poisson detection
statistics. Compare this to a single–particle’s Fock state: Once one particle
is detected, we have zero probability of detecting another.

Now, recall that a Bose–Einstein condensate (BEC) is a collection of
boson atoms that are all in the same quantum state. An approximate
theoretical description of its properties can be derived by assuming the
BEC is in a coherent state. However, unlike photons, atoms interact with
each other so it now appears that it is more likely to be one of the squeezed
coherent states (see [Breitenbach et. al. (1997)]). In quantum field theory
and string theory, a generalization of coherent states to the case of infinitely
many degrees of freedom is used to define a vacuum state with a different
vacuum expectation value from the original vacuum.

6.1.7 Dirac’s < bra | ket > Transition Amplitude

Now, we are ready to move–on into the realm of quantum mechanics. Recall
that [Dirac (1982)] described behavior of quantum systems in terms of
complex–valued ket–vectors |A > living in the Hilbert space H, and their
duals, bra–covectors < B| (i.e., 1–forms) living in the dual Hilbert space
H∗.2 The Hermitian inner product of kets and bras, the bra–ket < B|A >,
is a complex number, which is the evaluation of the ket |A > by the bra
< B|. This complex number, say reiθ represents the system’s transition

2Recall that a norm on a complex vector space H is a mapping from H into the

complex numbers, ‖·‖ : H → C; h 7→ ‖h‖, such that the following set of norm–axioms

hold:
(N1) ‖h‖ ≥ 0 for all h ∈ H and ‖h‖ = 0 implies h = 0 (positive definiteness);

(N2) ‖λh‖ = |λ| ‖h‖ for all h ∈ H and λ ∈ C (homogeneity); and

(N3) ‖h1 + h2‖ ≤ ‖h1‖ + ‖h2‖ for all h1, h2 ∈ H (triangle inequality). The pair
(H, ‖·‖) is called a normed space.

A Hermitian inner product on a complex vector spaceH is a mapping 〈·, ·〉 : H×H → C
such that the following set of inner–product–axioms hold:

(IP1) 〈hh1 + h2〉 = 〈hh1 + hh2〉 ;
(IP2) 〈αh, h1〉 = α 〈h, h1〉 ;
(IP3) 〈h1, h2〉 = 〈h1, h2〉 (so 〈h, h〉 is real);

(IP4) 〈h, h〉 ≥ 0 and 〈h, h〉 = 0 provided h = 0.

The standard inner product on the product space Cn = C × · · · × C is defined by
〈z, w〉 =

Pn
i=1 ziw

i, and axioms (IP1)–(IP4) are readily checked. Also Cn is a normed

space with ‖z‖2 =
Pn
i=1 |zi|

2 . The pair (H, 〈·, ·〉) is called an inner product space.

Let (H, ‖·‖) be a normed space. If the corresponding metric d is complete, we say
(H, ‖·‖) is a Banach space. If (H, ‖·‖) is an inner product space whose corresponding

metric is complete, we say (H, ‖·‖) is a Hilbert space.
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amplitude3 from its initial state A to its final state B4, i.e.,

TransitionAmplitude =< B|A >= reiθ.

That is, there is a process that can mediate a transition of a system from
initial state A to the final state B and the amplitude for this transition
equals < B|A >= reiθ. The absolute square of the amplitude, | < B|A > |2
represents the transition probability . Therefore, the probability of a transi-
tion event equals the absolute square of a complex number, i.e.,

TransitionProbability = | < B|A > |2 = |reiθ|2.

These complex amplitudes obey the usual laws of probability : when a
transition event can happen in alternative ways then we add the complex
numbers,

< B1|A1 > + < B2|A2 >= r1eiθ1 + r2eiθ2 ,

and when it can happen only as a succession of intermediate steps then we
multiply the complex numbers,

< B|A >=< B|c >< c|A >= (r1eiθ1)(r2eiθ2) = r1r2ei(θ1+θ2).

In general,

(1) The amplitude for n mutually alternative processes equals the sum∑n
k=1 rkeiθk of the amplitudes for the alternatives; and

(2) If transition from A to B occurs in a sequence of m steps, then the total
transition amplitude equals the product

∏m
j=1 rje

iθj of the amplitudes
of the steps.

Formally, we have the so–called expansion principle, including both

3Transition amplitude is otherwise called probability amplitude, or just amplitude.
4Recall that in quantum mechanics, complex numbers are regarded as the vacuum–

state, or the ground–state, and the entire amplitude < b|a > is a vacuum–to–vacuum
amplitude for a process that includes the creation of the state a, its transition to b, and

the annihilation of b to the vacuum once more.
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products and sums,5

< B|A >=
n∑
i=1

< B|ci >< ci|A > . (6.1)

6.1.8 Feynman’s Sum–over–Histories

Now, iterating the Dirac’s expansion principle (6.1) over a complete set of
all possible states of the system, leads to the simplest form of the Feynman
path integral , or, sum–over–histories. Imagine that the initial and final
states, A and B, are points on the vertical lines x = 0 and x = n + 1,
respectively, in the x − y plane, and that (c(k)i(k), k) is a given point on
the line x = k for 0 < i(k) < m (see Figure 6.2). Suppose that the
sum of projectors for each intermediate state is complete6 Applying the
completeness iteratively, we get the following expression for the transition
amplitude:

< B|A >=
∑∑

...
∑

< B|c(1)i(1) >< c(1)i(1)|c(2)i(2) > ... < c(n)i(n)|A >,

where the sum is taken over all i(k) ranging between 1 and m, and k ranging
between 1 and n. Each term in this sum can be construed as a combinatorial
route from A to B in the 2D space of the x− y plane. Thus the transition
amplitude for the system going from some initial state A to some final state
B is seen as a summation of contributions from all the routes connecting
A to B.

Feynman used this description to produce his celebrated path inte-
gral expression for a transition amplitude (see, e.g., [Grosche and Steiner
(1998)]). His path integral takes the form

TransitionAmplitude =< B|A >=
∫
Σ,D[x] eiS[x], (6.2)

5In Dirac’s language, the completeness of intermediate states becomes the statement
that a certain sum of projectors is equal to the identity. Namely, suppose that

P
i |ci ><

ci| = 1 with < ci|ci >= 1 for each i. Then

< b|a >=< b||a >=< b|
X
i

|ci >< ci||a >=
X
i

< b|ci >< ci|a > .

6We assume that following sum is equal to one, for each k from 1 to n− 1:

|c(k)1 >< c(k)1|+ ...+ |c(k)m >< c(k)m| = 1.
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Fig. 6.2 Analysis of all possible routes from the source A to the detector B is simplified
to include only double straight lines (in a plane).

where the sum–integral
∫
Σ is taken over all possible routes x = x(t) from the

initial point A = A(tini) to the final point B = B(tfin), and S = S[x] is the
classical action for a particle to travel from A to B along a given extremal
path x. In this way, Feynman took seriously Dirac’s conjecture interpret-
ing the exponential of the classical action functional (DeiS), resembling a
complex number (reiθ), as an elementary amplitude. By integrating this
elementary amplitude, DeiS , over the infinitude of all possible histories, we
get the total system’s transition amplitude.7

7For the quantum physics associated with a classical (Newtonian) particle the action
S is given by the integral along the given route from a to b of the difference T −V where

T is the classical kinetic energy and V is the classical potential energy of the particle.

The beauty of Feynman’s approach to quantum physics is that it shows the relationship
between the classical and the quantum in a particularly transparent manner. Classical

motion corresponds to those regions where all nearby routes contribute constructively to

the summation. This classical path occurs when the variation of the action is null. To
ask for those paths where the variation of the action is zero is a problem in the calculus

of variations, and it leads directly to Newton’s equations of motion (derived using the

Euler–Lagrangian equations). Thus with the appropriate choice of action, classical and
quantum points of view are unified.
Also, a discretization of the Schrodinger equation

i~
dψ

dt
= −

~2

2m

d2ψ

dx2
+ V ψ,

leads to a sum–over–histories that has a discrete path integral as its solution. Therefore,
the transition amplitude is equivalent to the wave ψ. The particle travelling on the
x−axis is executing a one–step random walk, see Figure 6.3.
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Fig. 6.3 Random walk (a particular case of Markov chain) on the x−axis.

6.1.9 The Basic Form of a Path Integral

In Feynman’s version of non–relativistic quantum mechanics, the time evo-
lution ψ(x′, t′) 7→ ψ(x′′, t′′) of the wave function ψ = ψ(x, t) of the elemen-
tary 1D particle may be described by the integral equation [Grosche and
Steiner (1998)]

ψ(x′′, t′′) =
∫

R
K(x′′, x′; t′′, t′)ψ(x′, t′), (6.3)

where the propagator or Feynman kernel K = K(x′′, x′; t′′, t′) is defined
through a limiting procedure,

K(x′′, x′; t′′, t′) = lim
ε→0

A−N
N−1∏
k=1

∫
dxk ei

PN−1
j=0 εL(xj+1,(xj+1−xj)/ε). (6.4)

The time interval t′′ − t′ has been discretized into N steps of length ε =
(t′′ − t′)/N , and the r.h.s. of (6.4) represents an integral over all piecewise
linear paths x(t) of a ‘virtual’ particle propagating from x′ to x′′, illustrated
in Figure 6.4.

The prefactor A−N is a normalization and L denotes the Lagrangian
function of the particle. Knowing the propagator G is tantamount to having
solved the quantum dynamics. This is the simplest instance of a path
integral, and is often written schematically as

K(x′, t′;x′′, t′′) =
∫
Σ,D[x(t)] eiS[x(t)],

where D[x(t)] is a functional measure on the ‘space of all paths’, and the
exponential weight depends on the classical action S[x(t)] of a path. Recall
also that this procedure can be defined in a mathematically clean way if
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Fig. 6.4 A piecewise linear particle path contributing to the discrete Feynman propa-
gator.

we Wick–rotate the time variable t to imaginary values t 7→ τ = it, thereby
making all integrals real [Reed and Simon (1975)].

6.1.10 Application: Adaptive Path Integral

Now, we can extend the Feynman sum–over–histories (6.2), by adding the
synaptic–like weights wi = wi(t) into the measure D[x], to get the adaptive
path integral :

Adaptive TransitionAmplitude =< B|A >w=
∫
Σ,D[w, x] eiS[x], (6.5)

where the adaptive measure D[w, x] is defined by the weighted product (of
discrete time steps)

D[w, x] = lim
n−→∞

n∏
t=1

wi(t) dxi(t). (6.6)

In (6.6) the synaptic weights wi = wi(t) are updated by the unsupervised
Hebbian–like learning rule [Hebb (1949)]:

wi(t+ 1) = wi(t) +
σ

η
(wid(t)− wia(t)), (6.7)

where σ = σ(t), η = η(t) represent local signal and noise amplitudes,
respectively, while superscripts d and a denote desired and achieved sys-
tem states, respectively. Theoretically, equations (6.5–6.7) define an
∞−dimensional complex–valued neural network.8 Practically, in a com-

8For details on complex–valued neural networks, see e.g., complex–domain extension
of the standard backpropagation learning algorithm [Georgiou and Koutsougeras (1992);
Benvenuto and Piazza (1992)].
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puter simulation we can use 107 ≤ n ≤ 108, approaching the number of neu-
rons in the brain. Such equations are usually solved using Markov–Chain
Monte–Carlo methods on parallel (cluster) computers (see, e.g., [Wehner
and Wolfer (1983a); Wehner and Wolfer (1983b)]).

6.2 Path Integral History

6.2.1 Extract from Feynman’s Nobel Lecture

In his Nobel Lecture, December 11, 1965, Richard (Dick) Feynman said
that he and his PhD supervisor, John Wheeler, had found the action A =
A[x; ti, tj ], directly involving the motions of the charges only,9

A[x; ti, tj ] = mi

∫
(ẋiµẋ

i
µ)

1
2 dti +

1
2
eiej

∫ ∫
δ(I2

ij) ẋ
i
µ(ti)ẋjµ(tj) dtidtj

with (i 6= j) (6.8)

I2
ij =

[
xiµ(ti)− xjµ(tj)

] [
xiµ(ti)− xjµ(tj)

]
,

where xiµ = xiµ(ti) is the four–vector position of the ith particle as a function
of the proper time ti, while ẋiµ(ti) = dxiµ(ti)/dti is the velocity four–vector.

The first term in the action A[x; ti, tj ] (6.8) is the integral of the proper
time ti, the ordinary action of relativistic mechanics of free particles of
mass mi (summation over µ). The second term in the action A[x; ti, tj ]
(6.8) represents the electrical interaction of the charges. It is summed over
each pair of charges (the factor 1

2 is to count each pair once, the term i = j

is omitted to avoid self–action). The interaction is a double integral over a
delta function of the square of space–time interval I2 between two points on
the paths. Thus, interaction occurs only when this interval vanishes, that
is, along light cones (see [Wheeler and Feynman (1949)]).

Feynman comments here: “The fact that the interaction is exactly one–
half advanced and half–retarded meant that we could write such a principle
of least action, whereas interaction via retarded waves alone cannot be
written in such a way. So, all of classical electrodynamics was contained in
this very simple form.”

“...The problem is only to make a quantum theory, which has as its clas-
sical analog, this expression (6.8). Now, there is no unique way to make a
quantum theory from classical mechanics, although all the textbooks make

9Wheeler–Feynman Idea [Wheeler and Feynman (1949)] “The energy tensor can be
regarded only as a provisional means of representing matter. In reality, matter consists
of electrically charged particles.”
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believe there is. What they would tell you to do, was find the momentum
variables and replace them by (~/i)(∂/∂x), but I couldn’t find a momentum
variable, as there wasn’t any.”

“The character of quantum mechanics of the day was to write things in
the famous Hamiltonian way (in the form of Schrödinger equation), which
described how the wave function changes from instant to instant, and in
terms of the Hamiltonian operator H. If the classical physics could be
reduced to a Hamiltonian form, everything was all right. Now, least action
does not imply a Hamiltonian form if the action is a function of anything
more than positions and velocities at the same moment. If the action is of
the form of the integral of the Lagrangian L = L(ẋ, x), a function of the
velocities and positions at the same time t,

S[x] =
∫
L(ẋ, x) dt, (6.9)

then you can start with the Lagrangian L and then create a Hamiltonian
H and work out the quantum mechanics, more or less uniquely. But the
action A[x; ti, tj ] (6.8) involves the key variables, positions (and velocities),
at two different times ti and tj and therefore, it was not obvious what to
do to make the quantum–mechanical analogue...”

So, Feynman was looking for the action integral in quantum mechanics.
He says: “...I simply turned to Professor Jehle and said, ‘Listen, do you
know any way of doing quantum mechanics, starting with action – where
the action integral comes into the quantum mechanics?” ‘No”, he said, ‘but
Dirac has a paper in which the Lagrangian, at least, comes into quantum
mechanics.” What Dirac said was the following: There is in quantum me-
chanics a very important quantity which carries the wave function from
one time to another, besides the differential equation but equivalent to it,
a kind of a kernel, which we might call K(x′, x), which carries the wave
function ψ(x) known at time t, to the wave function ψ(x′) at time t+ ε,

ψ(x′, t+ ε) =
∫
K(x′, x)ψ(x, t) dx.

Dirac points out that this function K was analogous to the quantity in
classical mechanics that you would calculate if you took the exponential of
[iε multiplied by the Lagrangian L(ẋ, x)], imagining that these two positions
x, x′ corresponded to t and t+ ε. In other words,

K(x′, x) is analogous to eiεL( x
′−x
ε ,x)/~.
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So, Feynman continues: “What does he mean, they are analogous; what
does that mean, analogous? What is the use of that?” Professor Jehle said,
‘You Americans! You always want to find a use for everything!” I said that
I thought that Dirac must mean that they were equal. ‘No”, he explained,
‘he doesn’t mean they are equal.” ‘Well”, I said, ‘Let’s see what happens if
we make them equal.”

“So, I simply put them equal, taking the simplest example where the
Lagrangian is

L =
1
2
Mẋ2 − V (x),

but soon found I had to put a constant of proportionality N in, suitably
adjusted. When I substituted for K to get

ψ(x′, t+ ε) =
∫
N exp

[
iε
~
L(
x′ − x
ε

, x)
]
ψ(x, t) dx (6.10)

and just calculated things out by Taylor series expansion, out came the
Schrödinger equation. So, I turned to Professor Jehle, not really under-
standing, and said, ‘Well, you see, Dirac meant that they were propor-
tional.” Professor Jehle’s eyes were bugging out – he had taken out a little
notebook and was rapidly copying it down from the blackboard, and said,
‘No, no, this is an important discovery. You Americans are always trying to
find out how something can be used. That’s a good way to discover things!”
So, I thought I was finding out what Dirac meant, but, as a matter of fact,
had made the discovery that what Dirac thought was analogous, was, in
fact, equal. I had then, at least, the connection between the Lagrangian and
quantum mechanics, but still with wave functions and infinitesimal times.”

“It must have been a day or so later when I was lying in bed thinking
about these things, that I imagined what would happen if I wanted to
calculate the wave function at a finite interval later. I would put one of
these factors eiεL in here, and that would give us the wave functions the
next moment, t + ε, and then I could substitute that back into (6.10) to
get another factor of eiεL and give us the wave function the next moment,
t+ 2ε, and so on and so on. In that way I found myself thinking of a large
number of integrals, one after the other in sequence. In the integrand was
the product of the exponentials, which was the exponential of the sum of
terms like εL. Now, L is the Lagrangian and ε is like the time interval dt, so
that if you took a sum of such terms, that’s exactly like an integral. That’s
like Riemann’s formula for the integral

∫
Ldt, you just take the value at
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each point and add them together. We are to take the limit as ε → 0.
Therefore, the connection between the wave function of one instant and
the wave function of another instant a finite time later could be get by an
infinite number of integrals (because ε goes to zero), of exponential where
S is the action expression (6.9). At last, I had succeeded in representing
quantum mechanics directly in terms of the action S[x].”

Fully satisfied, Feynman comments: “This led later on to the idea of the
transition amplitude for a path: that for each possible way that the particle
can go from one point to another in space–time, there’s an amplitude. That
amplitude is e to the power of [i/~ times the action S[x] for the path], i.e.,
eiS[x]/~. Amplitudes from various paths superpose by addition. This then
is another, a third way, of describing quantum mechanics, which looks quite
different from that of Schrödinger or Heisenberg, but which is equivalent to
them.”

“...Now immediately after making a few checks on this thing, what we
wanted to do, was to substitute the action A[x; ti, tj ] (6.8) for the other
S[x] (6.9). The first trouble was that I could not get the thing to work
with the relativistic case of spin one–half. However, although I could deal
with the matter only non–relativistically, I could deal with the light or
the photon interactions perfectly well by just putting the interaction terms
of (6.8) into any action, replacing the mass terms by the non–relativistic
Ldt = 1

2Mẋ2dt,

A[x; ti, tj ] =
1
2

∑
i

mi

∫
(ẋiµ)2dti+

1
2

∑
i,j(i 6=j)

eiej

∫ ∫
δ(I2

ij) ẋ
i
µ(ti)ẋjµ(tj) dtidtj .

When the action has a delay, as it now had, and involved more than one
time, I had to lose the idea of a wave function. That is, I could no longer
describe the program as: given the amplitude for all positions at a certain
time to calculate the amplitude at another time. However, that didn’t
cause very much trouble. It just meant developing a new idea. Instead
of wave functions we could talk about this: that if a source of a certain
kind emits a particle, and a detector is there to receive it, we can give the
amplitude that the source will emit and the detector receive, eiA[x;ti,tj ]/~.

We do this without specifying the exact instant that the source emits or
the exact instant that any detector receives, without trying to specify the
state of anything at any particular time in between, but by just finding the
amplitude for the complete experiment. And, then we could discuss how
that amplitude would change if you had a scattering sample in between, as
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you rotated and changed angles, and so on, without really having any wave
functions...It was also possible to discover what the old concepts of energy
and momentum would mean with this generalized action. And, so I believed
that I had a quantum theory of classical electrodynamics – or rather of this
new classical electrodynamics described by the action A[x; ti, tj ] (6.8)...”

6.2.2 Lagrangian Path Integral

Dirac and Feynman first developed the Lagrangian approach to functional
integration. To review this approach, we start with the time–dependent
Schrödinger equation

i~ ∂tψ(x, t) = −∂x2ψ(x, t) + V (x)ψ(x, t)

appropriate to a particle of mass m moving in a potential V (x), x ∈ R. A
solution to this equation can be written as an integral (see e.g., [Klauder
(1997); Klauder (2000)]),

ψ(x′′, t′′) =
∫
K(x′′, t′′;x′, t′)ψ(x′, t′) dx′ ,

which represents the wave function ψ(x′′, t′′) at time t′′ as a linear super-
position over the wave function ψ(x′, t′) at the initial time t′, t′ < t′′. The
integral kernel K(x′′, t′′;x′, t′) is known as the propagator, and according
to Feynman [Feynman (1948)] it may be given by

K(x′′, t′′;x′, t′) = N
∫
D[x] e(i/~)

∫
[(m/2) ẋ2(t)−V (x(t))] dt,

which is a formal expression symbolizing an integral over a suitable set
of paths. This integral is supposed to run over all continuous paths x(t),
t′ ≤ t ≤ t′′, where x(t′′) = x′′ and x(t′) = x′ are fixed end points for all
paths. Note that the integrand involves the classical Lagrangian for the
system.

To overcome the convergence problems, Feynman adopted a lattice reg-
ularization as a procedure to yield well–defined integrals which was then
followed by a limit as the lattice spacing goes to zero called the continuum
limit. With ε > 0 denoting the lattice spacing, the details regarding the
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lattice regularization procedure are given by

K(x′′, t′′;x′, t′) = lim
ε→0

(m/2πi~ε)(N+1)/2

∫
· · ·

· · ·
∫

exp{(i/~)
N∑
l=0

[(m/2ε)(xl+1 − xl)2 − ε V (xl) ]}
N∏
l=1

dxl ,

where xN+1 = x′′, x0 = x′, and ε ≡ (t′′− t′)/(N + 1), N ∈ {1, 2, 3, . . . }. In
this version, at least, we have an expression that has a reasonable chance of
being well defined, provided, that one interprets the conditionally conver-
gent integrals involved in an appropriate manner. One common and fully
acceptable interpretation adds a convergence factor to the exponent of the
preceding integral in the form −(ε2/2~)

∑N
l=1 x2

l , which is a term that
formally makes no contribution to the final result in the continuum limit
save for ensuring that the integrals involved are now rendered absolutely
convergent.

6.2.3 Hamiltonian Path Integral

It is necessary to retrace history at this point to recall the introduction
of the phase–space path integral by Feynman [Feynman (1951); Grosche
and Steiner (1998)]. In Appendix B to this article, Feynman introduced
a formal expression for the configuration or q−space propagator given by
(see e.g., [Klauder (1997); Klauder (2000)])

K(q′′, t′′; q′, t′) =M
∫
D[p]D[q] exp{(i/~)

∫
[ p q̇ −H(p, q) ] dt}.

In this equation one is instructed to integrate over all paths q(t), t′ ≤ t ≤ t′′,
with q(t′′) ≡ q′′ and q(t′) ≡ q′ held fixed, as well as to integrate over all
paths p(t), t′ ≤ t ≤ t′′, without restriction.

It is widely appreciated that the phase–space path integral is more gen-
erally applicable than the original, Lagrangian, version of the path integral.
For example, the original configuration space path integral is satisfactory
for Lagrangians of the general form

L(x) =
1
2
mẋ2 +A(x) ẋ− V (x) ,

but it is unsuitable, for example, for the case of a relativistic particle with
the Lagrangian

L(x) = −mqrt1− ẋ2



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

1004 Applied Differential Geometry: A Modern Introduction

expressed in units where the speed of light is unity. For such a system – as
well as many more general expressions – the phase–space form of the path
integral is to be preferred. In particular, for the relativistic free particle,
the phase–space path integral

M
∫
D[p]D[q] exp{(i/~)

∫
[ p q̇ − qrtp2 +m2 ] dt},

is readily evaluated and induces the correct propagator.

6.2.4 Feynman–Kac Formula

Through his own research, M. Kac was fully aware of Wiener’s theory of
Brownian motion and the associated diffusion equation that describes the
corresponding distribution function. Therefore, it is not surprising that he
was well prepared to give a path integral expression in the sense of Feynman
for an equation similar to the time–dependent Schrödinger equation save
for a rotation of the time variable by -π/2 in the complex plane, namely,
by the change t −→ −it (see e.g., [Klauder (1997); Klauder (2000)]). In
particular, Kac [Kac (1951)] considered the equation

∂tρ(x, t) = ∂x2ρ(x, t)− V (x) ρ(x, t). (6.11)

This equation is analogous to Schrödinger equation but differs from it in cer-
tain details. Besides certain constants which are different, and the change
t −→ −it, the nature of the dependent variable function ρ(x, t) is quite dif-
ferent from the normal quantum mechanical wave function. For one thing,
if the function ρ is initially real it will remain real as time proceeds. Less
obvious is the fact that if ρ(x, t) ≥ 0 for all x at some time t, then the
function will continue to be nonnegative for all time t. Thus we can in-
terpret ρ(x, t) more like a probability density; in fact in the special case
that V (x) = 0, then ρ(x, t) is the probability density for a Brownian par-
ticle which underlies the Wiener measure. In this regard, ν is called the
diffusion constant.

The fundamental solution of (6.11) with V (x) = 0 is readily given as

W (x, T ; y, 0) =
1

qrt2πνT
exp

(
− (x− y)2

2νT

)
,

which describes the solution to the diffusion equation subject to the initial



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Geometrical Path Integrals and Their Applications 1005

condition

lim
T→0+

W (x, T ; y, 0) = δ(x− y) .

Moreover, it follows that the solution of the diffusion equation for a general
initial condition is given by

ρ(x′′, t′′) =
∫
W (x′′, t′′;x′, t′) ρ(x′, t′) dx′ .

Iteration of this equation N times, with ε = (t′′ − t′)/(N + 1), leads to the
equation

ρ(x′′, t′′) = N ′
∫
· · ·
∫

e−(1/2νε)
PN
l=0(xl+1−xl)2

N∏
l=1

dxl ρ(x′, t′) dx′,

where xN+1 ≡ x′′ and x0 ≡ x′. This equation features the imaginary time
propagator for a free particle of unit mass as given formally as

W (x′′, t′′;x′, t′) = N
∫
D[x] e−(1/2ν)

∫
ẋ2 dt,

where N denotes a formal normalization factor.
The similarity of this expression with the Feynman path integral [for

V (x) = 0] is clear, but there is a profound difference between these equa-
tions. In the former (Feynman) case the underlying measure is only finitely
additive, while in the latter (Wiener) case the continuum limit actually de-
fines a genuine measure, i.e., a countably additive measure on paths, which
is a version of the famous Wiener measure. In particular,

W (x′′, t′′;x′, t′) =
∫
dµνW (x),

where µνW denotes a measure on continuous paths x(t), t′ ≤ t ≤ t′′, for
which x(t′′) ≡ x′′ and x(t′) ≡ x′. Such a measure is said to be a pinned
Wiener measure, since it specifies its path values at two time points, i.e.,
at t = t′ and at t = t′′ > t′.

We note that Brownian motion paths have the property that with prob-
ability one they are concentrated on continuous paths. However, it is also
true that the time derivative of a Brownian path is almost nowhere defined,
which means that, with probability one, ẋ(t) = ±∞ for all t.
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When the potential V (x) 6= 0 the propagator associated with (6.11) is
formally given by

W (x′′, t′′;x′, t′) = N
∫
D[x]e−(1/2ν)

∫
ẋ2 dt−

∫
V (x) dt,

an expression which is well defined if V (x) ≥ c, -∞ < c < ∞. A mathe-
matically improved expression makes use of the Wiener measure and reads

W (x′′, t′′;x′, t′) =
∫

e−
∫
V (x(t)) dt dµνW (x).

This is an elegant relation in that it represents a solution to the differen-
tial equation (6.11) in the form of an integral over Brownian motion paths
suitably weighted by the potential V . Incidentally, since the propagator
is evidently a strictly positive function, it follows that the solution of the
differential equation (6.11) is nonnegative for all time t provided it is non-
negative for any particular time value.

6.2.5 Itô Formula

Itô [Ito (1960)] proposed another version of a continuous–time regularization
that resolved some of the troublesome issues. In essence, the proposal of
Itô takes the form given by

lim
ν→∞

Nν
∫
D[x] exp{(i/~)

∫
[
1
2
mẋ2−V (x)] dt} exp{−(1/2ν)

∫
[ẍ2 + ẋ2] dt}.

Note well the alternative form of the auxiliary factor introduced as a reg-
ulator. The additional term ẍ2, the square of the second derivative of
x, acts to smooth out the paths sufficiently well so that in the case of
(21) both x(t) and ẋ(t) are continuous functions, leaving ẍ(t) as the term
which does not exist. However, since only x and ẋ appear in the rest
of the integrand, the indicated path integral can be well defined; this
is already a positive contribution all by itself (see e.g., [Klauder (1997);
Klauder (2000)]).

6.3 Standard Path–Integral Quantization

6.3.1 Canonical versus Path–Integral Quantization

Recall that in the usual, canonical formulation of quantum mechanics, the
system’s phase–space coordinates, q, and momenta, p, are replaced by the
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corresponding Hermitian operators in the Hilbert space, with real measur-
able eigenvalues, which obey Heisenberg commutation relations.

The path–integral quantization is instead based directly on the notion of
a propagator K(qf , tf ; qi, ti) which is defined such that (see [Ryder (1996);
Cheng and Li (1984); Gunion (2003)])

ψ(qf , tf ) =
∫
K(qf , tf ; qi, ti)ψ(qi, ti) dqi, (6.12)

i.e., the wave function ψ(qf , tf ) at final time tf is given by a Huygens
principle in terms of the wave function ψ(qi, ti) at an initial time ti, where
we have to integrate over all the points qi since all can, in principle, send
out little wavelets that would influence the value of the wave function at
qf at the later time tf . This equation is very general and is an expression
of causality. We use the normal units with ~ = 1.

According to the usual interpretation of quantum mechanics, ψ(qf , tf )
is the probability amplitude that the particle is at the point qf and the
time tf , which means that K(qf , tf ; qi, ti) is the probability amplitude for
a transition from qi and ti to qf and tf . The probability that the particle
is observed at qf at time tf if it began at qi at time ti is

P (qf , tf ; qi, ti) = |K(qf , tf ; qi, ti)|2 .

Let us now divide the time interval between ti and tf into two, with t

as the intermediate time, and q the intermediate point in space. Repeated
application of (6.12) gives

ψ(qf , tf ) =
∫ ∫

K(qf , tf ; q, t) dq K(q, t; qi, ti)ψ(qi, ti) dqi,

from which it follows that

K(qf , tf ; qi, ti) =
∫
dq K(qf , tf ; q, t)K(q, t; qi, ti).

This equation says that the transition from (qi, ti) to (qf , tf ) may be re-
garded as the result of the transition from (qi, ti) to all available interme-
diate points q followed by a transition from (q, t) to (qf , tf ). This notion
of all possible paths is crucial in the path–integral formulation of quantum
mechanics.

Now, recall that the state vector |ψ, t〉S in the Schrödinger picture is
related to that in the Heisenberg picture |ψ〉H by

|ψ, t〉S = e−iHt |ψ〉H ,
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or, equivalently,

|ψ〉H = eiHt |ψ, t〉S .

We also define the vector

|q, t〉H = eiHt |q〉S ,

which is the Heisenberg version of the Schrödinger state |q〉. Then, we can
equally well write

ψ(q, t) = 〈q, t |ψ〉H . (6.13)

By completeness of states we can now write

〈qf , tf |ψ〉H =
∫
〈qf , tf |qi, ti〉H 〈qi, ti |ψ〉H dqi,

which with the definition of (6.13) becomes

ψ(qf , tf ) =
∫
〈qf , tf |qi, ti〉H ψ(qi, ti) dqi.

Comparing with (6.12), we get

K(qf , tf ; qi, ti) = 〈qf , tf |qi, ti〉H .

Now, let us calculate the quantum–mechanics propagator

〈q′, t′ |q, t〉H =
〈
q′|e−iH(t−t′) |q〉

using the path–integral formalism that will incorporate the direct quanti-
zation of the coordinates, without Hilbert space and Hermitian operators.

The first step is to divide up the time interval into n + 1 tiny pieces:
tl = lε + t with t′ = (n + 1)ε + t. Then, by completeness, we can write
(dropping the Heisenberg picture index H from now on)

〈q′, t′ |q, t〉 =
∫
dq1(t1)...

∫
dqn(tn) 〈q′, t′ |qn, tn〉 ×

× 〈qn, tn |qn−1, tn−1〉 ... 〈q1, t1 |q, t〉 . (6.14)

The integral
∫
dq1(t1)...dqn(tn) is an integral over all possible paths, which

are not trajectories in the normal sense, since there is no requirement of
continuity, but rather Markov chains.

Now, for small ε we can write

〈q′, ε |q, 0〉 =
〈
q′|e−iεH(P,Q) |q〉 = δ(q′ − q)− iε 〈q′|H(P,Q) |q〉 ,
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where H(P,Q) is the Hamiltonian (e.g., H(P,Q) = 1
2P

2 + V (Q), where
P,Q are the momentum and coordinate operators). Then we have (see
[Ryder (1996); Cheng and Li (1984); Gunion (2003)])

〈q′|H(P,Q) |q〉 =
∫

dp

2π
eip(q′−q)H

(
p,

1
2

(q′ + q)
)
.

Putting this into our earlier form we get

〈q′, ε |q, 0〉 '
∫

dp

2π
exp

[
i
{
p(q′ − q)− εH

(
p,

1
2

(q′ + q)
)}]

,

where the 0th order in ε → δ(q′ − q) and the 1st order in ε →
−iε 〈q′|H(P,Q) |q〉. If we now substitute many such forms into (6.14) we
finally get

〈q′, t′ |q, t〉 = lim
n→∞

∫ n∏
i=1

dqi

n+1∏
k=1

dpk
2π
× (6.15)

× exp

i
n+1∑
j=1

[pj(qj − qj−1)]−H
(
pj ,

1
2

(qj + qj+1)
)

(tj − tj−1)]

 ,

with q0 = q and qn+1 = q′. Roughly, the above formula says to integrate
over all possible momenta and coordinate values associated with a small
interval, weighted by something that is going to turn into the exponential
of the action eiS in the limit where ε → 0. It should be stressed that
the different qi and pk integrals are independent, which implies that pk for
one interval can be completely different from the pk′ for some other interval
(including the neighboring intervals). In principle, the integral (6.15) should
be defined by analytic continuation into the complex plane of, for example,
the pk integrals.

Now, if we go to the differential limit where we call tj − tj−1 ≡ dτ and
write (qj−qj−1)

(tj−tj−1)
≡ q̇, then the above formula takes the form

〈q′, t′ |q, t〉 =
∫
D[p]D[q] exp

{
i
∫ t′

t

[pq̇ −H(p, q)] dτ

}
,

where we have used the shorthand notation∫
D[p]D[q] ≡

∫ ∏
τ

dq(τ)dp(τ)
2π

.
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Note that the above integration is an integration over the p and q values at
every time τ . This is what we call a functional integral. We can think of a
given set of choices for all the p(τ) and q(τ) as defining a path in the 6D
phase–space. The most important point of the above result is that we have
get an expression for a quantum–mechanical transition amplitude in terms
of an integral involving only pure complex numbers, without operators.

We can actually perform the above integral for Hamiltonians of the
type H = H(P,Q). We use square completion in the exponential for this,
defining the integral in the complex p plane and continuing to the physical
situation. In particular, we have∫ ∞

−∞

dp

2π
exp

{
iε(pq̇ − 1

2
p2]
}

=
1√
2πiε

exp
[

1
2

iεq̇2
]
,

(see [Ryder (1996); Cheng and Li (1984); Gunion (2003)]) which, substi-
tuting into (6.15) gives

〈q′, t′ |q, t〉 = lim
n→∞

∫ ∏
i

dqi√
2πiε

exp{iε
n+1∑
j=1

[
1
2

(
qj − qj−1

ε
)2−V (

qj + qj+1

2
)]}.

This can be formally written as

〈q′, t′ |q, t〉 =
∫
D[q] eiS[q],

where ∫
D[q] ≡

∫ ∏
i

dqi√
2πiε

,

while

S[q] =
∫ t′

t

L(q, q̇) dτ

is the standard action with the Lagrangian

L =
1
2
q̇2 − V (q).
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Generalization to many degrees of freedom is straightforward:

〈q1′...qN ′, t′|q1...qN , t〉 =
∫
D[p]D[q] exp

{
i
∫ t′

t

[
N∑
n=1

pnq̇n −H(pn, qn)

]
dτ

}
,

with
∫
D[p]D[q] =

∫ N∏
n=1

dqndpn
2π

.

Here, qn(t) = qn and qn(t′) = qn
′ for all n = 1, ..., N , and we are allowing

for the full Hamiltonian of the system to depend upon all the N momenta
and coordinates collectively.

6.3.2 Application: Particles, Sources, Fields and Gauges

6.3.2.1 Particles

(i) Consider first

〈q′, t′|Q(t0)|q, t〉

=
∫ ∏

dqi(ti) 〈q′, t′|qn, tn〉 ... 〈qi0, ti0|Q(t0)|qi−1, ti−1〉 ... 〈q1, t1|q, t〉 ,

where we choose one of the time interval ends to coincide with t0, i.e.,
ti0 = t0. If we operate Q(t0) to the left, then it is replaced by its eigenvalue
qi0 = q(t0). Aside from this one addition, everything else is evaluated just
as before and we will obviously get

〈q′, t′|Q(t0)|q, t〉 =
∫
D[p]D[q] q(t0) exp

{
i
∫ t′

t

[pq̇ −H(p, q)]dτ

}
.

(ii) Next, suppose we want a path–integral expression for
〈q′, t′|Q(t1)Q(t2)|q, t〉 in the case where t1 > t2. For this, we have to insert
as intermediate states |qi1, ti1〉 〈qi1, ti1| with ti1 = t1 and |qi2, ti2〉 〈qi2, ti2|
with ti2 = t2 and since we have ordered the times at which we do the
insertions we must have the first insertion to the left of the 2nd insertion
when t1 > t2. Once these insertions are done, we evaluate 〈qi1, ti1|Q(t1) =
〈qi1, ti1| q(t1) and 〈qi2, ti2|Q(t2) = 〈qi2, ti2| q(t2) and then proceed as before
and get

〈q′, t′|Q(t1)Q(t2)|q, t〉 =
∫
D[p]D[q] q(t1) q(t2) exp

{
i
∫ t′

t

[pq̇ −H(p, q)]dτ

}
.
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Now, let us ask what the above integral is equal to if t2 > t1? It is obvious
that what we get for the above integral is 〈q′, t′|Q(t2)Q(t1)|q, t〉 . Clearly,
this generalizes to an arbitrary number of Q operators.

(iii) When we enter into quantum field theory, the Q’s will be replaced
by fields, since it is the fields that play the role of coordinates in the 2nd
quantization conditions.

6.3.2.2 Sources

The source is represented by modifying the Lagrangian:

L→ L+ J(t)q(t).

Let us define |0, t〉J as the ground state (vacuum) vector (in the moving
frame, i.e., with the eiHt included) in the presence of the source. The
required transition amplitude is

Z[J ] ∝ 〈0,+∞|0,−∞〉J ,

where the source J = J(t) plays a role analogous to that of an electromag-
netic current, which acts as a source of the electromagnetic field. In other
words, we can think of the scalar product JµAµ, where Jµ is the current
from a scalar (or Dirac) field acting as a source of the potential Aµ. In
the same way, we can always define a current J that acts as the source
for some arbitrary field φ. Z[J ] (otherwise denoted by W [J ]) is a func-
tional of the current J , defined as (see [Ryder (1996); Cheng and Li (1984);
Gunion (2003)])

Z[J ] ∝
∫
D[p]D[q] exp

{
i
∫ t′

t

[p(τ)q̇(τ)−H(p, q) + J(τ)q(τ)]dτ

}
,

with the normalization condition Z[J = 0] = 1. Here, the argument of
the exponential depends upon the functions q(τ) and p(τ) and we then
integrate over all possible forms of these two functions. So the exponential
is a functional that maps a choice for these two functions into a number.
For example, for a quadratically completable H(p, q), the p integral can be
performed as a q integral

Z[J ] ∝
∫
D[q] exp

{
i
∫ +∞

−∞

(
L+ Jq +

1
2

iεq2
)
dτ

}
,

where the addittion to H was chosen in the form of a convergence factor
- 1
2 iεq2.
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6.3.2.3 Fields

Let us now treat the abstract scalar field φ(x) as a coordinate in the sense
that we imagine dividing space up into many little cubes and the average
value of the field φ(x) in that cube is treated as a coordinate for that little
cube. Then, we go through the multi–coordinate analogue of the procedure
we just considered above and take the continuum limit. The final result is

Z[J ] ∝
∫
D[φ] exp

{
i
∫
d4x

(
L (φ(x)) + J(x)φ(x) +

1
2

iεφ2

)}
,

where for L we would employ the Klein–Gordon Lagrangian form. In the
above, the dx0 integral is the same as dτ , while the d3~x integral is summing
over the sub–Lagrangians of all the different little cubes of space and then
taking the continuum limit. L is the Lagrangian density describing the
Lagrangian for each little cube after taking the many–cube limit (see [Ryder
(1996); Cheng and Li (1984); Gunion (2003)]) for the full derivation).

We can now introduce interactions, LI . Assuming the simple form of
the Hamiltonian, we have

Z[J ] ∝
∫
D[φ] exp

{
i
∫
d4x (L (φ(x)) + LI (φ(x)) + J(x)φ(x))

}
,

again using the normalization factor required for Z[J = 0] = 1.
For example of Klein Gordon theory, we would use

L = L0 + LI , L0
1
2

[∂µφ∂µφ− µ2φ2], LI = LI(φ),

where ∂µ ≡ ∂xµ and we can freely manipulate indices, as we are working in
Euclidean space R3. In order to define the above Z[J ], we have to include
a convergence factor iεφ2,

L0 →
1
2

[∂µφ∂µφ− µ2φ2 + iεφ2], so that

Z[J ] ∝
∫
D[φ] exp{i

∫
d4x(

1
2

[∂µφ∂µφ− µ2φ2 + iεφ2] + LI(φ(x)) + J(x)φ(x))}

is the appropriate generating function in the free field theory case.

6.3.2.4 Gauges

In the path integral approach to quantization of the gauge theory, we imple-
ment gauge fixing by restricting in some manner or other the path integral
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over gauge fields
∫
D[Aµ]. In other words we will write instead

Z[J ] ∝
∫
D[Aµ] δ (some gauge fixing condition) exp{i

∫
d4xL (Aµ)}.

A common approach would be to start with the gauge condition

L = −1
4
FµνF

µν − 1
2

(∂µAµ)2

where the electrodynamic field tensor is given by Fµν = ∂µAν − ∂νAµ, and
calculate

Z[J ] ∝
∫
D[Aµ] exp

{
i
∫
d4x [L(Aµ(x)) + Jµ(x)Aµ(x)]

}
as the generating function for the vacuum expectation values of time ordered
products of the Aµ fields. Note that Jµ should be conserved (∂µJµ = 0)
in order for the full expression L(Aµ) + JµA

µ to be gauge–invariant under
the integral sign when Aµ → Aµ + ∂µΛ. For a proper approach, see [Ryder
(1996); Cheng and Li (1984); Gunion (2003)].

6.3.3 Riemannian–Symplectic Geometries

In this section, following [Shabanov and Klauder (1998)], we describe path
integral quantization on Riemannian–symplectic manifolds. Let q̂j be a
set of Cartesian coordinate canonical operators satisfying the Heisenberg
commutation relations [q̂j , q̂k] = iωjk. Here ωjk = −ωkj is the canonical
symplectic structure. We introduce the canonical coherent states as |q〉 ≡
eiqjωjk q̂

k |0〉, where ωjnωnk = δkj , and |0〉 is the ground state of a harmonic
oscillator with unit angular frequency. Any state |ψ〉 is given as a function
on phase–space in this representation by 〈q|ψ〉 = ψ(q). A general operator
Â can be represented in the form Â =

∫
dq a(q)|q〉〈q|, where a(q) is the

lower symbol of the operator and dq is a properly normalized form of the
Liouville measure. The function A(q, q′) = 〈q|Â|q′〉 is the kernel of the
operator.

The main object of the path integral formalism is the integral kernel of
the evolution operator

Kt(q, q′) = 〈q|e−itĤ |q′〉 =

q(t)=q∫
q(0)=q′

D[q] ei
R t
0 dτ( 1

2 q
jωjk q̇

k−h) . (6.16)
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Here Ĥ is the Hamiltonian, and h(q) its symbol. The measure formally im-
plies a sum over all phase-space paths pinned at the initial and final points,
and a Wiener measure regularization implies the following replacement

D[q]→ D[µν(q)] = D[q] e−
1
2ν

R t
0 dτ q̇

2
= Nν(t) dµνW (q) . (6.17)

The factor Nν(t) equals 2πeνt/2 for every degree of freedom, dµνW (q) stands
for the Wiener measure, and ν denotes the diffusion constant. We denote
by Kν

t (q, q′) the integral kernel of the evolution operator for a finite ν.
The Wiener measure determines a stochastic process on the flat phase–
space. The integral of the symplectic 1–form

∫
qωdq is a stochastic integral

that is interpreted in the Stratonovich sense. Under general coordinate
transformations q = q(q̄), the Wiener measure describes the same stochastic
process on flat space in the curvilinear coordinates dq2 = dσ(q̄)2, so that the
value of the integral is not changed apart from a possible phase term. After
the calculation of the integral, the evolution operator kernel is get by taking
the limit ν →∞. The existence of this limit, and also the covariance under
general phase-space coordinate transformations, can be proved through the
operator formalism for the regularized kernel Kν

t (q, q′).
Note that the integral (6.16) with the Wiener measure inserted can be

regarded as an ordinary Lagrangian path integral with a complex action,
where the configuration space is the original phase–space and the Hamil-
tonian h(q) serves as a potential. Making use of this observation it is not
hard to derive the corresponding Schrödinger–like equation

∂tK
ν
t (q, q′) =

[
ν

2

(
∂qj +

i
2
ωjkq

k

)2

− ih(q)

]
Kν
t (q, q′) , (6.18)

subject to the initial condition Kν
t=0(q, q′) = δ(q− q′), 0 < ν <∞. One can

show that K̂ν
t → K̂t as ν → ∞ for all t > 0. The covariance under gen-

eral coordinate transformations follows from the covariance of the ‘kinetic’
energy of the Schrödinger operator in (6.18): The Laplace operator is re-
placed by the Laplace–Beltrami operator in the new curvilinear coordinates
q = q(q̄), so the solution is not changed, but written in the new coordinates.
This is similar to the covariance of the ordinary Schrödinger equation and
the corresponding Lagrangian path integral relative to general coordinate
transformations on the configuration space: The kinetic energy operator
(the Laplace operator) in the ordinary Schrödinger equation gives a term
quadratic in time derivatives in the path integral measure which is sufficient
for the general coordinate covariance. We remark that the regularization
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procedure based on the modified Schrödinger equation (6.18) applies to far
more general Hamiltonians than those quadratic in canonical momenta and
leading to the conventional Lagrangian path integral.

6.3.4 Euclidean Stochastic Path Integral

Recall that modern stochastic calculus permits development of three alter-
native descriptions of complex stochastic systems:

(1) Langevin rate ODEs [Gardiner (1985)],
(2) Fokker–Planck PDEs [Gardiner (1985)], and
(3) Euclidean stochastic path–integrals [Wehner and Wolfer (1983a);

Wehner and Wolfer (1983b); Graham (1978); Langouche et. al. (1980)].

L. Ingber [Ingber (1997)] has successfully applied a stochastic path–
integral of the Euclidean form

〈f |i〉 =
∫

Ω

D[w] e−A[w],

to in–depth analysis of three completely different non–equilibrium nonlinear
multivariate Gaussian–Markovian systems:

(1) Statistical mechanical descriptions of neocortex (short–term memory
and EEG),

(2) Analysis of financial markets (interest–rate and trading models), and
(3) Combat analysis (baselining simulations to exercise data).

The core of all his work are of context–specific mesoscopic order parameters
MG. Ingber starts with Langevin rate equations (with zero–mean Gaussian
white noise ηj(t)), as order parameter equations (see [Haken (1983); Haken
(1993)])

ṀG = fG + ĝGj η
j , (G = 1, ...,Λ), (j = 1, ..., N), (6.19)

< ηj(t) >η= 0, < ηj(t), ηj
′
(t′) >η= δjj

′
δ(t− t′),

where fG and ĝGj are generally nonlinear functions of mesoscopic order pa-
rameters MG, j is a microscopic index indicating the source of fluctuations,
and N ≥ Λ.

Via a somewhat lengthy calculation, involving an intermediate deriva-
tion of a corresponding Fokker–Planck or Schrödinger–type equation for
the conditional probability distribution P [M(t)|M(t0)], equation (6.19) is
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developed into the more useful probability distribution for the order pa-
rameters MG at long–time macroscopic time event t = (u + 1)θ + t0, in
terms of a Stratonovich–Riemannian path–integral over mesoscopic Gaus-
sian conditional probabilities. Here, macroscopic variables are defined as
the long–time limit of the evolving mesoscopic system.

The corresponding Schrödinger–type equation is

∂tP =
1
2

(gGG
′
P ),GG′ −(gGP ),G +V, (6.20)

gGG
′

= kT δ
jkĝGj ĝ

G′

k ,

gG = fG +
1
2
δjkĝG

′

j ĝGk,G′ ,

[.],G = ∂[.]/∂MG.

This is properly referred to as a Fokker–Planck equation when V = 0.
Note that although the partial differential equation (6.20) contains equiv-
alent information regarding the order parameters MG as in the stochastic
differential equation (6.19), all references to j have been properly averaged
over, i.e., ĝGj in (6.19) is an entity with parameters in both microscopic and
mesoscopic spaces, but M is a purely mesoscopic variable, and this is more
clearly reflected in (6.20).

Now, the path integral representation is given in terms of the Lagrangian
L = L(ṀG,MG, t), as

P [Mt|Mt0 ] dM(t) =
∫
D[M ] exp(−A[M ])δ[M(t0) = M0]δ[M(t) = Mt],

(6.21)
where the action A[M ] is given by

A[M ] = k−1
T min

∫ t

t0

dt′L(ṀG,MG, t),

and the path measure D[M ] is equal to

D[M ] = lim
u→∞

u+1∏
ρ=1

g1/2
∏
G

(2πθ)−1/2dMG
ρ .

The Lagrangian L is given by

L(ṀG,MG, t) =
1
2

(ṀG − hG)gGG′(ṀG′ − hG′) +
1
2
hG;G +R/6− V,
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where hG = gG − 1
2g
−1/2(g1/2gGG

′
),G′ , comma ‘,’ denotes partial deriva-

tive, and gGG′ is the inverse metric tensor gGG′ = (gGG
′
)−1, with deter-

minant g = det(gGG′). The covariant derivative hG;G is defined classically
through the Christoffel symbols ΓFGF ,

hG;G = hG,G + ΓFGFh
G = g−1/2(g1/2hG),G,

ΓFGF = gLF (gJL,K + gKL,J − gJK,L),

while the Riemannian curvature is defined as

R = gJLRJL = gJLgJKRFJKL,

RFJKL =
1
2

(gFK,JL − gJK,FL − gFL,JK + gJL,FK) + gMN (ΓMFKΓNFL − ΓNJK).

Therefore, mesoscopic variables have been defined as MG in the
Langevin and Fokker–Planck representations, in terms of their development
from the microscopic system labelled by j. The Riemannian curvature term
R arises from nonlinear gGG′ , which is a genuine metric of this space [Gra-
ham (1978)]. Even if a stationary solution, i.e., ṀG = 0, is ultimately
sought, a necessarily prior stochastic treatment of ṀG terms gives rise to
these Riemannian ‘corrections’. Even for a constant metric, the term hG;G
contributes to L for a nonlinear mean hG. V may include terms such as∑
T ′ JT ′GM

G, where the Lagrange multipliers JT ′G are constraints on MG,
which are advantageously modelled as extrinsic sources in this representa-
tion; they too may be time–dependent. Using the variational principle, JTG
may also be used to constrain MG to regions where they are empirically
bound. With respect to a steady state P̄ , when it exists, the information
gain in state P is defined by

I[P ] =
∫
D[M ′]P ln(P/P̄ ), where D[M ′] = D[M ]/dMu+1.

A robust and accurate histogram–based (i.e., non–Monte Carlo) path–
integral algorithm to calculate the long–time probability distribution has
been developed to handle nonlinear Lagrangians (see [Wehner and Wolfer
(1983a); Wehner and Wolfer (1983b); Graham (1978); Langouche et. al.
(1980)]).

In the economics literature, there appears to be sentiment to define
(6.19) by the Ito, rather than the Stratonovich prescription. It should
be noted that virtually all investigations of other physical systems, which
are also continuous time models of discrete processes, conclude that the
Stratonovich interpretation coincides with reality, when multiplicative noise
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with zero correlation time, modelled in terms of white noise ηj , is properly
considered as the limit of real noise with finite correlation time (see [Gar-
diner (1985)]). The path integral succinctly demonstrates the difference
between the two: The Ito prescription corresponds to the the so–called
prepoint discretization of L, wherein

θṀ(t)→Mρ+1 −Mρ and M(t)→Mρ.

The Stratonovich prescription corresponds to the midpoint discretization of
L, wherein

θṀ(t)→Mρ+1 −Mρ and M(t)→ 1
2

(Mρ+1 +Mρ).

In terms of the functions appearing in the Fokker–Planck equation (6.20),
the Ito prescription of the prepoint discretized Lagrangian, LI , is relatively
simple:

LI(ṀG,MG, t) =
1
2

(ṀG − gG)gGG′(ṀG′ − gG′)− V,

however, this is deceptive because of its nonstandard calculus [Ingber
(1997)].

Now, as L possesses a variational principle, sets of contour graphs, at
different long–time epochs of the path–integral of P over its variables at all
intermediate times, give a visually intuitive and accurate decision–aid to
view the dynamic evolution of the scenario. For example, this Lagrangian
approach permits a quantitative assessment of the following concepts usu-
ally only loosely defined:

‘Momentum’ = ΠG = LṀG

‘Mass’ = gGG′ = LṀGṀG′

‘Force’ = F = LMG

‘F = ma’ : 0 = δL = LMG − ∂tLṀG

These physical entities provide another form of intuitive, but quantitatively
precise, presentation of these analyzes. For example, daily newspapers use
this terminology to discuss the movement of security prices. ΠG serve as
canonical momenta indicators (CMI) for these systems [Ingber (1997)].
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6.3.5 Application: Stochastic Optimal Control

A path–integral based optimal control model for nonlinear stochastic sys-
tems has recently been developed in [Kappen (2006)]. The author addressed
the role of noise and the issue of efficient computation in stochastic optimal
control problems. He considered a class of nonlinear control problems that
can be formulated as a path integral and where the noise plays the role of
temperature. The path integral displays symmetry breaking and there exist
a critical noise value that separates regimes where optimal control yields
qualitatively different solutions. The path integral can be computed effi-
ciently by Monte Carlo integration or by Laplace approximation, and can
therefore be used to solve high dimensional stochastic control problems.

Recall that optimal control of nonlinear systems in the presence of noise
is a very general problem that occurs in many areas of science and engi-
neering. It underlies autonomous system behavior, such as the control of
movement and planning of actions of animals and robots, but also opti-
mization of financial investment policies and control of chemical plants.
The problem is stated as: given that the system is in this configuration at
this time, what is the optimal course of action to reach a goal state at some
future time. The cost of each time course of actions consists typically of a
path contribution, that specifies the amount of work or other cost of the
trajectory, and an end cost, that specifies to what extend the trajectory
reaches the goal state.

Also recall that in the absence of noise, the optimal control problem
can be solved in two ways: using (i) the Pontryagin Maximum Principle
(PMP, see previous subsection), which represents a pair of ordinary differ-
ential equations that are similar to the Hamiltonian equations; or (ii) the
Hamilton–Jacobi–Bellman (HJB) equation, which is a partial differential
equation (PDE) [Bellman and Kalaba (1964)].

In the presence of Wiener noise, the PMP formalism is replaced by a set
of stochastic differential equations (SDEs), which become difficult to solve
(compare with [Yong and Zhou (1999)]). The inclusion of noise in the HJB
framework is mathematically quite straightforward, yielding the so–called
stochastic HJB equation [Stengel (1993)]. However, its solution requires a
discretization of space and time and the computation becomes intractable
in both memory requirement and CPU time in high dimensions. As a result,
deterministic control can be computed efficiently using the PMP approach,
but stochastic control is intractable due to the curse of dimensionality.

For small noise, one expects that optimal stochastic control resembles
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optimal deterministic control, but for larger noise, the optimal stochastic
control can be entirely different from the deterministic control [Russell and
Norvig (2003)]. However, there is currently no good understanding how
noise affects optimal control.

In this subsection, we address both the issue of efficient computation
and the role of noise in stochastic optimal control. We consider a class of
nonlinear stochastic control problems, that can be formulated as a statis-
tical mechanics problem. This class of control problems includes arbitrary
dynamical systems, but with a limited control mechanism. It contains
linear–quadratic [Stengel (1993)] control as a special case. We show that
under certain conditions on the noise, the HJB equation can be written as
a linear PDE

− ∂tψ = Hψ, (6.22)

with H a (non–Hermitian) operator. Equation (6.22) must be solved sub-
ject to a boundary condition at the end time. As a result of the linearity of
(6.22), the solution can be obtained in terms of a diffusion process evolving
forward in time, and can be written as a path integral. The path–integral
has a direct interpretation as a free energy, where noise plays the role of
temperature.

This link between stochastic optimal control and a free energy has an
immediate consequence that phenomena that allow for a free energy de-
scription, typically display phase transitions. [Kappen (2006)] has argued
that for stochastic optimal control one can identify a critical noise value
that separates regimes where the optimal control has been qualitatively
different. He showed how the Laplace approximation can be combined
with Monte Carlo sampling to efficiently calculate the optimal control.

6.3.5.1 Path–Integral Formalism

Let xi be an nD stochastic variable that is subject to the SDE

dxi = (bi(xi, t) + ui)dt+ dξi (6.23)

with dξi being an nD Wiener process with
〈
dξidξj

〉
= νijdt, and functions

νij independent of xi, ui and time t. The term bi(xi, t) is an arbitrary nD
function of xi and t, and ui represents an nD vector of control variables.
Given the value of xi at an initial time t, the stochastic optimal control
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problem is to find the control path ui(·) that minimizes

C(xi, t, ui(·)) =
〈
φ(xi(tf )) +

∫ tf

t

dτ(
1
2
ui(τ)Rui(τ) + V (xi(τ), τ))

〉
xi
,

(6.24)
with R a matrix, V (xi, t) a time–dependent potential, and φ(xi) the end
cost. The brackets 〈〉xi denote expectation value with respect to the stochas-
tic trajectories (6.23) that start at xi.

One defines the optimal cost–to–go function from any time t and state
xi as

J(xi, t) = min
ui(·)

C(xi, t, ui(·)).

J satisfies the following stochastic HJB equation [Kappen (2006)]

− ∂tJ(xi, t) = min
ui

(
1
2
uiRu

i+V +(bi+ui)∂xiJ(xi, t)+
1
2
νij∂xixjJ(xi, t)

)
= −1

2
R−1∂xiJ(xi, t)∂xiJ+V+bi∂xiJ(xi, t)+

1
2
νij∂xixjJ(xi, t),

(6.25)

where bi = (bi)T , and ui = (ui)T , and

ui = −R−1∂xiJ(xi, t) (6.26)

is the optimal control at the point (xi, t). The HJB equation is nonlinear
in J and must be solved with end boundary condition J(xi, tf ) = φ(xi).

Let us define ψ(xi, t) through the Log Transform

J(xi, t) = −λ logψ(xi, t), (6.27)

and assume that there exists a scalar λ such that

λδij = (Rν)ij , (6.28)

with δij the Kronecker delta. In the one dimensional case, such a λ can
always be found. In the higher dimensional case, this restricts the ma-
trices R ∝ (νij)

−1. Equation (6.28) reduces the dependence of optimal
control on the nD noise matrix to a scalar value λ that will play the role of
temperature, while (6.25) reduces to the linear equation (6.22) with

H = −V
λ

+ bi∂xi +
1
2
νij∂xixjJ(xi, t).
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Let ρ(yi, τ |xi, t) with ρ(yi, t|xi, t) = δ(yi − xi) describe a diffusion pro-
cess for τ > t defined by the Fokker–Planck equation

∂τρ = H†ρ = −V
λ
ρ− ∂xi(biρ) +

1
2
νij∂xixjJ(xi, t)ρ (6.29)

with H† the Hermitian–conjugate
of H. Then A(τ) =

∫
dyiρ(yi, τ |xi, t)ψ(yi, τ) is independent of τ and in

particular A(t) = A(tf ). It immediately follows that

ψ(xi, t) =
∫
dyiρ(yi, tf |xi, t) exp(−φ(yi)/λ) (6.30)

We arrive at the important conclusion that ψ(xi, t) can be computed either
by backward integration using (6.22) or by forward integration of a diffusion
process given by (6.29).

We can write the integral in (6.30) as a path integral. Following [Kappen
(2006)] we can divide the time interval t → tf in n1 intervals and write
ρ(yi, tf |xi, t) =

∏n1
i=1 ρ(xii, ti|xii−1, ti−1) and let n1 →∞. The result is

ψ(xi, t) =
∫

[dxi]xi exp
(
− 1
λ
S(xi(t→ tf ))

)
(6.31)

with
∫

[dxi]xi an integral over all paths xi(t→ tf ) that start at xi and with

S(xi(t→ tf )) = φ(xi(tf )+
∫ tf

t

dτ(
1
2

(ẋi−bi(xi, τ))R(ẋi−bi(xi, τ))+V (xi, τ))

(6.32)
the Action associated with a path. From (6.27) and (6.31), the cost–to–go
J(x, t) becomes a log partition sum (i.e., a free energy) with temperature
λ.

6.3.5.2 Monte Carlo Sampling

The path integral (6.31) can be estimated by stochastic integration from t

to tf of the diffusion process (6.29) in which particles get annihilated at a
rate V (xi, t)/λ [Kappen (2006)]:

xi = xi + bi(xi, t)dt+ dξi, with probability 1− V dt/λ
xi = †, with probability V dt/λ (6.33)

where † denotes that the particle is taken out of the simulation. Denote
the trajectories by xiα(t → tf ), (α = 1, . . . , N). Then, ψ(xi, t) and ui are
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estimated as

ψ̂(xi, t) =
∑

α∈alive

wα, uidt =
1

ψ̂(xi, t)

N∑
α∈alive

wαdξ
i
α(t), (6.34)

with wα =
1
N

exp(−φ(xiα(tf ))/λ),

where ‘alive’ denotes the subset of trajectories that do not get killed along
the way by the † operation. The normalization 1/N ensures that the anni-
hilation process is properly taken into account. Equation (6.34) states that
optimal control at time t is obtained by averaging the initial directions of
the noise component of the trajectories dξiα(t), weighted by their success at
tf .

The above sampling procedure can be quite inefficient, when many tra-
jectories get annihilated. One of the simplest procedures to improve it
is by importance sampling. We replace the diffusion process that yields
ρ(yi, tf |xi, t) by another diffusion process, that will yield ρ′(yi, tf |xi, t) =
exp(−S′/λ). Then (6.31) becomes,

ψ(xi, t) =
∫

[dxi]xi exp (−S′/λ) exp (−(S − S′)/λ) .

The idea is to chose ρ′ such as to make the sampling of the path integral
as efficient as possible. Following [Kappen (2006)], here we use the Laplace
approximation, which is given by the k deterministic trajectories xβ(t→ tf )
that minimize the Action

J(xi, t) ≈ −λ log
k∑

β=1

exp(−S(xiβ(t→ tf )/λ).

The Laplace approximation ignores all fluctuations around the modes and
becomes exact in the limit λ → 0. The Laplace approximation can be
computed efficiently, requiring O(n2m2) operations, where m is the number
of time discretization.

For each Laplace trajectory, we can define a diffusion processes ρ′β ac-
cording to (6.33) with bi(xi, t) = xiβ(t). The estimators for ψ and ui are
given again by (6.34), but with weights

wα =
1
N

exp
(
−
(
S(xiα(t→ tf ))− S′β(xiα(t→ tf ))

)
/λ
)
.

S is the original Action (6.32) and S′β is the new Action for the Laplace
guided diffusion. When there are multiple Laplace trajectories one should
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include all of these in the sample.

6.3.6 Application: Nonlinear Dynamics of Option Pricing

Classical theory of option pricing is based on the results found in 1973
by Black and Scholes [Black and Scholes (1973)] and, independently, Mer-
ton [Merton (1973)]. Their pioneering work starts from the basic assump-
tion that the asset prices follow the dynamics of a particular stochastic
process (geometrical Brownian motion), so that they have a lognormal
distribution [Hull (2000); Paul and Baschnagel (1999)]. In the case of
an efficient market with no arbitrage possibilities, no dividends and con-
stant volatilities, they found that the price of each financial derivative is
ruled by an ordinary partial differential equation, known as the (Nobel–
Prize winning) Black–Scholes–Merton (BSM) formula. In the most simple
case of a so–called European option, the BSM equation can be explicitly
solved to get an analytical formula for the price of the option [Hull (2000);
Paul and Baschnagel (1999)]. When we consider other financial deriva-
tives, which are commonly traded in real markets and allow anticipated
exercise and/or depend on the history of the underlying asset, the BSM
formula fails to give an analytical result. Appropriate numerical proce-
dures have been developed in the literature to price exotic financial deriva-
tives with path–dependent features, as discussed in detail in [Hull (2000);
Wilmott et. al. (1993); Potters et. al. (2001)]. The aim of this work is to
give a contribution to the problem of efficient option pricing in financial
analysis, showing how it is possible to use path integral methods to develop
a fast and precise algorithm for the evaluation of option prices.

Following recent studies on the application of the path integral ap-
proach to the financial market as appeared in the econophysics literature
(see [Matacz (2002)] for a comprehensive list of references), in [Montagna
et. al. (2002)] the authors proposed an original, efficient path integral al-
gorithm to price financial derivatives, including those with path–dependent
and early exercise features, and to compare the results with those get with
the standard procedures known in the literature.

6.3.6.1 Theory and Simulations of Option Pricing

Classical Theory and Path–Dependent Options

The basic ingredient for the development of a theory of option pricing is
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a suitable model for the time evolution of the asset prices. The assumption
of the BSM model is that the price S of an asset is driven by a Brownian
motion and verifies the stochastic differential equation (SDE) [Hull (2000);
Paul and Baschnagel (1999)]

dS = µSdt+ σSdw, (6.35)

which, by means of the Itô lemma, can be cast in the form of an arithmetic
Brownian motion for the logarithm of S

d(lnS) = Adt+ σdw, (6.36)

where σ is the volatility , A =
(
µ− σ2/2

)
, µ is the drift parameter and w

is the realization of a Wiener process. Due to the properties of a Wiener
process, (6.36) may be written as

d(lnS) = Adt+ σε
√
dt, (6.37)

where ε follows from a standardized normal distribution with mean 0
and variance 1. Thus, in terms of the logarithms of the asset prices
z′ = lnS′, z = lnS, the conditional transition probability p(z′|z) to
have at the time t′ a price S′ under the hypothesis that the price
was S at the time t < t′ is given by [Paul and Baschnagel (1999);
Bennati et. al. (1999)]

p(z′|z) =
1√

2π(t′ − t)σ2
exp

{
− [z′ − (z +A(t′ − t))]2

2σ2(t′ − t)

}
, (6.38)

which is a gaussian distribution with mean z+A(t′−t) and variance σ2(t′−
t). If we require the options to be exercised only at specific times ti, i =
1, · · · , n, the asset price, between two consequent times ti−1 and ti, will
follow (6.37) and the related transition probability will be

p(zi|zi−1) =
1√

2π∆tσ2
exp

{
− [zi − (zi−1 +A∆t)]2

2σ2∆t

}
, (6.39)

with ∆t = ti − ti−1.
A time–evolution model for the asset price is strictly necessary in a

theory of option pricing because the fair price at time t = 0 of an option
O, without possibility of anticipated exercise before the expiration date or
maturity T (a so–called European option), is given by the scaled expectation
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value [Hull (2000)]

O(0) = e−rTE[O(T )], (6.40)

where r is the risk–free interest and E[·] indicates the mean value, which
can be computed only if a model for the asset underlying the option is
understood. For example, the value O of an European call option at the
maturity T will be max{ST −X, 0}, where X is the strike price, while for an
European put option the value O at the maturity will be max{X − ST , 0}.
It is worth emphasizing, for what follows, that the case of an European
option is particularly simple, since in such a situation the price of the
option can be evaluated by means of analytical formulae, which are get by
solving the BSM partial differential equation with the appropriate boundary
conditions [Hull (2000); Paul and Baschnagel (1999)]. On the other hand,
many further kinds of options are present in the financial markets, such
as American options (options which can be exercised at any time up to
the expiration date) and exotic options [Hull (2000)], i.e., derivatives with
complicated payoffs or whose value depend on the whole time evolution
of the underlying asset and not just on its value at the end. For such
options with path-dependent and early exercise features no exact solutions
are available and pricing them correctly is a great challenge.

In the case of options with possibility of anticipated exercise before the
expiration date, the above discussion needs to be generalized, by introduc-
ing a slicing of the time interval T . Let us consider, for definiteness, the
case of an option which can be exercised within the maturity but only at
the times t1 = ∆t, t2 = 2∆t, . . . , tn = n∆t = T. At each time slice ti−1

the value Oi−1 of the option will be the maximum between its expectation
value at the time ti scaled with e−r∆t and its value in the case of antici-
pated exercise OYi−1. If Si−1 denotes the price of the underlying asset at
the time ti−1, we can thus write for each i = 1, . . . , n

Oi−1(Si−1) = max
{
OYi−1(Si−1), e−r∆tE[Oi|Si−1]

}
, (6.41)

where E[Oi|Si−1] is the conditional expectation value of Oi, i.e., its expec-
tation value under the hypothesis of having the price Si−1 at the time ti−1.
In this way, to get the actual price O0, it is necessary to proceed back-
ward in time and calculate On−1, . . . ,O1, where the value On of the option
at maturity is nothing but OYn (Sn). It is therefore clear that evaluating
the price of an option with early exercise features means to simulate the
evolution of the underlying asset price (to get the OYi ) and to calculate a
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(usually large) number of expectation conditional probabilities.

Standard Numerical Procedures

To value derivatives when analytical formulae are not available, appro-
priate numerical techniques have to be advocated. They involve the use
of Monte Carlo (MC) simulation, binomial trees (and their improvements)
and finite–difference methods [Hull (2000); Wilmott et. al. (1993)].

A natural way to simulate price paths is to discretize (6.37) as

lnS(t+ ∆t)− lnS(t) = A∆t+ σε
√

∆t,

or, equivalently,

S(t+ ∆t) = S(t) exp
[
A∆t+ σε

√
∆t
]
, (6.42)

which is correct for any ∆t > 0, even if finite. Given the spot price S0, i.e.,
the price of the asset at time t = 0, one can extract from a standardized
normal distribution a value εk, (k = 1, . . . , n) for the random variable ε to
simulate one possible path followed by the price by means of (6.42):

S(k∆t) = S((k − 1)∆t) exp
[
A∆t+ σεk

√
∆t
]
.

Iterating the procedure m times, one can simulate m price paths
{(S0, S

(j)
1 , S

(j)
2 ,

. . . , S
(j)
n ≡ S

(j)
T ) : j = 1, . . . ,m} and evaluate the price of the option. In

such a MC simulation of the stochastic dynamics of asset price (Monte
Carlo random walk) the mean values E[Oi|Si−1], i = 1, . . . , n are given by

E[Oi|Si−1] =
O(1)
i +O(2)

i + · · ·+O(m)
i

m
,

with no need to calculate transition probabilities because, through the ex-
traction of the possible ε values, the paths are automatically weighted ac-
cording to the probability distribution function of (6.39). Unfortunately,
this method leads to an estimated value whose numerical error is propor-
tional to m−1/2. Thus, even if it is powerful because of the possibility
to control the paths and to impose additional constrains (as it is usually
required by exotic and path-dependent options), the MC random walk is
extremely time consuming when precise predictions are required and ap-
propriate variance reduction procedures have to be used to save CPU time
[Hull (2000)]. This difficulty can be overcome by means of the method of the



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Geometrical Path Integrals and Their Applications 1029

binomial trees and its extensions (see [Hull (2000)] and references therein),
whose main idea stands in a deterministic choice of the possible paths to
limit the number of intermediate points. At each time step the price Si
is assumed to have only two choices: increase to the value uSi, u > 1 or
decrease to dSi, 0 < d < 1, where the parameters u and d are given in
terms of σ and ∆t in such a way to give the correct values for the mean and
variance of stock price changes over the time interval ∆t. Also finite differ-
ence methods are known in the literature [Hull (2000)] as an alternative to
time-consuming MC simulations. They give the value of the derivative by
solving the differential equation satisfied by the derivative, by converting it
into a difference equation. Although tree approaches and finite difference
methods are known to be faster than the MC random walk, they are difficult
to apply when a detailed control of the history of the derivative is required
and are also computationally time consuming when a number of stochas-
tic variables is involved [Hull (2000)]. It follows that the development of
efficient and fast computational algorithms to price financial derivatives is
still a key issue in financial analysis.

6.3.6.2 Option Pricing via Path Integrals

Recall that the path integral method is an integral formulation of the dy-
namics of a stochastic process. It is a suitable framework for the calcula-
tion of the transition probabilities associated to a given stochastic process,
which is seen as the convolution of an infinite sequence of infinitesimal
short-time steps [Bennati et. al. (1999)]. For the problem of option pric-
ing, the path–integral method can be employed for the explicit calculation
of the expectation values of the quantities of financial interest, given by
integrals of the form [Bennati et. al. (1999)]

E[Oi|Si−1] =
∫
dzip(zi|zi−1)Oi(ezi), (6.43)

where z = lnS and p(zi|zi−1) is the transition probability. E[Oi|Si−1]
is the conditional expectation value of some functional Oi of the stochas-
tic process. For example, for an European call option at the maturity
T the quantity of interest will be max {ST − X, 0}, X being the strike
price. As already emphasized, and discussed in the literature [Hull (2000);
Wilmott et. al. (1993); Potters et. al. (2001); Rosa-Clot and Taddei (2002);
Matacz (2002)], the computational complexity associated to this calcula-
tion is generally great: in the case of exotic options, with path-dependent
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and early exercise features, integrals of the type (6.43) cannot be analyti-
cally solved. As a consequence, we demand two things from a path integral
framework: a very quick way to estimate the transition probability asso-
ciated to a stochastic process (6.37) and a clever choice of the integration
points with which evaluate the integrals (6.43). In particular, our aim is
to develop an efficient calculation of the probability distribution without
losing information on the path followed by the asset price during its time
evolution.

Transition Probability

The probability distribution function related to a SDE verifies the
Chapman–Kolmogorov equation [Paul and Baschnagel (1999)]

p(z′′|z′) =
∫
dzp(z′′|z)p(z|z′), (6.44)

which states that the probability (density) of a transition from the value
z′ (at time t′) to the value z′′ (at time t′′) is the ‘summation’ over all the
possible intermediate values z of the probability of separate and consequent
transitions z′ → z, z → z′′. As a consequence, if we consider a finite time
interval [t′, t′′] and we apply a time slicing, by considering n+1 subintervals
of length ∆t = (t′′ − t′)/n+ 1, we can write, by iteration of (6.44)

p(z′′|z′) =
∫ +∞

−∞
· · ·
∫ +∞

−∞
dz1 · · · dznp(z′′|zn)p(zn|zn−1) · · · p(z1|z′),

which, thanks to (6.38), can be written as [Montagna et. al. (2002)]∫ +∞

−∞
· · · (6.45)

· · ·
∫ +∞

−∞
dz1 · · · dzn

1√
(2πσ2∆t)n+1

exp

{
− 1

2σ2∆t

n+1∑
k=1

[zk − (zk−1 +A∆t)]2
}
.

In the limit n → ∞, ∆t → 0 such that (n + 1)∆t = (t′′ − t′) (infinite
sequence of infinitesimal time steps), the expression (6.45), as explicitly
shown in [Bennati et. al. (1999)], exhibits a Lagrangian structure and it is
possible to express the transition probability in the path integral formalism
as a convolution of the form [Bennati et. al. (1999)]

p(z′′, t′′|z′, t′) =
∫
C
D[σ−1z̃] exp

{
−
∫ t′′

t′
L(z̃(τ), ˙̃z(τ); τ)dτ

}
,
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where L is the Lagrangian, given by

L(z̃(τ), ˙̃z(τ); τ) =
1

2σ2

[ ˙̃z(τ)−A
]2
,

and the integral is performed (with functional measure D[·]) over the
paths z̃(·) belonging to C, i.e., all the continuous functions with constrains
z̃(t′) ≡ z′, z̃(t′′) ≡ z′′. As carefully discussed in [Bennati et. al. (1999)],
a path integral is well defined only if both a continuous formal expression
and a discretization rule are given. As done in many applications, the Itô
prescription is adopted here (see subsection 6.2.5 above).

A first, näıve evaluation of the transition probability (6.45) can be per-
formed via Monte Carlo simulation, by writing (6.45) as

p(z′′, t′′|z′, t′) =∫ +∞

−∞
· · ·
∫ +∞

−∞

n∏
i

dgi
1√

2πσ2∆t
exp

{
− 1

2σ2∆t
[z′′ − (zn +A∆t)]2

}
, (6.46)

in terms of the variables gi defined by the relation

dgk =
dzk√

2πσ2∆t
exp

{
− 1

2σ2∆t
[zk − (zk−1 +A∆t)]2

}
, (6.47)

and extracting each gi from a gaussian distribution of mean zk−1 + A∆t
and variance σ2∆t. However, as we will see, this method requires a large
number of calls to get a good precision. This is due to the fact that each
gi is related to the previous gi−1, so that this implementation of the path
integral approach can be seen to be equivalent to a näıve MC simulation of
random walks, with no variance reduction.

By means of appropriate manipulations [Schulman (1981)] of the inte-
grand entering (6.45), it is possible, as shown in the following, to get a path
integral expression which will contain a factorized integral with a constant
kernel and a consequent variance reduction. If we define z′′ = zn+1 and
yk = zk − kA∆t, k = 1, . . . , n, we can express the transition probability
distribution as∫ +∞

−∞
· · ·
∫ +∞

−∞
dy1 · · · dyn

1√
(2πσ2∆t)n+1

·exp

{
− 1

2σ2∆t

n+1∑
k=1

[yk − yk−1]2
}
,

(6.48)
in order to get rid of the contribution of the drift parameter. Now let us
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extract from the argument of the exponential function a quadratic form

n+1∑
k=1

[yk − yk−1]2 = y2
0 − 2y1y0 + y2

1 + y2
1 − 2y1y2 + . . .+ y2

n+1

= ytMy + [y2
0 − 2y1y0 + y2

n+1 − 2ynyn+1], (6.49)

by introducing the nD array y and the nxn matrix M defined as [Montagna
et. al. (2002)]

y =



y1
y2
...
...
yn

 , M =



2 −1 0 · · · · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
0 · · · −1 2 −1 0
0 · · · · · · −1 2 −1
0 · · · · · · · · · −1 2


, (6.50)

where M is a real, symmetric, non singular and tridiagonal matrix. In
terms of the eigenvalues mi of the matrix M , the contribution in (6.49) can
be written as

ytMy = wtOtMOw = wtMdw =
n∑
i=1

miw
2
i , (6.51)

by introducing the orthogonal matrix O which diagonalizes M , with wi =
Oijyj . Because of the orthogonality of O, the Jacobian

J = det
∣∣∣∣dwidyk

∣∣∣∣ = det |Oki|,

of the transformation yk → wk equals 1, so that
∏n
i=1 dwi =

∏n
i=1 dyi.

After some algebra, (6.49) can be written as

n+1∑
k=1

[yk − yk−1]2 =
n∑
i=1

miw
2
i + y2

0 − 2y1y0 + y2
n+1 − 2ynyn+1 =

n∑
i=1

mi

[
wi −

(y0O1i + yn+1Oni)
mi

]2
+ y2

0 + y2
n+1 −

n∑
i=1

(y0O1i + yn+1Oni)2

mi
.

(6.52)
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Now, if we introduce new variables hi obeying the relation

dhi =
√

mi

2πσ2∆t
exp

{
− mi

2σ2∆t

[
wi −

(y0O1i + yn+1Oni)
mi

]2}
dwi,

(6.53)
it is possible to express the finite–time probability distribution p(z′′|z′) as
[Montagna et. al. (2002)]

Z +∞

−∞
· · ·

Z +∞

−∞

nY
i=1

dyi
1p

(2πσ2∆t)n+1
exp

(
− 1

2σ2∆t

n+1X
k=1

[yk − yk−1]
2

)

=

Z +∞

−∞
· · ·

Z +∞

−∞

nY
i=1

dwi
1p

(2πσ2∆t)n+1
e−(y20+y2n+1)/2σ2∆t

× exp

(
− 1

2σ2∆t

nX
i=1

"
mi

„
wi −

(y0O1i + yn+1Oni)

mi

«2

− (y0O1i + yn+1Oni)
2

mi

#)

=

Z +∞

−∞
· · ·

Z +∞

−∞

nY
i=1

dhi
1p

2πσ2∆t det(M)
(6.54)

× exp

(
− 1

2σ2∆t

"
y2
0 + y2

n+1 +

nX
i=1

(y0O1i + yn+1Oni)
2

mi

#)
.

The probability distribution function, as given by (6.54), is an integral
whose kernel is a constant function (with respect to the integration vari-
ables) and which can be factorized into the n integrals∫ +∞

−∞
dhi exp

{
− 1

2σ2∆t
(y0O1i + yn+1Oni)2

mi

}
, (6.55)

given in terms of the hi, which are gaussian variables that can be extracted
from a normal distribution with mean (y0O1i+yn+1Oni)2/mi and variance
σ2∆t/mi. Differently to the first, näıve implementation of the path integral,
now each hi is no longer dependent on the previous hi−1, and importance
sampling over the paths is automatically accounted for.

It is worth noticing that, by means of the extraction of the random
variables hi, we are creating price paths, since at each intermediate time ti
the asset price is given by

Si = exp {
n∑
k=1

Oikhk + iA∆t}. (6.56)

Therefore, this path integral algorithm can be easily adapted to the cases in
which the derivative to be valued has, in the time interval [0, T ], additional
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constraints, as in the case of interesting path–dependent options, such as
Asian and barrier options [Hull (2000)].

Integration Points

The above illustrated method represents a powerful and fast tool to
calculate the transition probability in the path integral framework and it
can be employed if we need to value a generic option with maturity T

and with possibility of anticipated exercise at times ti = i∆t (n∆t = T )
[Montagna et. al. (2002)]. As a consequence of this time slicing, one must
numerically evaluate n − 1 mean values of the type (9), in order to check
at any time ti, and for any value of the stock price, whether early exercise
is more convenient with respect to holding the option for a future time. To
keep under control the computational complexity and the time of execution,
it is mandatory to limit as far as possible the number of points for the
integral evaluation. This means that we would like to have a linear growth of
the number of integration points with the time. Let us suppose to evaluate
each mean value

E[Oi|Si−1] =
∫
dzi p(zi|zi−1)Oi(ezi),

with p integration points, i.e., considering only p fixed values for zi. To this
end, we can create a grid of possible prices, according to the dynamics of
the stochastic process as given by (6.37)

z(t+ ∆t)− z(t) = lnS(t+ ∆t)− lnS(t) = A∆t+ εσ
√

∆t. (6.57)

Starting from z0, we thus evaluate the expectation value E[O1|S0] with
p = 2m+1,m ∈ N values of z1 centered on the mean value E[z1] = z0+A∆t
and which differ from each other of a quantity of the order of σ

√
∆t

zj1 = z0 +A∆t+ jσ
√

∆t, (j = −m, . . . ,+m).

Going on like this, we can evaluate each expectation value E[O2|zj1] get from
each one of the z1’s created above with p values for z2 centered around the
mean value

E[z2|zj1] = zj1 +A∆t = z0 + 2A∆t+ jσ
√

∆t.

Iterating the procedure until the maturity, we create a deterministic
grid of points such that, at a given time ti, there are (p− 1)i+ 1 values of
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zi, in agreement with the request of linear growth. This procedure of se-
lection of integration points, together with the calculation of the transition
probability previously described, is the basis of the path integral simulation
of the price of a generic option.

By applying the results derived above, we have at disposal an efficient
path integral algorithm both for the calculation of transition probabilities
and the evaluation of option prices. In [Montagna et. al. (2002)] the ap-
plication of the above path–integral method to European and American
options in the BSM model was illustrated and comparisons with the results
were get with the standard procedures known in the literature were shown.
First, the path integral simulation of the probability distribution of the
logarithm of the stock prices, p(lnS), as a function of the logarithm of the
stock price, for a BSM–like stochastic model, was given by (6.36). Once the
transition probability has been computed, the price of an option could be
computed in a path integral approach as the conditional expectation value
of a given functional of the stochastic process. For example, the price of an
European call option was given by

C = e−r(T−t)
∫ +∞

−∞
dzf p(zf , T |zi, t) max[ezf −X, 0], (6.58)

while for an European put it will be

P = e−r(T−t)
∫ +∞

−∞
dzf p(zf , T |zi, t) max[X − ezf , 0], (6.59)

where r is the risk–free interest rate. Therefore just 1D integrals need to be
evaluated and they can be precisely computed with standard quadrature
rules.

6.3.6.3 Continuum Limit and American Options

In the specific case of an American option, the possibility of exercise at any
time up to the expiration date allows to develop, within the path integral
formalism, a specific algorithm, which, as shown in the following, is precise
and very quick [Montagna et. al. (2002)].

Given the time slicing considered above, the case of American options
requires the limit ∆t −→ 0 which, putting σ −→ 0, leads to a delta–like
transition probability

p(z, t+ ∆t|zt, t) ≈ δ(z − zt −A∆t).



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

1036 Applied Differential Geometry: A Modern Introduction

This means that, apart from volatility effects, the price zi at time ti will
have a value remarkably close to the expected value z̄ = zi−1 +A∆t, given
by the drift growth. In order to take care of the volatility effects, a possible
solution is to estimate the integral of interest, i.e.,

E[Oi|Si−1] =
∫ +∞

−∞
dz p(z|zi−1)Oi(ez), (6.60)

by inserting in (6.60) the analytical expression for the p(z|zi−1) transition
probability

p(z|zi−1) =
1√

2π∆tσ2
exp

{
− (z − zi−1 −A∆t)2

2σ2∆t

}
=

1√
2π∆tσ2

exp
{
− (z − z̄)2

2σ2∆t

}
,

together with a Taylor expansion of the kernel function Oi(ez) = f(z)
around the expected value z̄. Hence, up to the second–order in z − z̄, the
kernel function becomes

f(z) = f(z̄) + (z − z̄)f ′(z̄) +
1
2
f ′′(z̄)(z − z̄)2 +O((z − z̄)3),

which induces

E[Oi|Si−1] = f(z̄) +
σ2

2
f ′′(z̄),+ . . . ,

since the first derivative does not give contribution to (6.60), being the
integral of an odd function over the whole z range. The second derivative
can be numerically estimated as

f ′′(z̄) =
1
δ2σ

[f(z̄ + δσ)− 2f(z̄) + f(z̄ − δσ)],

with δσ = O(σ
√

∆t), as dictated by the dynamics of the stochastic process.

6.3.7 Application: Nonlinear Dynamics of Complex Nets

Recall that many systems in nature, such as neural nets, food webs,
metabolic systems, co–authorship of papers, the worldwide web, etc. can
be represented as complex networks, or small–world networks (see, e.g.,
[Watts and Strogatz (1998); Dorogovtsev and Mendes (2003)]). In partic-
ular, it has been recognized that many networks have scale–free topology;
the distribution of the degree obeys the power law, P (k) ∼ k−γ . The study
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of the scale–free network now attracts the interests of many researchers in
mathematics, physics, engineering and biology [Ichinomiya (2004)].

Another important aspect of complex networks is their dynamics, de-
scribing e.g., the spreading of viruses in the Internet, change of populations
in a food web, and synchronization of neurons in a brain. In particular,
[Ichinomiya (2004)] studied the synchronization of the random network of
oscillators. His work follows the previous studies (see [Strogatz (2000)]) that
showed that mean–field type synchronization, that Kuramoto observed in
globally–coupled oscillators [Kuramoto (1984)], appeared also in the small–
world networks.

6.3.7.1 Continuum Limit of the Kuramoto Net

Ichinomiya started with the standard network with N nodes, described by
a variant of the Kuramoto model. Namely, at each node, there exists an
oscillator and the phase of each oscillator θi is evolving according to

θ̇i = ωi +K
∑
j

aij sin(θj − θi), (6.61)

where K is the coupling constant, aij is 1 if the nodes i and j are connected,
and 0 otherwise; ωi is a random number, whose distribution is given by the
function N(ω).

For the analytic study, it is convenient to use the continuum limit equa-
tion. We define P (k) as the distribution of nodes with degree k, and
ρ(k, ω; t, θ) the density of oscillators with phase θ at time t, for given ω

and k. We assume that ρ(k, ω; t, θ) is normalized as

∫ 2π

0

ρ(k, ω; t, θ)dθ = 1.

For simplicity, we also assume N(ω) = N(−ω). Thus, we suppose that the
collective oscillation corresponds to the stable solution, ρ̇ = 0.

Now we construct the continuum limit equation for the network of os-
cillators. The evolution of ρ is determined by the continuity equation ∂tρ =
−∂θ(ρv), where v is defined by the continuum limit of the r.h.s of (6.61).
Because one randomly selected edge connects to the node of degree k, fre-
quency ω, phase θ with the probability kP (k)N(ω)ρ(k, ω; t, θ)/

∫
dkkP (k),
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ρ(k, ω; t, θ) obeys the equation

∂tρ(k, ω; t, θ) = −∂θ[ρ(k, ω; t, θ) (ω +

+
Kk

∫
dω′

∫
dk′
∫
dθ′N(ω′)P (k′)k′ρ(k′, ω′; t, θ′) sin(θ − θ′)∫

dk′P (k′)k′
)].

The mean–field solution of this equation was studied by [Ichinomiya (2004)].

6.3.7.2 Path–Integral Approach to Complex Nets

Recently, [Ichinomiya (2005)] introduced the path–integral (see subsection
4.4.6 above) approach in studying the dynamics of complex networks. He
considered the stochastic generalization of the Kuramoto network (6.61),
given by

ẋi = fi(xi) +
N∑
j=1

aijg(xi, xj) + ξi(t), (6.62)

where fi = fi(xi) and gij = g(xi, xj) are functions of network activations xi,
ξi(t) is a random force that satisfies 〈ξi(t) = 0〉, 〈ξi(t)ξj(t

′
)〉 = δijδ(t−t

′
)σ2.

He assumed xi = xi,0 at t = 0. In order to discuss the dynamics of this
system, he introduced the so–called Matrin–Siggia–Rose (MSR) generating
functional Z given by [de Dominicis (1978)]

Z[{lik}, {l̄ik}] =
(

1
π

)NNt 〈∫ N∏
i=1

Nt∏
k=0

dxikdx̄ike−S exp(likxik + l̄ikx̄ik)J

〉
,

where the action S is given by

S =
∑
ik

[
σ2∆t

2
x̄2
ik+ix̄ik{xik−xi,k−1−∆t(fi(xi,k−1)+

∑
j

aijg(xi,k−1, xj,k−1))}],

and 〈· · · 〉 represents the average over the ensemble of networks. J is the
functional Jacobian term,

J = exp

−∆t
2

∑
ijk

∂(fi(xik) + aijg(xik, xjk))
∂xik

 .

Ichinomiya considered such a form of the network model in which

aij =
{

1 with probability pij ,
0 with probability 1− pij .
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Note that pij can be a function of variables such as i or j. For example, in
the 1D chain model, pij is 1 if |i− j| = 1, else it is 0. The average over all
networks can be expressed as〈

exp

∑
ik

i∆tx̄ik
∑
j

aijg(xi,k−1, xj,k−1)

〉 =

∏
ij

[
pij exp

{∑
k

i∆tx̄ikg(xi,k−1, xj,k−1)

}
+ 1− pij

]
,

so we get

〈e−S〉 = exp(−S0)
∏
ij

[
pij exp

{∑
k

i∆tx̄ikg(xi,k−1, xj,k−1)

}
+ 1− pij

]
,

where S0 =
∑
ik

σ2∆t
2

x̄2
ik + ix̄ik{xik − xi,k−1 −∆tfi(xi,k−1)}.

This expression can be applied to the dynamics of any complex network
model. [Ichinomiya (2005)] applied this model to analysis of the Kuramoto
transition in random sparse networks.

6.3.8 Application: Dissipative Quantum Brain Model

The conservative brain model was originally formulated within the frame-
work of the quantum field theory (QFT) by [Ricciardi and Umezawa (1967)]
and subsequently developed in [Stuart et al. (1978); Stuart et al. (1979);
Jibu and Yasue (1995); Jibu et al (1996)]. The conservative brain model has
been recently extended to the dissipative quantum dynamics in the work of
G. Vitiello and collaborators [Vitiello (1995); Alfinito and Vitiello (2000);
Pessa and Vitiello (1999); Vitiello (2001); Pessa and Vitiello (2003);
Pessa and Vitiello (2004)].

The canonical quantization procedure of a dissipative system requires
to include in the formalism also the system representing the environment
(usually the heat bath) in which the system is embedded. One possible way
to do that is to depict the environment as the time–reversal image of the
system [Celeghini et al. (1992)]: the environment is thus described as the
double of the system in the time–reversed dynamics (the system image in
the mirror of time).

Within the framework of dissipative QFT, the brain system is described
in terms of an infinite collection of damped harmonic oscillators Aκ (the
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simplest prototype of a dissipative system) representing the DWQ [Vitiello
(1995)]. Now, the collection of damped harmonic oscillators is ruled by the
Hamiltonian [Vitiello (1995); Celeghini et al. (1992)]

H = H0 +HI , with

H0 = ~Ωκ(A†κAκ − Ã†κÃκ), HI = i~Γκ(A†κÃ
†
κ −AκÃκ),

where Ωκ is the frequency and Γκ is the damping constant. The Ãκ modes
are the ‘time–reversed mirror image’ (i.e., the ‘mirror modes’) of the Aκ
modes. They are the doubled modes, representing the environment modes,
in such a way that κ generically labels their degrees of freedom. In partic-
ular, we consider the damped harmonic oscillator (DHO)

mẍ+ γẋ+ κx = 0, (6.63)

as a simple prototype for dissipative systems (with intention that thus get
results also apply to more general systems). The damped oscillator (6.63) is
a non–Hamiltonian system and therefore the customary canonical quanti-
zation procedure cannot be followed. However, one can face the problem by
resorting to well known tools such as the density matrix ρ and the Wigner
function W .

Let us start with the special case of a conservative particle in the absence
of friction γ, with the standard Hamiltonian, H = −(~∂x)2/2m+ V (x).

Recall (from the previous subsection) that the density matrix equation
of motion, i.e., quantum Liouville equation, is given by

i~ρ̇ = [H, ρ]. (6.64)

The density matrix function ρ is defined by

〈x+
1
2
y|ρ(t)|x− 1

2
y〉 = ψ∗(x+

1
2
y, t)ψ(x− 1

2
y, t) ≡W (x, y, t),

with the associated standard expression for the Wigner function (see [Feyn-
man and Hibbs (1965)]),

W (p, x, t) =
1

2π~

∫
W (x, y, t) e(−i py~ )dy.

Now, in the coordinate x−representation, by introducing the notation

x± = x± 1
2
y, (6.65)
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the Liouville equation (6.64) can be expanded as

i~ ∂t〈x+|ρ(t)|x−〉 = (6.66){
− ~2

2m

[
∂2
x+
− ∂2

x−

]
+ [V (x+)− V (x−)]

}
〈x+|ρ(t)|x−〉,

while the Wigner function W (p, x, t) is now given by

i~ ∂tW (x, y, t) = HoW (x, y, t), with

Ho =
1
m
pxpy + V (x+

1
2
y)− V (x− 1

2
y), (6.67)

and px = −i~∂x, py = −i~∂y.

The new Hamiltonian Ho (6.67) may be get from the corresponding La-
grangian

Lo = mẋẏ − V (x+
1
2
y) + V (x− 1

2
y). (6.68)

In this way, Vitiello concluded that the density matrix and the Wigner
function formalism required, even in the conservative case (with zero me-
chanical resistance γ), the introduction of a ‘doubled’ set of coordinates,
x±, or, alternatively, x and y. One may understand this as related to the
introduction of the ‘couple’ of indices necessary to label the density matrix
elements (6.66).

Let us now consider the case of the particle interacting with a thermal
bath at temperature T . Let f denote the random force on the particle at
the position x due to the bath. The interaction Hamiltonian between the
bath and the particle is written as

Hint = −fx. (6.69)

Now, in the Feynman–Vernon formalism (see [Feynman (1972)]), the
effective action A[x, y] for the particle is given by

A[x, y] =
∫ tf

ti

Lo(ẋ, ẏ, x, y) dt+ I[x, y],

with Lo defined by (6.68) and

e
i
~ I[x,y] = 〈(e−

i
~

R tf
ti

f(t)x−(t)dt)−(e
i
~

R tf
ti

f(t)x+(t)dt)+〉, (6.70)

where the symbol 〈.〉 denotes the average with respect to the thermal bath;
‘(.)+’ and ‘(.)−’ denote time ordering and anti–time ordering, respectively;
the coordinates x± are defined as in (6.65). If the interaction between the
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bath and the coordinate x (6.69) were turned off, then the operator f of
the bath would develop in time according to f(t) = eiHγt/~fe−iHγt/~, where
Hγ is the Hamiltonian of the isolated bath (decoupled from the coordinate
x). f(t) is then the force operator of the bath to be used in (6.70).

The interaction I[x, y] between the bath and the particle has been eval-
uated in [Srivastava et al. (1995)] for a linear passive damping due to
thermal bath by following Feynman–Vernon and Schwinger [Feynman and
Hibbs (1965)]. The final result from [Srivastava et al. (1995)] is:

I[x, y] =
1
2

∫ tf

ti

dt [x(t)F rety (t) + y(t)F advx (t)]

+
i

2~

∫ tf

ti

∫ tf

ti

dtdsN(t− s)y(t)y(s),

where the retarded force on y, F rety , and the advanced force on x, F advx , are
given in terms of the retarded and advanced Green functions Gret(t − s)
and Gadv(t− s) by

F rety (t) =
∫ tf

ti

dsGret(t− s)y(s), F advx (t) =
∫ tf

ti

dsGadv(t− s)x(s),

respectively. In (6.71), N(t − s) is the quantum noise in the fluctuating
random force given by: N(t− s) = 1

2 〈f(t)f(s) + f(s)f(t)〉.
The real and the imaginary part of the action are given respectively by

Re (A[x, y]) =
∫ tf

ti

Ldt, (6.71)

L = mẋẏ −
[
V (x+

1
2
y)− V (x− 1

2
y)
]

+
1
2
[
xF rety + yF advx

]
, (6.72)

and Im (A[x, y]) =
1
2~

∫ tf

ti

∫ tf

ti

N(t− s)y(t)y(s) dtds. (6.73)

Equations (6.71–6.73), are exact results for linear passive damping due
to the bath. They show that in the classical limit ‘~→ 0’ nonzero y yields an
‘unlikely process’ in view of the large imaginary part of the action implicit
in (6.73). Nonzero y, indeed, may lead to a negative real exponent in the
evolution operator, which in the limit ~ → 0 may produce a negligible
contribution to the probability amplitude. On the contrary, at quantum
level nonzero y accounts for quantum noise effects in the fluctuating random
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force in the system–environment coupling arising from the imaginary part
of the action (see [Srivastava et al. (1995)]).

When in (6.72) we use

F rety = γẏ and F advx = −γẋ we get,

L(ẋ, ẏ, x, y) = mẋẏ − V
(
x+

1
2
y

)
+ V

(
x− 1

2
y

)
+
γ

2
(xẏ − yẋ). (6.74)

By using

V

(
x± 1

2
y

)
=

1
2
κ(x± 1

2
y)2

in (6.74), the DHO equation (6.63) and its complementary equation for the
y coordinate

mÿ − γẏ + κy = 0. (6.75)

are derived. The y−oscillator is the time–reversed image of the x−oscillator
(6.63). From the manifolds of solutions to equations (6.63) and (6.75), we
could choose those for which the y coordinate is constrained to be zero,
they simplify to

mẍ+ γẋ+ κx = 0, y = 0.

Thus we get the classical damped oscillator equation from a Lagrangian
theory at the expense of introducing an ‘extra’ coordinate y, later con-
strained to vanish. Note that the constraint y(t) = 0 is not in violation of
the equations of motion since it is a true solution to (6.63) and (6.75).

6.3.9 Application: Cerebellum as a Neural Path–Integral

Recall that human motion is naturally driven by synergistic action of more
than 600 skeletal muscles. While the muscles generate driving torques in
the moving joints, subcortical neural system performs both local and global
(loco)motion control: first reflexly controlling contractions of individual
muscles, and then orchestrating all the muscles into synergetic actions in
order to produce efficient movements. While the local reflex control of
individual muscles is performed on the spinal control level, the global inte-
gration of all the muscles into coordinated movements is performed within
the cerebellum.
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All hierarchical subcortical neuro–muscular physiology, from the bottom
level of a single muscle fiber, to the top level of cerebellar muscular synergy,
acts as a temporal < out|in > reaction, in such a way that the higher level
acts as a command/control space for the lower level, itself representing an
abstract image of the lower one:

(1) At the muscular level, we have excitation–contraction dynamics [Hatze
(1977a); Hatze (1978); Hatze (1977b)], in which < out|in > is given by
the following sequence of nonlinear diffusion processes: neural-action-
potential  synaptic-potential
 muscular-action-potential excitation-
contraction-coupling  muscle-tension-generating [Ivancevic (1991);
Ivancevic and Ivancevic (2006)]. Its purpose is the generation of mus-
cular forces, to be transferred into driving torques within the joint
anatomical geometry.

(2) At the spinal level, < out|in > is given by autogenetic–reflex stimulus–
response control [Houk (1979)]. Here we have a neural image of all
individual muscles. The main purpose of the spinal control level is to
give both positive and negative feedbacks to stabilize generated mus-
cular forces within the ‘homeostatic’ (or, more appropriately, ‘home-
okinetic’) limits. The individual muscular actions are combined into
flexor–extensor (or agonist–antagonist) pairs, mutually controlling each
other. This is the mechanism of reciprocal innervation of agonists and
inhibition of antagonists. It has a purely mechanical purpose to form
the so–called equivalent muscular actuators (EMAs), which would gen-
erate driving torques Ti(t) for all movable joints.

(3) At the cerebellar level, < out|in > is given by sensory–motor integra-
tion [Houk et al. (1996)]. Here we have an abstracted image of all
autogenetic reflexes. The main purpose of the cerebellar control level
is integration and fine tuning of the action of all active EMAs into
a synchronized movement, by supervising the individual autogenetic
reflex circuits. At the same time, to be able to perform in new and
unknown conditions, the cerebellum is continuously adapting its own
neural circuitry by unsupervised (self–organizing) learning. Its action
is subconscious and automatic, both in humans and in animals.

Naturally, we can ask the question: Can we assign a single < out|in >
measure to all these neuro–muscular stimulus–response reactions? We think
that we can do it; so in this Letter, we propose the concept of adaptive
sensory–motor transition amplitude as a unique measure for this temporal
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< out|in > relation. Conceptually, this < out|in > −amplitude can be
formulated as the ‘neural path integral ’:

< out|in >≡ 〈motor|sensory〉
amplitude

=
∫
D[w, x] eiS[x]. (6.76)

Here, the integral is taken over all activated (or, ‘fired’) neural pathways
xi = xi(t) of the cerebellum, connecting its input sensory−state with its
output motor−state, symbolically described by adaptive neural measure
D[w, x], defined by the weighted product (of discrete time steps)

D[w, x] = lim
n−→∞

n∏
t=1

wi(t) dxi(t),

in which the synaptic weights wi = wi(t), included in all active neural
pathways xi = xi(t), are updated by the unsupervised Hebbian–like learning
rule 6.7, namely

wi(t+ 1) = wi(t) +
σ

η
(wid(t)− wia(t)), (6.77)

where σ = σ(t), η = η(t) represent local neural signal and noise ampli-
tudes, respectively, while superscripts d and a denote desired and achieved
neural states, respectively. Theoretically, equations (6.76–6.77) define an
∞−dimensional neural network. Practically, in a computer simulation we
can use 107 ≤ n ≤ 108, roughly corresponding to the number of neurons in
the cerebellum.

The exponent term S[x] in equation (6.76) represents the autogenetic–
reflex action, describing reflexly–induced motion of all active EMAs, from
their initial stimulus−state to their final response−state, along the fam-
ily of extremal (i.e., Euler–Lagrangian) paths ximin(t). (S[x] is properly
derived in (6.80–6.81) below.)

6.3.9.1 Spinal Autogenetic Reflex Control

Recall (from Introduction) that at the spinal control level we have the auto-
genetic reflex motor servo [Houk (1979)], providing the local, reflex feedback
loops for individual muscular contractions. A voluntary contraction force
F of human skeletal muscle is reflexly excited (positive feedback +F−1)
by the responses of its spindle receptors to stretch and is reflexly inhib-
ited (negative feedback -F−1) by the responses of its Golgi tendon organs
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to contraction. Stretch and unloading reflexes are mediated by combined
actions of several autogenetic neural pathways, forming the motor servo.

In other words, branches of the afferent fibers also synapse with with in-
terneurons that inhibit motor neurons controlling the antagonistic muscles
– reciprocal inhibition. Consequently, the stretch stimulus causes the antag-
onists to relax so that they cannot resists the shortening of the stretched
muscle caused by the main reflex arc. Similarly, firing of the Golgi ten-
don receptors causes inhibition of the muscle contracting too strong and
simultaneous reciprocal activation of its antagonist. Both mechanisms of
reciprocal inhibition and activation performed by the autogenetic circuits
+F−1 and -F−1, serve to generate the well–tuned EMA–driving torques
Ti.

Now, once we have properly defined the symplectic musculo–skeletal dy-
namics [Ivancevic (2004)] on the biomechanical (momentum) phase–space
manifold T ∗MN , we can proceed in formalizing its hierarchical subcortical
neural control. By introducing the coupling Hamiltonians Hm = Hm(q, p),
selectively corresponding only to the M ≤ N active joints, we define the
affine Hamiltonian control function Haff : T ∗MN → R, in local canoni-
cal coordinates on T ∗MN given by (adapted from [Nijmeijer and van der
Schaft (1990)] for the biomechanical purpose)

Haff (q, p) = H0(q, p)−Hm(q, p)Tm, (m = 1, . . . , M ≤ N), (6.78)

where Tm = Tm(t, q, p) are affine feedback torque one–forms, different from
the initial driving torques Ti acting in all the joints. Using the affine Hamil-
tonian function (6.78), we get the affine Hamiltonian servo–system [Ivance-
vic (2004)],

q̇i =
∂H0(q, p)

∂pi
− ∂Hm(q, p)

∂pi
Tm, (6.79)

ṗi = −∂H0(q, p)
∂qi

+
∂Hm(q, p)

∂qi
Tm,

qi(0) = qi0, pi(0) = p0
i , (i = 1, . . . , N ; m = 1, . . . , M ≤ N).

The affine Hamiltonian control system (6.79) gives our formal description
for the autogenetic spinal motor–servo for all M ≤ N activated (i.e., work-
ing) EMAs.
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6.3.9.2 Cerebellum – the Comparator

Having, thus, defined the spinal reflex control level, we proceed to model the
top subcortical commander/controller, the cerebellum. It is a brain region
anatomically located at the bottom rear of the head (the hindbrain), di-
rectly above the brainstem, which is important for a number of subconscious
and automatic motor functions, including motor learning. It processes in-
formation received from the motor cortex, as well as from proprioceptors
and visual and equilibrium pathways, and gives ‘instructions’ to the motor
cortex and other subcortical motor centers (like the basal nuclei), which
result in proper balance and posture, as well as smooth, coordinated skele-
tal movements, like walking, running, jumping, driving, typing, playing the
piano, etc. Patients with cerebellar dysfunction have problems with precise
movements, such as walking and balance, and hand and arm movements.
The cerebellum looks similar in all animals, from fish to mice to humans.
This has been taken as evidence that it performs a common function, such
as regulating motor learning and the timing of movements, in all animals.
Studies of simple forms of motor learning in the vestibulo–ocular reflex
and eye–blink conditioning are demonstrating that timing and amplitude
of learned movements are encoded by the cerebellum.

The cerebellum is responsible for coordinating precisely timed <

out|in > activity by integrating motor output with ongoing sensory feed-
back. It receives extensive projections from sensory–motor areas of the
cortex and the periphery and directs it back to premotor and motor cor-
tex [Ghez (1990); Ghez (1991)]. This suggests a role in sensory–motor
integration and the timing and execution of human movements. The cere-
bellum stores patterns of motor control for frequently performed move-
ments, and therefore, its circuits are changed by experience and training.
It was termed the adjustable pattern generator in the work of J. Houk
and collaborators [Houk et al. (1996)]. Also, it has become the inspiring
‘brain–model’ in the recent robotic research [Schaal and Atkeson (1998);
Schaal (1998)].

Comparing the number of its neurons (107 − 108), to the size of con-
ventional neural networks, suggests that artificial neural nets cannot satis-
factorily model the function of this sophisticated ‘super–bio–computer’, as
its dimensionality is virtually infinite. Despite a lot of research dedicated
to its structure and function (see [Houk et al. (1996)] and references there
cited), the real nature of the cerebellum still remains a ‘mystery’.

The main function of the cerebellum as a motor controller is depicted
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Fig. 6.5 Schematic< out|in > organization of the primary cerebellar circuit. In essence,

excitatory inputs, conveyed by collateral axons of Mossy and Climbing fibers activate
directly neurones in the Deep cerebellar nuclei. The activity of these latter is also

modulated by the inhibitory action of the cerebellar cortex, mediated by the Purkinje

cells.

Fig. 6.6 The cerebellum as a motor controller.

in Figure 6.6. A coordinated movement is easy to recognize, but we know
little about how it is achieved. In search of the neural basis of coordination,
a model of spinocerebellar interactions was recently presented in [Apps and
Garwicz (2005)], in which the structural and functional organizing principle
is a division of the cerebellum into discrete micro–complexes. Each micro–
complex is the recipient of a specific motor error signal - that is, a signal
that conveys information about an inappropriate movement. These signals
are encoded by spinal reflex circuits and conveyed to the cerebellar cortex
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through climbing fibre afferents. This organization reveals salient features
of cerebellar information processing, but also highlights the importance of
systems level analysis for a fuller understanding of the neural mechanisms
that underlie behavior.

6.3.9.3 Hamiltonian Action and Neural Path Integral

Here, we propose a quantum–like adaptive control approach to modelling
the ‘cerebellar mystery’. Corresponding to the affine Hamiltonian control
function (6.78) we define the affine Hamiltonian control action,

Saff [q, p] =
∫ tout

tin

dτ
[
piq̇

i −Haff (q, p)
]
. (6.80)

From the affine Hamiltonian action (6.80) we further derive the associ-
ated expression for the neural phase–space path integral (in normal units),
representing the cerebellar sensory–motor amplitude < out|in >,〈
qiout, p

out
i |qiin, pini

〉
=
∫
D[w, q, p] eiSaff [q,p] (6.81)

=
∫
D[w, q, p] exp

{
i
∫ tout

tin

dτ
[
piq̇

i −Haff (q, p)
]}

,

with
∫
D[w, q, p] =

∫ n∏
τ=1

wi(τ)dpi(τ)dqi(τ)
2π

,

where wi = wi(t) denote the cerebellar synaptic weights positioned along its
neural pathways, being continuously updated using the Hebbian–like self–
organizing learning rule (6.77). Given the transition amplitude < out|in >
(6.81), the cerebellar sensory–motor transition probability is defined as its
absolute square, | < out|in > |2.

In (6.81), qiin = qiin(t), qiout = qiout(t); pini = pini (t), pouti =
pouti (t); tin ≤ t ≤ tout, for all discrete time steps, t = 1, ..., n −→
∞, and we are allowing for the affine Hamiltonian Haff (q, p) to de-
pend upon all the (M ≤ N) EMA–angles and angular momenta col-
lectively. Here, we actually systematically took a discretized differential
time limit of the form tσ − tσ−1 ≡ dτ (both σ and τ denote discrete

time steps) and wrote (qiσ−q
i
σ−1)

(tσ−tσ−1)
≡ q̇i. For technical details regarding

the path integral calculations on Riemannian and symplectic manifolds
(including the standard regularization procedures), see [Klauder (1997);
Klauder (2000)].
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Now, motor learning occurring in the cerebellum can be observed using
functional MR imaging, showing changes in the cerebellar action potential,
related to the motor tasks (see, e.g., [Mascalchi et. al. (2002)]). To account
for these electro–physiological currents, we need to add the source term
Ji(t)qi(t) to the affine Hamiltonian action (6.80), (the current Ji = Ji(t)
acts as a source JiAi of the cerebellar electrical potential Ai = Ai(t)),

Saff [q, p, J ] =
∫ tout

tin

dτ
[
piq̇

i −Haff (q, p) + Jiq
i
]
,

which, subsequently gives the cerebellar path integral with the action poten-
tial source, coming either from the motor cortex or from other subcortical
areas.

Note that the standard Wick rotation: t 7→ it (see [Klauder (1997);
Klauder (2000)]), makes all our path integrals real, i.e.,∫

D[w, q, p] eiSaff [q,p] Wick−−−→

∫
D[w, q, p] e−Saff [q,p],

while their subsequent discretization gives the standard thermodynamic
partition functions,

Z =
∑
j

e−wjE
j/T , (6.82)

where Ej is the energy eigenvalue corresponding to the affine Hamiltonian
Haff (q, p), T is the temperature–like environmental control parameter, and
the sum runs over all energy eigenstates (labelled by the index j). From
(6.82), we can further calculate all statistical and thermodynamic system
properties (see [Feynman (1972)]), as for example, transition entropy S =
kB lnZ, etc.

6.3.10 Path Integrals via Jets: Perturbative Quantum

Fields

Recall that an elegant way to make geometrical path integrals rigorous is to
formulate them using the jet formalism. In this way the covariant Hamilto-
nian field systems were presented in [Bashkirov and Sardanashvily (2004)].
In this subsection we give a brief review of this perturbative quantum field
model.

Let us quantize a Lagrangian system with the Lagrangian LN (5.316)
on the constraint manifold NL (5.314). In the framework of a perturbative
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quantum field theory, we should assume that X = Rn and Y → X is a triv-
ial affine bundle. It follows that both the original coordinates (xα, yi, pαi )
and the adapted coordinates (xα, yi, pa, pA) on the Legendre bundle Π are
global. Passing to field theory on an Euclidean space Rn, we also assume
that the matrix a in the Lagrangian L (5.312) is positive–definite, i.e.,
aAA > 0.

Let us start from a Lagrangian (5.316) without gauge symmetries. Since
the Lagrangian constraint space NL can be equipped with the adapted co-
ordinates pA, the generating functional of Euclidean Green functions of the
Lagrangian system in question reads [Bashkirov and Sardanashvily (2004)]

Z = N−1

∫
exp{

∫
(LN+

1
2

Tr(lnσ0)+iJiyi+iJApA)ω}
∏
x

[dpA(x)][dy(x)],

(6.83)
where LN is given by the expression (5.322) and σ0 is the square matrix

σAB0 = M−1αA
i M−1µB

j σ0
ij
αµ = δAB(aAA)−1.

The generating functional (6.83) a Gaussian integral of variables pA(x). Its
integration with respect to pA(x) under the condition JA = 0 restarts the
generating functional

Z = N−1

∫
exp{

∫
(L+ iJiy

i)ω}
∏
x

[dy(x)], (6.84)

of the original Lagrangian field system on Y with the Lagrangian (5.312).
However, the generating functional (6.83) cannot be rewritten with respect
to the original variables pµi , unless a is a nondegenerate matrix function.

In order to overcome this difficulty, let us consider a Lagrangian system
on the whole Legendre manifold Π with the Lagrangian LΠ (5.319). Since
this Lagrangian is constant along the fibres of the vector bundle Π→ NL,
an integration of the generating functional of this field model with respect to
variables pa(x) should be finite. One can choose the generating functional
in the form [Bashkirov and Sardanashvily (2004)]

Z = N−1

∫
exp{

∫
(LΠ −

1
2
σ1
ij
αµp

α
i p

µ
j (6.85)

+
1
2

Tr(lnσ) + iJiy
i + iJ iµp

µ
i )ω}

∏
x

[dp(x)][dy(x)].

Its integration with respect to momenta pαi (x) restarts the generating func-
tional (6.84) of the original Lagrangian system on Y . In order to get the
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generating functional (6.85), one can follow a procedure of quantization
of gauge–invariant Lagrangian systems. In the case of the Lagrangian LΠ

(5.319), this procedure is rather trivial, since the space of momenta vari-
ables pa(x) coincides with the translation subgroup of the gauge group
Aut Kerσ0.

Now let us suppose that the Lagrangian LN (5.316) and, consequently,
the Lagrangian LΠ (5.319) are invariant under some gauge group GX of
vertical automorphisms of the fibre bundle Y → X (and the induced au-
tomorphisms of Π → X) which acts freely on the space of sections of
Y → X. Its infinitesimal generators are represented by vertical vector–
fields u = ui(xµ, yj)∂i on Y → X which induce the vector–fields

u = ui∂i − ∂juipαi ∂jα + dαu
i∂αi , dα = ∂α + yiα∂i, (6.86)

on Π× J1(X,Y ). Let us also assume that GX is indexed by m parameter
functions ξr(x) such that u = ui(xα, yj , ξr)∂i, where

ui(xα, yj , ξr) = uir(x
α, yj)ξr + uiµr (xα, yj)∂µξr (6.87)

are linear first–order differential operators on the space of parameters ξr(x).
The vector–fields u(ξr) must satisfy the commutation relations

[u(ξq), u(ξ′p)] = u(crpqξ
′pξq),

where crpq are structure constants. The Lagrangian LΠ (5.319) is invariant
under the above gauge transformations iff its Lie derivative LuLΠ along
vector–fields (6.86) vanishes, i.e.,

(ui∂i − ∂juipαi ∂jα + dαu
i∂αi )LΠ = 0. (6.88)

Since the operator Lu is linear in momenta pµi , the condition (6.88) falls
into the independent conditions

(uk∂k − ∂jukpνk∂jν + dνu
j∂νj )(pαi F iα) = 0, (6.89)

(uk∂k − ∂jukpνk∂jν)(σ0
ij
λµp

α
i p

µ
j ) = 0, (6.90)

ui∂ic
′ = 0. (6.91)

It follows that the Lagrangian LΠ is gauge–invariant iff its three summands
are separately gauge–invariant.

Note that, if the Lagrangian LΠ on Π is gauge–invariant, the original
Lagrangian L (5.312) is also invariant under the same gauge transforma-
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tions. Indeed, one gets at once from the condition (6.89) that

u(F iµ) = ∂ju
iFjµ, (6.92)

i.e., the quantity F is transformed as the dual of momenta p. Then the
condition (6.90) shows that the quantity σ0p is transformed by the same
law as F . It follows that the term aFF in the Lagrangian L (5.312) is
transformed exactly as a(σ0p)(σ0p) = σ0pp, i.e., is gauge–invariant. Then
this Lagrangian is gauge–invariant due to the equality (6.91).

Since Siα = yiα − F iα, one can derive from the formula (6.92) the trans-
formation law of S,

u(Siµ) = dµu
i − ∂juiFjµ = dµu

i − ∂jui(yjµ − Sjµ) = ∂µu
i + ∂ju

iSjµ. (6.93)

This expression shows that the gauge group GX acts freely on the space
of sections S(x) of the fibre bundle Ker L̂ → Y in the splitting (5.309).
Let the number m of parameters of the gauge group GX do not exceed the
fibre dimension of Ker L̂ → Y . Then some combinations brµi Siµ of Siµ can
be used as the gauge condition

brµi S
i
µ(x)− αr(x) = 0,

similar to the generalized Lorentz gauge in Yang–Mills gauge theory .
Now we turn to path–integral quantization of a Lagrangian system

with the gauge–invariant Lagrangian LΠ (5.319). In accordance with the
well–known quantization procedure, let us modify the generating functional
(6.85) as follows [Bashkirov and Sardanashvily (2004)]

Z = N−1

∫
exp{

∫
(LΠ −

1
2
σ1
ij
αµp

α
i p

µ
j

+
1
2

Tr(lnσ)− 1
2
hrsα

rαs + iJiy
i + iJ iµp

µ
i )ω} (6.94)

∆
∏
x

×rδ(brµi S
i
µ(x)− αr(x))[dα(x)][dp(x)][dy(x)]

= N ′−1

∫
exp{

∫
(LΠ −

1
2
σ1
ij
αµp

α
i p

µ
j +

1
2

Tr(lnσ)

−1
2
hrsb

rµ
i b
sα
j SiµSjα + iJiy

i + iJ iµp
µ
i )ω}∆

∏
x

[dp(x)][dy(x)],

where
∫

exp{
∫

(−1
2
hrsα

rαs)ω}
∏
x

[dα(x)]
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is a Gaussian integral, while the factor ∆ is defined by the condition

∆
∫ ∏

x

×rδ(u(ξ)(brµi S
i
µ))[dξ(x)] = 1.

We have the linear second–order differential operator

Mr
s ξ
s = u(ξ)(brµi S

i
µ(x)) = brµi (∂µui(ξ) + ∂ju

i(ξ)Sjµ) (6.95)

on the parameter functions ξ(x), and get ∆ = detM . Then the generating
functional (6.95) takes the form

Z = N ′−1

∫
exp{

∫
(LΠ −

1
2
σ1
ij
αµp

α
i p

µ
j +

1
2

Tr lnσ − 1
2
hrsb

rµ
i b
sα
j SiµSjα

− crMr
s c
s + iJiy

i + iJ iµp
µ
i )ω}

∏
x

[dc][dc][dp(x)][dy(x)], (6.96)

where cr, cs are odd ghost fields. Integrating Z (6.96) with respect to
momenta under the condition J iµ = 0, we come to the generating functional

Z = N ′−1

∫
exp{

∫
(L−1

2
hrsb

rµ
i b
sα
j SiµSjα−crMr

s c
s+iJiyi)ω}

∏
x

[dc][dc][dy(x)]

(6.97)
of the original field model on Y with the gauge–invariant Lagrangian L

(5.312).
Note that the Lagrangian

L′ = L − 1
2
hrsb

rµ
i b
sα
j SiµSjα − crMr

s c
s (6.98)

fails to be gauge–invariant, but it admits the so–called BRST symmetry10

whose odd operator reads

ϑ = ui(xµ, yi, cs)∂i + dαu
i(xµ, yi, cs)∂αi + vr(xµ, yi, yiµ)

∂

∂cr
(6.99)

+ vr(xµ, yi, cs)
∂

∂cr
+ dαv

r(xµ, yi, cs)
∂

∂crα
+ dµdαv

r(xµ, yi, cs)
∂

∂crµλ
,

dα = ∂α + yiα∂i + yiλµ∂
µ
i + crα

∂

∂cr
+ crλµ

∂

∂crµ
.

10Recall that the BRST formalism is a method of implementing first class constraints.

The letters BRST stand for Becchi, Rouet, Stora, and (independently) Tyutin who
discovered this formalism. It is a rigorous method to deal with quantum theories with
gauge invariance.
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Its components ui(xµ, yi, cs) are given by the expression (6.87) where pa-
rameter functions ξr(x) are replaced with the ghosts cr. The components
vr and vr of the BRST operator ϑ can be derived from the condition

ϑ(L′) = −hrsMr
q b
sα
j Sjαcq − vrMr

q c
q + crϑ(ϑ(brαj Sjα)) = 0

of the BRST invariance of L′. This condition falls into the two independent
relations

hrsM
r
q b
sα
j Sjα + vrM

r
q = 0,

ϑ(cq)(ϑ(cp)(brαj Sjα)) = u(cp)(u(cq)(brαj Sjα)) + u(vr)(brαj Sjα)

= u(
1
2
crpqc

pcq + vr)(brαj Sjα) = 0.

Hence, we get: vr = −hrsbsαj Sjα, and vr = − 1
2c
r
pqc

pcq.

6.4 Sum over Geometries and Topologies

Recall that the term quantum gravity (or quantum geometrodynamics, or
quantum geometry), is usually understood as a consistent fundamental
quantum description of gravitational space–time geometry whose classi-
cal limit is Einstein’s general relativity. Among the possible ramifica-
tions of such a theory are a model for the structure of space–time near
the Planck scale, a consistent calculational scheme to calculate gravita-
tional effects at all energies, a description of quantum geometry near
space–time singularities and a non–perturbative quantum description of
4D black holes. It might also help us in understanding cosmological
issues about the beginning and end of the universe, i.e., the so–called
‘big bang’ and ‘big crunch’ (see e.g., [Penrose (1989); Penrose (1994);
Penrose (1997)]).

From what we know about the quantum dynamics of other fundamental
interactions it seems eminently plausible that also the gravitational exci-
tations should at very short scales be governed by quantum laws. Now,
conventional perturbative path integral expansions of gravity, as well as per-
turbative expansion in the string coupling in the case of unified approaches,
both have difficulty in finding any direct or indirect evidence for quantum
gravitational effects, be they experimental or observational, which could
give a feedback for model building. The outstanding problems mentioned
above require a non–perturbative treatment; it is not sufficient to know the
first few terms of a perturbation series. The real goal is to search for a
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non–perturbative definition of such a theory, where the initial input of any
fixed ‘background metric’ is inessential (or even undesirable), and where
‘space–time’ is determined dynamically. Whether or not such an approach
necessarily requires the inclusion of higher dimensions and fundamental su-
persymmetry is currently unknown (see [Ambjørn and Kristjansen (1993);
Ambjørn and Loll (1998); Ambjørn et. al. (2000a); Ambjørn et. al. (2000b);
Ambjørn et. al. (2001a); Ambjørn et. al. (2001b); Ambjørn et. al. (2001c);
Dasgupta and Loll (2001)]).

Such a non–perturbative viewpoint is very much in line with how
one proceeds in classical geometrodynamics, where a metric space–time
(M, gµν) (+ matter) emerges only as a solution to the familiar Einstein
equation

Gµν [g] ≡ Rµν [g]− 1
2
gµνR[g] = −8πTµν [Φ], (6.100)

which define the classical dynamics of fields Φ = Φµν on the space M(M),
the space of all metrics g = gµν on a given smooth manifold M . The
analogous question we want to address in the quantum theory is: Can
we get ‘quantum space–time’ as a solution to a set of non–perturbative
quantum equations of motion on a suitable quantum analogue ofM(M) or
rather, of the space of geometries, Geom(M) =M(M)/Diff(M)?

Now, this is not a completely straightforward task. Whichever way
we want to proceed non–perturbatively, if we give up the privileged role
of a flat, Minkowskian background space–time on which the quantization
is to take place, we also have to abandon the central role usually played
by the Poincaré group, and with it most standard quantum field–theoretic
tools for regularization and renormalization. If one works in a continuum
metric formulation of gravity, the symmetry group of the Einstein–Hilbert
action is instead the group Diff(M) of diffeomorphisms on M , which in
terms of local charts are the smooth invertible coordinate transformations
xµ 7→ yµ(xµ).

In the following, we will describe a non–perturbative path integral ap-
proach to quantum gravity, defined on the space of all geometries, without
distinguishing any background metric structure [Loll (2001)]. This is closely
related in spirit with the canonical approach of loop quantum gravity [Rov-
elli (1998)] and its more recent incarnations using so–called spin networks
(see, e.g., [Oriti (2001)]). ‘Non–perturbative’ here means in a covariant
context that the path sum or integral will have to be performed explic-
itly, and not just evaluated around its stationary points, which can only be
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achieved in an appropriate regularization. The method we will employ uses
a discrete lattice regularization as an intermediate step in the construction
of the quantum theory.

6.4.1 Simplicial Quantum Geometry

In this section we will explain how one may construct a theory of quan-
tum gravity from a non–perturbative path integral, using the method of
Lorentzian dynamical triangulations. The method is minimal in the sense
of employing standard tools from quantum field theory and the theory of
critical phenomena and adapting them to the case of generally covariant
systems, without invoking any symmetries beyond those of the classical the-
ory. At an intermediate stage of the construction, we use a regularization
in terms of simplicial Regge geometries, that is, piecewise linear manifolds.
In this approach, ‘computing the path integral’ amounts to a conceptually
simple and geometrically transparent ‘counting of geometries’, with addi-
tional weight factors which are determined by the EH action. This is done
first of all at a regularized level. Subsequently, one searches for interesting
continuum limits of these discrete models which are possible candidates for
theories of quantum gravity, a step that will always involve a renormaliza-
tion. From the point of view of statistical mechanics, one may think of
Lorentzian dynamical triangulations as a new class of statistical models of
Lorentzian random surfaces in various dimensions, whose building blocks
are flat simplices which carry a ‘time arrow’, and whose dynamics is entirely
governed by their intrinsic geometric properties.

Before describing the details of the construction, it may be helpful to
recall the path integral representation for a 1D non–relativistic particle (see
previous section). The time evolution of the particle’s wave function ψ may
be described by the integral equation (6.3) above, where the propagator,
or the Feynman kernel G, is defined through a limiting procedure (6.4).
The time interval t′′ − t′ has been discretized into N steps of length ε =
(t′′ − t′)/N , and the r.h.s. of (6.4) represents an integral over all piecewise
linear paths x(t) of a ‘virtual’ particle propagating from x′ to x′′, illustrated
in Figure 6.4 above.

The prefactor A−N is a normalization and L denotes the Lagrangian
function of the particle. Knowing the propagator G is tantamount to having
solved the quantum dynamics. This is the simplest instance of a path
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Fig. 6.7 The time–honored way of illustrating the gravitational path integral as the
propagator from an initial to a final spatial boundary geometry (see text for explanation).

integral, and is often written schematically as

G(x′, t′;x′′, t′′) =
∫
Σ,D[x(t)] eiS[x(t)], (6.101)

where D[x(t)] is a functional measure on the ‘space of all paths’, and the
exponential weight depends on the classical action S[x(t)] of a path. Recall
also that this procedure can be defined in a mathematically clean way if
we Wick–rotate the time variable t to imaginary values t 7→ τ = it, thereby
making all integrals real [Reed and Simon (1975)].

Can a similar strategy work for the case of Einstein geometrodynamics?
As an analogue of the particle’s position we can take the geometry [gij(x)]
(i.e., an equivalence class of spatial metrics) of a constant–time slice. Can
one then define a gravitational propagator

G([g′ij ], [g
′′
ij ]) =
∫
Σ Geom(M)D[gµν ] eiSEH[gµν ] (6.102)

from an initial geometry [g′] to a final geometry [g′′] (Figure 6.7) as a
limit of some discrete construction analogous to that of the non-relativistic
particle (6.4)? And crucially, what would be a suitable class of ‘paths’, that
is, space–times [gµν ] to sum over?

Now, to be able to perform the integration
∫
ΣD[gµν ] in a meaningful

way, the strategy we will be following starts from a regularized version of
the space Geom(M) of all geometries. A regularized path integral G(a) can
be defined which depends on an ultraviolet cutoff a and is convergent in a
non–trivial region of the space of coupling constants. Taking the continuum
limit corresponds to letting a → 0. The resulting continuum theory – if it
can be shown to exist – is then investigated with regard to its geometric
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properties and in particular its semiclassical limit.

6.4.2 Discrete Gravitational Path Integrals

Trying to construct non–perturbative path integrals for gravity from sums
over discretized geometries, using approach of Lorentzian dynamical tri-
angulations, is not a new idea. Inspired by the successes of lattice gauge
theory, attempts to describe quantum gravity by similar methods have been
popular on and off since the late 70’s. Initially the emphasis was on gauge–
theoretic, first–order formulations of gravity, usually based on (compacti-
fied versions of) the Lorentz group, followed in the 80’s by ‘quantum Regge
calculus’, an attempt to represent the gravitational path integral as an in-
tegral over certain piecewise linear geometries (see [Williams (1997)] and
references therein), which had first made an appearance in approximate
descriptions of classical solutions of the Einstein equations. A variant of
this approach by the name of ‘dynamical triangulation(s)’ attracted a lot
of interest during the 90’s, partly because it had proved a powerful tool in
describing 2D quantum gravity (see the textbook [Ambjørn et. al. (1997)]
and lecture notes [Ambjørn et. al. (2000a)] for more details).

The problem is that none of these attempts have so far come up with
convincing evidence for the existence of an underlying continuum theory
of 4D quantum gravity. This conclusion is drawn largely on the basis of
numerical simulations, so it is by no means water–tight, although one can
make an argument that the ‘symptoms’ of failure are related in the vari-
ous approaches [Loll (1998)]. What goes wrong generically seems to be a
dominance in the continuum limit of highly degenerate geometries, whose
precise form depends on the approach chosen. One would expect that non–
smooth geometries play a decisive role, in the same way as it can be shown
in the particle case that the support of the measure in the continuum limit
is on a set of nowhere differentiable paths. However, what seems to happen
in the case of the path integral for 4–geometries is that the structures get
are too wild, in the sense of not generating, even at coarse–grained scales,
an effective geometry whose dimension is anywhere near four.

The schematic phase diagram of Euclidean dynamical triangulations
shown in Figure 6.8 gives an example of what can happen. The picture
turns out to be essentially the same in both three and four dimensions: the
model possesses infinite-volume limits everywhere along the critical line
kcrit
3 (k0), which fixes the bare cosmological constant as a function of the

inverse Newton constant k0 ∼ G−1
N . Along this line, there is a critical point
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kcrit
0 (which we now know to be of first–order in d = 3, 4) below which

geometries generically have a very large effective or Hausdorff dimension.11

Above kcrit
0 we find the opposite phenomenon of ‘polymerization’: a typical

element contributing to the state sum is a thin branched polymer, with one
or more dimensions ‘curled up’ such that its effective dimension is around
two.

Fig. 6.8 The phase diagram of 3D and 4D Euclidean dynamical triangulations (see text

for explanation).

This problem has to do with the fact that the gravitational action is
unbounded below, causing potential havoc in Euclidean versions of the
path integral. Namely, what all the above-mentioned approaches have in
common is that they work from the outset with Euclidean geometries, and
associated Boltzmann-type weights exp(-Seu) in the path integral. In other
words, they integrate over ‘space–times’ which know nothing about time,
light cones and causality. This is done mainly for technical reasons, since
it is difficult to set up simulations with complex weights and since until
recently a suitable Wick rotation was not known.

‘Lorentzian dynamical triangulations’, first proposed in [Ambjørn and
Loll (1998)] and further elaborated in [Ambjørn et. al. (2000b); Ambjørn
et. al. (2001a)] tries to establish a logical connection between the fact that
non–perturbative path integrals were constructed for Euclidean instead of
Lorentzian geometries and their apparent failure to lead to an interesting
continuum theory.

11In terms of geometry, this means that there are a few vertices at which the entire
space–time ‘condenses’ in the sense that almost every other vertex in the simplicial
space–time is about one link-distance away from them.
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Fig. 6.9 Positive (a) and negative (b) space–like deficit angles δ (adapted from [Loll

(2001); Loll (1998)]).

6.4.3 Regge Calculus

The use of simplicial methods in general relativity goes back to the pio-
neering work of Regge [Regge (1961)]. In classical applications one tries to
approximate a classical space–time geometry by a triangulation, that is, a
piecewise linear space get by gluing together flat simplicial building blocks,
which in dimension d are dD generalizations of triangles. By ‘flat’ we mean
that they are isometric to a subspace of dD Euclidean or Minkowski space.
We will only be interested in gluings leading to genuine manifolds, which
therefore look locally like an Rd. A nice feature of such simplicial manifolds
is that their geometric properties are completely described by the discrete
set {l2i } of the squared lengths of their edges. Note that this amounts to
a description of geometry without the use of coordinates. There is nothing
to prevent us from re–introducing coordinate patches covering the piece-
wise linear manifold, for example, on each individual simplex, with suitable
transition functions between patches. In such a coordinate system the met-
ric tensor will then assume a definite form. However, for the purposes of
formulating the path integral we will not be interested in doing this, but
rather work with the edge lengths, which constitute a direct, regularized
parametrization of the space Geom(M) of geometries.

How precisely is the intrinsic geometry of a simplicial space, most im-
portantly, its curvature, encoded in its edge lengths? A useful example to
keep in mind is the case of dimension two, which can easily be visualized.
A 2D piecewise linear space is a triangulation, and its scalar curvature
R(x) coincides with the Gaussian curvature (see section 3.10.1.3 above).
One way of measuring this curvature is by parallel–transporting a vector
around closed curves in the manifold. In our piecewise–flat manifold such a
vector will always return to its original orientation unless it has surrounded
lattice vertices v at which the surrounding angles did not add up to 2π, but
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∑
i⊃v αi = 2π− δ, for δ 6= 0, see Figure 6.9. The so–called deficit angle δ is

precisely the rotation angle picked up by the vector and is a direct measure
for the scalar curvature at the vertex. The operational description to get
the scalar curvature in higher dimensions is very similar, one basically has
to sum in each point over the Gaussian curvatures of all 2D submanifolds.
This explains why in Regge calculus the curvature part of the EH action
is given by a sum over building blocks of dimension (d − 2) which are the
objects dual to those local 2D submanifolds. More precisely, the continuum
curvature and volume terms of the action become

1
2

∫
R
ddx

√
|det g|(d)R −→

∑
i∈R

Vol(ith (d− 2)−simplex) δi (6.103)∫
R
ddx

√
|det g| −→

∑
i∈R

Vol(ith d−simplex) (6.104)

in the simplicial discretization. It is then a simple exercise in trigonometry
to express the volumes and angles appearing in these formulas as functions
of the edge lengths li, both in the Euclidean and the Minkowskian case.

The approach of dynamical triangulations uses a certain class of such
simplicial space–times as an explicit, regularized realization of the space
Geom(M). For a given volume Nd, this class consists of all gluings of
manifold–type of a set of Nd simplicial building blocks of top–dimension d

whose edge lengths are restricted to take either one or one out of two values.
In the Euclidean case we set l2i = a2 for all i, and in the Lorentzian case
we allow for both space- and time–like links with l2i ∈ {−a2, a2}, where the
geodesic distance a serves as a short-distance cutoff, which will be taken
to zero later. Coming from the classical theory this may seem a grave re-
striction at first, but this is indeed not the case. Firstly, keep in mind that
for the purposes of the quantum theory we want to sample the space of
geometries ‘ergodically’ at a coarse-grained scale of order a. This should
be contrasted with the classical theory where the objective is usually to ap-
proximate a given, fixed space–time to within a length scale a. In the latter
case one typically requires a much finer topology on the space of metrics or
geometries. It is also straightforward to see that no local curvature degrees
of freedom are suppressed by fixing the edge lengths; deficit angles in all
directions are still present, although they take on only a discretized set of
values. In this sense, in dynamical triangulations all geometry is in the
gluing of the fundamental building blocks. This is dual to how quantum
Regge calculus is set up, where one usually fixes a triangulation T and then
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‘scans’ the space of geometries by letting the li’s run continuously over all
values compatible with the triangular inequalities.

In a nutshell, Lorentzian dynamical triangulations give a definite mean-
ing to the ‘integral over geometries’, namely, as a sum over inequivalent
Lorentzian gluings T over any number Nd of d−simplices,∫

Σ Geom(M)D[gµν ] eiS[gµν ] LDT−→
∑
T∈T

1
CT

eiSReg(T ), (6.105)

where the symmetry factor CT = |Aut(T )| on the r.h.s. is the order of
the automorphism group of the triangulation, consisting of all maps of T
onto itself which preserve the connectivity of the simplicial lattice. We will
specify below what precise class T of triangulations should appear in the
summation.

It follows from the above that in this formulation all curvatures and
volumes contributing to the Regge simplicial action come in discrete units.
This can be illustrated by the case of a 2D triangulation with Euclidean
signature, which according to the prescription of dynamical triangulations
consists of equilateral triangles with squared edge lengths +a2. All interior
angles of such a triangle are equal to π/3, which implies that the deficit
angle at any vertex v can take the values 2π − kvπ/3, where kv is the
number of triangles meeting at v. As a consequence, the Einstein–Regge
action SReg assumes the simple form

SReg(T ) = κd−2Nd−2 − κdNd, (6.106)

where the coupling constants κi = κi(λ,GN ) are simple functions of the
bare cosmological and Newton constants in d dimensions. Substituting this
into the path sum in (6.105) leads to

Z(κd−2, κd) =
∑
Nd

e−iκdNd
∑
Nd−2

eiκd−2Nd−2
∑

T |Nd,Nd−2

1
CT

, (6.107)

The point of taking separate sums over the numbers of d− and (d −
2)−simplices in (6.107) is to make explicit that ‘doing the sum’ is tan-
tamount to the combinatorial problem of counting triangulations of a given
volume and number of simplices of codimension 2 (corresponding to the
last summation in (6.107)).12 It turns out that at least in two space–time
dimensions the counting of geometries can be done completely explicitly,

12The symmetry factor CT is almost always equal to 1 for large triangulations.
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Fig. 6.10 Two types of Minkowskian 4–simplices in 4D (see text for explanation).

turning both Lorentzian and Euclidean quantum gravity into exactly solu-
ble statistical models.

6.4.4 Lorentzian Path Integral

Now, the simplicial building blocks of the models are taken to be pieces
of Minkowski space, and their edges have squared lengths +a2 or -a2. For
example, the two types of 4–simplices that are used in Lorentzian dynamical
triangulations in dimension four are shown in Figure 6.10. The first of them
has four time–like and six space–like links (and therefore contains 4 time–
like and 1 space–like tetrahedron), whereas the second one has six time–like
and four space–like links (and contains 5 time–like tetrahedra). Since both
are subspaces of flat space with signature (− + ++), they possess well–
defined light–cone structures everywhere [Loll (2001); Loll (1998)].

In general, gluings between pairs of d−simplices are only possible when
the metric properties of their (d−1)−faces match. Having local light cones
implies causal relations between pairs of points in local neighborhoods.
Creating closed time–like curves will be avoided by requiring that all space–
times contributing to the path sum possess a global ‘time’ function t. In
terms of the triangulation this means that the d−simplices are arranged
such that their space–like links all lie in slices of constant integer t, and
their time–like links interpolate between adjacent spatial slices t and t +
1. Moreover, with respect to this time, we will not allow for any spatial
topology changes13.

This latter condition is always satisfied in classical applications, where
‘trouser points’ like the one depicted in Figure 6.11 are ruled out by the
requirement of having a non–degenerate Lorentzian metric defined every-
where on M (it is geometrically obvious that the light cone and hence gµν
must degenerate in at least one point along the ‘crotch’). Another way of
thinking about such configurations (and their time–reversed counterparts)

13Note that if we were in the continuum and had introduced coordinates on space–time,
such a statement would actually be diffeomorphism–invariant.
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Fig. 6.11 At a branching point associated with a spatial topology change, light–cones
get ‘squeezed’.

is that the causal past (future) of an observer changes discontinuously as
her world–line passes near the singular point (see [Dowker (2002)] and ref-
erences therein for related discussions about the issue of topology change
in quantum gravity).

There is no a priori reason in the quantum theory to not relax some
of these classical causality constraints. After all, as we stressed right at
the outset, path integral histories are not in general classical solutions, nor
can we attribute any other direct physical meaning to them individually.
It might well be that one can construct models whose path integral con-
figurations violate causality in this strict sense, but where this notion is
somehow recovered in the resulting continuum theory. What the approach
of Lorentzian dynamical triangulations has demonstrated is that imposing
causality constraints will in general lead to a different continuum theory.
This is in contrast with the intuition one may have that ‘including a few
isolated singular points will not make any difference’. On the contrary,
tampering with causality in this way is not innocent at all, as was already
anticipated by Teitelboim many years ago [Teitelboim (1983)].

We want to point out that one cannot conclude from the above that spa-
tial topology changes or even fluctuations in the space–time topology cannot
be treated in the formulation of dynamical triangulations. However, if one
insists on including geometries of variable topology in a Lorentzian discrete
context, one has to come up with a prescription of how to weigh these sin-
gular points in the path integral, both before and after the Wick rotation
[Dasgupta (2002)]. Maybe this can be done along the lines suggested in
[Louko and Sorkin (1997)]; this is clearly an interesting issue for further
research.

Having said this, we next have to address the question of the Wick
rotation, in other words, of how to get rid of the factor of i in the exponent of
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(6.107). Without it, this expression is an infinite sum (since the volume can
become arbitrarily large) of complex terms whose convergence properties
will be very difficult to establish. In this situation, a Wick rotation is simply
a technical tool which – in the best of all worlds – enables us to perform
the state sum and determine its continuum limit. The end result will have
to be Wick–rotated back to Lorentzian signature.

Fortunately, Lorentzian dynamical triangulations come with a natural
notion of Wick rotation, and the strategy we just outlined can be carried
out explicitly in two space–time dimensions, leading to a unitary theory.
In higher dimensions we do not yet have sufficient analytical control of the
continuum theories to make specific statements about the inverse Wick
rotation. Since we use the Wick rotation at an intermediate step, one can
ask whether other Wick rotations would lead to the same result. Currently
this is a somewhat academic question, since it is in practice difficult to find
such alternatives. In fact, it is quite miraculous we have found a single
prescription for Wick–rotating in our regularized setting, and it does not
seem to have a direct continuum analogue (for more comments on this issue,
see [Dasgupta and Loll (2001); Dasgupta (2002)]).

Our Wick rotation W in any dimension is an injective map from
Lorentzian– to Euclidean–signature simplicial space–times. Using the no-
tation T for a simplicial manifold together with length assignments l2s and
l2t to its space– and time–like links, it is defined by

Tlor = (T, {l2s = a2, l2t = −a2}) W7−→ Teu = (T, {l2s = a2, l2t = a2}).
(6.108)

Note that we have not touched the connectivity of the simplicial manifold
T , but only its metric properties, by mapping all time–like links of T into
space–like ones, resulting in a Euclidean ‘space–time’ of equilateral building
blocks. It can be shown [Ambjørn et. al. (2001a)] that at the level of the
corresponding weight factors in the path integral this Wick rotation14 has
precisely the desired effect of rotating to the exponentiated Regge action of
the ‘Euclideanized’ geometry,

eiS(T lor) W7−→ e−S(T eu). (6.109)

14To get a genuine Wick rotation and not just a discrete map, one introduces a complex
parameter α in l2t = −αa2. The proper prescription leading to (6.109) is then an analytic

continuation of α from 1 to -1 through the lower–half complex plane.
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The Euclideanized path sum after the Wick rotation has the form

Zeu(κd−2, κd) =
∑
T

1
CT

e−κdNd(T )+κd−2Nd−2(T )

=
∑
Nd

e−κdNd
∑
T |Nd

1
CT

eκd−2Nd−2(T )

=
∑
Nd

e−κdNd eκ
crit
d (κd−2)Nd × subleading(Nd). (6.110)

In the last equality we have used that the number of Lorentzian triangula-
tions of discrete volume Nd to leading order scales exponentially with Nd for
large volumes. This can be shown explicitly in space–time dimension 2 and
3. For d = 4, there is strong (numerical) evidence for such an exponential
bound for Euclidean triangulations, from which the desired result for the
Lorentzian case follows (since W maps to a strict subset of all Euclidean
simplicial manifolds).

From the functional form of the last line of (6.110) one can immediately
read off some qualitative features of the phase diagram, an example of which
appeared already earlier in Figure 6.8. Namely, the sum over geometries
Zeu converges for values κd > κcrit

d of the bare cosmological constant, and
diverges (ie. is not defined) below this critical line. Generically, for all
models of dynamical triangulations the infinite–volume limit is attained by
approaching the critical line κcrit

d (κd−2) from above, ie. from inside the
region of convergence of Zeu. In the process of taking Nd → ∞ and the
cutoff a→ 0, one gets a renormalized cosmological constant Λ through

(κd − κcrit
d ) = aµΛ +O(aµ+1). (6.111)

If the scaling is canonical (which means that the dimensionality of the renor-
malized coupling constant is the one expected from the classical theory),
the exponent is given by µ = d. Note that this construction requires a pos-
itive bare cosmological constant in order to make the state sum converge.
Moreover, by virtue of relation (6.111) also the renormalized cosmological
constant must be positive. Other than that, its numerical value is not deter-
mined by this argument, but by comparing observables of the theory which
depend on Λ with actual physical measurements.15 Another interesting
observation is that the inclusion of a sum over topologies in the discretized

15The non–negativity of the renormalized cosmological coupling may be taken as a
first ‘prediction’ of our construction, which in the physical case of four dimensions is
indeed in agreement with current observations.
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sum (6.110) would lead to a super–exponential growth of at least ∝ Nd! of
the number of triangulations with the volume Nd. Such a divergence of the
path integral cannot be compensated by an additive renormalization of the
cosmological constant of the kind outlined above.

There are ways in which one can sum divergent series of this type, for
example, by performing a Borel sum. The problem with these stems from
the fact that two different functions can share the same asymptotic expan-
sion. Therefore, the series in itself is not sufficient to define the underlying
theory uniquely. The non–uniqueness arises because of non–perturbative
contributions to the path integral which are not represented in the pertur-
bative expansion.16 In order to fix these uniquely, an independent, non–
perturbative definition of the theory is necessary. Unfortunately, for dy-
namically triangulated models of quantum gravity, no such definitions have
been found so far. In the context of 2D (Euclidean) quantum gravity this
difficulty is known as the ‘absence of a physically motivated double-scaling
limit’ [Ambjørn and Kristjansen (1993)].

Lastly, getting an interesting continuum limit may or may not require an
additional fine–tuning of the inverse gravitational coupling κd−2, depending
on the dimension d. In four dimensions, one would expect to find a second-
order transition along the critical line, corresponding to local gravitonic
excitations. The situation in d = 3 is less clear, but results get so far
indicate that no fine–tuning of Newton’s constant is necessary [Ambjørn
et. al. (2001b); Ambjørn et. al. (2001c)].

Before delving into the details, let us summarize briefly the results that
have been get so far in the approach of Lorentzian dynamical triangulations.
At the regularized level, that is, in the presence of a finite cutoff a for the
edge lengths and an infrared cutoff for large space–time volume, they are
well–defined statistical models of Lorentzian random geometries in d =
2, 3, 4. In particular, they obey a suitable notion of reflection-positivity
and possess self–adjoint Hamiltonians.

The crucial questions are then to what extent the underlying combina-
torial problems of counting all dD geometries with certain causal properties
can be solved, whether continuum theories with non–trivial dynamics ex-
ist and how their bare coupling constants get renormalized in the process.
What we know about Lorentzian dynamical triangulations so far is that
they lead to continuum theories of quantum gravity in dimension 2 and 3.
In d = 2, there is a complete analytic solution, which is distinct from the

16A field–theoretic example would be instantons and renormalons in QCD.
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continuum theory produced by Euclidean dynamical triangulations. Also
the matter–coupled model has been studied. In d = 3, there are numerical
and partial analytical results which show that both a continuum theory
exists and that it again differs from its Euclidean counterpart. Work on
a more complete analytic solution which would give details about the geo-
metric properties of the quantum theory is under way. In d = 4, the first
numerical simulations are currently being set up. The challenge here is to
do this for sufficiently large lattices, to be able to perform meaningful mea-
surements. So far, we cannot make any statements about the existence and
properties of a continuum theory in this physically most interesting case.

6.4.5 Application: Topological Phase Transitions and

Hamiltonian Chaos

6.4.5.1 Phase Transitions in Hamiltonian Systems

Recall that phase transitions (PTs) are phenomena which bring about qual-
itative physical changes at the macroscopic level in presence of the same
microscopic forces acting among the constituents of a system. Their math-
ematical description requires to translate into quantitative terms the men-
tioned qualitative changes. The standard way of doing this is to consider
how the values of thermodynamic observables, get in laboratory experi-
ments, vary with temperature, or volume, or an external field, and then
to associate the experimentally observed discontinuities at a PT to the ap-
pearance of some kind of singularity entailing a loss of analyticity. Despite
the smoothness of the statistical measures, after the Yang–Lee Theorem
[Yang and Lee (1952)] we know that in the N →∞ limit non–analytic be-
haviors of thermodynamic functions are possible whenever the analyticity
radius in the complex fugacity plane shrinks to zero, because this entails
the loss of uniform convergence in N (number of degrees of freedom) of
any sequence of real–valued thermodynamic functions, and all this depends
on the distribution of the zeros of the grand canonical partition function.
Also the other developments of the rigorous theory of PTs [Georgii (1988);
Ruelle (1978)], identify PTs with the loss of analyticity.

In this subsection we will address a recently proposed geometric ap-
proach to thermodynamic phase transitions (see [Caiani et al. (1997);
Franzosi et al. (1999); Franzosi et al. (2000); Franzosi and Pettini (2004)]).
Given any Hamiltonian system, the configuration space can be equipped
with a metric, in order to get a Riemannian geometrization of the dynam-
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ics. At the beginning, several numerical and analytical studies of a variety
of models showed that the fluctuation of the curvature becomes singular at
the transition point. Then the following conjecture was proposed in [Ca-
iani et al. (1997)]: The phase transition is determined by a change in the
topology of the configuration space, and the loss of analyticity in the ther-
modynamic observables is nothing but a consequence of such topological
change. The latter conjecture is also known as the topological hypothesis.

The topological hypothesis states that suitable topology changes of
equipotential submanifolds of the Hamiltonian system’s configuration man-
ifold can entail thermodynamic phase transitions [Franzosi et al. (2000)].
The authors of the topological hypothesis gave both a theoretical argument
and numerical demonstration in case of 2D lattice ϕ4 model. They con-
sidered classical many–particle (or many–subsystem) systems described by
standard mechanical Hamiltonians

H(p, q) =
N∑
i=1

p2
i

2m
+ V (q), (6.112)

where the coordinates qi = qi(t) and momenta pi = pi(t), (i = 1, ..., N),
have continuous values and the system’s potential energy V (q) is bounded
below.

Now, assuming a large number of subsystems N , the statistical behavior
of physical systems described by Hamiltonians of the type (6.112) is usually
encompassed, in the system’s canonical ensemble, by the partition function
in the system’s phase–space

ZN (β) =
∫ N∏

i=1

dpidq
ie−βH(p,q) =

(
π

β

)N
2
∫ N∏

i=1

dqie−βV (q)

=
(
π

β

)N
2
∫ ∞

0

dv e−βv
∫
Mv

dσ

‖∇V ‖
, (6.113)

where the last term is written using a co–area formula [Federer (1969)], and
v labels the equipotential hypersurfaces Mv of the system’s configuration
manifold M ,

Mv = {(q1, . . . , qN ) ∈ RN |V (q1, . . . , qN ) = v}. (6.114)

Equation (6.113) shows that for Hamiltonians (3.34) the relevant statistical
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information is contained in the canonical configurational partition function

ZCN =
∫ N∏

i=1

dqi exp[−βV (q)].

Therefore, partition function ZCN is decomposed – in the last term of
equation (6.113) – into an infinite summation of geometric integrals,∫
Mv

dσ /‖∇V ‖, defined on the {Mv}v∈R. Once the microscopic interaction
potential V (q) is given, the configuration space of the system is automati-
cally foliated into the family {Mv}v∈R of these equipotential hypersurfaces.
Now, from standard statistical mechanical arguments we know that, at
any given value of the inverse temperature β, the larger the number N
of particles the closer to Mv ≡ Muβ are the microstates that significantly
contribute to the averages – computed through ZN (β) – of thermodynamic
observables. The hypersurface Muβ is the one associated with the average
potential energy computed at a given β,

uβ = (ZCN )−1

∫ N∏
i=1

dqiV (q) exp[−βV (q)].

Thus, at any β, if N is very large the effective support of the canonical
measure shrinks very close to a single Mv = Muβ .

Explicitly, the topological hypothesis reads: the basic origin of a phase
transition lies in a suitable topology change of the {Mv}, occurring at some
vc. This topology change induces the singular behavior of the thermody-
namic observables at a phase transition. By change of topology we mean
that {Mv}v<vc are not diffeomorphic to the {Mv}v>vc . In other words,
canonical measure should ‘feel’ a big and sudden change of the topology of
the equipotential hypersurfaces of its underlying support, the consequence
being the appearance of the typical signals of a phase transition.

This point of view has the interesting consequence that – also at finite
N – in principle different mathematical objects, i.e., manifolds of different
cohomology type, could be associated to different thermodynamical phases,
whereas from the point of view of measure theory [Yang and Lee (1952)] the
only mathematical property available to signal the appearance of a phase
transition is the loss of analyticity of the grand–canonical and canonical
averages, a fact which is compatible with analytic statistical measures only
in the mathematical N →∞ limit.

As it is conjectured that the counterpart of a phase transition is a break-
ing of diffeomorphicity among the surfaces Mv, it is appropriate to choose
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a diffeomorphism invariant to probe if and how the topology of the Mv

changes as a function of v. This is a very challenging task because we have
to deal with high dimensional manifolds. Fortunately a topological invari-
ant exists whose computation is feasible, yet demands a big effort. Recall
(from subsection 3.10.1 above) that this is the Euler characteristic, a dif-
feomorphism invariant of the system’s configuration manifold, expressing
its fundamental topological information.

6.4.5.2 Geometry of the Largest Lyapunov Exponent

Now, the topological hypothesis has recently been promoted into a topo-
logical Theorem [Franzosi and Pettini (2004)]. The new Theorem says that
non–analyticity is the ‘shadow’ of a more fundamental phenomenon occur-
ring in the system’s configuration manifold: a topology change within the
family of equipotential hypersurfaces (6.114). This topological approach to
PTs stems from the numerical study of the Hamiltonian dynamical coun-
terpart of phase transitions, and precisely from the observation of discon-
tinuous or cuspy patterns, displayed by the largest Lyapunov exponent at
the transition energy (or temperature).

Recall that the Lyapunov exponents measure the strength of dynami-
cal chaos and cannot be measured in laboratory experiments, at variance
with thermodynamic observables, thus, being genuine dynamical observ-
ables they are only measurable in numerical simulations of the microscopic
dynamics. To get a hold of the reason why the largest Lyapunov exponent
λ1 should probe configuration space topology, let us first remember that for
standard Hamiltonian systems, λ1 is computed by solving the tangent dy-
namics equation for Hamiltonian systems (see Jacobi equation of geodesic
deviation (3.133)),

ξ̈i +
(

∂2V

∂qi∂qj

)
q(t)

ξj = 0, (6.115)

which, for the nonlinear Hamiltonian system

q̇1 = p1, ṗ1 = −∂q1V,
... ...

q̇N = pN , ṗN = −∂qNV,
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expands into linearized Hamiltonian dynamics

ξ̇1 = ξN+1, ξ̇N+1 = −
N∑
j=1

(
∂2V

∂q1∂qj

)
q(t)

ξj ,

... ... (6.116)

ξ̇n = ξ2N , ξ̇2N = −
N∑
j=1

(
∂2V

∂qN∂qj

)
q(t)

ξj .

Using (6.115) we can get the analytical expression for the largest Lya-
punov exponent

λ1 = lim
t→∞

1
t

log

[
ξ21(t) + · · ·+ ξ2N (t) + ξ̇

2

1(t) + · · ·+ ξ̇
2

N (t)
]1/2

[
ξ21(0) + · · ·+ ξ2N (0) + ξ̇

2

1(0) + · · ·+ ξ̇
2

N (0)
]1/2 . (6.117)

If there are critical points of V in configuration space, that is points
qc = [q1, . . . , qN ] such that ∇V (q)|q=qc = 0, according to the Morse lemma
(see e.g., [Hirsch (1976)]), in the neighborhood of any critical point qc there
always exists a coordinate system q̃(t) = [q1(t), . . . , qN (t)] for which

V (q̃) = V (qc)−
(
q1
)2 − · · · − (qk)2 +

(
qk+1

)2
+ · · ·+

(
qN
)2
, (6.118)

where k is the index of the critical point, i.e., the number of negative
eigenvalues of the Hessian of V . In the neighborhood of a critical point,
equation (6.118) yields

∂2V/∂qi∂qj = ±δij ,

which, substituted into equation (6.115), gives k unstable directions which
contribute to the exponential growth of the norm of the tangent vector
ξ = ξ(t). This means that the strength of dynamical chaos, measured by the
largest Lyapunov exponent λ1, is affected by the existence of critical points
of V . In particular, let us consider the possibility of a sudden variation,
with the potential energy v, of the number of critical points (or of their
indexes) in configuration space at some value vc, it is then reasonable to
expect that the pattern of λ1(v) – as well as that of λ1(E) since v = v(E)
– will be consequently affected, thus displaying jumps or cusps or other
singular patterns at vc.

On the other hand, recall that Morse theory teaches us that the ex-
istence of critical points of V is associated with topology changes of the
hypersurfaces {Mv}v∈R, provided that V is a good Morse function (that is:
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bounded below, with no vanishing eigenvalues of its Hessian matrix). Thus
the existence of critical points of the potential V makes possible a concep-
tual link between dynamics and configuration space topology, which, on the
basis of both direct and indirect evidence for a few particular models, has
been formulated as a topological hypothesis about the relevance of topology
for PTs phenomena (see [Franzosi et al. (2000); Franzosi and Pettini (2004);
Grinza and Mossa (2004)]).

Here we give two simple examples of standard Hamiltonian systems
of the form (6.112), namely Peyrard–Bishop system and mean–field XY

model.

Peyrard–Bishop Hamiltonian System

The Peyrard–Bishop system [Peyrard and Bishop (1989)]17 exhibits a
second–order phase transition. It is defined by the following potential en-
ergy

V (q) =
N∑
i=1

[
K

2
(qi+1 − qi)2 +D(e−aq

i

− 1)2 +Dhaqi
]
, (6.119)

which represents the energy of a string of N base pairs of reduced mass m.
Each hydrogen bond is characterized by the stretching qi and its conjugate
momentum pi = mq̇i. The elastic transverse force between neighboring
pairs is tuned by the constant K, while the energy D and the inverse
length a determine, respectively, the plateau and the narrowness of the on–
site potential well that mimics the interaction between bases in each pair. It
is understood that K, D, and a are all positive parameters. The transverse,
external stress h ≥ 0 is a computational tool useful in the evaluation of the
susceptibility. Our interest in it lies in the fact that a phase transition can
occur only when h = 0. We assume periodic boundary conditions.

The transfer operator technique [Dauxois et al. (2002)] maps the prob-
lem of computing the classical partition function into the easier task of
evaluating the lowest energy eigenvalues of a ‘quantum’ mechanical Morse
oscillator (no real quantum mechanics is involved, since the temperature
plays the role of ~). One can then observe that, as the temperature in-
creases, the number of levels belonging to the discrete spectrum decreases,
until for some critical temperature Tc = 2

√
2KD/(akB) only the continu-

ous spectrum survives. This passage from a localized ground state to an
17The Peyrard–Bishop system has been proposed as a simple model for describing the

DNA thermally induced denaturation [Grinza and Mossa (2004)].
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unnormalizable one corresponds to the second–order phase transition of the
statistical model. Various critical exponents can be analytically computed
and all applicable scaling laws can be checked. The simplicity of this model
permits an analytical computation of the largest Lyapunov exponent by
exploiting the geometric method proposed in [Caiani et al. (1997)].

Mean–Field XY Hamiltonian System

The mean–field XY model describes a system of N equally coupled planar
classical rotators (see [Antoni and Ruffo (1995); Casetti et al. (1999)]). It
is defined by a Hamiltonian of the class (6.112) where the potential energy
is

V (ϕ) =
J

2N

N∑
i,j=1

[
1− cos(ϕi − ϕj)

]
− h

N∑
i=1

cosϕi. (6.120)

Here ϕi ∈ [0, 2π] is the rotation angle of the ith rotator and h is an external
field. Defining at each site i a classical spin vector si = (cosϕi, sinϕi)
the model describes a planar (XY) Heisenberg system with interactions of
equal strength among all the spins. We consider only the ferromagnetic case
J > 0; for the sake of simplicity, we set J = 1. The equilibrium statistical
mechanics of this system is exactly described, in the thermodynamic limit,
by the mean–field theory [Antoni and Ruffo (1995)]. In the limit h→ 0, the
system has a continuous phase transition, with classical critical exponents,
at Tc = 1/2, or εc = 3/4, where ε = E/N is the energy per particle.

The Lyapunov exponent λ1 of this system is extremely sensitive to the
phase transition. According to reported numerical simulations (see [Casetti
et al. (1999)]), λ1(ε) is positive for 0 < ε < εc, shows a sharp maximum
immediately below the critical energy, and drops to zero at εc in the ther-
modynamic limit, where it remains zero in the whole region ε > εc, which
corresponds to the thermodynamic disordered phase. In fact in this phase
the system is integrable, reducing to an assembly of uncoupled rotators.

6.4.5.3 Euler Characteristics of Hamiltonian Systems

Recall that Euler characteristic χ is a number that is a characterization
of the various classes of geometric figures based only on the topological
relationship between the numbers of vertices V , edges E, and faces F , of a
geometric Figure. This number, χ = F −E + V, is the same for all figures
the boundaries of which are composed of the same number of connected
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pieces. Therefore, the Euler characteristic is a topological invariant , i.e.,
any two geometric figures that are homeomorphic to each other have the
same Euler characteristic.

More specifically, a standard way to analyze a geometric Figure is to
fragment it into other more familiar objects and then to examine how these
pieces fit together. Take for example a surface M in the Euclidean 3D space.
Slice M into pieces that are curved triangles (this is called a triangulation of
the surface). Then count the number F of faces of the triangles, the number
E of edges, and the number V of vertices on the tesselated surface. Now,
no matter how we triangulate a compact surface Σ, its Euler characteristic,
χ(Σ) = F − E + V , will always equal a constant which is characteristic of
the surface and which is invariant under diffeomorphisms φ : Σ→ Σ′.

At higher dimensions this can be again defined by using higher dimen-
sional generalizations of triangles (simplexes) and by defining the Euler
characteristic χ(M) of the nD manifold M to be the alternating sum:

{number of points} − {number of 2-simplices} +

{number of 3-simplices} − {number of 4-simplices} + ...

i.e., χ(M) =
n∑
k=0

(−1)k(number of faces of dimension k).

and then define the Euler characteristic of a manifold as the Euler charac-
teristic of any simplicial complex homeomorphic to it. With this definition,
circles and squares have Euler characteristic 0 and solid balls have Euler
characteristic 1.

The Euler characteristic χ of a manifold is closely related to its genus
g as χ = 2− 2g.18

Recall that a more standard topological definition of χ(M) is

χ(M) =
n∑
k=0

(−1)k bk(M), (6.121)

where bk are the kth Betti numbers of M .
18Recall that the genus of a topological space such as a surface is a topologically

invariant property defined as the largest number of nonintersecting simple closed curves

that can be drawn on the surface without separating it, i.e., an integer representing the
maximum number of cuts that can be made through it without rendering it disconnected.

This is roughly equivalent to the number of holes in it, or handles on it. For instance: a

point, line, and a sphere all have genus 0; a torus has genus 1, as does a coffee cup as a
solid object (solid torus), a Möbius strip, and the symbol 0; the symbols 8 and B have

genus 2; etc.
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In general, it would be hopeless to try to practically calculate χ(M)
from (6.121) in the case of non–trivial physical models at large dimension.
Fortunately, there is a possibility given by the Gauss–Bonnet formula, that
relates χ(M) with the total Gauss–Kronecker curvature of the manifold,
(compare with (3.126) and (3.135))

χ(M) = γ

∫
M

KG dσ, (6.122)

which is valid for even dimensional hypersurfaces of Euclidean spaces RN
[here dim(M) = n ≡ N − 1], and where:

γ = 2/Vol(Sn1 )

is twice the inverse of the volume of an n−dimensional sphere of unit radius
Sn1 ; KG is the Gauss–Kronecker curvature of the manifold;

dσ =
√

det(g) dx1dx2 · · · dxn

is the invariant volume measure of M and g is its Riemannian metric (in-
duced from RN ). Let us briefly sketch the meaning and definition of the
Gauss–Kronecker curvature. The study of the way in which an n−surface
M curves around in RN is measured by the way the normal direction
changes as we move from point to point on the surface. The rate of change
of the normal direction ξ at a point x ∈ M in direction v is described by
the shape operator

Lx(v) = −Lvξ = [v, ξ],

where v is a tangent vector at x and Lv is the Lie derivative, hence

Lx(v) = −(∇ξ1 · v, . . . ,∇ξn+1 · v);

gradients and vectors are represented in RN . As Lx is an operator of
the tangent space at x into itself, there are n independent eigenvalues
κ1(x), . . . , κn(x) which are called the principal curvatures ofM at x [Thorpe
(1979)]. Their product is the Gauss–Kronecker curvature:

KG(x) =
n∏
i=1

κi(x) = det(Lx).

Alternatively, recall that according to the Morse theory , it is possible
to understand the topology of a given manifold by studying the regular
critical points of a smooth Morse function defined on it. In our case, the
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manifold M is the configuration space RN and the natural choice for the
Morse function is the potential V (q). Hence, one is lead to define the family
Mv (6.114) of submanifolds of M .

A full characterization of the topological properties of Mv generally
requires the critical points of V (q), which means solving the equations

∂qiV = 0, (i = 1, . . . , N). (6.123)

Moreover, one has to calculate the indexes of all the critical points, that
is the number of negative eigenvalues of the Hessian ∂2V/(∂qi∂qj). Then
the Euler characteristic χ(Mv) can be computed by means of the formula

χ(Mv) =
N∑
k=0

(−1)kµk(Mv), (6.124)

where µk(Mv) is the total number of critical points of V (q) on Mv which
have index k, i.e., the so–called Morse numbers of a manifold M , which
happen to be upper bounds of the Betti numbers,

bk(M) ≤ µk(M) (k = 0, . . . , n). (6.125)

Among all the Morse functions on a manifold M , there is a special class,
called perfect Morse functions, for which the Morse inequalities (6.125) hold
as equalities. Perfect Morse functions characterize completely the topology
of a manifold.

Now, we continue with our two examples started before.
Peyrard–Bishop System. If applied to any generic model, calculation

of (6.124) turns out to be quite formidable, but the exceptional simplicity of
the Peyrard–Bishop model (6.119) makes it possible to carry on completely
the topological analysis without invoking equation (6.124).

For the potential in exam, equation (6.123) results in the nonlinear
system

a

R
(qi+1 − 2qi + qi−1) = h− 2(e−2aqi − e−aq

i

),

where R = Da2/K is a dimensionless ratio. It is easy to verify that a
particular solution is given by

qi = −1
a

ln
1 +
√

1 + 2h
2

, (i = 1, . . . , N).
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The corresponding minimum of potential energy is

Vmin = ND

(
1 + h−

√
1 + 2h

2
− h ln

1 +
√

1 + 2h
2

)
.

Mean–Field XY Model. In the case of the mean–field XY model
(6.120) it is possible to show analytically that a topological change in the
configuration space exists and that it can be related to the thermodynamic
phase transition. Consider again the family Mv of submanifolds of the
configuration space defined in (6.114); now the potential energy per degree
of freedom is that of the mean–field XY model, i.e.,

V(ϕ) =
V (ϕ)
N

=
J

2N2

N∑
i,j=1

[
1− cos(ϕi − ϕj)

]
− h

N∑
i=1

cosϕi,

where ϕi ∈ [0, 2π]. Such a function can be considered a Morse function on
M , so that, according to Morse theory, all these manifolds have the same
topology until a critical level V−1(vc) is crossed, where the topology of Mv

changes.
A change in the topology of Mv can only occur when v passes through

a critical value of V. Thus in order to detect topological changes in Mv we
have to find the critical values of V, which means solving the equations

∂ϕiV(ϕ) = 0, (i = 1, . . . , N). (6.126)

For a general potential energy function V, the solution of (6.126) would be
a formidable task, but in the case of the mean–field XY model, the mean–
field character of the interaction greatly simplifies the analysis, allowing an
analytical treatment of (6.126); moreover, a projection of the configuration
space onto a 2D plane is possible [Casetti et al. (1999); Casetti et al.
(2003)].

6.4.6 Application: Force–Field Psychodynamics

In this section, which is written in the fashion of the above quantum brain
modelling (see subsection 6.3.8 above), we present the top level of natural
biodynamics, using geometrical generalization of the Feynman path integral .
To formulate the basics of force–field psychodynamics, we use the action–
amplitude picture of the BODY �MIND adjunction:
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↓ Deterministic (causal) world of Human BODY ↓

Action : S[qn] =

∫ tout

tin

(Ek − Ep +Wrk + Src±) dt

−−−−−−−−−−−−−−−−−−−

Amplitude : 〈out|in〉 =

∫
Σ D[wnq

n] eiS[qn]

↑ Probabilistic (fuzzy) world of Human MIND ↑

In the action integral, Ek, Ep,Wrk and Src± denote the kinetic end po-
tential energies, work done by dissipative/driving forces and other energy
sources/sinks, respectively. In the amplitude integral, the peculiar sign∫
Σ denotes integration along smooth paths and summation along discrete
Markov chains; i is the imaginary unit, wn are synaptic–like weights, while
D is the Feynman path differential (defined below) calculated along the
configuration trajectories qn. The action S[qn], through the least action
principle δS = 0, leads to all biodynamic equations considered so far (in
generalized Lagrangian and Hamiltonian form). At the same time, the

action S[qn] figures in the exponent of the path integral
∫
Σ, defining the

probability transition amplitude 〈out|in〉. In this way, the whole body dy-
namics is incorporated in the mind dynamics. This adaptive path integral
represents an infinite–dimensional neural network , suggesting an infinite
capacity of human brain/mind.

For a long time the cortical systems for language and actions were be-
lieved to be independent modules. However, according to the recent re-
search of [Pulvermüller (2005)], as these systems are reciprocally connected
with each other, information about language and actions might interact in
distributed neuronal assemblies. A critical case is that of action words that
are semantically related to different parts of the body (e.g. ‘pick’, ‘kick’,
‘lick’,...). The author suggests that the comprehension of these words might
specifically, rapidly and automatically activate the motor system in a so-
matotopic manner, and that their comprehension rely on activity in the
action system.

6.4.6.1 Motivational Cognition in the Life Space Foam

Applications of nonlinear dynamical systems (NDS) theory in psychol-
ogy have been encouraging, if not universally productive/effective [Met-



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Geometrical Path Integrals and Their Applications 1081

zger (1997)]. Its historical antecedents can be traced back to Piaget’s
[Piaget et. al. (1992)] and Vygotsky’s [Vygotsky (1982)] interpretations
of the dynamic relations between action and thought, Lewinian theory
of social dynamics and cognitive–affective development [Lewin (1951);
Gold (1999)], and Bernstein’s [Bernstein (1947)] theory of self–adjusting,
goal–driven motor action.

Now, both the original Lewinian force–field theory in psychology (see
[Lewin (1951); Gold (1999)]) and modern decision–field dynamics (see
[Busemeyer and Townsend (1993); Roe et al. (2001); Busemeyer and
Diederich (2002)]) are based on the classical Lewinian concept of an individ-
ual’s life space.19 As a topological construct, Lewinian life space represents
a person’s psychological environment that contains regions separated by dy-
namical permeable boundaries. As a field construct, on the other hand, the
life space is not empty: each of its regions is characterized by valence (rang-
ing from positive or negative and resulting from an interaction between the
person’s needs and the dynamics of their environment). Need is an energy
construct, according to Lewin. It creates tension in the person, which, in
combination with other tensions, initiates and sustains behavior. Needs
vary from the most primitive urges to the most idiosyncratic intentions
and can be both internally generated (e.g., thirst or hunger) and stimulus–
induced (e.g., an urge to buy something in response to a TV advertisement).
Valences are, in essence, personal values dynamically derived from the per-
son’s needs and attached to various regions in their life space. As a field, the
life space generates forces pulling the person towards positively–valenced
regions and pushing them away from regions with negative valence. Lewin’s
term for these forces is vectors. Combinations of multiple vectors in the life
space cause the person to move from one region towards another. This
movement is termed locomotion and it may range from overt behavior to
cognitive shifts (e.g., between alternatives in a decision–making process).
Locomotion normally results in crossing the boundaries between regions.
When their permeability is degraded, these boundaries become barriers
that restrain locomotion. Life space model, thus, offers a meta–theoretical
language to describe a wide range of behaviors, from goal–directed action
to intrapersonal conflicts and multi–alternative decision–making.

In order to formalize the Lewinian life–space concept, a set of action
principles need to be associated to Lewinian force–fields, (loco)motion

19The work presented in this subsection has been developed in collaboration with Dr.
Eugene Aidman, Senior Research Scientist, Human Systems Integration, Land Opera-

tions Division, Defence Science & Technology Organisation, Australia.
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paths (representing mental abstractions of biomechanical paths [Ivancevic
(2004)]) and life space geometry. As an extension of the Lewinian con-
cept, in this paper we introduce a new concept of life–space foam (LSF, see
Figure 6.12). According to this new concept, Lewin’s life space can be rep-
resented as a geometrical functor with globally smooth macro–dynamics,
which is at the same time underpinned by wildly fluctuating, non–smooth,
local micro–dynamics, describable by Feynman’s: (i) sum–over–histories∫
Σ paths , (ii) sum–over–fields

∫
Σ fields , and

(iii) sum–over–geometries
∫
Σ geom.

LSF is thus a two–level geometrodynamical functor , representing these
two distinct types of dynamics within the Lewinian life space. At its
macroscopic spatio–temporal level, LSF appears as a ‘nice & smooth’ geo-
metrical functor with globally predictable dynamics – formally, a smooth
n−dimensional manifold M with local Riemannian metrics gij(x), smooth
force–fields and smooth (loco)motion paths, as conceptualized in the
Lewinian theory. To model the global and smooth macro–level LSF–paths,
fields and geometry, we use the general physics–like principle of the least
action.

Now, the apparent smoothness of the macro–level LSF is achieved by
the existence of another level underneath it. This micro–level LSF is ac-
tually a collection of wildly fluctuating force–fields, (loco)motion paths,
curved regional geometries and topologies with holes. The micro–level LSF
is proposed as an extension of the Lewinian concept: it is characterized
by uncertainties and fluctuations, enabled by microscopic time–level, mi-
croscopic transition paths, microscopic force–fields, local geometries and
varying topologies with holes. To model these fluctuating microscopic
LSF–structures, we use three instances of adaptive path integral , defin-
ing a multi–phase and multi–path (also multi–field and multi–geometry)
transition process from intention to the goal–driven action.

We use the new LSF concept to develop modelling framework for moti-
vational dynamics (MD) and induced cognitive dynamics (CD).

According to Heckhausen (see [Heckhausen (1977)]), motivation can
be thought of as a process of energizing and directing the action. The
process of energizing can be represented by Lewin’s force–field analysis and
Vygotsky’s motive formation (see [Vygotsky (1982); Aidman and Leontiev
(1991)]), while the process of directing can be represented by hierarchical
action control (see [Bernstein (1947); Bernstein (1935); Kuhl (1985)]).

Motivation processes both precede and coincide with every goal–directed
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Fig. 6.12 Diagram of the life space foam: Lewinian life space with an adaptive path

integral acting inside it and generating microscopic fluctuation dynamics.

action. Usually these motivation processes include the sequence of the
following four feedforward phases [Vygotsky (1982); Aidman and Leontiev
(1991)]: (*)

(1) Intention Formation F , including: decision making, commitment
building, etc.

(2) Action Initiation I, including: handling conflict of motives, resistance
to alternatives, etc.

(3) Maintaining the Action M, including: resistance to fatigue, distrac-
tions, etc.

(4) Termination T , including parking and avoiding addiction, i.e., staying
in control.

With each of the phases {F , I,M, T } in (*), we can associate a transition
propagator – an ensemble of (possibly crossing) feedforward paths propa-
gating through the ‘wood of obstacles’ (including topological holes in the
LSF, see Figure 6.13), so that the complete transition functor T A is a prod-
uct of propagators (as well as sum over paths). All the phases–propagators
are controlled by a unique Monitor feedback process.

In this subsection we propose an adaptive path integral formulation
for the motivational–transition functor T A. In essence, we sum/integrate
over different paths and make a product (composition) of different phases–
propagators. Recall that this is the most general description of the general
Markov stochastic process.

We will also attempt to demonstrate the utility of the same LSF–
formalisms in representing cognitive functions, such as memory, learning
and decision making. For example, in the classical Stimulus encoding
−→ Search −→ Decision −→ Response sequence [Sternberg (1969);
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Fig. 6.13 Transition–propagator corresponding to each of the motivational phases
{F , I,M, T }, consisting of an ensemble of feedforward paths propagating through the

‘wood of obstacles’. The paths affected by driving and restraining force–fields, as well as

by the local LSF–geometry. Transition goes from Intention, occurring at a sample time
instant t0, to Action, occurring at some later time t1. Each propagator is controlled by

its own Monitor feedback. All together they form the transition functor T A.

Ashcraft (1994)], the environmental input–triggered sensory memory and
working memory (WM) can be interpreted as operating at the micro–level
force–field under the executive control of the Monitor feedback, whereas
search can be formalized as a control mechanism guiding retrieval from the
long–term memory (LTM, itself shaped by learning) and filtering material
relevant to decision making into the WM. The essential measure of these
mental processes, the processing speed (essentially determined by Stern-
berg’s reaction–time) can be represented by our (loco)motion speed ẋ.

Six Faces of the Life Space Foam

The LSF has three forms of appearance: paths + field + geometries,
acting on both macro–level and micro–level, which is six modes in total. In
this section, we develop three least action principles for the macro–LSF–
level and three adaptive path integrals for the micro–LSF–level. While
developing our psycho–physical formalism, we will address the behavioral
issues of motivational fatigue, learning, memory and decision making.

General Formalism

At both macro– and micro–levels, the total LSF represents a union of
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transition paths, force–fields and geometries, formally written as

LSFtotal := LSFpaths
⋃
LSFfields

⋃
LSFgeom (6.127)

≡
∫
Σ paths +

∫
Σ fields +

∫
Σ geom .

Corresponding to each of the three LSF–subspaces in (6.127) we formulate:

(1) The least action principle, to model deterministic and predictive,
macro–level MD & CD, giving a unique, global, causal and smooth
path–field–geometry on the macroscopic spatio–temporal level; and

(2) Associated adaptive path integral to model uncertain, fluctuating and
probabilistic, micro–level MD & CD, as an ensemble of local paths–
fields–geometries on the microscopic spatio–temporal level, to which
the global macro–level MD & CD represents both time and ensemble
average (which are equal according to the ergodic hypothesis).

In the proposed formalism, transition paths xi(t) are affected by the force–
fields ϕk(t), which are themselves affected by geometry with metric gij .

Global Macro–Level of LSFtotal. In general, at the macroscopic
LSF–level we first formulate the total action S[Φ], the central quantity in
our formalism that has psycho–physical dimensions of Energy × Time =
Effort, with immediate cognitive and motivational applications: the
greater the action – the higher the speed of cognitive processes and the lower
the macroscopic fatigue (which includes all sources of physical, cognitive
and emotional fatigue that influence motivational dynamics). The action
S[Φ] depends on macroscopic paths, fields and geometries, commonly de-
noted by an abstract field symbol Φi. The action S[Φ] is formally defined
as a temporal integral from the initial time instant tini to the final time
instant tfin,

S[Φ] =
∫ tfin

tini

L[Φ] dt, (6.128)

with Lagrangian density given by

L[Φ] =
∫
dnxL(Φi, ∂xjΦi),

where the integral is taken over all n coordinates xj = xj(t) of the LSF,
and ∂xjΦi are time and space partial derivatives of the Φi−variables over
coordinates.
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Second, we formulate the least action principle as a minimal variation
δ of the action S[Φ]

δS[Φ] = 0, (6.129)

which, using techniques from the calculus of variations gives, in the form of
the so–called Euler–Lagrangian equations, a shortest (loco)motion path, an
extreme force–field, and a life–space geometry of minimal curvature (and
without holes). In this way, we effectively derive a unique globally smooth
transition functor

T A : INTENTIONtini V ACTIONtfin , (6.130)

performed at a macroscopic (global) time–level from some initial time tini
to the final time tfin.

In this way, we get macro–objects in the global LSF: a single path
described Newtonian–like equation of motion, a single force–field described
by Maxwellian–like field equations, and a single obstacle–free Riemannian
geometry (with global topology without holes).

For example, recall that in the period 1945–1949 J. Wheeler and R.
Feynman developed their action-at-a-distance electrodynamics [Wheeler
and Feynman (1949)], in complete experimental agreement with the clas-
sical Maxwell’s electromagnetic theory, but at the same time avoiding the
complications of divergent self–interaction of the Maxwell’s theory as well
as eliminating its infinite number of field degrees of freedom. In Wheeler–
Feynman view, “Matter consists of electrically charged particles,” so they
found a form for the action directly involving the motions of the charges
only, which upon variation would give the Newtonian–like equations of mo-
tion of these charges. Here is the expression for this action in the flat
space–time, which is in the core of quantum electrodynamics:

S[x; ti, tj ] =
1
2
mi

∫
(ẋiµ)2 dti +

1
2
eiej

∫ ∫
δ(I2

ij) ẋ
i
µ(ti)ẋjµ(tj) dtidtj

with (6.131)

I2
ij =

[
xiµ(ti)− xjµ(tj)

] [
xiµ(ti)− xjµ(tj)

]
,

where xiµ = xiµ(ti) is the four–vector position of the ith particle as a function
of the proper time ti, while ẋiµ(ti) = dxiµ/dti is the velocity four–vector.
The first term in the action (6.131) is the ordinary mechanical action in
Euclidean space, while the second term defines the electrical interaction of
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the charges, representing the Maxwell–like field (it is summed over each
pair of charges; the factor 1

2 is to count each pair once, while the term i = j

is omitted to avoid self–action; the interaction is a double integral over a
delta function of the square of space–time interval I2 between two points
on the paths; thus, interaction occurs only when this interval vanishes, that
is, along light cones [Wheeler and Feynman (1949)]).

Now, from the point of view of Lewinian geometrical force–fields and
(loco)motion paths, we can give the following life–space interpretation to
the Wheeler–Feynman action (6.131). The mechanical–like locomotion
term occurring at the single time t, needs a covariant generalization from
the flat 4D Euclidean space to the nD smooth Riemannian manifold, so it
becomes (see e.g., [Ivancevic (2004)])

S[x] =
1
2

∫ tfin

tini

gij ẋ
iẋj dt,

where gij is the Riemannian metric tensor that generates the total ‘kinetic
energy’ of (loco)motions in the life space.

The second term in (6.131) gives the sophisticated definition of Lewinian
force–fields that drive the psychological (loco)motions, if we interpret elec-
trical charges ei occurring at different times ti as motivational charges –
needs.

Local Micro–Level of LSFtotal. After having properly defined
macro–level MD & CD, with a unique transition map F (including a unique
motion path, driving field and smooth geometry), we move down to the mi-
croscopic LSF–level of rapidly fluctuating MD & CD, where we cannot de-
fine a unique and smooth path–field–geometry. The most we can do at this
level of fluctuating uncertainty, is to formulate an adaptive path integral and
calculate overall probability amplitudes for ensembles of local transitions
from one LSF–point to the neighboring one. This probabilistic transition
micro–dynamics functor is defined by a multi–path (field and geometry,
respectively) and multi–phase transition amplitude 〈Action|Intention〉 of
corresponding to the globally–smooth transition map (6.130). This abso-
lute square of this probability amplitude gives the transition probability of
occurring the final state of Action given the initial state of Intention,

P (Action|Intention) = |〈Action|Intention〉|2.

The total transition amplitude from the state of Intention to the state of
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Action is defined on LSFtotal

T A ≡ 〈Action|Intention〉total : INTENTIONt0 V ACTIONt1 , (6.132)

given by adaptive generalization of the Feynman’s path integral [Feynman
and Hibbs (1965); Feynman (1972); Feynman (1998)]. The transition map
(6.132) calculates the overall probability amplitude along a multitude of
wildly fluctuating paths, fields and geometries, performing the microscopic
transition from the micro–state INTENTIONt0 occurring at initial micro–
time instant t0 to the micro–state ACTIONt1 at some later micro–time
instant t1, such that all micro–time instants fit inside the global transition
interval t0, t1, ..., ts ∈ [tini, tfin]. It is symbolically written as

〈Action|Intention〉total :=
∫
Σ D[wΦ] eiS[Φ], (6.133)

where the Lebesgue integration is performed over all continuous Φicon =
paths+field+geometries, while summation is performed over all discrete
processes and regional topologies Φjdis). The symbolic differential D[wΦ]
in the general path integral (6.133), represents an adaptive path measure,
defined as a weighted product

D[wΦ] = lim
N−→∞

N∏
s=1

wsdΦis, (i = 1, ..., n = con+ dis), (6.134)

which is in practice satisfied with a large N corresponding to infinitesimal
temporal division of the four motivational phases (*). Technically, the
path integral (6.133) calculates the amplitude for the transition functor
T A : IntentionV Action.

In the exponent of the path integral (6.133) we have the action S[Φ]
and the imaginary unit i =

√
−1 (i can be converted into the real number

-1 using the so–called Wick rotation, see next subsection).
In this way, we get a range of micro–objects in the local LSF at the

short time–level: ensembles of rapidly fluctuating, noisy and crossing paths,
force–fields, local geometries with obstacles and topologies with holes. How-
ever, by averaging process, both in time and along ensembles of paths, fields
and geometries, we recover the corresponding global MD & CD variables.

Infinite–Dimensional Neural Network. The adaptive path integral
(6.133) incorporates the local learning process according to the standard
formula: New V alue = Old V alue + Innovation. The general weights
ws = ws(t) in (6.134) are updated by the MONITOR feedback during the
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transition process, according to one of the two standard neural learning
schemes, in which the micro–time level is traversed in discrete steps, i.e., if
t = t0, t1, ..., ts then t+ 1 = t1, t2, ..., ts+1:

(1) A self–organized, unsupervised (e.g., Hebbian–like [Hebb (1949)]) learn-
ing rule:

ws(t+ 1) = ws(t) +
σ

η
(wds(t)− was (t)), (6.135)

where σ = σ(t), η = η(t) denote signal and noise, respectively, while
superscripts d and a denote desired and achieved micro–states, respec-
tively; or

(2) A certain form of a supervised gradient descent learning :

ws(t+ 1) = ws(t)− η∇J(t), (6.136)

where η is a small constant, called the step size, or the learning rate
and ∇J(n) denotes the gradient of the ‘performance hyper–surface’ at
the t−th iteration.

Both Hebbian and supervised learning are used for the local decision making
process (see below) occurring at the intention formation faze F .

In this way, local micro–level of LSFtotal represents an infinite–
dimensional neural network. In the cognitive psychology framework, our
adaptive path integral (6.133) can be interpreted as semantic integration
(see [Bransford and Franks (1971); Ashcraft (1994)]).

Motion and Decision Making in LSFpaths

On the macro–level in the subspace LSFpaths we have the (loco)motion
action principle

δS[x] = 0,

with the Newtonian–like action S[x] given by

S[x] =
∫ tfin

tini

dt [
1
2
gij ẋ

iẋj + ϕi(xi)], (6.137)

where overdot denotes time derivative, so that ẋi represents processing
speed, or (loco)motion velocity vector. The first bracket term in (6.137)
represents the kinetic energy T ,

T =
1
2
gij ẋ

iẋj ,
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generated by the Riemannian metric tensor gij , while the second bracket
term, ϕi(xi), denotes the family of potential force–fields, driving the
(loco)mo-tions xi = xi(t) (the strengths of the fields ϕi(xi) depend on
their positions xi in LSF, see LSFfields below). The corresponding Euler–
Lagrangian equation gives the Newtonian–like equation of motion

d

dt
Tẋi − Txi = −ϕixi , (6.138)

(subscripts denote the partial derivatives), which can be put into the stan-
dard Lagrangian form

d

dt
Lẋi = Lxi , with L = T − ϕi(xi).

In the next subsection we use the micro–level implications of the action
S[x] as given by (6.137), for dynamical descriptions of the local decision–
making process.

On the micro–level in the subspace LSFpaths, instead of a single path
defined by the Newtonian–like equation of motion (6.138), we have an en-
semble of fluctuating and crossing paths with weighted probabilities (of the
unit total sum). This ensemble of micro–paths is defined by the simplest
instance of our adaptive path integral (6.133), similar to the Feynman’s
original sum over histories,

〈Action|Intention〉paths =
∫
Σ D[wx] eiS[x], (6.139)

where D[wx] is a functional measure on the space of all weighted paths,
and the exponential depends on the action S[x] given by (6.137). This
procedure can be redefined in a mathematically cleaner way if we Wick–
rotate the time variable t to imaginary values t 7→ τ = it, thereby making
all integrals real: ∫

Σ D[wx] eiS[x] Wick-
∫
Σ D[wx] e−S[x]. (6.140)

Discretization of (6.140) gives the thermodynamic–like partition function

Z =
∑
j

e−wjE
j/T , (6.141)

where Ej is the motion energy eigenvalue (reflecting each possible moti-
vational energetic state), T is the temperature–like environmental control
parameter, and the sum runs over all motion energy eigenstates (labelled
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by the index j). From (6.141), we can further calculate all thermodynamic–
like and statistical properties of MD & CD (see e.g., [Feynman (1972)]), as
for example, transition entropy S = kB lnZ, etc.

From cognitive perspective, our adaptive path integral (6.139) calcu-
lates all (alternative) pathways of information flow during the transition
Intention −→ Action.

In the language of transition–propagators, the integral over histories
(6.139) can be decomposed into the product of propagators (i.e., Fredholm
kernels or Green functions) corresponding to the cascade of the four moti-
vational phases (*)

〈Action|Intention〉paths =
∫
Σ dxFdxIdxMdxTK(F , I)K(I,M)K(M, T ),

(6.142)
satisfying the Schrödinger–like equation (see e.g., [Dirac (1982)])

i ∂t〈Action|Intention〉paths = HAction 〈Action|Intention〉paths, (6.143)

where HAction represents the Hamiltonian (total energy) function available
at the state of Action. Here our ‘golden rule’ is: the higher the HAction,
the lower the microscopic fatigue.

In the connectionist language, our propagator expressions (6.142–6.143)
represent activation dynamics, to which our Monitor process gives a kind of
backpropagation feedback, a version of the basic supervised learning (6.136).

Mechanisms of Decision–Making under Uncertainty. The ba-
sic question about our local decision making process, occurring under
uncertainty at the intention formation faze F , is: Which alternative to
choose? (see [Roe et al. (2001); Grossberg (1982); Grossberg (1999);
Grossberg (1988); Ashcraft (1994)]). In our path–integral language this
reads: Which path (alternative) should be given the highest probability
weight w? Naturally, this problem is iteratively solved by the learning pro-
cess (6.135–6.136), controlled by the MONITOR feedback, which we term
algorithmic approach.

In addition, here we analyze qualitative mechanics of the local decision
making process under uncertainty, as a heuristic approach. This qualitative
analysis is based on the micro–level interpretation of the Newtonian–like
action S[x], given by (6.137) and figuring both processing speed ẋ and
LTM (i.e., the force–field ϕ(x), see next subsection). Here we consider
three different cases:
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(1) If the potential ϕ(x) is not very dependent upon position x(t), then
the more direct paths contribute the most, as longer paths, with higher
mean square velocities [ẋ(t)]2 make the exponent more negative (after
Wick rotation (6.140)).

(2) On the other hand, suppose that ϕ(x) does indeed depend on position
x. For simplicity, let the potential increase for the larger values of x.
Then a direct path does not necessarily give the largest contribution to
the overall transition probability, because the integrated value of the
potential is higher than over another paths.

(3) Finally, consider a path that deviates widely from the direct path. Then
ϕ(x) decreases over that path, but at the same time the velocity ẋ

increases. In this case, we expect that the increased velocity ẋ would
more than compensate for the decreased potential over the path.

Therefore, the most important path (i.e., the path with the highest weight
w) would be one for which any smaller integrated value of the surrounding
field potential ϕ(x) is more than compensated for by an increase in kinetic–
like energy m

2 ẋ
2. In principle, this is neither the most direct path, nor the

longest path, but rather a middle way between the two. Formally, it is the
path along which the average Lagrangian is minimal,

<
m

2
ẋ2 + ϕ(x) > - min, (6.144)

i.e., the path that requires minimal memory (both LTM and WM, see
LSFfields below) and processing speed. This mechanical result is consistent
with the ‘filter theory’ of selective attention [Broadbent (1958)], proposed
in an attempt to explain a range of the existing experimental results. This
theory postulates a low level filter that allows only a limited number of
percepts to reach the brain at any time. In this theory, the importance of
conscious, directed attention is minimized. The type of attention involving
low level filtering corresponds to the concept of early selection [Broadbent
(1958)].

Although we termed this ‘heuristic approach’ in the sense that we can
instantly feel both the processing speed ẋ and the LTM field ϕ(x) involved,
there is clearly a psycho–physical rule in the background, namely the aver-
aging minimum relation (6.144).

From the decision making point of view, all possible paths (alterna-
tives) represent the consequences of decision making. They are, by default,
short–term consequences, as they are modelled in the micro–time–level.
However, the path integral formalism allows calculation of the long–term
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consequences, just by extending the integration time, tfin −→ ∞. Besides,
this averaging decision mechanics – choosing the optimal path – actually
performs the ‘averaging lift’ in the LSF: from micro– to the macro–level.

Force–Fields and Memory in LSFfields

At the macro–level in the subspace LSFfields we formulate the force–
field action principle

δS[ϕ] = 0, (6.145)

with the action S[ϕ] dependent on Lewinian force–fields ϕi = ϕi(x) (i =
1, ..., N), defined as a temporal integral

S[ϕ] =
∫ tfin

tini

L[ϕ] dt, (6.146)

with Lagrangian density given by

L[ϕ] =
∫
dnxL(ϕi, ∂xjϕ

i),

where the integral is taken over all n coordinates xj = xj(t) of the LSF,
and ∂xjϕ

i are partial derivatives of the field variables over coordinates.
On the micro–level in the subspace LSFfields we have the Feynman–

type sum over fields ϕi (i = 1, ..., N) given by the adaptive path integral

〈Action|Intention〉fields =
∫
Σ D[wϕ] eiS[ϕ] Wick-

∫
Σ D[wϕ] e−S[ϕ],

(6.147)
with action S[ϕ] given by temporal integral (6.146). (Choosing special
forms of the force–field action S[ϕ] in (6.147) defines micro–level MD & CD,
in the LSFfields space, that is similar to standard quantum–field equations,
see e.g., [Ramond (1990)].) The corresponding partition function has the
form similar to (6.141), but with field energy levels.

Regarding topology of the force fields, we have in place n−categorical
Lagrangian–field structure on the Riemannian LSF manifold M ,

Φi : [0, 1]→M, Φi : Φi0 7→ Φi1,

generalized from the recursive homotopy dynamics (3.205) above, using

d

dt
fẋi = fxi

- ∂µ

(
∂L
∂µΦi

)
=

∂L
∂Φi

,

with [x0, x1] - [Φi0,Φ
i
1].
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Relationship between Memory and Force–Fields. As already
mentioned, the subspace LSFfields is related to our memory storage
[Ashcraft (1994)]. Its global macro–level represents the long–term mem-
ory (LTM), defined by the least action principle (6.145), related to
cognitive economy in the model of semantic memory [Ratcliff (1978);
Collins and Quillian (1969)]. Its local micro–level represents working mem-
ory (WM), a limited–capacity ‘bottleneck’ defined by the adaptive path
integral (6.147). According to our formalism, each of Miller’s 7 ± 2 units
[Miller (1956)] of the local WM are adaptively stored and averaged to give
the global LTM capacity (similar to the physical notion of potential). This
averaging memory lift, from WM to LTM represents retroactive interfer-
ence, while the opposite direction, given by the path integral (6.147) itself,
represents proactive interference. Both retroactive and proactive interfer-
ences are examples of the impact of cognitive contexts on memory. Motiva-
tional contexts can exert their influence, too. For example, a reduction in
task–related recall following the completion of the task is one of the clear-
est examples of force–field influences on memory: the amount of details
remembered of a task declines as the force–field tension to complete the
task is reduced by actually completing it.

Once defined, the global LTM potential ϕ = ϕ(x) is then affecting the
locomotion transition paths through the path action principle (6.137), as
well as general learning (6.135–6.136) and decision making process (6.144).

On the other hand, the two levels of LSFfields fit nicely into the two lev-
els of processing framework, as presented by [Craik and Lockhart (1972)],
as an alternative to theories of separate stages for sensory, working and
long–term memory. According to the levels of processing framework, stim-
ulus information is processed at multiple levels simultaneously depending
upon its characteristics. In this framework, our macro–level memory field,
defined by the fields action principle (6.145), corresponds to the shallow
memory, while our micro–level memory field, defined by the adaptive path
integral (6.147), corresponds to the deep memory.

Geometries, Topologies and Noise in LSFgeom

On the macro–level in the subspace LSFgeom representing an
n−dimensional smooth manifold M with the global Riemannian metric
tensor gij , we formulate the geometrical action principle

δS[gij ] = 0,
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where S = S[gij ] is the n−dimensional geodesic action on M ,

S[gij ] =
∫
dnx

√
gij dxidxj . (6.148)

The corresponding Euler–Lagrangian equation gives the geodesic equation
of the shortest path in the manifold M ,

ẍi + Γijk ẋ
j ẋk = 0,

where the symbol Γijk denotes the so–called affine connection which is the
source of curvature, which is geometrical description for noise (see [Ing-
ber (1997); Ingber (1998)]). The higher the local curvatures of the LSF–
manifold M , the greater the noise in the life space. This noise is the source
of our micro–level fluctuations. It can be internal or external; in both cases
it curves our micro–LSF.

Otherwise, if instead we choose an n−dimensional Hilbert–like action
(see [Misner et al. (1973)]),

S[gij ] =
∫
dnx

√
det |gij |R, (6.149)

where R is the scalar curvature (derived from Γijk), we get the
n−dimensional Einstein–like equation: Gij = 8πTij , where Gij is the
Einstein–like tensor representing geometry of the LSF manifold M (Gij is
the trace–reversed Ricci tensor Rij , which is itself the trace of the Riemann
curvature tensor of the manifold M), while Tij is the n−dimensional stress–
energy–momentum tensor. This equation explicitly states that psycho–
physics of the LSF is proportional to its geometry. Tij is important quan-
tity, representing motivational energy, geometry–imposed stress and mo-
mentum of (loco)motion. As before, we have our ‘golden rule’: the greater
the Tij−components, the higher the speed of cognitive processes and the
lower the macroscopic fatigue.

The choice between the geodesic action (6.148) and the Hilbert action
(6.149) depends on our interpretation of time. If time is not included in the
LSF manifold M (non–relativistic approach) then we choose the geodesic
action. If time is included in the LSF manifold M (making it a relativistic–
like n−dimensional space–time) then the Hilbert action is preferred. The
first approach is more related to the information processing and the working
memory. The later, space–time approach can be related to the long–term
memory: we usually recall events closely associated with the times of their
happening.
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On the micro–level in the subspace LSFgeom we have the adaptive sum
over geometries, represented by the path integral over all local (regional)
Riemannian metrics gij = gij(x) varying from point to point on M (modulo
diffeomorphisms),

〈Action|Intention〉geom =
∫
Σ D[wgij ] eiS[gij ] Wick-

∫
Σ D[wgij ] e−S[gij ],

(6.150)
where D[gij ] is diffeomorphism equivalence class of gij(x) ∈M .

To include the topological structure (e.g., a number of holes) in M , we
can extend (6.150) as

〈Action|Intention〉geom/top =
∑

topol.

∫
Σ D[wgij ] eiS[gij ], (6.151)

where the topological sum is taken over all connectedness–components of
M determined by the Euler characteristic χ of M . This type of inte-
gral defines the theory of fluctuating geometries, a propagator between
(n − 1)−dimensional boundaries of the n−dimensional manifold M . One
has to contribute a meaning to the integration over geometries. A key
ingredient in doing so is to approximate (using simplicial approximation
and Regge calculus [Misner et al. (1973)]) in a natural way the smooth
structures of the manifold M by piecewise linear structures (mostly using
topological simplices ∆). In this way, after the Wick–rotation (6.140), the
integral (6.150–6.151) becomes a simple statistical system, given by parti-
tion function Z =

∑
∆

1
C∆

e−S∆ , where the summation is over all triangu-
lations ∆ of the manifold M , while CT is the order of the automorphism
group of the performed triangulation.

Micro–Level Geometry: the source of noise and stress in LSF.
The subspace LSFgeom is the source of noise, fluctuations and obstacles,
as well as psycho–physical stress. Its micro–level is adaptive, reflecting
the human ability to efficiently act within the noisy environment and un-
der the stress conditions. By averaging it produces smooth geometry of
certain curvature, which is at the same time the smooth psycho–physics.
This macro–level geometry directly affects the memory fields and indirectly
affects the (loco)motion transition paths.

The Mental Force Law. As an effective summary of this
section, we state that the psychodynamic transition functor T A :
INTENTIONtini V ACTIONtfin , defined by the generic path integral
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(6.133), can be interpreted as a mental force law , analogous to our musculo–
skeletal covariant force law , Fi = mgija

j , and its associated covariant force
functor F∗ : TT ∗M → TTM [Ivancevic and Ivancevic (2006)].

6.5 Application: Witten’s TQFT, SW–Monopoles and
Strings

In this section we review three parts of modern physics associated to the
name of the Fields Medalist Edward Witten: topological quantum field the-
ory, Seiberg–Witten monopole theory and open superstring theory. They
are all extensions of a general quantum field theory (QFT).

Recall that any QFT deals with smooth maps γ : Σ→M of Riemannian
manifolds Σ and M such that the dimension of Σ is the dimension of the
theory. On the set Map(Σ,M) of all smooth maps γ = γ(φ), we also have
defined an action function S[φ] of the field variables φ. A non–relativistic
QFT studies real–valued (Euclidean) path integrals of the form∫

Map(Σ,M)

V (φ)D[φ] e−S[φ]/}, (6.152)

where D[φ] represents some measure on the space of paths, is the Planck
constant and V : Map(Σ,M) → R is an insertion function. The number
e−S[φ]/} should be interpreted as the probability amplitude of the contribu-
tion of the map γ : Σ→M to the path integral. The associated integral

ZE =
∫
Map(Σ,M)

dφ e−S[φ]/},

is the partition function of the theory. In a relativistic QFT, the space Σ
has a Lorentzian metric of signature (−,+, ...,+). The first coordinate is
reserved for time, the rest are for space. In this case, the real–valued path
integral (6.152) is replaced with the complex–valued path integral

ZM =
∫
Map(Σ,M)

V (φ)D[φ] eiS[φ]/}.

6.5.1 Topological Quantum Field Theory

Before we come to (super)strings, we give a brief on topological quantum
field theory (TQFT), as developed by Ed Witten, from his original path
integral point of view (see [Witten (1988a); Labastida and Lozano (1998)]).
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TQFT originated in 1982, when Witten rewrote classical Morse theory (see
section 3.10.5.1 above, as well as section 3.13.5.2 below) in Dick Feynman’s
language of quantum field theory [Witten (1982)]. Witten’s arguments
made use of Feynman’s path integrals and consequently, at first, they were
regarded as mathematically non–rigorous. However, a few years later, A.
Floer reformulated a rigorous Morse–Witten theory [Floer (1987)] (that
won a Fields medal for Witten). This trend in which some mathematical
structure is first constructed by quantum field theory methods and then
reformulated in a rigorous mathematical ground constitutes one of the ten-
dencies in modern physics.

In TQFT our basic topological space is an nD Riemannian manifold
M with a metric gµν . Let us consider on it a set of fields {φi}, and let
S[φi] be a real functional of these fields which is regarded as the action of
the theory. We consider ‘operators’, Oα(φi), which are in general arbitrary
functionals of the fields. In TQFT these functionals are real functionals
labelled by some set of indices α carrying topological or group–theoretical
data. The vacuum expectation value (VEV) of a product of these operators
is defined as

〈Oα1Oα2 · · ·Oαp〉 =
∫

[Dφi]Oα1(φi)Oα2(φi) · · ·Oαp(φi) exp (−S[φi]) .

A quantum field theory is considered topological if the following relation is
satisfied:

δ

δgµν
〈Oα1Oα2 · · ·Oαp〉 = 0, (6.153)

i.e., if the VEV of some set of selected operators is independent of the metric
gµν on M . If such is the case those operators are called ‘observables’.

There are two ways to guarantee, at least formally, that condition
(6.153) is satisfied. The first one corresponds to the situation in which
both, the action S[φi], as well as the operators Oαi are metric independent.
These TQFTs are called of Schwarz type. The most important represen-
tative is Chern–Simons gauge theory . The second one corresponds to the
case in which there exist a symmetry, whose infinitesimal form is denoted
by δ, satisfying the following properties:

δOαi = 0, Tµν = δGµν , (6.154)
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where Tµν is the SEM–tensor of the theory, i.e.,

Tµν(φi) =
δ

δgµν
S[φi]. (6.155)

The fact that δ in (6.154) is a symmetry of the theory implies that
the transformations δφi of the fields are such that both δA[φi] = 0 and
δOαi(φi) = 0. Conditions (6.154) lead, at least formally, to the following
relation for VEVs:
δ

δgµν
〈Oα1Oα2 · · ·Oαp〉 = −

∫
[Dφi]Oα1(φi)Oα2(φi) · · ·Oαp(φi)Tµνe−S[φi]

= −
∫

[Dφi]δ
(
Oα1(φi)Oα2(φi) · · ·Oαp(φi)Gµν exp (−S[φi])

)
= 0, (6.156)

which implies that the quantum field theory can be regarded as topological.
This second type of TQFTs are called of Witten type. One of its main
representatives is the theory related to Donaldson invariants, which is a
twisted version of N = 2 supersymmetric Yang–Mills gauge theory . It
is important to remark that the symmetry δ must be a scalar symmetry,
i.e., that its symmetry parameter must be a scalar. The reason is that,
being a global symmetry, this parameter must be covariantly constant and
for arbitrary manifolds this property, if it is satisfied at all, implies strong
restrictions unless the parameter is a scalar.

Most of the TQFTs of cohomological type satisfy the relation:

S[φi] = δΛ(φi), (6.157)

for some functional Λ(φi). This has far–reaching consequences, for it means
that the topological observables of the theory, in particular the partition
function, (path integral) itself are independent of the value of the coupling
constant. Indeed, let us consider for example the VEV:

〈Oα1Oα2 · · ·Oαp〉 =
∫

[Dφi]Oα1(φi)Oα2(φi) · · ·Oαp(φi) e−
1
g2
S[φi]. (6.158)

Under a change in the coupling constant, 1/g2 → 1/g2−∆, one has (assum-
ing that the observables do not depend on the coupling), up to first–order
in ∆:

〈Oα1Oα2 · · ·Oαp〉 −→ 〈Oα1Oα2 · · ·Oαp〉

+ ∆
∫

[Dφi]δ
[
Oα1(φi)Oα2(φi) · · ·Oαp(φi)Λ(φi) exp

(
− 1
g2
S[φi]

)]
= 〈Oα1Oα2 · · ·Oαp〉. (6.159)
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Hence, observables can be computed either in the weak coupling limit, g →
0, or in the strong coupling limit, g →∞.

So far we have presented a rather general definition of TQFT and made
a series of elementary remarks. Now we will analyze some aspects of its
structure. We begin pointing out that given a theory in which (6.154) holds
one can build correlators which correspond to topological invariants (in the
sense that they are invariant under deformations of the metric gµν) just
by considering the operators of the theory which are invariant under the
symmetry. We will call these operators observables. In virtue of (6.156),
if one of these operators can be written as a symmetry transformation of
another operator, its presence in a correlation function will make it vanish.
Thus we may identify operators satisfying (6.154) which differ by an oper-
ator which corresponds to a symmetry transformation of another operator.
Let us denote the set of the resulting classes by {Φ}. By restricting the
analysis to the appropriate set of operators, one has that in fact,

δ2 = 0. (6.160)

Property (6.160) has consequences on the features of TQFT. First, the
symmetry must be odd which implies the presence in the theory of commut-
ing and anticommuting fields. For example, the tensor Gµν in (6.154) must
be anticommuting. This is the first appearance of an odd non–spinorial
field in TQFT. Those kinds of objects are standard features of cohomologi-
cal TQFTs. Second, if we denote by Q the operator which implements this
symmetry, the observables of the theory can be described as the cohomology
classes of Q:

{Φ} =
KerQ
ImQ

, Q2 = 0. (6.161)

Equation (6.154) means that in addition to the Poincaré group the
theory possesses a symmetry generated by an odd version of the Poincaré
group. The corresponding odd generators are constructed out of the tensor
Gµν in much the same way as the ordinary Poincaré generators are built
out of Tµν . For example, if Pµ represents the ordinary momentum operator,
there exists a corresponding odd one Gµ such that

Pµ = {Q,Gµ}. (6.162)

Now, let us discuss the structure of the Hilbert space of the theory in
virtue of the symmetries that we have just described. The states of this
space must correspond to representations of the algebra generated by the
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operators in the Poincaré groups and by Q. Furthermore, as follows from
our analysis of operators leading to (6.161), if one is interested only in states
|Ψ〉 leading to topological invariants one must consider states which satisfy

Q|Ψ〉 = 0, (6.163)

and two states which differ by a Q−exact state must be identified. The
odd Poincaré group can be used to generate descendant states out of a
state satisfying (6.163). The operators Gµ act non–trivially on the states
and in fact, out of a state satisfying (6.163) we can build additional states
using this generator. The simplest case consists of∫

γ1

Gµ|Ψ〉,

where γ1 is a 1–cycle. One can verify using (6.154) that this new state
satisfies (6.163):

Q

∫
γ1

Gµ|Ψ〉 =
∫
γ1

{Q,Gµ}|Ψ〉 =
∫
γ1

Pµ|Ψ〉 = 0.

Similarly, one may construct other invariants tensoring n operators Gµ and
integrating over n−cycles γn:∫

γn

Gµ1
Gµ2

...Gµn |Ψ〉. (6.164)

Notice that since the operator Gµ is odd and its algebra is Poincaré–like the
integrand in this expression is an exterior differential n−form. These states
also satisfy condition (6.163). Therefore, starting from a state |Ψ〉 ∈ kerQ
we have built a set of partners or descendants giving rise to a topological
multiplet. The members of a multiplet have well defined ghost number.
If one assigns ghost number -1 to the operator Gµ the state in (6.164)
has ghost number -n plus the ghost number of |Ψ〉. Now, n is bounded
by the dimension of the manifold X. Among the states constructed in
this way there may be many which are related via another state which is
Q−exact, i.e., which can be written as Q acting on some other state. Let
us try to single out representatives at each level of ghost number in a given
topological multiplet.

Consider an (n − 1)−cycle which is the boundary of an nD surface,
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γn−1 = ∂Sn. If one builds a state taking such a cycle one finds (Pµ = −i∂µ),∫
γn−1

Gµ1
Gµ2

...Gµn−1
|Ψ〉 = i

∫
Sn

P[µ1
Gµ2

Gµ3
...Gµn]|Ψ〉 (6.165)

= iQ
∫
Sn

Gµ1
Gµ2

...Gµn |Ψ〉,

i.e., it is Q−exact. The square–bracketed subscripts in (6.165) denote that
all indices between them must by antisymmetrized. In (6.165) use has
been made of (6.162). This result tells us that the representatives we are
looking for are built out of the homology cycles of the manifold X. Given a
manifold X, the homology cycles are equivalence classes among cycles, the
equivalence relation being that two n−cycles are equivalent if they differ
by a cycle which is the boundary of an n + 1 surface. Thus, knowledge
on the homology of the manifold on which the TQFT is defined allows us
to classify the representatives among the operators (6.164). Let us assume
that X has dimension d and that its homology cycles are γin , (in = 1, ..., dn,
n = 0, ..., d), where dn is the dimension of the n−homology group, and d

the dimension of X. Then, the non–trivial partners or descendants of a
given |Ψ〉 highest–ghost–number state are labelled in the following way:∫

γin

Gµ1
Gµ2

...Gµn |Ψ〉, (in = 1, ..., dn, n = 0, ..., d).

A similar construction to the one just described can be made for fields.
Starting with a field φ(x) which satisfies,

[Q,φ(x)] = 0, (6.166)

one can construct other fields using the operators Gµ. These fields, which
we call partners are antisymmetric tensors defined as,

φ(n)
µ1µ2...µn

(x) =
1
n!

[Gµ1
, [Gµ2

...[Gµn , φ(x)}...}}, (n = 1, ..., d).

Using (6.162) and (6.166) one finds that these fields satisfy the so–called
topological descent equations:

dφ(n) = i[Q,φ(n+1)},

where the subindices of the forms have been suppressed for simplicity, and
the highest–ghost–number field φ(x) has been denoted as φ(0)(x). These
equations enclose all the relevant properties of the observables which are
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constructed out of them. They constitute a very useful tool to build the
observables of the theory.

6.5.2 Seiberg–Witten Theory and TQFT

Recall that the field of low–dimensional geometry and topology [Atiyah
(1988b)] has undergone a dramatic phase of progress in the last decade of
the 20th Century, prompted, to a large extend, by new ideas and discov-
eries in mathematical physics. The discovery of quantum groups [Drinfeld
(1986)] in the study of the Yang–Baxter equation [Baxter (1982)] has re-
shaped the theory of knots and links [Jones (1985); Reshetikhin and Tu-
raev (1991); Zhang et. al. (1991)]; the study of conformal field theory and
quantum Chern–Simons theory [Witten (1989)] in physics had a profound
impact on the theory of 3–manifolds; and most importantly, investigations
of the classical Yang–Mills (YM) theory led to the creation of the Donald-
son theory of 4–manifolds [Freed and Uhlenbeck (1984); Donaldson (1987)].
Witten [Witten (1994)] discovered a new set of invariants of 4–manifolds
in the study of the Seiberg–Witten (SW) monopole equations, which have
their origin in supersymmetric gauge theory. The SW theory, while closely
related to Donaldson theory, is much easier to handle. Using SW the-
ory, proofs of many theorems in Donaldson theory have been simplified,
and several important new results have also been obtained [Taubes (1990);
Taubes (1994)].

In [Zhang et. al. (1995)] a topological quantum field theory was intro-
duced which reproduces the SW invariants of 4–manifolds. A geometrical
interpretation of the 3D quantum field theory was also given.

6.5.2.1 SW Invariants and Monopole Equations

Recall that the SW monopole equations are classical field theoretical equa-
tions involving a U(1) gauge field and a complex Weyl spinor on a 4D
manifold. Let X denote the 4–manifold, which is assumed to be oriented
and closed. If X is spin, there exist positive and negative spin bundles S±

of rank two. Introduce a complex line bundle L→ X. Let A be a connec-
tion on L and M be a section of the product bundle S+ ⊗ L. Recall that
the SW monopole equations read

F+
kl = − i

2
M̄ΓklM, DAM = 0, (6.167)
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where DA is the twisted Dirac operator, Γij = 1
2 [γi, γj ], and F+ represents

the self–dual part of the curvature of L with connection A.
If X is not a spin manifold, then spin bundles do not exist. However,

it is always possible to introduce the so called Spinc bundles S± ⊗ L,
with L2 being a line bundle. Then in this more general setting, the SW
monopoles equations look formally the same as (6.167), but the M should
be interpreted as a section of the the SpinC bundle S+ ⊗ L.

Denote by M the moduli space of solutions of the SW monopole equa-
tions up to gauge transformations. Generically, this space is a manifold.
Its virtual dimension is equal to the number of solutions of the following
equations

(dψ)+kl +
i
2
(
M̄ΓklN + N̄ΓklM

)
= 0, DAN + ψM = 0,

∇kψk +
i
2

(NM −MN) = 0, (6.168)

where A and M are a given solution of (6.167), ψ ∈ Ω1(X) is a one
form, (dψ)+ ∈ Ω2,+(X) is the self dual part of the two form dψ, and
N ∈ S+ ⊗ L. The first two of the equations in (6.168) are the lineariza-
tion of the monopole equations (6.167), while the last one is a gauge fixing
condition. Though with a rather unusual form, it arises naturally from the
dual operator governing gauge transformations

C : Ω0(X)→ Ω1(X)⊕ (S+ ⊗ L), φ 7→ (−dφ, iφM).

Let T : Ω1(X)⊕ (S+ ⊗ L)→ Ω0(X)⊕ Ω2,+(X)⊕ (S− ⊗ L),

be the operator governing equation (6.168), namely, the operator which
allows us to rewrite (6.168) as T (ψ,N) = 0. Then T is an elliptic op-
erator, the index Ind(T ) of which yields the virtual dimension of M. A
straightforward application of the Atiyah–Singer index Theorem gives

Ind(T ) = −2χ(X) + 3σ(X)
4

+ c1(L)2,

where χ(X) is the Euler character of X, σ(X) its signature index and c1(L)2

is the square of the first Chern class of L evaluated on X in the standard
way.

When Ind(T ) equals zero, the moduli space generically consists of a
finite number of points, M = {pt : t = 1, 2, ..., I}. Let εt denote the sign
of the determinant of the operator T at pt, which can be defined with
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mathematical rigor. Then the SW invariant of the 4–manifold X is defined
by
∑I

1 εt.

The fact that this is indeed an invariant(i.e., independent of the metric)
of X is not very difficult to prove, and we refer to [Witten (1994)] for
details. As a matter of fact, the number of solutions of a system of equations
weighted by the sign of the operator governing the equations(i.e., the analog
of T ) is a topological invariant in general [Witten (1994)]. This point of view
has been extensively explored by Vafa and Witten [Vafa and Witten (1994)]
within the framework of topological quantum field theory in connection with
the so called S duality. Here we wish to explore the SW invariants following
a similar line as that taken in [Witten (1988a); Vafa and Witten (1994)].

6.5.2.2 Topological Lagrangian

Introduce a Lie super–algebra with an odd generator Q and two even gen-
erators U and δ obeying the following (anti)commutation relations [Zhang
et. al. (1995)]

[U,Q] = Q, [Q,Q] = 2δ, [Q, δ] = 0. (6.169)

We will call U the ghost number operator, and Q the BRST–operator .
Let A be a connection of L and M ∈ S+ ⊗ L. We define the action of

the super–algebra on these fields by requiring that δ coincide with a gauge
transformation with a gauge parameter φ ∈ Ω0(X). The field multiplets
associated with A and M furnishing representations of the super–algebra
are (A,ψ, φ), and (M,N), where ψ ∈ Ω1(X), φ ∈ Ω0(X), and N is a section
of S+⊗L. They transform under the action of the super–algebra according
to

[Q,Ai] = ψi, [Q,M ] = N,

[Q,ψi] = −∂iφ, [Q,N ] = iφM, [Q,φ] = 0.

We assume that both A and M have ghost number 0, and thus will be
regarded as bosonic fields when we study their quantum field theory. The
ghost numbers of other fields can be read off the above transformation rules.
We have that ψ and N are of ghost number 1, thus are fermionic, and φ is of
ghost number 2 and bosonic. Note that the multiplet (A,ψ, φ) is what one
would get in the topological field theory for Donaldson invariants except
that our gauge group is U(1), while the existence of M and N is a new
feature. Also note that both M and ψ have the wrong statistics.
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In order to construct a quantum field theory which will reproduce the
SW invariants as correlation functions, anti–ghosts and Lagrangian mul-
tipliers are also required. We introduce the anti–ghost multiplet (λ, η)
∈ Ω0(X), such that

[U, λ] = −2λ, [Q,λ] = η, [Q, η] = 0,

and the Lagrangian multipliers (χ,H) ∈ Ω2,+(X), and (µ, ν) ∈ S−⊗L such
that

[U, χ] = −χ, [Q,χ] = H, [Q,H] = 0;

[U, µ] = −µ, [Q,µ] = ν, [Q, ν] = iφµ.

With the given fields, we construct the following functional which has
ghost number -1:

V =
∫
X

{
[∇kψk +

i
2

(NM −MN)]λ− χkl
(
Hkl −F+

kl −
i
2
M̄ΓklM

)
− µ̄ (ν − iDAM)− (ν − iDAM)µ

}
, (6.170)

where the indices of the tensorial fields are raised and lowered by a given
metric g on X, and the integration measure is the standard

√
gd4x. Also,

M and µ̄ etc. represent the Hermitian conjugate of the spinorial fields. In
a formal language, M ∈ S+ ⊗ L−1 and µ̄, ν̄, DAM ∈ S− ⊗ L−1. Following
the standard procedure in constructing topological quantum field theory,
we take the classical action of our theory to be [Zhang et. al. (1995)]:
S = [Q,V ], which has ghost number 0. One can easily show that S is
also BRST invariant, i.e., [Q,S] = 0, thus it is invariant under the full
super–algebra (6.169).

The bosonic Lagrangian multiplier fields H and ν do not have any dy-
namics, and so can be eliminated from the action by using their equations
of motion

Hkl =
1
2

(
F+
kl +

i
2
M̄ΓklM

)
, ν =

1
2

iDAM. (6.171)

Then we arrive at the following expression for the action [Zhang et. al.
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(1995)]

S =
∫
X

{
[−∆φ+MMφ− iNN ]λ− [∇kψk +

i
2

(NM −MN)]η + 2iφµ̄µ

+ (iDAN − γ.ψM)µ− µ̄ (iDAN − γ.ψM)

− χkl
[(
∇kψl −∇lψk

)+

+
i
2
(
M̄ΓklN + N̄ΓklM

)]}
+ S0, (6.172)

where S0 is given by

S0 =
∫
X

{
1
4
|F+ +

i
2
M̄ΓM |2 +

1
2
|DAM |2

}
.

It is interesting to observe that S0 is nonnegative, and vanishes if and only
if A and M satisfy the SW monopole equations. As pointed out in [Witten
(1994)], S0 can be rewritten as

S0 =
∫
X

{
1
4
|F+|2 +

1
4
|M |4 +

1
8
R|M |2 + gijDiMDjM

}
,

where R is the scalar curvature of X associated with the metric g. If R
is nonnegative over the entire X, then the only square integrable solution
of the monopole equations (6.167) is A is a anti-self-dual connection and
M = 0.

6.5.2.3 Quantum Field Theory

We will now investigate the quantum field theory defined by the classical
action (6.172) with the path integral method. Let F collectively denote all
the fields. The partition function of the theory is defined by [Zhang et. al.
(1995)]

Z =
∫
DF exp(− 1

e2
S),

where e ∈ R is the coupling constant. The integration measure DF is
defined on the space of all the fields. However, since S is invariant under
the gauge transformations, we assume the integration over the gauge field
to be performed over the gauge orbits of A. In other words, we fix a gauge
for the A field using, say, a Faddeev–Popov procedure. This can be carried
out in the standard manner, thus there is no need for us to spell out the
details here. The integration measure DF can be shown to be invariant
under the super charge Q. Also, it does not explicitly involve the metric g
of X.
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Let W be any operator in the theory. Its correlation function is defined
by

Z[W ] =
∫
DF exp(− 1

e2
S)W.

It follows from the Q invariance of both the action S and the path integra-
tion measure that for any operator W ,

Z[[Q,W ]] =
∫
DF exp(− 1

e2
S)[Q,W ] = 0.

For the purpose of constructing topological invariants of the 4–manifold
X, we are particularly interested in operators W which are BRST–closed,

[Q,W ] = 0, (6.173)

but not BRST–exact, i.e., can not be expressed as the (anti)–commutators
of Q with other operators. For such a W , if its variation with respect to
the metric g is BRST exact,

δgW = [Q,W ′], (6.174)

then its correlation function Z[W ] is a topological invariant of X (by that
we really mean that it does not depend on the metric g):

δgZ[W ] =
∫
DF exp(− 1

e2
S)[Q,W ′ − 1

e2
δgV.W ] = 0.

In particular, the partition function Z itself is a topological invariant.
Another important property of the partition function is that it does not

depend on the coupling constant e:

∂Z

∂e2
=
∫
DF 1

e4
exp(− 1

e2
S)[Q,V ] = 0.

Therefore, Z can be computed exactly in the limit when the coupling con-
stant goes to zero. Such a computation can be carried out in the standard
way: Let Ao, Mo be a solution of the equations of motion of A and M aris-
ing from the action S. We expand the fields A and M around this classical
configuration,

A = Ao + ea, M = Mo + em,

where a and m are the quantum fluctuations of A and M respectively. All
the other fields do not acquire background components, thus are purely
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quantum mechanical. We scale them by the coupling constant e, by setting
N to eN , φ to eφ etc.. To the order o(1) in e2, we have

Z =
∑
p

exp(− 1
e2
S

(p)
cl )

∫
DF ′ exp(−S(p)

q ),

where S(p)
q is the quadratic part of the action in the quantum fields and

depends on the gauge orbit of the classical configuration Ao, Mo, which we
label by p. Explicitly [Zhang et. al. (1995)],

S(p)
q =

∫
X

{
[−∆φ+M

o
Moφ− iNN ]λ− [∇kψk +

i
2

(NMo −Mo
N)]η + 2iφµ̄µ

+ (iDAoN − γ.ψMo)µ− µ̄ (iDAoN − γ.ψMo)

− χkl
[(
∇kψl −∇lψk

)+

+
i
2
(
M̄oΓklN + N̄ΓklMo

)]
+

1
4
|f+ +

i
2

(m̄ΓMo + M̄oΓm)|2 +
1
2
|iDAom+ γ.aMo|2

}
,

with f+ the self–dual part of f = da. The classical part of the action is
given by S

(p)
cl = S0|A=Ao,M=Mo .The integration measure DF ′ has exactly

the same form as DF but with A replaced by a, and M by m, M̄ by m̄

respectively. Needless to say, the summation over p runs through all gauge
classes of classical configurations.

Let us now examine further features of our quantum field theory. A
gauge class of classical configurations may give a non–zero contribution
to the partition function in the limit e2 → 0 only if S(p)

cl vanishes, and
this happens if and only if Ao and Mo satisfy (6.167). Therefore, the SW
monopole equations are recovered from the quantum field theory.

The equations of motion of the fields ψ and N in the semi–classical ap-
proximation can be easily derived from the quadratic action S(p)

q , solutions
of which are the zero modes of the quantum fields ψ and N . The equations
of motion read

(dψ)+kl +
i
2
(
M̄oΓklN + N̄ΓklMo

)
= 0, DAoN + γ.ψM0 = 0,

∇kψk +
i
2

(NM −MN) = 0. (6.175)

Note that they are exactly the same equations which we have already
discussed in (6.168). The first two equations are the linearization of the
monopole equations, while the last is a ‘gauge fixing condition’ for ψ. The
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dimension of the space of solutions of these equations is the virtual dimen-
sion of the moduli spaceM. Thus, within the context of our quantum field
theoretical model, the virtual dimension ofM is identified with the number
of the zero modes of the quantum fields ψ and N .

For simplicity we assume that there are no zero modes of ψ and N , i.e.,
the moduli space is zero–dimensional. Then no zero modes exist for the
other two fermionic fields χ and µ. To compute the partition function in
this case, we first observe that the quadratic action S(p)

q is invariant under
the supersymmetry obtained by expanding Q to first order in the quantum
fields around the monopole solution Ao, Mo (equations of motion for the
nonpropagating fields H and ν should also be used.). This supersymmetry
transforms the set of 8 real bosonic fields (each complex field is counted as
two real ones; the ai contribute 2 upon gauge fixing.) and the set of 16
fermionic fields to each other. Thus at a given monopole background we
get [Zhang et. al. (1995)]

∫
DF ′ exp(−S(p)

q ) =
Pfaff(∇F )
|Pfaff(∇F )|

= ε(p),

where ε(p) is +1 or -1. In the above equation, ∇F is the skew symmetric
first order differential operator defining the fermionic part of the action

S
(p)
q , which can be read off from S

(p)
q to be ∇F =

(
0 T
−T ∗ 0

)
. Therefore,

ε(p) is the sign of the determinant of the elliptic operator T at the monopole
background Ao, Mo, and the partition function Z =

∑
p ε

(p) coincides with
the SW invariant of the 4–manifold X.

When the dimension of the moduli space M is greater than zero, the
partition function Z vanishes identically, due to integration over zero modes
of the fermionic fields. In order to get any non trivial topological invariants
for the underlying manifold X, we need to examine correlations functions of
operators satisfying equations (6.173) and (6.174). A class of such operators
can be constructed following the standard procedure [Witten (1994)]. We
define the following set of operators
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Wk,0 =
φk

k!
, Wk,1 = ψWk−1,0,

Wk,2 = FWk−1,0 −
1
2
ψ ∧ ψWk−2,0, (6.176)

Wk,3 = F ∧ ψWk−2,0 −
1
3!
ψ ∧ ψ ∧ ψWk−3,0,

Wk,4 =
1
2
F ∧ FWk−2,0 −

1
2
F ∧ ψ ∧ ψWk−3,0 −

1
4!
ψ ∧ ψ ∧ ψ ∧ ψWk−4,0.

These operators are clearly independent of the metric g ofX. Although they
are not BRST invariant except for Wk,0, they obey the following equations
[Zhang et. al. (1995)]

dWk,0 = −[Q,Wk,1], dWk,1 = [Q,Wk,2],

dWk,2 = −[Q,Wk,3], dWk,3 = [Q,Wk,4], dWk,4 = 0,

which allow us to construct BRST invariant operators from the the W ’s
in the following way: Let Xi, i = 1, 2, 3, X4 = X, be compact manifolds
without boundary embedded in X. We assume that these submanifolds are
homologically nontrivial. Define

Ôk,0 = Wk,0, Ôk,i =
∫
Xi

Wk,i, (i = 1, 2, 3, 4). (6.177)

As we have already pointed out, Ôk,0 is BRST invariant. It follows from
the descendent equations that

[Q, Ôk,i] =
∫
Xi

[Q,Wk,i] =
∫
Xi

dWk,i−1 = 0.

Therefore the operators Ô indeed have the properties (6.173) and (6.174).
Also, for the boundary ∂K of an i + 1D manifold K embedded in X, we
have ∫

∂K

Wk,i =
∫
K

dWk,i = [Q,
∫
K

Wk,i+1],

is BRST trivial. The correlation function of
∫
∂K

Wk,i with any BRST
invariant operator is identically zero. This in particular shows that the Ô’s
only depend on the homological classes of the submanifolds Xi.
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6.5.2.4 Dimensional Reduction and 3D Field Theory

In this subsection we dimensionally reduce the quantum field theoretical
model for the SW invariant from 4D to 3D, thus to get a new topological
quantum field theory defined on 3−manifolds. Its partition function yields a
3−manifold invariant, which can be regarded as the SW version of Casson’s
invariant [Akbulut and McCarthy (1990); Taubes (1994)].

We take the 4–manifold X to be of the form Y × [0, 1] with Y being a
compact 3−manifold without boundary. The metric on X will be taken to
be

(ds)2 = (dt)2 + gij(x)dxidxj ,

where the ‘time’ t−independent g(x) is the Riemannian metric on Y . We
assume that Y admits a spin structure which is compatible with the Spinc
structure of X, i.e., if we think of Y as embedded in X, then this embedding
induces maps from the Spinc bundles S± ⊗ L of X to S̃ ⊗ L, where S̃ is a
spin bundle and L is a line bundle over Y .

To perform the dimensional reduction, we impose the condition that all
fields are t in dependent. This leads to the following action [Zhang et. al.
(1995)]

S =
∫
√
gd3x

{
[−∆φ+MMφ− iNN ]λ− [∇kψk +

i
2

(NM −MN)]η + 2iφµ̄µ

+ [i(DA + b)N − (σ.ψ − τ)M ]µ− µ̄ [i(DA + b)N − (σ.ψ − τ)M ]

− 2χk
[
−∂kτ + ∗(∇ψ)k − M̄σkN − N̄σkM

]
+

1
4
| ∗ F − ∂b− M̄σM |2 +

1
2
|(DA + b)M |2

}
, (6.178)

where the k is a 3D index, and σk are the Pauli matrices. The fields
b, τ ∈ Ω0(Y ) respectively arose from A0 and ψ0 of the 4D theory, while the
meanings of the other fields are clear. The BRST symmetry in 4D carries
over to the 3D theory. The BRST transformations rules for (Ai, ψi, φ),
i = 1, 2, 3, (M,N), and (λ, η) are the same as before, but for the other
fields, we have

[Q, b] = τ , [Q, τ ] = 0,

[Q,χk] =
1
2
(
∗Fk − ∂kb− M̄σkM

)
,

[Q,µ] =
1
2

i(DA + b)M.
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The action S is cohomological in the sense that S = [Q,V3], with
V3 being the dimensionally reduced version of V defined by (6.170), and
[Q,S] = 0. Thus it gives rise to a topological field theory upon quantization.
The partition function of the theory

Z =
∫
DF exp(− 1

e2
S),

can be computed exactly in the limit e2 → 0, as it is coupling constant
independent. We have, as before,

Z =
∑
p

exp(− 1
e2
S

(p)
cl )

∫
DF ′ exp(−S(p)

q ),

where S(p)
q is the quadratic part of S expanded around a classical configu-

ration with the classical parts for the fields A,M, b being Ao,Mo, bo, while
those for all the other fields being zero. The classical action S

(p)
cl is given

by

S
(p)
cl =

∫
Y

{
1
4
| ∗ Fo − dbo − M̄oσMo|2 +

1
2
|(DAo + bo)Mo|2

}
,

which can be rewritten as [Zhang et. al. (1995)]

S
(p)
cl =

∫
Y

{
1
4
| ∗ Fo − M̄oσMo|2 +

1
2
|DAoM

o|2 +
1
2
|dbo|2 +

1
2
|boMo|2

}
.

In order for the classical configuration to have non–vanishing contribu-
tions to the partition function, all the terms in S(p)

cl should vanish separately.
Therefore,

∗ Fo − M̄oσMo = 0, DAoM
o = 0, bo = 0, (6.179)

where the last condition requires some explanation. When we have a trivial
solution of the equations (6.179), it can be replaced by the less stringent
condition dbo = 0. However, in a more rigorous treatment of the problem at
hand, we in general perturb the equations (6.179), then the trivial solution
does not arise.

Let us define an operator

T̃ : Ω0(Y )⊕ Ω1(Y )⊕ (S̃ ⊗ L)→ Ω0(Y )⊕ Ω1(Y )⊕ (S̃ ⊗ L),

(τ , ψ,N) 7→ (−d∗ψ +
i
2

(NM −MN), ∗(dψ)− dτ − N̄σM −MσN,

iDAN − (σ.ψ − τ)M), (6.180)
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where the complex bundle S̃ ⊗ L should be regarded as a real one with
twice the rank. This operator is self–adjoint, and is also obviously elliptic.
We will assume that it is Fredholm as well. In terms of T̃ , the equations
of motion of the fields χi and µ can be expressed as [Zhang et. al. (1995)]
T̃ (p)(τ , ψ,N) = 0, where T̃ (p) is the opeartor T̃ with the background fields
(Ao,Mo) belonging to the gauge class p of classical configurations .

When the kernel of T̃ is zero, the partition function Z does not vanish
identically. An easy computation leads to Z =

∑
p ε

(p), where the sum is
over all gauge inequivalent solutions of (6.179), and ε(p) is the sign of the
determinant of T̃ (p).

A rigorous definition of the sign of the det(T̃ ) can be devised. However,
if we are to compute only the absolute value of Z, then it is sufficient to
know the sign of det(T̃ ) relative to a fixed gauge class of classical configu-
rations. This can be achieved using the mod − 2 spectral flow of a family
of Fredholm operators T̃t along a path of solutions of (6.179). More ex-
plicitly, let (Ao,Mo) belong to the gauge class of classical configurations
p, and (Ão, M̃o) in p̃. We consider the solution of the SW equation on
X = Y × [0, 1] with A0 = 0 and also satisfying the following conditions

(A,M)|t=0 = (Ao,Mo), (A,M)|t=1 = (Ão, M̃o).

Using this solution in T̃ results in a family of Fredholm operators, which
has zero kernels at t = 0 and 1. The spectral flow of T̃t, denoted by
q(p, p̃), is defined to be the number of eigenvalues which cross zero with
a positive slope minus the number which cross zero with a negative slope.
This number is a well defined quantity, and is given by the index of the
operator ∂

∂t − T̃t. In terms of the spectral flow, we have [Zhang et. al.
(1995)]

det(T̃ (p))
det(T̃ (p̃))

= (−1)q(p,p̃).

Equations (6.179) can be derived from the functional

Sc−s =
1
2

∫
Y

A ∧ F + i
∫
Y

√
gd3xMDAM.

(It is interesting to observe that this is almost the standard Lagrangian
of a U(1) Chern–Simons theory coupled to spinors, except that we have
taken M to have bosonic statistics.) Sc−s is gauge invariant modulo a
constant arising from the Chern–Simons term upon a gauge transformation.
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Therefore, ( δSc−sδA , δSc−s
δM̄

) defines a vector field on the quotient space of all
U(1) connections A tensored with the S̃ × L sections by the U(1) gauge
group G, i.e., W = (A × (S̃ ⊗ L))/G. Solutions of (6.179) are zeros of
this vector field, and T̃ (p) is the Hessian at the point p ∈ W. Thus the
partition Z is nothing else but the Euler character of W. This geometrical
interpretation will be spelt out more explicitly in the next subsection by
re–interpreting the theory using the Mathai–Quillen formula [Mathai and
Quillen (1986)].

6.5.2.5 Geometrical Interpretation

To elucidate the geometric meaning of the 3D theory obtained in the last
section, we now cast it into the framework of Atiyah and Jeffrey [Atiyah
and Jeffrey (1990)]. Let us briefly recall the geometric set up of the Mathai–
Quillen formula as reformulated in reference [Atiyah and Jeffrey (1990)].
Let P be a Riemannian manifold of dimension 2m + dimG, and G be a
compact Lie group acting on P by isometries. Then P → P/G is a principle
bundle. Let V be a 2m dimensional real vector space, which furnishes a
representation G→ SO(2m). Form the associated vector bundle P ×G V .
Now the Thom form of P ×G V can be expressed [Zhang et. al. (1995)]

U =
exp(−x2)

(2π)dimGπm

∫
exp

{
iχφχ

4
+ iχdx− i〈δν, λ〉

− 〈φ,Rλ〉 +〈ν, η〉}DηDχDφDλ, (6.181)

where x = (x1, ..., x2m) is the coordinates of V , φ and λ are bosonic vari-
ables in the Lie algebra g of G, and η and χ are Grassmannian variables
valued in the Lie algebra and the tangent space of the fiber respectively. In
the above equation, C maps any η ∈ g to the element of the vertical part of
TP generated by η; ν is the g - valued one form on P defined by 〈ν(α), η〉
= 〈α,C(η)〉, for all vector fields α; and R = C∗C. Also, δ is the exterior
derivative on P .

Now we choose a G invariant map s : P → V , and pull back the Thom
form U . Then the top form on P in s∗U is the Euler class. If {δp} forms a
basis of the cotangent space of P (note that ν and δs are one forms on P ),
we replace it by a set of Grassmannian variables {ψ} in s∗U , then intergrate
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them away. We arrive at

Υ =
1

(2π)dimGπm

∫
exp

{
−|s|2 +

iχφχ
4

+ iχδs− i〈δν, λ〉

− 〈φ,Rλ〉 +〈ψ,Cη〉}DηDχDφDλDψ, (6.182)

the precise relationship of which with the Euler character of P ×G V is∫
P

Υ = Vol(G)χ(P×G).

It is rather obvious that the action S defined by (6.172) for the 4D
theory can be interpreted as the exponent in the integrand of (6.182), if
we identify P with A × Γ(W+), and V with Ω2,+(X) × Γ(W−), and set
s = (F+ + i

2M̄ΓM,DAM). Here A is the space of all U(1) connections of
det(W+), and Γ(W±) are the sections of S± ⊗ L respectively.

For the 3D theory, we wish to show that the partition function yields
the Euler number of W. However, the tangent bundle of W cannot be
regarded as an associated bundle with the principal bundle, for which for
the formulae (6.181) or (6.182) can readily apply, some further work is
required.

Let P be the principal bundle over P/G, V , V ′ be two orthogonal
representions of G. Suppose there is an embedding from P×GV ′ to P×GV
via a G−map γ(p) : V ′ → V for p ∈ P . Denote the resulting quotient
bundle as E. In order to derive the Thom class for E, one needs to choose
a section of E, or equivalently, a G−map s : P → V such that s(p) ∈
(Imγ(p))⊥. Then the Euler class of E can be expressed as π∗ρ∗U , where U
is the Thom class of P ×G V , ρ is a G−map: P × V ′ → P × V defined by

ρ(p, τ) = (p, γ(p)τ + s(p)),

and π∗ is the integration along the fiber for the projection π : P × V ′ →
P/G. Explicitly, [Zhang et. al. (1995)]

π∗ρ
∗(U) =

∫
exp

{
−|γ(p)τ + s(p)|2 + iχφχ+ iχδ(γ(p)τ + s(p))

− i〈δν, λ〉 − 〈φ,Rλ〉+ 〈ν, Cη〉 }DχDφDτDηDλ. (6.183)

Consider the exact sequence

0 −→ (A× Γ(W ))×G Ω0(Y )
j−→ (A× Γ(W ))×G (Ω1(Y )× Γ(W )),
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where j(A,M) : b 7→ (−db, bM) (assuming that M 6= 0). Then the tangent
bundle of A×G Γ(W ) can be Regarded as the quotient bundle

(A× Γ(W ))×G (Ω1(Y )× Γ(W ))/Im(j).

We define a vector field on A×G Γ(W ) by

s(A,M) = (∗FA − M̄σM,DAM),

which lies in Im(j)⊥:∫
Y

(∗FA − M̄σM) ∧ ∗(−db) +
∫
Y

√
gd3x〈DAM, bM〉 = 0, (6.184)

where we have used the short hand notation 〈M1,M2〉 = 1
2 (M1M2 +

M2M1).
Formally applying the formula (6.183) to the present infinite–

dimensional situation, we get the Euler class π∗ρ∗(U) for the tangent bun-
dle T (A×G Γ(W )), where ρ is the G−invariant map ρ is defined by

ρ : Ω0(Y ) −→ Ω1(Y )×Γ(W ), ρ(b) = (−db+∗FA−M̄σM, (DA+b)M),

π is the projection (A×Γ(W ))×G Ω0(Y ) −→ A×G Γ(W ), and π∗ signifies
the integration along the fiber. Also U is the Thom form of the bundle

(A× Γ(W ))×G (Ω1(Y )× Γ(W )) −→ A×G Γ(W ).

To get a concrete feel about U , we need to explain the geometry of this
bundle. The metric on Y and the Hermitian metric 〈. , .〉 on Γ(W ) naturally
define a connection. The Maurer–Cartan connection on A −→ A/G is flat
while the Hermitian connection on has the curvature iφµ ∧ µ̄. This gives
the expression of term i(χ, µ)φ(χ, µ) in (6.182) in our case.

In our infinite–dimensional setting, the map C is given by

C : Ω0(Y ) −→ T(A,M)(A× Γ(W )), C(η) = (−dη, iηM),

and its dual is given by

C∗ : Ω1(Y )× Γ(W ) −→ Ω0(Y ), C∗(ψ,N) = −d∗ψ + 〈N, iM〉.

The one form 〈ν, η〉 on A× Γ(W ) takes the value

〈(ψ,N), Cη〉 = 〈−d∗ψ, η〉+ 〈N, iM〉η
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on the vector field (ψ,N). We also easily get R(λ) = −∆λ + 〈M,M〉λ,
where ∆ = d∗d. The 〈δν, λ〉 is a two form on A × Γ(W ) whose value on
(ψ1, N1), (ψ2, N2) is -〈N1, N2〉λ.

Combining all the information together, we arrive at the following for-
mula,

π∗ρ
∗(U) =

∫
exp

{
−1

2
|ρ|2 + i(χ, µ)δρ+ 2iφµµ̄

+ 〈∆φ, λ〉 − φλ〈M,M〉+ i〈N,N〉λ
+ 〈ν, η〉}DχDφDλDηDb. (6.185)

Note that the 1–form i(χ, µ)δρ on A × Γ(W ) × Ω0(Y ) contacted with the
vector field (φ,N, b) leads to

2χk
[
−∂kτ + ∗(∇ψ)k − M̄σkN − N̄σkM

]
+2〈µ, [i(DA + b)N − (σ.ψ − τ)M ]〉;

and the relation (6.184) gives |ρ|2 = |∗F−M̄σM |2+|db|2+|DAM |2+b2|M |2.
Finally we get the Euler character

π∗ρ
∗(U) =

∫
exp(−S)DχDφDλDηDb, (6.186)

where S is the action (6.178) of the 3D theory defined on the manifold Y .
Integrating (6.186) over A×G Γ(W ) leads to the Euler number∑

[(A,M)]:s(A,M)=0

ε(A,M),

which coincides with the partition function Z of our 3D theory.

6.5.3 TQFTs Associated with SW–Monopoles

Recall that TQFTs are often used to study topological nature of mani-
folds. In particular, 3D and 4D TQFTs are well developed. The most
well–known 3D TQFT would be the Chern–Simons theory, whose partion
function gives Ray–Singer torsion of 3–manifolds and the other topologi-
cal invariants can be obtained as gauge invariant observables i.e., Wilson
loops. The correlation functions can be identified with knot or link in-
variants e.g., Jones polynomal or its generalizations. On the other hand,
in 4D, a twisted N = 2 supersymmetric YM theory developed by Wit-
ten [Witten (1988a)] also has a nature of TQFT. This YM theory can be
interpreted as Donaldson theory and the correlation functions are iden-
tified with Donaldson polynomials, which classify smooth structures of
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topological 4–manifolds. A new TQFT on 4–manifolds was discovered
in SW studies of electric–magnetic duality of supersymmetric gauge the-
ory. As discussed before, Seiberg and Witten [Seiberg and Witten (1994a);
Seiberg and Witten (1994b)] studied the electric–magnetic duality of N = 2
supersymmetric SU(2) YM gauge theory, by using a version of Montonen–
Olive duality and obtained exact solutions. According to this result, the
exact low energy effective action can be determined by a certain elliptic
curve with a parameter u = 〈Tr(φ)2〉, where φ is a complex scalar field
in the adjoint representation of the gauge group, describing the quantum
moduli space. For large u, the theory is weakly–coupled and semi–classical,
but at u = ±Λ2 corresponding to strong coupling regime, where Λ is the
dynamically generated mass scale, the elliptic curve becomes singular and
the situation of the theory changes drastically. At these singular points,
magnetically charged particles become massless. Witten showed that at
u = ±Λ2 the TQFT was related to the moduli problem of counting the solu-
tion of the (Abelian) ‘Seiberg–Witten monopole equations’ [Witten (1994)]
and it gave a dual description for the SU(2) Donaldson theory.

It turns out that in 3D a particular TQFT of Bogomol’nyi monopoles
can be obtained from a dimensional reduction of Donaldson theory and the
partition function of this theory gives the so–called Casson invariant of
3–manifolds [Atiyah and Jeffrey (1990)].

Ohta [Ohta (1998)] discussed TQFTs associated with the 3D version
of both Abelian and non–Abelian SW–monopoles, by applying Batalin–
Vilkovisky quantization procedure. In particular, Ohta constructed the
topological actions, topological observables and BRST transformation rules.

In this subsection, mainly following [Ohta (1998)], we will discuss
TQFTs associated with both Abelian and non–Abelian SW–monopoles.
We will use the following notation.

Let X be a compact orientable Spin 4–manifold without boundary and
gµν be its Riemannian metric tensor (with g = det gµν). Here we use
xµ as the local coordinates on X. γµ are Dirac’s gamma matrices and
σµν = [γµ, γν ]/2 with {γµ, γν} = gµν . M is a Weyl fermion and M is a
complex conjugate of M . (We will suppress spinor indices.) The Lie algebra
g is defined by [T a, T b] = ifabcT c, where T a is a generator normalized
as Tr(T aT b) = δab. The symbol fabc is a structure constant of g and is
antisymmetric in its indices. The Greek indices µ, ν, α etc run from 0 to 3.
The Roman indices a, b, c, · · · are used for the Lie algebra indices running
from 1 to dim g, whereas i, j, k, · · · are the indices for space coordinates.
Space–time indices are raised and lowered with gµν . The repeated indices
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are assumed to be summed. εµνρσ is an antisymmetric tensor with ε0123 = 1.
We often use the abbreviation of roman indices as θ = θaT a etc., in order
to suppress the summation over Lie algebra indices.

Brief Review of TQFT

Firstly, we give a brief review of TQFT (compare with Witten’s TQFT
presented in subsection 6.5.1 above).

Let φ be any field content. For a local symmetry of φ, we can construct
a nilpotent BRST–operator QB (Q2

B = 0). The variation of any functional
O of φ is denoted by δO = {QB ,O}, where the bracket {∗, ∗} represnts a
graded commutator, that is, if O is bosonic, the bracket means a commuta-
tor [∗, ∗] and otherwise it is an anti–bracket. Now, we can give the definition
of topological field theory, as given in [Birmingham et. al. (1991)]:

A topological field theory consists of:

(1) a collection of Grassmann graded fields φ on an nD Riemannian man-
ifold X with a metric g,

(2) a nilpotent Grassmann odd operator Q,
(3) physical states to be Q−cohomology classes,
(4) an energy–momentum tensor Tαβ which is Q−exact for some functional

Vαβ such as

Tαβ = {Q,Vαβ(φ, g)}.

In this definition, Q is often identified with QB and is in general inde-
pendent of the metric. Now, recall that there are two broad types of
TQFTs satisfying this definition and they are classified into Witten–
type [Witten (1994)] or Schwarz–type [Schwarz ((1978))].

For Witten–type TQFT, the quantum action Sq which comprises the
classical action, ghost and gauge fixing terms, can be represented by Sq =
{QB , V }, for some function V of metric and fields and BRST charge QB .
Under the metric variation δg of the partition function Z, it is easy to see
that

δgZ =
∫
Dφ e−Sq

(
−1

2

∫
X

dnx
√
gδgαβTαβ

)
=
∫
Dφ e−Sq{Q,χ} ≡ 〈{Q,χ}〉 = 0, (6.187)

where χ = −1
2

∫
X

dnx
√
gδgαβVαβ .



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Geometrical Path Integrals and Their Applications 1121

The last equality in (6.187) follows from the BRST invariance of the vacuum
and means that Z is independent of the local structure of X, that is, Z is
a topological invariant of X.

In general, for Witten type theory, QB can be constructed by an in-
troduction of a topological shift with other local gauge symmetry [Ohta
(1998)]. For example, in order to get the topological YM theory on four
manifold M4, we introduce the shift in the gauge transformation for the
gauge field Aaµ such as δAaµ = Dµθ

a+εaµ, where Dµ is a covariant derivative,
θa and εaµ are the (Lie algebra valued) usual gauge transformation param-
eter and topological shift parameter, respectively. In order to see the role
of this shift, let us consider the first Pontryagin class on M4 given by

S =
1
8

∫
M4

εµνρσF aµνF
a
ρσd

4x, (6.188)

where F aµν is a field strength of the gauge field. We can easily check the
invariance of (6.188) under the action of δ. In this sense, (6.188) has a larger
symmetry than the usual YM gauge symmetry. Taking this into account,
we can construct the topological YM gauge theory. We can also consider
similar ‘topological’ shifts for matter fields.

In addition, in general, Witten type topological field theory can be ob-
tained from the quantization of some Langevin equations. This approach
has been used for the construction of several topological field theories, e.g.,
supersymmetric quantum mechanics, topological sigma models or Donald-
son theory (see [Birmingham et. al. (1991)]).

On the other hand, Schwarz–type TQFT [Schwarz ((1978))] begins with
any metric independent classical action Sc as a starting point, but Sc is
assumed not to be a total derivative. Then the quantum action (up to
gauge fixing term) can be written by

Sq = Sc + {Q,V (φ, g)}, (6.189)

for some function V . For this quantum action, we can easily check the
topological nature of the partition function, but note that the energy–
momentum tensor contributes only from the second term in (6.189). One
of the differences between Witten type and Schwarz type theories can be
seen in this point. Namely, the energy–momentum tensor of the classical
action for Schwarz type theory vanishes because it is derived as a result of
metric variation.

Finally, we comment on the local symmetry of Schwarz type theory. Let
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us consider the Chern–Simons theory as an example. The classical action,

SCS =
∫
M3

d3x

(
A ∧ dA+

2
3
A ∧A ∧A

)
, (6.190)

is a topological invariant , which gives the second Chern class of 3–manifold
M3. As is easy to find, SCS is not invariant under the topological gauge
transformation, although it is YM gauge invariant. Therefore the quantiza-
tion is proceeded by the standard BRST method. This is a general feature
of Schwarz–type TQFT.

6.5.3.1 Dimensional Reduction

First, let us recall the SW monopole equations in 4D. We assume that X
has Spin structure. Then there exist rank two positive and negative spinor
bundles S±. For Abelian gauge theory, we introduce a complex line bundle
L and a connection Aµ on L. The Weyl spinor M(M) is a section of S+⊗L
(S+ ⊗ L−1), hence M satisfies the positive chirality condition γ5M = M .
If X does not have Spin structure, we introduce Spinc structure and Spinc

bundles S± ⊗ L, where L2 is a line bundle. In this case, M should be
interpreted as a section of S+ ⊗ L. Below, we assume Spin structure.

Recall that the 4D Abelian SW monopole equations are the following
set of differential equations

F+
µν +

i
2
MσµνM = 0, iγµDµM = 0, (6.191)

where F+
µν is the self–dual part of the U(1) curvature tensor

Fµν = ∂µAν − ∂νAµ, F+
µν = P+

µνρσF
ρσ, (6.192)

while P+
µνρσ is the self–dual projector defined by

P+
µνρσ =

1
2

(
δµρδνσ +

√
g

2
εµνρσ

)
.

Note that the second term in the first equation of (6.191) is also self–
dual. On the other hand, the second equation in (6.191) is a twisted Dirac
equation, whose covariant derivative Dµ is given by

Dµ = ∂µ + ωµ − iAµ, where ωµ =
1
4
ωαβµ [γα, γβ ]

is the spin connection 1–form on X.
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In order to perform a reduction to 3D, let us first assume that X is a
product manifold of the form X = Y × [0, 1], where Y is a 3D compact
manifold which has Spin structure. We may identify t ∈ [0, 1] as a ‘time’
variable, or, we assume t as the zero–th coordinate of X, whereas xi (i =
1, 2, 3) are the coordinates on (space manifoild) Y . Then the metric is given
by

ds2 = dt2 + gijdx
idxj .

The dimensional reduction is proceeded by assumnig that all fields are
independent of t. (Below, we suppress the volume factor

√
g of Y for

simplicity.)
First, let us consider the Dirac equation. After the dimensional reduc-

tion, the Dirac equation will be

γiDiM − iγ0A0M = 0.

As for the first monopole equation, using (6.192) we find that

Fi0 +
1
2
εi0jkF

jk = −iMσi0M, Fij + εijk0F
k0 = −iMσijM. (6.193)

Since the above two equations are dual each other, the first one, for instance,
can be reduced to the second one by a contraction with the totally anti–
symmetric tensor. Thus, it is sufficient to consider one of them. Here, we
take the first equation in (6.193).

After the dimensional reduction, (6.193) will be

∂iA0 −
1
2
εijkF

jk = −iMσi0M, (6.194)

where we have set εijk ≡ ε0ijk.
Therefore, the 3D version of the SW equations are given by

∂ib−
1
2
εijkF

jk + iMσi0M = 0, i(γiDi − iγ0b)M = 0, (b ≡ A0).

(6.195)
It is now easy to establish the non–Abelian 3D monopole equations as

∂ib
a + fabcA

b
ib
c − 1

2
εijkF

ajk + iMσi0T
aM = 0, i(γiDi − iγ0b)M = 0,

where we have abbreaviated MσµνT
aM ≡ M

i
σµν(T a)ijM j , subscripts of

(T a)ij run from 1 to dim g and ba ≡ Aa0 .



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

1124 Applied Differential Geometry: A Modern Introduction

Next, let us find an action which produces (6.195). The simplest one is
given by

S =
1
2

∫
Y

[(
∂ib−

1
2
εijkF

jk + iMσi0M

)2

+ |i(γiDi − iγ0b)M |2
]
d3x.

(6.196)
Note that the minimum of (6.196) is given by (6.195). In this sense, the 3D
monopole equations are not equations of motion but rather of constraints.
Furthermore, there is a constraint for b. To see this, let us rewrite (6.196)
as

S =
∫
Y

d3x

[
1
2

(
1
2
εijkF

jk − iMσi0M

)2

+
1
2
|γiDiM |2 +

1
4

(∂ib)2 +
1
2
b2|M |2

]
.

The minimum of this action is clearly given by the 3D monopole equations
with b = 0, for non–trivial Ai and M . However, for trivial Ai and M , we
may relax the condition b = 0 to ∂ib = 0, i.e., b is in general a non–zero
constant. This can be also seen from (6.194). Therefore, we get

1
2
εijkF

jk − iMσi0M = 0, iγiDiM = 0,

with b = 0 or ∂ib = 0, (6.197)

as an equivalent expression to (6.195), but we will rather use (6.195) for
convenience. The Gaussian action will be used in the next subsection in
order to construct a TQFT by Batalin–Vilkovisky quantization algorithm.
The non–Abelian version of (6.196) and (6.197) would be obvious.

6.5.3.2 TQFTs of 3D Monopoles

In this subsection, we construct TQFTs associated with both the Abelian
and non–Abelian 3D monopoles by Batalin–Vilkovisky quantization algo-
rithm.

Abelian Case

A 3D action for the Abelian 3D monopoles was found by the direct dimen-
sional reduction of the 4D one [Zhang et. al. (1995)], but here we rather
show that the 3D topological action can be directly constructed from the
3D monopole equations [Ohta (1998)].
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Topological Bogomol’nyi Action

A topological Bogomol’nyi action was constructed by using Batalin–
Vilkovisky quantization algorithm [Birmingham et. al. (1989)], or quan-
tization of a magnetic charge [Baulieu and Grossman (1988)]. The former
is based on the quantization of a certain Langevin equation (‘Bogomol’nyi
monopole equation’) and the classical action is quadratic, but the latter is
based on the ‘quantization’ of the pure topological invariant by using the
Bogomol’nyi monopole equation as a gauge fixing condition.

In order to compare the action to be constructed with those of Bo-
gomol’nyi monopoles [Birmingham et. al. (1989); Baulieu and Grossman
(1988)], we take Batalin–Vilkovisky procedure (see also [Birmingham et. al.
(1991)]).

In order to get the topological action associated with 3D monopoles,
we introduce random Gaussian fields Gi and ν(ν) and then start with the
action

Sc =
1
2

∫
Y

[(Gi−∂ib+
1
2
εijkF

jk− iMσi0M)2 + |(ν− iγiDiM−γ0bM)|2]d3x.

(6.198)
Note that Gi and ν(ν) are also regarded as auxiliary fields. This action
reduces to (6.196) in the gauge

Gi = 0, ν = 0. (6.199)

Firstly, note that (6.198) is invariant under the topological gauge trans-
formation

δAi = ∂iθ + εi, δb = τ , δM = iθM + ϕ,

δGi = ∂iτ − εijk∂jεk + i(ϕσi0M +Mσi0ϕ),

δν = iθν + γiεiM + iγiDiϕ+ γ0bϕ+ γ0τM, (6.200)

where θ is the parameter of gauge transformation, εi and τ ≡ ε4 are
parameters which represent the topological shifts and ϕ the shift on the
spinor space. The brackets for indices means anti–symmetrization, i.e.,
A[iBj] = AiBj −AjBi.

Here, let us classify the gauge algebra (6.200). This is necessary to use
Batalin–Vilkovisky algorithm. Let us recall that the local symmetry for
fields φi can be written generally in the form δφi = Riα(φ)εα, where the
indices mean the label of fields and εα is a some local parameter. When
δφi = 0 for non–zero εα, this symmetry is called first–stage reducible. In the



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

1126 Applied Differential Geometry: A Modern Introduction

reducible theory, we can find zero–eigenvectors Zαa satisfying RiαZ
α
a = 0.

Moreover, when the theory is on–shell reducible, we can find such eigenvec-
tors by using equations of motion.

For the case at hand, under the identifications

θ = Λ, εi = −∂iΛ, ϕ = −iΛM,

and τ = 0, so that (6.200) will be (6.201)

δAi = 0, δb = 0, δM = 0, δGi = 0,

δν = iΛ(ν − iγiDiM − γ0bM)|on−shell = 0. (6.202)

Then for δAi, for example, the R coefficients and the zero–eigenvectors are
derived from

δAi = RAiθ ZθΛ +RAiεj Z
εj
Λ = 0, that is

RAiθ = ∂i, RAiεj = δij , ZθΛ = 1, Z
εj
Λ = −∂j .

Obviously, similar relations hold for other fields. The reader may think that
the choice (6.201) is not suitable as a first stage reducible theory, but note
that the zero–eigenvectors appear on every point where the gauge equiva-
lence and the topological shift happen to coincide. In this three dimensional
theory, b(A0) is invariant for the usual infinitesimal gauge transformation
because of its ‘time’ independence, so (6.201) means that the existence of
the points on spinor space where the topological shift trivializes indicates
the first stage reducibility.

If we carry out BRST quantization via Faddeev–Popov procedure in this
situation, the Faddeev–Popov determinant will have zero modes. Therefore
in order to fix the gauge further we need a ghost for ghost. This reflects on
the second generation gauge invariance (6.202) realized on–shell. However,
since b is irrelevant to Λ, the ghost for τ will not couple to the second
generation ghost. With this in mind, we use Batalin–Vilkovisky algorithm
in order to make BRST quantization (for details, see [Ohta (1998)] and
references therein).

Let us assign new ghosts carrying opposite statistics to the local param-
eters. The assortment is given by

θ −→ c, εi −→ ψi, τ −→ ξ, ϕ −→ N, Λ −→ φ. (6.203)

Ghosts in (6.203) are first generations, in particular, c is Faddeev–Popov
ghost, whereas φ is a second generation ghost. Their Grassmann parity and
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ghost number (U number) are given by

c ψi ξ N φ

1− 1− 1− 1− 2+,
(6.204)

where the superscript of ghost number denotes the Grassmann parity. Note
that the ghost number counts the degree of differential form on the moduli
space M of the solution to the 3D monopole equations. The minimal set
Φmin of fields consists of

Ai b M Gi ν

0+ 0+ 0+ 0+ 0+,
and (6.204).

On the other hand, the set of anti–fields Φ∗min carrying opposite statis-
tics to Φmin is given by

A∗i b∗ M∗ G∗i ν∗ c∗ ψ∗i N∗ φ∗

−1− −1− −1− −1− −1− −2+ −2+ −2+ −3−
.

Next step is to find a solution to the master equation with Φmin and
Φ∗min, given by

∂rS

∂ΦA
∂lS

∂Φ∗A
− ∂rS

∂Φ∗A

∂lS

∂ΦA
= 0, (6.205)

where r(l) denotes right (left) derivative.
The general solution for the first stage reducible theory at hand can be

expressed by

S = Sc+Φ∗iR
i
αC

α
1 +C∗1α(ZαβC

β
2 +TαβγC

γ
1C

β
1 )+C∗2γA

γ
βαC

α
1 C

β
2 +Φ∗iΦ

∗
jB

ji
α C

α
2 +· · · ,

(6.206)
where Cα1 (Cα2 ) denotes generally the first (second) generation ghost and
only relevant terms in our case are shown. We often use ΦAmin =
(φi, Cα1 , C

β
2 ), where φi denote generally the fields. In this expression, the

indices should be interpreted as the label of fields. Do not confuse with
space–time indices. The coefficients Zαβ , T

α
βγ , etc can be directly deter-

mined from the master equation. In fact, it is known that these coefficients
satisfy the following relations

RiαZ
α
βC

β
2 − 2

∂rSc

∂φj
Bjiα C

α
2 (−1)|i| = 0,

∂rR
i
αC

α
1

∂φj
RjβC

β
1 +RiαT

α
βγC

γ
1C

β
1 = 0,

∂rZ
α
βC

β
2

∂φj
RjγC

γ
1 + 2TαβγC

γ
1Z

β
δ C

δ
2 + ZαβA

β
δγC

γ
1C

δ
2 = 0, (6.207)
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where |i| means the Grassmann parity of the ith field.
In these expansion coefficients, Riα and Zαβ are related to the local sym-

metry (6.200). On the other hand, as Tαβγ is related to the structure con-
stant of a given Lie algebra for a gauge theory, it is generally called as
structure function. Of course if the theory is Abelian, such structure func-
tion does not appear. However, for a theory coupled with matters, all of
the structure functions do not always vanish, even if the gauge group is
Abelian. At first sight, this seems to be strange, but the expansion (6.206)
obviously detects the coupling of matter fields and ghosts. In fact, the ap-
pearance of this type of structure function is required in order to make the
action to be constructed being full BRST invariant.

After some algebraic works, we will find the solution to be

S(Φmin,Φ∗min) = Sc +
∫
Y

∆Sd3x, where

∆S = A∗i (∂
ic+ ψi) + b∗ξ +M∗(icM +N) +M

∗
(−icM +N)

+G∗i
[
∂iξ − εijk∂jψk + i(Nσi0M +Mσi0N)

]
+ν∗(icν + iγiDiN + γiψiM + γ0bN + γ0ξM)

+ν∗(icν + iγiDiN + γiψiM + γ0bN + γ0ξM)

+c∗φ− ψ∗i ∂iφ− iN∗ (φM + cN) + iN
∗ (
φM + cN

)
+ 2iν∗ν∗φ.

We augment Φmin by new fields χi, di, µ(µ), ζ(ζ), λ, ρ, η, e and the corre-
sponding anti–fields. Their ghost number and Grassmann patity are given
by

χi di µ ζ λ ρ η e

−1− 0+ −1− 0+ −2+ −1− −1− 0+ ,

and
χ∗i µ∗ λ∗ ρ∗

0+ 0+ 1− 0+ .

Then we look for the solution

S′ = S(Φmin,Φ∗min) +
∫
Y

(χ∗idi + µ∗ζ + µ∗ζ + ρ∗e+ λ∗η)d3x, (6.208)

where di, ζ, e, η, are Lagrange multiplier fields.
In order to get the quantum action we must fix the gauge. The best

choice for the gauge fixing condition, which can reproduce the action ob-
tained from the dimensional reduction of the 4D one, is found to be [Ohta
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(1998)]

Gi = 0, ν = 0, ∂iAi = 0,

−∂iψi +
i
2

(NM −MN) = 0.

Thus we can get the gauge fermion carrying the ghost number -1 and
odd Grassmann parity,

Ψ = −χiGi − µν − µν + ρ∂iAi − λ
[
−∂iψi +

i
2

(NM −MN)
]
.

The quantum action Sq can be obtained by eliminating anti–fields and are
restricted to lie on the gauge surface Φ∗ = ∂rΨ

∂Φ . Therefore the anti–fields
will be

G∗i = −χi, χ∗i = −Gi, ν∗ = −µ, ν∗ = −µ, µ∗ = −ν,

µ∗ = −ν, M∗ = − i
2
λN, M

∗
=

i
2
λN, N∗ =

i
2
λM,

N
∗

= − i
2
λM, ρ∗ = ∂iAi, A∗i = −∂iρ, ψ∗i = −∂iλ, (6.209)

λ∗ = −
[
−∂iψi +

i
2

(NM −MN)
]
, c∗ = φ∗ = b∗ = ζ∗(ζ

∗
) = 0.

Then the quantum action Sq is given by Sq = S′ (Φ,Φ∗ = ∂rΨ/∂Φ) . Sub-
stituting (6.209) into Sq, we find that

Sq = Sc +
∫
Y

∆̃Sd3x, where

∆̃S = (−4φ+ φMM − iNN)λ−
[
−∂iψi +

i
2

(NM −MN)
]
η

− µ(icν + iγiDiN + γiψiM + γ0bN + γ0ξM)

+ (icν + iγiDiN + γiψiM + γ0bN + γ0ξM)µ+ 2iφµµ

− χi
[
∂iξ − εijk∂jψk + i(Nσi0M +Mσi0N)

]
+ ρ(4c+ ∂iψi)− diGi − ζν − νζ + e∂iAi. (6.210)

Using the condition (6.199) with c = 0, we can arrive at

S′q = Sc|Gi=ν(ν)=0 +
∫
Y

∆̃S|c=0d
3x, where (6.211)
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∆̃S|c=0 = (−4φ+ φMM − iNN)λ−
[
−∂iψi +

i
2

(NM −MN)
]
η

− µ(iγiDiN + γiψiM + γ0bN + γ0ξM)

+ (iγiDiN + γiψiM + γ0bN + γ0ξM)µ + 2iφµµ

− χi
[
∂iξ − εijk∂jψk + i(Nσi0M +Mσi0N)

]
+ ρ∂iψi + e∂iAi.

It is easy to find that (6.211) is consistent with the action found by the
dimensional reduction of the 4D topological action [Zhang et. al. (1995)].

BRST Transformation

The Batalin–Vilkovisky algorithm also facilitates to construct BRST trans-
formation rule. The BRST transformation rule for a field Φ is defined by

δBΦ = ε
∂rS

′

∂Φ∗

∣∣∣∣
Φ∗= ∂rΨ

∂Φ

, (6.212)

where ε is a constant Grassmann odd parameter. With this definition for
(6.210), we get

δBAi = −ε(∂ic+ ψi), δBb = −εξ, δBM = −ε(icM +N),

δBGi = −ε
[
∂iξ − εijk∂jψk + i(Nσi0M +Mσi0N)

]
,

δBν = −ε(icν + iγiDiN + γiψiM + γ0bN + γ0ξM − iµφ),

δBc = εφ, δBψi = −ε∂iφ, δBρ = εe, δBλ = −εη,
δBµ = εζ, δBN = −iε(φM + cN), δBχi = εdi,

δBφ = δBξ = δBdi = δBe = δBζ = δBη = 0. (6.213)

It is clear at this stage that (6.213) has on-shell nilpotency, i.e., the quantum
equation of motion for ν must be used in order to have δ2B = 0. This is due
to the fact that the gauge algebra has on–shell reducibility. Accordingly, the
Batalin–Vilkovisky algorithm gives a BRST invariant action and on–shell
nilpotent BRST transformation. Note that the equations

∂iξ − εijk∂jψk + i(Nσi0M +Mσi0N) = 0,

iγiDiN + γiψiM + γ0bN + γ0ξM = 0

can be recognized as linearizations of the 3D monopole equations and the
number of linearly independent solutions gives the dimension of the moduli
space M.
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It is now easy to show that the global supersymmetry can be recovered
from (6.213). In Witten type theory, QB can be interpreted as a super-
symmetric BRST charge. We define the supersymmetry transformation as
[Ohta (1998)]

δSΦ := δBΦ|c=0.

Off–Shell Action

As was mentioned before, the quantum action of Witten type TQFT can be
represented by BRST commutator with nilpotent BRST charge QB . How-
ever, since our BRST transformation rule is on-shell nilpotent, we should
integrate out ν and Gi in order to get off–shell BRST transformation and
off–shell quantum action.

For this purpose, let us consider the following terms in (6.210),

1
2

(Gi −Xi)2 +
1
2
|ν −A|2 − iµcν + icνµ− ζν − νζ − diGi, (6.214)

where Xi = ∂ib−
1
2
εijkF

jk + iMσi0M, A = iγiDiM + γ0bM.

Here, let us define

ν′ = ν −A, B = −icµ− ζ.

ν′(ν′) and Gi can be integrated out and then (6.214) will be

−1
2
did

i − diXi − 2|B|2 +BA+BA.

Consequently, we get the off–shell quantum action

Sq =
{
Q, Ψ̃

}
, where (6.215)

Ψ̃ = −χi
(
Xi +

α

2
di

)
− µ(iγiDiM + γ0bM − βB)

−µ(iγiDiM + γ0bM − βB) + ρ∂iAi − λ
[
−∂iψi +

i
2

(NM −MN)
]
.

α and β are arbitrary gauge fixing paramaters. Convenience choice for
them is α = β = 1. The BRST transformation rule for Xi and B fields can
be easily obtained, although we do not write down here.
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Observables

We can now discuss the observables. For this purpose, let us define [Baulieu
and Grossman (1988)]

A = A+ c, F = F + ψ − φ, K = db+ ξ,

where we have introduced differential form notations, but their meanings
would be obvious. A and c are considered as a (1, 0) and (0, 1) part of
1–form on (Y,M). Similarly, F,ψ and φ are (2, 0), (1, 1) and (0, 2) part of
the 2–form F , and db and ξ are (1, 0) and (0, 1) part of the 1–form K. Thus
A defines a connection 1–form on (Y,M) and F is a curvature 2–form.
Note that the exterior derivative d maps any (p1, p2)−form Xp of total
degree p = p1 + p2 to (p1 + 1, p2)−form, but δB maps any (p1, p2)−form to
(p1, p2 + 1)−form. Also note that XpXq = (−1)pqXqXp. Then the action
of δB is

(d+ δB)A = F , (d+ δB)b = K. (6.216)

F and K also satisfy the following Bianchi identities in Abelian theory:

(d+ δB)F = 0, (d+ δB)K = 0. (6.217)

Equations (6.216) and (6.217) mean anti–commuting property between the
BRST variation δB and the exterior differential d, i.e., {δB , d} = 0.

The BRST transformation rule in geometric sector can be easily read
from (6.213), i.e., δBA, δBψ, δBc and δBφ. (6.217) implies

(d+ δB)Fn = 0, (6.218)

and expanding the above expression by ghost number and form degree, we
get the following (i, 2n− i)−form Wn,i,

Wn,0 =
φn

n!
, Wn,1 =

φn−1

(n− 1)!
ψ,

Wn,2 =
φn−2

2(n− 2)!
ψ ∧ ψ − φn−1

(n− 1)!
F,

Wn,3 =
φn−3

6(n− 3)!
ψ ∧ ψ ∧ ψ − φn−2

(n− 2)!
F ∧ ψ, (6.219)

where 0 = δBWn,0, dWn,0 = δBWn,1, (6.220)

dWn,1 = δBWn,2, dWn,2 = δBWn,3, dWn,3 = 0.
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Picking a certain k−cycle γ as a representative and defining the integral

Wn,k(γ) =
∫
γ

Wn,k,

we can easily prove that

δBWn,k(γ) = −
∫
γ

dWn,k−1 = −
∫
∂γ

Wn,k−1 = 0,

as a consequence of (6.220). Note that the last equality follows from the
fact that the cycle γ is a simplex without boundary, i.e., ∂γ = 0. Therefore,
Wn,k(γ) indeed gives a topological invariant associated with n−th Chern
class on Y ×M.

On the other hand, since we have a scalar field b and its ghosts, we
may construct topological observables associated with them. Therefore,
the observables can be obtained from the ghost expansion of

(d+ δB)Fn ∧ Km = 0.

Explicitly, for m = 1, for example, we get

0 = δBWn,1,0, dWn,1,0 = δBWn,1,1, dWn,1,1 = δBWn,1,2,

dWn,1,2 = δBWn,1,3, dWn,1,3 = 0, where

Wn,1,0 =
φn

n!
ξ, Wn,1,1 =

φn−1

(n− 1)!
ψξ − φn

n!
db,

Wn,1,2 =
φn−2

2(n− 2)!
ψ ∧ ψξ − φn−1

(n− 1)!
Fξ − φn−1

(n− 1)!
ψ ∧ db,

Wn,1,3 =
φn−3

6(n− 3)!
ψ ∧ ψ ∧ ψξ +

φn−1

(n− 1)!
F ∧ db

+
φn−2

2(n− 2)!
(2ψ ∧ Fξ + ψ ∧ ψ ∧ db). (6.221)

These relations correspond to the cocycles [Baulieu and Grossman (1988)]
in U(1) case.

Next, let us look for the observables for matter sector. The BRST
transformation rules in this sector is given by δB , δBN, δBc and δBφ. At
first sight, the matter sector does not have any observable, but we can find
the combined form

W̃ = iφMM +NN (6.222)
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is an observable. However, unfortunately, as W̃ is cohomologically trivial
because δBW̃ = 0 but dW̃ 6= δBW̃

′ for some W̃ ′. Accordingly, W̃ does not
give any new topological invariant [Ohta (1998)].

In topological Bogomol’nyi theory, there is a sequence of observables
associated with a magnetic charge. For the Abelian case, it is given by

W =
∫
Y

F ∧ db. (6.223)

As is pointed out for the case of Bogomol’nyi monopoles [Birmingham et. al.
(1989)], we can not get the observables related with this magnetic charge
by the action of δB as well, but we can construct those observables by
anti–BRST variation δB which maps (m,n)−form to (m,n− 1)−form. δB
can be obtained by a discrete symmetry which is realized as ‘time reversal
symmetry’ in 4D. In our 3D theory, the discrete symmetry is given by

φ −→ −λ, λ −→ −φ, N −→ i
√

2µ, µ −→ i√
2
N,

ψi −→
χi√

2
, χi −→

√
2ψi, η −→

√
2ξ, ξ −→ − η√

2
(6.224)

with b −→ −b, (6.225)

where (6.225) represents an additional symmetry [Birmingham et. al.
(1989)]. Note that we must also change N and µ (and their conjugates).
The positive chirality condition for M should be used in order to check the
invariance of the action. In this way, we can get anti–BRST transformation
rule by substituting (6.224) and (6.225) into (6.213) and then we can get
the observables associated with the magnetic charge by using the action of
this anti–BRST variation [Birmingham et. al. (1989)].

The topological observables available in this theory are the same with
those of topological Bogomol’nyi monopoles.

Finally, let us briefly comment on our three dimensional theory. First
note that Lagrangian L and Hamiltonian H in dimensional reduction can
be considered as equivalent. This is because the relation between them is
defined by

H = pq̇ − L,

where q is any field, the overdot means time derivative and p is a canonical
conjugate momentum of q, and the dimensional reduction requires the time
independence of all fields, thus H = −L in this sense. Though we have
constructed the three dimensional action directly from the 3D monopole
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equations, our action may be interpreted essentially as the Hamiltonian of
the four dimensional SW theory.

6.5.3.3 Non–Abelian Case

It is easy to extend the results obtained in the previous subsection to
non–Abelian case. In this subsection, we summarize the results for the
non–Abelian 3D monopoles (for details, see [Ohta (1998)] and references
therein).

Non–Abelian Topological Action

With the auxiliary fields Gaµν and ν, we consider

Sc =
1
2

∫
Y

d3x
[
(Gai −Ka

i )2 + |ν − iγiDiM − γ0bM |2
]
, (6.226)

where Ka
i = ∂ib

a + fabcA
b
ib
c − 1

2
εijkF

a
jk + iMσi0T

aM.

Note that the minimum of (6.226) with the gauge Gai = ν = 0 are given
by the non–Abelian 3D monopoles. We take the generator of Lie algebra
in the fundamental representation, e.g., for SU(n),

(Ta)ij(T a)kl = δilδjk −
1
n
δijδkl.

Extension to other Lie algebra and representation is straightforward.
The gauge transformation rule for (6.226) is given by

δAai = ∂iθ
a + fabcA

b
iθ
c + εai , δba = fabcb

bθc + τa, δM = iθM + ϕ,

δGai = fabcG
b
iθ
c +

[
−εijk(∂jεak + fabcε

jbAck)

+ ∂iτ
a + fabc(εbib

c − τ bAci ) + i(ϕσi0T aM +Mσi0T
aϕ)
]
,

δν = iγiDiϕ+ γiεiM + γ0bϕ+ γ0τM + iθν. (6.227)

Note that we have a Gai term in the transformation of Gai , while it did not
appear in Abelian theory.

The gauge algebra (6.227) possesses on–shell zero modes as in the
Abelian case. Setting

θa = Λa, εai = −∂iΛa − fabcAbiΛc, τa = −fabcbbΛc, ϕ = −iΛM,
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we can easily find that (6.227) closes, i.e.,

δAai = 0, δba = 0, δM = 0,

δGai = fabcΛc[Gbi −Kb
i ]|on−shell = 0,

δν = iΛ[ν − i(γiDi − iγ0b)M ]|on−shell = 0, (6.228)

when the equations of motion of Gai and ν are used. Note that we must use
both equations of motion of Gai and ν in the non–Abelian case, while only
‘ν’ was needed for the Abelian theory. Furthermore, as ϕ is a parameter in
the spinor space, ϕ is not g−valued, in other words, ϕ 6= ϕaT a. (6.227) is
first stage reducible.

The assortment of ghost fields, the minimal set Φmin of the fields and
the ghost number and the Grassmann parity, furthermore those for Φ∗min
would be obvious.

Then the solution to the master equation will be

S(Φmin,Φ∗min) = Sc +
∫
Y

Tr (∆Sn) d3x, where

∆Sn = A∗i (D
ic+ ψi) + b∗(i[b, c] + ξ) +M∗(icM +N) +M

∗
(−icM +N) +G∗i G̃

i

−iN∗(φM + cN) + iN
∗
(φM + cN) + ν∗(icν + iγiDiN + γiψiM + γ0bN + γ0ξM)

+ν∗(icν + iγiDiN + γiψiM + γ0bN + γ0ξM) + 2iν∗ν∗φ+ ψ∗i (−Diφ− i{ψi, c})

+c∗
(
φ− i

2
{c, c}

)
− iφ∗[φ, c]− i

2
{G∗i , G∗i}φ+ iξ∗([b, φ]− {ξ, c}).

Here

G̃i = i[c,Gi]− εijkDjψk +Diξ + [ψi, ξ] + i(Nσi0TaT aM +Mσi0TaT
aN).

The equations

−εijkDjψk +Diξ + [ψi, ξ] + i(Nσi0TaT aM +Mσi0TaT
aN) = 0,

iγiDiN + γiψiM + γ0bN + γ0ξM = 0,

can be seen as linearizations of non–Abelian 3D monopoles.
We augment Φmin by new fields χai , d

a
i , µ(µ), ζ(ζ), λ, ρ, η, e and the cor-

responding anti–fields, but Lagrange multipliers fields dai , ζ(ζ), e, η, are as-
sumed not to have anti–fields for simplicity and therefore their BRST trans-
formation rules are set to zero. This simplification means that we do not
take into account of BRST exact terms. In this sense, the result to be
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obtained will correspond to those of the dimensionally reduced version of
the 4D theory up to these terms, i.e., topological numbers.

From the gauge fixing condition

Gai = 0, ν = 0, ∂iAi = 0, −Diψi +
i
2

(NM −MN) = 0,

the gauge fermion will be

Ψ = −χiGi − µν − µν + ρ∂iAi − λ
[
−Diψi +

i
2

(NM −MN)
]
.

The anti–fields are then given by

G∗i = −χi, χ∗i = −Gi, ν∗ = −µ, ν∗ = −µ, µ∗ = −ν, µ = −ν,

M∗ = − i
2
λN, M

∗
=

i
2
λN, N∗ =

i
2
λM, N

∗
= − i

2
λM,

ρ∗ = ∂iAi, A∗i = −∂iρ+ i[λ, ψi], b∗ = c∗ = ξ∗ = φ∗ = ζ∗(ζ
∗
) = 0,

λ∗ = −
[
−Diψ

i + [b, ξ] +
i
2

(NM −MN)
]
, ψ∗i = −Diλ.

Therefore we find the quantum action

Sq = Sc +
∫
Y

Tr
(

∆̃Sn
)
d3x, where (6.229)

∆̃Sn = −
[
−Diψ

i + [b, ξ] +
i
2

(NM −MN)
]
η − λ(DiD

iφ+ iDi{ψi, c}),

+iλ{ψi, Dic+ ψi}+ (φMM − iNN)λ,

−χi
[
i[c,Gi] + εijkD

jψk +Dkξ + [ψk, ξ] +
i
2

(NσijTaT aM +MσijTaT
aN)

]
,

−µ(iγµDµN + γµψµM + icν) + (iγiDiN + γµψµM + icν)µ, (6.230)

+2iφµµ− i
2
{χi, χi}φ+ ρ(∂iDic+ ∂iψ

i)− diGi − ζν − νζ + e∂iAi.,

In this quantum action, setting

M(M) = N(N) = µ(µ) = ν(ν) = 0,

we can find that the resulting action coincides with that of Bogomol’nyi
monopoles [Birmingham et. al. (1989)].

Finally, in order to get the off–shell quantum action, both the auxiliary
fields should be integrated out by the similar technique presented in Abelian
case.
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BRST transformation

The BRST transformation rule is given by

δBAi = −ε(Dic+ ψi), δBb = −ε(i[c, b] + ξ), δBξ = iε([b, φ]− {ξ, c}),
δBM = −ε(icM +N), δBGi = −ε(G̃i − i[χi, φ]),

δBν = −ε(icν + γµDµN + γµψµM − iµφ), δBc = ε

(
φ− i

2
{c, c}

)
,

δBψi = −ε (Diφ+ i{ψi, c}) , δBρ = εe, δBλ = −εη,
δBµ = εζ, δBN = −iε(φM + cN), δBχi = εdi,

δBφ = iε[φ, c], δBdi = δBe = δBζ = δBη = 0. (6.231)

It is easy to get supersymmetry also in this case. However, as we have
omitted the BRST exact terms, the supersymmetry in our construction
does not detect them.

Observables

We have already constructed the topological observables for Abelian case.
Also in non-Abelian case, the construction of observables is basically the
same. But the relation (6.216) and (6.217) are required to modify

(d+ δB)A− i
2

[A,A] = F , (d+ δB)b− ii[A, b] = K, and(6.232)

(d+ δB)F − i[A,F ] = 0, (d+ δB)K − i[A,K] = i[F , b], (6.233)

respectively, where [∗, ∗] is a graded commutator. The observables in ge-
ometric and matter sector are the same as before, but we should replace
db by dAb in (6.221) as well as (6.232) and (6.233), where dA is a exterior
covariant derivative and trace is required. In addition, the magnetic charge
observables are again obtained by anti-BRST variation as outlined berfore.

The observables in geometric sector are those in (6.219) and follow the
cohomological relation (6.220). In this way, the topological observables
available in this three dimensional theory are precisely the Bogomol’nyi
monopole cocycles [Baulieu and Grossman (1988)].

6.5.4 Stringy Actions and Amplitudes

Now we give a brief review of modern path–integral methods in superstring
theory (mainly following [Deligne et. al. (1999)]). Recall that the funda-
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mental quantities in quantum field theory (QFT) are the transition ampli-
tudes Amp : IN =⇒ OUT, describing processes in which a number IN of
incoming particles scatter to produce a number OUT of outgoing particles.
The square modulus of the transition amplitude yields the probability for
this process to take place.

6.5.4.1 Strings

Recall that in string theory, elementary particles are not described as 0–
dimensional points, but instead as 1D strings. If Ms and M(∼ R ×Ms)
denote the 3D space and 4D space–time manifolds respectively, then we
picture strings as in Figure 6.14.

Fig. 6.14 Basic geometrical objects of string theory: (a) a space with fixed time; (b) a
space–time picture; (c) a point–particle; (d) a world–line of a point–particle; (e) a closed

string; (f) a world–sheet of a closed string; (g) an open string; (h) a world–sheet of an

open string.

While the point–particle sweeps out a 1D world–line, the string sweeps
out a world–sheet , i.e., a 2D real surface. For a free string , the topology of
the world–sheet is a cylinder (in the case of a closed string) or a sheet (for
an open string).

Roughly, different elementary particles correspond to different vibration
modes of the string just as different minimal notes correspond to different
vibrational modes of musical string instruments.

It turns out that the physical size of strings is set by gravity, more
precisely the Planck length `P ∼ 10−33 cm. This scale is so small that we
effectively only see point–particles at our distance scales. Thus, for length
scales much larger than `P , we expect to recover a QFT–description of



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

1140 Applied Differential Geometry: A Modern Introduction

point–particles, plus typical string corrections that represent physics at the
Planck scale.

6.5.4.2 Interactions

While the string itself is an extended 1D object, the fundamental string
interactions are local, just as for point–particles. The interaction takes
place when strings overlap in space at the same time. In case of closed string
theories the interactions have a form depicted in Figure 6.15, while in case
of open string theories the interactions have a form depicted in Figure 6.16.
Other interactions result from combining the interactions defined above.

Fig. 6.15 Interactions in closed string theories (left 2D–picture and right 3D–picture).

Fig. 6.16 Interactions in open string theories (left 2D–picture and right 3D–picture).

In point–particle theories, the fundamental interactions are read off from
the QFT–Lagrangian. An interaction occurs at a geometrical point, where
the world–lines join and cease to be a manifold. In Lorentz–invariant the-
ories (where manifold M is a flat Minkowski space–time), the interaction
point is Lorentz–invariant. To specify how the point–particles interact, ad-
ditional data must be supplied at the interaction point, giving rise to many
possible distinct quantum field theories.

In string theory, the interaction point depends upon the Lorentz frame
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chosen to observe the process. In the Figure above, equal time slices are
indicated from the point of view of two different Lorentz frames, schemat-
ically indicated by t and t′. The closed string interaction, as seen from
frames t and t′, occurs at times t2 and t′2 and at (distinct) points P and P ′

respectively.
Lorentz invariance of interaction forbids that any point on the world–

sheet be singled out as interaction point. Instead, the interaction results
purely from the joining and splitting of strings. While free closed strings are
characterized by their topology being that of a cylinder, interacting strings
are characterized by the fact that their associated world–sheet is connected
to at least 3 strings, incoming and/or outgoing.

As a result, the free string determines the nature of the interactions
completely, leaving only the string coupling constant undetermined.

The orientation is an additional structure of closed strings, dividing
them into two categories: (i) oriented strings, in which all world–sheets are
assumed to be orientable; and (ii) non–oriented strings, in which world–
sheets are non–orientable, such as the Möbius strip, Klein bottle, etc.

Fig. 6.17 Boundary components and handles of closed oriented system of M incom-

ing strings, interacting through internal loops, to produce N outgoing strings. Note
the striking similarity with MIMO–systems of nonlinear control theory, with M input
processes and N output processes(see section 4.9.1 below).

6.5.4.3 Loop Expansion – Topology of Closed Surfaces

For simplicity, here we consider closed oriented strings only, so that the
associated world–sheet is also oriented. A general string configuration de-
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scribing the process in which M incoming strings interact and produce N
outgoing strings looks at the topological level like a closed surface with
M +N = E boundary components and any number of handles (see Figure
6.17). This picture is a kind of topological generalization of nonlinear con-
trol MIMO–systems with M inputs, N outputs X states (see section 4.9.1
below).

The internal loops may arise when virtual particle pairs are produced,
just as in quantum field theory. For example, a Feynman diagram in quan-
tum field theory that involves a loop is shown in Figure 6.18 together with
the corresponding string diagram.

Fig. 6.18 A QFT Feynman diagram that involves an internal loop (left), with the

corresponding string diagram (right).

Surfaces associated with closed oriented strings have two topological
invariants: (i) the number of boundary components E = M+N (which may
be shrunk to punctures, under certain conditions), and (ii) the number h
of handles on the surface, which equals the surface genus.

Fig. 6.19 Number h of handles on the surface of closed oriented strings, which equals
the string–surface genus: (a) h = 0 for sphere S2; (b) h = 1 for torus T 2; (c) h = 2 for
string–surfaces with higher genus, etc.

When E = 0, we just have the topological classification of compact ori-
ented surfaces without boundary. Rendering E > 0 is achieved by removing
E discs from the surface.

Recall that in QFT, an expansion in powers of Planck’s constant ~ yields
an expansion in the number of loops of the associated Feynman diagram,
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for a given number of external states:

~E+h−1 =


~

~−1

−1

for every propagator
for every vertex

for overall momentum conservation

Thus, in string theory we expect that, for a given number of external strings
E, the topological expansion genus by genus should correspond to a loop
expansion as well.

Recall that in QFT, there are in general many Feynman diagrams that
correspond to an amplitude with a given number of external particles and
a given number of loops. For example, for E = 4 external particles and
h = 1 loop in φ3 theory are given in Figure 6.20, together with the same
process in string theory (for closed oriented strings), where it is described
by just a single diagram (right).

Fig. 6.20 Feynman QFT–diagrams for φ3 theory with E = 4 external particles and
h = 1 loop (left), and a single corresponding string diagram (right). In this way the usual

Feynman diagrams of quantum field theory are generalized by arbitrary Riemannian

surfaces.

Much of recent interest has been focused on the so–called D−branes.
A D−brane is a submanifold of space–time with the property that strings
can end or begin on it.

6.5.5 Transition Amplitudes for Strings

The only way we have today to define string theory is by giving a rule
for the evaluation of transition amplitudes, order by order in the loop ex-
pansion, i.e., genus by genus. The rule is to assign a relative weight to a
given configuration and then to sum over all configurations [Deligne et. al.
(1999)]. To make this more precise, we first describe the system’s configu-
ration manifold M (see Figure 6.21).
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Fig. 6.21 The embedding map x from the reference surface Σ into the pseudo–
Riemannian configuration manifold M (see text for explanation).

We assume that Σ and M are smooth manifolds, of dimensions 2 and
n respectively, and that x is a continuous map from Σ to M . If ξm, (for
m = 1, 2), are local coordinates on Σ and xµ, (µ = 1, . . . , n), are local
coordinates on M then the map x may be described by functions xµ(ξm)
which are continuous.

To each system configuration we can associate a weight e−S[x,Σ,M ], (for
S ∈ C) and the transition amplitude Amp for specified external strings
(incoming and outgoing) is get by summing over all surfaces Σ and all
possible maps x,

Amp =
∑

surfaces Σ

∑
x

e−S[x,Σ,M ] .

We now need to specify each of these ingredients:

(1) We assume M to be an nD Riemannian manifold, with metric g. A
special case is flat Euclidean space–time Rn. The space–time metric is
assumed fixed.

ds2 = (dx, dx)g = gµν(x)dxµ ⊗ dxν .

(2) The metric g on M induces a metric on Σ: γ = x∗(g),

γ = γmndξ
m ⊗ dξn, γmn = gµν

∂xµ

∂ξm
∂xν

∂ξn
.

This metric is non–negative, but depends upon x. It is advantageous to
introduce an intrinsic Riemannian metric g on Σ, independently of x; in
local coordinates, we have

g = gmn(ξ)dξm ⊗ dξn.
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A natural intrinsic candidate for S is the area of x(Σ), which gives the
so–called Nambu–Goto action20

Area (x (Σ)) =
∫

Σ

dµγ =
∫

Σ

n2ξ
√

det γmn, (6.234)

which depends only upon g and x, but not on g [Goto (1971)]. However,
the transition amplitudes derived from the Nambu–Goto action are not
well–defined quantum–mechanically.

Otherwise, we can take as starting point the so–called Polyakov action21

S[x, g] = κ

∫
Σ

(dx, ∗dx)g = κ

∫
Σ

dµgg
mn∂mx

µ∂nx
νgµν(x), (6.235)

where κ is the string tension (a positive constant with dimension of inverse
length square). The stationary points of S with respect to g are at g0 = eφγ
for some function φ on Σ, and thus S[x, g0] ∼ Area (x (Σ)).

The Polyakov action leads to well–defined transition amplitudes, get by
integration over the space Met(Σ) of all positive metrics on Σ for a given
topology, as well as over the space of all maps Map(Σ,M). We can define
the path integral

Amp =
∑

topologies
Σ

∫
Met(Σ)

1
N(g)

∫
Map(Σ,M)

D[x] e−S[x,g,g],

where N is a normalization factor, while the measures D[g] and D[x] are
constructed from Diff+(Σ) and Diff(M) invariant L2 norms on Σ and
M . For fixed metric g, the action S is well–known: its stationary points
are the harmonic maps x : Σ → M (see, e.g., [Eells and Lemaire (1978)]).
However, g here varies and in fact is to be integrated over. For a general
metric g, the action S defines a nonlinear sigma model , which is renor-
malizable because the dimension of Σ is 2. It would not in general be
renormalizable in dimension higher than 2, which is usually regarded as
an argument against the existence of fundamental membrane theories (see
[Deligne et. al. (1999)]).

20Nambu–Goto action is the starting point of the analysis of string behavior, using
the principles of ordinary Lagrangian mechanics. Just as the Lagrangian for a free point
particle is proportional to its proper timei.e., the ‘length’ of its world–line, a relativistic

string’s Lagrangian is proportional to the area of the sheet which the string traces as it
travels through space–time.

21The Polyakov action is the 2D action from conformal field theory, used in string

theory to describe the world–sheet of a moving string.
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The Nambu–Goto action (6.234) and Polyakov action (6.235) repre-
sent the core of the so–called bosonic string theory , the original version of
string theory, developed in the late 1960s. Although it has many attractive
features, it also predicts a particle called the tachyon possessing some un-
settling properties, and it has no fermions. All of its particles are bosons,
the matter particles. The physicists have also calculated that bosonic string
theory requires 26 space–time dimensions: 25 spatial dimensions and one
dimension of time. In the early 1970s, supersymmetry was discovered in the
context of string theory, and a new version of string theory called super-
string theory (i.e., supersymmetric string theory) became the real focus, as
it includes also fermions, the force particles. Nevertheless, bosonic string
theory remains a very useful ‘toy model’ to understand many general fea-
tures of perturbative string theory (see section 6.7 below).

6.5.6 Weyl Invariance and Vertex Operator Formulation

The action S is also invariant under Weyl rescalings of the metric g by
a positive function on σ : Σ → R, given by g → e2σg. In general, Weyl
invariance of the full amplitude may be spoiled by anomalies. Assuming
Weyl invariance of the full amplitude, the integral defining Amp may be
simplified in two ways.

1) The integration over Met(Σ) effectively collapses to an integration over
the moduli space of surfaces, which is finite dimensional, for each genus h.

2) The boundary components of Σ — characterizing external string states
— may be mapped to regular points on an underlying compact surface
without boundary by conformal transformations. The data, such as mo-
menta and other quantum numbers of the external states, are mapped into
vertex operators. The amplitudes are now given by the path integral

Amp =
∞∑
h=0

∫
Met(Σ)

D[g]
1

N(g)

∫
Map(Σ,M)

D[x]V1 . . . VN e−S ,

for suitable vertex operators V1, . . . VN .

6.5.7 More General Actions

Generalizations of the action S given above are possible when M carries
extra structure.
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1) M carries a 2−form B ∈ Ω(2)(M). The resulting contribution to the
action is also that of a ‘nonlinear sigma model’

SB [x,B] =
∫

Σ

x∗(B) =
∫

Σ

dxµ ∧ dxνBµν(x)

2) M may carry a dilaton field Φ ∈ Ω(0)(M) so that

SΦ[x,Φ] =
∫

Σ

dµgRgΦ(x).

where Rg is the Gaussian curvature of Σ for the metric g.

3) There may be a tachyon field T ∈ Ω(0)(M) contributing

ST [x, T ] =
∫

Σ

dµgT (x).

6.5.8 Transition Amplitude for a Single Point Particle

The transition amplitude for a single point–particle could in fact be get in
a way analogous to how we prescribed string amplitudes. Let space–time
be again a Riemannian manifold M , with metric g. The prescription for
the transition amplitude of a particle travelling from a point y ∈ M to a
point y′ to M is expressible in terms of a sum over all (continuous) paths
connecting y to y′:

Amp(y, y′) =
∑
paths

joining y and y′

e−S[path].

Paths may be parametrized by maps from C = [0, 1] into M with x(0) = y,
x(1) = y′. A simple world–line action for a massless particle is get by
introducing a metric g on [0, 1]

S[x, g] =
1
2

∫
C

dτ g(τ)−1ẋµẋνgµν(x),

which is invariant under Diff+(C) and Diff(M).
Recall that the analogous prescription for the point–particle transition

amplitude is the path integral

Amp(y, y′) =
∫

Met(C)

D[g]
1
N

∫
Map(C,M)

D[x] e−S[x,g].
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Note that for string theory, we had a prescription for transition am-
plitudes valid for all topologies of the world–sheet. For point–particles,
there is only the topology of the interval C, and we can only describe a
single point–particle, but not interactions with other point–particles. To
put those in, we would have to supply additional information.

Finally, it is very instructive to work out the amplitude Amp by carrying
out the integrations. The only Diff+(C) invariant of g is the length L =∫ 1

0
dτ g(τ); all else is generated by Diff+(C). Defining the normalization

factor to be the volume of Diff(C): N = Vol(Diff(C)) we have D[g] =
D[v] dL and the transition amplitude becomes

Amp(y, y′) =
∫ ∞

0

dL

∫
D[x] e−

1
2L

R 1
0 dτ(ẋ,ẋ)g =

∫ ∞

0

dL
〈
y′|e−L∆|y

〉
=
〈
y′| 1

∆
|y
〉
.

Thus, the amplitude is just the Green function at (y, y′) for the Laplacian
∆ and corresponds to the propagation of a massless particle (see [Deligne
et. al. (1999)]).

6.5.9 Witten’s Open String Field Theory

Noncommutative nature of space–time has often appeared in non–
perturbative aspects of string theory. It has been used in a formulation
of interacting open string field theory by Ed Witten [Witten (1986b);
Witten (1986a)]. Witten has written a classical action of open string field
theory in terms of noncommutative geometry, where the noncommutativ-
ity appears in a product of string fields. Later, the Dirichlet branes (or,
D–branes) have been recognized as solitonic objects in superstring theory
[Polchinski (1995)]. Further, it has been found that the low energy be-
havior of the D–branes are well described by supersymmetric Yang–Mills
theory (SYM) [Witten (1996)]. In the situation of some D–branes coincid-
ing, the space–time coordinates are promoted to matrices which appear as
the fields in SYM. Then the size of the matrices corresponds to the num-
ber of the D–branes, so noncommutativity of the matrices is related to the
noncommutative nature of space–time.

In this subsection, mainly following [Sugino (2000)], we review some ba-
sic properties of Witten’s bosonic open string field theory [Witten (1986b)]
and its explicit construction based on a Fock space representation of string
field functional and δ−function overlap vertices [Gross and Jevicki(1987a);
Gross and Jevicki(1987b); Cremmer et. al. (1986)].

Witten introduced a beautiful formulation of open string field theory in
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terms of a noncommutative extension of differential geometry, where string
fields, the BRST operator Q and the integration over the string configura-
tions

∫
in string field theory are analogs of differential forms, the exterior

derivative d and the integration over the manifold
∫
M

in the differential
geometry, respectively. The ghost number assigned to the string field cor-
responds to the degree of the differential form. Also the (noncommutative)
product between the string fields ∗ is interpreted as an analog of the wedge
product ∧ between the differential forms.

The axioms obeyed by the system of
∫

, ∗ and Q are∫
QA = 0, Q(A ∗B) = (QA) ∗B + (−1)nAA ∗ (QB),

(A ∗B) ∗ C = A ∗ (B ∗ C),
∫
A ∗B = (−1)nAnB

∫
B ∗A,

where A, B and C are arbitrary string fields, whose ghost number is half–
integer valued: The ghost number of A is defined by the integer nA as
nA + 1

2 .

Then Witten discussed the following string–field–theory action

S =
1
Gs

∫ (
1
2
ψ ∗Qψ +

1
3
ψ ∗ ψ ∗ ψ

)
, (6.236)

where Gs is the open string coupling constant and ψ is the string field with
the ghost number - 1

2 . The action is invariant under the gauge transforma-
tion

δψ = QΛ + ψ ∗ Λ− Λ ∗ ψ,

with the gauge parameter Λ of the ghost number - 3
2 .

6.5.9.1 Operator Formulation of String Field Theory

The objects defined above can be explicitly constructed by using the oper-
ator formulation, where the string field is represented as a Fock space, and
the integration

∫
as an inner product on the Fock space. It was considered

by [Gross and Jevicki(1987a); Gross and Jevicki(1987b)] in the case of the
Neumann boundary condition. We will heavily use the notation of [Gross
and Jevicki(1987a); Gross and Jevicki(1987b)]. In the operator formulation,
the action (6.236) is described as

S =
1
Gs

(
1
2 12
〈V2||ψ〉1Q|ψ〉2 +

1
3 123
〈V3||ψ〉1|ψ〉2|ψ〉3

)
, (6.237)
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where the structure of the product ∗ in the kinetic and potential terms
is encoded to that of the overlap vertices 〈V2| and 〈V3| respectively (here,
subscripts put to vectors in the Fock space label the strings concerning the
vertices).

As a preparation for giving the explicit form of the overlaps, let us
consider open strings in 26-dimensional space–time with the constant metric
Gij in the Neumann boundary condition. The world sheet action is given
by

SWS =
1

4πα′

∫
dτ

∫ π

0

dσGij(∂τXi∂τX
j − ∂σXi∂σX

j) + Sgh, (6.238)

where Sgh is the action of the bc−ghosts:

Sgh =
i

2π

∫
dτ

∫ π

0

dσ[c+(∂τ − ∂σ)b+ + c−(∂τ + ∂σ)b−]. (6.239)

Under the Neumann boundary condition, the string coordinates have the
standard mode expansions:

Xj(τ , σ) = xj + 2α′τpj + i
√

2α′
∑
n 6=0

1
n
αjne−inτ cos(nσ), (6.240)

also the mode expansions of the ghosts are given by

c±(τ , σ) =
∑
n∈Z

cne−in(τ±σ) ≡ c(τ , σ)± iπb(τ , σ),

b±(τ , σ) =
∑
n∈Z

bne−in(τ±σ) ≡ πc(τ , σ)∓ ib(τ , σ).

As a result of the quantization, the modes obey the commutation relatons:

[xi, pj ] = iGij , [αin, α
j
m] = nGijδn+m,0, {bn, cm} = δn+m,0,

while the other therms vanish.
The overlap |VN 〉 = |VN 〉X |VN 〉gh, (N = 1, 2, · · · ) is the state satis-

fying the continuity conditions for the string coordinates and the ghosts
at the N−string vertex of the string field theory. The superscripts X and
gh show the contribution of the sectors of the coordinates and the ghosts
respectively. The continuity conditions for the coordinates are

(X(r)j(σ)−X(r−1)j(π−σ))|VN 〉X = 0, (P (r)
i (σ)+P (r−1)

i (π−σ))|VN 〉X = 0,
(6.241)

for 0 ≤ σ ≤ π
2 and r = 1, · · · , N . Here Pi(σ) is the momentum conjugate

to the coordinate Xj(σ) at τ = 0, and the superscript (r) labels the string
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(r) meeting at the vertex. In the above formulas, we regard r = 0 as
r = N because of the cyclic property of the vertex. For the ghost sector,
we impose the following conditions on the variables c(σ), b(σ) and their
conjugate momenta πc(σ), πb(σ):

(π(r)
c (σ)− π(r−1)

c (π − σ))|VN 〉gh = 0, (b(r)(σ)− b(r−1)(π − σ))|VN 〉gh = 0,

(c(r)(σ) + c(r−1)(π − σ))|VN 〉gh = 0, (π(r)
b (σ) + π

(r−1)
b (π − σ))|VN 〉gh = 0,

for 0 ≤ σ ≤ π
2 and r = 1, · · · , N .

6.5.9.2 Open Strings in Constant B−Field Background

We consider a constant background of the second–rank antisymmetric ten-
sor field Bij in addition to the constant metric gij where open strings prop-
agate. Then the boundary condition at the end points of the open strings
changes from the Neumann type, and thus the open string has a differ-
ent mode expansion from the Neumann case (6.240). As a result, the end
point is to be noncommutative, in the picture of the D–branes which im-
plies noncommutativity of the world volume coordinates on the D–branes.
Here we derive the mode–expanded form of the open string coordinates as
a preparation for a calculation of the overlap vertices in the next section.

We start with the world sheet action

SBWS =
1

4πα′

∫
dτ

∫ π

0

dσ[gij(∂τXi∂τX
j − ∂σXi∂σX

j)

− 2πα′Bij(∂τXi∂σX
j − ∂σXi∂τX

j)] + Sgh. (6.242)

Because the term proportional to Bij can be written as a total derivative
term, it does not affect the equation of motion but does the boundary
condition, which requires

gij∂σX
j − 2πα′Bij∂τXj = 0 (6.243)

on σ = 0, π. This can be rewritten to the convenient form

Eij∂−X
j = (ET )ij∂+X

j , (6.244)

where Eij ≡ gij + 2πα′Bij ,

and ∂± are derivatives with respect to the light cone variables σ± = τ ± σ.
We can easily see that Xj(τ , σ) satisfying the boundary condition (6.244)
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has the following mode expansion:

Xj(τ , σ = x̃j + α′
[
(E−1)jkgklplσ− + (E−1T )jkgklplσ+

]
(6.245)

+ i

√
α′

2

∑
n 6=0

1
n

[
(E−1)jkgklαlne−inσ

−
+ (E−1T )jkgklαlne−inσ

+
]
.

We will get the commutators between the modes from the propagator of
the open strings, which gives another derivation different from the method
by [Chu and Ho (1999)] based on the quantization via the Dirac bracket.
When performing the Wick rotation: τ → −iτ and mapping the world
sheet to the upper half plane

z = eτ+iσ, z̄ = eτ−iσ(0 ≤ σ ≤ π),

the boundary condition (6.244) becomes

Eij∂z̄X
j = (ET )ij∂zXj , (6.246)

which is imposed on the real axis z = z̄. The propagator 〈Xi(z, z̄)Xj(z′, z̄′)〉
satisfying the boundary condition (6.246)is determined as

〈Xi(z, z̄)Xj(z′, z̄′)〉 = −α′
[
gij ln |z − z′| − gij ln |z − z̄′|

+ Gij ln |z − z̄′|2 +
1

2πα′
θij ln

z − z̄′
z̄ − z′

+Dij ,

where Gij and θij are given by

Gij =
1
2

(ET−1 + E−1)ij = (ET−1gE−1)ij = (E−1gET−1)ij , (6.247)

θij = 2πα′ · 1
2

(ET−1 − E−1)ij = (2πα′)2(ET−1BE−1)ij (6.248)

= −(2πα′)2(E−1BET−1)ij .

Also the constant Dij remains unknown from the boundary condition alone.
However it is an irrelevant parameter, so we can fix an appropriate value.
The mode-expanded form (6.245) is mapped to

Xj(z, z̄) = x̃j − iα′[(E−1)jkpk ln z̄ + (E−1T )jkpk ln z]

+ i

√
α′

2

∑
n 6=0

1
n

[
(E−1)jkαn,kz̄−n + (E−1T )jkαn,kz−n

]
.
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Note that the indices of pl and αln were lowered by the metric gij not Gij .
Recall the definition of the propagator

〈Xi(z, z̄)Xj(z′, z̄′)〉 ≡ R(Xi(z, z̄)Xj(z′, z̄′))−N(Xi(z, z̄)Xj(z′, z̄′)),
(6.249)

where R and N stand for the radial ordering and the normal ordering
respectively. We take a prescription for the normal ordering which pushes
pi to the right and x̃j to the left with respect to the zero–modes pi and x̃j .
It corresponds to considering the vacuum satisfying

pj |0〉 = αn,j |0〉 = 0 (n > 0), 〈0|αn,j = 0 (n < 0), (6.250)

which is the standard prescription for calculating the propagator of the
massless scalar field in 2D conformal field theory from the operator formal-
ism. Making use of (6.249), (6.250) and techniques of the contour integra-
tion, it is easy to get the commutators

[αn,i, αm,j ] = nδn+m,0Gij , [x̃i, pj ] = iδij ,

where the first equation holds for all integers with α0,i ≡
√

2α′pi. The
constant Dij is written as α′Dij = −〈0|x̃ix̃j |0〉. Let us fix Dij as α′Dij =
− i

2θ
ij , which is the convention taken in [Seiberg and Witten (1999)]. Then

the coordinates x̃i become noncommutative:

[x̃i, x̃j ] = iθij ,

but the center of mass coordinates xi ≡ x̃i+ 1
2θ
ijpj can be seen to commute

each other.
Now we have the mode–expanded form of the string coordinates and

the commutation relations between the modes, which are

Xj(τ , σ) = xj + 2α′
(
Gjkτ +

1
2πα′

θjk(σ − π

2
)
)
pk

+ i
√

2α′
∑
n 6=0

1
n

e−inτ
[
Gjk cos(nσ)− i

1
2πα′

θjk sin(nσ)
]
αn,k,

[αn,i, αm,j ] = nδn+m,0Gij , [xi, pj ] = iδij ,

with all the other commutators vanishing.
Also, due to the formula

∞∑
n=1

2
n

sin(n(σ + σ′)) =
{
π − σ − σ′, (σ + σ′ 6= 0, 2π)
0, (σ + σ′ = 0, 2π),
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we can see by a direct calculation that the end points of the string become
noncommutative

[Xi(τ , σ), Xj(τ , σ′)] =


iθij , (σ = σ′ = 0)
−iθij , (σ = σ′ = π)
0, (otherwise).

On the other hand, it is noted that the conjugate momenta have the mode
expansion identical with that in the Neumann case:

Pi(τ , σ) =
1

2πα′
(gij∂τ − 2πα′Bij∂σ)Xj(τ , σ)

=
1
π
pi +

1
π
√

2α′
∑
n 6=0

e−inτ cos(nσ)αn,i.

Note that the relations (6.247) and (6.248) are in the same form as a
T–duality transformation, although the correspondence is a formal sense,
because we are not considering any compactification of space–time. The
generalized T–duality transformation, namely O(D,D)−transformation, is
defined by

E′ = (aE + b)(cE + d)−1, (6.251)

with a, b, c and d being D × D real matrices. (D is the dimension of

space–time.) The matrix h =

„
a b
c d

«
is O(D,D) matrix, which satisfies

hTJh = J, where J =
(

0 1D
1D 0

)
.

The relations (6.247) and (6.248) correspond to the case of the inversion
a = d = 0, b = c = 1D.

6.5.9.3 Construction of Overlap Vertices

Here we construct Witten’s open string theory in the constant B−field
background by obtaining the explicit formulas of the overlap vertices. As is
understood from the fact that the action of the ghosts (6.239) contains no
background fields, the ghost sector is not affected by turning on the B−field
background. Thus we may consider the coordinate sector only. First, let us



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Geometrical Path Integrals and Their Applications 1155

see the mode-expanded forms of the coordinates and the momenta at τ = 0

Xj(σ) = Gjkyk +
1
π
θjk(σ − π

2
)pk

+ 2
√
α′

∞∑
n=1

[
Gjk cos(nσ)xn,k +

1
2πα′

θjk sin(nσ)
1
n
pn,k

]
,

Pi(σ) =
1
π
pi +

1
π
√
α′

∞∑
n=1

cos(nσ)pn,i,

where xj = Gjkyk, the coordinates and the momenta for the oscillator
modes are

xn,k =
i
2

√
2
n

(an,k − a†n,k) =
i√
2n

(αn,k − α−n,k),

pn,k =
√
n

2
(an,k + a†n,k) =

1√
2

(αn,k + α−n,k).

The nonvanishing commutators are given by

[xn,k, pm,l] = iGklδn,m, [yk, pl] = iGkl. (6.252)

We should note that the metric appearing in eqs. (6.252) is Gij , instead
of gij . So it can be seen that if we employ the variables with the lowered
space–time indices yk, pk, xn,k and pn,k, the metric used in the expression
of the overlaps is Gij not gij .

The continuity condition (6.241) is universal for any background, and
the mode expansion of the momenta Pi(σ)’s is of the same form as in the
Neumann case, thus the continuity conditions for the momenta in terms of
the modes pn,i are identical with those in the Neumann case. Also, since
pn,i’s mutually commute, it is natural to find a solution of the continuity
condition, assuming the following form for the overlap vertices:

|V̂N 〉X1···N = exp

[
i

4πα
θij

N∑
r,s=1

p
(r)
n,iZ

rs
nmp

(s)
m,j

]
|VN 〉X1···N , (6.253)

where |V̂N 〉X1···N and |VN 〉X1···N are the overlaps in the background corre-
sponding to the world sheet actions (6.242) and (6.238) respectively, the
explicit form of the latter is given in appendix A. Clearly the expression
(6.253) satisfies the continuity conditions for the modes of the momenta,
and the coefficients Zrsnm are determined so that the continuity conditions
for the coordinates are satisfied [Sugino (2000)].
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• |Î〉X ≡ |V̂1〉X

For the N = 1 case, we consider the identity overlap |Î〉X ≡ |V̂1〉X . The
continuity conditions for the momenta require that

Pi(σ) + Pi(π − σ) =
2
π
pi +

2
π
√
α′

∑
n=2,4,6,···

cos(nσ)pn,i

should vanish for 0 ≤ σ ≤ π
2 , namely,

pi = 0, pn,i = 0 (n = 2, 4, 6, · · · ), (6.254)

which is satisfied by the overlap in the Neumann case |I〉. In addition, the
conditions for the coordinates are that

Xj(σ)−Xj(π − σ) =
2
π
θjk(σ − π

2
)pk + (6.255)

4
√
α′

∑
n=1,3,5,···

Gjk cos(nσ)xn,k + 4
√
α′

∑
n=2,4,6,···

1
2πα′

θjk sin(nσ)
1
n
pn,k,

should vanish for 0 ≤ σ ≤ π
2 . The first and third lines in the r. h. s.

can be put to zero by using (6.254). So what we have to consider is the
remaining condition xn,k = 0 for n = 1, 3, 5, · · · , which however is nothing
but the continuity condition for the coordinates in the Neumann case. It
can be understood from the point that the second line in (6.255) does not
depend on θij . Thus it turns out that the continuity conditions in the case
of the B−field turned on are satisfied by the identity overlap made in the
Neumann case. The solution is [Sugino (2000)]

|Î〉X = |I〉X = exp

[
−1

2
Gij

∞∑
n=0

(−1)na†n,ia
†
n,j

]
|0〉, (6.256)

where also the zero modes yi and pi are written by using the creation and
annihilation operators a†0,i and a0,i as

yi =
i
2

√
2α′(a0,i − a†0,i), pi =

1√
2α′

(a0,i + a†0,i).
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• |V̂2〉X12

For the N = 2 case, we are to do the same argument as in the N = 1 case.
The continuity conditions mean that

P
(1)
i (σ) + P

(2)
i (π − σ) =

1
π

(p(1)
i + p

(2)
i ) +

1
π
√
α′

∞∑
n=1

cos(nσ)(p(1)
n,i + (−1)np(2)

n,i),

X(1)j(σ)−X(2)j(π − σ) = Gjk(y(1)
k − y

(2)
k ) +

1
π
θjk(σ − π

2
)(p(1)

k + p
(2)
k )

+ 2
√
α′

∞∑
n=1

[
Gjk cos(nσ)(x(1)

n,k − (−1)nx(2)
n,k)

+
1

2πα′
θjk sin(nσ)

1
n

(p(1)
n,k + (−1)np(2)

n,k)
]

should be zero for 0 ≤ σ ≤ π. It turns out again that the conditions for
the modes are identical with those in the Neumann case:

p
(1)
i + p

(2)
i = 0, p

(1)
n,i + (−1)np(2)

n,i = 0,

y
(1)
i − y

(2)
i = 0, x

(1)
n,i − (−1)nx(2)

n,i = 0,

for n ≥ 1. Thus we have the solution [Sugino (2000)]

|V̂2〉X12 = |V2〉X12 = exp

[
−Gij

∞∑
n=0

(−1)na(1)†
n,i a

(2)†
n,j

]
|0〉12. (6.257)
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• |V̂4〉X1234

We find a solution of the continuity conditions (6.241) in the N = 4 case
assuming the form

|V̂4〉X1234 = exp

[
i

4πα
θij

4∑
r,s=1

p
(r)
n,iZ

rs
nmp

(s)
m,j

]
|V4〉X1234. (6.258)

When considering the continuity conditions, it is convenient to employ the
Z4−Fourier transformed variables:

Qj1(σ) =
1
2

[iX(1)j(σ)−X(2)j(σ)− iX(3)j(σ) +X(4)j(σ)] ≡ Qj(σ),

Qj2(σ) =
1
2

[−X(1)j(σ) +X(2)j(σ)−X(3)j(σ) +X(4)j(σ)],

Qj3(σ) =
1
2

[−iX(1)j(σ)−X(2)j(σ) + iX(3)j(σ) +X(4)j(σ)] ≡ Q̄j(σ),

Qj4(σ) =
1
2

[X(1)j(σ) +X(2)j(σ) +X(3)j(σ) +X(4)j(σ)].

For the momentum variables we also define the Z4−Fourier transformed
variables P1,i(σ)(≡ Pi(σ)), P2,i(σ), P3,i(σ)(≡ P̄i(σ)) and P4,i(σ) by the
same combinations of P (r)

i (σ)’s as the above. These variables have the
following mode expansions

Pt,i(σ) =
1

π
√

2α′
Pt,0,i +

1
π
√
α′

∞∑
n=1

cos(nσ)Pt,n,i,

Qjt (σ) = Gjk
√

2α′Qt,0,k +
1
π
θjk(σ − π

2
)

1√
2α′

Pt,0,k (6.259)

+
√

2α′
∞∑
n=1

[
Gjk cos(nσ)Qt,n,k +

1
2πα′

θjk sin(nσ)
1
n
Pt,n,k

]
,

where t = 1, 2, 3, 4. From now on, we frequently omit the subscript t for
the t = 1 case, and at the same time we employ the expression with a bar
instead of putting the subscript t for the t = 3 case.

Using those variables, the continuity conditions are written as

Qj4(σ)−Qj4(π − σ) = 0, P4,i(σ) + P4,i(π − σ) = 0,

Qj2(σ) +Qj2(π − σ) = 0, P2,i(σ)− P2,i(π − σ) = 0,

Qj(σ)− iQj(π − σ) = 0, Pi(σ) + iPi(π − σ) = 0,

Q̄j(σ) + iQ̄j(π − σ) = 0, P̄i(σ)− iP̄i(π − σ) = 0 (6.260)
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for 0 ≤ σ ≤ π
2 . In terms of the modes, the conditions for the sectors of

t = 2 and 4 are identical with the Neumann case

(1− C)|Q4,k)|V̂4〉X = (1 + C)|P4,k)|V̂4〉X = 0,

(1 + C)|Q2,k)|V̂4〉X = (1− C)|P2,k)|V̂4〉X = 0,

which can be seen from the point that the conditions (6.260) for the sectors
of t = 2 and 4 lead the same relations between the modes as those without
the terms containing θjk. Here we adopted the vector notation for the
modes

|Qt,k) =

Qt,0,kQt,1,k
...

 , |Pt,k) =

Pt,0,kPt,1,k
...

 ,
and C is a matrix such that (C)nm = (−1)nδnm (n,m ≥ 0). Thus there is
needed no correction containing θij for the sectors of t = 2 and 4, so it is
natural to assume the form of the phase factor in (6.258) as

1
2
θij

4∑
r,s=1

(p(r)
i |Z

rs|p(s)
j ) = θij(Pi|Z|P̄j) (6.261)

with Z being anti–Hermitian.
Next let us consider the conditions for the sectors of t = 1 and 3. We

rewrite the mode expansions of Qj(σ) and Q̄j(σ) as [Sugino (2000)]

Qj(σ) = Gjk(
√

2α′Q0,k + 2
√
α′

∞∑
n=1

cos(nσ)Qn,k)

+ θjk

[∫ σ

π/2

dσ′Pi(σ′) +
1

π
√
α′

∑
n=1,3,5,···

1
n

(−1)(n−1)/2Pn,k

]

≡ θjk
∫ σ

π/2

dσ′Pi(σ′) + ∆Qj(σ), (6.262)

Q̄j(σ) = Gjk(
√

2α′Q̄0,k + 2
√
α′

∞∑
n=1

cos(nσ)Q̄n,k)

+ θjk

[∫ σ

π/2

dσ′P̄i(σ′) +
1

π
√
α′

∑
n=1,3,5,···

1
n

(−1)(n−1)/2P̄n,k

]

≡ θjk
∫ σ

π/2

dσ′P̄i(σ′) + ∆Q̄j(σ). (6.263)
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Using the conditions for Pi(σ) and P̄i(σ) in (6.260), we can reduce the
conditions for Qj(σ) and Q̄j(σ) to those for ∆Qj(σ) and ∆Q̄j(σ):

∆Qj(σ) =
{

i∆Qj(π − σ) (0 ≤ σ ≤ π
2 )

−i∆Qj(π − σ) (π2 ≤ σ ≤ π),

∆Q̄j(σ) =
{
−i∆Q̄j(π − σ) (0 ≤ σ ≤ π

2 )
i∆Q̄j(π − σ) (π2 ≤ σ ≤ π).

These formulas are translated to the relations between the modes via the
Fourier transformation. The result is expressed in the vector notation as

(1−X)|Qi)|V̂4〉X = (1 +X)|Qi)|V̂4〉X = 0, (6.264)

where the vectors |Qi) and |Qi) stand for

|Qi) =


Q0,i + i

4α′Gikθ
kj∑∞

n=0X0nPn,j
Q1,i

Q2,i

...

 ,

|Qi) =


Q̄0,i + i

4α′Gikθ
kj∑∞

n=0X0nP̄n,j
Q̄1,i

Q̄2,i

...

 .

In (6.264), passing the vectors through the phase factor of the |V̂4〉 and
using the continuity conditions in the Neumann case

(1 +X)|Pi)|V4〉X = (1−X)|P̄i)|V4〉X = 0, (6.265)

(1−X)|Qi)|V4〉X = (1 +X)|Q̄i)|V4〉X = 0,

we get the equations, which the coefficients Znm’s should satisfy,

[(1−X)m0

∞∑
n=0

(Z̄0n + i
π

2
X̄0n)Pn,j +

∞∑
n=1

(1−X)mn
∞∑
n′=0

Z̄nn′Pn′,j ]|V4〉X = 0

[(1 +X)m0

∞∑
n=0

(Z0n − i
π

2
X0n)P̄n,j +

∞∑
n=1

(1 +X)mn
∞∑
n′=0

Znn′ P̄n′,j ]|V4〉X = 0

for m ≥ 0. Now all our remaining task is to solve these equations. It is
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easy to see that a solution of them is given by [Sugino (2000)]

Zmn = −i
π

2
(1−X)mn + iβ

π

2
Cmn, (m,n ≥ 0, except for m = n = 0),

Z00 = iβ
π

2
,

if we pay attention to (6.265). Here β is an unknown real constant, which is
not fixed by the continuity conditions alone. This ambiguity of the solution
comes from the property of the matrix X: XC = −CX. However it will
become clear that the term containing the constant β does not contribute
to the vertex |V̂4〉X .

Therefore, we have the expression of the phase (6.261)

θij(Pi|Z|P̄j) = θij [i
π

2
P0,iP̄0,j + iβ

π

2

∞∑
n=0

(−1)nPn,iP̄n,j

− i
π

2

∞∑
m,n=0

Pm,i(1−X)mnP̄n,j ].

Then recalling (6.265) again, the last term in the r. h. s. can be discarded.
Also we can rewrite the term containing β

− θ
ij

4α′
β(Pi|C|P̄j) = +

θij

4α′
β(Pi|XTCX|P̄j) = +

θij

4α′
β(Pi|C|P̄j),

on |V4〉X . The above formula means that the term containing β can be set
to zero on |V4〉X . After all, the form of the 4-string vertex becomes

|V̂4〉X1234 = exp

[
− θ

ij

4α′
P0,iP̄0,j

]
|V4〉X1234.

Note that the phase factor has the cyclic symmetric form

− θ
ij

4α′
P0,iP̄0,j = i

θij

8α′
(p(1)

0.i p
(2)
0,j + p

(2)
0.i p

(3)
0,j + p

(3)
0.i p

(4)
0,j + p

(4)
0.i p

(1)
0,j),

which is a property the vertices should have22.

22Here the momentum p
(r)
0,i is given by p

(r)
0,i =

√
2α′p

(r)
i .
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• |V̂3〉X123

We can get the 3-string overlap in the similar manner as in the 4-string
case. First, we introduce the Z3−Fourier transformed variables

Qj1(σ) =
1√
3

[eX(1)j(σ) + ēX(2)j(σ) +X(3)j(σ)] ≡ Qj(σ),

Qj2(σ) =
1√
3

[ēX(1)j(σ) + eX(2)j(σ) +X(3)j(σ)] ≡ Q̄j(σ),

Qj3(σ) =
1√
3

[X(1)j(σ) +X(2)j(σ) +X(3)j(σ)],

where e ≡ ei2π/3, ē ≡ e−i2π/3. The momenta P1,i(σ)(≡ Pi(σ)), P2,i(σ)(≡
P̄i(σ)) and P3,i(σ) are defined in the same way. The mode expansions
take the same form as those in (6.259). In these variables, the continuity
conditions require

Qj(σ)− eQj(π − σ) = 0, Pi(σ) + ePi(π − σ) = 0,

Q̄j(σ)− ēQ̄j(π − σ) = 0, P̄i(σ) + ēP̄i(π − σ) = 0,

Qj3(σ)−Qj3(π − σ) = 0, P3,i(σ) + P3,i(π − σ) = 0

for 0 ≤ σ ≤ π
2 . The conditions imposed to the modes with respect to the

t = 3 component are identical with those in the Neumann case

(1 + C)|P3,i)|V̂3〉X = (1− C)|Q3,i)|V̂3〉X = 0.

Thus the t = 3 component does not couple with θij , so we can find the
solution by determining the single anti–Hermitian matrix Z in the phase
factor whose form is assumed as [Sugino (2000)]

1
2
θij

3∑
r,s=1

(p(r)
i |Z

rs|p(s)
j ) = θij(Pi|Z|P̄j). (6.266)

For the sectors of t = 1 and 2, the same argument goes on as in the
4-string case. Qj(σ) and Q̄j(σ) have the mode expansions same as in eqs.
(6.262) and (6.263). The conditions we have to consider are

∆Qj(σ) =
{
e∆Qj(π − σ), (0 ≤ σ ≤ π

2 )
ē∆Qj(π − σ), (π2 ≤ σ ≤ π),

∆Q̄j(σ) =
{
ē∆Q̄j(π − σ), (0 ≤ σ ≤ π

2 )
e∆Q̄j(π − σ), (π2 ≤ σ ≤ π),
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which are rewritten as the relations between the modes

(1− Y )|Qi)|V̂3〉X = (1− Y T )|Qi)|V̂3〉X = 0. (6.267)

Recalling the conditions in the Neumann case

(1 + Y )|Pi)|V3〉X = (1 + Y T )|P̄i)|V3〉X = 0, (6.268)

(1− Y )|Qi)|V3〉X = (1− Y T )|Q̄i)|V3〉X = 0,

we end up with the following equations

[(1− Y )m0

∞∑
n=0

(Z̄0n +
π

2
X̄0n)Pn,j +

∞∑
n=1

(1− Y )mn
∞∑
n′=0

Z̄nn′Pn′,j ]|V3〉X = 0,

[(1− Y T )m0

∞∑
n=0

(Z0n − i
π

2
X0n)P̄n,j +

∞∑
n=1

(1− Y T )mn
∞∑
n′=0

Znn′ P̄n′,j ]|V3〉X = 0

for m ≥ 0. It can be easily found out that the expression

Zmn = −i
π√
3

(1 + Y T )mn (m,n ≥ 0, except for m = n = 0),

Z00 = 0,

satisfies the above equations. It should be noted that in this case, because
of CY C = Ȳ 6= −Y , it does not contain any unknown constant differently
from the 4–string case.

Owing to the condition (6.268) we can write the phase factor only in
terms of the zero-modes. Finally we have [Sugino (2000)]

|V̂3〉X123 = exp

[
− θij

4
√

3α′
P0,iP̄0,j

]
|V3〉X123

= exp

[
i
θij

12α′
(p(1)

0,i p
(2)
0,j + p

(2)
0,i p

(3)
0,j + p

(3)
0,i p

(1)
0,j)

]
|V3〉X123. (6.269)

It is not clear whether the solutions we have obtained here are unique
or not. However we can show that the phase factors are consistent with the
relations between the overlaps which they should satisfy,

3〈Î|V̂3〉123 = |V̂2〉12, 4〈Î|V̂4〉1234 = |V̂3〉123, 34〈V̂2||V̂3〉123|V̂3〉456 = |V̂4〉1256,

by using the momentum conservation on the vertices (p(1)
i + · · · +

p
(N)
i )|V̂N 〉X1···N = 0. Furthermore we can see that the phase factors suc-

cessfully reproduce the Moyal product structures of the correlators among
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vertex operators obtained in the perturbative approach to open string the-
ory in the constant B−field background [Seiberg and Witten (1999)]. These
facts convince us that the solutions obtained here are physically meaningful.

6.5.9.4 Transformation of String Fields

In the previous section, we have explicitly constructed the overlap vertices
in the operator formulation under the constant B−field background. Then
we have obtained the vertices with a new noncommutative structure of
the Moyal type originating from the constant B−field, in addition to the
ordinary product ∗ of string fields. Denoting the product with the new
structure by ?, the action of the string field theory is written as

SB =
1
Gs

∫ (
1
2
ψ ? Qψ +

1
3
ψ ? ψ ? ψ

)
=

1
Gs

(
1
2 12
〈V̂2||ψ〉1Q|ψ〉2 +

1
3 123
〈V̂3||ψ〉1|ψ〉2|ψ〉3

)
, (6.270)

where the BRST charge Q is constructed from the world sheet action
(6.242). The theory (6.270) gives the noncommutative U(1) Yang–Mills
theory in the low energy region in the same sense as Witten’s open string
field theory in the case of the Neumann boundary condition leads to the
ordinary U(1) Yang–Mills theory in the low energy limit.23

In [Seiberg and Witten (1999)] the authors argued that open string the-
ory in the constant B−field background leads to either commutative or
noncommutative Yang–Mills theories, corresponding to the different regu-
larization scheme (the so–called Pauli–Villars regularization or the point–
splitting regularization) in the world sheet formulation. They discussed
a map between the gauge fields in the commutative and noncommutative
Yang–Mills theories. In string field theory perspective, there also should
be a certain transformation (hopefully simpler than the Yang–Mills case)
from the string field ψ in (6.270) to a string field in a new string field theory
which leads to the commutative Yang–Mills theory in the low energy limit.

Here we get the new string field theory by finding a unitary transfor-
mation which absorbs the noncommutative structure of the Moyal type in
the product ? into a redefinition of the string fields. There are used the
two vertices |V̂2〉 and |V̂3〉 in the action (6.270). Recall that the 2–string
vertex is in the same form as in the Neumann case and has no Moyal type

23It can be explicitly seen by repeating a similar calculation as that carried out in
[Dearnaley (1990)].
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noncommutative structure. First, we consider the phase factor of the 3–
string vertex which multiplies in front of |V3〉 (see (6.269)). Making use of
the continuity conditions

P0,i = −2
∞∑
n=1

Y0nPn,i, P̄0,i = −2
∞∑
n=1

Ȳ0nP̄n,i, (6.271)

it can be rewritten as [Sugino (2000)]

− θij

4
√

3α′
P0,iP̄0,j =

θij

4
√

3α′

∞∑
n=1

(P0,iȲ0nP̄n,j + Pn,iY0nP̄0,j)

= − θij

24α′

∞∑
n=1

X0n[(−p(2)
0,i − p

(3)
0,i + 2p(1)

0,i )p
(1)
n,j

+ (−p(3)
0,i − p

(1)
0,i + 2p(2)

0,i )p
(2)
n,j + (−p(1)

0,i − p
(2)
0,i + 2p(3)

0,i )p
(3)
n,j ]

= − θ
ij

8α′

3∑
r=1

∞∑
n=1

X0np
(r)
0,ip

(r)
n,j ,

where we used the property of the matrix Y : Y0n = −Ȳ0n =
√

3
2 X0n for

n ≥ 1 and the momentum conservation on |V3〉: p(1)
0,i + p

(2)
0,i + p

(3)
0,i = 0. We

manage to represent the phase factor of the Moyal type as a form factorized
into the product of the unitary operators

Ur = exp

(
θij

8α′
∑

n=1,3,5,···
X0np

(r)
0,ip

(r)
n,j

)
. (6.272)

Note that the unitary operator acts to a single string field. So the Moyal
type noncommutativity can be absorbed by the unitary rotation of the
string field

123〈V̂3||ψ〉1|ψ〉2|ψ〉3 =123 〈V3|U1U2U3|ψ〉1|ψ〉2|ψ〉3 =123 〈V3||ψ̃〉1|ψ̃〉2|ψ̃〉3,
(6.273)

with |ψ̃〉r = Ur|ψ〉r. It should be remarked that this manipulation has
been suceeded owing to the factorized expression of the phase factor, which
originates from the continuity conditions relating the zero-modes to the
nonzero-modes (6.271). It is a characteristic feature of string field theory
that can not be found in any local field theories.

Next let us see the kinetic term. In doing so, it is judicious to write the
kinetic term as follows:

12〈V̂2||ψ〉1(Q|ψ〉2) =123 〈V̂3||ψ〉1(QL|I〉2|ψ〉3 + |ψ〉2QL|I〉3), (6.274)
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whereQL is defined by integrating the BRST current jBRST (σ) with respect
to σ over the left half region

QL =
∫ π/2

0

dσjBRST (σ).

Equation (6.274) is also represented by the product ? as

ψ ? (Qψ) = ψ ? [(QLI) ? ψ + ψ ? (QLI)]. (6.275)

Here, I stands for the identity element with respect to the ?−product,
carrying the ghost number - 3

2 , which corresponds to |I〉 in the operator
formulation. As is discussed by [Horowitz et. al. (1986)], in order to show
the relation (6.275) we need the formulas

QRI = −QLI, (QRψ) ? ξ = −(−1)nψψ ? (QLξ) (6.276)

for arbitrary string fields ψ and ξ, where QR is the integrated BRST current
over the right half region of σ. nψ stands for the ghost number of the
string field ψ minus 1

2 , and takes an integer value. The first formula means
that the identity element is a physical quantity, also the second does the
conservation of the BRST charge. By using these formulas, the first term
in the bracket in r. h. s. of (6.275) becomes

(QLI) ? ψ = −(QRI) ? ψ = I ? (QLψ) = QLψ.

Also, it turns out that the second term is equal to QRψ. Combining these,
we can see that (6.275) holds.

Further, we should remark that because the BRST current does not
contain the center of mass coordinate xj , it commute with the momentum
pi. From the continuity condition pi|I〉 = 0, it can be seen that piQL|I〉 = 0.
Expanding the exponential in the expression of the unitary operator (6.272)
and passing the momentum p0,i to the right, we get

UQL|I〉 = QL|I〉. (6.277)

Now we can write down the result of the kinetic term. As a result of the
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same manipulation as in eq. (6.273) and the use of eq. (6.277), we have24

12〈V̂2||ψ〉1(Q|ψ〉2) =123 〈V̂3||ψ〉1(QL|I〉2|ψ〉3 + |ψ〉2QL|I〉3)

=123 〈V3||ψ̃〉1(QL|I〉2|ψ̃〉3 + |ψ̃〉2QL|I〉3) =12 〈V2||ψ̃〉1(Q|ψ̃〉2). (6.278)

Here we have a comment [Sugino (2000)]. If we considered the kinetic
term itself without using (6.274), what would be going on? Let us see this.
From the continuity conditions for |V̂2〉X12 = |V2〉X12:

p
(1)
0,i + p

(2)
0,i = 0, p

(1)
n,i + (−1)np(2)

n,i = 0 (n = 1, 2, · · · ),

it could be shown that the 2–string overlap is invariant under the unitary
rotation

U1U2|V2〉12 = |V2〉12.

So we would find the expression for the kinetic term after the rotation

12〈V2||ψ〉1Q|ψ〉2 =12 〈V2||ψ̃〉1Q̃|ψ̃〉2,

where Q̃ is the BRST charge similarity transformed by U

Q̃ = UQU†. (6.279)

However, after some computations of the r. h. s. of (6.279), we could see
that Q̃ has divergent term proportional to∑

n=1,3,5,···
1

and thus it is not well–defined. It seems that this procedure is not cor-
rect and needs some suitable regularization, which preserves the conformal
symmetry25. It is considered that the use of eq. (6.274) gives that kind of

24Strictly speaking, in general this formula holds in the case that both of the string

fields |ψ〉 and |ψ̃〉 belong to the Fock space which consists of states excited by finite
number of creation operators. This point is subtle for giving a proof. However, for the

infinitesimal θ case, by keeping arbitrary finite order terms in the expanded form of the
exponential of U , we can make the situation of both |ψ〉 and |ψ̃〉 being inside the Fock
space, and thus clearly eq. (6.278) holds. From this fact, it is plausible to expect that

eq. (6.278) is correct in the finite θ case.
25That divergence comes from the mid–point singularity of the string coordinates

transformed by U . In fact, after some calculations, we have

UXj(σ)U† = Xj(σ)− i
θjk

4
√

2α′

X
n=1,3,5,···

Xn0pn,k −
θjk

4
pk sgn

“
σ −

π

2

”
. (6.280)

The last term leads to the mid-point sigularity in the energy–momentum tensor and
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regularization, which will be justified at the end of the next section.
Therefore, the string field theory action (6.270) with the Moyal type

noncommutativity added to the ordinary noncommutativity is equivalently
rewritten as the one with the ordinary noncommutativity alone [Sugino
(2000)]:

SB =
1
Gs

∫ (
1
2
ψ̃ ∗Qψ̃ +

1
3
ψ̃ ∗ ψ̃ ∗ ψ̃

)
=

1
Gs

(
1
2 12
〈V2||ψ̃〉1Q|ψ̃〉2 +

1
3 123
〈V3||ψ̃〉1|ψ̃〉2|ψ̃〉3

)
. (6.281)

It is noted that the BRST charge Q, which is constructed from the world
sheet action (6.242), has the same form as the one obtained from the action
(6.238) with the relation (6.247). So all the B−dependence has been stuffed
into the string fields except that existing in the metric Gij . Furthermore,
recalling that the relation between the metrics Gij and gij is the same
form as the T–duality inversion transformation, which was pointed out at
the end of section 3, we can make the metric gij appear in the overlap
vertices, instead of the metric Gij . To do so, we consider the following
transformation for the modes:

α̂in = (ET−1)ikαn,k, p̂i = (ET−1)ikpk, x̂i = Eikx
k. (6.282)

By this transformation, the commutators become

[α̂in, α̂
j
m] = ngijδn+m,0, [p̂i, x̂j ] = −iδij ,

and the bilinear form of the modes

Gijαn,iαm,j = gijα̂
i
nα̂

j
m, Gijpiαm,j = gij p̂

iα̂jm, Gijpipj = gij p̂
ip̂j .

(6.283)

6.6 Application: Dynamics of Strings and Branes

Dynamics of Nambu–Goto strings and branes was analyzed recently in
[Golovnev and Prokhorov (2005)]. It was shown that they could be con-

the BRST charge Q. It seems that the use of (6.274) corresponds to taking the point
splitting regularization with respect to the mid–point. Because of the discontinuity of
the last term in (6.280), it is considered that the transformed string coordinates have

no longer a good picture as a string. It could be understood from the point that the
transformation U drives states around a perturbative vacuum to those around highly
non–perturbative one like coherent states.
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sidered as continuous limits of ordered discrete sets of relativistic particles
for which the tangential velocities were excluded from the action. The au-
thors have proved that p−branes might be considered as continuous limits
of discrete sets of relativistic particles and that the p−brane action

S = −γ
∫
d p+1σ

√
(−1)p g, g = det

∂xµ

∂σa

∂xµ
∂σb

, (6.284)

is a continuous limit of sum of properly modified relativistic particle actions.
Here a, b = 0, 1, . . . , p and µ = 0, 1, . . . , n where p + 1 and n + 1 are the
brane world–sheet and the bulk space dimensions respectively; g is the
induced metric determinant on the world–sheet. Strings correspond to the
p = 1 case in (6.284). The modification is such that particle motions along
the brane hypersurface become un–physical. It yields p constraints; the
remaining constraint (H = 0) is a consequence of arbitrariness of ‘time’ σ0.
The authors have also found the linear constraints in un–physical momenta,
which allowed them to derive the evolution operators for the objects under
consideration from the ‘first principles’.

6.6.1 A Relativistic Particle

Following [Golovnev and Prokhorov (2005)], we start with the simplest case
of one relativistic particle which can be formally considered as a 0−brane.
Recall that the motion of free relativistic particle is defined by the well–
known action

S = −m
∫ √

1−−→v 2
dt,

where −→v = d−→x (t)
dt . The canonical momentum is

−→p ≡ ∂L

∂−→v
=

m−→v√
1−−→v 2

≡ Ep−→v ,

with L being the Lagrangian, and the Hamiltonian is

H = Ep =
√
m2 +−→p 2

.

We can write down the action in the explicitly relativistic invariant form by
parametrization of the world line: xµ = xµ(σ0) (usually one uses τ instead
of σ0) with

xµ(σ0) = (t(σ0),−→x (σ0)), (µ = 0, . . . , n).
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We denote

ẋµ ≡ dxµ

dσ0
, so that −→v = −̇→x dσ0

dt
, and

S = −m
∫ √

ẋµẋµdσ0.

It is the p = 0 case of (6.284) in which we put m (particle’s mass) instead
of γ. The vector of canonical momentum is

pµ ≡
∂L

∂ẋµ
= −m ẋµ√

ẋ2
. (6.285)

The obtained theory is invariant under reparametrization group σ0 →
σ̃0 = f(σ0)), hence its Hamiltonian is zero and by squaring the equation
(6.285) one gets a constraint:

p2 −m2 = 0. (6.286)

Note that the information about the sign of p0 is lost. On the other hand
one can prove that any constraint has to be linear in un–physical momenta
[Golovnev and Prokhorov (2005)]. One can get the solution in the following
way.

From the constraint (6.286) one finds

p0 = ±
√
m2 +−→p 2

,

and it is obvious from (6.285) that sgnp0 = −sgnẋ0. Combining these facts
we have

p0 + Epsgn(ẋ0) = 0, (6.287)

with Ep(−→p ) =
√
m2 +−→p 2

.

The Hamiltonian is zero and the total Dirac Hamiltonian is [Dirac (1982)]

HT = v
(
p0 + Epsgn(ẋ0)

)
.

Here v is the Lagrange multiplier. Strictly speaking (6.287) is not a con-
straint because it contains velocity (and HT is not a Hamiltonian due to
the same reason). But it depends only upon the sign of ẋ, and this fact
allows us to formulate the quantum theory.

We fix the σ0 ‘time arrow’ by condition

∂x0

∂σ0
> 0, (6.288)
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which forces us to admit that v > 0, as

∆x0 = v∆σ0.

We use the evolution operator

Uω(x, x̃) =
〈
x| exp(−iωĤT )|x̃

〉
,

ψ(x, σ0 + ω) =
∫
d4x̃ Uω(x, x̃)ψ(x̃, σ0)

and the following relation for infinitesimal ω:〈
x| exp(−iωĤT )|x̃

〉
=
∫
d4p 〈x| exp(−iωHT (x, p))|p〉 〈p|x̃〉 .

Integrating over p0 and (with use of δ−function δ(x0 − x̃0 − ωv)) over x̃0

we get for the wave function [Golovnev and Prokhorov (2005)]:

ψ(x0,−→x ) =
∫
d3p d3x̃

(2π)3
exp

(
i[pi∆xi −∆x0Ep]

)
ψ(x̃0,

−→̃
x ), (6.289)

where ∆x0 = vω, and we omit the argument σ0 because all the information
on σ0 is accumulated in x0. Using (6.289) one can get the right Feynman
propagator for a relativistic particle.

6.6.2 A String

Now we show that any string and brane can be described as a system of par-
ticles. More precisely, the action (6.284) may be regarded as a continuous
limit of sum of free relativistic particle actions provided that we take −→v ⊥
instead of −→v , where −→v ⊥ is the part of velocity orthogonal to the constant
time hypersurface of the brane world–sheet . We deal here with a kind of
indirectly introduced particle interaction.

In this section we consider a string (1−brane) and reproduce the proof
of our statement by an explicit calculation [Barbashov and Nesterenko
(1990)]. We consider N + 1 particles with the position vectors −→x k(x0),
(k = 0, 1, . . . , N) and the action

S = −m
N∑
k=0

∫
dx0
√

1−−→v 2
k⊥(x0), in which −→v k =

d−→x k
dx0

,(6.290)

and
−→v k⊥ = −→v k −

(−→v k ·∆−→x k)
(∆−→x k)2

∆−→x k, with ∆−→x k ≡ −→x k+1 −−→x k.
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In the continuous limit we define

kA

N
→ σ1,

∆−→x k
A/N

→
−→
k (σ1),

m

|∆−→x k|
→ γ.

Here σ1 ∈ [0, A]; usually one takes A = π, but for our purposes it may be
natural to consider A as the string length and

|∆−→x k| =
A

N
, |

−→
k | = 1.

In any case we have

S = −γ
N∑
k=0

∫
dx0∆l

√
1−−→v 2

k⊥ → −γ
∫
dx0|
−→
k |dσ1

√
1−−→v 2

⊥,

with
−→
k =

∂−→x (x0, σ1)
∂σ1

, −→v =
∂−→x (x0, σ1)

∂x0
, −→v ⊥ = −→v − (−→v

−→
k )

k2

−→
k .

The string length is equal to

L =
∫
|
−→
k |dσ1.

After that we parameterize the world–sheet

x0 = x0(σ0, σ1), −→x = −→x (σ0, σ1)

by introducing a new parameter σ0 (again the standard notations are
x0  t and σ0  τ). We get

ẋ ≡ ∂x(σ0, σ1)
∂σ0

= (1,−→v )ẋ0, x′ ≡ ∂x(σ0, σ1)
∂σ1

= (x0
′,
−→
k +−→v x0

′),

and S = −γ
∫
d2σẋ0|

−→
k |
√

1−−→v 2
⊥.

The last expression is equal to the Nambu–Goto action:

S = −γ
∫
d2σ

√
(ẋx′)2 − ẋ2x′2.

Note that one could start with it and get

S = −γ
∫
dx0dl

√
1−−→v ⊥

2
,

which is a continuous limit of (6.290).



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Geometrical Path Integrals and Their Applications 1173

We can also propose another discrete analogue of the Nambu–Goto
string. Let’s consider the following action:

S = −m
N∑
k=0

∫
dσ0

√
ẋµk⊥ẋµk⊥,

where ẋµk⊥ is the part of ẋµk perpendicular to xµk+1 − x
µ
k . The continuous

limit is

N →∞, kA

N
→ σ1,

m

|∆sk|
→ γ,

with the invariant interval

(∆sk)2 = (xµk+1 − x
µ
k)(xµk+1 − xµk).

We have

ẋµ⊥ = ẋµ − ẋνx′ν
x′ρx′ρ

x′µ,

(
ds

dσ1

)2

= x′2, and

S = −γ
∫
dτ |ds|

√
ẋ2 − (ẋx′)2

x′2
= −γ

∫
dσ0dσ1

√
(ẋx′)2 − ẋ2x′2.

In contrast to the previous paragraph the presented discrete theory has
the relativistic invariant form from the very beginning but even the sense
of ẋ⊥ depends upon the parametrization of the world–sheet. In the gauge
σ0 = x0 these two approaches coincide.

6.6.3 A Brane

Now we shall prove our statement for p > 1. We consider (N+1)p particles
arranged into some pD lattice with the position vectors −→x i1i2...ip and the
action [Golovnev and Prokhorov (2005)]

S = −m
∫
dx0

N∑
i1=0

· · ·
N∑
ip=0

√
1−−→v 2

i1,...ip⊥,

where −→v i1,...ip⊥ is the component of −→v i1...ip perpendicular to
−→x i1...ik+1...ip − −→x i1...ik...ip for all k. In continuous limit we demand
Aik
N → σk and m

∆V → γ with ∆V being volume of a cell of the lattice.
The action takes the form

S = −γ
∫
dx0dV

√
1−−→v 2

⊥,
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and we need to prove that S is equal to (6.284).
For the sake of simplicity first we consider some special coordinate

system on the brane. Let the brane be parametrized by σ0, σ1, . . . , σp,
σi ∈ [0, A] for i = 1, . . . , p. We choose a coordinate system in which
σ0 = x0, so that ∂x0

∂σi
= 0, and ∂xµ

∂σi

∂xµ
∂σj

= 0, i 6= j. It is always possi-
ble, locally at least. Let’s denote

−→
k i ≡

∂−→x (x0, σi)
∂σi

and −→v ≡ ∂−→x (x0, σi)
∂x0

on the world–sheet. In our coordinate system
−→
k i is orthogonal to

−→
k j ,

i 6= j and

−→v ⊥ = −→v −
p∑
i=1

(−→v
−→
k i)

ki
2

−→
k i.

Note that one can find −→v ⊥ without the orthogonality condition with the
use of standard orthogonalization procedure.

We get

∂xµ

∂σ0
= (1,−→v ) and

∂xµ

∂σi
= (0,

−→
k i),

so the determinant in (6.284) is

det
∂xµ

∂σa

∂xµ
∂σb

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

1−−→v 2 −−→v
−→
k 1 −−→v

−→
k 2 . . . −−→v

−→
k p

−−→v
−→
k 1 −k2

1 0 . . . 0
−−→v
−→
k 2 0 −k2

2 . . . 0
...

...
...

. . .
...

−−→v
−→
k p 0 0 . . . −k2

p

∣∣∣∣∣∣∣∣∣∣∣∣∣
=

(
p∏
i=1

(−ki2)

)1−−→v 2 +
p∑
i=1

(−→v −→k i)2

ki
2


where a, b = 0, 1, . . . , p. It is not also difficult to see that the volume element
at the constant time hypersurface on the brane world–sheet is

dV =
p∏
i=1

|ki|dσi.
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Thus, we can conclude that the action is

S = −γ
∫
dσ0d

nσi

√∣∣∣∣det
∂xµ

∂σa

∂xµ
∂σb

∣∣∣∣ = −γ
∫
dx0dV

√
1−−→v 2

⊥. (6.291)

6.6.4 String Dynamics

As it was mentioned above, the evolution operator Uω can be constructed
for strings and branes in the same way as above [Goto (1971)]. For p =
1 action (6.284) is the action of free bosonic string with the Lagrangian
density (see, e.g., [Kaku (1988)])

L = −γ
√
−g = −γ

√
(ẋx′)2 − ẋ2x′2. (6.292)

We assume that ẋ is time–like and x′ is space–like, so that σ0 can be
regarded as a time parameter. In this case the momentum

pµ ≡
∂L
∂ẋµ

= −γ
(ẋx′)x′µ − x′

2
ẋµ√

(ẋx′)2 − ẋ2x′2
(6.293)

will also be time–like. One easily gets two constraints

pµx
′µ = 0, (6.294)

p2 + γ2x′
2 = 0. (6.295)

The second one is obtained by squaring the (6.293) and hence some infor-
mation is lost. As in the case of a pointlike particle (6.295) yields p0 = ±Ep
with

Ep =
√
−→p 2 − γ2x′2.

The sign of p0 follows from the definition of the momentum. We have

p0 + Ep(x,−→p )sgn(y0) = 0, where

yµ = (ẋx′)x′µ − x′
2
ẋµ.

The vector y is obviously time–like (indeed, y2 = x′
2
g > 0 and yµẋ

µ =
−g > 0, so that sgnẋ0 = sgny0). We get the ‘constraint’ analogous to
(6.287):

p0 + Ep(x,−→p )sgn(ẋ0) = 0. (6.296)
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The ‘Hamiltonian’ of the theory,

H = p0 + Epsgnẋ0,

is zero, and demanding again sgnẋ0 > 0, we get the total Hamiltonian

HT = u(p0 + Ep) + vpµx
′µ.

We have two un–physical momenta and need to exclude them from Ep.
Let’s exclude p0 and p1 (we denote the remaining components by the lower
index ‘>’: pµ = (p0, p1, p>)). One can find p1 from (6.294) if x′1 6= 0.
Above we restricted ourselves to the case x′0 = 0 and had

Ep(x, p>) =

√(
p>x′>
x′1

)2

+ p2
> − γ2x′2.

In general case one can substitute p1 from (6.294) to (6.295) and get a
quadratic equation for p0:

p0
2

1−

(
x′

0

x′1

)2
+ 2p0

(p>x′>)x′0

(x′1)
2 − p2

>

(
1 +

(
x′>
x′1

)2
)

+ γ2x′
2 = 0.

If |x′1| > |x′0|, it has two real roots of opposite signs, and we can choose a
proper one following (6.296). Otherwise we have to try to exclude another
component of pµ from Ep. It’s always possible because x′ is space–like and
|
−→
x′ | > |x′0|. Above we have seen that the un–physical degree of freedom is

related to the motion of particles along the string.
Now we write down the evolution equation [Golovnev and Prokhorov

(2005)]

ψ(x) =
∫
Dn+1x̃(σ1)

〈
x(σ1)| exp(−iωĤT )|x̃(σ1)

〉
ψ(x̃(σ1)) =

=
∫
Dn+1pDn+1x̃ exp(i[pµ∆xµ − ωu( p0 + Ep(x̃, p⊥))− ωvpµx′

µ])ψ(x̃) =

=
∫
Dn−1p>Dn+1x̃ exp(i[−p>∆x> − ωuEp(x̃, p>) + ωvp>x

′
>])×

× δ(∆x0 − ωu− ωvx′0)δ(−∆x1 + ωvx′1)ψ(x̃).

Here Dx̃ and Dp denote differentials in the functional spaces and all the
integrals are path integrals.
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δ−Functions determine the Lagrange multipliers

ωv =
∆x1

x′1
and ωu = ∆x0 − x′

0∆x1

x′1
,

giving the final result

ψ(x) =
∫
Dn−1p>Dn−1x̃> exp(i[−p>∆x>−

−

(
∆x0 − x′

0∆x1

x′1

)
Ep(x̃, p>) +

∆x1

x′1
p>x

′
>])ψ(x̃).

If x′0 = 0, (6.288) implies u > 0.

6.6.5 Brane Dynamics

We turn to the general case of action (6.284). We denote the σ0, σ1, . . . , σp
derivatives of x by x,0, x,1, . . . , x,p. Again we assume that the vector xµ,0 is
time–like, and vectors xµ,i are space–like (here and hereafter in this chapter
i, k, l = 1, . . . , p while a, b = 0, . . . , p). Now in the action (6.284)

g(σ) =
1

(p+ 1)!
εa0...apε

b0...bpxα0,b0x
α0,a0 · · ·xαp,bpxαp,ap ,

with ε being the unit antisymmetric Levi–Civita symbol , and the canonical
momentum is [Golovnev and Prokhorov (2005)]

pµ =
−γ(−1)p

p!
√

(−1)pg
ε0a1...apε

b0...bpxµ,b0 x,b1 · x,a1 . . . x,bp · x,ap .

Evidently pµx
µ
,i = 0 due to antisymmetry of ε, and using the equality

εa0...apg(σ) = εb0...bpx,b0 · x,a0 . . . x,bp · x,ap one gets

p2 = (−1)pγ2ζ(x), with ζ(x) = detxµ,ixµ,k.

So, with the loss of information about the sign of p0, the constraints are

pµx
µ
,i = 0, (i = 1, 2, . . . , p), (6.297)

p2 − (−1)pγ2ζ(x) = 0. (6.298)

From (6.298) we have p0 = ±Ep with

Ep =
√
−→p 2 + (−1)pγ2ζ(x).
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Again, the p0 sign can be easily found: pµ and ẋµ are time–like and

pµẋ
µ = −γ

√
(−1)pg < 0, so that sgn(p0) = −sgn(ẋ0).

The result is similar to (6.287):

p0 + Epsgn(ẋ0) = 0,

the ‘Hamiltonian’ is equal to zero, and the total Hamiltonian is

HT = u(p0 + Ep(x,−→p )) + vipµx
µ
,i.

Here, p+1 momenta are un–physical ones. We assume that det(xi,k) 6= 0
(xi,k is an p× p matrix) and exclude momenta p1, . . . , pp from Ep. Due to
(6.297) we have

pi = ([x.,.]−1)il(p0x0,l − p>x>,l).

Here we denoted all the components of pµ with µ > p by the lower index
‘>’, and ([x.,.]−1)il ≡ dil is a matrix inverse of xl,i. Then (6.298) turns into
quadratic equation

p0
2
(
1− dilx0,ldikx0,k

)
+ 2p0dil( p>x>,l)dikx0,k

−dil(p>x>,l)dik(p>x>,k)− (−1)pγ2ζ(x) = 0.

It has two real roots of opposite signs iff dilx0,ldikx0,k < 1. The sufficient
condition is that the norm of xi,k as a linear operator is greater than the
length of pD vector x0,l. If x0,l = 0 the simple answer exists:

Ep = Ep(x, p>) =

√√√√ p∑
i=1

(pi(x, p>))2 + p2
> + (−1)pγ2ζ(x).

For the wave function, taking (6.288) into account, we get path integrals

ψ(x) =
∫
Dn+1pDn+1x̃ exp(i[pµ∆xµ−

− ωu(p0 + Ep(x̃, p⊥))− ωvipµxµ,i])ψ(x̃) =

=
∫
Dn−pp>Dn+1x̃ exp(i[−p>∆x> − ωuEp(x̃, p>) + ωvip>x>,i])

× δ(∆x0 − ωu− ωvix′0,i)
r∏
l=1

δ(−∆xl + ωvixl,i)ψ(x̃).
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Again δ−functions determine the Lagrange multipliers

ωvi = dil∆xl, and ωu = ∆x0 − ωvix0,i,

and reduce the number of integrals over x:

ψ(x) =
∫
Dn−pp>Dn−px̃> exp(i[−p>∆x>

− (∆x0 − dil(∆xl)x0,i)Ep(x̃, p>) + dil(∆xl)p>x>,i])ψ(x̃).

Now we are ready to prove this statement without fixing any special
coordinate system. We just need to find out the general formula for −→v ⊥.
Notice that by definition pµ lies in a hyperplane of xµ,0 and xµ,i. Then, due
to the constraints (6.297), pµ is proportional to xµ⊥,0. We have

vµ =
∂xµ(x0, σi)

∂x0
=
xµ,0
x0
,0

,

and hence pµ is also proportional to vµ⊥: vµ⊥ = αpµ. To find the coefficient
α we take

vµ⊥pµ =
xµ⊥,0pµ

x0
,0

=
−γ
√

(−1)pg
x0
,0

,

(the last equality is just the Euler’s homogeneous function theorem) and

pµpµ = (−1)pγ2ζ(x).

However [Golovnev and Prokhorov (2005)],

as vµ⊥pµ = αpµpµ, we have vµ⊥ = −
√

(−1)pg
(−1)pγζx0

,0

pµ,

and 1−−→v 2
⊥ = vµ⊥vµ⊥ =

(−1)pg p2

γ2ζ2x0
,0

2 =
g

ζx0
,0

2 , so we get∫
dx0dV

√
1−−→v 2

⊥ =
∫
x0
,0 dσ0

√
|detxµ,ixµ,k| ×

× dpσi

√
g

ζx0
,0

2 =
∫
dp+1σ

√
|g|.
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6.7 Application: Topological String Theory

6.7.1 Quantum Geometry Framework

To start our review on topological string theory, here we depict a general
quantum geometry framework (see e.g., [Witten (1998a)]).

SPECIAL RELATIVITY QUANTUM FIELD THEORY

CLASSICAL DYNAMICS QUANTUM MECHANICS
v/c ↑

→
~

Fig. 6.22 The deformation from classical dynamics to quantum field theory (see text

for explanation).

The relationship between non–relativistic classical mechanics and quan-
tum field theory (see [Coleman (1988)]) can be summarized as in Figure
6.22. We see that the horizontal axis corresponds to the Planck constant
~ (divided by the typical action of the system being studied), while the
vertical axis corresponds to v/c, the ration of motion velocity and light
velocity.

Similarly, in the superstring theory there are also two relevant expansion
parameters, as shown in Figure 6.23. Here we see that the horizontal axis
corresponds to the value of the string coupling constant, gs, while the verti-
cal axis corresponds to the value of the dimensionless sigma model coupling
α′/R2 with R being a typical radius of a compactified portion of space). In
the extreme α′ = gs = 0 limit, for instance, we recover relativistic particle
dynamics. For nonzero gs we recover point particle quantum field theory.
For gs = 0 and nonzero α′ we are studying classical string theory. In gen-
eral though, we need to understand the theory for arbitrary values of these
parameters (see [Greene (1996)]).

Quantum stringy geometry postulates the existence of 6D Calabi–Yau
manifolds at every point of the space–time (see, e.g., [Candelas et. al.
(1985)]). These curled–up local manifolds transform according to the gen-
eral orbifolding procedure, as will be described below.



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Geometrical Path Integrals and Their Applications 1181

CLASSICAL STRINGY QUANTUM STRINGY
GEOMETRY GEOMETRY

CLASSICAL RIEMANNIAN QUANTUM RIEMANNIAN
GEOMETRY GEOMETRY

α′/R2 ↑
→
gs

Fig. 6.23 The deformation from classical Riemannian geometry to quantum stringy

geometry (see text for explanation).

6.7.2 Green–Schwarz Bosonic Strings and Branes

Here, we briefly describe the world–sheet dynamics of the Green–Schwarz
bosonic string theory , and (more generally), bosonic p−brane theory, the
predecessor of the current superstring theory (see [Schwarz (1993); Green
et. al. (1987)] for details).

World–Line Description of a Point Particle

Recall that a point particle sweeps out a trajectory called world–line in
space–time. This can be described by functions xµ(τ), that describe how
the world–line, parameterized by τ , is embedded in the space–time, whose
coordinates are denoted xµ (µ = 0, 1, 2, 3). For simplicity, let us assume
that the space–time is flat Minkowski space with a Lorentz metric tensor

ηµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Then, the Lorentz–invariant line element (metric form) is given by

ds2 = −ηµνdxµdxν .

In normal units (~ = c = 1), the action for a particle of mass m is given by

S = −m
∫
ds.
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This could be generalized to a curved space–time by replacing ηµν by a
Riemannian metric tensor gµν(x), but (for simplicity) we will not do so here.
In terms of the embedding functions, xµ(t), the action can be rewritten as

S[x] = −m
∫
dτ
√
−ηµν ẋµẋν ,

where overdot represents the derivative with respect to τ . An important
property of this action is invariance under local reparametrizations. This
is a kind of gauge invariance, whose meaning is that the form of S is un-
changed under an arbitrary reparametrization of the world–line τ → τ(τ̃).
Actually, one should require that the function τ(τ̃) is smooth and mono-
tonic

(
dτ
dτ̃ > 0

)
. The reparametrization invariance is a 1D analog of the 4D

general coordinate invariance of general relativity. Mathematicians refer to
this kind of symmetry as diffeomorphism invariance.

The reparametrization invariance of S allows us to choose a gauge. A
nice choice is the static gauge, x0 = τ . In this gauge (renaming the
parameter to t) the action becomes

S = −m
∫ √

1− v2
i dt, where vi =

dxi
dt
.

Requiring this action to be stationary under an arbitrary variation of xi(t)
gives the Euler–Lagrangian equations

dpi
dt

= 0, where pi =
δS

δvi
=

mvi√
1− v2

i

,

which is the usual result. So we see that usual relativistic kinematics follows
from the action S = −m

∫
ds.

p−Branes and World–Volume Actions

We can now generalize the analysis of the massive point particle to a
generic p−brane, which is characterized by its tension Tp. The action in
this case involves the invariant (p+ 1)D volume and is given by

Sp = −Tp
∫
dµp+1,

where the invariant volume element is

dµp+1 =
√
−det(−ηµν∂αxµ∂βxν)dp+1σ.
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Here the embedding of the p−brane into dD space–time is given by func-
tions xµ(σα). The index α = 0, . . . , p labels the p + 1 coordinates σα of
the p−brane world–volume and the index µ = 0, . . . , d − 1 labels the d

coordinates xµ of the dD space–time. We have defined ∂αx
µ = ∂xµ

∂σα .The
determinant operation acts on the (p+ 1)× (p+ 1) matrix whose rows and
columns are labelled by α and β. The tension Tp is interpreted as the mass
per unit volume of the p−brane. For a 0−brane, it is just the mass.

Let us now specialize to the string, p = 1. Evaluating the determinant
gives the Nambu–Goto action (see subsection 6.5.4 above)

S[x] = −T
∫
dσdτ

√
ẋ2x′2 − (ẋ · x′)2,

where we have defined σ0 = τ , σ1 = σ , and ẋµ = ∂xµ

∂τ , x′µ = ∂xµ

∂σ . The
above action is equivalent to the action

S[x, h] = −T
2

∫
d2σ
√
−hhαβηµν∂αxµ∂βxν , (6.299)

where hαβ(σ, τ) is the world–sheet metric, h = dethαβ , and hαβ = (hαβ)−1

is the inverse of hαβ . The Euler–Lagrangian equations obtained by varying
hαβ are

Tαβ = ∂αx · ∂βx−
1
2
hαβh

γδ∂γx · ∂δx = 0.

In addition to reparametrization invariance, the action S[x, h] has an-
other local symmetry, called conformal invariance, or, Weyl invariance.
Specifically, it is invariant under the replacement

hαβ → Λ(σ, τ)hαβ , xµ → xµ.

This local symmetry is special to the p = 1 case (strings).
The two reparametrization invariance symmetries of S[x, h] allow us to

choose a gauge in which the three functions hαβ (this is a symmetric 2× 2
matrix) are expressed in terms of just one function. A convenient choice is
the conformally flat gauge

hαβ = ηαβeφ(σ,τ).

Here, ηαβ denoted the 2D Minkowski metric of a flat world–sheet. How-
ever, hαβ is only ‘conformally flat’, because of the factor eφ. Classically,
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substitution of this gauge choice into S[x, h] leaves the gauge–fixed action

S =
T

2

∫
d2σηαβ∂αx · ∂βx. (6.300)

Quantum mechanically, the story is more subtle. Instead of eliminating
h via its classical field equations, one should perform a Feynman path
integral, using standard machinery to deal with the local symmetries and
gauge fixing. When this is done correctly, one finds that in general φ does
not decouple from the answer. Only for the special case d = 26 does the
quantum analysis reproduce the formula we have given based on classical
reasoning. Otherwise, there are correction terms whose presence can be
traced to a conformal anomaly (i.e., a quantum–mechanical breakdown of
the conformal invariance).

The gauge–fixed action is quadratic in the x’s. Mathematically, it is the
same as a theory of d free scalar fields in two dimensions. The equations of
motion obtained by varying xµ are free 2D wave equations:

ẍµ − x′′µ = 0.

However, this is not the whole story, because we must also take account
of the constraints Tαβ = 0, which evaluated in the conformally flat gauge,
read

T01 = T10 = ẋ · x′ = 0, T00 = T11 =
1
2

(ẋ2 + x′2) = 0.

Adding and subtracting gives

(ẋ± x′)2 = 0. (6.301)

Boundary Conditions

To go further, one needs to choose boundary conditions. There are three
important types. For a closed string one should impose periodicity in the
spatial parameter σ. Choosing its range to be π (as is conventional)

xµ(σ, τ) = xµ(σ + π, τ).

For an open string (which has two ends), each end can be required to satisfy
either Neumann or Dirichlet boundary conditions for each value of µ,

Neumann :
∂xµ

∂σ
= 0 at σ = 0 or π,

Dirichlet :
∂xµ

∂τ
= 0 at σ = 0 or π.
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The Dirichlet condition can be integrated, and then it specifies a space–
time location on which the string ends. The only way this makes sense is
if the open string ends on a physical object – it ends on a D–brane.26 If all
the open–string boundary conditions are Neumann, then the ends of the
string can be anywhere in the space–time. The modern interpretation is
that this means that there are space–time–filling D–branes present.

Let us now consider the closed–string case in more detail. The general
solution of the 2D wave equation is given by a sum of ‘right–movers’ and
‘left–movers’: xµ(σ, τ) = xµR(τ − σ) + xµL(τ + σ). These should be subject
to the following additional conditions:

• xµ(σ, τ) is real,
• xµ(σ + π, τ) = xµ(σ, τ), and
• (x′L)2 = (x′R)2 = 0 (these are the Tαβ = 0 constraints in (6.301)).

The first two of these conditions can be solved explicitly in terms of
Fourier series:

xµR =
1
2
xµ + `2sp

µ(τ − σ) +
i√
2
`s
∑
n 6=0

1
n
αµne−2in(τ−σ)

xµL =
1
2
xµ + `2sp

µ(τ + σ) +
i√
2
`s
∑
n 6=0

1
n
α̃µne−2in(τ−σ),

where the expansion parameters αµn, α̃µn satisfy αµ−n = (αµn)†, α̃µ−n =
(α̃µn)†.The center–of–mass coordinate xµ and momentum pµ are also real.
The fundamental string length scale `s is related to the tension T by

T =
1

2πα′
, α′ = `2s.

The parameter α′ is called the universal Regge slope, since the string modes
lie on linear parallel Regge trajectories with this slope.

Canonical Quantization

The analysis of closed–string left–moving modes, closed–string right–
moving modes, and open–string modes are all very similar. Therefore, to
avoid repetition, we focus on the closed–string right–movers. Starting with
the gauge–fixed action in (6.300), the canonical momentum of the string is

pµ(σ, τ) =
δS

δẋµ
= T ẋµ.

26D here stands for Dirichlet.
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Canonical quantization (this is just free 2D field theory for scalar fields)
gives

[pµ(σ, τ), xν(σ′, τ)] = −i~ηµνδ(σ − σ′).

In terms of the Fourier modes (setting ~ = 1) these become

[pµ, xν ] = −iηµν , [αµm, α
ν
n] = mδm+n,0η

µν , [α̃µm, α̃
ν
n] = mδm+n,0η

µν ,

and all other commutators vanish.
Recall that a quantum–mechanical harmonic oscillator can be described

in terms of raising and lowering operators, usually called a† and a, which
satisfy [a, a†] = 1. We see that, aside from a normalization factor, the ex-
pansion coefficients αµ−m and αµm are raising and lowering operators. There
is just one problem. As η00 = −1, the time components are proportional to
oscillators with the wrong sign ([a, a†] = −1). This is potentially very bad,
because such oscillators create states of negative norm, which could lead to
an inconsistent quantum theory (with negative probabilities, etc.). Fortu-
nately, as we will explain, the Tαβ = 0 constraints eliminate the negative–
norm states from the physical spectrum.

The classical constraint for the right–moving closed–string modes,
(x′R)2 = 0, has Fourier components

Lm =
T

2

∫ π

0

e−2imσ(x′R)2dσ =
1
2

∞∑
n=−∞

αm−n · αn,

which are called Virasoro operators. Since αµm does not commute with
αµ−m, L0 needs to be normal–ordered:

L0 =
1
2
α2

0 +
∞∑
n=1

α−n · αn.

Here αµ0 = `sp
µ/
√

2, where pµ is the momentum.

6.7.3 Calabi–Yau Manifolds, Orbifolds and Mirror Sym-

metry

Calabi–Yau Manifolds

Fundamental geometrical objects in string theory are the Calabi–Yau
manifolds [Calabi (1957); Yau (1978)]. Recall (from subsection 3.14.2
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above) that a Calabi–Yau manifold is a compact Ricci–flat Kähler man-
ifold with a vanishing first Chern class. A Calabi–Yau manifold of complex
dimension n is also called a Calabi–Yau n−fold, which is a manifold with
an SU(n) holonomyi.e., it admits a global nowhere vanishing holomorphic
(n, 0)−form.

For example, in one complex dimension, the only examples are family of
tori. Note that the Ricci–flat metric on the torus is actually a flat metric, so
that the holonomy is the trivial group SU(1). In particular, 1D Calabi–Yau
manifolds are also called elliptic curves.

In two complex dimensions, the torus T 4 and the K3 surfaces27 are the
only examples. T 4 is sometimes excluded from the classification of being a
Calabi–Yau, as its holonomy (again the trivial group) is a proper subgroup
of SU(2), instead of being isomorphic to SU(2). On the other hand, the
holonomy group of a K3 surface is the full SU(2) group, so it may properly
be called a Calabi–Yau in 2D.

In three complex dimensions, classification of the possible Calabi–Yau
manifolds is an open problem. One example of a 3D Calabi–Yau is the
quintic threefold in CP 4.

In string theory, the term compactification refers to ‘curling up’ the extra
dimensions (6 in the superstring theory), usually on Calabi–Yau spaces
or on orbifolds. The mechanism behind this type of compactification is
described by the Kaluza–Klein theory.

In the most conventional superstring models, 10 conjectural dimensions
in string theory are supposed to come as 4 of which we are aware, car-
rying some kind of fibration with fiber dimension 6. Compactification on
Calabi–Yau n−folds are important because they leave some of the original
supersymmetry unbroken. More precisely, compactification on a Calabi–
Yau 3−fold (with real dimension 6) leaves one quarter of the original su-
persymmetry unbroken.

Orbifolds

Recall that in topology, an orbifold is a generalization of a manifold, a
topological space (called the underlying space) with an orbifold structure.
The underlying space locally looks like a quotient of a Euclidean space
under the action of a finite group of isometries.

27Recall that K3 surfaces are compact, complex, simply–connected surfaces, with

trivial canonical line bundle, named after three algebraic geometers, Kummer, Kähler
and Kodaira. Otherwise, they are hyperkähler manifolds of real dimension 4 with SU(2)

holonomy.
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The formal orbifold definition goes along the same lines as a definition
of manifold, but instead of taking domains in Rn as the target spaces of
charts one should take domains of finite quotients of Rn. A (topological)
orbifold O, is a Hausdorff topological space X with a countable base, called
the underlying space, with an orbifold structure, which is defined by orbifold
atlas, given as follows.

An orbifold chart is an open subset U ⊂ X together with open set
V ⊂ Rn and a continuous map ϕ : U → V which satisfy the following
property: there is a finite group Γ acting by linear transformations on V

and a homeomorphism θ : U → V/Γ such that ϕ = θ ◦ π, where π denotes
the projection V → V/Γ. A collection of orbifold charts, {ϕi = Ui → Vi},
is called the orbifold atlas if it satisfies the following properties:

(i) ∪iUi = X;
(ii) if ϕi(x) = ϕj(y) then there is a neighborhood x ∈ Vx ⊂ Vi and

y ∈ Vy ⊂ Vj as well as a homeomorphism ψ : Vx → Vy such that ϕi = ϕj◦ψ.
The orbifold atlas defines the orbifold structure completely and we re-

gard two orbifold atlases of X to give the same orbifold structure if they can
be combined to give a larger orbifold atlas. One can add differentiability
conditions on the gluing map in the above definition and get a definition of
smooth (C∞) orbifolds in the same way as it was done for manifolds.

The main example of underlying space is a quotient space of a manifold
under the action of a finite group of diffeomorphisms, in particular manifold
with boundary carries natural orbifold structure, since it is Z2−factor of
its double. A factor space of a manifold along a smooth S1−action without
fixed points cares an orbifold structure. The orbifold structure gives a
natural stratification by open manifolds on its underlying space, where one
strata corresponds to a set of singular points of the same type.

Note that one topological space can carry many different orbifold struc-
tures. For example, consider the orbifold O associated with a factor space
of a 2−sphere S2 along a rotation by π. It is homeomorphic to S2, but
the natural orbifold structure is different. It is possible to adopt most of
the characteristics of manifolds to orbifolds and these characteristics are
usually different from the correspondent characteristics of the underlying
space. In the above example, its orbifold fundamental group of O is Z2 and
its orbifold Euler characteristic is 1.

Manifold orbifolding denotes an operation of wrapping, or folding in
the case of mirrors, to superimpose all equivalent points on the original
manifold – to get a new one.

In string theory, the word orbifold has a new flavor. In physics, the
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notion of an orbifold usually describes an object that can be globally written
as a coset M/G where M is a manifold (or a theory) and G is a group of its
isometries (or symmetries). In string theory, these symmetries do not need
to have a geometric interpretation. The so–called orbifolding is a general
procedure of string theory to derive a new string theory from an old string
theory in which the elements of the group G have been identified with the
identity. Such a procedure reduces the number of string states because the
states must be invariant under G, but it also increases the number of states
because of the extra twisted sectors. The result is usually a new, perfectly
smooth string theory.

Mirror Symmetry

The so–called mirror symmetry is a surprising relation that can exist be-
tween two Calabi–Yau manifolds. It happens, usually for two such 6D
manifolds, that the shapes may look very different geometrically, but nev-
ertheless they are equivalent if they are employed as hidden dimensions of a
(super)string theory. More specifically, mirror symmetry relates two mani-
folds M and W whose Hodge numbers h1,1 = dimH1,1 and h1,2 = dimH1,2

are swapped; string theory compactified on these two manifolds leads to
identical physical phenomena (see [Greene (2000)]).

Strominger showed in [Strominger (1990)] that mirror symmetry is a
special example of the so–called T−duality: the Calabi–Yau manifold may
be written as a fiber bundle whose fiber is a 3D torus T 3 = S1 × S1 × S1.
The simultaneous action of T−duality on all three dimensions of this torus
is equivalent to mirror symmetry.

Mirror symmetry allowed the physicists to calculate many quantities
that seemed virtually incalculable before, by invoking the ‘mirror’ descrip-
tion of a given physical situation, which can be often much easier. Mirror
symmetry has also become a very powerful tool in mathematics, and al-
though mathematicians have proved many rigorous theorems based on the
physicists’ intuition, a full mathematical understanding of the phenomenon
of mirror symmetry is still lacking.

6.7.4 More on Topological Field Theories

Unfortunately, there is no such thing as a crash course in string theory, but
the necessary background can be found in the classic two–volume mono-
graphs [Green et. al. (1987)] and [Polchinski (1998)]. A good introduction
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to conformal field theory is given in the lecture notes [Schellekens (1996)].
The basics of topological string theory were laid out in a series of beauti-
ful papers by E. Witten in 1990s [Witten (1988b); Witten (1988a); Wit-
ten (1988d); Witten (1989); Witten (1990); Witten (1991); Witten (1992);
Witten (1995a); Witten (1991)], and more or less completed in a seminal
paper [Bershadsky et. al. (1994)]. Reviews about topological string the-
ory, usually also contain a discussion of topological field theory. The first
one of these is the review [Dijkgraaf et. al. (1991)] from the same period.
However, if we want to dig even deeper, there is the 900–page book [Hori
et. al. (2003)], which discusses topological string theory from the point of
view of mirror symmetry.

In particular, there exists a mathematically rigorous, axiomatic defini-
tion of topological field theories due to [Atiyah (1988a)]. Instead of giving
this definition, we will define topological field theory in a more physically–
intuitive way, but as a result somewhat less rigorous way.

Recall (from subsection 6.5.1 above) that the output of a QFT is given
by its observables: correlation functions of products of operators,

〈O1(x1) · · · On(xn)〉b. (6.302)

Here, the Oi(x) are physical operators of the theory. What one calls ‘physi-
cal’ is part of the definition of the theory, but it is important to realize that
in general not all combinations of fields are viewed as physical operators.
For example, in a gauge theory, we usually require the observables to arise
from gauge–invariant operators. That is, TrF would be one of the Oi, but
TrA or A itself would not.

The subscript b in the above formula serves as a reminder that the
correlation function is usually calculated in a certain background. That is,
the definition of the theory may involve a choice of a Riemannian manifold
M on which the theory lives, it may involve choosing a metric on M , it
may involve choosing certain coupling constants, and so on.

The definition of a topological field theory is now as follows. Suppose
that we have a quantum field theory where the background choices involve
a choice of manifold M and a choice of metric h on M . Then the theory
is called a topological field theory if the observables (6.302) do not depend
on the choice of metric h. Let us stress that it is part of the definition
that h is a background field – in particular, we do not integrate over h
in the path integral. One may wonder what happens if, once we have a
topological field theory, we do make the metric h dynamical and integrate
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over it. This is exactly what we will do once we start considering topological
string theories.

Note that the word ‘topological’ in the definition may be somewhat of
a misnomer [Vonk (2005)]. The reason is that the above definition does
not strictly imply that the observables depend only on the topology of M –
there may be other background choices hidden in b on which they depend
as well. For example, in the case of a complex manifold M , correlation
functions will in general not only depend on the topology of M and its
metric, but also on our specific way of combining the 2D real coordinates
on M into d complex ones. This choice, a complex structure, is part of
the background of the quantum field theory, and correlation functions in a
topological field theory will in general still depend on it.

If our quantum field theory has general coordinate invariance, as we will
usually assume to be the case, then the above definition has an interesting
consequence. The reason is that in such a case we can do an arbitrary
general coordinate transformation, changing both the coordinates on M

and its metric, under which the correlation functions should be invariant.
Then, using the topological invariance, we can transform back the metric
to its old value. The combined effect is that we have only changed the xi in
(6.302). That is, in a generally coordinate invariant topological field theory,
the observables do not depend on the insertion points of the operators.

Chern Classes

Inspired by the identification of a connection with a gauge field, let us
consider the analogue of the non–Abelian field strength,

F = dA−A ∧A,

where A ∧ A is a shorthand for AIJiA
J
Kj dx

i ∧ dxj (note that A ∧ A 6= 0).
A short calculation shows that on the overlap of two patches of M (or
equivalently, under a gauge transformation), this quantity transforms as

F(b) = Λ(ba)F(a)Λ−1
(ba),

from which we see that F can be viewed as a section of a true vector bundle
of Lie algebra valued 2–forms. In particular, we can take its trace and get
a genuine 2–form:

c1 =
i

2π
Tr(F ),
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where the prefactor is convention. It can be seen that this 2–form is closed:

d(Tr(F )) = Tr(dF ) = −Tr(d(A ∧A)) = −Tr(dA ∧A−A ∧ dA) = 0.

Therefore, we can take its cohomology class, for which we would like to
argue that it is a topological invariant. Note that this construction is inde-
pendent of the choice of coordinates on M . Moreover, it is independent of
gauge transformations. However, on a general vector bundle there may be
connections which cannot be reached in this way from a given connection.
Changing to such a connection is called a ‘large gauge transformation’, and
from what we have said it is not clear a priori that the Chern classes do not
depend on this choice of equivalence class of connections. However, with
some work we can also prove this fact. The invariant [c1] is called the first
Chern class. In fact, it might be better to call it a ‘relative topological
invariant’: given a base manifold M of fixed topology, we can topologically
distinguish vector bundles over it by calculating the above cohomology
class.

By taking the trace of F , we loose a lot of information. There turns out
to be a lot more topological information in F , and it can be extracted by
considering the expression

c(F ) = det
(

1 +
iF
2π

)
,

where 1 is the identity matrix of the same size as the elements of the Lie
algebra of G. Again, it can be checked that this expression is invariant
under a change of coordinates for M and under a change of connection.
Since the matrix components inside the determinant consist of the 0–form
1 and the 2–form F , expanding the determinant will lead to an expression
consisting of forms of all even degrees. One writes this as

c(F ) = c0(F ) + c1(F ) + c2(F ) + . . .

The sum terminates either at the highest degree encountered in expanding
the determinant, or at the highest allowed even form on M . Note that
c0(F ) = 1, and [c1(F )] is exactly the first Chern class we defined above.
The cohomology class of cn is called the nth Chern class.

As an almost trivial example, let us consider the case of a product
bundle M ×W . In this case there is a global section g(x) of the principal
bundle P , and we can use this to construct a connection A = −gdg−1, so
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that [Vonk (2005)]

F = −dgdg−1 − gdg−1gdg−1 = −dgdg−1 + dgdg−1 = 0.

Thus, for a trivial bundle with this connection, c0 = 1 and cn = 0 for all
n > 0.

Chern–Simons Theory

The easiest way to construct a topological field theory is to construct a
theory where both the action S (or, quantum measure eiS) and the fields
do not include the metric at all. Such topological field theories are called
‘Schwarz–type’ topological field theories. This may sound like a trivial
solution to the problem, but nevertheless it can lead to quite interesting
results. To see this, let us consider familiar example: Chern–Simons gauge
theory on a 3D manifold M – now from a physical point of view.

Recall from subsection 5.11.8 that Chern–Simons theory is a gauge the-
ory – that is, it is constructed from a vector bundle E over the base space
M , with a structure group (gauge group) G and a connection (gauge field)
A. The Lagrangian of Chern–Simons theory is then given by

L = Tr(A ∧ dA− 2
3
A ∧A ∧A).

It is a straightforward exercise to check how this Lagrangian changes under
the gauge transformation

Ã = gAg−1 − gdg−1,

and one finds

L̃ ≡ Tr(Ã ∧ dÃ− 2
3
Ã ∧ Ã ∧ Ã)

= Tr(A ∧ dA− 2
3
A ∧A ∧A)− d Tr(gA ∧ dg−1) +

1
3

Tr(gdg−1 ∧ dg ∧ dg−1).

The second term is a total derivative, so if M does not have a boundary,
the action, being the integral of L over M , does not get a contribution from
this term. The last term is not a total derivative, but its integral turns out
to be a topological invariant of the map g(x), which is quantized as

1
24π2

∫
M

Tr(gdg−1 ∧ dg ∧ dg−1) = m ∈ Z.
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From this, we see that if we define the action as

S =
k

4π

∫
M

L,

with k an integer, the action changes by 2πkm under gauge transformations,
and the quantum measure eiS is invariant.

So from this discussion we seem to arrive at the conclusion that the
partition function

Z =
∫
D[A] eiS[A]

for a line bundle of a fixed topology E is a topological invariant of M ,
as are the correlation functions of gauge–invariant operators such as TrF .
However, there is one more detail we have to worry about: there may be an
anomaly in the quantum theory. That is, it may not be possible to define
the path integral measure D[A] in a gauge–invariant way.

One way to see what problems can arise is to note that to actually
calculate the path integral, one has to pick a gauge condition on A. That
is, we have to pick one representative of A in each equivalence class under
gauge transformations. To make such a choice will in general require a
choice of metric. For example, from electromagnetism (where E is a 1D
complex line bundle and G = U(1)) we know that a useful gauge is the
Feynman gauge, in which the equation of motion for A becomes

∆A = 0.

As we have seen before, the Laplacian ∆ is an operator which, through
the Hodge star, depends on the metric, and hence the results we find will
a priori be metric dependent. To show that the results are truly metric
independent, one needs to show that the quantum results do not depend
on our arbitrary choice of gauge.

We will not go into the details of this, but state that one can show that
Chern–Simons theory on a compact 3–manifold is anomaly–free, so our
naive argument above was correct, and one can indeed calculate topological
invariants of M in this way.

Let us briefly discuss the kind of topological invariants that Chern–
Simons theory can lead to. Recall that one can construct a Lie group
element g from a Lie algebra element A as g = eA. Now suppose we have a
path γ(t) inside M . Suppose that we chop up γ into very small line elements
given by tangent vectors γ̇δt. Then we can insert this tangent vector into
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the connection 1–form A, and get a Lie algebra element. As we have seen,
it is precisely this Lie algebra element which transports vectors in E along
this small distance: we have to multiply these vectors by 1 +A. This is a
linear approximation to the finite transformation eA. So if we transport a
vector along the entire closed curve γ, it will return multiplied by a group
element

g = lim
δt→0

[exp (A (γ̇(0)) δt) exp (A (γ̇(δt)) δt) exp (A (γ̇(2δt)) δt) · · · ] .

Now it is tempting to add all the exponents and write their sum in the
limit as an integral, but this is not quite allowed since the different group
elements may not commute, so eXeY 6= eX+Y . Therefore, one uses the
following notation,

g = P exp
∫
γ

A,

where P stands for path ordering, while the element g is called the holon-
omy of A around the closed curve γ. An interesting gauge and metric
independent object turns out to be the trace of this group element. This
trace is called the Wilson loop Wγ(A), given by

Wγ(A) = Tr(P ) exp
∫
γ

A.

The topological invariants we are interested in are now the correlation func-
tions of such Wilson loops in Chern–Simons theory. Since these correlation
functions are independent of the parametrization of M , we can equivalently
say that they will be independent of the precise location of the loop γ; we
have in fact constructed a topological invariant of the embedding of γ in-
side M. This embedding takes the shape of a knot, so the invariants we
have constructed are knot invariants. One can show that the invariants are
actually polynomials in the variable y = exp 2πi/(k + 2), where k is the
integer ‘coupling constant’ of the Chern–Simons theory.

The above construction is due to E. Witten, and was carried out in
[Witten (1988a)]. Before Witten’s work, several polynomial invariants of
knots were known, one of the simplest ones being the so–called Jones poly-
nomial . It can be shown that many of these polynomials arise as special
cases of the above construction, where one takes a certain structure group
G, SU(2) for the Jones polynomial, and a certain vector bundle (represen-
tation) E, the fundamental representation for the Jones polynomial. That
is, using this ‘trivial’ topological field theory, Witten was able to reproduce
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a large number of the known knot invariants in a unified framework, and
construct a great number of new invariants as well [Vonk (2005)].

Cohomological Field Theories

Even though the above example leads to quite interesting topological in-
variants, the construction itself is somewhat trivial: given the absence of
anomalies that we mentioned, the independence of the metric is completely
manifest throughout the procedure. There exists a different way of con-
structing topological field theories in which the definition of the theory
does use a metric, but one can still show that the partition function and the
physical correlation functions of the theory are metric–independent. The
theories constructed in this way are called topological theories of ‘Witten–
type’, or cohomological field theories.

Cohomological field theories are field theories that possess a very special
type of symmetry. Recall that from Noether’s Theorem a global symmetry
of a theory leads to a conserved charge S, and that after quantizing the
theory, the symmetry is generated by the corresponding operator:

δεOi = iε[S,Oi], or δεOi = iε{S,Oi},

depending on whether S and Oi are fermionic or bosonic. Furthermore, the
symmetry–invariant states |j〉 satisfy

S |j〉 = 0. (6.303)

In particular, if the symmetry is not spontaneously broken, the vacuum of
such a theory will be symmetric, i.e., S |0〉 = 0, and expectation values of
operators will be unchanged after a symmetry transformation:

〈0|Oi + δOi|0〉 = 〈0|Oi|0〉+ iε〈0|SOi ±OiS|0〉 = 〈0|Oi|0〉,

since S annihilates the vacuum. Note that, to linear order in a ‘small
parameter’ ε, the second term in the first line (with |0〉 replaced by an
arbitrary state |ψ〉) can also be obtained if instead of on the operators, we
let the symmetry operator S act on the state as

|ψ〉 → |ψ〉+ iεS|ψ〉. (6.304)

In case S is the Hamiltonian, this is the infinitesimal version of the well–
known transition between the Schrödinger and Heisenberg pictures. Note
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that the equations (6.303) and (6.304) already contain some flavor of coho-
mology. Cohomological field theories are theories where this analogy can
be made exact.

With this in mind, the first property of a cohomological field theory will
not come as a surprise: it should contain a fermionic symmetry operator Q
which squares to zero, Q2 = 0. This may seem like a strange requirement
for a field theory, but symmetries of this type occur for example when we
have a gauge symmetry and fix it by using the Faddeev–Popov procedure;
the resulting theory will then have a global BRST symmetry , which satisfies
precisely this constraint. Another example is found in supersymmetry,
where one also encounters symmetry operators that square to zero, as we
will see in detail later on.

The second property a cohomological field theory should have is re-
ally a definition: we define the physical operators in this theory to be the
operators that are closed under the action of this Q−operator28:

{Q,Oi} = 0. (6.305)

Again, this may seem to be a strange requirement for a physical theory,
but again it naturally appears in BRST quantization, and for example
in conformal field theories, where we have a 1–1 correspondence between
operators and states. In such theories, the symmetry requirement (6.303)
on the states translates into the requirement (6.305) on the operators.

Thirdly, we want to have a theory in which the Q−symmetry is not
spontaneously broken, so the vacuum is symmetric. Note that this implies
the equivalence

Oi ∼ Oi + {Q,Λ}. (6.306)

The reason for this is that the expectation value of an operator product
involving a Q−exact operator {Q,Λ} takes the form

〈0|Oi1 · · · Oij{Q,Λ}Oij+1 · · · Oin |0〉 = 〈0|Oi1 · · · Oij (QΛ−ΛQ)Oij+1 · · · Oin |0〉,

and each term vanishes separately, e.g.,

〈0|Oi1 · · · OijQΛOij+1 · · · Oin |0〉 = ±〈0|Oi1 · · ·QOijΛOij+1 · · · Oin |0〉(6.307)

= ±〈0|QOi1 · · · OijΛOij+1 · · · Oin |0〉 = 0,

28From now on, we denote both the commutator and the anti-commutator by curly

brackets, unless it is clear that one of the operators inside the brackets is bosonic.
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where we made repeated use of (6.305). Together, (6.305) and (6.306) mean
that our physical operators are Q−cohomology classes.

The fourth and final requirement for a cohomological field theory is that
the metric SEM–tensor is Q−exact,

Tαβ ≡
δS

δhαβ
= {Q,Gαβ} (6.308)

for some operator Gαβ . The physical interpretation of this is the following.
The integrals of the components T0α over a space–like hypersurface are con-
served quantities. For example, the integral of T00 gives the Hamiltonian:

H =
∫
space

T00.

Similarly, T0a for a 6= 0 give the momentum charges. Certainly, the Hamil-
tonian H should commute with all symmetry operators of the theory, and
one usually takes the other space–time symmetries to commute with the
internal symmetries as well. The choice of the first lower index 0 here is re-
lated to a choice of Lorentz frame, so in general the integrals of all Tαβ will
commute with the internal symmetries. In a local theory, it is then natural
to assume that also the densities commute with Q. However, (6.308) is an
even stronger requirement: the SEM densities should not only commute
with Q (that is, be Q−closed), but they have to do so in a trivial way
(they should be Q−commutators, that is, Q−exact) for the theory to be
cohomological.

This fourth requirement is the crucial one in showing the topological
invariance of the theory. Let us consider the functional hαβ−derivative of
an observable:

δ

δhαβ
〈Oi1 · · · Oin〉 =

δ

δhαβ

(∫
DφOi1 · · · OineiS[φ]

)
= i
∫
DφOi1 · · · Oin

δS

δhαβ
eiS[φ] = i〈Oi1 · · · Oin{Q,Gαβ}〉 = 0,

where in the last line we used the same argument as in (6.307). One might
be worried about the operator ordering in going from the operator formal-
ism to the path integral formalism and back. We should really have inserted
a time ordering operator on the r.h.s. in the first step above. However, the
result then shows us that we can arbitrarily change the metric – and hence
the time ordering of the operators, so with hindsight we may actually think
of the operators as being arbitrarily ordered. Finally, we have assumed that
our operators do not depend explicitly on the metric.
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A very practical way to ensure (6.308) is to use a Lagrangian which
itself is Q−exact, L = {Q,V }, for some operator V . This choice has an
extra virtue, which we can see if we explicitly include Planck’s constant in
our description: the quantum measure then reads

exp
i
~

{
Q,

∫
M

V

}
.

Then, we can use exactly the same argument as before to show that

d

d~
〈Oi1 · · · Oin〉 = 0.

That is, the correlators we are interested in are independent of ~, and we
can therefore calculate them exactly in the classical limit.

Descent equations

An important property of cohomological field theories is that, given a scalar
physical operator on M – where by ‘scalar’ we mean an operator that does
not transform under coordinate transformations of M , so in particular it
has no α−indices – we can construct further operators which behave like
p−forms on M . The basic observation is that we can integrate (6.308) over
a spatial hypersurface to get a similar relation for the momentum operators:

Pα = {Q,Gα},

where Gα is a fermionic operator. Now consider the operator

O(1)
α = i{Gα,O(0)},

where O(0)(x) is a scalar physical operator: {Q,O(0)(x)} = 0. Let us
calculate

d

dxα
O(0) = i[Pα,O(0)] = [{Q,Gα},O(0)]

= ±i{{Gα,O(0)}, Q} − i{{O(0), Q}, Gα} = {Q,O(1)
α }.

In going from the second to the third line, we have used the Jacobi iden-
tity. The first sign in the third line depends on whether O(0) is bosonic or
fermionic, but there is no sign ambiguity in the last line. By defining the
1–form operator

O(1) = O(1)
α dxα
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we can write this result as

dO(0) = {Q,O(1)}.

Then, we can integrate this equation over a closed curve γ ⊂M to find

{Q,
∫
γ

O(1)} = 0.

That is, by constructing a
∫
γ
O(1) for each O(0), we have found a whole

class of new, non–local, physical operators.
The above procedure can now be repeated in exactly the same way start-

ing from O(1), and doing this we find a whole tower of p−form operators:

{Q,O(0)} = 0, {Q,O(1)} = dO(0), {Q,O(2)} = dO(1),

· · · , {Q,O(n)} = dO(n−1), 0 = dO(n).

The last equation is trivial, since there are no (n + 1)−forms on an nD
smooth manifold.

Following the same reasoning, the integral ofO(p) over a pD submanifold
of M is now a physical operator. This gives us a large class of new physical
operators, starting from the scalar ones. Note that these operators, being
integrated over a submanifold, are inherently nonlocal. Nevertheless, they
can have a very physical interpretation. Particularly important examples
of this are the ‘top–form’ operators O(n) that can be integrated over the
whole manifold, leading to {

Q,

∫
M

O(n)

}
= 0.

This implies that we can add terms taO(n)
a , with ta arbitrary coupling

constants, to our Lagrangian without spoiling the fact that the theory is
cohomological. These deformations of the theory will be important to us
later.

2D Cohomological Field Theories

Since string theories are 2D field theories, we will in particular be inter-
ested in cohomological field theories in two dimensions (see, e.g., [Witten
(1995b)]). These theories have some extra properties which will be impor-
tant in our discussion. Let us begin by reminding the reader of the relation
between states in the operator formalism of quantum field theories, and
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boundary conditions in the path–integral formalism. In its simplest form,
this relation looks like∫ BC2

BC1

Dφ · · · eiS[φ] = 〈BC1|T (· · · ) |BC2〉. (6.309)

Here, we included a time–ordering operator for completeness, but as we
have stated before, for the theories we are interested in this ordering is
irrelevant. The notation |BCi〉 indicates the state corresponding to the
incoming or outgoing boundary condition. For example, if on the path
integral side we prescribe all fields at a certain initial time, φ(t = t1) = f(t1)
, on the operator side this corresponds to the incoming state satisfying

φ(t1)|BC1〉 = f(t1)|BC1〉. (6.310)

where on the l.h.s. we have an operator acting, but on the r.h.s. there is
a simple scalar multiplication. More generally, in the operator formalism
we can have linear combinations of states of the type (6.310). Therefore,
we should allow for linear combinations on the l.h.s. of (6.309) as well. In
other words, in the path–integral formalism, a state is an operator which
adds a number (a weight) to each possible boundary condition on the fields.
From this point of view, the states in (6.310) are like ‘delta–functionals’:
they assign weight 1 to the boundary condition φ(t1) = f(t1), and weight
0 to all other boundary conditions.

Now, let us specialize to 2D field theories. Here, the boundary of a
compact manifold is a set of circles. Let us for simplicity assume that the
‘incoming’ boundary consists of a single circle. We can now define a state
in the above sense by doing a path integral over a second surface with
the topology of a hemisphere. This path integral gives a number for every
boundary condition of the fields on the circle, and this is exactly what
a state in the path–integral formalism should do. In particular, one can
use this procedure to define a state corresponding to every operator Oa
by inserting Oa on the hemisphere and then stretching this hemisphere to
infinite size. An expectation value in the operator formalism, such as

〈Oa|Ob(x2)Oc(x3)|Od〉cyl, (6.311)

on a cylinder of finite length, can then schematically be drawn as in Figure
6.24. Here, instead of first doing the path integrals over the semi–infinite
hemispheres and inserting the result in the path integral over the cylinder,
one can just as well integrate over the whole surface at once. However, note
that in topological field theories, there is no need to do the stretching, since
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the path integral only depends on the topology of the surface, and hence
not on the size of the hemisphere [Vonk (2005)].

Fig. 6.24 A graphical representation of the correlation function (6.311).

We assume that all states that we are interested in are of the above form,
which in particular means that we will integrate only over Riemann surfaces
without boundary. Moreover, we assume these surfaces to be orientable.
An important property of topological field theories in two dimensions is
now that its correlation functions factorize in the following way:

〈O1 · · · On〉Σ =
∑
a,b

〈O1 · · · OiOa〉Σ1η
ab〈ObOi+1 · · · On〉Σ2 , (6.312)

where the genus of Σ is the sum of the genera of Σ1 and Σ2. This statement
is explained in Figure 6.25. By using the topological invariance, we can
deform a Riemann surface Σ with a set of operator insertions in such a way
that it develops a long tube. From general quantum field theory, we know
that if we stretch this tube long enough, only the asymptotic states – that
is, the states in the physical part of the Hilbert space – will propagate. But
as we have just argued, instead of inserting these asymptotic states, we may
just as well insert the corresponding operators at a finite distance. However,
to conclude that this leads to (6.312), we have to show that this definition
of ‘physical states’ – being the ones that need to be inserted as asymptotic
states – agrees with our previous definition in terms of Q−cohomology. Let
us argue that it does by first writing the factorization as

〈O1 · · · On〉Σ =
∑
A,B

〈O1 · · · Oi|OA〉Σ1η
AB〈OB |Oi+1 · · · On〉Σ2 . (6.313)

where the OA with capital index now correspond to a complete basis of
asymptotic states in the Hilbert space. The reader may be more used to
this type of expressions in the case where ηAB = δAB , but since we have
not shown that with our definitions 〈OA|OB〉 = δAB , we have to work with
this more general form of the identity operator, where η is a metric that
we will determine in a moment.
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Now, we can write the Hilbert space as a direct sum, H = H0 ⊕ H1,
where H0 consists of states |ψ〉 for which Q|ψ〉 = 0 and H1 is its orthogonal
complement. Since

Q (O1 . . .Oi|0〉) = 0, (6.314)

the states in H1 are in particular orthogonal to states of the form
O1 . . .Oi|0〉, and hence the states in H1 do not contribute to the sum in
(6.313). Moreover, changing OA to OA+{Q,Λ} does not change the result
in (6.313), so we only need to sum over a basis of H0/=({Q, ·}), which is
exactly the space Hphys of ‘topologically physical’ states.

Fig. 6.25 A correlation function on a Riemann surface factorizes into correlation func-
tions on two Riemann surfaces of lower genus (see text for explanation).

Finally, let us determine the metric ηab. We can deduce its form by
factorizing the 2–point function

Cab = 〈OaOb〉 (6.315)

in the above way, resulting in

Cab = Cacη
cdCdb. (6.316)

In other words, we find that the metric ηab is the matrix inverse of the
2–point function Cab, which for this reason we will write as ηab from now
on.
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One can apply a similar procedure to ‘cut open’ internal loops in a
Riemann surface Σ, so that we get

〈O1 · · · On〉Σ = (−1)Faηab
∑
a,b

〈OaObO1 · · · On〉Σ′ , (6.317)

where the genus of Σ′ is one less than the genus of Σ. The factor (−1)Fa

multiplies the expression on the r.h.s. by -1 if the inserted operator Oa
(and hence also Ob) is fermionic. Proving that it needs to be included is
not straightforward, but one can think of it as the ‘stringy version’ of the
well–known statement from quantum field theory that fermion loops add
an extra minus sign to a Feynman diagram.

The reader should convince himself that together, the equations (6.312)
and (6.317) imply that we can reduce all n−point correlation functions to
products of 3–point functions on the sphere. We denote these important
quantities by

cabc ≡ 〈OaObOc〉0, (6.318)

where the label 0 denotes the genus of the sphere. By using (6.312) to
separate two insertion points on a sphere, we see that

〈· · · OaOb · · · 〉Σ =
∑
c,d

〈· · · Oc · · · 〉Σ ηcdcabd =
∑
c

〈· · · Oc · · · 〉Σ cabc,

where we raised an index of cabc with the metric η. We can view the above
result as the definition of an operator algebra with structure constants cabc:

OaOb =
∑
c

cab
cOc. (6.319)

From the metric ηab and the structure constants cabc, we can now calculate
any correlation function in the cohomological field theory.

6.7.5 Topological Strings

The 2D field theories we have constructed are already very similar to string
theories. However, one ingredient from string theory is missing: in string
theory, the world–sheet theory does not only involve a path integral over
the maps φi to the target space and their fermionic partners, but also a
path integral over the world–sheet metric hαβ . So far, we have set this
metric to a fixed background value.
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We have also encountered a drawback of our construction. Even though
the theories we have found can give us some interesting ‘semi–topological’
information about the target spaces, one would like to be able to define
general nonzero n−point functions at genus g instead of just the partition
function at genus one and the particular correlation functions we calculated
at genus zero.

It turns out that these two remarks are intimately related. In this sec-
tion we will go from topological field theory to topological string theory by
introducing integrals over all metrics, and in doing so we will find interesting
nonzero correlation functions at any genus (see [Vonk (2005)]).

Coupling to Topological Gravity

In coupling an ordinary field theory to gravity, one has to perform the
following three steps.

• First of all, one rewrites the Lagrangian of the theory in a covariant
way by replacing all the flat metrics by the dynamical ones, introducing
covariant derivatives and multiplying the measure by a factor of

√
deth.

• Secondly, one introduces an Einstein–Hilbert term as the ‘kinetic’ term
for the metric field, plus possibly extra terms and fields to preserve the
symmetries of the original Lagrangian.
• Finally, one has to integrate the resulting theory over the space of all

metrics.

Here we will not discuss the first two steps in this procedure. As we
have seen in our discussion of topological field theories, the precise form of
the Lagrangian only plays a comparatively minor role in determining the
properties of the theory, and we can derive many results without actually
considering a Lagrangian. Therefore, let us just state that it is possible to
carry out the analog of the first two steps mentioned above, and construct a
Lagrangian with a ‘dynamical’ metric which still possesses the topological
Q−symmetry we have constructed. The reader who is interested in the
details of this construction is referred to the paper [Witten (1990)] and to
the lecture notes [Dijkgraaf et. al. (1991)].

The third step, integrating over the space of all metrics, is the one we
will be most interested in here. Naively, by the metric independence of our
theories, integrating their partition functions over the space of all metrics,
and then dividing the results by the volume of the topological ‘gauge group’,
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would be equivalent to multiplication by a factor of 1,

Z[h0] ?=
1

Gtop

∫
D[h]Z[h], (6.320)

for any arbitrary background metric h0. There are several reasons why this
naive reasoning might go wrong:

• There may be metric configurations which cannot be reached from a
given metric by continuous changes.
• There may be anomalies in the topological symmetry at the quantum

level preventing the conclusion that all gauge fixed configurations are
equivalent.
• The volume of Gtop is infinite, so even if we could rigorously define

a path integral the above multiplication and division would not be
mathematically well–defined.

For these reasons, we should really be more careful and precisely define
what we mean by the ‘integral over the space of all metrics’. Let us note
the important fact that just like in ordinary string theory (and even before
twisting), the 2D sigma models become conformal field theories when we
include the metric in the Lagrangian. This means that we can borrow the
technology from string theory to integrate over all conformally equivalent
metrics. As is well known, and as we will discuss in more detail later, the
conformal symmetry group is a huge group, and integrating over confor-
mally equivalent metrics leaves only a nD integral over a set of world–sheet
moduli. Therefore, our strategy will be to use the analogy to ordinary string
theory to first do this integral over all conformally equivalent metrics, and
then perform the integral over the remaining nD moduli space.

In integrating over conformally equivalent metrics, one usually has to
worry about conformal anomalies. However, here a very important fact
becomes our help. To understand this fact, it is useful to rewrite our
twisting procedure in a somewhat different language (see [Vonk (2005)]).

Let us consider the SEM–tensor Tαβ , which is the conserved Noether
current with respect to global translations on C. From conformal field
theory, it is known that Tzz̄ = Tz̄z = 0, and the fact that T is a conserved
current, ∂αTαβ = 0, means that Tzz ≡ T (z) and Tz̄z̄ ≡ T̄ (z̄) are (anti–
)holomorphic in z. One can now expand T (z) in Laurent modes,

T (z) =
∑

Lmz
−m−2. (6.321)
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The Lm are called the Virasoro generators, and it is a well–known result
from conformal field theory that in the quantum theory their commutation
relations are

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n.

The number c depends on the details of the theory under consideration,
and it is called the central charge. When this central charge is nonzero, one
runs into a technical problem. The reason for this is that the equation of
motion for the metric field reads

δS

δhαβ
= Tαβ = 0.

In conformal field theory, one imposes this equation as a constraint in the
quantum theory. That is, one requires that for physical states |ψ〉,

Lm|ψ〉 = 0 (for all m ∈ Z).

However, this is clearly incompatible with the above commutation relation
unless c = 0. In string theory, this value for c can be achieved by taking
the target space of the theory to be 10D. If c 6= 0 the quantum theory is
problematic to define, and we speak of a ‘conformal anomaly’ [Vonk (2005)].

The whole above story repeats itself for T̄ (z̄) and its modes L̄m. At
this point there is a crucial difference between open and closed strings.
On an open string, left–moving and right–moving vibrations are related
in such a way that they combine into standing waves. In our complex
notation, ‘left–moving’ translates into ‘z−dependent’ (i.e. holomorphic),
and ‘right–moving’ into ‘z̄−dependent’ (i.e. anti–holomorphic). Thus, on an
open string all holomorphic quantities are related to their anti–holomorphic
counterparts. In particular, T (z) and T̄ (z̄), and their modes Lm and L̄m,
turn out to be complex conjugates. There is therefore only one independent
algebra of Virasoro generators Lm.

On a closed string on the other hand, which is the situation we have been
studying so far, left– and right–moving waves are completely independent.
This means that all holomorphic and anti–holomorphic quantities, and in
particular T (z) and T̄ (z̄), are independent. One therefore has two sets of
Virasoro generators, Lm and L̄m.

Let us now analyze the problem of central charge in the twisted theo-
ries. To twist the theory, we have used the U(1)−symmetries. Any global
U(1)−symmetry of our theory has a conserved current Jα. The fact that
it is conserved again means that Jz ≡ J(z) is holomorphic and Jz̄ ≡ J̄(z̄)
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is anti–holomorphic. Once again, on an open string J and J̄ will be re-
lated, but in the closed string theory we are studying they will be inde-
pendent functions. In particular, this means that we can view a global
U(1)−symmetry as really consisting of two independent, left– and right–
moving, U(1)−symmetries, with generators FL and FR.

Note that the sum of U(1)−symmetries FV + FA only acts on objects
with a + index. That is, it acts purely on left–moving quantities. Simi-
larly, FV −FA acts purely on right–moving quantities. From our discussion
above, it is therefore natural to identify these two symmetries with the two
components of a single global U(1) symmetry:

FV =
1
2

(FL + FR) FA =
1
2

(FL − FR).

A more detailed construction shows that this can indeed be done.
Let us expand the left–moving conserved U(1)−current into Laurent

modes,

J(z) =
∑

Jmz
−m−1. (6.322)

The commutation relations of these modes with one another and with the
Virasoro modes can be calculated, either by writing down all of the modes
in terms of the fields of the theory, or by using more abstract knowledge
from the theory of superconformal symmetry algebras. In either case, one
finds

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n[Lm, Jn]

= −nJm+n[Jm, Jn] =
c

3
mδm+n.

Note that the same central charge c appears in the J− and in the
L−commu-tators. This turns out to be crucial.

Following the standard Noether procedure, we can now construct a con-
served charge by integrating the conserved current J(z) over a space–like
slice of the z−plane. In string theory, the physical time direction is the
radial direction in the z−plane, so a space–like slice is just a curve around
the origin. The integral is therefore calculated using the Cauchy Theorem,

FL =
∮
z=0

J(z)dz = 2πiJ0.

In the quantum theory, it will be this operator that generates the
U(1)L−symmetry. Now recall that to twist the theory we want to introduce
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new Lorentz rotation generators,

MA = M − FV = M − 1
2

(FL + FR)MB = M − FA = M − 1
2

(FL − FR).

A well–known result from string theory (see [Vonk (2005)]) is that the
generator of Lorentz rotations is M = 2πi(L0 − L̄0). Therefore, we find
that the twisting procedure in this new language amounts to

A : L0,A = L0 −
1
2
J0, L̄0,A = L̄0 +

1
2
J̄0,

B : L0,B = L0 −
1
2
J0, L̄0,B = L̄0 −

1
2
J̄0.

Let us now focus on the left–moving sector; we see that for both twistings
the new Lorentz rotation generator is the difference of L0 and 1

2J0. The
new Lorentz generator should also correspond to a conserved 2–tensor, and
from (6.321) and (6.322) there is a very natural way to get such a current:

T̃ (z) = T (z) +
1
2
∂J(z), (6.323)

which clearly satisfies ∂̄T̃ = 0 and

L̃m = Lm −
1
2

(m+ 1)Jm, (6.324)

so in particular we find that L̃0 can serve as L0,A or L0,B . We should apply
the same procedure (with a minus sign in the A−model case) in the right–
moving sector. Equations (6.323) and (6.324) tell us how to implement
the twisting procedure not only on the conserved charges, but on the whole
N = 2 superconformal algebra – or at least on the part consisting of the J−
and L−modes, but a further investigation shows that this is the only part
that changes. We have motivated, but not rigorously derived (6.323); for a
complete justification the reader is referred to the original papers [Lerche
et. al. (1989)] and [Cecotti and Vafa (1991)].

Now, we come to the crucial point. The algebra that the new modes
L̃m satisfy can be directly calculated from (6.323), and we find

[L̃m, L̃n] = (m− n)L̃m+n.

That is, there is no central charge left. This means that we do not have
any restriction on the dimension of the theory, and topological strings will
actually be well–defined in target spaces of any dimension.
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From this result, we see that we can integrate our partition function
over conformally equivalent metrics without having to worry about the
conformal anomaly represented by the nonzero central charge. After having
integrated over this large part of the space of all metrics, it turns out that
there is a nD integral left to do. In particular, it is known that one can
always find a conformal transformation which in the neighborhood of a
chosen point puts the metric in the form hαβ = ηαβ , with η the usual flat
metric with diagonal entries ±1. (Or, +1 in the Euclidean setting.) On
the other hand, when one considers the global situation, it turns out that
one cannot always enforce this gauge condition everywhere. For example,
if the world–sheet is a torus, there is a left–over complex parameter τ that
cannot be gauged away. The easiest way to visualize this parameter (see
[Vonk (2005)]) is by drawing the resulting torus in the complex plane and
rescaling it in such a way that one of its edges runs from 0 to 1; the other
edge then runs from 0 to τ , see Figure 6.26. It seems intuitively clear that a
conformal transformation – which should leave all angles fixed – will never
deform τ , and even though intuition often fails when considering conformal
mappings, in this case this can indeed be proven. Thus, τ is really a modular
parameter which we need to integrate over. Another fairly intuitive result
is that any locally flat torus can, after a rescaling, be drawn in this form,
so τ indeed is the only modulus of the torus.

Fig. 6.26 The only modulus τ of a torus T 2.

More generally, one can show that a Riemann surface of genus g has
mg = 3(g − 1) complex modular parameters. As usual, this is the virtual
dimension of the moduli space. If g > 1, one can show that this virtual
dimension equals the actual dimension. For g = 0, the sphere, we have a
negative virtual dimension mg = −3, but the actual dimension is 0: there
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is always a flat metric on a surface which is topologically a sphere (just
consider the sphere as a plane with a point added at infinity), and after
having chosen this metric there are no remaining parameters such as τ in
the torus case. For g = 1, the virtual dimension is mg = 0, but as we have
seen the actual dimension is 1.

We can explain these discrepancies using the fact that, after we have
used the conformal invariance to fix the metric to be flat, the sphere and the
torus have leftover symmetries. In the case of the sphere, it is well known in
string theory that one can use these extra symmetries to fix the positions
of three labelled points. In the case of the torus, after fixing the metric
to be flat we still have rigid translations of the torus left, which we can
use to fix the position of a single labelled point. To see how this leads to a
difference between the virtual and the actual dimensions, let us for example
consider tori with n labelled points on them. Since the virtual dimension of
the moduli space of tori without labelled points is 0, the virtual dimension
of the moduli space of tori with n labelled points is n. One may expect
that at some point (and in fact, this happens already when n = 1), one
reaches a sufficiently generic situation where the virtual dimension really
is the actual dimension. However, even in this case we can fix one of the
positions using the remaining conformal (translational) symmetry, so the
positions of the points only represent n− 1 moduli. Hence, there must be
an nth modulus of a different kind, which is exactly the shape parameter
τ that we have encountered above. In the limiting case where n = 0, this
parameter survives, thus causing the difference between the virtual and the
real dimension of the moduli space.

For the sphere, the reasoning is somewhat more formal: we analogously
expect to have three ‘extra’ moduli when n = 0. In fact, three extra
parameters are present, but they do not show up as moduli. They must be
viewed as the three parameters which need to be added to the problem to
find a 0D moduli space.

Since the cases g = 0, 1 are thus somewhat special, let us begin by
studying the theory on a Riemann surface with g > 1. To arrive at the
topological string correlation functions, after gauge fixing we have to inte-
grate over the remaining moduli space of complex dimension 3(g − 1). To
do this, we need to fix a measure on this moduli space. That is, given a
set of 6(g − 1) tangent vectors to the moduli space, we want to produce a
number which represents the size of the volume element spanned by these
vectors, see Figure 6.27. We should do this in a way which is invariant un-
der coordinate redefinitions of both the moduli space and the world–sheet.
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Is there a ‘natural’ way to do this?

Fig. 6.27 A measure on the moduli space M assigns a number to every set of three
tangent vectors. This number is interpreted as the volume of the element spanned by

these vectors.

To answer this question, let us first ask how we can describe the tan-
gent vectors to the moduli space (see [Vonk (2005)]). In two dimensions,
conformal transformations are equivalent to holomorphic transformations:
z 7→ f(z). It thus seems natural to assume that the moduli space we have
left labels different complex structures on Σ, and indeed this can be shown
to be the case. Therefore, a tangent vector to the moduli space is an
infinitesimal change of complex structure, and these changes can be pa-
rameterized by holomorphic 1–forms with anti–holomorphic vector indices,

dz 7→ dz + εµzz̄(z)dz̄.

The dimension counting above tells us that there are 3(g − 1) independent
(µi)zz̄, plus their 3(g − 1) complex conjugates which change dz̄. So the
tangent space is spanned by these µi(z, z̄), µ̄i(z, z̄). How do we get a number
out of a set of these objects? Since µi has a z and a z̄ index, it seems natural
to integrate it over Σ. However, the z−index is an upper index, so we need
to lower it first with some tensor with two z−indices. It turns out that
a good choice is to use the Q−partner Gzz of the SEM–tensor component
Tzz, and thus to define the integration over moduli space as∫

Mg

3g=3∏
i=1

(
dmidm̄i

∫
Σ

Gzz(µi)
z
z̄

∫
Σ

Gz̄z̄(µ̄i)
z̄
z

)
. (6.325)

Note that by construction, this integral is also invariant under a change of
basis of the moduli space. There are several reasons why using Gzz is a
natural choice. First of all, this choice is analogous to what one does in
bosonic string theory. There, one integrates over the moduli space using
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exactly the same formula, but with G replaced by the conformal ghost b.
This ghost is the BRST–partner of the SEM–tensor in exactly the same
way as G is the Q−partner of T . Secondly, one can make the not unrelated
observation that since {Q,G} = T, we can still use the standard arguments
to show independence of the theory of the parameters in a Lagrangian of
the form L = {Q,V }. The only difference is that now we also have to
commute Q through G to make it act on the vacuum, but since Tαβ itself is
the derivative of the action with respect to the metric hαβ , the terms we get
in this way amount to integrating a total derivative over the moduli space.
Therefore, apart from possible boundary terms these contributions vanish.
Note that this reasoning also gives us an argument for using Gzz instead
of Tzz (which is more or less the only other reasonable option) in (6.325):
if we had chosen Tzz then all path integrals would have been over total
derivatives on the moduli space, and apart from boundary contributions
the whole theory would have become trivial.

If we consider the vector and axial charges of the full path integral
measure, including the new path integral over the world–sheet metric h,
we find a surprising result. Since the world–sheet metric does not trans-
form under R−symmetry, naively one might expect that its measure does
not either. However, this is clearly not correct since one should also take
into account the explicit G−insertions in (6.325) that do transform under
R−symmetry. From the N = 2 superconformal algebra (or, more down–
to–earth, from expressing the operators in terms of the fields), it follows
that the product of G and Ḡ has vector charge zero and axial charge 2.
Therefore, the total vector charge of the measure remains zero, and the
axial charge gets an extra contribution of 6(g − 1), so we find a total axial
R−charge of 6(g − 1) − 2m(g − 1). From this, we see that the case of
complex target space dimension 3 is very special: here, the axial charge of
the measure vanishes for any g, and hence the partition function is nonzero
at every genus. If m > 3 and g > 1, the total axial charge of the measure
is negative, and we have seen that we cannot cancel such a charge with
local operators. Therefore, for these theories only the partition function at
g = 1 and a specific set of correlation functions at genus zero give nonzero
results. Moreover, for m = 2 and m = 1, the results can be shown to be
trivial by other arguments. Therefore, a Calabi–Yau threefold is by far the
most interesting target space for a topological string theory. It is a ‘happy
coincidence’ (see [Vonk (2005)]) that this is exactly the dimension we are
most interested in from the string theory perspective.

Finally, let us come back to the special cases of genus 0 and 1. At genus
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zero, the Riemann surface has a single point as its moduli space, so there are
no extra integrals or G−insertions to worry about. Therefore, we can copy
the topological field theory result saying that we have to introduce local
operators with total degree (m,m) in the theory. The only remnant of the
fact that we are integrating over metrics is that we should also somehow fix
the remaining three symmetries of the sphere. The most straightforward
way to do this is to consider 3–point functions with insertions on three
labelled points. As a gauge choice, we can then for example require these
points to be at the points 0, 1 and∞ in the compactified complex plane. For
example, in the A−model on a Calabi–Yau threefold, the 3–point function
of three operators corresponding to (1, 1)−forms would thus give a nonzero
result.

In the case of the torus, we have seen that there is one ‘unexpected’
modular parameter over which we have to integrate. This means we have
to insert one G− and one Ḡ−operator in the measure, which spoils the
absence of the axial anomaly we had for g = 1 in the topological field theory
case. However, we also must fix the one remaining translational symmetry,
which we can do by inserting a local operator at a labelled point. Thus, we
can restore the axial R−charge to its zero value by choosing this to be an
operator of degree (1, 1).

Summarizing, we have found that in topological string theory on a tar-
get Calabi–Yau 3–fold, we have a non–vanishing 3–point function of total
degree (3,3) at genus zero; a non–vanishing 1–point function of degree (1,1)
at genus one, and a non–vanishing partition (‘zero–point’) function at all
genera g > 1.

Nonlocal Operators

In one respect, what we have achieved is great progress: we can now for
any genus define a nonzero partition function (or for low genus a correlation
function) of the topological string theory. On the other hand, we would also
like to define correlation functions of an arbitrary number of operators at
these genera. As we have seen, the insertion of extra local operators in
the correlation functions is not possible, since any such insertion will spoil
our carefully constructed absence of R−symmetry anomalies. Therefore,
we have to introduce nonlocal operators.

There is one class of nonlocal operators which immediately becomes
mind. Before we saw, using the descent equations, that for every local
operator we can define a corresponding 1–form and a 2–form operator. If
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we check the axial and vector charges of these operators, we find that if we
start with an operator of degree (1, 1), the 2–form operator we end up with
actually has vanishing axial and vector charges. This has two important
consequences. First of all, we can add the integral of this operator to our
action [Vonk (2005)],

S[t] = S0 + ta
∫
O(2)
a ,

without spoiling the axial and vector symmetry of the theory. Secondly, we
can insert the integrated operator into correlation functions,

〈
∫
O(2)

1 · · ·
∫
O(2)
n 〉

and still get a nonzero result by the vanishing of the axial and vector
charges. These two statements are related: one obtains such correlators
by differentiating S[t] with respect to the appropriate t’s, and then setting
all ta = 0.

A few remarks are in place here. First of all, recall that the integration
over the insertion points of the operators can be viewed as part of the
integration over the moduli space of Riemann surfaces, where now we label
a certain number of points on the Riemann surface. From this point of
view, the g = 0, 1 cases fit naturally into the same framework. We could
unite the descendant fields into a world–sheet super–field ,

Φa = O(0)
a +O(1)

aα θ
α +O(2)

aαβθ
αθβ

where we formally replaced each dz and dz̄ by corresponding fermionic
coordinates θz and θz̄. Now, one can write the above correlators as integrals
over n copies of this super–space,∫ n∏

s=1

d2zsd
2θs 〈Φa1(z1, θ1) · · ·Φan(zn, θn)〉

The integration prescription at genus 0 and 1 tells us to fix 3 and 1 points
respectively, so we need to remove this number of super–space integrals.
Then, integrating over the other super–space coordinates, the genus 0 cor-
relators indeed become

〈O(0)
a1
O(0)
a2
O(0)
a3

∫
O(2)
a4
· · ·
∫
O(2)
an 〉

From this prescription we note that these expressions are symmetric in the
exchange of all ai and aj . In particular, this means that the genus zero
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3–point functions at arbitrary t,

cabc[t] = 〈O(0)
a O

(0)
b O

(0)
c 〉[t]

have symmetric derivatives:

∂cabc
∂td

=
∂cabd
∂tc

,

and similarly with permuted indices. These equations can be viewed as
integrability conditions, and using the Poincaré lemma we see that they
imply that

cijk[t] =
∂Z0[t]

∂ti∂tj∂tk
.

for some function Z0[t]. Following the general philosophy that n−point
functions are nth derivatives of the t−dependent partition function, we see
that Z0[t] can be naturally thought of as the partition function at genus
zero. Similarly, the partition function at genus 1 can be defined by inte-
grating up the one-point functions once.

The quantities we have calculated above should be semi–topological in-
variants, meaning that they only depend on ‘half’ of the moduli (either
the Kähler ones or the complex structure ones) of the target space. For
example, in the A−model we find the Gromov–Witten invariants. In the
B−model, it turns out that F0[t] = lnZ0[t] is actually a quantity we already
knew: it is the prepotential of the Calabi–Yau manifold. A discussion of
why this is the case can be found in the paper [Bershadsky et. al. (1994)].
The higher genus partition functions can be thought of as ‘quantum cor-
rections’ to the prepotential.

Finally, there is a type of operator we have not discussed at all so
far. Recall that in the topological string theory, the metric itself is now a
dynamical field. We could not include the metric in our physical operators,
since this would spoil the topological invariance. However, the metric is
part of a Q−multiplet, and the highest field in this multiplet is a scalar
field which is usually labelled ϕ. (It should not be confused with the fields
φi.) We can get more correlation functions by inserting operators ϕk and
the operators related to them by the descent equations into the correlation
functions. These operators are called ‘gravitational descendants’. Even the
case where the power is k = 0 is nontrivial; it does not insert any operator,
but it does label a certain point, and hence changes the moduli space one
integrates over. This operator is called the ‘puncture operator’.
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All of this seems to lead to an enormous amount of semi-topological
target space invariants that can be calculated, but there are many recursion
relations between the several correlators. This is similar to how we showed
before that all correlators for the cohomological field theories follow from
the 2–and 3–point functions on the sphere. Here, it turns out that the set
of all correlators has a structure which is related to the theory of integrable
hierarchies. Unfortunately, a discussion of this is outside the scope of both
these lectures and the author’s current knowledge.

The Holomorphic Anomaly

We have now defined the partition function and correlation functions of
topological string theory, but even though the expressions we obtained are
much simpler than the path integrals for ordinary quantum field or string
theories, it would still be very hard to explicitly calculate them. Fortu-
nately, it turns out that the t−dependent partition and correlation func-
tions are actually ‘nearly holomorphic’ in t, and this is a great aid in exactly
calculating these quantities.

Let us make this ‘near holomorphy’ more precise. As we have seen,
calculating correlation functions of primary operators in topological string
theories amounts to taking t−derivatives of the corresponding perturbed
partition function Z[t] and consequently setting t = 0. Recall that Z[t] is
defined through adding terms to the action of the form

ta
∫

Σ

O(2)
a , (6.326)

Let us for definiteness consider the B−twisted model. We want to show
that the above term is QB−exact. For simplicity, we assume that O(2)

a is a
bosonic operator, but what we are about to say can by inserting a few signs
straightforwardly be generalized to the fermionic case. From the descent
equations we studied in the subsection 6.7.4 above, we know that

(O(2)
a )+− = −{G+, [G−,O(0)

a ]}, (6.327)

where G+ is the charge corresponding to the current Gzz, and G− the one
corresponding to Gz̄z̄. We can in fact express G± in terms of the N = (2, 2)
supercharges Q. So, according to [Vonk (2005)], we have

H = 2πi(L0 + L̄0) =
1
2
{Q+, Q̄+} −

1
2
{Q−, Q̄−}P

= 2πi(L0 − L̄0) =
1
2
{Q+, Q̄+}+

1
2
{Q−, Q̄−}.
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Thus, we find that the left– and right–moving SEM charges satisfy

T+ = 2πiL0 =
1
2
{Q+, Q̄+}T− = 2πiL̄0 = −1

2
{Q−, Q̄−}.

To find G in the B−model, we should write these charges as commutators
with respect to QB = Q̄+ + Q̄−, which gives

T+ =
1
2
{QB ,Q+}T− = −1

2
{QB ,Q−},

so we arrive at the conclusion that for the B−model,

G+ =
1
2
Q+G− = −1

2
Q−.

Now, we can rewrite (6.327) as

(O(2)
a )+− = −{G+, [G−,O(0)

a ]} =
1
4
{Q+, [Q−,O(0)

a ]} (6.328)

=
1
8
{Q̄B , [(Q− −Q+),O(0)

a ]},

which proves our claim that O(2)
a is QB−exact.

An N = (2, 2) sigma model with a real action does, apart from the term
(6.326), also contain a term

tā
∫

Σ

Ō(2)
a , (6.329)

where tā is the complex conjugate of ta. It is not immediately clear that Ō(2)
a

is a physical operator: we have seen that physical operators in the B−model
correspond to forms that are ∂̄−closed, but the complex conjugate of such
a form is ∂−closed. However, by taking the complex conjugate of (6.328),
we see that

(Ō(2)
a )+− =

1
8
{QB , [(Q̄− − Q̄+), Ō(0)

a ]},

so not only is the operator QB−closed, it is even QB−exact. This
means that we can add terms of the form (6.329) to the action, and tak-
ing tā−derivatives inserts QB−exact terms in the correlation functions.
Naively, we would expect this to give a zero result, so all the physical quan-
tities seem to be t−independent, and thus holomorphic in t. We will see in
a moment that this naive expectation turns out to be almost right, but not
quite.
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However, before doing so, let us comment briefly on the generaliza-
tion of the above argument in the case of the A−model. It seems that a
straightforward generalization of the argument fails, since QA is its own
complex conjugate, and the complex conjugate of the de Rham operator is
also the same operator. However, note that the N = (2, 2)−theory has a
different kind of ‘conjugation symmetry’: we can exchange the two super-
symmetries, or in other words, exchange θ+ with θ̄+ and θ− with θ̄−. This
exchanges QA with an operator which we might denote as QĀ ≡ Q+ + Q̄−.
Using the above argument, we then find that the physical operators O(2)

a

are QĀ−exact, and that their conjugates in the new sense are QA−exact.
We can now add these conjugates to the action with parameters tā, and
we again naively find independence of these parameters. In this case it
is less natural to choose ta and tā to be complex conjugates, but we are
free to choose this particular ‘background point’ and study how the theory
behaves if we then vary ta and tā independently.

Now, let us see how the naive argument showing independence of the
theory of tā fails. In fact, the argument above would certainly hold for
topological field theories. However, in topological string theories (see [Vonk
(2005)]), we have to worry about the insertions in the path integral of

G · µi ≡
∫
d2z Gzz (µi)

z
z̄,

and their complex conjugates, when commuting theQB towards the vacuum
and making sure it gives a zero answer. Indeed, the QB−commutator of
the above factor is not zero, but it gives

{QB , G · µi} = T · µi.

Now recall that Tαβ = ∂hαβS. We did not give a very precise definition
of µi above, but we know that it parameterizes the change in the metric
under an infinitesimal change of the coordinates mi on the moduli space.
One can make this intuition precise, and then finds the following ‘chain
rule’: T · µi = ∂miS. Inserting this into the partition function, we find
that

∂Fg
∂tā

=∫
Mg

3g−3∏
i=1

dmidm̄i
∑
j,k

∂2

∂mj∂m̄k

〈
(
∏
l 6=j

∫
µl ·G)(

∏
l 6=k

∫
µ̄l · Ḡ)

∫
Ō(2)
a

〉
,
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where Fg = lnZg is the free energy at genus g, and the reason Fg appears in
the above equation instead of Zg is, as usual in quantum field theory, that
the expectation values in the r.h.s. are normalized such that 〈1〉 = 1, and
so the l.h.s. should be normalized accordingly and equal Z−1

g ∂āZg = ∂āFg
[Vonk (2005)].

Thus, as we have claimed before, we are integrating a total derivative
over the moduli space of genus g surfaces. If the moduli space did not
have a boundary, this would indeed give zero, but in fact the moduli space
does have a boundary. It consists of the moduli which make the genus g
surface degenerate. This can happen in two ways: an internal cycle of the
genus g surface can be pinched, leaving a single surface of genus g − 1, as
in Figure 6.28 (a), or the surface can split up into two surfaces of genus g1
and g2 = g−g1, as depicted in Figure 6.28 (b). By carefully considering the
boundary contributions to the integral for these two types of boundaries,
it was shown in [Bershadsky et. al. (1994)] that

∂Fg
∂tā

=
1
2
cāb̄c̄e

2KGb̄dGc̄e

(
DdDeFg−1 +

g−1∑
r=1

DdFrDeFg−r

)
,

where G is the so–called Zamolodchikov metric on the space parameterized
by the coupling constants ta, tā; K is its Kähler potential, and the Da are
covariant derivatives on this space. The coefficients cāb̄c̄ are the 3–point
functions on the sphere of the operators Ō(0)

a . We will not derive the above
formula in detail, but the reader should notice that the contributions from
the two types of boundary are quite clear.

Fig. 6.28 At the boundary of the moduli space of genus g surfaces, the surfaces degen-
erate because certain cycles are pinched. This either lowers the genus of the surface (a)

or breaks the surface into two lower genus ones (b) (see text for explanation).

Using this formula, one can inductively determine the tā dependence
on the partition functions if the holomorphic ta−dependence is known.



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Geometrical Path Integrals and Their Applications 1221

Holomorphic functions on complex spaces (or more generally holomorphic
sections of complex vector bundles) are quite rare: usually, there is only
a nD space of such functions. The same turns out to hold for our topo-
logical string partition functions: even though they are not quite holomor-
phic, their anti–holomorphic behavior is determined by the holomorphic
dependence on the coordinates, and as a result there is a finite number of
coefficients which determines them.

Thus, just from the above structure and without doing any path inte-
grals, one can already determine the topological string partition functions
up to a finite number of constants. This leads to a feasible program for
completely determining the topological string partition function for a given
target space and at given genus. From the holomorphic anomaly equation,
one first has to find the general form of the partition function. Then, all
one has left to do is to fix the unknown constants. Here, the fact that in
the A−model the partition function counts a number of points becomes
our help: by requiring that the A−model partition functions are integral,
one can often fix the unknown constants and completely determine the
t−dependent partition function. In practice, the procedure is still quite
elaborate, so we will not describe any examples here, but several have been
worked out in detail in the literature. Once again, the pioneering work for
this can be found in the paper [Bershadsky et. al. (1994)].

6.7.6 Geometrical Transitions

Conifolds

Recall that a conifold is a generalization of the notion of a manifold. Un-
like manifolds, a conifold can (or, should) contain conical singularities i.e.,
points whose neighborhood looks like a cone with a certain base. The base
is usually a 5D manifold.

In string theory, a conifold transition represents such an evolution of
the Calabi–Yau manifold in which its fabric rips and repairs itself, yet with
mild and acceptable physical consequences in the context of string theory.
However, the tears involved are more severe than those in an ‘weaker’ flop
transition (see [Greene (2000)]). The geometrically singular conifolds were
shown to lead to completely smooth physics of strings. The divergences
are ‘smeared out’ by D3–branes wrapped on the shrinking 3–sphere S3, as
originally pointed out by A. Strominger, who, together with D. Morrison
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and B. Greene have also found that the topology near the conifold singu-
larity can undergo a topological phase–transition (see subsection 6.4.5). It
is believed that nearly all Calabi–Yau manifolds can be connected via these
‘critical transitions’.

More precisely, the conifold is the simplest example of a non–compact
Calabi–Yau 3–fold: it is the set of solutions to the equation

x1x2 − x3x4 = 0

in C4. The resulting manifold is a cone, meaning in this case that any
real multiple of a solution to this equation is again a solution. The point
(0, 0, 0, 0) is the ‘tip’ of this cone, and it is a singular point of the solution
space. Note that by writing

x1 = z1 + iz2, x2 = z1 − iz2, x3 = z3 + iz4, x4 = −z3 + iz4,

where the zi are still complex numbers, one can also write the equation as

z2
1 + z2

2 + z2
3 + z2

4 = 0.

Writing each zi as ai + ibi, with ai and bi real, we get the two equations

|a|2 − |b|2 = 0, a · b = 0. (6.330)

Here a · b =
∑
i aibi and |a|2 = a · a. Since the geometry is a cone, let us

focus on a ‘slice’ of this cone given by

|a|2 + |b|2 = 2r2,

for some r ∈ R. On this slice, the first equation in (6.330) becomes

|a|2 = r2, (6.331)

which is the equation defining a 3–sphere S3 of radius r. The same holds
for b, so both a and b lie on 3–spheres. However, we also have to take the
second equation in (6.330) into account. Let us suppose that we fix an a

satisfying (6.331). Then b has to lie on a 3–sphere, but also on the plane
through the origin defined by a · b = 0. That is, b lies on a 2–sphere. This
holds for every a, so the slice we are considering is a fibration of 2–spheres
over the 3–sphere. With a little more work, one can show that this fibration
is trivial, so the conifold is a cone over S2 × S3.

Since the conifold is a singular geometry, we would like to find geome-
tries which approximate it, but which are non–singular. There are two
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interesting ways in which this can be done. The simplest way is to replace
the defining equation by

x1x2 − x3x4 = µ2. (6.332)

From the two equations constraining a and b, we now see that |a|2 ≥ µ2.
In other words, the parameter r should be at least µ. At r = µ, the
a−sphere still has finite radius µ, but the b−sphere shrinks to zero size.
This geometry is called the deformed conifold. Even though this is not
clear from the picture, from the equation (6.332) one can straightforwardly
show that it is nonsingular. One can also show that it is topologically
equivalent to the cotangent bundle on the 3–sphere, T ∗S3. Here, the S3 on
which the cotangent bundle is defined is exactly the S3 at the ‘tip’ of the
deformed conifold.

The second way to change the conifold geometry arises from studying
the two equations

x1A+ x3B = 0, x4A+ x2B = 0. (6.333)

Here, we require A and B to be homogeneous complex coordinates on a
CP 1, i.e.,

(A,B) 6= (0, 0), (A,B) ∼ (λA, λB)

where λ is any nonzero complex number. If one of the xi is nonzero, say
x1, one can solve for A or B, e.g., A = −x3B

x1
, and insert this in the other

equation to get

x1x2 − x3x4 = 0

which is the conifold equation. However, if all xi are zero, any A and B

solve the system of equations (6.333). In other words, we have constructed
a geometry which away from the former singularity is completely the same
as the conifold, but the singularity itself is replaced by a CP 1, which topo-
logically is the same as an S2. From the defining equations one can again
show that the resulting geometry is nonsingular, so we have now replaced
our conifold geometry by the so–called resolved conifold.

Topological D–branes

Since topological string theories are in many ways similar to an ordinary
(bosonic) string theories, one natural question which arises is: are there
also open topological strings which can end on D–branes? To answer the
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above question rigorously, we would have to study boundary conditions on
world–sheets with boundaries which preserve the Q−symmetry.

In the A−model, one can only construct 3D–branes wrapping so–called
‘Lagrangian’ submanifolds of M . Here, ‘Lagrangian’ means that the Kähler
form ω vanishes on this submanifold. In the B−model, one can construct
D–branes of any even dimension, as long as these branes wrap holomorphic
submanifolds of M .

Just like in ordinary string theory, when we consider open topological
strings ending on a D–brane, there should be a field theory on the brane
world–volume describing the low–energy physics of the open strings. More-
over, since we are studying topological theories, one may expect such a
theory to inherit the property that it only depends on a restricted amount
of data of the manifolds involved. A key example is the case of the A−model
on the deformed conifold, M = T ∗S3, where we wrap ND–branes on the S3

in the base. (One can show that this is indeed a Lagrangian submanifold.)
In ordinary string theory, the world–volume theory on ND–branes has a
U(N) gauge symmetry, so putting the ingredients together we can make
the guess that the world–volume theory is a 3D topological field theory
with U(N) gauge symmetry. There is really only one candidate for such a
theory: the Chern–Simons gauge theory . Recall that it consists of a single
U(N) gauge field, and has the action

S =
k

4π

∫
S3

Tr
(
A ∧ dA+

2
3
A ∧A ∧A

)
. (6.334)

Before the invention of D–branes, E. Witten showed that this is indeed
the theory one gets. In fact, he showed even more: this theory actually
describes the full topological string–field theory on the D–branes, even
without going to a low–energy limit [Witten (1995a)].

Let us briefly outline the argument that gives this result. In his paper,
Witten derived the open string–field theory action for the open A−model
topological string; it reads

S =
∫

Tr
(
A ∗QAA+

2
3
A ∗ A ∗ A

)
.

The form of this action is very similar to Chern–Simons theory, but its
interpretation is completely different: A is a string–field (a wave function
on the space of all maps from an open string to the space–time manifold),
QA is the topological symmetry generator, which has a natural action on the
string–field, and ∗ is a certain noncommutative product. Witten shows that
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the topological properties of the theory imply that only the constant maps
contribute, so A becomes a field on M – and since open strings can only
end on D–branes, it actually becomes a field on S3. Moreover, recall that
QA can be interpreted as a de Rham differential. Using these observations
and the precise definition of the star product one can indeed show that the
string–field theory action reduces to Chern–Simons theory on S3.

6.7.7 Topological Strings and Black Hole Attractors

Topological string theory is naturally related to black hole dynamics (see
subsection 5.12.3 above). Namely, critical string theory compactified on
Calabi–Yau manifolds has played a central role in both the mathematical
and physical development of modern string theory. The physical relevance
of the data provided by the topological string ĉ = 6 (of A and B types) has
been that it computes F−type terms in the corresponding four dimensional
theory [Bershadsky et. al. (1994); Antoniadis et. al. (1994)]. These higher–
derivative F−type terms for Type II superstring on a Calabi–Yau manifold
are of the general form∫

d4xd4θ(WabW
ab)gFg(XΛ), (6.335)

where Wab is the graviphoton super–field of the N = 2 super–gravity and
XΛ are the vector multiplet fields. The lowest component of W is F the
graviphoton field strength and the highest one is the Riemann tensor. The
lowest components of XΛ are the complex scalars parameterizing Calabi–
Yau moduli and their highest components are the associated U(1) vector–
fields. These terms contribute to multiple graviphoton–graviton scattering.
(6.335) includes (after θ integrations) an R2F 2g−2 term. The topological
string partition function Ztop represents the canonical ensemble for multi–
particle spinning five dimensional black holes [Breckenridge et. al. (1997);
Katz et. al. (1999)].

Recently, [Ooguri et. al. (2004)] proposed a simple and direct rela-
tionship between the second–quantized topological string partition function
Ztop and black hole partition function ZBH in four dimensions of the form

ZBH(pΛ, φΛ) = |Ztop(XΛ)|2, where XΛ = pΛ +
i
π
φΛ

in a certain Kähler gauge. The l.h.s. here is evaluated as a function of
integer magnetic charges pΛ and continuous electric potentials φΛ, which
are conjugate to integer electric charges qΛ. The r.h.s. is the holomorphic



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

1226 Applied Differential Geometry: A Modern Introduction

square of the partition function for a gas of topological strings on a Calabi–
Yau whose moduli are those associated to the charges/potentials (pΛ, φΛ)
via the attractor equations [Ooguri et. al. (2004)]. Both sides of (6.336)
are defined in a perturbation expansion in 1/Q, where Q is the graviphoton
charge carried by the black hole.29 The non–perturbative completion of
either side of (6.336) might in principle be defined as the partition function
of the holographic CFT dual to the black hole, as in [Strominger and Vafa
(1996)]. Then we have the triple equality,

ZCFT = ZBH = |Ztop|2.

The existence of fundamental connection between 4D black holes and
the topological string might have been anticipated from the following obser-
vation. Calabi–Yau spaces have two types of moduli: Kähler and complex
structure. The world–sheet twisting which produces the A (B) model topo-
logical string from the critical superstring eliminates all dependence on the
complex structure (Kähler) moduli at the perturbative level. Hence the
perturbative topological string depends on only half the moduli. Black
hole entropy on the other hand, insofar as it is an intrinsic property of the
black hole, cannot depend on any externally specified moduli. What hap-
pens at leading order is that the moduli in vector multiplets are driven to
attractor values at the horizon which depend only on the black hole charges
and not on their asymptotically specified values. Hypermultiplet vevs on
the other hand are not fixed by an attractor mechanism but simply drop
out of the entropy formula. It is natural to assume this is valid to all orders
in a 1/Q expansion. Hence the perturbative topological string and the large
black hole partition functions depend on only half the Calabi–Yau moduli.
It would be surprising if string theory produced two functions on the same
space that were not simply related. Indeed [Ooguri et. al. (2004)] argued
that they were simply related as in (6.336).

Supergravity Area–Entropy Formula

Recall that a well–known hypothesis by J. Bekenstein and S. Hawking states
that the entropy of a black hole is proportional to the area of its horizon
(see [Hawking and Israel (1979)]). This area is a function of the black hole
mass, or in the extremal case, of its charges. Here we review the leading
semiclassical area–entropy formula for a general N = 2, d = 4 extremal
black hole characterized by magnetic and electric charges (pΛ, qΛ), recently

29The string coupling gs is in a hypermultiplet and decouples from the computation.
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reviewed in [Ooguri et. al. (2004)]. The asymptotic values of the mod-
uli in vector multiplets, parameterized by complex projective coordinates
XΛ, (Λ = 0, 1, . . . , nV ) in the black hole solution, are arbitrary. These
moduli couple to the electromagnetic fields and accordingly vary as a func-
tion of the radius. At the horizon they approach an attractor point whose
location in the moduli space depends only on the charges. The locations of
these attractor points can be found by looking for supersymmetric solutions
with constant moduli. They are determined by the attractor equations,

pΛ = Re[CXΛ], qΛ = Re[CF0Λ], (6.336)

where F0Λ = ∂F0/∂X
Λ are the holomorphic periods, and the subscript 0

distinguishes these from the string loop corrected periods to appear in the
next subsection. Both (pΛ, qΛ) and (XΛ, F0Λ) transform as vectors under
the Sp(2n+ 2;Z) duality group.

The (2nv + 2) real equations (6.336) determine the (nv + 2) complex
quantities (C,XΛ) up to Kähler transformations, which act as

K → K − f(X)− f̄(X̄), XΛ → efXΛ, F0 → e2fF0, C → e−fC,

where the Kähler potential K is given by

e−K = i(X̄ΛF0Λ −XΛF̄0Λ).

We could at this point set C = 1 and fix the Kähler gauge but later we
shall find other gauges useful. It is easy to see that (as required) the
charges (pΛ, qΛ) determined by the attractor equations (6.336) are invariant
under Kähler transformations. Given the horizon attractor values of the
moduli determined by (6.336) the Bekenstein–Hawking entropy SBH may
be written as

SBH =
1
4
Area = π|Q|2,

where Q = Qm+iQe is a complex combination of the magnetic and electric
graviphoton charges and

|Q|2 =
i
2
(
qΛC̄X̄

Λ − pΛC̄F̄0Λ

)
=
CC̄

4
e−K .

The normalization of Q here is chosen so that |Q| equals the radius of the
two sphere at the horizon.
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It is useful to rephrase the above results in the context of type IIB super-
strings in terms of geometry of Calabi–Yau. In this case the attractor equa-
tions fix the complex geometry of the Calabi–Yau. The electric/magentic
charges correlate with three cycles of Calabi–Yau. Choosing a symplectic
basis for the three cycles gives a choice of the splitting to electric and mag-
netic charges. Let AΛ denote a basis for the electric three cycles, BΣ the
dual basis for the magnetic charges and Ω the holomorphic 3–form at the
attractor point. Ω is fixed up to an overall multiplication by a complex
number Ω → λΩ. There is a unique choice of λ such that the resulting Ω
has the property that

pΛ =
∫
AΛ

Re Ω = Re[CXΛ], qΛ =
∫
BΛ

Re Ω = Re[CF0Λ],

where Re Ω =
1
2

(Ω + Ω).

In terms of this choice, the black hole entropy can be written as

SBH =
π

4

∫
CY

Ω ∧ Ω.

Higher–Order Corrections

F−term corrections to the action are encoded in a string loop corrected
holomorphic prepotential

F (XΛ,W 2) =
∞∑
h=0

Fh(XΛ)W 2h, (6.337)

where Fh can be computed by topological string amplitudes (as we re-
view in the next section) and W 2 involves the square of the anti–self dual
graviphoton field strength. This obeys the homogeneity equation

XΛ∂ΛF (XΛ,W 2) +W∂WF (XΛ,W 2) = 2F (XΛ,W 2). (6.338)

Near the black hole horizon, the attractor value of W 2 obeys C2W 2 = 256,
and therefore the exact attractor equations read

pΛ = Re[CXΛ], qΛ = Re
[
CFΛ

(
XΛ,

256
C2

)]
. (6.339)

This is essentially the only possibility consistent with symplectic invariance.
It has been then argued that the entropy as a function of the charges is

SBH =
πi
2

(qΛC̄X̄Λ − pΛC̄F̄Λ) +
π

2
Im[C3∂CF ], (6.340)
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where FΛ, X
Λ and C are expressed in terms of the charges using (6.339).

Topological Strings

Partition Functions for Black Hole and Topological Strings. The
notion of topological string was introduced in [Witten (1990)]. Subsequently
a connection between them and superstring was discovered: It was shown in
[Bershadsky et. al. (1994); Antoniadis et. al. (1994)], that the superstring
loop corrected F−terms (6.337) can be computed as topological string am-
plitudes. The purpose of this subsection is to translate the super–gravity
notation of the previous section to the topological string notation.

The second quantized partition function for the topological string may
be written

Ztop(tA, gtop) = exp
[
Ftop(tA, gtop)

]
, where

Ftop(tA, gtop) =
∑
h

g2h−2
top Ftop,h(tA),

and Ftop,h is the h−loop topological string amplitude. The Kähler moduli
are expressed in the flat coordinates

tA =
XA

X0
= θA + irA,

where rA are the Kähler classes of the Calabi–Yau M and θA are periodic
θA ∼ θA + 1.

We would like to determine relations between super–gravity quantities
and topological string quantities. Using the homogeneity property (6.338)
and the expansion (6.337), the holomorphic prepotential in super–gravity
can be expressed as

F (CXΛ, 256) = (CX0)2F
(
XΛ

X0
,

256
(CX0)2

)
=

∞∑
h=0

(CX0)2−2hfh(tA), (6.341)

where fh(tA) is related to Fh(XΛ) in (6.337) as

fh(tA) = 162hFh

(
XΛ

X0

)
.
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This suggests an identification of the form fh(tA) ∼ Ftop,h(tA) and gtop ∼
(CX0)−1. For later purposes, we need precise relations between super–
gravity and topological string quantities, including numerical coefficients.
These can be determined by studying the limit of a large Calabi–Yau space.

In the super–gravity notation, the genus 0 and 1 terms in the large
volume are given by

F
(
CXΛ, 256

)
= C2DABC

XAXBXC

X0
− 1

6
c2A

XA

X0
+ · · ·

= (CX0)2DABCt
AtBtC − 1

6
c2At

A + · · · ,

where c2A =
∫
M

c2 ∧ αA,

with c2 being the second Chern class of M , and CABC = −6DABC are
the 4–cycle intersection numbers. These terms are normalized so that the
mixed entropy SBH is given by (6.340). On the other hand, the topological
string amplitude in this limit is given by

Ftop = − (2π)3i
g2
top

DABCt
AtBtC − πi

12
c2At

A + · · · (6.342)

The normalization here is fixed by the holomorphic anomaly equations in
[Bershadsky et. al. (1994)], which are nonlinear equations for Ftop,h.

Comparing the one–loop terms in (6.341) and (6.342), which are inde-
pendent of gtop, we find

F (CXΛ, 256) = −2i
π
Ftop(tA, gtop).

Given this, we can compare the genus 0 terms to find

gtop = ± 4πi
CX0

.

This implies

lnZBH = −π Im
[
F (CXΛ, 256)

]
= Ftop + F̄top and

ZBH(φΛ, pΛ) = |Ztop(tA, gtop)|2, with

tA =
pA + iφA/π
p0 + iφ0/π

, gtop = ± 4πi
p0 + iφ0/π

.
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Supergravity Approach to ZBH . The above relation

ZBH = |Ztop|2 (6.343)

can have a simpler super–gravity derivation [Ooguri et. al. (2004)].
A main ingredient in this derivation is the observation that the N = 2

super–gravity coupled to vector multiplets can be written as the action

S =
∫
d4xd4θ (super−−volume form)+h.c. =

∫
d4x
√
−gR+..., (6.344)

where the super–volume form in the above depends non–trivially on cur-
vature of the fields. This reproduces the ordinary action after integrating
over d4θ and picking up the θ4 term in the super–volume. In the context
of black holes the boundary terms accompanying (6.344) give the classical
black hole entropy.

We now become the derivation of (6.343). As was observed in [Bershad-
sky et. al. (1994); Antoniadis et. al. (1994)], topological string computes
the terms

F =
∞∑
h=0

∫
d4xd4θFh(X)(W 2)g + c.c. (6.345)

There are various terms one can get from the above action after integrating
over d4θ. Let us concentrate on one of the terms which turns out to be
the relevant one for us: Take the top components of XΛ and W 2, and
absorb the d4θ integral from the super–volume measure as in (6.344). We
will work in the gauge X0 ∼ 1 and thus C ∼ 1/gtop. As noted before
in the near–horizon black hole geometry in this gauge the top component
W 2 ∼ 1/C2 ∼ g2

top and the XΛ are fixed by the attractor mechanism.
Thus, we have the black hole free energy

lnZBH =
∞∑
h=0

g2h
topFtop,h(XΛ/X0)

∫
d4xd4θ + c.c.

=
∞∑
g=0

(gtop)2h−2Ftop,h(XΛ/X0) + c.c.

= 2 Re Ftop, (using
∫
d4xd4θ ∼ 1/g2

top).

Upon exponentiation this leads to (6.343).
Here we have shown that if we consider one absorption of θ4 term in

(6.345) upon d4θ integral we get the desired result. That there be no other
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terms is not obvious. For example another way to absorb the θ’s would have
given the familiar term R2F 2g−2 where F is the graviphoton field. However,
such terms do not contribute in the black hole background. It would be
nice to find a simple way to argue why these terms do not contribute and
that we are left with this simple absorption of the θ integrals.

6.8 Application: Advanced Geometry and Topology of
String Theory

6.8.1 String Theory and Noncommutative Geometry

The idea that the space–time coordinates do not commute is quite old
(see [Snyder (1947a); Snyder (1947b)]). It has been studied by many au-
thors both from a mathematical and a physical perspective. The theory of
operator algebras has been suggested as a framework for physics in non-
commutative space–time (see [Connes (1994)] for an exposition of the phi-
losophy). Yang-Mills (YM) theory on a noncommutative torus has been
proposed as an example; though this example at first sight appears to be
neither covariant nor causal, it has proved to arise in string theory in a
definite limit [Connes et. al. (1997)] with the non–covariance arising from
the expectation value of a background field. This analysis involved toroidal
compactification, in the limit of small volume, with fixed and generic values
of the world–sheet theta angles. This limit is fairly natural in the context of
the matrix model of M−theory [Matacz (2002)], and the original discussion
was made in this context. Part of the beauty of this analysis in [Connes
et. al. (1997)] was that T−duality acts within the noncommutative YM
framework, rather than mixing the modes of noncommutative YM theory
with string winding states and other stringy excitations. This makes the
framework of noncommutative YM theory seem very powerful.

Seiberg and Witten in [Seiberg and Witten (1999)], reexamined the
quantization of open strings ending on D−branes in the presence of a
B−field. They have showed that noncommutative YM theory is valid for
some purposes in the presence of any nonzero constant B−field, and that
there is a systematic and efficient description of the physics in terms of
noncommutative YM theory when B is large. The limit of a torus of small
volume with fixed theta angle (that is, fixed periods of B) is an example
with large B, but it is also possible to have large B on Rn and thereby
make contact with the application of noncommutative YM to instantons
on R4. An important element in their analysis is a distinction between two
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different metrics in the problem. Distances measured with respect to one
metric have been scaled to zero. However, the noncommutative theory is
on a space with a different metric with respect to which all distances are
nonzero. This guarantees that both on Rn and on Tn we end up with a
theory with finite metric.

6.8.1.1 Noncommutative Gauge Theory

For Rn with coordinates xi whose commutators are c−numbers, we write

[xi, xj ] = iθij ,

with real θ. Given such a Lie algebra, one seeks to deform the algebra of
functions on Rn to a noncommutative, associative algebra A such that

f ∗ g = fg +
1
2

iθij∂if∂jg +O(θ2),

with the coefficient of each power of θ being a local differential expression
bilinear in f and g. The essentially unique solution of this problem (modulo
redefinitions of f and g that are local order by order in θ) is given by the
explicit formula

f(x)∗g(x) = e
i
2 θ
ij ∂

∂ξi
∂

∂ζj f(x+ξ)g(x+ζ)|ξ=ζ=0 = fg+
i
2
θij∂if∂jg+O(θ2).

This formula defines what is often called the Moyal bracket of func-
tions; it has appeared in the physics literature in many contexts, in-
cluding applications to old and new matrix theories [Witten (1986b);
Seiberg and Witten (1999)]. We also consider the case of N × N matrix–
valued functions f, g. In this case, we define the ∗ product to be the tensor
product of matrix multiplication with the ∗ product of functions as just
defined. The extended ∗ product is still associative.

The ∗ product is compatible with integration in the sense that for func-
tions f , g that vanish rapidly enough at infinity, so that one can integrate
by parts in evaluating the following integrals, one has∫

Tr f ∗ g =
∫

Tr g ∗ f,

where Tr is the ordinary trace of the N×N matrices, and
∫

is the ordinary
integration of functions.
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Recall that for ordinary YM–theory, we can write the gauge transfor-
mations and field strength as

δλAi = ∂iλ+i[λ,Ai], Fij = ∂iAj−∂jAi−i[Ai, Aj ], δλFij = i[λ, Fij ],
(6.346)

where A and λ are N ×N hermitian matrices. The Wilson line is

W (a, b) = P ei
R a
b
A,

where in the path ordering A(b) is to the right. Under the gauge transfor-
mation (6.346), we have

δW (a, b) = iλ(a)W (a, b)− iW (a, b)λ(b).

For noncommutative gauge theory, one uses the same formulas for the
gauge transformation law and the field strength, except that matrix multi-
plication is replaced by the ∗ product. Thus, the gauge parameter λ̂ takes
values in A tensored with N × N hermitian matrices, for some N , and
the same is true for the components Âi of the gauge field Â. The gauge
transformations and field strength of noncommutative Yang–Mills theory
are thus

δ̂λ̂Âi = ∂iλ̂+ iλ̂ ∗ Âi − iÂi ∗ λ̂,
F̂ij = ∂iÂj − ∂jÂi − iÂi ∗ Âj + iÂj ∗ Âi,
δ̂λ̂Fij = iλ̂ ∗ F̂ij − iF̂ij ∗ λ̂.

The theory obtained this way reduces to conventional U(N) YM theory for
θ → 0. Because of the way that the theory is constructed from associative
algebras, there seems to be no convenient way to get other gauge groups.
The commutator of two infinitesimal gauge transformations with generators
λ̂1 and λ̂2 is, rather as in ordinary YM theory, a gauge transformation
generated by i(λ̂1 ∗ λ̂2 − λ̂2 ∗ λ̂1). Such commutators are nontrivial even
for the rank 1 case, that is N = 1, though for θ = 0 the rank 1 case is
the Abelian U(1) gauge theory. For rank 1, to first order in θ, the above
formulas for the gauge transformations and field strength read

δ̂λ̂Âi = ∂iλ̂− θkl∂kλ̂∂lÂi +O(θ2),

F̂ij = ∂iÂj − ∂jÂi + θkl∂kÂi∂lÂj +O(θ2),

δ̂λ̂F̂ij = −θkl∂kλ̂∂lF̂ij +O(θ2).
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6.8.1.2 Open Strings in the Presence of Constant B−Field

Bosonic Strings

Following [Seiberg and Witten (1999)], we now study strings in flat space,
with metric gij , in the presence of a constant Neveu–Schwarz B–field and
with Dp−branes. The B−field is equivalent to a constant magnetic field
on the brane.

We denote the rank of the matrix Bij as r; r is of course even. Since the
components of B not along the brane can be gauged away, we can assume
that r ≤ p + 1. When our target space has Lorentzian signature, we will
assume that B0i = 0, with “0” the time direction. With a Euclidean target
space we will not impose such a restriction. Our discussion applies equally
well if space is R10 or if some directions are toroidally compactified with
xi ∼ xi + 2πri. (One could pick a coordinate system with gij = δij , in
which case the identification of the compactified coordinates may not be
simply xi ∼ xi + 2πri, but we will not do that.) If our space is R10, we can
pick coordinates so that Bij is nonzero only for i, j = 1, . . . , r and that gij
vanishes for i = 1, . . . , r, j 6= 1, . . . , r. If some of the coordinates are on a
torus, we cannot pick such coordinates without affecting the identification
xi ∼ xi + 2πri. For simplicity, we will still consider the case Bij 6= 0 only
for i, j = 1, . . . , r and gij = 0 for i = 1, . . . , r, j 6= 1, . . . , r.

The world–sheet action is

S =
1

4πα′

∫
Σ

(
gij∂ax

i∂axj − 2πiα′Bijεab∂axi∂bxj
)

=
1

4πα′

∫
Σ

gij∂ax
i∂axj − i

2

∫
∂Σ

Bijx
i∂tx

j , (6.347)

where Σ is the string world–sheet, which we take to be with Euclidean
signature. ∂t is a tangential derivative along the world–sheet boundary ∂Σ.
The equations of motion determine the boundary conditions. For i along
the Dp−branes they are

gij∂nx
j + 2πiα′Bij∂txj |∂Σ = 0, (6.348)

where ∂n is a normal derivative to ∂Σ. These boundary conditions are not
compatible with real x, though with a Lorentzian world–sheet the analogous
boundary conditions would be real. Nonetheless, the open string theory can
be analyzed by determining the propagator and computing the correlation
functions with these boundary conditions. In fact, another approach to the
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open string problem is to omit or not specify the boundary term with B in
the action (6.347) and simply impose the boundary conditions (6.348).

For B = 0, the boundary conditions in (6.348) are Neumann boundary
conditions. When B has rank r = p and B −→ ∞, or equivalently gij → 0
along the spatial directions of the brane, the boundary conditions become
Dirichlet; indeed, in this limit, the second term in (6.348) dominates, and,
with B being invertible, (6.348) reduces to ∂tx

j = 0. This interpolation
from Neumann to Dirichlet boundary conditions will be important, since we
will eventually take B −→∞ or gij −→ 0. For B very large or g very small,
each boundary of the string world–sheet is attached to a single point in the
Dp−brane, as if the string is attached to a zero–brane in the Dp−brane.
Intuitively, these zero–branes are roughly the constituent zero-branes of
the Dp−brane as in the matrix model of M−theory [Seiberg and Witten
(1999)], an interpretation that is supported by the fact that in the matrix
model the construction of Dp−branes requires a nonzero B−field.

Our main focus is the case that Σ is a disc, corresponding to the classical
approximation to open string theory. The disc can be conformally mapped
to the upper half plane; in this description, the boundary conditions (6.348)
are

gij(∂ − ∂̄)xj + 2πα′Bij(∂ + ∂̄)xj |z=z̄ = 0,

where ∂ = ∂/∂z, ∂̄ = ∂/∂z̄, and Im z ≥ 0. The propagator with these
boundary conditions is

〈xi(z)xj(z′)〉 = −α′[gij log |z − z′| − gij log |z − z̄′| (6.349)

+ Gij log |z − z̄′|2 +
1

2πα′
θij log

z − z̄′

z̄ − z′
+Dij ].

Here

Gij =
(

1
g + 2πα′B

)ij
S

=
(

1
g + 2πα′B

g
1

g − 2πα′B

)ij
,

Gij = gij − (2πα′)2(Bg−1B)ij ,

θij = 2πα′
(

1
g + 2πα′B

)ij
A

= −(2πα′)2
(

1
g + 2πα′B

B
1

g − 2πα′B

)ij
,

where ( )S and ( )A denote the symmetric and antisymmetric part of the
matrix. The constants Dij in (6.349) can depend on B but are independent
of z and z′; they play no essential role and can be set to a convenient value.
The first three terms in (6.349) are manifestly single–valued. The fourth
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term is single–valued, if the branch cut of the logarithm is in the lower half
plane.

Our focus is on the open string vertex operators and interactions [Witten
(1986b); Seiberg and Witten (1999)]. Open string vertex operators are of
course inserted on the boundary of Σ. So to get the relevant propagator,
we restrict (6.349) to real z and z′, which we denote τ and τ ′. Evaluated
at boundary points, the propagator is

〈xi(τ)xj(τ ′)〉 = −α′Gij log(τ − τ ′)2 +
i
2
θijε(τ − τ ′), (6.350)

where we have set Dij to a convenient value. ε(τ) is the function that is 1
or –1 for positive or negative τ .

The object Gij has a very simple intuitive interpretation: it is the ef-
fective metric seen by the open strings. The short distance behavior of the
propagator between interior points on Σ is

〈xi(z)xj(z′)〉 = −α′gij log |z − z′|.

The coefficient of the logarithm determines the anomalous dimensions of
closed string vertex operators, so that it appears in the mass shell condition
for closed string states. Thus, we will refer to gij as the closed string met-
ric. Gij plays exactly the analogous role for open strings, since anomalous
dimensions of open string vertex operators are determined by the coefficient
of log(τ − τ ′)2 in (6.350), and in this coefficient Gij enters in exactly the
way that gij would enter at θ = 0. We will refer to Gij as the open string
metric.

The coefficient θij in the propagator also has a simple intuitive interpre-
tation. In conformal field theory, one can compute commutators of opera-
tors from the short distance behavior of operator products by interpreting
time ordering as operator ordering. Interpreting τ as time, we see that

[xi(τ), xj(τ)] = T
(
xi(τ)xj(τ−)− xi(τ)xj(τ+)

)
= iθij . (6.351)

That is, xi are coordinates on a noncommutative space with noncommuta-
tivity parameter θ.

Consider the product of tachyon vertex operators eip·x(τ) and eiq·x(τ ′).
With τ > τ ′, we get for the leading short distance singularity

eip·x(τ) · eiq·x(τ ′) ∼ (τ − τ ′)2α
′Gijpiqje−

1
2 iθijpiqjei(p+q)·x(τ ′) + . . . .

If we could ignore the term (τ − τ ′)2α′p·q, then the formula for the operator
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product would reduce to a ∗ product; we would get

eip·x(τ)eiq·x(τ ′) ∼ eip·x ∗ eiq·x(τ ′).

This is no coincidence. If the dimensions of all operators were zero, the
leading terms of operator products O(τ)O′(τ ′) would be independent of
τ − τ ′ for τ → τ ′, and would give an ordinary associative product of mul-
tiplication of operators. This would have to be the ∗ product, since that
product is determined by associativity, translation invariance, and (6.351)
(in the form xi ∗ xj − xj ∗ xi = iθij).

Now, consider an operator on the boundary of the disc that is of the
general form P (∂x, ∂2x, . . . )eip·x, where P is a polynomial in derivatives
of x, and x are coordinates along the Dp−brane (the transverse coordi-
nates satisfy Dirichlet boundary conditions). Since the second term in the
propagator (6.350) is proportional to ε(τ−τ ′), it does not contribute to con-
tractions of derivatives of x. Therefore, the expectation value of a product
of k such operators, of momenta p1, . . . , pk, satisfies〈

k∏
n=1

Pn(∂x(τn), ∂2x(τn), . . . )eipn·x(τn)

〉
G,θ

= (6.352)

e−
i
2

P
n>m pni θ

ijpmj ε(τn−τm)

〈
k∏

n=1

Pn(∂x(τn), ∂2x(τn), . . . )eipn·x(τn)

〉
G,θ=0

,

where 〈. . . 〉G,θ is the expectation value with the propagator (6.350)
parametrized by G and θ. We see that when the theory is described in
terms of the open string parameters G and θ, rather than in terms of g
and B, the θ dependence of correlation functions is very simple. Note that
because of momentum conservation (

∑
m p

m = 0), the crucial factor

exp

(
− i

2

∑
n>m

pni θ
ijpmj ε(τn − τm)

)
(6.353)

depends only on the cyclic ordering of the points τ1, . . . , τk around the
circle [Witten (1986b); Seiberg and Witten (1999)].

The string theory S−matrix can be obtained from the conformal field
theory correlators by putting external fields on shell and integrating over
the τ ’s. Therefore, it has a structure inherited from (6.352). To be very
precise, in a theory with N × N Chan–Paton factors, consider a k point
function of particles with Chan–Paton wave functions Wi, i = 1, . . . , k, mo-
menta pi, and additional labels such as polarizations or spins that we will
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generically call εi. The contribution to the scattering amplitude in which
the particles are cyclically ordered around the disc in the order from 1 to k
depends on the Chan–Paton wave functions by a factor Tr(W1W2 . . .Wk).
We suppose, for simplicity, that N is large enough so that there are no
identities between this factor and similar factors with other orderings. By
studying the behavior of the S−matrix of massless particles of small mo-
menta, one can extract order by order in α′ a low energy effective action
for the theory. If Φi is an N × N matrix-valued function in space–time
representing a wavefunction for the ith field, then at B = 0 a general term
in the effective action is a sum of expressions of the form∫

dp+1x
√

detGTr(∂n1Φ1∂
n2Φ2 . . . ∂

nkΦk). (6.354)

Here ∂ni is, for each i, the product of ni partial derivatives with respect
to some of the space–time coordinates; which coordinates it is has not
been specified in the notation. The indices on fields and derivatives are
contracted with the metric G, though this is not shown explicitly in the
formula.

Now to incorporate the B−field, at fixed G, is very simple: if the ef-
fective action is written in momentum space, we need only incorporate the
factor (6.353). Including this factor is equivalent to replacing the ordinary
product of fields in (6.354) by a ∗ product (in this formulation, one can
work in coordinate space rather than momentum space). So the term cor-
responding to (6.354) in the effective action is given by the same expression
but with the wave functions multiplied using the ∗ product:∫

dp+1x
√

detGTr(∂n1Φ1 ∗ ∂n2Φ2 ∗ · · · ∗ ∂nkΦk).

It follows, then, that the B dependence of the effective action for fixed
G and constant B can be obtained in the following very simple fashion:
replace ordinary multiplication by the ∗ product. We will make presently
an explicit calculation of an S−matrix element to illustrate this statement,
and we will make a detailed check of a different kind in section 4 using
almost constant fields and the Dirac–Born–Infeld theory .

Now, recall that background gauge fields couple to the string world–
sheet by adding

− i
∫
dτAi(x)∂τxi (6.355)
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to the action (6.347). We assume for simplicity that there is only a rank
one gauge field; the extension to higher rank is straightforward. Comparing
(6.347) and (6.355), we see that a constant B−field can be replaced by the
gauge field Ai = − 1

2Bijx
j , whose field strength is F = B. When we are

working on Rn, we are usually interested in situations where B and F are
constant at infinity, and we fix the ambiguity be requiring that F is zero
at infinity.

Naively, (6.355) is invariant under ordinary gauge transformations as

δAi = ∂iλ, (6.356)

because (6.355) transforms by a total derivative

δ

∫
dτAi(x)∂τxi =

∫
dτ∂iλ∂τx

i =
∫
dτ∂τλ.

However, because of the infinities in quantum field theory, the theory has
to be regularized and we need to be more careful. We will examine a point
splitting regularization, where different operators are never at the same
point.

Then expanding the exponential of the action in powers of A and using
the transformation law (6.356), we find that the functional integral trans-
forms by

−
∫
dτAi(x)∂τxi ·

∫
dτ ′∂τ ′λ, (6.357)

plus terms of higher order in A. The product of operators in (6.357) can
be regularized in a variety of ways. We will make a point-splitting regu-
larization in which we cut out the region |τ − τ ′| < δ and take the limit
δ → 0. Though the integrand is a total derivative, the τ ′ integral con-
tributes surface terms at τ − τ ′ = ±δ. In the limit δ → 0, the surface terms
contribute

−
∫
dτAi(x(τ))∂τxi(τ)

(
λ(x(τ−))− λ(x(τ+))

)
= −

∫
dτ (Ai(x) ∗ λ− λ ∗Ai(x)) ∂τxi.

Here we have used the relation of the operator product to the ∗ product,
and the fact that with the limit boundary propagator [Seiberg and Witten
(1999)]

〈xi(τ)xj(0)〉 =
i
2
θijε(τ),



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Geometrical Path Integrals and Their Applications 1241

there is no contraction between ∂τx and x. To cancel this term, we must
add another term to the variation of the gauge field; the theory is invariant
not under (6.356), but under

δ̂Âi = ∂iλ+ iλ ∗ Âi − iÂi ∗ λ. (6.358)

This is the gauge invariance of noncommutative YM theory, and in recog-
nition of that fact we henceforth denote the gauge field in the theory de-
fined with point splitting regularization as Â. A sigma model expansion
with Pauli–Villars regularization would have preserved the standard gauge
invariance of open string gauge field, so whether we get ordinary or non-
commutative gauge fields depends on the choice of regulator.

We have made this derivation to lowest order in Â, but it is straightfor-
ward to go to higher orders. At the nth order in Â, the variation is

in+1

n!

∫
Â(x(t1)) . . . Â(x(tn))∂tλ(x(t)) (6.359)

+
in+1

(n− 1)!

∫
Â(x(t1)) . . . Â(x(tn−1))

(
λ ∗ Â(x(tn))− Â ∗ λ(x(tn))

)
,

where the integration region excludes points where some t’s coincide. The
first term in (6.359) arises by using the naive gauge transformation (6.356),
and expanding the action to nth order in Â and to first order in λ. The
second term arises from using the correction to the gauge transformation
in (6.358) and expanding the action to the same order in Â and λ. The
first term can be written as

in+1

n!

∑
j

∫
Â(x(t1)) . . . Â(x(tj−1))Â(x(tj+1)) . . .

. . . Â(x(tn))
(
Â ∗ λ(x(tj))− λ ∗ Â(x(tj))

)
=

in+1

(n− 1)!

∫
Â(x(t1)) . . . Â(x(tn−1))

(
Â ∗ λ(x(tn))− λ ∗ Â(x(tn))

)
,

making it clear that (6.359) vanishes. Therefore, there is no need to modify
the gauge transformation law (6.358) at higher orders in Â. For further
technical details, see [Witten (1986b); Seiberg and Witten (1999)].

6.8.2 K−Theory Classification of Strings

In this subsection, following [Witten (1998c); Witten (2000)], we will revisit
the relation between strings, D−brane and K−theory, which we started in
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section 4.5.
As Ed. Witten has pointed out, K−theory provides a framework for

classifying Ramond–Ramond (RR) charges and fields. K−theory of man-
ifolds has a natural extension to K−theory of noncommutative algebras,
such as the algebras considered in noncommutative Yang–Mills (YM) the-
ory, or in open string field theory. In a number of concrete problems, the
K−theory analysis proceeds most naturally if one starts out with an infinite
set of D−branes, reduced by tachyon condensation to a finite set.

Recall that a D−brane wrapped on a submanifold S of space–time may
carry a nonzero RR–charge. As RR–fields are p−forms, superficially it
seems that the conserved charge should be measured by the cohomology
class of the RR–form (or of the cycle S itself). However, D−branes carry
gauge fields; and gauge fields are not natural in ordinary (co)homology
theories. Instead, they are natural in K−theory.

More precisely, if X is space–time and A(X) is the commutative, as-
sociative algebra of continuous complex–valued functions on X, then the
K−theory of X can be defined in terms of representations of A(X). A
representation of a ring is usually called a module. Here are some examples
of A(X)−modules.

The most obvious example of an A(X)−module is A(X) itself. For
f ∈ A(X) (regarded as a ring) and g ∈ A(X) (regarded as a module), we
define f(g) = fg, where on the right hand side the multiplication occurs
in A(X). This obviously obeys the defining condition of a module, which
is that
(f1f2)(g) = f1(f2(g)).

More generally, consider a Dp−brane (or a collection of N Dp−branes
for some N > 0) wrapped on a submanifold S of X, with any Chan–Paton
gauge bundle W on the D−brane. Let M(S) be the space of sections of W ,
that is, the space of one–particle states for a charged scalar coupled to the
bundle W . Then M(S) is an A(X)−module; for f ∈ A(X), g ∈M(S), we
simply set again f(g) = fg. On the right hand side, the multiplication is
defined by restricting f , which is a function on X, to S and then multiplying
f and g.

So in, say, Type IIB superstring theory, a collection of D9−branes de-
fines a representation or module E of A(X). A collection of D9−branes
defines another module F . So any configuration of D9 and D9−branes
determines a pair (E,F ).

To classify D−brane charge, we want to classify pairs (E,F ) modulo
physical processes. An important process [Sen (1998)] is brane–antibrane
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creation and annihilation – the creation or annihilation of a set of D9’s and
D9’s each bearing the same gauge bundle G. This amounts to

(E,F )↔ (E ⊕G,F ⊕G). (6.360)

The equivalence classes make up a group called K(X) (or K(A(X))
if we want to make the interpretation in terms of A(X)−modules more
explicit). The addition law in this group is just

(E,F ) + (E′F ′) = (E ⊕ E′, F ⊕ F ′).

The inverse of (E,F ) is (F,E); note that (E,F )⊕ (F,E) = (E⊕F,E⊕F ),
and using the equivalence relation (6.360), this is equivalent to zero.
D−branes of Type IIB carry conserved charges that take values in K(X)
[Witten (1998c)]. In the above definition of K(X), we used only nine-
branes, even though, as we explained earlier, an A(X) module can be con-
structed using Dp−branes (or antibranes) for any p. In fact, we can classify
D−brane charge just using the ninebranes, and then build the Dp−branes
of p < 9 via pairs (E,F ) with a suitable tachyon condensate.

Wherever one looks closely at topological properties of RR charges (or
fields), one sees effects that reflect the K−theory structure. For example,
there are stable D−brane states (like the nonsupersymmetric D0−branes
of Type I) that would not exist if D−brane charge were classified by coho-
mology instead of K−theory. Conversely, it is possible to have a D−brane
state that would be stable if D−brane charge were measured by cohomol-
ogy, but which is in fact unstable (via a process that involves nucleation of
D9−D9 pairs in an intermediate state). This occurs in Type II superstring
theory, in which a D−brane wrapped on a homologically nontrivial cycle
in space–time is in fact in certain cases unstable.

According to Witten, there is a deeper reason that it is good to know
about the K−theory interpretation of D−branes: it may be naturally
adapted for stringy generalizations. In fact, we can define K(X) in terms
of representations of the algebra A(X) of functions on space–time. We
can similarly define K(A) for any noncommutative algebra A, in terms of
pairs (E,F ) of A−modules. By contrast, we would not have an equally
useful and convenient notion of ‘cohomology’ if the algebra of functions on
space–time is replaced by a noncommutative ring.

For example, turning on a Neveu–Schwarz B–field , we can make A(X)
noncommutative; the associated K(A) was used by Connes, Douglas, and
Schwarz in the original paper on noncommutative YM–theory applied to
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string theory [Connes et. al. (1997)]. This is an interesting example, even
though it involves only the zero modes of the strings. One would much
like to have a fully stringy version involving a noncommutative algebra
constructed using all of the modes of the string, not just the zero modes.

At this stage, we do not know what is the right noncommutative algebra
that uses all of the modes. One concrete candidate is the ∗−algebra of open
string field theory, defined in terms of gluing strings together. If we call this
algebra Ast, it seems plausible that D−brane charge is naturally labelled
by K(Ast). For a manifold of very large volume compared to the string
scale, we would conjecture that K(Ast) is the same as the ordinary K(X)
of topological K−theory.

K−Theory and RR–Fields

Naively speaking, an RR p−form field Gp obeys a Dirac quantization law
according to which, for any p−cycle U in space–time,∫

U

Gp
2π

= integer. (6.361)

If that were the right condition, then RR fields would be classified by co-
homology. However, that is not the right answer, because the actual quan-
tization condition on RR periods is much more subtle than (6.361). There
are a variety of corrections to (6.361) that involve space–time curvature and
the gauge fields on the brane, as well as self-duality and global anomalies.

The answer, for Type IIB superstrings, turns out to be that RR fields
are classified by K1(X). For our purposes, K1(X) can be defined as the
group of components of the group of continuous maps from X to U(N), for
any sufficiently large N . This means that topological classes of RR fields on
X are classified by a map U : X → U(N) for some large N . The relation of
Gp to U is roughly Gp ∼ Tr (U−1dU)p, where we have ignored corrections
due to space–time curvature and subtleties associated with self-duality of
RR fields [Fabinger and Horava (2000)].

The physical meaning of U is not clear. For Type IIA, the analog is
that RR fields are classified by a U(N) gauge bundle (for some large N)
with connection A and curvature FA, the relation being Gp ∼ Tr F p/2A . The
analog for M−theory involves E8 gauge bundles with connection. Again,
the physical meaning of the U(N) or E8 gauge fields is not clear.

The value of using K1 to classify RR fields of Type IIB is that this gives
a concise way to summarize the otherwise rather complicated quantization
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conditions obeyed by the RR fields. In addition, this framework is useful
in describing subtle phase factors that enter in the RR partition function.
In hindsight, once it is known that RR charges are classified by K−theory,
one should have suspected a similar classification for RR fields. After all,
RR charges produce RR fields! So the geometry used to classify RR charges
must be similar to the geometry used to classify RR fields.

Just like K(X), K1(X) has an analog for any noncommutative algebra
A. Given A, we let AN denote the group of invertible N × N matrices
whose matrix elements are elements of A. Then K1(A) is the group of
components of AN , for large N .

For example, for A = A(X) the ring of complex-valued continuous
functions on X, AN is the group of maps of X to GL(N,C). This is
contractible to the group of maps of X to U(N), so for large N the group
of components of AN is the same as K1(X), as we defined it initially.

The existence of a generalization of K1(X) for noncommutative rings
means that the description of Type IIB RR fields by K1(X) in the long
distance limit may be a useful starting point for stringy generalizations.

N −→∞

In the previous subsection, N was a sufficiently large but finite integer. Our
next task will be to describe some things that depend on setting N equal
to infinity.

Before doing so, let us recall the role of the N −→ ∞ limit in physics.
It is important in the conjectured link of gauge theory with strings; in the
old matrix models that are used to give soluble examples of string theory;
in the matrix model of M−theory; and in the correspondence between
gravity in an asymptotically AdS space–time and conformal field theory on
the boundary.

For Type IIB superstrings, [Witten (1998c); Witten (2000)] used K(X)
to classify RR charges, and K1(X) to classify RR fields.

The T−dual statement is that for Type IIA, K1(X) should classify
RR–charges, and K(X) should classify RR fields. Recall that, by Bott
periodicity, Ki+2(X) = Ki(X), so the only K−groups of X are K0(X),
which we have called simply K(X), and K1(X).

The most concrete and natural attempt to explain in general whyK1(X)
classifies RR charges for Type IIA is that of [Horava (1999)]. The starting
point here is to consider a system of N unstable D9−branes of Type IIA.
The branes support a U(N) gauge field and a tachyon field T in the adjoint
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representation of U(N). There is a symmetry T −→ −T .
The effective potential for the tachyon field is believed to have the gen-

eral form

V (T ) =
1
gst

Tr F (T ),

where the function F (T ) is non-negative and, after scaling T correctly,
vanishes precisely if T = ±1. Hence V (T ) is minimized if and only if every
eigenvalue of T is ±1.

It was argued in [Horava (1999)] that, in flat R10, one can make super-
symmetric Dp−branes (for even p) as solitons of T . For example, to make
a D6−brane, we set N = 2. Let ~x be the three coordinates normal to the
D6−brane, and set

T =
~σ · ~x
|x|

f(|x|),

where f(r) ∼ r for small r, and f(r) → ∞ for r → ∞. So for |x| → ∞,
the eigenvalues of T are everywhere ±1. Near x = 0, there is a topological
knot that we interpret as the D6−brane.

In flat R10, one can similarly make Dp−branes for other even p. But
on a general space–time, this does not work for arbitrary Dp-branes unless
we set N = ∞. The problem is most obvious if X, or at least its spatial
part, is compact. The tachyon field T , being adjoint-valued, maps X to
the Lie algebra of U(N); since the Lie algebra is contractible, T carries
no topology. So a map from X to the Lie algebra does not represent an
element of K1(X); indeed, it does not carry topological information at all.
To define an element of K1(X), we need the group, not the Lie algebra; a
map U : X −→ U(N) does the job.

As Atiyah and Singer showed long ago, we get back the right topology
from the Lie algebra if we set N = ∞! We have to interpret U(∞) to be
the unitary group U of a separable Hilbert space H of countably infinite
dimension. We interpret the N =∞ analog of the space of hermitian N×N
matrices to be the space of bounded self-adjoint operators T on H whose
spectrum is as follows: there are infinitely many positive eigenvalues and
infinitely many negative ones, and zero is not an accumulation point of the
spectrum. The last condition makes T a Fredholm operator . Physically, T
should be required to obey these conditions, since they are needed to make
the energy and the D8−brane charge finite. In fact, to make the energy
finite, almost all the eigenvalues of T are very close to ±1. Anyway, with
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these conditions imposed on T , it turns out that the space of T ’s has the
same topology as that of U(N) for large N .

So we can use tachyon condensation on a system of D9−branes to de-
scribe RR charges for Type IIA. But we have to start with infinitely many
D9−branes, which then undergo tachyon condensation down to a configu-
ration of finite energy.

Let us now explain in more concrete terms the obstruction to making
D−branes in this way for finite N , and how it vanishes for N = ∞. Let
us go back to the example of a D6−brane constructed with 2 D9−branes.
We took the transverse directions to be a copy of R3, and the tachyon field
to be

T =
~σ · ~x
|x|

f(|x|).

If we try to compactify the transverse directions to §3, we run into trouble
because T is not constant at infinity. The conjugacy class of T is constant
at infinity – the eigenvalues of T are everywhere 1 and -1 – but T itself is
not constant.

Moreover, T is not homotopic to a constant at infinity. If T were ho-
motopic to a constant near infinity, we would deform it to be constant and
then extend it over §3. But it is not homotopic to a constant.

The basic obstruction to making T constant at infinity is the ‘magnetic
charge’. Let §2 be a sphere at infinity in R3. Over §2, we can define a
line bundle  L+ whose fiber is the +1 eigenspace of T , and a line bundle
 L− whose fiber is the -1 eigenspace of T . The line bundles  L+ and  L− are
topologically nontrivial – their first Chern classes are respectively 1 and -1.
As long as we try to deform T preserving the fact that its eigenvalues are
1 and -1, the line bundles  L± are well-defined, and their first Chern classes
are invariant. So the nontriviality of  L+ (or  L−) prevents us from making
a homotopy to constant T .

Let us add some additional ‘spectator’ D9−branes, and see if anything
changes. Suppose there are M = 2k additional branes, so that the total
number of branes is N = 2 + M = 2 + 2k. Let the tachyon field be
T ′ = T ⊕U , where T is as above and U is the sum of k copies of the matrix(

1 0
0 −1

)
(6.362)

acting on the 2k additional branes.
Thus T ′ has near infinity k+ 1 eigenvalues +1 and k+ 1 eigenvalues -1.
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The +1 eigenspace of T ′ is a vector bundle V+ of first Chern class 1 (since it
is constructed by adding a trivial bundle to  L+), and the -1 eigenspace of T ′

is similarly a vector bundle V− of first Chern class -1. In particular, V+ and
V− are nontrivial, so we have not gained anything by adding the spectator
branes: T ′ is not homotopic to a constant, and cannot be extended over
infinity. The nontriviality of V+ is controlled by π1(U(k + 1)) = Z, which
is associated with the existence of a first Chern class.

Instead, what happens if we set k = ∞? To be more precise, we take
the number of spectator D9−branes to be countably infinite, and assume
T ′ = T ⊕ U , where U is the direct sum of countably many copies of the
matrix in (6.362). We can still define the bundles V+ and V−; their fibers
are separable Hilbert spaces (that is, Hilbert spaces of countably infinite
dimension). U(k + 1) is replaced by U , the unitary group of a separable
Hilbert space. Now we run into the fundamental fact (Kuiper’s Theorem)
that U is contractible; its homotopy groups are all zero. Thus, any bundle
of separable Hilbert spaces is trivial. In particular, V+ and V− are trivial,
so T ′ is homotopic to a constant and can be extended over infinity.

So if the total number of unstable D9−branes is N =∞, we can make
a D6−brane localized at a point in §3. More generally, in view of the result
of Atiyah and Singer, we can starting at N =∞ build an arbitrary class in
K1(X) via tachyon condensation.

In terms of applying this result to physics, there are a few issues that we
should worry about. One question is simply whether it is physically sensible
to start with infinitely many branes and rely on tachyon condensation to
get us down to something of finite energy.

Quite a different question is whether the answer that we have obtained
by setting N =∞ is the right one for physics. In the field of a D6−brane
that is localized at a point on §3, the equation for the RR two-form field G2

(of which the D6−brane is a magnetic source) has no solution, since “the
flux has nowhere to go.”

It seems that the situation is that N = ∞ corresponds to the correct
answer in classical open string theory, where the effective action comes
from world–sheets with the topology of a disc. The RR fields enter as a
correction of relative order gst (the closed string coupling constant) coming
from world–sheets with cylinder topology, and should be ignored in the
classical approximation.

The classification of D−branes by brane creation and annihilation holds
at gst = 0, and leads for Type IIB to a classification of D−brane charge
by K(X). To get the analogous answer, namely K1(X), for Type IIA via
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unstable D9−branes and tachyon condensation, we need to start at N =∞.
Intuitively, in the absence of tachyon condensation, N = ∞ should

correspond to gst = 0, since the effective expansion parameter for open
strings is gstN . If N is infinite, then prior to tachyon condensation, gst
must be zero, or the quantum corrections diverge. If we want gst to be
nonzero, we need tachyon condensation to reduce to an effective finite value
of N .

A somewhat analogous problem is to consider D−branes when the
Neveu–Schwarz 3–form field H is topologically nontrivial. We will carry
out this discussion in Type IIB (for Type IIA, we would have to combine
what follows with what we said above in the absence of the H−field).

Just as at H = 0, we would like to classify D−brane states by pairs
(E,F ) (where E is a D9 state and F is a D9 state) subject to the usual
sort of equivalence relation. But there is a problem in having a D9 state in
the presence of an H−field.

In fact, when H is topologically non-trivial, one cannot have a single
D9−brane. On theD9−brane, there is a U(1) gauge field with field strength
F . The relation dF = H shows, at the level of de Rham cohomology,
that H must be topologically trivial if a single D9−brane is present. This
conclusion actually holds precisely, not just in de Rham cohomology.

There is a special case in which there is a comparatively elementary
cure for this difficulty. If H is torsion, that is if there is an integer M > 0
such that MH is topologically trivial, then it is possible to have a set of M
D9−branes whose ‘gauge bundle’ actually has structure group U(M)/ZM ,
rather than U(M). (The obstruction to lifting the U(M)/ZM bundle to
a U(M) bundle is determined by H.) We will call such a gauge bundle a
twisted bundle. More generally, for any positive integerm, we can haveN =
mM D9−branes with the structure group of the bundle being U(mM)/ZM .
In such a situation, D−brane charge is classified, as one would guess, by
pairs (E,F ) of twisted bundles (or D9 and D9 states) subject to the usual
equivalence relation. The equivalence classes make a group KH(X).

If one wishes to interpret KH(X) as the K−theory of representations
of an algebra, one must pick a particular twisted bundle W and consider
a D−brane state with boundary conditions determined by W . The W−W
open strings transform in the adjoint representation, so the gauge parame-
ters of the zero mode sector of the open strings are sections of W ⊗W̄ . No-
tice that although W is a twisted bundle (with structure group U(M)/ZM
rather than U(M)), W ⊗ W̄ is an ordinary bundle, since the center acts
trivially in the adjoint representation.
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The sections of W⊗W̄ form an algebra, defined as follows: if sij and tkl
are sections of W ⊗W̄ – where the upper and lower indices are respectively
W− and W̄−valued – then their product is (st)il =

∑
k s

i
kt
k
l. This is

the algebra AW (X) of all endomorphisms or linear transformations of the
bundle W . The algebra of open string field theory, for W−W open strings,
reduces to AW if one looks only at the zero modes of the strings. This is a
sensible approximation at low energies in a limit in which X is very large
compared to the string scale.

If H is zero and W is a trivial rank one complex bundle, then AW (X)
is our friend A(X). If H is zero and W is a trivial rank N complex bundle,
then including W means simply that there are N×N Chan–Paton matrices
everywhere. So in this case, AW (X) = A(X) ⊗MN , where MN is the
algebra of N ×N complex-valued matrices. In general, whatever H is, W
is always trivial locally, so locally AW (X) is isomorphic to A(X)⊗MN .

A twisted bundle is equivalent to an AW−module, and the group
KH(X) of pairs (E,F ) of twisted bundles (modulo the usual equivalence)
coincides with K(AW ), the K−group of AW−modules. This assertion
leads to an immediate puzzle; KH(X) as defined in terms of pairs (E,F )
of twisted bundles is manifestly independent of W while K(AW ) appears
to depend on W . Indeed, given any two distinct twisted bundles W and
W ′, the corresponding algebras AW and AW ′ are distinct, but at the same
time Morita–equivalent .

So far, we have only considered the case that H is torsion. A typical
example, important in the AdS/CFT correspondence, is the space–time
X = AdS5 × RP5, where a torsion H−field on RP5 is used to describe
Sp(n) rather than SO(2n) gauge theory in the boundary CFT.

However, in most physical applications, H is not torsion. In that case,
we must somehow take a large M limit of what has been said above. The
right way to do this has been shown by [Bouwknegt and Mathai (2000)].
The suitable large M limit of U(M)/ZM is PU(H) = U(H)/U(1). In other
words, for M = ∞, one replaces U(M) by the unitary group U(H) of a
separable Hilbert space H; and one replaces ZM by U(1). This means, in
particular, that when H is not torsion, one cannot have a finite set of D9−
or D9−branes, but one can have an infinite set, with a suitable infinite
rank twisted gauge bundle E or F . Then D−brane charge is classified
by the group KH of pairs (E,F ) modulo the usual equivalence relation.
A detailed explanation can be found in [Bouwknegt and Mathai (2000)].
Here, the Kuiper’s Theorem – the contractibility of U = U(H) – plays an



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Geometrical Path Integrals and Their Applications 1251

important role.
This construction, in the M = ∞ limit, has the beautiful property,

explained in [Bouwknegt and Mathai (2000)], that the noncommutative
algebra whose K−group is KH is unique, independent of any arbitrary
choice of twisted bundle W or W ′. This really depends on the number of
D9 and D9−branes being infinite.
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Klimyk, A., Schmüdgen, K. (1997). Quantum groups and their representations,

Springer, Berlin.
Kobayashi, S., Nomizu, K. (1963/9). Foundations of Differential Geometry, Vols.

1,2., Interscience Publ., New York.
Kock, A., (1981). Synthetic Differential Geometry, London Math.Soc. Lecture

Notes Series No. 51, Cambridge Univ. Press, Cambridge.
Kock, A. (2001). Infinitesimal aspects of the Laplace operator. Theory and Ap-

plications of Categories, 9(1), 1–16.
Kock, A., Reyes, G.E. (2003). Some calculus with extensive quantities: wave

equation. Theory and Applications of Categories, 11(14), 321–336.
Kohonen, T. (1988). Self Organization and Associative Memory. Springer, Berlin.
Kolar, I., Michor, P.W., Slovak, J. (1993). Natural Operations in Differential

Geometry. Springer, Berlin.
Koon, W.S., Marsden, J.E. (1997). The Hamiltonian and Lagrangian approaches

to the dynamics of nonholonomic systems. Reports on Math Phys. 40, 21–
62.

Kosko, B. (1992). Neural Networks and Fuzzy Systems, A Dynamical Systems
Approach to Machine Intelligence. Prentice–Hall, New York.

Kosko, B. (1993). Fuzzy Thinking. Disney Books, Hyperion.
Kosko, B. (1996). Fuzzy Engineering. Prentice Hall, New York.
Kosko, B. (1999). The Fuzzy Future: From Society and Science to Heaven in a

Chip. Random House, Harmony.
Kosmann-Schwarzbach, Y. (2004). Derived brackets. Lett. Math. Phys. 69, 61–87.
Kotschik, D., Morgan, J.W., Taubes, C.H. (1995). Four manifolds without sym-

plectic structures but with non-trivial Seiberg-Witten invariants, Math. Re-
search Letters 2, 119-124.

Kotz, S., Nadarajah, S. (2000). Extreme Value Distributions. Imperial College
Press, London.

Krasil’shchik, I., Lychagin, V., Vinogradov, A. (1985). Geometry of Jet Spaces
and Nonlinear Partial Differential Equations, Gordon and Breach, Glasgow.

Krasnov, K. (1997). Geometrical entropy from loop quantum gravity, Phys. Rev.
D55, 3505.



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Bibliography 1275

Krener, A. (1984). Approximate linearization by state feedback and coordinate
change, Systems Control Lett., 5, 181–185.

Kronheimer, P., Mrowka, T. (1994). The genus of embedded surfaces in the pro-
jective plane, Math. Research Letters 1, 797-808;

Kronheimer, P., Mrowka, T. (1994). Recurrence relations and asymptotics for
four-manifold invariants, Bull. Amer. Math. Soc. 30, 215.

Krupkova, O. (1997). The Geometry of Ordinary Variational Equations. Springer,
Berlin.

Kuhl, J. (1985). Volitional Mediator of cognition-Behaviour consistency: Self-
regulatory Processes and action versus state orientation (pp. 101-122). In:
J. Kuhl & S. Beckman (Eds.) Action control: From Cognition to Behaviour.
Springer, Berlin.

Kuramoto, Y. (1984). Chemical Oscillations. Waves and Turbulence, Springer,
New York.

Labastida, J.M.F., Lozano, C. (1998). Lectures on topological quantum field the-
ory. In Proceedings of the CERN–Santiago de Compostela–La Plata Meet-
ing on ‘Trends in Theoretical Physics’, eds. H. Falomir, R. Gamboa, F.
Schaposnik, Amer. Inst. Physics, New York.

Lafferriere, G., Sussmann, J.J. (1993). A differential geometric approach to mo-
tion planning. In Z. Li and J. F. Canny (ed.) Nonholonomic Motion Plan-
ning, 235–270. Kluwer, Dordrecht.

Lalonde, F., McDuff, D. (2002). Symplectic structures on fiber bundles. Topology
42(2), 309–347.

Lalonde, F., McDuff, D., Polterovich, L. (1998). On the Flux conjectures, CRM
Proceedings and Lecture Notes vol 15, 69–85.

Lalonde, F., McDuff, D., Polterovich, L. (1999). Topological rigidity of Hamilto-
nian loops and quantum homology. Invent. Math. 135, 369–385.

Lanczos, C. (1986). The variational priciples of mechanics. Dover, New York.
Landau, L.D., Lifshitz, E.M. (1977). Quantum Mechanics: Non–Relativistic The-

ory, Pergamon Press, Oxford.
Landau, L.D., Lifshitz, E.M. (1978). Statitsical Physics, Pergamon Press, Oxford.
Landi, G. (1998). An introduction to Noncommutative Spaces and Their Geome-

tries, Springer, Berlin.
Landsman, N.P. (1995). Against the Wheeler–DeWitt equation. Class. Quan.

Grav. L 12, 119–124.
Lang, S. (1999). Fundamentals of Differential Geometry. Graduate Texts in Math-

ematics, Springer, New York.
Lang, S. (2002). Introduction to Differentiable Manifolds (2nd ed.). Graduate

Texts in Mathematics, Springer, New York.
Lang, S. (2003). Complex Analysis (rev. 4th ed). Graduate Texts in Mathematics,

Springer, New York.
Lang, S. (2005). Algebra (rev. 3rd ed.). Graduate Texts in Mathematics, Springer,

New York.
Langer, J., Perline, R. (1994). Local geometric invariants of integrable evolution

equations, J. Math. Phys., 35(4), 1732–1737.
Langouche, F., Roekaerts, D., Tirapegui, E. (1980). Short derivation of Feynman



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

1276 Applied Differential Geometry: A Modern Introduction

Lagrangian for general diffusion process. J. Phys. A 113, 449-452.
Lax, P.D. (1968). Integrals of nonlinear equations of evolution and solitary waves.

Comm. Pure Appl. Math., 21, 467–490.
Lawvere, F.W. (1979). Categorical Dynamics. Topos Theoretic Methods in Ge-

ometry (ed. A. Kock). Aarhus Various Publ, Series 30.
Lawson, H.B., Michelsohn, M.L. (1989). Spin Geometry. Princeton Univ. Press,

Princeton, NJ.
LeBrun,C. (1991). Scalar-Flat Kähler Metrics On Blown-Up Ruled Surfaces. J.

Reine Angew Math. 420, 161.
de León, M., Marrero, J. (1993). Constrained time-dependent Lagrangian systems

and Lagrangian submanifolds, J. Math. Phys. 34, 622.
de León, M., Martin, D., de Diego, A., Santamaria, M. (2004). Symmetries in

Classical Field Theory. arXiv:math-ph/0404013.
de León, M., Martin, D., de Diego, A. (1996). On the geometry of nonholonomic

Lagrangian systems. J. Math. Phys. 37, 3389.
de León, M., Marrero, J., Martin, D., de Diego D. (1997). Nonholonomic La-

grangian systems in jet manifolds. J. Phys. A. 30, 1167.
Leinster, T. (2002). A survey of definitions of n− category. Theor. Appl. Categ.

10, 1–70.
Leinster, T. (2003). Higher Operads, Higher Categories, London Mathematical

Society Lecture Notes Series, Cambridge Univ. Press, Cambridge.
Leinster, T. (2004). Operads in higher-dimensional category theory. Theor. Appl.

Categ. 12, 73–194.
Lerche, W., Vafa, C., Warner, N.P. (1989). Chiral Rings. In N=2 Superconformal

Theories, Nucl. Phys. B 324, 427.
Lewin, K. (1951). Field Theory in Social Science. Univ. Chicago Press, Chicago.
Lewin, K. (1997). Resolving Social Conflicts: Field Theory in Social Science,

American Psych. Assoc., New York.
Lewis, A.D., Murray, R.M. (1997). Controllability of simple mechanical control

systems, SIAM J. Con. Opt., 35(3), 766–790.
Lewis, A.D. (1995). Aspects of Geometric Mechanics and Control of Mechanical

Systems. Technical Report CIT-CDS 95-017 for the Control and Dynamical
Systems Option, California Institute of Technology, Pasadena, CA.

Lewis, A.D., Murray, R.M. (1999). Configuration controllability of simple me-
chanical control systems, SIAM Review, 41(3), 555–574.

Lewis, A.D. (1998). Affine connections and distributions with applications to
nonholonomic mechanics, Reports on Mathematical Physics, 42(1/2), 135–
164.

Lewis, A.D. (1999). When is a mechanical control system kinematic? In Pro-
ceedings of the 38th IEEE Conf. Decis. Con., 1162–1167, IEEE, Phoenix,
AZ.

Lewis, A.D. (2000). Simple mechanical control systems with constraints. IEEE
Trans. Aut. Con., 45(8), 1420–1436.

Lewis, A.D. (2000). Affine connection control systems. Proceedings of the IFAC
Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control
128–133, Princeton.



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Bibliography 1277

Li, M., Vitanyi, P. (1997). An Introduction to Kolmogorov Complexity and its
Applications. Springer, New York.

Libermann, P., Marle, C.M. (1987). Symplectic Geometry and Analytical Me-
chanics, Reidel, Dordrecht.

Lieh, J. (1994). Computer oriented closed-form algorithm for constrained multi-
body dynamics for robotics applications. Mechanism and Machine Theory,
29, 357–371.

Linz, S.J. (1997). Nonlinear Dynamical Models and Jerky Motion. Am. J. Phys.,
65(6), 523–526.

Liu, G., Tian, G. (1998). Floer homology and Arnold conjecture, J. Diff. Geom.,
49, 1–74.

Loll, R. (1998). Discrete approaches to quantum gravity in four dimensions. Living
Reviews in Relativity, 13.

Loll, R. (2001). Discrete Lorentzian quantum gravity. Nucl. Phys. B 94, 96–107.
Loo, K. (1999). A Rigorous Real Time Feynman Path Integral. J. Math. Phys.,

40(1), 64–70.
Loo, K. (2000). A Rigorous Real Time Feynman Path Integral and Propagator.

J. Phys. A: Math. Gen, 33, 9215–9239.
Lopez, M.C., Marsden, J.E. (2003). Some remarks on Lagrangian and Poisson

reduction for field theories. J. Geom. Phys., 48, 52-83.
Lorenz, E.N., (1963). Deterministic Nonperiodic Flow. J. Atmos. Sci., 20, 130–

141.
Louie, A.H. (1983). Categorical system theory and the phenomenological calculus.

Bull. Math. Biol., 45, 1029–1045; Categorical system theory. Bull. Math.
Biol., 45, 1047–1072.

Louko, J., Sorkin, R.D. (1997). Complex actions in two-dimensional topology
change. Class. Quant. Grav. 14, 179–204.

Lu, J.-H. (1990). Multiplicative and affine Poisson structures on Lie groups. PhD
Thesis, Berkeley Univ., Berkeley.

Lu, J.-H. (1991). Momentum mappings and reduction of Poisson actions. In Sym-
plectic Geometry, Groupoids, and Integrable Systems, eds.: P. Dazord and
A. Weinstein, 209–225, Springer, New York.

Lygeros, J., Godbole, D.N., Sastry, S. (1998). Verified hybrid controllers for au-
tomated vehicles, IIEEE Trans. Aut. Con., 43, 522-539.

MacLane, S. (1971). Categories for the Working Mathematician. Springer, New
York.

Madore, J. (1995). An introduction to Noncommutative Differential Geometry,
LMS Lecture Notes 206.

Mangiarotti, L., Sardanashvily, G. (1998). Gauge Mechanics. World Scientific,
Singapore.

Mangiarotti, L., Sardanashvily, G. (1999). On the geodesic form of non-relativistic
dynamic equations. arXiv:math-ph/9906001.

Mangiarotti, L., Sardanashvily, G. (2000). Connections in Classical and Quantum
Field Theory, World Scientific, Singapore.

Mangiarotti, L., Sardanashvily, G. (2000). Constraints in Hamiltonian time-
dependent mechanics. J. Math. Phys. 41, 2858.



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

1278 Applied Differential Geometry: A Modern Introduction

Mangiarotti, L., Obukhov, Yu., Sardanashvily, G. (1999). Connections in Classi-
cal and Quantum Field Theory. World Scientific, Singapore.

Mangioni, S.E., Deza, R.R., Toral, R., Wio, H.S. (2000). Nonequilibrium phase
ransitions induced by multiplicative noise: effects of self–correlation. Phys.
Rev. E, 61, 223–231.

Manikonda, V. (1998). Control and Stabilization of a Class of Nonlinear Systems
with Symmetry. PhD Thesis, Center for Dynamics and Control of Smart
Structures, Harvard Univ., Cambridge.

Marathe, K., Martucci, G. (1992). The Mathematical Foundations of Gauge The-
ories. North-Holland, Amsterdam.

Marcolli, M. (1995). Notes on Seiberg-Witten Gauge Theory. arXiv:dg-
ga/9509005.

Marmo, G., Simoni, A., Stern, A. (1995). Poisson Lie group symmetries for the
isotropic rotator. Int. J. Mod. Phys. A 10, 99–114.

Marsden, J.E., Ratiu, T.S. (1999). Introduction to Mechanics and Symmetry: A
Basic Exposition of Classical Mechanical Systems. (2nd ed), Springer, New
York.

Marsden, J.E., Weinstein, A. (1974). Reduction of symplectic manifolds with
symmetry. Rept. Math. Phys. 5, 121–130.

Marsden, J.E., Patrick, G.W., Shkoller, S. (1998). Multisymplectic Geometry,
Variational Integrators, and Nonlinear PDEs. Comm. Math. Phys., 199,
351–395.

Marshakov, A. (1997). On integrable systems and supersymmetric gauge theories,
Theor. Math. Phys. 112, 791-826.

Martini, R., Gragert, P.K.H. (1999). Solutions of WDVV equations in Seiberg-
Witten theory from root systems. J. Nonlin. Math. Phys. 6:1, 1-4.

Mascalchi, M. et al. (2002). Proton MR Spectroscopy of the Cerebellum and Pons
in Patients with Degenerative Ataxia, Radiology, 223, 371.

Massa, E., Pagani, E. (1994). Jet bundle geometry, dynamical connections and
the inverse problem of Lagrangian mechanics. Ann. Inst. Henri Poincaré
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Dirac equation, 442, 761
Dirac Hamiltonian, 1170
Dirac matrices, 200
Dirac operator, 305, 726, 758
Dirac quantization, 526, 614
Dirac quantization rule, 87
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Dirac–Born–Infeld theory, 1239
directional derivative, 29
Dirichlet boundary conditions, 36
Dirichlet branes, 1148
disjoint union, 657
dissipative structures, 983
distribution, 473, 533
distribution function, 984
divergence of the stress tensor, 81
divergence term, 879
Dolbeault cohomology, 438
Donaldson polynomials, 1118
Donaldson theory, 757, 1103, 1118
drift vector–field, 537
dual Coxeter number, 776
Duffing oscillator, 342, 347
dynamical chaos, 1072
dynamical connections, 827
dynamical equation, 825
dynamical intuition, 143
Dynkin diagram, 240
Dynkin index, 776

edges, 5
effective group action, 208
Ehresmann connection, 572, 807
Eilenberg–MacLane space, 521, 642
Eilenberg–Steenrod Axioms, 508
Einstein, 31
Einstein equation, 87, 138, 142, 951,

965, 1056
Einstein tensor, 22
Einstein–Hilbert action, 32, 87, 300,

469, 972, 1056
electro–weak interaction, 34
elliptic Calogero–Moser system, 769
elliptic geometry, 5
emotion field, 603
energy conservation law, 928
energy function, 26
energy functional, 317
equal probabilities, 86
equations of mathematical physics,

473
equivariance condition, 531
equivariant theory , 518

Erlangen programme, 245
Euclidean 3D space, 5
Euclidean chart, 144
Euclidean geometry, 1
Euclidean image, 144
Euclidean metric, 147, 979
Euclidean nD space, 5
Euclidean spaces, 2, 7, 8
Euclidean triangulations, 1067
Euclidean–Schwarzschild metric, 970
Euler, 5
Euler angles, 28
Euler beta function, 40
Euler character, 1118
Euler characteristic, 5, 28, 271, 284,

1072, 1075, 1096, 1188
Euler characteristics, 515
Euler class, 514, 1117
Euler number, 973
Euler–Lagrange equations, 22
Euler–Lagrangian equations, 84, 278,

879, 900, 1183
Euler–Lagrangian functional

derivative, 257
Euler–Lagrangian operator, 842
Euler–Poincaré characteristics, 188
Euler–Poincaré equations, 291
European option, 1026
evolution operator, 165
exact form, 182
exact sequence, 508
exponential, 672
exponential law, 30
exponential map, 29, 205, 248
exponentiation of a vector–field, 247
extended supersymmetry, 35
extensive quantities, 473
exterior algebra, 669
exterior bundle, 493
exterior calculus, 16
exterior derivative, 180
exterior differential, 609
exterior differential forms, 174
exterior differential system, 179, 879
exterior horizontal form, 612
exterior powers, 435
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exterior product, 669
external configuration manifold, 47
extraordinary cohomology theory, 508
extremal, 25, 84
extremal path, 84
extrinsic view, 4

faces, 5
Faddeev–Popov procedure, 1107, 1126
family of probability distributions,

333
Faraday line, 706
Faraday tensor, 124
feature–space, 159
feedback linearization, 539
Fermi–Dirac statistics, 34
Feynman, 31
Feynman diagram, 1142
Feynman kernel, 996
Feynman path integral, 86, 983, 989,

994, 1079
Feynman quantization, 85
Feynman–Vernon formalism, 1041
fibre, 150, 487
fibre bundle, 15
fibre–derivative, 258
field strength, 1234
fields, 84
filtration, 670
final state, 85
finite–time probability distribution,

1033
Finsler curvature tensor, 319
Finsler energy function, 316
Finsler information structure, 334
Finsler manifold, 316
Finsler metric, 334
Finsler–Lagrangian field theory, 321
first Cauchy law of motion, 81
first integral, 339
first superstring revolution, 41
first variation, 878
first variational formula, 841, 883,

884, 919
first–order Lagrangian formalism,

801, 929, 957

first–stage reducible, 1125
fixed point, 340
flag, 534
flow, 172, 607
flow line, 168
flow property, 172
flux class, 627
flux group, 625
flux homomorphism, 644
Fock space, 527, 1148
Fock state, 991
Fokker–Planck, 87
Fokker–Planck equation, 591, 988,

989, 1023
foliation, 533, 553
force equation, 342
force–field psychodynamics, 1079
forced Lagrangian equation, 535
formal exponential, 173
four fundamental forces, 33
Fourier transform, 461
Frölicher–Nijenhuis bracket, 613, 913
frame bundle, 530
Fredholm operator, 520, 1114, 1246
free group action, 208
free motion equation, 832
free string, 1139
Freed–Hopkins–Teleman Theorem,

526
Frobenius Theorem, 553
Frobenius–Cartan criterion, 263
functional, 83
functional manifold, 268
Fundamental Theorem of calculus,

482

Galilei group, 210
gauge condition, 1014
gauge field, 34, 527
gauge form, 513
gauge group, 30, 513, 731, 869
gauge Lie group, 527
gauge potentials, 921
gauge theories, 34
gauge transformation, 35, 490
gauge transformations, 1234
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Gauss, 5
Gauss map, 284
Gauss–Bonnet formula, 271, 284,

1077
Gauss–Bonnet Theorem, 188, 512
Gauss–Kronecker curvature, 1077
Gaussian curvature, 271, 1061
general linear group, 211
general linear Lie algebra, 196
general principal vector–fields, 896
general relativity, 292, 448
general theory of systems, 393
generalized function, 473
generalized vector–field, 256
generic energy condition, 966
genus, 725, 1076
geodesic, 17, 25, 170, 278
geodesic deviation equation, 139, 140
geodesic equation, 20, 278, 825
geodesic flow, 290
geodesic spray, 170, 290
geometrical intuition, 144
geometrical invariance group, 869
geometrodynamical functor, 1082
gerbe, 524
ghost number, 1149
global space–time hyperbolicity, 964
graph, 485
Gravity, 33
Green–Gauss–Ostrogradsky

Divergence Theorem, 480
Green–Schwarz bosonic string theory,

1181
Green–Schwarz mechanism, 41
Gromov–Witten invariants, 632, 654
Grothendieck Additivity Axiom, 515
Grothendieck group, 508
Grothendieck’s Riemann–Roch

Theorem, 516
group action, 98
group homomorphism, 28
group identity element, 203
group inversion, 203
group multiplication, 203
group of rotations, 30
group of symplectomorphisms, 625

group orbit space, 208

Haar measure, 207
Hairy Ball Theorem, 513
Hamel equations, 292
Hamilton’s equations, 27
Hamilton’s principle, 23
Hamilton–de Donder equations, 843,

852
Hamilton–Jacobi equation, 27
Hamiltonian, 24, 26, 84
Hamiltonian action, 372
Hamiltonian automorphism, 628
Hamiltonian bundle, 624
Hamiltonian connection, 840, 844,

845, 931
Hamiltonian conservation laws, 846
Hamiltonian density, 84
Hamiltonian dynamics, 154
Hamiltonian energy function, 338
Hamiltonian equations, 840
Hamiltonian extension class, 628
Hamiltonian flow, 27
Hamiltonian form, 840, 841, 844, 845,

854, 900, 938, 946
Hamiltonian jet–field, 938
Hamiltonian map, 854
Hamiltonian mechanical system, 338
Hamiltonian mechanics, 13, 25, 26
Hamiltonian structure, 626
Hamiltonian vector–field, 26, 338
harmonic forms, 436
Hausdorff space, 145
Hawking’s Euclidean quantum

gravity, 302
heat equation, 250, 261
Heisenberg picture, 1007
Heisenberg uncertainty relations, 87
Heisenberg’s uncertainty principle, 41
helicity, 502
Hermitian inner product, 432, 686
Hermitian metric, 432
Hermitian operator, 85, 87
Hermitian Riesz representation, 687,

688
Hermitian structure, 686
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Hermiticity condition, 432
Hessian, 276
heuristic action paradigm, 83
heuristic quantization rule, 711
higher–order contact, 797
higher–order tangency, 797
Hilbert, 31
Hilbert 5th problem, 236
Hilbert action principle, 142
Hilbert manifold, 147
Hilbert space, 85, 87, 147, 992
Hirzebruch’s Riemann–Roch

Theorem, 516
Hodge decomposition, 436
Hodge diamond, 441
Hodge identities, 435
Hodge numbers, 440, 1189
Hodge star operator, 125, 178, 191,

681
Hodge Theorem, 439, 520
Hodge theory, 417
Hodge’s Theorem, 436
holomorphic 1–form, 791
holomorphic cotangent space, 431
holomorphic function, 725
holomorphic tangent space, 431
holomorphicity constraints, 719
holonomic atlas, 163
holonomic coframes, 164
holonomic connections, 827
holonomic fibre bases, 486
holonomic frames, 163
holonomous frame field, 163
holonomy, 125, 1195
holonomy group, 738
homeomorphism, 6–9, 429
homoclinic orbits, 343
homological algebra, 104, 510
homology group, 105, 183
homotopy fibration, 645
homotopy lifting property, 486, 738
homotopy operators, 186, 546
Hopf algebra, 463
Hopf–Rinow Theorem, 17
horizontal density, 801, 883, 900, 957
horizontal distribution, 812

horizontal foliation, 812
horizontal forms, 611
horizontal splitting, 960
human crowd, 603
human–robot team, 154
hyperbolic geometry, 5
hyperkähler manifolds, 1187

ideal
differential, 881

Immirzi parameter, 299
imprecision of measurement, 391
independence condition, 881
index, 655
inertial metric tensor, 833
infinite–dimensional neural network,

1080
infinite–order jet space, 822
infinitesimal generators, 29, 253
information gain, 1018
initial state, 85
initial–date coordinates, 862
inner product, 16
inner product space, 992
input vector–fields, 537
insertion operator, 178
integrable Hamiltonian system, 262
integrable in the sense of Liouville,

771
integrable system, 790
integral curve, 168
integral manifold, 533, 879, 881
intensive quantities, 473
interior product, 178, 670
internal configuration manifold, 46
intertwining tensor, 714
intrinsic definition for differentiable

manifolds, 6
intrinsic view, 4
invariant interval, 1173
invariant of Poincaré–Cartan, 841
invariant symplectic form, 690
invariant tori, 343
involutive closure, 552
involutive distribution, 533
irreducible representation, 527
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isometric, 17
isomorphic, 28
isotropy group, 208
Itô lemma, 1026
iterated fibration of Kähler manifolds,

653
Ito prescription, 1019
Ito stochastic integral, 987

Jacobi equation of geodesic deviation,
280

Jacobi fields, 280, 313
Jacobi identity, 126, 202, 362
Jacobi operator, 879
jet, 798, 880
jet bundle, 16, 801, 803
jet field, 807
jet functor, 804
jet space, 251, 275, 797
Jones polynomial, 1195

K–theory, 494, 508, 515
Kähler form, 740
Kähler manifold, 733
Kähler metric, 742
Kähler potential, 733, 736
Kähler condition, 417
Kähler form, 432
Kähler gauge, 1225
Kähler identities, 435
Kähler manifold, 27, 416, 433
Kähler metric, 433
Kähler potential, 434, 724, 1227
Kähler structure, 433
Kählerity condition, 433
Kaluza–Klein theory, 44
Kepler problem, 27
Killing equation, 441
Killing form, 246, 354, 785
Killing spinor–field, 442
Killing tensor–field, 443, 447
Killing vector–field, 441, 446
Killing–Riemannian geometry, 441
Killing–Yano equation, 442, 450
Killing–Yano tensor, 450
Klein bottle, 487

Klein–Gordon Lagrangian, 1013
Kodaira Embedding Theorem, 435
Korteveg–de Vries equation, 262, 598
Kostant–Souriau prequantization, 622
Kuiper’s Theorem, 521

Lagrange multipliers, 1179
Lagrange’s equations, 22
Lagrange–Poincaré equations, 292
Lagrangian, 15, 84, 289, 877
Lagrangian constraint space, 841
Lagrangian density, 84, 801, 888,

1013, 1085, 1175
Lagrangian dynamics, 153
Lagrangian mechanics, 13, 22, 26
Lagrangian submanifold, 28
Landau pole, 736
Langevin, 87
Laplace equation, 252
Laplace–Beltrami operator, 191, 277
Laplacian operator, 482
Laplacian symmetry, 445
large, 646
laws of motion, 166
Lax equation, 771, 780
Lax operator, 790
Lax pair equation, 450
Lax tensor, 450
Lax type representation, 262
leaf space, 553
Lebesgue measure, 207
Lefschetz condition, 637
Lefschetz Theorem, 436
left ideal, 202
left–invariant Lagrangian, 291
left–invariant Riemannian metric, 354
Legendre bundle, 900
Legendre map, 258, 370, 841, 843, 885
Legendre submanifold, 881

transverse, 881, 883
Legendre transformation, 24
Leibniz rule, 181, 464
Lepagean equivalent, 842
Leray cohomology spectral sequence,

665
Leray–Hirsch basis., 663
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Leray–Serre cohomology spectral
sequence, 638

level vector, 775
Levi–Civita connection, 19, 48, 273,

379, 416, 434, 450, 451, 502, 535,
559, 572, 728, 957

Levi–Civita symbol, 1177
Lewinian force–field theory, 1081
Lewinian psychodynamics, 602
Lie, 6, 28
Lie algebra, 27, 29, 196, 362
Lie algebra homomorphism, 202
Lie algebra simple root, 242
Lie bracket, 19, 29, 194, 463, 606
Lie bracket property, 256
Lie derivative, 29, 163, 192, 338, 446,

610, 837, 838, 840
Lie Functor, 30
Lie functor, 205
Lie group, 4, 203
Lie product, 553
Lie structural constants, 362
Lie subalgebra, 202
Lie super–algebra, 671, 1105
Lie–derivative neuro–classifier, 200
Lie–group–homomorphism, 28
Lie–invariant geometric objects, 263
Lie–Lagrangian biodynamical

functor, 385
Lie–Poisson bracket, 361
Lie–Poisson neuro–classifier, 383
lifted action, 373
limit set, 341
line bundle, 514, 524, 691
line bundles, 494
linear connection, 807
linear controllability, 544
linear isotopy, 648
linearized Hamiltonian dynamics,

1073
Liouville equation, 27, 988
Liouville integrability, 451
Liouville measure, 25
Liouville operator, 192
Liouville Theorem, 363
Liouville’s Theorem, 27

Liouville–Arnold Theorem, 367
Lipschitz condition, 171
local connection form, 815
local coordinate system, 6
local geodesics, 137
locally accessible system, 556
locally topologically equivalent, 137
loop algebra, 706
loop quantum gravity, 527, 702
loop representation, 717
loop variables, 297
Lorentz metric tensor, 1181
Lorentz–invariant theories, 1140
Lorentzian dynamical triangulations,

1059
Lorentzian–de Sitter metric, 979
Lorenz dynamics, 506
Lorenz flow, 506
low energy effective action, 1119
Lyapunov exponent, 361, 1072
Lyapunov stable, 865, 866

Möbius strip, 487
manifold, 1, 8, 137, 143
manifold structure, 145
manifold with boundary, 186
manifoldness, 5
marked symplectic manifold, 630
Markov assumption, 988
Markov chain, 985
Markov stochastic process, 985, 1083
Markov–Gaussian stochastic systems,

87
mass conservation principle, 78
Master equation, 988
Mathai–Quillen formula, 1115
mathematical induction, 6
matrix representation, 239
Maupertius action principle, 277
Maurer–Cartan connection, 1117
Maurer–Cartan equations, 263
maximal atlas, 7
maximal geodesic, 170
maximal integral curve, 168
Maxwell equations, 33, 124
Maxwell gauge field theory, 34
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Maxwell Lagrangian, 34
Maxwell–Dirac duality, 724
Mayer–Vietoris sequence, 660
Mayer–Vietoris Theorem, 508
mean curvature, 877
mean–field theory, 1075
Melnikov function, 348
mental force law, 1097
meromorphic 1–form, 725, 736
mesoscopic order parameters, 1016
metric, 468
metric manifold, 705
metric SEM–tensor, 924, 930, 936,

1198
metric space, 17
metric tensor, 20
midpoint discretization, 1019
mirror symmetry, 1189
model space, 147
module, 1242
moduli space, 35, 524, 720, 724
momentum constraint equation, 977
momentum map, 354, 372, 446
momentum phase–space manifold,

258, 340, 387, 837, 839, 844, 848
monodromy, 738
monodromy group, 738
monoid, 129
monoidal category, 129
Montonen–Olive duality, 719, 1119
Montonen–Olive mass formula, 722
Morita–equivalent, 1250
morphism of vector–fields, 173
Morse function, 312, 1073, 1077
Morse lemma, 1073
Morse numbers, 1078
Morse theory, 311, 1073, 1077, 1098
Moser’s homotopy argument, 632
motion planning, 262
motivation–behavior conservation

law, 606
motivational factor manifold, 603
motivational factor–structure, 603
Moyal bracket, 1233
Moyal product, 458, 470
multi–index, 250, 879

multiindex, 177
multimomentum Hamiltonian, 938
multivector–field, 608

Nambu–Goto action, 1145, 1172, 1183
natural geometrical structures, 128
natural projection, 152
Navier–Stokes equations, 83
Neumann boundary condition, 1149
neural path integral, 1045
Neveu–Schwarz B–field, 1235, 1243
Newman–Penrose equation, 965
Newton’s Second Law, 23
Newtonian equation of motion, 166
Newtonian fluid, 82
Newtonian mechanics, 22
Nijenhuis differential, 614, 913
Noether conservation law

weak, 923
Noether conservation laws, 446
Noether current, 923, 925
Noether identities, 923
Noether Theorem, 24, 879
Noether–Lagrangian symmetry, 257
Noetherian ring, 100
non–Abelian field strength, 1191
non–equilibrium nonlinear

multivariate, 1016
Non–Euclidean geometry, 5
noncommutative coordinates, 459
noncommutative gravity theory, 463
noncommutative phase–space, 459
noncommutative product, 215
noncommutative Yang–Mills theory,

1234
nondegenerate quadratic forms, 958
nonholonomic connection, 536
nonholonomic coordinates, 275
nonlinear control system, 537
nonlinear control theory, 1141
nonlinear controllability criterion, 551
nonlinear factor analysis, 603
nonlinear MIMO–systems, 537
nonlinear Schrödinger equation, 597
nonlinear sigma model, 1145
normal bundle, 490
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normal vector–field, 167

obstruction theory, 642
on–shell reducible, 1126
one–parameter group of

diffeomorphisms, 172, 341
open manifold, 10
open string theories, 1140
operator algebras, 511
orbifold, 13, 1187
order parameter equations, 1016
oriented strings, 1141
orthogonal group, 30
overlap, 7

parabolic Einstein equation, 285
parallel transport, 20, 139, 290, 379,

423, 527
parameter–space of probability

distributions, 333
particles, 84
partition function, 1070, 1097, 1194
path, 9
path integral, 86, 970, 971, 1020
path measure, 86, 1017
path–connected space, 9
path–integral expression, 1011
path–integral formalism, 1008
path–integral formulation, 24, 1007
path–integral quantization, 1007
path–ordered exponential, 527
Pauli exclusion principle, 34
perturbation, 656
perturbation theory, 345
perturbative path integral, 1055
perturbative string theory, 1146
Peyrard–Bishop system, 1074
Pfaff Theorem, 880
Pfaffian forms, 608
Pfaffian system, 387, 533, 879
phase, 991
phase space, 5
phase trajectory, 340
phase transition, 1069, 1074
phase–flow, 341
phase–space, 25

phase–space path integral, 1003
Philip Hall basis, 553
Picard groupoid, 524
Planck constant, 459
Planck length, 36, 1139
Poincaré, 6
Poincaré conjecture, 6, 150
Poincaré duality, 440
Poincaré lemma, 73, 74, 182
Poincaré maps, 346
Poincaré–Cartan form, 842, 882
Poincaré–Hopf Theorem, 188
Poincaré algebra, 462
Poincaré dual, 528
Poincaré duality, 516
Poincaré–Birkhoff–Witt property, 460
point evaluation map, 635
Poisson bivector–field, 609
Poisson bracket, 26, 27, 84, 260, 339,

375, 451, 837, 907
Poisson detection statistics, 992
Poisson evolution equation, 361
Poisson manifold, 27, 361
Poisson structure, 459
Poisson tensor–field, 369
polarization, 676
Polyakov action, 40, 1145
Polyakov equation, 45
polysymplectic phase–space, 840
Pontryagin class, 512, 1121
Pontryagin Maximum Principle, 570,

1020
Ponzano–Regge ansatz, 301
Ponzano–Regge quantization, 302
positive chirality condition, 1122
prepoint discretization, 1019
prepotential, 722, 725
presymplectic Hamiltonian systems,

837
principal bundle, 488, 529
principal connections, 815
Principle of Democracy, 975
Principle of stationary action, 24
probability amplitude, 85, 1007, 1097
probability distance, 333
probability divergence, 333



April 19, 2007 16:57 WSPC/Book Trim Size for 9in x 6in ApplDifGeom

Index 1307

probability manifold, 333
product manifold, 1123
projectable vector–field, 612, 823
projected connection, 536
projective bundles, 517
prolongation, 250, 502
prolonged group action, 253
propagator, 86, 996
pull–back, 164
pull–back vector bundle, 492
pull–back–valued forms, 613
push–forward, 164

qualitative ODE theory, 360
quantization, 85
quantum algebra, 619
quantum brain modelling, 1079
quantum bundle, 622
quantum chromodynamics, 34, 40
quantum coherent state, 991
quantum evolution pictures, 85
quantum field theory, 34, 35, 292,

527, 1097
quantum fields, 86
quantum gauge theory, 722
quantum geometry, 1180
quantum gravity, 38, 1055
quantum Hilbert space, 520
quantum measure, 1193
quantum operator, 716
Quantum superposition, 85
quantum–mechanical particles, 86
quaternions, 215
Quillen’s plus construction, 511
Quillen–Suslin Theorem, 510
quotient representation, 240

Ramond–Ramond field, 526
random variable, 984
random walk, 985
rank condition, 548
ray bundle, 692
Ray–Singer torsion, 1118
reachable sets, 538
real Lie group, 28
reduced curvature 1–form, 270

reduced phase–space, 373
reducible constraints, 854
Regge calculus, 1061
Regge geometries, 1057
Regge simplicial action, 1063
regular divergence, 334
regularization, 655
Reidemeister moves, 132
related vector–fields, 164
relative degree, 542
relativistic mechanics, 618
repeated jet space, 819
representation of a Lie group, 239
representative point, 143
Rho–tensor, 694
Ricci flow, 285
Ricci scalar curvature, 22
Ricci tensor, 22, 140, 272, 278, 435
Riemann, 5
Riemann curvature tensor, 21, 56, 71,

139, 141, 271, 278, 835, 950, 1095
Riemann sphere, 18, 510, 513
Riemann surface, 17, 433, 725
Riemann tensor, 435
Riemann–Roch Theorem, 515
Riemannian geometry, 19
Riemannian manifold, 16, 166, 178
Riemannian manifolds, 5
Riemannian metric, 379
Riemannian metric tensor, 271
right translation, 204
rigid body with a fixed point, 354
root system, 240
rotation group, 28

S–duality, 44
saddle point approximation, 978
Sasakian metric, 322, 504
scalar curvature, 272, 279
scalar Gaussian curvature, 281
scalar–field, 79
scattering, 976
Schouten–Nijenhuis bracket, 608
Schrödinger equation, 991, 1002
Schrödinger operators, 619
Schrödinger picture, 1007
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Schrödinger quantization, 616
Schwarz–type TQFT, 1121
Schwarzschild metric form, 970
second superstring revolution, 44
second tangent bundle, 495
second tangent maps, 156
second variation, 879
second variation formula, 281
second–countable space, 145
sectional curvature, 271
Seiberg–Witten gauge theory, 35
self–dual basis, 681
SEM conservation laws, 935
SEM–tensors

Hamiltonian, 941
Lagrangian, 933

semisimple representation, 246
separatrix, 343
Serre fibration, 645
Serre’s Conjecture, 510
set, 116
shape operator, 1077
shear viscosity, 82
sheaves, 14
signature, 958
simple Lie group, 245
simplicial set, 135
Sine–Gordon equation, 598
sliding filament theory of muscular

contraction, 381
small–time local controllability, 556
small–time locally controllable, 538
smooth homomorphism, 203
smooth manifolds, 4, 8
smoothness, 7
Sobolev norm, 521
Sobolev–Schwartz functional analysis,

473
soldering curvature, 811
soldering form, 612
space of paths, 86
space of quantum states, 523
space–time, 5
space–time manifold, 137
special Lagrangian, 437
sphere, 3

sphere bundle, 487
spin, 34
spin connection, 708
spin connection 1–form, 1122
spin foam models, 308
Spin group, 672
spin network, 713
spin network theory, 714
spin networks, 1056
Spin–connection, 728
spinor, 200
Spinor bundle, 725
spinor bundle, 727
spinor contraction, 691
spinor Lie group, 956
spinor module, 676
spinor–twistor object, 699
stable equivalence, 509
stack, 524
Standard Model, 30, 33, 292, 702
state feedback, 555
state manifold, 537
static gauge, 1182
Steenrod operation, 522
Stiefel–Whitney class, 512
stochastic forces, 391
stochastic integral, 986
Stoke’s Theorem, 529
Stokes fluid, 82
Stokes formula, 187
Stokes Theorem, 480, 514
strange homology group, 631
Stratonovich prescription, 1019
string corrections, 1140
string cosmology, 296
string coupling constant, 44
string length, 1172
string tension, 1145
string–field, 1224
string–field–theory action, 1149
strong energy condition, 965
structural group, 625
structure equations, 287
submanifold, 28
super–algebra, 667
super–field, 1215
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super–space, 1215
supercovariant derivative, 743
superstring theory, 35, 1146
supersymmetry, 33, 38, 1146
support of a vector–field, 172
surface forces, 80
surface of Earth, 1
surgery theory, 511
surjection lemma, 651
SW–spectral curve, 775
symbol map, 670
symmetric affine connection, 273
symmetric Weyl ordering, 460
symmetry, 879
symmetry group, 250
symplectic bundle, 626
symplectic condition, 666
symplectic connection form, 649
symplectic fibre bundle, 625
symplectic foliation, 843
symplectic form, 335, 610, 689
symplectic group, 30, 335
symplectic manifold, 15, 25, 336, 338
symplectic manifolds, 5
symplectic map, 336
symplectic potential, 615
symplectic Riesz representation, 689,

690
symplectic structure, 689
symplectic volume form, 25
symplectomorphism, 27, 335
synthetic differential geometry, 473
system variables, 83

T–duality, 43
tachyon field, 1147
tangent bundle, 14, 17, 152
tangent dynamics equation, 1072
tangent map, 151, 152
tangent space, 15, 16, 150
tangent vector–field, 167
tangent–valued r−forms, 611
tangent–valued horizontal form, 612
tangle, 129
tangle diagram, 131
tautological bundle, 510

tautological section, 692
Taylor’s Theorem, 12
tensor, 15, 16
tensor algebra, 667
tensor bundle, 15, 163, 498
tensor product of vector bundles, 509
tensor–field, 163
tensor–product connection, 812
tetrad gravitational field, 955
the twisted elliptic CM–systems, 771
thermodynamic partition function,

971
three–body problem, 357
time–dependent flow, 166
time–dependent mechanics, 830
time–dependent state of a quantum

system, 85
time–dependent vector–field, 168, 173
Toda chain, 790
Toda molecule, 353
topological Bogomol’nyi action, 1125
topological group, 203
topological hypothesis, 1070
topological invariant, 5, 1076, 1121,

1122
topological K–theory, 508, 510
topological manifold, 4, 6, 8
topological operads, 134
topological property, 5
topological quantum field theory,

1097
topological space, 8
topological structure, 6
topological Theorem, 1072
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torsion tensor, 536
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transformation classical, 878
transformation gauge, 878
transformation of coordinates, 7
transition, 85
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transition amplitude, 993, 1001
transition function, 7
transition functions, 144, 489
transition map, 2, 7
transition probability, 993
transition probability distribution,
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transitive group action, 208
transversal bundle, 533
tricategories, 134
trivial bundle, 15
trivial fibration, 487
trivial flux, 628
twisted, 773, 782, 783
twisted Dirac equation, 1122
twisted K–groups, 517
twisted K–theory, 515
twistor bundle, 695
twistor equation, 442
twistors, 691

unified field theory, 31
universal bundle, 653

vacuum state, 992
vector bundle, 487, 491
velocity equation, 342
velocity phase–space manifold, 150,

258, 386, 824, 830
velocity vector–field, 150
vertical bundle, 495
vertical connection, 809
vertical cotangent bundle, 499
vertical covariant differential, 815
vertical lift, 495
vertical tangent bundle, 499
vertical vector–field, 612
vertical–valued horizontal form, 612
vertices, 5
vierbein, 468
Virasoro operators, 1186
visual physical intuition, 32
volatility, 1026
volume element, 1174
volume forces, 80
volume form, 191

volume viscosity, 82
von Neumann dimension theory, 518

Wang differential, 665
Wang sequence, 664
wave psi–function, 85
wave–particle duality, 991
weak conservation law, 893
weak energy condition, 457, 965
wedge product, 177
weighted function, 691
Weitzenböck formula, 728
Weyl, 6
Weyl deformation quantization, 459
Weyl group, 732
Weyl homomorphism, 927
Weyl invariance, 1183
Weyl spinor, 721, 1122
Weyl tensor, 141
Weyl vector, 776
Wheeler–DeWitt equation, 977
Whitham deformations, 725
Whitney, 6
Wick rotation, 970, 1065, 1152
Wiener process, 988
Wigner function, 1040
Wilson line, 527, 1234
Wilson loop, 527, 1118, 1195
winding number, 350
Wirtinger’s inequality, 435
Witten, 31, 1120
Witten’s TQFT, 1098
world–sheet, 1139
world–sheet dynamics, 1181
world–volume, 36

Yang–Baxter equation, 1103
Yang–Lee Theorem, 1069
Yang–Mills action, 39
Yang–Mills covariant derivative, 126
Yang–Mills gauge field theory, 34
Yang–Mills gauge theory, 13, 899,

1053, 1099
Yang–Mills Lagrangian, 893, 915,
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Yang–Mills relation, 126
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Yang–Mills theory, 39, 297
higher, 127

Zamolodchikov metric, 1220
Zorn’s lemma, 18
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