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Preface

Applied Differential Geometry: A Modern Introduction is a graduate-level
monographic textbook. It is designed as a comprehensive introduction into
methods and techniques of modern differential geometry with its various
physical and non—physical applications. In some sense, it is a continuation
of our previous book, Natural Biodynamics (World Scientific, 2006), which
contains all the necessary background for comprehensive reading of the cur-
rent book. While the previous book was focused on biodynamic applica-
tions, the core applications of the new book are in the realm of modern theo-
retical physics, mainly following its central line: Einstein—Feynman—Witten.
Other applications include (among others): control theory, robotics, neu-
rodynamics, psychodynamics and socio—economical dynamics.

The book has six chapters. Each chapter contains both ‘pure mathe-
matics’ and related ‘applications’ labelled by the word ‘APPLICATION’.

The first chapter provides a soft (‘plain—English’) introduction into man-
ifolds and related geometrical structures, for all the interested readers with-
out the necessary background. As a ‘snap—shot’ illustration, at the end of
the first chapter, a paradigm of generic differential-geometric modelling is
given, which is supposed to fit all above—mentioned applications.

The second chapter gives technical preliminaries for development of the
modern applied differential geometry. These preliminaries include: (i) clas-
sical geometrical objects — tensors, (i) both classical and modern physical
objects — actions, and modern geometrical objects — functors.

The third chapter develops modern manifold geometry, together with its
main physical and non—physical applications. This chapter is a neccessary
background for comprehensive reading of the remaining chapters.

The fourth chapter develops modern bundle geometry, together with its
main physical and non—physical applications.
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The fifth chapter develops modern jet bundle geometry, together with
its main applications in non—autonomous mechanics and field physics. All
material in this chapter is based on the previous chapter.

The sixth chapter develops modern geometrical machinery of Feynman’s
path integrals, together with their various physical and non—physical appli-
cations. For most of this chapter, only the third chapter is a neccessary
background, assuming a basic understanding of quantum mechanics (as
provided in the above—mentioned World Scientific book, Natural Biody-
namics).

The book contains both an extensive Index (which allows easy connec-
tions between related topics) and a number of cited references related to
modern applied differential geometry.

Our approach to dynamics of complex systems is somewhat similar to
the approach to mathematical physics used at the beginning of the 20th
Century by the two leading mathematicians: David Hilbert and John von
Neumann — the approach of combining mathematical rigor with conceptual
clarity, or geometrical intuition that underpins the rigor.

The intended audience includes (but is not restricted to) theoreti-
cal and mathematical physicists; applied and pure mathematicians; con-
trol, robotics and mechatronics engineers; computer and neural scientists;
mathematically strong chemists, biologists, psychologists, sociologists and
economists — both in academia and industry.

Compared to all differential-geometric books published so far, Applied
Differential Geometry: A Modern Introduction has much wider variety of
both physical and non—physical applications. After comprehensive read-
ing of this book, a reader should be able to both read and write journal
papers in such diverse fields as superstring & topological quantum field the-
ory, nonlinear dynamics & control, robotics, biomechanics, neurodynamics,
psychodynamics and socio—economical dynamics.

V. Ivancevic
Defence Science & Technology Organisation, Australia
e-mail: Vladimir. lvancevic@dsto.defence.gov.au

T. Ivancevic

School of Mathematics, The University of Adelaide
e-mail: Tijana.IvancevicQadelaide. edu. au
Adelaide

May, 2006
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Glossary of Frequently Used Symbols

General

— ‘iff” means ‘if and only if’;

— ‘r.h.s’ means ‘right hand side’; ‘1.h.s’ means ‘left hand side’;

— ODE means ordinary differential equation, while PDE means partial dif-
ferential equation;

— FEinstein’s summation convention over repeated indices (not necessarily
one up and one down) is assumed in the whole text, unless explicitly stated
otherwise.

Sets

N — natural numbers;

Z — integers;

R — real numbers;

C — complex numbers;

H — quaternions;

K — number field of real numbers, complex numbers, or quaternions.

Maps
f: A — B —afunction, (or map) between sets A = Dom f and B = Cod f;

Ker f = f~*(ep) — a kernel of f;
Im f = f(A) — an image of f;
Coker f = Cod f/Im f — a cokernel of f;
Coim f = Dom f/Ker f — a coimage of f;
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xii Applied Differential Geometry: A Modern Introduction

X / Y
h g
VA — a commutative diagram, requiring h = go f.
Derivatives

Ck(A, B) — set of k—times differentiable functions between sets A to B;
C™(A, B) — set of smooth functions between sets A to B;

C°(A, B) — set of continuous functions between sets A to B;

fl(z) = % — derivative of f with respect to x;

T — total time derivative of x;

Oy = % — partial time derivative;

896 =0, = % — partial coordinate derivative;

f =0uf + 0, f &' — total time derivative of the scalar field f = f(t, z%);

Uy = Oglt, Uy = O, Ugy = Oz2u — only in partial differential equations;
Ly =0, L, Ly = 04 L — coordinate and velocity partial derivatives of the
Lagrangian function;

d — exterior derivative;

d"™ — coboundary operator;

0, — boundary operator;

V = V(g) — affine Levi-Civita connection on a smooth manifold M with
Riemannian metric tensor g = g;;;

F; . — Christoffel symbols of the affine connection V;

V xT — covariant derivative of the tensor—field T" with respect to the vector—
field X, defined by means of I‘;k;

T.pi = Tj,i — covariant derivative of the tensor—field 7" with respect to the
coordinate basis {z'};

T= % = % — absolute (intrinsic, or Bianchi) derivative of the tensor—
field T" upon the parameter t; e.g., acceleration vector is the absolute time
derivative of the velocity vector, o’ = ¥* = Dd—f; note that in general,
a® # ¥ — this is crucial for proper definition of Newtonian force;

LxT — Lie derivative of the tensor—field T" in direction of the vector—field
X;

[X,Y] — Lie bracket (commutator) of two vector—fields X and Y;

[F, G, or {F, G} — Poisson bracket, or Lie-Poisson bracket, of two functions
F and G.
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Smooth Manifolds, Fibre Bundles and Jet Spaces

Unless otherwise specified, all manifolds M, N, ... are assumed C* —smooth,
real, finite-dimensional, Hausdorff, paracompact, connected and without
boundaryE while all maps are assumed C*—smooth. We use the symbols
®, V, A and @ for the tensor, symmetrized and exterior products, as well as
the Whitney sunﬂ respectively, while | denotes the interior product (con-
traction) of (multi)vectors and p—forms, and < denotes a manifold imbed-
ding (i.e., both a submanifold and a topological subspace of the codomain
manifold). The symbols 8§ denote partial derivatives with respect to co-
ordinates possessing multi-indices & (e.g., 9, = 0/0x%);

TM — tangent bundle of the manifold M;

wp  TM — M — natural projection;

T*M — cotangent bundle of the manifold M;

m:Y — X — fibre bundle;

(E, 7, M) — vector bundle with total space E, base M and projection m;
(Y, 7, X,V) — fibre bundle with total space Y, base X, projection = and
standard fibre V;

J*(M, N) — space of k—jets of smooth functions between manifolds M and
N;

J¥(X,Y) — k—jet space of a fibre bundle Y — X; in particular, in
mechanics we have a 1-jet space J'(R,Q), with 1-jet coordinate maps
Jis it (t,2t,2%), as well as a 2—jet space J?(R, Q), with 2-jet coordinate
maps j2s : t — (t, 2%, 2%, &);

jks — k—jets of sections s’ : X — Y of a fibre bundle ¥ — X;

We use the following kinds of manifold maps: immersion, imbedding, sub-
mersion, and projection. A map f : M — M’ is called the immersion if
the tangent map T'f at every point € M is an injection (i.e., ‘1-1" map).
When f is both an immersion and an injection, its image is said to be a
submanifold of M’. A submanifold which also is a topological subspace is
called imbedded submanifold. A map f: M — M’ is called submersion if
the tangent map T'f at every point & € M is a surjection (i.e., ‘onto’ map).
If f is both a submersion and a surjection, it is called projection or fibre
bundle.

IThe only 1D manifolds obeying these conditions are the real line R and the circle
St

2 Whitney sum @ is an analog of the direct (Cartesian) product for vector bundles.
Given two vector bundles Y and Y’ over the same base X, their Cartesian product is a
vector bundle over X x X. The diagonal map induces a vector bundle over X called the
Whitney sum of these vector bundles and denoted by Y & Y”.
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Lie and (Co)Homology Groups

G — usually a general Lie group;

GL(n) — general linear group with real coefficients in dimension n;
SO(n) — group of rotations in dimension n;

T™ — toral (Abelian) group in dimension n;

Sp(n) — symplectic group in dimension n;

T'(n) — group of translations in dimension n;

SE(n) — Euclidean group in dimension n;

H,(M) =Ker9,/Imd,_1 — nth homology group of the manifold M;
H"(M) = Kerd"/Imd"*! — nth cohomology group of the manifold M.

Other Spaces and Operators

i =+1/—1 - imaginary unit;

C*¥(M) — space of k—differentiable functions on the manifold M;

QF(M) — space of k—forms on the manifold M;

g — Lie algebra of a Lie group G, i.e., the tangent space of G at its identity
element;

Ad(g) — adjoint endomorphism; recall that adjoint representation of a Lie
group G is the linearized version of the action of G on itself by conjugation,
i.e., for each g € G, the inner automorphism = +— grg~' gives a linear
transformation Ad(g) : g — g, from the Lie algebra g of G to itself;

nD space (group, system) means n—dimensional space (group, system), for
n € N;

> — semidirect (noncommutative) product; e.g., SE(3) = SO(3) > R3;

1 — interior product, or contraction, of a vector—field and a one—form;

f — Feynman path integral symbol, denoting integration over continu-
ous spectrum of smooth paths and summation over discrete spectrum of

Markov chains; e.g., fD[x] e'S[*] denotes the path integral (i.e., sum—over—
histories) over all possible paths x* = 2%(t) defined by the Hamilton action,
Slx] = %ftfol gij #'47 dt, while f@[@] ¢'S[®] denotes the path integral over
all possible fields ®* = ®*(x) defined by some field action S[®].

Categories

S — all sets as objects and all functions between them as morphisms;
PS — all pointed sets as objects and all functions between them preserving
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base point as morphisms;

V — all vector spaces as objects and all linear maps between them as mor-
phisms;

B — Banach spaces over R as objects and bounded linear maps between
them as morphisms;

G — all groups as objects, all homomorphisms between them as morphisms;
A — Abelian groups as objects, homomorphisms between them as mor-
phisms;

AL — all algebras (over a given number field K) as objects, all their homo-
morphisms between them as morphisms;

T — all topological spaces as objects, all continuous functions between them
as morphisms;

‘PT — pointed topological spaces as objects, continuous functions between
them preserving base point as morphisms;

TG — all topological groups as objects, their continuous homomorphisms as
morphisms;

M — all smooth manifolds as objects, all smooth maps between them as
morphisms;

M,, — nD manifolds as objects, their local diffeomorphisms as morphisms;
LG — all Lie groups as objects, all smooth homomorphisms between them
as morphisms;

LAL — all Lie algebras (over a given field K) as objects, all smooth homo-
morphisms between them as morphisms;

T B — all tangent bundles as objects, all smooth tangent maps between them
as morphisms;

T*B — all cotangent bundles as objects, all smooth cotangent maps between
them as morphisms;

VB — all smooth vector bundles as objects, all smooth homomorphisms be-
tween them as morphisms;

FB — all smooth fibre bundles as objects, all smooth homomorphisms be-
tween them as morphismes;

Symplec — all symplectic manifolds (i.e., physical phase—spaces), all sym-
plectic maps (i.e., canonical transformations) between them as morphisms;
Hilbert — all Hilbert spaces and all unitary operators as morphisms.
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Chapter 1

Introduction

In this introductory chapter we will firstly give a soft, ‘plain English’ in-
troduction into manifolds and related differential-geometric terms, with
intention to make this book accessible to the wider scientific and engi-
neering community. Secondly, we will present the paradigm of differential—-
geometric modelling of dynamical systems, in the form of a generic algorith-
mic ‘recipe’ (see [[vancevic and Ivancevic (2006)] for background details).
The readers familiar with the manifold concept can skip the first section
and only quickly review the second one.

1.1 Manifolds and Related Geometrical Structures

The core of both differential geometry and modern geometrical dynamics
represents the concept of manifold. A manifold is an abstract mathematical
space, which locally (i.e., in a close—up view) resembles the spaces described
by FEuclidean geometry, but which globally (i.e., when viewed as a whole)
may have a more complicated structure. As main pure-mathematical ref-
erences, we recommend popular graduate textbooks by two ex—Bourbaki
members, Serge Lang |Lang (2005); [Lang (2003); [Lang (2002); [Lang (1999)]
and Jean Dieudonne [Dieudonne (1969); Dieudonne (1988)]. Besides, the
reader might wish to consult some other ‘classics’, including
[Spivak (1970-75)f |Choquet-Bruhat and DeWitt-Morete (1982); Bott and Tul
(1982); |Abraham et al. (1988); De Rham (1984); [Milnor (1997); Munkres|
(1999)], as well as free internet sources [Wikipedia (2005); Weisstein (2004);
PlanetMath (2006)“. Finally, as first—order applications, we recommend
three popular textbooks in mechanics, [Abraham and Marsden (1978);
|Arnold (1989); [Marsden and Ratiu (1999)].

For example, the surface of Earth is a manifold; locally it seems to be
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flat, but viewed as a whole from the outer space (globally) it is actually
round. A manifold can be constructed by ‘gluing’ separate Fuclidean spaces
together; for example, a world map can be made by gluing many maps of
local regions together, and accounting for the resulting distortionsﬂ

Another example of a manifold is a circle S'. A small piece of a circle
appears to be like a slightly—bent part of a straight line segment, but overall
the circle and the segment are different 1D manifolds (see Figure . A
circle can be formed by bending a straight line segment and gluing the ends
togetherﬂ

1On a sphere, the sum of the angles of a triangle is not equal to 180°. A sphere is not a
Euclidean space, but locally the laws of the Euclidean geometry are good approximations.
In a small triangle on the face of the earth, the sum of the angles is very nearly 180°. A
sphere can be represented by a collection of two dimensional maps, therefore a sphere is
a manifold.

2Locally, the circle looks like a line. It is 1D, that is, only one coordinate is needed
to say where a point is on the circle locally. Consider, for instance, the top part of
the circle (Figure , where the y—coordinate is positive. Any point in this part can
be described by the z—coordinate. So, there is a continuous bijection X;,, (a mapping
which is 1-1 both ways), which maps the top part of the circle to the open interval
(—1,1), by simply projecting onto the first coordinate: Xtop (s y) = x. Such a function
is called a chart. Similarly, there are charts for the bottom, left , and right parts of the
circle. Together, these parts cover the whole circle and the four charts form an atlas (see
the next subsection) for the circle. The top and right charts overlap: their intersection
lies in the quarter of the circle where both the x— and the y—coordinates are positive.
The two charts x;,, and X,;,,; map this part bijectively to the interval (0,1). Thus a
function T' from (0,1) to itself can be constructed, which first inverts the top chart to
reach the circle and then follows the right chart back to the interval:

T(a) = Xasghe (Xiop(@)) = Xuigne (a: VI —a?) = V1= a2,

Such a function is called a transition map. The top, bottom, left, and right charts show
that the circle is a manifold, but they do not form the only possible atlas. Charts need
not be geometric projections, and the number of charts is a matter of choice. T" and the
other transition functions in Figureare differentiable on the interval (0, 1). Therefore,
with this atlas the circle is a differentiable, or smooth manifold.
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Fig. 1.1 The four charts each map part of the circle to an open interval, and together
cover the whole circle.

The surfaces of a sphereﬂ and a torusﬂ are examples of 2D manifolds.

3The surface of the sphere S2 can be treated in almost the same way as the circle S1.
It can be viewed as a subset of R?, defined by: S = {(z,y,2) € R3*|22+y%+22 = 1}. The
sphere is 2D, so each chart will map part of the sphere to an open subset of R2. Consider
the northern hemisphere, which is the part with positive z coordinate. The function x
defined by x(z,y,2) = (x,y), maps the northern hemisphere to the open unit disc by
projecting it on the (z,y)—plane. A similar chart exists for the southern hemisphere.
Together with two charts projecting on the (x, z) —plane and two charts projecting on the
(y, z)—plane, an atlas of six charts is obtained which covers the entire sphere. This can
be easily generalized to an nD sphere S™ = {(z1,%2, ...,Tn) € R*|2% + 22 +...+ 22 = 1}.

An n—sphere S™ can be also constructed by gluing together two copies of R™. The
transition map between them is defined as R™ \ {0} — R™ \ {0} : 2 + x/|z||?. This
function is its own inverse, so it can be used in both directions. As the transition map
is a (C°)—smooth function, this atlas defines a smooth manifold.

4A torus (pl. tori), denoted by T2, is a doughnut-shaped surface of revolution gen-
erated by revolving a circle about an axis coplanar with the circle. The sphere S? is a
special case of the torus obtained when the axis of rotation is a diameter of the circle. If
the axis of rotation does not intersect the circle, the torus has a hole in the middle and
resembles a ring doughnut, a hula hoop or an inflated tire. The other case, when the
axis of rotation is a chord of the circle, produces a sort of squashed sphere resembling a
round cushion.

A torus can be defined parametrically by:

z(u,v) = (R4 rcosv) cosu, y(u,v) = (R + rcosv)sinu, z(u,v) = rsinwv,

where u,v € [0,27], R is the distance from the center of the tube to the center of the
torus, and r is the radius of the tube. According to a broader definition, the generator
of a torus need not be a circle but could also be an ellipse or any other conic section.

Topologically, a torus is a closed surface defined as product of two circles: T2 = St x
S1. The surface described above, given the relative topology from R3, is homeomorphic
to a topological torus as long as it does not intersect its own axis.

One can easily generalize the torus to arbitrary dimensions. An n—torus T is defined
as a product of n circles: T™ = S! x S' x --- x S1. Equivalently, the n—torus is
obtained from the n—cube (the R™—generalization of the ordinary cube in R?) by gluing
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Manifolds are important objects in mathematics, physics and control the-
ory, because they allow more complicated structures to be expressed and
understood in terms of the well-understood properties of simpler Euclidean
spaces.

The Cartesian product of manifolds is also a manifold (note that not
every manifold can be written as a product). The dimension of the prod-
uct manifold is the sum of the dimensions of its factors. Its topology is the
product topology, and a Cartesian product of charts is a chart for the prod-
uct manifold. Thus, an atlas for the product manifold can be constructed
using atlases for its factors. If these atlases define a differential structure
on the factors, the corresponding atlas defines a differential structure on
the product manifold. The same is true for any other structure defined
on the factors. If one of the factors has a boundary, the product manifold
also has a boundary. Cartesian products may be used to construct tori and
cylinders, for example, as S* x S* and S* x [0, 1], respectively.

Manifolds need not be connected (all in ‘one piece’): a pair of separate
circles is also a topological manifold(see below). Manifolds need not be
closed: a line segment without its ends is a manifold. Manifolds need not
be finite: a parabola is a topological manifold.

Manifolds can be viewed using either extrinsic or intrinsic view. In the
extrinsic view, usually used in geometry and topology of surfaces, an nD
manifold M is seen as embedded in an (n + 1)D Euclidean space R™*1.
Such a manifold is called a ‘codimension 1 space’. With this view it is
easy to use intuition from Euclidean spaces to define additional structure.
For example, in a Euclidean space it is always clear whether a vector at
some point is tangential or normal to some surface through that point. On
the other hand, the intrinsic view of an nD manifold M is an abstract
way of considering M as a topological space by itself, without any need for
surrounding (n+1)D Euclidean space. This view is more flexible and thus it
is usually used in high—dimensional mechanics and physics (where manifolds
used represent configuration and phase spaces of dynamical systems), can
make it harder to imagine what a tangent vector might be.

Additional structures are often defined on manifolds. Examples of man-
ifolds with additional structure include:

o differentiable (or, smooth manifolds, on which one can do calculus;

the opposite faces together.
An n—torus T" is an example of an nD compact manifold. It is also an important
example of a Lie group (see below).
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e Riemannian manifolds, on which distances and angles can be de-
fined;

e symplectic manifolds, which serve as the phase space in mechanics
and physics;

e 4D pseudo—Riemannian manifolds which model space—time in gen-
eral relativity.

The study of manifolds combines many important areas of mathematics:

it generalizes concepts such as curves and surfaces as well as ideas from
linear algebra and topology. Certain special classes of manifolds also have
additional algebraic structure; they may behave like groups, for instance.

Historically, before the modern concept of a manifold there were several

important results:

(1)

Carl Friedrich Gauss was arguably the first to consider abstract spaces
as mathematical objects in their own right. His ‘Theorema Egregium’
gives a method for computing the curvature of a surface S without
considering the ambient Fuclidean 3D space R? in which the surface
lies. Such a surface would, in modern terminology, be called a manifold.
Non-FEuclidean geometry considers spaces where Euclid’s ‘Parallel Pos-
tulate’ fails. Saccheri first studied them in 1733. Lobachevsky, Bolyai,
and Riemann developed them 100 years later. Their research uncovered
two more types of spaces whose geometric structures differ from that
of classical Fuclidean nD space R™; these gave rise to hyperbolic geom-
etry and elliptic geometry. In the modern theory of manifolds, these
notions correspond to manifolds with negative and positive curvature,
respectively.

The Euler characteristic is an example of a topological property (or topo-
logical invariant) of a manifold. For a convex polyhedron in Euclidean
3D space R3, with V wvertices, E edges and F' faces, Euler showed that
V — E + F = 2. Thus the number 2 is called the Euler characteristic
of the space R3. The Euler characteristic of other 3D spaces is a useful
topological invariant, which can be extended to higher dimensions using
the so—called Betti numbers. The study of other topological invariants
of manifolds is one of the central themes of topology.

Bernhard Riemann was the first to do extensive work generalizing the
idea of a surface to higher dimensions. The name manifold comes from
Riemann’s original German term, ‘Mannigfaltigkeit’, which W.K. Clif-
ford translated as ‘manifoldness’. In his famous Gottingen inaugural
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lecture entitled ‘On the Hypotheses which lie at the Bases of Geome-
try’, Riemann described the set of all possible values of a variable with
certain constraints as a ‘manifoldness’, because the variable can have
many values. He distinguishes between continuous manifoldness and
discontinuous manifoldness, depending on whether the value changes
continuously or not. As continuous examples, Riemann refers to not
only colors and the locations of objects in space, but also the possi-
ble shapes of a spatial figure. Using mathematical induction, Riemann
constructs an n times extended manifoldness, or nD manifoldness, as
a continuous stack of (n — 1)D manifoldnesses. Riemann’s intuitive
notion of a ‘manifoldness’ evolved into what is today formalized as a
manifold.

(5) Henri Poincaré studied 3D manifolds at the end of the 19th Century,
and raised a question, today known as the Poincaré conjecture. Her-
mann Weyl gave an intrinsic definition for differentiable manifolds in
1912. During the 1930s, H. Whitney and others clarified the founda-
tional aspects of the subject, and thus intuitions dating back to the
latter half of the 19th Century became precise, and developed through
differential geometry (in particular, by the Lie group theory introduced
by Sophus Lie in 1870, see below).

1.1.1 Geometrical Atlas

Now we continue introducing manifolds. As already stated above, an atlas
describes how a complicated space called a manifold is glued together from
simpler pieces. Each piece is given by a chart (also known as coordinate
chart or local coordinate system)ﬂ

The description of most manifolds requires more than one chart (a single
chart is adequate for only the simplest manifolds). An atlas is a specific
collection of charts which covers a manifold. An atlas is not unique as
all manifolds can be covered multiple ways using different combinations of

5A coordinate map, a coordinate chart, or simply a chart, of a manifold is an invertible
map between a subset of the manifold and a simple space such that both the map and
its inverse preserve the desired structure. For a topological manifold, the simple space
is some Euclidean space R™ and interest is focused on the topological structure. This
structure is preserved by homeomorphisms (invertible maps that are continuous in both
directions).

In the case of a differentiable manifold, a set of charts called an atlas allows us to
do calculus on manifolds. Polar coordinates, for example, form a chart for the plane R2
minus the positive z—axis and the origin. Another example of a chart is the map Xtop
mentioned above, a chart for the circle.
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charts.

The atlas containing all possible charts consistent with a given atlas is
called the mazimal atlas. Unlike an ordinary atlas, the maximal atlas of a
given atlas is unique.

More generally, an atlas for a complicated space is constructed out of
the following pieces of information:

(i) A list of spaces that are considered simple.

(ii) For each point in the complicated space, a neighborhood of that
point that is homeomorphic to a simple space, the homeomorphism being
a chart.

(iii) We require the different charts to be compatible. At the minimum,
we require that the composite of one chart with the inverse of another be a
homeomorphism (also known as a change of coordinates, or a transforma-
tion of coordinates, or a transition function, or a transition map) but we
usually impose stronger requirements, such as C‘X’—smoothnessﬁ

This definition of atlas is exactly analogous to the non—mathematical
meaning of atlas. Each individual map in an atlas of the world gives a
neighborhood of each point on the globe that is homeomorphic to the plane.
While each individual map does not exactly line up with other maps that it
overlaps with (because of the Earth’s curvature), the overlap of two maps
can still be compared (by using latitude and longitude lines, for example).

Different choices for simple spaces and compatibility conditions give dif-
ferent objects. For example, if we choose for our simple spaces the Fuclidean
spaces R™, we get topological manifolds. If we also require the coordinate

6Charts in an atlas may overlap and a single point of a manifold may be represented
in several charts. If two charts overlap, parts of them represent the same region of
the manifold, just as a map of Europe and a map of Asia may both contain Moscow.
Given two overlapping charts, a transition function can be defined, which goes from
an open Euclidean nD ball B® = {(z1, 22, ...,zn) € R"2% + 23 + ... + 22 < 1} in R"
to the manifold and then back to another (or perhaps the same) open nD ball in R™.
The resultant map, like the map 7' in the circle example above, is called a change of
coordinates, a coordinate transformation, a transition function, or a transition map.

An atlas can also be used to define additional structure on the manifold. The structure
is first defined on each chart separately. If all the transition maps are compatible with
this structure, the structure transfers to the manifold.

This is the standard way differentiable manifolds are defined. If the transition func-
tions of an atlas for a topological manifold preserve the natural differential structure
of R™ (that is, if they are diffeomorphisms, i.e., invertible maps that are smooth in
both directions), the differential structure transfers to the manifold and turns it into a
differentiable, or smooth manifold.

In general the structure on the manifold depends on the atlas, but sometimes different
atlases give rise to the same structure. Such atlases are called compatible.



8 Applied Differential Geometry: A Modern Introduction

changes to be diffeomorphisms, we get differentiable manifolds, or smooth
manifolds.

We call two atlases compatible if the charts in the two atlases are all
compatible (or equivalently if the union of the two atlases is an atlas).
Usually, we want to consider two compatible atlases as giving rise to the
same space. Formally, (as long as our concept of compatibility for charts
has certain simple properties), we can define an equivalence relation on the
set of all atlases, calling two the same if they are compatible. In fact, the
union of all atlases compatible with a given atlas is itself an atlas, called
a complete (or maximal) atlas. Thus every atlas is contained in a unique
complete atlas.

By definition, a smooth differentiable structure (or differential struc-
ture) on a manifold M is such a maximal atlas of charts, all related by
smooth coordinate changes on the overlaps.

1.1.2 Topological Manifolds

A topological manifold is a manifold that is glued together from FEuclidean
spaces R™. Euclidean spaces are the simplest examples of topological man-
ifolds. Thus, a topological manifold is a topological space that locally looks
like an Euclidean space. More precisely, a topological manifold is a topo-
logical spac{] locally homeomorphic to a Euclidean space. This means that

"Topological spaces are structures that allow one to formalize concepts such as conver-
gence, connectedness and continuity. They appear in virtually every branch of modern
mathematics and are a central unifying notion. Technically, a topological space is a set
X together with a collection T' of subsets of X satisfying the following axioms:

(1) The empty set and X are in T}
(2) The union of any collection of sets in T is also in T'; and

(3) The intersection of any pair of sets in T is also in 7.

The collection T is a topology on X. The sets in T are the open sets, and their
complements in X are the closed sets. The elements of X are called points. By induction,
the intersection of any finite collection of open sets is open. Thus, the third Axiom can be
replaced by the equivalent one that the topology be closed under all finite intersections
instead of just pairwise intersections. This has the benefit that we need not explicitly
require that X be in 7', since the empty intersection is (by convention) X. Similarly, we
can conclude that the empty set is in 7' by using Axiom 2. and taking a union over the
empty collection. Nevertheless, it is conventional to include the first Axiom even when
it is redundant.

A function between topological spaces is said to be continuous iff the inverse image
of every open set is open. This is an attempt to capture the intuition that there are
no ‘breaks’ or ‘separations’ in the function. A homeomorphism is a bijection that is
continuous and whose inverse is also continuous. Two spaces are said to be homeomor-
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every point has a neighborhood for which there exists a homeomorphism
(a bijective continuous function whose inverse is also continuous) mapping
that neighborhood to R™. These homeomorphisms are the charts of the
manifold.

Usually additional technical assumptions on the topological space are
made to exclude pathological cases. It is customary to require that the
space be Hausdorff and second countable.

The dimension of the manifold at a certain point is the dimension of the
Euclidean space charts at that point map to (number n in the definition).
All points in a connected manifold have the same dimension.

In topology and related branches of mathematics, a connected space is
a topological space which cannot be written as the disjoint union of two or
more nonempty spaces. Connectedness is one of the principal topological
properties that is used to distinguish topological spaces. A stronger notion
is that of a path—connected space, which is a space where any two points
can be joined by a pathﬁ

phic if there exists a homeomorphism between them. From the standpoint of topology,
homeomorphic spaces are essentially identical.

The category of topological spaces, Top, with topological spaces as objects and contin-
uous functions as morphisms is one of the fundamental categories in mathematics. The
attempt to classify the objects of this category (up to homeomorphism) by invariants has
motivated and generated entire areas of research, such as homotopy theory, homology
theory, and K—theory.

8Formally, for a topological space X the following conditions are equivalent:

(1) X is connected.

(2) X cannot be divided into two disjoint nonempty closed sets (this follows since the
complement of an open set is closed).

(3) The only sets which are both open and closed (open sets) are X and the empty set.
(4) The only sets with empty boundary are X and the empty set.

(5) X cannot be written as the union of two nonempty separated sets.

The maximal nonempty connected subsets of any topological space are called the
connected components of the space. The components form a partition of the space
(that is, they are disjoint and their union is the whole space). Every component is a
closed subset of the original space. The components in general need not be open: the
components of the rational numbers, for instance, are the one—point sets. A space in
which all components are one—point sets is called totally disconnected.

The space X is said to be path—connected iff for any two points x,y € X there exists
a continuous function f : [0,1] — X, from the unit interval [0,1] to X, with f(0) = =
and f(1) = y (this function is called a path from z to y). Every path—connected space
is connected.
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1.1.2.1  Topological manifolds without boundary

The prototypical example of a topological manifold without boundary is
Euclidean space. A general manifold without boundary looks locally, as a
topological space, like Euclidean space. This is formalized by requiring that
a manifold without boundary is a non—empty topological space in which
every point has an open neighborhood homeomorphic to (an open subset
of) R™ (Euclidean n—space). Another way of saying this, using charts,
is that a manifold without boundary is a non—empty topological space in
which at every point there is an R™ —chart.

1.1.2.2  Topological manifolds with boundary

Generally speaking, it is possible to allow a topological manifold to have a
boundary. The prototypical example of a topological manifold with bound-
ary is the Euclidean closed half-space. Most points in Euclidean closed
half-space, those not on the boundary, have a neighborhood homeomor-
phic to Euclidean space in addition to having a neighborhood homeomor-
phic to Euclidean closed half-space, but the points on the boundary only
have neighborhoods homeomorphic to Euclidean closed half-space and not
to Fuclidean space. Thus we need to allow for two kinds of points in
our topological manifold with boundary: points in the interior and points
in the boundary. Points in the interior will, as before, have neighborhoods
homeomorphic to Euclidean space, but may also have neighborhoods home-
omorphic to Euclidean closed half-space. Points in the boundary will have
neighborhoods homeomorphic to Euclidean closed half-space. Thus a topo-
logical manifold with boundary is a non-empty topological space in which
at each point there is an R™—chart or an [0, 00) x R""1—chart. The set of
points at which there are only [0, 00) x R"~!—charts is called the boundary
and its complement is called the interior. The interior is always non—empty
and is a topological n—manifold without boundary. If the boundary is non—
empty then it is a topological (n — 1)—manifold without boundary. If the
boundary is empty, then we regain the definition of a topological manifold
without boundary.

1.1.2.3  Properties of topological manifolds

A manifold with empty boundary is said to be closed manifold if it is
compact, and open manifold if it is not compact.
All 1-manifolds are curves and all 2-manifolds are surfaces. Examples
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of curves include circles, hyperbolas, and the trefoil knot. Sphere, cylinder,
torus, projective planeﬂ Mobius stripm and Klein bottldﬂ are examples
of surfaces.

Manifolds inherit many of the local properties of Euclidean space. In
particular, they are locally path—connected, locally compact and locally
metrizable. Being locally compact Hausdorff spaces, they are necessarily
Tychonoff spaces. Requiring a manifold to be Hausdorff may seem strange;
it is tempting to think that being locally homeomorphic to a Euclidean
space implies being a Hausdorff space. A counterexample is created by
deleting zero from the real line and replacing it with two points, an open
neighborhood of either of which includes all nonzero numbers in some open
interval centered at zero. This construction, called the real line with two
origins is not Hausdorff, because the two origins cannot be separated.

All compact surfaces are homeomorphic to exactly one of the 2—sphere,
a connected sum of tori, or a connected sum of projective planes.

A topological space is said to be homogeneous if its homeomorphism
group acts transitively on it. Every connected manifold without boundary
is homogeneous, but manifolds with nonempty boundary are not homoge-
neous.

It can be shown that a manifold is metrizable if and only if it is para-
compact. Non—paracompact manifolds (such as the long line) are generally

9Begin with a sphere centered on the origin. Every line through the origin pierces
the sphere in two opposite points called antipodes. Although there is no way to do so
physically, it is possible to mathematically merge each antipode pair into a single point.
The closed surface so produced is the real projective plane, yet another non-orientable
surface. It has a number of equivalent descriptions and constructions, but this route
explains its name: all the points on any given line through the origin projects to the
same ‘point’ on this 1plane’.

10Begin with an infinite circular cylinder standing vertically, a manifold without
boundary. Slice across it high and low to produce two circular boundaries, and the
cylindrical strip between them. This is an orientable manifold with boundary, upon
which ‘surgery’ will be performed. Slice the strip open, so that it could unroll to become
a rectangle, but keep a grasp on the cut ends. Twist one end 180 deg, making the inner
surface face out, and glue the ends back together seamlessly. This results in a strip with
a permanent half-twist: the Mobius strip. Its boundary is no longer a pair of circles,
but (topologically) a single circle; and what was once its ‘inside’ has merged with its
‘outside’, so that it now has only a single side.

HTake two Mdbius strips; each has a single loop as a boundary. Straighten out those
loops into circles, and let the strips distort into cross—caps. Gluing the circles together
will produce a new, closed manifold without boundary, the Klein bottle. Closing the
surface does nothing to improve the lack of orientability, it merely removes the boundary.
Thus, the Klein bottle is a closed surface with no distinction between inside and outside.
Note that in 3D space, a Klein bottle’s surface must pass through itself. Building a Klein
bottle which is not self-intersecting requires four or more dimensions of space.



12 Applied Differential Geometry: A Modern Introduction

regarded as pathological, so it’s common to add paracompactness to the
definition of an n—manifold. Sometimes n—manifolds are defined to be
second—countable, which is precisely the condition required to ensure that
the manifold embeds in some finite—dimensional Euclidean space. Note that
every compact manifold is second—countable, and every second—countable
manifold is paracompact.

Topological manifolds are usually required to be Hausdorff and second—
countable. Every Hausdorff, second countable manifold of dimension n
admits an atlas consisting of at most n + 1 charts.

1.1.3 Differentiable Manifolds

For most applications, a special kind of topological manifold, a differentiable
manifold, is used. If the local charts on a manifold are compatible in a
certain sense, one can define directions, tangent spaces, and differentiable
functions on that manifold. In particular it is possible to use calculus on
a differentiable manifold. Each point of an nD differentiable manifold has
a tangent space. This is an Euclidean space R™ consisting of the tangent
vectors of the curves through the point.

Two important classes of differentiable manifolds are smooth and ana-
lytic manifolds. For smooth manifolds the transition maps are smooth, that
is infinitely differentiable, denoted by C*°. Analytic manifolds are smooth
manifolds with the additional condition that the transition maps are an-
alytic (a technical definition which loosely means that Taylor’s expansion
Theorerﬂ holds). The sphere can be given analytic structure, as can most
familiar curves and surfaces.

In other words, a differentiable (or, smooth) manifold is a topological
manifold with a globally defined differentiable (or, smooth) structure. A
topological manifold can be given a differentiable structure locally by using
the homeomorphisms in the atlas of the topological space (i.e., the home-
omorphism can be used to give a local coordinate system). The global
differentiable structure is induced when it can be shown that the natu-
ral composition of the homeomorphisms between the corresponding open
Euclidean spaces are differentiable on overlaps of charts in the atlas. There-
fore, the coordinates defined by the homeomorphisms are differentiable with
respect to each other when treated as real valued functions with respect to

12The most basic example of Taylor’s Theorem is the approximation of the exponential
2 3 n
function near the origin point = 0: e” ~ 1 +x + 5 + % + -+ + 7. For technical
details, see any calculus textbook.
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the variables defined by other coordinate systems whenever charts overlap.
This idea is often presented formally using transition maps.

This allows one to extend the meaning of differentiability to spaces with-
out global coordinate systems. Specifically, a differentiable structure allows
one to define a global differentiable tangent space, and consequently, differ-
entiable functions, and differentiable tensor—fields (including vector—fields).
Differentiable manifolds are very important in physics. Special kinds of
differentiable manifolds form the arena for physical theories such as classi-
cal mechanics (Hamiltonian mechanics and Lagrangian mechanics), general
relativity and Yang-Mills gauge theory. It is possible to develop calculus
on differentiable manifolds, leading to such mathematical machinery as the
exterior calculus.

Historically, the development of differentiable manifolds (as well as dif-
ferential geometry in general) is usually credited to C.F. Gauss and his
student B. Riemann. The work of physicists J.C. Maxwell and A. Einstein
lead to the development of the theory transformations between coordinate
systems which preserved the essential geometric properties. Eventually
these ideas were generalized by H. Weyl in ‘Idee der Riemannschen Fléashe’
(1913) and ‘Raum, Ziet, Materie’ (‘Space Time Matter’, 1921). T. Levi-
Civita applied these ideas in ‘Lezioni di calcolo differenziale assoluto’ (‘The
Absolute Differential Calculus’, 1923). The approach of Weyl was essen-
tially to consider the coordinate functions in terms of other coordinates
and to assume differentiability for the coordinate function. In 1963, S.
Kobayashi and K. Nomizu gave the group transformation/atlas approach.

Generalizations of manifolds

The three most common generalizations of manifolds are:

e orbifolds: An orbifold is a generalization of manifold allowing for cer-
tain kinds of ‘singularities’ in the topology. Roughly speaking, it is a
space which locally looks like the quotients of some simple space (e.g.,
Euclidean space) by the actions of various finite groups. The singular-
ities correspond to fixed points of the group actions, and the actions
must be compatible in a certain sense.

e algebraic varieties and schemes: An algebraic variety is glued together
from affine algebraic varieties, which are zero sets of polynomials over
algebraically closed fields. Schemes are likewise glued together from
affine schemes, which are a generalization of algebraic varieties. Both
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are related to manifolds, but are constructed using sheaves{EI instead
of atlases. Because of singular points one cannot assume a variety is a
manifold.

o CW-complexes: A CW complex is a topological space formed by gluing
objects of different dimensionality together; for this reason they gener-
ally are not manifolds. However, they are of central interest in algebraic
topology, especially in homotopy theory, where such dimensional defects
are acceptable.

1.1.4 Tangent and Cotangent Bundles of Manifolds
1.1.4.1 Tangent Bundle of a Smooth Manifold

The tangent bundle of an open contractable set U € R”™ is the smooth
manifold U x R™.

The tangent bundle T'M of the smooth manifold M is constructed using
the transition maps which define the differentiable structure of M. One may
construct transition maps for the atlas of smooth manifolds U; x R™, where

13 A sheaf F on a topological space X is an object that assigns a structure F(U) (such
as a set, group, or ring) to each open subset U of X. The structures F'(U) are compatible
with the operations of restricting the open set to smaller subsets and gluing smaller open
sets to get a bigger one. A presheaf is similar to a sheaf, but it may not be possible to
glue. Sheaves enable one to discuss in a refined way what is a local property, as applied
to a function.

Sheaves are used in topology, algebraic geometry and differential geometry whenever
one wants to keep track of algebraic data that vary with every open set of the given
geometrical space. They are a global tool to study objects which vary locally (that is,
depend on the open sets). As such, they are a natural instrument to study the global
behavior of objects which are of local nature, such as open sets, analytic functions,
manifolds, and so on.

For a typical example, consider a topological space X, and for every open set U € X,
let F(U) be the set of all continuous functions U — R. If V is an open subset of U,
then the functions on U can be restricted to V, and we get a map F(U) — F(V). Now,
‘gluing’ describes the following process: suppose the U; are given open sets with union
U, and for each i we are given an element f; € F(U;), a continuous function f; : U; — R.
If these functions agree where they overlap, then we can glue them together in a unique
way to form a continuous function f : U — R, which agrees with all the given f;. The
collection of the sets F'(U) together with the restriction maps F(U) — F (V) then form
a sheaf of sets on X. Furthermore, each F(U) is a commutative ring and the restriction
maps are ring homomorphisms, making F' a sheaf of rings on X.

For a very similar example, consider a smooth manifold M, and for every open set U of
M, let F(U) be the set of smooth functions U — R. Here too, ‘gluing’ works and we get
a sheaf of rings on M. Another sheaf on M assigns to every open set U of M the vector
space of all smooth vector—fields defined on U. Restriction and gluing of vector—fields
works like that of functions, and we get a sheaf of vector spaces on the manifold M.
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U; denotes one of the charts in the atlas for M. The extended atlas defines
a topological manifold and the differentiablity of the transition maps define
a differentiable structure on the tangent bundle manifold.

The tangent bundle is where tangent vectors live, and is itself a smooth
manifold. The so—called Lagrangian is a natural energy function on the
tangent bundle.

Associated with every point x on a smooth manifold M is a tangent
space Ty M and its dual, the cotangent space Ty M. The former consists of
the possible directional derivatives, and the latter of the differentials, which
can be thought of as infinitesimal elements of the manifold. These spaces
always have the same dimension n as the manifold does. The collection of
all tangent spaces can in turn be made into a manifold, the tangent bundle,
whose dimension is 2n.

1.1.4.2 Cotangent Bundle of a Smooth Manifold

Recall that the dual of a vector space is the set of linear functionals (i.e.,
real valued linear functions) on the vector space. In particular, if the vector
space is finite and has an inner product then the linear functionals can be
realized by the functions f,(w) = (v, w).

The cotangent bundle 7% M is the dual to the tangent bundle 7'M in the
sense that each tangent space has a dual cotangent space as a vector space.
The cotangent bundle T*M is a smooth manifold itself, whose dimension
is 2n. The so—called Hamiltonian is is a natural energy function on the
cotangent bundle. The total space of a cotangent bundle naturally has the
structure of a symplectic manifold (see below).

1.1.4.3 Fibre—, Tensor—, and Jet-Bundles

A fibre bundle is a space which locally looks like a product of two spaces but
may possess a different global structure. Tangent and cotangent bundles
are special cases of a fibre bundle[t]

A tensor bundle is a direct sum of all tensor products of the tangent
bundle and the cotangent bundleE To do calculus on the tensor bundle

M Every fiber bundle consists of a continuous surjective map: « : E — B, where small
regions in the total space E look like small regions in the product space B x F. Here B
is called the base space while F' is the fiber space. For example, the product space B X F,
equipped with 7 equal to projection onto the first coordinate, is a fiber bundle. This is
called the trivial bundle. One goal of the theory of bundles is to quantify, via algebraic
invariants, what it means for a bundle to be non—trivial.

15Recall that a tensor is a certain kind of geometrical entity which generalizes the
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a connection is needed (see below). In particular, the exterior calculus
on a totally antisymmetric tensor bundle allows for a generalization of the
classical gradient, divergence and curl operators.

A jet bundle is a generalization of both the tangent bundle and the
cotangent bundle. The Jet bundle is a certain construction which makes a
new smooth fiber bundle out of a given smooth fiber bundle. It makes it
possible to write differential equations on sections of a fiber bundle in an in-
variant form. In contrast with Riemannian manifolds and their (co)tangent
bundles, a connection is a tensor on the jet bundle.

1.1.5 Riemannian Manifolds: Configuration Spaces for La-
grangian Mechanics

To measure distances and angles on manifolds, the manifold must be Rie-
mannian. A Riemannian manifold is an analytic manifold in which each
tangent space is equipped with an inner product g = (-,-), in a manner

concepts of scalar, vector and linear operator in a way that is independent of any cho-
sen frame of reference. While tensors can be represented by multi-dimensional arrays
of components, the point of having a tensor theory is to explain the further implica-
tions of saying that a quantity is a tensor, beyond that specifying it requires a number
of indexed components. In particular, tensors behave in special ways under coordinate
transformations. The tensor notation (also called the covariant formalism) was devel-
oped around 1890 by Gregorio Ricci—Curbastro under the title ‘Absolute Differential
Geometry’, and made accessible to many mathematicians by the publication of Tullio
Levi-Civita’s classic text ‘The Absolute Differential Calculus’ in 1900. The tensor cal-
culus achieved broader acceptance with the introduction of Einstein’s general relativity
theory, around 1915. General Relativity is formulated completely in the language of
tensors, which Einstein had learned from Levi-Civita himself with great difficulty. But
tensors are used also within other fields such as continuum mechanics (e.g., the strain
tensor). Note that the word ‘tensor’ is often used as a shorthand for ‘tensor—field’, which
is a tensor value defined at every point in a manifold.

The so—called ‘classical approach’ views tensors as multidimensional arrays that are nD
generalizations of scalars, 1D vectors and 2D matrices. The ‘components’ of the tensor
are the indices of the array. This idea can then be further generalized to tensor—fields,
where the elements of the tensor are functions, or even differentials.

On the other hand, the so—called ‘modern’ or component—free approach, views tensors
initially as abstract geometrical objects, expressing some definite type of multi—linear
concept. Their well-known properties can be derived from their definitions, as linear
maps, or more generally; and the rules for manipulations of tensors arise as an ex-
tension of linear algebra to multilinear algebra. This treatment has largely replaced
the component—based treatment for advanced study, in the way that the more modern
component—free treatment of vectors replaces the traditional component—based treat-
ment after the component—based treatment has been used to provide an elementary
motivation for the concept of a vector. You could say that the slogan is ‘tensors are
elements of some tensor bundle’.
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which varies smoothly from point to point. Given two tangent vectors X
and Y, the inner product (X,Y’) gives a real number. The dot (or scalar)
product is a typical example of an inner product. This allows one to de-
fine various notions such as length, angles, areas (or, volumes), curvature,
gradients of functions and divergence of vector—fields. Most familiar curves
and surfaces, including n—spheres and Euclidean space, can be given the
structure of a Riemannian manifold.

Any smooth manifold admits a Riemannian metric, which often helps
to solve problems of differential topology. It also serves as an entry level
for the more complicated structure of pseudo—Riemannian manifolds, which
(in four dimensions) are the main objects of the general relativity theorym

Every smooth submanifold of R™ (see extrinsic view above) has an in-
duced Riemannian metric g: the inner product on each tangent space is
the restriction of the inner product on R™. Therefore, one could define
a Riemannian manifold as a metric space which is isometric to a smooth
submanifold of R™ with the induced intrinsic metric, where isometry here
is meant in the sense of preserving the length of curves.

Usually a Riemannian manifold M is defined as a smooth manifold
with a smooth section of positive—definite quadratic forms on the associated
tangent bundle T M. Then one has to work to show that it can be turned
to a metric space.

Even though Riemannian manifolds are usually ‘curved’ (e.g., the space—
time of general relativity), there is still a notion of ‘straight line’ on them:
the geodesics. These are curves which locally join their points along shortest
paths.

In Riemannian manifolds, the notions of geodesic completeness, topolog-
ical completeness and metric completeness are the same: that each implies
the other is the content of the Hopf-Rinow Theorem.

1.1.5.1 Riemann Surfaces

A Riemann surface, is a 1D complex manifold. Riemann surfaces can be
thought of as ‘deformed versions’ of the complex plane: locally near every
point they look like patches of the complex plane, but the global topology
can be quite different. For example, they can look like a sphere, or a torus,
or a couple of sheets glued together.

16 A pseudo-Riemannian manifold is a variant of Riemannian manifold where the met-
ric tensor is allowed to have an indefinite signature (as opposed to a positive-definite
one).
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The main point of Riemann surfaces is that holomorphic (analytic com-
plex) functions may be defined between them. Riemann surfaces are nowa-
days considered the natural setting for studying the global behavior of these
functions, especially multi—valued functions such as the square root or the
logarithm.

Every Riemann surface is a 2D real analytic manifold (i.e., a surface),
but it contains more structure (specifically, a complex structure) which is
needed for the unambiguous definition of holomorphic functions. A 2D real
manifold can be turned into a Riemann surface (usually in several inequiv-
alent ways) iff it is orientable. So the sphere and torus admit complex
structures, but the Mobius strip, Klein bottle and projective plane do not.

Geometrical facts about Riemann surfaces are as ‘nice’ as possible, and
they often provide the intuition and motivation for generalizations to other
curves and manifolds. The Riemann—Roch Theorem is a prime example of
this influence["]

Examples of Riemann surfaces include: the complex plandf|7 open sub-
sets of the complex planﬂ Riemann spherﬂ and many others.

Riemann surfaces naturally arise in string theory as models of string

17Formally, let X be a Hausdorff space. A homeomorphism from an open subset
U C X to asubset of C is a chart. Two charts f and g whose domains intersect are said
to be compatible if the maps fog~! and go f~1 are holomorphic over their domains. If
A is a collection of compatible charts and if any € X is in the domain of some f € A,
then we say that A is an atlas. When we endow X with an atlas A, we say that (X, A)
is a Riemann surface.

Different atlases can give rise to essentially the same Riemann surface structure on X;
to avoid this ambiguity, one sometimes demands that the given atlas on X be maximal,
in the sense that it is not contained in any other atlas. Every atlas A is contained in a
unique maximal one by Zorn’s lemma.

18The complex plane C is perhaps the most trivial Riemann surface. The map f(z) = z
(the identity map) defines a chart for C, and f is an atlas for C. The map g(z) = z* (the
conjugate map) also defines a chart on C and g is an atlas for C. The charts f and g are
not compatible, so this endows C with two distinct Riemann surface structures.

191In a fashion analogous to the complex plane, every open subset of the complex plane
can be viewed as a Riemann surface in a natural way. More generally, every open subset
of a Riemann surface is a Riemann surface.

20The Riemann sphere is a useful visualization of the extended complex plane, which
is the complex plane plus a point at infinity. It is obtained by imagining that all the
rays emanating from the origin of the complex plane eventually meet again at a point
called the point at infinity, in the same way that all the meridians from the south pole
of a sphere get to meet each other at the north pole.

Formally, the Riemann sphere is obtained via a one—point compactification of the com-
plex plane. This gives it the topology of a 2—sphere. The sphere admits a unique complex
structure turning it into a Riemann surface. The Riemann sphere can be characterized
as the unique simply—connected, compact Riemann surface.
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interactions.

1.1.5.2  Riemannian Geometry

Riemannian geometry is the study of smooth manifolds with Riemannian
metrics g, i.e. a choice of positive-definite quadratic form g = (-,-) on
a manifold’s tangent spaces which varies smoothly from point to point.
This gives in particular local ideas of angle, length of curves, and volume.
From those some other global quantities can be derived by integrating local
contributions.

The manifold may also be given an affine connection@ which is roughly
an idea of change from one point to another. If the metric does not ‘vary
from point to point’ under this connection, we say that the metric and
connection are compatible, and we have a Riemann—Cartan manifold. If
this connection is also self-commuting when acting on a scalar function, we
say that it is torsion—free, and the manifold is a Riemannian manifold.

The Levi—Civita Connection

In Riemannian geometry, the Levi—Civita connection (named after Tul-
lio Levi-Civita) is the torsion—{ree Riemannian connection, i.e., a torsion—
free connection of the tangent bundle, preserving a given Riemannian metric
(or, pseudo-Riemannian metric)@ The fundamental Theorem of Rieman-

21Connection (or, covariant derivative) is a way of specifying a derivative of a vector—
field along another vector—field on a manifold. That is an application to tangent bundles;
there are more general connections, used to formulate intrinsic differential equations.
Connections give rise to parallel transport along a curve on a manifold. A connection
also leads to invariants of curvature, and the so—called torsion.

An affine connection is a connection on the tangent bundle T'M of a smooth manifold
M. In general, it might have a non—vanishing torsion.

The curvature of a connected manifold can be characterized intrinsically by taking a
vector at some point and parallel transporting it along a curve on the manifold. Although
comparing vectors at different points is generally not a well-defined process, an affine
connection V is a rule which describes how to legitimately move a vector along a curve
on the manifold without changing its direction (‘keeping the vector parallel’).

22Formally, let (M, g) be a Riemannian manifold (or pseudo-Riemannian manifold);
then an affine connection is the Levi-Civita connection if it satisfies the following con-
ditions:

(1) Preserves metric g, i.e., for any three vector—fields X,Y, Z € M we have Xg(Y, Z) =
9(VxY,Z)+g(Y,VxZ), where Xg(Y, Z) denotes the derivative of a function g(Y, Z)
along a vector—field X.

(2) Torsion—free, i.e., for any two vector—fields X,Y,Z € M we have VxY — Vy X =
[X,Y], where [X,Y] is the Lie bracket for vector—fields X and Y.
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nian geometry states that there is a unique connection which satisfies these
properties@

In the theory of Riemannian and pseudo-Riemannian manifolds the
term covariant derivative is often used for the Levi-Civita connection. The
coordinate expression of the connection is given by Christoffel symbols@
Note that connection is not a tensor, except on jet bundles.

The Fundamental Riemannian Tensors

The two basic objects in Riemannian geometry are the metric tensor and
the curvature tensor. The metric tensor g = (-,-) is a symmetric second—
order (i.e., (0,2)) tensor that is used to measure distance in a space. In other
words, given a Riemannian manifold, we make a choice of a (0,2)—tensor
on the manifold’s tangent Spacesﬁ At a given point in the manifold, this
tensor takes a pair of vectors in the tangent space to that point, and gives a

23The Levi-Civita connection defines also a derivative along curves, usually denoted
by D. Given a smooth curve (a path) v = v(¢) : R — M and a vector—field X = X (¢)
on 7, its derivative along v is defined by: D¢X = Vj;)X. This equation defines the
parallel transport for a vector—field X.

24The Christoffel symbols, named for Elwin Bruno Christoffel (1829-1900), are coor-
dinate expressions for the Levi-Civita connection derived from the metric tensor. The
Christoffel symbols are used whenever practical calculations involving geometry must be
performed, as they allow very complex calculations to be performed without confusion.
In particular, if we denote the unit vectors on M as e; = 0/0x;, then the Christoffel
symbols of the second kind are defined by Ff]. = (Ve;; €4, €ex). Alternatively, using the
metric tensor g;; (see below) we get the explicit expression for the Christoffel symbols
in a holonomic coordinate basis:
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In a general, nonholonomic coordinates they include the additional commutation coef-
ficients. The Christoffel symbols are used to define the covariant derivative of various
tensor—fields, as well as the Riemannian curvature. Also, they figure in the geodesic
equation:

B de

a2 R ar dt
for the curve =’ = x%(t) on the smooth manifold M.

25The most familiar example is that of basic high-school geometry: the 2D Euclidean

10
01

of a curve is given by the familiar calculus formula: L = f; v/ (dz)? + (dy)?.
The unit sphere in R? comes equipped with a natural metric induced from the ambient

Euclidean metric. In standard spherical coordinates (6, ¢) the metric takes the form:

metric tensor, in the usual x — y coordinates, reads: g = |: ] The associated length

9= {(1) sir?2 9] , which is usually written as: g = df? + sin® 0 d¢>.
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real number. This concept is just like a dot product, or inner product. This
function from vectors into the real numbers is required to vary smoothly
from point to point@

On any Riemannian manifold, from its second—order metric tensor
g = (-,-), one can derive the associated fourth—order Riemann curvature
tensor. This tensor is the most standard way to express curvature of Rie-
mannian manifolds, or more generally, any manifold with an affine connec-
tion, torsionless or with torsionﬂ

260nce a local coordinate system x’ is chosen, the metric tensor appears as a ma-
trix, conventionally given by its components, g = g;;. Given the metric tensor of a
Riemannian manifold and using the Einstein summation notation for implicit sums,
the length of a segment of a curve parameterized by ¢, from a to b, is defined as:

L= f;’ \/ 9ij df; dditjdt. Also, the angle 6 between two tangent vectors u’, v’ is defined

giju'v?

as: cosf =

lgijuiui||gijoivi]

27The Riemann curvature tensor is given in terms of a Levi-Civita connection V (more
generally, an affine connection, or covariant differentiation, see below) by the following
formula:
R(u,v)w = VyVyw — Vo Vuw — Vi )W,

where w,v,w are tangent vector—fields and R(u,v) is a linear transformation of the
tangent space of the manifold; it is linear in each argument. If uw = 8/9z; and v = 9/0x;
are coordinate vector—fields then [u,v] = 0 and therefore the above formula simplifies to

R(u, v)w = V4 Vyw — V, Vyw,

i.e., the curvature tensor measures non—commutativity of the covariant derivative. The
linear transformation w — R(u,v)w is also called the curvature transformation or endo-
morphism.

In local coordinates z# (e.g., in general relativity) the Riemann curvature tensor can
be written using the Christoffel symbols of the manifold’s Levi-Civita connection:

A by
RPouy = 00, — 0 Th, + I‘Z)\FW — Flp//\FM,.
The Riemann curvature tensor has the following symmetries:

R(u,v) = —R(v,u), (R(u,v)w, z) = —(R(u,v)z, w),
R(u,v)w + R(v,w)u + R(w,u)v = 0.

The last identity was discovered by Ricci, but is often called the first Bianchi identity or
algebraic Bianchi identity, because it looks similar to the Bianchi identity below. These
three identities form a complete list of symmetries of the curvature tensor, i.e. given
any tensor which satisfies the identities above, one can find a Riemannian manifold with
such a curvature tensor at some point. Simple calculations show that such a tensor has
n2(n? —1)/12 independent components.

The Bianchi identity involves the covariant derivatives:

VuR(w,w) + VyR(w,u) + VyR(u,v) = 0.
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1.1.5.3 APPLICATION: Lagrangian Mechanics

Riemannian manifolds are natural stage for the Lagrangian mechanics,
which is a re-formulation of classical mechanics introduced by Joseph Louis
Lagrange in 1788. In Lagrangian mechanics, the trajectory of an object is
derived by finding the path which minimizes the action, a quantity which
is the integral of the Lagrangian over time. The Lagrangian for classical
mechanics L is taken to be the difference between the kinetic energy T and
the potential energy V', so L = T — V. This considerably simplifies many
physical problems.

For example, consider a bead on a hoop. If one were to calculate the
motion of the bead using Newtonian mechanics, one would have a com-
plicated set of equations which would take into account the forces that
the hoop exerts on the bead at each moment. The same problem using
Lagrangian mechanics is much simpler. One looks at all the possible mo-
tions that the bead could take on the hoop and mathematically finds the
one which minimizes the action. There are fewer equations since one is
not directly calculating the influence of the hoop on the bead at a given
moment.

Lagrange’s Equations

The equations of motion in Lagrangian mechanics are Lagrange’s equa-
tions, also known as Fuler—Lagrange equations. Below, we sketch out the
derivation of Lagrange’s equation from Newton’s laws of motion (see next
chapter for details).

Consider a single mechanical particle with mass m and position vector
7. The applied force, F , can be expressed as the gradient (denoted V) of a
scalar potential energy function V (7, ¢):

F=_-VV.

A contracted curvature tensor is called the Ricci tensor. It is a symmetric second—order

tensor given by:

Ry = ort,,  orty

Ox! dxk
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Its further contraction gives the Ricci scalar curvature, R = ¢** R;j,. The Einstein tensor
G, is defined in terms of the Ricci tensor R;; and the Ricci scalar R,

1
Gik = Ry — 59ikR~
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Such a force is independent of third— or higher—order derivatives of 7, so
Newton’s Second Law forms a set of 3 second—order ODEs. Therefore,
the motion of the particle can be completely described by 6 independent
variables, or degrees of freedom (DOF). An obvious set of variables is the
Cartesian components of 7 and their time derivatives, at a given instant of
time, that is position (x,y, z) and velocity (vs,vy,v.).

More generally, we can work with a set of generalized coordinates,
¢!, (i = 1,...,n), and their time derivatives, the generalized velocities, ¢.
The position vector 7 is related to the generalized coordinates by some
transformation equation: 7 = #(q%,t). The term ‘generalized coordinates’
is really a leftover from the period when Cartesian coordinates were the
default coordinate system. In the ¢’ —coordinates the Lagrange’s equations
read:

oL _ d oL
dqt  dt 0¢'’
where L =T — V is the system’s Lagrangian.
The time integral of the Lagrangian L, denoted S is called the action@

S:/Ldt.

Let go and ¢ be the coordinates at respective initial and final times ¢ty and
t1. Using the calculus of variations, it can be shown the Lagrange’s equa-

tions are equivalent to the Hamilton’s principle: “The system undergoes
the trajectory between ¢y and ¢; whose action has a stationary value.” This
is formally written:

05 =0,

where by ‘stationary’, we mean that the action does not vary to first—order
for infinitesimal deformations of the trajectory, with the end—points (qo, to)

28 The action principle is an assertion about the nature of motion, from which the
trajectory of a dynamical system subject to some forces can be determined. The path
of an object is the one that yields a stationary value for a quantity called the action.
Thus, instead of thinking about an object accelerating in response to applied forces,
one might think of them picking out the path with a stationary action. The action is
a scalar (a number) with the unit of measure for Action as Energy x Time. Although
equivalent in classical mechanics with Newton’s laws, the action principle is better suited
for generalizations and plays an important role in modern physics. Indeed, this principle
is one of the great generalizations in physical science. In particular, it is fully appreci-
ated and best understood within quantum mechanics. Richard Feynman’s path integral
formulation of quantum mechanics is based on a stationary—action principle, using path
integrals. Maxwell’s equations can be derived as conditions of stationary action.
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and (q1,t1) ﬁxed@

The total energy function called Hamiltonian, denoted by H, is ob-
tained by performing a Legendre transformation on the Lagrangian@ The
Hamiltonian is the basis for an alternative formulation of classical mechan-
ics known as Hamiltonian mechanics (see below).

In 1948, R.P. Feynman invented the path—integral formulation extending
the principle of least action to quantum mechanics for electrons and pho-

29More generally, a Lagrangian L[p?] of a dynamical system is a function of the dy-
namical variables (z) and concisely describes the equations of motion of the system
in coordinates z*, (i = 1,...,n). The equations of motion are obtained by means of an
action principle, written as
oS
< 0
5ep;

)

where the action is a functional
sle') = [ £l e s,

(d"x = dal...dz™).

The equations of motion obtained by means of the functional derivative are identical to
the usual Euler-Lagrange equations. Dynamical system whose equations of motion are
obtainable by means of an action principle on a suitably chosen Lagrangian are known
as Lagrangian dynamical systems. Examples of Lagrangian dynamical systems range
from the (classical version of the) Standard Model, to Newton’s equations, to purely
mathematical problems such as geodesic equations and the Plateau’s problem.

The Lagrangian mechanics is important not just for its broad applications, but also
for its role in advancing deep understanding of physics. Although Lagrange sought to
describe classical mechanics, the action principle that is used to derive the Lagrange’s
equation is now recognized to be deeply tied to quantum mechanics: physical action and
quantum-mechanical phase (waves) are related via Planck’s constant, and the Principle
of stationary action can be understood in terms of constructive interference of wave
functions. The same principle, and the Lagrangian formalism, are tied closely to Noether
Theorem, which relates physical conserved quantities to continuous symmetries of a
physical system; and Lagrangian mechanics and Noether’s Theorem together yield a
natural formalism for first quantization by including commutators between certain terms
of the Lagrange’s equations of motion for a physical system.

More specifically, in field theory, occasionally a distinction is made between the La-
grangian L, of which the action is the time integral S = [ Ldt and the Lagrangian
density £, which one integrates over all space—time to get the 4D action:

sle') = [ cl'@ldte.

The Lagrangian is then the spatial integral of the Lagrangian density.
30The Hamiltonian is the Legendre transform of the Lagrangian:

7
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tons. In this formulation, particles travel every possible path between the
initial and final states; the probability of a specific final state is obtained by
summing over all possible trajectories leading to it. In the classical regime,
the path integral formulation cleanly reproduces the Hamilton’s principle,
as well as the Fermat’s principle in optics.

1.1.5.4  Finsler manifolds

Finsler manifolds represent generalization of Riemannian manifolds. A
Finsler manifold allows the definition of distance, but not of angle; it is
an analytic manifold in which each tangent space is equipped with a norm
||| in & manner which varies smoothly from point to point. This norm can
be extended to a metric, defining the length of a curve; but it cannot in
general be used to define an inner product. Any Riemannian manifold (but
not a pseudo—Riemannian manifold) is a Finsler manifold@

1.1.6 Symplectic Manifolds: Phase—Spaces for Hamilto-
nian Mechanics

A symplectic manifold is a smooth manifold M equipped with a closed, non-
degenerate, 2—form w called the symplectic volume form, or Liouville mea-
sure. This condition forces symplectic manifolds to be even—dimensional.
Cotangent bundles, which arise as phase—spaces in Hamiltonian mechanics,
are the motivating example, but many compact manifolds also have sym-
plectic structure. All surfaces have a symplectic structure, since a symplec-
tic structure is simply a volume form. The study of symplectic manifolds
is called symplectic geometry /topology.

Symplectic manifolds arise naturally in abstract formulations of classical
mechanics as the cotangent bundles of configuration manifolds: the set of
all possible configurations of a system is modelled as a manifold M, and
this manifold’s cotangent bundle T*M describes the phase—space of the

31Formally, a Finsler manifold is a differentiable manifold M with a Banach norm
defined over each tangent space such that the Banach norm as a function of position is
smooth, usually it is assumed to satisfy the following regularity condition:

For each point x of M, and for every nonzero vector X in the tangent space T' x M,
the second derivative of the function L : T'x M — R given by L(w) = 3|lw|/? at X is
positive definite.

The length of a smooth curve v in a Finsler manifold M is given by f

d

d—}(t)” dt.
Length is invariant under reparametrization. With the above regularity condition,

geodesics are locally length-minimizing curves with constant speed, or equivalently

2
curves in whose energy function, [ H Z—Z(t)H dt, is extremal under functional derivatives.
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dynamical system@

Any real-valued differentiable function H on a symplectic manifold can
serve as an energy function or Hamiltonianﬁ Associated to any Hamilto-
nian is a Hamiltonian vector—field @ The integral curves of the Hamiltonian

32 Hamiltonian mechanics is a re-formulation of classical mechanics that was invented
in 1833 by William Rowan Hamilton. It arose from Lagrangian mechanics, a previous
re—formulation of classical Newtonian mechanics, introduced by J.L. Lagrange in 1788. It
can however be formulated without recourse to Lagrangian mechanics, using symplectic
manifolds. It is based on canonical Hamilton’s equations of motion:

._ oH . oH
p - 8(1 b - 8p b
with canonical coordinate ¢ and momentum p variables and the Hamiltonian (total
energy) function H = H(g,p). An important special case consists of those Hamiltonians

that are quadratic forms, that is, Hamiltonians that can be written as:

H(ap) = 5 0:pha

This Hamiltonian consists entirely of the kinetic term. If one considers a Rieman-
nian manifold, or a pseudo—Riemannian manifold, so that one has an invertible, non—
degenerate metric, then (-, )4 is simply the inverse of the Riemannian metric g.

33In contrast, the quantum—mechanical Hamiltonian H is the observable corresponding
to the total energy of the system. It generates the time evolution of quantum states (see,
e.g., |Ivancevic and Ivancevic (2006)]). If the wave—function |1(t)) represents the state
of the quantum system at time ¢, then its time evolution is given by the Schrodinger
equation:

.. 0
HWb(2)) = if [90)

where h is the Planck constant. If the quantum Hamiltonian H is independent of time,
then the time evolution is given by:

(o) = exp (-5 ) [6(0).

34In canonical coordinates (¢*,p;) on a symplectic manifold M, the symplectic form w
can be written as w = >, dq*Adp; and thus the Hamiltonian vector—field takes the form

Xy = (g—g, - g;{i ) The Hamiltonian vector—field Xy also induces a special operation,
the Poisson bracket, which is a bilinear map turning two differentiable functions on a
symplectic manifold M into a function on M. In particular, if we have two functions, f
and g, then the Poisson bracket {f,g} = w(df,dg). In canonical coordinates (g’,p;) on

the phase—space manifold, the Poisson bracket takes the form

{f.9} = w(df,dg) = {8}” dg  df 9g

=1

dqt Op;  Op; O¢' ]

The time evolution of a function f on the symplectic manifold can be given as a one—
parameter family of symplectomorphisms, with the time ¢ being the parameter. The
total time derivative can be written as % = %f—i— {f,H} = %f —{H, f}. The Poisson
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vector—field are solutions to the Hamilton—Jacobi equation@

The Hamiltonian vector—field defines a flow on the symplectic manifold,
called a Hamiltonian flow or symplectomorphism. By Liouville’s Theorem,
Hamiltonian flows preserve the volume form on the phase space@

Symplectic manifolds are special cases of a Poisson manifold; the defi-
nition of a symplectic manifold requires that the symplectic 2—form w be
non—degenerate everywhere. If this condition is violated, the manifold may
still be a Poisson mam'foldm Also, a symplectic manifold endowed with a
metric that is compatible with the symplectic form is a Kahler manifold.

bracket acts on functions on the symplectic manifold, thus giving the space of functions
on the manifold the structure of a Lie algebra (see Lie groups below).

35The Hamilton—Jacobi equation (HJE) is a particular canonical transformation of the
classical Hamiltonian which results in a first order, nonlinear differential equation whose
solution describes the behavior of the system. While the canonical Hamilton’s equations
of motion represent the system of first order ODEs, two for each coordinate, the HJE is
a single PDE of one variable for each coordinate. If we have a Hamiltonian of the form
then the HJE for that system is

0,

H(ql,...,q"; S s ) 25

agl " agn ) T or

where S represents the classical action functional. The HJE can be used to solve several
problems elegantly, such as the Kepler problem.

36Liouville’s Theorem, named after the French mathematician Joseph Liouville, is a
key Theorem in classical statistical and Hamiltonian mechanics. It asserts that the
phase—space distribution function is constant along the trajectories of the system — that
is that the density of system points in the vicinity of a given system point travelling
through phase—space is constant with time.

The Liouville equation describes the time evolution of a phase—space distribution
function, or Liouville measure. Consider a dynamical system with coordinates ¢ and
conjugate momenta p; (i = 1,...,n). The time evolution of the phase-space distribution
p(p, @) is governed by the Liouville equation:

dp Op " (8p ) 8/)_)
L2 2Ly ) =0
dt ot +; oqi +3Pipl

Time derivatives are denoted by dots, and are evaluated according to Hamilton’s equa-
tions for the system. The Liouville’s Theorem states that the phase—space distribution
function p(p, q) is constant along any trajectory in phase space. The Theorem is often
restated in terms of the Poisson bracket with the Hamiltonian function H = H (g, p):

Op
ot - {P ’ H }
Geometrically, this Theorem says that Liouville measure is invariant under the Hamil-
tonian flow.
37Closely related to even—dimensional symplectic manifolds are the odd—dimensional
manifolds known as contact manifolds. Any (2n + 1)—D contact manifold (M,w) gives
rise to a (2n + 2)—D symplectic manifold (M X R, d(etw)).
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There are several natural geometric notions of submanifold of a sym-
plectic manifold. There are symplectic submanifolds (potentially of any
even dimension), where the symplectic form is required to induce a sym-
plectic form on the submanifold. The most important case of these is that
of Lagrangian submanifold, which are isotropic submanifolds of maximal di-
mension, namely half the dimension of the ambient manifold. Lagrangian
submanifolds arise naturally in many physical and geometric situationsﬁ

1.1.7 Lie Groups

A Lie group is smooth manifold which also carries a group structure whose
product and inversion operations are smooth as maps of manifolds. These
objects arise naturally in describing symmetries.

A Lie group is a group whose elements can be continuously parametrized
by real numbers, such as the rotation group SO(3), which can be
parametrized by the Fuler angles. More formally, a Lie group is an an-
alytic real or complex manifold that is also a group, such that the group
operations multiplication and inversion are analytic maps. Lie groups are
important in mathematical analysis, physics and geometry because they
serve to describe the symmetry of analytical structures. They were intro-
duced by Sophus Lie in 1870 in order to study symmetries of differential
equations.

While the Euclidean space R™ is a real Lie group (with ordinary vector
addition as the group operation), more typical examples are given by matrix
Lie groups, i.e., groups of invertible matrices (under matrix multiplication).
For instance, the group SO(3) of all rotations in R3 is a matrix Lie group.

One classifies Lie groups regarding their algebraic properties{ﬂ (simple,
semisimple, solvable, nilpotent, Abelian), their connectedness (connected

380ne major example is that the graph of a symplectomorphism in the product sym-
plectic manifold (M x M,w X —w) is Lagrangian. Their intersections display rigidity
properties not possessed by smooth manifolds; the Arnold conjecture gives the sum of
the submanifold’s Betti numbers as a lower bound for the number of self intersections of
a smooth Lagrangian submanifold, rather than the Fuler characteristic in the smooth
case.

39If G and H are Lie groups (both real or both complex), then a Lie—group-
homomorphism f : G — H is a group homomorphism which is also an analytic map (one
can show that it is equivalent to require only that f be continuous). The composition of
two such homomorphisms is again a homomorphism, and the class of all (real or com-
plex) Lie groups, together with these morphisms, forms a category. The two Lie groups
are called isomorphic iff there exists a bijective homomorphism between them whose
inverse is also a homomorphism. Isomorphic Lie groups do not need to be distinguished
for all practical purposes; they only differ in the notation of their elements.
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or simply connected) and their compactness@
To every Lie group, we can associate a Lie algebra which completely
captures the local structure of the group (at least if the Lie group is con-

nected) @

40An n—torus T" = ST x ST x---x S (as defined above) is an example of a compact
Abelian Lie group. This follows from the fact that the unit circle S! is a compact Abelian
Lie group (when identified with the unit complex numbers with multiplication). Group
multiplication on T" is then defined by coordinate—wise multiplication.

Toroidal groups play an important part in the theory of compact Lie groups. This is
due in part to the fact that in any compact Lie group one can always find a maximal
torus; that is, a closed subgroup which is a torus of the largest possible dimension.

41Conventionally, one can regard any field X of tangent vectors on a Lie group as a
partial differential operator, denoting by X f the Lie derivative (the directional deriva-
tive) of the scalar field f in the direction of X. Then a vector—field on a Lie group G is
said to be left—invariant if it commutes with left translation, which means the following.
Define Ly[f](z) = f(gz) for any analytic function f : G — R and all g,x € G. Then the
vector—field X is left-invariant iff XLy = Ly X for all g € G. Similarly, instead of R, we
can use C. The set of all vector—fields on an analytic manifold is a Lie algebra over R
(or C).

On a Lie group G, the left—invariant vector—fields form a subalgebra, the Lie algebra
g associated with G. This Lie algebra is finite-dimensional (it has the same dimension
as the manifold G) which makes it susceptible to classification attempts. By classifying
g, one can also get a handle on the group GG. The representation theory of simple Lie
groups is the best and most important example.

Every element v of the tangent space T, at the identity element e of G determines a
unique left-invariant vector—field whose value at the element g of G is denoted by gv;
the vector space underlying the Lie algebra g may therefore be identified with 7.

Every vector—field v in the Lie algebra g determines a function ¢ : R — G whose
derivative everywhere is given by the corresponding left—invariant vector—field: ¢/(t) =
TL.yv and which has the property: c(s +t) = c(s)c(t), (for all s and t) (the
operation on the r.h.s. is the group multiplication in G). The formal similarity of this
formula with the one valid for the elementary exponential function justifies the definition:
exp(v) = ¢(1). This is called the ezponential map, and it maps the Lie algebra g into
the Lie group G. It provides a diffeomorphism between a neighborhood of 0 in g and
a neighborhood of e in G. This exponential map is a generalization of the exponential
function for real numbers (since R is the Lie algebra of the Lie group of positive real
numbers with multiplication), for complex numbers (since C is the Lie algebra of the
Lie group of non-zero complex numbers with multiplication) and for matrices (since
M (n,R) with the regular commutator is the Lie algebra of the Lie group GL(n,R) of all
invertible matrices). As the exponential map is surjective on some neighborhood N of e,
it is common to call elements of the Lie algebra infinitesimal generators of the group G.

The exponential map and the Lie algebra determine the local group structure of every
connected Lie group, because of the Baker—Campbell-Hausdorff formula: there exists a
neighborhood U of the zero element of the Lie algebra g, such that for u,v € U we have

exp(u)exp(v) = exp(u + v + 1/2[u, v] + 1/12[[u, v], v] — 1/12[[u, v],u] — ...),

where the omitted terms are known and involve Lie brackets of four or more elements.
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1.1.7.1 APPLICATION: Physical Examples of Lie Groups

Here are a few examples of Lie groups and their relations to other areas of
mathematics and physics:

(1) Euclidean space R™ is an Abelian Lie group (with ordinary vector ad-
dition as the group operation).

(2) The group GL,(R) of invertible matrices (under matrix multiplication)
is a Lie group of dimension n?. It has a subgroup SL, (R) of matrices
of determinant 1 which is also a Lie group.

(3) The group O, (R) generated by all rotations and reflections of an nD
vector space is a Lie group called the orthogonal group. It has a sub-
group of elements of determinant 1, called the special orthogonal group
SO(n), which is the group of rotations in R"@

(4) Spin groups are double covers of the special orthogonal groups (used
e.g., for studying fermions in quantum field theory).

(5) The group Sp2,(R) of all matrices preserving a symplectic form is a
Lie group called the symplectic group.

(6) The Lorentz group and the Poincaré group of isometries of space—time
are Lie groups of dimensions 6 and 10 that are used in special relativity.

(7) The Heisenberg group is a Lie group of dimension 3, used in quantum
mechanics.

(8) The unitary group U(n) is a compact group of dimension n?
of unitary matrices. It has a subgroup of elements of determinant 1,
called the special unitary group SU(n).

(9) The group U(1) x SU(2) x SU(3) is a Lie group of dimension 1+ 3 +
8 = 12 that is the gauge group of the Standard Model of elementary
particles, whose dimension corresponds to: 1 photon + 3 vector bosons
+ 8 gluons.

consisting

In case u and v commute, this formula reduces to the familiar exponential law:
exp(u)exp(v) = exp(u + v).
Every homomorphism f : G — H of Lie groups induces a homomorphism between the
corresponding Lie algebras g and h. The association G = g is called the Lie Functor.

42For example, in terms of orthogonal matrices, the rotations about the standard
Cartesian coordinate axes (z,y, z) in R3 through an angle ¢ are given by:

1 0 0 cos¢ 0 sing cos¢p —sing 0
Ry(¢p) = [0 cos¢p —sing |, Ry(o) = 0 1 0 , R:(¢)=|sing cos¢p 0
0 sin¢ cos¢ —sin¢ 0 cos ¢ 0 0 1
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1.1.8 Application: A Bird View on Modern Physics
1.1.8.1 Three Pillars of 20th Century Physics

In this subsection we make small digression into the field of modern physics,
which is the major customer for machinery of differential geometry. Ar-
guably, the three most influential geniuses that shaped the world of the
20th Century physics, and at the same time showed the pathway to the
current unified physical ‘theory of everything’, have been:

(1) In the first third of the Century, it had been Albert Einstein.
(2) In the second third of the Century, it was Richard Feynman.
(3) At the end of the Century — and still today, it has been Edward Witten.

It is well-known that Einstein had three periods of his scientific career:

(1) Before 1905, when he formulated Special Relativity in a quick series of
papers published in Annalen der Physik (the most prestigious physics
journal of the time). This early period was dominated by his ‘thought
experiments’, i.e., ‘concrete physical images’, described in the language
of non—professional mathematics. You can say, it was almost pure
visualization. This quick and powerful series of ground—braking papers
(with just enough maths to be accepted by scientific community) gave
him a reputation of the leading physicist and scientist@

(2) Although an original and brilliant theory, Special Relativity was not
complete, which was obvious to Einstein. So, he embarked onto the
general relativity voyage, incorporating gravitation. Now, for this goal,
his maths was not strong enough. He spent 10 years fighting with
gravity, using the ‘hard’ Riemannian geometry, and talking to the lead-
ing mathematician of the time, David Hilbert. At the end, they both
submitted the same gravitational equations of general relativity (only
derived in different ways) to Annalen der Physik in November of 1915.

(3) Although even today considered as the most elegant physical theory,
General Relativity is still not complete: it cannot live together in the
same world with quantum mechanics. So, Einstein embarked onto the
last journey of his life, the search for wunified field theory — and he
‘failed@ after 30 years of unsuccessful struggle with a task to big for

43Recall that the Nobel Prize was ‘in the air’ for Einstein for more than 15 years; at
the end he got it in 1921, for his discovery of the Photo—Electric Effect.

44Einstein ‘failed’ in the same way as Hilbert ‘failed’ with his Program of axiomatic
formalization of all mathematical sciences. Their apparent ‘failure’ still influences de-
velopment of physics and mathematics, apparently converging into superstring theory.
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one man.

Feynman’s story is very different. All his life he was a profoundly orig-
inal scientist, similar to the young Einstein. He refused to take anybody’s
word for anything, which meant that he had to reinvent for himself almost
the whole of physics. It took him five years of concentrated work to rein-
vent quantum mechanics. At the end, he got a new version of quantum
mechanics that he (and only he) could understand. In orthodox physics it
was said: Suppose an electron is in this state at a certain time, then you
calculate its future behavior by solving Schrodinger equation. Instead of
this, Feynman said simply: “The electron does whatever it likes.” A his-
tory of the electron is any possible path in space and time. The behavior
of the electron is just the result of adding together all histories according
to some simple rules that Feynman worked out. His path—integral and
related Feynman diagrams, for long defied rigorous mathematical founda-
tion. However, it is still the most powerful calculation tool in quantum
(and statistical) mechanics. Later, Feynman generalized it to encompass
physical fields — which led to his version of quantum electrodynamics (the
first prototype of a quantum field theory) — and his Nobel Prize. All his
career he consistently distrusted official mathematics and invented his own
maths underpinned with a direct physical intuition.

If the story had ended here, we might have said that wvisual physical
intuition is leading the way of science. However, the story does not end here.
The leading authority in contemporary physics is Ed Witten, a physicist
who did not get the Nobel Prize, but rather the Fields Medal — together
with his ‘superstring theory of everything’@ Witten works at the same
place where Einstein spent the last 30 years of his life — at the Princeton
Institute of Advanced Study. He is dreaming Einstein’s dream: a unified
theory of everything, using the most powerful maths possible. His prophecy,
delivered at a turn of the Century, has been: “In the 21 fist Century,
mathematics will be dominated by string theory.”

When superstring theory arrived in physics in 1984 as a potential the-
ory of the universe, it was considered by mainstream physicists as little
better than religion in terms of constituting a viable, testable theory. In
string theory, the fundamental particles were string—like, rather than point
particles; the universe had 10 or 11 dimensions, rather than four; and the

Their joined work on gravity is called the Einstein—Hilbert action.
45Witten joined the ‘old Green—Schwarz bosonic string community’ after he won his
Fields Medal for topological quantum field theory (TQFT)
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theory itself existed at an energy so far from earthly energies that it took a
leap of enormous faith to imagine the day when an experiment could ever
test it. Quite simply, string theory seemed an excessively esoteric pursuit,
which it still is.

1.1.8.2 String Theory in ‘Plain English’

With modern (super)string theory@ scientists might be on the verge of ful-
filling Einstein’s dream: formulating the sought for ‘theory of everything’,
which would unite our understanding of the four fundamental forces of Na-
turﬂ into a single equation (like, e.g., Newton, or Einstein, or Schrodinger
equation) and explaining the basic nature of matter and energy.

Fig. 1.2 All particles and forces of Nature are supposed to be manifestations of different
resonances of tiny 1D strings vibrating in a 10D hyper—space: (a) An ordinary matter;
(b) A molecule; (c) An atom (around ten billionths of a centimeter in diameter; (d) A
subatomic particle (e.g., proton — around 100.000 times smaller than an atom); (e) A
super—string (around 1029 times smaller than a proton).

In simplest terms, string theory states that all particles and forces of Na-
ture are manifestations of different resonances of tiny 1-dimensional strings
(rather than the zero—dimensional points (particles) that are the basis of
the Standard Model of particle physics), vibrating in 10 dimensions (see

46Recall that ‘superstring’ means ‘supersymmetric string’. The supersymmetry (of-
ten abbreviated SUSY) is a hypothetical symmetry that relates bosons (particles that
transmit forces) and fermions (particles of matter). In supersymmetric theories, every
fundamental fermion has a bosonic ‘superpartner’ and vice versa.

4TRecall that the four fundamental forces are: (i) Gravity (it describes the attractive
force of matter; it is the same force that holds planets and moons in their orbits and keeps
our feet on the ground; it is the weakest force of the four by many orders of magnitude);
(ii) Electromagnetism (it describes how electric and magnetic fields work together; it
also makes objects solid; once believed to be two separate forces, could be described by
a relatively simple set of Mazwell equations); (iii) Strong nuclear force (it is responsible
for holding the nucleus of atoms together; without it, protons would repel one another
so no elements other than hydrogen, which has only one proton, would be able to form);
(iv) Weak nuclear force (it explains beta decay and the associated radioactivity; it also
describes how elementary particles can change into other particles with different energies
and masses).
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Figure [1.2)).

Recall that the Standard Model is a theory which describes the strong,
weak, and electromagnetic fundamental forces, as well as the fundamental
particles that make up all matter. Developed between 1970 and 1973, it
is a quantum field theory, and consistent with both quantum mechanics
and special relativity. The Standard Model contains both fermionic and
bosonic fundamental particles. Fermions are particles which possess half—
integer spin, obey the Fermi—Dirac statistics and also the Pauli exclusion
principle, which states that no fermions can share the same quantum state.
On the other hand, bosons possess integer spin, obey the Bose—Finstein
statistics, and do not obey the Pauli exclusion principle. In the Standard
Model, the theory of the electro—weak interaction (which describes the weak
and electromagnetic interactions) is combined with the theory of quantum
chromodynamics. All of these theories are gauge theom'es@ meaning that
they model the forces between fermions by coupling them to bosons which

48Recall that the familiar Mazwell gauge field theory(or, in the non-Abelian case,
Yang-Mills gauge field theory) is defined in terms of the fundamental gauge field (which
geometrically represents a connection) A, = (AO,A), that is p = 0,3. Here Ag is the
scalar potential and A is the vector potential. The Mazwell Lagrangian

1
EszzFquW*AuJ” (1.1)

is expressed in terms of the field strength tensor (curvature) Fj,, = 0y, A, — 9y Ay, and a
matter current J* that is conserved: d,J* = 0. This Maxwell Lagrangian is manifestly
invariant under the gauge transformation A, — A, + 0,A; and, correspondingly, the
classical Euler-Lagrange equations of motion

OuFHY = Jv (12)

are gauge invariant. Observe that current conservation 9,JY = 0 follows from the
antisymmetry of Fj,, .

Note that this Maxwell theory could easily be defined in any space-time dimension d
simply by taking the range of the space-time index p on the gauge field A, to be p =
0,1,2,...,(d—1) in dD space—time. The field strength tensor is still the antisymmetric
tensor Fj, = 0uAy, — 0y Ay, and the Maxwell Lagrangian and the field equations
of motion do not change their form. The only real difference is that the number
of independent fields contained in the field strength tensor Fj,, is different in different
dimensions. (Since Fj,, can be regarded as a d x d antisymmetric matrix, the number
of fields is equal to %d(d —1).) So at this level, planar (2 + 1)D Maxwell theory is quite
similar to the familiar (3 + 1)D Maxwell theory. The main difference is simply that the
magnetic field is a (pseudo-) scalar B = €9;A; in (2 + 1)D, rather than a (pseudo-)
vector B =V x A in (3 + 1)D. This is just because in (2 + 1)D the vector potential
Ais a 2D vector, an(_i the curl in 2D produces a scalar. On the other hand, the electric
field E = —ﬁAo — A is a 2D vector. So the antisymmetric 3 x 3 field—strength tensor

has three nonzero field components: two for the electric field E and one for the magnetic
field B.
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mediate the forces. The Lagrangian of each set of mediating bosons is
invariant under a transformation called a gauge transformation, so these
mediating bosons are referred to as gauge bosons. There are twelve different
‘flavours’ of fermions in the Standard Model. The proton, neutron are

The real novelty of (2 4+ 1)D is that, instead of considering this ‘reduced’ form of
Maxwell theory, we can also define a completely different type of gauge theory: a Chern—
Simons gauge theory. It satisfies the usual criteria for a sensible gauge theory: it is
Lorentz invariant, gauge invariant, and local. The Chern—-Simons Lagrangian is (see,
e.g., [Dunne (1999)|)

Los = ge‘“"’AM&,AP — ApJH (1.3)

Two things are important about this Chern—Simons Lagrangian. First, it does not look
gauge invariant, because it involves the gauge field A, itself, rather than just the (man-
ifestly gauge invariant) field strength Fj,,,. Nevertheless, under a gauge transformation,
the Chern—Simons Lagrangian changes by a total space—time derivative

§Los = gau (Ae'PD,A,) . (1.4)

Therefore, if we can neglect boundary terms then the corresponding Chern—Simons ac-
tion,

Scs =/d3w£cs,

is gauge invariant. This is reflected in the fact that the classical Euler-Lagrange equa-
tions

1
ge“”pFup =JH, or equivalently Fu = —euwpd?, (1.5)
K

are clearly gauge invariant. Note that the Bianchi identity, e**P0,F,, = 0, is com-
patible with the current conservation: 0y,J* = 0, which follows from the Noether
Theorem. A second important feature of the Chern—Simons Lagrangian is that
it is first—order in space-time derivatives. This makes the canonical structure of these
theories significantly different from that of Maxwell theory. A related property is that
the Chern—Simons Lagrangian is particular to (2 + 1)D, in the sense that we cannot
write down such a term in (3 + 1)D — the indices simply do not match up. Actually, it is
possible to write down a ‘Chern—Simons theory’ in any odd space—time dimension (for
example, the Chern—-Simons Lagrangian in 5D space-time is £ = e**P°7 A0, A,05Ar),
but it is only in (2 4+ 1)D that the Lagrangian is quadratic in the gauge field.

Recently, increasingly popular has become Seiberg—Witten gauge theory. It refers to
a set of calculations that determine the low—energy physics, namely the moduli space
and the masses of electrically and magnetically charged supersymmetric particles as
a function of the moduli space. This is possible and nontrivial in gauge theory with
N = 2 extended supersymmetry, by combining the fact that various parameters of the
Lagrangian are holomorphic functions (a consequence of supersymmetry) and the known
behavior of the theory in the classical limit. The extended supersymmetry is supersym-
metry whose infinitesimal generators Q' carry not only a spinor index «, but also an
additional index ¢ = 1, 2... The more extended supersymmetry is, the more it constrains
physical observables and parameters. Only the minimal (un—extended) supersymmetry
is a realistic conjecture for particle physics, but extended supersymmetry is very im-
portant for analysis of mathematical properties of quantum field theory and superstring
theory.
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made up of two of these: the up quark and down quark, bound together
by the strong nuclear force. Together with the electron (bound to the
nucleus in atoms by the electromagnetic force), those fermions constitute
the vast majority of everyday matter. To date, almost all experimental
tests of the three forces described by the Standard Model have agreed with
its predictions. However, the Standard Model is not a complete theory
of fundamental interactions, primarily because it does not describe the
gravitational force.

For this reason, string theories are able to avoid problems associated
with the presence of point—like particles in a physical theory. The basic
idea is that the fundamental constituents of Nature are strings of energy
of the Planck length (around 1073% m), which vibrate at specific resonant
frequencies (modes). Another key claim of the theory is that no measurable
differences can be detected between strings that wrap around dimensions
smaller than themselves and those that move along larger dimensions (i.e.,
physical processes in a dimension of size R match those in a dimension of
size 1/R). Singularities are avoided because the observed consequences of
‘big crunches’ never reach zero size. In fact, should the universe begin a
‘big crunch’ sort of process, string theory dictates that the universe could
never be smaller than the size of a string, at which point it would actually
begin expanding.

Recently, physicists have been exploring the possibility that the strings
are actually membranes, that is strings with 2 or more dimensions (mem-
branes are refereed to as p—branes, where p is the number of dimensions,
see Figure . Every p—brane sweeps out a (p + 1)—dimensional world—
volume as it propagates through space—time. A special class of p—branes are
the so—called D-branes, named for the mathematician Johann Dirichlet@
D-branes are typically classified by their dimension, which is indicated by
a number written after the D: a DO-brane is a single point, a D1-brane is
a line (sometimes called a ‘D-string’), a D2-brane is a plane, and a D25-
brane fills the highest—dimensional space considered in old bosonic string

49Recall that Dirichlet boundary conditions have long been used in the study of fluids
and potential theory, where they involve specifying some quantity all along a boundary.
In fluid dynamics, fixing a Dirichlet boundary condition could mean assigning a known
fluid velocity to all points on a surface; when studying electrostatics, one may establish
Dirichlet boundary conditions by fixing the voltage to known values at particular loca-
tions, like the surfaces of conductors. In either case, the locations at which values are
specified is called a D-brane. These constructions take on special importance in string
theory, because open strings must have their endpoints attached to D—branes.
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theory@

a 2-brane

Fig. 1.3 Visualizing strings and p—branes.

According to superstring theory, all the different types of elementary
particles can be derived from only five types of interactions between just
two different states of strings, open and closed: (i) an open string can split
to create two smaller open strings (see Figure ; (ii) a closed string can
split to create two smaller closed strings; (iii) an open string can form both
a new open and a new closed string; (iv) two open strings can collide and
create two new open strings; (v) an open string can join its ends to become a
closed string. All the forces and particles of Nature are just different modes
of vibrating strings (somewhat like vibrating strings on string instruments
to produce a music: different strings have different frequencies that sound
as different notes and combining several strings gives chords). For example,
gravity is caused by the lowest vibratory mode of a circular string. Higher
frequencies and different interactions of superstrings create different forms
of matter and energy.

50The central idea of the so—called brane-world scenario is that our visible 3D universe
is entirely restricted to a D3—brane embedded in a higher—dimensional space—time, called
the bulk. The additional dimensions may be taken to be compact, in which case the
observed universe contains the extra dimensions, and then no reference to the bulk is
appropriate in this context. In the bulk model, other branes may be moving through
this bulk. Interactions with the bulk, and possibly with other branes, can influence our
brane and thus introduce effects not seen in more standard cosmological models. As
one of its attractive features, the model can ‘explain’ the weakness of gravity relative
to the other fundamental forces of nature. In the brane picture, the other three forces
(electromagnetism and the weak and strong nuclear forces) are localized on the brane,
but gravity has no such constraint and so much of its attractive power ‘leaks’ into the
bulk. As a consequence, the force of gravity should appear significantly stronger on small
(sub—millimetre) scales, where less gravitational force has ‘leaked’. Various experiments
are currently underway to test this. For example, in a particle accelerator, if a graviton
were to be discovered and then observed to suddenly disappear, it might be assumed
that the graviton ‘leaked’ into the bulk.
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Fig. 1.4 An elementary particle split (a) and string split (b). When a single elementary
particle splits in two particles, it occurs at a definite moment in space—time. On the
other hand, when a string splits into two strings, different observers will disagree about
when and where this occurred. A relativistic observer who considers the dotted line to
be a surface of constant time believes the string broke at the space-time point P while
another observer who considers the dashed line to be a surface of constant time believes
the string broke at Q.

String theory is a possible solution of the core quantum gravity problem,
and in addition to gravity it can naturally describe interactions similar to
electromagnetism and the other forces of nature. Superstring theories in-
clude fermions, the building blocks of matter, and incorporate the so—called
supersymmetTyF_Tl It is not yet known whether string theory will be able

51In a world based on supersymmetry, when a particle moves in space, it also can
vibrate in the new fermionic dimensions. This new kind of vibration produces a ‘cousin’
or ‘superpartner’ for every elementary particle that has the same electric charge but
differs in other properties such as spin. Supersymmetric theories make detailed pre-
dictions about how superpartners will behave. To confirm supersymmetry, scientists
would like to produce and study the new supersymmetric particles. The crucial step
is building a particle accelerator that achieves high enough energies. At present, the
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to describe a universe with the precise collection of forces and matter that
is observed, nor how much freedom to choose those details that the theory
will allow. String theory as a whole has not yet made falsifiable predictions
that would allow it to be experimentally tested, though various special cor-
ners of the theory are accessible to planned observations and experiments.
Work on string theory has led to advances in both mathematics (mainly
in differential and algebraic geometry) and physics (supersymmetric gauge

theories) H

Historically, string theory was originally invented to explain peculiarities

highest—energy particle accelerator is the Tevatron at Fermilab near Chicago. There,
protons and antiprotons collide with an energy nearly 2,000 times the rest energy of
an individual proton (given by Einsteins well-known formula E = mc?). Earlier in
this decade, physicists capitalized on Tevatron’s unsurpassed energy in their discovery
of the top quark, the heaviest known elementary particle. After a shutdown of several
years, the Tevatron resumed operation in 2001 with even more intense particle beams.
In 2007, the available energies will make a ‘quantum jump’ when the European Labo-
ratory for Particle Physics, or CERN (located near Geneva, Switzerland) turns on the
Large Hadron Collider (LHC). The LHC should reach energies 15,000 times the proton
rest energy. The LHC is a multi-billion dollar international project, funded mainly by
European countries with substantial contributions from the United States, Japan, and
other countries.

52Recall that gauge theories are a class of physical theories based on the idea that
symmetry transformations can be performed locally as well as globally. Yang-Mills
theory is a particular example of gauge theories with non—Abelian symmetry groups
specified by the Yang-Mills action. For example, the Yang-Mills action for the O(n)
gauge theory for a set of n non—interacting scalar fields ¢;, with equal masses m is

1 1
5= /(Z 58#901'8”% - §m24p12)d43:.
i=1

Other gauge theories with a non—Abelian gauge symmetry also exist, e.g., the Chern—
Simons model. Most physical theories are described by Lagrangians which are invariant
under certain transformations, when the transformations are identically performed at
every space—time point-they have global symmetries. Gauge theory extends this idea by
requiring that the Lagrangians must possess local symmetries as well-it should be possible
to perform these symmetry transformations in a particular region of space—time without
affecting what happens in another region. This requirement is a generalized version of
the equivalence principle of general relativity. Gauge symmetries reflect a redundancy in
the description of a system. The importance of gauge theories for physics stems from the
tremendous success of the mathematical formalism in providing a unified framework to
describe the quantum field theories of electromagnetism, the weak force and the strong
force. This theory, known as the Standard Model (see footnote 5), accurately describes
experimental predictions regarding three of the four fundamental forces of nature, and is
a gauge theory with the gauge group SU(3) x SU(2) x U(1). Modern theories like string
theory, as well as some formulations of general relativity, are, in one way or another,
gauge theories. Sometimes, the term gauge symmetry is used in a more general sense to
include any local symmetry, like for example, diffeomorphisms.
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of hadron (subatomic particle which experiences the strong nuclear force)
behavior. In particle—accelerator experiments, physicists observed that the
spin of a hadron is never larger than a certain multiple of the square of
its energy. No simple model of the hadron, such as picturing it as a set
of smaller particles held together by spring—like forces, was able to explain
these relationships. In 1968, theoretical physicist Gabriele Veneziano was
trying to understand the strong nuclear force when he made a startling dis-
covery. He found that a 200—year—old Euler beta function perfectly matched
modern data on the strong force. Veneziano applied the Euler beta function
to the strong force, but no one could explain why it worked.

In 1970, Yoichiro Nambu, Holger Bech Nielsen, and Leonard Susskind
presented a physical explanation for Euler’s strictly theoretical formula. By
representing nuclear forces as vibrating, 1D strings, these physicists showed
how Euler’s function accurately described those forces. But even after
physicists understood the physical explanation for Veneziano’s insight, the
string description of the strong force made many predictions that directly
contradicted experimental findings. The scientific community soon lost
interest in string theory, and the Standard Model, with its particles and
fields, remained un—threatened.

Then, in 1974, John Schwarz and Joel Scherk studied the messenger—
like patterns of string vibration and found that their properties exactly
matched those of the gravitational force’s hypothetical messenger particle
- the graviton. They argued that string theory had failed to catch on be-
cause physicists had underestimated its scope. This led to the development
of bosonic string theory, which is still the version first taught to many stu-
dents. The original need for a viable theory of hadrons has been fulfilled by
quantum chromodynamics (QCD), the theory of Gell-Mann’s quarks and
their interactions. It is now hoped that string theory (or some descendant
of it) will provide a fundamental understanding of the quarks themselves.

Bosonic string theory is formulated in terms of the so—called Polyakov
action, a mathematical quantity which can be used to predict how strings
move through space and time. By applying the ideas of quantum mechan-
ics to the Polyakov action - a procedure known as quantization - one can
deduce that each string can vibrate in many different ways, and that each
vibrational state appears to be a different particle. The mass the particle
has, and the fashion with which it can interact, are determined by the way
the string vibrates - in essence, by the ‘note’ which the string sounds. The
scale of notes, each corresponding to a different kind of particle, is termed
the spectrum of the theory. These early models included both open strings,
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which have two distinct endpoints, and closed strings, where the endpoints
are joined to make a complete loop. The two types of string behave in
slightly different ways, yielding two spectra. Not all modern string the-
ories use both types; some incorporate only the closed variety. However,
the bosonic theory has problems. Most importantly, the theory has a fun-
damental instability, believed to result in the decay of space-time itself.
Additionally, as the name implies, the spectrum of particles contains only
bosons, particles like the photon which obey particular rules of behavior.
While bosons are a critical ingredient of the Universe, they are not its only
constituents. Investigating how a string theory may include fermions in its
spectrum led to supersymmetry, a mathematical relation between bosons
and fermions which is now an independent area of study. String theories
which include fermionic vibrations are now known as superstring theories;
several different kinds have been described.

Roughly between 1984 and 1986, physicists realized that string theory
could describe all elementary particles and interactions between them, and
hundreds of them started to work on string theory as the most promising
idea to unify theories of physics. This so—called first superstring revolution
was started by a discovery of anomaly cancellation in type I string theory by
Michael Green and John Schwarz in 1984. The anomaly is cancelled due to
the Green—Schwarz mechanism. Several other ground—breaking discoveries,
such as the heterotic string, were made in 1985.

Note that in the type IIA and type IIB string theories closed strings
are allowed to move everywhere throughout the 10D space-time (called the
bulk), while open strings have their ends attached to D-branes, which are
membranes of lower dimensionality (their dimension is odd - 1,3,5,7 or 9
— in type ITA and even — 0,2,4,6 or 8 — in type IIB, including the time
direction).

While understanding the details of string and superstring theories re-
quires considerable geometrical sophistication, some qualitative properties
of quantum strings can be understood in a fairly intuitive fashion. For
example, quantum strings have tension, much like regular strings made of
twine; this tension is considered a fundamental parameter of the theory.
The tension of a quantum string is closely related to its size. Consider a
closed loop of string, left to move through space without external forces.
Its tension will tend to contract it into a smaller and smaller loop. Classi-
cal intuition suggests that it might shrink to a single point, but this would
violate Heisenberg’s uncertainty principle. The characteristic size of the
string loop will be a balance between the tension force, acting to make it
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Contemporary String Theories

Type Dim | Details

Bosonic| 26 Only bosons, no fermions means only forces, no mat-
ter, with both open and closed strings; major flaw:
a particle with imaginary mass, called the tachyon,
representing an instability in the theory

I 10 Supersymmetry between forces and matter, with both
open and closed strings, no tachyon, group symmetry
is SO(32)

ITA 10 Supersymmetry between forces and matter, with

closed strings and open strings bound to D—branes, no
tachyon, massless fermions spin both ways (nonchi-
ral)

IIB 10 Supersymmetry between forces and matter, with
closed strings and open strings bound to D-branes, no
tachyon, massless fermions only spin one way (chiral)
HO 10 Supersymmetry between forces and matter, with
closed strings only, no tachyon, heterotic, meaning

right moving and left moving strings differ, group
symmetry is SO(32)
HE 10 Supersymmetry between forces and matter, with
closed strings only, no tachyon, heterotic, meaning
right moving and left moving strings differ, group
symmetry is Eg x Eg

small, and the uncertainty effect, which keeps it ‘stretched’. Consequently,
the minimum size of a string must be related to the string tension.

Before the 1990s, string theorists believed that there were five distinct
superstring theories: type I, types IIA and IIB, and the two heterotic string
theories (SO(32) and Eg x Eg). The thinking was that out of these five
candidate theories, only one was the actual correct theory of everything,
and that theory was the theory whose low energy limit, with ten dimensions
spacetime compactified down to four, matched the physics observed in our
world today. But now it is known that this naive picture was wrong, and
that the five superstring theories are connected to one another as if they are
each a special case of some more fundamental theory, of which there is only
one. These theories are related by transformations that are called dualities.
If two theories are related by a duality transformation, it means that the
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first theory can be transformed in some way so that it ends up looking just
like the second theory. The two theories are then said to be dual to one
another under that kind of transformation. Put differently, the two theories
are two different mathematical descriptions of the same phenomena. These
dualities link quantities that were also thought to be separate. Large and
small distance scales, strong and weak coupling strengths — these quantities
have always marked very distinct limits of behavior of a physical system,
in both classical field theory and quantum particle physics. But strings can
obscure the difference between large and small, strong and weak, and this
is how these five very different theories end up being related.

This type of duality is called T—duality. T—duality relates type IIA
superstring theory to type IIB superstring theory. That means if we take
type ITA and Type IIB theory and ‘compactify’ them both on a circle, then
switching the momentum and winding modes, and switching the distance
scale, changes one theory into the other. The same is also true for the two
heterotic theories. T—duality also relates type I superstring theory to both
type ITA and type IIB superstring theories with certain boundary conditions
(termed ‘orientifold’). Formally, the location of the string on the circle is
described by two fields living on it, one which is left-moving and another
which is right-moving. The movement of the string center (and hence its
momentum) is related to the sum of the fields, while the string stretch
(and hence its winding number) is related to their difference. T-duality
can be formally described by taking the left-moving field to minus itself, so
that the sum and the difference are interchanged, leading to switching of
momentum and winding.

On the other hand, every force has a coupling constant, which is a mea-
sure of its strength, and determines the chances of one particle to emit
or receive another particle. For electromagnetism, the coupling constant is
proportional to the square of the electric charge. When physicists study the
quantum behavior of electromagnetism, they can’t solve the whole theory
exactly, because every particle may emit and receive many other particles,
which may also do the same, endlessly. So events of emission and reception
are considered as perturbations and are dealt with by a series of approx-
imations, first assuming there is only one such event, then correcting the
result for allowing two such events, etc (this method is called Perturbation
theory. This is a reasonable approximation only if the coupling constant is
small, which is the case for electromagnetism. But if the coupling constant
gets large, that method of calculation breaks down, and the little pieces
become worthless as an approximation to the real physics. This can also
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happen in string theory. String theories have a string coupling constant.
But unlike in particle theories, the string coupling constant is not just a
number, but depends on one of the oscillation modes of the string, called
the dilaton. Exchanging the dilaton field with minus itself exchanges a very
large coupling constant with a very small one. This symmetry is called S-
duality. If two string theories are related by S—duality, then one theory
with a strong coupling constant is the same as the other theory with weak
coupling constant. The theory with strong coupling cannot be understood
by means of perturbation theory, but the theory with weak coupling can.
So if the two theories are related by S-duality, then we just need to under-
stand the weak theory, and that is equivalent to understanding the strong
theory. Superstring theories related by S—duality are: type I superstring
theory with heterotic SO(32) superstring theory, and type IIB theory with
itself.

Around 1995, Edward Witten and others found strong evidence that
the different superstring theories were different limits of a new 11D theory
called M—theory. With the discovery of M—theory, an extra dimension ap-
peared and the fundamental string of string theory became a 2-dimensional
membrane called an M2-brane (or supermembrane). Its magnetic dual is
an Mb5-brane. The various branes of string theory are thought to be related
to these higher dimensional M-branes wrapped on various cycles. These
discoveries sparked the so—called second superstring revolution.

One intriguing feature of string theory is that it predicts the number
of dimensions which the universe should possess. Nothing in Maxwell’s
theory of electromagnetism, or Einstein’s theory of relativity, makes this
kind of prediction; these theories require physicists to insert the number
of dimensions ‘by hand’. The first person to add a fifth dimension to Ein-
stein’s four space-time dimensions was German mathematician Theodor
Kaluza in 1919. The reason for the un—observability of the fifth dimension
(its compactness) was suggested by Swedish physicist Oskar Klein in 1926.
Today, this is called the 5D Kaluza—Klein theory.

Instead, string theory allows one to compute the number of spacetime
dimensions from first principles. Technically, this happens because for a
different number of dimensions, the theory has a gauge anomaly. This
can be understood by noting that in a consistent theory which includes
a photon (technically, a particle carrying a force related to an unbroken
gauge symmetry), it must be massless. The mass of the photon which
is predicted by string theory depends on the energy of the string mode
which represents the photon. This energy includes a contribution from
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the Casimir effect, namely from quantum fluctuations in the string. The
size of this contribution depends on the number of dimensions since for a
larger number of dimensions, there are more possible fluctuations in the
string position. Therefore, the photon will be massless — and the theory
consistent — only for a particular number of dimensions.

The only problem is that when the calculation is done, the universe’s
dimensionality is not four as one may expect (three axes of space and one
of time), but 26. More precisely, bosonic string theories are 26D, while
superstring and M-theories turn out to involve 10 and 11 dimensions, re-
spectively. In bosonic string theories, the 26 dimensions come from the
Polyakov equation. However, these results appear to contradict the ob-
served four dimensional space—time.

Two different ways have been proposed to solve this apparent contradic-
tion. The first is to compactify the extra dimensions; i.e., the 6 or 7 extra
dimensions are so small as to be undetectable in our phenomenal experi-
ence. The 6D model’s resolution is achieved with the so—called Calabi—Yau
manifolds (see Figure . In 7D, they are termed Gy—manifolds. Es-
sentially these extra dimensions are compactified by causing them to loop
back upon themselves. A standard analogy for this is to consider multidi-
mensional space as a garden hose. If the hose is viewed from a sufficient
distance, it appears to have only one dimension, its length. Indeed, think
of a ball small enough to enter the hose but not too small. Throwing such
a ball inside the hose, the ball would move more or less in one dimension;
in any experiment we make by throwing such balls in the hose, the only
important movement will be one-dimensional, that is, along the hose. How-
ever, as one approaches the hose, one discovers that it contains a second
dimension, its circumference. Thus, a ant crawling inside it would move in
two dimensions (and a fly flying in it would move in three dimensions). This
‘extra dimension’ is only visible within a relatively close range to the hose,
or if one ‘throws in’ small enough objects. Similarly, the extra compact
dimensions are only visible at extremely small distances, or by experiment-
ing with particles with extremely small wave lengths (of the order of the
compact dimension’s radius), which in quantum mechanics means very high
energies. Another possibility is that we are stuck in a 341 dimensional (i.e.,
three spatial dimensions plus one time dimension) subspace of the full uni-
verse. This subspace is supposed to be a D—brane, hence this is known as a
brane—world theory. In either case, gravity acting in the hidden dimensions
affects other non—gravitational forces such as electromagnetism. In princi-
ple, therefore, it is possible to deduce the nature of those extra dimensions
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by requiring consistency with the Standard Model, but this is not yet a
practical possibility. It is also be possible to extract information regarding
the hidden dimensions by precision tests of gravity, but so far these have
only put upper limitations on the size of such hidden dimensions.

Fig. 1.5 Calabi-Yau manifold — a 3D projection created using Mathematica”? .

For popular expose on string theory, see [Witten (2002); Greene (2000)],
while the main textbook is still [Green et. al. (1987)].

1.2 Application: Paradigm of Differential-Geometric
Modelling of Dynamical Systems

In this section we give a paradigm of differential-geometric modelling and

analysis of complex dynamical systems (see [[vancevic and Ivancevic (2006 )]
for more background details). This is essentially a recipe how to develop a
covariant formalism on smooth manifolds, given a certain physical, or bio—
physical, or psycho—physical, or socio—physical system, here labelled by a
generic name: ‘physical situation’. We present this recipe in the form of
the following five—step algorithm.

(I) So let’s start: given a certain physical situation, the first step
in its predictive modelling and analysis, that is, in applying a powerful
differential-geometric machinery to it, is to associate with this situation
two independent coordinate systems, constituting two independent smooth
Riemannian manifolds. Let us denote these two coordinate systems and
their respective manifolds as:

e Internal coordinates: z* = x'(t), (i = 1,...,m), constituting the mD
internal configuration manifold: M™ = {x'}; and
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e External coordinates: y¢ = y°(t), (e = 1,...,n), constituting the nD
external configuration manifold: N™ = {y°}.

The main example that we have in mind is a standard robotic or bio-
dynamic (loco)motion system, in which z¢ denote internal joint coordi-
nates, while y© denote external Cartesian coordinates of segmental centers
of mass. However, we believe that such developed methodology can fit a
generic physical situation.

Therefore, in this first, engineering step (I) of our differential-geometric
modelling, we associate to the given natural system, not one but two differ-
ent and independent smooth configuration manifolds, somewhat like view-
ing from two different satellites a certain place on Earth with a football
game playing in it.

(IT) Once that we have precisely defined two smooth manifolds, as
two independent views on the given physical situation, we can apply our
differential-geometric modelling to it and give it a natural physical inter-
pretation. More precisely, once we have two smooth Riemannian manifolds,

m = {z'} and N™ = {y°}, we can formulate two smooth maps between

them {3

f: N — M, given by coordinate transformation: z* = f*(y¢), (1.6)
and

g: M — N, given by coordinate transformation: y¢ = g°(z%). (1.7)

If the Jacobian matrices of these two maps are nonsingular (regular), that
is if their Jacobian determinants are nonzero, then these two maps are
mutually inverse, f = ¢g~!, and they represent standard forward and inverse
kinematics.

(IIT) Although, maps f and ¢ define some completely general nonlinear
coordinate (functional) transformations, which are even unknown at the
moment, there is something linear and simple that we know about them
(from calculus). Namely, the corresponding infinitesimal transformations
are linear and homogenous: from we have (applying everywhere Ein-
stein’s summation convention over repeated indices)

o

dr' =
:Z: aye y7

(1.8)

53This obviously means that we are working in the category of smooth manifolds.
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while from (1.7 we have
dg°
or’

Furthermore, (|1.8) implies the linear and homogenous transformation of
internal velocities,

dy® = 2 dai, (1.9)

_Of e
7ayey7

(1.10)

while (L.9) implies the linear and homogenous transformation of external
velocities,

_ 9¢°
- Oxt
In this way, we have defined two wvelocity vector—fields, the internal one:
vt = vi(2%,t) and the external one: u® = u®(y°,t), given respectively by the

two nonlinear systems of ODEs, and -E

(IV) The next step in our dlfferentlal geometrical modelling/analysis

i (1.11)

is to define second derivatives of the manifold maps f and g, that is the
two acceleration vector—fields, which we will denote by a' = a’(z?,i,t)
and w® = w®(y®,y°,t), respectively. However, unlike simple physics in
linear Euclidean spaces, these two acceleration vector—fields on manifolds
M and N are not the simple time derivatives of the corresponding velocity
vector—fields (a® # ©* and w® # 1°), due to the existence of the Levi—Civita
connections Vs and Vy on both M and N. Properly defined, these two
acceleration vector—fields respectively read:

at =7t +Fi. vk = 3t —|—F’kx7 and (1.12)
w® = ¢ + Tjulul = §° + 159"y, (1.13)

where I‘ék and I'f, denote the (second-order) Christoffel symbols of the
connections Vs and V.

Therefore, in the step (IIT) we gave the first—level model of our physical
situation in the form of two ordinary vector—fields, the first—order vector—
fields and . For some simple situations (e.g., modelling ecolog-
ical systems), we could stop at this modelling level. Using physical termi-
nology we call them velocity vector—fields. Following this, in the step (IV)

we have defined the two second—order vector—fields (| - ) and (| -, as
54 Although transformations of differentials and associated velocities are linear and ho-

mogeneous, the systems of ODE’s define nonlinear vector—fields, as they include Jacobian
(functional) matrices.
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a connection—base derivations of the previously defined first—order vector—
fields. Using physical terminology, we call them ‘acceleration vector—fields’.

(V) Finally, following our generic physical terminology, as a natural
next step we would expect to define some kind of generic Newton—-Maxwell
force—fields. And we can actually do this, with a little surprise that indi-
vidual forces involved in the two force—fields will not be vectors, but rather
the dual objects called 1-forms (or, 1D differential forms). Formally, we
define the two covariant force—fields as

F; = mgija = mgi; (07 + T 0'0%) = mg; (77 + T 2%3%), and (1.14)
Ge = mgehw = mgeh(u + I‘elu u ) mgeh(y + 1_\ely Y ) (115)

where m is the mass of each single segment (unique, for symplicity), while
gij = giI\]{[ and gep, = gé\;L are the two Riemannian metric tensors corre-
sponding to the manifolds M and N. The two force—fields, F; defined by
and G, defined by , are generic force—fields corresponding to
the manifolds M and N, which represent the material cause for the given
physical situation. Recall that they can be physical, bio—physical, psycho—
physical or socio—physical force—fields. Physically speaking, they are the
generators of the corresponding dynamics and kinematics.

Main geometrical relations behind this fundamental paradigm, forming
the so—called covariant force functor, are depicted in Figure

TT*M F —TTM
F; =mg;;a’

=

Riemannian Geometry

Fi = p at =1

=

. Legendre
T*M ={z',p;}

TM={z"v'}

pi

Symplectic Geometry

M = {2}
Configuration Manifold

5t — iodpk Jq
vt =0+ Iyo?o® =& +F?kr ik

Fig. 1.6 The covariant force functor, including the main relations used by differential—
geometric modelling.
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Chapter 2

Technical Preliminaries: Tensors,
Actions and Functors

2.1 Tensors: Local Machinery of Differential Geometry

Physical and engineering laws must be independent of any particular coor-
dinate systems used in describing them mathematically, if they are to be
valid. In other words, all physical and engineering equations need to be
tensorial or covariant. Therefore, for the reference purpose, in this section,
we give the basic formulas from the standard tensor calculus, which is used
throughout the text. The basic notational convention used in tensor cal-
culus is Finstein’s summation convention over repeated indices. More on
this subject can be found in any standard textbook on mathematical meth-

ods for scientists and engineers, or mathematical physics (we recommend
[Misner et al. (1973)]).

2.1.1 Transformation of Coordinates and Elementary
Tensors

To introduce tensors, consider a standard linear nD matrix system, Ax = b.
It can be rewritten in the so—called covariant form as

aijal =b;, (i,7=1,....n). (2.1)

Here, i is a free index and j is a dummy index to be summed upon, so the

expansion of (2.1) gives

1 2
aix +aex’ + ... +ay,x” = by s

1 2
a1 + agex” + ... + agnx" = bQ,

1 2
Ap1T + apox” + ... + appx”™ = b, ,

51
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as expected from the original matrix form Ax = b. This indicial notation
can be more useful than the matrix one, like e.g., in computer science,
where indices would represent loop variables. However, the full potential
of tensor analysis is to deal with nonlinear multivariate systems, which
are untractable by linear matrix algebra and analysis. The core of this
nonlinear multivariate analysis is general functional transformation.

2.1.1.1  Transformation of Coordinates

Suppose that we have two sets of curvilinear coordinates that are single—
valued, continuous and smooth functions of time, 27 = 27 (¢), (j = 1,...,m)
and 7' = #i(t), (i = 1,...,n), respectively, representing trajectories of mo-
tion of some physical or engineering system. Then a general (m x n)D
transformation (i.e., a nonlinear map) z7 +— Z° is defined by the set of
transformation equations

Tt = 7' (2), (i=1,..,n; j=1,..,m). (2.2)

In case of the square transformation, m = n, we can freely exchange the
indices, like e.g., in general relativity theory. On the other hand, in the
general case of rectangular transformation, m # n, like e.g., in robotics,
and we need to take care of these ‘free’ indices.

Now, if the Jacobian determinant of this coordinate transformation is
different from zero,

oz
oxJ

# 0,

then the transformation ([2.2)) is reversible and the inverse transformation,
x) =27 (zY),

exists as well. Finding the inverse transformation is the problem of matrix
inverse: in case of the square matrix it is well defined, although the inverse
might not exist if the matrix is singular. However, in case of the square
matrix, its proper inverse does not exist, and the only tool that we are
left with is the so—called Moore—Penrose pseudoinverse, which gives an
optimal solution (in the least—squares sense) of an overdetermined system of
equations. Every (overdetermined) rectangular coordinate transformation
induces a redundant system.

For example, in Euclidean 3D space R?, transformation from Cartesian
coordinates y* = {z,y, 2} into spherical coordinates z* = {p, 0, ¢} is given



Technical Preliminaries: Tensors, Actions and Functors 53

by

yt = 2! cos x? cos 3, y? = ! sina? cos z®, y® =atsina®, (2.3)
with the Jacobian matrix given by

oy cosx? cos 23 —xlsinz? cosz® —zt cos 22 sin 23
( O ) = | sinz?cos2® z'cosz?cosx® —alsinaz?sinazd (2.4)
x .
sin 23 0 x! cos 23
k

and the corresponding Jacobian determinant, % = (2)2% cos 3.

An inverse transform is given by

2
Y
o= VP PP+ PR 2’ = arctan (y)

3 i
z3 = arctan S A , with ai
()2 + (y?)? y*

As an important engineering (robotic) example, we have a rectangular

1
(z1)2cos a3’

transformation from 6 DOF external, end—effector (e.g., hand) coordinates,
into n DOF internal, joint—angle coordinates. In most cases this is a redun-
dant manipulator system, with infinite number of possible joint trajectories.

2.1.1.2 Scalar Invariants

A scalar invariant (or, a zeroth order tensor) with respect to the transfor-
mation (2.2)) is the quantity ¢ = ¢(t) defined as

p(z') = (),
which does not change at all under the coordinate transformation. In other
words, ¢ is invariant under (2.2)). For example, biodynamic examples of
scalar invariants include various energies (kinetic, potential, biochemical,

mental) with the corresponding kinds of work, as well as related thermo-
dynamic quantities (free energy, temperature, entropy, etc.).

2.1.1.3 Vectors and Covectors

Any geometrical object v* = v¢(t) that under the coordinate transformation

(2.2) transforms as

] jafil . ..
' =0 — (remember, summing upon j—index),

oxi’
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represents a wvector, traditionally called a contravariant vector, or, a first—
order contravariant tensor. Standard physical and engineering examples
include both translational and rotational velocities and accelerations.

On the other hand, any geometrical object v; = v;(¢t) that under the
coordinate transformation transforms as

oz’

P g

v

represents a one—form or covector, traditionally called a covariant vector,
or, a first-order covariant tensor. Standard physical and engineering exam-
ples include both translational and rotational momenta, forces and torques.

2.1.1.4  Second—Order Tensors

Any geometrical object t** = t*(¢) that under the coordinate transforma-

tion (2.2 transforms as

0z oz"

fik
Oxi Oxt’

(ik=1,...,n; j,l=1,...m),

represents a second—order contravariant tensor. It can be get as an outer
product of two contravariant vectors, th = wiok.
Any geometrical object t;;, = t;1(t) that under the coordinate transfor-

mation (2.2)) transforms as

_ Oxd !
e = g gk

represents a second—order covariant tensor. It can be get as an outer prod-
uct of two covariant vectors, t;, = u;Vg.

Any geometrical object tz = t}; (t) that under the coordinate transfor-
mation transforms as

i j 8@1 al'l

Bo=t

P 90l 9k

represents a second—order mized tensor. It can be get as an outer product

of a covariant vector and a contravariant vector, t?C = ulvy,.
Standard physical and engineering examples examples include:

(1) The fundamental (material) covariant metric tensor g = gk, i.e., inertia
matrix, given usually by the transformation from Cartesian coordinates
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1/ to curvilinear coordinates x*,

Oyl Oyl

ik = 37 ok’ (summing over j). (2.5)

It is used in the quadratic metric form ds? of the space in consideration
(e.g., a certain physical or engineering configuration space)

ds? = dy’ dy’ = gipdatda®,

where the first term on the r.h.s denotes the Fuclidean metrics, while
the second term is the Riemannian metric of the space, respectively.

(2) Its inverse g—! = ¢g°*, given by

Gik

= ﬁ7 G, is the cofactor of the matrix (g;x);
Gik

9" = (gir) "

(3) The Kronecker—delta symbol &%, given by

FTloifi £k

used to denote the metric tensor in Cartesian orthogonal coordinates.
0 is a discrete version of the Dirac d—function. The generalized

Kronecker—delta symbol 67% (in 3D) is the product of Ricci antisym-

° lmn
metric tensors €% and €pmn,
0 if at least two indices are equal
(ﬁirlfn =g, = +1 if both ijk and Imn are either even or odd

—1 if one of ijk, Imn is even and the other is odd

For example, to derive components of the metric tensor g = g;; in
standard spherical coordinates, we use the relations (2.3}{2.4])) between the

spherical coordinates ' = {p,0, ¢} and the Cartesian coordinates y* =

k k
{z,y,z}, and the definition, g¢;; = %%, to get the metric tensor (in

matrix form)

1 0 0 1 0 0
gij) =10 (xH)%cos?2® 0 =10p?cos?p 0 |, 2.6
j
0 0 (x1)? 0 0 p?
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and the inverse metric tensor

1 0 0 1 0 0

(g”) = 0 (x1)? 2052 x3 0 = 0 p? cc1)52 © 0 : (27)
0 0 e 0 0
(=1) p

Given a tensor, we can derive other tensors by raising and lowering
its indices, by their multiplication with covariant and contravariant metric
tensors. In this way, the so—called associated tensors to the given tensor
are be formed. For example, v* and v; are associated tensors, related by

v; = gikvk and vt = g““vk.

Given two vectors, u = u’ and v = v’ their inner (dot, or scalar)
product is given by

u-v= gijuivj,
while their vector (cross) product (in 3D) is given by
uxv= eijkujvk.
2.1.1.5 Higher-Order Tensors

As a generalization of above tensors, consider a geometrical object R};ps =
};ps(t) that under the coordinate transformation (2.2 transforms as

_ ; 0z 0z! 9x Oxt

s T Mat 9z Ozk OzP Oz

Clearly, R}, = Rj;(z,t) is a fourth order tensor, once contravariant and
three times covariant, representing the central tensor in Riemannian geom-

(all indices =1, ..., n). (2.8)

etry, called the Riemann curvature tensor. As all physical and engineering
configuration spaces are Riemannian manifolds, they are all characterized
by curvature tensors. In case Rﬁcjl = 0, the corresponding Riemannian
manifold reduces to the Euclidean space of the same dimension, in which
Gik = 0},

If one contravariant and one covariant index of a tensor a set equal, the
resulting sum is a tensor of rank two less than that of the original tensor.
This process is called tensor contraction.

If to each point of a region in an nD space there corresponds a definite
tensor, we say that a tensor—field has been defined. In particular, this is a
vector—field or a scalar—field according as the tensor is of rank one or zero.
It should be noted that a tensor or tensor—field is not just the set of its
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components in one special coordinate system, but all the possible sets of
components under any transformation of coordinates.

2.1.1.6  Tensor Symmetry

A tensor is called symmetric with respect to two indices of the same vari-
ance if its components remain unaltered upon interchange of the indices;
e.g., a;j = aj;, ora’y = al’. A tensor is called skew-symmetric (or, antisym-
metric) with respect to two indices of the same variance if its components
change sign upon interchange of the indices; e.g., a;; = —aj;, or a¥ = —a’".
Regarding tensor symmetry, in the following we will prove several useful
propositions.

(i) Every second—order tensor can be expressed as the sum of two tensors,
one of which is symmetric and the other is skew—symmetric. For example, a
second-order tensor a;;, which is for 7, j = 1, ..., n given by the n xn—matrix

a11 @12 ... G1n
a21 22 ... Gnp2

Q5 = )
Apl Ap2 ... Gpn
can be rewritten as
1
aij = 504 + 2% + 3% ~ 5% that can be rearranged as
1 1 1 1 )
= —a;; + zaj;; + -a;; — za;;, which can be regrouped as
2 2 2 2
= Q(aij +aj;) + §(aij —aj;), which can be written as
= Q(ij) T afig)

where a(;;) denotes its symmetric part, while ap;; denotes its skew—
symmetric part, as required.

(ii) Every quadratic form can be made symmetric. For example, a
quadratic form a;;z’2?, that (for 4,7 = 1,...,n) expands as

ajjr'y? = a1z et + aor'2? + ...+ appata™ +

+ a2zt + agex?a? + .. 4 agprs™ +

n,.1 n,.2 n,.n
+ An1T T+ Ap2 T + o+ AT T,

with a non-symmetric second-order tensor a;;, can be made symmetric in
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the following way.

| 1 o
a;;x'e) = iaiszxj + iaijx’xj.
If we swap indices in the second term, we get
1 coa 1 o
= §aijxlx7 + iajixsz ,  which is equal to

1 .
= 5(0@]‘ + aji) J?Zl'j.

If we now use a substitution,
1
§(aij +aj;) = bijj =bj;, we get

a;x'x! = bjxal,

where a;; is non-symmetric and b;; is symmetric, as required.

(iii) Every second-order tensor that is the sum a = u'v’ + u/v, or,
aij = u;vj + u;v; is symmetric. In both cases, if we swap the indices 7 and
j, we get a?® = wv' + u'v?, (resp. aj; = u;v; + u;v;), which implies that
the tensor a™/ (resp. a;;) is symmetric.

(iv) Every second—order tensor that is the difference b = uiv/ — uivt,
or, bjj = wv; — u;v; is skew-symmetric. In both cases, if we swap the
indices i and j, we get b/ = —(u/v’ — u'v?), (resp. by = —(ujv; — w;v;)),
which implies that the tensor b* (resp. b;;) is skew—symmetric.

2.1.2 Fuclidean Tensors
2.1.2.1 Basis Vectors and the Metric Tensor in R™

The natural Cartesian coordinate basis in an nD Euclidean space R"™ is
defined as a set of nD unit vectors e’ given by

e! =[{1,0,0,..}", e* ={0,1,0,..}}, € = {0,0,1,..}", ..., e" ={0,0,...,1}7],
(where index ¢ denotes transpose) while its dual basis e; is given by:

er = [{1,0,0,..}, es = {0,1,0,...}, e3 = {0,0,1,..}, ey €n = {0,0, ..., 1}],
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(no transpose) where the definition of the dual basis is given by the Kro-
necker’s d—symbol, i.e., the n x n identity matrix:

100..0

010..0
eej=06:=1001..0]1,

0060..1

that is the metric tensor in Cartesian coordinates equals g = 5; In general,
(i.e., curvilinear) coordinate system, the metric tensor g = g;; is defined as
the scalar product of the dual basis vectors, i.e., the n X n matrix:

gi11 912 913 --- 9in
921 922 g23 -.- 92n
gij = €i - €5 = | g31 932 933 --- 93n

gn1 Gn2 gn3 --- Inn
2.1.2.2 Tensor Products in R™

Let u and v denote two vectors in R", with their components given by
i i

w=u-¢e, and v/ =v-é€,

where u = |u| and v = |v| are their respective norms (or, lengths). Then

their inner product (i.e., scalar, or dot product) u-v is a scalar invariant
S, defined as

S=u"-v = guv.

Besides the dot product of two vectors u, v € R™, there is also their ten-
sor product (i.e., generalized vector, or cross product), which is a second—
order tensor

T =u®v, in components, 7% = u’ @ v/,
In the natural basis e; this tensor is expanded as
T=TVe® €5,
while its components in the dual basis read:

T =T(e, %),
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where T = |T| is its norm. To get its components in curvilinear coordinates,
we need first to substitute it in Cartesian basis:

TV = T (em ® en)(ei, ej),
then to evaluate it on the slots:
TY =T™",, -e'e, - €,

and finally to calculate the other index configurations by lowering indices,
by means of the metric tensor:

T; = gjmTim; :rij = gzmgjnTmn

2.1.3 Cowvariant Differentiation

In this subsection, we need to consider some nD Riemannian manifold M
(see section (3.10.1)) below) with the metric form (i.e., line element) ds* =
girdr'dz®, as a configuration space for a certain physical or engineering
system (e.g., robotic manipulator).

2.1.3.1  Christoffel’s Symbols

Partial derivatives of the metric tensor g;x form themselves special
symbols that do not transform as tensors (with respect to the coordinate
transformation ), but nevertheless represent important quantities in
tensor analysis. They are called Christoffel symbols of the first kind, defined
by

1 0
Cije = 5(@&@9@‘ + 023 Gki — Oz Gjk), (remembeh Opi = 8xi>

and Christoffel symbols of the second kind, defined by
Ff’j = "Iy

The Riemann curvature tensor Ri; (2.8) of the manifold M, can be ex-
pressed in terms of the later as

! ! ! ! !
Rijp = 0piUig, — O Ty + 10T — T T

For example, in 3D spherical coordinates, z° = {p, 0, ¢}, with the metric
tensor and its inverse given by (2.6 7 it can be shown that the only
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nonzero Christoffel’s symbols are:

1
F?z = 1—‘21 = F13 = 1—‘31 = ;7 Fzs = Fsz = —tan6, (2.9)
Iy =—p, I, = —pcos® 0, I'2, = sinf cos 6.
2.1.3.2 Geodesics
From the Riemannian metric form ds? = g¢;pdzidz® it follows that the

distance between two points t; and t; on a curve ' = z(t) in M is given
by

to
\ giki'iébkdt.

That curve 2* = 2%(¢) in M which makes the distance s a minimum is called
a geodesic of the space M (e.g., in a sphere, the geodesics are arcs of great
circles). Using the calculus of variations, the geodesics are found from the
differential geodesic equation,

R I”,Cx] =0, (2.10)

where overdot means derivative upon the line parameter s.
For example, in 3D spherical coordinates 2° = {p,0, ¢}, using (2.9),
geodesic equation (2.10)) becomes a system of three scalar ODEs,

. )
f)—p@z—pcoszeng =0, 0+ Zpp +sinfcosfp® = 0,
P

2 .
b+ Zpp— 2tan 60 = 0. (2.11)
p

2.1.3.3 Cowariant Derivative

Ordinary total and partial derivatives of vectors (covectors) do not trans-
form as vectors (covectors) with respect to the coordinate transformation
(2.2). For example, let 4* be Cartesian coordinates and z* be general curvi-
linear coordinates of a dynamical system (with i,k = 1,...,n). We have:
2(t) = 2'[y*(¢)], which implies that

dmi_axi@ z_@k
dt — Oyk dt’ ~ kY

or equivalently, T

that is a transformation law for the contravariant vector, which means that

the velocity v* = &' = ddit is a proper contravariant vector. However, if we



62 Applied Differential Geometry: A Modern Introduction

perform another time differentiation, we get
dez' - axi dek 82xz’ dyk dym
ez oyk dt2  oykoy™ dt dt’

. 2.0 .
which means that ddT“g is not a proper vector.

2.1 . . . . y
ddTﬁ is an acceleration vector only in a special case when z' are an-

other Cartesian coordinates; then % = 0, and therefore the original
coordinate transformation is linear, x* = aly* + b* (where ai and b’ are
constant). _

Therefore, % represents an acceleration vector only in terms of Newto-
nian mechanics in a Euclidean space R™, while it is not a proper acceleration
vector in terms of Lagrangian or Hamiltonian mechanics in general curvilin-
ear coordinates on a smooth manifold M™. And we know that Newtonian
mechanics in R" is sufficient only for fairly simple mechanical systems.

The above is true for any tensors. So we need to find another derivative
operator to be able to preserve their tensor character. The solution to this
problem is called the covariant derivative.

The covariant derivative vfk of a contravariant vector v’ is defined as

i i U
'U;k —amk,’U +F]kv .
Similarly, the covariant derivative v;,;, of a covariant vector v; is defined as
_ J
Visk = amwi — Fikvj'

Generalization for the higher order tensors is straightforward; e.g., the co-
variant derivative tfcl; o of the third order tensor t7, is given by

Jj J J S _ TS I _ TS 4
g = Onatyy + Dty — Doty — Tiglys-

The covariant derivative is the most important tensor operator in gen-
eral relativity (its zero defines parallel transport) as well as the basis for
defining other differential operators in mechanics and physics.

2.1.3.4  Covariant Form of Differential Operators

Here we give the covariant form of classical vector differential operators:
gradient, divergence, curl and Laplacian.

Gradient. If ¢ = (2% t) is a scalar field, the gradient one—form grad(y)
is defined by

grad(p) = Vo = ¢, = Oyi¢p.
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Divergence. The divergence div(v?) of a vector-field vi = vi(a?,t) is
defined by contraction of its covariant derivative with respect to the coor-
dinates x* = #*(t), i.e., the contraction of v, namely

div(v') = vl; = —= 0, (1/gv").
(v*) = v 7 (vVgv')
Curl. The curl curl(d;) of a oneform 6; = 6;(z%,t) is a second—order

covariant tensor defined as
curl(ﬁi) = Hi;k — 9}6;2‘ = 8xk02 — 8119;6

Laplacian. The Laplacian Ay of a scalar invariant ¢ = p(x%,t) is the
divergence of grad(yp), or

. . 1 .
Ap = V?p = div(grad(p)) = div(e,;) = ﬁaﬂ(\/ﬁg F0,10).

2.1.3.5 Absolute Derivative

The absolute derivative (or intrinsic, or Bianchi’s derivative) of a con-
travariant vector v’ along a curve x* = 2¥(t) is denoted by ©° = Dv’/dt
and defined as the inner product of the covariant derivative of v and
i* = dak /dt, ie., vfkj:k, and is given by

0" =o' + Dol dh
Similarly, the absolute derivative ¥; of a covariant vector v; is defined as

731‘ = ’[)i — szng'ck.
Generalization for the higher order tensors is straightforward; e.g., the ab-
solute derivative ¢7, of the third order tensor ¢, is given by

04 J 45 24 _ TS £ 54 _ 175 47 ;4
by =ty + Tostid kqtsi® lgtrs Y

The absolute derivative is the most important differential operator in
physics and engineering, as it is the basis for the covariant form of both
Lagrangian and Hamiltonian equations of motion of many physical and
engineering systems.
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2.1.3.6 3D Curve Geometry: Frenet-Serret Formulae

Given three unit vectors: tangent 7°, principal normal 5, and binormal
v*, as well as two scalar invariants: curvature K and torsion T, of a curve
v(s) = y[x%(s)], the so—called Frenet-Serret formulae are Valicﬂ

A

P= 4T = KB
= +F’kﬁJ it = —(K7' 4+ Tv'),
vt +FZ vk = 1s

@
|

<.

Xl

2.1.3.7 Mechanical Acceleration and Force

In modern analytical mechanics, the two fundamental notions of accelera-
tion and force in general curvilinear coordinates are substantially different
from the corresponding terms in Cartesian coordinates as commonly used
in engineering mechanics. Namely, the acceleration vector is not an ordi-
nary time derivative of the velocity vector; ‘even worse’, the force, which is
a paradigm of a vector in statics and engineering vector mechanics, is not
a vector at all. Proper mathematical definition of the acceleration vector
is the absolute time derivative of the velocity vector, while the force is a
differential one—form.

To give a brief look at these ‘weird mathematical beasts’, consider a ma-
terial dynamical system described by n curvilinear coordinates z = x(t).
First, recall from section above, that an ordinary time derivative of
the velocity vector vi(t) = i*(t) does not transform as a vector with respect
to the general coordinate transformation . Therefore, a’ # . So, we
need to use its absolute time derivative to define the acceleration vector
(with i,4,k =1,...,n),

adl == —— = vfk:rk =0 Jrl” vk = 3 +szzj (2.12)

which is equivalent to the l.h.s of the geodesic equation . Only in
the particular case of Cartesian coordinates, the general acceleration vector
reduces to the familiar engineering form of the Euclidean acceleration
vectorl] a = V.

IIn this paragraph, the overdot denotes the total derivative with respect to the line
parameter s (instead of time t).

2Any Euclidean space can be defined as a set of Cartesian coordinates, while any
Riemannian manifold can be defined as a set of curvilinear coordinates. Christoffel’s
symbols 1"3. i, vanish in Euclidean spaces defined by Cartesian coordinates; however, they
are nonzero in Riemannian manifolds defined by curvilinear coordinates.
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For example, in standard spherical coordinates ' = {p, 0, ¢}, we have
the components of the acceleration vector given by (2.11)), if we now rein-
terpret overdot as the time derivative,

. .2
a’ =p— ,002 — pcos? 02, a’ = 0+ Zpp+sinbcosHp?,
p

2 .
a¥ = @+ —pp —2tan60¢p.
p
Now, using (2.12)), the Newton’s fundamental equation of motion, that
is the basis of all science, F = m a, gets the following tensorial form

F'=ma" =mi' = m(vka'k) =m0’ + F;kvjvk) = m(&" + F;kijj:k),
(2.13)
which defines Newtonian force as a contravariant vector.

However, modern Hamiltonian dynamics reminds us that: (i) Newton’s
own force definition was not really F = ma, but rather F = p, where
p is the system’s momentum, and (ii) the momentum p is not really a
vector, but rather a dual quantity, a differential oneffornﬁ Consequently,
the force, as its time derivative, is also a one—form (see Figure also,
compare with Figure Figure above). This new force definition includes
the precise definition of the mass distribution within the system, by means
of its Riemannian metric tensor g;;. Thus, has to be modified as

F; = mg;;a® = mg; (07 + T, 00k) = mgy; (37 + T, 4" %F), (2.14)

where the quantity mg;; is called the material metric tensor, or inertia
matriz. Equation (2.14)) generalizes the notion of the Newtonian force F,
from Euclidean space R™ to the Riemannian manifold M.

2.1.4 Application: Covariant Mechanics

Recall that a material system is regarded from the dynamical standpoint
as a collection of particles which are subject to interconnections and con-
straints of various kinds (e.g., a rigid body is regarded as a number of
particles rigidly connected together so as to remain at invariable distances
from each other). The number of independent coordinates which determine
the configuration of a dynamical system completely is called the number of
degrees of freedom (DOF) of the system. In other words, this number, n,

3For example, in Dirac’s < bra|ket > formalism, kets are vectors, while bras are
one—forms; in matrix notation, columns are vectors, while rows are one—forms.
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Fig. 2.1 A one—form 6 (which is a family of parallel (hyper)surfaces, the so—called
Grassmann planes) pierced by the vector v to give a scalar product (v) =< 0,v >= 2.6
(see text for explanation).

is the dimension of the system’s configuration manifold. This viewpoint is
the core of our applied differential geometry.

For simplicity, let us suppose that we have a dynamical system with
three DOF (e.g., a particle of mass M, or a rigid body of mass M with
one point fixed); generalization to n DOF, with N included masses M,,, is
straightforward. The configuration of our system at any time is then given
by three coordinates {q',q?, ¢®}. As the coordinates change in value the
dynamical system changes its configuration. Obviously, there is an infinite
number of sets of independent coordinates which will determine the con-
figuration of a dynamical system, but since the position of the system is
completely given by any one set, these sets of coordinates must be function-
ally related. Hence, if ¢ is any other set of coordinates, these quantities
must be connected with ¢* by formulae of the type

7 =q(d), (i=1,..,n(=3)). (2.15)

Relations are the equations of transformation from one set of dynam-
ical coordinates to another and, in a standard tensorial way (see [Misner
et al. (1973)]), we can define tensors relative to this coordinate transforma-
tion. The generalized coordinates ¢°, (i = 1,...,n) constitute the system’s
configuration manifold.

In particular, in our ordinary Euclidean 3—dimensional (3D) space R?,
the ordinary Cartesian axes are ' = {r,y, 2}, and the system’s center of
mass (COM) is given by

i Mz,
D1 Mo
where Greek subscript « labels the masses included in the system. If we
have a continuous distribution of matter V' = V(M) rather than the dis-
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crete system of masses M., all the a—sums should be replaced by volume
integrals, the element of mass dM taking the place of M,

;Ma:/{/dM.

An important quantity related to the system’s COM is the double symmet-
ric contravariant tensor

I' = Myx! 29, (2.16)
called the inertia tensor, calculated relative to the origin O of the Cartesian
axes 78, = {Ta) Yas z_a}. If we are given a straight line through O, defined
by its unit vector ', and perpendiculars p, are drawn from the different

particles on the line \’, the quantity
I(\') = Map?,
is called the moment of inertia around X*. The moment of inertia I(\")
can be expressed through inertia tensor as
I(NY) = (Igi; — Lij)\' N,

where g;; is the system’s Fuclidean 3D metric tensor (as defined above),
I= gijlij, and I;; = grmgsnd™" is the covariant inertia tensor. If we now
consider the quadric @ whose equation is

(Ig” — Il‘j>l‘i.’1}j = 1, (217)

we find that the moment of inertia around A’ is 1/R, where R is the radius
vector of @ in the direction of A*. The quadric Q defined by relation
is called the ellipsoid of inertia at the origin O. It has always three principal
axes, which are called the principal azxes of inertia at O, and the planes
containing them in pairs are called the principal planes of inertia at O.
The principal axes of inertia are given by the equations

(Igi; — Iij)N = 0N,
where 6 is a root of the determinant equation

|(I —0)gi; — Lij| = 0.

More generally, if we suppose that the points of our dynamical system
are referred to rectilinear Cartesian axes z* in a Euclidean n—dimensional
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(nD) space R™, then when we are given the time and a set of generalized
coordinates ¢ we are also given all the points x* of the dynamical system,
as the system is determined uniquely. Consequently, the x° are functions
of ¢* and possibly also of the time, that is,

't =2'(¢'t).

If we restrict ourselves to the autonomous dynamical systems in which these
equations do not involve ¢, i.e.,

) (2.18)
then differentiating (2.18)) with respect to the time ¢ gives

01
= —
oq

q’. (2.19)

The quantities ¢*, which form a vector with reference to coordinate trans-
formations (2.15)), we shall call the generalized velocity vector. We see from
(2.19) that when the generalized velocity vector is given we know the veloc-
ity of each point of our system. Further, this gives us the system’s kinetic
enerqy,
1 o 1 ox™ ox™ . ..
Eyin = §Ma9mn$$$3 = iMagmnT;ﬁqlqj- (220)
Now, if we use the Euclidean metric tensor g;; to define the material
metric tensor Gy, including the distribution of all the masses M, of our
system, as

G = M oxl Oxl

agmnaiqiaiqjv (221)

the kinetic energy becomes a homogenous quadratic form in the gen-
eralized system’s velocities ¢,

1(;. atgd

5Gid'd (2.22)
From the transformation relation we see that the material metric
tensor G;; is symmetric in ¢ and j. Also, since Ej;, is an invariant for all
transformations of generalized coordinates, from we conclude that
G;j is a double symmetric tensor. Clearly, this is the central quantity
in classical tensor system dynamics. We will see later, that G;; defines
the Riemannian geometry of the system dynamics. For simplicity reasons,

Ekin =
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G;; is often denoted by purely geometrical symbol g;;, either assuming or
neglecting the material properties of the system.

Now, let us find the equations of motion of our system. According to the
D’Alembert’s Principle of virtual displacements, the equations of motion in
Cartesian coordinates z* in R™ are embodied in the single tensor equation

G (Mo 20 — X6zl = 0, (2.23)

where X is the total force vector acting on the particle M,,, while §z?, is
the associated virtual displacement vector, so that the product g;; X7z,
is the virtual work of the system, and we can neglect in X/, all the internal
or external forces which do not work in the displacement dz%,. If we give
the system a small displacement compatible to with the constraints of the
system, we see that this displacement may be effected by giving increments
dq* to the generalized coordinates ¢* of the system, and these are related
to the d2% in accordance with the transformation formulae dz¢, = %le? 5q7.

Furthermore, in this displacement the internal forces due to the con-
straints of the system will do no work, since these constraints are preserved,
and consequently only the external forces will appear in 7 so it be-

comes

d [(0x™ .\ Ox” ox” ,
mn | Ma— [ 2 gl ) =22 - xmZ2e | 540 =, 2.24
g { dt(aqﬂq>8qz “W]éq 0 (2.24)

Now, using (2.20H2.22), we derive

Magmn—  Zoegi ) oo = S(Gugh)— = 5t gigh = = i L
afmn gy (an q) ag Gt )5 g 74 dt( g ) aq
Also, if we put
oz
F; = gmnX;n aq(;a we get
Fi0q" = gn X627 = 0W, (2.25)

where W is the virtual work done by the external forces in the small
displacement §¢®, which shows that F; is the covariant vector, called the
generalized force vector. Now ([2.24) takes the form

d (O0FEkin OEin i
it (g )~ T~ B o =0
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Since the coordinates ¢* are independent this equation is true for all varia-
tions d¢' and we get as a final result the covariant Lagrangian equations of
motion,

i (aEknn) _ 8Ekzn -

dt \ 9¢* gt
If the force system is conservative and E,.; is the system’s potential energy
given by

7 OBt
1 aql b
then, using (2.25) the Lagrangian equations take the standard form
d (0L oL
4 (o) 2ok 2.26
d (w) o (2.26)

where the Lagrangian function L = L(q,q) of the system is given by L =
FEyin — Epot (since E,o does not contain ¢*).

Now, the kinetic energy Fy;, of the system, given by quadratic form
, is always positive except when ¢’ is zero in which case Ej,, vanishes.
In other words, the quadratic form is positive definite. Consequently,
we can always find the line (or arc) element, defined by

ds® = Gy;dg'dg’. (2.27)

A manifold in which ds? is given by relation of the type of (2.27), geomet-
rically with g;; instead of Gy, is called a Riemannian manifold.

2.1.4.1 Riemannian Curvature Tensor

Every Riemannian manifold is characterized by the Riemann curvature ten-
sor. In physical literature (see, e.g., [Misner et al. (1973)]) it is usually
introduced through the Jacobi equation of geodesic deviation, showing the
acceleration of the relative separation of nearby geodesics (the shortest,
straight lines on the manifold). For simplicity, consider a sphere of radius
a in R3. Here, Jacobi equation is pretty simple,

d*¢

@*FR&ZO,

where ¢ is the geodesic separation vector (the so—called Jacobi vector—field),
s denotes the geodesic arc parameter given by (2.27) and R = 1/a® is the
Gaussian curvature of the surface.
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In case of a higher—dimensional manifold M, the situation is naturally
more complex, but the main structure of the Jacobi equation remains sim-
ilar,

D?¢

g2 R(u,&,u) =0,
where D denotes the covariant derivative and R(u,&,u) is the curvature
tensor, a three—slot linear machine. In components defined in a local coor-
dinate chart (x%) on M, this equation reads

D2¢ ; dad  dxt
= & - =0,
ds? I ds > ds

where Ré.kl are the components of the Riemann curvature tensor.

2.1.4.2  Exterior Differential Forms

Recall that exterior differential forms are a special kind of antisymmetri-
cal covariant tensors (see, e.g., [De Rham (1984); |[Flanders (1963)]). Such
tensor—fields arise in many applications in physics, engineering, and differ-
ential geometry. The reason for this is the fact that the classical vector
operations of grad, div, and curl as well as the theorems of Green, Gauss,
and Stokes can all be expressed concisely in terms of differential forms and
the main operator acting on them, the exterior derivative d. Differential
forms inherit all geometrical properties of the general tensor calculus and
add to it their own powerful geometrical, algebraic and topological ma-
chinery (see Figures and . Differential p—forms formally occur as
integrands under ordinary integral signs in R3:

e a line integral f Pdx + Qdy + Rdz has as its integrand the one—form
w=Pdx+ Qdy+ Rdz;

e a surface integral [[ Adydz+ B dzdx+ C dxdy has as its integrand the
two—form o = Adydz + B dzdx + C dxdy;

e a volume integral [[[ K dxdydz has as its integrand the three—form
A= K dxdydz.

By means of an exterior derivative d, a derivation that transforms
p—forms into (p + 1)—forms, these geometrical objects generalize ordinary
vector differential operators in R3:

e a scalar function f = f(x) is a zero—form;
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Fig. 2.2 Basis vectors and 1-forms in Euclidean R3—space: (a) Translational case; and
(b) Rotational case.

e its gradient df, is a oneffornﬂ

B N S
df = 8mdx+ aydy+ aZdz,

e a curl dw, of a one—form w above, is a two—form

~ (OR 0Q oP OR 0Q 0P )
dw = (8y 82) dydz + (az 81:) dzdr + <8w 8y> dxdy;

4We use the same symbol, d, to denote both ordinary and exterior derivation, in
order to avoid extensive use of the boldface symbols. It is clear from the context which
derivative (differential) is in place: exterior derivative operates only on differential forms,
while the ordinary differential operates mostly on coordinates.
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e a divergence da, of the two—form « above, is a three—form

da = (% + 8_B + a—f) drdydz.

Positive
rance

Py —_— q3

ﬁﬂ:ﬁ

... p3 l:
5, dpndg® g7 94 cdpndg ¢

g

v T
e 32
q ?, cdp,ndg® g

() ﬁu”c-dpsﬂd& =18

Fig. 2.3 Fundamental two—form and its flux in R3: (a) Translational case; (b) Rota-
tional case. In both cases the flux through the plane u A v is defined as [ fu/\v cdp;dg’
and measured by the number of tubes crossed by the circulation oriented by u A v.

Now, although visually intuitive, our Euclidean 3D space R? is not
sufficient for thorough physical or engineering analysis. The fundamen-
tal concept of a smooth manifold, locally topologically equivalent to the
Euclidean nD space R™, is required (with or without Riemannian metric
tensor defined on it). In general, a proper definition of exterior derivative
d for a p—form 3 on a smooth manifold M, includes the Poincaré lemma:
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d(dp) = 0, and validates the general integral Stokes formula

where M is a p—dimensional manifold with a boundary and OM is its (p —
1)—dimensional boundary, while the integrals have appropriate dimensions.
A p—form ( is called closed if its exterior derivative is equal to zero,

g = 0.

From this condition one can see that the closed form (the kernel of the
exterior derivative operator d) is conserved quantity. Therefore, closed
p—forms possess certain invariant properties, physically corresponding to
the conservation laws.

A p—form 3 that is an exterior derivative of some (p — 1)—form «,

ﬁ:daa

is called ezact (the image of the exterior derivative operator d). By
Poincaré lemma, exact forms prove to be closed automatically,

dB = d(da) = 0.

Similarly to the components of a 3D vector v defined above, a one—form
f defined on an nD manifold M can also be expressed in components, using
the coordinate basis {dz'} along the local nD coordinate chart {z'} € M,
as

0 = 0;dx".

Now, the components of the exterior derivative of 8 are equal to the com-
ponents of its commutator defined on M by

df = Wij dJCZ d:Ej,
where the components of the form commutator w;; are given by
([ 00; 00,
Vi T \ozi T o )

The space of all smooth p—forms on a smooth manifold M is denoted by
OP(M). The wedge, or exterior product of two differential forms, a p—form
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a € QP(M) and a g—form 8 € Q9(M) is a (p+q)—form aA 5. For example,
if 0 = a;dz’, and n = b;dz7, their wedge product § A 7 is given by

OAn = aibjdacidmj,

so that the coefficients a;b; of 6 A n are again smooth functions, being
polynomials in the coefficients a; of § and b; of . The exterior product A
is related to the exterior derivative d : QP(M) — QPTL(M), by

dlaAB)=dan B+ (—1)Pa AdS.

Another important linear operator is the Hodge star x : QP(M) —
Q"~P(M), where n is the dimension of the manifold M. This operator
depends on the inner product (i.e., Riemannian metric) on M and also
depends on the orientation (reversing orientation will change the sign). For
any p—forms « and (3,

**a:(—l)p(”fp)oz, and  aAx8=[FAx*a.

Hodge star is generally used to define dual (n — p)—forms on nD smooth
manifolds.

For example, in R? with the ordinary Euclidean metric, if f and g are
functions then (compare with the 3D forms of gradient, curl and divergence
defined above)

6’f 3f of
daf = 8 ——dy + 92 dz,
wdf = 8fd dz + a—fdzdx + g—fdxdy,

dfdg 0fdg Of dg

df N\ xdg = ((‘):ﬂ(%s+8y3y+ 92 92 )d dydz = Af dexdydz,

where Af is the Laplacian on R3. Therefore the three—form df A *dg is the
Laplacian multiplied by the volume element, which is valid, more generally,
in any local orthogonal coordinate system in any smooth domain U € R3.

The subspace of all closed p—forms on M we will denote by Z?(M) C
OP(M), and the sub-subspace of all exact p—forms on M we will denote by
BP(M) C ZP(M). Now, the quotient space

Zr(M)  Ker (d:QP(M) — Qrti(M))
BrM  Tm(d: Qpr=1(M) — Qp(M))

HP (M) =
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is called the pth de Rham cohomology group (or vector space) of a manifold
M. Two p—forms a and § on M are equivalent, or belong to the same
cohomology class [o] € HP(M), if their difference equals o — 5 = df, where
fisa (p—1)—form on M.

2.1.4.3 The Covariant Force Law

Objective of this final tensor section is to generalize the fundamental New-
tonian 3D equation, F = ma, for a generic robotic/biodynamical system,
consisting of a number of flexibly—coupled rigid segments (see Figures
above), and thus to formulate the covariant force law.

To be able to apply the covariant formalism, we need to start with the
suitable coordinate transformation , in this case as a relation between
the 6 external SE(3) rigid-body coordinates, y¢ = y¢(t) (e = 1,...,6), and
2n internal joint coordinates, ' = x'(t) (i = 1,...,2n) (n angles, forming
the constrained n—torus 7", plus n very restricted translational coordi-
nates, forming the hypercube I C R™). Once we have these two sets of
coordinates, external-y° and internal-z*, we can perform the general func-
tional transformation between them,

ot =2t (y°). (2.28)

Now, although the coordinate transformation (2.28)) is nonlinear and even
unknown at this stage, there is something known and simple about it: the
corresponding transformation of differentials is linear and homogenous,

B o’
= o

da’ dy®,

which implies the linear and homogenous transformation of velocities,

o’
ye

it =

ie. (2.29)

Our internal velocity vector—field is defined by the set of ODEs , at
each representative point x* = 2°(t) of the system’s configuration manifold
M =T" x I", as v* = v (2%, t) := (2%, 1).

Note that in general, a vector—field represents a field of vectors defined at
every point 2% within some region U (e.g., movable segments/joints only) of
the total configuration manifold M (consisting of all the segments/joints).
Analytically, vector—field is defined as a set of autonomous ODEs (in our
case, the set ) Its solution gives the flow, consisting of integral curves
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of the vector—field, such that all the vectors from the vector—field are tangent
to integral curves at different representative points z* € U. In this way,
through every representative point x* € U passes both a curve from the flow
and its tangent vector from the vector—field. Geometrically, vector—field is
defined as a cross—section of the tangent bundle T'M, the so—called velocity
phase—space. Its geometrical dual is the 1-form—field, which represents a
field of one—forms (see Figure7 defined at the same representative points
x' € U. Analytically, 1-form-field is defined as an exterior differential
system, an algebraic dual to the autonomous set of ODEs. Geometrically,
it is defined as a cross—section of the cotangent bundle 7% M, the so—called
momentum phase—space. Together, the vector—field and its corresponding
1-form—field define the scalar potential field (e.g., kinetic and/or potential
energy) at the same movable region U C M.

Next, we need to formulate the internal acceleration vector-field, a’ =
a’(z, 4%, t), acting in all movable joints, and at the same time generalizing
the Newtonian 3D acceleration vector a.

According to Newton, acceleration is a rate—of—change of velocity. But,
from the previous subsections, we know that a® # ©. However,

a' =10 =o' 4 Thlvh =& 4 T% a7 ak (2.30)

Once we have the internal acceleration vector—field a' = a'(x?,i%,t),
defined by the set of ODEs (2.30) (including Levi-Civita connections F;k
of the Riemannian configuration manifold M), we can finally define the
internal force 1-form field, F; = F;(z* 4% t), as a family of force one-
forms, half of them rotational and half translational, acting in all movable
joints,

F; = mgija® = mgij(v7 + T v'0%) = mgi; (77 + T '), (2.31)

where we have used the simplified material metric tensor, mg;;, for the
system (considering, for simplicity, all segments to have equal mass m),
defined by its Riemannian kinetic energy form
1 o
T = —mg;jv'v’.
2
Equation F; = mgijaj , defined properly by at every represen-
tative point z* of the system’s configuration manifold M, formulates the
sought for covariant force law, that generalizes the fundamental Newto-
nian equation, F = ma, for the generic physical or engineering system. Its
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meaning is:
Force 1-form—field = Mass distributionx Acceleration vector—field

In other words, the field (or, family) of force one—forms F;, acting in
all movable joints (with constrained rotations on T" and very restricted
translations on I"™), causes both rotational and translational accelerations
of all body segments, within the mass distribution mgijﬂ, along the flow—
lines of the vector—field a’.

2.1.5 Application: Nonlinear Fluid Dynamics

In this subsection we will derive the general form of the Navier—Stokes
equations in nonlinear fluid dynamics.

2.1.5.1 Continuity Equation

Recall that the most important equation in fluid dynamics, as well as in
general continuum mechanics, is the celebrated equation of continuity, (we
explain the symbols in the following text)

Op + div(pu) = 0. (2.32)

As a warm—up for turbulence, we will derive the continuity equation
(2.32)), starting from the mass conservation principle. Let dm denote an
infinitesimal mass of a fluid particle. Then, using the absolute time deriva-

tive operator () = %, the mass conservation principle reads
dm = 0. (2.33)

If we further introduce the fluid density p = dm/dv, where dv is an in-
finitesimal volume of a fluid particle, then the mass conservation principle
(2.33) can be rewritten as

pdv =0,

5More realistically, instead of the simplified metric mg;; we have the material metric
tensor Gyj (2.21), including all k segmental masses m,, as well as the corresponding
moments and products of inertia,

k
oy" Oy*® .
Gij(x,m) = Xglmxzhs@@, (r,s=1,...,6; 4,5 =1,...,2n).
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which is the absolute derivative of a product, and therefore expands into
pdv + pdv = 0. (2.34)

Now, as the fluid density p = p(z*,t) is a function of both time ¢ and
spatial coordinates =¥, for k = 1,2, 3, that is, a scalar—field, its total time
derivative p, figuring in (2.34)), is defined by

p =0+ Opp Oyt = 0yp + p;kuk, (2.35)
or, in vector form p = Op + grad(p) - u,

where u* = u¥ (2 t) = u is the velocity vectorfield of the fluid.

Regarding dv, the other term figuring in l , we start by expanding an
elementary volume dv along the sides {dxl('p), dx{q), dx’(cr)} of an elementary
parallelepiped, as

Lopar i 0 .
dv = iafjk dafy)dal, (), (4,7, k,p,q,m =1,2,3)

so that its absolute derivative becomes

- 1 T;i . &
dv = Eéffk dz (p)dazfq)dx(T)

= ju;ldfqu d:cl(p)da:{q)dx’(cr) (using da’(,) = u;ld:cl(p)),
which finally simplifies into

dv = ulydv = div(u) dv. (2.36)

Substituting ([2.35)) and (2.36]) into (2.34)) gives

% = (Op+ p;kuk) dv + pu;k,gdv =0. (2.37)

As we are dealing with arbitrary fluid particles, dv # 0, so from ([2.37)
follows

Op + p;ku’C + pufk =0ip + (pu¥). = 0. (2.38)

Equation (2.38) is the covariant form of the continuity equation, which in
standard vector notation becomes (2.32)), i.e., d¢p + div(pu) = 0.
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2.1.5.2  Forces Acting on a Fluid

A fluid contained in a finite volume is subject to the action of both volume
forces F' and surface forces S*, which are respectively defined by

Fi:/pfidv, and Si:]{aijdaj. (2.39)

Here, f? is a force vector acting on an elementary mass dm, so that the
elementary volume force is given by

dF' = fidm = pfidv,

which is the integrand in the volume integral on Lh.s of (2.39). o¥ =
o (x%,t) is the stress tensor-field of the fluid, so that the elementary force
acting on the closed oriented surface a is given by

dS" = o"day,

where da; is an oriented element of the surface a; this is the integrand in
the surface integral on the r.h.s of .

On the other hand, the elementary momentum dK* of a fluid particle
(with elementary volume dv and elementary mass dm = pdv) equals the
product of dm with the particle’s velocity u?, i.e.,

dK' = u'dm = pu'dv,

so that the total momentum of the finite fluid volume v is given by the
volume integral

K’ :/puidv. (2.40)

Now, the Newtonian—like force law for the fluid states that the time
derivative of the fluid momentum equals the resulting force acting on it,
K = Fi where the resulting force F? is given by the sum of surface and
volume forces,

P:9+W:f

a

aijdaj—k/pfidv. (2.41)

From 1| taking the time derivative and using % =0, we get

K’ :/puidv,
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where 7! = 4¢(2¥, ) = 0 is the acceleration vector-field of the fluid, so that
©.41) gives

]{Uijdaj + / p(f" —a")dv = 0. (2.42)

Now, assuming that the stress tensor ¢/ = ¢/ (2*,t) does not have any
singular points in the volume v bounded by the closed surface a, we can
transform the surface integral in (2.42)) in the volume one, i.e.,

7{ o da; = / olldv, (2.43)

where a’j denotes the divergence of the stress tensor. The expression lj
shows us that the resulting surface force acting on the closed surface a equals

the flux of the stress tensor through the surface a. Using this expression,
we can rewrite (2.42)) in the form

/v (0? +pft— pui) dv = 0.

As this equation needs to hold for an arbitrary fluid element dv # 0, it
implies the dynamical equation of motion for the fluid particles, also called
the first Cauchy law of motion,

01; +pft = pi. (2.44)

2.1.5.3  Constitutive and Dynamical Equations

Recall that, in case of a homogenous isotropic viscous fluid, the stress tensor
o' depends on the strain-rate tensor-field e = e (x* ¢) of the fluid in
such a way that

o = —pg", when e’ =0,

where the scalar function p = p(:L‘k7 t) represents the pressure field. There-
fore, pressure is independent on the strain-rate tensor e¥. Next, we intro-
duce the viscosity tensor-field 5 = 3 (z*,t), as

BY = o + pg', (2.45)

which depends exclusively on the strain-rate tensor (i.e., (" = 0 whenever
e’/ = (). A viscous fluid in which the viscosity tensor 3 can be expressed
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as a function of the strain-rate tensor e/ in the form

ﬂij = ay(er, err, 6111)9” + ao(er,err, 6111)eij +as(er,err, 6111)6261”,
(2.46)
where o = ayler,err,errr), (I = 1,2,3) are scalar functions of the basic
invariants (e, err,errr) of the strain-rate tensor e, is called the Stokes
fluid.
If we take only the linear terms in , we get the constitutive equa-
tion for the Newtonian fluid,

BY = ajerg’ + ase’, (2.47)

which is, therefore, a linear approximation of the constitutive equation
(2.46) for the Stokes fluid.

If we now put (2.47) into (2.45) we get the dynamical equation for the
Newtonian fluid,

0" = —pg" + perg" + 2ne”, (2.48)

If we put p = ny — %77, where 7y, is called the volume viscosity
coefficient, while 7 is called the shear viscosity coefficient, we can rewrite

(2.48) as

ot = —pg¥ + (nv - 377> erg” + 2me”. (2.49)
2.1.5.4 Navier—Stokes Equations

From the constitutive equation of the Newtonian viscous fluid (2.49)), by
taking the divergence, we get

o =-p;g” + (77\/ - 377) er;jg” +2nel.
However, as er;; = ukkj as well as

ij 1 i;7 jii 1 47 j34 1 i 1 i
ef = S +u’); = S(ui? +ui’) = SAu+ Culy
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we get

05 =-py9” + <77v - 377) u;kkjg” + nAu’ + chkjgw’

or o = -p;g” + <77V - 377) u;kkjg” + nAu'.

If we now substitute this expression into (2.44) we get
pu' = pf* —p;g9” + (77\/ - 3n> ul;i 9% + nAu’, (2.50)

that is a system of 3 scalar PDEs called the Navier—Stokes equations, which
in vector form read

1
pu = pf —gradp + <17V - 377> grad(divu) + nAu. (2.51)
In particular, for incompressible fluids, divu = 0, we have
. 1 n
ua=f— —gradp+ vAu, where v=-= (2.52)
P P

is the coefficient of kinematic viscosity.

2.2 Actions: The Core Machinery of Modern Physics

It is now well-known that a contemporary development of theoretical
physics progresses according to the heuristic action pamdigmﬁ (see e.g.,
[Ramond (1990) [Feynman and Hibbs (1965); [Siegel (2002)]), which fol-
lows the common three essential steps (note that many technical details
are omitted here for brevity):

(1) In order to develop a new physical theory, we first define a new action
Alw], a functional in N system variables w’, as a time integral from
the initial point tg to the final point ¢y,

Afw] = /, " el d. (2.53)

Lo

6The action principle is a fundamental concept in physics (of as great importance as
symmetry). It is very powerful for classical physics, allowing all field equations to be
derived from a single function, and making symmetries simpler to check. In quantum
physics the dynamics is necessarily formulated in terms of an action (in the path—integral
approach), or an equivalent Hamiltonian (in the Heisenberg and Schrodinger approaches).
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Now, the nature of the integrand £[w] in depends on whether we
are dealing with particles or fields. In case of particles, £[w] = L(q, q) is
an ordinary finite-dimensional mechanical Lagrangian (usually kinetic
minus potential energy), defined through mechanical (total system en-
ergy) Hamiltonian H = H(q,p) as L£[w] = L(q,q4) = pig* — H(q,p),
where q, ¢,p are generalized coordinates, velocities and canonical mo-
menta, respectively.

In case of fields, the integrand £[w] is more involved, as fields just
infinite—dimensional particles. Thus,

MM:/Q%M%%wﬁ

where the integral is taken over all n space coordinates[l, while ¢, ¢, o,
denote field variables, their velocities and their coordinate (partial)
derivatives, respectively. The subintegrand £ = L(¢, ¢, ¢,) is the sys-
tem Lagrangian density, defined through the system Hamiltonian den-
sity H = H(p,m,mq) as L(p,,¢,) = mip" — H(p, 7, my), where 7,7,
are field (canonical) momenta, and their coordinate derivatives.
Variate the action A[w] using the extremal (least) action principle

SA[w] =0, (2.54)

and using techniques from calculus of variations (see, e.g., |Arfken
(1985); [Fox (1988); [Ramond (1990)]), derive classical field and mo-
tion equations, as Fuler—Lagrangian equations, describing the extremal
path, or direct system path: t — w(t), from g to t;.

Again, we have two cases. The particle Euler-Lagrangian equation
reads

qt

and can be recast in Hamiltonian form, using the Poisson bracket (or,
classical commutator)ﬂ as a pair of canonical equations

it = [¢*, H], pi = [pi, H]. (2.55)

7In particular, n = 3 for the fields in Euclidean 3D space.
8Recall that for any two functions A = A(¢¥, py,t) and B = B(¢*, py,t), their Poisson
bracket is defined as

0A OB 0A OB
AyB artcl = \ 3 r &a. & A~z |-
4, Blpartcr <3q’“ opr Opk 8(1’“)
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The field Euler-Lagrangian equation
04Lo,p1 = Lyi,
in Hamiltonian form gives a pair of field canonical equationsﬂ
¢' = [p' H], ;= [m, H]. (2.56)

(3) Once we have a satisfactory description of fields and motions, we can
perform the Feynman quantizatioﬂ of classical equations [Feynman
and Hibbs (1965)], using the same action Afw] as given by ,
but now including all trajectories rather than just the extremal one.
Namely, to get the probability amplitude (f|i) of the system transition
from initial state i(w(tg)) at time ¢y to final state f(w(t1)) at time ¢,

9Here the field Poisson brackets are slightly generalized in the sense that partial
derivatives O are replaced with the corresponding variational derivatives ¢, i.e.,

5A B §A B
Bl (D410 5308,
dq" dpr  Opg dq

10Recall that quantum systems have two modes of evolution in time. The first, gov-
erned by Schrédinger equation:

L0
i [v) = H ),

(where H is the Hamiltonian (energy) operator, i = /—1 and i is Planck’s constant
divided by 27 (= 1 in natural units)), describes the time evolution of quantum systems
when they are undisturbed by measurements. ‘Measurements’ are defined as interactions
of the system with its environment. As long as the system is sufficiently isolated from
the environment, it follows Schrédinger equation. If an interaction with the environ-
ment takes place, i.e., a measurement is performed, the system abruptly decoheres i.e.,
collapses or reduces to one of its classically allowed states.

A time-dependent state of a quantum system is determined by a normalized, complex,
wave psi—function ¢ = 1(t), that is a solution of the above Schrédinger equation. In
Dirac’s words, this is a unit ‘ket’ vector |¢) (that makes a scalar product ‘bracket’ (,)
with the dual, ‘bra’ vector (1) , which is an element of the Hilbert space L?(1) with
a coordinate basis (¢%). The state ket—vector |(t)) is subject to action of the Hermi-
tian operators (or, self-adjoint operators), obtained by the procedure of quantization of
classical mechanical quantities, and whose real eigen—values are being measured. Quan-
tum superposition is a generalization of the algebraic principle of linear combination of
vectors.

The (first) quantization can be performed in three different quantum evolution pic-
tures, namely Schrédinger (S)-picture, in which the system state vector [¢(t)) rotates
and the coordinate basis (¢?) is fixed; Heisenberg (H)-picture, in which the coordinate
basis rotates and the state vector is fixed; and Dirac interaction (I)-picture, in which
both the state vector and the coordinate basis rotate.
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we put the action A[w] into the path integmﬂ (see, e.g., |[Feynman and
Hibbs (1965); Schulman (1981); [Siegel (2002)]), symbolically written as

(i) = [ Dlul ], (257)

Q
where i = v/—1 is the imaginary unit, { represents the space of all
system paths w'(t) which contribute to the system transition with equal
probabilities, and the implicit Planck constant # is normalized to unity.
This ‘functional integral’ is usually calculated by breaking up the time
interval [to,1] into discrete points and taking the continuum limit.

The symbolic differential D[w] in the path integral (2.57) representing
a (somewhat non-rigorous) path measure, defines a product

N
Dw] = H dw',
i=1
which in case of quantum—mechanical particles reads
N .
Dw] = H dq'dp;,
i=1
and in case of quantum fields reads
N .
Dlw] = [[ d¢'dm;.
i=1

The path integral scheme (2.57)) is commonly used for calculating the
propagator of an arbitrary quantum(gravity) system, as well as that

' The Feynman path integral is an expression for the system’s propagator in terms of
an integral over an infinite—dimensional space of paths within the system’s configuration
space. It constitutes a formulation of non-relativistic quantum mechanics which is al-
ternative to the usual Schrédinger equation. Whereas the Schrodinger equation is based
on Hamiltonians, the Feynman path integral is based on Lagrangians. In the last three
decades, path integrals have proven to be invaluable in quantum field theory, statistical
mechanics, condensed matter physics, and quantum gravity. The path integral is now
the preferred method for quantizing gauge fields, as well as setting up perturbation ex-
pansions in quantum field theory. It also leads very quickly to important conclusions
in certain problems. However, for most simple non-relativistic quantum problems, the
path integral is not as easy to use as the Schrodinger equation, and most of the results
obtained with it can be obtained more easily by other means. Nevertheless, one cannot
help but be impressed with the elegance and beauty of the Feynman path integral, or
recognize that it is a result of fundamental scientific importance.



Technical Preliminaries: Tensors, Actions and Functors 87

of a Markov—-Gaussian stochastic systems described by either Langevin
rate ODEs or Fokker—Planck PDEs.

The most general quantization method, the path integral , can
be reduced to the most common Dirac quantization rule |Dirac (1982)],
which uses modified particle equation for quantum particles,

i’ =i{H.q'},  pi=i{Hp}, (2.58)
and modified field equation ((6.147]) for quantum fields,
o' =i{H,p"}, 7 =i{H, 7, (2.59)

where coordinate and field variables (of ordinary Euclidean space) are
replaced by the corresponding Hermitian operators (i.e., self-adjoint
operators) in the complex Hilbert space and the Poisson bracket [,]
is replaced by the quantum commutator {,} (multiplied by —i). In
addition, the Dirac rule postulates the Heisenberg uncertainty relations
between the canonical pairs of coordinate and field variables, namely

) 1 . 1
Aq' - Ap; > 5 and Ap' - Amy > 3

The action paradigm, as outlined above, provides both classica]E and
quantum description for any new physical theory, even for those yet to
be discovered. It represents a heuristic tool in search for a unified force
of nature; the latest theory described in this way has been the celebrated
superstring theory.

2.3 Functors: Global Machinery of Modern Mathematics

In modern mathematical sciences whenever one defines a new class of math-
ematical objects, one proceeds almost in the next breath to say what kinds
of maps between objects will be considered [Switzer (1975)]. A general
framework for dealing with situations where we have some objects and maps
between objects, like sets and functions, vector spaces and linear operators,
points in a space and paths between points, etc. — gives the modern meta-
language of categories and functors. Categories are mathematical universes
and functors are ‘projectors’ from one universe onto another. For this rea-

12For example, the Einstein—Hilbert action is used to derive the Einstein equation of
general relativity (see below).
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son, in this book we extensively use this language, mainly following its
founder, S. MacLane [MacLane (1971)].

2.3.1 Maps
2.3.1.1 Notes from Set Theory

Given a map (or, a function) f: A — B, the set A is called the domain of
f, and denoted Dom f. The set B is called the codomain of f, and denoted
Cod f. The codomain is not to be confused with the range of f(A), which
is in general only a subset of B.

A map f : X — Y is called injective or 1-1 or an injection if for
every ¥y in the codomain Y there is at most one x in the domain X with
f(z) = y. Put another way, given z and 2’ in X, if f(z) = f(2'), then it
follows that z = 2. A map f : X — Y is called surjective or onto or a
surjection if for every y in the codomain Cod f there is at least one z in
the domain X with f(x) = y. Put another way, the range f(X) is equal to
the codomain Y. A map is bijective iff it is both injective and surjective.
Injective functions are called the monomorphisms, and surjective functions
are called the epimorphisms in the category of sets (see below).

Two main classes of maps (or, functions) that we will use int this book
are: (i) continuous maps (denoted as C°—class), and (ii) smooth or dif-
ferentiable maps (denoted as C*—class). The former class is the core of
topology, the letter of differential geometry. They are both used in the core
concept of manifold.

A relation is any subset of a Cartesian product (see below). By defini-
tion, an equivalence relation « on a set X is a relation which is reflexive,
symmetrical and transitive, i.e., relation that satisfies the following three
conditions:

(1) Reflexivity: each element x € X is equivalent to itself, i.e., zax,
(2) Symmetry: for any two elements z, 2’ € X, zaz’ implies 2’ax, and
(3) Transitivity: a < b and b < ¢ implies a < c.

Similarly, a relation < defines a partial order on a set S if it has the
following properties:

(1) Reflexivity: a < a for all a € S,
(2) Antisymmetry: a < b and b < a implies a = b, and
(3) Transitivity: a < b and b < ¢ implies a < c.
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A partially ordered set (or poset) is a set taken together with a partial
order on it. Formally, a partially ordered set is defined as an ordered pair
P = (X, <), where X is called the ground set of P and < is the partial
order of P.

2.3.1.2 Notes From Calculus
2.3.1.3 Maps

Recall that a map (or, function) f is a rule that assigns to each element
x in a set A exactly one element, called f(z), in a set B. A map could be
thought of as a machine [[f]] with z—input (the domain of f is the set of all
possible inputs) and f(z)—output (the range of f is the set of all possible
outputs) [Stuart (1999)]

z = [[fl] = f(=z)

There are four possible ways to represent a function (or map): (i) verbally
(by a description in words); (ii) numerically (by a table of values); (iii)
visually (by a graph); and (iv) algebraically (by an explicit formula). The
most common method for visualizing a function is its graph. If f is a
function with domain A, then its graph is the set of ordered input—output
pairs

{(z, f(2)) : x € A}.

A generalization of the graph concept is a concept of a cross—section of a
fibre bundle, which is one of the core geometrical objects for dynamics of
complex systems.

2.3.1.4  Algebra of Maps

Let f and g be maps with domains A and B. Then the maps f +g, f — g,
fg, and f/g are defined as follows [Stuart (1999)]

(f +9)(x) = f(x) + g(x) domain = AN B,
(f = 9)(@) = f(z) — g(x) domain = AN B,
(f9)(@) = f(z) g(x) domain = AN B,
(g) (x) = fg domain = {z € ANB:g(x)#0}.
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2.3.1.5 Compositions of Maps

Given two maps f and g, the composite map f o g (also called the compo-
sition of f and g) is defined by

(fog)(x) = fg(x)).

The (f o g)—machine is composed of the g—machine (first) and then the
f—machine [Stuart (1999)],

z — [[g]] = g(x) = [[fl] = f(9(2))

For example, suppose that y = f(u) = /u and u = g(x) = 2% + 1. Since y
is a function of u and wu is a function of z, it follows that y is ultimately a
function of x. We calculate this by substitution

y=f(u)=fog=f(g(x)) = f@®+1) = Va2 +1.

2.3.1.6 The Chain Rule

If f and g are both differentiable (or smooth, i.e., C*) maps and h = fog
is the composite map defined by h(z) = f(g(x)), then h is differentiable
and b’ is given by the product [Stuart (1999)|

() = f'(g(x)) g’ (x)-

In Leibniz notation, if y = f(u) and u = g(z) are both differentiable maps,
then

dy dyd7u

dr ~ dudz’

The reason for the name chain rule becomes clear if we add another link
to the chain. Suppose that we have one more differentiable map = = h(t).
Then, to calculate the derivative of y with respect to ¢, we use the chain
rule twice,

dy  dydudz

dt — dudz dt’

2.3.1.7 Integration and Change of Variables

1-1 continuous (i.e., C°) map T with a nonzero Jacobian ‘ggig' that

maps a region S onto a region R, (see [Stuart (1999)]) we have the following
substitution formulas:
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1. for a single integral,

/f dx—/f —du

2. for a double integral,

//fa:ydA //f w,v) uv))’gguv;

3. for a triple integral,

// f(z,y,2)dV = //f z(u, v, w) (uvw)z(uvw))‘g((:jg’w))

4. similarly for n—tuple integrals.

dudv,

dudvdw

2.3.1.8 Notes from General Topology

Topology is a kind of abstraction of Euclidean geometry, and also a natural
framework for the study of continuityH Euclidean geometry is abstracted
by regarding triangles, circles, and squares as being the same basic object.
Continuity enters because in saying this one has in mind a continuous de-
formation of a triangle into a square or a circle, or any arbitrary shape. On
the other hand, a disk with a hole in the center is topologically different
from a circle or a square because one cannot create or destroy holes by con-
tinuous deformations. Thus using topological methods one does not expect
to be able to identify a geometrical figure as being a triangle or a square.
However, one does expect to be able to detect the presence of gross features
such as holes or the fact that the figure is made up of two disjoint pieces
etc. In this way topology produces theorems that are usually qualitative in
nature — they may assert, for example, the existence or non—existence of an
object. They will not, in general, give the means for its construction |Nash
and Sen (1983)].

13Intuitively speaking, a function f : R — R is continuous near a point z in its domain
if its value does not jump there. That is, if we just take dx to be small enough, the two
function values f(x) and f(x + dz) should approach each other arbitrarily closely. In
more rigorous terms, this leads to the following definition: A function f : R — R is
continuous at x € R if for all € > 0, there exists a § > 0 such that for all y € R with
ly — x| < 8, we have that |f(y) — f(x)| < e. The whole function is called continuous if it
is continuous at every point z.
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2.3.1.9  Topological Space

Study of topology starts with the fundamental notion of topological space.
Let X be any set and Y = {X,} denote a collection, finite or infinite of
subsets of X. Then X and Y form a topological space provided the X,
and Y satisfy:

(1) Any finite or infinite subcollection {Z,} C X, has the property that
UZ, €Y, and

(2) Any finite subcollection {Zy,, ..., Za, } C X, has the property that
NZy, €Y.

The set X is then called a topological space and the X, are called open
sets. The choice of Y satisfying (2) is said to give a topology to X.

Given two topological spaces X and Y, a function (or, a map)

f: X =Y is continuous if the inverse image of an open set in Y is an open
set in X.

The main general idea in topology is to study spaces which can be con-
tinuously deformed into one another, namely the idea of homeomorphism.
If we have two topological spaces X and Y, then amap f: X — Y is called
a homeomorphism iff

(1) f is continuous (C?), and
(2) There exists an inverse of f, denoted f~!, which is also continuous.

Definition (2) implies that if f is a homeomorphism then so is f~1. Home-
omorphism is the main topological example of reflezive, symmetrical and
transitive relation, i.e., equivalence relation. Homeomorphism divides all
topological spaces up into equivalence classes. In other words, a pair of
topological spaces, X and Y, belong to the same equivalence class if they
are homeomorphic.

The second example of topological equivalence relation is homotopy.
While homeomorphism generates equivalence classes whose members are
topological spaces, homotopy generates equivalence classes whose members
are continuous (C°) maps. Consider two continuous maps f,g : X —
Y between topological spaces X and Y. Then the map f is said to be
homotopic to the map g if f can be continuously deformed into g (see
below for the precise definition of homotopy). Homotopy is an equivalence
relation which divides the space of continuous maps between two topological
spaces into equivalence classes [Nash and Sen (1983)].
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Another important notions in topology are covering, compactness and
connectedness. Given a family of sets {X,} = X say, then X is a covering
of another set Y if UX,, contains Y. If all the X, happen to be open sets
the covering is called an open covering. Now consider the set Y and all its
possible open coverings. The set Y is compact if for every open covering
{Xo} with UX, DY there always exists a finite subcovering {X1, ..., X,,}
of Y with X3 U...UX,, DY. Again, we define a set Z to be connected if
it cannot be written as Z = Z; U Z5, where Z; and Z5 are both open and
Z1 N Zy is an empty set.

Let Ay, Ao, ..., A, be closed subspaces of a topological space X such that
X =U_,A;. Suppose f; : A; — Y is a function, 1 <14 < mn, iff

filAin Ay = filAin A1 <id,5 <n. (2.60)

In this case f is continuous iff each f; is. Using this procedure we can define
a C%—function f : X — Y by cutting up the space X into closed subsets A;
and defining f on each A; separately in such a way that f|A; is obviously
continuous; we then have only to check that the different definitions agree
on the overlaps A; N A;.

The universal property of the Cartesian product: let px : X XY — X
and py : X XY — Y be the projections onto the first and second factors,
respectively. Given any pair of functions f: Z — X and g : Z — Y there
is a unique function h: Z — X x Y such that pxy oh = f, and py oh = g.
Function A is continuous iff both f and g are. This property characterizes
X/a up to homeomorphism. In particular, to check that a given function
h: Z — X is continuous it will suffice to check that px o h and py o h are
continuous.

The universal property of the quotient: let o be an equivalence relation
on a topological space X, let X/« denote the space of equivalence classes
and p, : X — X/« the natural projection. Given a function f : X — Y,
there is a function f’: X/a — Y with [’ op, = f iff zaa’ implies f(z) =
f("), for all x € X. In this case f’ is continuous iff f is. This property
characterizes X/« up to homeomorphism.

2.3.1.10 Homotopy

Now we return to the fundamental notion of homotopy. Let I be a com-
pact unit interval I = [0,1]. A homotopy from X to Y is a continuous
function F': X x I — Y. For each t € I one has F; : X — Y defined by
Fy(z) = F(x,t) for all z € X. The functions F} are called the ‘stages’ of the
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homotopy. If f,g: X — Y are two continuous maps, we say f is homotopic
to g, and write f ~ g, if there is a homotopy F' : X x I — Y such that
Fy = f and F; = g. In other words, f can be continuously deformed into
g through the stages F;. If A C X is a subspace, then F' is a homotopy
relative to A if F(a,t) = F(a,0), foralla € A,t € I.

The homotopy relation ~ is an equivalence relation. To prove that
we have f ~ f is obvious; take F'(z,t = f(z), forall z € X, t € I. If
f ~ g and F is a homotopy from f to g, then G : X x I — Y defined by
G(z,t) = F(z,1 —t), is a homotopy from ¢ to f, i.e., g ~ f. If f ~ g with
homotopy F' and g ~ f with homotopy G, then f ~ h with homotopy H
defined by

(F(x,t), 0<t<1/2
H(x’t){G(x,zt—l), 1/2<t<1"

To show that H is continuous we use the relation .

In this way, the set of all C°—functions f : X — Y between two topo-
logical spaces X and Y, called the function space and denoted by Y X, is
partitioned into equivalence classes under the relation ~. The equivalence
classes are called homotopy classes, the homotopy class of f is denoted by
[f], and the set of all homotopy classes is denoted by [X;Y].

If «v is an equivalence relation on a topological space X and F': X xI —
Y is a homotopy such that each stage F} factors through X/«, i.e., zax’
implies Fy(x) = Fi(z'), then F induces a homotopy F’ : (X/a) x I — Y
such that F’ o (p, x 1) = F.

Homotopy theory has a range of applications of its own, outside topol-
ogy and geometry, as for example in proving Cauchy Theorem in complex
variable theory, or in solving nonlinear equations of artificial neural net-
works.

A pointed set (S,sg) is a set S together with a distinguished point
S0 € S. Similarly, a pointed topological space (X, x¢) is a space X together
with a distinguished point zg € X. When we are concerned with pointed
spaces (X, xo), (Y,v0), etc., we always require that all functions f : X —
Y shell preserve base points, i.e., f(zg) = yo, and that all homotopies
F : X xI — Y be relative to the base point, i.e., F(zo,t) = yo, for all
t € I. We denote the homotopy classes of base point—preserving functions
by [X,z0;Y,yo] (where homotopies are relative to zg). [X,zo;Y,yo] is a
pointed set with base point fy, the constant function: fo(x) = yq, for all
zeX.

A path ~(t) from z to x; in a topological space X is a continuous map
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v : I — X with v(0) = x¢ and v(1) = x1. Thus X7 is the space of all paths
in X with the compact-open topology. We introduce a relation ~ on X by
saying xg ~ x1 iff there is a path v: I — X from zg to z1. ~ is clearly an
equivalence relation, and the set of equivalence classes is denoted by 7o (X).
The elements of 7mg(X) are called the path components, or 0—components
of X. If mo(X) contains just one element, then X is called path connected,
or 0—connected. A closed path, or loop in X at the point z¢ is a path ()
for which v(0) = (1) = x¢. The inverse loop v~ 1(t) based at xg € X is
defined by v~ 1(t) = v(1 — t), for 0 < ¢t < 1. The homotopy of loops is the
particular case of the above defined homotopy of continuous maps.

If (X, ) is a pointed space, then we may regard mo(X) as a pointed set
with the 0—component of z( as a base point. We use the notation 7o (X, x¢)
to denote pgo(X, o) thought of as a pointed set. If f : X — Y is a map then
f sends 0—components of X into 0—components of Y and hence defines a
function mo(f) : mo(X) — mo(Y). Similarly, a base point—preserving map
f(X,20) — (Y,90) induces a map of pointed sets mo(f) : mo(X,z0) —
m0(Y,y0). In this way defined 7o represents a ‘functor’ from the ‘category’
of topological (point) spaces to the underlying category of (point) sets (see
the next section).

Combination of topology and calculus gives differential topology, or dif-
ferential geometry.

2.3.1.11  Commutative Diagrams

The category theory (see below) was born with an observation that many
properties of mathematical systems can be unified and simplified by a pre-
sentation with commutative diagrams of arrows [MacLane (1971)]. Each
arrow f : X — Y represents a function (i.e., a map, transformation, oper-
ator); that is, a source (domain) set X, a target (codomain) set Y, and a
rule z — f(x) which assigns to each element x € X an element f(x) € Y.
A typical diagram of sets and functions is

x—I .y X—f>f(X)
h g or h g
A 9(f(X))

This diagram is commutative iff h = go f, where go f is the usual composite
function go f : X — Z, defined by = — g(f(x)).
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Similar commutative diagrams apply in other mathematical, physical
and computing contexts; e.g., in the ‘category’ of all topological spaces, the
letters X, Y, and Z represent topological spaces while f, g, and h stand for
continuous maps. Again, in the category of all groups, X,Y, and Z stand
for groups, f, g, and h for homomorphisms.

Less formally, composing maps is like following directed paths from one
object to another (e.g., from set to set). In general, a diagram is commuta-
tive iff any two paths along arrows that start at the same point and finish
at the same point yield the same ‘homomorphism’ via compositions along
successive arrows. Commutativity of the whole diagram follows from com-
mutativity of its triangular components (depicting a ‘commutative flow’, see
Figure . Study of commutative diagrams is popularly called ‘diagram
chasing’, and provides a powerful tool for mathematical thought.

N
%

Fig. 2.4 A commutative flow (denoted by curved arrows) on a triangulated digraph.
Commutativity of the whole diagram follows from commutativity of its triangular com-
ponents.

As an example from linear algebra, consider an elementary diagram-
matic description of matrices, using the following pull-back diagram |Barry
(1993)]:

Matrix A —SBUIES | it A

shape length

Nat x Nat —————— Nat
product

asserts that a matrix is determined by its shape, given by a pair of natural
numbers representing the number of rows and columns, and its data, given
by the matrix entries listed in some specified order.
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Many properties of mathematical constructions may be represented by
universal properties of diagrams [MacLane (1971)]. Consider the Cartesian
product X XY of two sets, consisting as usual of all ordered pairs (z,y) of
elements € X and y € Y. The projections (z,y) — x, (z,y) — y of the
product on its ‘axes’ X and Y are functionsp: X xY — X, ¢: X xY =Y.
Any function A : W — X x Y from a third set W is uniquely determined
by its composites p o h and q o h. Conversely, given W and two functions
f and g as in the diagram below, there is a unique function h which makes
the following diagram commute:

w

|
/h 9

'

This property describes the Cartesian product X x Y uniquely; the same
diagram, read in the category of topological spaces or of groups, describes
uniquely the Cartesian product of spaces or of the direct product of groups.

The construction ‘Cartesian product’ is technically called a ‘functor’
because it applies suitably both to the sets and to the functions between
them; two functions k: X — X’ and [ : Y — Y have a function k x [ as
their Cartesian product:

Exl:XxY — X' xY', (x,y) — (kz,ly).

2.3.1.12  Groups and Related Algebraic Structures

As already stated, the basic functional unit of lower biodynamics is the
special Euclidean group SFE(3) of rigid body motions. In general, a group
is a pointed set (G, e) with a multiplication p: G x G — G and an inverse
v : G — G such that the following diagrams commute |Switzer (1975)]:

(1)

1 1
ERCE) PP Lo
|
1 u 1
}

G

(e is a two—sided identity)
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Gxaxa—* . axa
Ixp Iz
GxG i G
(associativity)
(3)
1 1
) oo )
|
e 4 e
}
G
(inverse).

Here e : G — @ is the constant map e(g) = e for all g € G. (e, 1) means
the map such that (e, 1)(g) = (e, g), etc. A group G is called commutative
or Abelian group if in addition the following diagram commutes

GxG T

GxG
0 1

G

where T : G x G — G x G is the switch map T'(g1,92) = (91,92), for all
(glag2) €eGxG.

A group G acts (on the left) on a set A if there is a function o : Gx A —
A such that the following diagrams commute [Switzer (1975)]:

(1)

1
PRGN
1 «
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GxGxA—1XY oA
wx1 «o
Gx A a A

where (e,1)(z) = (e, x) for all € A. The orbits of the action are the
sets Gx = {gz : g € G} for all z € A.

Given two groups (G, x) and (H, ), a group homomorphism from (G, x)
to (H,-) is a function h : G — H such that for all x and y in G it holds
that

Wz *y) = h(z) - h(y).

From this property, one can deduce that h maps the identity element eg
of G to the identity element ey of H, and it also maps inverses to inverses
in the sense that h(z~!) = h(z)~!. Hence one can say that h is compatible
with the group structure.

The kernel Ker h of a group homomorphism h : G — H consists of all
those elements of G which are sent by h to the identity element ey of H,
ie.,

Kerh={zx € G: h(z)=en}.

The image Im h of a group homomorphism h : G — H consists of all
elements of G which are sent by h to H, i.e.,

Imh = {h(z) : z € G}.

The kernel is a normal subgroup of G and the image is a subgroup of
H. The homomorphism h is injective (and called a group monomorphism)
iff Kerh = eq, i.e., iff the kernel of h consists of the identity element of G
only.

Similarly, a ring is a set S together with two binary operators + and
(commonly interpreted as addition and multiplication, respectively) satis-
fying the following conditions:

(1) Additive associativity: For all a,b,c € S, (a+b)+c=a+ (b+c),
(2) Additive commutativity: For all a,b € S, a+b="0b+a,
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(3) Additive identity: There exists an element 0 € S such that for alla € S,
0+a=a+0=a,

(4) Additive inverse: For every a € S there exists -a € S such that a +
(~a) = (~a) +a =0,

(5) Multiplicative associativity: For all a,b,c € S, (a*b) xc=a* (b*c),

(6) Left and right distributivity: For all a,b,c € S, a*(b+c) = (a*b)+(axc)
and (b+c¢)xa = (bxa)+ (cxa).

A ring (the term introduced by David Hilbert) is therefore an Abelian
group under addition and a semigroup under multiplication. A ring that is
commutative under multiplication, has a unit element, and has no divisors
of zero is called an integral domain. A ring which is also a commutative
multiplication group is called a field. The simplest rings are the integers Z,
polynomials R[z] and R[z,y] in one and two variables, and square n X n
real matrices.

An ideal is a subset J of elements in a ring R which forms an additive
group and has the property that, whenever x belongs to R and y belongs
to J, then zy and yx belong to J. For example, the set of even integers is
an ideal in the ring of integers Z. Given an ideal J, it is possible to define
a factor ring R/7J.

A ring is called left (respectively, right) Noetherian if it does not contain
an infinite ascending chain of left (respectively, right) ideals. In this case,
the ring in question is said to satisfy the ascending chain condition on left
(respectively, right) ideals. A ring is said to be Noetherian if it is both
left and right Noetherian. If a ring R is Noetherian, then the following are
equivalent:

(1) R satisfies the ascending chain condition on ideals.
(2) Every ideal of R is finitely generated.
(3) Every set of ideals contains a maximal element.

A module is a mathematical object in which things can be added to-
gether commutatively by multiplying coefficients and in which most of the
rules of manipulating vectors hold. A module is abstractly very similar to a
vector space, although in modules, coefficients are taken in rings which are
much more general algebraic objects than the fields used in vector spaces.
A module taking its coefficients in a ring R is called a module over R or
R—module. Modules are the basic tool of homological algebra.

Examples of modules include the set of integers Z, the cubic lattice
in d dimensions Z?, and the group ring of a group. Z is a module over
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itself. It is closed under addition and subtraction. Numbers of the form
na for n € Z and « a fixed integer form a submodule since, for (n,m) € Z,
na+ma = (n+£m)a and (n +m) is still in Z. Also, given two integers
a and b, the smallest module containing a and b is the module for their
greatest common divisor, « = GCD(a, b).

A module M is a Noetherian module if it obeys the ascending chain
condition with respect to inclusion, i.e., if every set of increasing sequences
of submodules eventually becomes constant. If a module M is Noetherian,
then the following are equivalent:

(1) M satisfies the ascending chain condition on submodules.
(2) Every submodule of M is finitely generated.
(3) Every set of submodules of M contains a maximal element.

Let I be a partially ordered set. A direct system of R—modules over
I is an ordered pair {M;, cp;} consisting of an indexed family of modules
{M; : i € I} together with a family of homomorphisms {¢} : M; — M;}
for ¢ < j, such that ¢} = 1), for all ¢ and such that the following diagram
commutes whenever ¢ < j < k

M,

Similarly, an inverse system of R—modules over I is an ordered pair
{M;, ¢g } consisting of an indexed family of modules {M; : i € I} together
with a family of homomorphisms {1/){ : M; — M;} for i < j, such that
wﬁ = 1, for all ¢ and such that the following diagram commutes whenever
i<j<k




102 Applied Differential Geometry: A Modern Introduction

2.3.2 Categories

A category is a generic mathematical structure consisting of a collection
of objects (sets with possibly additional structure), with a corresponding
collection of arrows, or morphisms, between objects (agreeing with this
additional structure). A category K is defined as a pair (0b(K),Mor(K)) of
generic objects A, B, ... in 0b(K) and generic arrows f: A — B, g: B —

C, ... in Mor(K) between objects, with associative composition:
Aa—L g0 o gL

and identity (loop) arrow. (Note that in topological literature, Hom(K) or
hom(K) is used instead of Mor(K); see [Switzer (1975)]).

A category K is usually depicted as a commutative diagram (i.e., a
diagram with a common initial object A and final object D):

To make this more precise, we say that a category K is defined if we have:

(1) A class of objects {A, B,C, ...} of K, denoted by 0b(K);

(2) A set of morphisms, or arrows Mori (A, B), with elements f : A — B,
defined for any ordered pair (A, B) € K, such that for two different
pairs (A, B) # (C, D) in K, we have Mory (A, B) NMori(C, D) = ();

(3) For any triplet (A, B,C) € K with f: A — B and g: B — C, there is
a composition of morphisms

Morx(B,C) x Morx(A,B) > (g, f) — go f € Morx(A,C),

written schematically as

f:A— B, g:B—-C
gof:A—=C

If we have a morphism f € Morx (A, B), (otherwise written f: A — B,

or A B), then A = dom(f) is a domain of f, and B = cod(f) is a
codomain of f (of which range of f is a subset) and denoted B = ran(f).
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To make K a category, it must also fulfill the following two properties:

(1) Associativity of morphisms: for all f € Morx (A4, B), g € Mork(B, (),
and h € Morx(C, D), we have ho (go f) = (hog) o f; in other words,
the following diagram is commutative

L hegen=(hog)of

/ h

B

g -C
(2) Ezistence of identity morphism: for every object A € 0b(K) exists a
unique identity morphism 14 € Morx (A, A); for any two morphisms
f €Mork(A, B), and g € Morx (B, C), compositions with identity mor-
phism 1p € Morx(B,B) give 1o f = f and go 1 = g, i.e., the

following diagram is commutative:

A g9 ¢
|
\139
}
B

The set of all morphisms of the category K is denoted

Mor(K) = U Mork (A, B).
A, BEOH(K)

If for two morphisms f € Mory (A, B) and g € Morx (B, A) the equality
go f = 1y is valid, then the morphism g is said to be left inverse (or
retraction), of f, and f right inverse (or section) of g. A morphism which
is both right and left inverse of f is said to be two—sided inverse of f.

A morphism m : A — B is called monomorphism in K (i.e., 1-1, or
injection map), if for any two parallel morphisms f1, fo : C' — A in K the
equality mo f; = mo fo implies f; = fo; in other words, m is monomorphism
if it is left cancellable. Any morphism with a left inverse is monomorphism.

A morphism e : A — B is called epimorphism in K (i.e., onto, or
surjection map), if for any two morphisms g1, go : B — C in K the equality
g10e = gooe implies g; = go; in other words, e is epimorphism if it is right
cancellable. Any morphism with a right inverse is epimorphism.
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A morphism f : A — B is called isomorphism in K (denoted as f : A &
B) if there exists a morphism f~!: B — A which is a two-sided inverse of
fin IC. The relation of isomorphism is reflexive, symmetric, and transitive,
i.e., equivalence relation.

For example, an isomorphism in the category of sets is called a set—
isomorphism, or a bijection, in the category of topological spaces is called a
topological isomorphism, or a homeomorphism, in the category of differen-
tiable manifolds is called a differentiable isomorphism, or a diffeomorphism.

A morphism f € Mori (A, B) is regular if there exists a morphism
g: B — Ain K such that fogo f = f. Any morphism with either a left
or a right inverse is regular.

An object T is a terminal object in K if to each object A € O0b(K) there
is exactly one arrow A — T. An object S is an initial object in K if to
each object A € Ob(K) there is exactly one arrow S — A. A null object
Z € 0b(K) is an object which is both initial and terminal; it is unique up to
isomorphism. For any two objects A, B € 0b(K) there is a unique morphism
A — Z — B (the composite through Z), called the zero morphism from A
to B.

A notion of subcategory is analogous to the notion of subset. A sub-
category L of a category K is said to be a complete subcategory iff for any
objects A, B € L, every morphism A — B of L is in K.

A groupoid is a category in which every morphism is invertible. A
typical groupoid is the fundamental groupoid I1,(X) of a topological space
X. An object of II;(X) is a point € X, and a morphism x — ' of
IT1;(X) is a homotopy class of paths f from x to z’. The composition of
paths g : ' — 2’ and f : * — 2z’ is the path h which is ‘f followed
by ¢’. Composition applies also to homotopy classes, and makes I1;(X) a
category and a groupoid (the inverse of any path is the same path traced
in the opposite direction).

A group is a groupoid with one object, i.e., a category with one object in
which all morphisms are isomorphisms. Therefore, if we try to generalize
the concept of a group, keeping associativity as an essential property, we
get the notion of a category.

A category is discrete if every morphism is an identity. A monoid is a
category with one object. A group is a category with one object in which
every morphism has a two—sided inverse under composition.

Homological algebra was the progenitor of category theory (see e.g.,
[Dieudonne (1988)]). Generalizing L. Euler’s formula f +v = e + 2 for the
faces, vertices and edges of a convex polyhedron, E. Betti defined numerical
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invariants of spaces by formal addition and subtraction of faces of various
dimensions; H. Poincaré formalized these and introduced homology. E.
Noether stressed the fact that these calculations go on in Abelian groups,
and that the operation 0,, taking a face of dimension n to the alternating
sum of faces of dimension n—1 which form its boundary is a homomorphism,
and it also satisfies 9, 0 0,41 = 0. There are many ways of approximating
a given space by polyhedra, but the quotient H,, = Kerd,,/Im 9,11 is an
invariant, the homology group. Since Noether, the groups have been the
object of study instead of their dimensions, which are the Betti numbers.

2.3.3 Functors

In algebraic topology, one attempts to assign to every topological space
X some algebraic object F(X) in such a way that to every C°—function
f : X — Y there is assigned a homomorphism F(f) : F(X) — F(Y)
(see [Switzer (1975); Dodson and Parker (1997)]). One advantage of this
procedure is, e.g., that if one is trying to prove the non-—existence of a
C°%—function f: X — Y with certain properties, one may find it relatively
easy to prove the non-existence of the corresponding algebraic function
F(f) and hence deduce that f could not exist. In other words, F is to be
a ‘homomorphism’ from one category (e.g., 7) to another (e.g., G or A).
Formalization of this notion is a functor.

A functor is a generic picture projecting one category into another.
Let K = (0b(K),Mor(K)) be a source (or domain) category and £ =
(0b(L),Mor(L)) be a target (or codomain) category. A functor F =
(Fo,Fu) is defined as a pair of maps, Fo : 0b(K) — 0b(L) and Fys :
Mor(K) — Mor(L), preserving categorical symmetry (i.e., commutativity of
all diagrams) of K in L.

More precisely, a covariant functor, or simply a functor, F. : K — L
is a picture in the target category L of (all objects and morphisms of) the
source category K:

) —TD | pp)
i f(h)l c F(g)
HC) (D)

Similarly, a contravariant functor, or a cofunctor, F* : K — L is a dual
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picture with reversed arrows:

Fay—2 g
s f(h)] c F(g)
F(O) 5 F D)

In other words, a functor F : K — L from a source category K to a
target category L, is a pair F = (Fo, Far) of maps Fo : 0b(K) — 0b(L),
Fnr : Mor(K) — Mor(L), such that

(1) If f € Morx(A, B) then Fp(f) € Morg(Fo(A), Fo(B)) in case of the
covariant functor F,, and Fr(f) € Mors(Fo(B), Fo(A)) in case of
the contravariant functor F*;

(2) For all A € Ob(IC) : f]u(lA) = 1]:O(A);

(3) For all f,g € Mor( ): if cod(f) = dom(g), then
Fu(go f) = Fum(g) o Fm(f) in case of the covariant functor F,, and
Ful(go f) =Fu(f)o Fu(g) in case of the contravariant functor F*.

Category theory originated in algebraic topology, which tried to assign
algebraic invariants to topological structures. The golden rule of such in-
variants is that they should be functors. For example, the fundamental
group 71 is a functor. Algebraic topology constructs a group called the
fundamental group 71(X) from any topological space X, which keeps track
of how many holes the space X has. But also, any map between topological
spaces determines a homomorphism ¢ : 71(X) — m1(Y) of the fundamental
groups. So the fundamental group is really a functor w1 : 7 — G. This
allows us to completely transpose any situation involving spaces and con-
tinuous maps between them to a parallel situation involving groups and
homomorphisms between them, and thus reduce some topology problems
to algebra problems.

Also, singular homology in a given dimension n assigns to each topo-
logical space X an Abelian group H,(X), its nth homology group of X,
and also to each continuous map f : X — Y of spaces a corresponding
homomorphism H,(f) : H,(X) — H,(Y) of groups, and this in such a
way that H,,(X) becomes a functor H,, : 7 — A.

The leading idea in the use of functors in topology is that H, or m,
gives an algebraic picture or image not just of the topological spaces X,Y
but also of all the continuous maps f : X — Y between them.
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Similarly, there is a functor II; : 7 — G, called the ‘fundamental
groupoid functor’, which plays a very basic role in algebraic topology. Here’s
how we get from any space X its ‘fundamental groupoid’ I1;(X). To say
what the groupoid IT; (X) is, we need to say what its objects and morphisms
are. The objects in IT; (X) are just the points of X and the morphisms are
just certain equivalence classes of paths in X. More precisely, a morphism
f:x — yin II;(X) is just an equivalence class of continuous paths from
x to y, where two paths from x to y are decreed equivalent if one can be
continuously deformed to the other while not moving the endpoints. (If this
equivalence relation holds we say the two paths are ‘homotopic’, and we call
the equivalence classes ‘homotopy classes of paths’ (see [MacLane (1971);
Switzer (1975)]).

Another examples are covariant forgetful functors:

e From the category of topological spaces to the category of sets;
it ‘forgets’ the topology—structure.

e From the category of metric spaces to the category of topological spaces
with the topology induced by the metrics; it ‘forgets’ the metric.

For each category IC, the identity functor Ix takes every K—object and
every K—morphism to itself.

Given a category K and its subcategory £, we have an inclusion functor
In: K — K.

Given a category K, a diagonal functor A : K — K takes each object
A € K to the object (A, A) in the product category K x K.

Given a category K and a category of sets S, each object A € K de-
termines a covariant Hom—functor K[A, ] : K — S, a contravariant Hom-—
functor K[, A] : K — S, and a Hom-bifunctor K[_, ] : K°? x K — S.

A functor F : K — L is a faithful functor if for all A, B € 0b(K) and for
all f,g € Mork (A4, B), F(f) = F(g) implies f = g; it is a full functor if for
every h € Mor.(F(A), F(B)), there is g € Mori (A, B) such that h = F(g);
it is a full embedding if it is both full and faithful.

A representation of a group is a functor F : G — V.

Similarly, we can define a representation of a category to be a functor
F : K =V from the 2—category K (a ‘big’ category including all ordinary,
or ‘small’ categories, see section below) to the category of vector
spaces V. In this way, a category is a generalization of a group and group
representations are a special case of category representations.
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2.3.4 Natural Transformations

A natural transformation (i.e., a functor morphism) T : F — G is a map
between two functors of the same variance, (F,G) : K = L, preserving
categorical symmetry:

F Fay—TY) L g p)
T TA l L l B
9 G(A) 0 G(B)

More precisely, all functors of the same variance from a source category K
to a target category £ form themselves objects of the functor category £*.
Morphisms of £, called natural transformations, are defined as follows.

Let F: K — L and G : K — L be two functors of the same variance
from a category K to a category £. Natural transformation F — G is a
family of morphisms such that for all f € Morx (A, B) in the source category
K, we have G(f) oT4 = 75 o F(f) in the target category £. Then we say
that the component 74 : F(A) — G(A) is natural in A.

If we think of a functor F as giving a picture in the target category £
of (all the objects and morphisms of) the source category K, then a natural
transformation 7 represents a set of morphisms mapping the picture F to
another picture G, preserving the commutativity of all diagrams.

An invertible natural transformation, such that all components 7 4 are
isomorphisms) is called a natural equivalence (or, natural isomorphism). In
this case, the inverses (T4)! in £ are the components of a natural iso-
morphism (7)~! : G — F. Natural equivalences are among the most im-
portant metamathematical constructions in algebraic topology (see [Switzer
(1975)]).

For example, let B be the category of Banach spaces over R and bounded
linear maps. Define D : B — B by taking D(X) = X* = Banach space of
bounded linear functionals on a space X and D(f) = f*for f: X - Y a
bounded linear map. Then D is a cofunctor. D? = Do D is also a functor.
We also have the identity functor 1 : B — B. Define T : 1 — Do D as
follows: for every X € B let T(X) : X — D?X = X** be the natural
inclusion — that is, for x € X we have [T(X)(2)](f) = f(z) for every
f € X*. T is a natural transformation. On the subcategory of nD Banach
spaces T is even a natural equivalence. The largest subcategory of B on
which T is a natural equivalence is called the category of reflexive Banach
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spaces [Switzer (1975)].

As S. Eilenberg and S. MacLane first observed, ‘category’ has been
defined in order to define ‘functor’ and ‘functor’ has been defined in order
to define ‘natural transformation’ [MacLane (1971)]).

2.3.4.1  Compositions of Natural Transformations

Natural transformations can be composed in two different ways. First, we
have an ‘ordinary’ composition: if F,G and H are three functors from the
source category A to the target category B, and thena: F - G, 3:G — H
are two natural transformations, then the formula

(Boa), =P 004, forall A€ A, (2.61)

defines a new natural transformation 3o« : F — H. This composition
law is clearly associative and possesses a unit 1x at each functor F, whose
A—-component is 17 4.

Second, we have the Godement product of natural transformations, usu-
ally denoted by *. Let A, B and C be three categories, F,G, H and K be
four functors such that (F,G) : A = Band (H,K): B=C,and o : F — G,
B3 : H — K be two natural transformations. Now, instead of , the
Godement composition is given by

(Bxa), =PgaoH(aa) =K (aa)ofBra, forall AeA, (2.62)

which defines a new natural transformation 8xa: HoF — KoG.
Finally, the two compositions (2.61)) and (2.61]) of natural transforma-
tions can be combined as

(6xy)o(Bra)=(00p)*(yoa),

where A, B and C are three categories, F,G, H, IC, L, M are six functors,
anda: F—-H,B8:G>K, v:H— L, §: K- M are four natural

transformations.

2.3.4.2 Dinatural Transformations

Double natural transformations are called dinatural transformations. An
end of a functor S : C°? x C — X is a universal dinatural transformation
from a constant e to S. In other words, an end of S is a pair (e,w), where
e is an object of X and w : e = S is a wedge (dinatural) transformation
with the property that to every wedge (8 : x = S there is a unique arrow
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h:x — e of B with 8, = w.h for all a € C. We call w the ending wedge
with components w., while the object e itself, by abuse of language, is called
the end of S and written with integral notation as [ S(c,¢); thus

S(c,c) % /S(qc) =e.

Note that the ‘variable of integration’ ¢ appears twice under the integral
sign (once contravariant, once covariant) and is ‘bound’ by the integral
sign, in that the result no longer depends on ¢ and so is unchanged if
‘¢’ is replaced by any other letter standing for an object of the category
C. These properties are like those of the letter  under the usual integral
symbol [ f(z)dz of calculus.

Every end is manifestly a limit (see below) — specifically, a limit of a
suitable diagram in X made up of pieces like S(b,b) — S(b,c) — S(c, c).

For each functor T': C'— X there is an isomorphism

/S(c,c) :/Tc%LimT,

C (&

valid when either the end of the limit exists, carrying the ending wedge to
the limiting cone; the indicated notation thus allows us to write any limit
as an integral (an end) without explicitly mentioning the dummy variable
(the first variable ¢ of S).

A functor H : X — Y is said to preserve the end of a functor S :
CPx(C — X whenw : e = S anend of §in X implies that Hw : He = HS
is an and for H.S; in symbols

H/S(c, ¢) = /HS(C, o).

Similarly, H creates the end of S when to each end v :y - HS in Y there
is a unique wedge w : e = S with Hw = v, and this wedge w is an end of S.

The definition of the coend of a functor S : C°? x C' — X is dual to that
of an end. A coend of S is a pair (d, ), consisting of an object d € X and a
wedge ¢ : S = d. The object d (when it exists, unique up to isomorphism)
will usually be written with an integral sign and with the bound variable ¢
as superscript; thus

S(e,c) <5 / S(e,c) = d.



Technical Preliminaries: Tensors, Actions and Functors 111

The formal properties of coends are dual to those of ends. Both are much
like those for integrals in calculus (see [MacLane (1971)], for technical de-
tails).

2.3.5 Limits and Colimits

In abstract algebra constructions are often defined by an abstract property
which requires the existence of unique morphisms under certain conditions.
These properties are called universal properties. The limit of a functor
generalizes the notions of inverse limit and product used in various parts of
mathematics. The dual notion, colimit, generalizes direct limits and direct
sums. Limits and colimits are defined via universal properties and provide
many examples of adjoint functors.

A limit of a covariant functor F : J — C is an object L of C, together
with morphisms ¢y : L — F(X) for every object X of J, such that for
every morphism f : X — Y in J, we have F(f)¢x = ¢y, and such that the
following universal property is satisfied: for any object N of C and any set
of morphisms ¢y : N — F(X) such that for every morphism f: X — Y in
J, we have F(f)1x = 1y, there exists precisely one morphism v : N — L
such that ¢xu = ¢ for all X. If F has a limit (which it need not), then
the limit is defined up to a unique isomorphism, and is denoted by lim F.

Analogously, a colimit of the functor F : J — C is an object L of
C, together with morphisms ¢y : F(X) — L for every object X of J,
such that for every morphism f : X — Y in J, we have ¢, F(X) = ¢y,
and such that the following universal property is satisfied: for any object
N of C and any set of morphisms ¢y : F(X) — N such that for every
morphism f: X — Y in J, we have ¢ F(X) = 1, there exists precisely
one morphism u : L — N such that u¢yx = 15 for all X. The colimit of
F, unique up to unique isomorphism if it exists, is denoted by colim F.

Limits and colimits are related as follows: A functor F : J — C has
a colimit iff for every object N of C, the functor X —— More¢(F(X),N)
(which is a covariant functor on the dual category J°P) has a limit. If that
is the case, then Mor¢(colim F, N) = lim Morc(F(-), N) for every object
N of C.

2.3.6 Adjunction

The most important functorial operation is adjunction; as S. MacLane once
said, “Adjoint functors arise everywhere” [MacLane (1971)].
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The adjunction ¢ : F - G between two functors (F,G) : K S L of
opposite variance [Kan (1958)], represents a weak functorial inverse

f:F(A)— B
#(f): A—G(B)

forming a natural equivalence ¢ : Morx (F(A), B) =2 Mor (A, G(B)). The
adjunction isomorphism is given by a bijective correspondence (a 1-1 and
onto map on objects) ¢ : Mor(K) 5 f — ¢(f) € Mor(L) of isomorphisms in
the two categories, I (with a representative object A), and £ (with a rep-
resentative object B). It can be depicted as a (non—commutative) diagram

In this case F is called left adjoint, while G is called right adjoint.

In other words, an adjunction F 4 G between two functors (F,G) of
opposite variance, from a source category K to a target category L, is
denoted by (F,G,n,€) : K= L. Here, F : L — K is the left (upper) adjoint
functor, G : L «— K is the right (lower) adjoint functor,n : 1, — Go F is
the unit natural transformation (or, front adjunction), and € : F oG — 1
is the counit natural transformation (or, back adjunction).

For example, K = § is the category of sets and £ = G is the category
of groups. Then F turns any set into the free group on that set, while
the ‘forgetful’ functor F* turns any group into the underlying set of that
group. Similarly, all sorts of other ‘free” and ‘underlying’ constructions are
also left and right adjoints, respectively.

Right adjoints preserve limits, and left adjoints preserve colimits.

The category C is called a cocomplete category if every functor F : J —
C has a colimit. The following categories are cocomplete: S,G, A, 7T, and
PT.

The importance of adjoint functors lies in the fact that every functor
which has a left adjoint (and therefore is a right adjoint) is continuous.
In the category A of Abelian groups, this e.g., shows that the kernel of a
product of homomorphisms is naturally identified with the product of the
kernels. Also, limit functors themselves are continuous. A covariant functor
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F + J — Cis cocontinuous if it transforms colimits into colimits. Every
functor which has a right adjoint (and is a left adjoint) is cocontinuous.
The analogy between adjoint functors and adjoint linear operators relies
upon a deeper analogy: just as in quantum theory the inner product (¢, ¥)
represents the amplitude to pass from ¢ to v, in category theory Mor(A, B)
represents the set of ways to go from A to B. These are to Hilbert spaces
as categories are to sets. The analogues of adjoint linear operators between
Hilbert spaces are certain adjoint functors between 2—Hilbert spaces |[Baez
(1997); Baez and Dolan (1998)]. Similarly, the adjoint representation of
a Lie group G is the linearized version of the action of G on itself by
conjugation, i.e., for each g € G, the inner automorphism z +— gzg~! gives
a linear transformation Ad(g) : g — g, from the Lie algebra g of G to itself.

2.3.7 Abelian Categorical Algebra

An Abelian category is a certain kind of category in which morphisms and
objects can be added and in which kernels and cokernels exist and have the
usual properties. The motivating prototype example of an Abelian category
is the category of Abelian groups A. Abelian categories are the framework
for homological algebra (see |[Dieudonne (1988)]).

Given a homomorphism f : A — B between two objects A = Dom f
and B = Cod f in an Abelian category A, then its kernel, image, cokernel
and coimage in A are defined respectively as:

Ker f = f~!(ep), Coker f = Cod f/Im f,
Im f = f(A), Coim f = Dom f/ Ker f,

where ep is a unit of B [Dodson and Parker (1997)].
In an Abelian category A a composable pair of arrows,

. f‘B g‘o

is exact at B iff Im f = Ker g (equivalence as subobjects of B) — or, equiv-
alently, if Coker f = Coim g [MacLane (1971)].
For each arrow f in an Abelian category A the triangular identities read

Ker(Coker(Ker f)) = Ker f, Coker(Ker(Coker f)) = Coker f.

The diagram (with 0 the null object)

0 - A - B -C -0 (2.63)
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is a short exact sequence when it is exact at A, at B, and at C.

Since 0 — a is the zero arrow, exactness at A means just that f is
monic (i.e., 1-1, or injective map); dually, exactness at C' means that g is
epic (i.e., onto, or surjective map). Therefore, is equivalent to

f=Kerg, g = Coker f.

Similarly, the statement that h = Coker f becomes the statement that the
sequence

A—t g9 o -0

is exact at B and at C. Classically, such a sequence was called a short
right exact sequence. Similarly, k = Ker f is expressed by a short left exact
sequence

0 ca—d .p9 .o

If A and A’ are Abelian categories, an additive functor F : A — A’ is
a functor from A to A’ with

F(f+f)=Ff+Ff,

for any parallel pair of arrows f, f/ : b — ¢ in A. It follows that F0 = 0.

A functor F : A — A’ between Abelian categories A and A’ is, by
definition, ezact when it preserves all finite limits and all finite colimits. In
particular, an exact functor preserves kernels and cokernels, which means
that

Ker(Ff) = F(Ker f) and Coker(F f) = F(Coker f);

then F also preserves images, coimages, and carries exact sequences to
exact sequences. By construction of limits from products and equalizers
and dual constructions, F : A — A’ is exact iff it is additive and preserves
kernels and cokernels.

A functor F is left exact when it preserves all finite limits. In other
words, F is left exact iff it is additive and Ker(F f) = F(Ker f) for all f:
the last condition is equivalent to the requirement that F preserves short
left exact sequences.

Similarly, a functor F is right exact when it preserves all finite colim-
its. In other words, F is right exact iff it is additive and Coker(Ff) =
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F(Coker f) for all f: the last condition is equivalent to the requirement
that F preserves short right exact sequences.
In an Abelian category A, a chain complez is a sequence

anJr 1 3n

Cn+1 Cn Cn—1

of composable arrows, with 0,,0,,+1 = 0 for all n. The sequence need not be
exact at c,; the deviation from exactness is measured by the nth homology
object

H,c=Ker(0, : ¢, — > ¢p—1)/Im(Ops1 : Cnt1 Cn)-

Similarly, a cochain complex in an Abelian category A is a sequence

dn+1 dn
¥ Wn+1 Wn, ¥ Wn—-1

of composable arrows, with d,d,11 = 0 for all n. The sequence need
not be exact at w,; the deviation from exactness is measured by the nth
cohomology object

H"w =Ker(dpt1 : wy, ———> wpe1)/Im(dy, : wpog ——— wy).

A cycle is a chain C such that 0C = 0. A boundary is a chain C such
that C' = 0B, for any other chain B.

A cocycle (a closed form) is a cochain w such that dw = 0. A coboundary
(an ezact form) is a cochain w such that w = df, for any other cochain 6.
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2.3.8 n—Categories

In this subsection we introduce the concept of modern n—categories.
Intuitively, in describing dynamical systems (processes) by means of
n—categories, instead of classical starting with a set of things:

we can now start with a category of things and processes between things:

or, a 2—category of things, processes, and processes between processes:

. and so on. For example, this n—categorical framework can be used for
higher gauge theory [Baez (2002)], which .
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2.3.8.1 Generalization of ‘Small’ Categories

If we think of a point in geometrical space (either natural, or abstract)
as an object (or, a 0—cell), and a path between two points as an arrow
(or, a 1—morphism, or a 1—cell), we could think of a ‘path of paths’ as a
2—arrow (or, a 2—morphism, or a 2—cell), and a ‘path of paths of paths’
(or, a 3—morphism, or a 3—cell), etc. Here a ‘path of paths’ is just a
continuous l-parameter family of paths from between source and target
points, which we can think of as tracing out a 2D surface, etc. In this way
we get a ‘skeleton’ of an n—category, where a 1—category operates with
0—cells (objects) and 1—cells (arrows, causally connecting source objects
with target ones), a 2—category operates with all the cells up to 2—cells
[Bénabou (1967)], a 3—category operates with all the cells up to 3—cells,
etc. This skeleton clearly demonstrates the hierarchical self-similarity of
n—categories:

O0—cell:xve

1—-cell:xze—— ey
f

2—cell:ze H/h oy

9

3—cell:xe  hli=>|1 oy

where triple arrow goes in the third direction, perpendicular to both single
and double arrows. Categorical composition is defined by pasting arrows.
Thus, a 1—category can be depicted as a commutative triangle:

A r - F(A)

GoF G
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a 2—category is a commutative triangle:

G(F(A))Ji“‘f&h&)

G(F(9))

a 3—category is a commutative triangle:

G(F(f)

G(F(A)Q(F(a) ES G(F(B)&(F(B))
G(F(9))

etc., up to n—categories.
Many deep-—sounding results in mathematical sciences are get by the

process of categoriﬁcationlzl of the high school mathematics [Crane and

[Frenkel (1994); Baez and Dolan (1998).
An n—category is a generic mathematical structure consisting of a col-

lection of objects, a collection of arrows between objects, a collection of
2—arrows between arrows |Bénabou (1967)|, a collection of 3—arrows be-

14Categorification means replacing sets with categories, functions with functors, and
equations between functions by natural equivalences between functors. Iterating this
process requires a theory of n—categories.
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tween 2—arrows, and so on up to n [Baez (1997); Baez and Dolan (1998);
[Leinster (2002); Leinster (2003); Leinster (2004)].
More precisely, an n—category (for n > 0) consists of:

e O—cells, or objects, A, B, ...

e 1—cells, or arrows, A B, with a composition

Aa—L g9 o4,

f

e 2—cells, ‘arrows between arrows’, A ﬂa B, with vertical compo-
g

sitions (denoted by o) and horizontal compositions (denoted by x),
respectively given by

R}
=)=
2
~

am

B=A Boax B and

\h/

f flof
N N
A A uo/ A'=A a’u* a A"
NV VS
g g'og
e 3—cells, ‘arrows between arrows
/

between arrows’, A «=)|8 B (where the ['—arrow goes in

g
a direction perpendicular to f and «), with various kinds of vertical,
horizontal and mixed compositions,
e ctc., up to n—cells.

Calculus of n—categories has been developed as follows. First, there
is Ko, the 2—category of all ordinary (or small) categories. Ko has cate-
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gories IC, L, ... as objects, functors F,G : K = L as arrows, and natural
transformations, like 7 : F — G as 2-arrows.

In a similar way, the arrows in a 3—category K3 are 2-functors Fs, Go, ...
sending objects in Ky to objects in Ly, arrows to arrows, and 2—arrows to
2—arrows, strictly preserving all the structure of Ko

/f\‘ Fa(f)
Ao B ma Alelzm)
g F2(9)

The 2-arrows in K3 are 2-natural transformations, like 75 : Fo EN G be-
tween 2—functors F»,Gs : Ko — Lo that sends each object in Ky to an
arrow in Lo and each arrow in Ky to a 2—arrow in Lo, and satisfies natu-
ral transformation—like conditions. We can visualize 7o as a prism going
from one functorial picture of s in L5 to another, built using commutative
squares:

/\/\w/

q 2 gQ(f)

Sy
¢
o
)

Ga(9) Lo

Similarly, the arrows in a 4—category Ky are 3—functors F3, Gs, ... sending
objects in /3 to objects in L3, arrows to arrows, and 2—arrows to 2—arrows,
strictly preserving all the structure of ICs

F3(f)

F3(A)Fs(a)| == )F3(B)F3(B)

F3(g)
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The 2-arrows in K4 are 3-natural transformations, like 73 : F EN G be-
tween 3—functors F3,G3 : K3 — L3 that sends each object in 3 to a
arrow in L3 and each arrow in 3 to a 2—arrow in L3, and satisfies natural
transformation—like conditions. We can visualize 73 as a prism going from
one picture of K3 in L3 to another, built using commutative squares:

f)

]:( f?, 2?3 Fg(B)

f
/;\ T3 g)

A =6 B | 73(A) T3(B)

2.3.8.2  Topological Structure of n— Categories

We already emphasized the topological nature of ordinary category theory.
This fact is even more obvious in the general case of n—categories (see
[Leinster (2002); Leinster (2003); [Leinster (2004)]).

2.3.8.3 Homotopy Theory and Related n— Categories

Any topological manifold M induces an n—-category I, (M) (its funda-
mental n—groupoid), in which O—cells are points in M; l—cells are paths
in M (i.e., parameterized continuous maps f : [0,1] — M); 2—cells are
homotopies (denoted by ~) of paths relative to endpoints (i.e., param-
eterized continuous maps h : [0,1] x [0,1] — M); 3—cells are homo-
topies of homotopies of paths in M (i.e., parameterized continuous maps
7 :10,1] x [0,1] x [0,1] — M); categorical composition is defined by past-
ing paths and homotopies. In this way the following ‘homotopy skeleton’
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emerges:
O—cell:zxe x e M;

1—ce11:x04f>oy frx~ye M,

f:[071]_>M7f:x’_’y7y:f(x)7f(0):$7f(1):
e.g., linear path: f(t) = (1 —t)x + ty;

/
2 — cell: /ﬂh\\ h:f~geM
: \\g/ Yy J=g )
h:[0,1] x [0,1] = M, h: f— g, g = h(f(z)),
h(‘rﬂo) = f(x)v h(gja 1) = ( ) h(o t) xz, h( ) =Y
e.g., linear homotopy: h(z,t) = (1 —t)f(z) + tg(x);

f
30e11:xoh\<%>z/40y jih~ie M,
g

1 2[0,1] x [0,1] x [0,1] = M, j - h i, i = j(h(f(x)))
J(ffvt,O) h(f(x)), j(z,t,1) = i(f(2)),
j(x,0,5) = f(x), j(x,1,5) = g(z),
J0,t,s) =, j(l,t,s) =y
e.g., linear composite homotopy: j(z,t,s) = (1 — ) h(f(x)) + ti(f(x)).
If M is a smooth manifold, then all included paths and homotopies need

to be smooth. Recall that a groupoid is a category in which every morphism
is invertible; its special case with only one object is a group.

Category 77

Topological n—category 77 has:

e O—cells: topological spaces X

e l—cells: continuous maps X Y



Technical Preliminaries: Tensors, Actions and Functors 123

f

e 2—cells: homotopies h between f and g : X uh Y
‘\_/

g
i.e., continuous maps h : X x [0,1] — Y, such that Vo € X, h(z,0) =

f(z) and h(z,1) = g(z)
/
@Y

e 3-cells: homotopies between homotopies : X hil= )i

~A\ /T

g
i.e., continuous maps j : X x [0,1] x [0,1] = Y.

Category CK

Consider an n—category C/C, which has:

e 0-cells: chain complexes A (of Abelian groups, say)

e 1—cells: chain maps A B
f
e 2-——cells: chain homotopies A ua B,
\\g/

i.e., maps a : A — B of degree 1

f
/r\« . .
e 3-cells A @ B: homotopies between homotopies,
g

i.e., maps I' : A — B of degree 2 such that d[' —I'd = 3 — a.

There ought to be some kind of map CC : 77T = CK (see [Leinster (2002);
Leinster (2003); Leinster (2004)]).

2.3.8.4 Categorification

Categorification is the process of finding category—theoretic analogs of set—
theoretic concepts by replacing sets with categories, functions with functors,
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and equations between functions by natural isomorphisms between functors,
which in turn should satisfy certain equations of their own, called ‘coherence
laws’. Iterating this process requires a theory of n—categories.

Categorification uses the following analogy between set theory and cat-
egory theory [Crane and Frenkel (1994); |[Baez and Dolan (1998)]:

Set Theory Category Theory
elements objects
equations isomorphisms

between elements between objects
sets categories
functions functors
equations natural isomorphisms
between functions between functors

Just as sets have elements, categories have objects. Just as there are
functions between sets, there are functors between categories. Now, the
proper analog of an equation between elements is not an equation between
objects, but an isomorphism. Similarly, the analog of an equation between
functions is a natural isomorphism between functors.

2.3.9 Application: n— Categorical Framework for Higher
Gauge Fields

Recall that in the 19th Century, J.C. Maxwell unified Faraday’s electric and
magnetic fields. Maxwell’s theory led to Einstein’s special relativity where
this unification becomes a spin—off of the unification of space end time in
the form of the Faraday tensor [Misner et al. (1973)]

F=ENndt+ B,

where F is electromagnetic 2—form on space—time, F is electric 1—form on
space, and B is magnetic 2—form on space. Gauge theory considers F' as
secondary object to a connection—potential 1—form A. This makes half of
the Mazwell equations into tautologies [Baez (2002)], i.e.,

F=dA = dFF =0 the Bianchi relation,

but does not imply the dual Bianchi relation, which is a second half of
Maxwell’s equations,

xd x "= J,



Technical Preliminaries: Tensors, Actions and Functors 125

where * is the dual Hodge star operator and J is current 1—form.
To understand the deeper meaning of the connection—potential 1—form

A, we can integrate it along a path v in space—time, x y. Clas-

sically, the integral fv A represents an action for a charged point particle

to move along the path . Quantum—mechanically, exp (i fw A) represents

a phase (within the unitary group U(1)) by which the particle’s wave—
function changes as it moves along the path 7, so A is a U(1)—connection.

The only thing that matters here is the difference a between two paths
v, and vy, in the action fv A [Baez (2002)], which is a two—morphism

To generalize this construction, consider any compact Lie group G. A
connection A on a trivial G—bundle is a y—valued 1—form. A assigns

a holonomy P exp (i f,y A) € G along any path =z -7, y and has a
curvature F' given by

F=dA+ANA.

The curvature F' implies the extended Bianchi relation

dF + ANF =0,
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but does not imply the dual Bianchi relation, i.e., Yang—Mills relationlEI

«(dx F+ AN*F)=J.

I5Recall that the Yang-Mills (YM) Lagrangian density Lyn is a functional of the
vector potential fields A;u where the internal index ¢ ranges over {1,--- ,n}, where n is
the dimension of the gauge group, and p is a space—time index (u =0, ---,3). The field

tensor derived from these potential fields is (see, e.g., [Pons et. al. (2000)|)
ap = Aba — Aap — CirALAS,

where C;k are the structure constants of the gauge group Lie. The YM Lagrangian
density is consequently given by

CYM:—*\/\QFZ FJ g gPCy;,

where C;; is a nonsingular, symmetric group metric and g is the determinant of the
space-time metric tensor (in a semi-simple Lie group, Cj; is usually taken to be C, C’;S;
in an Abelian Lie group, one usually takes C;; = 0;;).

The derivatives of Ly with respect to the velocities of the configuration—space vari-
ables, A}l give the tangent—space functions 151-‘" corresponding to the phase—space conju-
gate momenta:

. ALy .
P = D VIglF}, g% g% Cij.
«

The Legendre map FL is defined by mapping Pf to P in the phase-space. Because of
the antisymmetry of the field tensor, the primary constraints are

~ aﬁYM 5
0=P = TR /IglFﬁ,,gO”gO”Cij
0

A generator of a projectable gauge transformation thus must be independent of Aé.
An infinitesimal YM gauge transformation is defined by an array of gauge fields A®
and transforms the potential by

r[AJA}, = —A’, — CLL N A
We denote this transformation by
‘;RAL = —(DHA)j,

where D,, is the Yang—Mills covariant derivative (in its action on space-time scalars and
YM vectors). Under this transformation, the field transforms as

SrFy, = —Cl N Ff,,
where we work to first order in A* and use the Jacobi identity
3 14 3 14 3 14
CleCrmn + CrCrj + CroCipy =

The YM Lagrangian Ly is invariant under this transformation provided that the group
metric is symmetric,

C},Crj = —Cf;Chi (which is if Cy; = C5,CL,).
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Further generalization is performed with string theory. Just as point
particles naturally interact with a 1—form A, strings naturally interact
with a 2—form B, such that [Baez (2002)|

action :/B, and phase = exp (1/ B).
b b

This 2—form connection B has a 3—form curvature G = dB, which satisfies
Maxwell-like equations, i.e., implies Bianchi-like relation dG = 0, but does
not imply the dual, current relation *d* G = J, with the current 2—form
J.

In this way, the higher Yang—Mills theory assigns holonomies to paths
and also to paths of paths, so that we have a 3—morphism

71

I

Y3

allowing us to ask not merely whether holonomies along paths are equal,
but whether and how they are isomorphic.

This generalization actually proposes categorification of the basic ge-
ometrical concepts of manifold, group, Lie group and Lie algebra [Baez
(2002)]. Replacing the words set and function by smooth manifold and
smooth map we get the concept of smooth category. Replacing them
by group and homomorphism we get the concept of 2—group. Replacing
them by Lie group and smooth homomorphism we get the concept of Lie
2—group. Replacing them by Lie algebra and Lie algebra homomorphism
we get the concept of Lie 2—algebra. Examples of the smooth categories
are the following:

(1) A smooth category with only identity morphisms is a smooth manifold.

(2) A smooth category with one object and all morphisms invertible is a
Lie group.

(3) Any Lie groupoid gives a smooth category with all morphisms invert-
ible.

(4) A generalization of a vector bundle (E, M, 7), where F and M are
smooth manifolds and projection 7 : E — M is a smooth map, gives a
vector 2—bundle (E, M, ) where E and M are smooth categories and
projection 7 : E — M is a smooth functor.
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2.3.10 Application: Natural Geometrical Structures

Closely related to the higher—dimensional automata are various natural ge-
ometrical structures, most of which are commonly called tangles.

For example, a 2D flow—chart-like complex 1D—structure could be a
diagram of the form [Leinster (2002)} Leinster (2003)]:

Its 3D—generalization is a surface diagram with the same information—
flow:

Moreover, if we allow crossings, as in a braid:
\&)

then we start getting pictures that look like knots which are again related
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to higher categorical structures [Leinster (2002); [Baez (1997)].

A category C with only one object is a monoid (= semigroup with unit)
M. A 2—category C with only one O—cell is a monoidal category M. A
braided monoidal category is a monoidal category equipped with a map
called braiding

B
Awp lAB

BoA,

for each pair A, B of objects.
The canonical example of a braided monoidal category is BR
(2003)]. This has:

(1) Objects: natural numbers 0,1, .. ;
(2) Morphisms: bralds e.g.,

f "4 (taken up to deformation);
there are no morphlsms m — n when m # n;

(3) Tensor product: placing side-by-side (which on objects means addi-
tion); and

(4) Braiding: right over left, e.g.,

Knots, links and braids are all special cases of tangles (see |Reshetikhin

land Turaev (1990)]). The mysterious relationships between topology, alge-
bra and physics amount in large part to the existence of interesting func-
tors from various topologically defined categories to Hilbert, the cate-
gory of Hilbert spaces. These topologically defined categories are always
x—categories, and the really interesting functors from them to Hilbert are
always *— functors, which preserve the x—structure. Physically, the * oper-
ation corresponds to reversing the direction of time. For example, there is
a x—category whose objects are collections of points and whose morphisms




130 Applied Differential Geometry: A Modern Introduction

are tangles (see [Baez (1997); Baez and Dolan (1998)]):

]
<!

We can think of this morphism f : x — y as representing the trajectories of

a collection of particles and antiparticles, where particles and antiparticles
can be created or annihilated in pairs. Reversing the direction of time, we
get the ‘dual’ morphism f*:y — x:

Sl

This morphism is not the inverse of f, since the composite f o f* is a
nontrivial tangle:

I+

0 C O

-—
Ed

Indeed, any groupoid becomes a *—category if we set f* = f~! for every
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morphism f.

The above example involves 1D curves in 3D space. More generally,
topological quantum field theory studies nD manifolds embedded in (n+k)D
space—time, which in the k — oo limit appear as ‘abstract’ nD manifolds.
It appears that these are best described using certain ‘n—categories with
duals’, meaning n—categories in which every j—morphism f has a dual f*.

Therefore, a tangle is a box in 3D space with knotted and linked string
embedded within it and a certain number of strands of that string emanat-
ing from the surface of the box. There are no open ends of string inside
the box. We usually think of some subset of the strands as inputs to the
tangle and the remaining strands as the outputs from the tangle. Usually
the inputs are arranged to be drawn vertically and so that they enter tangle
from below, while the outputs leave the tangle from above. The tangle itself
(within the box) is arranged as nicely as possible with respect to a vertical
direction. This means that a definite vertical direction is chosen, and that
the tangle intersects planes perpendicular to this direction transversely ex-
cept for a finite collection of critical points. These basic critical points are
local maxima and local minima for the space curves inside the tangle. Two
tangles configured with respect to the same box are ambient isotopic if there
is an isotopy in three space carrying one to the other that fixes the input
and output strands of each tangle. We can compose two tangles A and B
where the number of output strand of A is equal to the number of input
strands of B. Composition is accomplished by joining each output strand
of A to a corresponding input strand of B [Kauffman and Radford (1995);
Kauffman and Radford (1999); Kauffman (1994)].

A tangle diagram is a box in the plane, arranged parallel to a chosen ver-
tical direction with a left-right ordered sequence of input strands entering
the bottom of the box, and a left-right ordered sequence of output strands
emanating from the top of the box. Inside the box is a diagram of the
tangle represented with crossings (broken arc indicating the undercrossing
line) in the usual way for knot and links. We assume, as above, that the
tangle is represented so that it is transverse to lines perpendicular to the
vertical except for a finite number of points in the vertical direction along
the tangle. It is said that the tangle is well arranged, or Morse with re-
spect to the vertical direction when these transversality conditions are met.
At the critical points we will see a local maximum, a local minimum or a
crossing in the diagram. Tangle composition is well-defined (for matching
input/output counts) since the input and output strands have an ordering
(from left to right for the reader facing the plane on which the tangle di-
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agram is drawn). Note that the cardinality of the set of input strands or
output strands can be equal to zero. If they are both zero, then the tangle
is simply a knot or link diagram arranged well with respect to the vertical
direction [Kauffman and Radford (1995); Kauffman and Radford (1999);
Kauffman (1994)].

The Reidemeister moves are a set of moves on diagrams that combi-
natorially generate isotopy for knots, links and and tangles [Reidemeister
(1948)]. If two tangles are equivalent in 3D space, then corresponding di-
agrams of these tangles can be obtained one from another, by a sequence
of Reidemeister moves. Each move is confined to the tangle box and keeps
the input and output strands of the tangle diagram fixed.

Two (tangle) diagrams are said to be regularly isotopic if one can be
obtained from the other by a sequence of Reidemeister moves of type 0,2,3
(move number 1 is not used in regular isotopy).

If A and B are given tangles, we denote the composition of A and B by
AB where the diagram of A is placed below the diagram of B and the output
strands of A are connected to the input strands of B. If the cardinalities
of the sets of input and output strands are zero, then we simple place one
tangle below the other to form the product [Kauffman and Radford (1995);
Kauffman and Radford (1999); Kauffman (1994)].

Along with tangle composition, as defined in the previous paragraph, we
also have an operation of product or juztaposition of tangles. To juxtapose
two tangles A and B simply place their diagrams side by side with A to
the left of B and regard this new diagram as a new tangle whose inputs
are the inputs of A followed by the inputs of B, and whose outputs are the
outputs of A followed by the outputs of B. We denote the tangle product
of A and B by A® B.

It remains to describe the equivalence relation on tangles that makes
them represent regular isotopy classes of embedded string. Every tangle is
a composition of elementary tangles where an elementary tangle is one of
the following list: a cup (a single minimum — zero inputs, two outputs),
a cap (a single maximum — two inputs, zero outputs), a crossing (a single
local crossing diagram — two inputs and two outputs).

2.3.11 Ultimate Conceptual Machines:
Weak n— Categories

As traditionally conceived, an n—category is an algebraic structure
having objects or O—morphisms, 1—morphisms between O—morphisms,
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2—morphisms between 1—morphisms, and so on up to n—morphisms.
There should be various ways of composing j—morphisms, and these com-
position operations should satisfy various laws, such as associativity laws.
In the so—called strict n—categories, these laws are equations. While well—-
understood and tractable, strict n—categories are insufficiently general
for many applications: what one usually encounters in nature are weak
n—categories, in which composition operations satisfy the appropriate laws
only up to equivalence. Here the idea is that n—morphisms are equivalent
precisely when they are equal, while for j < n an equivalence between
j—morphisms is recursively defined as a (j + 1)—morphism from one to the
other that is invertible up to equivalence [Baez and Dolan (1998)].

Now, what makes it difficult to define weak n—categories is that laws
formulated as equivalences should satisfy laws of their own — the so—called
coherence laws — so that one can manipulate them with some of the same
facility as equations. Moreover, these coherence laws should also be equiv-
alences satisfying their own coherence laws, again up to equivalence, and
so on [Baez and Dolan (1998)].

For example, a weak 1—category is just an ordinary category. In a
category, composition of 1—morphisms is associative:

(fg)h = f(gh).

Weak 2—categories first appeared in the work of Bénabou [Bénabou
(1967)], under the name of bicategories. In a bicategory, composition of
1—morphisms is associative only up to an invertible 2—morphism, the ‘as-
sociator’:

Aggn: (fg)h — f(gh).

The associator allows one to re-bracket parenthesized composites of arbi-
trarily many 1—morphisms, but there may be many ways to use it to go
from one parenthesization to another. For all these to be equal, the asso-
ciator must satisfy a coherence law, the pentagon identity, which says that
the following diagram commutes:

(fg)(hi)

((fg)h)i > f(g(hi))
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where all the arrows are 2—morphisms built using the associator. Weak
3—categories or tricategories were defined by |Gordon et. al. (1995)].
In a tricategory, the pentagon identity holds only up to an invertible
3—morphism, which satisfies a further coherence law of its own.

When one explicitly lists the coherence laws this way, the definition
of weak n—category tends to grow ever more complicated with increasing
n. To get around this, one must carefully study the origin of these coher-
ence laws. So far, most of our insight into coherence laws has been won
through homotopy theory, where it is common to impose equations only
up to homotopy, with these homotopies satisfying coherence laws, again up
to homotopy, and so on. For example, the pentagon identity and higher
coherence laws for associativity first appeared in Stasheff’s work on the
structure inherited by a space equipped with a homotopy equivalence to a
space with an associative product [Stasheff (1963)]. Subsequent work led
to a systematic treatment of coherence laws in homotopy theory through
the formalism of topological operads |Adams (1978)].

Underlying the connection between homotopy theory and n—category
theory is a hypothesis made quite explicit by Grothendieck [Grothendieck
(1983)]: to any topological space one should be able to associate
an n—category having points as objects, paths between points as
1—morphisms, certain paths of paths as 2—morphisms, and so on, with
certain homotopy classes of n—fold paths as n—morphisms. This should
be a special sort of weak n—category called a weak n—groupoid, in which
all j—morphisms (0 < j < n) are equivalences. Moreover, the process
of assigning to each space its fundamental n—groupoid, as Grothendieck
called it, should set up a complete correspondence between the theory of
homotopy n—types (spaces whose homotopy groups vanish above the nth)
and the theory of weak n—groupoids. This hypothesis explains why all the
coherence laws for weak n—groupoids should be deducible from homotopy
theory. It also suggests that weak n—categories will have features not found
in homotopy theory, owing to the presence of j—morphisms that are not
equivalences [Baez and Dolan (1998)].

Homotopy theory also makes it clear that when setting up a the-
ory of n—categories, there is some choice involved in the shapes of ones
j—morphisms — or in the language of topology, j—cells. The traditional
approach to n—cate-gories is globular. This means that for j > 0, each
j—cell f: z — y has two (j — 1)—cells called its source, sf = x, and target,
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tf =y, which for 7 > 1 satisfy
s(sf)=s(tf),  tsf)=ttf)).

Thus a j—cell can be visualized as a globe, a jD ball whose boundary
is divided into two (j — 1)D hemispheres corresponding to its source and
target. However, in homotopy theory, the simplicial approach is much more
popular. In a simplicial set, each j—cell f is shaped like a jD simplex,
and has j + 1 faces, certain (j — 1)—cells dof,...,d,f. In addition to
these there are (j + 1)—cells iof,...,in+1f called degeneracies, and the
face and degeneracy maps satisfy certain well-known relations [Baez and
Dolan (1998)].
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Chapter 3

Applied Manifold Geometry

3.1 Introduction

Albert Einstein once said: “Nature is simple only when analyzed locally.
Why? Because, locally any system appears to be linear, and therefore fully
predictable and controllable. Geometrical elaboration of this fundamental
idea has produced the concept of a manifold, a topological space which
locally looks like Euclidean R™—spaces, but globally can be totally differ-
ent. In addition, to be able to use calculus on our manifolds, in much the
same way as in ordinary R™—spaces, the manifolds need to be smooth (i.e.,
differentiable as many times as required, technically denoted by C*).

Consider a classical example, comparing a surface of an apple with a
Euclidean plane. A small neighborhood of every point on the surface of
an apple (excluding its stem) looks like a Euclidean plane (denoted by
R?), with its local geodesics appearing like straight lines. In other words,
a smooth surface is locally topologically equivalent to the Euclidean plane.
This same concept of nonlinear geometry holds in any dimension. If di-
mension is high, we are dealing with complex systems. Therefore, while
continuous-time linear systems live in Euclidean R"—spaces, continuous—
time complex systems live in nD smooth manifolds, usually denoted by
M.

Finally, note that there are two dynamical paradigms of smooth mani-
folds:
(i) Einstein’s 4D space—time manifold, historically the first one, and
(ii) nD configuration manifold, which is the modern geometrical concept.

As the Einstein space—time manifold is both simpler to comprehend and
consequently much more elaborated, we start our geometrical machinery
with it, keeping in mind that the same fundamental dynamics holds for all

137
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smooth manifolds, regardless of their dimension.

Throughout the book we will try to follow the Hilbertian pedagogical
method of development: (i) intuitively introduce a new geometrical concept;
(ii) rigorously define it; (iii) apply it to solve a real-world problem.

3.1.1 Intuition Behind Einstein’s Geometrodynamics

Briefly, Einstein-Wheeler geometrodynamics can be summarized as
[Wheeler (1961); [Wheeler (1962)]:

(1) Gravity is not a Newtonian force, but an aspect of the geometry of
space—time.

(2) Space is not an absolute invariant entity, but is influenced by the dis-
tribution of mass and energy in the Universe. The fundamental Ge-
ometrodynamics Principle states:

Space tells matter how to move, while matter tells space how to curve.

(3) Large masses introduce a strong curvature in space—time. Light and
matter are forced to move according to this metric. Since all the matter
is in motion, the geometry of space is constantly changing.

The celebrated Einstein equation relates the curvature of space—time to the
mass/energy density. It reads (in the so—called ‘normal’ units: ¢ = 871G =

1):
G=T, or, in components, Gap =Tag, (3.1)

where G = G,p is the Einstein curvature tensor, representing space—
time geometry, while T = T,z is the stress—energy-momentum tensor,
the ‘mystical’ SEM-tensor, representing matter; the 4D indices «,3 =
(0,1,2,3) label respectively the four space—time directions: (¢, z,y, z).

To grasp the intuition behind the Einstein equation , we need to
consider a ball filled with test particles that are all initially at rest relative
to each other. Let V = V (¢) be the volume of the ball after a proper time
t has elapsed, as measured by the particle at the center of the ball. Then
the Einstein equation says:

flow of t—momentum in ¢ — direction +
1% 1 | flow of z—momentum in x — direction +
V lt=0 2 | flow of y—momentum in y — direction +

flow of z—momentum in z — direction
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where these flows are measured at the center of the ball at time ¢ = 0,
using local inertial coordinates. These flows are the diagonal components
of the SEM-tensor T. Its components T, tell us how much momentum
in the a—direction is flowing in the S—direction through a given point of
space—time. The flow of t—momentum in the t—direction is just the energy
density, Too = p. The flow of x—momentum in the x—direction is the
‘pressure in the r—direction’, T1; = P, = P,, and similarly for y and z.

In any event, we may summarize the Einstein equation as

1%

1 1
Vo = —§(P+Pz +P,+P,)= —§(T00 + T+ T2+ T33).  (3.2)

This new equation tells us that positive energy density and positive pressure
curve space-time in a way that makes a freely falling ball of point particles
tend to shrink. Since E = mc? and we are working in normal units, ordinary
mass density counts as a form of energy density. Thus a massive object will
make a swarm of freely falling particles at rest around it start to shrink.
In short, tells us that gravity attracts (see e.g., |Misner et al. (1973);
Baez (2001)]).

To see why equation is equivalent to the Einstein equation ,
we need to understand the Riemann curvature tensor and the geodesic de-
viation equation. Namely, when space—time is curved, the result of parallel
transport depends on the path taken. To quantify this notion, pick two
vectors u and v at a point p in space-time. In the limit where e — 0, we
can approximately speak of a ‘parallelogram’ with sides eu and ev. Take
another vector w at p and parallel transport it first along ev and then along
eu to the opposite corner of this parallelogram. The result is some vector
wi. Alternatively, parallel transport w first along eu and then along ev.
The result is a slightly different vector, ws. The limit
W2 — Wy

lim 5
e—0 €

= R(u,v)w (3.3)

is well-defined, and it measures the curvature of space-time at the point p.
In local coordinates, we can write it as

R(u,v)w = ngéuﬁvww‘;.

The quantity Rj ; is called the Riemann curvature tensor. We can use this
tensor to calculate the relative acceleration of nearby particles in free fall if
they are initially at rest relative to one another. Consider two freely falling
particles at nearby points p and ¢. Let v be the velocity of the particle at
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p, and let eu be the vector from p to q. Since the two particles start out
at rest relative to one other, the velocity of the particle at ¢ is obtained by
parallel transporting v along eu.

Now let us wait a short while. Both particles trace out geodesics as time
passes, and at time e they will be at new points, say p’ and ¢’. The point
p’ is displaced from p by an amount ev, so we get a little parallelogram,
exactly as in the definition of the Riemann curvature:

Next let us calculate the new relative velocity of the two particles. To
compare vectors we must carry one to another using parallel transport. Let
v1 be the vector we get by taking the velocity vector of the particle at p’
and parallel transporting it to ¢’ along the top edge of our parallelogram.
Let vo be the velocity of the particle at ¢’. The difference vy — vy is the
new relative velocity. It follows that over this passage of time, the average
relative acceleration of the two particles is a = (v2 — v1)/e. By equation

B3).

Vo — U1

. . a
lim ——— = R(u,v)v, therefore lim — = R(u,v)v.
e—0 € e—0 €
This is the simplified form of the geodesic deviation equation. From the defi-
nition of the Riemann curvature it is easy to see that R(u,v)w = —R(v, u)w,
so we can also write this equation as
lim o —R%_svPurv® (3.4)
e—0 € 8o ’ '
Using geodesic deviation equation (3.4) we can work out the second
time derivative of the volume V'(t) of a small ball of test particles that
start out at rest relative to each other. For this we must let u range over an
orthonormal basis of tangent vectors, and sum the ‘outwards’ component
of acceleration for each one of these. By equation (3.4 this gives

lim — = —R2 Py,
v—o0 V lt=0 Bad

In terms of the so—called Ricci tensor, which is a contracted Riemann ten-

sor,

Rﬁé = Rgozé )
we may write the above expression as

V
lim —| = —Rgsv’0°.
VEO V lt=0 povY
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In local inertial coordinates, where the ball starts out at rest, we have
v =(1,0,0,0), so

Vil—]%og =0 ~fao- (3:5)
In short, the Ricci tensor says how our ball of freely falling test particles

starts changing in volume. The Ricci tensor only captures some of the

information in the Riemann curvature tensor. The rest is captured by

the so—called the Weyl tensor (see e.g., [Penrose (1989); [Penrose (1994);

Penrose (1997)]), which says how any such ball starts changing in shape.

The Weyl tensor describes tidal forces, gravitational waves and the like.
Now, the Einstein equation in its usual form says

Gop = Tog.

Here the right side is the stress-energy tensor, while the left side, the ‘Ein-
stein tensor’, is just an abbreviation for a quantity constructed from the
Ricci tensor:

1
Gaﬁ = Ra@ — §g@ﬁR’VY'

Thus the Einstein equation really says

1
Rag - §ga5R’7y = Taﬁ. (3.6)
This implies
1
RS = S0 = T,
but g5 =4, so
—R2 =T2.

Substituting this into equation (3.6)), we get

1
Rap = Tap — 590517 (3.7)

This is an equivalent version of the Einstein equation, but with the roles
of R and T switched [Baez (2001)]. This is a formula for the Ricci tensor,
which has a simple geometrical meaning.

Equation will be true if any one component holds in all local
inertial coordinate systems. This is a bit like the observation that all of
Maxwell’s equations are contained in Gauss’s law and and V - B = 0.
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Clearly, this is only true if we know how the fields transform under change
of coordinates. Here we assume that the transformation laws are known.
Given this, the Einstein equation (3.1)) is equivalent to the fact that

1
Roo = Too — igooTJ (3.8)

in every local inertial coordinate system about every point. In such coor-
dinates we have

1000
| o100
9= 0010
0001

(3.9)

S0 goo = —1, as well as

T) = —Too + T11 + To2 + T33.

Equation (3.8) thus says that
1
Roo = §(T00 + Ty + Tog + T33).

By equation (3.5)), this is equivalent to the required

1
o *i(Too + Th1 + To2 + Ti3).

3.1.2 FEinstein’s Geometrodynamics in Brief

As a final introductory motivation, we give an ‘express—flight bird—view’
on derivation of the FEinstein equation from the Hilbert action principle,
starting from the Einstein space—time manifold M. For all technical details,
see |Misner et al. (1973)], which is still, after 33 years, the core textbook
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on the subject.

M . the space—time manifold M
= gij (.Z’Z) eT,M ... metric tensor on M
gij = (9i5)" ! . inverse metric tensor on M
1
Lijk = 5(@;« Gij + Opigki — OgiGjk) ... 1-order Christoffel symbols
I‘fj = gklfiﬂ . 2—order Christoffel symbols (Levi-Civita connection)
Rﬁjk =0, — 0, kF + Fm = Flrkaj ... Riemann curvature tensor
R;; le . RlCCl tensor is the trace of Riemann
R=g" R;; ... scalar curvature is the trace of Ricci
1
Gi; = Ry §Rgij ... Einstein tensor is the trace-reversed Ricci
e 25LHzlb I ,
= 51 + gij Ly ... stress—energy-momentum (SEM) tensor
1
Ly = WQMR (—g)t/? ... is derived from the Hilbert Lagrangian
08 = 5/LHilb(—g)1/2d4ac =0 ... the Hilbert action principle gives
Gy = 8nTy; ... the Einstein equation.

We will continue Einstein’s geometrodynamics in section below.

3.2 Intuition Behind the Manifold Concept

As we have already got the initial feeling, in the heart of applied differential
geometry is the concept of a manifold. As a warm—up, to get some dynam-
ical intuition behind this concept, let us consider a simple 3DOF mechan-
ical system determined by three generalized coordinates, ¢* = {q',¢?, ¢3}.
There is a unique way to represent this system as a 3D manifold, such that
to each point of the manifold there corresponds a definite configuration of
the mechanical system with coordinates ¢; therefore, we have a geomet-
rical representation of the configurations of our mechanical system, called
the configuration manifold. If the mechanical system moves in any way,
its coordinates are given as the functions of the time. Thus, the motion
is given by equations of the form: ¢* = ¢*(t). As t varies (i.e., t € R), we
observe that the system’s representative point in the configuration manifold
describes a curve and q* = ¢*(t) are the equations of this curve.
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1-1 J
onto-)

R” - R”
Fig. 3.1 An intuitive geometrical picture behind the manifold concept (see text).

On the other hand, to get some geometrical intuition behind the concept
of a manifold, consider a set M (see Figure which is a candidate for
a manifold. Any point = € ]\4E| has its Fuclidean chart, given by a 1-1
and onto map ¢, : M — R", with its Fuclidean image V; = ¢,(U;). More
precisely, a chart ¢, is defined by

0, MDU; 3z ¢;(x) €V, CR",

where U; C M and V; C R™ are open sets (see [Boothby (1986); |Arnold|
[(1978); |De Rham (1984)]).

Clearly, any point 2 € M can have several different charts (see Figure
. Consider a case of two charts, ¢;,¢; : M — R", having in their
images two open sets, Vi; = ¢,;(U; N Uj) and Vj; = ¢;(U; NU;). Then we
have transition functions ¢;; between them,

@i =¢;00; 1 Viy = Vi, locally given by ;i(z) = ¢,(¢; " (z)).

If transition functions ¢,; exist, then we say that two charts, p; and ¢, are
compatible. Transition functions represent a general (nonlinear) transfor-
mations of coordinates, which are the core of classical tensor calculus.

A set of compatible charts ¢, : M — R"™, such that each point x € M
has its Euclidean image in at least one chart, is called an atlas. Two atlases
are equivalent iff all their charts are compatible (i.e., transition functions

1Note that sometimes we will denote the point in a manifold M by m, and sometimes
by x (thus implicitly assuming the existence of coordinates = = (z?)).
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exist between them), so their union is also an atlas. A manifold structure
is a class of equivalent atlases.

Finally, as charts ¢, : M — R™ were supposed to be 1-1 and onto maps,
they can be either homeomorphisms, in which case we have a topological
(C°) manifold, or diffeomorphisms, in which case we have a smooth (C*)
manifold.

Slightly more precisely, a topological (respectively smooth) manifold is
a separable space M which is locally homeomorphic (resp. diffeomorphic)
to Euclidean space R™, having the following properties (reflected in Figure

5.1):

(1) M is a Hausdorff space: For every pair of points x1, 29 € M, there are
disjoint open subsets Uy,Us C M such that z; € Uy and x5 € Us.

(2) M is second—countable space: There exists a countable basis for the
topology of M.

(3) M is locally Fuclidean of dimension n: Every point of M has a neigh-
borhood that is homeomorphic (resp. diffeomorphic) to an open subset
of R™.

This implies that for any point € M there is a homeomorphism (resp.
diffeomorphism) ¢ : U — @(U) C R™, where U is an open neighborhood
of x in M and ¢(U) is an open subset in R™. The pair (U, ¢) is called a
coordinate chart at a point z € M, etc.

3.3 Definition of a Differentiable Manifold

Given a chart (U, ¢), we call the set U a coordinate domain, or a coordinate
neighborhood of each of its points. If in addition ¢(U) is an open ball
in R”, then U is called a coordinate ball. The map ¢ is called a (local)
coordinate map, and the component functions (!, ...,2") of ¢, defined by
o(m) = (xz1(m),...,2"(m)), are called local coordinates on U.

Two charts (U1, ;) and (Usa,p,) such that Uy N Uz # @ are called
compatible if ¢, (U; NUz) and @4(UsNU;p) are open subsets of R™. A family
(Ua, ¢4 ) aca of compatible charts on M such that the U, form a covering of
M is called an atlas. The maps @,5 = 50 05" : 0o (Uap) = 5(Uap) are
called the transition maps, for the atlas (Uq, ¢,)aca, where Uyg = U NUg,
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so that we have a commutative triangle:

Uwpg CM

Pa YB

‘Pa(Uaﬁ) Parp @B(Uaﬁ)

An atlas (Uy, ¢, )aca for a manifold M is said to be a C*¥—atlas, if
all transition maps ¢,5 : ¢, (Uag) — ¢5(Uas) are of class C*. Two C*
atlases are called C*— equivalent, if their union is again a C*—atlas for M.
An equivalence class of C*—atlases is called a C¥—structure on M. In
other words, a smooth structure on M is a mazimal smooth atlas on M,
i.e., such an atlas that is not contained in any strictly larger smooth atlas.
By a C¥—manifold M, we mean a topological manifold together with a
C*—structure and a chart on M will be a chart belonging to some atlas of
the C*—structure. Smooth manifold means C'>° —manifold, and the word
‘smooth’ is used synonymously with C> [De Rham (1984)].

Sometimes the terms ‘local coordinate system’ or ‘parametrization’ are
used instead of charts. That M is not defined with any particular atlas, but
with an equivalence class of atlases, is a mathematical formulation of the
general covariance principle. Every suitable coordinate system is equally
good. A Euclidean chart may well suffice for an open subset of R™, but this
coordinate system is not to be preferred to the others, which may require
many charts (as with polar coordinates), but are more convenient in other
respects.

For example, the atlas of an n—sphere S™ has two charts. If N =
(1,0,...,0) and S = (—1,...,0,0) are the north and south poles of S™ re-
spectively, then the two charts are given by the stereographic projections
from N and S:

@0, SN} = R™, oy (2, .., 2™ = (22/(1 — zt),..., 2" /(1 — 2b)), and
0o SN\{S} — R py(z!, ..., 2" ™) = (2/(1 4+ 2b), ..., 2" T /(1 +2)),

while the overlap map ¢, 0 o7 : R"\{0} — R™\{0} is given by the dif-
feomorphism (5 0 7 1) (2) = 2/||2]|?, for z in R"\{0}, from R™\{0} to
itself.

Various additional structures can be imposed on R", and the corre-
sponding manifold M will inherit them through its covering by charts. For
example, if a covering by charts takes their values in a Banach space E,
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then E is called the model space and M is referred to as a C*—Banach
manifold modelled on F. Similarly, if a covering by charts takes their val-
ues in a Hilbert space H, then H is called the model space and M is referred
to as a C*— Hilbert manifold modelled on H. If not otherwise specified, we
will consider M to be an Euclidean manifold, with its covering by charts
taking their values in R™.

For a Hausdorff C*—manifold the following properties are equivalent
[Kolar et al. (1993)]: (i) it is paracompact; (ii) it is metrizable; (iii) it
admits a Riemannian metricﬂ (iv) each connected component is separable.

3.4 Smooth Maps Between Smooth Manifolds

A map ¢ : M — N between two manifolds M and N, with M > m —
©(m) € N, is called a smooth map, or C*¥—map, if we have the following
charting:

2Recall the corresponding properties of a Euclidean metric d. For any three points
z,y,z € R™, the following axioms are valid:

My : d(z,y) >0, for x#y; and d(z,y) =0, for z=uy;
Ma : d(z,y) = d(y, z); Ms :d(z,y) < d(w,2) + d(z,y).
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S

.
O =
n
©

=

Yopod W(p(m))

>
2

R™ > - R™
This means that for each m € M and each chart (V, ) on N with ¢ (m) € V
there is a chart (U, $) on M with m € U, (U) CV,and ® =popo ¢ *
is C*, that is, the following diagram commutes:

MDU 1.4 VCN
) P
H(U) g (V)

Let M and N be smooth manifolds and let ¢ : M — N be a smooth
map. The map ¢ is called a covering, or equivalently, M is said to cover
N, if ¢ is surjective and each point n € N admits an open neighborhood V'
such that =1 (V) is a union of disjoint open sets, each diffeomorphic via ¢
to V.

A CF—map ¢ : M — N is called a C*—diffeomorphism if ¢ is a bi-
jection, p~! : N — M exists and is also C*. Two manifolds are called
diffeomorphic if there exists a diffeomorphism between them. All smooth
manifolds and smooth maps between them form the category M.

3.4.1 Intuition Behind Topological Invariants of Manifolds

Now, restricting to the topology of nD compact (i.e., closed and bounded)
and connected manifolds, the only cases in which we have a complete un-
derstanding of topology are n = 0,1,2. The only compact and connected
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0D manifold is a point. A 1D compact and connected manifold can either
be a line element or a circle, and it is intuitively clear (and can easily be
proven) that these two spaces are topologically different. In 2D, there is
already an infinite number of different topologies: a 2D compact and con-
nected surface can have an arbitrary number of handles and boundaries,
and can either be orientable or non—orientable (see figure . Again, it is
intuitively quite clear that two surfaces are not homeomorphic if they differ
in one of these respects. On the other hand, it can be proven that any two
surfaces for which these data are the same can be continuously mapped to
one another, and hence this gives a complete classification of the possible
topologies of such surfaces.

(b)
(‘I)

Fig. 3.2 Three examples of 2D manifolds: (a) The sphere S? is an orientable manifold
without handles or boundaries. (b) An orientable manifold with one boundary and one
handle. (¢) The Mébius strip is an unorientable manifold with one boundary and no
handles.

A quantity such as the number of boundaries of a surface is called a
topological invariant. A topological invariant is a number, or more generally
any type of structure, which one can associate to a topological space, and
which does not change under continuous mappings. Topological invariants
can be used to distinguish between topological spaces: if two surfaces have
a different number of boundaries, they can certainly not be topologically
equivalent. On the other hand, the knowledge of a topological invariant
is in general not enough to decide whether two spaces are homeomorphic:
a torus and a sphere have the same number of boundaries (zero), but are
clearly not homeomorphic. Only when one has some complete set of topo-
logical invariants, such as the number of handles and boundaries in the 2D
case, is it possible to determine whether or not two topological spaces are
homeomorphic. In more than 2D, many topological invariants are known,
but for no dimension larger than two has a complete set of topological in-
variants been found. In 3D, it is generally believed that a finite number of
countable invariants would suffice for compact manifolds, but this is not rig-
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orously proven, and in particular there is at present no generally accepted
construction of a complete set. A very interesting and intimately related
problem is the famous Poincaré conjecture, stating that if a 3D manifold
has a certain set of topological invariants called its ‘homotopy groups’ equal
to those of the 3-sphere S3, it is actually homeomorphic to the three-sphere.
In four or more dimensions, a complete set of topological invariants would
consist of an uncountably infinite number of invariants! A general classifi-
cation of topologies is therefore very hard to get, but even without such a
general classification, each new invariant that can be constructed gives us
a lot of interesting new information. For this reason, the construction of
topological invariants of manifolds is one of the most important issues in
topology.

3.5 (Co)Tangent Bundles of Smooth Manifolds

3.5.1 Tangent Bundle and Lagrangian Dynamics
3.5.1.1 Intuition Behind a Tangent Bundle

In mechanics, to each nD configuration manifold M there is associated its
2nD wvelocity phase—space manifold, denoted by T'M and called the tangent
bundle of M (see Figure . The original smooth manifold M is called
the base of TM. There is an onto map 7 : TM — M, called the projection.
Above each point = € M there is a tangent space T,M = m—*(z) to M at z,
which is called a fibre. The fibre T,, M C T'M is the subset of T'M, such that
the total tangent bundle, TM = |_| T,M, is a disjoint union of tangent

meM
spaces T,M to M for all points x € M. From dynamical perspective,

the most important quantity in the tangent bundle concept is the smooth
map v : M — TM, which is an inverse to the projection w, i.e, Tov =
Idps, 7w(v(z)) = x. It is called the velocity vector—field. Its graph (z,v(x))
represents the cross—section of the tangent bundle T'M. This explains the
dynamical term velocity phase—space, given to the tangent bundle T'M of
the manifold M.

3.5.1.2  Definition of a Tangent Bundle

Recall that if [a,b] is a closed interval, a C®—map v : [a,b] — M is said
to be differentiable at the endpoint a if there is a chart (U, ¢) at y(a) such
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M TM
v] |7
M X

Fig. 3.3 A sketch of a tangent bundle TM of a smooth manifold M (see text for
explanation).

that the following limit exists and is finite [Abraham et al. (1988)]:

96 om(a) = (@07 (@) = fim P2V @20)@ g

t—a t—a

Generalizing , we get the notion of the curve on a manifold. For
a smooth manifold M and a point m € M a curve at m is a C°—map
~v: 1 — M from an interval I C R into M with 0 € I and (0) = m.

Two curves v, and v, passing though a point m € U are tangent at m
with respect to the chart (U, ) if (¢ o 7,)"(0) = (¢ 0 v4)'(0). Thus, two
curves are tangent if they have identical tangent vectors (same direction
and speed) in a local chart on a manifold.

For a smooth manifold M and a point m € M, the tangent space T, M
to M at m is the set of equivalence classes of curves at m:

TinM = {[¥]m : 7 is a curve at a point m € M}.

A C*—map ¢ : M 3 m+— p(m) € N between two manifolds M and N
induces a linear map Ty : T M — T, N for each point m € M, called
a tangent map, if we have:
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T (M) TM T(N) Tw(m)(N)
s T(p) s
M TN

i.e., the following diagram commutes:

T
T,.M L Ty N
™M TN

M>m

7 p(m) € N

with the natural projection wp : TM — M, given by ma (T, M) = m,
that takes a tangent vector v to the point m € M at which the vector v is
attached i.e., v € T, M.

For an nD smooth manifold M, its nD tangent bundle T'M is the disjoint
union of all its tangent spaces T;,, M at all pointsm € M, TM = |_| T M.

meM
To define the smooth structure on T'M, we need to specify how to

construct local coordinates on TM. To do this, let (z!(m),...,2™(m)) be
local coordinates of a point m on M and let (v(m),...,o™(m)) be compo-
nents of a tangent vector in this coordinate system. Then the 2n numbers
(xt(m),...,z"(m), vt(m), ...,v™(m)) give a local coordinate system on TM.

TM = |_| T, M defines a family of vector spaces parameterized by M.

meM
The inverse image ng(m) of a point m € M under the natural projection

7 is the tangent space T, M. This space is called the fibre of the tangent
bundle over the point m € M [Steenrod (1951)].

A C¥—map ¢ : M — N between two manifolds M and N induces a
linear tangent map Ty : TM — TN between their tangent bundles, i.e.,
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the following diagram commutes:

T
TM 14

TN

™M™ TN

M " - N

All tangent bundles and their tangent maps form the category 7155. The
category 7 B is the natural framework for Lagrangian dynamics.

Now, we can formulate the global version of the chain rule. If ¢ : M —
N and ¢ : N — P are two smooth maps, then we have T(¢op) =Ty oTp
(see [Kolar et al. (1993)]). In other words, we have a functor T : M = T8
from the category M of smooth manifolds to the category 7B of their
tangent bundles:

M T™

@ (poy) = Ty T(¢ o)

N - P TN ~TP
(4 Ty

3.5.2 Cotangent Bundle and Hamiltonian Dynamics
3.5.2.1 Definition of a Cotangent Bundle

A dual notion to the tangent space T,, M to a smooth manifold M at a
point m is its cotangent space T,; M at the same point m. Similarly to
the tangent bundle, for a smooth manifold M of dimension n, its cotangent
bundle T*M is the disjoint union of all its cotangent spaces 1,5 M at all
points m € M, i.e., T*M = |_| T M. Therefore, the cotangent bundle

meM
of an n—manifold M is the vector bundle T*M = (T'M)*, the (real) dual

of the tangent bundle T'M.

If M is an m—manifold, then T*M is a 2n—manifold. To define
the smooth structure on T*M, we need to specify how to construct
local coordinates on T*M. To do this, let (z!(m),...,z"(m)) be lo-
cal coordinates of a point m on M and let (pi(m),...,pn(m)) be com-
ponents of a covector in this coordinate system. Then the 2n num-
bers (z1(m),...,x™(m), p1(m), ..., pn(m)) give a local coordinate system on
T*M. This is the basic idea one uses to prove that indeed T*M is a
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2n—manifold.
T*M = |_| T M defines a family of vector spaces parameterized by

meM

M, with the ceonatuml projection, wh, : T*M — M, given by 75, (T M) =
m, that takes a covector p to the point m € M at which the covector p
is attached i.e., p € T, M. The inverse image 73, (m) of a point m € M
under the conatural projection 73}, is the cotangent space Ty, M. This space
is called the fibre of the cotangent bundle over the point m € M.

In a similar way, a C¥—map ¢ : M — N between two manifolds M
and N induces a linear cotangent map T : T*M — T*N between their

cotangent bundles, i.e., the following diagram commutes:

T*
T*M LA
T TN
M - - N

All cotangent bundles and their cotangent maps form the category 7*B.
The category 7*B is the natural stage for Hamiltonian dynamics.

Now, we can formulate the dual version of the global chain rule. If
@:M — Nandt: N — P are two smooth maps, then we have T*(op) =
T*y o T*p. In other words, we have a cofunctor T* : M = 7*B from the
category M of smooth manifolds to the category 7*B of their cotangent
bundles:

M T*M
® (Woyp) = T T* (¢ o)

N -P T*N = = T*P
(& T

3.5.3 Application: Command/Control in Human—Robot
Interactions

Suppose that we have a human—robot team, consisting of m robots and n hu-
mans. To be able to put the modelling of the fully controlled human-robot
team performance into the rigorous geometrical settings, we suppose that
all possible behaviors of m robots can be described by a set of continuous
and smooth, time-dependent robot configuration coordinates x" = z"(t),
while all robot-related behaviors of n humans can be described by a set of
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continuous and smooth, time-dependent human configuration coordinates
q" = ¢"(t). In other words, all robot coordinates, " = " (), constitute
the smooth Riemannian manifold My (such that r = 1, ...,dim(M})), with
the positive—definite metric form

g ds® = gps(x)da"dz® (3.11)

similarly, all human coordinates ¢" = ¢"(t), constitute a smooth Rieman-
nian manifold N” (such that h = 1,...,dim(N/)) , with the positive-definite
metric form

a v do® = apg(q)dq"dg”. (3.12)

In this Riemannian geometry settings, the feedforward com-
mand/control action of humans upon robots is defined by a smooth map,

C: N} — M,

which is in local coordinates given by a general (nonlinear) functional trans-
formation

a" = z"(q"), (r=1,..,dim(M})); h=1,..,dim(N})), (3.13)

while its inverse, the feedback map from robots to humans is defined by a
smooth map,

F=Cct! :Z\4;°—>]\f£7
which is in local coordinates given by an inverse functional transformation
" =q" ("), (h=1,..,dim(N"); r =1, ey dim(M)). (3.14)

Now, although the coordinate transformations (3.13) and are
completely general, nonlinear and even unknown at this stage, there is
something known and simple about them: the corresponding transforma-
tions of differentials are linear and homogenous, namely

ox" dg"
dz" = 3Zh dq", and dq" = 8§T dx”,
which imply linear and homogenous transformations of robot and human
velocities,
. Oz oq" ..
" = %qh, and "= aj;rj”" (3.15)
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Relation , representing two autonomous dynamical systems, given
by two sets of ordinary differential equations (ODEs), geometrically defines
two welocity vector—fields: (i) robot velocity vector—field, v" = vT(xT t) =
#"(2",t); and human velocity vector-field, u” = u"(g",t) := ¢"(¢",t). Re-
call that a vector—field defines a single vector at each point x” (m some
domain U) of a manifold in case. Its solution gives the flow, consisting of
integral curves of the vector—field, such that all the vectors from the vector—
field are tangent to integral curves at different points 2 € U. Geometrically,
a velocity vector—field is defined as a cross—section of the tangent bundle
of the manifold. In our case, the robot velocity vector—field v" = &"(z",t)
represents a cross-section of the robot tangent bundle 7'My, while the hu-
man velocity vector-field u” = ¢"(¢",t) represents a cross-section of the
human tangent bundle TN”. In this way, two local velocity vector—fields,
v" and u”, give local representations for the following two global tangent
maps,

TC:TN} —TM;, and TF:TM;— TN

To be able to proceed along the geometrodynamical line, we need
next to formulate the two corresponding acceleration vector—fields, a” =
a"(z",2",t) and wh = wh(g",§",t), as time rates of change of the two ve-
locity vector—fields v™ and u. Now, recall that the acceleration vector—field
is defined as the absolute time derivative, 0" = dtv of the velocity vector—
field. In our case, we have the robotic acceleration vector—field a” := "
defined on M by

a" =0" =" + L%t =" + 7,450, (3.16)
and the human acceleration vector-field w” := %" defined on N by
wh =" ="+ F;’-‘kuju =I" + ijq q*, (3.17)

Geometrically, an acceleration vector—field is defined as a cross—section of
the second tangent bundle of the manifold. In our case, the robot accelera-
tion vector—field a” = v" (2", 4", t), given by the ODEs , represents a
cross-section of the second robot tangent bundle T7'M, while the human
acceleration vector—field w = ﬂh(qh7 q", t), given by the ODEs , rep-
resents a cross—section of the second human tangent bundle TTN/. In this
way, two local acceleration vector—fields, a” and w", give local representa-
tions for the following two second tangent maps,

TTC:TTN} —TTM}, and TTF:TTM] — TTN..
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In other words, we have the feedforward command/control commutative
diagram:

TNt —TTC __rAr

TN} rc  .rmr
h _ r
N/ - M,

as well as the feedback commutative diagram:

)\ Y G 4V

TN — LS 7y
h _ r
N} = M,

These two commutative diagrams formally define the global feedforward
and feedback human-robot interactions at the positional, velocity, and ac-
celeration levels of command and control.

3.5.4 Application: Generalized Bidirectional Associative
Memory

System Architecture

Here we present a covariant model of generalized bidirectional associa-
tive memory (GBAM), a neurodynamical classification machine generaliz-



158 Applied Differential Geometry: A Modern Introduction

ing Kosko BAM and RBAM systems (see [Kosko (1992)]). Mathematically,
the GBAM is a tensor—field system (g, p, W) defined on a manifold M called
the GBAM manifold. The system (g, p, W) includes two nonlinearly cou-
pled (yet non—chaotic and stable) subsystems (see Figure[3.4): (i) activation
(g, p)—-dynamics, where g and p represent neuronal 1D tensor—fields, and
(ii) self-organized learning W—-dynamics, where W is a symmetric synap-
tic 2D tensor—field.

Sigmoid
Activation
Functions

Input I # Ex cit&tur;r_ Meural
Vector-field o

J L

e ca;ar Excitatory | " Inhibitory
F‘.cnm Synaptic Synaptic Outpg £ ::" x
Potential Tensor-field) |Tensor-field

1T

Tnput ] # Irﬂﬁbitu:urgr_Neural
l-form-field p

Hebbian
Learning
Innowation

Fig. 3.4 Architecture of the GBAM neurodynamical classifier.

GBAM Activation Dynamics

The GBAM-manifold M can be viewed as a Banach space with a
C*°—smooth structure on it, so that in each local chart U open in M,
an nD smooth coordinate system U, exists.

GBAM-activation (g, p)—-dynamics, is defined as a system of two cou-
pled, first—order oscillator tensor—fields, dual to each other, in a local Ba-
nach chart U,, a=1,....,n on M:

1. An excitatory neural vector—field ¢® = ¢%(t) : M — TM, being a
cross—section of the tangent bundle T'M; and

2. An inhibitory neural 1-form p, = ps(t) : M — T*M, being a
cross—section of the cotangent bundle T* M.

To start with conservative linear (g, p)—system, we postulate the GBAM
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scalar activation—potential V' to be a negative bilinear form:

V = —3wapq*¢” — 30paps + ¢*per  (,f=1,..,m),  (3.18)

where n is the number of neurons in each neural field, while w,g and ws
represent respectively inhibitory—covariant and excitatory—contravariant
components of the symmetric (with zero—trace) coupling GBAM synaptic
tensor W.

The Lyapunov-stable, conservative, linear (¢, p)—-dynamics is given as
a bidirectional (excitatory—inhibitory) gradient system:

qaffaivfwaﬁp —q¢° P 7faiv
B ) o 8qa

Ipa
As W is a symmetric and zero—trace synaptic coupling tensor, the con-
servative linear dynamics is equivalent to the rule that the state of
each neuron (in both excitatory and inhibitory neural fields) is changed

= wagqﬁ — Pa- (3.19)

in time if and only if the scalar action potential V', defined by relation
, is lowered. Therefore, the scalar action potential V' is a monotoni-
cally non—increasing Lyapunov function V < 0 for the conservative linear
(¢, p)—dynamics 7 which converges to a local minimum or ground
state of V.

Applying the inputs I“ and J,, we get the non—conservative linear
(¢, p)—-system equations:

¢ =1"+wps—q%  Pa=Jatwasq® —pa-  (3:20)

Further, applying the sigmoid GBAM activation functions S, (-) and
S¢(-) to the synaptic product—terms, we get the non-conservative nonlinear
(¢, p)—system equations, which generalize the transient RC—circuit neuro-
dynamical model:

¢ =1+ waﬁsﬁ(pﬁ) -q°, Do = Jo + waﬁsﬁ(qﬂ) — Pa- (321)

The equations in (3.21]) represent a 2—input system that can be applied
e.g., to classification of two—feature data. The generalization to an N—input
system working in a ND feature—space is given by

@ =18 +wPSs(pg) — a2, L =I5 +wlS%(d?) —pl,  (3.22)

where e(=2,4,..., N) and o(= 1,3, ..., N — 1) denote respectively even and
odd partitions of the total sample of N features.

The GBAM model gives a generalization of four well-known re-
current NN models:
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1. Continuous Hopfield amplifier—circuit model [Hopfield (1984)]

Uij—"Tl]ulv (’L7.7: 177N)a

Civj =1 — ¢
J

where v; = v;(t) represent the activation potentials in the jth processing
unit, C; and R; denote input capacitances and leakage resistances, u; =
filvj(t)] are output functions from processing elements, and T;; = w;; is
the inverse of the resistors connection—matrix; and the functions f; are
sigmoidal.

2. Cohen-Grossberg general ART-system [Cohen and Grossberg
(1983)],

05 = —a;j(v;)[bj(vy) — fu(vi)mgel, (j=1,...,N),

with proved asymptotical stability.
3. Hecht—Nielsen counter—propagation network [Hecht-Nielsen (1987)],

’[)j = —AUj =+ (B — vj)Ij — UjIk:7

where A, B are positive constants and I; are input values for each process-
ing unit.
4. Kosko's BAM (ABAM and RABAM) bidirectional models [Kosko

(1992)]

by = —a;(v;)[b;(v;) — frvi)myr],

g = —ag(ur) [bx (ue) — f5(uz)my],
which is globally stable for the cases of signal and random-signal Hebbian
learning.

GBAM Self-Organized Learning Dynamics

The continuous (and at least C!—-differentiable) unsupervised update
law for the coupling synaptic GBAM tensor—field W can be viewed both as
an inhibitorycovariant Hebbian learning scheme, generalized from [Kosko
(1992)]:

WaB = —Was +¢)aﬁ(qa,pa), (o, B=1,...,n), (3.23)
and, as an excitatory—contravariant Hebbian learning scheme:

0P = —w 4+ %P (¢ p,), (3.24)
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where the three terms from the left to the right denote respectively the
new—update value, the old value and the innovation of the synaptic tensor
W. In this case the nonlinear (usually sigmoid) innovation functions ®,g
and ®*? are defined by one of following four Hebbian models:

Signal Hebbian learning, with innovation in both variance—forms:

Do = Sa(q”) Sp(pp),
% = $(¢™) S (pp); (3.25)

Differential Hebbian learning, with innovation in both variance—forms:

Do = Sa(q*)Ss(ps) + Sa(a™)Ss(ps),
0 = 5%(q*)S" (pg) + S*(¢*)S" (pp), (3.26)

where S—terms denote the so-called ‘signal velocities’ (for details see
[Kosko (1992)]).

Random signal Hebbian learning, with innovation in both variance-
forms:

(I)aﬁ = Sa(qa) Sﬁ(pﬁ) + Nag;
P = 5%(¢™) SP(pg) + n”, (3.27)

where nos = {nag(t)}, n = {n®A(t)} respectively denote covariant and
contravariant additive, zero—mean, Gaussian white—noise processes inde-
pendent of the main innovation signal; and

Random differential signal Hebbian learning, with innovation in both
variance—forms:

Dop = Sa(q™)Ss(ps) + Sa(a®)Ss(ps) + Mg,
o = 5%(¢*)S" (pg) + S*(¢*)S" (pg) + n*”. (3.28)

Total GBAM (g, p, W)—neurodynamics and biological interpre-
tation

Total GBAM tensorial neurodynamics is defined as a union of the neu-
ral oscillatory activation (g, p)—-dynamics (3.22)) and the synaptic learning
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W —-dynamics (3.28]), namely

Q¢ =12 +wiSs(ps) — ¢ (3.29)
)

where the tensorial innovation ®—-functions are given by one of Hebbian
models ([3.2513.28), a(= 1,...,n) is the number of continuous—time (or,
graded-response) neurons in each neural-activation field, e(= 2,4, ..., N)
and o(=1,3,..., N — 1) denote respectively even and odd partitions of the
total sample of IV features.

Artificial neural networks are generally inspired by biological neural
systems, but in fact, some important features of biological systems are not
present in most artificial neural networks. In particular, unidirectional neu-
ral networks, which include all associative neural networks except the BAM
model introduced by [Kosko (1992)], do not resemble oscillatory biological
neural systems. GBAM is a generalization of Kosko’s ABAM and RABAM
neural systems and inherits their oscillatory (excitatory/inhibitory) neuro-
synaptic behavior. Such oscillatory behavior is a basic characteristic of a
number of biological systems. Examples of similar oscillatory neural en-
sembles in the human nervous system are:

— Motoneurons and Renshaw interneurons in the spinal cord;

— Pyramidal and basket cells in the hippocampus;

— Mitral and granule cells in the olfactory bulb;

— Pyramidal cells and thalamic inter—neurons in cortico-thalamic sys-
tem;

— Interacting excitatory and inhibitory populations of neurons found in
the cerebellum, olfactory cortex, and neocortex, all representing the basic
mechanisms for the generation of oscillating (EEG—monitored) activity in
the brain.

Therefore, GBAM can be considered as a model for any of above—
mentioned oscillatory biological neural systems.
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3.6 Tensor Fields on Smooth Manifolds

3.6.1 Tensor Bundle

A tensor bundle T associated to a smooth n—manifold M is defined as a
tensor product of tangent and cotangent bundles:

— —
p times q times

T = ®T*M®®TM TM® .. TM @ T"M @ ... @ T*M.

Tensor bundles are special case of more general fibre bundles (see section
below).

A tensor—field of type (p,q) on a smooth n—manifold M is defined as a
smooth section T : M — T of the tensor bundle 7. The coefficients of the
tensorfield 7 are smooth (C¥) functions with p indices up and ¢ indices
down. The classical position of indices can be explained in modern terms
as follows. If (U, ¢) is a chart at a point m € M with local coordinates
(x,...,2™), we have the holonomous frame field

Oyir @ Opiy @ .. @ Oyiyy @ dar?* @ da??... @ dale,

fori e {1,...,n}?, j={1,..,n}% over U of this tensor bundle, and for any
(p, ¢)—tensor—field T we have

T|U—T“ “’611®612®  ® 0y ®da?t @ dad?... @ dale.

For such tensor—fields the Lie derivative along any vector—field is defined
(see section[3.7|below), and it is a derivation (i.e., both linearity and Leibniz
rules hold) with respect to the tensor product. Tensor bundle 7 admits
many natural transformations (see [Kolar et al. (1993)]). For example, a
‘contraction’ like the trace T*"M @ TM = L(TM,TM) — M x R, but
applied just to one specified factor of type T M and another one of type
T M, is a natural transformation. And any ‘permutation of the same kind
of factors’ is a natural transformation.

The tangent bundle 7y, : TM — M of a manifold M (introduced above)
is a special tensor bundle over M such that, given an atlas {(U,, ¢,)} of
M, TM has the holonomic atlas

- {( arPa = Tcpa)}

The associated linear bundle coordinates are the induced coordinates (i)
at a point m € M with respect to the holonomic frames {9} in tangent
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spaces T,, M. Their transition functions read

I\
N _ ox
oxH

H.

Technically, the tangent bundle T'M is a tensor bundle with the structure
Lie group GL(dim M, R) (see section [3.8| below).

Recall that the cotangent bundle of M is the dual T*M of TM. It is
equipped with the induced coordinates (&) at a point m € M with respect
to holonomic coframes {dz*} dual of {9}. Their transition functions read

oz'* |

-/ _
Ty =gt

3.6.1.1 Pull-Back and Push—Forward

In this section we define two important operations, following [Abraham
et al. (1988)], which will be used in the further text.

Let ¢ : M — N be a C* map of manifolds and f € C*(N,R). Define
the pull-back of f by ¢ by

" f = fope CHM,R).

If fis a C* diffeomorphism and X € X*(M), the push-forward of X
by ¢ is defined by

0. X =TpoXop teX*N).

If  are local coordinates on M and gy’ local coordinates on N, the
preceding formula gives the components of ¢, X by

(. XV () = P2 @) Xi(e),  where g = p(a)

We can interchange pull-back and push—forward by changing ¢ to ¢!,

that is, defining ¢, (resp. ¢*) by ¢, = (¢~ 1)* (resp. ¢* = (¢~ 1),). Thus
the push—forward of a function f on M is o, f = fo~! and the pull-back
of a vector—field Y on N is ¢*Y = (Tp) 1 oY o .

Notice that ¢ must be a diffeomorphism in order that the pull-back and
push—forward operations make sense, the only exception being pull-back of
functions. Thus vector—fields can only be pulled back and pushed forward
by diffeomorphisms. However, even when ¢ is not a diffeomorphism we can
talk about p—related vector—fields as follows.
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Let ¢ : M — N be a C* map of manifolds. The vector-fields X €
XFH(M) and Ye X*71(N) are called p—related, denoted X ~, Y, if
TooX =Y op.

Note that if ¢ is diffeomorphism and X and Y are ¢p—related, then Y =
¢, X. However, in general, X can be ¢—related to more than one vector—
field on N. gp—relatedness means that the following diagram commutes:

T
™ 12 TN
X Y
M - - N

The behavior of flows under these operations is as follows: Let ¢ : M —
N be a C*—map of manifolds, X € X*(M) and Y € X*(N). Let F; and G,
denote the flows of X and Y respectively. Then X ~, Y iff po F}, = G, o0¢.
In particular, if ¢ is a diffeomorphism, then the equality Y = ¢, X holds iff
the flow of Y is po Fyop~! (This is called the push—forward of F; by ¢ since
it is the natural way to construct a diffeomorphism on N out of one on M).
In particular, (F;), X = X. Therefore, the flow of the push—forward of a
vector—field is the push—forward of its flow.

3.6.1.2  Dynamical Evolution and Flow

As a motivational example, consider a mechanical system that is capable
of assuming various states described by points in a set U. For example, U
might be R3 x R? and a state might be the positions and momenta (x?, p;)
of a particle moving under the influence of the central force field, with
i =1,2,3. As time passes, the state evolves. If the state is 7, € U at time
s and this changes to v at a later time ¢, we set

Ft,s(’Yo) =7

and call F; s the evolution operator; it maps a state at time s to what the
state would be at time ¢; that is, after time ¢ — s. has elapsed. Determinism
is expressed by the Chapman—Kolmogorov law |Abraham et al. (1988):

FT,t o} Ft,s = F7—7s, Ftﬂg = 1dent1ty (330)

The evolution laws are called time independent, or autonomous, when
Fy s depends only on ¢ — s. In this case the preceding law (3.30) becomes
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the group property:
Ft 9] Fs = Ft+87 F() = 1dent1ty (331)

We call such an F; a flow and F; 5 a time—dependent flow, or an evolution
operator. If the system is irreversible, that is, defined only for ¢t > s, we
speak of a semi—flow [Abraham et al. (1988)].

Usually, instead of F}  the laws of motion are given in the form of ODEs
that we must solve to find the flow. These equations of motion have the
form:

y=X),  7(0) =",

where X is a (possibly time-dependent) vector—field on U.

As a continuation of the previous example, consider the motion of a par-
ticle of mass m under the influence of the central force field (like gravity, or
Coulombic potential) F* (i = 1,2, 3), described by the Newtonian equation
of motion:

mi' = F'(x). (3.32)

By introducing momenta p; = mi?, equation (3.32) splits into two Hamil-
tonian equations:

i =pi/m,  p; = Fy(x). (3.33)

Note that in Euclidean space we can freely interchange subscripts and su-
perscripts. However, in general case of a Riemannian manifold, p; = mg; i’

and (3.33)) properly reads
&' =g"p;/m,  pi= Fi(x). (3.34)

The phase-space here is the Riemannian manifold (R3\{0}) x R3, that
is, the cotangent bundle of R*\{0}, which is itself a smooth manifold for
the central force field. The r.h.s of equations define a Hamiltonian
vector—field on this 6D manifold by

X(x,p) = ((fivpi% (pz/m,Fz(x))) . (3.35)

Integration of equations ((3.34) produces trajectories (in this particular
case, planar conic sections). These trajectories comprise the flow F; of
the vector—field X (z, p) defined in (3.35).
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3.6.1.3  Vector—Flields and Their Flows
3.6.1.4 Vector—Flields on M

A wvector—field X on U, where U is an open chart in n—manifold M, is a
smooth function from U to M assigning to each point m € U a vector at
that point, i.e., X(m) = (m,X(m)). If X(m) is tangent to M for each
m € M, X is said to be a tangent vector—field on M. If X (m) is orthogonal
to M (ie., X(p) € M;t) for each X(m) € M, X is said to be a normal
vector—field on M.

In other words, let M be a C*—manifold. A C*—vector-field on M is
a C*—section of the tangent bundle TM of M. Thus a vector—field X on
a manifold M is a C*—map X : M — TM such that X(m) € T,,M for
all points m € M,and my; o X = Idy;. Therefore, a vector—field assigns to
each point m of M a vector based (i.e., bound) at that point. The set of
all C* vector-fields on M is denoted by X*(M).

A vector-field X € X*(M) represents a field of direction indicators
[Thirring (1979)]: to every point m of M it assigns a vector in the tangent
space T,, M at that point. If X is a vector—field on M and (U, ¢) is a chart
on M and m € U, then we have X(m) = X(m) ¢'-2;. Following [Kolar

o¢*
et al. (1993)], we write X |y = X ¢' 6‘351-.
Let M be a connected n—manifold, and let f : U — R (U an open set
in M) and ¢ € R be such that M = f~1(c) (i.e., M is the level set of the
function f at height ¢) and Vf(m) # 0 for all m € M. Then there exist

on M exactly two smooth unit normal vector—fields Ny o(m) = £ é%?@gl

(here |X| = (X - X)/? denotes the norm or length of a vector X, and (-)
denotes the scalar product on M) for all m € M, called orientations on M.

Let ¢ : M — N be a smooth map. Recall that two vector-fields X &
XK(M) and Y € X(N) are called p—related, if Tipo X =Y o ¢ holds, i.e.,
if the following diagram commutes:

Ty

™™ TN
X Y
M 7 - N

In particular, a diffeomorphism ¢ : M — N induces a linear map between
vector-fields on two manifolds, ¢* : X*(M) — X(N), such that p*X =
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TpoXop l:N —TN,i.e., the following diagram commutes:
TM Ty TN
X p*X
M 7 N

The correspondences M — T'M and ¢ — T'¢ obviously define a functor
T : M = M from the category of smooth manifolds to itself. 7" is another
special case of the vector bundle functor , and closely related to the
tangent bundle functor .

A C* time-dependent vector—field is a C*—map X : R x M — T'M such
that X (t,m) € T,, M for all (t,m) € R x M, ie., X¢(m) = X(t,m).

3.6.1.5 Integral Curves as Dynamical Trajectories

Recall that a curve v at a point m of an n—manifold M is a C’—map
from an open interval I C R into M such that 0 € I and v(0) = m. For
such a curve we may assign a tangent vector at each point v(t), t € I, by
$(t) = Ty (1),

Let X be a smooth tangent vector—field on the smooth n—manifold M,
and let m € M. Then there exists an open interval I C R containing 0 and
a parameterized curve v : I — M such that:

(1) (0) = m;

(2) A(t) = X(~(t)) for all ¢ € I; and

(3) If : I — M is any other parameterized curve in M satisfying (1) and
(2), then I C I and B(t) = ~(t) for all t € I.

A parameterized curve v : I — M satisfying condition (2) is called
an integral curve of the tangent vector—field X. The unique 7 satisfying
conditions (1)—(3) is the maximal integral curve of X through m € M.

In other words, let v : I — M, t — ~ () be a smooth curve in a manifold
M defined on an interval I C R. #(t) = £~(t) defines a smooth vector-field
along - since we have my; oy = . Curve -y is called an integral curve or
flow line of a vector-field X € X*(M) if the tangent vector determined by
v equals X at every point m € M, i.e.,

y=Xon,
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or, if the following diagram commutes:

T — T Ly
1 Y X
I ~ M

On a chart (U,¢) with coordinates ¢(m) = (z'(m),...,a™(m)), for
which g oy : ¢t — 7, (t) and Tpo X o' : 2" — (2%, X;(m)), this is
written

Y, =X, (v (@), forallt e I CR, (3.36)

which is an ordinary differential equation of first—order in n dimensions.
The velocity 7 of the parameterized curve « (t) is a vector—field along ~
defined by

Its length |¥| : I — R, defined by |¥|(t) = |§(¢)| for all ¢t € I, is a function
along a. || is called speed of v |Arnold (1989)].

Each vector—field X along
v is of the form X(t) = (v(t), X1(t),...,X,(t)), where each component
X is a function along v. X is smooth if each X; : I — M is smooth. The
derivative of a smooth vector—field X along a curve «(¢) is the vector—field
X along ~ defined by

X(t) = (’V(t)aXl(t)v o Xﬂ(t)>

X (t) measures the rate of change of the vector part (X1(t),. .. Xn(t)) of
X(t) along . Thus, the acceleration %(t) of a parameterized curve ~(¢) is
the vector—field along ~ get by differentiating the velocity field 4/(¢).
Differentiation of vector—fields along parameterized curves has the fol-
lowing properties. For X and Y smooth vector—fields on M along the
parameterized curve v : I — M and f a smooth function along -y, we have:

(X+Y)=X +V;
(fX) = fX + fX; and
(X-Y)=XY + XVY.

—~
N
~
2laglagla
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A geodesic in M is a parameterized curve v : I — M whose acceleration
4 is everywhere orthogonal to M; that is, %(¢t) € M(i-(t) forallt € I C R.
Thus a geodesic is a curve in M which always goes ‘straight ahead’ in the
surface. Its acceleration serves only to keep it in the surface. It has no
component of acceleration tangent to the surface. Therefore, it also has a
constant speed (t).

Let v € M, be a vector on M. Then there exists an open interval I C R

containing 0 and a geodesic v : I — M such that:

(1) v(0) =m and %(0) = v; and
(2) If B: 1 — M is any other geodesic in M with 8(0) = m and 3(0) = v,
then I C I and B(t) = y(t) for all t € I.

The geodesic 7 is now called the maximal geodesic in M passing through
m with initial velocity v.

By definition, a parameterized curve vy : I — M is a geodesic of M iff
its acceleration is everywhere perpendicular to M, i.e., iff 4(¢) is a multiple
of the orientation N(y(t)) for all t € I, i.e., #(t) = g(t) N(y(t)), where
g : I — R. Taking the scalar product of both sides of this equation with
N(y(t)) we find g = —4N((t)). Thus ~ : I — M is geodesic iff it satisfies
the differential equation

A(t) + N(y(1) N(v(1)) = 0.

This vector equation represents the system of second—order component
ODEs

ON;

W(m+1,...,x”):&j:&k = 0.

B Ny(z+1,...,2")
The substitution u’ = #* reduces this second—order differential system (in
n variables z%) to the first-order differential system

ON;
dak
(in 2n variables #* and u?). This first-order system is just the differential
equation for the integral curves of the vector—field X in U x R (U open
chart in M), in which case X is called a geodesic spray.

Now, when an integral curve v(t) is the path a mechanical system =
follows, i.e., the solution of the equations of motion, it is called a trajectory.
In this case the parameter ¢ represents time, so that describes motion
of the system = on its configuration manifold M.

it =l W= —-Nij(z+1,...,2") (x+1,...,2") i "
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If X;(m) is C° the existence of a local solution is guaranteed, and a
Lipschitz condition would imply that it is unique. Therefore, exactly one
integral curve passes through every point, and different integral curves can
never cross. As X € X¥(M) is C*, the following statement about the
solution with arbitrary initial conditions holds |[Thirring (1979); |Arnold
(1989)]:

Theorem. Given a vector—field X € X(M), for all points p € M, there
exist 7 > 0, a neighborhood V of p, and a function v : (—n,n) x V. — M,
(t,2" (0)) — 7 (t,2% (0)) such that

4 =X o, v (0,2 (0)) = 2" (0) for all 2’ (0) € V C M.

For all [t| < n, the map 2’ (0) — v (¢,z° (0)) is a diffeomorphism f;* be-
tween V and some open set of M. For proof, see [Dieudonne (1969)], I,
10.7.4 and 10.8.

This Theorem states that trajectories that are near neighbors cannot
suddenly be separated. There is a well-known estimate (see |[Dieudonne
(1969)], I, 10.5) according to which points cannot diverge faster than expo-
nentially in time if the derivative of X is uniformly bounded.

An integral curve « (t) is said to be mazimal if it is not a restriction of
an integral curve defined on a larger interval I C R. It follows from the
existence and uniqueness theorems for ODEs with smooth r.h.s and from
elementary properties of Hausdorff spaces that for any point m € M there
exists a maximal integral curve v,, of X, passing for ¢ = 0 through point
m, i.e., v(0) = m.

Theorem (Local Existence, Uniqueness, and Smoothness) [Abraham
et al. (1988)]. Let E be a Banach space, U C E be open, and suppose
X:UCE — Eisof class C*, k> 1. Then

1. For each xy € U, there is a curve v : I — U at zy such that
A(t) = X (y(t)) for all t € I.

2. Any two such curves are equal on the intersection of their domains.

3. There is a neighborhood Uy of the point x¢ € U, a real number a > 0,
and a C* map F : Uy x I — E, where I is the open interval | — a,a[ , such
that the curve v, : I — E, defined by v, (¢t) = F(u,t) is a curve at u € E
satisfying the ODEs 4, () = X (v,,(t)) for all ¢t € I.

Proposition (Global Uniqueness). Suppose ; and 7, are two integral
curves of a vector-field X at a point m € M. Then v, = v, on the
intersection of their domains [Abraham et al. (1988)].

If for every point m € M the curve 7,, is defined on the entire real axis
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R, then the vector—field X is said to be complete.

The support of a vector—field X defined on a manifold M is defined to be
the closure of the set {m € M|X(m) = 0}. A C* vector-field with compact
support on a manifold M is complete. In particular, a C* vector-field on a
compact manifold is complete. Completeness corresponds to well-defined
dynamics persisting eternally.

Now, following |Abraham et al. (1988)], for the derivative of a C*
function f : F — R in the direction X we use the notation X[f] = df - X
, where df stands for the derivative map. In standard coordinates on R™
this is a standard gradient

df (2) = Vf = (041 f, s O f),  and  X[f] = X0, .

Let F} be the flow of X. Then f (Fi(x)) = f (Fs(x)) if t > s.

For example, Newtonian equations for a moving particle of mass m
in a potential field V in R™ are given by §*(t) = —(1/m)VV (¢'(t)), for
a smooth function V : R™ — R. If there are constants a,b € R, b >
0 such that (1/m)V(¢’) > a—b ||qi||2, then every solution exists for all
time. To show this, rewrite the second—order equations as a first—order
system ¢' = (1/m)p;, p; = —V(q¢") and note that the energy E(q’,p;) =
(1/2m) || pil|> +V (q) is a first integral of the motion. Thus, for any solution
(¢°(6),pi(8)) we have E (q'(t), ps(t)) = E (4 (0), p:(0)) = V (a(0)).

Let X; be a C* time-dependent vector-field on an n—manifold M,
k > 1, and let mg be an equilibrium of Xy, that is, X;(mg) = 0 for all ¢t.
Then for any T there exists a neighborhood V' of mg such that any m € V
has integral curve existing for time ¢t € [-T,T).

3.6.1.6 Dynamical Flows on M

Recall (6.289) that the flow F} of a C* vector-field X € X*(M) is the one—
parameter group of diffeomorphisms Fy : M — M such that ¢ — F} (m)
is the integral curve of X with initial condition m for all m € M and
t € I C R. The flow Fy(m) is C* by induction on k. It is defined as
[Abraham et al. (1988)]:

d

ZFi(@) = X(F(2)).

Existence and uniqueness theorems for ODEs guarantee that F} is
smooth in m and t. From uniqueness, we get the flow property:

Fiis=FoF,
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along with the initial conditions Fy = identity. The flow property gen-

eralizes the situation where M = V is a linear space, X(z) = Ax for a

(bounded) linear operator A, and where Fi(z) = e’z — to the nonlinear

case. Therefore, the flow F}(m) can be defined as a formal exponential

t2 > Xtk
Ft(m):exp(tX):(I+tX+§X2+...): o
k=0 ’

recall that a time—dependent vector—field is a map X : M x R -TM
such that X (m,t) € T,, M for each point m € M and t € R. An integral
curve of X is a curve ~(t) in M such that

A(t) =X (v (t),1), forall tel CR.

In this case, the flow is the one—parameter group of diffeomorphisms
F;s: M — M such that t — F; s (m) is the integral curve ~y(t) with initial
condition v(s) = m at ¢ = s. Again, the existence and uniqueness Theo-
rem from ODE-theory applies here, and in particular, uniqueness gives the
time—dependent flow property, i.e., the Chapman—Kolmogorov law

Ft,r = Ft,s OFs,r-

If X happens to be time independent, the two notions of flows are related
by Fi s = Fy_s (see [Marsden and Ratiu (1999)]).

3.6.1.7 Clategories of ODEs

Ordinary differential equations are naturally organized into their categories
(see [Kock (1981)]). First order ODEs are organized into a category ODE).
A first-order ODE on a manifold-like object M is a vector—field X : M —
TM, and a morphism of vector—fields (My,X1) — (Ma,X2) is a map f :
M7 — M> such that the following diagram commutes

TM,; Iy ~ T M,
X1 Xo
Ml f > M2

A global solution of the differential equation (M, X), or a flow line of a
vector—field X, is a morphism from (R, 8%) to (M, X).
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Similarly, second—order ODEs are organized into a category ODFEs. A
second—order ODE on M is usually constructed as a vector—field on T'M,
§:TM — TTM, and a morphism of vector—fields (M7,£;) — (M2,&,) is a
map f : M7 — M> such that the following diagram commutes

TT
TTM, LM,
& &2
TM1 Tf > TM2

Unlike solutions for first—order ODESs, solutions for second—order ODEs are
not in general homomorphisms from R, unless the second—order ODE is a
spray [Kock and Reyes (2003)].

3.6.2 Differential Forms on Smooth Manifolds

Recall (see section above) that exterior differential forms are a spe-
cial kind of antisymmetrical covariant tensors, that formally occur as inte-
grands under ordinary integral signs in R3. To give a more precise exposi-
tion, here we start with 1—forms, which are dual to vector—fields, and after
that introduce general k—forms.

3.6.2.1 1—Forms on M

Dual to the notion of a C* vector-field X on an n—manifold M is a C*
covector—field, or a C* 1—form «, which is defined as a C*¥ —section of the
cotangent bundle T*M, ie., o : M — T*M is smooth and 7}, 0 X =
Idy;. We denote the set of all C* 1—forms by Q(M). A basic example
of a 1—form is the differential df of a real-valued function f € C*(M,R).
With point wise addition and scalar multiplication Q! (M) becomes a vector
space.

In other words, a C* 1—form « on a C* manifold M is a real-valued
function on the set of all tangent vectors to M, i.e., o : TM — R with the
following properties:

(1) « is linear on the tangent space T, M for each m € M;
(2) For any C* vector-field X € X*(M), the function f: M — R is CF.

Given a 1—form «, for each point m € M the map a(m) : T, M — R is
an element of the dual space T;", M. Therefore, the space of 1—forms Q! (M)
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is dual to the space of vector-fields X*(M).

In particular, the coordinate 1—forms dx!,...,dz™ are locally defined
at any point m € M by the property that for any vector-field X =
(X' .., X") e XF(M),

dz'(X) = X"

The dz'’s form a basis for the 1—forms at any point m € M, with local
coordinates (acl, e x"), so any 1—form « may be expressed in the form

a = fi(m)dax".

If a vector—field X on M has the form X(m) = (X*(m),..., X" (m)),
then at any point m € M,

am(X) = fi(m) X' (m),

where f € C*(M,R).

Suppose we have a 1D closed curve v = (t) inside a smooth manifold
M. Using a simplified ‘physical’ notation, a 1-form «(x) defined at a point
x € M, given by

ar) = a;(z) dat, (3.37)

can be unambiguously integrated over a curve v € M, as follows. Param-
eterize 7 by a parameter t, so that its coordinates are given by x%(t). At
time ¢, the velocity & = @(¢) is a tangent vector to M at x(t). One can
insert this tangent vector into the linear map a(z) to get a real number.
By definition, inserting the vector #(t) into the linear map dz® gives the
component i = (t). Doing this for every ¢, we can then integrate over ¢,

/ (i (z(2))d") dt. (3.38)

Note that this expression is independent of the parametrization in terms
of t. Moreover, from the way that tangent vectors transform, one can
deduce how the linear maps dz* should transform, and from this how the
coefficients «;(x) should transform. Doing this, one sees that the above
expression is also invariant under changes of coordinates on M. Therefore,
a l-form can be unambiguously integrated over a curve in M. We write
such an integral as

/ai(x) dx’, or, even shorter, as /a.
¥ ¥
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Clearly, when M is itself a 1D manifold, gives precisely the ordi-
nary integration of a function a(z) over z, so the above notation is indeed
natural.

The 1—forms on M are part of an algebra, called the exterior algebra,
or Grassmann algebra on M. The multiplication A in this algebra is called
wedge product (see below), and it is skew—symmetric,

da’ Ada? = —da? A dat.

One consequence of this is that da’ A dz® = 0.

3.6.2.2 k—Forms on M

A differential form, or an exterior form « of degree k, or a k—form for short,
is a section of the vector bundle A*T*M, ie., o : M — A*T*M. In other
words, a(m) : T, M x ... x T, M — R (with k factors T,,M) is a function
that assigns to each point m € M a skew—symmetric k—multilinear map on
the tangent space T,, M to M at m. Without the skew—symmetry assump-
tion, o would be called a (0, k)—tensor—field. The space of all k—forms is
denoted by QF(M). It may also be viewed as the space of all skew sym-
metric (0, k) —tensor—fields, the space of all maps

®: XE(M) x ... x X¥(M) — C*(M,R),

which are k—linear and skew-symmetric (see below). We put
QF (M) = C*(M,R).

In particular, a 2—form w on an n—manifold M is a section of the vector
bundle A2T*M. If (U, ¢) is a chart at a point m € M with local coordinates
(z',....,a™) let {e1,...,en} = {041, ..., 02n} — be the corresponding basis for
TnM, and let {e',...,e"} = {dz',...,dz"} — be the dual basis for T;;, M.
Then at each point m € M, we can write a 2—form w as

Wi (v, u) = w;j(m) v'uw?,  where wij (M) = wp (Opi, Opi ).

Similarly to the case of a 1-form « , one would like to define a
2—form w as something which can naturally be integrated over a 2D surface
3 within a smooth manifold M. At a specific point = € M, the tangent
plane to such a surface is spanned by a pair of tangent vectors, (i!,4%). So,
to generalize the construction of a 1-form, we should give a bilinear map
from such a pair to R. The most general form of such a map is

wi;(z) da' @ dad | (3.39)
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where the tensor product of two cotangent vectors acts on a pair of vectors
as,

da' @ da? (21, 4%) = da'(i1) da? (22).

On the r.h.s. of this equation, one multiplies two ordinary numbers got by
letting the linear map dz® act on !, and dz? on %2

However, the bilinear map is slightly too general to give a good
integration procedure. The reason is that we would like the integral to
change sign if we change the orientation of integration, just like in the 1D
case. In 2D, changing the orientation means exchanging ¢' and 42, so we
want our bilinear map to be antisymmetric under this exchange. This is
achieved by defining a 2—form to be

w = w;j(z) (do’ ® dz? — d2? ® da') = w;j(z) da’ A da?

We now see why a2—form corresponds to an antisymmetric tensor—field: the
symmetric part of w;; would give a vanishing contribution to w. Now, pa-
rameterizing a surface ¥ in M with two coordinates ¢; and t5, and reasoning
exactly like we did in the case of a 1-form, one can show that the integra-
tion of a 2—form over such a surface is indeed well-defined, and independent
of the parametrization of both ¥ and M.

If each summand of a differential form o € QF(M) contains k basis
1—forms dx'’s, the form is called a k—form. Functions f € C*(M,R) are
considered to be 0—forms, and any form on an n—manifold M of degree
k > n must be zero due to the skew-symmetry.

Any k—form o € QF(M) may be expressed in the form

a= frdz™ A ... ANdz = frda!,

where I is a multiindexr I = (i1,...,1;) of length k, and A is the wedge
product which is associative, bilinear and anticommutative.
Just as 1—forms act on vector—fields to give real-valued functions, so
k—forms act on k—tuples of vector—fields to give real-valued functions.
The wedge product of two differential forms, a k—form o € QF(M) and
an [—form 3 € Q/(M) is a (k 4+ I)—form a A 3 defined as:

(k+1)!
kN
where A : QF(M) — QF(M), At(ey,...,ex) = %Zaesk(signa)T(eg(lw...,

€s(k)), Where Sy is the permutation group on £ elements consisting of all
bijections o : {1,...,k} — {1,...,k}.

ang= Ala®fB), (3.40)
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For any k—form o € Q¥(M) and I—form 3 € Q!(M), the wedge product
is defined fiberwise, i.e., (a A §),, = aa A 3,, for each point m € M. It is
also associative, i.e., (¢ AB) Ay = a A (BA7), and graded commutative,
i.e., aAB = (=1)*B3Aa. These properties are proved in multilinear algebra.
So M = QF(M) is a contravariant functor from the category M into the
category of real graded commutative algebras |[Kolar et al. (1993)].

Let M be an n—manifold, X € X*(M), and o € Q**1(M). The interior
product, or contraction, ixa = X |a € QF(M) of X and o (with insertion
operator ix) is defined as

ixa(Xt . XP) = a(X, X1, XF).

Insertion operator iy of a vector-field X € X*(M) is natural with
respect to the pull-back F* of a diffeomorphism F' : M — N between two
manifolds, i.e., the following diagram commutes:

F*

QF(N) QF (M)
ix \iF*X
() e 21

Similarly, insertion operator iy of a vector-field X € Y¥(M) is natural
with respect to the push—forward F, of a diffeomorphism F : M — N, i.e.,
the following diagram commutes:

F

QF (M) QF(N)
iY\ \iF*Y
Qkfl(M) Fa Qkfl(N)

In case of Riemannian manifolds there is another exterior operation.
Let M be a smooth n—manifold with Riemannian metric g = (,) and the
corresponding volume element . The Hodge star operator x : QF(M) —
Q"=F(M) on M is defined as

anxf=(a,B)p for a,B € QF(M).

The Hodge star operator satisfies the following properties for a, 3 € QF(M)
[Abraham et al. (1988)):



Applied Manifold Geometry 179

(1)
(2) *1=p, *p= (fl)fnd(g);

(3) x*xa= (fl)fnd(g)(,l)k(n*k)a;

(4) {a,B) = (=1)49) (xa, *B3), where Ind(g) is the indez of the metric g.

3.6.2.3  Exterior Differential Systems

Here we give an informal introduction to exzterior differential systems (EDS,
for short), which are expressions involving differential forms related to any
manifold M. Later, when we fully develop the necessary differential geo-
metrical as well as variational machinery (see below), we will give a
more precise definition of EDS.

Central in the language of EDS is the notion of coframing, which is a real
finite—dimensional smooth manifold M with a given global cobasis and co-
ordinates, but without requirement for a proper topological and differential
structures. For example, M = R? is a coframing with cobasis {dz, dy, dz}
and coordinates {z,y,z}. In addition to the cobasis and coordinates, a
coframing can be given structure equations and restrictions. For
example, M = R?\{0} is a coframing with cobasis {e!,e?}, a single coor-
dinate {r}, structure equations {dr = e!, de! = 0, de? = e! A e?/r} and
restrictions {r # 0}.

A system S on M in EDS terminology is a list of expressions including
differential forms (e.g., S = {dz — ydx}).

Now, a simple EDS is a triple (5,9, M), where S is a system on M,
and €2 is an independence condition: either a decomposable k—form or a
system of k—forms on M. An EDS is a list of simple EDS objects where
the various coframings are all disjoint.

An integral element of an exterior system (S,€2, M) is a subspace P C
T, M of the tangent space at some point m € M such that all forms in §
vanish when evaluated on vectors from P. Alternatively, an integral element
P C T,,M can be represented by its annihilator P+ C T* M, comprising
those 1—forms at m which annul every vector in P. For example, with
M = R® = {(z,y,2)}, S = {dz A dz} and Q = {dz,dz}, the integral
element P = {9, + 0,0,} is equally determined by its annihilator P+ =
{dz — dz}. Again, for S = {dz — ydz} and Q = {dz}, the integral element
P = {08, + yd.} can be specified as {dy}.
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3.6.3 Euxterior Derivative and (Co)Homology

The exterior derivative is an operation that takes k—forms to (k+1)—forms
on a smooth manifold M. It defines a unique family of maps d : Q¥(U) —
QFL(U), U open in M, such that (see [Abraham et al. (1988)]):

(1) d is a A—antiderivation; that is, d is R—linear and for two forms o €

QF(U), B € Q'(),
da A B)=daA B+ (-1)*andB.

(2) If f € C*(U,R) is a function on M, then df = %dmi : M — T*M is the
differential of f, such that df (X) = ixdf = Lx f—dixf = Lxf = X|[f]
for any X € X*(M).

(3) d*> =dod =0 (that is, d**1(U) o d*(U) = 0).

(4) d is natural with respect to restrictions |U; that is, if U C V C M are
open and a € Q¥(V), then d(a|U) = (da)|U, or the following diagram
commutes:

QF (V) QF(U)
d d
Qk+1(v) |U QkJrl(U)

(5) d is natural with respect to the Lie derivative Lx (4.3.2)) along any
vector-field X € X*(M); that is, for w € Q¥(M) we have Lxw €
QF(M) and dLxw = Lxdw, or the following diagram commutes:

Lx

QF(M) k(M)
d d
Qk'H(M) EX Qk-i—l(M)

(6) Let ¢ : M — N be a C* map of manifolds. Then ¢* : QF(N) — QF(M)
is a homomorphism of differential algebras (with A and d) and d is
natural with respect to ¢p* = F*; that is, p*dw = dyp*w, or the following
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diagram commutes:

QF (N) ———— Qb (M)
d d
Qk+1(N) — Qk+1(M)

(7) Analogously, d is natural with respect to diffeomorphism ¢, = (F*)~1;
that is, ¢,dw = dp,w, or the following diagram commutes:

P

Q¥ (N) Qk(M)
d d
Qk+1 (N) QkJrl(M)

*

(8) Lx =ixod+doix for any X € X*(M) (the Cartan ‘magic’ formula).
(9) Lxod=doLx,ie., [Lx,d] =0 for any X € X*(M).
(10) [Lx,iy] = i[g,y); in particular, ixoLx = Lxoix forall X,Y € Xk (M).

Given a k—form o = f; dx! € Q¥ (M), the exterior derivative is defined
in local coordinates (:cl, e a:") of a point m € M as

da:::d(fjdxl)‘4'£z£id

= ——da™ Ade! = dfy Adx A LA dat
ox'k

In particular, the exterior derivative of a function f € C*(M,R) is a
1—form df € Q'(M), with the property that for any m € M, and X €
XE(M),

dfm(X) = X(f),

i.e., df;,(X) is a Lie derivative of f at m in the direction of X. Therefore,
in local coordinates (Jcl, s Jc") of a point m € M we have

_9f
Ot

df da

For any two functions f,g € C*(M,R), exterior derivative obeys the
Leibniz rule:

d(fg) = gdf + fdg,
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and the chain rule:

d(g(f)) =4'(f)df.

A k—form a € QF(M) is called closed form if da = 0, and it is called
ezact form if there exists a (k — 1)—form 3 € QF~1(M) such that o = dg3.
Since d? = 0, every exact form is closed. The converse is only partially true
(Poincaré Lemma): every closed form is locally exact. This means that given
a closed k—form o € Q¥(M) on an open set U C M, any point m € U has
a neighborhood on which there exists a (k — 1)—form 8 € Q¥1(U) such
that dg = a|y.

The Poincaré lemma is a generalization and unification of two well-
known facts in vector calculus:

(1) If curl F = 0, then locally F' = grad f;
(2) If div F' = 0, then locally F = curl G.

Poincaré lemma for contractible manifolds: Any closed form on a
smoothly contractible manifold is exact.

3.6.3.1 Intuition Behind Cohomology

The simple formula d?> = 0 leads to the important topological notion of
cohomology. Let us try to solve the equation dw = 0 for a p—form w. A
trivial solution is w = 0. From the above formula, we can actually find a
much larger class of trivial solutions: w = da for a (p — 1)—form «. More
generally, if w is any solution to dw = 0, then so is w + da. We want to
consider these two solutions as equivalent:

we~wHw if W' €Im d,

where Im d is the image of d, that is, the collection of all p—forms of
the form da. (To be precise, the image of d contains g—forms for any
0 < g < n, so we should restrict this image to the p—forms for the p we
are interested in.) The set of all p—forms which satisfy dw = 0 is called the
kernel of d, denoted Ker d, so we are interested in Ker d up to the equivalence
classes defined by adding elements of Im d. (Again, strictly speaking, Ker d
consists of g—forms for several values of ¢, so we should restrict it to the
p—forms for our particular choice of p.) This set of equivalence classes is
called HP(M), the p—th de Rham cohomology group of M,

Kerd

HP (M) = Im d
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Clearly, Kerd is a group under addition: if two forms w® and w(® satisfy
dw® = dw® = 0, then so does w® + w(®. Moreover, if we change
w® by adding some da'?, the result of the addition will still be in the
same cohomology class, since it differs from w™ + w® by d(a(l) + a(z)).
Therefore, we can view this addition really as an addition of cohomology
classes: HP(M) is itself an additive group. Also note that if w® and w®
are in the same cohomology class (that is, their difference is of the form
da®), then so are cw® and cw® for any constant factor c. In other
words, we can multiply a cohomology class by a constant to get another
cohomology class: cohomology classes actually form a vector space.

3.6.3.2 Intuition Behind Homology

Another operator similar to the exterior derivative d is the boundary op-
erator 0, which maps compact submanifolds of a smooth manifold M to
their boundary. Here, §C' = 0 means that a submanifold C' of M has no
boundary, and C' = §U means that C is itself the boundary of some sub-
manifold U. It is intuitively clear, and not very hard to prove, that 8% = 0:
the boundary of a compact submanifold does not have a boundary itself.
That the objects on which § acts are independent of its coordinates is also
clear. So is the grading of the objects: the degree p is the dimension of the
submanifold C'F] What is less clear is that the collection of submanifolds
actually forms a vector space, but one can always define this vector space
to consist of formal linear combinations of submanifolds, and this is pre-
cisely how one proceeds. The pD elements of this vector space are called
p—chains. One should think of -C' as C with its orientation reversed, and
of the sum of two disjoint sets, C! + C?, as their union. The equivalence
classes constructed from § are called homology classes.

For example, in Figure C' and C? both satisfy 6C = 0, so they
are elements of Ker §. Moreover, it is clear that neither of them separately
can be viewed as the boundary of another submanifold, so they are not in
the trivial homology class Im . However, the boundary of U is C' — C2.
(The minus sign in front of C? is a result of the fact that C? itself actually
has the wrong orientation to be considered a boundary of U.) This can be
written as C! — C? = §U, or equivalently C! = C? 4 §U, showing that C!
and C? are in the same homology class.

The cohomology groups for the d—operator are called homology groups,

3Note that here we have an example of an operator that maps objects of degree p to
objects of degree p — 1 instead of p + 1.
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Fig. 3.5 The 1D submanifolds S and S? represent the same homology class, since their
difference is the boundary of U.

and denoted by H,(M), with a lower indexﬁ The p—chains C' that satisfy
dC = 0 are called p—cycles. Again, the H,(M) only exist for 0 < p < n.
There is an interesting relation between cohomology and homology

groups. Note that we can construct a bilinear map from H? (M) x H,(M) —
R by

(hiep = | o (3.41)

where [w] denotes the cohomology class of a p—form w, and [¥] the homol-
ogy class of a p—cycle X. Using Stokes’ Theorem, it can be seen that the
result does not depend on the representatives for either w or C

/ w+da:/w+/da+/ w+ da
C+6U C C U
:/w—i—/ a—l—/d(w—i—doz)z/w,
C sC U C

where we used that by the definition of (co)homology classes, dC' = 0 and
dw = 0. As a result, the above map is indeed well-defined on homology
and cohomology classes. A very important Theorem by de Rham says that
this map is nondegenerate [De Rham (1984)]. This means that if we take
some [w] and we know the result of the map for all [C], this uniquely
determines |w], and similarly if we start by picking an [C]. This in particular

means that the vector space HP(M) is the dual vector space of H,(M).

4Historically, as can be seen from the terminology, homology came first and cohomol-
ogy was related to it in the way we will discuss below. However, since the cohomology
groups have a more natural additive structure, it is the name ‘cohomology’ which is
actually used for generalizations.
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3.6.3.3 De Rham Complex and Homotopy Operators

After an intuitive introduction of (co)homology ideas, we now turn to their
proper definitions. Given a smooth manifold M, let QP(M) denote the
space of all smooth p—forms on M. The differential d, mapping p—forms
to (p+ 1)—forms, serves to define the de Rham complex on M

dl dnfl

o
QL (M) .. ~QP(M) — 0. (3.42)

0— QO(M)

Recall (from section above) that in general, a complex is defined
as a sequence of vector spaces, and linear maps between successive spaces,
with the property that the composition of any pair of successive maps is
identically 0. In the case of the de Rham complex , this requirement is
a restatement of the closure property for the exterior differential: dod = 0.

In particular, for n = 3, the de Rham complex on a manifold M reads

d° d! d?

0 — Q°(M) QY (M) Q*(M) Q3 (M) — 0.
(3.43)
If w= f(z,y,2) € Q°(M), then
dw=d"f= ﬁd:ﬁ + 6—fdy + 8—fdz = grad w.
Ox dy 0z

If w= fdz + gdy + hdz € QY(M), then

d'w = (gg - 3f> dz/\dy+<ah — 5‘5]) dy/\der(af — 6h) dzNdzx = curlw.
x

dy oy 0z dz Oz
If w= Fdy Adz + Gdz A dx + Hdx A dy € Q*(M), then
oF 0G OH
2 _Oof O Ol ..
d*w = 9 + oy + 92 divw.

Therefore, the de Rham complex ([3.43)) can be written as

grad curl

0 — QO(M) QM) 02 — s 03(a1) — 0,

Using the closure property for the exterior differential, dod = 0, we get the
standard identities from vector calculus

curl - grad =0 and div - curl = 0.

The definition of the complex requires that the kernel of one of the
linear maps contains the image of the preceding map. The complex is
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ezact if this containment is equality. In the case of the de Rham complex
, exactness means that a closed p—form w, meaning that dw = 0, is
necessarily an exact p—form, meaning that there exists a (p — 1)—form 6
such that w = df. (For p = 0, it says that a smooth function f is closed,
df =0, iff it is constant). Clearly, any exact form is closed, but the converse
need not hold. Thus the de Rham complex is not in general exact. The
celebrated de Rham Theorem states that the extent to which this complex
fails to be exact measures purely topological information about the manifold
M, its cohomology group.

On the local side, for special types of domains in Euclidean space R™,
there is only trivial topology and we do have exactness of the de Rham
complex (3.42). This result, known as the Poincaré lemma, holds for star—
shaped domains M C R™ : Let M C R™ be a star-shaped domain. Then
the de Rham complex over M is exact.

The key to the proof of exactness of the de Rham complex lies in the
construction of suitable homotopy operators. By definition, these are linear
operators h : QP — QP~! taking differential p—forms into (p — 1)—forms,
and satisfying the basic identity [Olver (1986)|

w = dh(w) + h(dw), (3.44)

for all p—forms w € QP. The discovery of such a set of operators imme-
diately implies exactness of the complex. For if w is closed, dw = 0, then
(3.44) reduces to w = df where § = h(w), so w is exact.

3.6.3.4 Stokes Theorem and de Rham Cohomology

Stokes Theorem states that if a is an (n — 1)—form on an orientable
n—manifold M, then the integral of da over M equals the integral of «
over OM, the boundary of M. The classical theorems of Gauss, Green, and
Stokes are special cases of this result.

A manifold with boundary is a set M together with an atlas of charts
(U, ¢) with boundary on M. Define (see [Abraham et al. (1988)]) the
interior and boundary of M respectively as

It M = Jo™" (Int (9(V))),  and M =[Jo™ ' (@(4(V))).
U U

If M is a manifold with boundary, then its interior Int M and its bound-
ary OM are smooth manifolds without boundary. Moreover, if f: M — N
is a diffeomorphism, N being another manifold with boundary, then f in-
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duces, by restriction, two diffeomorphisms
Int f: Int M — Int N, and Jf:0M — ON.

If n = dim M, then dim(Int M) = n and dim(OM) =n — 1.

To integrate a differential n—form over an n—manifold M, M must be
oriented. If Int M is oriented, we want to choose an orientation on OM
compatible with it. As for manifolds without boundary a volume form on
an n—manifold with boundary M is a nowhere vanishing n—form on M.
Fix an orientation on R™. Then a chart (U, ¢) is called positively oriented
if the map T),¢ : T,, M — R™ is orientation preserving for all m € U.

Let M be a compact, oriented kD smooth manifold with boundary 0M.
Let a be a smooth (k — 1)—form on M. Then the classical Stokes formula

holds
/da:/ Q.
M oM

If M =@ then [,, da = 0.
The quotient space
Ker (d : QF (M) — Q1 (M
Im (d : QF—1(M) — Qk(M))

represents the kth de Rham cohomology group of a manifold M. recall that
the de Rham Theorem states that these Abelian groups are isomorphic to
the so—called singular cohomology groups of M defined in algebraic topology
in terms of simplices and that depend only on the topological structure of
M and not on its differentiable structure. The isomorphism is provided
by integration; the fact that the integration map drops to the preceding
quotient is guaranteed by Stokes’ Theorem.

The exterior derivative commutes with the pull-back of differential
forms. That means that the vector bundle A*T*M is in fact the value
of a functor, which associates a bundle over M to each manifold M and
a vector bundle homomorphism over ¢ to each (local) diffeomorphism ¢
between manifolds of the same dimension. This is a simple example of
the concept of a natural bundle. The fact that the exterior derivative d
transforms sections of A*T*M into sections of A*T1T*M for every man-
ifold M can be expressed by saying that d is an operator from AFT* M
into AT M. That the exterior derivative d commutes with (local) dif-
feomorphisms now means, that d is a natural operator from the functor
AFT* into functor A*T'T*. If k > 0, one can show that d is the unique
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natural operator between these two natural bundles up to a constant. So
even linearity is a consequence of naturality [Kolar et al. (1993)].

3.6.3.5 Euler—Poincaré Characteristics of M

The Euler—Poincaré characteristics of a manifold M equals the sum of its
Betti numbers

X(M) =3 (=1)"b,.

In case of 2nD oriented compact Riemannian manifold M (Gauss—
Bonnet Theorem) its Euler—Poincaré characteristics is equal

X (M) :/M%

where + is a closed 2n form on M, given by

(71)n 1...2n Qi1 Q’ign_l
o e 23 A

where Q; is the curvature 2—form of a Riemannian connection on M.

Poincaré—Hopf Theorem: The Euler—Poincaré characteristics x(M) of a
compact manifold M equals the sum of indices of zeros of any vector—field
on M which has only isolated zeros.

3.6.3.6  Duality of Chains and Forms on M

In topology of finite-dimensional smooth (i.e., CP*! with p > 0) mani-
folds, a fundamental notion is the duality between p—chains C and p—forms
(i.e., p—cochains) w on the smooth manifold M, or domains of integration
and integrands — as an integral on M represents a bilinear functional (see
[Choquet-Bruhat and DeWitt-Morete (1982); Dodson and Parker (1997)])

/ w=(C,w), (3.45)
C

where the integral is called the period of w. Period depends only on the
cohomology class of w and the homology class of C'. A closed form (cocycle)
is exact (coboundary) if all its periods vanish, i.e., dw = 0 implies w = d#.
The duality is based on the classical Stokes formula

/dw:/ w.
c ac
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This is written in terms of scalar products on M as
(C,dw) = (0C, w)

where JC' is the boundary of the p—chain C' oriented coherently with C.
While the boundary operator 0 is a global operator, the coboundary oper-
ator, that is, the exterior derivative d, is local, and thus more suitable for
applications. The main property of the exterior differential,

d>=0 implies 9% =0,
can be easily proved by the use of Stokes’ formula
<82C,w> = (0C, dw) = <C’, d2w> =0.

The analysis of p—-chains and p—-forms on the finite-dimensional
smooth manifold M is usually performed in (co)homology categories (see
[Dodson and Parker (1997); Dieudonne (1988)]) related to M.

Let M* denote the category of cochains, (i.e., p—forms) on the smooth
manifold M. When C = M?*, we have the category S®(M?®*) of generalized
cochain complexes A® in M*, and if A’ = 0 for n < 0 we have a subcategory
Shr(M?®) of the de Rham differential complexes in M*®

d d

A% 0 — QO(M) Q' (M) Q*(M)---  (3.46)

L or ()

Here A’ = Q™(M) is the vector space over R of all p—-forms w on M (for
p = 0 the smooth functions on M) and d,, = d : Q"1 (M) — Q*(M) is the
exterior differential. A form w € Q™(M) such that dw = 0is a closed form or
n-cocycle. A form w € Q"(M) such that w = df, where § € Q"1 (M), is an
exact form or n—coboundary. Let Z"(M) = Ker(d) (resp. B"(M) = Im(d))
denote a real vector space of cocycles (resp. coboundaries) of degree n.
Since d,,41d, = d*> = 0, we have B*(M) C Z"(M). The quotient vector
space

Hpp(M) = Ker(d)/Tm(d) = Z"(M)/B" (M)

is the de Rham cohomology group. The elements of H} (M) represent
equivalence sets of cocycles. Two cocycles wy, ws belong to the same
equivalence set, or are cohomologous (written wq ~ ws) iff they differ by a
coboundary w; — ws = df. The de Rham cohomology class of any form
we QM) is [w] € Hp(M). The de Rham differential complex can
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be considered as a system of second—order ODEs d?0 = 0, § € Q"~}(M)
having a solution represented by Z" (M) = Ker(d).

Analogously let M, denote the category of chains on the smooth man-
ifold M. When C = M,, we have the category S,(M,) of generalized
chain complexes A, in M,, and if A,, = 0 for n < 0 we have a subcategory
S¢(M,) of chain complexes in M,

o

Ae: 0= COM) <2 ety & 2

(M) 2 o) 2 -

Here A, = C™(M) is the vector space over R of all finite chains C' on the
manifold M and 9, = 9 : C""Y(M) — C™(M). A finite chain C such
that 0C = 0 is an n—cycle. A finite chain C such that C = 0B is an
n—boundary. Let Z,(M) = Ker(d) (resp. Bp(M) = Im(9)) denote a
real vector space of cycles (resp. boundaries) of degree n. Since 9,110, =
9% = 0, we have B, (M) C Z,(M). The quotient vector space

HY (M) = Ker(d)/Tm(d) = Z,(M)/B, (M)

is the n—homology group. The elements of HS (M) are equivalence sets
of cycles. Two cycles C7, Cs belong to the same equivalence set, or are
homologous (written C; ~ Cs), iff they differ by a boundary C; — Cy =
OB). The homology class of a finite chain C € C™(M) is [C] € HS (M).

The dimension of the n—cohomology (resp. n—homology) group equals
the nth Betti number b™ (resp. by,) of the manifold M. Poincaré lemma
says that on an open set U € M diffeomorphic to RY, all closed forms
(cycles) of degree p > 1 are exact (boundaries). That is, the Betti numbers
satisfy b¥ = O (resp. b, = 0) forp=1,...,n.

The de Rham Theorem states the following. The map ®: H, x H” — R
given by ([C], [w]) — (C,w) for C € Z,,w € Z™ is a bilinear nondegenerate
map which establishes the duality of the groups (vector spaces) H,, and H"
and the equality b,, = b".

3.6.3.7 Hodge Star Operator and Harmonic Forms

As the configuration manifold M is an oriented ND Riemannian manifold,
we may select an orientation on all tangent spaces T, M and all cotangent
spaces T/*, M, with the local coordinates z* = (¢*, p;) at a point m € M, in a
consistent manner. The simplest way to do that is to choose the Euclidean
orthonormal basis 01, ..., Oy of RV as being positive.

Since the manifold M carries a Riemannian structure g = (, ), we have
a scalar product on each T M. So, we can define (as above) the linear
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Hodge star operator
* 2 AP(T M) — AN=P(T* M),
which is a base point preserving operator
«: QP(M) — QV7P(M),  (QP(M) =T (AP(M)))

(here AP(V) denotes the p—fold exterior product of any vector space V,
QP(M) is a space of all p—forms on M, and I'(E) denotes the space of
sections of the vector bundle E). Also,

sk = (—1)PIN=P) 2 AP(T* M) — AP(T2 M).

m

As the metric on T}, M is given by ¢ (z) = (g;;(z))~", we have the
volume form defined in local coordinates as

#(1) = y/det(gij)dz A ... A da™, and Vol(M) = /M*(l).

For any to p—forms a, 8 € QP (M) with compact support, we define the
(bilinear and positive definite) L?—product as

@)= [ (s [ anss

We can extend the product (-,-) to L2(QP(M)); it remains bilinear and
positive definite, because as usual, in the definition of L?, functions that
differ only on a set of measure zero are identified.

Using the Hodge star operator %, we can introduce the codifferen-
tial operator §, which is formally adjoint to the exterior derivative d :
Q*(M) — QPYY(M) on @) (QP(M) wrt. (). This means that for
a € P L(M), 3 e QP(M)

(da, B) = (@, 603).
Therefore, we have & : QP(M) — QP~1(M) and
6= (—1)NEFDHL gy

Now, the Laplace—Beltrami operator (or, Hodge Laplacian, see |Griffiths
(1983b); [Voisin (2002)] as well as section (3.13.5.3) below), A on QP(M),
is defined by relation similar to (3.44) above

A =ds+8d: QP(M) — QP (M) (3.47)

and an exterior differential form « € QP (M) is called harmonic if Ao = 0.



192 Applied Differential Geometry: A Modern Introduction

Let M be a compact, oriented Riemannian manifold, F a vector bundle
with a bundle metric (-, ) over M,

D=d+A: Q" Y (Adg) — QP(Adg),  with A € Q' (Adg)

— a tensorial and R—linear metric connection on E with curvature Fp €
O%(Adg) (Here by QP(Adg) we denote the space of those elements of
OP(Endg) for which the endomorphism of each fibre is skew symmetric;
Endg denotes the space of linear endomorphisms of the fibers of E).

3.7 Lie Derivatives on Smooth Manifolds

Lie derivative is popularly called ‘fisherman’s derivative’. In continuum me-
chanics it is called Liouville operator. This is a central differential operator
in modern differential geometry and its physical and control applications.

3.7.1 Lie Derivative Operating on Functions

To define how vector—fields operate on functions on an m—manifold M, we
will use the Lie derivative. Let f: M — RsoTf:TM — TR = R x R.
Following |Abraham et al. (1988)] we write T'f acting on a vector v € T, M
in the form

Tf-v=(f(m),df(m)-v).

This defines, for each point m € M, the element df(m) € T M. Thus
df is a section of the cotangent bundle T*M, i.e., a 1—form. The 1—form
df : M — T*M defined this way is called the differential of f. If f is C*,
then df is C*~ 1.

If¢: U C M —V C FE is alocal chart for M, then the local represen-
tative of f € C*(M,R) is the map f:V — R defined by f = fo ¢~ '. The
local representative of T f is the tangent map for local manifolds,

Tf(z,v) = (f(x), Df(z)-v).

Thus the local representative of df is the derivative of the local representa-
tive of f. In particular, if (z!,...,2™) are local coordinates on M, then the
local components of df are

(df)' = 0, f.
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The introduction of df leads to the following definition of the Lie deriva-
tive. The directional or Lie derivative Lx : C*(M,R) — C*1(M,R) of a
function f € C*(M,R) along a vector-field X is defined by

Lx f(m) = X[f](m) = df (m) - X(m),

for any m € M. Denote by X|[f] = df (X) the map M > m — X|[f](m) € R.

If f is F—valued, the same definition is used, but now X[f] is F—valued.
If a local chart (U,¢) on an n—manifold M has local coordinates

(x',...,2™), the local representative of X|[f] is given by the function

Lxf=X[fl=X"0uf.

Evidently if f is C* and X is C*~! then X[f]is C*~!.
Let ¢ : M — N be a diffeomorphism. Then Lx is natural with respect
to push—forward by . That is, for each f € C*(M,R),

‘Cgo*X(SD*f) = L)0»:[:)(.]‘2

i.e., the following diagram commutes:

P

Ck(M,R) C*(N,R)
Lx Lo x
C*(M,R) —5— C*(N,R)

Also, Lx is natural with respect to restrictions. That is, for U open in
M and f € C*(M,R),

Lxw(fIU) = (Lx])IU,

where |U : CF(M,R) — C*(U, R) denotes restriction to U, i.e., the following
diagram commutes:

Ck(M,R) Ck(U,R)
Lx Lx\u
C*(M,R) T C*(U,R)

Since p* = (¢~ '), the Lie derivative is also natural with respect to
pull-back by ¢. This has a generalization to ¢—related vector—fields as
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follows: Let ¢ : M — N be a C¥—map, X € X*"1(M) and Y € X*~1(N),
k>1.1f X ~, Y, then

Lx(e"f)=¢ "Ly f

for all f € C¥(N,R), i.e., the following diagram commutes:

*

C*(N,R) —— C*(M,R)

,CY »CX

C*(N,R) > C*(M,R)

The Lie derivative map Lx : C*(M,R) — C*~1(M,R) is a derivation,
i.e., for two functions f, g € C*(M,R) the Leibniz rule is satisfied

Lx(fg9)=9Lxf+ fLxg;

Also, Lie derivative of a constant function is zero, Lx (const) = 0.
The connection between the Lie derivative Lxf of a function f €
C*(M,R) and the flow F; of a vector-field X € X*~1(M) is given as:

d
%(Ft*f):Ft*(EXf)-

3.7.2 Lie Derivative of Vector Fields
If X,Y € X¥(M), k > 1 are two vector—fields on M, then

Lx,Lyl|=LxoLy —LyoLx

is a derivation map from C**1(M, R) to C¥~1(M, R). Then there is a unique
vector-field, [X,Y] € X*(M) of X and Y such that Lixy) = [Lx,Ly] and
[X,Y](f) = X (Y(f)) = Y (X(f)) holds for all functions f € C*(M,R).
This vector—field is also denoted L£xY and is called the Lie derivative of
Y with respect to X, or the Lie bracket of X and Y. In a local chart
(U,¢) at a point m € M with coordinates (z!,...,2"), for X|y = X0,
and Y|y = Y'0,: we have

[X70,:,Y70,:] = (X" (00:Y7) = Y (0,:X7)) 0,4,
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since second partials commute. If, also X has flow F}, then |[Abraham et al.
(1988)|

d * *
%(Fty):Ft (EXY)-

In particular, if ¢ = 0, this formula becomes
Ao (FrY) = LY.
dt t=0 t — A~X 1.
Then the unique C*~! vector-field LxY = [X,Y] on M defined by
XY= 2 sy (FY)
) - dt t=0 t )

is called the Lie derivative of Y with respect to X, or the Lie bracket of X
and Y, and can be interpreted as the leading order term that results from
the sequence of flows

F7Y o FyX o FY o 7% (m) = &[X,Y](m) + O(%), (3.48)

for some real ¢ > 0. Therefore a Lie bracket can be interpreted as a ‘new
direction’ in which the system can flow, by executing the sequence of flows
(13.48)).

Lie bracket satisfies the following property:

(X, Y1[f] = XY A1) = Y[X[S]],

for all f € C*T1(U,R), where U is open in M.
An important relationship between flows of vector—fields is given by the
Campbell-Baker—Hausdorff formula:

FY o FX = FtX+Y+%[XVY]-F%([X,[X,Y]]—[Y,[X,Y]])-S-m (3.49)
Essentially, if given the composition of multiple flows along multiple vector—
fields, this formula gives the one flow along one vector—field which results
in the same net flow. One way to prove the Campbell-Baker—-Hausdorff
formula is to expand the product of two formal exponentials and
equate terms in the resulting formal power series.
Lie bracket is the R—bilinear map [,] : X*(M) x X¥(M) — X*(M) with
the following properties:

(1) [X,Y] = —[Y, X], ie., LxY = —Ly X for all X,Y € X¥(M) — skew—
symmetry;
(2) [X,X] =0 for all X € X*(M);
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(3) [X,[V,Z]] + [V, [Z,X]] + [Z,[X,Y]] = 0 for all X,Y,Z € X*(M) — the
Jacobi identity;

4) [fX,Y] = fIX,Y] - (Y )X, ie., L;x(Y) = f(LxY) — (Ly f)X for all
X,Y € X*(M) and f € CF(M,R);

(5) [X, fY] = fIX, Y]+ (Xf)Y,ie., Lx(fY) = f(LxY)+ (Lx f)Y for all
X,Y € X*(M) and f € C*(M,R);

(6) [Lx,Ly] = L,y for all X,Y € X*(M).

The pair (X*(M),[,]) is the prototype of a Lie algebra [Kolar et al.
(1993)]. In more general case of a general linear Lie algebra gl(n), which is
the Lie algebra associated to the Lie group GL(n), Lie bracket is given by
a matrix commutator

[A,B] = AB — BA,

for any two matrices A, B € gl(n).
Let ¢ : M — N be a diffeomorphism. Then Lx : X*(M) — X*(M) is
natural with respect to push-forward by . That is, for each f € C*(M,R),

Lo x(0.Y)=p.LxY,

i.e., the following diagram commutes:

P

AR (M) XE(N)
Lx Ly x
X (M) 7. XH(N)

Also, Lx is natural with respect to restrictions. That is, for U open in
M and f € C*(M,R),

(XU, Y U] = [X,Y]|U,

where U : C¥(M,R) — C*(U, R) denotes restriction to U, i.e., the following
diagram commutes [Abraham et al. (1988)]:

|U

Xk (M) X*(U)
Lx Lxu
Xk (M) X5 (U)
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If a local chart (U,¢) on an n—manifold M has local coordinates
(x',...,2™), then the local components of a Lie bracket are

(X, Y = X109, Y — Y0, X7,

that is, [X,Y]=(X-V)Y — (Y - V)X.
Let ¢ : M — N be a C*—map, X € X*~1(M) and Y € X*1(N),
k>1. Then X ~, Y, iff

YD ow=X[foy]

for all f € C*(V,R), where V is open in N.

For every X € X*(M), the operator Ly is a derivation on
(Ck(M, R), Xk(M)), i.e., Lx is R—linear.

For any two vector-fields X € X*(M) and Y € X*(N), k > 1 with
flows F; and Gy, respectively, if [X,Y] =0 then F;}Y =Y and G; X = X.

3.7.3 Time Derivative of the Evolution Operator

Recall that the time-dependent flow or evolution operator F; ; of a vector—
field X € X*(M) is defined by the requirement that t — F; ;(m) be the
integral curve of X starting at a point m € M at time t = s, i.e.,

d
%Fm(m) =X (t,F; s(m)) and F, . (m)=m.
By uniqueness of integral curves we have F} ; o Fs , = F}, (replacing the
flow property Fiys = F; + F;) and F;; = identity.

Let X; € X¥(M), k > 1 for each t and suppose X (t,m) is continuous in
(t,m) € Rx M. Then F; ; is of class C* and for f € C**1(M,R) [Abraham

et al. (1988)], and Y € X*(M), we have

(1) GF7of=Fy(Lx, ), and
(2) %ngs f = ths([Xt’ YD = ths (EXt Y)
From the above Theorem, the following identity holds:
d

aFtisf: — Xt [thsf]

3.7.4 Lie Derivative of Differential Forms

Since F : M = A*T*M is a vector bundle functor on M, the Lie deriva-
tive (4.3.2)) of a k—form « € QF(M) along a vector—field X € X*(M) is
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defined by

d
Lxa= o li=0 F} a.

It has the following properties:

(1) Lx(aAB)=LxaAB+aALxf,so Lx is a derivation.
(2) [ﬂx, Ey] o = E[Xﬁy] Q.
(3) 4Fya=F'Lxa=Lx (Ffa).

Formula (3) holds also for time-dependent vector—fields in the sense
that %FZ:SQ = F/Lxa = Lx (Ft’fsa) and in the expression Lxo the
vector—field X is evaluated at time ¢.

The famous Cartan magic formula (see [Marsden and Ratiu (1999)])
states: the Lie derivative of a k—form o € QF(M) along a vector—field
X € X¥(M) on a smooth manifold M is defined as

Lxa=dixa+ixda=d(X]|a)+ X]|dao.

Also, the following identities hold [Marsden and Ratiu (1999); [Kolar
et al. (1993)]:

(1)
(2)
( ) i[X7y]Oé = EXiya - iyﬁxa.

(4) Exda = dﬁxa, i.e., [ﬁx,d} =0.
()

(6)

3.7.5 Lie Derivative of Various Tensor Fields

In this section, we use local coordinates x* (i = 1,...,n) on a biodynamical
n—manifold M, to calculate the Lie derivative L x: with respect to a generic
vector-field X*. (As always, 0, = %)

Lie Derivative of a Scalar Field

Given the scalar field ¢, its Lie derivative Lx:¢ is given as

Lxio=X0piop=X'0p10+ X?0p2¢+ ... + X" Opnp.

Lie Derivative of Vector and Covector—Fields
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Given a contravariant vector—field V', its Lie derivative £x:V* is given
as

LxiVi= X",V —V*9,. X" = [X?, V] — the Lie bracket.

Given a covariant vector—field (i.e., a one—form) wy, its Lie derivative Lxiw;
is given as

Lxiw; = X’“@kai + wkawiXk.
Lie Derivative of a Second—Order Tensor—Field

Given a (2,0) tensor—field S its Lie derivative £ x:S% is given as
LS = X'0,:8% — 8§99, X" — 870, X.
Given a (1, 1) tensor-field S%, its Lie derivative Lx:S} is given as
Lx:Si=X'0,:5 — Si0,: X'+ 50, X".
Given a (0, 2) tensor—field S;;, its Lie derivative £x:S;; is given as
LxiSij = X0, Sij + S50y X' + ;0,5 X"
Lie Derivative of a Third—Order Tensor—Field
Given a (3,0) tensor-field T%* its Lie derivative Lx:T"* is given as
Ly TR = X9, 7% — TUky, Xt — T, XTI —TYi9,. X*.
Given a (2,1) tensor—field T,ij , its Lie derivative L T,ij is given as
LxiTy = X 0uTy — TP 0, X'+ T 0, X0 — T 0, X7
Given a (1,2) tensor-field T}y, its Lie derivative LT}, is given as
LxiTh, = X'0pT) —T10,:i X' + T30, X' + T},0,. X"
Given a (0, 3) tensor-field T, its Lie derivative £x:T;;i is given as
LxiTiji = X'04iTiji + Tijr0pi X' + Tii0pi X + T}ji0pr X .

Lie Derivative of a Fourth—Order Tensor—Field
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Given a (4,0) tensor-field R¥*  its Lie derivative £x:RV*! is given as
LRI = X9, RF Rk X _RUM , XT - RWly . Xk Rk . X!,
Given a (3,1) tensor—field Rfj ¥ its Lie derivative £y R;j ¥ is given as
Lx:R7* = X9, R — R0, X' + R7* 0, X" — Ri*9,: X7 — R/7'8,: X*.
Given a (2,2) tensor—field Rz, its Lie derivative £x: R;jl is given as

LxiRY = X'0,i R — R0, X'+ RO X' + RO X' — R0, X7
Given a (1, 3) tensor—field R;kl, its Lie derivative L R;kl is given as
LxiRiyy = X"0, Ry — R0y X'+ R0, X'+ R0, X' + R0, X
Given a (0,4) tensor-field Ry, its Lie derivative £x:iR;;p; is given as
LxiRiji = X0y Rijra+Rijr10i X'+ Rijn10pi X'+ Rijit Oy X'+ Ry i Ot X .

Finally, recall that a spinor is a two—component complex column vector.
Physically, spinors can describe both bosons and fermions, while tensors can
describe only bosons. The Lie derivative of a spinor ¢ is defined by

Lx¢(x) = lim ¢u(x) — d(x)

t—0 t

)

where ¢, is the image of ¢ by a one-parameter group of isometries with X
its generator. For a vector—field X and a covariant derivative V,, the Lie
derivative of ¢ is given explicitly by

1
Lxd = X"Vt = 2(VaXp = Vi Xa)1"7"9,
where 4* and Wb are Dirac matrices (see, e.g., |[Choquet-Bruhat and
DeWitt-Morete (2000)]).

3.7.6 Application: Lie—Derivative Neurodynamsics

A Lie—derivative neuro—classifier is a self-organized, associative-memory
machine, represented by oscillatory (excitatory/inhibitory) tensor—field—
system

(z,v,w) on the Banach manifold M. It consists of continual neural activa-
tion (z,y)—-dynamics and self-organizing synaptic learning w—-dynamics.
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The continual activation (x,y)—dynamics, is defined as a system of two
coupled, first-order oscillator tensor—fields, dual to each other, in a local
Banach chart U,, (o« =1,...,n) on M:

1) an excitatory neural vector—field z* = x*(t) : M — T M, representing
a cross—section of the tangent bundle T'M; and

2) an inhibitory neural one—form y; = y;(¢t) : M — T*M, representing
a cross—section of the cotangent bundle T* M.

The self-organized learning w—dynamics is performed on a second—order
symmetrical synaptic tensor—field w = w(t), given by its covariant compo-
nents w;; = w;;(t) and its contravariant components w® = w(t), where
i,j=1,...,n.

Starting with the Lyapunov—stable, negative scalar neural action poten-
tial:

U=—Ywja's! +wyy;),  (G,j=1,..n),

the (z,y)—-dynamics is given in two versions, which are compared and
contrasted:
(1) the Lie-linear neurodynamics with first—order Lie derivatives

&' =J' + LxU, Ui =Ji + Ly U,

and
(2) the Lie—quadratic neurodynamics with both first and second—order
Lie derivatives

&' =J 4+ LxU + LxLxU, Ui = Ji + LyU + Ly Ly U,

where X = S;(2%), Y = S;(y;), S; represent sigmoid activation functions,
while LxLx,Ly Ly : F(M) — F(M) denote the second-order (iterated)
Lie derivatives.

Self-organized learning w—-dynamics is presented in the form of differ-
ential Hebbian learning scheme in both covariant and contravariant forms

Wi = —wij + Si(")8;(y;) + Si(x")S;(y;), and
W = —w 4 Si(x")S;(y;) + Si(z")S;(ys), (i,j =1,...,n),

respectively.
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3.7.7 Lie Algebras

Recall from Introduction that an algebra A is a vector space with a product.
The product must have the property that

a(uwv) = (au)v = u(av),

for every a € R and u,v € A. A map ¢ : A — A’ between algebras is called
an algebra homomorphism if ¢p(u - v) = ¢(u) - $(v). A vector subspace J
of an algebra A is called a left ideal (resp. right ideal) if it is closed under
algebra multiplication and if u € A and i € J implies that ui € J (resp.
iu € J). A subspace J is said to be a two-sided ideal if it is both a left and
right ideal. An ideal may not be an algebra itself, but the quotient of an
algebra by a two—sided ideal inherits an algebra structure from A.

A Lie algebra is an algebra A where the multiplication, i.e., the Lie
bracket (u,v) — [u,v], has the following properties:

LA 1. [u,u] =0 for every u € A, and

LA 2. [u, [v,w]] + [w, [u,v]] + [v,w,u]] = 0 for all u,v,w € A.

The condition LA 2 is usually called Jacobi identity. A subspace E C A
of a Lie algebra is called a Lie subalgebra if [u,v] € E for every u,v € E. A
map ¢ : A — A’ between Lie algebras is called a Lie algebra homomorphism
if ¢([u,v]) = [p(u), d(v)] for each u,v € A.

All Lie algebras (over a given field K) and all smooth homomorphisms
between them form the category LAL, which is itself a complete subcate-
gory of the category AL of all algebras and their homomorphisms.

3.8 Lie Groups and Associated Lie Algebras

In the middle of the 19th Century S. Lie made a far reaching discovery
that techniques designed to solve particular unrelated types of ODEs, such
as separable, homogeneous and exact equations, were in fact all special
cases of a general form of integration procedure based on the invariance of
the differential equation under a continuous group of symmetries. Roughly
speaking a symmetry group of a system of differential equations is a group
that transforms solutions of the system to other solutions. Once the sym-
metry group has been identified a number of techniques to solve and classify
these differential equations becomes possible. In the classical framework of
Lie, these groups were local groups and arose locally as groups of transfor-
mations on some Euclidean space. The passage from the local Lie group to
the present day definition using manifolds was accomplished by E. Cartan
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at the end of the 19th Century, whose work is a striking synthesis of Lie
theory, classical geometry, differential geometry and topology.

These continuous groups, which originally appeared as symmetry groups
of differential equations, have over the years had a profound impact on
diverse areas such as algebraic topology, differential geometry, numerical
analysis, control theory, classical mechanics, quantum mechanics etc. They
are now universally known as Lie groups.

3.8.1 Definition of a Lie Group

A Lie group is a smooth (Banach) manifold M that has at the same time a
group G—structure consistent with its manifold M —structure in the sense
that group multiplication

w:GxG— G, (g,h) — gh (3.50)
and the group inversion
v:G— G, g gt (3.51)

are C* —maps [Chevalley (1955); Abraham et al. (1988); Marsden and Ratiu
(1999) Puta (1993)]. A point e € G is called the group identity element.

For example, any nD Banach vector space V' is an Abelian Lie group
with group operations p : VXV =V pu(z,y) =xz+y,and v :V — V|
v(x) = —x. The identity is just the zero vector. We call such a Lie group
a vector group.

Let G and H be two Lie groups. A map G — H is said to be a morphism
of Lie groups (or their smooth homomorphism) if it is their homomorphism
as abstract groups and their smooth map as manifolds [Postnikov (1986)].

All Lie groups and all their morphisms form the category £G (more
precisely, there is a countable family of categories £G depending on
C*—smoothness of the corresponding manifolds).

Similarly, a group G which is at the same time a topological space
is said to be a topological group if maps are continuous, i.e.,
C°—maps for it. The homomorphism G — H of topological groups is said
to be continuous if it is a continuous map. Topological groups and their
continuous homomorphisms form the category 7G.

A topological group (as well as a smooth manifold) is not necessarily
Hausdorff. A topological group G is Hausdorff iff its identity is closed. As
a corollary we have that every Lie group is a Hausdorff topological group
(see [Postnikov (1986)]).
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For every g in a Lie group G, the two maps,

Ly, :G— G, h — gh, and
Rh:GHGa g’_)gha

are called left and right translation maps. Since Ly o Ly = Lgp, and Ry o
Rp, = Ry, it follows that (L,) ™" = L, 1 and (Ry)~' = R,1, so both L,

and R, are diffeomorphisms. Moreover Ly o R, = Ry o Ly, i.e., left and

g9
right translation commute.

A vectorfield X on G is called left—invariant vector—field if for every
g€ G, L;X = X, that is, if (T}, L,)X(h) = X(gh) for all h € G, i.e., the

followingAdiagram commutes:

TL,

TG TG
X X

G I, -G

The correspondences G — 1T'G and L, — T'L, obviously define a functor
F : LG = LG from the category G of Lie groups to itself. F is a special
case of the vector bundle functor (see below).

Let X(G) denote the set of left-invariant vector—fields on Gj it is a
Lie subalgebra of X'(G), the set of all vector-fields on G, since L}[X,Y] =
[L; X, L;Y] = [X,Y], so the Lie bracket [X,Y] € X(G).

Let e be the identity element of G. Then for each £ on the tangent space
T.G we define a vector-field X, on G by

Xe(g) = TeLg(§)-

Xr(G) and T,G are isomorphic as vector spaces. Define the Lie bracket on
T.G by

(€] = [Xe, X,] (e),

forall £,n € T.G. This makes T.G into a Lie algebra. Also, by construction,
we have

(Xe, Xn] = Xien,

this defines a bracket in T, G via left extension. The vector space T,G with
the above algebra structure is called the Lie algebra of the Lie group G and
is denoted g.
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For example, let V be a nD vector space. Then T,V ~ V and the
left—invariant vector—field defined by & € T,V is the constant vector—field
Xe(n) =&, for all n € V. The Lie algebra of V' is V itself.

Since any two elements of an Abelian Lie group G commute, it follows
that all adjoint operators Ady, g € G, equal the identity. Therefore, the
Lie algebra g is Abelian; that is, [£,n] = 0 for all £, € g [Marsden and
Ratiu (1999)].

Recall that Lie algebras and their smooth homomorphisms form
the category LAL. We can now introduce the fundamental Lie functor,
F : LG = LAL, from the category of Lie groups to the category of Lie
algebras [Postnikov (1986)].

Let X¢ be a left-invariant vector—field on G corresponding to £ in g.
Then there is a unique integral curve 7, : R — G of X¢ starting at e, i.e.,

Selt) = Xe (D), 760 =e.

Y¢(t) is a smooth one-parameter subgroup of G, i.e.,

Ye(t +5) = 7e(t) - ve(s),

since, as functions of ¢ both sides equal 7¢(s) at ¢ = 0 and both satisfy
differential equation

(1) = Xe (v¢(t))

by left invariance of X¢, so they are equal. Left invariance can be also used
to show that 7¢(t) is defined for all t+ € R. Moreover, if ¢ : R — G is a
one—parameter subgroup of G, i.e., a smooth homomorphism of the additive
group R into G, then ¢ = v, with { = g.ﬁ(O), since taking derivative at s = 0
in the relation

ot +s)=o(t)-0(s)  gives (1) = Xy (6(0)),

so ¢ = 7, since both equal e at ¢ = 0. Therefore, all one-parameter
subgroups of G' are of the form v,(t) for some £ € g.
The map exp : g — G, given by

exp(§) =7¢(1),  exp(0) =e, (3.52)

is called the exponential map of the Lie algebra g of G into G. exp is a
C*—-map, similar to the projection 7 of tangent and cotangent bundles;
exp is locally a diffeomorphism from a neighborhood of zero in g onto a
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neighborhood of e in Gj; if f : G — H is a smooth homomorphism of Lie
groups, then

Joexpg =expyolef.

Also, in this case (see |Chevalley (1955); [Marsden and Ratiu (1999)k
[Postnikov (1986)])

exp(s) = ’75(3)-

Indeed, for fixed s € R, the curve ¢ — 'yf(ts), which at t = 0 passes through
e, satisfies the differential equation

%’yg(ts) = sX; (’yg(ts)) = Xee (’yf(ts)) )

Since 'ysg(t) satisfies the same differential equation and passes through e at
t = 0, it follows that v,¢(t) = 7¢(st). Putting ¢t = 1 induces exp(s) = v¢(s)
[Marsden and Ratiu (1999)].

Hence exp maps the line s€ in g onto the one—parameter subgroup 75(8)
of G, which is tangent to £ at e. It follows from left invariance that the
flow F of X satisfies F*(g) = gexp(s€).

Globally, the exponential map exp, as given by , is a natural
operation, i.e., for any morphism ¢ : G — H of Lie groups G and H and a

Lie functor F, the following diagram commutes [Postnikov (1986)|:

- H

Let GG; and G2 be Lie groups with Lie algebras g; and go. Then G1 X G»
is a Lie group with Lie algebra g; X g2, and the exponential map is given
by |[Marsden and Ratiu (1999)].

exp: g1 X g2 — G1 X G, (€1,82) = (expy(&1), expa(§2)) -

For example, in case of a nD vector space, or infinite—dimensional Ba-
nach space, the exponential map is the identity.

The unit circle in the complex plane S = {z € C : |z| = 1} is an Abelian
Lie group under multiplication. The tangent space T.S" is the imaginary
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axis, and we identify R with 7,S' by ¢ + 2mit. With this identification,
the exponential map exp : R — S! is given by exp(t) = e*7t.

The nD torus T" = S x---x St (n times) is an Abelian Lie group. The
exponential map exp : R” — T™ is given by

exp(ty, ... ty) = (2711 e2Titn).
Since S! = R/Z, it follows that
O

the projection R® — T™ being given by the exp map (see [Marsden and
Ratiu (1999); [Postnikov (1986)]).
For every g € G, the map

Ady =T, (Rg—l oLg) g—g

is called the adjoint map (or operator) associated with g.
For each £ € g and g € G we have

exp (Adg€) = g (exp&) g ".

The relation between the adjoint map and the Lie bracket is the follow-
ing: For all £,n € g we have

d

— Ad = .
dt —o exp(t€)7] [5» 77]

A Lie subgroup H of G is a subgroup H of G which is also a submanifold
of G. Then b is a Lie subalgebra of g and moreover h = {£ € g|exp(t{) € H,
for all ¢t € R}.

Recall that one can characterize Lebesgue measure up to a multiplicative
constant on R™ by its invariance under translations. Similarly, on a locally
compact group there is a unique (up to a nonzero multiplicative constant)
left—invariant measure, called Haar measure. For Lie groups the existence
of such measures is especially simple [Marsden and Ratiu (1999)]: Let G
be a Lie group. Then there is a volume form Ub5, unique up to nonzero
multiplicative constants, that is left—invariant. If G is compact, Ub5 is right
invariant as well.

3.8.2 Actions of Lie Groups on Smooth Manifolds

Let M be a smooth manifold. An action of a Lie group G (with the unit
element e) on M is a smooth map ¢ : G x M — M, such that for all z € M
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and g,h € G, (i) ¢(e,x) = = and (ii) ¢ (g,¢(h,z)) = ¢(gh,x). In other
words, letting ¢, : 2 € M + ¢ () = ¢(g,7) € M, we have (") ¢, = idn
and (ii’) ¢, 0 ¢y, = dyp,. ¢, is a diffeomorphism, since (¢,)" = ¢,-1. We
say that the map g € G +— ¢, € Dif f(M) is a homomorphism of G into the
group of diffeomorphisms of M. In case that M is a vector space and each
¢, is a linear operator, the function of G on M is called a representation
of G on M [Puta (1993)|

An action ¢ of G on M is said to be transitive group action, if for every
x,y € M, there is g € G such that ¢(g,z) = y; effective group action, if
¢, = idpr implies g = e, that is g — ¢, is 1-1; and free group action, if for
each x € M, g — ¢y(x) is 1-1.

For example,

(1) G =R acts on M =R by translations; explicitly,
¢:GxM— M, o(s,x) =z + s.

Then for z € R, O, = R. Hence M/G is a single point, and the action
is transitive and free.

(2) A complete flow ¢, of a vector—field X on M gives an action of R on
M, namely

(t,z) ER X M+ ¢,(x) € M.

(3) Left translation L, : G — G defines an effective action of G on itself.
It is also transitive.
(4) The coadjoint action of G on g* is given by

Ad* i (g,0) € G x g" — Ady 1 (a) = (Te(Ry-1 0 Lg))* aegh.
Let ¢ be an action of G on M. For x € M the orbit of = is defined by
0, = {0,(@)lg € G} € M
and the isotropy group of ¢ at x is given by
Gz ={9 € Gl¢(9,z) =2} CG.

An action ¢ of G on a manifold M defines an equivalence relation on
M by the relation belonging to the same orbit; explicitly, for z,y € M, we
write 2 ~ y if there exists a g € G such that ¢(g,x) =y, that is, if y € O,.
The set of all orbits M /G is called the group orbit space.
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For example, let M = R?\{0}, G = SO(2), the group of rotations in
plane, and the action of G on M given by

([Z:Z Czlsn;} ,(x,y)) — (zcosf —ysinb, zsind + ycosb).

The action is always free and effective, and the orbits are concentric circles,
thus the orbit space is M/G ~ R?..

A crucial concept in mechanics is the infinitesimal description of an
action. Let ¢ : G x M — M be an action of a Lie group G on a smooth
manifold M. For each ¢ € g,

e :Rx M — M, Pe(t, ) = ¢ (exp(t), )

is an R—-action on M. Therefore, Pexp(tey : M — M is a flow on M; the
corresponding vector—field on M, given by

d

Em(x) = at .
t=

¢exp(t§) (l‘)

is called the infinitesimal generator of the action, corresponding to £ in g.
The tangent space at x to an orbit O, is given by

Let ¢ : GX M — M be a smooth G——action. Forallg e G, all{,ne g
and all a, 8 € R, we have:

(Adgg)M = QSZ*lva ] = — [gvn}hﬁ and (af + Bn)n = oy +
B -
Let M be a smooth manifold, G a Lie group and ¢ : G x M — M a

G—action on M. We say that a smooth map f : M — M is with respect
to this action if for all g € G,

fogg=dyof.

Let f: M — M be an equivariant smooth map. Then for any £ € g we
have

Tfo&y=8&yof
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3.8.3 Basic Dynamical Lie Groups

Here we give the first two examples of Lie groups, namely Galilei group
and general linear group. Further examples will be given in association
with particular dynamical systems.

3.8.3.1 Galilei Group

The Galilei group is the group of transformations in space and time that
connect those Cartesian systems that are termed ‘inertial frames’ in New-
tonian mechanics. The most general relationship between two such frames
is the following. The origin of the time scale in the inertial frame S’ may
be shifted compared with that in S; the orientation of the Cartesian axes in
S’ may be different from that in S; the origin O of the Cartesian frame in
S’ may be moving relative to the origin O in S at a uniform velocity. The
transition from S to S’ involves ten parameters; thus the Galilei group is a
ten parameter group. The basic assumption inherent in Galilei-Newtonian
relativity is that there is an absolute time scale, so that the only way in
which the time variables used by two different ‘inertial observers’ could pos-
sibly differ is that the zero of time for one of them may be shifted relative
to the zero of time for the other.
Galilei space—time structure involves the following three elements:

(1) World, as a 4D affine space A*. The points of A* are called world points
or events. The parallel transitions of the world A* form a linear (i.e.,
Euclidean) space R*.

(2) Time, as alinear map t : R* — R of the linear space of the world parallel
transitions onto the real ‘time axes’. Time interval from the event a €
A% to b € A% is called the number t(b—a); if t(b—a) = 0 then the events
a and b are called synchronous. The set of all mutually synchronous
events consists a 3D affine space A3, being a subspace of the world A%.
The kernel of the mapping ¢ consists of the parallel transitions of A*
translating arbitrary (and every) event to the synchronous one; it is a
linear 3D subspace R® of the space R*.

(3) Distance (metric) between the synchronous events,

pla,b) = a—0b], for all a,b € A3,

given by the scalar product in R3. The distance transforms arbitrary
space of synchronous events into the well known 3D Euclidean space
E3.
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The space A*, with the Galilei space-time structure on it, is called
Galilei space. Galilei group is the group of all possible transformations
of the Galilei space, preserving its structure. The elements of the Galilei
group are called Galilei transformations. Therefore, Galilei transformations
are affine transformations of the world A* preserving the time intervals and
distances between the synchronous events.

The direct product R x R3, of the time axes with the 3D linear space
R3 with a fixed Euclidean structure, has a natural Galilei structure. It is
called Galilei coordinate system.

3.8.3.2 General Linear Group

The group of linear isomorphisms of R™ to R™ is a Lie group of dimension
n?, called the general linear group and denoted Gi(n,R). It is a smooth
manifold, since it is a subset of the vector space L(R™,R™) of all linear maps
of R™ to R™, as Gl(n,R) is the inverse image of R\{0} under the continuous
map A — det A of L(R™,R™) to R. The group operation is composition

(A,B) € Gl(n,R) x Gl(n,R) — Ao B € Gl(n,R)
and the inverse map is
A€ Gl(n,R) — A™! € Gl(n,R).

If we choose a basis in R", we can represent each element A € GI(n,R)
by an invertible (n x n)—-matrix. The group operation is then matrix
multiplication and the inversion is matrix inversion. The identity is the
identity matrix I,,. The group operations are smooth since the formulas for
the product and inverse of matrices are smooth in the matrix components.

The Lie algebra of Gl(n,R) is gl(n), the vector space L(R™,R™) of all
linear transformations of R™, with the commutator bracket

[A, B] = AB — BA.
For every A € L(R™ R"),
Ya it ER oy () =) ﬁAi € Gl(n,R)
i=0
is a one—-parameter subgroup of Gi(n,R), because
e tifl .
74(0) =1, and  Y,(t) = Z ﬁAl =7a(t) A.

i—1)!
=0
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Hence 4 is an integral curve of the left—-invariant vector—field X 4. There-
fore, the exponential map is given by

exp: A € L(R",R™) — exp(A) = e’ =v,(1) = Z % € Gl(n,R).
i=0

For each A € Gl(n,R) the corresponding adjoint map
Ady : L(R",R™) — L(R™,R")
is given by

AdaB=A-B-A""

3.8.4 Application: Lie Groups in Biodynamics
3.8.4.1 Lie Groups of Joint Rotations

Recall (see |[Ivancevic and Ivancevic (2006)]) that local kinematics at each
rotational robot or (synovial) human joint, is defined as a group action of
an nD constrained rotational Lie group SO(n) on the Euclidean space R™.
In particular, there is an action of SO(2)—-group in uniaxial human joints
(cylindrical, or hinge joints, like knee and elbow) and an action of SO(3)—-
group in three—axial human joints (spherical, or ball-and—-socket joints, like
hip, shoulder, neck, wrist and ankle). In both cases, SO(n) acts, with its
operators of rotation, on the vector x = {a#}, (i = 1,2,3) of external,
Cartesian coordinates of the parent body—segment, depending, at the same
time, on the vector ¢ = {¢*}, (s = 1,--- ,n) on n group—parameters, i.e.,
joint angles.
Each joint rotation R € SO(n) defines a map

R:z! — g¥, R(z",q%) = Ry ",

where Ry: € SO(n) are joint group operators. The vector v = {vs}, (s =
1,---,n) of n infinitesimal generators of these rotations, i.e., joint angular
velocities, given by

OR(z",q°%) 0

o= g g

constitute an nD Lie algebra so(n) corresponding to the joint rotation group
SO(n). Conversely, each joint group operator R,s, representing a one—
parameter subgroup of SO(n), is defined as the exponential map of the



Applied Manifold Geometry 213

corresponding joint group generator v,
R,s = exp(q°vs). (3.53)

The exponential map (3.53) represents a solution of the joint operator dif-
ferential equation in the joint group—parameter space {¢°}
dRs
dq®

= ’USRqs .

Uniaxial Group of Joint Rotations

The uniaxial joint rotation in a single Cartesian plane around a perpen-
dicular axis, e.g., xy—plane about the z axis, by an internal joint angle 6,
leads to the following transformation of the joint coordinates

T =xcosf —ysind, y = xsinf + ycosb.

In this way, the joint SO(2)—group, given by

SO(2) = {R(, . (COSG _Si”) 10 € [o,%]},

sinf cosf
acts in a canonical way on the Euclidean plane R? by
cosf —sind x xcosf —ysinf
2) = .
50(2) ((sin@ cos > ’ <y>> — (xsinH y cos b )

Its associated Lie algebra so(2) is given by

50(2) = {(? Ot) It € R},

since the curve v, € SO(2) given by

costf — sintf
sintf costd

TiteR—(t) = ) e s002)

passes through the identity I = (é (1)> and then

Ca=(37):

so that I, is a basis of s0(2), since dim (SO(2)) = 1.

d

dt
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The exponential map exp : s0(2) — SO(2) is given by

ox 0-0\ (1) = costf —sintd
Plo o )77 7 \sintd costd )
The infinitesimal generator of the action of SO(2) on R2, i.e., joint
angular velocity v, is given by

v=— ng:c2
~ Yo oy’

costv —sintv T
—o \ sintv costv A
The momentum map (see subsection [3.12.3.5 below) J : T*R? — R
associated to the lifted action of SO(2) on T*R? ~ R* is given by

since

d

d
UR2 (Z‘,y) = @ eXp(tv) (LU, y) = a
t=0

J(‘r7yaplap2) = TPy — YPzx, since
J (.Y, pasy) (§) = (P2da + pydy) (vr2) = —vpay + —vpy.

The Lie group SO(2) acts on the symplectic manifold (R*,w = dp, A
dx + dpy A dx) by

cosf —sinf
QS Sin9 COSG 7(‘r)y7pz7py)
= (xcosf —ysinb, xsinf + ycosb, p, cosd — p,siné, p, siné + p, cosh) .

Three—Axial Group of Joint Rotations

The three—axial SO(3)—group of human-like joint rotations depends on
three parameters, Euler joint angles ¢ = (i, %, 0), defining the rotations
about the Cartesian coordinate triedar (z,y,z) placed at the joint pivot
point. Each of the Euler angles are defined in the constrained range (—m, 7),
so the joint group space is a constrained sphere of radius 7.

Let G = SO(3) = {A € Mj3x3(R) : A'A = I3,det(A) = 1} be the
group of rotations in R3. It is a Lie group and dim(G) = 3. Let us isolate
its one—parameter joint subgroups, i.e., consider the three operators of the
finite joint rotations R, Ry, Rg € SO(3), given by

1 0 0 costy 0 siny cosf —sind 0
R,=|0cosp —sinp |, Ry = 0 1 0 , Rg = | sinf cosf 0
0sing cosg —sine 0 cos v 0 0 1
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corresponding respectively to rotations about z—axis by an angle ¢, about
y—axis by an angle 1, and about z—axis by an angle 6.

The total three—axial joint rotation A is defined as the product of above
one-parameter rotations R, Ry, Rg, i.e., A= R, - Ry - Rg is equal

coscosp — cosfsinpsiny cosy cosy + cosfcospsiny sinfsiny
A= | —sint cosp — cossin psiny — siny sin ¢ + cos 6 cos ¢ cos ¥ sin O cos 1
sin # sin ¢ —sinfcos ¢ cosf

However, the order of these matrix products matters: different order prod-

ucts give different results, as the matrix product is noncommutative product.

This is the reason why Hamilton’s quatemionsﬂ are today commonly used

to parameterize the SO(3)—group, especially in the field of 3D computer

graphics.

The one-parameter rotations R, Ry, Rg define curves in SO(3) start-

100

ing from I3 = <O 1 0>. Their derivatives in ¢ = 0,1 = 0 and 8 = 0 belong
001

to the associated tangent Lie algebra so(3). That is the correspond-

ing infinitesimal generators of joint rotations — joint angular velocities

Vg, Uy, Vg € 50(3) — are respectively given by

TR SRS R ] A
= V5 zay, Vy = =—z x

Vyp = ,
01 0 -100 Oz 9z
0-10 P P

v=1110|=—-2—+y=—.

000 oy ox

Moreover, the elements are linearly independent and so

0 —a b
50(3) = a 0 —v|l]a,b,yeR
-b v 0

The Lie algebra so(3) is identified with R® by associating to each v =

5Recall that the set of Hamilton’s quaternions H represents an extension of the set
of complex numbers C. We can compute a rotation about the unit vector, u by an angle
6. The quaternion g that computes this rotation is

q=|cos—, usin— ).
2 2
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0 —a b
(v, Uy, vg) € R3 the matrix v € s0(3) given by v = [ a 0 —v|.Then we
-b v 0

have the following identities:

—

x v = [@, v]; and
‘v =—1Tr(a-v).

(1)
(2)

u
u

The exponential map exp : s0(3) — SO(3) is given by Rodrigues relation

2
_psinfol 1 fsin 5T,
exp(v) =1+ ol v+§ @ v,

where the norm ||v|| is given by

loll = V/(01)2 + ()2 + (v%)2.

The the dual, cotangent Lie algebra so0(3)*, includes the three joint
angular momenta p,, py, ps € 50(3)*, derived from the joint velocities v by
multiplying them with corresponding moments of inertia.

Note that the parameterization of SO(3)—rotations is the subject
of continuous research and development in many theoretical and ap-
plied fields of mechanics, such as rigid body, structural, and multi-
body dynamics, robotics, spacecraft attitude dynamics, navigation, im-
age processing, etc. For a complete discussion on the classical attitude
representations see [Friberg (1988); Mladenova (1991); Shuster (1993);
Schaub (1995)]. In addition, a modern vectorial parameterization of fi-
nite rotations, encompassing the mentioned earlier developments as well
as Gibbs, Wiener, and Milenkovic parameterizations [Mladenova (1999);
Bauchau and Trainelli (2003)].

3.8.4.2 Euclidean Groups of Total Joint Motions

Biodynamically realistic joint movement is predominantly rotational, plus
restricted translational (translational motion in human joints is observed
after reaching the limit of rotational amplitude). Gross translation in any
human joint means joint dislocation, which is a severe injury. Obvious
models for uniaxial and triaxial joint motions are special Fuclidean groups
of rigid body motions, SE(2) and SE(3), respectively.
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Special Euclidean Group in the Plane

The motion in uniaxial human joints is naturally modelled by the special
Euclidean group in the plane, SE(2). It consists of all transformations of
R? of the form Az + a, where z,a € R?, and

A € SO(2) = < matrices of the form cosf —sinf\ |
sinf cos@

In other words [Marsden and Ratiu (1999)|, group SE(2) consists of ma-

trices of the form:

(Rg,a) = ]-;5)9 ? , where a € R? and Ry is the rotation matrix:

Ry = (Z?;g _Czlsn00>, while I is the 3 x 3 identity matrix. The inverse

(Rg,a)” " is given by

-1
-1 RQ a o R—O —R_QCL
(Ro, ) _<01) _(0 I )

The Lie algebra se(2) of SE(2) consists of 3 x 3 block matrices of the form

—£Jv (01 T -1
<0 0) where J = 10 (J'=J7 =),

with the usual commutator bracket. If we identify se(2) with R® by the
isomorphism

<_§‘] g) € 5¢(2) — (£,v) € R?,

then the expression for the Lie algebra bracket becomes
[(&,01,02), (¢, w1, w2)] = (0, Cvg — Ewg, Ewy — Cul) = (06T w — ¢J ),

where v = (v1,v2) and w = (w1, wa).
The adjoint group action of

(Re,a)<[30?) on (g,v)—(_g‘]g>

is given by the group conjugation,

Ry a —&J v R_g —R_ga\ [ —&J&Ja+ Ryv
01 00 0 1 B 0 0 ’



218 Applied Differential Geometry: A Modern Introduction

or, in coordinates [Marsden and Ratiu (1999)],
Ad(Rg,a)(ga ’U) = (57 fJCL + ROU)' (354)
In proving (3.54) we used the identity RyJ = JRy. Identify the dual
22
algebra, se(2)*, with matrices of the form ( QaJ 8) , via the nondegenerate

pairing given by the trace of the product. Thus, se(2)* is isomorphic to R?
via
w

<2aJ 8) € 5e(2)" — (u,a) € R3,

so that in these coordinates, the pairing between se(2)* and se(2) becomes

<(M,Oé), (fav» = /JE +a-v,

that is, the usual dot product in R3. The coadjoint group action is thus
given by

Adfy -1 (k@) = (= Roar - Ja + Royav). (3.55)

Formula (3.55)) shows that the coadjoint orbits are the cylinders T* S =
{(1, @)| ||| = comnst} if o # 0 together with the points are on the p—axis.
The canonical cotangent bundle projection 7 : T*S. — S! is defined as

() = a.
Special Euclidean Group in the 3D Space

The most common group structure in human-like biodynamics is the
special Euclidean group in 38D space, SE(3). It is defined as a semidirect
(noncommutative) product of 3D rotations and 3D translations, SO(3)>R?.

The Heavy Top

As a starting point consider a rigid body (see below) moving
with a fixed point but under the influence of gravity. This problem still has a
configuration space SO(3), but the symmetry group is only the circle group
S1, consisting of rotations about the direction of gravity. One says that
gravity has broken the symmetry from SO(3) to S'. This time, eliminating
the S' symmetry mysteriously leads one to the larger Euclidean group
SE(3) of rigid motion of R3. Conversely, we can start with SFE(3) as
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the configuration space for the rigid—body and ‘reduce out’ translations to
arrive at SO(3) as the configuration space (see [Marsden and Ratiu (1999)]).

The equations of motion for a rigid body with a fixed point in a gravita-
tional field give an interesting example of a system that is Hamiltonian (see
(3-12:3:2)) relative to a Lie-Poisson bracket (see (3.13.2)). The underlying
Lie algebra consists of the algebra of infinitesimal Euclidean motions in R3.

The basic phase—space we start with is again 7*SO(3), parameterized by
Euler angles and their conjugate momenta. In these variables, the equations
are in canonical Hamiltonian form. However, the presence of gravity breaks
the symmetry, and the system is no longer SO(3) invariant, so it cannot
be written entirely in terms of the body angular momentum p. One also
needs to keep track of I', the ‘direction of gravity’ as seen from the body.
This is defined by I' = A1k, where k points upward and A is the element
of SO(3) describing the current configuration of the body. The equations
of motion are

I, — I3

P = oL PPt Mgl(T?x* — I*x?),
) Is - 1) 3.1 1.3
b2 =~ 73 + Mgl(I”x" —T"x°),
. I -1

P3 = 11112 2 pipa + Mgl(Thx? — T2x1),

and I =TxQ,

where ) is the body’s angular velocity vector, I, I, I3 are the body’s prin-
cipal moments of inertia, M is the body’s mass, g is the acceleration of
gravity, x is the body fixed unit vector on the line segment connecting
the fixed point with the body’s center of mass, and [ is the length of this
segment.

The Euclidean Group and Its Lie Algebra

An element of SE(3) is a pair (4,a) where A € SO(3) and a € R3.
The action of SE(3) on R? is the rotation A followed by translation by the
vector a and has the expression

(A,a) = Az + a.

Using this formula, one sees that multiplication and inversion in SE(3) are
given by

(A,a)(B,b) = (AB, Ab+ a) and (A,a)™t = (A7 —A7a),
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for A, B € SO(3) and a,b € R3. The identity element is (I,0).
The Lie algebra of the Euclidean group SE(3) is se(3) = R® x R? with
the Lie bracket

[(£7U), (7771})] = (g X 7775 Xv—nX u) (356)

The Lie algebra of the Euclidean group has a structure that is a special
case of what is called a semidirect product. Here it is the product of the group
of rotations with the corresponding group of translations. It turns out that
semidirect products occur under rather general circumstances when the
symmetry in T*G is broken.

The dual Lie algebra of the Euclidean group SE(3) is se(3)* = R® x R3
with the same Lie bracket . For the further details on adjoint orbits
in se(3) as well as coadjoint orbits in se(3)* see [Marsden and Ratiu (1999)].

Symplectic Group in Hamiltonian Mechanics

Let J = <_OI é), with I the n x n identity matrix. Now, A €

L(R?", R?") is called a symplectic matriz if ATJA = J. Let Sp(2n,R)
be the set of 2n x 2n symplectic matrices. Taking determinants of the
condition ATJ A = J gives det A = £1, and so A € GL(2n,R). Further-
more, if A, B € Sp(2n, R), then (AB)TJ(AB) = BTATJAB = J. Hence,
AB € Sp(2n,R), and if ATJA = J, then JA = (AT)"1J = (A=1H)TJ,
soJ = (A- 1)T JAY or A=t € Sp(2n,R). Thus, Sp(2n,R) is a group
[Marsden and Ratiu (1999)].

The symplectic Lie group

Sp(2n,R) = {A € GL(2n,R) : ATJA=J}
is a noncompact, connected Lie group of dimension 2n% 4+ n. Its Lie algebra
sp(2n,R) = {A € LR*,R*") : ATJA=J =0},

called the symplectic Lie algebra, consists of the 2n x 2n matrices A satis-
fying ATJ A =0 [Marsden and Ratiu (1999)].

Consider a particle of mass m moving in a potential V(q), where ¢* =
(¢', 4%, ¢®) € R®. Newtonian second law states that the particle moves along
a curve ¢(t) in R? in such a way that mg’ = — grad V(¢'). Introduce the
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momentum p; = mq’, and the energy

3
1
H(q,p) = 5~ > p}+ V()
1=1

Then
OH _ OV _ i
aqz - an - q - pla
OH 1

=—pi=4, i=1,2,3),
and hence Newtonian law F = md’ is equivalent to Hamiltonian equa-
tions

o . OH
T T o

3

q

Now, writing z = (¢*, p;) [Marsden and Ratiu (1999)],

01 9H .
Jgrad H(z) = (—IO) (g%) = (¢",p;) = %,

Opi

so Hamiltonian equations read
z = Jgrad H(z). (3.57)

Now let f : R3 x R? — R? x R3 and write w = f(z). If z(t) satisfies
Hamiltonian equations (3.57) then w(t) = f(2(t)) satisfies v = AT 2, where
AT = [0w'/027] is the Jacobian matrix of f. By the chain rule,

w = AT Jgrad H(z) = AT.J Agrad H(z(w)).

Thus, the equations for w(t) have the form of Hamiltonian equations with
energy K(w) = H(z(w)) iff ATJA = J, that is, iff A is symplectic. A
nonlinear transformation f is canonical iff its Jacobian matrix is symplectic.
Sp(2n,R) is the linear invariance group of classical mechanics [Marsden and
Ratiu (1999)].
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3.8.4.3 Group Structure of Biodynamical Manifold
Purely Rotational Biodynamical Manifold

Kinematics of an n—-segment human-body chain (like arm, leg or
spine) is usually defined as a map between external coordinates (usually,
end—effector coordinates) z” (r = 1,...,n) and internal joint coordinates
q¢'(i = 1,...,N) (see [Ivancevic and Snoswell (2001); [[vancevic (2002);
Ivancevic and Pearce (2001b); [Ivancevic and Pearce (2001b); [Ivancevic
(2005)]). The forward kinematics are defined as a nonlinear map x" =
2"(q") with a corresponding linear vector functions dz” = 92" /dq" dq' of
differentials: and @" = 927/0q" ¢ of velocities. When the rank of the
configuration—dependent Jacobian matrix J = 9" /dq" is less than n the
kinematic singularities occur; the onset of this condition could be detected
by the manipulability measure. The inverse kinematics are defined con-
versely by a nonlinear map ¢* = ¢‘(z") with a corresponding linear vector
functions dq* = 0q°/0z" dx" of differentials and ¢ = 9dq'/0x" &" of ve-
locities. Again, in the case of redundancy (n < N), the inverse kinematic
problem admits infinite solutions; often the pseudo—inverse configuration—
control is used instead: ¢° = J* &”, where J* = JT(JJT)~! denotes the
Moore-Penrose pseudo—inverse of the Jacobian matrix J.

Humanoid joints, that is, internal coordinates ¢ (i = 1,...,N), con-
stitute a smooth configuration manifold M, described as follows. Uniax-
ial, ‘hinge’ joints represent constrained, rotational Lie groups SO(2):
parameterized by constrained angles ¢’ = ¢' € [¢%,, Qhax)- Three—

3
cnstroy

axial, ‘ball-and—socket’ joints represent constrained rotational Lie groups
SO(3)%, .., parameterized by constrained Euler angles ¢* = qfﬁstr (in the
following text, the subscript ‘cnstr’ will be omitted, for the sake of simplic-
ity, and always assumed in relation to internal coordinates ¢*).

All SO(n)—-joints are Hausdorff C'*°—-manifolds with atlases (Uy, uq);
in other words, they are paracompact and metrizable smooth manifolds,
admitting Riemannian metric.

Let A and B be two smooth manifolds described by smooth atlases
(Ua,uq) and (Va,vg), respectively. Then the family (U, X Vi, uq X vg :
Ua x Vg — R™ x R")a,3) € A x B is a smooth atlas for the direct
product A x B. Now, if A and B are two Lie groups (say, SO(n)), then
their direct product G = A x B is at the same time their direct product
as smooth manifolds and their direct product as algebraic groups, with the
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product law
(a1,b1)(az,b2) = (a1az, bibs), (a12 € A, b1s € B).

Generalizing the direct product to N rotational joint groups, we can
draw an anthropomorphic product—tree (see Figure using a line segment
‘~’ to represent direct products of human SO(n)—-joints. This is our basic
model of the biodynamical configuration manifold M.

SO@)

S0(3)
M ! sc{ua)———-——sT(s)

Fig. 3.6 Purely rotational, whole-body biodynamical manifold, with a single
SO(3)—joint representing the whole spinal movability.

Let T, M be a tangent space to M at the point ¢q. The tangent bundle
TM represents a union UgepTqM, together with the standard topology
on T'M and a natural smooth manifold structure, the dimension of which
is twice the dimension of M. A vector—field X on M represents a section
X : M — TM of the tangent bundle T'M.

Analogously let Ty M be a cotangent space to M at g, the dual to
its tangent space T,M. The cotangent bundle T*M represents a union
UgemTy M, together with the standard topology on T"M and a natural
smooth manifold structure, the dimension of which is twice the dimension
of M. A 1—form € on M represents a section § : M — T*M of the
cotangent bundle T* M.

We refer to the tangent bundle T'M of biodynamical configuration man-
ifold M as the wvelocity phase—space manifold, and to its cotangent bundle
T*M as the momentum phase—space manifold.



224 Applied Differential Geometry: A Modern Introduction

Reduction of the Rotational Biodynamical Manifold

The biodynamical configuration manifold M (Figure can be (for
the sake of the brain-like motor control) reduced to N —-torus T, in three
steps, as follows.

First, a single three—axial SO(3)—joint can be reduced to the direct
product of three uniaxial SO(2)—joints, in the sense that three hinge joints
can produce any orientation in space, just as a ball-joint can. Algebraically,
this means reduction (using symbol ‘2’) of each of the three SO(3) rotation
matrices to the corresponding SO(2) rotation matrices

1 0 0

0 cos ¢ —sing P (

cos ¢ —sin¢ )
0 sin ¢ cos ¢

sin ¢ cos ¢

C(())S ¥ 0 1 sing 0l > cos Y sin vy
. ~ \ —siny cosy
—sin 0 cos

cos —sin6 0 0 o
sin 0 cosf 0 pe ( € oo >
0 1

0 sin 6 cos 6

In this way we can set the reduction equivalence relation SO(3) 2

~

SO(2)>S0(2) 1> SO(2), where ‘>’ denotes the noncommutative semidirect
product (see above).

Second, we have a homeomorphism: SO(2) ~ S*, where S! denotes the
constrained unit circle in the complex plane, which is an Abelian Lie group.

Third, let IV be the unit cube [0,1] in RY and ‘~’ an equivalence
relation on RN get by ‘gluing’ together the opposite sides of IN, preserving
their orientation. The manifold of human—body configurations (Figure
can be represented as the quotient space of RY by the space of the integral
lattice points in RY, that is a constrained ND torus TV ,

N
RY/ZN =1V ~= T[S} ={(¢",i=1,...,N) :mod 2r} = T". (3.58)
i=1

Since S is an Abelian Lie group, its N —-fold tensor product T is also an
Abelian Lie group, the toral group, of all nondegenerate diagonal N x N
matrices. As a Lie group, the biodynamical configuration space M = TV
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has a natural Banach manifold structure with local internal coordinates
q' € U, U being an open set (chart) in 7.

Conversely by ‘ungluing’ the configuration space we get the primary unit
cube. Let ‘~*’ denote an equivalent decomposition or ‘ungluing’ relation.
By the Tychonoff product—topology Theorem, for every such quotient space
there exists a ‘selector’ such that their quotient models are homeomorphic,
that is, TN/ ~*~ AN/ ~*. Therefore IV represents a ‘selector’ for the
configuration torus 7V and can be used as an N —-directional ‘command—
space’ for the topological control of human motion. Any subset of DOF
on the configuration torus TV representing the joints included in human
motion has its simple, rectangular image in the command space — selector
IN. Operationally, this resembles what the brain—motor—controller, the
cerebellum, actually performs on the highest level of human motor control.

The Complete Biodynamical Manifold

The full kinematics of a whole human-like body can be split down into
five kinematic chains: one for each leg and arm, plus one for spine with the
head. In all five chains internal joint coordinates, namely n; constrained

rotations z¥, together with ny of even more constrained translations x;

(see Figure , constitute a smooth nD anthropomorphic configuration
manifold M, with local coordinates x%, (i = 1,...,n). That is, the motion
space in each joint is defined as a semidirect (noncommutative) product of
the Lie group SO(n) of constrained rotations and a corresponding Lie group
R™ of even more restricted translations. More precisely, in each movable
human-like joint we have an action of the constrained special Euclidean
SE(3) group (see (3.8.4.2) above). The joints themselves are linked by
direct (commutative) products.

Realistic Human Spine Manifold

The high-resolution human spine manifold is a dynamical chain con-
sisting of 25 constrained SFE(3)— joints. Each movable spinal joint has
6 DOF: 3 dominant rotations, (performed first in any free spinal move-
ment), restricted to about 7 angular degrees and 3 secondary translations
(performed after reaching the limit of rotational amplitude), restricted to
about 5 mm (see Figure [3.8).

Now, SE(3) = SO(3) > R? is a non—compact group, so there is no any
natural metric given by the kinetic energy on SFE(3), and consequently, no
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SE(3)
SE@®) SE(3)

SE(2) SE(2)
SE(3) \

SE(3)

SEQ) sp3)d SEG)

g SE2) SEQ@)
. £ SE(3) SEQB3)

i ty

.

Fig. 3.7 A medium-resolution, whole-body biodynamical manifold, with just a single
SE(3)—joint representing the spinal movability.

SE(:S)
SE(3)
SE(3) |

sjulof a|qeaow ¢z

Fig. 3.8 The high-resolution human spine manifold is a dynamical chain consisting of
25 constrained SE(3)—joints.

natural controls in the sense of geodesics on SE(3). However, both of its
subgroups, SO(3) and R3, are compact with quadratic metric forms defined
by standard line element g;; dq’dg’, and therefore admit optimal muscular—
like controls in the sense of geodesics (see section below).
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3.8.5 Application: Dynamical Games on SE(n)— Groups

In this section we propose a general approach to modelling conflict res-
olution manoeuvres for land, sea and airborne wvehicles, using dynami-
cal games on Lie groups. We use the generic name ‘vehicle’ to rep-
resent all planar vehicles, namely land and sea vehicles, as well as
fixed altitude motion of aircrafts (see, e.g., |Lygeros et. al. (1998);
Tomlin et. al. (1998)]). First, we elaborate on the two-vehicle conflict
resolution manoeuvres, and after that discuss the multi-vehicle manoeu-
vres.

We explore special features of the dynamical games solution when the
underlying dynamics correspond to left—invariant control systems on Lie
groups. We show that the 2D (i.e., planar) motion of a vehicle may be
modelled as a control system on the Lie group SFE(2). The proposed al-
gorithm surrounds each vehicle with a circular protected zone, while the
simplification in the derivation of saddle and Nash strategies follows from
the use of symplectic reduction techniques [Marsden and Ratiu (1999)]. To
model the two—vehicle conflict resolution, we construct the safe subset of
the state—space for one of the vehicles using zero—sum non—cooperative dy-
namic game theory [Basar and Olsder (1995)] which we specialize to the
SE(2) group. If the underlying continuous dynamics are left—invariant con-
trol systems, reduction techniques can be used in the computation of safe
sets.

3.8.5.1 Configuration Models for Planar Vehicles

The configuration of each individual vehicle is described by an element of
the Lie group SE(2) of rigid-body motions in R2. Let g; € SE(2) denote
the configurations of vehicles labelled ¢, with ¢ = 1,2. The motion of each
vehicle may be modelled as a left-invariant vector—field on SE(2):

9i = 9: X, (3.59)

where the vector—fields X; belong to the vector space se(2), the Lie algebra
associated with the group SE(2).

Each g; € SE(2) can be represented in standard local coordinates
(zi,y:,0:) as

cosf; —sinb; x;
g; = | sinf; cosb; y; |,
0 0 1
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where z;, y; is the position of vehicle ¢ and 6; is its orientation, or heading.
The associated Lie algebra is se(2), with X; € se(2) represented as

0 —W; Uy
Xi = | W; 0 0 5
0 0 O

where v; and w; represent the translational (linear) and rotational (angular)
velocities, respectively.

Now, to determine dynamics of the relative configuration of two vehicles,
we perform a change (transformation) of coordinates, to place the identity
element of the group SE(2) on vehicle 1. If g™ € SFE(2) denotes the
relative configuration of vehicle 2 with respect to vehicle 1, then

92 = 19" = g" = g7 ' go.

Differentiation with respect to time yields the dynamics of the relative
configuration:

grel —_ grelX2 o AX'lgrel7

which expands into:

j:rel = —vy + vy Cos erel + wlyrel’
srel Vs Sin erel _ wlxrel7

-rel

0 = W2 — W1.

3.8.5.2  Two—Vehicles Conflict Resolution Manoeuvres

Next, we seek control strategies for each vehicle, which are safe under (possi-
ble) uncertainty in the actions of neighbouring vehicle. For this, we expand
the dynamics of two vehicles (3.59)),

g1 = g1 X1, g2 = g2 X2,
and write it in the matrix form as

g=9x, (3.60)

_910 _X10
g_{ofh}’ X_[O X2]’

with
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in which g is an element in the configuration manifold M = SE(2) x SE(2),
while the vector-fields X; € se(2) x se(2) are linearly parameterised by
velocity inputs (w1, v1) € R? and (w2, v2) € R?.

The goal of each vehicle is to maintain safe operation, meaning that

(i) the vehicles remain outside of a specified target set T with boundary
0T, defined by

T = {g € Mli(g) <0},
where [(g) is a differentiable circular function,

ig) = (w2 = 21)* + (g2 — 11)* = p°

(with p denoting the radius of a circular protected zone) defines the mini-
mum allowable lateral separation between vehicles; and

(if)
dl(g) #0 on 0T ={g € M|i(g) = 0},
where d represents the exterior derivative (a unique generalization of the
gradient, divergence and curl).

Now, due to possible uncertainty in the actions of vehicle 2, the safest
possible strategy of vehicle 1 is to drive along a trajectory which guaran-
tees that the minimum allowable separation with vehicle 2 is maintained
regardless of the actions of vehicle 2. We therefore formulate this problem

as a zero—sum dynamical game with two players: control vs. disturbance.
The control is the action of vehicle 1,

u=(w1,v) €U,
and the disturbance is the action of vehicle 2,
d = (w2,v2) € D.
Here the control and disturbance sets, U and D, are defined as
U = (i, i), [pmin, o)),
D = ([w5™, wy™], [, v5™])

and the corresponding control and disturbance functional spaces, U and D
are defined as:

U = {u(-) € PC°R?)|u(t) € U,t € R},
D = {d(-) € PC°(R?)|d(t) € U,t € R},
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where PC°(R?) is the space of piecewise continuous functions over R2.

We define the cost of a trajectory g(t) which starts at state g at initial
time ¢t < 0, evolves according to with input (u(-),d(-)), and ends at
the final state g(0) as:

J(g,u(-),d(-),t) : SE(2) x SE(2) xU xD xR_ - R,
such that J(g, u(-),d(-),) = 1(g(0)), (3.61)

where 0 is the final time (without loss of generality). Thus the cost depends
only on the final state g(0) (the Lagrangian, or running cost, is identically
zero). The game is won by vehicle 1 if the terminal state g(0) is either
outside T' or on 9T (i.e., J(g,0) > 0), and is won by vehicle 2 otherwise.

This two—player zero—sum dynamical game on SE(2) is defined as fol-
lows. Consider the matrix system , g = gX, over the time interval
[t,0] where ¢t < 0 with the cost function J(g, u(-),d(-),t) defined by
As vehicle 1 attempts to maximize this cost assuming that vehicle 2 is act-
ing blindly, the optimal control action and worst disturbance actions are
calculated as

u* = argmaxmin J(g,u(-),d(),t),  d" =argminmax J(g,u("),d(), ).

The game is said to have a saddle solution (u*,d*) if the resulting optimal
cost J*(g,t) does not depend on the order of play, i.e., on the order in which
the maximization and minimization is performed:

J*(g,t) = maxmin J(g, u("), d(-),t) = min max J(g, u("), d(-), ?).

Using this saddle solution we calculate the ‘losing states’ for vehicle 1, called
the predecessor Prei(T) of the target set T,

Prey(T) = {g € M|J(g,u" (), d(-),#) < 0}.

3.8.5.3 Symplectic Reduction and Dynamical Games on SE(2)

Since vehicles 1 and 2 have dynamics given by left—invariant control systems
on the Lie group SE(2), we have

X; = lwy + vy, Xy = E'wy + s,
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with &', £2 being two of the three basis elements for the tangent Lie algebra
se(2) given by

0-10 001 000
gt=1100|, &=|100|, =101
000 000 000

If p1 (resp. p2) is a cotangent vector—field to SE(2) at g1 (resp. g2), belong-
ing to the cotangent (dual) Lie algebra se(2)*, we can define the momentum
functions for both vehicles:

Pl = <p1,gi& > PP =<p1,:&> >, P} =< p1,0:&" >,
P} = <py,go€' > P =<py, 926" > P =< ps, 926> >,
which can be compactly written as
P! =<pi, g8 >.
Defining p = (p1,p2) € s¢(2)* x se(2)*, the optimal cost for the two-player,

zero-sum dynamical game is given by

J*(g,t) = maxmin J(g, u("), d(-),t) = maxminl(g(0)).

The Hamiltonian H(g,p,u,d) is given by
H(g,p,u,d) = Plwi + Plvi + Pywi + Py v,

for control and disturbance inputs (wi,v1) € U and (wa,v2) € D as defined
above. It follows that the optimal Hamiltonian H*(g,p), defined on the
cotangent bundle T*SE(2), is given by

max min max min max min

w + wi LWy T+ Wy
H* (g7p) — Pl 1 + P
1 2 2

max min max min
w — W v +v
2 2 P2 1
1

and the saddle solution (u*,d*) is given by

* = in i d d* = i H d). (3.62
u” = argmaxmin H(g, p, u, d), arg minmax H(g, p,u,d). (3.62)

Note that H(g,p,u,d) and H*(g,p) do not depend on the state g and
costate p directly, rather through the momentum functions Py, Py. This
is because the dynamics are determined by left—invariant vector—fields on
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the Lie group and the Lagrangian is state independent [Marsden and Ratiu
(1999)].

The optimal Hamiltonian H*(g,p) determines a 12D Hamiltonian
vector—field X+ on the symplectic manifold T*M = SE(2) x SE(2) x
s5e(2)* x se(2)* (which is the cotangent bundle of the configuration mani-
fold M), defined by Hamiltonian equations

. OH*(g, . OH*(g,
Xy g=2p) o OH(g.p)

op dg

with initial condition at time ¢ being g(t) = ¢ and final condition at time 0
being p(0) = dI(g(0)). In general, to solve for the saddle solution (3.62)), one
needs to solve the ODE system for all states. However since the original sys-
tem on M = SE(2) x SE(2) is left-invariant, it induces generic symmetries
in the Hamiltonian dynamics on T*M | referred to as Marsden—Weinstein
reduction of Hamiltonian systems on symplectic manifolds, see [Marsden
and Ratiu (1999)]. In general for such systems one only needs to solve
an ODE system with half of the dimensions of the underlying symplectic
manifold.

For the two-vehicle case we only need to solve an ODE system with 6
states. That is exactly given by the dynamics of the 6 momentum functions

P! =Lx,.P/ ={P! H"(g,p)}, (3.63)

for i,j = 1,2, which is the Lie derivative of Pij with respect to the Hamil-
tonian vector—field Xp-. In the equation (3.63), the bracket {-,-} is the
Poisson bracket [Ivancevic and Pearce (2001a)], giving the commutation

relations:

{P117P12}:P137 {P127P13}207 {P137P11}:P127
(P, P{} =Py, (P, P3}=0, {P,P}=F;.

Using these commutation relations, equation (3.63) can be written explic-
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itly:
max min max min
Pl =P (e sign(P) ),
2 2
P12 s _wrlnax + wllnin B Sign(Pll)wrlnax _ wrlnin ’
2 2
max min max __ , ,min
P} = P? wittwr + sign(Pll)iwl ¥ ,
2 2
max min max min
Ph= Py (2t sign(P )
2 2
max min max __, ,min
Py =P (-2 sign(R) ),
2 2
max min max __, ,min
p3 = p2 (“’2‘2“’2 +Sign(p21)“22wz> _

The final conditions for the variables P/(t) and PJ(t) are get from the
boundary of the safe set as

PJ(0) =< dil(g), 16" >, PJ(0) =< dal(g), g2&’ >,

where d; is the derivative of [ taken with respect to its first argument g; only
(and similarly for dy). In this way, P/ (t) and Pj(t) are get for ¢t < 0. Once
this has been calculated, the optimal input v*(¢) and the worst disturbance
d*(t) are given respectively as

W) = }v?"éx it P
{

% 2 (
d (t) = max 2
(t) = {’U2 vt Py(

3.8.5.4  Nash Solutions for Multi—Vehicle Manoeuvres

The methodology introduced in the previous sections can be generalized to
find conflict—resolutions for multi—vehicle manoeuvres. Consider the three—
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vehicle dynamics:

g=gX, (3.64)
with
g1 00 X: 0 0
g=10g20 |, X = 0 Xo 0 |,
00 gs 0 0 X3

where ¢ is an element in the configuration space M = SE(2) x SE(2) x
SE(2) and X € se(2) x se(2) x se(2) is linearly parameterised by inputs

(w1,v1), (we2,v2) and (w3, v3).
Now, the target set T is defined as

T'={g € Mlli(9) <0Vlix(g) <0VlIs(g) <0},

where

Ii(g) = min{(zy — 21)* + (y2 —v1)? — p*, (x5 — 1) + (y3 —11)* — p*},
l2(g) = min{(z3 — 22)% + (y3 — y2)® — p*, (21— 22)* + (y1 — v2)? — p*},
I3(9) = min{(z2 — 23)> + (y2 — y3)> — p°, (21 —23)* + (y1 —y3)* — p°}.

The control inputs u = (u1, us, uz) are the actions of vehicle 1, 2 and 3:
U; = (wivvi) S Ui7
where U; are defined as

Ui — ([wgnin’ w?lax]’ [,U’li'nin7 ,Uzmax]).
Clearly, this can be generalized to N vehicles.
The cost functions J;(g, {u;(-)},t) are defined as

N N
Ti(g: {wi()}, 1) : [[ SE:(2) x [[th xR — R,
i=1 i=1
such that J;(g, {ui(-)},t) = L:(g(0)).

The simplest non—cooperative solution strategy is a so—called non—
coopera-tive Nash equilibrium (see e.g., [Basar and Olsder (1995)]). A set
of controls uf, (i = 1,...,N) is said to be a Nash strategy, if for each
player modification of that strategy under the assumption that the others
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play their Nash strategies results in a decrease in his payoff, that is for
t=1,...,N, and Vu;(-),

Ji(U1y ooy Uiy oy un) < Ji(ul,y ey ul, o uly), (u #u").

(Note that Nash equilibria may not be unique. It is also easy to see that
for the two—player zero—sum game, a Nash equilibrium is a saddle solution
with J = J; = —Js.)

For N vehicles, the momentum functions are defined as in the two—
vehicle case:

Pg =< pzaglgj >,
with p; € se(2)* for i = 1,..., N and &’ defined as above.
Then the Hamiltonian H (g, p,u1,...uy) is given by
H(g,p,u1,...uy) = Plw; + P?v;.

The first case we consider is one in which all the vehicles are cooperating,
meaning that each tries to avoid conflict assuming the others are doing the
same. In this case, the optimal Hamiltonian H*(g, p) is

H*(g,p) = max H(g,p, u1, ...un).

For example, if N = 3, one may solve for (u}, u3, u3), on the 9D quotient
space T*M /M, so that the optimal control inputs are given as

3
wmin - if  pl

i . szlnax if Pi2
“'(t)_{vmin it P2(t

1 3
One possibility for the optimal Hamiltonian corresponding to the non-—
cooperative case is

H* = max max max H U1, U2, U3).
(9:p) = max max max H(g,p,u1,uz,us)

3.8.6 Classical Lie Theory

In this section we present the basics of classical theory of Lie groups and
their Lie algebras, as developed mainly by Sophus Lie, Elie Cartan, Fe-
lix Klein, Wilhelm Killing and Hermann Weyl. For more comprehensive
treatment see e.g., |Chevalley (1955); Helgason (2001)].
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3.8.6.1 Basic Tables of Lie Groups and Their Lie Algebras

One classifies Lie groups regarding their algebraic properties (simple,
semisimple, solvable, nilpotent, Abelian), their connectedness (connected
or simply connected) and their compactness (see Tables A.1-A.3). This
is the content of the Hilbert 5th problem (see, e.g., [Weisstein (2004);
Wikipedia (2005)]).
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Some real Lie groups and their Lie algebras:

Lie Description Remarks Lie Description diny

group algb. /R

R™ Euclidean space | Abelian, simply | R"™ the Lie bracket is | n
with addition connected,  not Zero

compact

RX nonzero real | Abelian, not con- | R the Lie bracket is | 1
numbers with | nected, not com- Z€ero
multiplication pact

R>0 positive real | Abelian, simply | R the Lie bracket is | 1
numbers with | connected, not Zero
multiplication compact

St = | complex numbers | Abelian, con- | R the Lie bracket is | 1

R/Z of absolute value | nected, not sim- Z€ero
1, with multipli- | ply connected,
cation compact

H* non—zero quater- | simply con- | H quaternions, with | 4
nions with multi- | nected, not com- Lie bracket the
plication pact commutator

53 quaternions  of | simply R3 real  3—vectors, | 3
absolute value 1, | connected, com- with Lie bracket
with multiplica- | pact, simple and the cross prod-
tion; a 3—sphere semi-simple, iso- uct; isomorphic

morphic to su(2) and to
to SU(2), SO(3) 50(3)
and to Spin(3)

GL(n,R) | general linear | not  connected, | M(n,R] n—by-n matrices, | n?
group: invertible | not compact with Lie bracket
n—by-n real ma- the commutator
trices

GL*(n,R] n—by-n real ma- | simply con- | M(n,R)] n—by-n matrices, | n?

trices with posi-
tive determinant

nected, not com-
pact

with Lie bracket
the commutator
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Classical real Lie groups and their Lie algebras:

Lie Description Remarks Lie Description dim
group algb. /R
SL(n,R) special simply con- | sl(n,R)| square matri- | n?—
linear group: real | nected, not com- ces with trace 0, | 1
matrices with de- | pact if n > 1 with Lie bracket
terminant 1 the commutator
O(n,R) | orthogonal not  connected, | so(n,R) skew—symmetric n(n—
group: real | compact square real ma- | 1)/2
orthogonal matri- trices, with Lie
ces bracket the com-
mutator; so(3,R)
is iso-
morphic to su(2)
and to R3 with
the cross product
SO(n,R) special orthogo- | connected, com- | so(n,R) skew—symmetric n(n—
nal group: real | pact, for n > 2: square real ma- | 1)/2
orthogonal matri- | not simply con- trices, with Lie
ces with determi- | nected, for n = 3 bracket the com-
nant 1 and n > 5: sim- mutator
ple and semisim-
ple
Spin(n)| spinor group simply con- | so(n,R) skew-symmetric n(n—
nected, compact, square real ma- | 1)/2
for n = 3 and trices, with Lie
n > 5 simple bracket the com-
and semisimple mutator
U(n) unitary  group: | isomorphic to ST | u(n) square complex | n?
complex unitary | for n = matrices A satis-
n—by-n matrices 1, not simply con- fying A = —A*,
nected, compact with Lie bracket
the commutator
SU(n) | special uni- | simply con- | su(n) | square com- | n?—
tary group: com- nected, compact, plex matrices A 1

plex uni-
tary n—by-n ma-
trices with deter-

minant 1

for n > 2: simple
and semisimple

with trace 0 sat-
isfying A = —A*,
with Lie bracket
the commutator
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Basic complex Lie groups and their Lie algebrasﬁ

Lie Description Remarks Lie Description dim

group algb. /C

cn group operation | Abelian, simply | C" the Lie bracket is | n
is addition connected, not Zero

compact

(02 nonzero complex | Abelian, not sim- | C the Lie bracket is | 1
numbers with | ply  connected, Zero
multiplication not compact

GL(n,C) general lin- | simply con- | M(n,C) n—by-n matrices, | n?
ear group: invert- | nected, not com- with Lie bracket
ible n—by-n com- | pact, for n = 1: the commutator
plex matrices isomorphic to C*

SL(n,C) special linear | simple, semisim- | sl(n,C)| square matri- | n?—
group: complex | ple, simply con- ces with trace 0, | 1
matrices with de- | nected, for n > 2: with Lie bracket
terminant 1 not compact the commutator

O(n,C) | orthogonal not con- | so(n,C) skew— n(n—
group: complex | nected, for n > 2: symmetric square | 1)/2
orthogonal matri- | not compact complex ma-
ces trices, with Lie

bracket the com-
mutator

SO(n,C) special orthogo- | for n > 2: not | so(n,C) skew— n(n—
nal group: | compact, symmetric square | 1)/2
complex orthogo- | not simply con- complex ma-
nal matrices with | nected, for n = 3 trices, with Lie

determinant 1

and n > 5: sim-
ple and semisim-
ple

bracket the com-
mutator

3.8.6.2 Representations of Lie groups

The idea of a representation of a Lie group plays an important role in the

study of continuous symmetry (see, e.g., [Helgason (2001)]). A great deal

is known about such representations, a basic tool in their study being the

use of the corresponding ’infinitesimal’ representations of Lie algebras.

Formally, a representation of a Lie group G on a vector space V' (over
a field K) is a group homomorphism G — Aut(V) from G to the auto-

morphism group of V.

If a basis for the vector space V is chosen, the

representation can be expressed as a homomorphism into GL(n, K). This

is known as a matrix representation.

6The dimensions given are dimensions over C.

Note that every complex Lie
group/algebra can also be viewed as a real Lie group/algebra of twice the dimension.
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On the Lie algebra level, there is a corresponding linear map from the
Lie algebra of G to End(V') preserving the Lie bracket [-, -].

If the homomorphism is in fact an monomorphism, the representation
is said to be faithful.

A unitary representation is defined in the same way, except that G
maps to unitary matrices; the Lie algebra will then map to skew—Hermitian
matrices.

Now, if G is a semisimple group, its finite—dimensional representations
can be decomposed as direct sums of irreducible representations. The irre-
ducibles are indexed by highest weight; the allowable (dominant) highest
weights satisfy a suitable positivity condition. In particular, there exists a
set of fundamental weights, indexed by the vertices of the Dynkin diagram of
G (see below), such that dominant weights are simply non—negative integer
linear combinations of the fundamental weights.

If G is a commutative compact Lie group, then its irreducible representa-
tions are simply the continuous characters of G. A quotient representation
is a quotient module of the group ring.

3.8.6.3 Root Systems and Dynkin Diagrams

A root system is a special configuration in Euclidean space that has turned
out to be fundamental in Lie theory as well as in its applications. Also, the
classification scheme for root systems, by Dynkin diagrams, occurs in parts
of mathematics with no overt connection to Lie groups (such as singularity
theory, see e.g., [Helgason (2001); Weisstein (2004); [Wikipedia (2005)]).

Definitions

Formally, a root system is a finite set ® of non—zero vectors (roots)
spanning a finite-dimensional Euclidean space V' and satisfying the follow-
ing properties:

(1) The only scalar multiples of a root « in V' which belong to ® are «
itself and -a.

(2) For every root o in V', the set ® is symmetric under reflection through
the hyperplane of vectors perpendicular to a.

(3) If @ and § are vectors in ®, the projection of 23 onto the line through
« is an integer multiple of «.

The rank of a root system ® is the dimension of V. Two root systems
may be combined by regarding the Euclidean spaces they span as mutually



Applied Manifold Geometry 241

orthogonal subspaces of a common Euclidean space. A root system which
does not arise from such a combination, such as the systems Ay, By, and
Go in Figure |3.9] is said to be irreducible.

Two irreducible root systems (Vi,®;) and (Va, ®2) are considered to
be the same if there is an invertible linear transformation V; — V5 which
preserves distance up to a scale factor and which sends ®; to ®,.

The group of isometries of V' generated by reflections through hyper-
planes associated to the roots of ® is called the Weyl group of ® as it acts
faithfully on the finite set ®, the Weyl group is always finite.

Classification

It is not too difficult to classify the root systems of rank 2 (see Figure

3-9)-

L ] L ) L L ] 1
L N & & (& B
L L L L L — ] L ]
| L I .- W w
.| L L - .
Aqx Ay Az B2 Gz

Fig. 3.9 Classification of root systems of rank 2.

Whenever @ is a root system in V and W is a subspace of V spanned
by U = ® N W, then V¥ is a root system in W. Thus, our exhaustive list of
root systems of rank 2 shows the geometric possibilities for any two roots
in a root system. In particular, two such roots meet at an angle of 0, 30,
45, 60, 90, 120, 135, 150, or 180 degrees.

In general, irreducible root systems are specified by a family (indicated
by a letter A to G) and the rank (indicated by a subscript n). There are
four infinite families:

A
e B,
S

[
S
3

as well as five exceptional cases: Eg, Er, Eg, Fy, Go.
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Dynkin Diagrams

A Dynkin diagram is a graph with a few different kinds of possible edges
(see Figure . The connected components of the graph correspond to
the irreducible subalgebras of g. So a simple Lie algebra’s Dynkin diagram
has only one component. The rules are restrictive. In fact, there are only
certain possibilities for each component, corresponding to the classification

of semi-simple Lie algebras (see, e.g., |Conway et al. (1985)]).

6]

A,n>0 o—o O—0 I
Bon»l O—0— -+0 —(IJD oO—O0—0—06—0—0
€, n>2 O—O— +++ —AXD o
_h/o £
D . n>3 O—0— s @ o—0—0—0—0—~0—20

fy o—oro—o0
Eé
_ G ==
Fig. 3.10 The problem of classifying irreducible root systems reduces to the problem of
classifying connected Dynkin diagrams.

The roots of a complex Lie algebra form a lattice of rank k in a Cartan
subalgebra h C g, where k is the Lie algebra rank of g. Hence, the root
lattice can be considered a lattice in RF. A vertex, or node, in the Dynkin
diagram is drawn for each Lie algebra simple root, which corresponds to
a generator of the root lattice. Between two nodes a and (3, an edge is
drawn if the simple roots are not perpendicular. One line is drawn if the
angle between them is 27/3, two lines if the angle is 37 /4, and three lines
are drawn if the angle is 57/6. There are no other possible angles between
Lie algebra simple roots. Alternatively, the number of lines N between the
simple roots « and (3 is given by

2{a, ) 2(B, @)
o> 182
where A,3 = % is an entry in the Cartan matriz (Aqg) (for details on
Cartan matrix see, e.g., [Helgason (2001); [Weisstein (2004)]). In a Dynkin
diagram, an arrow is drawn from the longer root to the shorter root (when
the angle is 37 /4 or 57/6).
Here are some properties of admissible Dynkin diagrams:

N = AypAga = =4cos?0,

(1) A diagram obtained by removing a node from an admissible diagram
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is admissible.

(2) An admissible diagram has no loops.

(3) No node has more than three lines attached to it.

(4) A sequence of nodes with only two single lines can be collapsed to give
an admissible diagram.

(5) The only connected diagram with a triple line has two nodes.

A Cozeter—Dynkin diagram, also called a Coxeter graph, is the same as
a Dynkin diagram, but without the arrows. The Coxeter diagram is suffi-
cient to characterize the algebra, as can be seen by enumerating connected
diagrams.

The simplest way to recover a simple Lie algebra from its Dynkin di-
agram is to first reconstruct its Cartan matrix (A;;). The ith node and
jth node are connected by A;;Aj; lines. Since A;; = 0 iff Aj;; = 0, and
otherwise A;; € {—3,—2, -1}, it is easy to find A;; and Aj;, up to order,
from their product. The arrow in the diagram indicates which is larger.
For example, if node 1 and node 2 have two lines between them, from node
1 to node 2, then A12 = —1 and A21 = -2

However, it is worth pointing out that each simple Lie algebra can be
constructed concretely. For instance, the infinite families A,,, B,, C,, and
D, correspond to the special linear Lie algebra gl(n+ 1, C), the odd orthog-
onal Lie algebra so(2n + 1,C), the symplectic Lie algebra sp(2n,C), and
the even orthogonal Lie algebra so(2n,C). The other simple Lie algebras
are called exceptional Lie algebras, and have constructions related to the
octonions.

To prove this classification Theorem, one uses the angles between pairs
of roots to encode the root system in a much simpler combinatorial object,
the Dynkin diagram. The Dynkin diagrams can then be classified according
to the scheme given above.

To every root system is associated a corresponding Dynkin diagram.
Otherwise, the Dynkin diagram can be extracted from the root system by
choosing a base, that is a subset A of ® which is a basis of V with the
special property that every vector in ® when written in the basis A has
either all coefficients > 0 or else all < 0.

The vertices of the Dynkin diagram correspond to vectors in A. An
edge is drawn between each non—orthogonal pair of vectors; it is a double
edge if they make an angle of 135 degrees, and a triple edge if they make
an angle of 150 degrees. In addition, double and triple edges are marked
with an angle sign pointing toward the shorter vector.
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Although a given root system has more than one base, the Weyl group
acts transitively on the set of bases. Therefore, the root system determines
the Dynkin diagram. Given two root systems with the same Dynkin dia-
gram, we can match up roots, starting with the roots in the base, and show
that the systems are in fact the same.

Thus the problem of classifying root systems reduces to the problem of
classifying possible Dynkin diagrams, and the problem of classifying irre-
ducible root systems reduces to the problem of classifying connected Dynkin
diagrams. Dynkin diagrams encode the inner product on F in terms of the
basis A, and the condition that this inner product must be positive definite
turns out to be all that is needed to get the desired classification (see Figure
3.10)).

In detail, the individual root systems can be realized case—by—case, as
in the following paragraphs:

A,. Let V be the subspace of R**! for which the coordinates sum
to 0, and let ® be the set of vectors in V of length /2 and with integer
coordinates in R"*!. Such a vector must have all but two coordinates equal
to 0, one coordinate equal to 1, and one equal to -1, so there are n? + n
roots in all.

B,,. Let V =R", and let ® consist of all integer vectors in V of length
1 or v/2. The total number of roots is 2n2.

C,: Let V = R"”, and let ® consist of all integer vectors in V of /2
together with all vectors of the form 2\, where A is an integer vector of
length 1. The total number of roots is 2n2. The total number of roots is
n2.

D,,. Let V =R", and let ® consist of all integer vectors in V' of length
V2. The total number of roots is 2n(n — 1).

E,. For Vg, let V = R®, and let Eg denote the set of vectors o of
length /2 such that the coordinates of 2« are all integers and are either
all even or all odd. Then E7 can be constructed as the intersection of Ejg
with the hyperplane of vectors perpendicular to a fixed root « in Eg, and
FEg can be constructed as the intersection of Eg with two such hyperplanes
corresponding to roots « and 3 which are neither orthogonal to one another
nor scalar multiples of one another. The root systems Eg, E7, and Eg have
72, 126, and 240 roots respectively.

F4. For Fy, let V =R*, and let ® denote the set of vectors a of length
1 or v/2 such that the coordinates of 2a are all integers and are either all
even or all odd. There are 48 roots in this system.

Go. There are 12 roots in G, which form the vertices of a hexagram.
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Root Systems and Lie Theory

Irreducible root systems classify a number of related objects in Lie the-
ory, notably:

(1) Simple complex Lie algebras;

(2) Simple complex Lie groups;

(3) Simply connected complex Lie groups which are simple modulo centers;
and

(4) Simple compact Lie groups.

In each case, the roots are non—zero weights of the adjoint representation.
A root system can also be said to describe a plant’s root and associated
systems.

3.8.6.4 Simple and Semisimple Lie Groups and Algebras

A simple Lie group is a Lie group which is also a simple group. These
groups, and groups closely related to them, include many of the so—called
classical groups of geometry, which lie behind projective geometry and other
geometries derived from it by the Erlangen programme of Felix Klein. They
also include some ezceptional groups, that were first discovered by those
pursuing the classification of simple Lie groups. The exceptional groups
account for many special examples and configurations in other branches
of mathematics. In particular the classification of finite simple groups de-
pended on a thorough prior knowledge of the ‘exceptional’ possibilities.

The complete listing of the simple Lie groups is the basis for the theory
of the semisimple Lie groups and reductive groups, and their representation
theory. This has turned out not only to be a major extension of the theory
of compact Lie groups (and their representation theory), but to be of basic
significance in mathematical physics.

Such groups are classified using the prior classification of the complex
simple Lie algebras. It has been shown that a simple Lie group has a simple
Lie algebra that will occur on the list given there, once it is complexified
(that is, made into a complex vector space rather than a real one). This
reduces the classification to two further matters.

The groups SO(p, ¢,R) and SO(p + ¢,R), for example, give rise to dif-
ferent real Lie algebras, but having the same Dynkin diagram. In general
there may be different real forms of the same complex Lie algebra.

Secondly, the Lie algebra only determines uniquely the simply connected
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(universal) cover G* of the component containing the identity of a Lie group
G. It may well happen that G* is not actually a simple group, for example
having a non-trivial center. We have therefore to worry about the global
topology, by computing the fundamental group of G (an Abelian group: a
Lie group is an H—space). This was done by Elie Cartan.

For an example, take the special orthogonal groups in even dimension.
With —TI a scalar matrix in the center, these are not actually simple groups;
and having a two—fold spin cover, they aren’t simply—connected either.
They lie ‘between’ G* and G, in the notation above.

Recall that a semisimple module is a module in which each submodule is
a direct summand. In particular, a semisimple representation is completely
reducible, i.e., is a direct sum of irreducible representations (under a de-
scending chain condition). Similarly, one speaks of an Abelian category as
being semisimple when every object has the corresponding property. Also,
a semisimple ring is one that is semisimple as a module over itself.

A semisimple matriz is diagonalizable over any algebraically closed field
containing its entries. In practice this means that it has a diagonal matrix
as its Jordan normal form.

A Lie algebra g is called semisimple when it is a direct sum of simple
Lie algebras, i.e., non—trivial Lie algebras £ whose only ideals are {0} and
£ itself. An equivalent condition is that the Killing form

B(X,Y) = Tr(Ad(X) Ad(Y))

is non-degenerate [Schafer (1996)]. The following properties can be proved
equivalent for a finite-dimensional algebra £ over a field of characteristic
0:

1. £ is semisimple.

2. £ has no nonzero Abelian ideal.

3. £ has zero radical (the radical is the biggest solvable ideal).

4. Every representation of £ is fully reducible, i.e., is a sum of irreducible
representations.

5. £ is a (finite) direct product of simple Lie algebras (a Lie algebra is
called simple if it is not Abelian and has no nonzero ideal ).

A connected Lie group is called semisimple when its Lie algebra is
semisimple; and the same holds for algebraic groups. Every finite dimen-
sional representation of a semisimple Lie algebra, Lie group, or algebraic
group in characteristic 0 is semisimple, i.e., completely reducible, but the
converse is not true. Moreover, in characteristic p > 0, semisimple Lie
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groups and Lie algebras have finite dimensional representations which are
not semisimple. An element of a semisimple Lie group or Lie algebra is
itself semisimple if its image in every finite-dimensional representation is
semisimple in the sense of matrices.

Every semisimple Lie algebra g can be classified by its Dynkin diagram
[Helgason (2001)].

3.9 Lie Symmetries and Prolongations on Manifolds

In this section we continue our expose on Lie groups of symmetry, as a link
to modern jet machinery, developed below.

3.9.1 Lie Symmetry Groups
3.9.1.1 Ezxponentiation of Vector Fields on M

Let z = (z',...,2") be local coordinates at a point m on a smooth
n—manifold M. Recall that the flow generated by the vector—field

v = fz(x) Oy € M,
is a solution of the system of ODEs

dz’
de

=&zt . a™), (i=1,..,7).

The computation of the flow, or one—parameter group of diffeomorphisms,
generated by a given vector—field v (i.e., solving the system of ODEs) is
often referred to as exponentiation of a vector—field, denoted by exp(ev)
(see [Olver (1986)]).

If v,w € M are two vectors defined by

v =E"(x) Dy and w = 1" (x) Oys,
then
exp(ev) exp(fw) x = exp(fw) exp(ev) z,

for all €,0 € R,z € M, such that both sides are defined, iff they commute,
i.e., [v,w] = 0 everywhere [Olver (1986)|.

A system of vector—fields {v1,...,v,} on a smooth manifold M is in
involution if there exist smooth real-valued functions hfj(x), z € M,
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i,7,k =1,...,r, such that for each 1, j,
[vs,v5] = hfj V.

Let v # 0 be a right—invariant vector—field on a Lie group G. Then the
flow generated by v through the identity e, namely

ge = exp(ev) e = exp(ev),
is defined for all € € R and forms a one—parameter subgroup of G, with
9ers =9:- 95,  Go=¢€ G- =gc

isomorphic to either R itself or the circle group SO(2). Conversely, any
connected 1D subgroup of G is generated by such a right—invariant vector—
field in the above manner [Olver (1986)].

For example, let G = GL(n) with Lie algebra gl(n), the space of all
n X n matrices with commutator as the Lie bracket. If A € gl(n), then the
corresponding right—invariant vector-field v4 on GL(n) has the expression
[Olver (1986)|

v = a;x? 8952.

The one—parameter subgroup exp(ev4) e is found by integrating the system
of n? ordinary differential equations

I = alat :v;(()) :(52, (i,7=1,..,n),

involving matrix entries of A. The solution is just the matrix exponential
X (g) = 4, which is the one-parameter subgroup of GL(n) generated by
a matrix A in gl(n).

Recall that the exponential map exp : g — G is get by setting ¢ = 1 in
the one—parameter subgroup generated by vector—field v :

exp(v) = exp(v) e.
Its differential at 0,
dexp:Tglo~g— TG|.~g

is the identity map.
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3.9.1.2 Lie Symmetry Groups and General DEs

Consider a system S of general differential equations (DEs, to be distin-
guished from ODEs) involving p independent variables z = (x!, ..., 2P), and
q dependent variables u = (u', ..., u?). The solution of the system will be of
the form u = f(z), or, in components, u® = f*(z!,...,2?), a = 1,...,q (s0
that Latin indices refer to independent variables while Greek indices refer
to dependent variables). Let X = RP, with coordinates z = (x!,...,2P), be
the space representing the independent variables, and let U = R?, with co-
ordinates u = (u', ..., u?), represent dependent variables. A Lie symmetry
group G of the system S will be a local group of transformations acting on
some open subset M C X x U in such way that G transforms solutions of
S to other solutions of S [Olver (1986)].

More precisely, we need to explain exactly how a given transformation
g € G, where G is a Lie group, transforms a function u = f(x). We firstly
identify the function v = f(x) with its graph

I'y={(z, f(z)):zedomf=Q} C X xU,

where I'; is a submanifold of X xU. If I'y C M, = dom g, then the transform
of I'y by g is defined as

g-Ty={@a) =g (z,u): (z,u) €Ts}.

We write f =g - f and call the function f the transform of f by g.

For example, let p =1 and ¢ = 1, so X = R with a single independent
variable z, and U = R with a single dependent variable u, so we have a
single ODE involving a single function v = f(z). Let G = SO(2) be the
rotation group acting on X x U ~ R2. The transformations in G are given
by

(Z,a) =0 (z,u) = (xcost —usinb, xsinf + ucosh).

Let u = f(z) be a function whose graph is a subset I'y C X x U. The
group SO(2) acts on f by rotating its graph.

In general, the procedure for finding the transformed function f = g - f
is given by [Olver (1986)]:

g-f=[50(1x fllo[Eg0(1x N, (3.65)
where 2, = Eg(z,u), &5 = ®4(z,u) are smooth functions such that

(‘%7’&) =g (mvu) = (Eg(x7u)> (I)g(x7u))?
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while 1 denotes the identity function of X, so 1(z) = z. Formula
holds whenever the second factor is invertible.

Let S be a system of DEs. A symmetry group of the system S is a local
Lie group of transformations G acting on an open subset M C X x U of the
space X x U of independent and dependent variables of the system with
the property that whenever u = f(z) is a solution of S, and whenever g - f
is defined for g € G, then u = g - f(x) is also a solution of the system.

For example, in the case of the ODE u,, = 0, the rotation group SO(2)
is obviously a symmetry group, since the solutions are all linear functions
and SO(2) takes any linear function to another linear function. Another
easy example is given by the classical heat equation u; = ug,. Here the
group of translations

(z,t,u) — (x+ea, t +eb,u), e €R,

is a symmetry group since u = f(x — e€a, t — €b) is a solution to the heat
equation whenever u = f(x,t) is.

3.9.2 Prolongations
3.9.2.1 Prolongations of Functions

Given a smooth real-valued function u = f(z) = f(z?, ..., 2?) of p indepen-
dent variables, there is an induced function u(™ = pr(™ f(z), called the
nth prolongation of f |Olver (1986)], which is defined by the equations

0" f(x)
Uy = an(x) = 8x]163;]28x3k ’

where the multi—index J = (j1, ..., jg) is an unordered k—tuple of integers,
with entries 1 < j; < p indicating which derivatives are being taken. More
generally, if f: X — U is a smooth function from X ~ RP to U ~ R?, so

u= f(z) = f(f(x),..., fi(x)), there are q - px numbers

ok fe(x

uj =0;f%x) = nggﬂkv
needed to represent all the different kth order derivatives of the components
of f at a point z. Thus pr™ f : X — U™ is a function from X to the
space U™ and for each z € X, pr(”)f(x) is a vector whose ¢ - p(™ entries
represent the values of f and al its derivatives up to order n at the point x.

For example, in the case p = 2, ¢ = 1 we have X ~ R? with coordinates
(x',22) = (z,y), and U ~ R with the single coordinate u = f(z,y). The
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second prolongation u(?) = pr(® f(z,y) is given by |Olver (1986)]
of of o*f o*f 9*f

(u;ug”’uy;u”’ug””’u””):( ’ax’ay’ax2’axay’ay2>’ (3.66)

all evaluated at (z,y).

The nth prolongation pr(™ f (z) is also known as the n—jet of f. In other
words, the nth prolongation pr("™ f(z) represents the Taylor polynomial of
degree n for f at the point x, since the derivatives of order < n determine
the Taylor polynomial and vice versa.

3.9.2.2  Prolongations of Differential Equations

A system S of nth order DEs in p independent and ¢ dependent variables
is given as a system of equations |Olver (1986)]

Ap(z,u™)y=0, (r=1,..,1), (3.67)

involving = = (z',..,27), v = (u!,..,u%) and the derivatives of
u with respect to x up to order m. The functions A(z,u(™) =
(Aq(z,u™), ..., Ay(z,u(™)) are assumed to be smooth in their arguments,
5o A : X x U™ — R represents a smooth map from the jet space X x U™
to some ID Euclidean space (see section below). The DEs them-
selves tell where the given map A vanishes on the jet space X x U™, and
thus determine a submanifold

Sa = {(x,u"”) Az, u™) = o} cXxU™ (3.68)

of the total the jet space X x U,

We can identify the system of DEs with its corresponding sub-
manifold Sa . From this point of view, a smooth solution of the given
system of DEs is a smooth function u = f(z) such that [Olver (1986)|

A, (z,pr™ f(z)) = 0, (r=1,..,10),

whenever z lies in the domain of f. This is just a restatement of the fact
that the derivatives 9y f“(x) of f must satisfy the algebraic constraints
imposed by the system of DEs. This condition is equivalent to the statement
that the graph of the prolongation pr(™ f(z) must lie entirely within the
submanifold Sa determined by the system:

Fgc") = {(x,pr(")f(x))} CSa= {A(x,u(”)) = O} :
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We can thus take an nth order system of DEs to be a submanifold Sa in the
n—jet space X x U™ and a solution to be a function v = f(z) such that the
graph of the nth prolongation pr(™ f (z) is contained in the submanifold
Sa.

For example, consider the case of Laplace equation in the plane
Ugy + Uyy = 0 (remember, wu, = Jd,u).

Here p = 2 since there are two independent variables x and y, and ¢ = 1
since there is one dependent variable u. Also n = 2 since the equation is
second-order, so Sa C X x U®) is given by (3.66)). A solution u = f(x,y)
must satisfy

2 2
#r LB
or? 0y

for all (x,y). This is the same as requiring that the graph of the second
prolongation pr(® f lie in Sa.

3.9.2.3 Prolongations of Group Actions

Let G be a local group of transformations acting on an open subset
M C X x U of the space of independent and dependent variables. There is
an induced local action of G on the n—jet space M (™, called the nth prolon-
gation pr(™ @G of the action of G on M. This prolongation is defined so that
it transforms the derivatives of functions u = f(x) into the corresponding
derivatives of the transformed function @ = f(z) |Olver (1986)].

More precisely, suppose (xq, u(()n)) is a given point in M ™. Choose any
smooth function v = f(x) defined in a neighborhood of xg, whose graph
I'f lies in M, and has the given derivatives at x :

uén) = pr™ f(xo), ie., ujo = 05.f* (o)

If g is an element of G sufficiently near the identity, the transformed func-
tion g- f as given by is defined in a neighborhood of the corresponding
point (Zg, o) = g - (xo,up), with ug = f(xg) being the zeroth order com-
ponents of u[(,n). We then determine the action of the prolonged group of

transformations pr(™ g on the point (zo, uén)) by evaluating the derivatives

of the transformed function g - f at Z¢; explicitly [Olver (1986)|

pr(n)g : ($07uén)) = (i'07ﬂ'én))

b



Applied Manifold Geometry 253

where

" = pr™(g- f)(&o).

For example, let p =g =1, so X x U ~ R?, and consider the action of
the rotation group SO(2). To calculate its first prolongation pr)S0(2),
first note that X x UM ~ R3, with coordinates (z,u,u,). given a function
u = f(x), the first prolongation is [Olver (1986)]

pri) f(z) = (f(x), '(x))-
Now, given a point (z°,u°,u2) € X x UM, and a rotation in SO(2) char-
acterized by the angle 6 as given above, the corresponding transformed
point

prig - (2%, u’,ul) = (&°,a°, @)

(provided it exists). As for the first—order derivative, we find

o sin@+wugcosf

* cosf —ugsinf

Now, applying the group transformations given above, and dropping the
0—indices, we find that the prolonged action pr")S0O(2) on X x UM is
given by

prVo . (z,u,uy) = (:ccos@ —using, zsinf 4+ ucosb, sind + u, cosf C(,)S9> )

cos ) — uy sinf

which is defined for || < |arccotu,|. Note that even though SO(2) is
a linear, globally defined group of transformations, its first prolongation
pr(MSO(2) is both nonlinear and only locally defined. This fact demon-
strates the complexity of the operation of prolonging a group of transfor-
mations.

In general, for any Lie group G, the first prolongation pr")G acts on
the original variables (z,u) exactly the same way that G itself does; only
the action on the derivative u, gives an new information. Therefore, pr(®)G
agrees with G itself, acting on M(®) = M.

3.9.2.4  Prolongations of Vector Fields

Prolongation of the infinitesimal generators of the group action turn out to
be the infinitesimal generators of the prolonged group action |Olver (1986)].
Let M C X x U be open and suppose v is a vector—field on M, with
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corresponding local one-parameter group exp(ev). The nth prolongation
of v, denoted pr(™uv, will be a vector—field on the n—jet space M, and
is defined to be the infinitesimal generator of the corresponding prolonged
on-parameter group pr™[exp(ev)]. In other words,

d
pr™v| oy = de pr(™ [exp(ev)](z, ul™) (3.69)
=0

for any (z,u(™) € M),
For a vector—field v on M, given by

% (@)

v=§(m,u) %7

pye (i=1,..,p, a=1,..,q),

the nth prolongation pr(™v is given by [Olver (1986)]

% 0 (e} n 0
prWy = ¢ (:ﬂ,u)—axi + (bj(:n,u( ))—aua,
J

with ¢g = ¢“, and J a multiindex defined above.
For example, in the case of SO(2) group, the corresponding infinitesimal
generator is

0
V=—-u—+2x

ox T ou
with
exp(ev)(z,u) = (xcose —usine, rsine + ucose),
being the rotation through angle €. The first prolongation takes the form

sine + u, coss)

pr[exp(ev)|(z, u, ug) = <x cose —usineg, xsine + ucose, -
COSE — Uy Sine

According to (3.69)), the first prolongation of v is get by differentiating these
expressions with respect to € and setting € = 0, which gives

0 9] 3,
(1) = —U— R 2
prw Yoz +$0u+(1+u1)8um'

3.9.2.5 General Prolongation Formula

Let

7 a « a .
v=2~E (m,u)%+¢ (x,u)w, (i=1,..,p, a=1,..,q), (3.70)
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be a vector—field defined on an open subset M C X x U. The nth prolon-
gation of v is the vector—field |Olver (1986 )]

0
pr™u = v 4 ¢5(x, u("))a—u?, (3.71)
defined on the corresponding jet space M ¢ X x U™ . The coefficient

functions ¢ are given by the following formula:

05 =Dy (6" = 'uf) +€u; (3.72)
where uft = du®/dx*, and u§,; = du§/dx". Dy is the total derivative with
respect to the multiindex J, i.e.,

D;=D; D,,..Dj,,

while the total derivative with respect to the ordinary index, D;, is defined
as follows. Let P(z,u(™) be a smooth function of z, u and derivatives of u
up to order n, defined on an open subset M c X x U™, the total deriva-
tive of P with respect to 2’ is the unique smooth function D;P(x,u(™)
defined on Mt and depending on derivatives of u up to order n + 1,
with the recursive property that if u = f(z) is any smooth function then

D P(z,pr"*V f(2)) = 8, { Pz, pr'™ f(x))}.

For example, in the case of SO(2) group, with the infinitesimal generator

v=—u— + xi
0z ou’
the first prolongation is (as calculated above)
0 0
Wy — —y— il z
P = U Y 3 T By
where
¢" = Dy(¢ — Eug) + Eupe = 1+ ul.
Also,

¢zz = Dx¢z — Uz De = 3Uptisy,

thus the infinitesimal generator of the second prolongation pr(?S0(2) act-
ing on X x U® is

s, 5] 9] 9]
@y = —yu— il 2 _—
pr©u L + To +(1+ u‘”)auz + Uy sy B
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Let v and w be two smooth vector—fields on M C X x U. Then their nth
prolongations, pr(™v and pr(™w respectively, have the linearity property

n)

pr(") (c1v + cow) = clpr( v+ chr(")w, (c1, co — constant),

and the Lie bracket property

n)

pr(”) [v,w] = [pr( v7pr(")w].

3.9.3 Generalized Lie Symmetries

Consider a vector—field defined on an open subset M C X x U. Pro-
vided the coefficient functions ¢ and ¢ depend only on z and u, v will
generate a (local) one—parameter group of transformations exp(ev) acting
pointwise on the underlying space M. A significant generalization of the no-
tion of symmetry group is get by relaxing this geometrical assumption, and
allowing the coefficient functions §i and ¢“ to also depend on derivatives
of u [Olver (1986)].

A generalized vector—field is a (formal) expression

i, 0 0
=¢ , *u)=—, i =1,..,p, a=1,...,q), 3.73
o=l + s (=L a=1o0),  (T3)
in which € and ¢* are smooth functions. For example,
V=TUp— + U ﬁ
T 0  ou

is a generalized vector in the case p = ¢ = 1.
According to the general prolongation formula (3.71]), we can define the
prolonged generalized vector—field

0

pry =v+ Qﬁ[u]W’
J

whose coefficients are as before determined by the formula (3.72)). Thus, in
our previous example [Olver (1986)],

0
€Z

ou

Given a generalized vector—field v, its infinite prolongation (including
all the derivatives) is the formal expression

za a 0
Py =g T guy
J

A,
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Now, a generalized vector—field v is a generalized infinitesimal symmetry of
a system S of differential equations

Au) = Ay (z,u™) =0, (r=1,..,1),
iff
pro[A,;] =0

for every smooth solution m u = f(z) [Olver (1986)].
For example, consider the heat equation

Alu] = ug — tgy = 0.
The generalized vector—field v = ura% has prolongation

Pro == + EIN + E + Tu +
v=1u U U U

Thus
prv(A) = Uyt — Ugzx = Da:(ut - Ugcgc) = D.A,

and hence v is a generalized symmetry of the heat equation.

3.9.3.1 Noether Symmetries

Here we present some results about Noether symmetries, in particular for
the first-order Lagrangians L(q,q) (see [Batlle et. al. (1989); [Pons et. al.
(2000)]). We start with a Noether-Lagrangian symmetry,

L =F,

and we will investigate the conversion of this symmetry to the Hamiltonian
formalism. Defining

G = (0L/9¢%) 6q" — F,
we can write
5;Lég" +G =0, (3.74)
where §;L is the Euler—Lagrangian functional derivative of L,

§;iL = a; — Wi, ¢,
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where

0L 0%L OL
k 919" an a 9qi9q" g+ aq'

We consider the general case where the mass matrix, or Hessian (W;;),
may be a singular matrix. In this case there exists a kernel for the pull-back
FL* of the Legendre map, i.e., fibre—derivative FL, from the velocity phase—
space manifold TM (tangent bundle of the biodynamical manifold M) to
the momentum phase—space manifold T* M (cotangent bundle of M). This
kernel is spanned by the vector—fields

0
oG’

Fu = ’YZ

where Vi are a basis for the null vectors of W;;. The Lagrangian time-
evolution differential operator can therefore be expressed as:

0 0
X =0 +¢"—+d"(q, ) = + M'T, = X, + \'T",
t + 4 8qk+a(q’Q)8qk+ m ot s

k are functions which are determined by the formalism, and \* are

where a
arbitrary functions. It is not necessary to use the Hamiltonian technique

to find the I',, but it does facilitate the calculation:

yi, = FL (3}):) 7 (3.75)

where the ¢, are the Hamiltonian primary first class constraints.

Notice that the highest derivative in 7 ¢’, appears linearly. Because
0L is a symmetry, is identically satisfied, and therefore the coefficient
of §* vanishes:

oG

Wirdg® — 95 = 0. (3.76)

We contract with a null vector 'yz to find that
r.gG=0o.

It follows that G is projectable to a function Gy in T*Q); that is, it is the
pull-back of a function (not necessarily unique) in T*Q:

G =FL*(Gy).
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This important property is valid for any conserved quantity associated
with a Noether symmetry. Observe that Gy is determined up to the addi-
tion of linear combinations of the primary constraints. Substitution of this

result in (3.76]) gives

Wi, {5(;’“ ~FL* (8GH>] =0,
IOk

and so the brackets enclose a null vector of W;:

1 * aGH i
d¢' —FL < o; > =1y, (3.77)

for some r#(t,q, q).

We shall investigate the projectability of variations generated by diffeo-
morphisms in the following section. Assume that an infinitesimal transfor-
mation dq’ is projectable:

Fuéqi =0.

If §¢" is projectable, so must be r, so that r* = FL*(rf;). Then, using

(3.75) and (3.77)), we see that

. oGy + i
8¢’ = FL* (( 1 TH¢“)> :
Op;
We now redefine Gy to absorb the piece r’ﬁq’)w and from now on we will
have
, 0Gy
0q' =FL* .
! ( Ip; >
Define
5 = oL,
p’L - 8q7"

after eliminating (3.76)) times §* from (3.74)), we get

oL .. 0p; 0Gy )
- — FL* ' —TFL*(G FL*0;Gy =0
(3q1 q 8qk> (8pi>+q8q‘ (Gu) + iGu = 0,
which simplifies to
oL 0Gy y 0Gy
FL* 'FL*(—) +FL*0;Gg = 0. 3.78
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Now let us invoke two identities [Batlle et. al. (1989)] that are at the core
of the connection between the Lagrangian and the Hamiltonian equations
of motion. They are

, OH 0¢
s k(2T i . * j2
¢ =FL (8pi)+v (q,¢)FL (3pi ),
and
oL OH . 09,

_ = ol O W 4 *(_THN.
90 IFL(aqi) v (q7Q)FL(aqi),

where H is any canonical Hamiltonian, so that FL*(H) = ¢*(0L/d¢")— L =
E, the Lagrangian energy, and the functions v* are determined so as to
render the first relation an identity. Notice the important relation

Ly’ =4,

w

which stems from applying I';, to the first identity and taking into account
that

T, oFL* =0.

Substitution of these two identities into (3.78) induces (where {, } denotes
the Poisson bracket)

FL*{Gu, H} + v"FL*{Gnu, ¢,} + FL*0,Gu = 0.
This result can be split through the action of I', into
FL*{Gu,H} +FL*0,Gug =0,
and
FL*{Gu,¢,} =0;
or equivalently,
{Gu, H} + 0:Gu = pe,
and
{Gn,9,} = pe,

where pc stands for any linear combination of primary constraints. In
this way, we have arrived at a neat characterization for a generator Gy of
Noether transformations in the canonical formalism.
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3.9.4 Application: Biophysical PDFEs
In this subsection we consider two most important equations for biophysics:

(1) The heat equation, which has been analyzed in muscular mechanics
since the early works of A.V. Hill ([Hill (1938)]); and

(2) The Korteveg—de Vries equation, the basic equation for solitary models
of muscular excitation—contraction dynamics.

Suppose
S Ap(z,u™) =0, (r=1,..,1),

is a system of DEs of maximal rank defined over M C X x U. If G is a local
group of transformations acting on M, and

pro[A,(z, u™)] =0, whenever Az, u™) =0, (3.79)

(with » = 1,...,1) for every infinitesimal generator v of G, then G is a
symmetry group of the system S [Olver (1986)].

3.9.4.1 The Heat Equation

Recall that the (14 1)D heat equation (with the thermal diffusivity nor-
malized to unity)

Up = Uyy (3.80)

has two independent variables z and t, and one dependent variable u, so
p =2 and ¢ = 1. Equation has the second—order, n = 2, and can be
identified with the linear submanifold M) ¢ X x U® determined by the
vanishing of A(z,t, u(2)) = U — Ugy.

Let

0 0 0
v = §(m,t,u)% +’T(.’E,t7u)a + Qb(l'ﬂf, ’LL)%

be a vector—field on X x U. According to (3.79) we need to now the second

prolongation

0
Ouy,

of v. Applying pr(®v to (3.80) we find the infinitesimal criterion (3.79) to
be

0

OUgy

pr(z)v =v+ QS% + d)zt +é

0
t_ v T
+ (b 6Ut + d) 8U$t autt

o' = ¢,
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which must be satisfied whenever u; = ugy.

3.9.4.2 The Korteveg—De Vries Equation
Recall that the Korteveg—de Vries equation
U + Uggy + ULy =0 (3.81)

arises in physical systems in which both nonlinear and dispersive effects are
relevant. A vector—field

0 0 0
v = f(x,t,u)% +T(l’,t,u)a + ¢(x7tau)£

generates a one—parameter symmetry group iff
O+ 6"+ ug” + uggp =0,

whenever u satisfies (3.81), etc.

3.9.5 Lie-Invariant Geometric Objects
3.9.5.1 Robot Kinematics

It is well known (see [Blackmore and Leu (1992); Prykarpatsky (1996)]),
that motion planning, numerically controlled machining and robotics are

just a few of many areas of manufacturing automation in which the analysis
and representation of swept volumes plays a crucial role. The swept volume
modelling is also an important part of task-oriented robot motion planning.
A typical motion planning problem consists in a collection of objects moving
around obstacles from an initial to a final configuration. This may include
in particular, solving the collision detection problem.

When a solid object undergoes a rigid motion, the totality of points
through which it passed constitutes a region in space called the swept vol-
ume. To describe the geometrical structure of the swept volume we pose this
problem as one of geometric study of some manifold swept by surface points
using powerful tools from both modern differential geometry and nonlin-
ear dynamical systems theory [Ricca (1993); Langer and Perline (1994)f
Prykarpatsky (1996)} (Groesen and Jager (1994)] on manifolds. For some
special cases of the Euclidean motion in the space R? one can construct
a very rich hydrodynamic system [Blackmore and Leu (1992)] modelling a
sweep flow, which appears to be a completely integrable Hamiltonian system
having a special Laz type representation. To describe in detail these and




Applied Manifold Geometry 263

other properties of swept volume dynamical systems, we develop Cartan’s
theory of Lie—invariant geometric objects generated by closed ideals in the
Grassmann’s algebra, following [Blackmore et. al. (1998)].

Let a Lie group G act on an analytical manifold Y in the transitive way,
that is the action GxY 5 Y generates some nonlinear exact representation
of the Lie group G on the manifold Y. In the frame of the Cartan’s theory,
the representation G x Y 2 Y can be described by means of a system of
differential 1-forms (see section below)

B =dy + &' (a,da) (3.82)

in the Grassmann algebra A(Y X G) on the product Y x G, where &(a, da) €
TX(G@),i=1,..,r = dim G is a basis of left-invariant Cartan’s forms of the
Lie group G at a point a € G, y ={y/ : j=1,...,n=dimY} € Y and
§f : Y x G — R are some smooth real valued functions.

The following Cartan Theorem (see |[Blackmore et. al. (1998)]) is basic
in describing a geometric object invariant with respect to the mentioned
above group action G x Y % Y : The system of differential forms
is a system of an invariant geometric object iff the following conditions are
fulfilled:

(1) The coefficients 5{ € C*(Y;R) foralli=1,...,r, j =1,...,n, are some
analytical functions on Y; and

(2) The differential system is completely integrable within the
Frobenius—Cartan criterion.

The Cartan’s Theorem actually says that the differential system (3.82))
can be written down as

B = dy’ + €l (y)w' (a, da), (3.83)

where 1-forms {&%(a,da) : i = 1,...,r} satisfy the standard Maurer—Cartan
equations

Q= da’ + S @' AF =0, (3.84)

for all j = 1,...,7 on G, coefficients cgk € R, 4,5,k = 1,...,7, being the
corresponding structure constants of the Lie algebra G of the Lie group G.
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3.9.5.2 Maurer—Cartan 1-Forms

Let be given a Lie group G with the Lie algebra G ~ T,.(G), whose basis
isaset {A; € G: i=1,..,7r}, where r = dim G = dim G. Let also a
set Up C {a* € R: i =1,...,r} be some open neighborhood of the zero
point in R”. The exponential mapping exp : Uy — Gy, where by definition
[Blackmore et. al. (1998)]

R 5 Up 5 (a',...,a"): — P exp (aiA;)) =a € Gy C G,  (3.85)

is an analytical mapping of the whole Uy on some open neighborhood Gg
of the unity element e € G. From it is easy to find that T.(G) =
T.(Go) =~ G, where e = exp(0) € G. Define now the following left-invariant
G—valued differential 1-form on Gy C G:

w(a,da) = a 'da = @ (a,da)A;, (3.86)

where A; € G, W (a,da) € T (G), a € Gy, j = 1,...,r. To build effectively
the unknown forms {&w/(a,da) : j = 1,...,7}, let us consider the follow-
ing analytical one-parameter 1-form w;(a,da) = @(as;da;) on Go, where
a; = exp (ta’4;) , t € [0,1], and differentiate this form with respect to the
parameter t € [0,1]. We will get [Blackmore et. al. (1998)]

doy/dt = —a? Aja;  das+a; tarda? Aj+a; M dara? Ay = —a¥[A;, 04+ Ajda;.

(3.87)
Having used the Lie identity [A;, Ax] = ¢} Ay, j,k = 1,...,7, and the right
hand side of in form

& (a,da) = &)(a)da®, (3.88)

we ultimately get that

%(mg’ (ta)) = ATtk (ta) + &7, (3.89)

where the matrix Af, i,k =1,...,r, is defined as follows:

A = cFal. (3.90)

ij

Thus, the matrix I/VZJ (t) = trbz (ta), i,j = 1,...,r, satisfies the following from
(3.89) differential equation [Chevalley (1955)]

AW/dt = AW + E,  W|,_, =0, (3.91)
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where E = ||§7|| is the unity matrix. The solution of (3.91) is representable
as

W(t)=>" Ay (3.92)

for all t € [0, 1]. Whence, recalling the above definition of the matrix W(t),
we get easily that

oo

&l (a) = W (t)’t=1 =3 () tar (3.93)

n=1

Therefore, the following Theorem solves the problem of finding in an
effective algebraic way corresponding to a Lie algebra G the left—invariant 1—
form w(a,da) € TX(G)®G at any a € G : Let’s be given a Lie algebra G with
the structure constants cfj €R,i,j,k=1,....,r = dim G, related to some
basis {4; € G: j=1,...,r}. Then the adjoint to G left-invariant Maurer—
Cartan 1-form @(a,da) is built as follows [Blackmore et. al. (1998)]:

@(a,da) = A;)(a)da", (3.94)

where the matrix W = ||@](a)|, j, k = 1,...,, is given exactly as

(oo}
W = Z(n!)_lAn_l, Al = cla’. (3.95)
n=1
Below we shall try to use the experience gained above in solving an

analogous problem of the theory of connections over a principal fibre bundle
P(M;G) as well as over associated with it a fibre bundle P(M;Y, G).

3.9.5.3 General Structure of Integrable One—Forms

Given 2—forms generating a closed ideal J(a) in the Grassmann algebra
A(M), we will denote as above by J(a, 5) an augmented ideal in A(M;Y),
where the manifold Y will be called in further the representation space of
some adjoint Lie group G action: G x Y % Y. We can find, therefore, the
determining relationships for the set of 1-forms {#} and 2—forms {a}

{a} ={a? € A2(M): j=1,...,m4s},

. (3.96)
B}={F eAN(MxY):j=1,...,n=dimY},
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satisfying such equations [Blackmore et. al. (1998)]:

do’ = ai (o) A aF,
. . (3.97)
dF’ = fio +wl NG,
where ai(a) € AY(M), fi € A%(M xY) and w} € AY(M x Y) for all
i,k=1,...,ma, j,s = 1,...,n. Since the identity d23’ = 0 takes place for
all j =1,...,n, from we deduce the following relationship:

(dw;; +wl A wz) AB* + (dfg +wl R4 fljals(a)) Aa®=0.  (3.98)

As a result of (3.98)) we get [Blackmore et. al. (1998)]

dwl, + wi Awi € I(a, B),
' 4 . (3.99)
dfi + Wl St + fla () € 3o B)
for all j,k =1,..,n, s =1,..,mq. The second inclusion in (3.99) gives a
possibility to define the 1-forms ¢ = f/al(«) satisfying the inclusion
07 +wl N 0¥ € 3, B) @ fi (), (3.100)

which we obtained having used the identities d?a? = 0, j = 1,...,mq, in
the form ¢ (a) A a® =0,

cl

(a) = dal(a) + a] (a) A dl(a), (3.101)

following from (3.97). Let us suppose further that as s = sy the 2—forms
¢J (a) =0 for all j = 1,...,mq. Then as s = sp, we can define a set of
1-forms ¢/ = 0] € A'(M xY), j =1,...,n, satisfying the exact inclusions:

o7 + ) AOF =07 € 3(a, B) (3.102)
together with a set of inclusions for 1-forms w) € A*(M x V)

dwl, + w] Nwi = € 3(a, B) (3.103)

As it follows from the general theory [Sulanke and Wintgen (1972)] of con-
nections on the fibred frame space P(M;GL(n)) over a base manifold M,
we can interpret the equations as the equations defining the cur-
vature 2—forms Q{c € A%(P), as well as interpret the equations as
those, defining the torsion 2—forms ©7 € A?(P). Since J(a) = 0 = J(cv, B)
upon the integral submanifold M C M, the reduced fibred frame space
P(M;GL(n)) will have the flat curvature and be torsion free, being as a
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result, completely trivialized on M C M. Consequently, we can formulate
the following Theorem.

Let the condition above on the ideals J(«) and J(«, ) be fulfilled. Then
the set of 1-forms {3} generates the integrable augmented ideal J(«, 3) C
A(M xY) iff there exists some curvature 1-form w € A'(P)®GI(n) and tor-
sion 1-form 6 € A'(P)®R" on the adjoint fibred frame space P(M; GL(n)),
satisfying the inclusions [Blackmore et. al. (1998)]

dw+wAw € I (a, ) ®Gl(n),

(3.104)
dd+wANbeT(a,f) @R

Upon the reduced fibred frame space P(M;GL(n)) the corresponding cur-
vature and torsion are vanishing, where M C M is the integral submanifold
of the ideal J(a) C A(M).

3.9.5.4 Lax Integrable Dynamical Systems

Consider some set {3} defining a Cartan’s Lie group G invariant object on
a manifold M x Y:

B = dy’ + & (y)b*(2), (3.105)

where ¢ = 1,...,n = dimY, r = dim G. The set defines on the
manifold Y a set {£} of vector—fields, compiling a representation p : G — {£}
of a given Lie algebra G, that is vector-fields £, = 5@@)% e {¢}, s =
1,...,r, enjoy the following Lie algebra G relationships

€& = chéx (3.106)

for all 5,1,k = 1,...,r. We can now compute the differentials d3’ € AZ(M x

Y), 7 = 1,..,n, using (3.105) and (3.106) as follows [Blackmore et. al.
(1998)):

a5 = 0 (' = L) (2)) A V) + EL)dbhz)  (3.107)
which is equal to

98 (y)
oyt

B Abi(z) + & (dbl(z) + %cgsdbk(z) A dbs(z)) ,

where {a} C A?(M) is some a priori given integrable system of 2—forms
on M, vanishing upon the integral submanifold M C M. It is obvious that
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inclusions (3.107)) take place iff the following conditions are fulfilled: for all
j=1,..,r

A (2) + =), db¥(2) A db®(2) € F(a). (3.108)

N =

The inclusions (3.108)) mean in particular, that upon the integral subman-
ifold M C M of the ideal J(a) C A(M) the equalities

Wl = s (3.109)

are true, where @ € T*(G), j = 1,...,r, are the left-invariant Maurer—
Cartan forms on the invariance Lie group G. Thus, due to inclusions (3.108|)
all conditions of Cartan’s Theorem are enjoyed, giving rise to a possibility
to get the set of forms b/ (z) € A'(M) in an explicit form. To do this, let
us define a G—valued curvature 1-form w € AY(P(M;G)) ® G as follows
[Blackmore et. al. (1998)]

w= Ady-1 (A7) + @ (3.110)

where w € G is the standard Maurer—Cartan 1-form on G. This 1-form
satisfies followed by (3.108)) the canonical structure inclusion for I' = Ajbj €
A(M)®G:

d'+T AT € J(a) ® G, (3.111)

serving as a main relationships determining the form (3.110]).

3.9.5.5 APPLICATION: Burgers Dynamical System

Consider the Burgers dynamical system on a functional manifold M C
Ck(R;R):

Up = Uy + Ugg, (3.112)
where v € M and t € R is an evolution (time) parameter. The flow of
(3.112) on M can be recast into a set of 2-forms {a} C AZ%(J(R?;R))

upon the adjoint jet-manifold J(R?;R) (see section below) as follows
[Blackmore et. al. (1998)]:

{a} = {du(o) Adt —uWda Adt = at, du® Ade 4+ uOdu® A dt
+duM A dt = a?: (x,t;u(o),u(l))T € M4 cC Jl(RQ;]R)} ,
(3.113)
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where M* is a 4-D submanifold in J'(R?;R)) with coordinates (z,t, u(®) =
u,u™ = u,). The set of 2-forms (3.113) generates the closed ideal J(a),

since
dat = dz A o® —uDdz Ao, do® =0, (3.114)

the integral submanifold M = {x,t € R} C M* being defined by the
condition J(a) = 0. We now look for a reduced ‘curvature’ 1-form I' €
AY(M*) @ g, belonging to some (not yet determined) Lie algebra g. This
1-form can be represented using , as follows:

L = 5@ (u®, uM)dz + b (u, uV)at, (3.115)

where elements b(*), b(*) € g satisfy |Blackmore et. al. (1998)]

@ @ o 0
ou©® — 92, Ju® — 0, u@ — 91 +92U( )7

= (3.116)
gZU) = g2, [b($)7b(t)] = —u(l)gl'

The set (3.116)) has the following unique solution

(0)?
b(w) = A0+A1’UJ(O), b(t) = U(I)A1+UTA1+[A1,Ao]u(0)+A2, (3117)

where A; € g, j = 0,2, are some constant elements on M of a Lie algebra
g under search, satisfying the next Lie structure equations:

[A07A2] - 0,
[Ao, [A1, Ao]] + [A1, A2] = 0, (3.118)
[A1, [A1, Ao]] + 3[Ao, A1] = 0.

From (13.116)) one can see that the curvature
2-form Q € spanp{Ai,[Ao,A1] : A; € g,j = 0,1}. Therefore, reducing
via the Ambrose—Singer Theorem the associated principal fibered frame
space P(M;G = GL(n)) to the principal fibre bundle P(M;G(h)), where
G(h) C G is the corresponding holonomy Lie group of the connection I' on
P, we need to satisfy the following conditions for the set g(h) C g to be a
Lie subalgebra in g : V'VyQ € g(h) for all m,n € Z..

Let us try now to close the above procedure requiring that [Blackmore
et. al. (1998)]

g(h) = g(h)o = spanp{Vo'V,Q2 € g: m+n =0} (3.119)
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This means that
g(h)o = spang{ A1, A3 = [Ao, 41]}. (3.120)

To satisfy the set of relations (3.118]) we need to use expansions over the
basis ([3.120) of the external elements Ay, Ay € g(h):

Ao = qo1 41 + q13A43, Ay = 21 A1 + qo3As. (3.121)

Substituting expansions (3.121) into (3.118)), we get that gp1 = ¢as =
A, Qo1 = —)\2/2 and qo3 = —2 for some arbitrary real parameter A € R,
that is g(h) = spang{ A1, A3}, where

[Al,Ag] = A3/2, AO = )\Al —2A3, A2 = —/\2A1/2—|—)\A3. (3122)
As a result of (3.122) we can state that the holonomy Lie algebra g(h)

is a real 2D one, assuming the following (2 x 2)—matrix representation
[Blackmore et. al. (1998)]:

(b a0
Ao = (%4 434) A= (AOQ . )\;\/8> '

Thereby from (3.115), (3.117) and (3.123) we get the reduced curvature
I-form T € AY(M) ® g,

(3.123)

[ = (Ap + udy)dz + ((ug +u?/2) A1 — uAs + Ag)dt, (3.124)

generating parallel transport of vectors from the representation space Y of
the holonomy Lie algebra g(h):

dy+Ty =0, (3.125)

upon the integral submanifold M C M* of the ideal Z(«), generated by
the set of 2—forms . The result means also that the Burgers
dynamical system is endowed with the standard Lax type represen-
tation, having the spectral parameter A € R necessary for its integrability
in quadratures.
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3.10 Riemannian Manifolds and Their Applications

3.10.1 Local Riemannian Geometry

An important class of problems in Riemannian geometry is to understand
the interaction between the curvature and topology on a smooth manifold
(see [Cao and Chow (1999)]). A prime example of this interaction is the
Gauss—Bonnet formula on a closed surface M2, which says

/ K dA = 2m y(M), (3.126)
M

where dA is the area element of a metric ¢ on M, K is the Gaussian
curvature of g, and x(M) is the Euler characteristic of M.

To study the geometry of a smooth manifold we need an additional
structure: the Riemannian metric tensor. The metric is an inner product
on each of the tangent spaces and tells us how to measure angles and dis-
tances infinitesimally. In local coordinates (x!,22,---  2™), the metric g is
given by g;;(z) dz'®@dz?, where (g;;(x)) is a positive definite symmetric ma-
trix at each point x. For a smooth manifold one can differentiate functions.
A Riemannian metric defines a natural way of differentiating vector—fields:
covariant differentiation. In Euclidean space, one can change the order of
differentiation. On a Riemannian manifold the commutator of twice co-
variant differentiating vector—fields is in general nonzero and is called the
Riemann curvature tensor, which is a 4—tensor—field on the manifold.

For surfaces, the Riemann curvature tensor is equivalent to the Gaussian
curvature K, a scalar function. In dimensions 3 or more, the Riemann cur-
vature tensor is inherently a tensor—field. In local coordinates, it is denoted
by R;jk, which is anti-symmetric in ¢ and £ and in j and [/, and symmetric
in the pairs {ij} and {kl}. Thus, it can be considered as a bilinear form on
2—forms which is called the curvature operator. We now describe heuris-
tically the various curvatures associated to the Riemann curvature tensor.
Given a point x € M™ and 2—plane II in the tangent space of M at x, we
can define a surface S in M to be the union of all geodesics passing through
x and tangent to II. In a neighborhood of z, S is a smooth 2D submanifold
of M. We define the sectional curvature K(II) of the 2—plane to be the
Gauss curvature of S at x:

K(I) = Ks().

Thus the sectional curvature K of a Riemannian manifold associates to each
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2—plane in a tangent space a real number. Given a line L in a tangent space,
we can average the sectional curvatures of all planes through L to get the
Ricci tensor Re(L). Likewise, given a point € M, we can average the Ricci
curvatures of all lines in the tangent space of x to get the scalar curvature
R(z). In local coordinates, the Ricci tensor is given by R = gﬂRZ—jkl and
the scalar curvature is given by R = ¢g**R;;, where (g%) = (g;;)~! is the
inverse of the metric tensor (g;;).

3.10.1.1 Riemannian Metric on M

In this section we mainly follow [Petersen (1999); [Petersen (1998)].
Riemann in 1854 observed that around each point m € M one can pick
a special coordinate system (z!,...,2") such that there is a symmetric

(0,2)—tensor—field g;;(m) called the metric tensor defined as
Gij (m) = g(az’ ) 89:7) = 5ij’ axkgm (m) =0.

Thus the metric, at the specified point m € M, in the coordinates
(xt,...,2") looks like the Euclidean metric on R". We emphasize that
these conditions only hold at the specified point m € M. When passing to
different points it is necessary to pick different coordinates. If a curve ~
passes through m, say, v(0) = m, then the acceleration at 0 is defined by
firstly, writing the curve out in our special coordinates

y(t) = (3 (1), " (),
secondly, defining the tangent, velocity vector—field, as
¥=9") - Ous,
and finally, the acceleration vector—field as
5(0) = 57(0) - D

Here, the background idea is that we have a connection.

Recall that a connection on a smooth manifold M tells us how to paral-
lel transport a vector at a point x € M to a vector at a point 2’ € M along
a curve v € M. Roughly, to parallel transport vectors along curves, it is
enough if we can define parallel transport under an infinitesimal displace-
ment: given a vector X at z, we would like to define its parallel transported
version X after an infinitesimal displacement by ev, where v is a tangent
vector to M at x.
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More precisely, a vector—field X along a parameterized curve o : I — M
in M is tangent to M along o if X (t) € M) for all for t € I C R. However,
the derivative X of such a vector—field is, in general, not tangent to M.
We can, nevertheless, get a vector—field tangent to M by projecting X (t)
orthogonally onto M, for each ¢ € I. This process of differentiating and
then projecting onto the tangent space to M defines an operation with the
same properties as differentiation, except that now differentiation of vector—
fields tangent to M induces vector—fields tangent to M. This operation is
called covariant differentiation.

Let v : I — M be a parameterized curve in M, and let X be a smooth
vector—field tangent to M along a. The absolute covariant derivative of
X is the vectorfield X tangent to M along «, defined by X = X(t) —
[X(t) - N(«(t))] N((t)), where N is an orientation on M. Note that X is
independent of the choice of IV since replacing N by -N has no effect on
the above formula.

Lie bracket defines a symmetric affine connection V on any man-
ifold M:

[X,Y]=VxY — VyX.

In case of a Riemannian manifold M, the connection V is also compat-
ible with the Riemannian metrics ¢ on M and is called the Levi—Civita
connection on T M.

For a function f € C*(M,R) and a vector a vector—field X € X*(M)
we always have the Lie derivative (3.7])

Lxf=Vx[f=df(X).

But there is no natural definition for VxY, where Y € X*(M), unless
one also has a Riemannian metric. Given the tangent field 7, the acceler-
ation can then be computed by using a Leibniz rule on the r.h.s, if we can
make sense of the derivative of J,: in the direction of 4. This is exactly
what the covariant derivative VxY does. If Y € T,, M then we can write
Y = a'0,:, and therefore

VxY = Lxa'd,. (3.127)

Since there are several ways of choosing these coordinates, one must check
that the definition does not depend on the choice. Note that for two vector—
fields we define (Vy X)(m) = Vy () X. In the end we get a connection

Vo XF(M) x X (M) — x*F(M),
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which satisfies (for all f € C*(M,R) and X,Y,Z € X*(M)):
(1) Y — Vy X is tensorial, i.e., linear and Viy X = fVy X.
(2) X — VyX is linear.

(3) Vx(fY) = (Vx[)Y(m)+ f(m)VxY.

(4) VxY - VyX = [X,Y].

(5) Lxg(Z2,Y)=9(VxZ,Y)+g(Z,VxY).

A semicolon is commonly used to denote covariant differentiation with
respect to a natural basis vector. If X = 0,:, then the components of VxY

in (3.127) are denoted
Vi=0,YF4+T8 Y, (3.128)

where I’fj are Christoffel symbols defined in below. Similar relations
hold for higher-order tensor—fields (with as many terms with Christoffel
symbols as is the tensor valence).

Therefore, no matter which coordinates we use, we can now define the
acceleration of a curve in the following way:

)= (Y1), (1),
Y(t) =4 ()01,
F(t) = 5 ()0t + 5 (t) V(1) O -

We call v a geodesic if v(t) = 0. This is a second-order nonlinear ODE in

¥
5

a fixed coordinate system (z!,...,2") at the specified point m € M. Thus
we see that given any tangent vector X € T, M, there is a unique geodesic
v x (t) with 45 (0) = X. If the manifold M is closed, the geodesic must exist
for all time, but in case the manifold M is open this might not be so. To
see this, take as M any open subset of Euclidean space with the induced
metric.

Given an arbitrary vectorfield Y'(t) along v, i.e., Y(t) € Ty ;)M for all

— dy

t, we can also define the derivative Y = e

in the dlrectlon of 4 by writing

Y(t) =a (t)[)zl +a' (t)v,y(t)am1

Here the derivative of the tangent field 4 is the acceleration . The field Y
is said to be parallel iff Y = 0. The equation for a field to be parallel is a
first—order linear ODE, so we see that for any X € T’ ;)M there is a unique
parallel field Y (¢) defined on the entire domain of v with the property that
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Y (ty) = X. Given two such parallel fields Y, Z € X*(M), we have that
§(Y,2) = Dsg(Y, 2) = (Y, Z) + g(Y, Z) = 0.

Thus X and Y are both of constant length and form constant angles along ~.
Hence, ‘parallel translation’ along a curve defines an orthogonal transforma-
tion between the tangent spaces to the manifold along the curve. However,
in contrast to Euclidean space, this parallel translation will depend on the
choice of curve.

An infinitesimal distance between the two nearby local points m and n
on M is defined by an arc—element

ds* = g;j dx'da?

and realized by the curves z°(s) of shortest distance, called geodesics, ad-
dressed by the Hilbert 4th problem. In local coordinates (xl(s),...,2"(s))
at a point m € M, the geodesic defining equation is a second—order ODE,

BT i 85 =0,

where the overdot denotes the derivative with respect to the affine param-
eter s, 2'(s) = < 2(s) is the tangent vector to the base geodesic, while the
Christoffel symbols Fék = Fék(m) of the affine Levi—-Civita connection V at

the point m € M are defined, in a holonomic coordinate basis e; as
I = g"Tj, with  ¢“ = (gi;)”"  and (3.129)
1
Lijk = 5(5:516%]' + Opi Gki — Oi Giik:)-

Note that the Christoffel symbols do not transform as tensors on
the tangent bundle. They are the components of an object on the second
tangent bundle, a spray. However, they do transform as tensors on the jet
space (see section below).

In nonholonomic coordinates, takes the extended form

. 1.
= ig"n (Ot gk + Opk OGmi — Opm Ot + Cinkl + Cmik — Chim) s

where cipn = gmpcil are the commutation coefficients of the basis, i.e.,
ler, er] = cljem.

The torsion tensor—field T' of the connection V is the function T :
XF(M) x X*(M) — X*(M) given by

T(X,Y)=VxY - VyX — [X,Y].
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From the skew symmetry ([X,Y] = —[Y, X]) of the Lie bracket, follows the
skew symmetry (T'(X,Y) = —T(Y, X)) of the torsion tensor. The mapping
T is said to be f—bilinear since it is linear in both arguments and also
satisfies T(fX,Y) = fT(X,Y) for smooth functions f. Since [0, 0] = 0
for all 1 <1,5 < n, it follows that

T(Ds,000) = (T — T4,
Consequently, torsion T is a (1,2) tensor—field, locally given by
T =TF do' ® 0, ® da?,
where the torsion components Tikj are given by

k k k
Tk, =Tk —T%,.

Z]:

Therefore, the torsion tensor gives a measure of the nonsymmetry of the
connection coefficients. Hence, T" = 0 if and only if these coefficients are
symmetric in their subscripts. A connection V with 7' = 0 is said to be
torsion free or symmetric.

The connection also enables us to define many other classical concepts
from calculus in the setting of Riemannian manifolds. Suppose we have a
function f € C¥(M,R). If the manifold is not equipped with a Riemannian
metric, then we have the differential of f defined by df (X) = Lx f, which
is a 1—form. The dual concept, the gradient of f, is supposed to be a
vector—field. But we need a metric g to define it. Namely, V f is defined by
the relationship

9(Vf, X) = df (X).

Having defined the gradient of a function on a Riemannian manifold, we
can then use the connection to define the Hessian as the linear map

V2f:TM — TM, V2f(X)=VxVf.
The corresponding bilinear map is then defined as
VQf(X7 Y) = g(VQf(X)vy)'

One can check that this is a symmetric bilinear form. The Laplacian of f,
Af, is now defined as the trace of the Hessian

Af = Te(V2f(X)) = Tr(Vx V),



Applied Manifold Geometry 277

which is a linear map. It is also called the Laplace—Beltrami operator, since
Beltrami first considered this operator on Riemannian manifolds.

Riemannian metric has the following mechanical interpretation. Let M
be a closed Riemannian manifold with the mechanical metric g = gijvivj =
(v,v), with v* = &%, Consider the Lagrangian function

L:TM —R,  (2,0)— %(v,v) —U(w) (3.130)

where U(z) is a smooth function on M called the potential. On a fixed
level of energy F, bigger than the maximum of U, the Lagrangian flow
generated by is conjugate to the geodesic flow with metric g =
2(e — U(x))(v,v). Moreover, the reduced action of the Lagrangian is the
distance for ¢ = (v,v) [Arnold (1989); Abraham et al. (1988)]. Both of
these statements are known as the Maupertius action principle.

3.10.1.2 Geodesics on M

For a C*,k > 2 curve v : I — M, we define its length on I as

LWD=AMM=£¢MWWt

This length is independent of our parametrization of the curve . Thus the
curve v can be reparameterized, in such a way that it has unit velocity.
The distance between two points my and my on M, d (m1, mz), can now be
defined as the infimum of the lengths of all curves from my to mo, i.e.,

L(vy,I) — min.

This means that the distance measures the shortest way one can travel from
m1 to mo.

If we take a variation V (s,t) : (—e,€) x [0,4] — M of a smooth curve
v (t) = V (0,t) parameterized by arc—length L and of length ¢, then the
first derivative of the arc—length function

¢
L(s) = / V| dt, is given by
0

dL(0)
ds

. L
=50 = 6. X~ [ 9. X)an (3.131)

where X (t) = %—‘S/ (0,t) is the so—called wvariation vector—field. Equation
(13.131)) is called the first variation formula. Given any vector—field X along
v, one can produce a variation whose variational field is X. If the variation
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fixes the endpoints, X (a) = X (b) = 0, then the second term in the formula
drops out, and we note that the length of v can always be decreased as long
as the acceleration of v is not everywhere zero. Thus the Euler—Lagrangian
equations for the arc-length functional are the equations for a curve to be
a geodesic.

Recall that in local coordinates z* € U, where U is an open subset in the
Riemannian manifold M, the geodesics are defined by the geodesic equation

BT ek =0, 3.132
ik

where overdot means derivative upon the line parameter s, while I‘é- , are
Christoffel symbols of the affine Levi-Civita connection V on M. From
(13.132)) it follows that the linear connection homotopy,

[l =sli + (1 -5,  (0<s<1),

determines the same geodesics as the original I‘; k-

3.10.1.3 Riemannian Curvature on M

The Riemann curvature tensor is a rather ominous tensor of type (1,3);
i.e., it has three vector variables and its value is a vector as well. It is
defined through the Lie bracket (3.7.2) as

R(X,)Y)Z = (V[Xﬁy] — [Vx,VyD Z = V[Xﬁy]Z - VxVyZ+VyVxZ.

This turns out to be a vector valued (1, 3)—tensor—field in the three variables
X,Y,Z € X¥(M). We can then create a (0, 4)—tensor,

R(X,)Y,ZW)=g (V[X’Y]Z —VxVyZ+VyVxZ, W) )

Clearly this tensor is skew—symmetric in X and Y, and also in Z and
W € XF(M). This was already known to Riemann, but there are some
further, more subtle properties that were discovered a little later by Bianchi.
The Bianchi symmetry condition reads

R(X,Y,Z,W)=R(Z,W,X,Y).
Thus the Riemann curvature tensor is a symmetric curvature operator
R: A°TM — A*TM.
The Ricci tensor is the (1,1)— or (0,2)—tensor defined by

RiC(X) = R(a$i7 X)&xi, RiC(X, Y) = g(R(@w y X)azi7 Y),
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for any orthonormal basis (9,:). In other words, the Ricci curvature is a
trace of the curvature tensor. Similarly one can define the scalar curvature
as the trace

scal(m) = Tr (Ric) = Ric(0,i, O ).

When the Riemannian manifold has dimension 2, all of these curvatures
are essentially the same. Since dim A?TM = 1 and is spanned by X AY
where X, Y € X*(M) form an orthonormal basis for T}, M, we see that the
curvature tensor depends only on the scalar value

K(m) = R(X,Y, X,Y),

which also turns out to be the Gaussian curvature. The Ricci tensor is a
homothety

Ric(X) = K(m)X, Ric(Y) = K(m)Y,

and the scalar curvature is twice the Gauss curvature. In dimension 3 there
are also some redundancies as dimTM = dim A2TM = 3. In particular,
the Ricci tensor and the curvature tensor contain the same amount of in-
formation.

The sectional curvature is a kind of generalization of the Gauss curva-
ture whose importance Riemann was already aware of. Given a 2—plane
7 C T,, M spanned by an orthonormal basis X,Y € X*(M) it is defined as

sec(m) = R(X,Y, X,Y).

The remarkable observation by Riemann was that the curvature operator is
a homothety, i.e., looks like | = kI on AT, M iff all sectional curvatures
of planes in T,, M are equal to k. This result is not completely trivial, as
the sectional curvature is not the entire quadratic form associated to the
symmetric operator fR. In fact, it is not true that sec > 0 implies that the
curvature operator is nonnegative in the sense that all its eigenvalues are
nonnegative. What Riemann did was to show that our special coordinates
(x',...,2™) at m can be chosen to be normal at m, i.e., satisfy the condition

rt = 5§-xj, (5jmj = gij)

on a neighborhood of m. One can show that such coordinates are actually
exponential coordinates together with a choice of an orthonormal basis for
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TmM so as to identify T,, M with R™. In these coordinates one can then
expand the metric as follows:

lRikﬂxkxl +0 (7'3) .

Gij = 045 — 3

Now the equations z! = gijacj evidently give conditions on the curvatures
Rijkl at m.

If T'%, (m) = 0, the manifold M is flat at the point m. This means that
the (1,3) curvature tensor, defined locally at m € M as

Rl = 0Tl — 0l + TL T — TL T

also vanishes at that point, i.e., Réjk(m) =0.
Now, the rate of change of a vector-field A* on the manifold M along
the curve 2%(s) is properly defined by the absolute covariant derivative

E_ k_ si(g  pk E A3\ — Ak E i Aj
EA =i'v; AP = i (8x1A +I'; AJ) = A"+ Iy 2" A
By applying this result to itself, we can get an expression for the second
covariant derivative of the vector-field A* along the curve x*(s):

QA’“ - (A’c +T5 ;‘niAj) + T & (AT + 19, & A™).

In the local coordinates (z!(s),...,2"(s)) at a point m € M, if dx' =
§2%(s) denotes the geodesic deviation, i.e., the infinitesimal vector describing
perpendicular separation between the two neighboring geodesics, passing
through two neighboring points m,n € M, then the Jacobi equation of
geodesic deviation on the manifold M holds:

D25t

ds T3 +Rzk1x3 6.r .'L' =0. (3133)

This equation describes the relative acceleration between two infinitesimally
close facial geodesics, which is proportional to the facial curvature (mea-
sured by the Riemann tensor R; » &t a point m € M), and to the geodesic
deviation dz°. Solutions of equation are called Jacobs fields.

In particular, if the manifold M is a 2D-surface in R®, the Riemann
curvature tensor simplifies into

1 .
R;mn = §Rglk(gkm 9jn — Gkn gjm)»
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where R denotes the scalar Gaussian curvature. Consequently the equation

of geodesic deviation (3.133) also simplifies into

2
%&Ei + géxi - gﬁci(gjk il sy = 0. (3.134)

This simplifies even more if we work in a locally Cartesian coordinate
system; in this case the covariant derivative % reduces to an ordinary
derivative % and the metric tensor g;; reduces to identity matrix I;;, so
our 2D equation of geodesic deviation reduces into a simple second—
order ODE in just two coordinates z! (i = 1,2)

i+ géxi - gsbi(fjk il 6xk) = 0.

3.10.2 Global Riemannian Geometry
3.10.2.1 The Second Variation Formula

Cartan also establishes another important property of manifolds with non-
positive curvature. First he observes that all spaces of constant zero cur-
vature have torsion—free fundamental groups. This is because any isometry
of finite order on Euclidean space must have a fixed point (the center of
mass of any orbit is necessarily a fixed point). Then he notices that one
can geometrically describe the L°° center of mass of finitely many points
{mq,...,my} in Euclidean space as the unique minimum for the strictly
convex function

T — max 1{(d(rm,ac))Q}.

i=1,-,k 2

In other words, the center of mass is the center of the ball of smallest radius
containing {my,...,my}. Now Cartan’s observation from above was that
the exponential map is expanding and globally distance nondecreasing as a
map:

(T,nM, Euclidean metric) — (T, M, with pull-back metric).

Thus distance functions are convex in nonpositive curvature as well as in
Euclidean space. Hence the above argument can in fact be used to conclude
that any Riemannian manifold of nonpositive curvature must also have
torsion free fundamental group.

Now, let us set up the second variation formula and explain how it
is used. We have already seen the first variation formula and how it can
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be used to characterize geodesics. Now suppose that we have a unit speed
geodesic 7y (t) parameterized on [0, ¢] and consider a variation V' (s,t) , where

V (0,t) = 7 (t). Synge then shows that (L = ‘f;’;‘)

¥/
i0) = / {9(X.X) — (9(X,4))% — g(R(X. )X, 4) bt + g3 A,

where X (t) = %—Z (0,t) is the variational vector-field, X = V4X, and
At) = V% X. In the special case where the variation fixes the endpoints,
ie, s = V(s,a) and s — V (s,b) are constant, the term with A in it falls
out. We can also assume that the variation is perpendicular to the geodesic
and then drop the term ¢ (X ,W) . Thus, we arrive at the following simple

form:

.o g . B Z .
i) = / {9(X.X) — g (R(X.%) X, 4)}dt = / (1XP — see(3, X) | X [?}dt.

Therefore, if the sectional curvature is nonpositive, we immediately observe
that any geodesic locally minimizes length (that is, among close-by curves),
even if it does not minimize globally (for instance -y could be a closed
geodesic). On the other hand, in positive curvature we can see that if a
geodesic is too long, then it cannot minimize even locally. The motivation
for this result comes from the unit sphere, where we can consider geodesics
of length > 7. Globally, we know that it would be shorter to go in the
opposite direction. However, if we consider a variation of 7 where the
variational field looks like X = sin (t . %) FE and F is a unit length parallel
field along v which is also perpendicular to 7, then we get

i) = /j{‘xf — sec (%, X) |X|2}dt
:/OE{(Z)2~COSQ (t-%)—sec(ﬂ'y,X)sin2 <t~§)}dt
= [ () o () o (1) )= gy e,

which is negative if the length ¢ of the geodesic is greater than 7. Therefore,
the variation gives a family of curves that are both close to and shorter than
~. In the general case, we can then observe that if sec > 1, then for the
same type of variation we get

L(0) < —— (= 77).

L
20
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Thus we can conclude that, if the space is complete, then the diameter
must be < 7w because in this case any two points are joined by a segment,
which cannot minimize if it has length > 7. With some minor modifications
one can now conclude that any complete Riemannian manifold (M, g) with
sec > k? > 0 must satisfy diam(M,g) < - k1. In particular, M must be
compact. Since the universal covering of M satisfies the same curvature
hypothesis, the conclusion must also hold for this space; hence M must
have compact universal covering space and finite fundamental group.

In odd dimensions all spaces of constant positive curvature must be
orientable, as orientation reversing orthogonal transformation on odd—
dimensional spheres have fixed points. This can now be generalized to
manifolds of varying positive curvature. Synge did it in the following way:
Suppose M is not simply—connected (or not orientable), and use this to
find a shortest closed geodesic in a free homotopy class of curves (that re-
verses orientation). Now consider parallel translation around this geodesic.
As the tangent field to the geodesic is itself a parallel field, we see that
parallel translation preserves the orthogonal complement to the geodesic.
This complement is now odd dimensional (even dimensional), and by as-
sumption parallel translation preserves (reverses) the orientation; thus it
must have a fixed point. In other words, there must exist a closed parallel
field X perpendicular to the closed geodesic v. We can now use the above
second variation formula

/{|X|2 |X| sec (¥, X)}dt+ g (¥, A |O / |X| sec (4, X) dt.

Here the boundary term drops out because the variation closes up at the
endpoints, and X = 0 since we used a parallel field. In case the sectional
curvature is always positive we then see that the above quantity is negative.
But this means that the closed geodesic has nearby closed curves which are
shorter. However, this is in contradiction with the fact that the geodesic
was constructed as a length minimizing curve in a free homotopy class.

In 1941 Myers generalized the diameter bound to the situation where
one only has a lower bound for the Ricci curvature. The idea is that
Ric(¥,%) = Z?;ll sec (E;,%) for any set of vector—fields F; along « such
that 4, Eq,..., E,_1 forms an orthonormal frame. Now assume that the
fields are parallel and consider the n — 1 variations coming from the vari-
ational vector—fields sm( )E Adding up the contributions from the
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variational formula applied to these fields then induces

7:ZIL(O) = EAK{(Z)2~COSQ (t- %) — sec (¥, ;) sin® (t- Z)}dt
= /OZ {(n— 1) (%)2 - cos? (t~ %) — Ric (¥,4) sin® (t- Z)}dt.

Therefore, if Ric(¥,%) > (n — 1) k? (this is the Ricci curvature of S7'), then

7§L(0) (7”A—1)/O£{(7;>2-c0s2 (t%) — k?sin? (t-g)}dt

PR %)

IN

1
=—(n—-1)—
(n=1) 55 (
which is negative when ¢ > 7 - k~! (the diameter of S}). Thus at least one
of the contributions d;éi (0) must be negative as well, implying that the
geodesic cannot be a segment in this situation.

3.10.2.2 Gauss—Bonnet Formula

In 1926 Hopf proved that in fact there is a Gauss—Bonnet formula for
all even-dimensional hypersurfaces H?" C R?"*l. The idea is that the
determinant of the differential of the Gauss map G : H?" — S?" is the
Gaussian curvature of the hypersurface. Moreover, this is an intrinsically
computable quantity. If we integrate this over the hypersurface, we get,

1

where deg (G) is the Brouwer degree of the Gauss map. Note that this
can also be done for odd—dimensional surfaces, in particular curves, but
in this case the degree of the Gauss map will depend on the embedding
or immersion of the hypersurface. Instead one gets the so—called winding
number. Hopf then showed, as Dyck had earlier done for surfaces, that
deg (G) is always half the Fuler characteristic of H, thus yielding

ﬁ /H det (DG) = v (H). (3.135)

Since the 1.h.s of this formula is in fact intrinsic, it is natural to conjecture
that such a formula should hold for all manifolds.
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3.10.2.3 Ricci Flow on M

Ricci flow, or the parabolic Einstein equation, was introduced by R. Hamil-
ton in 1982 [Hamilton (1982)] in the form

atg,-j = *2Rij. (3136)

Now, because of the minus sign in the front of the Ricci tensor R;; in
this equation, the solution metric g;; to the Ricci flow shrinks in positive
Ricci curvature direction while it expands in the negative Ricci curvature
direction. For example, on the 2—sphere S2, any metric of positive Gaussian
curvature will shrink to a point in finite time. Since the Ricci flow
does not preserve volume in general, one often considers the normalized

Ricci flow defined by
2
0igij = —2R;; + ~T9ij; (3.137)

where r = [ RdV / J dV is the average scalar curvature. Under this nor-
malized flow, which is equivalent to the (unnormalized) Ricci flow
by reparameterizing in time ¢ and scaling the metric in space by a func-
tion of ¢, the volume of the solution metric is constant in time. Also that
Einstein metrics (i.e., R;; = cg;;) are fixed points of .

Hamilton [Hamilton (1982)] showed that on a closed Riemannian
3—manifold M? with initial metric of positive Ricci curvature, the solu-
tion g(t) to the normalized Ricci flow exists for all time and the
metrics g(t) converge exponentially fast, as time ¢ tends to the infinity, to
a constant positive sectional curvature metric g, on M?3.

Since the Ricci flow lies in the realm of parabolic partial differential
equations, where the prototype is the heat equation, here is a brief review
of the heat equation [Cao and Chow (1999)].

Let (M™, g) be a Riemannian manifold. Given a C? function v : M — R,
its Laplacian is defined in local coordinates {z’} to be

Ay =Tr (V2u) = gijViVju,

where V; =V  is its associated covariant derivative (Levi—Civita connec-
tion). We say that a C? function u : M™ x [0,T) — R, where T € (0, o],
is a solution to the heat equation if

Oru = Au.
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One of the most important properties satisfied by the heat equation is the
maximum principle, which says that for any smooth solution to the heat
equation, whatever pointwise bounds hold at ¢ = 0 also hold for ¢ > 0. Let
u: M™% [0,T) — R be a C? solution to the heat equation on a complete
Riemannian manifold. If C; < w(z,0) < Cs for all x € M, for some
constants C1,Cy € R, then C7 < u(z,t) < Cy for all z € M and t € [0,T)
[Cao and Chow (1999)].

Now, given a smooth manifold M, a one—parameter family of metrics
g (t), where t € [0,T) for some T > 0, is a solution to the Ricci flow if
3.136) is valid at all x € M and ¢ € [0,T'). The minus sign in the equation
3.136)) makes the Ricci flow a forward heat equation [Cao and Chow (1999)|
(with the normalization factor 2).

In local geodesic coordinates {z'}, we have [Cao and Chow (1999)|

1 1
gij(x) = ;5 — ng'qu:prq +0 (|x|3) , therefore,  Ag;; (0) = ngij,
where A is the standard Euclidean Laplacian. Hence the Ricci flow is like

the heat equation for a Riemannian metric
0igi; = 6Ag;;.

The practical study of the Ricci flow is made possible by the following
short—time existence result: Given any smooth compact Riemannian man-
ifold (M, g,), there exists a unique smooth solution g(t) to the Ricci flow
defined on some time interval ¢ € [0, €) such that g(0) = g, [Cao and Chow
(1999)].

Now, given that short—time existence holds for any smooth initial met-
ric, one of the main problems concerning the Ricci flow is to determine
under what conditions the solution to the normalized equation exists for
all time and converges to a constant curvature metric. Results in this di-
rection have been established under various curvature assumptions, most
of them being some sort of positive curvature. Since the Ricci flow
does not preserve volume in general, one often considers, as we mentioned
in the Introduction, the normalized Ricci flow . Under this flow, the
volume of the solution g(t) is independent of time.

To study the long—time existence of the normalized Ricci flow, it is
important to know what kind of curvature conditions are preserved under
the equation. In general, the Ricci flow tends to preserve some kind of
positivity of curvatures. For example, positive scalar curvature is preserved
in all dimensions. This follows from applying the maximum principle to the
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evolution equation for scalar curvature R, which is
&R =AR+2|Ry|*.

In dimension 3, positive Ricci curvature is preserved under the Ricci flow.
This is a special feature of dimension 3 and is related to the fact that the
Riemann curvature tensor may be recovered algebraically from the Ricci
tensor and the metric in dimension 3. Positivity of sectional curvature
is not preserved in general. However, the stronger condition of positive
curvature operator is preserved under the Ricci flow.

3.10.2.4 Structure Equations on M

Let {X,}™ , {Yi}"; be local orthonormal framings on M, N respectively
and {e;}_; be the induced framing on E defined by e; = Y; o0 ¢, then there
exist smooth local coframings {w, }7;, {n;}1~, and {¢™n,}_; on TM, TN
and E respectively such that (locally)

m n
g:Zwi and h:an.
a=1 i=1
The corresponding first structure equations are [Mustafa (1999)]:
dwg = Wp A Wha, Wab = —Wha,
dn; =n; Anjis N = —Mji>

d(¢™n;) = ¢*77j A ¢*77j¢7 ¢*m~j = _¢*77ji7

where the unique 1-forms wap, 7;;, (b*nij are the respective connection
forms. The second structure equations are

AdWaep = Wae N Wep + Q%, dngj =i Ngg + Qg,
d(p™n;;) = ¢ Mg, N P ey + ¢*Q£\;7

where the curvature 2—forms are given by

1 1
M M N N
Qap = —§Rabcdwc Nwq and 5 = —§Rijkﬂ7k Ay

The pull back map ¢* and the push forward map ¢, can be written as
[Mustafa (1999)]

(b*ni = fiaWa
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for unique functions f;, on U C M, so that
b, =€ @ PN = fiai @ wa.

Note that ¢, is a section of the vector bundle ¢ TN & T*M.
The covariant differential operators are represented as

vM[)(a = Waep ® Xba VNY; = nij &® Y}'7 v*Wa = —Weq @ Wey

where V* is the dual connection on the cotangent bundle T* M.
Furthermore, the induced connection V® on F is

Vi = (1,;(Y) 0 ¢) €; ® frawa-

The components of the Ricci tensor and scalar curvature are defined
respectively by
RM = RM and  RM = RM.

acbc

Given a function f : M — | there exist unique functions f., = fi. such that

dfc — foweb = febws (3.138)
where f. = df(X.) for a local orthonormal frame {X_.}",. To prove this

we take the exterior derivative of df = > few. and using structure
equations, we have

0 = [dfe Nwe + foews Awpe] = [(dfe — fowep) Awe] -

Hence by Cartan’s lemma (cf. [Willmore (1993)]), there exist unique func-
tions fep = fre such that

dfc - fbwcb = fcbwlr
The Laplacian of a function f on M is given by
Af = —Te(Vdf),

that is, negative of the usual Laplacian on functions.
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3.10.3 Application: Autonomous Lagrangian Dynamics
3.10.3.1 Basis of Lagrangian Dynamics

Recall that Riemannian metric ¢ =<, > on the configuration manifold M
is a positive—definite quadratic form g : TM — R, given in local coordinates
q" € U (U open in M) as

9ij = 9ij(q,m)dg'dq’,  where (3.139)
Ox" 0z*®

S (3.140)

gii(g;m) = myd
is the covariant material metric tensor defining a relation between internal
and external coordinates and including n segmental masses m,. The quan-
tities 2" are external coordinates (r,s = 1,...,6n) and 4,5 = 1,...,N =
6n — h, where h denotes the number of holonomic constraints.
The Lagrangian of the system is a quadratic form L : TM — R depen-
dent on velocity v and such that L(v) = % < w,v >. It is locally given
by

1 o
L(v) = §9ij(q7m) v’

On the velocity phase-space manifold T'M exist:

(1) a unique 1—form 6, defined in local coordinates ¢, v* = ¢* € U, (U,
open in TM) by 0 = L,:dq’, where L,; = 0L/dv'; and

(2) a unique nondegenerate Lagrangian symplectic 2—form wy,, which is
closed (dwy = 0) and exact (wy, = df; = dL,: Adq’).

TM is an orientable manifold, admitting the standard volume given by

in local coordinates ¢', v' = ¢* € U, (U, open in TM) it is given by
Qp =dg* A ANdgN Advt A A do?Y.

On the velocity phase—space manifold T'M we can also define the action
A :TM — R in local coordinates ¢, v* = ¢* € U, (U, open in TM) given
by A = v'L,i, so E = v'L,; — L. The Lagrangian vector-field X on
TM is determined by the condition ix,wr = dE. Classically, it is given



290 Applied Differential Geometry: A Modern Introduction

by the second-order Lagrangian equations

d oL L
o " o (3.141)

For a Lagrangian vector—field X on M, there is a base integral curve
Yo(t) = (¢'(t), v(t)) iff vo(t) is a geodesic. This is given by the contravari-
ant velocity equation

i =", 0+ Tl = 0. (3.142)

Here I‘;k denote the Christoffel symbols of the Levi-Civita connection V
in an open chart U on M, defined on the Riemannian metric g = <, > by

(see section [3.10.1.1) above)
. , 1
Iy = ¢"Tju, Cijr = 5(8mi9jk + 0 gi + Opr gij)- (3.143)

The Lhs o' = 0" + T, v/vF in the second part of represents
the Bianchi covariant derivative of the velocity with respect to t. Parallel
transport on M is defined by #' = 0. When this applies, X, is called the
geodesic spray and its flow the geodesic flow.

For the dynamics in the gravitational potential field V : M — R, the
Lagrangian L : TM — R has an extended form

1 .
L('U,q) = igijvlvj - V(q)v

A Lagrangian vector—field X is still defined by the second—order La-
grangian equations .

A general form of the forced, non—conservative Lagrangian equations is
given as

d OL oL i
Tt o qu = FIi(t, ¢, v")).

Here the F;(t, ¢*, v*) represent any kind of covariant forces as a functions
of time, coordinates and momenta. In covariant form we have

P = gy + D) = Bt
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3.10.3.2 Lagrange—Poincaré Dynamics
Euler—Poincaré Equations

Let G be a Lie group and let L : TG — R be a left—invariant Lagrangian.
Let [ : g — R be its restriction to the identity. For a curve g(t) € G, let
£(t) = g(t)~* - g(t); that is, £(t) = Ty Lg(t)-19(t). Then the following are
equivalent [Marsden and Ratiu (1999):

(1) g(t) satisfies the Euler-Lagrangian equations for L on G;
(2) The variational principle holds,

5 / L(g(t). §(t)) dt =0

for variations with fixed endpoints;
(3) The Euler—Poincaré equations hold:

o _ .0
dtoc — e ee

(4) The variational principle holds on g,

5 / e(t)) di =0,

using variations of the form 6§ = 7 + [, 7], where 7 vanishes at the
endpoints.

Lagrange—Poincaré Equations

Here we follow [Marsden and Ratiu (1999)] and drop Euler-Lagrangian
equations and variational principles from a general velocity phase—space
TM to the quotient TM/G by an action of a Lie group G on M. If L
is a G—invariant Lagrangian on T'M, it induces a reduced Lagrangian [
on TM/G. We introduce a connection A on the principal bundle M —
S = M/G, assuming that this quotient is nonsingular. This connection
allows one to split the variables into a horizontal and vertical part. Let
internal variables z be coordinates for shape-space S = M/G, let n* be
coordinates for the Lie algebra g relative to a chosen basis, let [ be the
Lagrangian regarded as a function of the variables z, %, n* and let C§,
be the structure constants of the Lie algebra g of G.

If one writes the Euler—Lagrangian equations on T'M in a local principal
bundle trivialization, with coordinates x® on the base and n® in the fibre,
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then one gets the following system of Hamel equations:

do o g 4O
dtois ~ xe " dtonf ~ o P

However, this representation of the equations does not make global in-
trinsic sense. The introduction of a connection overcomes this, and one
can intrinsically and globally split the original variational principle relative
to horizontal and vertical variations. One gets from one form to the other
by means of the velocity shift given by replacing n* by the vertical part
relative to the affine connection

é-a :Ag‘ia +7]a~

Here AZ are the local coordinates of the connection A. This change of coor-
dinates is motivated from the mechanical point of view, since the variables
&% have the interpretation of the locked angular velocity. The resulting
Lagrange—Poincaré equations have the following form:

d o o ol oy,
dL9ic  dao  og" (Bzse
d o ol
dt 9¢b T ot

In these equations, By 5 are the coordinates of the curvature B of 4,

B4 Bo e )

(Bbam + C3¢ )

__va Ab a __ a
L =CHhAL, and By, = —Bg,.

(e}

The variables £* may be regarded as the rigid part of the variables on the
original configuration space, while x® are the internal variables.

3.10.4 Core Application: Search for Quantum Gravity
3.10.4.1  What Is Quantum Gravity?

The landscape of fundamental physics has changed substantially during the
last few decades. Not long ago, our understanding of the weak and strong
interactions was very confused, while general relativity was almost totally
disconnected from the rest of physics and was empirically supported by
little more than its three classical tests. Then two things have happened.
The SU(3) x SU(2) x U(1) Standard Model has found a dramatic empirical
success, showing that quantum field theory (QFT) is capable of describing
all accessible fundamental physics, or at least all non—gravitational physics.
At the same time, general relativity (GR) has undergone an extraordinary
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‘renaissance’, finding widespread application in astrophysics and cosmology,
as well as novel vast experimental support — so that today GR is basic
physics needed for describing a variety of physical systems we have access
to, including advanced technological systems [Ashby (1997)].

These two parallel developments have moved fundamental physics to a
position in which it has rarely been in the course of its history: We have
today a group of fundamental laws, the Standard Model and GR, which
—even if it cannot be regarded as a satisfactory global picture of Nature—
is perhaps the best confirmed set of fundamental theories after Newton’s
universal gravitation and Maxwell’s electromagnetism. More importantly,
there aren’t today experimental facts that openly challenge or escape this
set of fundamental laws. In this unprecedented state of affairs, a large
number of theoretical physicists from different backgrounds have begun to
address the piece of the puzzle which is clearly missing: combining the
two halves of the picture and understanding the quantum properties of
the gravitational field. Equivalently, understanding the quantum proper-
ties of space—time. Interest and researches in quantum gravity have thus
increased sharply in recent years. And the problem of understanding what
is a quantum space-time is today at the core of fundamental physics.

Today we have some well developed and reasonably well defined tenta-
tive theories of quantum gravity. String theory and loop quantum gravity
are the two major examples. Within these theories definite physical results
have been obtained, such as the explicit computation of the ‘quanta of ge-
ometry’ and the derivation of the black hole entropy formula. Furthermore,
a number of fresh new ideas, like noncommutative geometry, have entered
quantum gravity. For an overview of the problem of quantum gravity, see
[Isham (1997)].

3.10.4.2  Main Approaches to Quantum Gravity
String theory

String theory is by far the research direction which is presently most
investigated. String theory presently exists at two levels. First, there is a
well developed set of techniques that define the string perturbation ex-
pansion over a given metric background. Second, the understanding of
the non—perturbative aspects of the theory has much increased in recent
years |Polchinski (1995)] and in the string community there is a widespread
faith, supported by numerous indications, in the existence of a yet-to-be-
found full non—perturbative theory, capable of generating the perturbation



294 Applied Differential Geometry: A Modern Introduction

expansion. There are attempts of constructing this non—perturbative the-
ory, generically denoted M theory. The currently popular one is Matrix—
theory, of which it is far too early to judge the effectiveness [Matacz (2002);
Ishibashi et. al. (1997)].

The claim that string theory solves QG is based on two facts. First, the
string perturbation expansion includes the graviton. More precisely, one of
the string modes is a massless spin two, and helicity £+2, particle. Such a
particle necessarily couples to the energy—momentum tensor of the rest of
the fields [Weinberg (1964); Weinberg (1980)] and gives general relativity
to a first approximation. Second, the perturbation expansion is consistent
if the background geometry over which the theory is defined satisfies a cer-
tain consistency condition; this condition turns out to be a high energy
modification of the Einstein’s equations. The hope is that such a consis-
tency condition for the perturbation expansion will emerge as a full-fledged
dynamical equation from the yet—to—be—found non—perturbative theory.

From the point of view of the problem of quantum gravity, the relevant
physical results from string theory are two |[Rovelli (1997)]:

Black hole entropy. The most remarkable physical results for quantum
gravity is the derivation of the Bekenstein—-Hawking formula for the
entropy of a black hole as a function of the horizon area. This beautiful
result has been obtained by [Strominger and Vafa (1996)], and has then
been extended in various directions. The result indicates that there is
some unexpected internal consistency between string theory and QFT
on curved space.

Microstructure of space—time. There are indications that in string the-
ory the space—time continuum is meaningless below the Planck length.
An old set of results on very high energy scattering amplitudes indicates
that there is no way of probing the space-time geometry at very short
distances. What happens is that in order to probe smaller distance one
needs higher energy, but at high energy the string ‘opens up from being
a particle to being a true string’ which is spread over space-time, and
there is no way of focusing a string’s collision within a small space-time
region.

More recently, in the non—perturbative formulation of the Matrix—theory
[Matacz (2002)], the space-time coordinates of the string % are replaced by
matrices (X%)" . This can perhaps be viewed as a new interpretation of the
space—time structure. The continuous space—time manifold emerges only
in the long distance region, where these matrices are diagonal and com-
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mute; while the space—time appears to have a noncommutative discretized
structure in the short distance regime. This features are still poorly under-
stood, but they have intriguing resonances with noncommutative geometry
[Connes et. al. (1997)] and loop quantum gravity [Rovelli (1998)].

A key difficulty in string theory is the lack of a complete non-—
perturbative formulation. During the last year, there has been excitement
for some tentative non—perturbative formulations [Matacz (2002)]; but it
is far too early to understand if these attempts will be successful. Many
previously highly acclaimed ideas have been rapidly forgotten.

A distinct and even more serious difficulty of string theory is the lack
of a background independent formulation of the theory. In the words of Ed
Witten:

‘Finding the right framework for an intrinsic, background inde-
pendent formulation of string theory is one of the main problems in
string theory, and so far has remained out of reach... This problem
is fundamental because it is here that one really has to address the
question of what kind of geometrical object the string represents.’

Most of string theory is conceived in terms of a theory describing ex-
citations over this or that background, possibly with connections between
different backgrounds. This is also true for (most) non—perturbative for-
mulations such as Matrix theory. For instance, the (bosonic part of the)
Lagrangian of Matrix—theory is

L~ %Tr (X2 + ;[Xi,XjF) : (3.144)

The indices that label the matrices X’ are raised and lowered with a
Minkowski metric, and the theory is Lorentz invariant. In other words,
the Lagrangian is really

1 T R
L~ ST <9009”Xin + QQZkQJZ[XijHXkaXl]) : (3.145)

where ¢ is the flat metric of the background. This shows that there is a
non—dynamical metric, and an implicit flat background in the action of the
theory.

However, the world is not formed by a fixed background over which
things happen. The background itself is dynamical. In particular, for
instance, the theory should contain quantum states that are quantum su-
perpositions of different backgrounds — and presumably these states play
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an essential role in the deep quantum gravitational regime, namely in situa-
tions such as the big bang or the final phase of black hole evaporation. The
absence of a fixed background in nature (or active diffeomorphism invari-
ance) is the key general lessons we have learned from gravitational theories
[Rovelli (1997)].

There has been a burst of recent activity in an outgrowth of string
theory denoted string cosmology by [Veneziano (1991)]. The aim of string
cosmology is to extract physical consequences from string theory by apply-
ing it to the big bang. The idea is to start from a Minkowski flat universe;
show that this is unstable and therefore will run away from the flat (false—
vacuum) state. The evolution then leads to a cosmological model that
starts off in an inflationary phase. This scenario is described using mini—
superspace technology, in the context of the low energy theory that emerge
as limit of string theory. Thus, first one freezes all the massive modes of
the string, then one freezes all massless modes except the zero modes (the
spatially constant ones), obtaining a finite dimensional theory, which can
be quantized non—perturbatively.

Loop quantum gravity

The second most popular approach to quantum gravity, and the most popu-
lar among relativists, is loop quantum gravity [Rovelli (1998)]. Loop quan-
tum gravity is presently the best developed alternative to string theory.
Like strings, it is not far from a complete and consistent theory and it
yields a corpus of definite physical predictions, testable in principle, on
quantum space—time.

Loop quantum gravity, however, attacks the problem from the opposite
direction than string theory. It is a non-perturbative and background in-
dependent theory to start with. In other words, it is deeply rooted into
the conceptual revolution generated by general relativity. In fact, successes
and problems of loop quantum gravity are complementary to successes and
problems of strings. Loop quantum gravity is successful in providing a
consistent mathematical and physical picture of non perturbative quan-
tum space—time; but the connection to the low energy dynamics is not yet
completely clear.

The general idea on which loop quantum gravity is based is the fol-
lowing. The core of quantum mechanics is not identified with the struc-
ture of (conventional) QFT, because conventional QFT presupposes a back-
ground metric space—time, and is therefore immediately in conflict with GR.
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Rather, it is identified with the general structure common to all quantum
systems. The core of GR is identified with the absence of a fixed observ-
able background space—time structure, namely with active diffeomorphism
invariance. Loop quantum gravity is thus a quantum theory in the con-
ventional sense: a Hilbert space and a set of quantum (field) operators,
with the requirement that its classical limit is GR with its conventional
matter couplings. But it is not a QFT over a metric manifold. Rather,
it is a ‘quantum field theory on a differentiable manifold’, respecting the
manifold’s invariances and where only coordinate independent quantities
are physical.

Technically, loop quantum gravity is based on two inputs [Rovelli (1998);
Rovelli (1997)]:

e The formulation of classical GR based on the Ashtekar connection
[Ashtekar (1986); Ashtekar (1987); |Ashtekar (1991)]. The version of
the connection now most popular is not the original complex one, but
an evolution of the same, in which the connection is real.

e The choice of the holonomies of this connection, denoted loop vari-
ables, as basic variables for the quantum gravitational field [Rovelli
and Smolin (1988)].

This second choice determines the peculiar kind of quantum theory be-
ing built. Physically, it corresponds to the assumption that excitations
with support on a loop are normalizable states. This is the key technical
assumption on which everything relies.

It is important to notice that this assumption fails in conventional 4D
Yang-Mills theory, because loop-like excitations on a metric manifold are
too singular: the field needs to be smeared in more dimensions [Rovelli
(1997)]. Equivalently, the linear closure of the loop states is a ‘far too big’
non-separable state space. This fact is the major source of some particle
physicists’s suspicion at loop quantum gravity. What makes GR different
from 4D Yang—Mills theory, however, is non—perturbative diffeomorphism
invariance. The gauge invariant states, in fact, are not localized at all
— they are, pictorially speaking, smeared by the (gauge) diffeomorphism
group all over the coordinates manifold. More precisely, factoring away
the diffeomorphism group takes us down from the state space of the loop
excitations, which is ‘too big’, to a separable physical state space of the
right size. Thus, the consistency of the loop construction relies heavily
on diffecomorphism invariance. In other words, the diff-invariant invariant
loop states (more precisely, the diff-invariant spin network states) are not
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physical excitations of a field on space—time. They are excitations of space—
time itself.

Loop quantum gravity was briefly described by |[Rovelli (1997)| as fol-

lows:

Definition of theory. The mathematical structure of the theory has been
put on a very solid basis. Early difficulties have been overcome. In
particular, there were three major problems in the theory: the lack of
a well defined scalar product, the overcompleteness of the loop basis,
and the difficulty of treating the reality conditions.

e The problem of the lack of a scalar product on the Hilbert space
has been solved with the definition of a diffeomorphism invariant
measure on a space of connections [Ashtekar and Lewandowskil
. Later, it has also became clear that the same scalar prod-
uct can be defined in a purely algebraic manner |DePietri and,
. The state space of the theory is therefore a gen-
uine Hilbert space H.

e The overcompleteness of the loop basis has been solved by the in-
troduction of the spin network states [Rovelli and Smolin (1995)].
A spin network is a graph carrying labels (related to SU(2) rep-
resentations and called ‘colors’) on its links and its nodes.

Each spin network defines a spin network state, and the spin net-
work states form a (genuine, non-overcomplete) orthonormal basis
in H.

e The difficulties with the reality conditions have been circum-

vented by the use of the real formulation [Barbero (1994);
Barbero (1995a); Barbero (1995b)} [Thiemann (1996)].
The kinematics of loop quantum gravity is now defined with a
level of rigor characteristic of mathematical physics
Isham (1992); Ashtekar et. al. (1995)] and the theory can be
defined using various alternative techniques |[DePietri and Rovelli
((1996)t |DePietri (1997)].

Hamiltonian constraint. A rigorous definition version of the Hamilto-
nian constraint equation has been constructed. This is anomaly free,
in the sense that the constraints algebra closes (but see later on). The
Hamiltonian has the crucial properties of acting on nodes only, which
implies that its action is naturally discrete and combinatorial
land Smolin (1988); |[Rovelli and Smolin (1994)|. This fact is at the roots
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of the existence of exact solutions [Rovelli and Smolin (1988)|, and of
the possible finiteness of the theory

Matter. The old hope that QFT divergences could be cured by QG has
recently received an interesting corroboration. The matter part of the
Hamiltonian constraint is well-defined without need of renormalization.
Thus, a main possible stumbling block is over: infinities did not appear
in a place where they could very well have appeared [Rovelli (1997)].

Black hole entropy. The first important physical result in loop quantum
gravity is a computation of black hole entropy [Krasnov (1997); Rovelli
(1996a); Rovelli (1996b)].

Quanta of geometry. A very exciting development in quantum gravity in
the last years has been by the computations of the quanta of geometry.
That is, the computation of the discrete eigenvalues of area and volume.

In quantum gravity, any quantity that depends on the metric becomes
an operator. In particular, so do the area A of a given (physically defined)
surface, or the volume V of a given (physically defined) spatial region.
In loop quantum gravity, these operators can be written explicitly. They
are mathematically well defined self-adjoint operators in the Hilbert space
‘H. We know from quantum mechanics that certain physical quantities are
quantized, and that we can compute their discrete values by computing the
eigenvalues of the corresponding operator. Therefore, if we can compute
the eigenvalues of the area and volume operators, we have a physical pre-
diction on the possible quantized values that these quantities can take, at
the Planck scale. These eigenvalues have been computed in loop quantum
gravity. Here is for instance the main sequence of the spectrum of the area

Az = 81y hG Z\/ji(ji+1). (3.146)

j = (j1,-.-,Jn) is an n—tuplet of half-integers, labeling the eigenvalues,
G and h are the Newton and Planck constants, and v is a dimensionless
free parameter, denoted the so—called Immirzi parameter |[Immirzi (1997)],
not determined by the theory. A similar result holds for the volume. The
spectrum has been rederived and completed using various different
techniques |DePietri and Rovelli (1996)]. These spectra represent solid
results of loop quantum gravity. Under certain additional assumptions on
the behavior of area and volume operators in the presence of matter, these
results can be interpreted as a corpus of detailed quantitative predictions
on hypothetical Planck scale observations.
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Besides its direct relevance, the quantization of the area and thee volume
is of interest because it provides a physical picture of quantum space—time.
The states of the spin network basis are eigenstates of some area and volume
operators. We can say that a spin network carries quanta of area along its
links, and quanta of volume at its nodes. The magnitude of these quanta
is determined by the coloring. For instance, the half-integers j; ... j, in
are the coloring of the spin network’s links that cross the given
surface. Thus, a quantum space—time can be decomposed in a basis of states
that can be visualized as made by quanta of volume (the intersections)
separated by quanta of area (the links). More precisely, we can view a
spin network as sitting on the dual of a cellular decomposition of physical
space. The nodes of the spin network sit in the center of the 3—cells, and
their coloring determines the (quantized) 3—cell’s volume. The links of the
spin network cut the faces of the cellular decomposition, and their color ;
determine the (quantized) areas of these faces via equation .

3.10.4.3 Traditional Approaches to Quantum Gravity
Discrete Approaches

Discrete quantum gravity is the program of regularizing classical GR in
terms of some lattice theory, quantize this lattice theory, and then study
an appropriate continuum limit, as one may do in QCD. There are three
main ways of discretizing GR.

Regge Calculus

Regge introduced the idea of triangulating space—time by means of a sim-
plicial complex and using the lengths [; of the links of the complex as
gravitational variables [Regge (1961)]. The theory can then be quantized
by integrating over the lengths [; of the links. For a recent review and
extensive references see [Williams and Tuckey (1992)]. More recent work
has focused in problems such as the geometry of Regge superspace [Hartle
et. al. (1997)] and choice of the integration measure.

Dynamical Triangulations
Alternatively, one can keep the length of the links fixed, and capture

the geometry by means of the way in which the simplices are glued to-
gether, namely by the triangulation. The FEinstein—Hilbert action of Eu-
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clidean gravity is approximated by a simple function of the total num-
ber of simplices and links, and the theory can be quantized summing over
distinct triangulations (for a detailed introduction, see [Ambjgrn et. al.
(1998)]). There are two coupling constants in the theory, roughly cor-
responding to the Newton and cosmological constants. These define a
two dimensional space of theories. The theory has a nontrivial contin-
uum limit if in this parameter space there is a critical point correspond-
ing to a second order phase transition. The theory has phase transition
and a critical point. The transition separates a phase with crumpled
space—times from a phase with ‘elongated’ spaces which are effectively
2D, with characteristic of a branched polymer [Bakker and Smit (1995);
Ambjgrn et. al. (2001a)]. This polymer structure is surprisingly the same
as the one that emerges from loop quantum gravity at short scale. Near
the transition, the model appears to produce ‘classical’ S* space-times, and
there is evidence for scaling, suggesting a continuum behavior.

State Sum Models

A third road for discretizing GR was opened by a celebrated paper by [Pon-
zano and Regge (1968)]. They started from a Regge discretization of 3D GR
and introduced a second discretization, by posing the so—called Ponzano—
Regge ansatz that the lengths [ assigned to the links are discretized as well,
in half-integers in Planck units

l=hGj, j=0, 1,... (3.147)

1
3
(Planck length is AG in 3D.) The half integers j associated to the links are
denoted ‘coloring’ of the triangulation. Coloring can be viewed as the as-
signment of a SU(2) irreducible representation to each link of the Regge tri-
angulation. The elementary cells of the triangulation are tetrahedra, which
have six links, colored with six SU(2) representations. SU(2) representa-
tion theory naturally assigns a number to a sextuplet of representations:
the Wigner 6 — j symbol. Rather magically, the product over all tetrahedra
of these 6 — j symbols converges to (the real part of the exponent of) the
Einstein—Hilbert action. Thus, Ponzano and Regge were led to propose a
quantization of 3D GR based on the partition function

Z ~ Z H 6 — j(color of the tetrahedron), (3.148)

coloring tetrahedra
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where we have neglected some coefficients for simplicity. They also provided
arguments indicating that this sum is independent from the triangulation
of the manifold.

The formula is simple and elegant, and the idea has recently had
many surprising and interesting developments. 3D GR was quantized as a
topological field theory by Ed Witten in [Witten (1988c)] and using loop
quantum gravity in [Ashtekar et. al. (1989)]. The Ponzano-Regge quanti-
zation based on equation was shown to be essentially equivalent to
the TQFT quantization in [Ooguri (1992a)|, and to the loop quantum grav-
ity in [Rovelli (1993)] (for an extensive discussion of 3D quantum gravity,
see |Carlip and Nelson (1995)]).

It turns out that the Ponzano—Regge ansatz (3.147)) can be derived from
loop quantum gravity [Rovelli (1993)]. Indeed, (3.147) is the 2D version of
the 3D formula , which gives the quantization of the area. There-
fore, a key result of quantum gravity of the last years, namely the quan-

tization of the geometry, derived in the loop formalism from a full fledged
non—perturbative quantization of GR, was anticipated as an ansatz by the
intuition of Ponzano and Regge.

Hawking’s Euclidean Quantum Gravity

Hawking’s Euclidean quantum gravity is the approach based on his formal
sum over Euclidean geometries (i.e., an Euclidean path integral, see chapter
6 below)

Z ~ J\//D[g] e~ JdevaRlel, (3.149)

As far as we understand, Hawking and his close collaborators do not any-
more view this approach as an attempt to directly define a fundamental
theory. The integral is badly ill defined, and does not lead to any known
viable perturbation expansion. However, the main ideas of this approach
are still alive in several ways.

First, Hawking’s picture of quantum gravity as a sum—over—space—times,
continues to provide a powerful intuitive reference point for most of the re-
search related to quantum gravity. Indeed, many approaches can be seen
as attempts to replace the ill-defined and non-renormalizable formal inte-
gral with a well defined expression. The dynamical triangulation
approach (see above) and the spin foam approach (see below) are examples
of attempts to realize Hawking’s intuition. Influence of Euclidean quantum
gravity can also be found in the Atiyah azioms for TQFT.
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Second, this approach can be used as an approximate method for de-
scribing certain regimes of non—perturbative quantum space—time physics,
even if the fundamental dynamics is given by a more complete theory. In
this spirit, Hawking and collaborators have continued the investigation of
phenomena such as, for instance, pair creation of black holes in a back-
ground de Sitter space—time.

Effective Perturbative Quantum Gravity

If we expand classical GR around, say, the Minkowski metric,

gHV (l‘) = npu + hlLV(z)v

and construct a conventional QFT for the field h,, (z), we get, as it is well
know, a non renormalizable theory. A small but intriguing group of papers
has recently appeared, based on the proposal of treating this perturbative
theory seriously, as a respectable low energy effective theory by its own.
This cannot solve the deep problem of understanding the world in general
relativistic quantum terms. But it can still be used for studying quantum
properties of space-time in some regimes. This view has been advocated
in a convincing way by John Donoghue, who has developed effective field
theory methods for extracting physics from non renormalizable quantum
GR [Donoghue (1996)].

QFT in Curved Space—Time

Quantum field theory in curved space-time is by now a reasonably
established theory (see, e.g., [Wald (1994); Birrel and Davies (1982);
Fulling (1989)], predicting physical phenomena of remarkable interest such
as particle creation, vacuum polarization effects and Hawking’s black-hole
radiance [Hawking (1975)]. To be sure, there is no direct nor indirect ex-
perimental observation of any of these phenomena, but the theory is quite
credible as an approximate theory, and many theorists in different fields
would probably agree that these predicted phenomena are likely to be real.

The most natural and general formulation of the theory is within the
algebraic approach [Haag (1992)], in which the primary objects are the local
observables and the states of interest may all be treated on equal footing
(as positive linear functionals on the algebra of local observables), even if
they do not belong to the same Hilbert space.

The great merit of QFT on curved space—time is that it has provided
us with some very important lessons. The key lesson is that in general
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one loses the notion of a single preferred quantum state that could be
regarded as the ‘vacuum’; and that the concept of ‘particle’ becomes vague
and/or observer-dependent in a gravitational context. In a gravitational
context, vacuum and particle are necessarily ill defined or approximate
concepts. It is perhaps regrettable that this important lesson has not been
yet absorbed by many scientists working in fundamental theoretical physics
[Rovelli (1997)].

3.10.4.4 New Approaches to Quantum Gravity

Noncommutative Geometry

Noncommutative geometry is a research program in mathematics and
physics which has recently received wide attention and raised much ex-
citement. The program is based on the idea that space—time may have a
noncommutative structure at the Planck scale. A main driving force of this
program is the radical, volcanic and extraordinary sequence of ideas of A.
Connes |Connes (1994)]. Connes observes that what we know about the
structure of space-time derives from our knowledge of the fundamental in-
teractions: special relativity derives from a careful analysis of Maxwell the-
ory; Newtonian space-time and general relativity, derived both from a care-
ful analysis of the gravitational interaction. Recently, we have learned to
describe weak and strong interactions in terms of the SU(3) x SU(2) x U(1)
Standard Model. Connes suggests that the Standard Model might hide in-
formation on the minute structure of space-time as well. By making the
hypothesis that the Standard Model symmetries reflect the symmetry of a
noncommutative microstructure of space-time, Connes and Lott are able
to construct an exceptionally simple and beautiful version of the Standard
Model itself, with the impressive result that the Higgs field appears auto-
matically, as the components of the Yang—Mills connection in the internal
‘noncommutative’ direction [Connes and Lott (1990)]. The theory admits
a natural extension in which the space—time metric, or the gravitational
field, is dynamical, leading to GR |Chamseddine and Connes (1996)].

The key idea behind a non-commutative space—time is to use algebra
instead of geometry in order to describe spaces. Consider a topological
(Hausdorf) space M. Consider all continuous functions f on M. These
form an algebra A, because they can be multiplied and summed, and the
algebra is commutative. According to a celebrated result, due to Gel’fand,
knowledge of the algebra A is equivalent to knowledge of the space M,
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i.e., M can be reconstructed from A. In particular, the points x of the
manifold can be obtained as the 1D irreducible representations x of A,
which are all of the form z(f) = f(z). Thus, we can use the algebra
of the functions, instead of using the space. In a sense, notices Connes,
the algebra is more physical, because we never deal with space-time: we
deal with fields, or coordinates, over space—time. But one can capture
Riemannian geometry as well, algebraically. Consider the Hilbert space H
formed by all the spinor fields on a given Riemannian (spin) manifold. Let
D be the (curved) Dirac operator, acting on H. We can view A as an
algebra of (multiplicative) operators on H. Now, from the triple (H, A, D),
which Connes calls ‘spectral triple’, one can reconstruct the Riemannian
manifold. In particular, it is not difficult to see that the distance between
two points x and y can be obtained from these data by

d(z,y) = SUP{feA,||D,f||<1} lz(f) —y(f)l, (3.150)

a beautiful surprising algebraic definition of distance. A non-commutative
space—time is the idea of describing space—time by a spectral triple in which
the algebra A is a non-commutative algebra.

Remarkably, the gravitational field is captured, together with the Yang—
Mills field, and the Higgs fields, by a suitable Dirac operator D |Chamsed-
dine and Connes (1996)], and the full action is given simply by the trace of
a very simple function of the Dirac operator.

Even if we disregard noncommutativity and the Standard Model, the
above construction represents an intriguing re-formulation of conventional
GR, in which the geometry is described by the Dirac operator instead than
the metric tensor. This formulation has been explored in [Landi (1998)],
where it is noticed that the eigenvalues of the Dirac operator are diffeo-
morphism invariant functions of the geometry, and therefore represent true
observables in Euclidean GR. Their Poisson bracket algebra can be explic-
itly computed in terms of the energy—momentum eigenspinors. Surpris-
ingly, the Einstein equations turn out to be captured by the requirement
that the energy momentum of the eigen—spinors scale linearly with the
eigenvalues.

Variants of Connes’s version of the idea of non commutative geometry
and noncommutative coordinates have been explored by many authors (see,
e.g., [Doplicher et. al. (1994)]) and intriguing connections with string theory
have been suggested [Connes et. al. (1997); [Frohlich and Gawedzki (1994)].
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Null-Surface Formulation

A second new set of ideas comes from [Frittelli et. al. (1995)]. These au-
thors have discovered that the (conformal) information about the geometry
is captured by suitable families of null hypersurfaces in space—time, and
have been able to reformulate GR as a theory of self-interacting families
of surfaces. A remarkable aspect of the theory is that physical informa-
tion about the space—time interior is transferred to null infinity, along null
geodesics. Thus, the space—time interior is described in terms of how we
would (literally) ‘see it’ from outside. This description is diffeomorphism
invariant, and addresses directly the relational localization characteristic of
GR: the space-time location of a region is determined dynamically by the
gravitational field and is captured by when and where we see the space—
time region from infinity. This idea may lead to interesting and physically
relevant diffeomorphism invariant observables in quantum gravity. A dis-
cussion of the quantum gravitational fuzziness of the space—time points
determined by this perspective can be found in [Frittelli et. al. (1997)].

Spin Foam Models

From the mathematical point of view, the problem of quantum gravity is
to understand what is QFT on a differentiable manifold without metric. A
class of well understood QFT’s on manifolds exists. These are the topolog-
ical quantum field theories (TQFT). Topological field theories are particu-
larly simple field theories. They have as many fields as gauges and therefore
no local degree of freedom, but only a finite number of global degrees of
freedom. An example is GR in 3D, say on a torus (the theory is equivalent
to a Chern—Simons theory). In 3D, the Einstein equations require that
the geometry is flat, so there are no gravitational waves. Nevertheless, a
careful analysis reveals that the radii of the torus are dynamical variables,
governed by the theory. Witten has noticed that theories of this kind give
rise to interesting quantum models [Witten (1988a)|, and [Atiyah (1989)]
has provided a beautiful axiomatic definition of a TQFT. Concrete exam-
ples of TQFT have been constructed using Hamiltonian, combinatorial and
path integral methods. The relevance of TQFT for quantum gravity has
been suggested by many and the recent developments have confirmed these
suggestions.

Recall that TQFT is a diffeomorphism invariant QFT. Sometimes, the
expression TQFT is used to indicate all diffeomorphism invariant QFT’s.
This has lead to a widespread, but incorrect belief that any diffeomorphism



Applied Manifold Geometry 307

invariant QFT has a finite number of degrees of freedom, unless the invari-
ance is somehow broken, for instance dynamically. This belief is wrong.
The problem of quantum gravity is precisely to define a diffeomorphism
invariant QFT having an infinite number degrees of freedom and ‘local’
excitations. Locality in a gravity theory, however, is different from locality
in conventional field theory. This point is often source of confusion. Here
is Rovelli’s clarification [Rovelli (1997)]:

e In a conventional field theory on a metric space, the degrees of freedom
are local in the sense that they can be localized on the metric manifold
(an electromagnetic wave is here or there in Minkowski space).

e In a diffeomorphism invariant field theory such as general relativity, the
degrees of freedom are still local (gravitational waves exist), but they
are not localized with respect to the manifold. They are nevertheless
localized with respect to each other (a gravity wave is three meters
apart from another gravity wave, or from a black hole).

¢ In a topological field theory, the degrees of freedom are not localized at
all: they are global, and in finite number (the radius of a torus is not
in a particular position on the torus).

The first TQFT directly related to quantum gravity was defined by
[Turaev and Viro (1992)]. The Turaev-Viro model is a mathematically rig-
orous version of the 3D Ponzano-Regge quantum gravity model described
above. In the Turaev-Viro theory, the sum is made finite by re-
placing SU(2) with quantum SU(2), (with a suitable ¢). Since SU(2),
has a finite number if irreducible representations, this trick, suggested by
[Ooguri (1992a); Ooguri (1992b)|, makes the sum finite. The extension of
this model to four dimensions has been actively searched for a while and
has finally been constructed by [Crane and Yetter (1993)], again following
Ooguri’s ideas. The Crane—Yetter (CY) model is the first example of 4D
TQFT. It is defined on a simplicial decomposition of the manifold. The
variables are spins (‘colors’) attached to faces and tetrahedra of the sim-
plicial complex. Each 4-simplex contains 10 faces and 5 tetrahedra, and
therefore there are 15 spins associated to it. The action is defined in terms
of the quantum Wigner 15 — j symbols, in the same manner in which the
Ponzano—Regge action is constructed in terms of products of 6 — j symbols.

Z ~ Z H 15 — j(color of the 4 — simplex), (3.151)

coloring 4—simplices

(where we have disregarded various factors for simplicity). Crane and Yet-



308 Applied Differential Geometry: A Modern Introduction

ter introduced their model independently from loop quantum gravity. How-
ever, recall that loop quantum gravity suggests that in 4 dimensions the
naturally discrete geometrical quantities are area and volume, and that it
is natural to extend the Ponzano-Regge model to 4D by assigning colors
to faces and tetrahedra.

The CY model is not a quantization of 4D GR, nor could it be, being a
TQFT in strict sense. Rather, it can be formally derived as a quantization
of SU(2) BF theory. BF theory is a topological field theory with two fields,
a connection A, with curvature F, and a 2—form B [Horowitz (1989)|, with
action

S[A, B] = /B AF. (3.152)

However, there is a strict relation between GR and BF. If we add to SO(3,1)
BF theory the constraint that the 2—form B is the product of two tetrad
1-forms

B=ENME, (3.153)

we get precisely GR. This observation has lead many to suggest that a
quantum theory of gravity could be constructed by a suitable modification
of quantum BF theory [Baez (1996¢)|]. This suggestion has become very
plausible, with the following construction of the spin foam models.

The key step in development of the spin foam models was taken by |Bar-
bieri (1997)], studying the ‘quantum geometry’ of the simplices that play a
role in loop quantum gravity. Barbieri discovered a simple relation between
the quantum operators representing the areas of the faces of the tetrahedra.
This relation turns out to be the quantum version of the constraint (3.153),
which turns BF theory into GR. [Barret and Crane (1997)] added the Bar-
bieri relation to (the SO(3,1) version of) the CY model. This is equivalent
to replacing the the 15-7 Wigner symbol, with a different function Agc of
the colors of the 4—simplex. This replacement defines a ‘modified TQFT”,
which has a chance of having general relativity as its classical limit.

The Barret—Crane model is not a TQFT in strict sense. In particular,
it is not independent from the triangulation. Thus, a continuum theory has
to be formally defined by some suitable sum over triangulations

Z ~ Z Z H Apc(color of the 4 — simplex). (3.154)

triang coloring 4—simplices

This essential aspect of the construction, however, is not yet understood.
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The Barret Crane model can virtually be obtained also from loop quan-
tum gravity. This is an unexpected convergence of two very different lines
of research. Loop quantum gravity is formulated canonically in the frozen
time formalism. While the frozen time formalism is in principle complete,
in practice it is cumbersome, and anti-intuitive. Our intuition is four di-
mensional, not three dimensional. An old problem in loop quantum gravity
has been to derive a space—time version of the theory. A space—time formu-
lation of quantum mechanics is provided by the sum over histories. A sum
over histories can be derived from the Hamiltonian formalism, as Feynman
did originally. Loop quantum gravity provides a mathematically well de-
fined Hamiltonian formalism, and one can therefore follow Feynman steps
and construct a sum over histories quantum gravity starting from the loop
formalism. This has been done in [Reisenberger and Rovelli (1997)]. The
sum over histories turns out to have the form of a sum over surfaces.

More precisely, the transition amplitude between two spin network
states turns out to be given by a sum of terms, where each term can be rep-
resented by a (2D) branched ‘colored’ surface in space—time. A branched
colored surface is formed by elementary surface elements carrying a label,
that meet on edges, also carrying a labelled; edges, in turn meet in vertices
(or branching points, see Figure . The contribution of one such sur-

Fig. 3.11 A branched surface with two vertices.
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faces to the sum over histories is the product of one term per each branching
point of the surface. The branching points represent the ‘vertices’ of this
theory, in the sense of Feynman. The contribution of each vertex can be
computed algebraically from the ‘colors’ (half integers) of the adjacent sur-
face elements and edges. Thus, space—time loop quantum gravity is defined
by the partition function

7Z ~ Z Z H Ajoop(color of the vertex) (3.155)

surfaces colorings wvertices

The vertex Ajoop is determined by a matrix elements of the Hamiltonian
constraint. The fact that one obtains a sum over surfaces is not too surpris-
ing, since the time evolution of a loop is a surface. Indeed, the time evolu-
tion of a spin network (with colors on links and nodes) is a surface (with
colors on surface elements and edges) and the Hamiltonian constraint gen-
erates branching points in the same manner in which conventional Hamil-
tonians generate the vertices of the Feynman diagrams.

Now, has the same structure of the Barret—Crane model .
To see this, simply notice that we can view each branched colored surface as
located on the lattice dual to a triangulation. Then each vertex correspond
to a 4-simplex; the coloring of the two models matches exactly (elemen-
tary surfaces — faces, edges — tetrahedra); and summing over surfaces
corresponds to summing over triangulations. The main difference is the
different weight at the vertices. The Barret—Crane vertex Agc can be read
as a covariant definition a Hamiltonian constraint in loop quantum gravity.

Thus, the space—time formulation of loop quantum GR is a simple modi-
fication of a TQFT. This approach provides a 4D pictorial intuition of quan-
tum space—time, analogous to the Feynman graphs description of quantum
field dynamics. John Baez has introduced the term ‘spin foam’ for the
branched colored surfaces of the model, in honor of John Wheeler’s in-
tuitions on the quantum microstructure of space-time. Spin foams are a
precise mathematical implementation of Wheeler’s ‘space—time foam’ sug-
gestions.

3.10.4.5 Black Hole Entropy

A focal point of the research in quantum gravity in the last years has
been the discussion of black hole (BH) entropy. This problem has been
discussed from a large variety of perspectives and within many different
research programs.
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Let us very briefly recall the origin of the problem. In classical GR,
future event horizons behave in a manner that has a peculiar thermody-
namical flavor. This remark, together with a detailed physical analysis of
the behavior of hot matter in the vicinity of horizons, prompted Bekenstein
to suggest that there is entropy associated to every horizon. The sugges-
tion was first consider ridicule, because it implies that a black hole is hot
and radiates. But then Steven Hawking, in a celebrated work [Hawking
(1975)|, showed that QFT in curved space-time predicts that a black hole
emits thermal radiation, precisely at the temperature predicted by Beken-
stein, and Bekenstein courageous suggestion was fully vindicated. Since
then, the entropy of a BH has been indirectly computed in a surprising
variety of manners, to the point that BH entropy and BH radiance are
now considered almost an established fact by the community, although, of
course, they were never observed nor, presumably, they are going to be
observed soon. This confidence, perhaps a bit surprising to outsiders, is
related to the fact thermodynamics is powerful in indicating general prop-
erties of systems, even if we do not control its microphysics. Many hope
that the Bekenstein—-Hawking radiation could play for quantum gravity a
role analogous to the role played by the black body radiation for quantum
mechanics. Thus, indirect arguments indicate that a Schwarzschild BH has
an entropy

1 A

§=115 (3.156)

The remaining challenge is to derive this formula from first principles [Rov-
elli (1997)].

Later in the book we will continue our exposition of various approaches
to quantum gravity.

3.10.5 Basics of Morse and (Co)Bordism Theories
3.10.5.1 Morse Theory on Smooth Manifolds

At the same time the variational formulae were discovered, a related tech-
nique, called Morse theory, was introduced into Riemannian geometry. This
theory was developed by Morse, first for functions on manifolds in 1925,
and then in 1934, for the loop space. The latter theory, as we shall see, sets
up a very nice connection between the first and second variation formulae
from the previous section and the topology of M. It is this relationship that
we shall explore at a general level here. In section 5 we shall then see how
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this theory was applied in various specific settings.

If we have a proper function f: M — R, then its Hessian (as a quadratic
form) is in fact well defined at its critical points without specifying an
underlying Riemannian metric. The nullity of f at a critical point is defined
as the dimension of the kernel of V2f, while the indez is the number of
negative eigenvalues counted with multiplicity. A function is said to be
a Morse function if the nullity at any of its critical points is zero. Note
that this guarantees in particular that all critical points are isolated. The
first fundamental Theorem of Morse theory is that one can determine the
topological structure of a manifold from a Morse function. More specifically,
if one can order the critical points x1, ..., z) so that f(x1) < - - < f(zg)
and the index of x; is denoted \;, then M has the structure of a CW complex
with a cell of dimension \; for each 7. Note that in case M is closed then x;
must be a minimum and so A\; = 0, while x;, is a maximum and Ay = n. The
classical example of Milnor of this Theorem in action is a torus in 3—space
and f the height function.

We are now left with the problem of trying to find appropriate Morse
functions. While there are always plenty of such functions, there does not
seem to be a natural way of finding one. However, there are natural choices
for Morse functions on the loop space to a Riemannian manifold. This
is, somewhat inconveniently, infinite-dimensional. Still, one can develop
Morse theory as above for suitable functions, and moreover the loop space
of a manifold determines the topology of the underlying manifold.

If m,p € M, then we denote by €,,, the space of all C* paths from m
to p. The first observation about this space is that

Ti4+1 (M) = T, (Qm,p) .

To see this, just fix a path from m to ¢ and then join this path to every
curve in Q,,,. In this way Q,,, is identified with €2,,,, the space of loops fized
at m. For this space the above relationship between the homotopy groups
is almost self-evident.

On the space €,,,, we have two naturally defined functions, the arc—
length and energy functionals:

. 1 .
L) = [l and B =g [P

While the energy functional is easier to work with, it is the arc—length
functional that we are really interested in. In order to make things work
out nicely for the arc-length functional, it is convenient to parameterize
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all curves on [0,1] and proportionally to arc-length. We shall think of
Qpp as an infinite-dimensional manifold. For each curve v € {,,, the
natural choice for the tangent space consists of the vector—fields along ~
which vanish at the endpoints of . This is because these vector—fields are
exactly the variational fields for curves through v in €2,,,, i.e., fixed endpoint
variations of 7. An inner product on the tangent space is then naturally
defined by

()= [ gy

Now the first variation formula for arc—length tells us that the gradient for
L at v is -V47. Actually this cannot be quite right, as -V does not vanish
at the endpoints. The real gradient is gotten in the same way we find the
gradient for a function on a surface in space, namely, by projecting it down
into the correct tangent space. In any case we note that the critical points
for L are exactly the geodesics from m to p. The second variation formula
tells us that the Hessian of L at these critical points is given by

VAL(X) =X + R(X,%) 4,

at least for vector—fields X which are perpendicular to . Again we ignore
the fact that we have the same trouble with endpoint conditions as above.
We now need to impose the Morse condition that this Hessian is not allowed
to have any kernel. The vector-fields J for which J + R (J,%)% = 0 are
called Jacobi fields. Thus we have to Figure out whether there are any
Jacobi fields which vanish at the endpoints of . The first observation is
that Jacobi fields must always come from geodesic variations. The Jacobi
fields which vanish at m can therefore be found using the exponential map
€xp,, - If the Jacobi field also has to vanish at p, then p must be a critical
value for exp,,, . Now Sard’s Theorem asserts that the set of critical values
has measure zero. For given m € M it will therefore be true that the
arc-length functional on ,,, is a Morse function for almost all p € M.
Note that it may not be possible to choose p = m, the simplest example
being the standard sphere. We are now left with trying to decide what the
index should be. This is the dimension of the largest subspace on which
the Hessian is negative definite. It turns out that this index can also be
computed using Jacobi fields and is in fact always finite. Thus one can
calculate the topology of €2,,,, and hence M, by finding all the geodesics
from m to p and then computing their index.
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In geometrical situations it is often unrealistic to suppose that one can
calculate the index precisely, but as we shall see it is often possible to given
lower bounds for the index. As an example, note that if M is not simply—
connected, then ), is not connected. Each curve of minimal length in
the path components is a geodesic from m to p which is a local minimum
for the arc-length functional. Such geodesics evidently have index zero. In
particular, if one can show that all geodesics, except for the minimal ones
from m to p, have index > 0, then the manifold must be simply—connected.
We will apply Morse theory in biodynamics/robotic in section
below.

3.10.5.2 (Co)Bordism Theory on Smooth Manifolds

(Co)bordism appeared as a revival of Poincaré’s unsuccessful 1895 attempts
to define homology using only manifolds. Smooth manifolds (without
boundary) are again considered as ‘negligible’ when they are boundaries
of smooth manifolds—with—boundary. But there is a big difference, which
keeps definition of ‘addition’ of manifolds from running into the difficulties
encountered by Poincaré; it is now the disjoint union. The (unoriented)
(co)bordism relation between two compact smooth manifolds Mi, My of
same dimension n means that their disjoint union OW = M; U M, is the
boundary OW of an (n + 1)D smooth manifold-with—boundary W. This
is an equivalence relation, and the classes for that relation of nD manifolds
form a commutative group M, in which every element has order 2. The
direct sum 9, = B,,>0MN,, is a ring for the multiplication of classes deduced
from the Cartesian product of manifolds.

More precisely, a manifold M is said to be a (co)bordism from A to B
if exists a diffeomorphism from a disjoint sum, ¢ € diff(A* U B,90M). Two
(co)bordisms M () and M'(¢") are equivalent if there is a & € diff(M, M”)
such that ¢’ = ® o . The equivalence class of (co)bordisms is denoted by
M (A, B) € Cob(A, B) [Stong (1968)].

Composition ccop of (co)bordisms comes from gluing of manifolds [Baez
and Dolan (1995)]. Let ¢’ € diff(C* U D,0N). One can glue (co)bordism
M with N by identifying B with C*, (¢’)~! o ¢ € diff(B,C*). We get the
glued (co)bordism
(M o N)(A, D) and a semigroup operation,

¢(A,B, D) : Cob(A, B) x Cob(B,D) — Cob(A, D).

A surgery is an operation of cutting a manifold M and gluing to cylin-
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ders. A surgery gives new (co)bordism: from M (A, B) into N(A, B). The
disjoint sum of M(A, B) with N(C,D) is a (co)bordism (M U N)(A U
C,B U D). We got a 2-graph of (co)bordism Cob with Coby = Mang,
Coby = Mangy1, whose 2—cells from Cobs are surgery operations.

There is an n—category of (co)bordisms BO [Leinster (2003)] with:

e O—cells: 0—manifolds, where ‘manifold’ means ‘compact, smooth, ori-
ented manifold’. A typical 0—cellis o o o ».
e 1—cells: 1—manifolds with corners, i.e., (co)bordisms between

1 F
o/
