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Preface

As we mentioned in the preface of the first edition, the theovetical gap between the
material presented in calculus and the mathematical background expected (or at laast
hoped for) in more ddvanced courses has widened. In an artempt to narrow this gap
and to better prepare students for the more abstract mathematics courses o follow,
many colleges and universities have introduced courses that are now commonly called
“transition courses™. In these courses, students are introduced to proof technigues and
writing their own proofs, as well as topics such as relations, functions, and cardinalitics
of sets, which are encountered throughout theeretical mathematics courses. In addition,
transition courses often include theoretical aspects of number theory, abstract algebra,
and calculus, This text has been written for such a course.

The idea for this text originated in the early 1980s. Long before transition courscs
became fashionable, we realized that even advanced undergraduates lack a sound under-
standing of proof techniques and have difficnlty writing cormect and clear proofs, The
first cdition of this book emanated from notes developed for these students, which, in
turn, has led to this second edition.

Our Approach

Since this text criginated from notes that were written exclusively for undergraduates
to help them undersiand proof techniques and (o write good proofs, this is the tone in
which both editions of this book have beon written: to be student-friendly. Numerons
examples of proofs are presented in the text. Following common practice, we indicate
the end of a proof with the symbel m. Ofien we precede a proof by a discussion, referred
to as a proof strategy, where we think through what is needed to preseat a procf of
the result in question. Other times, we find it useful (o reflect on a proof we have just
presented to point out certain key details: we refer to a discussion of this type as a proaf
analysis. Periodically, problems are presented and solved, and we iay find it convenient
to discuss some Features of the solulion; we refer to this simply as an analysis. For
claritly, we indicate the end of a discussion of a proof strategy, proof analysis, analysis,
or solution of an example with the diamond symbol 4.

xi




xii Preface

A major goal of this text {5 to belp students learn to construct proofs of their gy, they

are not only mathematically correct but also clearly written. More advanced Mathemayg :

students should strive to present proofs that are convincing, readable, notationau)— oo

sistent, and grammatically correct. A secondary goal is to have students gain Sufficioy

knowledge of and confidence with proofs so that they will recognize, understand, gy
appreciate a proof that is properly writien.

This baok is intended as an introductien to mathematics in a rigorous setting, W
envision stndents taking a course based on this book after they have had a year of caley]y
{and possibly another course, such as elementary linear aigebra). It is Tikely that, Pror
to taking this course, a student’s training in mathernatics consisted primarily of doing
patterned problems; that is, students have been taught methods for solving problens,
likely including some explanation as Lo why these methods worked. Students may very
well have had exposure to some proofs in earlier courses but, mare than likely, wers
unaware of the logic involved and the method of proof being used, There may have evey
been times when the students were not certain what was being proved.

QOutline of the Contents

Since writing good proofs requires a cerlain degree of competence in writing, we have
devoted Chapter 0 to writing mathematics. The einphasis of this chapter is on effective

and clear exposition, correct usage of symbols, writing and displaying mathematicat”

expressions, and using key words and phrases. Although every instructor will empha-
size writing in his or her own way, we feel that it 15 useful w read Chapter § pering-
ically throughout the course. It will mean more as the student progresses through the
course. Only minor changes and additions have been made to Chapter 0 in the sceoad
edition.

There have been significant changes made to Chapters 1-11, with relatively minor
changes in Chapter 12 (Proofs in Calculus) and Chapter 13 (Proofs in Group Theory).
A large number of new examples have been added to support the ideas presented, and
many new resulis have been added with the goal of uchieving a better undersianding of
the material, There has been more than a 50% increase in the number of exercises inthe
second editicn over the first edition. Among the new exercises are;

(1) exercises that relate to new examples and rasnles that have been added,
{2} more proof evaluation exercises,

{3) additional exercises in which the proef of an unknown result is given, with
the goal of determining the result being proved, and

(1) exercises of a differcnt type that are, at the same time, unique and interesting.

Each chapter is now divided more formally into sections and includes end-of-section
cxcreises. There is also a final section of exercises for the entire chapter. In contrast 10
the first edition, examples are now formally identified by labeling them as Example Xy
1o indicate that they oceur in Chapter X i

While the proof techniques in the first edition were introduced over the first mne
chapters of the book, the material on mathematical induction has been moved forward
in the bool so that all proof techniques now appear in the first six chapters.

Preface xiii

Chapter 1 contains a gentle intreduction to sets, so that everyone has the samne back-
ground and is using the same nolation as we prepare [or whal lies ahead. No proofs in-
volving sets occur until Chapter 4, Much of Chapter [ may very well be areview for many.

Chapter 2 deals exclusively with logic. The goal here is o present what is needed to
getinto proofs as quickly as possible. Much of the emphasis in Chapter 2 is on statemenis,
implicattons, and quantified statements. Sets are introduced before logic so that students’
first encounter with mathematics here is a familiar one and because sets are needed to
discuss quantified statements properly in Chapter 2.

In the second edition, the distinction between staterments and open sentences is
expanded upon and clarified. One way this is accomplished is by considering stalements
that result from open sentences by substituting values from the demain for the vaniables
appearing in the open sentence. . P

The section on ¢uantifiers has been moved so that it is now Section 2,10, This
section has been expanded greatly and now mcludes a discussion of double quantifiers.
Quanlifiers are revisited and dealt with in mere detail in Chapter 7. Mixed quantifiers
are also discussed in Chapter 7. Chapler 2 now ends with Section 210 {(Quantified .
Statements) and Section 2.1 1 (Characterizations of Statements).

The two proof techniques of direct proof and proof by contrapositive are introduced
in Chapter 3 in the farniliar setting of even and odd integers. Proof by cases is discussed
in this chapter as well as proofs of “if and only il statements. Chapter 4 continues this
discussion in other settings, vamely divisibility of Integers, congruence, real nurbers,
and sets. ) .

Chapter 5 has been completely restructured. The technique of proof by contradiction
is introduced here. The sections dealing with counterexamples, existence proofs, and
disproving statements, which appeared in Chapter 6 (Prove or Disprove) of the first
edition, now appear in Chapter 5 as well. Although an existence proof 15 not a proof
technigue, we felt that it was appropriate to include it within methods of proofs, Since
existence proofs and counterexamples have a connection with proof by contradiction,
we placed all of these in the same chapter. The topic of uniqueness (of an element with
specified properties) is also addressed in Chapter 5. Having all of these important topics
in Chapter 5 instead of in a later chapter (as in the first edition) increases the likelihood
that they will be covered in a course. )

The former Chapter 9 (Mathematical Induction) s now Chapter 6 In this edition,
This change was made (1) to place alt methods of proof together prior to applying them
to various areas of mathematics, and (2} so thar mathemalical induction can be applisd to
ideas that follow Chapter 6. [n additon to the Principle of Mathematical Induction and
the Strong Principle of Mathematical Induction, this chapter includes proof by minimum
counterexample.

The main goal of Chapter 7 {(Prove or Disprove) concerns the testing of statements
where statements of unknown truth value are provided and where it is to be determined,
with justification, whether each statement is true or false. In addition to the challenge
of determining whether given statements are true or false, such problems provide added
practice with counterexamples and the various proof technigues. Testing stafements is
preceded in this chapter by a historical discussiou of conjectures in mathematics and a

_review of quantifiers, together with a discussion of mixed quantifiers.

Chapler § deals with relations, especially equivalence relations. Many examples

- Involving congruence are presented, and the set of integers modulo n is described.



xiv Preface

Chapter 9 involves functions, with emphasis on the properties of one-to-ong ang g
This gives rise to a discussion of bijective functions and inverses of function;. The.
well-defined property of functions is discussed in more detail in the sccond editiony.

Chapter 10 deals with infinite sets and a discussion of cardinalitics of seps, Thi
chapter now includes a historical discussion of infinite sets, beginning with Cantor and
his fascination and difficulties with the Schréder-Benstein Theorem, then to Zermg),
and the Axiom of Choice, and ending with a proof of the Schrider-Bernstein Theorer,

ATl of the proof techniques are used in Chapter 11, where numerous resulis i g,
area of number theory are introduced and proved,

Web Site for Maihematical Prools

Three additienal chapters, Chapters 14-16 (dealing with procfs in ring theory, linggr
algebra, and topology), can be found on the Web site: hitp:/www.aw com/info/charirang

Teaching a Course from This Text

Although a course using this text could be designed in many ways, bhere are our view
on such a course. As we noted earlier, we think it is useful for students to reread (a;
least portions of) Chapter O throughout the course, and we feel that with each reading
the chapter becomes more meaningful. The first part of Chapter 1 (Sets) will likely be
familiar to most students, although the last part may not. Chapters 2-6 will probably ke
part of any course, althongh certain topics could receive varying degrees of emphasis
(with proof by minimum countercxample in Chapter 6 possibly omitted). Little or much
time could be spenton Chapter 7, depending on how much time is used to discuss the large
nuinber of “prove or disprove™ exercises. We think that most of Chapters 8 and 9 would
be covered in such a course and that it would be useful to cover some of the fundamental
ideas addressed in Chapter 10 (Cardinalities of Sers}. As time permits, portions of the
[ater chapters could be covered, especially those of interest to the instructor, including
the possibility of going to the Web site for even more variety.

Exercises

There are numerous cxercises for Chapters 1-13 (as well as for Chapters 14-16 on
the Web site). The degree of difficulty of the exercises ranges from routine Lo medivm
difficulty to maderately challenging. There are exerciscs that present students with state-
ments, asking them to decide whether they are true or [alse (with justification). Thereae
proposed proofs of stacements, asking if the argument is valid. There are proofs withou!
a statement given, asking students to supply a statement of what has been proved. Allsﬂ-
there are exercises that call upon studeats to ask questions of their own and to provide
AnSWerS.

Chapter 3 is the first chapter in which students will be called apon fo write prUO_fS-
At such an carly stage, we fecl that students need to (1) concentrate on eanstructitd
a vatid procf and not be distracted by nnfamiliarity with the mathematics, (2) devel?]l
some self-confidence with this process, and (3) learn how to write a proof propedly. with

Acknowledgments
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this in mind, many of the exercises in Chapler 3 have been intentionally structured so as
to be similar to the examples in that chapter.

In general, there are exercises for each seclion at the end of a chapter (section
cxercises) und additionat exercises for the entire chapter (chupter exercises). Answers o
the odd-numbered section excrcises appear at the end of text. One should also keep in
mind, however, that proofs of results are not unique.
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Communicating Mathematics

1l sericus stedents of mathematics eventually reach the stage when they realize

that mathematics is not simply the manipulation of numbers or using the right for-
mula. Although there are certainly numerous advantages of using sophisticated graphing
caleulators and compnter software, this is not mathematics either. Mafhematics 18 many
things, Mathematics is undcrste{ﬁding. observing, reasoning, explaining, thinking. Math-
cmatics is alse discovery, When we believe that we have made a mathematical discovery,
how can we be certain thar we are right? We must be able to vertfy this. Furthermore,
we must be able to convince others of this. The following quote is due to the famaus
mathamatician and physicisi Blalse Pascal.

We are usually convinced more casily by reasons we have found ourselves than
by those which occurved to others.

Learning Mathemafics

Ome of 1the major goals of this book is Lo assisl you as you progress from an individual
who uses mathematics to an individual who understands mathemarics. Perhaps this will
mark the beginning of vou becoming someone wha actually develops mathematics of
your owa, This is an attainable goal if you have the desire.

The Ffact that you've gone this far in your study of mathematics suggests that you
have ability in mathematics. This is a real opportunity for you. Much of the mathematics
that you witl encounter in the future is based on what you age about to learn here. The
better you leamn the material and the mathematical thought process now, the more you
will understand later. To be sure, arty areq of study is considerably more enjoyable when
vou understand it. But getting to that point will require effort on your part.

There are probably as many excuses for doing poorly in mathematics as there are
strategies for doing well in mathematics. We have all heard students say (sometimes,
remarkably, even with pride) that they are not good at mathematics. That’s only an alibi.
Mathematics can be learned iike any other subject. Even some students who have done
well [n mathematics say that they are not good with proofs. This, too, is unacceptable.
What is required is determination and effort. To have done well on an exam with litile

1
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Chapter 0 Commuaicating Mathematics

or no studying is nothing to be proud of, Confidence based on being well-prepgreg is
good, however.

Here is some advice that has worked for several students. First, it is importam 1o
understand what goes on in class each day. This means being present and being Prepaseq
for every class. After each class, recopy any Jeciure notes. When recopying the Noteg
express sentences in your own words and add details so that everything is as cley Qg‘ :

possible. If you ron into snags (and you will), talk them over with a classmate or Your :

instructor. In fact, it’s a good idea (at least in our opinion) to have someone with whyy,
to discuss the material on a regular basis. Not only does it often clanify ideas, it gess you -
into the habit of using correet terminology and notation. .
In addition to learning mathematics from your instructor, solidifying your under.
standing by careful note-taking, and by talking with classmales, your iext is {or at fegy
shauld be} an excellent source as well. Read your text carefully with pen {or peicil)
and paper in hand, Make a serious efforl io do every homework problem assigned ang,
eventually, be cerlain that you know how to solve them. If there are exercises in the eyt
that have not been assigned, you might even try to solve these as well. Another good ides
is to fry to create your own problems. In fact, when studying for an exam, try creating
your own exam. If you start doing this for all of your classes, you might be surprised a
how good you become. Creativity is a major part of mathematics. Discovering mathe-
matics not only contributes to your understanding of the subject but has the porential ig
contribule to mathernatics itself, Creativity car comc in all forms. The foliowing quote
is due to the well-known writer 1. K. Rowling (author of the Farry Potter novels).

Sometimes ideas just come to me. Other times [ have to sweat and almost bleed
1o make ideas come. It's a mysterious process, but I hope { never find out exactly
how it works.

The composer-lyricist Stephen Schwartz (who wrote the songs for the musicals
Godspell and Wicked) discussed creativity in his song “The Spark of Creation” from
the musical Children of Eden: (Copyright ©® 1991 Grey Dog Music, administeed by
Williamson Music. International Copyright Secured. All Rights Reserved.)

The spark of creation Or build or uncover
Burning bright within me A thing that I can call
The spark of creation My celebration

Won't let me rest at all Of the spark of creaiion,
Until I discover

In her book Defying Gravizy on the life and work of Stephen Schwartz, the author Carol
de Giere writes:

fn many ways, this song expresses the theme of Stephen Schwarlz’s itfe—the
raturalness and importaice of the creative urge within us. Al the same hme fie
created an anthem for artists.

In mathematics cur goal is to seek the tuth. Finding answers to mathemﬂmfﬁ
questions is important, but we cannot be satisfied with this alone. We must be ceflad.

What (khers Have Said Abour Writing 3

that we are right and that our explanation for why we believe we are correct is convincing
to others. The reasoning we use as we proceed from what we know to what we wish to
show must be logical. It rmust make sense to others, ot just lo cnrselves.

There is joint responsibility here. As writers, it is our responsibility to give an
accurate, clear argument with enough details provided to allow the reader to understand .
what we have writlen and to be convineed. Tt is the reader’s responsibility to know the
basics of logic and to sludy the concepts invelved so that a well-presented argument -
will be understood. Consequently, in mathematics wriling is important, very imporlant.
Is il really important to write mathematics well? After all, isn’t mathematics mainly
equations and symbols? Not at all. It is not only impertant to write mathematics well,
it is important to write well. You will be writing the rest of your life, at least reports,
Jetters, and e-mail. Many people who never meet you will know you only by what you
write and how you write.

Mathematics is a sufficiently complicated subject that we don’t need vague, hazy,
and boring writing to add to it. A teacher has a very positive impression of a student
who hands in well-written and wall-organized assignments and examinations, You want
peaple to enjoy reading what you've written. [t is important to have a good reputation
as a writer. It’s part of being an educared person. Especially with the large number of
e-mail lettars that so many of us write, it has become commonplace for writing (o be
more casual. Although all people would probably subscribe to this {since it is more
efficient), we should know how to write well fermaily and professionally when the '
situation requires it .

You migitt think that considering how long you've been writing and that you're set
in your ways, it will be very difficult to improve your writing, Net really. If you want
to improve, you can and will. Even If you are a good writer, your writing can always be
improved. Ordinarily, people don’l think much about their writing. Often just thinking
about your writing is the first step to writing beiter.

What Others Have Said about Writing j

Many people who are weil known in their areas of expertise have expressed their thoughts
ahout writing, Here are quotes by some of these individuals.
Anvthing that helps contunication Is good. Anything that hurts it is bad.

[ like words more than numbers, and I abways did-conceptual more than com-
putational.
Paul Halmos, mathematician

Wriring is easy. All you have to do is cross out all the wrong words.
Mark Twain, author {The Adventures of Huckleberry Finn)

You don't write because you want 10 say something: you write because you've
got something fo say.
F. Scotl Fitzgerald, author (The Grear Guarsby)

Writing comes movre easily if you have something to say.

Scholem Asch, author
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Chapter 0 Copurumicating Mathernatics

Either write something worth reading or do something worth wiiting,
Benjamin Franklin, statesman, writcr, invengr
What is written without effort is in general read without pleasure.
Samuel Johnson, writer
Easy reading Is demned hard writing.
Nathaniel Hawthorne, novelist (The Scarlet Leitery
Everything that is written merely to please the quthor is worthless.
The last thing one knows when writing a book is what to put first.
I heve made this letter longer because Tlack the time to make it short,
Blaise Pascal, mathematician and physicig
The best way to become acquainted with a subject is to write a book about it
Benjamin Disraeli, prime minister of England
fnavery real sense, the writer writes in order to teach himself, to understand him-
self, o sarishy himself; the publishing of his ideas, though it brings gratification,
is a curious anticlimax.
Alfred Kazin, literary critic
The skill of writing is to create a context in which other people can think,
Edwin Schlossberg, exhibit designee
A writer needs thice things, experience, observation, and imagination, any two
of which, at times any one of which, can supply the lack of the other.
William Faulkner, writer (The Sound and the Fury)
if confusion runs rampant in the passage just read,
It pray very well be that toa much has been said.
So that's what he meant! Then why didn’t he say so?
Frank Harary, mathermatician

A mathematical theory is not to be considered complete wntil you have made [t
56 clear that you can explain it 1o the first man whom you meet oi the street.

David Hilbert, mathematician
Everything should be made as simple as possible, but not simpler.
Albert Einstein, physicist
Never ler anything you write be published withous having had others critique it.
Donzld E. Knuth, computer scientist and writer
Same books are to be tasted, others 1o be swallowed, and some few fo be chewed
and digested. :
Reading maketh a full man, conference a ready man, and wriling an exgot mon.
Francis Bacon, writer and philosopher
Judge an article not by the quality of what is framed and hanging on the wall,
but by the quality of what's in the wastebasket.
Anenymous {Quote by Leslie Lamporl)

bathematical Writing 5

We are all apprentices in ¢ craft where no-one ever becomes a master.,
Emest Hemingway, author (For Whom the Bell Tolls)

There are three rufes for wiiting a novel. Unfortunately, no one knows what they
are.

W. Somerset Maugham, author (OF Human Boadage)

Mathematical Wrili

Most of the quotes given above pertain to writiag in general, not to mathematical writing
in particular. However these suggestions for writing apply as well to writing mathemat-
ics, For us, mathematical writing means writing assignments for a mathematics course
(particularly a course with pronfs). Such an assignment might consist of writing a single
proof, writing scluticns to a number of problems, or perhaps writing a term paper that,
more than likely, includes definitions, examples, background, end proofs. We'll refer to
any of these as an “assignment”™. Your geal should be to write correctly, clearly, and in
an interesting manoer,

Before you even begin to weite, you should have already thought about a number
of things. First, you should know what examples and proofs you plan io-include if this
is appropriate for your assignment. You should not be overly concerned about writing
good proafs on your first attempt—but be certain that you do have proofs.

As you're writing your assignment, you mnst be aware of your audience. What isthe
target group Lor your assignmeit? Of course, it should be written for your instructor. But
itshould be written so that a classmate would understand it. As you grow mathematically,
your audience will grow with you and you will adapt your writing to this new audience.

Give yourself enough time to write your assignment. Den't try Lo put it together
just a few minutes before it's due. The disappointing result will be obvious 10 your
insteuctor. And to you! Find a place to write that is comfortable for you: your room,
an office, a study room, the library, and sitting at a desk, at a table, in a chair. Do what
works best for you. Perhaps vou write best when it's quiet or when there is background
music, ]

Now that you're comfortably setiled and have allowed enough tme to do a good
job. let’s put a plan together. I the assignment is Fairly lengthy, you may need an outline,
which, most likely, would include one or more of the following:

Background and motivation
The definitions to be presented and possibly the notation to be used
The examples 10 includs

Bu M=

. The results to be presented (whose prools have already been written, probably
in reigh form)

5. References to other results you intend to use
6. The order of everything mentioned above.
If the assignment is a term paper, it may include extensive background material

and may need [0 be carefully motivated. The subject of the paper should be placed in
perspective. Where does it fit in with what we aiready know?
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Many writers write in “spirals”, Even though you have a plan for your 255ignm,
that includes an ordered fist of things you want to say, it is likely that you wi]] teach g, "
point (perhaps saoner than you think} when you realize that you shouid have iDCiunE
something earlicr—perhaps 2 definition, a theoren, an example, some notation, :
happened to us many times while writing this text.) Insert the I38ing material, Start oye,
again, and write until once again you realize that something is missing, It is ii'npunm,l '
as you reread, that you start ai the beginning each time. Then repeat the sleps listeci
above.

We age about to give you some advice, some “poimers”, about writing 1athemaig
Such advice is necessarily subjective. Not everyone subscribes 1o these SUEEestions
ot writing. Indeed, writing “experts” don’t agree on all issues. For the Present, yqy,
instructor will be your best guide. But writing does nat follow a list of rules, Ag ou
mature mathematically, perhaps the best advice about your wiiting s the same advige
given by Timiny Crickel to Disney's Pinocchio: Afways let YOUr conscience be Your guids.
You mast be yourself. And one additional picce of advice: Be careful about acceptipg -
advice on writing. Originality and creativity don't follow rules. Uniit you reach the stage
of being comforiable and confident with your own writing, however, we balieve (ha it
is useful to consider a few writing tips.

Since a number of these writing tips may not make sense {(because, after ail, we
dan’t even have anything to write yet), it will probably be most useful to Teturn to thig
chapter periodically as you proceed through the chapters that follow,

&

Using Symboels ]

Since mathematics is a symbol-criented subject, mathemarical writing involves a mixture -
of words and symbols. Here are several guidelines to which a number of mathematicians
adhere.

L. Never start a sentence with a symbol.
Writing mathematics follows the same practice as writing all senfences,
namely, that the first word shotld be capitalized. This is confusing if the
sentence were Lo begin with a symbol since the sentence appears to be
incomplete. Also, in general, 2 sentence sownds better if it starts with a word
Instead of writing: )

1%~ 6x + 8 = 0 has two distinet roots.
write:
The equation x* ~ fix + 8§ = 0 has two distinct roofs.

2. Separate symbols not in a list by words if possible.

Separating symbols by words makes the sentence casier 1o read and therefor

easier to understand. The sentence:
Except for a, b is the only root of (x — al{x — ) =0.
would be clearer if it were wiltten as:

Except for &, the mimber & is the only root of (x — a)(x — ) =0

Using Synbols 7

Except when discussing logle, avoid writing the following symbots in your
assigniment.

=, ¥, 3, 2, e,

The first four symbols stand for “implies”, “[or every”, “there exists”, and
“such that”, respectively. You may have already seen these symbols and
know what they mean. If so, this is good. i is useful when taking notes or
writing carly drafts of an assignment io use shorthand symbols, but many
mathematicians avoid such symbols in their professional writing. (We will
visit these symbols later.)

Be careful about using i.e. and e.g. . 7
These stand for rhat is and for example, espectively. Ther? are situations
when writing the words is preferable to writing the abbreviations as there
may be confusion with nearby symbals, For example, /=1 and

a
Hm (1 -+ —) are not rational numbers, that is, § and ¢ are not rational
A0 ki3
numbers,

Write out integers as words when they are used as adjectives and when the
numbers are velatively small or easy (o describe in words. Write out mumbers
mumericatly when they specify the value of something,

There are exactly two groups of order 4.
Fifty million Frenchmen can’t be wrong.
There are one million positive integers less than 1,000,001,

Don’t mix words and symbols improper(y.
Instead of writing:

Every integer > 2 is a prime or is composite.
it Is preferable to write:
. Every integer exceeding 1 i3 a prime or is composite.

or '

If i1 z 2 is an integer, then 1 is prime or composite.
Although

Since (x = 2)(x — 33 = 0, it follows thal x = 3 or 3.
sounds correci, it is not written correctly. It should be:

Since (x — 2¥x —3) =0, it follows that x = 2 or x = 3.

Avoid using a symbeol in the statement of a theorem wihen if's noi needed.
Don’t write:

Theorem Every hifective function £ hoy an inverse.

Delete * ", Tt serves no useful purpose. The theorem does not depend on
what the function is called. A symbol shouid not be used in the statement of a
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theorem {or in ils proof) exactly once. 1£it i useful to have a name for g
arbitrary bijective function in the proof (as it probably will be), thep «
be introducad there,
8. Explain the meaning of every symbol that you introduce.
Although what vou intended may seem clear, don’t assume this, For
example, if you write n = 2k 4+ 1 and & has never appearcd before, they, say
that £ is an integer (if indecd & Is an integer).
9. Use “frozen symbols” propery.
If »r and # are typlcally used for mtegers (as they probably are), thep don't
use them for real numbers. IF A and 5 are used for sets, then don’t use theg,
as typical elements of a set. If £ is used for = function, then don’t use thiy 5
an integer. Write symbols that the reader would expect. To do otherwise
could very well confuse the reader.

10 Ufse consistent symbols.
Unless there 1s some special reason to the contrary, use symbols that “fiy®
together, Otherwise, 1t is distracting 1o the reader.
Instead of writing:

If & and ¥ are even integers, thenx = 2a
and y = 2r for some integers @ and #,

replace 2r by 26 (where then, of course, we write “for some integers g and
&"). On the other hand. you might prefer to write ¥ = 2r and y = 25.

F Wriling Mathematical Expressions

There will be numerous oceasions when you will want to write mathematical expres-
sions in your assignment, such as algebraic equarions. inequalities, and formulas, I[f
these expressions are relatively short, then they should probably be written within the
text of the proof or discossion. (We'll explain this in a momenl.) If the expressions
are rather lengthy, then it is probably preferred for these expressions to be written &
“displays™.

FFor example. suppose that we are discussing the Binomial Theorem, (It's not im-

portant if you don’t recall what this theorem is.) 1t's possible that what we are watiing %

includes the following passage:

For exampie, if we expand (a + b}*, then we obtain {a + b)Y = a* + 4a’b +
6a’h? +4ab’ + bt

It would probably be belter to write the expansien of (a + b)* as a display, where
the mathematical expression is placed on a line o7 lines by itself and is centered. Thisis
itlustrated below.

For examgple, if we expand (@ + 5)*, then we ohtain
(@ + b)Y =o' + 4’ 4 6ab? - dab® LB

If several mathematical expressjons are linked by equal signs and inequality symbols,
then we would almost certainly write this as a display. For example, suppose that e

Fean

Common Wordls and Plrases in Mathcnatios 9

wanted 1o write 57 -+ 3% — a4 4 in werms of &, where 1 = 24 + 1. A possible display
is given next
Since n = 2k + 1, it follows that

WA a =2 1 3D - @k )+ 4
=8 + 125 ok D43 2+ -2k — 1+ 4
=85 24k 16k 4+ T =R 2 ok L6+ L
w24 T2 S B+ D+ 1

Notice how the equal signs are lined up. {We wrote two cqual signs on one line since
that line would have contained very little material otherwise, as well as to balance the.
lengths of the lines better.)

Let’s return to the expression (a + &) = a* + 4a®h + 64262 + 4ab® + b* for the
moment. If we were to write this expression in the text of a paragrapl (as we are doing)
and if we find it necessary ie write portions of this cxpression on two separate lines,
then this cxpression should be broken so that the first line ends with an operation or
coraparative symbol such as +, —, =, =, or =. In other words, the szeond line should
not begin with one of these symbols, The reason for doing this is that ending the line
with one of these symbols alerts the reader that more will fotlow:; otherwise, the reader
might conclude (incorrectly) that the portion of the expression appearing on the first bine
is the entire expression. Consequently, write

For example, if we expand (a -+ b)Y, then we obtain (o + #)* = ¢¥ + 44" +
602k + 4ab’ + b
and not

For example. if we expand (¢ + b)*, then we obtain {g + b)* = ¢* + 4a°b
+6a’t? + dab® + b*.

If there is an occasion to refer to an expression that has already appeared, then this
expression should have been written as a display and labeled as follows:

(o + bV =a® + 4% + 6a%b* +4ab® + 54 ()

Then we can simply refer to expression (1) rather than writing it out each time.

' @m Words and Phrases in Maihemadics

Some words and phrases appear so often in mathematical writing that it is vseful to
discuss them.

1. 1 We One Let's

T will now show that # is even.
We will now show thal » 15 even,
One now shows that 7 is oven.
Let’s now show that » is even.

These are four ways that we might write a senfence in a proof. Which of
these sounds the best to yeu? Tt is not considered good pructice to use “1”
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unless you are wriling a personal account of samcihing. Otherwise, “1» sound;
egotistical and can be annoying. Using “one” is often awkward. Using “ye» is
standard practice in mathematics. This word also brings the reader int the
discussion with the anthor and gives the impression of a team effort, T, worg
“let’s” accomplishes this as well but is much less formal. There is 5 danger of
being foo casual, however. In gencral, your writing should be balanced,
maintaining a professional style. Of course, there is the possibility of aoiing
all of these wwords:

The integer 2 1s now shown (o be even.

Clearly Obviously Of course  Certalily

Thase and similar words can turm a reader off if what’s writlen is not cley
to the reader, [t can give the impression that the author is putting the readey
down. These words should be used sparingly and with caution. If they gre
used, then at least be certain that what you say is true. There is also the
possibility that the writer (a student?) has 2 lack of understanding of the
mathematics or s not being careful and is using these words 2s a coveraup.
This gives us even more reasons Lo avoid these words.

Any  Eqch  Every

This statement is brue for any integer n.

Does this mean that the statement is true for some integer # or alf integers

17 Since the word “any™ can be vague, perhaps it is best to avold It. If by
“any”, we mean “each” or “svery”, then use one of these two words insiead.
When the word “any” is encouniered, most of the time the author means
“each” or “every™.

Since -« then -« -

A numsber of people connect these two words. You should use exther
“If .., then - - -” {should this be the intended meaning) or “Since - -+, it
follows that - - = or, possibly, “Since - - - we have - - . For example. it is
correct to write

If #” s even, then # is even.

ar

Since n? is even, it follows (hat # s cven,
or perhaps
Since # is ever, 1 is ever
but avoid
Since n* is even, then z is ever.

In this context, the word “since” can be replaced by “because™

Cominon Words and Phrases in Mathematics 11

n

Therefore  Thus  Hence Consequently  So It foliows thar  This implies
et

This is tricky. Malhematicians cannot suevive without these words. Often
within a proof, we proceed from something we’ve just learned to something
else that can be concluded from it. There are many (many!) openings 1o
sentences that attempt to say this, Although each of the words ar phrases

Therefore Thus Hence Consequently So It follows that This implies that

is suitable, it is good to introduce some variety inio vour writing and not nse
the same words or phrases any more often than necessary.
6. That Which .
These words are often confused with each other. Sometimes they are
interchangeahle; more often they are not.,

The solution to the equation is the number less than 5 that is positive. (2}

The solution to the equation is the number less than 5 which is positive. (3

Which of these two senlences is correct? The simple answer js: Both are correcl—or,
at least, both might be correct.

For example, sentence (2} could be the response to the question: Which of the
mumbers —2, 3, and 5 is the solution of the equation? Sentence (3) could be the response
to the question: Which of the numbers 4.9-and 5.0 is the solution of the equation?

The word “that” introduces a restrictive clause and, as such, the clause is essential
to the meaning of the sentence. That is, if sentence (2) were written only as “The solution
to the equation is the number less than 5.7, then the entire meaning is changed: Indeed,
we ne longer know what the solution of the equation is.

" On the other hand, the word “which” does nof intreduce a restrictive clause. It in-
troduces a nonresirictive (or parenthetical) clause. & aoniestrictive clause only provides
additional informarion that is not essential to the meaning of the sentence. In sentence
{3) the phrase “which is positive” simply provides more information about ihe solution.
This clause may have been added because the solution 10 an easlier equation is negative,
In fact, it would be more appropriate to add a comma;

The solution to the equation is the number less than S, which is positive,
For another illustralion, consider the following two statements:

I always keep the math text that I like with me. (€3]

I always keep the math text which I like with me. (5}

What is the difference between these 1wo sentences? In (4), the writer of the sentence
clearly has more than one mith text and is refecring to the one that hefshe likes, In (5),
the weiter has only one math text and is providing the added information that he/she likes
it. The nonrestrictive clause in (3) should be set off by commas:

[ always keep the math text, which I like, with me,

A possible guideline to fellow as you seek 10 determine whether “that” or “which”
is the proper word to use is to ask yourself: Does it sound right if it reads “which, by the
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way,"7 In general, “that” is normally used considerably more often than “which” y ence
the advice here is: Beware of wicked which’s!

While we are discussing the word “that”, we menlion that the words “ggyy.
and “suppose” often precede restrictive clauses and, as such, the word “that Shouvl
immediately follow one of these words. Omitting “thut” leaves us with an imptizg gy
Many mathemalicians prefer to include it rather than omit it.

In other wards, instead of writing: S e tS

Assume N is a normal subgroup,
many would write

Assume that N is a normal subgroup,

r Some Closing Comments about Writing ¢

n this initial chapter, you will be introduced to, or more than likely be reminded of, a

fundamental idea that occurs throughout mathematics: sets. Indeed, a set is an object
from which every mathematical structure is constructed (as we will often see in the
succeading chapters), Although there is a formal subject called set theory in which the
properties of sets follow from a number of axioms, this is neither our interest nor our
need. It s our desire to keep the discussion of sets informal without sacrificing clarity.
It is aimost a certainty that portions of this chapter will be familiar to you. Nevertheless,
itis imporiant that we understand what is meant by a set, how mathematicians describe
sets, the notation used with sets, and several concepts that involve sats. ’

You've been expericneing sets gll your life. In fact, all of the following are examples
of sets: the members of a sports team, the items on a shopping list. the integers. As a
small child, you learned to say the alphabet. When you did this, you were actually listing
the letlers thal make up the set we call the alphabet. A set is a collection of objects.
The objects that make up 4 set are called its elements (o1 members). The elements of a
softball team are the players, while the elements of the alphabet are letters,

It is customary to use capital {uppercase) letters (suchas 4, 2, C, 5, X, ¥) todes- -
ignate sets and lowercase letters (for example, ¢, &, ¢, 5. x, ¥) 10 represent elements of
sets. It g is an element of the set A, then we write @ € A if 2 does not belong to A, then
we write a £ A.

1.1 Describing a Set ]

There will be many occasions when we (or you) will need to describe a set. The most im-
portant requirement when describing a set 15 that the description makes it clear precisely
which elernents belong to the set.

I a set consists of a small number of elements, then this set can be described by
explicitly listing its elements between braces (curly brackets} where the elements are
separated by commas. Thus § = {1, 2. 3} is a set, consisting of the numbers 1, 2, and 3.
The order in which the elements are listed doesn't matter. Thus the set § just mentioned
could be written 25 § = {3, 2, 1} or § = {2, 1, 3}, for example, They describe the same
set, [fa set T consists of the first five letters of the alphabet, then it is not assential that we

13

1. Use good English. Write in complete seatences, ending cach sentence withy -
period (or a question mark when appropriate) and capitalize the first word of
sach sentence. (Remember: No sentence begins with a symboll)

2, Capitalize theorem and lemma a5 in Theorem 1 and Lemma 4.

Many mathematicians do not hyphenate words containing the prefix “non”,
snch as
noncmpty, nonnegative, nondecreasing, nonzero.

4. Many words that ocour often in mathematical writing are commoniy
misspelied. Among these are:

commutative (independent of order}
complement (suppleracnt, balance, remainder)
consistent (conforming, agresing)

feasible (suitable, attainable)

its {possessive, not it is™)

ocowrrence {incident)

parallel {does not intersect)

preceding {foregoing, former)

principle {postulate, regulation, rule)

proceed (continue, move on)

and, of course,
corollary, lemma, theorem.

5. There are many pairs of words that fit together in mathematics (whils
inlerchanging words among the pairs do not). For example,

We ask questions.
We pose problemns.
We present sclutions.
We prove theorems.
We solve problems,
and
We conclude this chapter,
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Example 1.1

write T = {a, b, ¢, d, ¢}, that is, the elements of T’ need notbe listed inalphaberjcy) Ordey
On the other hand, listing the elements of 7 in aay other order may create unnﬂcessa[—);'
confusion,

The set 4 of all people who signed the Declaration of Independence and lajzy betam,
president of the United States is 4 = {John Adams, Thomas Jefferson} and the go; of
all positive even integers less than 20 e B = {2, 4, 6,8, 10,12, 14, 16, 18). Some st
contain too many elements ta be listed this way. Perbaps even the set 3 just given congyjg,
too many elements to describe in this manner. In such cases, the ellipsis or “thres g,
notation” is often helpful. For example, X = {1,3,3,...,49} is the set of all pasiyy,
odd integers less than 50, while ¥ = {2, 4,6, ...} is the set of all positive even integery,
The three dots mean “and so op” for ¥ and “‘and so on up to for X¥. A set negg not
contain any elements. Although it may seetn peculiar to consider sets without elemenys,
these kinds of sets occur surprisingly often and in a variety of settings, For example,
if § is the sei of real number selutions of the equatton 22+ 1 =0, then § containg 1o
¢lements. There is only one set that contains po elements, and it is called the ernpty sy
(or sometimes the null set or void set). The empty sel is denoted by @ We also wriie
@ == { ]. In addition to the example given above, the set of all real numbers x such tha
x* < 0is also empty. .

The elements of a sef may in fact be sets themselves. The symbol 4 below indicares
the conclusion of an example.

The set § = (1,2, {1, 2}, @) consists of four elements, two af which are sets, namely,
(1, 2} and @. If we write C = {1, 2, then we can also write S = {1, 2, C. B}.

The set T = [0, [1, 2,3}, 4, 5} also has four elements, namely, the three lnlegers
0.4, gnd 5, and the set {1,2,3}. Even though 2 € [1,2,3}, the number 2 is not an '3
element of T tharis. 2 € T LI

Often sets consist of those elements satisfying some condition or possessing some speci-
fied property. In this case, we can defipe such asectas § = {x : p(x)}, where, by this,lwe :
mean that § consists of all those elements x salisfying some condition p() conceming -
¥. Some mathematicians writs S = [x | p{x)}; that is, some prefer to write 2 vertical
line rather than a colon (which, by itsell here, is understood to mean “such that™). For
example, if we are studying real number solutions of equations, then

S={x: x-Dx+Dx+3H=0}

is the set of all real numbers x such that (x — 1){x + 2)(x +3) = 0, that Is., S isthe ;
solution set of fhe equation (¥ — 1)(x + 2)(x + 3} = 0. We could have \x'r{ttesx 3 =
{1, —2, —3}; however, even though this way of expressing S is apparently simpler, i
does not tell us that we are interested in the solutions of an equation. The absclute valu

[x| of a real numiber x is x if ¥ = 0; while lx| = —xifx < 0. Therefore,
T={x:lx=2}
is the set of all real numbers having absclute value 2; thatis, 7 = {2, —21. 10 the set$

€y o x. |
and 7' that we have just desoribed, we understand that “x” refers to a real mumber X

Fxampie 1.2

4 1.1 Describing a Sec 15

theye is a possibility that this wouldn™ be clear to the reader, then we should specifically
say that x is a real number. We'll say more about this soon. The set

P = [x: x has been a president of the United States}

describes, rather obviously, all those individuals who have been president of the United
States. So Abraham Lincoln betongs to £, but Benjamin Franklio does not,

Let A =1{3.4,3,...,20}.If B denotes the set consisting of those elements of A that are
less than 8, then we can write

B={xed: x<8=1{34,567. ) i $

Some sets are encounterad so often that they are given special notation, We use N to
denote the set of all positive integers (or natnral numbers); that is, N=1{1,2,3,...}.
Theset of all integers (positive, negarive, and zero) isdenoted by Z.S0Z = {..., =2, -1,
0, 1,2, ...} With the aid of the notation we’ve just intreduced, we can now describe the
set E=1{...,—4, =21, 2.4,...}of even intesers by

E ={y: yisanevenintcger) or £ = {2x: x is an integer}, or as
E={y: y=2xtforsomex € Z} or E={2x: x ¢Z}.
Also,
§={x?: srisaninteger} = {x?: x 2 Z}=1{0,1,4.9,.. ]

describes the set of squares of integers,
The set of real numbers is denoted by R and the set of positive real numbers is
denoted by R*. A real number that can be expressed in the form £, where m. n = Z and

2

# %0, is called a rational number. For example, 2, 7217 =17, and % are rational

numbers. The set of all rational numbers is denoted by Q. Of course, % = % A real
number that is not rational is called irrational, The real numbers /2, /3, V2, 7, and e
are known 1o be irrational; that 15, none of these numbers can be expressed as the ratio of
two integers. Tt is also known that the real numbers with infinite nonrepzaling decimal
expansions are precisely the irratienal numbers, There is no commen symbol.to denote
the set of irational numbers, Wa will use I for the set of all irrational numbers. Thus,
VZeRadv2¢ Q02 el

For a set S, we write || to denote the number of elements in 5. The number
|S] is also referred to as the cardinal number or cardinality of S. If A = {1.2) and
B ={1,2,{1,2}, 0}, then !A| = 2 and | B| = 4. Also, | = 0. Although the notation is
identical for the cardinality of a set and the absolute value of a real number, we should
have no trouble distinguishing between the two. A set § is finite if |S| = # for some
nonmegative integer . A set S is infindte if it is not finite. For the present, we will use
the notatian | S| only for finite sets S. In Chapter 10, we will discuss the cardinality of
infinite sets.

Let’s now consider a few examples of sets that are defined in terms of the special
sets we have just described. '
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Example 13 LetD={neN:n=9 E={xeQ: x<9LH=[xeR:x*-2=0}and ] =

Solution

xeQ: P —2=0L

(ay  Describe the set D by listing iis elements.

(b) Give an example of three elements that belong to & but do not belong to .
{c) Describe the set A by listing its elements.

{d) Describe the set f in another manner.

(e} Determing the cardinality of sach set I, H, and J.

(a) D =1[1,2,34,56.72879%}

it 1,0,-3

(©) H=1{v/2, —v2)

(dy Je=4

(&) D=9 =2 and [J| =0 ¢

A complex number is a nurnber of the form & + bi, wherea, b € Randi = =L
A complex number @ + bf, where & = 0, can be expressed as ¢ + 0f or. more simply, as
a.Hence g -+ 0i = a is a real number. Thus every real pumber is a complex number. Let
C denote the set of complex numbers, IFK =[x € C: 241 =0}then K =i, =i},
Of course, if £ = {x € R+ x?+ 1 =0}, then L = @. You might tecall that the sum of
two complex numbers a + bi and £ +diis (e +¢) + (b + ), while their product is

(a + bi) - {e+di) = ac+adi-bci + bdi® = (ac — bd) + (ad + beli.

The special sets that we've just described are now summarized as follows:

symbol for the set of
N natural numbers (positive integets)
Z integers
Q raticnal pumbers
1 irrational numbers
R real numbers
C complex numbers

1.2 Subscis

Example L4

A et A is called a subset of a st B if every clement of 4 also belongs to B.1F Az
subset of B, then we write A € 5. 17 A, B, and C are sets such that AC BadB ZC,
then A < C. This property of subsets might remind you of the property of real numbers
whereifg. b, c € Rsuch thatifa < band b < ¢, thena <c. For the sets X = {1, 3.6}
and Y ={1,2.3,5,6), wehave X C Y. Also, N < Z and 0 < R. In addition, R € C.
Since @ € Rand R € C, it therefore foliows that @ € C. Moreover, every set is a subset
of itself.

Find rwo seis & and B such that A is both an element and @ subset of B.

Solution

Example 1.5

Solufion

1.2 Subsels 17

Suppose that we scek two sets A and B such that A € 8 and A € B. Let's start with
a simple example for 4, say A = {1]. Sin¢e we want A € B, the set B must contain
the sel {1} as one of its elements. On the other hand, we also require that A € 2, so
every element of A must belong 1o 8. Since 1 is the only element of A, it follows that &
must also contain the number 1. A possible cheice for 8 isthen B = [1, {1}}, although
B = {1, 2, {1}} would also satisly the conditions.

Haset C is #ot a subset of a sel B, then we write C € D, [n this case, there must
be some element of C that is not an clement of 2. One consequence of this is that the
empty set @ is a subsct of every sel If this were not the case, then there must be some
set A such that @ € A. But this would mean (here is some element, say x, in @ that is
not in A. However, @ contains no elements. So @ € A for every set A. )

Let § =1{1,{2}, {1, 2}].

(2} Determing which of the following are elements of 5
L4132, {21 {1 2h (11, 23}
(b) Determine which of the following are subsets of §:

(U425 (L Zh 40 20 L 20 10 420 (L 21

(2} The foliowing are elements of S: 1, {2}, {1, 2].
(b)Y The following are subsets of 51 (1} {1, {2}), {{1.2)}. ' &

In a typical discussion of sets, we are ordinarily concerned with subsets of some
specified set I/, called the umiversal set, For example, we may be dealing only with
integers, in which case the universal set is 7, or we may be dealing only with real
nurrhers, in which case the universal setis R. On the other hand, the universal set being
considered may be neither Z nor R. Indeed, IJ may not even be a set of numbers.

Some frequentty encountercd subsets of R are the so-called “intervals™. Fora, & € R
and a = b, the open interval (¢, b) is the set

(@, f)={xeR:a<«x <h}
Therefore, all of the real pumbers % V3, 6,3, 7. 4.99 belong to (2, 53, but none of the
real numbers /2, 1.99, 2, 5 belong to (2, 5).
Fora, b € Rand g = b, the closed interval |, £] is the set
la,bl={xeR:a=x=b}.,
While 2.5 & (2, 5}, we do have 2, 5 € [2, 5]. The “interval” [a, «] is therefore {z}. Thus,

fora < b, wehave{m, ) C [a, . Fora, b € Randa = b, the half-open or half-closed
intervals (a. ») and {(a, #] are defined as expeciled:

[0y ={xcR:a<x<hland(@bl={ccR: a<x=b)

For a £ R, the infinite intervals (—oo, ), {—o¢, al, (¢, 00}, and [«, oo} arc defined
as
(—oo,a)={xeR: x =g}, (—o0,a] ={reR: x =4},
(a.oc)={xeR: x>a}, [gooy=[xekR:x=4qa)
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Example 1.6

Solution

Bels

]

l i

|
ol
IO
bl
|

Figure L1 Venn diagrams for two sets A aud B

The interval {—oco, oo) is the set R. Note that the infinity symbels co and —oc are not
real numbers; they are used only to help describe certain intervals. Therefore, [1, co],
for example, has no meaning.

Two sets A end B arc equal, indicated by writing A = B, if they have exactly the
same elements. Anoiher way of saying A = B is that every clement of A is it 5 and
every element of B isin A, thatis, A T B and B A. This faci will be very useful terus
in Chapter 4, If A 2 B, then there must be some element that belongs to one of A and
B but does not beleng Lo the other.

1t is often convenient Lo represent sets by diagrams called Venn diagrams. For
example, Fignre 1.1 shows Venn diagrams for two sets A and B. The diagram on the Jeft
sepresents two sots A and B that have no elements in commen, while the dizgram on the
right is more general. The element x belongs 1o A bur not to £; the element ¥ belongs
to B but not (o A; the element z belongs to both A and B; and w belongs to peither A
not B. In general, the elements of a se are understood W be these displayed within the
region that deseribes the set. A rectangle in a Venn diagram represents the universal set
in this case. Since every element under consideration belongs to the universal set, each
element in a Venn diagram lies within the rectangle.

A set A js a proper subsct of aset 8 if A € B but 4 # B, 1T A is a proper suhsct
of B, then we writc A  B. Forexample, if § = 14,5, 7t and T’ = (3,4,5,6,7}, then
§ ¢ T. (Although we wiite A C B to indicate that A is a proper subset of B, it should
be mentioned that some prefer to write A G B to indicate that A is a proper subset of
B. indeed, there are some who write A C B, rather than A € B, to indicate that A is a
subsct of B, We will follow the notation introduced above, however.)

The set consisting of all subsets of a given set A is called the power set of A andis
denoted by P(4).

For each set A below, determine P{A). In each case, determine |Af and TP(A)|.

W A=0 O A=1{a bl & A={123]

(a) P{A) = [} In this case, 14| = 0 and [P{A) = L. )
by PrAY = {@, =}, () {a, bY}. In this case, (A =72 and [P{AY =4,

() P(AY =18, {11,125 (3, {1, 2h (1, 3L {2, 3L {1, 2.3}
In this case, |A] = 3 and [P{A)| = 8. . ¢

Example 1.7

1.3 Set Operatinns 19

Notice that for each set A in Example 1.6, we have |P(A) = 2M In fuct, if A is
any finite set, with # elements say, then {A) has 27 elements; that is,

|PiAY = 2\

for every finite set A, (Later we will explain why this is true,)
FC=8, 8}), then
PC) =18, (B}, {841 1@, {81}

It is important to note that no two af the sets Q, (A}, and {{@)} are equal, (An emply box
and a box containing an empty box are not the same.) For the set C above, it is therefore
carrect to write B

g BcCdeC B (@, {Bel,

as well as

fencc g (g e P(Cy. ¢

[_ 1.3 Set Operations ]

Example 1.8

Just as there are scveral ways of combining two integers to produce another integer
(addition, subtraction, multiplication, and sometimes division). there are several ways
0 combine two sets to produce ancther set. The union of two sets A and 8, denoted by
AU B, is the sel of all elements belonging to 4 or B; that is,

AUdB=lx: xedorxeBl

The use of the word “or” here, and in mathematics in general, allows an element of
:Al_jB to belong to both A and B, Thatis, x isin AU B ifxisin Aorxisin B or x is
in both A and B. A Venn diagram for 4 U B is shown in Figure 1.2,

Forthe sers Ay = 2,5, 7, 8], A2 = [1,3, 3}, and A3 = {2, 4,6, 8], we I’éave
AU Ar ={1,2,3.5,7, 8},
AU Ay ={2,45.6,7,8),
ArUAs={1,2.3.4.5 6,8,
Also NUZ=Zand QU1 =R, &

Figure 1.2 A Venn diagram for AU B
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Example 1.9

Sets

Figure L3 A Venn diagram for AN B

The intersection of two sets A and B is the set of all clerents belonging Lo both A
and B. The intersection of A and B is denoted by A 1 8. In symbols,

AnNB=(x: xeAandx € B}

A Venn diagram for A N B is shown in Figure 1.3.
For the seis Ay, Az, and Ay described in Example 1.8,
AfNA; =[5, A NA; =28, and Az As =10
Alse, NNZ=Nand QNnR =Q. ¢

For every two sets A and B, it follows that
ANBCZAUL

If iwo seis A snd B have no slements in commen, then AN KB =@ and A and B
are said to be disjoint. Consequently, the sets Az and A3 described in Example 1.8 are
disjoint; however, Ay and Aj are not disjoint since 2 and & belong to both sets. Also, Q
and I are digjoint.

The difference A — B of two sets A and B (also wrilten as A\ B by some mathe-
maticians) is defined as

A—B=Ix:xeAandx ¢ B}

A Venn diagram for A — B is shown in Figure 1.4,

Figure 1.4 A Venn diagram for A — B

1.3 Set Operations 21

Figure 1.5 A Venn diagram for 4

Example L10  For the sets & = {2,5,7. 8} and Ay = {1,3,3} in Examples 1.8 and 1.9, Ay — Ar =

Example 1,11

Solution

(2,7 8) and Az — Ay = {1, 3}. Furthermore, R —Q =1L ¢

Suppose that we are considering a certain universal set [/; that is, all sets being
discussed are subsets of I/, For a set A, its complement is

A=U-A={x: xeb’andxtzA].

IfY =2Z,then N = {0, -1, 72,‘.‘_._ J: while if IF = R, then @ = I. A Vern diagram for
A is shown in Figure 1.5, '

The set difference 4 — B is sometimes called the relative complement of B in
A. Indeed, from the definition, A — B ={x : x € Aand x ¢ 8}. The set 4 — B can
also be expressed in terms of complements, namely, A - B = AN B. This fact will be
established later, '

Let U ={1.2,..., 10} be the universal set, A=1{2,3,5,7} and 8 ={2,4,6,8, 10}
Determine each of the following: :

(0 B, (0 A—B, (&) ANE. (D &

@ B ={1,3,579.

) A-B=1{357.

(&) ANB={335T=A—D.

@) B=R={246,8 10 , o

Bxample 112 Lor A = {b, {0}, [0, (0111

(a) Determine which of the [ollowing are elements of A: 0, {0}, {{0}}.
(b} Determine | Al

{c} Detcriaine which of the following are subsers of A: 0, {0}, {{0}}.
For [d)-(i}, determine the indicaled sets,

iy {01n4
& {{thna
o {fopna
g} A
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hy {opua
M {0y A

" Solution (#) While 0 and {0} are elements of A, {{0}} is not an element of A.
{b) The set A has three efements: 0, {0}, {0, {0} }. Therefore, 14| = 3.

(¢) The integer 0 is not a set and $0 cannot be a subset of A (ora subset of any
other set}. Since 0 € A and {0 € A4, it follows that {0} € A and [{0}} € A.

(d) Since 0 s the only element thai belongs to both {0} and A, it fellows that
MMA={0}.

(e) Since [0) is the ouly clement that belongs to both {{0]} and A, it follows that
oy nA = {0} -

() Since {{01} is not an element of A, it follows that {{{0}}} and A are disjoint
sets and se {0} NA =4,

(g) Since 0 & 4, it follows that {0} U A = A,
() Since {0} < 4, it follows that {{0}} U A = A,
() Since {0} ¢ A4, it follows that {{{0}]} U A = {0, {0}, ({011, {0, {01}}. ¢

[_ 1.4 Indexed Collections of Sets T

We will often encounter situations where more than two sets are combined using the set
operations described above. In the case of three sets 4, 8, and C, the standard Venn
diagram is shown in Figure 1.6.

The union A U B U is defined as

AUBUC={x: xeAorxeBorxe(}

Thus, in order for an element to belong to A U B U C, the element must belong to at
least one of the sets 4, 8, and C. Because it is often useful to consider the union of
several sets, additional notation is needed. The union of the ## > 2sets Ay, d2,..., A,
is denoted by A; U Az U - U A, or iy Ay and is defined as

n
U’q“'=[x: x e A; forsomei, 1 <1 < rl.
=1

A B

C

Figure 1.6 A Venn disgram for thiee sats

1.4 Indexed Collections of Seis 23

Thus, for an element a o befong to | J_, A;. il is necessary that & belongs Lo at least one
of the sets 4y, Az, ..., 4,.

Example 113 Les 8, ={1,2}, Ba={2,3},..., Bay = {10. 11}, that is, By =1{i,i + 1} for i =

b2, 10, Determine each of the following:

5 10 ¥ k
@ s m (JB. @ Js @ |JBowherel </ <k =10
f=1 i=l =3

i=j

. 3 1a
Solution @ Ja=t12...6 ® [ JB=112...10
r=?l (il
©Us=64 8 @ JB=(j+1. . k1L ¢
i=3 i=j .

We arc often Interested in the intersection of several sets as well. The intersaction

of t_he 7= 25618 Ay, Ag, ..., A isexpressedas Ay N Az N --- M A, or [, A; and is
defined by )

"
ﬂA[ =1{x: x g Ajforeveryi, 1 < <}
i=1

The next example concerns the sets mentioned in Bxample 1,13,

Example L4 Lei By = {i, i + 1] fori = 1,2; ..., 10 Determine the following..
) il §+1
@ (V& BN By {0 )Brwhere 1 < j < 10,
. =] i=j
D) Biwhere 1 5 j < k = 10,
i=j
. 10 J+1
Setution (@) [B=0. (&) BNBa={i+1. © [ B =4{+1L
Li=l i=f .
3 & '
@ [ \Bi={j+1}ilk =+ Lwhile [ |Br =itk > j +1. $
i=f i=j

There are instances when the union or intersection of a collection of sets cannot be
dest_:ribe(l conveniently (or perhaps at all) in the manner mentioned above. For this reason,
we introduce a (nonempty]) set 7, called an index set, which is used as & mechanism for
selecting those sets we wank to consider. For example, for an index set /, suppose that.
there is a set S, for each o € J. We write {5, Jes to describe the collection of all sets

Se ' where ¢ € . Such a collection is called an indexed collection of sets, We define the
union of the sets in S, }4e; by

LJSQ =ir: x5, forsomew 7},

wef
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Example 1.16

Example 1.17

Example 1.18

Scts

and the intersection of these sets by

(V8. =1x: xe S forallw e/},

aef
Hence an clement @ belongs to |, ., 5o if @ belongs to at least one of the sels in
the collection {Sglaes. While @ belongs o [,e; S« if @ helongs to every set in the
collection {8, )aes. We refer to [, S a8 the union of the collection {S.}ass and
Maes So as the intersection of the collection {Sy}aes. Just as there is pothing special
abont our choice of i in {J{_, A; (that is, we could just as well describe this set by

_ | A, say), there is nothing special about & in |, Se. We could also describe this

set by |] < S<. The variables i and e above are “dummy variables” and any appropr iate
symbol éouicl be used. Indeed, we could write J or some other symbol for an index
set.

Forn € N, define Sy = {n, Zn}. For example, 5| = {1, 2}, Sy =124}, and 5y = {48}
Then Sy U Sy '3 Sq = {1, 2,4, B}, We can also describe this set by means of an index set,
Howeler I =1{1,2, 4], then

Usa=siusus, 4
asl
For cach n £ N, define Ay to be the closed interval '“',]”n —] of read numbers; that is,

1 1
An:[.\:ER:——S‘cE ]
n Tl

So Ay =[-1,1],A; = [ﬁm ] Az = [—% %], and so an. We have row defired the

sets Ay, Az Aseon. The union of these sets can be written a3 Ay Ay \J Ayl

L=, A Using N as an index sef, we can also wiite this union as |, oy Ar. Since A,, g
Ay = [—1, 1] for every i € N, it follows that |, oy An = [~1. 1]. Certainly, 0 € A, for
everyn € N infoct, (,ex An = (0 4

Let A denote the set of the letters of the alphaber, tharis, A={a,b,....z}. Fora € A,
fet Ay consist of a and the two letters that followe. So A, = {a. b, cland 4, = {b, o, d]
By Ay, wewill mean theset{y, z, aland A; =z, 4, by Hence |Ay| = 3foreverve € Al
Therefore, | Jyon Ao = A, Indeed, if

B={a.d, g j.mpsv ¥,
then | yep Au = A as well. On the other hand, if T =1{p.q.r}, then |, Ae =

[p.q.rs b while [,o Ac = [r). ¢
Ler 8 =1{1.2,...,10). Each of the sets
$1=1{1,2,3,4], 5 =1{4.5,6,7.8}. and §5 = {7,8,9, 10}

isa subset of S.Also, ${ U $3 U 8§ = S This union can bedescribedina number af ways.
Define § = [1,2,3) and J = {81, 52, 51} Then the union of the three sets belonging io

1.5  Partirions of Seis 25
J s precizsely Sy U 89 U Sa, which can nfso be writien as

US_US_UX 4

i=1 el

S= 5 iUSUS =

1.5 Partitions of Sets

Example 1.19

Solution

Recall that two sets are digjeint 1f their intersection is the empty set. A collection & of
stibsels of aset A 15 cailed pairwise disjoint if every two distinet subsets that belong to S
are disjoint. For example.let A = {1,2,...,75L B = (1, 6},C ={2,5}, £ = {4, 7}, and
S ={B,C, D). Then § is a pairwise disjoini collection of subsets of A since 5 NC =
BN D =C D=0 On the other hand, let A"’ = (1,2,3}, B = {1.2}, C"={1,3},
o =1{231 and §' = (B, C’, D). Although § s a collection of subsets of A" and
B NN DY =, the set§’ 1s nor apairwise disjoint collection of sets since B M C7 % @,
for example. Indeed, B’ ¢ D' and C" 1 D7 are zlso nonempty.

We will often have the occasion (especially in Chapter 8) to encounter, for a
nonempty set 4, a collection & of pairwise disjolnt nonempty subsets of A with the
added property that every element of A belongs to some subset in 5. Such a collection
is called & partition of A. A partition of A can also be defined as a collection & of
nonemply subsets of A4 such that every clement of A belongs to exactly one subsetin &,
Furthermore, a partition of 4 can be defined as a collection & of subsets of 4 sansfymc
the three properties:

(1) X « fforeveryset X € S:
(2} foreveryiwosets X, ¥ € Seither X =Y or XY =&
@ UgesX =4
Consider the following collections of subsets of the set A =1{1,2,3,4, 5, 6):
= {1, 3,6}, 42,4}, {51%
Sp={{1,2,3}, {4}, &, {5, 6}

Sz = {{L, 2}! {3‘ 4, ﬁ}, { ' ”
So= ({144 3. 5L (2)1

Determiie which of these sety are partitions of A,

The set S is a partition of A. The set $ js not a partition of A since @ is one of the
elements of S2. The set S5 15 not 2 partition of A either since the element 5 belongs to
two distinct subsets in Sz, namely, {3, 4, 3 and {5, 6]. Finally, §; is also net a pattition
of A because the element 6 belongs to no subset in 54. 4

. As the word “partition” probably suggesis, a partilion of a nonempty set 4 is &
division of A into nonempty subsets. The partilion §y of the set A in Example 1.19 is
illustrated m the diagram shown in Figure 1.7,

For cxample, the set Z of integers can be partitioned into the set of even integers
and the set of odd integers. The set R of real numbers can be partitioned into the set RT
of positive real numbers, the set of negative real numbers, and the sel {0} consisting of
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Figure 1.7 A partition of a set

the number 0. In additon, R can be partitioned into the set Q of rational numbers and
the sei I of irrational numbers.

BExample 120 Ler A={1,2,..., 12}

(a} Give an example of a partition § of A such that [§] = 5.
(b} Give an cxample of a subset T of the partition § in (a) such that [7'] = 3.
{(cy List all those clements B in the partition § in (a) such that |B| =

Selufion {2) We are seeking a partition 5 of 4 consisting of five subsets. One such
example is
§={{1,2), (3,4}, 5,6}, {7, 8.9}, {10, 11, 12}}.

() We are seeking a subset 7 of § (given in (a)} consisting of three elements.
One such sxampls is

={{1,2}, {3, 4}, {7. 8,91}

{c) We have been asked to list all those elements of § (given in {a)) consisting of
two elements of A. These elements are: {1, 2}, {3,4}, {5.6}. ¢

[_ 1.6 Cartesian Products of Seis _]

We've already mentioned that when a set A is described by listing its elements, the order
in which the clements of A are listed doesn’L matter. That i, If the set & consists of two
clements x and y, then A = {x, y} = {, x}. When we speak of the ordered pair (x, ),
however, this is another story, The ordered pair (x, ¥) Is a single element consisting of &
pair of elements in which x is the first ¢lement (or first coordinats} of the ordered pair
(x, ¥) and y is the second element (or second coordinate). Morcover, for two ordered
pairs (x, ¥) and (w, 7) to be equal, that is, (x, ) = {w, z), we must have x = w and
y=1z.80,ifx #£ y, then{x, y) # (¥, x).

The Carfesian product (or simply the product) A x B of two sefs 4 and B is the
set consisting of all ordered pairs whose first coordinate belongs 1o A and whose second
coordinate belengs to B, In other words, :

Ax B ={{a,h): acAand b € B}.

Exercises for Chapter 1 27

Example 121 {fA = {x, yland B = {1, 2, 3}, then
A B =[x, 1) (2, 2, 031 (O 143, 20, O 30,
while
Bt A =((1,x), (1, ¥2.42, %), (2,33 3, 0. B, )}

Since, for example, (x. 1) € A X B and (x, 1) ¢ B x A, these two sets do not contain
the same elements; so A x B # 8 x A Alo,

Ax A= {00009, 051 (0 )
and
Bx B={(1 (L2, (1L3.(2,1,(2,2), 23,6, D, 6, 25:6,3)F 4

Wealsonote thatif A s @or B =@, then A x B =
The Cartesian product R x R is the set of all points in the Buclidean plane. For
example, the graph of the straight line ¥ = 2x 4 3 is the set

HER y)ERxR ¥ =72r+3}

Forthesets 4 = {x ¥} andB = {1, 2, 3} given in Example 1.21, \A' =2and |B| =
3; while | A x B| = 6. Indeed, for all finite sets A and &,

14 = B = |A[-|B].

Cartesian products will be explored in mere detail in Chapter 7.

EXERCISES FOR CHAPTER 1

Scetion 1.1: Descrfhing a Set

1.1. Which of the followirg are sets?
(a) 1,2,3 '
(b (1,2),3
(e} {{1},2}.3
) {1, 12}, 3]
(&) (1,2, a,b) 7 _
12 Let § = {—2, ~1,0, 1,2, 3}, Describe cach of the following seis as {x € § ¢ p{x)}, where p(x) is some
condition on x. ’
A={L2,%
B=1{0,1273)
(c} € =1{-2,—1}.
(dy D ={-223}
.3, Determine the cardinality of each of the following sets:
fa) 4=1{1,2,3,45)
() B =1[0,2,4,...,20}
() € = [25,26,27, ....75}
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W D=1{{1,2} {1, 2,3, 4}}
(e} £ = {#)

S0 F=1{2,{2.3.4}

1.4.

1.5

1.6,

Write each of the following scts by listing its elements within braces.

(a) A={neZ: -4 <cn=4)

by B=ine?Z: <3}

) C={neN: n <100}

() D={xecR: x*—x =0

() E={xeR: x> 4+1=0]

Write each of the following sets in the form {x € Z : p{x)}, where p(x) is a property concerning x,
@ A={-1-2-3,..}

b) B =1{-3~2....3}

ey C=1{-2,-1,1,2}

The set F = {2x . x € Z} can be described by listing its elements, namely £ ={.... —4.-2,0,2,4, ],
List the elements of the following sets in a similar manner,

@) A={2x+1: x€Z}

by B={4n: ne?}

ey C={3g+1: gei}

. Theset E=1{...,—4,-2,0,2,4, ...} of even infegers van be described by means of a defining condition

by E={y=2x: 2 € L} ={2x: x g Z}. Describe the following sets in a similar manner.
@ A=1{..,-4-1258..]

&y B=1{...-10,—5,0,510,...}

() C={1,8,27 04,125, ..}

Section 1.2: Subseis

1.8.

. Porauniversal sct &7 = {1, 2, ..

Give examples of three sets A, B, and € such that
(@ AcBcC

() AcB.BeC,and A ¢C.

{c) AcBandACC.

. Let {a, b} be an open interval of real numbers and let ¢ € (@, ). Describe an open interval § cenlered atc

such that I C (a, b).

. Which of the following sets are equal?

A=lneZ: |n| =2}
B={necZ: n’=u}
C={neZ: nt<n}

D={neZ: n*=<l)
E={~10.1)

B} and two sets A = {1,3,4, 7} and B = {4, 5, 8), draw a Venn diagram
that represents these sets.

. Find P{A) and |P(A)] for

(a) A={l,2].
) A=1{3.1,{a).

. Find PLAY for A = {0, {0},

114

1.I5.
1.L6.
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Find P{P({11)) and its cardinality.

Find P(A) and |P{A)Y for A = [0, @, (@}
Give an example of a set $ such that

w §CPMN)

b § e P{N)

(c) §CPNyand [S1 =35,

(@ S e P(N)and [§] =5.

Section 1.3: Set Operations

117

1.18.

1.19.
1.20.

121

1.22.

1.23.

124,

Letl = {1,3,..., 13) be the universal set, 4 = (1, 5,9, 13}, and 8 = {3.9, 15}. Determine the following:
WAUB MANE, (A8, (DB=-4, &4 H)ANE.

Give examples of three sets A, B, and C such that

() AEB,ACC,andB ZC.

b BeA BCC,andANC # 8.

) Ac B BCC andd €C.

(Give examples of three sets 4, 8, and C suchthat B 2 C bt B — A= — A,

Give examples of two sels A and 8 such that |[A — B| = |[A N B| = {B — A| = 3. Draw the accompanying
Venn diagram.
Let {7 be a universal set and let A4 and £ be two subsets of I/, Draw a Venn diagram for sach of the
following sets.
@ AUB (b ANE () ANB (d) AUE
What can you say about parts {a) and (b)7 parts (c) and (d)?
Give an example of a universal set I/, two sets A and 2, and an accompanying Venn diagram such that
[ANB|=|A—~B|=[B—A|=|4AUBj=2.
Let 4, B. and € be nonemply subsets of a untversal set I7. Draw a Veon diagram for each of the following
6t operations.
W (C—BIUA
by Cni(4d—B) ]
Lot 4 — {8, {8, {{#}}).
{a) Determine which of the following we elements of A: 8. (8], |, (A1)
(b) Determine |A|.
{c} Determing which of the following arc subsets of A: @, {#), {#, {#]}.
For (d)i}, determing ihe indicated seis.
W ana
ey 1M A
0 @, (A
(@ oA
h) [@uva
W (8,42 U A




30

Chapier T Ses

Section 1.4: [ndexed Collections of Sets

1.25,

1.26.

1.27.

1,28,

1.29.

1.30.

1.3L

Give examples of 2 universal set U/ and sets A, B, and C such that cach of the following sets contains
exactly one element: ANBNC (AN —C, (ANC) — BBNC)— A, A—(BUCLEB-(AUD),

C — (A% B), AUE UC. Draw the accompanying Veon diagram.

For a real number r, define A, = {r?}, B, as the closed interval [ — 1,r - 1], and €, 2s the interval {r, co).
For § = {1, 2, 4}, determine

(a) UaES A“ and maGS Aw

() UuES B, and nggs By

(©) Upes Co a0 [Nyes Ca

Letd=11,2,5},B=1{0,2,4,C ={2.3,4},and § = {4, B.C}. Determine {_Jy-g X and [y .5 X-

For a real number r, define 5, to be the interval [ — 1, + 4+ 21 Let 4 = {1,3, 4]. Determine g So and ’
ﬁmEA Sﬂ'

Let A = {a, b, ..., z} be the set consisting of the leters of the alphabet. For w € A, let A, consist of & and
the two letters that follow i, where 4, = {v, z,a} and A; = [z. &, b}. Find a set § € A of smallest
cardinality such that {_}, ¢ A. = A. Explain why your set $ has the required properties.

For each of the following collections of sets, define a set Ay for each # € N such that the indexed collection
{An}nen is precisely the given collection of sets, Then find both the union and intersection of the indexed
collection of sets.

(@ L2+ 1, L2+ 12, L2+ /3. )

(b} {{—1,2), (=3/2,4}, (=5/3,6), (=7/4,8)... ]

For each of the foliowing, find an indexed collection {A, laen of distinot sets {that is, no (wo sets are equal)
satisfying the given conditions.

@ [V, A= {0band 32, 4, = [0. 1),

) (Yo, 4, ={—1,0,1}and U= A =2

Section 1.5: Partitions of Sets

[.32.

1,33,

Which of the following are partitions of A = {a, b, ¢, d. ¢, f, g}? For each collection of subsets that is not a
partition of A, explain your answer.

@ S =a,coe g b fl. {4}

(® $2 = {{a.b.c.d) e f11

(cy 81=1{4)

(d) 8 = {{al, 8, (b e.d}, le, Fogll

(e} § = lla,c.d}, th. gl {e}. b, F1}

Which af the following sets are partitions of 4 = (1,2,3,4,517
(a) & = {{1.3}L {2, 34

(1) Sa=({1,21{3,4.5L12. 1))

(c) 85 =1{1,2}, 12,3}, 3. 4). 4. 5h

) Sy=4

1.34. Let A = {1,2.3,4, 5, 6}. Give an example of partition § of A such that [} = 3.

1.35.

Give an cxample of a sel A with {4| = 4 and twao disjuint partitions §; and §; of A with [ S =
|82] =13

1.36.

1.37.
1.38.
1.35.
1.40.

Additional Exercises for Chapier 1 31

Give an example of three sets 4, §), and Sy such that 8 is a partition of 4, S 154 partition of 5, and
[§2] = 151 < 14}

Give an example of a pattition of () into three subsels.
Give an example of a partition of N inta three subsets.
Give an example of a partition of Z into four subsets.

L_cl A={1,2,...,12). Give an example of 4 partition S of A satisfying the following requirements:
(1) 18] = 5, (ii) T is 4 subset of § such that |7} = 4 and | Uxer X{ = 10, and (jif) there is no element B £ §
such that |51 = 3.

Section 1.6: Cartesian Products of Sets

1.4},
1.42.
1.43.
1.44.
145
1.46.
147,

ict A ={x,y, z}and B = {x, y}. Determine A x B.

Let A = {1, {13, {{1}]}. Determine A x A.

For A == {a. b). Determine A x P(4).

For A = [@, {#]}. Determine A x P(A).

For A = {1, 2} and B = {#], determine A x B and P{A) = P(B).

Describe the graph of the circle whose equation i5 32 + y* =4 as a subset of R x R.

fist the elements of the set § = {(x, ¥) € Z x Z: {x| + ly| = 3}. Plot the coresponding peints in the
Euclidean x-y plane.

ADDITIONAL EXERCISES FOR CHAPTER 1

1.48.

1.46.

1.50.

Let § = (=10, =9, ..., 9, 10}. Describe each of the following scts as {x € & 1 p(x)}, where p(x} is some
condition on x. : -
(@ A={—10, =9 ..., =1 1,...,9.10}

(b)y B =1{-10,-9,...,—-1,0)

©) C={-5.-4..7

@ D={-10,-9,...74,6:7,...,10}

Describe each of the following sets by listing ifts elements within braces.
(w xeZ: x* —de =0}

by {x e R: |x] = =1}

Gy {meN: 2<m=<3]

@ reN: 0=n=3}

o) fkeQ: k2 —4=10}

M keZ: 0k —3=0)

g) thkeZ: 1 =k =10}

Determine the cardinality of each of the following scts.

(@ A=1{1,2,311,2,3}4, (4}

) B={xeR: x| =—1}

@ C=[meN:2=<m=5}

M D={neN: n <

(&) E=[keN: 1 =i < 100)

(f F=theZ: l k% = 100}
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1.51.
1.52.

1.54.
1.55.

1.56.

1.59.

1.60.

L6l

1.62.

Chapter 1 Sets

For A = {-1,0,1} and B = {x, y}, determine A x B.

Let U = {1, 2, 3} be the universal set, and let A = {1, 2}, B = {2, 3}, and C = {1, 3}. Determine the
following.

(a) (AUBY—(BNC(C)

) A

(¢ BUC

(d) AxB

. Let A={1,2,..., 10}. Give an example of two sets S and B such that § C P(A), |S| =4, B € S, and

|B| =2.

For A = {1} and C = {1, 2}, give an example of a set B such that P(A) C B C P(C).
Give examples of two sets A and B such that

@ ANP(A)e B

(b) P(A) C AUB.

Which of the following sets are equal?

A={neZ: -4<n<4} D={xeZ: x*=4x}
B={xeN:2x+2=0} E=1{-2,0,2}

C={xeZ:3x-2=0}

. Let A4 and B be sets in some unknown universal set U. Suppose that A = {3,8,9}, A — B = {1,2},

B —A={8},and AN B = {5, 7}. Determine U, A, and B.

. Let [ denote the interval [0, 00). For each r € /I, define

Ar={(x,) eRxR: x> +y?=r2},
B, = {(x,y)eRxR: x2+y2§r2},
Cr={. ) eRxR: x2+y > r2}.
(a) Determine | J,; A, and (),¢; Ar.
(b) Determine | J,; B- and ., B,
(c) Determine | J,.; C; and [, ; C;.
Give an example of four sets A, As, A3, A4 such that |4; N Aj| =i — j| for every two integers i and j
withl <i < j<4.
(a) Give an example of two problems suggested by Exercise 1.59 (above).
(b) Solve one of the problems in (a).
Let A=1{1,2,3},B=1{1,2,3,4},and C = {1, 2, 3,4, 5}. For the sets S and T described below, explain
whether [S] < |T|, |S| > |T[,or |S| = |T].
(a) Let B be the universal set and let S be the set of all subsets X of B for which |X| # |X|. Let T be the
set of 2-element subsets of C.
(b) Let § be the set of all partitions of the set A and let T' be the set of 4-element subsets of C.

(c) LetS={(b,a): b€ B,ac A,a+bisodd} and let T be the set of all nonempty proper subsets of A.

Give an example of aset A = {1, 2, ..., k} for a smallest k € N having subsets A;, A,, A3 such that
|Ai — A;l =14; — Ai| = |i — j| forevery two integers i and j with 1 <i < j < 3.

Logic

In mathematics our goal is to seek the truth. Are there connections between two given
mathematical concepts? If so, what are they? Under what conditions does an object
possess a particular property? Finding answers to questions such as these is important,
but we cannot be satisfied only with this. We must be certain that we are right and that
our explanation for why we beli¢ve we are correct is convincing to others. The reasoning
we use as we proceed from what we know to what we wish to show must be logical. It
must make sense to others, not just to ourselves.

There is joint responsibility here, however. It is the writer’s responsibility to use the
rules of logic to give a valid and clear argument with enough details provided to allow
the reader to understand what we have written and to be convinced. It is the reader’s
responsibility to know the basics of logic and to study the concepts involved sufficiently
well so that he or she will not only be able to understand a well-presented argument but
can decide as well whether it is valid. Consequently, both writer and reader must have
some familiarity with logic.

(Although it is possible to spend a great deal of time studying logic, we will present
only what we actually need and will instead use the majority of our time putting what
we learr into’ practice.

—

2.1 Statements - J

In mathematics we are constantly dealing with statements. By a statement we mean a
declarative sentence or assertion that is true or false (but not both). Statements therefore
declare or assert the truth of something. Of course, the statements in Which we will be
primarily interested deal with mathematics. For example, the sentences

The integer 3 is odd.
The integer 57 is prime.

are statements (only the first of which is true).
Every statement has a truth value, namely true (denoted by T') or false (denoted
by F). We often use P, Q, and R to denote statements, or perhaps Py, P, ..., P, if

33
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Example 2.1

several statements are involved. We have seen that

Py : The integer 3 is odd.

and
P, : The integer 57 is prime.

are statements, where P; has truth value T and P; has truth value F.
Sentences that are imperative (commands) such as

Substitute the number 2 for x.
Find the derivative of f(x) = e ¥ cos2x.

or are interrogative (questions) such as

Are these sets disjoint?
What is the derivative of f(x) = e* cos 2x?

or are exclamatory such as

What an interesting question!
How difficult this problem is!

are not statements since these sentences are not declarative.

It may not be immediately clear whether a statement is true or false. For example, the
sentence “The 100th digit in the decimal expansion of 7 is 7.” is a statement, but it may
be necessary to check some table to determine whether this statement is true. Indeed,
for a sentence to be a statement, it is not a requirement that we be able to determine its
truth value.

The sentence “The real number 7 is rational.” is a statement provided we know what
real number r is being referred to. Without this additional information, however, it is
impossible to assign a truth value to it. This is an example of what is often referred to as
an open sentence. In general, an open sentence is a declarative sentence that contains
one or more variables, each variable representing a value in some prescribed set, called
the domain of the variable, and which becomes a statement when values from their
respective domains are substituted for these variables. For example, the open sentence
“3x = 12” where the domain of x is the set of integers is a true statement only when
x =4.

An open sentence that contains a variable x is typically represented by P(x), G(x),
or R(x). If P(x) is an open sentence, where the domain of x is S, then we say P(x)is
an open sentence over the domain S. Also, P(x) is a statement for each x € §. For
example, the open sentence

Px): (x=3Y <1

over the domain Z is a true statement when x € {2, 3,4} and is a false statement
otherwise.

For the open sentence

Px,y): x+1+Iyl=1

2.2 The Negation of a Statement 35
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Figure 2.1 Truth tables for one, two, and three statements

in two variables, suppose that the domain of the variable x is § = {-2, 1,0, 1} and
the domain of the variable y is T = {—1,0,1}. Then

P11 =D+ +(1t=1
is a true statement, while
P, -D: I+ +[-1=1
is a false statement. In fact, P(x, y} is a true statement when
(x,y) € {(=2,0), (=1, 1), (-1, 1), (0, 0}},
while P(x, y) is a false statement for all other elements (x,y) € S x T. é

The possible truth values of a statement are often given in a table, called a truth
table. The truth tables for two statements P and O are given in Figure 2.1. Since there
are two possible truth values for each of P and @, there are four possible combinations of
truth values for P and Q. The truth table showing all these combinations is also given in
Figure 2.1. If a third statement R is involved, then there are eight possible combinations
of truth values for P, 0, and R. This is displayed in Figure 2.1 as well. In general, a
truth table involving # statements Pq, Py, - - -, P, contains 2" possible combinations of
truth values for these statements, and a truth table showing these combinations would
have 7 columns and 2" rows. Much of the time, we will be dealing with two statements,

- usually denoted by P and (; so the associated truth table will have four rows with the

first two columas headed by P and Q. In this case, it is customary to consider the four
combinations of the truth values in the order TT, TF, FT, FF, from top to bottom.

L

2.2 The Negation of a Statement

Much of the interest in integers and other familiar sets of numbers comes not only from
the numbers themselves but from properties of the numbers that result by performing
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operations on them (such as taking their negatives, adding or multiplying them, or combi-
nations of these). Similarly, much of our interest in statements comes from investigating
the truth or falseness of new statements that can be produced from one or more given
statements by performing certain operations on them. Our first example concerns pro-
ducing a new statement from a single given statement.

The negation of a statement P is the statement:

not P.
and is denoted by ~P. Although ~P could always be expressed as
It is not the case that P.

thére are usually better ways to express the statement ~FP.

For the statement
Py : The integer 3 is odd.

described above, we have
~Py 1 It is not the case that the integer 3 is odd.

but it would be much preferred to write
~Py : The integer 3 is not odd.
or better yet to write
~Py : The integer 3 is even.
Similarly, the negation of the statement
P, : The integer 57 is prime.

considered above is

~P; : The integer 57 is not prime.

Note that ~P, is false, while ~P, is true. é

Indeed, the negation of a true statement is always false, and the negation of a false
statement is always true; that is, the truth value of ~P is opposite to that of P. This is
summarized in Figure 2.2, which gives the truth table for ~P (in terms of the possible
truth values of P).

P ~P
T| F
G

Figure 2.2 The truth table for negation
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2.3 The Disjunction and Conjunction of Statements j

Example 2.3

For two given statements P and @, a common way to produce a new statement from
them is by inserting the word “or” or “and” between P and Q. The disjunction of the
statements P and Q) is the statement:

Por Q.

and is denoted by P Vv Q. The disjunction P Vv @ is true if at least one of P and Q is
true; otherwise, P Vv Q is false. Therefore, P v Q is true if exactly one of P and @ is
true or if both P and Q are true. -

For the statements
Py : The integer 3 is odd. and Py : The z:nteger 57 is prime.
described earlier, the disjunctioitis the new statement
Py V Py: Either 3 is odd or 57 is prime.

which is true since at least one of Py and Py is true (namely, Py is true). Of course, in
this case exactly one of Py and Py is true.

For two statements P and @, the truth table for P v Q is shown in Figure 2.3. This
truth table then describes precisely when P Vv Q is true (or false).

_Although the truth of “P or @” allows for both P and Q to be true, there are
instances when the use of “or” does not allow that possibility. For example, for an
integer 71, if ‘we were to say “n is even or n is odd”, then surely it is not possible for
both “n is even” and “# is odd” to be true. When “or” is used in this manner, it is cailed
the exclusive or. Suppose, for example, that P = {1, Sz, ..., S}, where k > 2,is a
partition of a set S and x is some element of S. If

xe S orx €S

is true, then it is impossible for both x € §; and x € $; to be true.

P
T
T

P
F

o [0

Figure 2.3  The truth table for disjunction
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P Q PAQ
TIT| T
T\F| F
FlT| F
F\F| F

Figure 2.4  The truth table for conjunction
The conjunction of the statements P and Q is the statement:
P and Q.

and is denoted by P A Q. The conjunction P A Q is true only when both P and Q are
true; otherwise, P A Q is false. ’

For P\ : The integer 3 is odd. and P, : The integer 57 is prime, the statement

Py A Py :3isodd and 57 is prime.

is false since P is false and so not both Py and P, are true. é

The truth table for the conjunction of two statements is shown in Figure 2.4.

2.4 The Implication ]

The statement formed from two given statements in which we will be most interested is
the implication (also called the conditional). For statements P and Q, the implication
(or conditional) is the statement:

If P, then Q.

and is denoted by P = Q. In addition to the wording “If P, then Q.”, we also express
P = @ in words as

P implies Q.

The truth table for P = ( is given in Figure 2.5.
Notice that P = Q is false when P is true and Q is false, and is true otherwise.

Example 2.5 For Py : The integer 3 is odd. and P, : The integer 57 is prime, the implication

Py = P, If3 is an odd integer, then 57 is prime.

P QP=Q
T\T{ T
T|F| F
F\T) T
F|F| T

Figure 2.5  The truth table for implication

Example 2.6

Analysis
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is a false statement. The implication

Py = Py If57 is prime, then 3 is odd.

is true, however. é

While the truth tables for the negation ~P, the disjunction P v Q, and the conjunc-
tion-P A Q are probably not unexpected, this may not be so for the implication P = Q.
There is ample justification, however, for the truth values in the truth table of P = Q.
We illustrate this with an example.

A student is taking a math class (let’s say this one) and is currently receiving a B-+. He
visits his instructor a few days before the final examination and asks her, “Is there any
chance that I can get an A in this course?” His instructor looks through her grade book
and says, “If you earn an A on the final exam, then you will receive an A for your final
grade” We now check the truth or falseness of this implication based on the various
combinations of truth values of the statements

P : Yo earn an A on the final exam.
and
Q : You receive an A for your final grade.

which make up the implication.

Suppose first that P and Q are both true. That is, the student receives an A on his
final exam and later learns that he got an A for his final grade in the course. Did his
instructor tell the truth? I think we would all agree that she did. So if P and Q -are
both true, then so too is P = Q, which agrees with the first row of the truth table of
Figure 2.5.

Second, suppose that P is true and Q is false. So the studentgot an A on his final
exam butdid notreceive an A as a final grade, say he received a B. Certainly, his instructor
did not do as-she promised (as she will soon be reminded by her student). What she said
was false, which agrees with the second row of the table in Figure 2.5.

Third, suppose that P is false and Q is true. In this case, the student did not get an A
on his final exam (say he earned a B), but when he received his final grades, he learned
(and was pleasantly surprised) that his final grade was an A. How could this happen?
Perhaps his instructor was lenient. Perhaps the final exam was unusually difficult, and
a grade of B on it indicated an exceptionally good performance. Perhaps the instructor
made a mistake. In any case, the instructor did not lie; so she told the truth, This agrees
with the third row of the table in Figure 2.5.

Finally, suppose that P and @ are both false. That is, suppose the student did not
getan A on his final exam, and he also did not get an A for a final grade. The instructor
did not lie here either. She only promised the student an A if he got an A on the final
exam. She promised nothing if the student did not get an A on the final exam. So the
instructor told the truth, and this agrees with the fourth and final row of the table. é
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In summary then, the only situation for which P = Q is false is when P is true and
Q is false (so ~ @ is true). That is, the truth tables for

~(P = Q) and P A (~0)

are the same. We’ll revisit this observation again soon.

We have already mentioned that the implication P => Q can be expressed as both
“If P, then Q” and “P implies Q”. In fact, there are several ways of expressing P = O
in words, namely:

If P, then Q.
Qif P.
P implies Q.
P onlyif Q.
P is sufficient for Q.
Q is necessary for P.

Itis probably not surprising that the first three of these say the same thing, but perhaps
not at all obvious that the last three say the same thing as the first three. Consider the
statement “P only if Q7. This says that P is true only under the condition that O is true;
in other words, it cannot be the case that P is true and Q is false. Thus it says that if P is
true, then necessarily Q must be true. We can also see from this that the statement “Q is
necessary for P” has the same meaning as “P only if 0”. The statement “P is sufficient
for Q7 states that the truth of P is sufficient for the truth of Q. In other words, the truth
of P implies the truth of Q; that is, “P implies Q™.

2.5 More on Implications }

Example 2.7

We have just discussed four ways to create new statements from one or two given
statements. In mathematics, however, we are often interested in declarative sentences
containing variables and whose truth or falseness is only known once we have assigned
values to the variables. The values assigned to the variables come from their respective
domains. These sentences are, of course, precisely the sentences we have referred to
as open sentences. Just as new statements can be formed from statements P and Q by
negation, disjunction, conjunction, or implication, new open sentences can be constructed
from open sentences in the same manner.

Consider the open sentences
Pi(x):x = -3and P,(x): |x| =3,
where x € R, that is, where the domain of x is R in each case. We can then form the
Jollowing open sentences:
~ Pi(x): x # 3.
Pi(x)Vv Py(x): x =—=3or|x|=3.
Pi(x) A Po(x): x = -3 and |x| = 3.
Pi(x) = Py(x): Ifx = =3, then |x| = 3.

Example 2.8
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[ N\

Figure 2.6  Isosceles and equilateral triangles

For a given real number the truth value of each resulting statement can be determined.
For example, ~P\(—3) is a false statement, while each of the remaining sentences above
results in a true statement when x = —3. Both P{(2) vV Py(2) and P1(2) A Py(2) are false
statements. On the other hand, both ~Py(2) and P1(2) = P»(2) are true statements. In
Jact, for each real number x # —3, the implication Pi(x) = P,(x) is ¢ true statement
since Py(x) : x = =3 is a false statement. Thus P\(x) = Py(x) is true for all x € R. We
will see that open sentences that result in true statements for all values of the domain
will be especially interesting to us.
Listed below are various ways of wording the implication Py(x) = Py(x) :

[fs = =3, then |x| = 3.

lx} =3ifx ==3.
x = —3 implies that |x| = 3.
x = =3onlyif|x| =3.
x = =3 is sufficient for |x| = 3.
\x| = 3 is necessary for x = —3. é

We now consider another example, this time from geometry. You may recall that a
triangle is called equilateral if the lengths of its three sides are the same, while a triangle
is isosceles if the lengths of any two of its three sides are the same. Figure 2.6 shows
an isosceles triangle 7} and an equilateral triangle T». Actually, since the lengths of any
two of the three sides of T are the same, T is isosceles as well. Indeed, this is precisely
the fact we wish to discuss.

For a triangle T, let
P(T) : T is equilateral. and Q(T) : T is isosceles.

Thus, P(T') and Q(T') are open sentences over the domain S of all triangles. Consider
the implication P(T)=> Q(T), where the domain then of the variable T is the set
S. For an equilateral triangle Ty, both P(Ty) and Q(Ty) are true statements and so
P(Iy) = Q(T) is a true statement as well. If Ty is not an equilateral triangle, then
P(13) is a false statement and so P(T>) = Q(T>) is true. Therefore, P(T) = Q) is
a true statement for all T € S. We now state P(T) = Q(T) in a variety of ways:

If T is an equilateral triangle, then T is isosceles.

Atriangle T is isosceles if T is equilateral.

A triangle T being equilateral implies that T is isosceles.

Atriangle T is equilateral only if T is isosceles.

For a triangle T to be isosceles, it is sufficient that T be equilateral.

For a triangle T to be equilateral, it is necessary that T be isosceles. ¢
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Solution

Example 2.10

Solution

Notice that at times we change the wording to make the sentence sound better.
In general, the sentence P in the implication P = Q is commonly referred to as the
hypothesis or premise of P = Q, while Q is called the conclusion of P = 0.

We now investigate the truth or falseness of implications involving open sentences
for values of their variables.

Let § = {2,3,5} and let
P(n): n* —n+ 1isprime. and Q(n): 13 —n + 1is prime.

be open sentences over the domain S. Determine the truth or falseness of the implication
P(n) = Qn) foreachn € S.
In this case, we have the following:

P(2): 3isprime. P(3): 7isprime. P(5): 21l is prime.
Q) : 7isprime. Q(3): 25isprime. Q(5): 121 is prime.

Consequently, P(2) = Q(2) and P(5) = Q(5) are true, while P (3) = Q(3)is false. &
Let S = {1,2} and let T = {1, 4}. Also, let

PG,y): llx+yl—lx —yll=2 and Qx,y): Xt =y*
be open sentences, where the domain of the variable x is S and the domain of y is T.

Determine the truth or falseness of the implication P(x,y) = Q(x, y) for all (x, y) €
SxT.

For (x, y) = (1, —1), we have
P, -1 = Q(,—1): If2
which is false. For (x, y) = (1, 4), we have

=2,thenl =—-1.

P(1,4)= Q(1,4): If2=2,then1 =4.
which is also false. For (x, y) = (2, —1), we have
P2,-1)=Q0@2,-1): ¥2=2thenli=1
which is true; while for (x, y) = (2, 4), we have

P2,4)= Q2,4): If4=2,then32 = 16.
which is true.’ é

2.6 The Biconditional J

For statements (or open sentences) P and Q, the implication Q = P is called the
converse of P => Q. The converse of an implication will often be of interest to us,
either by itself or in conjunction with the original implication.

Example 2.11
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For the statements

Py : 3isanodd integer. P, : 57 is prime.

the converse of the implication

Py = Pyt If3is an odd integer, then 57 is prime.

is the implication
Py= Py U57 is prime, then 3 is an odd integer. . ¢

For statements (or open sentences) P and Q, the conjunction
P=>0AQ=7P)

of the implication P = ( and its converse is called the biconditional of P and O and
is denoted by P & Q. For statements P and Q, the truth table for P < @ can therefore
be determined. This is given in Fi gure 2.7. From this table, we see that P- < ( is true
whenever the statements P and ( are both true or are both false, while P < O is false

otherwise. That is, P < Q is true precisely when P and Q have the same truth values.
The biconditional P < Q is often stated as

Pis equivalent to Q.
or
P if and only if Q.
or as
P is a necessary and sufficient condition for .

For statements P and Q, it then follows that the biconditional “P if and only if Q” is
true only when P and Q have the same truth values.

PQP=Q Q=P (P=QAQ=P)
TiT| T T T
T|\F F_ T F
FlT| T F F
FIF| T T T |

BIEIEIE R
NN O
)

Figure 2.7  The truth table for a biconditional
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The biconditional

3 is an odd integer if and only if 57 is prime.

is false, while the biconditional

100 is even if and only if 101 is prime.

is true. Furthermore, the biconditional

5 is even if and only if 4 is odd.

is also true. é

The phrase “if and only if” occurs often in mathematics, and' we shall discuss this
at greater length later. For the present, we consider two examples involving statements
containing the phrase “if and only if”.

We noted in Example 2.7 that for the open sentences
Pi(x):x = =3 and Py(x) : lx| =3
over the domain R, the implication
Pi(x) = Py(x) : If x = =3, then |x| = 3.
is a true statement for each x € R. However, the converse
Py(x) = Pi(x):If |x| =3, thenx = 3.

is a false statement when x = 3 since Py(3) is true and Py(3) is false. For all other real
numbers x, the implication Py(x) = Py(x) is true. Therefore, the biconditional

Pi(x) & Py(x): x = =3 ifand only if Ix] = 3.

is false when x = 3 and is true for all other real numbers x. $

For the open sentences
P(T): T is equilateral. and Q(T) : T is isosceles.
over the domain S of all triangles, the converse of the implication
P(T) = Q(I') : If T is equilateral, then T is isosceles.
is the implication

O(T) = P(T) : IfT isisosceles, then T is equilateral:

Example 2.15

Solution
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We noted that P(T) = Q(T ) is a true statement for all triangles T , while Q(T) = P(T)
is a false statement when T is an isosceles triangle that is not equilateral. On the
other hand, the second implication becomes a true statement for all other triangles T .
Therefore, the biconditional

P(T) & Q(T): T is equilateral if and only if T is isosceles.

is false for all triangles that are isosceles and not equilateral, while it is true for all other
triangles T . $

We now investigate the truth or falseness of biconditionals obtained by assigning to
a variable each value in its domain. .

Let § = {0, 1, 4}. Consider the following open sentences over the domain S :

DEn+1
——n(71+ 23(”! )isodd.

Omy: m+ 1P =n+1.

Pn):

Determine three distinct elements a, b, c in S such that P(a) = Q(a) is false, Q(b) =
P(b) is false, and P(c) < Q(c) is true.

Observe that
P@0): Oisodd. P(1): lisodd. P{4): 30is odd.
QO):I=1. QM):8=2. Q@) : 125=65.

Thus P(0) and P (4) are false, while P(1) is true. Also, Q(1) and Q(4) are false, while
Q(0)is true. Thus P(1) = Q(1)and 0(0) = P(0) are false, while P(4) ¢ Q(4)is true.
Hence we may takega = 1, b =0, and c = 4. é

Analysis Notice in Exafnple 2.15 that both P(0) < Q(0) and P(1) & Q(1) are false bicondition-

als. Hence the value 4 in S is the only choice for c. é

2.7 Taulologies and Contradictions J

The symbols ~, v, A, =, and < are sometimes referred to as logical connectives. From
given statements, we can use these logical connectives to form more intricate statements.
For example, the statement (P vV Q) A (P Vv R) is a statement formed from the given
statements P, J, and R and the logical connectives v and A. We call (P vV Q) A (P V R)
acompound statement. More generally, a compound statement is a staterent composed
of one or more given statements (called component statements in this context) and
at least one logical connective. For example, for a given component statement P, its
negation ~P is a compound statement.

The compound statement P V (~ P), whose truth table is given in Figure 2.8, has
the feature that it is true regardless of the truth value of P.

A compound statement S is called a tautology if it is true for all possible combina-
tions of truth values of the component statements that comprise S. Hence P V (~ P)is



46

Chapter 2

Logic

Figure 2.8  An example of a tautology

PQ ~Q P=2Q (~QV(P=0Q)
T\T| F T T
T\F| T F T
FI\T| F T T
FIF| T T T

Figure 2.9  Another tautology

a tautology, as is (~Q) Vv (P = Q). This latter fact is verified in the truth table shown
in Figure 2.9.
Letting

Py :3isodd. and P, : 57 is prime.
we see that not only is
57 is not prime, or 57 is prime if 3 is odd.

a true statement, but (&Pz) V (Py = P,) is true regardless of which statements P; and
P, are being considered.

On the other hand, a compound statement S is called a contradiction if it is false
for all possible combinations of truth values of the component statements that are used
to form S. The statement P A (~P) is a contradiction, as is shown in Figure 2.10. Hence
the statement

3 is odd and 3 is not odd.

is false.

Another example of a contradiction is (P A Q) A (Q = (~ P)), which is verified
in the truth tabie shown in Figure 2.11.

Indeed, if a compound statement S is a tautology, then its negation ~S§ is a contra-
diction.

Figure 2.10  An example of a contradiction
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P Q ~P PAQ Q5~P (PAQ)A(Q =~ P)
It F | T F F
TI7| 7 | F T F
FlT| T | F T F
FlF| T | F T F

Figure 2.11  Another contradiction

C

2.8 Logical Equivalence }

Figure 2.12 shows a truth table for the two statements P = Q and (~P) Vv Q. The
corresponding columns of these compound statements are identical; in other words, these
two compound statements have exactly the same truth.value for every combination of
truth values of the statements P and Q. In general, whenever two (compound) statements
R and $ have the same truth values for all combinations of truth values of their component
statements, then we say that R and § are logically equivalent and indicate this by
writing R = §. Hence P = @ and (~P) v Q are logically equivalentandso P = @ =
(~P)v Q.

Another, even simpler, example of logical equivalence concerns P A Q and Q A P.
That P A Q = O A P is verified in the truth table shown in Figure 2.13.

What is the practical significance of logical equivalence? Suppose that R and § are
logically equivalent compound statements. Then we know that R and S have the same
truth values for all possible combinations of truth values of their component statements.
But this means that the biconditional R < § is true for all possible combinations of truth
values of their component statements and hence R < S is a tautology. Conversely, if
R & § is a tautology, then R and § are logically equivalent.

rP.Q ~P P=qQ (~PYyVQ
T T F T T
T|F F F F
Tl T T T
FIF| T T T

Figure 212 Verification of P = Q = (~P)Vv Q

P Q PAQ QAP
T\T| T T
T\F| F F
T F F
F\F| F F

Figure 2.13  Verificationof PAQ = Q A P
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Let R be a mathematical statement that we would like to show is true, and suppose
that R and some statement S are logically equivalent. If we can show that § is true,
then R is true as well. For example, suppose that we want to verify the truth of an
implication P = Q. If we can establish the truth of the statement (~P) Vv Q, then the
logical equivalence of P = Q and (~P) v Q guarantees that P = Q is true as well.

Returning to the mathematics instructor in Example 2.6 and whether she kept her promise
that

If you earn an A on the final exam, then you will receive an A for the final grade.

we need know only that the student did not receive an A on the final exam or the student
received an A as a final grade o see that she kept her promise. ¢

Since the logical equivalence of P = @ and (~P) Vv Q, verified in Figure 2.12, is
especially important and we will have occasion to use this fact often, we state it as a
theorem.

Let P and Q be two statements. Then
P= Qand(~P)Vv Q
are logically equivalent.

Let’s return to the truth table in Figure 2.13, where we showed that P A Q and
O A P are logically equivalent for any two statements P and Q. In particular, this says
that

(P=A@=>Pand(@=PIN(P =0)

are logically equivalent. Of course, (P = Q) A (Q = P) is precisely what is called the
biconditional of P and Q. Since (P = Q)A(Q = P)and (Q = P)A (P = Q) are
logically equivalent, (Q = P) A (P = Q) represents the biconditional of P and Q as
well. Since 0 => P can be written as “P if 0 and P = Q can be expressed as “P only
if 0, their conjunction can be written as “P if Q and P only if Q” or, more simply, as

P if and only if Q.

Consequently, expressing P < Q as “P if and only if 0 is justified. Furthermore, since
Q = P can be phrased as “P is necessary for 0” and P = Q can be expressed as “P
is sufficient for Q7, writing P < Q as “P is necessary and sufficient for 0 is likewise
justified.

2.9 Some Fundamental Properties of Logical Equivalence )

It probably comes as no surprise that the statements P and ~(~P) are logically equiv-
alent. This fact is verified in Figure 2.14.

Theorem 2.18
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P ~P ~(~P)
T Fr] 1T |
FlrT P

Figure 2.14  Verification of P =~ (~ P)

We mentioned in Figure 2.13 that, for two statements P and Q, the statements P A Q
and O A P are logically equivalent. There are other fundamental logical equivalences
that we often encounter as well.

For statements P, Q, and R,
(1) Commutative Laws
(@) PvQ=QVP
®) PANQ=QAP
(2) Associative Laws
(@) PV(OVR)=(PVQ)VR
b)) PANQAR)Y=(PAQ)AR
(3) Distributive Laws. ",
(@ PV(QAR) =(PVOIA(PVR)
b PANQ@VR)=(PAQV(PAR)
(4) De Morgan’s Laws
(@ ~(PVQ)=(~P)A(~Q)
®) ~(PAQ)=(~P)V(~0)

Each part of Theorem 2.18 is verified by means of a truth table. We have already
established the commutative law for conjunction (namely, that P A @ = Q A P) in
Figure 2.13. In Figure 2.15 P v (Q A R) = (P vV Q) A(P V R) s verified by observing
that the columns corresponding to the statements P v (Q A R)and (P v Q) A (P V R)
are identical.

The laws given in Theorem 2.18, together with other known logical equivalences,
can be used to good advantage at times to prove other logical equivalences (without
introducing a truth table).

P O R QAR  PV@QAR PvVQ PVR (PVOAPVR
TITIT! T T T T T
T|T|\F| F T T T T
rlrlr] F T T T T
T|Fir]| F T T T T
Flrlr| T T T T
Flr|r| F F T 7 F
F|F|T| F F F T r
FIF|Fi F F F 7 7

Figure 2.15  Verification of the distributive law P VvV (Q AR) = (P V Q) A (P V R)
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Example 2.19  Suppose that we are asked to prove that
~(P=Q0=PArC0Q)

for every two statements P and Q. Using the logical equivalence of P = Q and
(~P)Y v Q from Theorem 2.17 and Theorem 2.18(4a), we have the following:

~MP = Q) =~((~P)V Q) = (M(~PYA(~Q) =P A (D), 2.1)
implying that the statements ~(P =» Q) and P A (~Q) are logically equivalent, which
we alluded to earlier. ¢

It is important to keep in mind what we have said about logical equivalence. For
example, the logical equivalence of P A Q and Q A P allows us to replace a statement
of thetype P A QO by Q A P without changing its truth value. As an-additional example,
according to De Morgan’s Laws in Theorem 2.18, if it is not the case that an integer @ is
even or an integer b is even, then it follows that a and b are both odd.

Example 220 Using the second of De Morgan’s Laws and (2.1), we can establish a useful logically
equivalent form of the negationof P < Q by the following string of logical equivalences:
~(P & =~(P = Q=P)
(~(P =)V (~(@=P)
= (P A(~Q) VQ A (~P)). é

Il

What we have observed about the negation of an implication and a biconditional is
repeated in the following theorem.

Theorem 2.21  For statements P and Q,

(@) MP=Q)=PA(~0Q)
B P & Q=@ AO)YV(Q AP

2.10 QuantifiedStatements J

We have mentioned that if P(x) is an open sentence over a domain S, then P(x) is a
statement for each x € S. We illustrate this again.

Example 222 [fS={1,2,---,7}, then

20+ 5+ (—1)"

Pn): 3

is prime.
is a statement for each n € S. Therefore,

P(1): 3is prime.
P(2): Tis prime.
P(3): 11 is prime.
P(4): 19 is prime.

Example 2.23
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are true statements, while
P(5): 27 is prime.
P(6): 39 is prime.
P(7): 51 is prime.

are false statements. ¢

There are other ways that an open sentence can be converted into a statement, namely
by a method called quantification. Let P(x) be an open sentence over a domain S.
Adding the phrase “For every x € §” to P(x) produces a statement called a quantified
statement. The phrase “for every” is referred to as the universal quantifier and is
denoted by the symbol V. Other ways to express the universal quantifier are “for each”
and “for all”. This quantified statement is expressed in symbols by

Vx e S, P(x) (2.2)
and is expressed in words by
Forevery x € S, P(x). ’ 2.3)

The quantified statement (2.2) (or'{2.3)) is true if P(x) is true for every x € §; while the

quantified statement (2.2) is false if P(x) is false for at least one element x € S.
Another way to convert an open sentence P(x) over a domain § into a statement

through quantification is by the introduction of a quantifier called an existential quantifier.

Each of the phrases “there exists”, “there is”, “for some”, and “for at least one” is referred
to as an existential quantifier and is denoted by the symbol 3. The quantified statement

IceS, Px) 24
can be expressed in words by
There exists x € S such that P(x). (2.5)

The quantified statement (2.4) (or (2.5)) is true if P(x) is true for at least one element
x € §, while the quantified statement (2.4) is false if P(x) is false forall x € S.

We now consider two quantified statements constructed from the open sentence we
saw in Example 2.22.

For the open sentence
' 2% + 54 (—1)"
P(n): %() is prime.

over the domain S = (1,2, - -, 7}, the quantified statement

2% + 5+ (—=1)"

Vn e S, P(n): Foreveryn € §, 5

is prime.
is false since P(5) is false, for example; while the quantified statement

202 + 54 (=1

dn € S, P(n): There exists n € S such that 5

is prime.

is true since P(1) is true, for example. é




52

Chapter 2 Logic

Example 2.24

The quantified statement Vx € S, P(x) can also be expressed as
If x € S, then P(x).
Consider the open sentence P(x) : x% > 0. over the set R of real numbers. Then
Vx € R, P(x)
or, equivalently,

Yx eR,x*>0

- can be expressed as

For every real number x, x> > 0.
or
If x is a real number, then x? > 0.
as well as
The square of every real number is nonnegative.

In general, the universal quantifier is used to claim that the statement resulting from
a given open sentence is true when each value of the domain of the variable is assigned
to the variable. Consequently, the statement ¥x € R, x> > 0 is true since x* > 0 is true
for every real number x.

Suppose now that we were to consider the open sentence Q(x) : x* < 0. The state-
ment Vx € R, Q(x) (that is, for every real number x, we have x? < 0) is false since,
for example, Q(1) is false. Of course, this means that its negation is true. If it were not
the case that for every real number x, we have x% < 0, then there must exist some real
number x such that x2 > 0. This negation

There exists a real number x such that x2 > 0.
can be written in symbols as
Ix e R, x%2 >0 or Ix € R, ~Q(x).
More generally, if we are considering an open sentence P(x) over a domain S, then
~(Vx € §, P(x))=3x € S, ~P(x).
Suppose that we are considering the set A = {1, 2, 3} and its power set P(A), the set of
all subsets of A. Then the quantified statement
For every set B € P(A), A — B # (. (2.6)

is false since for the subset B = A = {1, 2,3}, we have A — B = (8. The negation of the
statement (2.6) is

There exists B € P(A) such that A— B = 0. 2.7)

The statement (2.7) is therefore true since for B = A € P(A), we have A — B = (. The
statement (2.6) can also be written as

IfBC A then A—B # 0. - 2.8)

Example 2.25
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Consequently, the negation of (2.8) can be expressed as
There exists some subset B of A such that A — B = §. é

The existential quantifier is used to claim that at least one statement resulting from
a given open sentence is true when the values of a variable are assigned from its domain.
We know that for an open sentence P(x) over a domain §, the quantified statement
Jx € S, P(x) is true provided P(x) is a true statement for at least one element x € S.
Thus the statement 3x € R, x* > 0 is true since, for example, x> > 0 is true forx = 1.
The quantified statement

dx eR, 3x =12

is therefore true since there is some real number x for which 3x = 12, namely x = 4 has
this property. (Indeed, x = 4 is the only real number for which 3x = 12.) On the other
hand, the quantified statement

e, dn—1=0

is false as there is no integer # for which 4n — 1 = 0. (Of course, 4n —~ 1 = 0 when
n = 1/4 but 1/4 is not an integer.)

Suppose that Q(x) is an open sentence over a domain S. If the statement 3x €
S, O(x) is not true, then it must be the case that for every x € S, Q(x) is false. That is,

~@x € S, 0(x)) = Vx € §, ~0 ().

We illustrate this with a specific example.

The following statement contains the existential quantifier:
There exists a real number x such that x* = 3. 2.9)

If we let P(x): x* =3, then (2.9) can be rewritten as 3x € R, P(x). The statement
(2.9) is true since P(x) is true when x = /3 (or when x = —+/3). Hence the negation
of (2.9) is:

For every real number x, x> # 3. (2.10)
The statement (2.10) is therefore false. &

Let P(x, y) be an open sentence, where the domain of the variable x is S and the
domain of the variable y is 7. Then the quantified statement

Forallx e Sandy € T, P(x, y).
can be expressed symbolically as
C VxeS,VyeT, P(x,y) (211
The negation of the statement (2.11) is
~VxeS,VyeT, Px,y))=3xe S, ~VyeT, P(x,y)
=3dxeS,yeT, ~Pk,y). (2.12)

We now consider examples of quantified statements involving two variables.
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Consider the statement
For every two real numbers x and y, 24y =0. (2.13)

If we let
P(x,y): x24+y*>0
where the domain of both x and y is R, then statement (2.13) can be expressed as
vx e R,Vy € R, P(x,y) (2.14)
oras -
Vx,y € R, P(x,y).

Since x* > 0 and y* = 0 for all real numbers x and y and so x> + y* > 0, P(x,y) is
true for all real numbers x and 'y and the quantified statement (2.14) is true.
The negation of statement (2.14) is therefore

~(Wx eR, ¥y eR, P(x,y) =3x €R, Iy e R, ~P(x,), (2.15)

which, in words, is
There exist real numbers x and y such that x* + y* < 0. (2.16)
The statement (2.16) is therefore false. é

For an open sentence containing two variables, the domains of the variables need
not be the same.
Consider the statement
Foreverys e Sandt € T, st +2isaprime. (2.17)
where the domain of the variable s is S = {1, 3, 5} and the domain of the variable t is
T ={3,9}. If we let
O(s,t) : st +2isaprime.

then the statement (2.17) can be expressed as

Vs e S, VieT, Q(,t). (2.18)
Since all of the statements
01,3): 1-342isaprime.
05,3): 5-34+2isaprime.

Q(1,9): 1-9+2isaprime.
Q5,9 : 5-942isaprime.

0(3,3): 3-3+2isaprime.

0(3,9): 3-9+2isaprime.

are true, the quantified statement (2.18) is true.

Example 2.28
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As we saw in (2.12), the negation of the quantified statement (2.18) is
~WVseS VeeT, Q@,)=3se S, eT, ~Q(, 1)
and so the negation of (2.17) is
There exists € S andt € T such that st + 2 is not a prime. (2.19)

The statement (2.19) is therefore false. - é

Again, let P(x, y) be an open sentence, where the domain of the variable x is S and
the domain of the variable y is 7. The quantified statement

There exist x € S and y € T such that P(x, y).
can be expressed in symbols as
I eS,AyeT, Pl y). (2.20)
The negation of the statement (2,20) is
~@xeS,yeT, Plx,y) =Vres, ~@yeT, P(x,y)
=VYxeS,VyeT, ~Px,y). 221

‘We now illustrate this situation.
Consider the open sentence
R@s,0): [s =1+t -2 <2,

where the domain of the variable s is the set S of even integers and the domain of the
variable.t is the set T of odd integers. Then the quantified statement
IseS,3tel, R, 1) (2.22)

can be expressed in words as

There exist an even integer s and an odd integer t such that |s — 1| + |t — 2] <2

Since R(2,3): 141 < 2is true, the quantified statement (2.23) is true. 22
The negation of (2.22) is therefore
~3seS,dteT, R(s,t))=Vs e S,Vr €T, ~R(s,t) (2.24)
and so the negation of (2.22), in words, is
For every even integer s and every odd integer t, |s — 1| + |t — 2| > 2. (2.25)
The quantified statement (2.25) is therefore false. é

Quantified statements may contain both universal and existential quantifiers. We
will encounter this in Section 7.2.
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Let’s review some symbols that we have introduced in this chapter:

Exercises for Chapter 2 57

Suppose that some concept (or object) is expressed in an open sentence P(x) over a
domain S and Q(x) is another open sentence over the domain S concerning this concept.

~ negation (not) N . X . .
v disjunction (o) We say that this concept is characterized by Q(x) if Vx € S, P(x) & Q(x) is a true
A conjunction (and) statement. The statementVx € S, P(x) & Q(x)is then called a characterization of this
- implication concept. For example, irrational numbers are defined as real numbers that are not rational
o biconditional and gge charict.erlzeii as'real rflgrr?b.ers v&lfhose ;le?x.mal expansions are nonrepeating. This
v universal quantifier (for every) provides a characterization of irrational numbers:
existential quantifier (there exists) A real number r is irrational if and only if r has a nonrepeating decimal expansion.
{ 2.11 Characterizations of Statements J ‘We saw that equilateral triangles are defined as triangles whose sides are equal. They

Example 2.29

Let’s return to the biconditional P < Q. Recall that P < ( represents the compound
statement (P = Q) A (Q = P). Earlier, we described how this compound statement
can be expressed as

P if and only if Q.

Many mathematicians abbreviate the phrase “if and only if” by writing “iff”. Although
“iff” is informal and, of course, is not a word, its use is common and you should be
familiar with it.

Recall that whenever you see

P if and only if Q.

are characterized however as triangles whose angles are equal. Therefore, we have the
characterization:

A triangle T is equilateral if and only if T has three equal angles.

You might think that equilateral triangles are also characterized as those triangles having
three equal sides, but the associated biconditional:

A triangle 7 is equilateral if and only if 7 has three equal sides.

is not a characterization of equilateral triangles. Indeed, this is the definition we gave
of equilateral triangles. A characterization of a concept then gives an alternative, but
equivalent, way of looking at this concept. Characterizations are often valuable in

or studying concepts or in proving other results. We will see examples of this in future
. . chapters.

P is necessary and sufficient for Q. We mentioned that the following biconditional, though true, is not a characteriza-

this means tion: A triangle T is equilateral if and only if T has three equal sides. Although this

If P then Q and if Q then P.

Suppose that
P(x):x==-3and Q(x): |x| =3,

where x € R. Then the biconditional P(x) < Q(x) can be expressed as

is the definition of equilateral triangles, mathematicians rarely use the phrase “if and
only if” in a definition since this is what is meant in a definition. That is, a triangle
is definéd to be equilateral if it has three equal sides. Consequently, a triangle with
three equal sides is equilateral, but a triangle that does not have three equal sides is not
equilateral.

EXERCISES FOR CHAPTER 2
x = =3 ifand only if |x| = 3. -

or Section 2.1: Statements

2.1. Which of the following sentences are statements? For those that are, indicate the truth value.

x = 3 is necessary and sufficient for |x| = 3. (a) The integer 123 is prime.

(b) The integer 0 is even.

() Is5 x 2'=10?

d) x2—4=0.

(e) Multiply 5x + 2 by 3.

(f) 5x + 3 is an odd integer.

(g) What an impossible question!

or, perhaps better, as
X = —3 is a necessary and sufficient condition for |x| = 3..

Let’s now consider the quantified statement Vx € R, P(x) < Q(x). This statement
is false because P(3) < Q(3) is false. $
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2.2. Consider the sets A, B, C, and D below. Which of the following statements are true? Give an explanation
for each false statement.

B={xelZ: x isodd} D={1,2,3,528,13,21,34,55,...}

P

T

A=1{1,4,7,10,13,16,...} C={x € Z: xisprimeand x # 2} \T
F

F

()25 A, (33eD, (©)22¢AUD, ()CCB, (PeBND, {53¢C.
2.3. Which of the following statements are true? Give an explanation for each false statement.

@bed ®Oe@ ©{1,3}=1{3,1} Figure 2.17  The truth table for Exercise 2.12.
D= (@bcipy ®1c{l)

2.4. The following is an open sentence over the domain R:

Section 2.3: The Disjunction and Conjunction of Statements

- P(x):x(x—1)=6. 2.10. Let P: 15is odd and Q : 21 is prime. State each of the foilowing in words, and determine whether they are
. P ~Pyv d) P A(~0).
(a) For what values of x is P(x) a true statement? e or false. @) PV Q. BPAQ @©CPHVE @ -0

(b) For what values of x is P(x) a false statement? 2.11. Forthesets A = {1,2,---,10} and B = {2, 4, 6,9, 12, 25}, consider the statements
2.5. For the open sentence P(x) : 3x — 2 > 4 over the domain Z, determine: P:ACB. Q:|A-B|=6

(a) the values of x for which P(x) is true; Determine which of the following statements are true:

(b) the values of x for which P (x) is false. @PVQ MPV(Q) ©PAQ e
2.6. For the open sentence P(A) : A C {1, 2, 3} over the domain § = P({1, 2, 4}), determine: @CPIAL @)V (~0)

(a) all A € S for which P(A) is true; 2.12. Complete the truth table in Figure 2.17.

(b) all A € S for which P(A) is false; 213. Let § ={1,2,..., 6} and let »

(c) all A € § for which AN {1, 2,3} = 0. P(A):AN{2,4,6} =0 and Q(A): A + 0.
2.7 Let be open sentences over the domain P(S).

P(n) : nand n + 2 are primes. (2) Determine all A € P(S) for which P(A) A Q(A) is true.
be an open sentence over the domain N. Find six positive integers n for which P (n) is true. If n € N such (b) Determine ail A & P(S) for which P(A) V (~Q(A)) is true.
that P(n) is true, then the two integers 7, n + 2 are called twin primes. It has been conjectured that there (c) Determine all A € P(S) for which (~P(A)) A (~O(A)) is true.

are infinitely many twin primes. g
Section 2.4: The Implication
Section 2.2: The Negation of a Statement

2.14. Consider the statements P : 17 is even and Q : 19 is prime. Write each of the following statements in

2.8. State the negation of each of the following statements. words, and indicate whether it is true or false.

(a) +/2is a rational number. @~P OPVQE ©PAQ W@DP=Q.
(b) 0is not a negative integer. 2.15. For statements P and Q, ¢onstruct a truth table for (P = Q) = (~P).
(c) 111 is a prime number. 2.16. Consider the statements P : +/2 is rational and Q : 22/7 is rational. Write each of the following statements

2.9. Complete the truth table in Fizure 2.16. in words and indicate whether it is true or false.
’ £ @P=0 MO=P @©CFP)=00 D= (P

2.17. Consider the statements:
~P ~Q

P:+/2isrational, Q:2isrational, R :+/3isrational.

Write each of the following statements in words and indicate whether the statement is true or false.
@ (PAQ)=R

®) (P AQ)=(~R)

© (~PYAQ)= R

Figure 2.16  The truth table for Exercise 2.9. @ (P v Q)= (~R).

||
SRS
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Section 2.5: More on Implications

2.18. Consider the open sentences P(n) : 5n + 3 is prime and Q(n) : 7n + 1 is prime over the domain N.
(a) State P(n) = Q(n) in words.
(b) State P(2) = Q(2) in words. Is this statement true or false?
(c) State P(6) = Q(6) in words. Is this statement true or false?
2.19. In each of the following, two open sentences P(x) and Q(x) over a domain S are given. Determine the truth
value of P(x) = Q(x) foreach x € §.
(@ P):lx|=4 Q(x):x=4; S =(—4,-3,1,4,5}.
(b) P(x):x2=16; Q(x):|x| =4; § = {—6,-4,0,3,4,8}.
(© Px):x>3; Ox):4x ~1>12; §=1{0,2,3,4,6). )
2.20. In each of the following, two open sentences P(x) and Q(x) over a domain S are given. Determine all
x € § for which P(x) = QO(x) is a true statement.
(@ P(x):x—-3=4 Qx):x>8;, S=R.
b) P(x):2’>1; Q):x>1; S=R.
) P(x):x*>1; O(x):x > 1, S=N.
@ P :xel-1,2]; Q) :x?<2; §=[-1,1].
2.21. In each of the following, two open sentences P(x, y)and Q(x, y) are given, where the domain of both x
and y is Z. Determine the truth value of P(x, y) = Q(x, y) for the given values of x and y.
(@ P(x,y):x>—y*=0and Q(x,y): x = y.
(x,y) € {1, ~1),(3,4),(5,5).
(®) P(x,y):ix|=|yland Q(x,y): x = y.
(x,y) € {(1,2),(2, -2), (6, 6)}.
© P(x,y):x?+y*=1and Q(x,y):x +y =L
(. y) e {1, =1, (3,4, 0, -1, 1, 0).

Section 2.6: The Biconditional

2.22. Let P : 18 is odd and Q : 25 is even. State P & Q in words. Is P < Q true or false?
2.23. Consider the open sentences:
P(x):x=—2.and Q(x) : x* = 4.
over the domain § = {~2, 0, 2}. State each of the following in words and determine all values of x € § for
which the resulting statements are true.
@~Px) ®B)PHVO® (©PEAQR) (d)PE) = Q@)
© Q)= P(x) (B PX) & QW)
2.24. For the following open sentences P(x) and Q(x) over a domain S, determine all values of x € S for which
the biconditional P(x) & Q(x) is true.
(@ Px):|x{=4; O(x):x=4; §={—4,-3,1,4,5).
(b) Px):x>3; Q(x):4x—1>12; §=1{0,2,3,4,6}.
(©) Px):x2=16; Q(x): x> —4x =0; S = {—6,—4,0,3, 4, 8).
2.25. Let P(x) : x is odd. and Q(x) : x? is odd. be open sentences over the domain Z. State P(x) & Q(x) in two
ways: (1) using “if and only if” and (2) using “necessary and sufficient”. N

2.26. For the open sentences P(x) : |x — 3| < 1and Q(x) : x € (2, 4). over the domain R, state the biconditional.

P(x) < Q(x) in two different ways.
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2.27. In each of the following, two open sentences P(x,y)and Q(x, y) are given, where the domain of both x
and y is Z. Determine the truth value of P(x,y) € Q(x, y) for the given values of x and y.
(@ PG,y :x*—y” =0and Q(x,y) 1 x = y.
() e {1, ~1),(3,4), (5,5}
(®) P(x,y):|x| =|yland Q(x,y) : x = y.
(. ) €{(1,2), 2, -2), (6,6)}.
(© Px,y):x*+y*=1land Q(x,y):x+y=1.
(o y) e (1, =1),(=3,4), 0, 1), (1,0)}.
2.28. Let S = {1, 2, 3}. Consider the following open sentences over the domain S:

P(n) - (n -|-4)2(n +35) ;

Q) : 2724372 162 > 2.5y,

Determine three distinct elements @, b, ¢ in S such that P(q) = Q(a) is false, Q(b) = P(b) i's false, and
P(c) & Q(c) is true.

s odd.

2.29. Let § = {1, 2, 3, 4}. Consider the following open sentences over the domain §:

_Pn): nfn; b is even.

Q(n): 2772 — (=2)"2 is even.
R(n): 5"71 42" is prime.
Determine four distinct elements a, b, ¢, d in S such that

() P(@) = Q(a) is false; (i) Q(b) = P(b) is true;
(iii) P(c) & R() is true;  (iv) O(d) < R(d) is false.

Section 2.7: Tautologies and Contradictions
2.30. For statements P and Q, show that P => (P v Q) isa tautology.
2.31. For statements P and @, show that (PA ~Q) A (P A Q) is a contradiction.

2.32. For statements P and Q, show that (P A(P = Q)) = Qisa tautology. Then state (P A (P = Q)) = Q
in words. (This is an impbrtant logical argument form, called modus ponens.)

2.33. For statements P, 0, and R, show that (P = DA Q=>R)= (P =R)isa tautology. Then state this
compound statement in words. (This is another important logical argument form, called sylogism.)
Section 2.8: Logical Equivalence
2.34. For statements P and Q; the implication (~P) = (~Q) is called the inverse of the implication P = Q.
(a) Use a truth table to show that these statements are not logically equivalent.
(b) Find another implication that is logically equivalent to ~ P = ~Q and verify your answer.
2.35. Let P and Q be statements.
(@) Is ~(P v Q) logically equivalent to (~P) V (~Q)? Explain.
(b) What can you say about the biconditional ~(P v Q) & ((~P) v ~))?
2.36. For statements P, (0, and R, use a truth table to show that cach of the following pairs of statements are
logically equivalent.
@ (PAQ)& Pand P = Q.
®) P =(QVR)and (~Q) = ((~P) Vv R).
2.37. For statements P and Q, show that (~0Q) = (P A(~P)) and Q are logically equivalent,
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2.38. For statements P, Q, and R, show that (P v Q) = R and (P = R) A(Q = R) are logically equivalent.

Section 2.9: Some Fundamental Properties of Logical Equivalence
2.39." Verify the following laws stated in Theorem 2.18:

(a) Let P, Q, and R be statements. Then

PV(QAR)and (P v Q) A (P V R) are logically equivalent.
(b) Let P and Q be statements. Then )
~(P Vv Q) and (~P) A (~Q) are logically equivalent.

2.40. Write negations of the following open sentences:

(a) Eitherx = Oory = 0.

(b) The integers a and b are both even.
2.41. Consider the implication: If x and y are even, then xy is even.

(a) State the implication using “only if .

(b) State the converse of the implication.

(c) State the implication as a disjunction (see Theorem 2.17).

(d) State the negation of the implication as a conjunction (see Theorem 2.21(a)).

2.42. For areal number x, let P(x) : x> = 2 and Q(x) : x = +/2. State the negation of the biconditional P < Q
in words (see Theorem 2.21(b)).

Sectien 2.10: Quantified Statements
2.43. Let S denote the set of odd integers, and let
P(x):x?+ liseven. and Q(x):x2iseven.

be open sentences over the domain S. State Vx € S, P(x) and 3x € §, Q(x) in words.

2.44. Define an open sentence R(x) over some domain S and then state Yx € § , R(x)and 3x € S, R(x) in words.

2.45. State the negations of the following quantified statements, where all sets are subsets of some universal set U

(a) Foreveryset A, ANA = 0.
(b) There exists a set A such that A € A.
2.46. State the negations of the following quantified statements:
(a) For every rational number r, the number 1/ is rational.
(b) There exists a rational number r such that r? = 2.
2.47. Let P(n): (5n — 6)/3 is an integer. be an open sentence over the domain Z. Determine, with explanations,
whether the following statements are true:
(@) Yn € Z, P(n).
(b) In € Z, P(n).
2.48. Determine the truth value of each of the following statements.
(@ Ix eR, x> —x =0.
byVeeN,n+1>2
(€) Vx e R,vxZ =x.
(d) Ix € Q,3x% — 27 = 0.
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() IxeR,IyeR,x+y+3=38.
O Vx,yeRx+y+3=8.
(@ 3x,yeR,x2 +y?> =09,
) Vx eR,Vy e R, x2+y2 =09
2.49. The statement
' For every integer m, either m < 1 or m? > 4.
can be expressed using a quantifier as:
VmeZm<1lorm?>4.
Do this for the statements in parts (a) and (b).
(a) There exist integers a and b such that both ab < Ganda + b > 0.
(b) For all real numbers x and y, x 5 y implies that x> + y* > 0.
(c) Express in words the negations of the statements in (a) and (b).
(d) Using quantifiers, express in symbols the negations of the statements in both (a) and (b).
2.50. Consider the open sentence
Plx,y,z): (x — 1R+ =22 +@Ez—-27%>0.
where the domain of each of the variables x, y and z is R.
(a) Express the quantified statement Vx € R, Vy € R, Vz ¢ R, P(x,y, z) in words.
(b) Is the quantified statement in (a) true or false? Explain.
(c) Express the negation of the quantified statement in (a) in syfnbols.
(d) Express the negation of the quantified statement in (a) in words.
(e) Is the negation of the quantified statement in (a) true or false? Explain.
2.51. Consider the quantified statement

Foreverys € Sandr € §, st — 2 is prime.

where the domain of the variables s and ¢ is § = {3,5, 11}

(a) Express this quamiﬁéd statement in symbols.

(b) Is the quantified statement in (a) true or false? Explain.

(c) Express-the negation of the quantified statement in (a) in symbols.

(d) Express the negation of the quantified statement in (a) in words.

(e) Is the negation of the-quantified statement in (a) true or false? Explain.

Section 2.11: Characterizations of Statements

2.52. Give a definition of each of the following, and then state a characterization of each.
(a) two lines in the plane are perpendicular
(b) arational number

2.53. Define an integer 1 to be odd if 1 is not even. State a characterization of odd integers.

2.54. Define a triangle to be isosceles if it has two equal sides. Which of the following statements are
characterizations of isosceles triangles? If a statement is not a characterization of isosceles triangles, then
explain why. ‘

(a) If a triangle is equilateral, then it is isosceles.
(b) A triangle T is isosceles if and only if 7" has two equal sides.
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(c) If a triangle has two equal sides, then it is isosceles.

(d) A wiangle T is isosceles if and only if T is equilateral.

(e) If a triangle has two equal angles, then it is isosceles.

(f) A triangle T is isosceles if and only if T has two equal angles.

- By definition, a right triangle is a triangle one of whose angles is a right angle. Also, two angles in a triangle

are complementary if the sum of their degrees is 90°. Which of the following statements are
characterizations of a right triangle? If a statement is not a characterization of a right triangle, then explain
why.

(a) A triangle is a right triangle if and only if two of its sides are perpendicular.

(b) A triangle is a right triangle if and only if it has two complementary angles.

(c) A triangle is a right triangle if and only if its area is half of the product of the lengths of some pair of its
sides.

(d) A triangle is a right triangle if and only if the square of the length of its longest side equals the sum of
the squares of the lengths of the two smallest sides.

(e) A triangle is a right triangle if and only if twice the area of the triangle equals the area of some
rectangle.

ADDITIONAL EXERCISES FOR CHAPTER 2

2.60.

2.56.
2.57.
2.58.

2.59.

Construct a truth table for P A (Q = ~P).

Given that the implication (0 v R) = ~P is false and Q is false, determine the truth values of R and P.
Find a compound statement involving the component statements P and ( that has the truth table given in
Figure 2.18.

Determine the truth value of each of the following quantified statements:

(@ IxeR,x*?—x=0.

) VneN,n+1>2

(©) Vx € R, vx2 = x.

(MIreQ =1

(&) Ix,yeR x+y+3=8.

® Vx,yeRx+y+3=8.

Rewrite each of the implications below using (1) only if and (2) sufficient.

(a) If afunction f is differentiable, then f is continuous.
(b) If x = —5, then x? = 25.

rQ ~Q .
T\T| F T
TI\F| T T
FIT| F | F
FIF| T | T
Figure 2.18  Truth table for Exercise 2.58.

2.61.

2.62.

2.63.

2.64.

2.65.

2.67.
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Let
P(n) :n? —n +5is a prime.
be an open sentence over a domain S.
(a) Determine the truth values of the quantified statements Vn € S, P(n) and 3n € S, ~P(n) for
§={1,2,3,4}
(b) Determine the truth values of the quantified staterents Va € S, P(n) and 3n € S, ~P(n) for
§=1{1,2,3,4,5}
(c) How are the statements in (a)and (b) related?
(a) For statements P, Q, and R, show that .
(PAD)y=R)y=((P AR = (~0)).
(b) For statements P, Q, and R, show that
(PAQ)= R)=(QA(~R) = (~P)).
For a fixed integer n, use Exercise 2.62 to restate the following implication in two different ways:
If n is a prime and n > 2, then n is odd.
i .y
For fixed integers m and n, use Exercise 2.62 to restate the following implication in two different ways:

If m is even and r is odd, then m + n is odd.

For a real valued function f and a real number x, use Exercise 2.62 to restate the following implication in
two different ways: ’

If f/(x) = 3x% — 2x and f(0) = 4, then f(x) = x> — x? + 4.

. For the set § = {1, 2, 3}, give an example of three open sentences P (1), Q(n), and R(n), each over the

domain S, such that (1) each of P(n), Q(n), and R(n) is a true statement for exactly two elements of S,

(2) all of the implications P(1) = Q(1), 0(2) = R(2), and R(3) => P(3) are true, and (3) the converse of
each implication in (2) is false.

Do there exist a set.S of cardinality 2 and a set {P(n), Q(n), R(n)} of three open sentences over the domain
S such that the implications P(a) = Q(a), Q(b) = R(b), and R(c) => P(c) are true, where a, b, ¢ € S,
and (2) the converses of the implications in (1) are false? Necessarily, at least two of these elements a, b,
and ¢ of § are equal.

L LetA={1,2,...,6}and B ={1,2,...,7}).Forx € A,let P(x) : 7x +4is odd. For y € B, let

O(y): 5y +9isodd. Let
S={(Px), Q) :x € A,y € B, P(x) = Q(y) is false}.
What is [S{?




Direct Proof and Proof by
Contrapositive

We are now prepared to begin discussing our main topic: mathematical proofs.
Initially, we will be primarily concerned with one question: For a given true
mathematical statement, how can we show that it is true? In this chapter you will be
introduced to two important proof techniques.

A true mathematical statement whose truth is accepted without proof is referred
to as an axiom. For example, an axiom of Euclid in geometry states that for every
line ¢ and a point P not on £, there is a unique line containing P that is parallel to
¢. A true mathematical statement whose truth can be verified is often referred to as a
theorem, although many mathematicians reserve the word “theorem” for such statements
that are especially significant or interesting. For example, the mathematical statement
“2+3 =5 is true but few, if any, would consider this to be a theorem under this
latter interpretation. In addition to the word “theorem”, other common terms for this
ided include proposition, result, observation, and fact, the choice often depending on
the significance or degree of difficulty in its proof. We will use the word “theorem”
sparingly, however, primarily reserving it for true mathematical statements that will be
used later. Otherwise, we will simply use the word “result”. For the most part then, our
results are examples used to illustrate proof techniques, and our goal is to prove these
results.

A corollary is a mathematical result that can be deduced from, and is thereby a
consequence of, some earlier result. A lemma is a mathematical result that is useful
in establishing the truth of some other result. Some people like to think of a lemma as
a “helping result”. Indeed, the German word for lemma is “hilfsatz”, whose English
translation is “helping theorem”. Ordinarily then, a lemma is not of primary importance
itself. Indeed, its very existence is due only to its usefulness in proving another (more
interesting) result.

Most theorems (or results) are stated as implications. We now begin our study of
proofs of such mathematical statements.

67
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Chapter 3 Direct Proof and Proof by Contrapositive

3.1 Trivial and Vacuous Proofs ]

Result 3.1

Proof

In nearly all of the implications P = (Q that we will encounter, P and @ are open
sentences; that is, we will actually be considering P(x) = Q(x) or P(n) = Q(n) or
some related implication, depending on which variable is being used. The variables x or
n (or some other symbols) are used to represent elements of some set S being discussed,
that is, S is the domain of the variable. As we have seen, for each value of a variable from
its domain, a statement results. (It is possible, of course, that P and Q are expressed in
terms of two or more variables.) Whether P(x) (or Q(x)) is true ordinarily depends on
which element x € S we are considering; that is, it is rarely the case that P(x) is true for
all x € § (or that P(x) is false for all x € ). For example, for

P(n) :3n% —4n + liseven

where n € Z, P(1) is a true statement while P(2) is a false statement. Likewise, it is
seldom the case that Q(x) is true for all x € S or that Q(x) is false forall x € S.

When the quantified statement Vx € S, P(x) = Q(x) is expressed as a result or
theorem, we often write such a statement as

For x € S, if P(x) then Q(x).
or as
Let x € S.If P(x), then Q(x). 3.0

Thus (3.1) is true if P(x) = Q(x)is a true statement for each x € S, while (3.1) is false if
P(x) = Q(x)is false for at least one element x € S.In (3.1), if Q(x)istrueforallx € §
or P(x) is false for all x € S, then determining the truth or falseness of (3.1) becomes
considerably easier. Indeed, if it can be shown that Q(x) is true for all x € S (regardless
of the truth value of P(x)), then, according to the truth table for the implication (shown
in Figure 2.5), (3.1) is true. This constitutes a proof of (3.1) and is called a trivial proof.
Accordingly, the statement

Letn € Z.Ifn* > 0, then 3 is odd. |
is true and a (trivial) proof consists only of observing that 3 is an odd integer. However,
let’s ook at a more interesting example of a trivial proof.

Letx e R.Ifx <0, thenx* +1 > 0.

Since x% > 0 for each real number x, it foliows that
X4+ 1>x2>0.
Hence x> + 1 > 0. &
Consider
P(x):x <0and Q(x): x>+ 1>0

where x € R. Then Result 3.1 asserts the truth of: For all x € R, P(x) = O(x). Since
we verified that @(x) is true for every x € R, it follows that P(x) = Q(x) is true for
all x € R and so Result 3.1 is true. In this case, when considered over the domain R,

Result 3.2

Proof
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Q(x) is actually a true statement. It is this fact that allowed us to give a trivial proof of
Result 3.1.

The proof of Result 3.1 does not depend on x < 0. Indeed, provided that x € R, we
could have replaced “x < 0” by any hypothesis (including the more satisfying “x € R”)
and the result would still be true. In fact, this new result has the same proof.

The symbol m that occurs at the end of the proof of Result 3.1 indicates that the
proof is complete. There are definite advantages to using ® (or some other symbol)
to indicate the conclusion of a proof. First, as you start reading a proof, you can look
ahead for this symbol (to determine the length of the proof). Also, without this symbol,
you may continue to read past the end of the proof, still thinking that you're reading a
proof of the result. When you reach this symbol, you are supposed to be convinced that
the result is true. If you are, this is good! Everything happened as planned. On the other
hand, if you’re not convinced, then, to you, the writer hasn’t presented a proof. This may
not be the writer’s fault, however.

In the past, the most common way to indicate that a proof has concluded was to write
Q.E.D., which stands for the Latin phrase “quod erat demonstrandum”, whose English
translation is “which was to be demonstrated”. Some still use it. .

Let P(x)and Q(x) be open sentences over adomain S. ThenVx € §, P(x) = O(x)
is a true statement if it can be shown that P(x) is false for all x € § (regardless of the
truth value of Q(x)), according to the truth table for implication. Such a proof is called
a vacuous proof of Vx € §, P(x) = Q(x). Therefore,

Letn € Z.1f 3 is even, then n® > 0.

is a true statement. Let’s take a look, however, at a more interesting example of a vacuous
proof.

Letx e RIfx> —2x +2 <0, thenx* > 8.
First observe that
=24+ 1=x—-17>0.

Therefore, x> — 2x +2 = (x — 1) + 1 > 1 > 0. Thus x2 — 2x + 2 < 0 is false for ail
x € R and the implication is true. ]

For
P(x):x*—=2x4+2<0and Q(x):x>>8

over the domain R, Result 3.2 asserts the truth of Vx € R, P(x) = Q(x). Since we
verified that P(x) is false for every x € R, it follows that P(x) = Q(x) is true for each
x € R. Hence Result 3.2 is true. In this case, P(x) is a false statement for each x € R.
This is what permitted us to give a vacuous proof of Result 3.2.

In the proof of Result 3.2, the truth or falseness of x> > 8 played no role whatsoever.
Indeed, had we replaced 3 >8 by x? < 8, for example, then neither the truth nor the
proof of Result 3.2 would be affected. Whenever there is a vacuous proof of a result,
we often say that the result follows vacuously. Although a trivial proof is almost never
encountered in mathematics, the same thing cannot be said about vacuous proofs, as we
will see later.

We consider one additional example.
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Result 3.3

Proof

LetS=(neZ:n>2andlerne S [f2n+2 <5, then4n* + % < 25.

First, we observe that if n = 2, then 2n + % = 5. Of course, 5 < 5 is false. If n > 3,
then 2n + % > 2n > 6. So, whenn > 3, 2n + % < 5 is false as well. Thus 2n + % <S5
is false for all n € S. Hence the implication is true. 2

In two of the examples that we presented to illustrate trivial and vacuous proofs, we
used the fact (and assumed it was known) that 3 is odd. Also, in the proofs of Results 3.1
and 3.2, we used the fact that if r is any real number, then r2 > 0. Although you are
certainly familiar with this property of real numbers, it is essential that any facts used
within a proof are known to and likely to be recalled by the reader. Facts used within a
proof should not come as a surprise to the reader. This subject will be discussed in more
detail shortly.

3.2 Direct Proofs ]

Typically, when we are discussing an implication P(x) = @(x) over some domain S,
there is ordinarily some connection between P(x) and Q(x). That is, the truth value
of Q(x) for a particular x € S often depends on the truth value of P(x) for that same
element x, or the truth value of P(x) depends on the truth value of Q(x). These are
the kinds of implications in which we are primarily interested, and it is the proofs
of these types of results that will occupy much of our attention. We begin with the
first major proof technique, which occurs more often in mathematics than any other
technique.

Let P(x) and Q(x) be open sentences over a domain S. If P(x) is false for some
x € §, then P(x) = Q(x) is true for this element x. Hence we need only be concerned
with showing that P(x) = Q(x) is true for all x € § for which P(x) is true. In a di-
rect proof of P(x) = Q(x) for all x € §, we consider an arbitrary element x € S for
which P(x) is true and show that Q(x) is true for this element x. To summarize then,
to give a direct proof of P(x) = Q(x) for all x € §, we assume that P(x) is true
for some arbitrary element x € § and show that Q(x) must be true as well for this
element x.

In order to illustrate this type of proof (and others as well), we need to deal with
mathematical topics with which we’re all familiar. Let’s first consider the integers and
some of their elementary properties. We assume that you are familiar with the integers
and the following properties of integers:

1. The negative of every integer is an integer.
2. The sum (and difference) of every two integers is an integer.

3. The product of every two integers is an integer.

We will agree that we can use any of these properties. No justification is required or
expected. Initially, we will use even and odd integers to illustrate our proof techniques.
In this case, however, any properties of even and odd integers must be verified before they
can be used. For example, you probably know that the sum of every two even integers is
even, but this must first be proved to be used. We need to lay some groundwork before
any examples of direct proofs are given. .

Result 3.4

Proof
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Since we will be working with even and odd integers, it is essential that we have
precise definitions of these kinds of numbers. An integer # is defined to be even if 2 = 2k
for some integer k. For example, 10 is even since 10 = 2 - 5 (where, of course, 5 is an
integer). Also, —14 = 2(—7) is even, as is 0 = 2 - 0. The integer 17 is not even since
there is no infeger k for which 17 = 2k. Thus we see that the set of all even integers is
the set

S={2%k:keZ)={,—4-2,0724 ...

We could define an integer n to be odd if it’s not even, but it would be difficult to work
with this definition. Instead, we define an integer 1 to.be odd if n = 2k + 1 for some
integer k. Now 17 is odd since 17 = 2 - 8 4 1. Also, —5 is odd because—~5 =2(—3) + 1.
On the other hand, 26 is not odd since there is no integer k such that 26 = 2k + 1. In fact,
26 is even. Hence, according to the definition of odd integers that we have just given,
we see that the set of all odd integers is precisely the set

T=2k+1:keZy={--,-5-3,-1,1,3,5,-- ...

Observe that S and T are disjoint sets and S U T = Z; that is, Z is partitioned into S and
T. Therefore, every integer is either even or odd. B

From time to time, we will find ourselves in a position where we. have a result to
prove and it may not be entirely clear how to proceed. In such a case, we need to consider
our options and develop a plan, which we refer to as a proof strategy. The idea is to
discuss a proof strategy for the result and, from it, construct a proof. At other times, we
may wish to reflect on a proof that we have just given in order to understand it better.
Such a discussion will be referred to as a proof analysis. As with examples, we conclude
both a proof strategy and a proof analysis with the symbol é.

We are now prepared to illustrate the direct proof technique. We follow the proof
by a proof analysis.

If n is an odd integer, then 3n + 7 is an even integer.

Assume that r is an odd integer. Since 7 is odd, we can write n = 2k + 1 for some integer
k. Now :

3n+7=32k+1D)+7=6k+3+7=06k+10=203k+5).

Since 3k + 5 is an integer, 3n + 7 is even. E
First, notice that Result 3.4 could have been stated as:
For every odd integer #, the integer 37 + 7 is even.

Thus the domain of the variable 7 in Result 3.4 is the set of odd integers. In the proof
of Result 3.4, the expression 2k + 1 was substituted for # in 3n + 7 and simplified as
6k + 10. Since our goal was to show that 3n + 7 is even, we needed to show that 3n + 7
can be expressed as twice an integer. Consequently, we factored 2 from 6k + 10 and
wrote it as 2(3k + 5). Since 3 and k are integers, so is 3k (the product of two integers
is an integer). Since 3k and 5 are integers, so is 3k + 5 (the sum of two integers is an
integer). Therefore, 31 + 7 satisfies the definition of an even integer.
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One other remark deserves mention here. In the second sentence, we wrote:
Since n is odd, we can write n = 2k + 1 for some integer k.

It would be incorrect to write: “If n is odd” rather than “Since » is odd” because we have
already assumed that » is odd and therefore n is now known to be odd. ¢

We defined an integer n to be odd if we can write n as 2k + 1 for some integer
k. This means that whenever we want to show that an integer, say m, is odd, we must
follow this definition; that is, we must show that m = 2k -+ 1 for some integer k. (Of
course, the use of the symbol £ is not important. For example, an odd integer # can be
written as n = 2 + 1 for some integer £.) We could have defined an integer n to be
odd if it is possible to write n = 2k — 1 for some integer k, but we didn’t. However,
if we could prove that an integer n is odd if and only if n can be expressed as 2k — 1
for some integer k, then we could use this characterization of odd integers to show that
an integer is odd. This, however, would require additional work on our part, with no
obvious benefit. Similarly, we could have defined an integer » to be even if we can
write n = 2k 4+ 2, or n = 2k — 2, or perhaps n = 2k 4 100 for some integer k. The
definitions of even and odd integers that we chose are probably the most commonly
used. Any other definitions that could have been given provide no special advantage to
us.

Result 3.4 is an example of a direct proof. Let

P(n): nis an odd integer. and Q(n) : 3n - 7 is an even integer.

over the domain S of odd integers. Then we have verified Result 34 by assuming that
P(n) is true for an arbitrary element n € S and then showing that Q(n) is true for this
element. Showing that Q(n) is true essentially required one step on our part. As we
venture further into proofs, we will see that we can’t always establish the truth of the
desired conclusion so quickly. It may be necessary to establish the truth of some other
mathematical statements along the way that can then be used to establish the truth of
Q(n). We will see examples of this later.

Let’s consider another example. For variety, we use an alternative opening sentence
and different symbols in the proof of the following result.

If n is an even integer, then —5n — 3 is an odd integer.

Let n be an even integer. Then n = 2x, where x is an integer. Therefore,
=5n—3=-52x)-3=—-10x -3 =—-10x -4+ 1=2(-5x-2)+ L.
Since —5x — 2 is an integer, —5n — 3 is an odd integer. L]

We now consider another example, which may have a surprise ending.
If n is an odd integer, then 4n® + 2n — 1 is odd.
Assume that » is odd. Then n = 2y -+ 1 for some integer y. Therefore,

4’ 42— 1=4Qy + D’ +2Qy+ 1) — 1
=408y’ +12y* + 6y + D +4y+2—1

Result 3.7
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=32y +48y° + 28y -+ 5
=2(16y° +24y” + 14y +2) + 1.
Since 16y + 24y% + 14y + 2 is an integer, 4n3 + 21 — 1 is odd. L

Although the direct proof of Result 3.6 that we gave is correct, this is 7ot the desired
proof. Indeed, had we observed that

4 4o —1=4n’ + 20— 24 1=2020 +n - 1)+ 1

and that 2n° + 1 — 1 € Z, we could have concluded immediately that 42> + 21 — 1 is
odd for every integer n. Hence a trivial proof of Result 3.6 could be given and, in fact,
is preferred. The fact that 4n* + 27 — 1 is odd does not depend on 7 béing odd. Indeed,
it would be far better to replace the statement of Result 3.6 by

If n is an integer, then 4n” + 2n — 1 is odd. é
We give an additional example of a somewhat different type.

(n+ 3) n+2(n-5) -
2

Letn € S suchthatn(n + 3)/2iseven. Since n(n + 3)/2 = 2 whenn = 1 n(n +3)/2 =
5 when n =2, and n(n +3)/2 =9 when n = 3, it follows that n = 1. When n = 1,
(n +2)(n — 5)/2 = —6, which is even. Therefore, the implication is true. &

Let§ ={1,2,3}andletn ¢ S If is even, then is even.

In the proof of Resuit 3.7, we were concerned only with those elements 7 € § fof which
a(n + 3)/2 is even. Furthermore, it is not initially clear for which elements n of S the
integer n(n + 3)/2is even. Since S consists only of three elements, this can be determined
rather quickly, which is what we did. We saw that only # = 1 has the desired property
and this %s the only element we needed to consider. ¢

If our goal is to establish the truth of P(x) = Q(x) for all x in a domain S by
means of a direct proof, then the proof begins by assuming that P(x) is true for an
arbitrary element x € . It is often common in this situation, however, to omit the initial
assumption that P(x) is true for an arbitrary element x € S. It is then understood that
we are giving a direct proof. We illustrate this with a short example.

If n is an even integer, then 3n3 is an even integer.

Since n is an even integer, n = 2x for some integer x. Therefore,
3n° = 3(2x)° = 3(32x%) = 96x° = 2(48x5).
Since 48x° € Z, the integer 3n° is even. B
For the present, when giving a direct proof of P(x) = O(x) for all x in a domain

S, we will often include the initial assumption that P (x) is true for an arbitrary element
x € § in order to solidify this technique in your mind.
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[ 3.3 Proof by Contrapositive ]

Theorem 3.9

For statements P and Q, the contrapositive of the implication P = Q isthe implica_ti_on
(~Q) = (~P). For example, for P, : 3 is odd and P, : 57 is prime, the contrapositive
of the implication

P = P, : If 3is odd, then 57 is prime.
is the implication
(~P) = (~Py) : If 57 is not prime, then 3 is even.

The most important feature of the contrapositive (~Q) => (~P) is that it is logically
equivalent to P => Q. This fact is stated formally as a theorem and is verified in the truth
table shown in Figure 3.1.

For every two statements P and Q, the implication P = Q and its contrapositive are
logically equivalent, that is, .

P=Q=(~0)=(~P)

P(x):x=2and Q(x):x% =4

where x € R. The contrapositive of the implication
P(x)= Q(x):Ifx =2, thenx? = 4.
is the implication
(~Q(x)) = (~P(x)) : If x? £ 4, then x # 2.
Suppose that we wish to prove a result (or theorem) which is expressed as
Let x € §.If P(x), then O(x). 3.2)

oras

For all x € §,if P(x), then Q(x). 3.3)

We have seen that a proof of such a result consists of establishing the truth_ of thg
implication P(x) = Q(x) for all x € S. If it can be shown that (~Q(x)) = (~P(x)) is

PQP=Q ~P ~Q ~Q=~P
T T F | F T
T\F| F F | T F
FiT| T T | F T
FIF| T T | T T

Figure 3.1  The logical equivalence of an implication and its contrapositive
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true for all x € §, then P(x) = Q(x) is true for alt x € 5. A proof by contrapositive
of the result (3.2) (or of (3.3)) is a direct proof of its contrapositive:

Letx € 8. If ~Q(x), then ~P(x).
or
Forall x € §, if ~0(x), then ~P(x).

Thus to give a proof by contrapositive of (3.2) (or of (3.3)), we assume that ~Q(x)is

true for an arbitrary element x € § and show that ~P (x) is true for this element x.
There are certain types of results where a proof by contrapositive is preferable, or

perhaps even essential. We now give some examples to illustrate this method of proof.

Letx € Z.If 5x — 7 is even, then x is odd
Assume that x is even. Then x = 2a for some integer a. So
5x=7=5Q2a)—~7=10a —7=10a — 84+ 1 = 2(5a — 4) + 1.

Since 5a — 4 € Z, the integer 5x — 7 is odd. =

Some comments are now in order. The goal of Result 3.10 was to prove P(x) = Q(x)
forall x € Z, where P(x) : 5x — 7 is even and Q(x) : x is odd. Since we chose o give
a proof by confrapositive, we gave a direct proof of (~Q(x)) = (~P(x)) forall x € Z.
Hence the proof began by assuming that x is not odd, that is, x is even. The object then
was to show that Sx — 7 is odd.

If we had aitempted to prove Result 3.10 with a direct proof, then we would have
begun by assuming that 5x — 7 is even. We could then write 5x — 7 = 24, where ¢ € Z.
So x = (2a +7)/5. We then would want to show that x is odd. With the expression we
have for x, it is not even clear that x is an integer, much less that x is an odd integer,
although, of course, we were told in the statement of Result 3.10 that the domain of x
is the set of integers. Therefore, it is not only that a proof by contrapositive provides
us with a rather simple method of proving Result 3.10, it may not be immediately clear
how or whether a direct proof can be used. .

How did we know beforehand that it is a proof by contrapositive that we should
use here? This is not as difficult as it may appear. If we use a direct proof, then we
begin by assuming that 5x — 7 is even for an arbitrary integer x; while if we use a proof
by contrapositive, then we begin by assuming that x is even. Therefore, using a proof
by contrapositive allows us to work with x initially rather than the more complicated
expression 5x — 7. $

In all of the examples that we have seen so far, we have considered only implications.
Now we look at a biconditional.

Letx € Z. Then 11x — 7 is even if and only if x is odd.

There are two implications to prove here, namely,

(1) if x is odd, then 11x — 7 is even, and
(2) if 11x — 7 is even, then x is odd.
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We begin with (1). In this case, a direct proof is appropriate. Assume that x is odd. Then
x =2r+1,wherer € Z. So

Mx—7=11Q2r + 1) =7 =22 + 11 =7 = 22r + 4 = 2(11r +2).

Since 11r + 2 is an integer, 11x — 7 is even.
We now prove (2), which is the converse of (1). We use a proof by contrapositive
here. Assume that x is even. Then x = 2s, where s € Z. Therefore,

Ix =7=112s)—7=22s -7T=22s =8+ 1=2(1ls —4)+ L.

Since 11s — 4 is an integer, 11x — 7 is'odd. L

A comment concerning the statements of Results 3.10 and 3.11 bears repeating here,
These results begin with the sentence: Let x € Z. This, of course, is informing us that the
domain in this case is Z. That is, we are being told that x represents an integer. We need
not state this assumption in the proof. The sentence “Let x € Z.” is commonly called an
“overriding” assumption or hypothesis, and so x is assumed to be an integer throughout
the proofs of Results 3.10 and 3.11.

In the proof of Result 3.11, we discussed our plan of attack. Namely, we stated
that there were two implications to prove and we specifically stated each. Ordinarily
we don’t include such information within the proof — unless the proof is quite long, in
which case a roadmap indicating the steps we plan to take may be helpful. We give an
additional example of this type, where this time a more conventional condensed proof is
presented. The following example will be useful to us in the future; thus we refertoitasa
theorem.

Let x € 7. Then x* is even if and only if x is even.

Assume that x is even. Then x = 2qa for some integer a. Therefore,
x* = 2ay = 4a’ = 2(2a%).

Because 24” € 7, the integer x? is even.
For the converse, assume that x is odd. So x = 2b + 1, where b € Z. Then

¥ = (Q2b+1)? =4b* +4b + 1 =22b* +2b) + 1.

Since 2b% + 2b is an integer, x is odd. 5

Suppose now that you were asked to prove the following result:
Let x € Z. Then x? is odd if and only if x is odd. 3.4)

How would you do this? You might think of proving the implication “If x is odd, then
x% is odd.” by a direct proof and its converse “If x? is odd, then x is odd.” by a proof by
contrapositive, where, of course, the domain of x is Z. If we look at what is happening
here, we see that we are duplicating the proof of Theorem 3.12. This is no surprise
whatsoever. Theorem 3.12 states that if x is even, then x? is even, and if x? is even, then
x is even. The contrapositive of the first implication is “If x? is odd, then x is odd.”;
while the contrapositive of the second implication is “If x is odd, then x? is odd.” In
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other words, (3.4) simply restates Theorem 3.12 in terms of contrapositives. Thus, (3.4)
requires no proof at all. It is essentially a restatement of Theorem 3.12. And speaking of
restatements of Theorem 3.12, we need to recognize that this theorem can be restated in
other ways. For example, we could restate

If x is an even integer, then x? is even.
as
The square of every even integer is even.
Hence Theorem 3.12 could be stated as:
An integer is even if and only if its square is even.

It is not only useful to sometimes restate results in different manners for variety, it is
important to recognize what a result is saying regardless of the manner in which it may
be stated. ’

At this point, it is convenient to pause and discuss how theorems (or results) can be
used and why we may be interested in proving a particular theorem in the first place.
Suppose that we have been successful in proving P(x) = Q(x) for all x in some domain
S (by whatever method). We therefore know that for every x € § for which the statement
P(x) is true, the statement Q(x) is true. Also, for any x € S for which the statement
Q(x) is false, the statement P(x) is false. For example, since we know that Result 3.10
is true, if we ever encounter an integer » for which 5n — 7 is even, then we know that n
is odd. Furthermore, if we should encounter an integer n for which #? is odd, then we
can conclude by statement (3.4) or, better yet, by Theorem 3.12, that n itself must be
odd.

It is not only knowing that a particular theorem might be useful to us in the future,
it is'perhaps that a theorem seems surprising, interesting, or even beautiful. (Yes — to
mathematicians, and hopefully to you as well, a theorem can be beautiful.)

We next describe a type of result that we have not yet encountered. Consider the
following result, which we would like to prove.

Letx € Z.1f 5x — 7 is odd, then 9x + 2 is even.

This result doesn’t seem to fit into the kinds of results we’ve been proving. (This is not
unusual. After learning how to prove certain statements, we encounter new statements
that require us to ... think.) If we attempt to give either a direct proof or a proof by
contrapositive of this result, we may be headed for difficulties. There is, however, another
approach. Even though we must be very careful about what we are assuming, from what
we know about even and odd integers, it appears that if Sx — 7 is odd, then x must be
even. In fact, if we knew that whenever 5x — 7 is odd then x is even, this fact would
be extremely helpful. We illustrate this next. Don’t forget that our goal is to prove the
following result, which we will refer to as Result 3.14: Let x € Z. If 5x — 7 is odd, then
9x + 2 is even. The (unusual) numbering of this result is because we will first state and
prove a lemma (L.emma 3.13) that will aid us in the proof of Result 3.14. é
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In order to verify the truth of Result 3.14, we first prove the following lemma.

Lemma3.13 Letx € Z.[f5x — 7 is odd, then x is even.
Proof  Assume that x is odd. Then x =2y + 1, where y € Z. Therefore,
Sx=7=52y+1)—-7=10y—-2=2(05y - 1).
Since 5y — 1 is an integer, 5x — 7 is even. L]
We are now prepared to give a proof of Result 3.14.
Result 3.14  Letx € Z.If Sx — 7 is odd, then 9x + 2 is even.
Proof Let 5x — 7 be an odd integer. By Lemma 3.13, the integer x is even. Since x is even,
x = 2z for some integer z. Thus
9x +2=9Q2)+2=182+2=209z+1).
Because 9z + 1 is an integer, 9x + 2 is even. ]

So, with the aid of Lemma 3.13, we have produced a very uncomplicated (and,
hopefully, easy-to-follow) proof of Result 3.14.

The main reason for presenting Result 3.14 was to show how helpful a lemma can be
in producing a proof of another result. However, having just said this, we now show how
we can prove Result 3.14 without the aid of a lemma, by performing a bit of algebraic
manipulation.

Alternative Proof ~ Assume that 5x — 7 is odd. Then 5x — 7 = 21 + 1 for some integer n. Observe that
of Result 3.14
I +2=06x-N+@x+9D=2n+1+4x+9
=2n+4x+10=2(n+2x +5).
Because n 4+ 2x + 5 is an integer, 9x + 2 is even. L

You may prefer one proof of Result 3.14 over the other. Whether you do or not, it is
important to know that two different methods can be used. These methods might prove
to be useful for future results you encounter. Also, you might think we used a trick to
give the second proof of Result 3.14, but, as we will see, if the same “trick” can be used
often, then it becomes a technique.

[ 3.4 Proof by Cases ]

While attempting to give a proof of a mathematical statement concerning an element x
in some set S, it is sometimes useful to observe that x possesses one of two or more
properties. A common property which x may possess is that of belonging to a particular
subset of S. If we can verify the truth of the statement regardless of which of these
properties that x may have, then we have a proof of the statement. Such a proof is then
divided into parts called cases, one case for each property that x may possess or for each

Result 3.15

Proof
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subset to which x may belong. This method is called proof by cases. Indeed, it may be
useful in a proof by cases to further divide a case into other cases, called subcases.

For example, in a proof of ¥ € Z, R(n), it might be convenient to use a proof by
cases whose proof is divided into the two cases

Case 1. n is even and Case 2. n is odd.

Other possible proofs by cases might involve proving Vx € R, P(x) using the cases
Case 1.x =0, Case 2. x < 0, and Case 3. x > 0.

Also, we might attempt to prove Va € N, P(n) using the cases
Case 1. n'= 1 and Case 2. n > 2.

Furthermore, for § = Z — {0}, we might try to prove Vx, y € S, P(x, y) by using the
cases

Case 1. xy > O and Case 2. xy < 0.
Case 1 could, in fact, be divided into two subcases:

Subcase 1.1. x > 0and y > (; and Subcase 1.2.x <Oandy < 0;
while Case 2 could be divided into the two subcases:

Subcase 2.1. x > 0and y < 0. and Subcase 2.2. x < Oand y > 0.

Let’s look at an example of a proof by cases.
{fn € Z, then n® + 3n + 5 is an odd integer.

We proceed by cases, according to whether # is even or odd.
Case 1. n is even. Then n = 2x for some x € Z. So

R4 3n+5= Q0 +320)+5=4x> +6x +5 =222 +3x +2) + L.
Since 2x2 + 3x + 2 € Z, the integer n2 + 3n + 5 is odd.
Case 2. nis odd: Thenn =2y + 1, where y € Z. Thus

R 43n4+5=02y+ 1 +32y+ D +5=4y> + 10y +9
=202y’ +5y +4) + 1.

Because 2y% + 5y + 4 € Z, the integer n% + 31 + 5 is odd. B

Two integers x and y are said to be of the same parity if x and y are both even
or are both odd. The integers x and y are of opposite parity if one of x and y is even
and the other is odd. For example, 5 and 13 are of the same parity, while 8 and 11 are
of opposite parity. Because the definition of two integers having the same (or opposite)
parity requires the two integers to satisfy one of two properties, any result containing these

terms is likely to be proved by cases. The following theorem presents a characterization
of two integers that are of the same parity.
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Theorem 3.16

Proof

PROOCF ANALYSIS

Theorem to Prove

PROOF STRATEGY

Letx,y € Z.Then x and y are of the same parity if and only if x + y is even.

First, assume that x and y are of the same parity. We consider two cases.

Case 1. x and y are even. Then x = 2g and y = 2b for some integers a and b. So
X+ y=2a+2b=2a+b). Since a + b € Z, the integer x + y is even.

Case2.x and y are odd. Then x = 2a + 1 and y = 2b + 1, where a, b € Z. Therefore,

x+y=Qa+1D+@b+1)=2a+2b+2=2a+b+ 1)
Since a + b + 1 is an integer, x + y is even.
For the converse, assume that x and y are of opposite parity. Again, we consider
two cases.

Case 1. x is even and y is odd. Then x =2a and y = 2b+ 1, where a, b € Z. Then
x+y=2a+Qb+1)=2a+b)+ 1.
Since @ + b € Z, the integer x + y is odd.

Case 2. x is odd and y is even. The proof is similar to the proof of the preceding case
and is therefore omitted. 5

There is another comment regarding the proof of Theorem 3.16 we want to make.
Although there is always some concern when omitting steps or proofs, it should be clear
that it is truly a waste of effort by writer and reader alike to give a proof of the case when
x is odd and y is even in Theorem 3.16. Indeed, there is an alternative when the converse
is considered:

For the converse, assume that x and y are of opposite parity. Without loss of gener-
ality, assume that x is even and y is odd. Then x = 2q and y = 2b + 1, where a, b € Z.
Then

x+y=2a+Q2b+1)=2(a+b)+ 1.
Since a + b € Z, the integer x + y is odd. é

We used the phrase without loss of generality (some abbreviate this as WOLOG or
WLOG) to indicate that the proofs of the two situations are similar, so the proof of only
one of these is needed. Sometimes it is rather subjective to say that two situations are
similar. We present one additional example to illustrate this.

Let a and b be integers. Then ab is even if and only if @ is even or b is even.

Before we begin a proof of this result (Theorem 3.17 below), let’s see what we will be
required to show. We need to prove two implications, namely, (1) If a is even or b is
even, then ab is even and (2) if ab is even, then « is even or b is even. We consider
(1) first. A direct proof seems appropriate. Here, we will assume that a is even or b is
even. We could give a proof by cases: (i) a is even, (ii) b is even. On the other hand,
since the proofs of these cases will certainly be similar, we could say, without loss of

Theorem 3.17

Proof
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generality, that a is even. We will see that it is unnecessary to make any assumption
about b.

If we were to give a direct proof of (2), then we would begin by assuming that ab is
even, say ab = 2k for some integer k. But how could we deduce any information about
a@ and b individually? Let’s try another approach. If we use a proof by contrapositive,
then we would begin by assuming that it is not the case that  is even or b is even. This
is exactly the situation covered by one of De Morgan’s laws:

~(P v Q) is logically equivalent to (~P) A (~Q).

It is important not to forget this. In this case, we have P : a is even. and O : b is even.
So the negation of “a is even or b is even” is “a is odd and b is odd”. - é

Let’s now prove this result.

Let a and b be integers. Then ab is even if and only if a is even or b is even,

First, assume that a is even or b is even. Without loss of generality, let a be even. Then
a = 2x for some integer x. Thus b = (2x)b = 2(xb). Since xb is an integer, ab is even.
For the converse, assume that @ is odd and b is odd. Then ¢ = 2x 4 1 and b =
2y + 1, where x, y € Z. Hence
ab=(2x + DQy + 1) =4xy +2x + 2y + 1 = 2(2xy +x+y)+ 1.

Since 2xy + x -+ y is an integer, ab is odd. : E]

L 3.5 Proof Evaluations

Example 3.18

Proof

We have now stated several results and have given a proof of each result (sometimes
preceding a proof by a proof strategy or following the proof with a proof analysis). Let’s
reveise this process by giving an example of a proof of a result but not stating the result
being proved. We will follow the proof with several options for the statements of the
result being proved.

Given below is‘a proof of a result.

Assume that 7 is an odd integer. Then n = 2k + 1 for some integer k. Then
3n—5=32k+1)-5=6k+3-5=6k—2=203k—1).

Since 3k — 1 is an integer, 3n — 5 is even. =
Which of the following is proved above?

(1) 3n — 5is an even integer.

(2) If n is an odd integer, then 3n — § is an even integer.

(3) Letn be an integer. If 3n — 5 is an even integer, then 7 is an odd integer.
(4) Let n be an integer. If 3n — 5 is an odd integer, then  is an even integer.
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The correct answers are (2) and (4). The proof given is a direct proof of (2) and a proof EXERCISES FOR CHAPTER 3
by contrapositive of (4). The sentence (1) is an open sentence, not a statement, and is only
the conclusion of (2). Statement (3) is the converse of (2). [

. Section 3.1: Trivial and Vacuous Proofs
= When learning any mathematical subject, it is not the least bit unusual to make

; . 2
mistakes along the way. In fact, part of learning mathematics is to learn from your 3.1 Letx € R. Prove that if 0 < x < 1, thenx® —2x +2 # 0.
mistakes and those of others. For this reason, you will see a few exercises at the end 3.2. Letn € N. Prove thatif |n — 1| + |n 4+ 1| < 1, then |n® — 1] < 4.
of most chapters (beginning with this chapter) where you are asked to evaluate the 33. Letr € QF. Prove that if ! < 1, then 232 <2,

7

3.4. Letx € R. Prove that if x> — 5x — 1 > 0, then (x — 1)(x — 3) > —2.

7

proof of a result. That is, a result and a proposed proof of this result will be given.
You are then asked to read this proposed proof and determine whether, in your opinion,

it is, in fact, a proof. If you don’t believe that the given argument provides a proof 35. Letn € N.Prove thatif n + 1 < 2, then n® + 5 < 4.
of the result, then you should point out the (or a) mistake. We give two examples of ) ‘
this. Section 3.2: Direct Proofs

3.6. Prove that if x is an odd integer, then 9x + 5 is even.
Problem 3.19 vatuate the proposed proof of the following result 3.7. Prove that if x is an even integer, then 5x — 3 is an odd integer.

Result Ifx and y are integers of the same parity, then x — y is even. 3.8. Prove that if @ and ¢ are odd integers, then ab -+ bc is even.

. . 3.9. Letn € Z. Prove thatif 1 — n? > 0, then 3n — 2 is an even integer.
Proof Let x and y be two integers of the same parity. We consider two cases, according to

10, Z.P if 22 is an odd integer, then 4* is an odd integer.
whether x and y are both even or are both odd. 3.10. Letx € rove that if 2% is an odd integer, then 4% is an odd integer.

3.11. Let S = {0,1,2} and Iet n € S. Prove that if (n + 1)*(n -+ 2)2/4 is even, then (1 + 2)2(n + 3)2/4 is even.

Case1.x andy arebotheven.Letx = 6and y = 2, whichare botheven. Thenx — y =4,

which is even. Section 3.3: Proof by Contrapositive
Case?2.x andy are both odd. Letx = 7and y = 1, which are both odd. Thenx — y = 6, - 3.12. Letx € Z. Prove that if 7x -+ 5 is odd, then x is even.
which is even. n 3.13. Let n € Z. Prove that if 15n is even, then 97 is even.

. A 3.14. Letx € Z. Prove that 5x — 11 is even if and only if x is odd.
Proof Evaluation  Although the proof started correctly, assuming that x and y are two integers of the same

parity and dividing the proof into these two cases, the proof of each case is incorrect. 315, Letx € Z. Use a lemma to prove that if 7x + 4 is even, then 3x — 11 is odd.

When we assume that x and y are both even, for example, x and y must represent arbitrary 3.16. Letx € Z. Prove that 3x + 1 is even if and only if 5x — 2 is odd.
even integers, not specific even integers. é 3.17. Let § = {2,3,4} and let n € §. Use a proof by contrapositive to prove that if n%(n — 1)%/4 is even, then
n*(n + 1)2/4 is even.
Problem 3.20  Evaluate the proposed proof of the following result. - 3.18. Leta € Z. Prove that (n + 1)? — 1 is even if and only if 1 is even.

Result  If m is an even integer and n is an odd integer, then 3m + 5n is odd. Section 3.4: Proof by Cases.
Proof et m be an even integer and n an odd integer. Then m = 2k and n = 2k + 1, where 3.19. Prove thatif n € Z, then n® — 31 + 9 is odd.

k & Z. Therefore, 3.20. Prove that if n e Z, then n® — # is even.

3m+5n =3Q2k)+5Qk+ 1) =6k + 10k +5 3.21. Letx, y € Z. Prove that if xy is odd, then x and y are odd.
=16k +5 =28k +2) + i. 3.22. Leta, b € Z. Prove that if ab is odd, then a® + b? is even.
Since 8k + 2 is an integer, 37 4 5 is odd. s 3.23. Letx, y € Z. Prove that x — y is even if and iny if x and y are of the same parity.
3.24. Leta, b € Z. Prove that if @ + b and ab are of the same parity, then a and b are even.
Proof Evaluation  There is a mistake in the second sentence of the proposed proof, where it is written that 3.25. (a) Letx and y be integers. Prove that (x + y)? is even if and only if x and y are of the same parity.

m = 2kandn = 2k + 1, where k € Z. Since the same symbol £ is used for both m and n, (b) Restate the result in (a) in terms of odd integers.
Wclhave inadvertently added the assumption that » = m+ 1 This is incorrect, however, 3.26. A collection of nonempty subsets of a nonempty set S is called a cover of S if every element of § belongs to
as it was never stated that m and n must be consecutive integers. In other words, we at least one of the subsets. (A cover is a partition of S if every element of S belongs to exactly one of the
should write m = 2k and n = 2¢ + 1, say, where k, £ € Z. é subsets.) Consider the following.
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"Case 1. a is even. Then a = 2k, where k € Z. Thus ab
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Result Leta,b € Z.If a is even or b is even, then ab is even.
Proof Assume that a is even or b is even. We consider the following cases.

= (2k)b = 2(kb). Since kb € Z, it follows that ab is

cven.
Case 2. b is even. Then b = 2£, where £ € Z. Thus ab = a(2£) = 2(af). Since al € Z, it follows that ab is
even. ) &

Since the domain is Z for both a and b, we might think of Z x Z being the domain of (a, b). Consider the
following subsets of Z x Z:

={(a,b) € Z x Z: aand b are odd}
={(a,b) e Zx Z: aiseven}
S3={(a,b) e Zx Z: biseven}.
(a) Why is {S1, 82, S5} a cover of Z x Z and not a partition of Z x Z7
(b) Why does the set S; not appear in the proof above?

(c) Give a proof by cases of the result above where the cases are determined by a partition and not a
cover.

Section 3.5: Proof Evaluations

3.27.

Below is a proof of a result.

Proof We consider two cases.

Case 1. a and b are even. Then a = 2r and b = 25 for integers 7 and s. Thus

@ — b = (2 ) — (25)% = 42 — 45 = 2(2r* — 25%).
Since 22 — 25% is an integer, a? — b? is even.

Case 2. a and b are odd. Thena = 2r + 1 and b = 2s + 1 for integers  and s. Thus

A==+ 1P~ Qs+ 1P =@ 4+ 1)~ @5 +4s + 1)
=dr? +4r —4s? —4s = 227 4 2r — 257 —2s).

Since 2r? + 2r — 252 — 2s is an integer, a — b? is even. s

Which of the following is being proved?

(1) Leta, b € Z. Then a and b are of the same parity if and only if a> — b is even.
(2) Leta, b € Z. Then a® — b? is even.

(3) Leta, b € Z.1f a and b are of the same parity, then a® — b? is even.

4) Leta, b € Z.If a* — b? is even, then a and b are of the same parity.

. Below is given a proof of a result. What result is being proved?

Proof Assume that x is even. Then x = 2a for some integer a. So

3x? —4x — 5 =32a)* —4Q2a) — 5 =12a" — 8a — 5 = 264> — 4a —3) + 1.

Since 6a®> — 4a — 3 is an integer, 3x% — 4x — 5 is odd.

3.29.
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For the converse, assume that x is odd. So x = 2b + 1, where b € Z. Therefore,
307 —dx =5 =32b+ 1)) —4Qb+ 1) — 5 =340 +4b+ 1)~ 8b — 4 —5
= 126 +4b — 6 = 2(6b> + 2b — 3).

Since 6b% +2b — 3 is an integer, 3x2 — 4x — 5 is even. =
Evaluate the proof of the following result.
Result Letn € Z.If 3n — 8 is odd, then n is odd.

Proof Assume that 7 is odd. Then n = 2k + | for some integer k. Then 3n — 8 = 3(2k + H-8=
6k +3 —8 = 6k — 5 = 2(3k — 3) + L. Since 3k — 3 is an integer, 37 — 8 is odd. F]

. Bvaluate the proof of the following result.

Result Leta,b € Z. Thena — b is even if and only if a and b are of the same parity.

Proof We consider two cases. - ",

Case 1. a and b are of the same parity. We now consider two subcases.

Subcase 1.1. a and b are both even. Then a = 2x and b = 2y, where x, y € Z. Then
a—b=2x—2y=2(x —y). Since x — y is an integer, a ~ b is even. ’
Subcase 1.2. a and b are both odd. Thena = 2x + 1 and b = 2y + 1, where x, y € Z. Then
a—b=Qx+1)—Qy+1)=2(x—y). Since x — y is an integer, a — b is even.

Case 2. a and b are of opposite parity. We again have two subcases. .
Subcase 2.1. a is odd and b is even. Thena = 2x + 1 and b = 2y, where x, y € Z. Then
a—b=(2x+1)—2y=2(x —y)+ 1. Since x — y is an integer, a — b is odd.

Subcase 2.2. a is even and b is odd. Then a = 2x and b = 2y + 1, where x, y € Z. Then

afb=2x7(2y+'1):2x—2y—1:2(x—y~1)+I.Sincex—y—Iisaninteger,afbisodd. [

ADDITIONAL EXERCISES FOR CHAPTER 3

3.31

. Letx € Z. Prove that if 7x —§ is even, then x is even.
3.32,
3.33.
3.34.
3.35.
3.36.
3.37.
3.38.
3.39.
3.40.

Let x € Z. Prove that x* is even if and only if x is even.

Letx € Z. Use one or two lemmas to prove that 3x° is even if and only if 5x? is even.
Give a direct proof of the following: Let x € Z. If 11x — 5 is odd, then x is even.
Let x, y € Z. Prove that if x + y is odd, then x and y are of opposite parity.

Letx, y € Z. Prove that if 3x + 5y is even, then x and y are of the same parity.
Letx, y € Z. Prove that (x + 1)y? is even if and only if x is odd or y is even.

Letx, y € Z. Prove that if xy and x + y are even, then both x and y are even.

Prove, for every integer x, that the integers 3x + 1 and 5x + 2 are of opposite parity.

Let S = {a, b, ¢, d} be a st of four distinct integers. Prove that if either (1) for each x € S, the integer x
and the sum of any two of the remaining three integers of S are of the same parity or (2) for each x € S, the
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Result Letx, y € Zand leta and b be odd integers. If ax -+ by is even, then x and y are of the same parity.

3.42.
3.43.
344,
3.45.
3.46.

3.47.
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integer x and the sum of any two of the remaining three integers of S are of opposite parity, then every pair
of integers of § are of the same parity.

. Evaluate the proof of the following result.

Proof Assume that x and y are of opposite parity. Then x = 2p and y = 2¢ + 1 for some integers p and
g. Since a and b are odd integers, a = 2r + 1 and b = 2s + 1 for integers r and s. Hence

ax +by =@+ D2p)+ @2s + D2g + 1)
=4pr+2p+4qs+25s+2q +1
=22pr+p+2qs+s+q+1.

Since 2pr 4+ p 4 2qs + s + g is an integer, ax + by is odd. B

Let x, y € Z. Prove that if @ and b are even integers, then ax + by is even.

‘”b>aor#>b4

Prove that for every two distinct real numbers a and b, either
Leta, b € Z. Prove that if ab = 4, then (a — b)* — 9(a — b) = 0.
Prove that if @ and b are two positive integers, then a(b + 1) + b*(a -+ 1) > 4ab.

5

Prove the following two results:

(a) Result A: Let n € Z. If #° is even, then 7 is even.

(b) Result B: If  is an odd integer, then 57 + 13 is even.

Let a, b, and ¢ be the lengths of the sides of a triangle T', where a < b < c. Prove that if T is a right
triangle, then

6 _ as . b6

, ¢
(abc)” = 3

More on Direct Proof and
Proof by Contrapositive

All of the examples illustrating direct proof and proof by contrapositive that we
have seen involve properties of even and odd integers. In this chapter, we will give
additional examples of direct proofs and proofs by contrapositive in new. surroundings.
First, we will see how even and odd integers can be studied in a more general setting,
through divisibility of integers. We will then explore some of the properties of real
numbers and, finally, look at properties of set operations.

( 4.1 Proofs Invelving Divisibility of Integers ]

Result to Prove

PROOF STRATEGY

We have now seen many examples of integers that can be written as 2x for some integer
x: These are precisely the even integers, of course. However, some integers can also be
expressed as 3x or 4x, or as —5x for some integer x. In general, for integers ¢ and b
with a # 0, we say that a divides b if there is an integer ¢ such that b = ac. In this case,
we write a |"b. Hence if n is an even integer, then 2 | n; moreover, if 2 divides some
integer n, then n is even. That is, an integer 7 is even if and only if 2 | n. Theorem 3.17
can therefore be restated for integers @ and b as: 2 | ab if and only if 2 | @ or 2 | b.

If a | b, then we also say that b is a multiple of a and that a is a divisor of b. Thus
every even integer is a multiple of 2. If ¢ does not divide b, then we write @ / b. For
example, 4 | 48 since 48 =4 - 12 and —3 | 57 since 57 = (=3) - (—19). On the other
hand, 4 f 66 as there is no integer c such that 66 = 4c.

We now apply the techniques we've learned to prove some results concerning di-
visibility properties of integers.

Leta, b, and ¢ be integers with @ # Oand b # 0. Ifa | band b | ¢, thena | c.

It seems reasonable here to use a direct proof and to begin by assuming that @ | b and
b | c. This means that b = ax and ¢ = by for some integers x and y. Since our goal is to
show that a | ¢, we need to show that ¢ can be written as the product of a and some other
integer. Hence it is logical to consider ¢ and determine how we can express it. é
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(abc)? = f—af b We have now seen many examples of integers that can be written as 2x for some integer
B 3 ' x. These are precisely the even integers, of course. However, some integers can also be

expressed as 3x or 4x, or as —5x for some integer x. In general, for integers @ and b
witha # 0, we say that a divides b if there is an integer ¢ such that b = ac. In this case,
we write a |-b. Hence if n is an even integer, then 2 | n; moreover, if 2 divides some
integer n, then 7 is even. That is, an integer n is even if and only if 2 | #. Theorem 3.17
can therefore be restated for integers @ and b as: 2 | ab if and only if 2 @ or 2 | b.

Ifa | b, then we also say that b is a multiple of a and that a is a divisor of b. Thus
every even integer is a multiple of 2. If a does not divide b, then we write a / b. For
example, 4 | 48 since 48 =4 - 12 and —3 | 57 since 57 = (=3) - (—19). On the other
hand, 4 / 66 as there is no integer ¢ such that 66 = 4c.

We now apply the techniques we’ve learned to prove some results conceming di-
visibility properties of integers.

Result to Prove  Leta, b, and ¢ be integers witha # Oand b # 0. If a | band b | ¢, then a | c.

PROOFSTRATEGY It seems reasonable here to use a direct proof and to begin by assuming that a | b and
b | c. This means that b = ax and ¢ = by for some integers x and y. Since our goal is to
show thata | ¢, we need to show that ¢ can be written as the product of a and some other
integer. Hence it is logical to consider ¢ and determine how we can express it. L4

87
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Leta, b, and c be integers witha # 0and b # 0.Ifa |band b | ¢, thena | c.

Assume that @ | b and b | ¢. Then b = ax and ¢ = by, where x, y € Z. Therefore,
¢ = by = (ax)y = a(xy). Since xy is an integer, a | ¢. ]

‘We now verify two other divisibility properties of integers.
Leta, b, c,and d be integers witha # 0 and b # 0.Ifa | cand b | d, thenab | cd.

Leta |candb |d. Thenc = ax andd = by, where x, y € Z. Then
cd = (ax)(by) = (ab)(xy).

Since xy is an integer, ab | cd. B
Leta,b,c,x,y € L, wherea #0.Ifa{banda | c,thena | (bx + cy).

Assume thata | band a | ¢. Then b = ar and ¢ = as, where r, s € Z. Then
bx +cy = (ar)x + (as)y = a(rx + sy).
Since rx + sy is an integer, a | (bx + cy). B

The examples that we have presented thus far concern general properties of divisi-
bility of integers. We now look at some specialized properties of divisibility.

Letx € Z.If2| (x* — 1), then 4 | (x* — 1).

Assume that 2 | (x? — 1). So x2 — 1 = 2y for some integer y. Thus x*> =2y + 1 is an
odd integer. It then follows by Theorem 3.12 that x too is odd. Hence x = 2z 4 1 for
some integer z. Then

e l=Qr+ 12— 1= +4dz+1)— 1 =42 442 = 4" + 2).
Since z2 + z is an integer, 4 | (x* — 1). B

For each of the Results 4.1-4.4, a direct proof worked very well. For the following
result, however, the situation is quite different.

Letx,y € Z.1f3 fxy, then3 fx and 3 fy.

If we let
P:3fxy, Q:3fx, and R:3fy,

then we wish to prove that P = Q A R. (It should be clear that P, O, and R are open
sentences in this case, but we omit the variables here for simplicity.) If we use a direct
proof, then we would assume that 3 f xy and atternpt to show that 3 fx and 3 /' y. Thus we
would know that xy cannot be expressed as 3 times an integer. On the other hand, if we
use a proof by contrapositive, then we are considering the implication (~(Q A R)) =
(~P), which, by De Morgan’s Law, is logically equivalent to (~Q) V (~R)) = (~P)

Result 4.5

Proof

Result to Prove
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" Result 4.6

Proof

Result 4.7
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and which, in words, is: If 3 | x or 3.| y, then 3 | xy. This method looks more
promising. é

Letx,y € Z.If 3 fxy, then3 fx and3 fy.

Assume that 3 | x or 3 | y. Without loss of generality, assume that 3 divides x. Then
x = 3z for some integer z. Hence xy = (3z)y = 3(zy). Since zy is an integer, 3 | xy. &

We have already mentioned that if an integer # is not a multiple of 2, then we can
write n = 2q + 1 for some integer ¢ (that is, if an integer » is not even, then it is odd).
This is a consequence of knowing that 0 and I are the only possible remainders when
an integer is divided by 2. Along the same lines, if an integer # is not a multiple of 3,
then we can write n = 3¢ + 1 or n = 3¢ + 2 for some integer ¢, that is, every integer
can be expressed as 3¢, 3¢ + 1, or 3¢ + 2 for some integer g since 0, 1, and 2 are the
only remainders that can result when an integer is divided by 3. Similarly, if an‘integer
n is not a multiple of 4, then # can be expressed as 4¢ + 1, 4g + 2, or 4g + 3 for some
integer . This topic is explored in more detail in Chapter 11. :

Letx € Z.If 3 J(x* — 1), then 3 | x.

We have two options here, namely, (1) use a direct proof and begirni a proof by assuming
that 3 f(x? — 1), or (2) use a proof by contrapositive and begin a proof by assuming that
3 Jx. Certainly, we cannot avoid assuming that 3 does not divide some integer. However,
it appears far easier to know that 3 f x and attempt to show that 3 | (x*> — 1) than to know
that 3 f(x* — 1) and show that 3 | x. Also, if 3 fx, then we now know that x = 3g+1
or x = 3q + 2 for some integer ¢, which suggests a proof by cases. é

Letx € Z.If 3 f(* — 1), then 3 | x.
Assume that 3 f x. Then either x = 3¢ + 1 for some integer ¢, or x = 3¢ + 2 for some
integer ¢. We consider these two cases.
Case 1. x = 3q + 1 for some integer q. Then
P —1=06g+1—1=09¢"+6g+1)—1
=9¢> + 6 = 3(3¢" + 2¢).

Since 3¢2 + 2¢ is an integer, 3 | (x2 — 1).
Case 2. x = 3q + 2 for some integer q. Then

W 1=0g+22-1=09¢*+12g +4 -1
=9¢> +12¢ + 3 =3(3¢* +4g + 1).
Since 3¢% + 4¢ + 1 is an integer, 3 | (x* — 1). M

‘We now consider a biconditional involving divisibility.

Letx,y € Z.Then 4| (x* — y?) if and only if x and y are of the same parity.
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Assume first that x and y are of the same parity. We show that 4 | (x* — y*). There are
two cases. )

Case 1. x and y are both even. Thus x = 2a and y = 2b for some integers a and b. Then
K=y = Qa) — b = 4a® — 4b* = 4d” — b%).

Since a® — b7 is an integer, 4 | (x* — y?).

Case 2. x and y are both odd. So x = 2c+ 1 and y = 2d + 1 for some integers ¢ and
d. Then

e = Qe 1P — QA+ 1) =GRt de+ 1) — A2 +4d + 1)
=4c + 4c — 4d* — 4d = 4(* + ¢ — d* — d).

Since ¢? + ¢ — d? — d is an integer, 4 | (x> — y?).
For the converse, assume that x and y are of opposite parity. We show that 4 f(x? —
¥%). We consider two cases.

Case 1. x is even and y is odd. Thus x = 2a and y< = 2b + 1 for some integers a and b.
Then

K=yt = (2a) — @b+ 1) = 4a® — [46? +4b + 1]
—4a® —4b? —4b—1=4g> —4b* —4b—4+3
=4@ - —b-1)+3.

Since a® — b> — b — 1 is an integer, it follows that there is a remainder of 3 when x2—y?
is divided by 4, and so 4 f (x> — y?).

Case 2. x is odd and y is even. The proof of this case is similar to that of Case 1 and is
therefore omitted. []

We consider a result of a somewhat different nature.
For every integer n > 7, there exist positive integers @ and b such that n = 2a + 3b.

First, notice that we can write 7=2-2+3-1,8=2-1+3-2,and9=2-3+3-1.
So the result is certainly true for n = 7, 8, 9. On the other hand, there is no pair a, b of
positive integers such that 6 = 2a + 3b. Of course, this observation shows only that we
cannot replace n > 7 by n > 6. .

Suppose that # is an integer such that n > 7. We could bring the integer 2 into the
discussion by observing that we can write n = 2g orn = 2q + 1, where ¢ € Z. Actually,
if n = 2¢q, then ¢ > 4 since n > 7; whileif n = 2¢ + 1, then ¢ > 3 since n > 7. This is
a useful observation. é

For every integer n > 1, there exist positive integers a and b such that n = 2a + 3b.

Let n be an integer such that n > 7. Then n = 2q or n = 2q + 1 for some integer ¢g. We
consider these two cases.
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Case 1. n = 2g. Since n > 7, it follows that ¢ > 4. Thus
n=2q=2q~-3)+6=2¢—-3)+3-2.

Since g > 4, it follows that g — 3 € N.

Case2.n = 2q + 1. Since n > 7, it follows that ¢ > 3. Thus

n=2+1=2g—-D+2+1=2¢-1)+3-1.

Since g > 3, it follows thatg — 1 € N. =

L 4.2 Proofs Invelving Congruence of Integers ]
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We know that an integer x is even if x = 2¢ for some integer ¢, while x is odd if
x = 2q -+ 1 for some integer g. Furthermore, two integers x and y are of the same parity
if they are both even or are both odd. From this, it follows that x and y are of the same
parity if and only if 2 | (x — y). Consequently, 2 | (x — y) if and only if x and y have
the same remainder when divided by 2. We also know that an integer x can be expressed
as 3¢, 3q + 1, or 3q + 2 for some integer ¢, according to whether the remainder is 0,
1, or 2 when x is divided by 3. If integers x and y are both of the form.3¢ -+ 1, then
x=3s+1landy =3¢+ 1, wheres,t € Z,and so x —y = 3(s —¢). Since s — ¢ is an
integer, 3 | (x — y). Similarly, if x and y are both of the form 3¢ or are both of the form
3g +2,then 3| (x — y)as well. Hence if x and y have the same remainder when divided
by 3, then 3 | (x — y). The converse of this implication is true as well. This suggests a
special interest in pairs x, y of integers such that 2 | (x — y) or 3 | (x — y), or, in fact, in
pairs x, y of integers such that n | (x — y) for some integer n > 2.

For integers a, b, and n > 2, we say that q is congruent to b modulo 5, written
a=b (mod n), if n | (@ — b). For example, 15 = 7 (mod 4) since 4 | (15—~ 7), and

= —15 (mod 9) since 9 | (3 — (—15)). On the other hand, 14 is not congruent to 4
modulo 6, written 14 5% 4 (mod 6), since 6 /(14 — 4).

. Since we know that every integer x can be expressed as x = 2q or as x = 2q + 1
for some integer g, it follows that either 2 | (x — 0) or2 | (x — 1); that is, x = 0 (mod 2)
or x = 1 (mod 2). Also, since each integer x can be expressed as x = 3g, x =3¢ + 1,
or x = 3q -+ 2 for some integer g, it follows that 3 | (x — 0), 3. (x — D, 013 | (x — 2).
Hence

x=0(mod 3), x=1(mod 3), or x=2(mod3).
Moreover, for each integer x, exactly one of
x=0(mod 4), x=1(mod 4), =2(mod 4), x =3 (mod 4)

holds, according to whether the remainderis 0, 1, 2, or 3, respectively, when x is divided
by 4. Similar statements can also be made when x is divided by » for each integer n > 5.
We now consider some properties of congruence of integers.

Leta, b, k, and n be integers, where n > 2. If @ = b (mod n), then ka = kb (mod n).

A direct proof seems reasonable here. So, we begin by assuming that a = b (mod ).
Our goal is to show that ka = kb (mod n). Because we know that ¢ = b (mod n), it
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follows, from the definition, that n | (@ — b), which implies that a — b = nx for some
integer x. We need to show that ka = kb (mod #), which means that we need to show that
n | (ka — kb). Thus, we must show that ka — kb = nt for some integer ¢. This suggests
considering the expression ka — kb. é

Leta, b, k, and n be integers, where n > 2. If a = b (mod n), then ka = kb (mod n).

Assume that @ = b (mod #n). Then n | (@ — b). Hence a — b = nx for some integer x.
Therefore,

ka — kb = k(a — b) = k(nx) = n{kx).

Since kx is an integer, n | (ka — kb) and so ka = kb (mod n). ¥

Leta,b,c,d,n € Z, where n > 2. Ifa = b (mod n) and ¢ =d (mod ), thena +c =
b+ d (mod n).

Assume that @ = b (mod »n) and ¢ = d (mod n). Thena — b = nx and ¢ — d = ny for
some integers x and y. Adding these two equations, we obtain

(@a—Db)y+(c—d)y=nx+ny
and so
(@+c)—0G+d)=nx+y).
Since x + y is an integer, n | [(a +¢) — (b + d)]. Hencea +¢c = b+d (mod n). =

The next result parallels that of Result 4.10 in terms of multiplication.

Leta,b,c,d,n € Z, where n > 2. If a = b (mod n) and ¢ =d (mod ), then ac =
bd (mod n).

This result and Result 4.10 have the same hypothesis. In the proof of Result 4.10, we
arrived at the equations ¢ — b = nx and ¢ — d = ny and needed only to add them to
complete the proof. This suggests that in the current result, it would be reasonable to
multiply these two equations. However, if we multiply them, we obtain (a — b)(¢ — d) =
(nx)(ny), which does not give us the desired conclusion that ac — bd is a multiple of n.
It is essential, though, that we work ac — bd into the proof. By rewriting a — b = nx
andc —d =nyasa = b+ nx and ¢ = d -+ ny, respectively, and then multiplying, we
can accomplish this, however.

Leta,b,c,d, ne€Z, where n > 2. If a = b (mod n) and ¢ =d (mod n), then ac =
bd (mod n).

Assume that @ = b (mod n) and ¢ = d (mod n). Then @ — b = nx and ¢ — d = ny,
where x, y € Z. Thusa = b + nx and ¢ = d + ny. Multiplying these two equations, we
obtain .
ac = (b + nx)(d + ny) = bd + dnx + bny + nzxy
= bd + n{dx + by + nxy)

Result to Prove
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and so ac — bd = n(dx + by + nxy). Since dx + by + nxy is an integer, ac = bd
(mod n). E

The proofs of the preceding three results use a direct proof. This is not a convenient
proof technique for the next result, however.

Letn € Z.If n? # n (mod 3), then n % 0 (mod 3) and » % 1 (mod 3).

Let
P(n): n? % n (mod 3), Q(n) : n £ 0 (mod 3), and R(n) : n # 1 (mod 3).

Our goal is then to show that P(n) = (Q(n) A R(n)) is true for every integer'n. A direct
proof does not appear to be a good choice. However, a proof by contrapositive wouid
lead us to the implication ~(Q(n) A R(n)) = (~P(n)), which, by De Morgan’s Law, is
logically equivalent to :

({(~Qm) vV (~R(n)) = (~P(n)).
In words, we then have: If n = 0 (mod 3) or n = 1 (mod 3), then n% = n (mod 3). &
Letn € Z.Ifn? # n(mod 3), then n % 0 (mod 3) and n = 1 (mod 3).
Let n be an integer such that n = 0 (mod 3) or n = 1 (mod 3). We consider these two
cases.
Case 1. n =0 (mod 3). Then n = 3k for some integer k. Hence )
n? —n = (3k)® — (3k) = 9k* — 3k = 33k* — k).

Since 3k? — k is an integer, 3 | (2% — n). Thus #% = n (mod 3).
Case2.n =1 (mod 3). So n = 3£ 4 1 for some integer £, and

P —n=CGl+ 1?2 -G+ =00 +60+1)—BE+1)
=902 4+ 30 =33 + o). )
Since 3¢2 + £ is an integer, 3 | (7% — 1) and so n2 = 1 (mod 3). B

As-a.consequence of Result 4.12, if an integer n and its square 7> have different
remainders when divided by 3, then the remainder for n (when divided by 3) is 2.

L 4.3 Proofs Involving Real Numbers ]

We now apply the proof techniques we have introduced to verify some mathematical
statements involving real numbers. To be certain that we are working under the same set
of rules, let us recall some facts about real numbers that can be used without justification.
We have already mentioned thata® > 0 for every real number a. Indeed, a” > 0 for every
real number a if £ is a positive even integer. If ¢ < 0 and n is a positive odd integer,
then a” < 0. Of course, the product of two real numbers is positive if and only if both
numbers are positive or both are negative.
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Now leta, b, c € R.Ifa > band ¢ > 0, then the inequality ac > bc holds. Indeed,
ifc > 0,thena/c > b/c.

Ifa > bandc > 0,thenac > bc and a/c > b/c. 4.1)
If ¢ < 0, then the inequalities in (4.1) are reversed; namely:
Ifa>bandc <0,thenac < bc and a/c <Ab/c, (4.2)

Another important and well-known property of real numbers is that if the product
of two real numbers is 0, then at least one of these numbers is 0.

If x and y are real numbers such that xy = 0, thenx =0 or y = 0.

If we use a direct proof, then we begin by assuming that xy = 0.If x = 0, then we already
have the desired result. On the other hand, if x # 0, then we are required to show that
y = 0. However, if x # 0, then 1/x is a real number. This suggests multiplying xy = 0
by 1/x.

Letx,y e R Ifxy=0,thenx =00ry=0.
Assume that xy = 0. We consider two cases, according to whether x = 0 or x # 0.
Case 1. x = 0. Then we have the desired result.
1 1

Case 2. x # 0. Multiplying xy = 0 by the number 1/x, we obtain ;(xy) =1 0=0.
Since

1 1

—(xy) = (*X> y=1L-y=y,

X X
it follows that y = 0. B

We now use Theorem 4.13 to prove the next result.

Letx e R Ifx* —5x% +3x = 15, then x = 5.
Assume that x* — 5x2 + 3x = 15. Thus x* — 5x? + 3x — 15 = 0. Observe that

2 =522 +3x — 15 =22 (x — 5) +3(x — 5) = (¢ + 3)(x — ).

Since x3 — 5x% 4+ 3x — 15 = 0, it follows that (x% 4+ 3)(x — 5) = 0. By Theorem 4.13,
x*+3=0orx —5=0.However, x> + 3 > 0,50 x — 5 = 0, implying that x = 5. &

Next we consider an example of a proof by contrapositive involving an inequality.
Letx e R Ifx° —3x* + 2% — x2 +4x — 1 > 0, thenx > 0.

Assume that x < 0. Then x° < 0, 2x° < 0, and 4x < 0. In addition, —3x* < 0 and
—x? < 0. Thus
B3t 2 - A —1<0-1<0,

as desired. “ =
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On occasion we may encounter problems that involve the verification of a certain
equality or inequality and where it is convenient to find an equivalent formulation of
the equality or inequality whose truth is clear. This then becomes the starting point of a
proof. We now verify an inequality whose proof uses this common approach.

If x,y € R, then

1,,3,
—3 — > )
3\1 +4y > xy

Let’s first eliminate fractions from the expression. Showing that 1x2 + 2y* > xy is
equivalent to showing that

1 3
12{ =x*+>y*} > 12xy,
<3x + 4y ) > 12xy
that is, .
4x* + 9y > 12xy,
which, in turn, is equivalent to
equ "
4x* — 12xy + 9y > 0.

Making a simple observation about 4x% — 12xy + 9y leads to a proof. é
Ifx,y €R, then

Lo 300,
3¢ T =

Since (2x — 3y)? > 0, it follows that 4x? — 12xy + 9y* > 0 and s0 4x2 4 9y% > 12xy.
Dividing this inequality by 12, we obtain

1 3
gxz—{— Zyz > Xy

producing the desired inequality. ) =

Recall that for a real number x, its absolute value |x| is defined as

x| = x ifx>0
=1 xifx <0

The foilowing theorem gives a familiar property of absolute values of real numbers
(called the triangle inequality) that has numerous applications. Since the definition of
|x| is essentially a definition by cases, proofs involving |x| are often by cases.

For every two real numbers x and y,

[x + ¥ < Ixl+ Iyl

Since |x 4+ y| = |x| 4 |y| if either x or y is 0, we can assume that x and y are nonzero.
‘We proceed by cases.

Casel.x >0andy > 0. Thenx + y > 0 and
x+yl=x+y=Ixl+Iyl
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Case2.x <Qandy < 0. Since x +y < 0,
Xyl ==+ =)+ (=y) =+l

Case 3. One of x and y is positive and the other is negative, say x > 0.and y < 0. We
consider two subcases.

Subcase 3.1. x +y > 0. Then
X+l =x+(=y)=x—y>x+y=|r+yl
Subcase 3.2. x + y < 0. Here
Fl+Dl=x+(D=x-—y>-x=-y=~@x+y)=x+yl

Therefore, |x + y| < |x| + |y| for every two real numbers x and y. =

4.4 Proofs Involving Sets }

We now turn our attention to proofs concerning properties of sets. Recall, for sets A and
B contained in some universal set U, that the intersection of A and B is

ANB={x : xeAandx € B},
the union of A and B is

AUB ={x : x € Aorx € B},
and the difference of A and B is

A-B={x:xecAandx ¢ B}.

The set A — B is also called the relative complement of B in A, and the > relative
complement of A in U is called simply the complement of A and is denoted by A. Thus,
‘A = U — A. In what follows, we will always assume that the sets under discussion are
subsets of some universal set U.

Figure 4.1 shows Venn diagrams of A — B and A N B for arbitrary sets A and B.
The diagrams suggest that these two sets are equal. This is, in fact, the case. Recall that
to show the equality of two sets C and D, we can verify the two set inclusions C C D

B

A—B ANB

Figure 4.1  Venn diagrams for A— Band AN B
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and D € C. To establish the inclusion C € D, we show that every element of C is also
an element of D; that is, if x € C then x € D. This is accomplished with a direct proof,
by letting x be an (arbitrary) element of C and showing that x must belong to D as well.
Recall that we need not be concerned if C contains no elements; for in this case x € C
is false for every element x and so the implication “If x € C, then x € D.” is true for
all x € U. As a consequence of this observation, if C = @, then C contains no elements
and it follows that C € D.

For every two sets A and B,
A—B=ANB.

First we show that A — B C ANB.Letx € A— B. Thenx € A and x ¢ B.Since x ¢
B, it follows that x € B. Therefore, x € Aand x € B; sox € AN B. Hence 4 — B c
ANB.

Next we showthat ANB C A — B.Lety € AN B. Theny € Aand y € B. Since
y € B, weseethat y ¢ B. Now because y € A and y & B, weconcludethaty € A — B.
Thus, ANB C A — B. =
In the second paragraph of the proof of Result 4.18, we used y (rather than x) to denote
an arbitrary element of A N B. We did this only for variety. We could have used x twice.
Once we decided to use distinct symbols, y was the logical choice since x was used
in the first paragraph of the proof. This keeps our use of symbols consistent. Another
possibility would have been to use a in the first paragraph and b in the second. This has
some disadvantages, however. Since the sets are being called A and B, we might have a
tendency to think that @ € A and b € B, which may confuse the reader. For this reason,
we chose x and y over a and b.

Before leaving the proof of Result 4.18, we have one other remark. At one point
in the second paragraph, we learned that y € A and y ¢ B. From this we could have
concluded (correctly) that y ¢ A N B, but this is not what we wanted. Instead, we wrote
thaty € A — B. Itis always a good idea to keep our goal in sight. We wanted to show
that y € A — B; so it was important to keep in mind that it was the set A — B in which
we were interested, not A N B. é

Next, let’s consider the Venn diagrams for (AU B) — (AN B) and (A — B)U
(B — A), which are shown in Figure 4.2. From these two diagrams, we might

A B A B

(AUB)—- (AN B) (A-B)u(B—A)
Figure 42 Venn diagrams for (AU B) — (AN 'B)and (A — B)U (B — A)
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conclude (correctly) that the two sets (AU B) — (AN B) and (A — B)U (B — A) are
equal. Indeed, all that is lacking is a proof that these two sets are equal. That is, Venn
diagrams can be useful in suggesting certain results concerning sets, but they are only
drawings and do not constitute a proof.

For every two sets A and B,

(AUB)—(ANB)= (A~ B)U(B — A).

First we show that (AUB) — (ANB) C(A—B)U(B—A). Letx € (AUB) —
(ANB). Thenx € AUB and x ¢ AN B. Since x € AU B, it follows that x € A or
x € B. Without loss of generality, let x € A. Since x ¢ AN B, the element x ¢ B.
Therefore, x € A — B andsox € (A — B)U (B — A). Hence

(AUB)—(ANB) S (A~ B)U(B - A).

Next we show that (A — B)U(B — A) C(AUB)—(ANB). Letx € (A— B)U
(B~ A). Then x € A— B or x € B — A, say the former. So x € A and x ¢ B. Thus
x € AUB and x ¢ AN B. Consequently, x € (AU B) — (AN B). Therefore,

(A—B)U(B—A)C(AUB)—(ANB),

as desired. B

In the proof of Result 4.19, when we were verifying the set inclusion
(AUBY—(ANB)C(A—-B)U(B —A),

we concluded that x € A or x € B. At that point, we could have divided the proof into
two cases (Case 1. x € A and Case 2. x € B); however, the proofs of the two cases
would be identical, except that A and B would be interchanged. Therefore, we decided
to consider only one of these. Since it really didn’t matter which case we handled, we
simply chose the case where x € A. This was accomplished by writing:

Without loss of generality, assume that x € A.

In the proof of the reverse set containment, we found ourselves in a similar situation,
namely, x € A — B orx € B — A. Again, these two situations were basically identical,
and we simply chose to work with the first (former) situation. (Had we decided to assume
that x € B — A, we would have considered the latter case.) é

We now look at an example of a biconditional concerning sets.

Let A and B be sets. Then AUB = A ifand only if B C A.

First we prove thatif A U B = A, then B C A. We use a proof by contrapositive. Assume
that B is not a subset of A. Then there must be some element x € B such that x ¢ A.
Since x € B, it follows that x € A U B. However, since x ¢ A, we have AU B # A.
Next we prove the converse, namely, if B C A, then AU B = A. We use a direct
proof here. Assume that B C A. To verify that AU B = A, we show that A C AUB
and AU B C A. The setinclusion A € A U B is immediate (if x € A, thenx € AU B).
It remains only to show then that AUB C A.Letye AUB.Thusy € Aory € B. If

PROOF ANALYSIS
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Y € A, then we already have the desired result. If y € B, then since B C A, it follows
thaty € A. Thus AUB C A. =

In the first paragraph of the proof of Result 4.20 we indicated that we were using a proof
by contrapositive, while in the second paragraph we mentioned that we were using a
direct proof. This really wasn’t necessary as the assumptions we made would inform
the reader what technique we were applying. Also, in the proof of Result 4.20, we used
a proof by contrapositive for one implication and a direct proof for its converse. This
wasn’t necessary either. Indeed, it is quite possible to interchange the techniques we used
(see Exercise 4.28). é

E 4.5 Fundamental Properties of Set Operations ]

Theorem 4.21

Proof of
Theorem 4.21(1a)

Many results concerning sets follow from some very fundamental properties of sets,
which, in turn, follow from corresponding results about logical statements that were
described in Chapter 2. For example, we know that if P and Q are two statements, then
PV Q and Q Vv P are logically equivalent, Similarly, if A and B are two sets, then
AUB = B U A. We-list som¢*of the fundamental properties of set operations in the
following theorem. '

For sets A, B, and C,

(1) Commutative Laws

(a) AUB=BUA
by ANB=BNA

(2) Associative Laws

(@) AUBUC)=(AUB)UC
(b)) ANBNC)=(ANB)NC

(3) Distributive Laws }
(@ AUBNC)=(AUB)N(AUCQC)
B ANBUC)=(ANBYUMANC)
4 'De,Morgan's Laws
(@.AUB=ANB
() ANB=A4AUB

We present proofs of only three parts of Theorem 4.21, beginning with the commu-
tative law of the union of two sets.

We show that AU B € B U A. Assume thatx € AU B.Thenx € Aorx € B. Applying
the commutative law for disjunction of statements, we conclude that x € B or x € A;
sox € BUA. Thus, AUB C B U A. The proof of the reverse set inclusion B U A C
A U B is similar and is therefore omitted. =

Next we verify one of the distributive laws.
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Proof of
Theorem 4.21(3a)

Proof of
Theoren 4.21(4a)

PROOF ANALYSIS

First we show that AU(BNC)C(AUB)N(AUC). Let x € AU(BNC). Then
xeAorxeBNC. Ifxe A thenx€c AUBandx € AUC. Thus x e (AUB)N
(A UC), as desired. On the other hand, if x € BN C, thenx € B and x € C; and again,
Xx€AUB and x e AUC. So x € (AUB)N(AUC). Therefore, AUMBNC)C
(AUB)N(AUC).

To verify the reverse set inclusion, letx € (AU B)N(AUC). Thenx € AU B and
x € AUC.Ifx € A,thenx € AU (B NC).So wemay assume thatx ¢ A. Then the fact
thatx € AU B andx ¢ Aimpliesthatx € B. By the same reasoning, x € C. Therefore,
xeBNC,andsox € AU(BNC). Therefore, (AUB)N(AUC)CT AU(BNC). =

As a final example, we prove one of De Morgan’s laws.

First, we show that AUB C ANB.Letx € AUB.Thenx ¢ AU B.Hencex ¢ Aand

x ¢ B. Therefore, x ¢ Aand x € B, sox € A NB. Consequently, AUB C ANB.
Next we show that ANB C AUB.Letx € ANB.Thenx € A and x € B. Thus,

x¢ Aandx ¢ B,sox ¢ AU B. Therefore, x € AUB.Hence ANB C AUB. E

In the proof of the De Morgan law that we just presented, we arrived at the step x ¢
AU B at one point and then next wrote x ¢ A and x ¢ B. Since x € AU B implies
that x € A or x € B, you might have expected us to write that x ¢ A or x ¢ B after
writing x ¢ AU B; but this would not be the correct conclusion. When we say that
X ¢ AU B, this is equivalent to writing ~(x € A U B), which is logically equivalent to
~((x € A) or (x € B)). By the De Morgan law for the negation of the disjunction of
two statements (or two open sentences), we have that ~((x € A) or (x € B)) is logically
equivalent to ~(x € A) and ~(x € B); thatis,x ¢ Aand x ¢ B. é

Proofs of some other parts of Theorem 4.21 are left as exercises.

[ 4.6 Proofs Invoiving Cértesian Products of Sets ]

Result 4.22

Proof

Result 4.23

Recall that the Cartesian product (or simply the product) A x B of two sets A and B
is defined as

AxB={ab): acAandb e B}.

fA=0orB=10then AxB=40.

Before looking at several examples of proofs concerning Cartesian products of sets,
it is important to keep in mind that an arbitrary element of the Cartesian product A x B
of two sets A and B is of the form (a, b), where a € A and b € B.

Let A,B,C,and D be sets. If AC C and B € D, then A x B CC x D.

Let(x,y)e Ax B.Thenx € Aand y € B. Since A C C and B C D, it follows that
xe€Candye D.Hence (x,y) e C x D. ]

For sets A, B, and C,
Ax(BUCY=(AxB)U(A X C(C).
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Proof Wefirstshow that A x (BUC) C (A x B)U (A4 x C).Let(x,y) € Ax(BUC).Then

Result 4.24

Proof
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x€e€Aandye BUC.Thus y € Bory € C, say the former. Then (x, y) € A x B, and
80 (x, y) € (A x B)U (A x C). Consequently, A x (BUC) C (A x BYU (A x C).
Next we show that (A x BYU(A x C) € A x (BUC). Let (x,y)e(Ax B)U
(A xC). Then (x,y) € A x Bor(x,y) € A x C, say the former. Then x € Aand y e
B < BUC. Hence (x,y) € A x (BUC), implying that (A x BYU(AXxC)C A x
(BUC). -

We give one additional example of a proof involving the Cartesian products of sets.

For sets A, B, and C,
AXx(B-C)=(AxB)—(AxC(C).

Firstweshowthat A x (B — C) C (A x B) — (A x C).Let(x, y)€ Ax (B —C).Then
x € Aandy € B—C.Sincey € B — C,itfollowsthaty € Bandy ¢ C.Becauséx € A
and y € B, we have (x, y) € A x B. Since y ¢ C, however, (x, y) ¢ A x C. Therefore,
(x,y)€(AxB)—(AxC).Hence A x (B—-C)C (A x B)*(A;x C)H.

We now show that (A x B)— (A xC)C Ax(B~-C). Let (x,y) € (A x B) —
(AxC). Then (x,y) € A x B and (x,y) ¢ 4 x C. Since (x,y) € A x B, it follows
thatx € Aand y € B. Also, since x € A and (x, y) ¢ A x C, it follows thaty ¢ C. So
yeB‘C.Thus(x,y)eAx(B—C)and(AxB)—(AxC)gAx(B—C)‘V =

We add one comment concerning the preceding proof. During the proof of (A4 x B) —
(A xC) S A x(B-C),weneeded to show that y ¢ C. We learned that (x, y) ¢ Ax
C. However, this information alone did not allow us to conclude that y ¢ C. Indeed, if
(x,y) ¢ Ax C,thenx ¢ Aory ¢ C. Since we knew, however, that x € A and x,y) ¢
A x C, we were able to conclude that y ¢ C. é

EXERCISES FOR CHAPTER 4

Section 4.1: Proofs Involving Divisibility of Integers

4.1.
4.2.
43.

4.4.
4.5.

Let a and b be integers, where a # 0. Prove that if a | b, then a? | b?.
Leta,b € Z, where a # 0 and b 5 0. Prove thatif a | band b | a, thena = b ora = —b.

Letm € Z.

(a) Give a direct proof of the following: If 3 | m, then 3 | m?.

(b) State the contrapositive of the implication in (a).

(¢) Give a direct proof of the following: If 3 fm, then 3 fm?.

(d) State the contrapositive of the implication in (c).

(e) State the conjunction of the implications in (a) and (c) using “if and only if”.
Letx,y € Z. Prove that if 3 fx and 3 fy, then 3 | (x2 — y2).

Leta, b, ¢ € Z, where a 5 0. Prove that if a /bc, then a {b and a fc.



102 Chapter 4 More on Direct Proof and Proof by Contrapositive

4.6. Leta € Z. Prove that if 3 | 2a, then 3 | a.
4.7. Letn € Z. Prove that 3 | (212 + 1) if and only if 3 fz.
4.8. Letn € Z. Prove that 2 | (n* — 3) if and only if 4 | (n* + 3).

4.9 Prove that for every integer n > 8, there exist nonnegative integers @ and b such that n = 3a -+ 5b.

Section 4.2: Proofs Invelving Congruence of Integers
4.10. Leta, b, n € Z, where n > 2. Prove that if ¢ = b (mod #), then a® = b? (mod n).
4.11. Leta,b,c,n € Z, where n > 2. Prove that if « = b (mod #) and a = ¢ (mod n), then b = ¢ (mod n).

4.12. Leta, b € Z. Prove that if a? + 2b% = 0 (mod 3), then either a and b are both congruent to 0 modulo 3 or
neither is congruent to 0 modulo 3.

4.13. (a) Prove that if a is an integer such that @ = 1 (mod 3), then a? = 1 (mod 5).-
(b) Given that b is an integer such that » = 1 (mod 5), what can we conclude from (a)?

4.14. (a) Result 4.12 states: Let n € Z. If n> 2 n (mod 3), then z 0 (mod 3) and n 2 1 (mod 3). State and
prove the converse of this result.
(b) State the conjunction of Result 4.12 and its converse using “if and only if”.

4.15. Leta, b € Z. Show that if a = 5 (mod 6) and b = 3 (mod 4), then 4a + 6b = 6 (mod 8).
4.16. Let n € Z. Prove each of the statements (a)—(f).

(@) If n = 0 (mod 7), then n% = 0 (mod 7).

(b) If n = 1 (mod 7), then #? = 1 (mod 7).

(c) If n = 2 (mod 7), then n? = 4 (mod 7).

(d) Ifn =3 (mod 7), then n*> = 2 (mod 7).

{e) For each integer n, n? = (7 — n)? (mod 7).

(f) For every integer 1, n* is congruent to exactly one of 0, 1, 2, or 4 modulo 7.
4.17. Leta € Z. Prove that ¢® = a (mod 3).

Section 4.3: Proefs Involving Real Numbers

4.18. Let x, y € R. Prove that if x> —4x = y? —4y and x # y, thenx +y = 4.

4.19. Leta, b, and m be integers. Prove that if 2a +3b > 12m + 1, thena > 3m + lorb > 2m + 1.
4.20. Let x € R. Prove that if 3x* + 1 < x7 + x3, then x > 0.

4.21. (a) Recall that /7 > 0 for every positive real number r. Prove that if @ and b are positive real numbers, then

+b
od@g“;.

{The number /ab is called the geometric mean of a and b, while (a + b)/2 is called the arithmetic
mean or average of @ and b.)
(b) Under what conditions does +/ab = (a + b)/2 for positive real numbers a and b? Justify your answer.

4.22. (a) Prove that if r is a real number such that 0 < r < 1, then
_L oy
r(l—r)
(b) If the real number 7 in part (a) is an integer, is the implication true in this case? Explain.

4.23. Letx,y € R. Prove that [xy| = [x| - [y
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4.24. Prove that for every two real numbers x and y,
lx+yl = xl =yl
[Hint: Observe that |x} = |(x + y) + (—y)|.]
4.25. Prove that for every three real numbers x, y, and z,
-zl <lx—yl+iy—z[

4.26. Prove that if  is a real number such that |r — 1| < 1, then % > 1.

Section 4.4: Proofs Involving Sets }
4.27. Let A and B be sets. Prove that AUB = (A — B)U (B — A)U(AN B).

4.28. In Result 4.20, it was proved for sets A and B that AU B = Aif and only if B C A. Provide another proof
of this result by giving a direct proof of the implication “If AU B = A, then B € A” and a proof by
contrapositive of its converse.

4.29. Let A and B be sets. Prove that AN B = A if and only if A C B.

4.30. (a) Give an example of three sets A, B, and C suchthat ANB =ANCbut B #C.

(b) Give an example of three sets A, B, and C suchthat AUB = AUC but B # C.
(c) Let A, B, and C be sets. Prove that f ANB=ANCand AUB = AUC, then B =C:

‘4.31. Prove that if A and B are sets such that AU B # (i, then A # @ or B £ .

432. letA={neZ:n=1(mod 2)}and B = {n € Z : n = 3 (mod 4)}. Prove that B C A.
4.33. Let A and B be sets. Prove that AU B = AN B if and only if A = B.

Section 4.5: Fundamental Properties of Set Operations

4.34. Prove that AN B = B N A for every two sets A and B (Theorem 4.21(1b)).

4.35. Prove that AN (B UC) = (AN B)U(ANC) for every three sets A, B, and C (Theorem 4.21(3b)).
4.36. Prove that A N B = A U B for every two sets A and B (Theorem 4.21(4b)).

4.37. Let A, B, and C be sets..Prove that (A — B)N(A —~C)=A —(BUC).

4.38. Let A, B, and C be sets. Prove that (A ~ B)U(A—C)= A —(BNC).

4.39. Let A, B, and C be sets. Use Theorem 4.21 to prove that E UBNC)=(ANB)U (A=0C).

Section 4.6: Proofs Involving Cariesian Products of Sets
4.40. Let A and B be sets. Prove that A x B =@ ifandonlyif A=@ or B =1.
4.41. For sets A and B, find a necessary and sufficient condition for A x B = B x A.

4.42. For sets A and B, find a necessary and sufficient condition for (A x B) N (B x A) = @. Verify that this
condition is necessary and sufficient.

4.43. Let A, B, and C be nonempty sets. Prove that A x C € B x C if and onlyif A C B.
4.44. Result 4.22 states that if A, B, C, and D are sets such that A C C and B € D, then A x B cCxD.

(a) Show that the converse of Result 4.22 is false.
(b) Under what added hypothesis is the converse true? Prove your assertion.
4.45. Let A, B, and C be sets. Prove that

Ax(BNCY=(AxB)N(AxC).
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4.46.

447,
4.48.
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Let A, B, C, and D be sets. Prove that
(AxB)YN(C xD)y=(ANC)x (BN D).

LetA, B,C, and D be sets. Prove that (A x B)U(C x D) € (A UC)x (BUD).

Let A and B be sets. Show, in general, that A x B # A x B.

ADDITIONAL EXERCISES FOR CHAPTER 4

4.49.
4.50.
4.51.
4.52.
4.53.
4.54.

4.55.
4.56.

4.57.
4.58.

4.59.

4.60.

Letn € Z. Prove that 5 | n? if and only if 5 | n.

Prove for integers a and b that 3 | ab if and only if 3 | g or 3 | b.

Prove that if n is an odd integer, then 8 | [1% 4 (n + 6)* + 6].

Prove that if 7 is an odd integer, then 8 | (n* + 4n% + 11).

Letn,m € Z. Prove that if n = 1 (mod 2) and m = 3 (mod 4), then n? + m = 0 (mod 4).

Find two distinct positive integer values of @ for which the following is true and give a proof in each case:
For every integer n, a f(n* + 1).

Prove for every two real numbers @ and b that ab < ~/a2+/b2.

Prove for every four real numbers a, b, ¢, and d that ac + bd < +/a® + b2/c? + d2. [Hint: Observe that
(ad — be)? > 0]

Prove the following: Let x € R. If x(x — 5) = —4, then +/5x% — 4 = 1 implies that x + ;1 =2
Evaluate the proposed proof of the following result.
Result Letx,y € Z.If x = 2 (mod 3) and y =2 (mod 3), then xy = 1 (mod 3).
Proof Letx =2(mod 3)andy = 2 (mod 3). Then x = 3k + 2 and y = 3k + 2 for some integer k. Hence
Xy =CGk+2)Ck+2) =2+ 12k +4 =98+ 12k +3 +1
=30k +4k+1) + 1.

Since 3k? 4 4k + 1 is an integer, xy = 1 (mod 3). 2
Below is given a proof of a result. What result is proved?

Proof Assume that x = 1 (mod 5)and y = 2 (mod 5). Then 5 j(x —1yand 5| (y — 2). Hence
x —~1=5aand y — 2 = 5b for some integers a and b. So x = 5a + 1 and y = 5b + 2. Therefore,

4yt = (5a + 12 + (5b + 20 = (25a® + 10a + 1) + (25b% + 20b + 4)
= 250" + 10a + 25b® +20b + 5 = 5(54° + 2a + 5b% + 4b + 1).

Since 5a* + 2a + 5b> +4b + 1 is an integer, 5 | (x2 + y2) and so x2 +- y% =0 (mod 5). B

A proof of the following result is given.

Result Letn € Z. If n* is even, then 37 + 1 is odd.

4.62.
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Proof Assume that n* = (n?)” is even. Since n* is even, n? is even. Furthermore, since r2 is even, 2 is
even. Because # is even, n = 2k for some integer k. Then

3n+1=3@2k) +1=6k+1=203k+1.

Since 3k is an integer, 3n + 1 is odd. L]

Answer the following questions.

(1) Which proof technique is being used?
(2) What is the starting assumption?
(3) What must be shown to give a complete proof?
(4) Give areason for each of the following steps in the proof.
(a) Since n* is even, n? is even.
(b) Furthermore, since #? is even, 7 is even.
(c) Because 7 is even, n = 2k for some integer k.
(d) Then3n +1=3(2k)+1=06k+1=2(3k) + 1.
(e) Since 3k is an integer, 3n + 1 isodd. .

. Given below is an attempted proof of a result.

Proof First, we show that A C(AUB)— B.Lletx € A.Since ANB = @, it follows that x ¢ B.
Therefore,x € AUB andx ¢ B,sox € (AU B)—-B.Thus A€ (AUB)—B.

Next, we show that (AUB) ~B C A.Letx € (AUB)— B.Thenx € AU B and x ¢ B. From this,
it follows that x € A. Hence (AU B) ~ B C A. =

(2) What result is being proved above?
(b) What change (or changes) in this proof would make it better (from your point of view)?

Evaluate the proposed proof of the following result.
Result Letx,y e Zsuchthat3|x.If3 | (x + y), then 3 | .

Proof Since 3 | x, it follows that x = 3a, where ¢ € Z. Assume that 3 | (x + y). Thenx + y = 3b for
some integer b. Hence y = 3b — x = 3b — 3a = 3(b — ). Since b — a is an integer, 3 | y.

For the converse, assume that 3 | y. Therefore, y =3¢, where ¢ € Z. Thus x + y = 3a + 3¢ = 3(a + ¢).
Since @ + c is an integer, 3 | (x + y). L

. Evaluate the proposed proof of the following result.

Result Letx,y e Z.Ifx = 1 (mod 3)and y = 1 (mod 3), then xy =1 (mod 3).

Proof Assume that x = 1 (mod 3) and y = 1 (mod 3). Then 3 | (x — 1)and 3 [ (y — 1). Hence
x —1=3qandy— 1 = 3q for some integer g and so x =3¢ + 1 and y = 3q + 1. Thus
xy=0g+DBq+1)=9"+6¢ +1=303¢"+29) + 1

and so xy — 1 = 3(3¢® + 2¢). Since 342 + 2q is an integer, 3 | (xy — 1). Hence xy = 1 (nod 3). =
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4.64.

4.66.

4.67.

4.68.
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Evaluate the proposed proof of the following result.

Result For every three sets A, B, and C,

(AxC)—(BxC)CT(A-B)xC.

Proof Let(x,y) € (AxC)—(B xC).Then (x,y) € A x C and (x, y) ¢ B xC.Since (x,y) e AxC

it follows that x € Aand y € C. Since (x, y) ¢ B x C, we have x ¢ B. Thus x € A — B. Hence
(x,y)e(A—B)xC.

5. Prove that for every three integers a, b, and ¢, the sum

la—bl+la—cl+1|b—c|

is an even integer.
Prove that for every two positive real numbers  and b,

a b

5 + . > 2.
Prove that for every real number x,

sin® x + 3 sin® x cos” x + cos® x = 1.

[Hint: Consider (sin” x + cos? x)3.]
Let x, y € R. Prove that if x < 0, then

2 —x%y <xly —xy?

)

Existence and Proof by
Contradiction

hus far, we have considered quantified statements involving universal quantifiers,

namely statements of the type Vx € S, R(x). We now consider problems thatinvolve,
either directly or indirectly, quantified statements involving existential quantifiers, that
is, statements of the type 3x € S, R(x).

[ 5.1 Counterexamples }

Example 5.1

Solution

It must certainly come as no surprise that some quantified statements of the type ¥x € S,
R(x) are false. We have seen that

~(Vx e S, R(x))=3dx € S, ~R(x),

that'is, if the statement Vx € S, R(x) is false, then there exists some element x € S
for- which R(x) is false. Such an element x is called a counterexample of the (false)
statement Yx € S, R(x). Finding a counterexample verifies that Vx € S, R(x) is false.
Consider the statement: )

Ifx € R, then (x* — 1)* > 0. R )

or, equivalently,
. For every real number x, (x> — 1)% > 0.

Show that the statement (5.1) is false by exhibiting a counterexample.

Forx =1, (x? = 1) = (12 - 1) = 0. Thus x = 1 is a counterexample. é
It might be noticed that the number x = ~1 is also a counterexample. In fact,
x = 1 and x = —1 are the only two counterexamples of the statement (5.1). That is, the
statement
Ifx e R— {1, -1}, then (x* — 1)> > 0. (5.2)
is true.

167
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Evaluate the proposed proof of the following result.

Result For every three sets A, B, and C,

(AxC)—(BxC)CT(A-B)xC.

Proof Let(x,y) € (AxC)—(B xC).Then (x,y) € A x C and (x, y) ¢ B xC.Since (x,y) e AxC

it follows that x € Aand y € C. Since (x, y) ¢ B x C, we have x ¢ B. Thus x € A — B. Hence
(x,y)e(A—B)xC.

5. Prove that for every three integers a, b, and ¢, the sum

la—bl+la—cl+1|b—c|

is an even integer.
Prove that for every two positive real numbers  and b,

a b

5 + . > 2.
Prove that for every real number x,

sin® x + 3 sin® x cos” x + cos® x = 1.

[Hint: Consider (sin” x + cos? x)3.]
Let x, y € R. Prove that if x < 0, then

2 —x%y <xly —xy?

)

Existence and Proof by
Contradiction

hus far, we have considered quantified statements involving universal quantifiers,

namely statements of the type Vx € S, R(x). We now consider problems thatinvolve,
either directly or indirectly, quantified statements involving existential quantifiers, that
is, statements of the type 3x € S, R(x).

[ 5.1 Counterexamples }

Example 5.1

Solution

It must certainly come as no surprise that some quantified statements of the type ¥x € S,
R(x) are false. We have seen that

~(Vx e S, R(x))=3dx € S, ~R(x),

that'is, if the statement Vx € S, R(x) is false, then there exists some element x € S
for- which R(x) is false. Such an element x is called a counterexample of the (false)
statement Yx € S, R(x). Finding a counterexample verifies that Vx € S, R(x) is false.
Consider the statement: )

Ifx € R, then (x* — 1)* > 0. R )

or, equivalently,
. For every real number x, (x> — 1)% > 0.

Show that the statement (5.1) is false by exhibiting a counterexample.

Forx =1, (x? = 1) = (12 - 1) = 0. Thus x = 1 is a counterexample. é
It might be noticed that the number x = ~1 is also a counterexample. In fact,
x = 1 and x = —1 are the only two counterexamples of the statement (5.1). That is, the
statement
Ifx e R— {1, -1}, then (x* — 1)> > 0. (5.2)
is true.

167



108

Chapter 5 Existence and Proof by Contradiction

Example 5.2

Solution

Example 5.3

Solution

Example 5.4

Solution

if a statement P is shown to be false in some manner, then P is said to be disproved.
The counterexample x = 1 therefore disproves the statement (5.1).
Disprove the statement:
If x is a real number, then tan® x + 1 = sec? x. (5.3)
Since tan x and sec x are not defined when x = /2, it follows that tan> x + 1 and sec? x

have no numerical value when x = /2 and, consequently, tan® x -+ 1 and sec® x are not
equal when x = 7/2. That is, x = /2 is a counterexample to the statement (5.3). ¢

Although tan’ x + 1 = sec®x is a well-known identity from trigonometry, state-
ment (5.3), as presented, is false. The following is true, however:

If x is areal number for which tanx and sec x are defined,
then tan® x + 1 = sec?x. (5.4)

Indeed, it is probably statement (5.4) that was intended in Example 5.2, rather than
statement (5.3). Since tan x and sec x are defined for precisely the same real numbers x
(namely, those numbers x such that cos x # 0), we can restate (5.4) as

Ifx eR—{nw+%: neZ} thentan’x + 1 = sec’x.

Disprove the statement:

2
x  x+1
IfxeZthen DX _XEL 55)
xt—=x x-1
If x = 0, then x2 — x = 0 and so ;zfﬁ is undefined. On the other hand, if x = 0, then
& = —1; 50 the expressions ;Z*_’i and ZtL are certainly not equal when x = 0. Thus
x = 0 is a counterexample to the statement (5.5). é

Since neither i—‘;% nor i—ﬂ is defined when x = 1, it follows that x = 1 is also a

counterexample of statement (5.5). Indeed, x = 0 and x = 1 are the only counterexam-
ples of statement (5.5) and so the statement

2 x41
Itx € Z— {0, 1}, then XZH ot
xXc —

Tx—1
is true.

The three preceding examples illustrate the fact that an open sentence R(x) that is
false over some domain S may very well be true over a subset of S. Therefore, the truth
(or falseness) of a statement Vx € §, R(x) depends not only on the open sentence R(x)
but on its domain as well.

Disprove the statement:

For every odd positive integer n, 3 | (n* — 1). (5.6)

Since 3 (3% — 1), it follows that n = 3 is a counterexample. é

Example 5.5

Solution

Example 5.6

Solution
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You might have noticed that even though 3 f (3% — 1), it is the case that 3 | (n? — 1)
for some odd positive integers. For example, 3 | (n? — 1)ifn = 1, 5,7, 11, 13, 17, while
3fm?—-1ifa=3,9, 15, 21. This should make you wonder for which odd positive
integers 7, the open sentence 3 | (n2 — 1) is true. (See Result 4.6.)

We have seen that a quantified statement of the type

Vx €S, R(x)
is false if
dx e S, ~R(x)

is true, that is, if there exists some element x € S for which R(x) is false. There will be
many instances when R(x) is an implication P(x) = O(x). Therefore, the quantified
statement

Vx €S, P(x) = 0(x) 5.7

is false if

Jre S, ~(P(r) = 0(x) T
is true. By Theorem 2.21(a), the statement (5.8) can be expressed as i

dx e s, (P A(~ Q)).
That is, to show that the statement (5.7) is false, we need to exhibit a counterexample,
which is then an element x € § for which P(x) is true and Q(x) is false.
Disprove the statement:

Let n € Z.If n* + 3n is even, then n is odd.

If n=2, then n?+3n=224+3-2=10is even and 2 is even. Thus 7 = 2 is a coun-
terexample. é

In the preceding example, not only is 2 a counterexample, every even integer is a
counterexample.
Disprove’y the statement:
If n is an odd integer, then n? — n is odd. (5.9)
For the odd integer n = 1, the integer n> ~n =12 —1 =0 is even. Thus n =1 is a
counterexample. é
Actually, it is not difficult to prove that the statement
If n is an odd integer, then n> — n is even.

is true. Although it may very well be of interest to know this, to show that statement (5.9)
is false requires exhibiting only a single counterexample. It does not require proving some
other result. One should know the difference between these two.



110 Chapter 5 Existence and Proof by Contradiction

Example 5.7

Solution

Example 5.8

Solution

Example 5.9

Solution

Analysis

Show that the statement:

Letn € Z.If4 | (n® — 1), then 4 | (n — 1).
is false.
Since 4 | (3% — 1) but 4 J (3 —1),it follows that n = 3 is a counterexample. [
Show that the statement

For positive integers a, b, ¢, a?* = (ab)c,
is false.
Leta =2,b =2 and c = 3. Then &* = 22 = 28 = 256, while (¢*)° = (22)’ = 4% =
64. Since 256 # 64, the positive integers @ = 2, b = 2, and ¢ = 3 constitute a coun-
terexample. ¢

Show that the statement:

Let a and b be nonzero real numbers. If x, y € R, then

2, B, X
Z_bzx + gy > Xy. (5.10)
is false.
Let x = b? and y = a2. Then
2 2 22 232
a , b, a'b abt L,
W Ty Tty =t =
Thus x = b* and y = a? is a counterexample and so the inequality is false. 4

After reading the solution of Example 5.9, the only question that may occur to you
is where the counterexample x = 5% and y = a? came from. Multiplying the inequal-
ity (5.10) by 2a** (which eliminates all fractions) produces the equivalent inequality

@'+ bty > 2a%b%xy
and so
a*x? = 2a%%xy + b*y? > 0,
which can be expressed as
(@*x = b*y)t > 0.

Of course, (¢’x — b%y)? > 0. Thus any values of x and y for which a2x — b2y = 0
produce a counterexample. Although there are many choices for x and y, one such
choice is x = b? and y = a2 é

5.2 Proof by Contradiction 111
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5.2 Proof by Contradiction }

Suppose, as usual, that we would like to show that a certain mathematical statement
R is true. If R is expressed as the quantified statement V x € S, P(x) = O(x), then
we have already introduced two proof techniques, namely direct proof and proof by
contrapositive, that could be used to establish the truth of R. We now introduce a third
method that can be used to establish the truth of R, regardless of whether R is expressed
in terms of an implication.

Suppose that we assume R is a false statement and, from this assumption, we are able
to arrive at or deduce a statement that contradicts some assumption we made in the proof
or some known fact. (The known fact might be a definition, an axiom, or a theorem.) If
we denote this assumption or known fact by P, then what we have deduced is ~ P and
have thus produced the contradiction C : P A (~ P). We have therefore established the
truth of the implication

(~R)y=C.

However, because (~ R) = C is true and C is false, it follows that ~ R is false and so
R is true, as desired. This technif{ue is called proof by contradiction.

If R is the quantified statementVx € S, P(x) = Q(x), then aproof by contradiction
of this statement consists of verifying the implication

~NVxeS, PX)= Qkx)) = C
for some contradiction C. However, since
~(Vxel, Px)= 0(x) =TAx € S, ~(P(x) = Q(x)
=dxel, (Px)A(~ O,

it follows that a proof by contradiction of V x € §, P(x) = Q(x) would begin by
assuming the existence of some element x € § such that P (x) is true and Q(x) is false.
That is,‘a pfoof by contradiction of V x € §, P(x) = Q(x) begins by assuming the
existence of a counterexample of this quantified statement. Often the reader is alerted
that a proof by contradiction is being used by saying (or writing)

Suppose that R is false.
or
Assume, to the contrary, that R is false.

Therefore, if R is the quantified statement V x € S, P (x) = Q(x), then a proof by
contradiction might begin with:

Assume, to the contrary, that there exists some element x € § for which P(x) is
true and Q(x) is false.

(or something along these lines). The remainder of the proof then consists of showing
that this assumption leads to a contradiction.

Let’s now look at some examples of proof by contradiction. We begin by establishing
a fact about positive real numbers.
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PROOF ANALYSIS

Chapter 5 Existence and Proof by Contradiction

There is no smallest positive real number.

In a proof by contradiction, we begin by assuming that the statement is false and attempt
to show that this leads us to a contradiction. Hence we begin by assuming that there is
a smallest positive real number. It is useful to represent this number by a symbol, say
r. Our goal is to produce a contradiction. How do we go about doing this? Of course,
if we could think of a positive real number that is less than r, then this would give us a
contradiction. )

There is no smallest positive real number.

Assume, to the contrary, that there is a smallest positive real number, say r. Since
0 < r/2 <r, it follows that /2 is a positive real number that is smaller than r. This,
however, is a contradiction. ]

The contradiction referred to in the proof of Result 5.10 is the statement: r is the smallest
positive real number and r /2 is a positive real number that is less than . This statement
is certainly false. We have assumed that the reader understands what contradiction has
been obtained. If we think that the reader may not see this, then, of course, we should
specifically state (in the proof) what the contradiction is.

There is another point concerning Result 5.10 that should be made. This result states
that “there is no smallest positive real number”. This is a negative-sounding result. In the
vast majority of cases, proofs of negative-sounding results are given by contradiction.
Thus the proof technique used in Result 5.10 is not unexpected. é

Let’s consider two additional examples.
No odd integer can be expressed as the sum of three even integers.

Assume, to the contrary, that there exists an odd integer n which can be-expressed as the
sum of three even integers x, y, and z. Then x = 2a,y = 2b,andz = 2¢ witha, b, ¢ € Z.
Therefore,

n=x+y+z=2a+2b+2c=2a+b+c).

Since a + b + ¢ is an integer, n is even. This is a contradiction. L]

Consider the statement:
R: No odd integer can be expressed as the sum of three even integers.

Obviously, Result 5.11 states that R is a true statement. In order to give a proof by
contradiction of Result5.11, we attempted to prove an implication of the type (~ R) = C
for some contradiction C. The negation ~ R is

~ R: There exists an odd integer that can be expressed as
the sum of three even integers.

The proof we gave of Result 5.11 began by assuming the truth of ~ R. We introduced
symbols for the four integers involved to make it easier to explain the proof. Eventually,

Result 5.12

Proof

PROOF ANALYSIS
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we were able to show that # is an even integer. On the other hand, we knew that 1 is odd.
Hence n was both even and odd. This was our contradiction C. é

In the two examples of proof by contradiction that we have given, neither statement
to be proved is expressed as an implication. For our next example, we consider an
implication. )

If a is an even integer and b is an odd integer, then 4 } (a® + 2b?).

Assume, to the contrary, that there exist an even integer a and an odd integer b such that
41 (a® +2b%). Thusa = 2x,b = 2y + 1,and a® + 2b* = 4z for some integers x, y, and
z.Hence (2x) + 2(2y + 1)* = 4z. Simplifying, we obtain 4x2 + 8y 48y +2=4dzor
equivalently,

2 =4z —4x> - 8y? — 8y = 4(z — 7 — 2% — 2y).
Since z — x* —2y? — 2y is an integer, 4 | 2, which is impossible. =
Let S be the set of even integers'and T the set of odd integers. In Result 5.12, our goal -
was to prove that
Yae S,YbeT, Pa,b). (5.11)
is true, where
Pla,by: 4 J(a®>+ 2b%),
Since we were attempting to prove (5.11) by contradiction, we wantéd to estaﬁlish the
truth of
~NMaeS,VbeT, Plab)=C
for some contradiction C or, equivalently, the truth of
daeS,3beT, (~ Pa, b)) = C.

Hence we began by assuming that there exist an even integer @ and an odd integer b
such that 4 | (a2 -+ 2b2). We eventually deduced that 4 | 2, which is a false statement and
thereby produced a desired contradiction.

Using some facts we discussed earlier, we could have given a direct proof of Re-
sult 5.12. Once we wrote @ = 2x and b = 2y + 1, we have

@ +2b% = 20 + 22y + 1)* = 4x2 + 8y + 8y 42
=42 +2y" +2y) + 2.

Hence we have expressed a” + 25> as 4g + 2, where ¢ = x? + 2y + 25. That s, di-
viding @ + 2b* by 4 results in a remainder of 2, and so 4 J (a® + 2b?). At this stage,
however, a proof by contradiction of Result 5.12 is probably preferred, in order to both
practice and understand this proof technique. $

Let’s consider two other negative-sounding results.
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The integer 100 cannot be written as the sum of three integers, an odd number of which
are odd.

Assume, to the contrary, that 100 can be written as the sum of three integers @, b, and c,
an odd number of which are odd. We consider two cases.

Case 1. Exactly one of a, b, and c is 0dd, say a. Thena =2x +1,b =2y, and ¢ = 2z,
where x, y,z € Z. So

00=a+b+tc=2x+1)+2y+2z=2x+y+2z)+ 1

Since x + y + z € Z, the integer 100 is odd, producing a contradiction.

Case?2.Allof a, b, and c are odd. Thena = 2x + 1,b =2y + 1,and ¢ = 2z + 1, where

x,y,z€Z.So
00=a+b+c=Cx+D+Qy+D+Qz+D=2x+y+z+D+1

Since x +y +z + 1 € Z, the integer 100 is odd, again a contradiction. s

Observe that the proof of Result 5.13 begins by assuming that 100 can be written as
the sum of three integers, an odd number of which are odd (as expected). Howeyer, by
introducing symbols for these integers, namely a, b, and ¢, this made for an easier and
clearer proof. ¢

For every integer m such that2 | m and 4 } m, there exist no integers x and y for which
P +3y =m.

Assume, to the contrary, that there exist an integer m such that 2 | m and-4 1 m and
integers x and y for which x? + 3y? = m. Since 2 | m, it follows that 7 is even. By
Theorem 3.16, x2 and 3y? are of the same parity. We consider two cases.

Case 1. x* and 3y* are even. Since 3y? is even and 3 is odd, it follows by Theorem 3.17
that y? is even. Because x? and y? are both even, we have by Theorem 3.12 that x and
y are even. Thus x = 2@ and y = 2b, where a, b € Z. Therefore,

*2 4+ 3y? = (2a)? + 3(2b)? = 4d® + 120°
= 4(d® + 3b%) = m.
Since a? + 3b? € Z, it follows that 4 | m, producing a contradiction.

Case 2. x* and 3y* are odd. Since 3y? is odd and 3 is odd, it follows by (the contrapositive
of) Theorem 3.17 that y? is odd. By (the contrapositive of) Theorem 3.12, x and y are
both odd. Then x =2a + 1 and y = 2b + 1, where a, b € Z. Thus

3?43y = Qa4+ 1P +302b+ 1 = 4a® +4a + 1)+ 3407 +4b+ 1)
=4a’ +4a+ 1207 + 12b+4 = 4(@® +a + 36> +3b + 1) = m.
Since a? + a + 3b% + 3b + 1 € Z, it follows that 4 | m, producing a contradiction. &

The next result concerns irrational numbers. Recall that a real number is rational if
it can be expressed as /m/n for some m, n € Z, where n # 0. Since “irrational” means

Resuit 5.15

Proof

Theorem to Prove

PROOF STRATEGY

Theorem 5.16

Proof

The
Three Prisoners
Problem
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“not rational”, it is not surprising that proof by contradiction is the proof technique we
will use.

The sum of a rational number and an irrational number is irrational.

Assume, to the contrary, that there exist a rational number x and an irrational number
y whose sum is a rational number z. Thus, x + y = z, where x = a/band z = c¢/d for
some integers @, b, ¢, d € Z and b, d # 0. This implies that
_ c a _bc—ad
YT T T

Since be — ad and bd are integers and bd # 0, it follows that Y is rational, which is a
contradiction. &

Result 5.15 concerns the irrationality of numbers. One of the best known irrational
numbers is /2. Although we have never verified that this number is irrational, we
establish this fact now.

The real number +/2 is irrational.

In the proof of this result, we will use Theorem 3.12 which states that an integer x is
even if and only if x? is even. Also, in the proof, it will be useful to express a rational
number m/n, where m,n € Z and n # 0, inlowest terms, which means that m and #
contain no common divisor greater than 1. é
The real number /2 is irrational.

Assume, to the contrary, that +/2 is rational. Then +/2 = /b,wherea, b € Zand b £ 0.
We may further assume that a /b has been expressed in (or reduced to) lowest terms. Then
2 =a?/b% so a® = 2b%. Since b is an integer, a? is even. By Theorem 3.12, a is even.
So a = 2¢, where ¢ € Z. Thus, (2¢)? = 2b7, and s0 4¢® = 252. Therefore, b? = 2¢2.
Because c? is an integer, b? is even, which implies by Theorem 3.12'that b is even. Since

a and b are even, each has 2 as a divisor, which is a contradiction since @ /b has been
reduced to lowest terms. =

We now take a brief diversion from our discussion of proof by contradiction to present
a “story” problem. Three prisoners (see Figure 5.1) have been sentenced to long terms
in prison, but due to overcrowded conditions, one prisoner must be released.

The warden devises a scheme to determine which prisoner is to be released. He tells
the prisoners that he will blindfold them and then paint a red dot or a blue dot on each
forehead. After he paints the dots, he will remove the blindfolds, and a prisoner should
raise his hand if he sees a red dot on at least one of the other two prisoners. The first
prisoner to identify the color of the dot on his own forehead will be released. Of course,
the prisoners agree to this. (What do they have to lose?)

The warden blindfolds the prisoners, as promised, and then paints a red dot on the
foreheads of all three prisoners. He removes the blindfolds and, since each prisoner sees
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Solution of the
Three Prisoners
Problem

#1 #2 #3
Figure 5.1  The three prisoners

ared dot (in fact two red dots), each prisoner raises his hand. Some time passes when one
of the prisoners exclaims, “I know what color my dot is! It’s red!” This prisoner is then
released. Although the story of the three prisoners is over, there is a lingering question:
How did this prisoner correctly identify the color of the dot painted on his forehead?

The solution is given next, but try to determine the answer for yourself before
reading on.

Let’s assume (without loss of generality) that it’s prisoner #1 (see Figure 5.1) who
determined that he had a red dot painted on his forehead. How did he come to this
conclusion? Perhaps you think he just guessed since he had nothing to lose anyway. But
this is not the answer we were looking for.

Prisoner #1 knows that the color of his dot is either red or blue. He thinks, “Assume,
to the contrary, that my dot is blue. Then, of course, #2 knows this and he knows that
#3 has ared dot. (That’s why #2 raised his hand.) But #2 also knows that #3 raised his
hand. So if my dot is blue, #2 knows his dot is red. Similarly, if my dot is blue, then #3
knows his dot is red. In other words, if my dot is blue, then both #2 and #3 should be able
to identify the colors of their dots quite quickly. But time has passed, and they haven’t
determined the colors of their dots. So my dot can’t be blue.” Therefore, #1 exclaims,
“I know what color my dot is! It’s red!”

What you probably noticed is that the reasoning #1 used to conclude that his dot is
red is proof by contradiction. It seems as if there is more to know about prisoner #1. But
that’s another story. é

L 5.3 A Review of Three Proof Techniques J

We have seen that we’re often in the situation where we want to prove the truth of a state-
mentVx € S, P(x) = ((x). You have now been infroduced to three proof techniques:
direct proof, proof by contrapositive, and proof by contradiction. For each of these three
techniques, you should be aware of how to start a proof and what your goal should be.
You should also know what ror to do. Figure 5.2 gives several ways that we might start
a proof. Only some of these are legitimate, however.

Let’s now compare the three proof techniques with two examples.

Result 5.17

Direct Proof

Proof by
Contrapositive

Proof by
Contradiction

Result 5.18

Direct Proof
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First Step of “Proof’
1. | Assume that P is true.

Remarks/Goal

A direct proof is being used.
Show that Q is true.

A mistake has been made.

A mistake has been made.

A proof by contrapositive is being used.
Show that P is false.

A mistake has been made.

2. | Assume that P is false.
3. | Assume that Q is true.
4. | Assume that Q is false.

5. | Assume that P is true and @ is true.

6. | Assume that P is true and Q is false. | A proof'by contradiction is being used.
) Obtain a contradiction.

7. | Assume that P is false and Q is true. A mistake has been made.

8. | Assume that P is false and Q is false. A mistake has been made.

9. | Assume that P = Q is true. A mistake has been made.

10. | Assame that P = @ is false. A proof by contradiction is being used.

Obtain a contradiction.

Figure 5.2 How to prove (and not to prove) that Vx € S, P(x) = Q(x)is true

If n is an even integer, then 3n + 7 is odd.

Let n be an even integer. Then n = 2x for some integer x. Therefore,
3n+7=32x)+T=6x+7=23x+3)+ 1.

Since 3x + 3 is an integer, 3n + 7 is odd. ]

Assume that 3n + 7 is even. Then 3n + 7 = 2y for some integer y. Hence
n=0n+N+(2—-T=2y-2n—T=2y—n—4)+1.

Since y — n — 4 is an integer, n is odd. =

Assume, to the contrary, that there exists an even integer n such that 3n + 7 is even.

Since n is even, n = 2x for some integer x. Hence
3n+7=32x)+7=6x+7=23x+3)+ 1.
Since 3x + 3is an integer, 3n + 7 is odd, which is a contradiction. ]

_ Although a direct proof of Result 5.17 is certainly the preferred proof technique in
this case, it is useful to compare all three techniques. The following example is more
intricate.

Let x be a nonzero real number. If x + % < 2, then x < Q.

Assume that x + Xl < 2.Since x # 0, we know that x> > 0. Multiplying both sides of the
inequality x + £ < 2 by x2, we obtain x> (x + 1) < 2x%. Simplifying this inequality,
we have x* +x — 2x% < 0; s0

x(x*=2x+D=x(x—172 <0
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Proof Strategy
for Proof by
Contrapositive

Proof by
Contrapositive

Proof by
Contradiction

Since (x ~ 1)? > Oand x(x — 1)% # 0, we musthave (x — 1)* > 0. Since x(x — 1)* < 0
and (x — 1)* > 0, it follows that x < 0, as desired. B

For a proof by contrapositive, we will begin by assuming that x > 0 and attempt to show
thatx + % > 2. This inequality can be simplified by multiplying through by x, obtaining
x* 41 > 2x. Subtracting 2x from both sides, we have x2 —2x +1= (x — 1) > 0,
which, of course, we know to be true. A proof is suggested then by reversing the order
of these steps:

241> )
P-4+ 1l=(x—-12>0.

This method is common when dealing with inequalities. é

Assume that x > 0. Since x # 0, it follows that x > 0. Since (x — 1)*> > 0, we have
(x — 1)? = x? — 2x -+ 1 > 0. Adding 2x to both sides of this inequality, we obtain x2 -+
1 > 2x. Dividing both sides of the inequality x> + 1 > 2x by the positive number x, we
obtain x + 1 > 2, as desired. ]

Assume, to the contrary, that there exists a nonzero real number x such that x + % <2
and x > 0. Since x # 0, it follows that x > 0. Multiplying both sides of the inequality
X+ f < 2by x, we obtain x> + 1 < 2x. Subtracting 2x from both sides, we have xr—
2x + 1 < 0. It then follows that (x — 1)* < 0, which is a contradiction. ]

Many mathematicians feel that if a result can be verified by a direct proof, then this
is the proof technique that should be used, as it is normally easier to understand. This is
only a general guideline, however; it is not a hard and fast rule.

L 5.4 Existence Proofs )

In an existence theorem the existence of an object (or objects) possessing some specified
property or properties is asserted. Typically then, an existence theorem concerning an
open sentence R(x) over a domain S can be expressed as a quantified statement

dx € §, R(x) : There exists x € S such that R(x). (5.12)

‘We have seen that such a statement (5.12) is true provided that R(x) is true for some x € S.
A proof of an existence theorem is called an existence proof. An existence proof may
then consist of displaying or constructing an example of such an object or perhaps, with
the aid of known results, verifying that such objects must exist without ever producing a
single example of the desired type. For example, there are theorems in mathematics that
tell us that every polynomial of odd degree with real coefficients has at least one real
number as a solution, but we don’t know how to find a real number solution for every
such polynomial: Indeed, we quote the great mathematician David Hilbert, who used the
following example in his lectures to illustrate the idea of an existence proof:

Result to Prove

PROOF STRATEGY

Resuit 5.19

Proof

Result 5.20

Proof

Proof
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There is at least one student in this class . . . let us name him ‘X’ . . . for whom the

following statement is true: No other student in the class has more hairs on his
head than X . Which student is it? That we shall never know; but of his existence
we can be absolutely certain.

Let’s now see some examples of existence proofs.
There exists an integer whose cube equals its square.

Since this result is only asserting the existence of an integer whose cube equals its square,
we have a proof once we can think of an example. The integer 1 has this property.

There exists an integer whose cube equals its square.
Since 1% = 12 = 1, the integer 1 has the desired property. B

Suppose that we didn’t notice that the integer 1 satisfied the required condition in
the preceding theorem, Then an-alternate proof may go something like this: Let x € Z
such that x* = x2, Then x> — x? = O or x?(x — 1) = 0. Thus, there are onlytwo possible
integers with this property, namely 1 and 0, and, in fact, both integers have the desired
property. :

A common error in elementary algebra is to write (@ + b)? = a2 + b2, Can this ever
be true?

There exist real numbers a and b such that (a + b)* = a* + b2.

Leta, b € Z suchthat (a + b)? = a® + b>. Then a® + 2ab + b* = & + b2, 50 2ab = 0.
Since @ = 1, b = 0 is a solution to this equation, we have

a4+ =(1+0P=12=12+0 =a+ b 5

The proof presented of Result 5.20 is longer than necessary. We could have written
the following proof: .

Leta = 1 and b = 0. Then
@+ =(1+0P =17 = 1" +0* =a> + % ®

In the first proof, we actually presented an argument for how we thought of @ = 1
and b = 0. In a proof, we are not required to explain where we got the idea for the proof,
although it may very well be interesting to know this. If we feel that such information
might be interesting or valuable, it may be worthwhile to include this in a discussion
preceding or following the proof. The first proof we gave of Result 5.20 actually informs
us of all real numbers a and b for which (@ + b)? = a* + b2, namely, (a + b)? = a2 + b?
if and only if at least one of @ and b is 0. This is more than what was requested of us,
but, nevertheless, it seems interesting.

We saw in Section 5.2 that +/2 is irrational. Since /2 = 2172, it follows that there
exist rational numbers a and b such that ¢? is irrational; namely, @ = 2and b = 1/2 have
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Result to Prove

PROOF STRATEGY

Result 5.21

Proof

The
Intermediate
Value Theorem
of Caiculus

this property. Let’s reverse this question. That is, do there exist irrational numbers a and
b such that ¢” is rational? Although there are many irrational numbers (in fact, an infinite
number), we have verified only that V2 is irrational. (On the other hand, we know from
the exercises for this section that r 4 +/2 is irrational for every rational number r and
that both r+/2 and r / /2 are irrational for every nonzero rational number r.)

There exist irrational numbers a and b such that a? is rational.

As we mentioned, there are only certain numbers that we know to be irrational, the
simplest being +/2. This might suggest considering the (real) number +/2" . If this

o . . V.o
number is rational, then this answers our question. But perhaps /2" is irrational. Then
what do we do? This discussion suggests two cases. é

There exist irrational numbers a and b such that a® is rational.

Consider the number /2" . Of course, this number is either rational or irrational. We
consider these possibilities separately.

Case 1. x/iﬁ is rational. Then we can take a = b = +/2, and we have the desired result.

Case 2. ﬁﬂ is irrational. In this case, consider the number obtained by raising the
(irrational) number «/iﬁ to the (irrational) power V/2; that is, consider a’, where a =
«/Eﬁ and b = +/2. Observe that

Vi
o= (Vi%) =B s,
which is rational. "

The proof of Result 5.21 may seem unsatisfactory to you since we still don’t know
two specific irrational numbers @ and b such that a? is rational. We know only that two

such numbers exist. We actually do know a bit more; namely, either (1) V2 s rational,
or (2) v/~ iﬁ is irrational and (ﬁﬁ)ﬁ is rational. (Actually it has been proved that

«/T/i is an irrational number. Hence there are also irrational numibers of the form of a® s
where a and b are both irrational.)

In the next result, we want to show that the equation x5 + 2x — 5 = 0 has a real
number solution between x = 1 and x = 2. It is not easy to find a number that satisfies
this equation. Instead, we use a well-known theorem from calculus to show that such a
solution exists. You inay not remember all the terms used in the following theorem, but
this is not crucial.

If f is a function that is continuous on the closed interval [a,b] and k is a
number between f(a) and f(b), then there exists a number c.c (a,b) such that

Cfle)=k.

We now give an example to show how this theorem can be uséd.

Result 5.22
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The equation x> + 2x — 5 = 0 has a real number solution between x —= landx =2.

Proof Let f(x) = x>+ 2x — 5. Since fisa polynomial function, it is continuous on the set of

Result 5.23

Proof

Result to Prove

allreal numbers and so f is continuous on the interval [1,2).Now f(1) = —2and f2) =
31. Since 0 is between f(1)and f£(2), it follows by the Intermediate Value Theorem of
Calculus that there is a number ¢ between 1 and 2 such that f(c) = ¢’ +2c—5=0,
Hence ¢ is a solution. . L]

As we just saw, the equation x> 4 2x — 5 = 0 has a real number solution between
¥ =1and x = 2. Actually, the equation x° + 2x — 5 = 0 has exactly one real number
solution between x = 1 and x = 2. This brings up the topic of uniqueness. An element
belonging to some prescribed set A and possessing a certain property P is unique if it
is the only element of A having property P. Typically, to prove that only one element of
A has property P, we proceed in one of two ways:

(1) We assume that a and b are elements of A possessing property P and show that
a=b. . "

(2) We assume that a and b are distinct elements of A possessing property P and
show that a = b.

Although (1) results in a direct proof and (2) results in a proof by contradiction, it is
often the case that either proof technique can be used.

As an illustration, we return to Result 5.22 and show, in fact, that the equation
% +2x ~5=0hasa unique real number solution between x = 1 and x = 2.

The equation x> +2x — 5 = 0 has a unique real number solution between x = 1 and
x =2

Assume, to the contrary, that the equation x> + 2x — 5 = 0 has two distinct real number
solutions @ and b between x = 1 and x = 2. We may assume thata < b. Since | < a <
b <2, it follows that @ + 2a ~ 5 < 5% 4 2b — 5. On the other hand, @5 +2¢ — 5 — 0
and b° +2b — 5 = 0. Thus

0=d’+2a—5<b’+26-5=0,

which produces a contradiction. El

Actually, we could have omitted Result 5.22 altogether and replaced it by Result 5.23
only (renumbering this result by Result 5.22), including the proofs of both Resuits 5.22
and 5.23.

We now present another result concerning uniqueness.

For an irrational number r, let
S={sr+t:s51eQ}.

For every x € S, there exist unique rational numbers @ and b such that x = ar +b.
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PROOFSTRATEGY  To verify that a and b are unique, we assume that x can be expressed in two ways, say
asar +bandcr +d, wherea, b, ¢, d € Q, and then show thata = ¢ and b = d. Hence
ar +b =cr +d. If a # c, then we can show that r is a rational number, producing
a contradiction. Thus a = c. Subtracting ar from both sides of ar +b = cr +d, we
obtain b = d as well. é

We now give a complete proof.
Result 5.24  For an irrational number r, let
S={sr+:¢:s,tcQ}L
- For every x € S, there exist unique rational numbers a and b such that x = ar + b.
Proof Let x € § and suppose that x = ar + b and x = ¢r +d, where a, b, ¢, d € Q. Then
ar +b=cr+d.Xfa+#c,then(a —c)r =d — b and so
d—b
r= .
a—c¢
Since ‘ai—"l;’ is a rational number, this is impossible. So @ = c¢. Subtracting ar = ¢r from
both sides of ar + b = c¢r + d, we obtain b = d. &
Example 525 (a) Show that the equation 6x3 + x% — 2x = 0 has a root in the interval [—1, 1].
(b) Does this equation have a unique root in the interval [—1, 11?7
Solution (a) By inspection, we can see that x = 0 is a root of the equation.
(b) Observe that
6x% + x2 — 2x = x(6x% +x — 2) = x(3x + 2)(2x — 1).
Thus x = ~2/3 and x = 1/2 are also roots of the equation 6x> + x2 — 2x = 0 and
so this equation does not have a unique root in the interval [—1, 1]. é
{ 5.5 Disproving Existence Statements ]

Let R(x) be a statement for each element x in a domain S. We have already seen that
to disprove a quantified statement of the type V x € S, R(x), it suffices to produce a
counterexample (that is, an element x in S for which R(x) is false). However, disproving
a quantified statement of the type Ix € S, R(x) requires a totally different approach.
Since

~@x €S, R(x) =Vx €S, ~R(x),

it follows that the statement 3x € S, R(x) is false if R(x) is false for every x € S. Let’s
look at some examples of disproving existence statements.

Example 5.26

Solution

Example 5.27

Solution

Example 5.28

Solution
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Disprove the statement: There exists an odd integer n such that n® + 2n + 3 is odd.

We show that if » is an odd integer, then n% 4 211 + 3 is even. Let 1 be an odd integer.
Then n = 2k + 1 for some integer k. Thus

W23 = Q1P+ 202k + 1)+ 3 =P 4 4k + 1+ 4k +243
= 4% + 8k + 6 = 2(2k* + 4k + 3).

Since 2k? + 4k +- 3-is an integer, n2 + 21 + 3 is even. é
Disprove the statement: There is a real numbeér x such that x5 + 25 4 x° +2=0.

Letx € R. Since x5, x*, and x? are all even powers of the real number x, it follows that
%8> 0,x* > 0,and x? > 0. Therefore, X6 + 2x* + %2 + 2> 0+ 0+ 0 + 2 = 2and so
x84+ 2x* 4+ x2 + 2 # 0. Hence the equation x® + 2x* + x + 2 = 0 has no real number
solution. ’ k é

Disprove the statement: There exists an integer n such that n3 — n + 1 is-even.
Let n € Z. We consider two cases.
Case 1. n is even. Then n = 2a, where a € Z. So

P —ntl=02a0 —2a)+1=8-2a+1=24a"—a)+ 1.

Since 4a® — a is an integer, n® — # + 1 is odd and so it is not even.
Case 2. nis odd. Then n = 2b + 1, where b € Z. Hence

TR 1=2b+ 1 - Qb+ 1)+ 1
=80 + 1202 +6b+1=2b—141
=80% + 120 +-4b + 1 = 2(46® + 66>+ 2b) + 1.

Since 4b3 1 6b% +2bis an integer, n® — 1 + 1 is odd and so it is not even. é

If we had replaced Example 5.26 by
For every odd integer 7, n2 + 21 + 3 is even.
replaced Example 5.27 by
For every real number x, x® + 2x* + x2 42 #£ 0.
and replaced Example 5.28 by

3

For every integer n, n° — n + 1 is odd.
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then we would have a true statement in each case, and the solutions of Examples 5.26
5.28 would become proofs.

EXERCISES FOR CHAPTER 5

Section 5.1: Counterexamples

5.1.

5.2.
5.3.
5.4.
5.5.
5.6.

Disprove the statement: If ¢ and b are any two real numbers, then log(ab) = log(a) + log(b).

Disprove the statement: If € {0, 1,2, 3, 4}, then 2" + 3" + n(n — 1)(n — 2) is prime.

Disprove the statement: If n € {1, 2, 3, 4, 5}, then 3 | (2n* + 1). )

Disprove the statement: Let n € N. If &;1_) is odd, then (—”il-)z(l‘ﬁ) is odd.

Disprove the statement: For every two positive integers @ and b, (a + b)? = a® + 24%b + 2ab + 2ab® + b3,

Leta, b € Z. Disprove the statement: If ab and (a + b)? are of opposite parity, then a?b” and a + ab + b
are of opposite parity.

Section 5.2: Proof by Contradiction

5.7.
5.8.
59.
5.10.
5.11.
5.12.
5.13.
5.14.

5.15.

5.16.

5.17.
5.18.

5.19.
5.20.
5.21.

5.22

5.23.
5.24.

Prove that there is no largest negative rational number.

Prove that there is no smallest positive irrational number.

Prove that 200 cannot be written as the sum of an odd integer and two even integers.

Use proof by contradiction to prove that if ¢ and b are odd integers, then 4 } (@® + b2).

Prove that if @ > 2 and b are integers, thena fbora (b +1).

Prove that 1000 cannot be written as the sum of three integers, an even number of which are even.
Prove that the product of an irrational number and a nonzero rational number is irrational.

Prove that when an irrational number is divided by a (nonzero) rational number, the resulting number is
irrational.

Let a be an irrational number and r a nonzero rational number. Prove that if s is a real number, then either
ar + s orar — s is irrational.

Prove that +/3 is irrational. [Hint: First prove for an integer « that 3 | @? if and only if 3 | a. Recall that every
integer can be written as 3¢, 3q + 1, or 3 -+ 2 for some integer ¢.]

Prove that /2 + +/3 is an irrational number.

(a) Prove that +/6 is an irrational number.

(b) Prove that there are infinitely many positive integers # such that /7 is irrational.
LetS={p+qv2: pgeQlandT ={r +sv3: r,5 € Q). Prove that SN T = Q.
Prove that if x and y are positive real numbers, then /X + ¥ # /X + /7.

Prove that there exists no positive integer x such that 2x < x? < 3x.

Let m be a positive integer of the form m = 25, where s is an odd integer. Prove that there do not ex1sl
positive integers x and y such that x? — y = m.

Prove that the sum of the squares of two odd integers cannot be a perfect square.

Use a proof by contradiction to prove the following. Letm € Z. If 3 f (m® — 1), then 3 | m.
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Section 5.3: A Review of Three Proof Techniques

5.25. Prove that if n is an odd integer, then 7n — 5 is even by (a) a direct proof, (b) a proof by contrapositive, and
(c) a proof by contradiction.
5.26. Let x be a positive real number. Prove that if x — % > 1, thenx > 2 by
(a) a direct proof, (b) a proof by contrapositive, and (c) a proof by contradiction.
5.27. Leta, b € R. Prove that if ab # 0, then a # 0 by using as many of the three proof techniques as possible.
5.28. Letx, y € R*. Prove that if x < y, then x> < y% by

(a) a direct proof, (b) a proof by contrapositive, and (c) a proof by contradiction.

Section 5.4: Existence Proofs

5.29. Show that there exist a rational number a and an irrational number b such that a? is rational.
5.30. Show that there exist a rational number a and an irrational number b such that a® is irrational.
5.31. Show that there exist two distinct irrational numbers a and b such that a? is rational.

5.32. Show that there exist no nonzero real numbers a and b such that v/a2 + b2 = Jad + b3,

5.33. Prove that there exists a unique real number solufion to the equation x* - x> —1 =0 between x = 2/3 and

x = 1.

5.34. Let R(x) be an open sentence over a domain S. Suppose that Vx € §, R (x) is a false statement and that the
set T of counterexamples is a proper subset of S. Show that there exists a nonempty subset W of S such that
Vx € W, R(x) is true.

Section 5.5: Disproving Existence Statements

5.35. Disprove the statement: There exist odd integers a and b such that 4 | (342 + 7b%).
5.36. Disprove the statement: There is a real number x such that x6 + x* + 1 = 2x2.
5.37. Disprove the statement: There is an integer n such that n* + n® + n% + n is odd.

ADDITIONAL EXERCISES FOR CHAPTER 5

5.38. (a) Prove thatifa > 2 and n > 1 are integers such that a® + 1 = 2" then ¢ is odd.
(b) Prove that there are no integers @ > 2 and > 1 such that a® + 1 = 27,

5.39. The king’s daughter had three suitors and couldn’t decide which one to marry. So the king said, “T have
three gold crowns and two silver ones. I will put either a gold or silver crown on each of your heads. The
suitor who can tell me which crown he has will marry my daughter.” The first suitor looked around and said
he could not tell. The second did the same. The third suitor said: “I have a gold crown.” He is correct, but
the daughter was puzzled: This suitor was blind. How did he know? (Source: © 2003 Marilyn vos Savant.
Initially published in PARADE Magazine, July 6, 2003, “Ask Marilyn” feature. All rights reserved.)

5.40. Letx, y € R™. Use a proof by contradiction to prove that if x < y, then /x < V.

5.41. Prove that there do not exist positive integers a and n such that a? + 3 = 3",

5.42. (a) Let n be a positive integer. Show that every integer m with 1 < m < 2n can be expressed as 2°k, where
£ is a nonnegative integer and & is an odd integer with 1 < k < 2x.
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5.44.

5.45.

5.46.
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(b) Prove for every positive integer n and every subset S of {1, 2, ..., 2n} with |S| = n + 1 that there exist
integers a, b € S such thata | b.

. A proof of a result is given below. What result is proved?

Proof Leta,b,c € Z such that a® + b? = ¢, Assume, to the contrary, that @, b, and ¢ are all odd. Then
a=2r+1,b=2s+1,and ¢ = 2t + 1, where r, 5, t € Z. Thus,

AP =@ D)+ AP 45+ 1)
=222 4 2r + 25 + 25 + 1).

Since 2r? + 27 + 252 4 25 + 1 is an integer, it follows that a2 + b2 is even. On the other hand,

A= U =4 1A 1 =202 42+ 1.
Since 2¢% 4 2t is an integer, it follows that ¢? is odd. Therefore, a® + b is even and ¢? is odd, contradicting
that a + b = 2. &
A proof of a result is given below. What result is proved?
Proof Leta =2 (mod4)andb = 1 (mod 4) and assume, to the contrary, that 4 | (a® + 2b). Since
a=2(mod4)and b = 1 (mod 4), it follows that @ = 4r + 2 and b = 25 + 1, where r, s € Z. Therefore,

A +2b = (4r + 22 +22s + 1) = (16r% + 165 + 4) + (4s +2)
= 16r" + 16 + 45 +6.

Since 4 | (a? + 2b), we have a® -+ 2b = 4t, where ¢ € Z. So 16r2 + 16r + 45 + 6 = 4t and

6 =4t — 16r° — 16r —4s = 4(t — 4r* —4r —s).
Since t — 4r% — 4r — s is an integer, 4 | 6, which is a contradiction. B
Evaluate the proposed proof of the following result.
Result The number 25 cannot be written as the sum of three integers, an even number of which are odd.
Proof Assume, to the contrary, that 25 can be written as the sum of three integers, an even number of
which are odd. Then 25 = x + y + z, where x, y, z € Z. We consider two cases.

Case 1. x and y are odd. Thenx = 2a + 1,y = 2b + 1, and z = 2c¢, where a, b, ¢ € Z. Therefore,
W=x+y+z=Qa+1)+Qb+ D+ 2¢
=2a+2b+2c+2=2a+b+c+1).
Since a + b + ¢ + 1 is an integer, 25 is even, a contradiction.
Case2.x,y, and z are even. Then x = 2a, y = 2b, and z = 2¢, where a, b, ¢ € Z. Hence

2S=x+y+z=2a+2b+2c=2a+b+c).

Since @ + b + ¢ is an integer, 25 is even, again a contradiction. ]

Evaluate the proposed proof of the following result.

Result If x is an irrational number and y is a rational number, then z = x — y is irrational.
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Proof Assume, to the contrary, that z = x — y is rational. Then z = a/b, where a, b € Z and b # 0.
Since /2 is irrational, we let x = /2. Since y is rational, y = c/d,where c,d € Z and d # 0. Therefore,

d
ﬁ:x:)' Z:E._{_g:a +bcA

d b bd
Since ad + bc and bd are integers, where bd 5 0, it follows that +/2 is rational, producing a
contradiction. =
5.47. Prove that the sum of the irrational numbers ~/2, +/3, and /5 is also irrational.
5.48. Letay, ay, ..., a, be odd integers where a; > 1 fori = 1,2,...,r. Prove thatif n = ajay -+ -a, + 2, then

a; f nforeachintegeri (1 <i <r).



Mathematical Induction

We have seen three proof techniques which could be used to prove that a quantified
statement Vx € S, P(x) is true: direct proof, proof by contrapositive, and proof
by contradiction. For certain sets S, however, there is another possible method of proof:
mathematical induction.

E, 6.1 The Principle of Mathematical Induction T

Theoyrem 6.1

Proof

Let A be a nonempty set of real numbers. A number m € A is called a least element (or
a minimum or smallest element) of A if x > m for every x € A. Some nonempty sets
of real numbers have a least element; others do not. The set N has a smallest element,
namely 1, while Z has no least element. The closed interval {2, 5] has the minimum
element 2, but the open interval (2, 5) has no minimum element. The set

A= {l 1 ne N}
n
also has, no least element.

If a nonempty set A of real numbers has a least element, then this element is
necessarily unique. We will verify this fact. Recall that when attempting to prove that an
element possessing a certain property is unique, it is customary to assume that there are
two elements with this property. We then show that these elements are equal, implying
that there is exactly one such element.

If a set A of real numbers has a least element, then A has a unique least element.

Let m and m; be least elements of A. Since m is a least element, m, > m;. Also, since
mo is a least element, m; > my. Therefore, m; = m,. =

The proof we gave of Theorem 6.1 is a direct proof. Suppose that we had replaced
the first sentence of this proof by ;
Assume, to the contrary, that A contains distinct least elements my and m;.

If the remainder of the proof of Theorem 6.1 were the same except for adding a
concluding sentence that we have a contradiction, then this too would be a proof of

129
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The
Well-Ordering
Principle

Theorem 6.2

Proof

Theorem 6.1. That s, with a small change, the proof technique used to verify Theorem 6.1
can be transformed from a direct proof to a proof by contradiction.

There is a property possessed by some sets of real numbers that will be of great
interest to us here. A nonempty set § of real numbers is said to be well-ordered if every
nonempty subset of S has a least element. Let § = {—7, —1, 2}. The nonempty subsets
of § are

(=7, 1,2}, {7, -1}, {-7,2}, {~1.2}, {~7}), {1}, and {2}.

Since each of these subsets has a least element, S is well-ordered. Indeed, it should be
clear that every nonempty finite set of real numbers is well-ordered. (See Exercise 6.25.)
The open interval (0, 1) is not well-ordered, since, for example, (0, 1) itself has no least
element. The closed interval [0, 1] has the least element 0; however, [0, 1] is not well-
ordered since the open interval (0, 1) is a (nonempty) subset of {0, 1] without a least
element. Because none of the sets Z, , and R has a least element, none of these sets is
well-ordered. Hence, having a least element is a necessary condition for a nonempty set
to be well-ordered, but it is not sufficient.

Although it may appear evident that the set N of positive integers is well-ordered,
this statement cannot be proved from the properties of positive integers that we have
used and derived thus far. Consequently, this statement is accepted as an axiom, which
we state below.

The set N of positive integers is well-ordered.

A consequence of the Well-Ordering Principle is another principle, which serves as
the foundation of another and important proof technique.

(The Principle of Mathematical Induction) For each positive integer n, let P(n) be a
statement. If

1) P is true and
(2) the implication
If P(k), then P(k + 1).
is true for every positive integer k,
then P(n) is true for every positive integer n.
Assume, to the contrary, that the theorem is false. Then conditions (1) and (2) are satisfied
but there exist some positive integers n for which P(n) is a false statement. Let
S ={neN: P(n)is false}.

Since S is a nonempty subset of N, it follows by the Well-Ordering Principle that S con-
tains a least element s. Since P(1) is true, 1 ¢ S. Thus s > 2 and s — 1 € N. Therefore,
s —1¢ Sandso P(s — 1) is a true statement. By condition (2), P(s) is also true and so
s ¢ S. This, however, contradicts our assumption that s € S. 8

The Principle of Mathematical Induction is stated more symbolically next.
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The Principle of  For each positive integer n, let P(n) be a statement. If

Mathematical
Induction

Result 6.3

Proof

1) PQ1)istrue and
(2) Yk e N, P(k) = Pk + 1)istrue,

then¥n € N, P(n)is true.

As a consequence of the Principle of Mathematical Induction, the quantified state-
ment Vrn € N, P(n) can be proved to be true if

(I) we can show that the statement P (1) is true and
(2) we can establish the truth of the implication

If P(k), then P(k + 1).
for every positive integer k.

A proof using the Priﬁciple of Mathematical Induction is called an induction proofora
proof by induction. The verification of the truth of P(1) in an induction proof is called
the base step, basis step, or the anchor of the induction. In the implication

If P(k), then P(k + 1).

for an arbitrary positive integer , the statement P (k) is called the inductive (or induc-
tion) hypothesis. Often we use a direct proof to verify '

Vk eN, P(ky= P(k+1), 6.1

ajthough any proof technique is acceptable. That is, we typically assume that the inductive
hypothesis P(k) is true for an arbitrary positive integer k and attempt to show that
Pk + 1)is rue. Establishing the truth of (6.1) is called the inductive step in the induction
proof. -
We illustrate this proof technique by showing that the sum of the first n positive
integers is given by n(n + 1)/2 for every positive integer #, that is,

n 41
1+2+3+--<+n=n@’;r )'
Let

n(n+1)
2

where n € N. Then P(n) is true for every positive integer n.

P(n): 14243+ +n=

We employ induction. Since 1 = (1 - 2)/2, the statement P (1) is true. Assume that P (k)
is true for an arbitrary positive integer £, that is, assume that

_k(k+1)

42434 +k 5
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Result 6.4

Proof

PROOF ANALYSIS

We show that P(k + 1) is true, that is, we show that

1+2+3+~--+(k+1):___q(k“)z(k“),

Thus
T+243 4+ G+ D=0+2+34+ -+ + ¢+ 1)

_ &+—9+(k+1)= k(k+ 1) +2(k+ 1)
2 2
kD +2)
R —
as desired.
By the Principle of Mathematical Induction, P(n) is true for every positive
wteger n. ]

Typically, a statement to be proved by induction is not presented in terms of P(n)
or some other open sentence. In order to illustrate this, we give an alternative statement
and proof of Result 6.3, as it is to be understood what P (n) would represent.

For every positive integer n,

1
1+2+3+-~+n:”(”2+ ),

We employ induction. Since 1 = (1 - 2)/2, the statement is true for n = 1. Assume that

Dok +1

where k is a positive integer. We show that

k4 D)k +2
1+2+3+~~+(k+1)=(—%—>.
Thus
142434+ G+ D=0 +243+- 4D +(k+1)

+1 1 2! 1
JHEED |y KEED 2D

(kD +2
i T—
By the Principle of Mathematical Induction,

1
14243+ 4n= 00D

for every positive integer . El

The proof of Result 6.3 (or of Result 6.4) began by stating that induction was being used.
This alerts the reader of what to expect in the proof. Also, in the proof of the inductive
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step, it is assumed that

1+2+3+-~+k:%~2+—1)
for a positive integer k, that is, for an arbitrary positive integer k. We do not assume that
1+243+- - +k= k(k;_l)
for every positive integer k as this would be assuming what we are attempting to prove
in Result 6.3 (and in Result 6.4). é

Carl Friedrich Gauss (1777-1855) is considered to be one of the most brilliant
mathematicians of all time. The story goes that when he was very young (in grade school
in Germany) his teacher gave him and his classmates the supposedly unpleasant task
of adding the integers from 1 to 100. He obtained the correct result of 5050 quickly.
It is believed that he considered both the sum 1 +2 4 - .- 4 100 and its reverse sum
100 + 99 + - - - + 1 and added these to obtain the sum 101 + 101 + - - 4 101, which has
100 terms and so equals 10,100. Since this is twice the required sum, 1 + 2 4. 4100 =
10100/2 = 5050. This, of course, can be quite easily generalized to find-a formula for
14243+ +n,where n € N. Let

S=142434 4 62
If we reverse the order of the terms on the'right side of (6.2), then we obtain
S=n+mn—-D4+@—-2)+ - +1. , 6.3)
Adding (6.2) and (6.3), we have ‘
WS=m+D+m+D+m+D+--+@n+1). (6.4)

Since there are n terms on the right side of (6.4), we conclude that 25 = n(n + 1yor
S = n(n + 1)/2. Hence
_nn+1)

L4243 4= =,

You might think that the proof of Result 6.3 (and Result 6.4) that we gave by
mathematical induction is longer (and more complicated) than the one we just gave, and
this may very well be true. But, in general, mathematical induction is a technique that
can be used to prove a wide range of statements. In this chapter, we will see a variety
of statements where mathematical induction is a natural technique used in verifying
their truth. We begin with an example that leads to a problem involving mathematical
induction.

Suppose that an n x 7 square S is composed of 7% 1 x 1 squares. For all integers
k with 1 <k < n, how many different k x k squares does § contain? (See Figure 6.1
for the case where n = 3.) For n = 3, the square S contains the 3 x 3 square S itself,
four 2 x 2 squares, and nine 1 x 1 squares (see Figure 6.1). Therefore, the number of
different squares that § contains is 1 +4 +9 = 12 4+ 22 + 32 = 14

In order to determine the number of different k x & squares in an # x n square S,
we place S in the first quadrant of the coordinate plane so that the lower-left corner of S
is at the origin (0, 0). (See Figure 6.2.) Then the upper-right corner of § is at the point




134 Chapter 6 Mathematical Induction

Figure 6.1 The squares in a 3 x 3 square

(n, n). Consequently, the lower-left corner of a & x k square S*, where 1 < k < n,isat
some point (x, y), while the upper-right corner of $* is at (x + &, y + k). Necessarily,
x and y are nonnegative integers with x + k < n and y + k < n (again see Figure 6.2).
Since 0 < x <n—kand 0 <y <n — k, the number of choices for each of x and y is
n — k + 1 and so the number of possibilities for (x, y) is (n — k + 1)2. Because £ is any
of the integers 1, 2, .. ., n, the total number of different squares in § is

D=k + 1P =t 4212

k=1
n
=424t =) K
k=1
Is there a compact formula for the expression
n -
Y=+ a®
k=1

For the problem we are describing, it would be very helpful to know the answer to this
question. Since we brought up this question, you might have already guessed that the
answer is yes. A formula is given next, along with a proof by induction.

Yy
' (n,n)
(x+k,y+k)
g
(z,9)
S x
(0,0)

Figure 6.2 Ak x k square in an n x n square
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Resuit 6.5  For every positive integer n,

5 D@2n +1
12+2L+..4+n2:_—n(’1+ )6(n+ )‘

Proof ~ We proceed by induction. Since 1 = (1 - 2 - 3)/6 = 1, the statement is true when 1z = 1.
Assume that
k(k + 12k + 1
a2y k= L’%

for an arbitrary positive integer k. We show that

k + Dk + 2)(2k + 3)
12+22+”'+U‘+1)2:%‘
Observe that

P2+ 1P =12+ 22 62 4 (ke + 1P
k(k 2%k )
= R
k(k+ DQk+1) 6k + 1)
- 6 T
_ (ke D@k + 1) + 6%k + 1]
= - .
_ (k+ DK+ Tk +6)
=
(k4 Dk + 22k +3)
=

=

as desired.
" By.the Principle of Mathematical Induction,

2 2 DEn+1
12+2h+...,|_n'~=@+_)6g__2

for every positive integer 7. B

Strictly speaking, the last sentence in the proof of Result 6.5 is typical of the last
sentence of every proof using mathematical induction, for the idea is to show that the
hypothesis of the Principle of Mathematical Induction is satisfied and so the conclusion
follows. Some therefore omit this final sentence since it is understood that once properties
(1) and (2) of Theorem 6.2 are satisfied, we have a proof, For emphasis, we will continue
to include this concluding sentence, however.

There is another question that might occur to you. We explained why 1 +2 4 -- -+
equals n(n + 1)/2, but how did we know that 1% + 22 4 - .. 4- n? equals n(n + 1)(2n +
1)/6? We can actually show that 1% + 22 + - - - + n = n(n 4 1)(2n + 1)/6 by using the
formula 1 42+ --- +n = n(n + 1)/2. We begin by solving

e+ 1 =1 + 3% + 3k + 1
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for k2. Since 3k = (k + 1) — k3 — 3k — 1, it follows that

! k-
K=+ =#] -k~

and so
Z . Z(k+1)3 Zk _lsy
= 3 k=1 3
Therefore,
Zkl 3 [(n 4 1) ~ 1'3]'— L4 1= 2
3 2 3
_n* 432 +3n Alta on
h 3 2 3
2 6n®+6n—3n" —3n—2n _ 23 +3n% +n
- 6 B 6
_n@A 43+ n(r+D@r+1)
6 - 6 '
This is actually an alternative proof that
12+22+“.+n2:ﬁ,}_+—126<2n—+2
for every positive integer n, but of course this proof depends on knowing that
n(n+1)
142434+ =(—2—

for every positive integer 7.
We have now used mathematical induction to establish the formulas

1+2+~~+n="("2+1) (6.5)
and
2
12+22+...+,,2:M2(:"_+2 (6.6)

6
for every positive integer n. We saw that (6.6) gives the number of different squares in an
n x n square composed of n? 1 x 1 squares. Actually, (6.5) gives the number of intervais
in an interval of length n composed of # intervals of length 1. You can probably guess
what 13 + 23 + - - . 4- n3 counts. Exercise 6.8 deals with this expression.
We now present a formula for

1 1 1
a3ttt e e o

for every positive integer .

Result 6.6  For every positive inieger n,
1 1 1 n

23 3 ad T T i DD M4
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Proof We use induction. Since

PROOF ANALYSIS

Aot 1
2.3 2-1+4 6
the formula holds for n = 1. Assume that
U S SR
2-3 3-4 k+Dk+2). 2k+4
for a positive integer k. We show that

1 1 1 k+1 k+1

27~3'+3-4+ (k+2)(k+3) 7(kJ—1)+A 2/{’—5—6“
Observe that
1 1 1
3trat T arar

N 1 1
*[2.3+37+“'+(1c+1)(k+2)}+(k+,2)(1<+3)

k 1 k i
=4t k+2)k+3) T+ kT DELD)

k) +2 P +3k+2

T2k + 2k +3) 20k +2)k+3)
-~ k+Dk+2) _ k+1 k+1

T2k +2)(k+3)  20k+3)  2k+6

giving us the desired result. By the Principle of Mathematical Induction,

1 + 1 + 1 n
2.3 (n+1)(n+2) 2n+4

for every positive integer n. ]

Each of the examples of mathematical induction proofs that we have seen involves a
certain amount of algebra. We'll need to recall even more algebra soon. Many mistakes
in these proofs are due to algebra errors. Therefore, care must be taken. For example, in
the proof of Result 6.6, we encountered the sum

k 1
B + .
2k4+2)  k+2)k+3)
To add these fractions, we needed to find a common denominator (actually a least com-
mon denominator), which is 2(k + 2)(k + 3). This was used to obtain the next fraction,
that is,
k n 1 _ k(k+3) 2 _ kk+3)+2
2Ae+2)  k+2)k+3) 2k+2)Kk+3) 20k+DCk+3) 20k +2¢k+3)
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When we expanded and factored the numerator and then cancelled the term & -+ 2, this
was actually expected since the final result we were looking for was

k+1  k+1

2%k+6 2k+3)

which does not contain & + 2 as a factor in the denominator. é

C

6.2 A More General Principle of Mathematical InductiOID

Theorem 6.7

Theorem 6.8

The Principle of Mathematicai Induction, described in the preceding section, gives us a
technique for proving that a statement of the type

For every positive integer n, P(n).

is true. There are situations, however, when the domain of P (n) consists of those integers
greater than or equal to some fixed integer m different from 1. We now describe an
analogous technique to verify the truth of a statement of the following type where m
denotes some fixed integer:

For every integer n > m, P(n).

According to the Well-Ordering Principle, the set N of natural numbers is well-
ordered; that is, every nonempty subset of N has a least element. As a consequence of
the Well-Ordering Principle, other sets are also well-ordered.

For each integer m, the set
S={€e€Z:i=>=m}
is well-ordered.

The proof of Theorem 6.7 is left as an exercise (see Exercise 6.12). The following
is a consequence of Theorem 6.7. This is a slightly more general form of the Principle
of Mathematical Induction. Consequently, it is commonly referred to by the same name.

(The Principle of Mathematical Induction) For a fixed integer m, let S ={i € 7 :
i > m}. For each integer n € S, let P(n) be a statement. If

(1) P(m) is true and
(2) the implication

If P(k), then P(k + 1).
is true for every integer k € S,

then P(n) is true for every integer n € §.

The Principle of
Mathematical
Induction

Result 6.9

Proof

PROOF ANALYSIS

Result to Prove
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The proof of Theorem 6.8 is similar to the proof of Theorem 6.2. We also state
Theorem 6.8 symbolically.

For a fixed integer m,let S = {i € Z.: i > m). For eachn € S, let P(n) be a statement.

I

(1) P(m)is true and
(2) Yk e S, Py = P(k+ 1) is true,

then¥n € S, P(n)is true.

This (more general) Principle of Mathematical Induction can be used to prove that
certain quantified statements of the type V2 € 5, P(n) are true when § = ieZ:i>
m} for a prescribed integer m. Of course, if m = 1,then S = N. We now consider several
examples. (

For every nonnegative integer n,
2" > n.

We proceed by induction. The inequality holds for n = 0 since 20 > (. Assume ‘that
2k > k, where k is a nonnegative integer. We show that 2571 > t 4+ 1. When k = 0, we
have 27 =2 > 1 = k + 1. We therefore assume that k > 1. Then

VAR B A, ) S N S S

By the Principle of Mathematical Induction, 2" > n for every nonnegative integer n. =&

Let’s review the proof of Result 6.9. First, since Result 6.9 concerns nonnegative integers,
we are applying Theorem 6.8 with m = 0. We began by observing that 2" > n when
n = 0. Next we assumed that 2* > k, where k is a nonnegative integer."Our goal was to
show that 2°7 > k + 1. It seems logical to observe that 25+1 = 2. 2¢. Since we knew
that 285 k, we have 271 = 2. 2¢ > 2. Tf we could show that 2%k > k+1, then we
have a preof. However, when & = 0, the inequality 2k > & + 1 doesn’t hold. That’s why
we handled & = 0 separately in the proof. This allowed us to assume that & > 1 and then
conclude that 2k > k - 1.

We could have proved Result 6.9 a bit differently. We could have observed first that
2" > n when n = 0 and then proved that 2" > 5 forn > 1 by induction. é

Our next example is to show that 2" > n2ifnisa sufficiently large integer. We begin
by trying a few values of n, as shown in Figure 6.3. It appears that 2" > #? whenever
n>S5.

For every integer n > 5,

2" > n”.
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n 2" n?

0 1 0

1 2 1

2 4 4

3 9

4 16 16

5 32 25

6 64 36

Figure 6.3 Comparing 2" and n?

PROOF STRATEGY  Let’s see what an induction proof of this result might look like. Of course, 2" > n? when

Result 6.10

Proof

Result 6.11

Proof

n = 5. We assume that 2* > k?, where k > 5 (and k is an integer) and we want to prove
that 2¢¥1 > (k 4 1)%. We start with

2 = 2. 28 5 22,

We would have a proof if we could show that 2&? > (k + 1)? or that 2k? > k2 + 2k + 1.
There are several convincing ways to show that 2&k% > k? + 2k + 1 for integers k > 5.
Here’s one way:

Observe that 2k = k2 + k2 = k> + k - k > k® + Sk since k > 5. Also k2 + 5k =
K242k +3k > k2 +2k+3-5=k%+ 2k + 15, again since k > 5. Finally, K+ 2k +
15 > k2 + 2k + 1. We now present a formal proof. (Here we are using the Principle of
Mathematical Induction with m = 5.) é

For every integer n > 5,
2" > n?.

We proceed by induction. Since 2° > 52, the inequality holds for n = 5. Assume that
2% > k2, where k > 5. We show that 27" > (k 4+ 1)2. Observe that

2 =2 . 2F S U =P+ I = K+ 5k
= k% 4+ 2k + 3k > k* 4+ 2k + 15
> k22 +1=(k+ DA

Therefore, 2¢+1 > (k -+ 1)%. By the Principle of Mathematical Induction, 2" > n? for
every integer n > 5. [

For every nonnegative integer n,

3] (2 -1).

We proceed by induction. The result is true when # = 0 since in this case 2" — 1 =0
and 3 | 0. Assume that 3 | (22]‘ - 1), where k is a nonnegative integer. We show that
3] (2%+2 —1). Since 3 | (2% — 1), there exists an integer x such that 2% — | = 3x

PROOF ANALYSIS

Result 6.12

Proof
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and 50 2% = 3x + 1. Now
2% 1 =4 2% 1 =4Gx 4+ 1) - 1 = 12x + 3 = 3(4x + 1).

Since 4x + 1is an integer, 3 | (222 — 1).
By the Principle of Mathematical Induction, 3 | (22 — 1) for every nonnegative
integer 7. =

Let’s review the preceding proof. As expected, to establish the inductive step, we assumed
that 3 | SZZ" — 1) for an arbitrary nonnegative integer k and attempted to show that
3| (2%+2 — 1), To verify that 3 | (2%+2 — 1), it was necessary to show that 22¢+2 _ 1
is a multiple of 3, that is, we needed to show that 222 — 1 can be expressed as 3z for
some integer z. Since our goal was to show that 2%+2 — [ can be expressed in a certain
form, it is natural to consider 2**2 — 1 and see how we might write it. Since we knew
that 2% — 1 = 3x, where x € Z, it was logical to rewrite 222 — 1 50 that 22¢ appears.
Actually, this is quite easy since

22 _ 22 92k 4.9%,

Therefore, 22+2 — 1 = 4. 2% 1, At this point, we need {0 be a bit careful because the
expression we are currently considering is 4 - 2% — 1, not 4(2% — 1). That is, it would
be incorrect to say that 4 - 2% — 1 = 4(3x). Hence we need to substitute for 22* in this
case, not for 2% — 1. This is the reason that in the proof we rewrote 2% — 1 = 3x as
2% =35 4 1. ' é

We reinforce this kind of proof with another example.

For every nonnegative integer n,

9| (4 —1).

We procéed by induction. When n = 0, 43 — 1 = 0. Since 9 | 0, the statement is true
when n =0. Assume that 9 | (43" . 1), where k is a nonnegative integer. We now show
that 9| (4%%3 —1). Since 9| (4% — 1), it follows that 4% — 1 = 9x for some integer
x. Hence 4% = 9x + 1. Now observe that

4R =g 1 =640x+ D~ 1
=04-9x+64—-1=64-9x 463
— 9(64x + 7).
Since 64x + 7 is an integer, 9 | (433 — 1).

By the Principle of Mathematical Induction, 9 | (4% — 1) for every nonnegative
integer n. B

As a final comment regarding the preceding proof, notice that we did not multiply
64 and 9 since we were about o factor 9 from the expression in the next step in any case.
We saw in Theorem 3.10 that for an integer x, its square x? is even if and only if x
is even. This is actually a consequence of Theorem 3.15, which states that for integers
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. Result 6.13

Proof

Theorem 6.14

Proof

a and b, their product ab is even if and only if @ or b is even. We now present a
generalization of Theorem 3.10.

Let x € Z. For every integer n > 2, x" is even if and only if x is even.

Assume, first, that x is even. Then x = 2y for some integer y. Hence
X =xex" =yt =2 ().

Since yx"~! is an integer, x" is even.

We now verify the converse, namely, if x" is even, where n > 2, then x is even. We
proceed by induction. If x? is even, then we have already seen that x is even. Hence the
statement is true for n = 2. Assume that if x* is even for some integer k > 2, then x is
even. We show that if x**! is even, then x is even. Let x**! be an even integer. Then
x - x* is even. By Theorem 3.15, x is even or x* is even. If x is even, then the result is
proved. On the other hand, if x* is even, then, by the induction hypothesis, x is even
as well. By the Principle of Mathematical Induction, it follows, for every integer n > 2,
that if x” is even, then x is even. F

Although it is impossible to illustrate every type of result where induction can be
used, we give two examples that are considerably different than those we have seen.
One of De Morgan’s laws (see Theorem 4.19) states that

AUB=4ANB
for every two sets A and B. It is possible to use this law to show that
AUBUC=4ANBNC
for every three sets A, B, and C. We show how induction can be used to prove

De Morgan’s law for any finite number of sets.

If Ay, Ay, ..., A, are n > 2 sets, then

AUA U UA, =A NAN---NA,.
We proceed by induction. For n = 2, the result is De Morgan's Law and is therefore

true. Assume that the result is true for any k sets, where k& > 2; that is, assume that if
By, By, ..., By are any k sets, then

BiUB,U---UBy,=BNBN---NBy

We prove that the result is true for any £ + 1 sets. Let Sy, Sa, ..
show that

< Sp1 be k 4 1 sets. We

SIUSHU- - USi =85NSN---N Sy
LetT =S, US,U---US;. Then

S1US U U Sy =(S1U52U-~-US)C)USk+1 =T U Seq1-
Now, by De Morgan’s Law,

TUSee) =T N Spyr.

PROOF ANALYSTS

Theorem 6.15

Proof
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By the definition of T and by the inductive hypothesis, we have
T=5U50 - US=5Nn8n--NS

Therefore,
SIUS U US =T U8 =T NSy
=85N85N--- NSNS
By the Principle of Mathematical Induction, for every n > 2 sets A1, Ay, ..., Ay,
A UAU-UA, = A NA N N4,
as desired. ’ ; . =

A few comments may be useful concerning the notation used in the statement and the
proof of Theorem 6.14. First, the sets Ay, Az, ..., A, were used in the statement of
Theorem 6.14 only as an aid to describe the result. Theorem 6.14 could have also been
stated as:

For every integer n.> 2, the eomplement of the union of any n sets equals the
intersection of the complements of these sets.

To verify the inductive step in the proof of Theorem 6.14, we assumed that the statement
is true for any k > 2 sets, which we denoted by By, Ba, ..., By. The fact that we used
Al Ay .., A, to describe the statement of Theorem 6.14 did not mean that we should
use Ay, Az, ..., A for the k sets in the inductive hypothesis. In fact, it is probably better
that we do not use this notation. In the inductive step, we now need to show that the
result is true for any & + 1 sets. We used Sy, Sa, ..., Spe1 for these sets. It would have
been a bad idea to denote the k + 1 sets by By, B, ..., By because that would have
(improperly) suggested that k of the k + 1 sets must specifically be the sets mentioned
in the.inductive hypothesis. é

We are now able to prove another well-known theorem concerning sets, to which
we earlier referred.

If A is a finite set of cardinality n > 0, then the cardinality of its power set P(A) is 2".

We proceed by induction. If A is a set with |A| = 0, then A = J. Thus P(A) = {##} and
50 |P(A)| = 1 = 2°. Therefore, the theorem is true for 7 = 0. Assume that if B is any
set with |B| = k for some nonnegative integer &, then |P(B)| = 2*. We show that if C
is a set with [C| = k + 1, then |P(C)| = 28!, Let

C={cr,c2 ..., Cs1}

By the inductive hypothesis, there are 2¢ subsets of the set {c{, ¢3, ..., ¢4}, that is, there
are 2% subsets of C not containing ¢, 1. Any subset of C containing ¢+ can be expressed
as D U {cgq1), where D C {c), €3, . . ., ¢k}. Again, by the inductive hypothesis, there are
2% such subsets D. Therefore, there are 2¢ 4 2% = 2. 2k = 28+ gubsets of C.

By the Principle of Mathematical Induction, it follows for every nornegative integer
n that if |A| = n, then [P(A4)| = 2", B



144

Chapter 6 Mathematical Induction

6.3 Proof by Minimum Counterexample ]

Result 6.16

Proof

For each positive integer n, let P(n) be a statement. We have seen that induction is g
natural proof technique to verify the truth of the quantified statement

Vn € N, P(n). (6.7)

There are certainly such statements where induction does not work, or does not work
well. If we would attempt to prove (6.7) using a proof by contradiction, then we would
begin such a proof by assuming that the statement Y € N, P(n) is false. Consequently,
there are positive integers » such that P(n) is a false statement. By the Well-Ordering
Principle, there exists a smallest positive integer # such that P(x) is a faise statement.
Denote this integer by m. Therefore, P(m) is a false statement and for any integer k
with I <k < m, the statement P (k) is true. The integer m is referred to as a minimum
counterexample of the statement (6.7). If a proof (by contradiction) of ¥n € N, P(n)
can be given using the fact that m is a minimum counterexample, then such a proof is
called a proof by minimum counterexample.

We now illustrate this proof technique. For the example we are about to describe, it
is useful to recall from algebra that

(a+b)* = a® + 3ab + 3ab® + b°.
Suppose that we wish to prove that 6 | (2> — n) for every positive integer n. An induction
proof would probably start like this: )

If n =1, then n°> — n = 0. Since 6 | 0, the result is true for n = 1. Assume that
6| (k? — k), where k is a positive integer. We wish to prove that 6 | [(k + 1)° — (k + bl
Since 6 | (k* — k), it follows that k> — k = 6x for some integer x. Then

1P =G4+ )=k +3k> +3k+1 -k —1
= (k> — &)+ 3k* + 3k
= 6x + 3k(k + 1).
If we can show that 6 | 3k(k 4 1), we have a proof. Thus we need to show that k(k + 1)
is even for every positive integer k. A lemma could be introduced to verify this. This
lemma could be proved in two cases (k is even and k is odd) or induction could be used.

Although such a lemma would not be difficult to prove, we give an alternative proof that
avoids the need for a lemma.

For every positive integer n,
6 | (113 - n) .

Assume, to the contrary, that there are positive integers 7 such that 6 } (n? — n). Then
there is a smallest positive integer n such that 6 J (n3 - n). Let m be this integer. If
n=1,thenn® — n = 0; whileif n = 2, then n> — # = 6. Since 6 | 0 and 6 | 6, it follows
that 6 | (713 - n) for n = 1 and n = 2. Therefore m > 3. So we can write m = k + 2,
where 1 <k < m. Observe that

m—m=k+2°—k+2) =K +6k>+ 12k +8)— (k+2)
= (k> — k) + (6k* + 12k + 6).
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Since k < m, it follows that 6 | (k> — k). Hence k> — k = 6x for some integer x. So we
have

m® —m = 6x + 6(k% + 2k + 1) = 6(x + kX + 2k + 1).

Since x + k% + 2k + 1 is an integer, 6 | (m> — m), which produces a contradiction.

Let’s see how this proof was constructed. In this proof, m is a positive integer such that
6 }((m3 — m); while for every positive integer n with n < m, we have 6 | (n3 - }1)4 We
are trying to determine just how large m needs to be to obtain a contradiction. We saw
that 6 | (1> — 1) and 6 | (2° —2); so m > 3. Knowing that m > 3 allowed us to write
m as k42, where 1 < k < m. Because 1 < k < m, we know that 6 | (k* — k) and so

k* — k = 6x, where x € Z. So, in the proof, we wrote

md—m= (42 — (k+2) =+ 6k>+ 12k + 8) — (k +2)
= (k> — k) + (6k> 4 12k + 6) = 6x + 6k* + 12k + 6.

The fact that we can factor 6 from 6x + 6k% + 12k + 6 is what allowed us to conclude
that 6 | (m* —m) and obtain a contradiction. But how did we know that we wanted
m > 37 If we had observed only that 6 | (1> — 1) and not that 6 | (2* — 2), then we would
have known only that m > 2, which would have allowed us to write m = k + 1, where
1 <k < m. Of course, we would still know that 6 | {k*> — k) and so &®> — k = 6x, where
x € Z. However, when we consider m® — m, we would have

mem =1 —h+ D =K 4343k + D -k + 1)
= (K — &)+ 3k + 3k = (K = k) + 3kk + 1)
= 6x + 3k(k + 1).

As i} stands, we can factor 3 from 6x + 3k(k + 1) but cannot factor 6 unless we can
prove that k(k -+ 1) is even. This is the same difficulty we encountered when we were
considering an induction proof. In any case, no contradiction is obtained. é

If a result can be proved by induction, then it can also be proved by minimum
counterexample. It is not difficult to use induction to prove that 3 | (2 — 1) for ev-
ery nonnegative integer n. We also give a proof by minimum counterexample of this
statement.

For every nonnegative integer n,

3] (27 —1).

Assume, to the contrary, that there are nonnegative integers # for which 3 f (2% — 1). By
Theorem 6.7, there is a smallest nonnegative integer n such that 3 f (2°" —1). Denote
this integer by m. Thus 3 (22" — 1) and 3 | (2%* — 1) for all nonnegative integers n
for which 0 < n < m. Since 3 | (22" — 1) when n = 0, it follows that m > 1. Hence
m =k + 1, where 0 < k < m. Thus 3 | (2% — 1), which implies that 2% — 1 = 3x for
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some integer x. Consequently, 2% = 3x 4 1. Observe that
02m | gD _ | 22 _q g2 9% _ |
=4CBx+1)-1=12x+3 =34x+1).

Since 4x 4 1 is an integer, 3 | (22" — 1), which produces a contradiction. 8

We give one additional example of proof by minimum counterexample.

Result 6.18  For every positive integer n,
+1
142434 +n= ﬁ"q ),
Proof  Assume, to the contrary, that
n(n 1)
1+243+--+n# ¢ 5
for some positive integers n. By the Well-Ordering Principle, there is a smallest positive
integer n such that
n(n+1
14243+ -+n# ¢ 5 ),
Denote this integer by m. Therefore,
m(m + 1)
14243+ +m# %
while
nn+1
1+2+3+---4n= _(_7)__2
for every integer n with 1 < n < m. Since 1 = 1(1 + 1)/2, it follows thatm > 2. Hence
we can write m = k + 1, where 1 < k < m. Consequently,
k(k + 1
1+2434--+k= ¢ ) ).
Observe that
1+243+ 4m=14+243+ 4+ *k+D=0+243+- -+ +*k+1)
k(k +1 k(k+1)+2(k+1)
_KEED o KEED 2D
2 2
ke D*k+D  mim+ 1)
- 2 o2
which produces a contradiction. 8
[ 6.4 The Strong Principle of Mathematical Induction J

We close with one last form of mathematical induction. This principle goes by many
names: the Strong Principle of Mathematical Induction, the Strong Form of Induction,

Theorem 6.19

The Strong
Principle of
Mathematical
Induction
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the Alternate Form of Mathematical Induction, and the Second Principle of Mathematical
Induction are common names.

(The Strong Principle of Mathematical Induction) For each positive integer n, let
P(n) be a statement. If

(1) P(1)is true and
(2) the implication

If P(i) for every integer i with 1 <i <k, then P(k + 1).
is true for every positive integer k,
then P(n) is true for every positive integer n.

As with the Principle of Mathematical Induction (Theorem 6.2), the Strong Principle
of Mathematical Induction is also a consequence of the Well-Ordering Principle. The
Strong Principle of Mathematical Induction is now stated more symbolically below.

For each positive integer n, let P(n) be a statement. If

(1) P(1)is true and
(2) VEeN, POAPQQYA - APk) = Pk + 1)is true,

then¥n € N, P(n) is true.

- The difference in the statements of the Principle of Mathematical Induction and
the Strong Principle of Mathematical Induction lies in the inductive step (condition 2).
To prove that Vn € N, P(n) is true by the Principle of Mathematical Induction, we are
required to show that P(1) is true and to verify the implication:

If P(k), then P(k + 1). . (6.8)

is true for every positive integer k. On the other hand, to prove ¥n € N, P () is true by
the Strong Principle of Mathematical Induction, we are required to show that P(1) is
true and to verify the implication:

If P(i) forevery i with 1 <i <k, then P(k + 1). {6.9)

is true for every positive integer k. If we were to give direct proofs of the implications (6.8)
and (6.9), then we are permitted to assume more in the inductive step (6.9) of the Strong
Principle of Mathematical Induction than in the induction step (6.8) of the Principle of
Mathematical Induction and yet obtain the same conclusion. If the assumption that P (k)
is true is insufficient to verify the truth of P(k + 1) for an arbitrary positive integer &,
but the assumption that ail of the statements P(1), P(2), ..., P(k) are true is sufficient
to verify the truth of P(k + 1), then this suggests that we should use the Strong Principle
of Mathematical Induction. Indeed, any result that can be proved by the Principle of
Mathematical Induction can also be proved by the Strong Principle of Mathematical
Induction.
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Theorem 6.20

Result 6.21

Proof

Just as there is a more general version of the Principle of Mathematical Induction
(namely, Theorem 6.8), there is a more general version of the Strong Principle of Math-
ematical Induction. We shall also refer to this as the Strong Principle of Mathematical
Induction.

(The Strong Principle of Mathematical Induction) For a fixed integer m, letS={ie
Z: i > m). Foreachn € S, let P(n) be a statement. If

(1) P(m)is true and
(2) the implication

If P(i) for every integer i withm < i <k, then P(k + 1).
is true for every integer k € §,
then P(n) is true for every integer n € S.

We now consider a class of problems where the Strong Principle of Mathematical
Induction is commonly the appropriate proof technique.

Suppose that we are considering a sequence dai, 42, a3, - - - of numbers. One way
of defining a sequence {a,} is to specify explicitly the nth term a, (as a function of
n). For example, we might have a, = 1, a, = 5 " ora, =n>+nforeachn e N A
sequence can also be defined recursively. In a recursively defined sequence {a,}, only
the first term or perhaps the first few terms are defined specifically, say as, @2, ..., gk for
some fixed k € N. These are called the initial values. Then ;4 is expressed in terms of
ai, day, . .., a and, more generally, forn > k,a, is expressedinterms of ay, g, « . ., dp—1.
This is called the recurrence relation.

A specific example of this is the sequence {a,} defined by a; = 1,4, =3, and
an = 2a,_1 — Gn_p for n > 3. In this case, there are two initial values, namely a; = 1
and a» = 3. The recurrence relation here is

Ay = 2a,_1 — a3 forn > 3.

Letting n = 3, we find that a3 = 2a, — a1 = 5; while letting n = 4, we have as = Za% —
a, = 7. Similarly, as = 9and ag = 11.Itappears thata, = 2n — 1foreachn € N. Using
the Strong Principle of Mathematical Induction, we prove that this is, in fact, the case.

A sequence {a,} is defined recursively by
ay=1,a, =3, and ay = 2a,_1 — ay—a forn = 3.
Thena, =2n—1foralln € N.
We proceed by induction. Since a; = 2-1—1=1,the formulaholdsrfor’n = 1. Assume

for an arbitrary positive integer k that a; = 2i — 1 for all integers i with 1 <i <k.
We show that age; = 2(k +1) — 1 =2k + 1.If k = L, then gy = a2 = 2-14+1=3.

— e
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Since a, = 3, it follows that @+ = 2k + 1 when k = 1. Hence we may assume that
k > 2. Since k + 1 > 3, it follows that

Qper = 2ap — gy =22k — 1) — (2 —3) =2k + 1,

which is the desired result. By the Strohg Principle of Mathematical Induction, a, =
2n — 1foralln e N. B

A few comments about the proof of Result 6.21 are in order. At one point, we assumed
for an arbitrary positive integer k that a; = 2 — 1 for all integers i with 1 < i < k. Our
goal was to show that a1 = 2k + 1. Since & is a positive integer, it may occur thatk = 1
ork > 2.If k = 1, then we need to show that ay1 = @, = 2+ 1+ 1 = 3. We know that
a; = 3 because this is one of the initial values. If k > 2, then k + 1 > 3 and q;4; can be
expressed as 2a; — a1 by the recurrence relation. In order to show that a1 = 2k + 1
when k > 2, it was necessary to know thatay = 2k — land thatay_1 =2(k — 1) — 1 =
2k — 3. Because we were using the Strong Principle of Mathematical Induction, we knew
both pieces of information. If we had used the Principle of Mathematical Induction, then
we would have assumed (and therefore knew) that a; = 2k — 1 but we would not have
known that a;_; = 2k —3, and so"we would have been unable to establish the desired
expression for dgq1. é

A sequence {ay,} is defined recursively by
o =1la=4,and a, = 2a, y — ay— +2forn > 3.
Conjecture a formula for a, and verify that your conjecture is correct. ‘

We begin by finding a few more terms of the sequence. Observe thatas = 2a; —a; +2 =
9, while a4 = 2a3 — a; +2 = 16 and as = 2a4 — a3 + 2 = 25. The obvious conjecture
is that a, = n-for every positive integer n. We verify that this conjecture is correct in
the next result. é

A sequence {a,} is defined recursively by
ai=1,ao=4,anda, =2a, 1 — a,o+2forn=3.
Then a, = nzfor alln € N.

We proceed by induction. Since a; = 1 = 12, the formula holds for # = 1. Assume for
an arbitrary positive integer & that ¢; = i? for every integer { with 1 <i < k. We show
that ;41 = (k + 1)% Since a3 = 4, it follows that g = (k + 1)? when k = 1. Thus
we may assume that k& > 2. Hence k + 1 > 3 and so
ey =2a; — ap +2 =2k~ (k—1)* +2
=2 (k2% + )42 =K+ 2%k +1 = (k+ D

By the Strong Principle of Mathematical Induction, a, = n? foralln € N. ]
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Although we mentioned that problems involving recurrence relations are commonly
solved with the aid of the Strong Principle of Mathematical Induction, it is by no means
the only kind of problem where the Strong Principle of Mathematical Induction can be
applied. Although the best examples require a knowledge of mathematics beyond what
we have covered thus far, we do present another type of example.

Result 6.24  For each integer n > 8, there are nonnegative integers a and b such that n = 3a + 5b.

Proof  We proceed by induction. Since 8 = 3. 1 + 5 - 1, the statement is true for 7 = 8. Assume
for each integer i with 8 <i < k, where k > 8 is an arbitrary integer, that there are
nonnegative integers s and ¢ such that i = 3s + 5¢. Consider the integer k + 1. We
show that there are nonnegative integers x and v such that k 4+ 1 = 3x 4+ 5y. Since
9=3~3+5-Oand10:3-0+5~2,[hisistrueifk+l:93ndk+] = 10. Hence
wemay assume thatk + 1 > 11.Thus8 < (k + 1) — 3 < k. By the induction hypothesis,
there are nonnegative integers a and b such that

(k-+1)~3=3a+5bandsok+ 1 =3(a+ 1)+ 5b.

Letting x = @ + 1 and y = b, we have the desired conclusion.
By the Strong Principle of Mathematical Induction, for every integer n > 8, there
are nonnegative integers a and b such that n = 3a + 5b. ]

EXERCISES FOR CHAPTER 6

Section 6.1: The Principle of Mathematical Induction

6.1.

6.2.

6.3.
6.4.

6.5.

6.6.

Which of the following sets are well-ordered?

@ S={xeQ: x>-10)

() §={-2,-1,0,1,2}

©S={xeQ: -1<x<1}

(d) S={p: pisaprime} = {2,3,5,7, 11, 13, 17,...}

Prove that if A is any well-ordered set of real numbers and B is a nonempty subset of A, then B is also
well-ordered.

Prove that every nonempty set of negative integers has a largest element.
Prove that 1 +3 45+ + (2n — 1) = n? for every positive integer n

(1) by mathematical induction.
(2) byadding 1 +3+54---- + (2n — Dand 2n — D+ Qn—3)+ -+ 1.

Use mathematical induction to prove that
145494 +@n—-3)=2n—n
for every positive integer .

Find a formula for 1 +4 + 7 + - - - + (3n — 2) for positive integers 7, and then verify your formula by
mathematical induction.

6.7.

6.8.

6.9.
6.10.

6.11.
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Find another formula suggested by Exercises 6.4 and 6.5, and verify your formula by mathematical
induction.
(a) We have seen that 12 + 2% + - .. + 22 is the number of squares in an # X n square composed of 12
1 x 1 squares. What does 13 + 23 + 3% + ... + 1% represent geometrically?
(b) Use mathematical induction to prove that 13 +23 + 3% 4+ ... 4+ p3 — ”2[”4* U for every positive integer
H.

Provethat 1-34+2-4+3.54 .- 4 n(n+2) = ﬂ*ﬁ@ for every positive integer n.

Let7 # 1 be a real number. Use induction to prove that a + ar +ar? + - .- 4 @r"~! = % for every
positive integer 7.

5,7 for every positive integer .

i 1 1 —
PIO\'eihatﬁ+R+"'+(_nm = 559

Section 6.2: A More General Principle of Mathematical Induction

6.12.

6.13.
6.14.
6.15.
6.16.
6.17.

6.18.
6.19.
6.20.
6.21.

6.22.

6.23.

- Prove the following implication for every integer n > 2: If x, xa, ..

Prove Theorem 6.7: For each integer m, the set S = {i € Z: i > m) is'weil-ordered. [Hint: For eveyry
subset T of S, either 7 € Nor T — N is a finite nonempty set.]

Prove that 2" > 3 for every integer n > 10.

Prove that n! > 2" for every integer n > 4.

Prove that 3" > »? for every positive integer n.

Provethat 1 + 2+ 1 ... ¢ L <2 L forevery positive integer n.

Prove Bernoulli’s Identity: For every real number x > —1 and every positive integer 7,

(A+x)">1+nx.

Prove that 4 | (5" — 1) for every nonnegative integer 7.
Prove that 81 | (10"*! — 95 — 10) for every nonnegative integer 7.
Prove that 7| (3% - 2") for every nonnegative integer .

In Exercise 4.6, you were asked to prove that if 3 | 2a, where ¢ € Z, then 3 | a. Assume that this
result is true. Prove the following generalization: Let a € Z. For every positive integer n, if 3 | 2"a, then
3]a.

Prove thatif Ay, A,, ..., A, are any n > 2 sets, then
AINAN-NA,=AULU-.-UZA,

Recall for integers n > 2,a, b, ¢, d, thatifa = b (mod n) and ¢ = d (mod n), then both @+ ¢ = b +d
(mod 1) and ac = bd (mod n). Use these results and mathematical induction to prove the following: For
any 2m integers aj, a, ..., a, and b, by, .. ., by, for which a; = b; (mod n) for 1 <i < m,

@ ar+ay+--+an=by+by+ -+ b, (mod n) and
(b) @iay...a, = byby - - - by, (mod n).

-, X, are any n real numbers such that
X[ X0, xp = 0, then at least one of the numbers x;, x, . .., x, is 0. (Use the fact that if the product of

two real numbers is 0, then at least one of the numbers is 0.)

- (a) Use mathematical induction to prove that every finite nonempty set of real numbers has a largest

element.
(b) Use (a) to prove that every finite nonempty set of real numbers has a smallest element.
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Section 6.3: Proof by Minimum Couriterexample

6.26.
6.27.,
6.28.

6.29.

6.30.
6.31.

Use proof by minimum counterexample to prove that 6 | 7n (nz - 1) for every positive integer n.

Use the method of minimum counterexample to prove that 3 | (2% — 1) for every positive integer 7.
Prove that 12 | (n* — n?) for every positive integer n.

Prove that 5 | (n - n) for every integer 7.

Use proof by minimum counterexample to prove that 3 | (2" + 2"*1) for every nonnegative integer n.

Let § = (2" : n € Z, n > 0}. Use proof by minimum counterexample to prove that for every n € N, there
exists a subset S, of S such that ZiES,, i =n.

Section 6.4: The Strong Principle of Mathematical Induction

6.32.

6.33.

6.34.

6.36.

6.37.

. Consider the sequence Fy, 3, Fs, ...,

A sequence {a,} is defined recursively by @; = 1 and a,, = 2a,_{ for n > 2. Conjecture a formula for a,,
and verify that your conjecture is correct.

A sequence {a,} is defined recursively by a; = 1,4, = 2, and a, = @, + 2a,, 5 for n > 3. Conjecture a
formula for a, and verify that your conjecture is correct.

A sequence {a,} is defined recursively by a) = 1,a; = 4, a3 = 9, and
Ay = Ap—1 — Gy-2 + Ay-3 +2(2n — 3)

for n = 4. Conjecture a formula for a, and prove that your conjecture is correct.

where
Fi=1,F=1,F3=2F;=3,Fs=5,and Fg = 8.
The terms of this sequence are called Fibonacci numbers.

(a) Define the sequence of Fibonacci numbers by means of a recurrence relation.
(b) Prove that 2 | F,, if and only if 3 | n.

Consider the following sequence of equalities:
1=0+1

24+344=1+38
S+6+7+8+9=8+27

10+ 114+124+13414+15+16=274+64

(a) What is the next equality in this sequence?
(b) Now develop a general conjecture and prove that your conjecture is correct by induction.

Use the Strong Principle of Mathematical Induction to prove that for each integer n > 12, there are
nonnegative integers ¢ and b such that n = 3a + 7b.

ADDITIONAL EXERCISES FOR CHAPTER 6

6.38.

By Result 6.5,

n(n+DZn+1)

P42243%+ . dn’ = z

(6.10)

6.39.
6.40.
6.41.
6.42.

6.43.

6.45.

6.46.

6.47.

6.48.
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for every positive integer n.

(@) Use (6.10) to determine a formula for 2* + 42 + 6% 4 . - . - (2n)? for every positive integer n.

(b) Use (6.10) and (a) to determine a formula for 12 4 3% + 52 4 . .. 4 (21 — 1)? for every positive
integer #. ’

(c) Use (a) and (b) to determine a formula for

o242y (—1yH?

for every positive integer n.

(d) Use mathematical induction to verify the formulas in (b) and (c).

Provethat 1 - 2+2-34+3-4+ - +nn+1)= W for every positive integer n.

Prove that 4" > n® for every positive integer 7.

Prove that 24 | (5% — 1) for every positive integer 7.

Use the Strong Principle of Mathematical Induction to prove the following. Let S = {i € Z : { > 2} and let
P be a subset of § with the properties that 2, 3 € P and if n € S, then either n € P or n = ab, where
a,bes. Then every element of S either belongs to P or can be expressed as a product of elements of P.

Use the Strong Principle of Mathematical Induction to prove that for each integer n > 28, there are
nonnegative integers x and y such that n = 5x + 8y

. Find a positive integer m such that for each integer n > m, there are positive integers x and y such that

n =3x + 5y. Use the Principle of Mathematical Induction to prove this.

Find a positive integer 2 such that for each integer n > m, there are integers x, y > 2 such that
n = 2x + 3y. Use the Principle of Mathematical Induction to prove this.

Consider the sequence a; =2, a3 = 5,a3 = 9, a4 = 14, etc.
(a) Find a recurrence relation that expresses a, in terms of a,_; for every integer n > 2.
(b) Conjecture an explicit formula for a, and then prove that your conjecture is correct.

The following theorem allows one to prove certain quantified statements over some finite sets.
The Principle of Finite Induction For a fixed positive integer m, let § = {1,2, ..., m}. For eachn € §,
let P(n) be a statement. If
(1) P(1)is true and
(2) the implication
If P(k), then P(k + 1)
is true for every integer k with 1 < k' < m,
then P(n) is true for every integer n € S.
Use the Principle of Finite Induction to prove the following result.
Let S ={1,2,...,24}. For every integer ¢ with 1 < ¢ < 300, there exists a subset S; C S such that

Dies i =t

Below is given a proof of a result. What result is being proved and which proof technique is being used?

Proof Firstobserve thatay =8 =3-1+5,anda, =11 =3-2+ 5. Thus a, = 3n + 5 for n = 1 and
n = 2. Assume that @; = 3i + 5 for all integers i with 1 < i < k, where k > 2. Since k + 1 > 3, it follows
that

A1 = Say — dag_y — 9 = 53k +5) — 43k +2) —

=15k +25 - 12k —8-9=3k+8 =3k +1)+5. L]
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A proof of a result is given below. What result is being proved and which proof technique is being used?

Proof  Assume, to the contrary, that there is some positive integer n such that 8 J(3%" — 1). Let m be the
smallest positive integer such that 8 f(3%" — 1). Forn = 1,3% — 1 = 8. Since 8 | 8, it follows that m > 2.

Letm =k + 1. Since 1 < k < m, it follows that 8 | (3% — 1). Therefore, 3% — 1 = 8x for some integer x
and so 3% = 8x + 1. Hence

32m_1:32(k+1)71:32/(-1—2_1:9'3%*1

=9(8x+1)—1="T2x+8 = 8(9x + 1).

Since 9x + 1 is an integer, 8 | (3%" — 1), which produces a contradiction. - B

Evaluate the proposed proof of the followihg result.

Result  For every positive integer 7,

43454+ @2n—1) =n’.

Proof We proceed by induction. Since 2 - 1 — 1 = 12, the formula holds for n = 1. Assume that
T4+3+5+ +Qk—1) =k2foraposiliveimcgerk. Weprovethat 1 +3+ 5+ .-+ 2k + 1)
= (k 4 1)*. Observe that
143454+ Qk+1) = (k+ 1)
143454+ Qk—D+@k+1) =(k+1)?
B4 @k +1) = e+ 17
(k417 = (k + 1)". s
By an n-gon, we mean an n-sided polygon. So a 3-gon is a triangle and a 4-gon is a quadrilateral. It is well

known that the sum of the interior angles of a triangle is 180°. Use induction to prove that for every integer
n > 3, the sum of the interior angles of an n-gon is (n — 2) - 180°.

Prove or Disprove

In every mathematical statement that you have seen so far, you have been informed of
its truth value. If the statement was true, then we have either provided a proof for you
or have asked you to provide one of your own. What you didn’t know (perhaps) was how
we or you were to verify its truth. If the statement was false, then here too we either ver-
ified this or asked you to verify that it was false. As you proceed further into the world of
mathematics, you will more and more often encounter statements whose truth is in ques-
tion. Consequently, each such statement presents two problems for you: (1) Determine
the truth or falseness of the statement and (2) Verify the correctness of your belief.

[ 7.1 Conjectures in Mathematich

In mathematics, when we don’t know whether a certain statement is true but there is
good reason to believe that it is, then we refer to the statement as a conjecture. So the
word “conjecture” is used in mathematics as a sophisticated synonym for an intelligent
guess (or perhaps just a guess). Once a conjecture is proved, then the conjecture becomes
a theorem. If, on the other hand, the conjecture is shown to be false, then we made an
incorrect guess. This is the way mathematics develops — by guessing and showing that
our guess is correct or wrong, and then possibly making a new conjecture and then
repeating the process (possibly often). As we learn what’s true and what’s false about
the mathematics we’re studying, this influences the questions we ask and the conjectures
we make.

Let’s consider an example of a conjecture (although there is always the possibility
that someone has settled the conjecture between the time it was written here and the
moment you read it). A word is called a palindrome if it reads the same forward and
backward (such as deed, noon, and radar). Indeed, a sentence is a palindrome if it
reads the same forward and backward, ignoring spaces (Name no one man). A positive
integer is called a palindrome if it is the same number when its digits are reversed. (It is
considerably easier to give an example of a number that is a palindrome than a word that
is a palindrome.) For example, 1221 and 47374 are palindromes. Consider the integer
27. 1t is not a palindrome. Reverse its digits and we obtain 72. Needless to say, 72 is not
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A proof of a result is given below. What result is being proved and which proof technique is being used?
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32m_1:32(k+1)71:32/(-1—2_1:9'3%*1
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In mathematics, when we don’t know whether a certain statement is true but there is
good reason to believe that it is, then we refer to the statement as a conjecture. So the
word “conjecture” is used in mathematics as a sophisticated synonym for an intelligent
guess (or perhaps just a guess). Once a conjecture is proved, then the conjecture becomes
a theorem. If, on the other hand, the conjecture is shown to be false, then we made an
incorrect guess. This is the way mathematics develops — by guessing and showing that
our guess is correct or wrong, and then possibly making a new conjecture and then
repeating the process (possibly often). As we learn what’s true and what’s false about
the mathematics we’re studying, this influences the questions we ask and the conjectures
we make.

Let’s consider an example of a conjecture (although there is always the possibility
that someone has settled the conjecture between the time it was written here and the
moment you read it). A word is called a palindrome if it reads the same forward and
backward (such as deed, noon, and radar). Indeed, a sentence is a palindrome if it
reads the same forward and backward, ignoring spaces (Name no one man). A positive
integer is called a palindrome if it is the same number when its digits are reversed. (It is
considerably easier to give an example of a number that is a palindrome than a word that
is a palindrome.) For example, 1221 and 47374 are palindromes. Consider the integer
27. 1t is not a palindrome. Reverse its digits and we obtain 72. Needless to say, 72 is not

155




156

Chapter 7 Prove or Disprove

a palindrome either. Adding 27 and 72, we have:

27
+72
99

A palindrome results. Consider another positive integer, say 59. It is not a palindrome,
Reverse its digits and add:

59
+95
154

The result is not a palindrome either. Reverse its digits and add:

154
+451
605

Once again we arrive at a number that is not a palindrome. But reverse its digits and add:

605
+506
1111

This time the result is a palindrome. It has been conjectured that if we begin with any
positive integer and apply the technique described above to it, then we will eventually
arrive at a palindrome. However, no one knows if this is true. (It is known to be true for
all two-digit numbers.)

Some conjectures have become famous because it has taken years, decades, or even
centuries to establish their truth or falseness. Other conjectures remain undecided still
today. We now consider four conjectures in mathematics, each of which has a long
history.

In 1852, a question occurred to the British student Francis Guthrie when he was
coloring a map of the counties of England. Suppose that some country (real or imaginary)
has been divided into counties in some manner. Is it possible to color the counties in this
map with four or fewer colors such that one color is used for each county and two counties
that share a common boundary (not simply a single point) are colored differently? For
example, the map of the “country” shown in Figure 7.1 has eight “counties”, which are

Figure 7.1  Coloring the counties in a country with four colors

The Four
Color Conjecture

The Four
Color Theorem

Fermat’s Last
Theorem
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colored with the four colors red (R), blue (B), green (G), and yellow (Y), according to
the rules described above. This map can also be colored with more than four colors but
not less than four.

Within a few years, some of the best known mathematicians of the time had become
aware of Francis Guthrie’s question, and eventually a famous conjecture developed from
this.

Every map can be colored with four or fewer colors.

Many attempted to settle this conjecture. In fact, in 1879 an article was published
containing a reported proof of the conjecture. However, in 1890, an error was discovered
in the proof, and the “theorem” returned to its conjecture status. It was nét until 1976 when
an actual proof by Kenneth Appel and Wolfgang Haken, combining both mathematics
and computers, was presented. The period between the origin of the problem and its
solution covered some 124 years. This is now a theorem. ’

Every map can be colored with four or fewer colors.

We now describe a conjecture with an even longer history. One of the famous
mathematicians of the 17th century was Pierre Fermat. He is undoubtedly best known
for one particular assertion he made. He wrote that for each integer n > 3, there. are
no nonzero integers x, y, and z such that x” + y" = z". Of course, there are many
nonzero integer solutions to the equation x* + y? = z%, For example, 3> + 4% = 52,
52 4122 = 13%, and 8% + 15% = 17°. A wriple (x, y, z) of positive integers such that
x? + y* = 7 is often called a Pythagorean triple. Therefore, (3, 4, 5), (5, 12, 13), and
(8, 15, 17) are Pythagorean triples. Indeed, if (@, b, ¢) is a Pythagorean triple and k € N,
then (ka, kb, kc) is also a Pythagorean triple. Fermat’s assertion was discovered, un-
proved, in a margin of a book of Fermat’s after his death. In the margin it was written
that there was insufficient space to contain his “truly remarkable demonstration”. Con-
Sequently, this statement became known as Fermat’s Last Theorem. It would have been
more appropriate, however, to have referred to this statement as Fermat’s Last Conjec-
ture as the truth or falseness of this statement remained in question for approximately
350 years. However, in 1993, the British mathematician Andrew Wiles settled the con-
jecture by giving a truly remarkable proof of it. Hence Fermat’s Last Theorem is at last
a theorem.

For each integer n > 3, there are no nonzero integers x, y, and z such that x" + y" = z".

The final two conjectures we mention concern primes. Although we have mentioned
primes from time to time, we have not yet presented a formal definition. We do this now.
An integer p > 2 is a prime if its only positive integer divisors are 1 and p. A Fermat
number (Yes, the same Fermat!) is an integer of the form F, = 22 + 1, where ¢ is a
nonnegative integer. The first five Fermat numbers are

Fo=3, Fy =5, F, =17, F3 =257, F4 = 65,537,

all of which happen to be primes.
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Fermat’s
Conjecture

Euler’s Theorem

Goldbach’s
Conjecture

In 1640 Fermat wrote to many (including to the famous mathematician Blaise Pascal)
that he believed every such number (He didn’t call them Fermat numbers.) was a prime,
but he was unable to prove this. Hence we have the following.

Every Fermat number is a prime.

Nearly one century later (in 1739), the famous mathematician Leonhard Euler proved
that Fs = 4,294,967,297 is divisible by 641, thereby disproving Fermat’s Conjecture,
More specifically, Euler proved the following.

If p is a prime factor of F,, then p = 2'*!k + 1 for some positive integer k.

Letting ¢ = 5 in Euler’s Theorem, we see that each prime factor of Fs is of the form
64k + 1. The first five primes of this form are 193, 257, 449, 577, and 641, the last of
which divides Fs.

In recent decades, other Fermat numbers have been studied and have been shown
not to be prime. Indeed, many students of this topic now lean toward the opposing
viewpoint (and conjecture): Except for the Fermat numbers Fo, Fy, - - -, Fy (all of which
were observed to be prime by Fermat), no Fermat number is prime.

The last conjecture we describe here has its origins around 1742. The German
mathematician Christian Goldbach conjectured that every even integer exceeding 2 is the
sum of two primes. Of course, this is easy to see for small even integers. For example, 4 =
2+2,6=343,8=5+3,and 10 =7+ 3 =5+ 5. The major difference between
this conjecture and the three preceding conjectures is that this conjecture has never been
resolved. Hence we conclude with the following.

Every even integer exceeding 2 is the sum of two primes.

[ 7.2 Revisiting Quantified Statements ]

Example 7.1

Many (in fact, most) of the statements we have encountered are quantified statements.
Indeed, for an open sentence P (x) over adomain S, we have often considered a quantified
statement with a universal quantifier, namely

Vx €S, P(x): Foreveryx € §, P(x). or If x € S, then P(x).
or a quantified statement with an existential quantifier, namely
dx € §, P(x) : There exists x € S such that P(x).

Recall that Vx € §, P(x) is a true statement if P(x) is true for every x € S; while
dx € S, P(x) is a true statement if P (x) is true for at least one x € S.

Let S = {1, 3, 5,7} and consider

Pn): n>+n+1 is prime.
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for ;zach n € S. Then both
VneS§, P(n): Foreveryne S,n>+n+1 is prime.
and
dn € S, P(n): There exists n € S such that n* + n + 1 is prime.
are quantified statements. Since

P(): 2+141=73 is prime.  Is true,
P(3): 32 +3+1=13isprime. istrue,
P(5): 5% +5+1=31is prime.  is true,
P(7): 7 +7+1=>5Tisprime. isfalse,

it follows that ¥n € §, P(n) is false and 3n € S, P(n) is true. On the other hand, the
Statement

O 323 isprime.
is not a quantified statement, but Q is false (as 323 = 17 - 19 is not prime). é

Let P(x) be a statement for each x in some domain S. Recall that the negation of
Vx €8, P(x)is '
~Vx €S, P(x))=3x eS8, ~P(x).

and the negation of 3x € §, P(x) is
‘ ~@x €8, P(x)) =Vx € S, ~P(x).
Again, consider
D P(n): n®+n+ 1is prime.

from Example 7.1, which is a statement for each z in § = {1, 3,'5, 7}. The negation of
Vi€ S, P(n)is

e S, ~P(n): There exists n € S such that n2 + n + 1 is not prime.

is true as 7 € § but 72 + 7+ 1 = 57 is not prime. On the other hand, the negation of
dne S, Pn)is

Vn € §,~P(n): Ifn € S, then n? + n + 1 is not prime.

is false since, for example, 1 € S and 12 + 1 + 1 = 3 is prime.
In Chapter 2 we began a discussion of quantified statements containing two quan-
tifiers. The following example concerns two quantifiers.

Example 7.2 Consider

P(s,t): 2543 is prime.
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where s is a positive even integer and t is a positive odd integer. If we let S denote the
set of positive even integers and T the set of positive odd integers, then the quantified
statement

Ise S, It eT,Ps, 1)
can be expressed in words as

There exist a positive even integer s and a
positive odd integer t such that 2* + 3 is prime. 7.1

The statement (7.1) is true since
P2, 1): 2243 =7 is prime.
is true. On the other hand, the quantified statement
Vs e S, VeeT, P(s, 1)
can be expressed in words as

For every positive even integer s and every
positive odd integer t, 2° + 3' is prime. (7.2)

The statement (7.2) is false since
P(6,3): 25 +3° = 91 is a prime.
is false, as 91 = 7 - 13 is not a prime. é

Let P(s, ¢) be an open sentence, where the domain of the variable s is § and the
domain of the variable 7 is T. Recall that the negations of the quantified statements
ds €S, It e, Ps,t)andVs € S,Vr €T, P(s,t) are

~Eds eSS, I eT,P(s,1))y=VYs e S, VteT,~P(s, 1)
and
~VseS,VteT,P(s,t))y=3se 8,3t eT,~P(s,1).
Therefore, the negation of the statement (7.1) is
For every positive even integer s and every positive odd integer £, 2° + 3 is not prime.
which is a false statement. On the other hand, the negation of the statement (7.2) is

There exist a positive even integer s and a
positive odd integer ¢ such that 2° + 3¢ is not prime.

which is a true statement.

Quantified statements may also contain different kinds of quantifiers. For example, it
follows by the definition of an even integer that for every even integer 7, there exists an in-
teger k suchthatn = 2k. There is another mathematical symbol with which you should be
familiar. The symbol > denotes the phrase such that (although some mathematicians sim-
ply write s.t. for “such that”). For example, let S denote the set of even integers again. Then

YneS, dkeZ>n=2k - (7.3

Result 7.3

Proof
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states:

For every even integer n, there exists an integer k such that n = 2k.
This statement can be reworded as:

If n is an even integer, then n = 2k for some integer k.

If we interchange the two quantifiers in (7.3), we obtain, in words:

There exists an even integer n such that for every integer.k, n = 2k.
This statement can also be reworded as

There exists an even integer n such that n = 2k for every integer k.
This statement can be expressed in symbols as

dneS,YkelZ n=2k (7.4)

Certainly, the statements (7.3) and (7.4) say something totally different. Indeed, (7.3) is
true and (7.4) is false.
Another such example of this is

For every real number x, thére exists an integer n such that |x —n| < 1. (1.5)
This statement can also be expressed as ‘
If x is a real number, then there exists an integer n such thaf [x —n| < 1.
In order to state (7.5) in symbols, let
Px,n): |x —n| <1

where the domain of the variable x is R and the domain of the variable 7 is Z. Thus (7.5)
can be expressed in symbols as

Vx e R,3n € Z, P(x;n).

The statement (7.5) is true, as we now verify.

For every real number x, there exists an integer n such that |x —n| < 1.

Let x be areal number. If we let n = [x7, where, recall, [x] denotes the smallest integer
that is greater than or equal to x, then [x —n| = {x — [x]| = [x] —x < L. L]

Another example of a quantified statement containing two different quantifiers is

There exists a positive even integer m such
that for every positive integer n, |+ — 1| < (7.6)

m ol =2
Let § denote the set of positive even integers and let

P(m,n) ‘ -1

wals

o~

where the domain of the variable m is S and the domain of the variable # is N. Thus,
(7.6) can be expressed in symbols as

Im e S,Yn e N, P(m, n).

The truth of the statement (7.6) is now verifed.
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Result 74 There exists a positive even integer m such that for every positive integer n

’

1

Proof  Consider m = 2. Let n be a positive integer. We consider three cases.

Result 7.5

CaseLn:l.Thenli—H:I%-—H:%
CdseZ‘n:Z.ThenM7%|:1%—%|:0<%.
Case3.nZS‘Then}%~%]:]%—ﬂ=%f%<%.

Thus | ~ 1| < I foreveryn e N. 5

Let P(s, t) be an open senience, where the domain of the variable s is § and the
domain of the variable ¢ is 7. The negation of the quantified statement Vs € S, 3 ¢
T,P(s,t)is

~VseS,dteT,P(s,t)=3s € S, ~@3t €T, P(s, 1))
=3seS,VireT,~P(s,1);
while the negation of the quantified statement 3s € §,Vr € T, P(s, t)is
~Is e S, Vi €T, P(s,1)) =Vs e S, ~VYteT,P(s, 1)
=Vse S, 3t eT, ~P(s, 1)
Consequently, the negation of the statement (7.5)is
There exists a real number x such that for every integer n, |x —n| > 1.
This statement is therefore false. The negation of the statement (7.6) is

For every positive even integer m, there exists
a positive integer n such that |5~ L > 1.

This too is false.
Let’s consider the following statement, which has more than two quantifiers.

For every positive real number e, there exists a positive real number d
such that for every real number x, |x| < d implies that |2x| < e. (7.7)

If we let
Px,d): x| <d and Q(x,e): [2x] < e

where the domain of the variables e and d is R* and the domain of the variable x is R,
then (7.7) can be expressed in symbols as

Ve ¢ R*,3d e Rt,Vx e R, P(x,d)= Q(x,e).
The statement (7.7) is in fact true, which we now verify.

For every positive real number e, there exists a positive real number d such that if x is
a real number with |x| < d, then [2x] < e.

Proof
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Let ¢ be a positive real number. Now choose d = e/2. Let x be a real number with
|x} <d =e/2. Then
[2x] = 2/x] < 2 (%) —e,

as desired. &

7.3 Testing Statements ]

Example 7.6

Strategy

Solution of
Example 7.6

Example 7.7

Strategy

Solution

Proof

We now turn our attention to the main topic of this chapter. For a given statement whose
truth value is not provided to us, our task is to determine the truth or falseness of the
statement and, in addition, show that our conclusion is correct by proving or disproving
the statement, as appropriate.

Prove or disprove: There is a real number solution of the equation
422+ 1=0

Observe that x® and x” are even powers of x. Thus if x is any real number, then x& > 0
and x> > 0, so 2x2 > 0. Adding 1 to x® + 2x? shows that x5 + 2x? -+ I > 1. Hence it
is impossible for x° + 2x% + 1 to be 0. These thoughts lead us 1o our solution. We begin
by informing the reader that the statement is false, so the reader knows what we will be
trying to do. é

The statement is false. Let x € R. Since x® > 0 and x* > 0, it follows that x6 + 2x2 +
1> Tlandsoxf42x% +1£0. &

For the preceding example, we wrote “Strategy” rather than “Proof Strategy” for two
reasons: (1) Since the statement may be false, there may be no proof in this case. (2) We
are essentially “thinking out loud”, trying to convince ourselves whether the statement
is true or false. Of course, if the statement turns out to be true, then our strategy may
very well turn into a proof strategy. :

Prove or disprove: Let x, y, z € L. Then two of the integers x, y, and z are of the same
parity.”’

For any three given integers, either two are even or two are odd. So it certainly seems
as if the statement is true. The only question appears to be whether what we said in the
preceding sentence is convincing enough to all readers. We try another approach. ¢

The statement is true.

Consider x and y. If x and y are of the same parity, then the proof is complete. Thus
we may assume that x and y are of opposite parity, say x is even and y is odd. If z is
even, then x and z are of the same parity; while if z is odd, then y and z are of the same

parity. E

Of course, the preceding proof could have been done by cases as well.
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Strategy

Solution of
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Result 7.9

Proof

Example 7.10

Strategy

Solution of
Example 7.10

Proof

Example 7.11

Strategy
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Prove or disprove: Let A, B, and C be sets. If A x C = B x C, then A = B.

The elements of the set A x C are ordered pairs of elements, namely, they are of the
form (x, y), where x € Aand y € C. Let (x, y)) e Ax C.If Ax C = B x C, then it
follows that (x, y) must be an element of B x C as well. This saysthatx € Bandy e C,
Conversely, if (x, y) € B x C, then (x, y) € A x C, which implies that x € A as well,
These observations certainly seem to suggest that it should be possible to show that
A = B under these conditions. However, this argument depends on A x C containing
an element (x, y). Could it happen that A x C contains no elements? If A or C is
empty, this would happen. However, if C # @ and A x C = ), then A must be empty,
But B x C = A x C = ¢ would mean that B must also be empty and so A = B. This
suggests a different response. é

The statement is false. Let A = {1}, B ={2},and C =%. Then Ax C = B x C =,
but A # B. Hence these sets A, B, and C form a counterexample., [

In some instances, we might consider modifying a false statement so that the revised
statement is true. Our preceding discussion seems to suggest that if the set C were required
to be nonempty, then the statement would have been true.

Let A, B, and C be sets, where C # 0. If Ax C = B x C,then A = B.

Assume that A x C = B x C. Since C # {J, the set C contains some element c. Let
x € A Then (x,c) € A x C. Since Ax C =B x C, it follows that (x,¢) € B x C.
Hence x € B and so A C B. By a similar argument, it follows that B € A. Thus
A =B. E

Prove or disprove: There exists a real number x such that x* < x < x2.

If there is a real number x such that x> < x < x2, then this number is certainly not
0. Consequently, any real number x with this property is either positive or negative. If
x > 0, then we can divide x> < x < x% by x, obtaining x? < 1 < x. However, if x > 1,
thenx? > 1. Therefore, there is no positive real number x for which x3 < x < x2. Hence
any real number x satisfying x* < x < x2 must be negative. Dividing x> < x < x2 by
x givesus x> > 1 > x orx < 1 < x2. Experimenting with some negative numbers tells
us that any number less than —1I has the desired property. é

The statement is true.

Consider x = —2. Then x> = —8 and x? = 4. Thus x3 < x < x2. B

Prove or disprove: For every positive irrational number b, there exists an irrational
number a such thatQ < a < b.

We begin with a positive irrational number b. If this statement is true, then we must
show that there is an irrational number a such that 0 <a < b. If we leta = b /2, then

Solution of
Example 7.11

Proof

Example 7.12

Strategy

Solution of
Example 7.12

Proof

Example 7.13

Sirategy

Solution of
Example 7.13
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certainly 0 < @ < b. The only question is whether b/2 is necessarily irrational. We have
seen, however, that b/2 is irrational (in Exercise 5.13). é

The statement is true.

Let b be a positive irrational number. Now leta = b/2. Then0 < a < banda isirrational
by Exercise 5.13. ]

Prove or disprove: Every even integer is the sum of three distinct even integers.

This statement can be reworded in a variety of ways. One rewording -of this statement
is: If n is an even integer, then there exist three distinct even integers a, b, and ¢ such
that n = @ + b + ¢. What this statement does not say is that the sum of three distinct
even integers is even; that is, we do not begin with three distinct even integers and show
that their sum is even. We begin with an even integer n and ask whether we can find
three distinct even integers a, b, and ¢ such that n = a + b + ¢. This is certainly true
for n = 0 since 0 = (=2) + 0 +2. It is also true for n = 2 since 2 = (-2) + 0+ 4. If
n =4, then 4 = (—2) + 2 + 4. This last example may suggest a proof in"general. For
every even integer n, we can write 7 = 2 + (=2) + n. Certainly, #, 2, and —2 are even.
But are they distinct? They are not distinct if n = 2 or n = —2. This provides a plan for
a proof. T é

The statement is true.

Let n be an even integer. We show that # is the sum of three distinct even integers by
considering the following three cases.

Case 1. n = 2. Observe that 2 = (=2) + 0+ 4.
Case 2. n = —2. Observe that =2 = (—4) + 0+ 2.
Case3.n#2,—2.Thenn=2+(-2)+n. . C]

Prove or disprove: Let k € N.If k* + 5k is odd, then (k + 1)* + 5(k + 1) is odd.

One idea that might occur to us is to assume that k? + Sk is an odd integer, where k € N,
and see if we can show that (k + 1)? 4+ 5(k + 1) is also odd. If k2 + 5k is odd, then we
can write k> + 5k = 2¢ + 1 for some integer £. Then

(k+ 12+ 50k +1) = k> + 2k + 1+ 5k + 5 = (k> + 5k) + 2k +6)
=0+ 1)+ @k +6)= (20 +2%+6)+1
=2 +k+3)+1,

which is an odd integer and we have a proof. é

The statement is true.
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Proof

Example 7.14

Strategy

Solution of
Example 7.14

Assume that k> + 5k is an odd integer, where k € N. Then k? + 5k = 2£ + 1 for some
integer £. Hence

(k+ 1P +5(k+1) = k> + 2k 4+ 1+ 5k + 5 = (k* + 5k) + 2k +6)
=2+ +Qk+6)=QL+2%+6)+1
=204+ k+3)+1.
Since £ -+ k + 3 is an integer, (k + 1)* + 5(k + 1) is an odd integer. ]

Prove or disprove: For every positive integer n, n> + 5n is an odd integer.

It seems like the reasonable thing to do is to investigate 7> + 5n for a few values of 7.
Forn = 1, we have n2 +5n = 1+ 5 - 1 = 6. We have already solved the problem! For
n =1, n%+ 5nis not an odd integer. We have discovered a counterexample. é

The statement is false. Forn = 1, n2 4+ 51 = 1 +5- 1 = 6, which is even. Thus n = 1
is a counterexample. é

Looking at Examples 7.13 and 7.14 again, we might be wondering what exactly is
going on. Certainly, these two examples seem to be related. Perhaps this thought may
occur to us. For each positive integer n, let

P(n) : The integer n? + Sn is odd.
and consider the (quantified) statemnent
For every positive integer n, n + Sn is odd.

or in symbols,
Vn e N, P(n). (7.8)

We might ask whether (7.8) is true. Because of the domain, a proof by induction seems
appropriate. In fact, the statement in Example 7.13 is the inductive step in an induction
proof of (7.8). By Example 7.13, the inductive step is true. On the other hand, the
statement (7.8) is false, as n = 1 is a counterexample. This emphasizes the importance
of verifying both the basis step and the inductive step in an induction proof. Returning to
Example 7.13 once again, we can show (using a proof by cases) that k> + 5k is even for
every k € N, which would provide a vacuous proof of the statement in Example 7.13.

In this chapter we have discussed analyzing statements, particularly understanding
statements, determining whether they are true or false, and proving or disproving them.
All of the statements that we have analyzed were provided to us. But how do we obtain
statements to analyze for ourselves? This is an important question and concerns the
creative aspect of mathematics — how new mathematics is discovered. Obviously, there
is no rule or formula for creativity, but creating new statements often comes from studying
old statements.

Let’s illustrate how we might create statements to analyze. In Exercise 4.6 in
Chapter 4, you were asked to prove the following:

Leta e Z.If 3 | 2a, then 3 | a. N (7.9)
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What other statements does this suggest? For example, is its converse true? (The answer
is yes, but the converse is not very interesting.) Is (7.9) true if 3 and 2 are interchanged?
What integers can we replace 2 by in (7.9) and obtain a true statement? That is, for which
positive integers k is it true that if 3 | ka, then 3 | a? Of course, this is true for & = 1. And
we know that it’s true for & = 2. It is not true for k = 3; that is, it is not true that if 3 | 3a,
then 3 | a. The integer a = 1 is a counterexample. On the other hand, it is possible to
prove that if 3 | 4a, where a € Z, then 3 | a. What we are attemptmg to do is to extend
the result in (7.9) so that we have a result of the type:

Leta € Z.1f3 | ka, then 3 | a. (7.16)

for a fixed integer k greater than 2. We would like to find a set S of positive mtegers such
that the following is true: ) B

Leta € Z.If 3 | ka, where k € S, then3 | a. (7.11)

Surely 2 € S. Result (7.9) then becomes a special case and a corollary of (7.11). For
this reason (7.11) is called a generalization of (7.9). Ideally, we would like S to have
the added property that (7.11) is true if k € S, while (7.11) is false if k"¢ S. We are thus
seeking a set S of integers such that the following is true:

Leta € Z. Then 3 | ka implies that 3 | e if and only if k € § . !

If we were successful in finding this set S, then we might start all over agam by replacmg
3 in (7.9) by some other positive integer.

In mathematics it is often the case that a new result is obtained by looking at an old
result in a new way and extending it to obtain a generalization of the old result. Hence
it frequently happens that: Today’s theorem becomes tomorrow’s corollary.

L

7.4 A Qiliz of “Preve or Disprove” Problems J

Quiz

We conclude this chapter with a quiz. Solutions are given following the quiz.

Prove or disprove each of the following statements.

IS (=N P R SO SR N

. If n is a positive integer and s is an irrational number, then /s is an irrational number.
. For every integer b, there exists a positive integer @ such that |a — |b}] < L.

. If x and y are integers of the same parity, then xy and (x + y)? are of the same parity.
. Leta,b e Z.If6 fab,theneither (1)2 faand3 fbhor(2)3 faand2 fb.

. For every positive integer 7, 2% > 4™,

IfA,B,and C are sets, then (A — BY)U(A—-C)=A—-(BUC).

. Letn e N.IfF(n + 1)(n +4) is odd, then (n + 1)(n + 4) + 3" is odd.

. (a) There exist distinct rational numbers a and b such that (@ — 1)(b — 1) = 1.

(b) There exist distinct rational numbers @ and b such that % + % =1
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9. Leta, b, c € Z.If every two of a, b, and ¢ are of the same parity, then a + b + c is even.
10. If n is a nonnegative integer, then 5 divides 2 - 4 + 3 - 9.

Solutions for Quiz

1. The statement is true.

Proof  Assume, to the contrary, that there exist a positive integer n and an irrational number s such that » /s
is a rational number. Then n/s = /b, where @, b € Z and a, b # 0. Therefore, s = nbj/a, where nb,a € 7
and a # 0. Thus s is rational, producing a contradiction. B

2. The statement is true.
Proof Letbh e Z. Nowleta =|b|+ 1. Thusa € Nand |a — ||| = (bl + 1) — |bl| = 1. B

3. The statement is false. Observe that x = 1 and y = 3 are of the same parity. Then xy = 3 and (x + y)* = 16
are of opposite parity. Hence x = 1 and y = 3 produce a counterexample.

4. The statement is false. Leta = b = 2. So ab = 4. Hence 6 [ ab. Since 2 | aand 2 | b, both (1) and (2) are
false. Thus @ = b = 2 produces a counterexample.

5. The statement is false. For n = 3,2%" = 2% = 256 while 4™ = 43' = 45 = 4096, Thus 2%’ < 4% and so n = 3
is a counterexample. é

6. The statement is false. Let A = {1,2,3}, B = {2},and C = {(3). Thus BUC = {2,3}. Hence A — B = {1, 3},
A—C={1,2},and A — (BUC) = {1}. Therefore, (A — BYU(A —C) ={1,2,3} £ A — (BUC). So
A ={1,2,3}, B= {2}, and C = {3} constitute a counterexample. é

7. The statement is true.
Proof Letn € Nand consider (n + 1)(n 4 4). We show that (n + 1)(n + 4) is even, thereby giving a
vacuous proof.

There are two cases.
Case 1. n is even. Then n = 2k for some integer k. Thus

(n+ 1)n +4) = 2k + D2k + 4) = 22k + 1)(k + 2).

Since (2k + 1)(k 4 2) € Z, it follows that (n + 1)(n + 4) is even.
Case 2. n is odd. Then n = 2£ + 1 for some integer £. Thus

(n+1)(n44) = (20 +2)(20 + 5) = 2(£ + 1)(2¢ + 5).
Since (£ + 1)(2¢ + 5) € Z, it follows that (n + 1)(n + 4) is even. ]

8. (a) The statement is true.

Proof Leta=3andb=%.Then(a——l)(b—l):Z(%):l. &

(b) The statement is true.
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Proof Leta= % and b = —1. Then

Proof Analysis  Observe that if @ and b are two (distinct) rational numbers that satisfy % + % = 1, then
%Ifb—b = landsoa+ b =ab. Thus ab —a — b = 0, which is equivalentto ab —a — b+ 1 = 1 and so
(a — 1)(b — 1) = 1. Therefore, two distinct rational numbers a and b satisfy

@-Db-H=1
if and only if @ and b satisfy
1 1
4o =1
a + b
if and only if a and b satisfy

a+b=ab. ) é

9. The statement is false. Leta = 1, b = 3, and ¢ = 57Then every two of a, b, and ¢ are of the same parity; yet
a+b+cisodd Hence e =1, b = 3, and ¢ = 5 produce a counterexample. o

10. The statement is true.

Proof We proceed by induction. Forn =0,2-4" +3.9" =2.14+3-1=5. Thus 5| (2- 40 +3-9%) and
the statement is true for n = 0. :
Assume that 5 | (2 - 4% + 3 - 9%) for a nonnegative integer k. We show that 5 | (2 - #+1 43 . 9%+1)_ Since
51(2-4% 4395, it follows that 2 - 4* 4+ 3 . 9% = 5x for some integer x. Thus 2 - 4° = Sx — 3 . 9*. Hence
244 1398 = 402 4%) 1 3. 941

=4(5x —3-95) 3.9k}

=20x — 129 4+27.9*

=20x +15-9° = 5(4x +3-95).
Since 4x +3 - 9* € Z, it follows that 5 | (2 - 47! + 3 . 9¥™1), By the Principle of Mathematical Induction, 5
divides 2 - 4" 4 3 - 9" for every nonnegative integer n. =

EXERCISES FOR CHAPTER 7

Section 7.2: Revisiting Quantified Statements
7.1. (a) Express the following quantified statement in symbols:
For every odd integer n, the integer 3n + 1 is even.
(b) Prove that the statement in (a) is true.
7.2. (a) Express the following quantified statement in symbols:
There exists a positive even integer n such that 3n + 22 is odd.
(b) Prove that the statement in (a) is true.
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7.3. (a) Express the following quantified statement in symbols:
For every positive integer n, the integer n"~% is even.
(b) Show that the statement in (a) is false.
7.4. (a) Express the following quantified statement in symbols:
There exists an integer n such that 3n® — Sn + 1 is an even integer.
(b) Show that the statement in (a) is false.

7.5. (a) Express the following quantified statement in symbols:
For every integer n > 2, there exists an integer m such that n < m < 2n.
(b) Prove that the statement in (a) is true.

7.6. (a) Express the following quantified statement in symbols:
There exists an integer n such that m(n — 3) < 1 for every integer m.
(b) Prove that the statement in (a) is true.

7.7. (a) Express the following quantified statement in symbols:
For every integer n, there exists an integer m such that (n — 2)(m — 2) > 0.
(b) Express in symbols the negation of the statement in (a).
(c) Show that the statement in (a) is false.

7.8. (a) Express the following quantified statement in symbols:
There exists a positive integer n such that —nm < O for every integer m.
(b) Express in symbols the negation of the statement in (a).
(c) Show that the statement in (a) is false.

7.9. (a) Express the following quantified statement in symbols:

For every positive integer a, there exists an integer b with |b| < a such that |bx| < a for every real
number x.

(b) Prove that the statement in (a) is true.

7.10. (a) Express the following quantified statement in symbols:
For every real number x, there exist integers a and b suchthata < x <bandb —a = 1.
(b) Prove that the statement in (a) is true.

7.11. (a) Express the following quantified statement in symbols:
There exists an integer n such that for two real numbers x and y, x* + y* > n.
(b) Prove that the statement in (a) is true.

7.12. (a) Express the following quantified statement in symbols:

For every even integer a and odd integer b, there exists a rational number c such that eithera < c <b
orb<c<a.

(b) Prove that the statement in (a) is true.
7.13. (a) Express the following quantified statement in symbols:
There exist two integers a and b such that for every positive integer n, a < % <b.
(b) Prove that the statement in (a) is true.
7.14. (a) Express the following quantified statement in symbols:
There exist odd integers a, b, and ¢ such thata +b + ¢ = 1.
(b) Prove that the statement in (a) is true.
7.15. (a) Express the following quantified statement in symbols:
For every three odd integers a, b, and c, their product abc is odd.
(b) Prove that the statement in (a) is true.
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7.16. Consider the following statement.

R - There exists a real number L such that for every positive real
number e, there exists a positive real number d such that
if x is a real number with |x| < d, then [3x — L| < e.
(@) Use P(x,d): x| <d and Q(x,L,e): {3x — L{ < e to express the statement R in symbols.
(b) Prove that the statement R is true.

Section 7.3: Testing Statements

7.17. Forthe set S = {1, 2, 3,4}, let )
P(n) : 271 4 (—1)"F1 (27 4+ 2%~ 1) is prime. and Q(n) : 2n + 3 is prime.

Prove or disprove: Yn € S, P(n) = Q(n).
7.18. Let P(n) 1 n® + 3n + 1 is even. Prove or disprove:
(@) VkeN, P(ky = P(k+1).
(b) Vn e N, P(n). .
For Exercises 7.19-7.67, the directions aré: Prove or‘ disprove.
7.19. Letx € Z. If 4x + 7 is odd, then x is even.
7.20. For every nonnegative integer 7, there exists a nonnegative integer & such that £ < 7.
7.21. Bvery even integer is the sum of two odd integers.
722. ¥x,y,z € Zsuch that x + y + z = 101, then two of the integers x, y, and z are of opposite parity.
7.23. For every two sets A and B, (AU B) — B = A.
7.24. Let Abeaset. If AN B =  for every set B, then A = 0.
7.25. There exists an odd integer, the sum of whose digits is even, and the product of whose digits is odd.
7.26. For every nonempty sct A, there exists a set B such that AUB=10.
7.27. If x and y are real numbers, then |x + y| = {x| -+ [y}

7.28. Let S be a nonempty set. For every proper subset A of S, there exists a nonempty subset B of S such that
AUB=Sand ANB =0.

7.29. There exists a real number x such that x* < x < x”.

7.30. There exists an integer a such that a - ¢ > 0 for every integer .

7.31. There exist real numbers a, b, and ¢ such that ’;‘T'(’ = %4

7.32. The equation x> + x* — 1 = 0 has a real number solution between x = O and x = 1.

7.33. There is a real number solution of the equation x* + x> + 1 = 0.

734. Ifx,y € Rand x* < y2, thenx < y.

7.35. If x € Z, then 5% = .

7.36. Let Aand B besets. f A—~B =B —A,then A— B =0.
737. Letx,y,z € Z.1fz = x — y and z is even, then x and y are odd.

7.38. For every positive rational number b, there exists an irrational number a with0 <a < b.
7.39. Let A be a set. If A — B = @ for every set B, then A = @.
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7.40. Every odd integer is the sum of three odd integers. ] 7.69. (a) Show that the following statement is false: Every positive integer is the sum of two distinct positive odd
integers.

7.41. For every nonempty set A, there exists a set B such that |[A — B| = |B — Al . )
(b) Make a small addition to the statement in (&) so that the new statement is true. Prove the new statement.

742. Let A,B,andC besets. f ANB=ANC,then B=C.

. . . 7.70. (a) Prove or disprove: There exist two distinct positive integers whose sum exceeds their product.
7.43. Letx,y,z € Z.If z = x + y and x is odd, then y is even and z is odd. @ P €Xist two distinct post 3 p!

(b) Your solution to (a) should suggest another problem to you. State and solve this new problem.
7.71. (a) Prove or disprove: If @ and b are positive integers, then Ja+b= Ja+ N
(b) Prove or disprove: There exist positive real numbers a and b such that v/a + b = /a + /b.
(c) Complete the following statement so that it’s true and provide a proof:
Leta,b € RT U {0}). Then v/a + b = /a + /b if and only if

7.72. In Exercise 4.6, you were asked to prove the statement

7.44. For every two rational numbers a and b with a < b, there exists a rational number r such thata < r < b.

7.45. For every rational number a /b, where a, b € N, there exists a rational number ¢/d, where ¢ and d are
positive odd integers, such that

0 a
< =< -
L b
7.46. Let Abeaset. If AU B # @ for every set B, then A # 0.

7.47. Every even integer is the sum of two even integers. P:letaeZ.1f3|2a,then3|a.

7.48. There exists a real number solution of the equation x> +x + 1 = 0. (a) Prove that the converse of P is true. Now state P and its converse in a more familiar manner.

7.49. Let A, B,C,and D be sets with A € C and B € D. If A and B are disjoint, then C and D are disjoint. (b} Is the statement obtained by interchanging 2 and 3 in P true?

7.50. Every nonzero rational number is the product of two irrational numbers. (c) Find a set S of positive integers with 2 € S and |S| = 3 such that the following is true:

7.51. There exist an irrational number @ and a rational number b such that a” is irrational. Leta € Z.13 | ka, where k € S, then 3 | a.

7.52. For every odd integer g, there exist integers b and ¢ of opposite parity such that a + b = c. Prove this generalization of the statement P.

7.53. Let S be a set containing at least two elements. For every proper nonempty subset A of S, there exists a (d) Tn Exercise 4.50, it was shown for integers a and b that 3 | ab if and only if 3 { @ or 3 | b. How can this
proper nonempty subset B of § such that A and B are disjoint. be used to answer (c)? )

7.54. Let A and B be sets. If AU B # @, then both A and B are nonempty. 7.73. In Exercise 5.17 in Chapter 5, you were asked to prove that /2 ++/3 is irrational.

7.55. For every two sets A and B, P(A U B) = P(A) UP(B). ) (a) Prove that v/2 + +/5 is irrational.

7.56. Let S be a nonempty set and let T be a collection of subsets of S. If AN B s @ for all pairs A, B of (b) Determine, with proof, another positive integer a such that /2 + /a is irrational.
elements of T, then there exists an element x € S suchthatx € CforallC e T. (c) State, and prove, a generalization of the result in (a).

7.57. Let A, B, and C be sets. Then AU(B —C) = (AU B) — (AUC). 7.74. In Exercise 3.20, yéu were asked to prove the statement:

7.58. Leta, b,c € Z. ¥ ab, ac, and bc are even, then a, b, and ¢ are even. P lfneZ thenn® — nis even.
7.59. Leta, b, c € Z. Then at least one of the numbers g + b, a +c, and b + c is even. R
7.60. For every two integers a and c, there exists an integer b such thata + b = c. This can be restated as:

7.61. For every two positive integers a and ¢, there exists a positive integer b such thata + b = c. P:IfneZthen2|(#n —n).

7.62. Th ist three distinct integers a, b, and h that a® = b°. . .
ere exist thee istnet ttegers , 0, and ¢ such that (a) Find a positive integer a # 2 such that

7.63. Letn € Z. If n® + n is even, then # is even.
Ifn € Z,thena | (n® —n).

7.64. Every integer can be expressed as the sum of two unequal integers.
is true and prove this statement.

(b) Find a positive integer k£ # 3 such that
Ifn e Z then2 | (n* —n).

7.65. There exist positive integers x and y such that x* — y* = 101.

7.66. For every positive integer 1, n*> — n + 11 is a prime.

7.67. For every odd prime p, there exist positive integers @ and b such that a®> — b> = p.
is true and prove this statement.

ADDITIONAL EXERCISES FOR CHAPTER 7 (c) Ask a question of your own dealing with P and provide an answer.

7.75. Let A denote the set of odd integers. Investigate the truth (or falseness) of the following statements.

7.68. (a) Show that the following statement is false: For every natural number x, there exists a natural pumber y (a) Forallx,y € 4,2 &2+ 3y,
such that x < y < x2. (b) There exist x, y € A such that 4 | (x? + 3y?).
(b) Make a small addition to the statement in (a) so that the new statement is true. Prove the new statement. (c) Forallx,y € A, 4| (x% 4 3y?).
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(d) There exist x, y € A such that 8 | (x? 4 3y?).
(e) There exist x, y € A such that 6 | (x? + 3y2).
(f) Provide a related statement of your own, and determine whether it is true or false.

5. Evaluate the proof of the following statement.

Result Every even integer can be expressed as the sum of three distinct even integers.

Proof Let n be an even integer. Since n + 2, n — 2, and —n are distinct even integers and
n=(n+2)+ (1 —2)+(-n),

the desired result.follows. L

(a) Prove or disprove the following: There exist four positive integers a, b, ¢, and d such that
@+ 4 =d>

(b) Prove or disprove the following: There exist four distinct positive integers a, b, ¢, and d such that
a*+ b+ =d>

(c) The problems in (a) or (b) above should suggest another problem that you can solve. State and solve
such a problem.

(d) The problems in (a) or (b) above should suggest a conjecture to you (that you probably cannot solve).
State such a conjecture.

. It is known (although challenging to prove) that for every nonnegative integer m, the integer 8m + 3 can be

expressed as a® + b” + ¢ for positive integers @, b, and ¢.
(a) For every integer m with 0 < m < 10, find positive integers a, b, and ¢ such that 8m + 3 = a?+ b% + 2.

(b) Prove or disprove: If a, b, and c are positive integers such that @ + b2 + ¢ = 8m + 3 for some integer
m, then all of a, b, and ¢ are odd.

Equivalence Relations

here are many common examples of relations in mathematics. For instance, three
different ways that a real number x can be related to a real number y are:

Mx<y, @Qy=x*+1, orB)x=1y.
Three different ways that an intéger a can be related to an inréger b are:
(D) a | b, (2) a and b are of opposite parity, or (3) a = b (med 3).

In the area of geometry, three different ways that a line £ in 3-space can be related to
a plane I1 in 3-space are:

(1) £ lies on IT, (2) £ is parallel to IT, or (3) £ intersects IT in exactly one point.
Three different ways that a triangle T can be related to a triangle 7' are:
(1) T is congruent to 7', (2) T is similar to 7', or (3) T has the same area as T".

"All of the preceding examples concern two sets A and B (possibly A # B), where
elements of A are related to elements of B in some manner. We now study this idea in a
more general setting.

8.1 Relations ]

Let A aiid: B be two sets. By a relation R from A to B we mean a subset of A x B. That
is, R is a set of ordered pairs, where the first coordinate of the pair belengs to A and the
second coordinate belongs to B. If (a, b) € R, then we say that a is related to b by R
and write ¢ R b.If (a, b) ¢ R, then a is not related to b by R and we write a B b. For
the sets A = {x, y,z} and B = {1, 2}, the set

R ={(x,2),( D, 2)} 8.0

is a subset of A x B and is therefore a relation from A to B. Thus, x R 2 (x is related
to 2)y and x R 1 (x is not related to 1). For two given sets A and B, it is always the case
that @ and A x B are subsets of A x B. Therefore, # and A x B are both examples of
relations from A to B. (Indeed, these are the extreme examples.) For the relation @, no
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element of A is related to any element of B, while for the relation A x B, each element
of A is related to every element of B. Simply said then, a relation from a set A4 to a set
B tells us which elements of A4 are related to which elements of B. Although this may
seem like a fairly simple idea, it is very important that we have a thorough understanding
of it.

Let R be a relation from A to B. The domain of R, denoted by dom R, is the subset
of A defined by

domR ={acA: (a,b)c R forsomeb € B}
while the range of R, denoted by ran R, is the subset of B defined by
ranR ={b e B: (a,b) € R forsomea € A).

Hence dom R is that set of elements of A that occur as first coordinates among the
ordered pairs in R, and ran R is the set of elements of B that occur as second coordinates
among the ordered pairs in R. The domain and range of the relation R given in (8.1) are
dom R = {x, y} and ran R = {1, 2}. The reason that z ¢ dom R is because there is no
ordered pair in R whose first coordinate is z.

By a relation on a set A, we mean a relation from A to A. That is, a relation
on a single set A is a collection of ordered pairs whose first and second coordinates
belong to A. Therefore, {(1,2), (1, 3), (2, 2), (2, 3)} is an example of a relation on the
set A={1,2,3,4}.

If A= {1, 2}, then

AxA={1,1),(1,2),(2,1),(2,2).

Since [A x A| = 4, the number of subsets of A x A is 2¢ = 16. However, a relation on
A is, by definition, a subset of A x A. Consequently, there are 16 relations on A. Six of
these 16 relations are

2.2} (L D, (1,2}, {(1,2), @, DL (L, 1), (1, 2), (2, 2)}, 4 x A.

[

8.2 Properties of Relations j

For a relation defined on a single set, there are three properties that a relation may
possess and which will be of special interest to us. A relation R defined on a set A is
called reflexive if x R x for every x € A. That is, R is reflexive if (x, x) € R for every
x € A.Let S = {a, b, ¢} and consider the following six relations defined on S:

Ry ={(a,b), (b, a), (c,a)}
Ry = {{a, b), (b, b), (b, 0), (¢, b). (¢, c)}
Ry = {(a,a), (a, ¢), (b, b), (¢, @), (c, )}
Ry ={(a, ), (a, b), (b, b), (b, ), (a, c)}
Rs = {(a, a), (a, b)}
R = {(a, b), (a, c)}. ’
The relation R is not reflexive since (a,a) ¢ Ry, for example. Since (a,a) ¢ Ry, it

follows that R; is not reflexive either. Because (a, a), (b, b), (c, ¢) € Rs, the relation R3
is reflexive. None of the relations Ry, Rs, Rg is reflexive. .
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A relation R defined on a set A is called symmetric if whenever x R y.theny R x
forallx, y € A. Hence for a relation R on A to be “not symmetric”, there must be some
ordered pair (w, z) in R for which (z, w) ¢ R. Certainly, if such an ordered pair (w, z)
exists, then w # z. The relation Ry 1s not symmetric since (¢, @) € Ry but (a,c) ¢ R,.
Notice that (a, b) € R, and (b, @) € Ry, but this does not mean that R, is symmetric.
Recall that the definition of a symmetric relation R on a set A says.that whenever x R y,
theny R x forall x, y € A. '

The relation Rj3 is symmetric, however, since both (a, c) and (c, a) belong to Rs.
None of the ordered pairs (a, a), (b, b), (c, ¢) in R are relevant as to whether Rj3 is
symmetric. None of the relations R,, R4, Rs, Rg is symmetric. . g

A relation R defined on a set A is called transitive if whenever x R yandy R z,
then x R z, for all x, ¥,z € A. Notice that in this definition, it is not required that x, y,
and z be distinct. Hence for a relation R on A to be “not transitive”, there must exist
two ordered pairs («, v) and (v, w) in R such that (i, w) ¢ R.If this should occur, then
necessarily u 7 v and v # w (although perhaps u = w). For example, the relation R,
is not transitive since (a, b), (b, ¢) € Ry, but (a, ¢) ¢ Ry. Actually, R, is not transitive
either because (a, b), (b, @) € R but (a,a) ¢ R,. The example (counterexample) that
shows that R, is not transitive illustrates the fact that showing a relation is not transitive
may not be easy. All of the relations R3, Ry, Rs, Rg are transitive. Itis not always easy
to convince oneself that a relation /s transitive either. Let’s give a careful argument as to
why the relations Rs and Ry are transitive.

For Rs to be transitive, it is required that (x, z) belongs to Rs whenever (x,y) and
(¥, z) belong to Rs forall x, y, z € A. To verify that the transitive property holds in Rs,
we must consider a/l possible pairs of ordered pairs of the type (x, y) and ( ¥, z). We have
two choices for (x, y)in Rs, namely, (a, a) and (a, b), that is, x = g and y=a,orx =aq
and y = b. If (x, ¥) = (a,a), then y = a and so either . 2) = (a,a) or (y,2) = (a, b).
In the first case, we have

(a,a) € Rs and (a, a) € Rs,
and (x, z) = (a, a) belongs to Rs. In the second case,
(a,a) € Rs and (a, b) € Rs,

and (x, z) = (a, b) belongs to Rs. This example suggests (correctly!) that if (x, y) and
(3, 2) belong to some relation R and x = v, then certainly (x, z) € R. The same could
be said if y = z. Thus, when checking transitivity, we need only consider ordered pairs
(x, ¥) and (y, z) for which x # y and y # z. Suppose next that (x, y) = (a, b), so that
Y = b. Here there is no ordered pair of the type (y, z) inRs; that s, there is no ordered pair
of Rs whose first coordinate is . Thus, there is nothing to check when (x,y) = (a, b).
For Rs, there are only two possibilities for two ordered pairs of the type (x, y), (v, z)
and in each case, (x, z) € Rs. Thus Rs is transitive.

Let’s turn to Rg now. The relation R¢ does not contain two ordered pairs of the
type (x, y), (¥, z) since if (x, y) = (a, b), no ordered pair has b as its first coordinate;
while if (x, y) = (a, ¢), no ordered pair has ¢ as its first coordinate. Consequently, the
hypothesis of the transitive property is false and the implication “If (x, y) € Ry and
(3, z) € Re, then (x, z) € Ry.” is satisfied vacuously. Hence, Rg is transitive. Another
way to convince yourself that Rg is transitive is to think of what must happen if Rg
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is not transitive; namely, there must be two ordered pairs (x, y), (¥, z) in R such that
(x, z) ¢ Rs. But there are no such ordered pairs (x, y) and (y, z)!

In the preceding discussions, we have made use of an important point when testing
a relation for transitivity. It bears repeating here.

When we are attempting to determine whether a relation R is transitive and,
consequently, checking all pairs of the type (x, y) and (y, z), we need not consider
the situation where x = y or y = z.

In this case, the ordered pair (x, z) will always be present in R. If a relation R is not
transitive, then there must exist ordered pairs (x, y) and (y, z) in R, where x # y and
y # z, such that (x, z) is not in R. That is, (x, y) and (y, z) constitute a counterexample

* to the implication “If (x, y) € R and (y, z) € R, then (x, z) € R.” which is the definition

of R being transitive.

We already mentioned that relations occur frequently in mathematics. Let R be the
relation defined on the set Z of integers by @ R b if @ < b; that is, R is the relation
<. Since x < x for every integer x, it follows that x R x for every x € Z; that is, R is
reflexive. Certainly, 2 R 3 since 2 < 3. However, 3 > 2; so 3 R 2. Therefore, R is not
symmetric. On the other hand, it is a well-known property of integers that if @ < b and
b <c,thena < ¢. Therefore, if a R band b R ¢, thena R ¢. So R is transitive.

Another relation R we could consider on the set Z is defined by a R bif a # b. In
this case 1 ¥ 1 since 1 = 1. Consequently, this relation is not reflexive. If a and b are
integers such that a # b, then we also have b  a. So if a R b, then b R a. This says
that this relation is symmetric. Notice that 2 # 3 and 3 # 2, but 2 = 2. That is, 2 R 3
and 3 R 2, but 2 R 2. Therefore, R is not transitive.

The distance between two real numbers a and b is |a — b|. So the distance between
2and 4.5is |2 — 4.5] = | — 2.5| = 2.5. Define a relation R on the set R of real numbers
bya Rbif la — b} < 1,thatis, a is related to b if the distance between a and b is at most
1. Certainly, the distance from a real number to itself is 0, that is, |a —a| = 0 < 1 for
everya € R.Soa R a and R is reflexive. If the distance between two real numbers @ and
b is at most 1, then the distance between b and a is at most 1. In symbols, if | — b < 1,
then [b — a| = |a — b| < 1; thatis, ifa R b, then b R a. Therefore, R is symmetric. Now
to the transitive property. If a R b and b R ¢, is a R ¢? That is, if the distance between
a and b is at most 1 and the distance between b and ¢ is at most 1, does it follow that
the distance between a and c is at most 1? The answer is no. For example, 3 R 2 and
2 R tsince |3—2{ <1and |2~ 1] < 1. However, {3 — 1] =2. So 3 # 1 and R is not
transitive.

8.3 Equivalence Relations ]

Perhaps the most familiar relation that we have encountered in mathematics is the equals
relation. For example, let R be the relation defined on Z by a R b if a = b. For every
integer @, we have @ =a and so @ R a. If a = b, then b = a. Hence if a R b, then
bRa Also,ifa=bandb =c,thena =c.Soifa R band b R ¢, then a R c. These
observations tell us that the equals relation on the set of integers possesses all three of
the properties reflexive, symmetric, and transitive. This suggests the question of asking
what other relations (on the set Z or indeed on any set) have these same three properties
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possessed by the equals relation. These are the relations that will be our primary focus
in this chapter.

Acrelation R on aset A is called an equivalence relation if R is reflexive, symmetric,
and transitive. Of course, then, the equals relation R defined on Z byaRbifa =bisan
equivalence relation on Z. For another example, consider the set A = {1, 2, 3,4, 5, 6}
and the relation

R ={(1,1),(2.2),(3,3),4,4).(5,5),(6,6), (1,3), (1, 6); (6, 1), (6,3),
G 1,(3,6),(2,4,(4,2) 8.2)

defined on A. This relation has ali three of the properties reflexive, symmcmc and
transitive and is consequently an equivalence relation.

Suppose that R is an equivalence relation on some set A. If a € A, then a is related
to a since R is reflexive. Quite possibly, other elements of A are related to g as well. The
set of all elements that are related to a given element of A will turn out to be important
and, for this reason, these sets are given special names. For an equivalence relation R
defined on a set A and for a € A, the set

Mal={x€A: xRa}

consisting of all elements in A that are related to a, is called an equivalence class, in
fact, the equivalence class containing a since a € [a] (because R is reflexive). Loosely
speaking, then, [a] consists of the “relatives” of a. For the equivalence relation R defined
in (8.2), the resulting equivalence classes are

11=1{1,3,6}, [21=1{2,4}, [B1={1,3,6}, »
[41={2,4}, [51= {5}, [61 = {1,3, 6}. 8.3

Since [1] = [3] = [6] and [2] = [4], there are only three distinct equivalence classes in
this case, namely, [1], {2], and [5].

Let’s return to the equals relation R defined on Z by a R b if a = b and determine
the equivalence classes for this equivalence relation. Fora € Z,

lal={x€Z: xRal={xeZ: x=a}={a};

that is, every integer is in an equivalence class by itself.

As-another illustration, define a relation R on the set L of straight lines in the plane
by £3 R £ if either £; = £, (the lines coincide) or €; is parallel to £5. Since every line
coincides with itself, R is reflexive. If a line £, is parallel to a line £; (or they coincide),
then £, is parallel to £, (or they coincide). Thus R is symmetric. Finally, if £; is parallel to
£2 and £ is parallel to £3 (including the possibility that such pairs of lines may coincide),

‘then either £ is parallel to {3 or they coincide. Indeed, it may very well occur that €5 and

£, are distinct parallel lines, as are £, and £3, but £; and £3 coincide. In any case, though,
this relation is transitive. Therefore, R is an equivalence relation. Hence for £ € L, the
equivalence class

Bl={xel: xR} ={xeL: x=~¢orxis parallel to };

that is, the equivalence class [£] consists of £ and all lines in the plane parallel to £.
To describe additional examples of relations from geometry, let 7 be the set of all
triangles in a plane. For two triangles T and T’ in 7, define relations R; and R, on 7’ by
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T Ry T'if T iscongruentto T’ and T R, T'if T is similar to T’. Then both Ry and R; are
equivalence relations. For a triangle T and the relation Ry, [T is the set of triangles in T
that are congruent to T, while for R;, [T] s the set of triangles in 7 that are similarto 7',

The relation R defined on Z by x R y if |x| = |y] is also an equivalence relation,
In this case, for a € Z, the equivalence class [a] consists of the two integers a and —aq,
unless @ = 0, in which case [0] = {0}. We now consider an example that requires more
thought and explanation.

Avrelation R is definedon Z.by x R y ifx + 3y iseven. Then R is an equivalence relation,

Before proving this result, let’s be certain that we understand this relation. First,
notice that 5 R 7 'since 5+ 3 -7 = 26 is even. However, 8 R9since 8+4+3-9=35is
not even. On the other hand, 4 R 4 because 4 + 3 - 4 = 16 is even.

First we show that R is reflexive. Leta € Z. Then a + 3a = 4a = 2(2a) is even since
2a € Z. Therefore a R a and R is reflexive.

Next we show that R is symmetric. Assume thata R b. Thus a + 3b is even. Hence
a + 3b = 2k for some integer k. So @ = 2k — 3b. Therefore,

b+3a =b+3(2k —3b) = b+ 6k — 9b = 6k — 8b = 2(3k — 4b).

Since 3k — 4b is an integer, b + 3a is even. Therefore, b R @ and R is symmetric.
Finally, we show that R is transitive. Assume thata R b and b R ¢. Hence @ + 3b and
b+ 3careeven; soa + 3b = 2k and b + 3¢ = 2¢ for some integers k and £. Adding these
two equations, we obtain (@ + 3b) -+ (b + 3¢) = 2k +2£. So a + 4b + 3¢ = 2k + 24,
and a + 3¢ = 2k +2¢ — 4b = 2(k + £ — 2b). Since k + € — 2b is an integer, a + 3c is
even. Hence a R c and so R is transitive. Therefore, R is an equivalence relation. S

A few remarks concerning the preceding proof are in order. Recall that a relation R
defined on a set A is reflexive if x R x for every x € A. The reflexive property may also
be reworded to read: For every x € A, x R x, or: If x € A, then x R x. Hence when we
proved that R is reflexive in Result 8.1, we began by assuming that @ was an arbitrary
element of Z. (We’re giving a direct proof.) We were then required to show that @ + 3
is even, which we did. It would be incorrect, however, to assume that @ 4+ 3a is even or
that a R a. This, in fact, is what we want to prove. é

Since the relation defined in Result 8.1 is an equivalence relation, there are equiva-
lence classes, namely an equivalence class [a] foreach a € Z. Let’s start with 0, say. The
equivalence class [0] is the set of all integers related to 0. In symbols, this equivalence
class is

0l={xeZ: xR0} ={xeZ: x+3 0iseven}
={xeZ: xiseven} = {0, 42, +4, .. .};
that is, [0] is the set of even integers. It shouldn’t be difficult to see that if @ is an even
integer, say a = 2k, where k € Z, then

[al={xe€Z: xRa}={xe€Z: x+3aiseven)
={x€Z: x+3Q2k)iseven} = {x € Z: x + 6k is even]
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is also the set of even integers. On the other hand, the equivalence class consisting of
those integers related to 1 is

M={xeZ: xRl}={xeZ: x +3 - 1iseven}

={x €Z: x+3iseven} = (£1, £3,+5,.. },
which is the set of odd integers. In fact, if ¢ is an odd integer, then @ = 2¢ + 1 for some
integer £ and i
fal={xeZ: x+3aiseven} ={x € Z: x + 32 -+ 1) is even}
={xeZ: x+6£+3iseven) '

is the set of odd integers. Therefore, if ¢ and b are even, then [a] = [b] is the set of even
integers; while if @ and b are odd, then {a] = [b] is the set of odd integers. Hence there

are only two distinct equivalence classes, namely, [0] and [1], the sets of even and odd
integers, respectively. We will soon see that there is a good reason for this observation.

8.4 Properties of Equivalencé Glassesj

Theorem 8.2

Proof

You may have noticed that in the preceding examples of equivalence relations, we have
seen several situations where two equivalence classes are equal. It is possible to determine
exactly when this happens. S

Let R be an equivalence relation on a nonempty set A, and let a-and b be elements of
A.Then [a] = [b] if and only ifa R b.

Assume thata R b. We show that the sets [a] and [b] are equal by verifying that [a] < [b]
and.[b] C [a]. First, we show that [a] C [b]. Letx [a]. Thenx R q. Sincea R band R
is transitive, x R b. Therefore, x & [b] and so [a] € [b]. Next, let y € [b]. Thus, y R b.
Since a R b and R is symmetric, b R a. Again, by the transitivity of R, we have y R a.
Therefore, y € [a] and so [b] C [a]. Hence [a] = [b].

For the converse, assume that [a] = [b]. Because R is reflexive, a € [a]. But, since
[a] = [b], it follows that a € [b]. Consequently, a R b. ' =

According to Theorem 8.2 then, if R is an equivalence relation on a set A and g is
related to b, then the set [a] of elements of A related to @ and the set [b] of elements
of A related to b are equal, that is, [¢] = [b]. Because the theorem characterizes when
[a] = [b], we know that if a R b, then [a] # [b].

Let’s return once more to the equivalence relation defined in (8.2) on the set A =
{1,2,3,4,5,6} and the equivalence classes given in (8.3). We observed earlier that
[1} = [3] = [6]. Since every two of the integers 1,3, 6 are related to each other (according
to the definition of R), Theorem 8.2 tells us that the equality of [1], [3], and [6] is expected.
The same can be said of [2] and [4]. However, since (5,6) ¢ R, forexample, Theorem 8.2
tells us that [5] # [6], which is the case. Therefore, as we also observed earlier, there are
only three distinct equivalence classes, namely,

W=B1=06]={1,3,6), [20=[41={2.4}, [5]=1{5}. 8.4
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Theorem 8.3

Proof

Now, you might have noticed one other thing. Every element of A belongs to exactly one
equivalence class. This observation might remind you of a concept we discussed earlier.

Recall that a partition P of a nonempty set S is a collection of nonempty subsets
of § with the property that every element of § belongs to exactly one of these subsets;
that is, P is a collection of pairwise disjoint, nonempty subsets of S whose union is
S. Hence the set of the distinct equivalence classes in (8.4) is a partition of the set
A=1{1,2,3,4,5, 6}. We now show that this too is expected.

Let R be an equivalence relation defined on a nonempty set A. Then the set

P ={la] : ac A}

of equivalence classes resulting from R is a partition of A.

Certainly, each equivalence class [a] is nonempty since @ € [a], and so each element of
A belongs to at least one equivalence class. We show that every element of A belongs
to exactly one equivalence class. Assume that some element x of A belongs to two
equivalence classes, say [a] and [#]. Since x € [a] and x € [b], it follows that x R @ and
x R b. Because R is symmetric, a R x. Thus a R x and x R b. Since R is transitive,
a R b. By Theorem 8.2, it follows that [a] = [b]. So any two equivalence classes to
which x belongs are equal. Hence x belongs to a unique equivalence class. C

In the proof of Theorem 8.3, we were required to show that each element x € A
belongs to a unique equivalence class. During this proof, we assumed that x belongs
to two equivalence classes [a] and [b]. Observe that we made no assumption whether
[a] and [b] are distinct. Later we learned that [a] = [b]; so x can only belong to one
equivalence class. With a very small change, we could have reached the same conclusion
by adifferent proof technique. We could have said: Assume, to the contrary, that x belongs
to two distinct equivalence classes [a] and [b]. By the same argument as above, we can
show that [a] = [b]. However, now, this produces a contradiction, and we have just given
a proof by contradiction.

According to Theorem 8.3 then, whenever we have an equivalence relation R defined
on anonempty set A, a partition of A into the associated equivalence classes of R results.
Perhaps unexpectedly, the converse is also true. That is, if we are given a partition of
A, then there is a corresponding equivalence relation that can be defined on A, whose
resulting equivalence classes are the elements of the given partition. For example, let

P ={{1,3,4},{2,7}, {5, 6}

be a given partition of the set A = {1,2, 3,4, 5, 6, 7). (Notice that every element of A
belongs to exactly one subset in P.) Then
R={1,1),1,3),(14,2.2,2,7,3,1,3,3), 3.4, 41,
C(4,3),(4,4),(5.5),(5,6),(6,5),(6,6),(7,2),(7, 1)}
is an equivalence relation on A, whose distinct equivalence classes are
[11={1,3,4},

21=1{2,7}, and [5]={5,6},.

Theorem 8.4

Proof

Result to Prove

PROOF STRATEGY
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and so P = {[1], [2], [5]}. We now establish this result in general; that is, if we have
a nonempty set A and a partition P of A, then it is possible to create an equivalence
relation R on A such that the distinct equivalence classes of R are precisely the subsets
in P. Since we are trying to verify this in general (and not for a specific example), we
need to describe the subsets in P with the aid of an index set. Since we will want every
subset in P to be an equivalence class, we will need every two elements in the same
subset to be related. On the other hand, since we will want two different subsets in P
to be different equivalence classes, we will need elements in distinct subsets not to be
related.

Let P = {A, : a € [} beapartitionofa nonempty set A. Then there exists an 'eqm'valence
relation R on A such that P is the set of equivalence classes determined by R, that is,
P ={la] : a €A}

Define a relation R on A by x R y if x and y belong to the same subset in P; that is,
x Ryifx,y e A, for some o € I. We now show that R is an equivalence relation. Let
a € A. Since P is a partition of A, it follows that a € Ag for some B € [. Trivially, a
and a belong to Apg; soa Raand R is reflexive. -

Next, let @, b € A, and assume that @ R b. Then a and b belong to A, for some
y € /. Hence b and a belong to A,;s0b R @ and R is symmetric..

Finally, let a, b, and ¢ be elements of A such that ¢ R b and b R c. Therefore,
a,be€ Agand b,c € A, for some B,y € I. Since P is a partition of A, the element b
belongs to only one set in P. Hence Ag = A, and so a,c € Ap. Thusa R c and R is
transitive. Therefore, R is an equivalence relation on A. ,

We now consider the equivalence classes resulting from R. Leta € A. Thena e Ao
forsome o € /. The equivalence class [a] consists of all elements of A related to a. From
the way that R is defined, however, the only elements related to @ are those elements
belonging to the same subset in P to which @ belongs; that is, [a] = A,. Hence

{lal: ac A} ={A,: ael}=P. =

We now give an additional example of an equivalence relation. Although this ex-
ample is similar to the one described in Result 8.1, it is different enough to require some
thought.

A relation R is defined on Z by x R y if 11x — 5y is even. Then R is an equivalence
relation.

Since we want to verify that R is an equivalence relation, we need to show that R is
reflexive, symmetric, and transitive. Let’s start with the first of these. We begin with
an integer . To show that @ R a, we need to show that 11a — 54 is even, However,
lla — S5a = 6a = 2(3a), so this shouldn’t cause any difficulties.

To verify that R is symmetric, we begin with @ R b (where a, b € Z, of course)
and attermpt to show that b R a. Since a R b, it follows that 11a — 5b is even. To show
that b R a, we need to show that 11b — 54 is even. Since 11q — 5b is even, we can
write 11a — 5b = 2k for some integer k. At first, though, it might seem like a good idea
to solve for @ in terms of b or solve for b in terms of a. However, because neither the
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Proof

coefficient of @ nor the coefficient of b is 1 or —1 in 11a — 5b = 2k, fractions would be
introduced. We need another approach. Notice that if we write

11b —Sa =(1la —5b)+ (?a + 7 b),
then we have
11b — Sa = (11a — 5b) + (—16a + 16b)
= 2k — 16a + 16b = 2(k — 8a + 8b).
This will work.

To verify that' R is transitive, we begin by assuming that @ R b and b R ¢ (and
attempt to show that @ R ¢). Thus 11a — 5b and 11b — Sc are even and so

1la —5b =2k and 11b-5c =2, 8.5)

for integers k and £. To show that @ R ¢, we must verify that 11a — 5c is even. We need to
work the expression 11a — 5S¢ into the discussion. However, this can be done by adding
the expressions in (8.5). We’re ready to give a proof now. é

A relation R is defined on Z by x R y if 11x — 5y is even. Then R is an equivalence
relation.

First, we show that R is reflexive. Let @ € Z. Then 11a — 5a = 6a = 2(3a). Since 3a is
an integer, 11a — 5a is even. Thus a R a and R is reflexive.

Next we show that R is symmetric. Assume that a R b (where, of course, a, b € Z).
Thus 11a — 5b is even. Therefore 11a — 5b = 2k, where k € Z. Observe that

116 — 5a = (11a — 5b) + (—16a + 16b)
= 2k — 16a + 16b = 2(k — 8a + 8b).
Since k — 8a + 8b is an integer, 11 — 5a is even. Hence b R a and R is symmetric.
Finally, we show that R is transitive. Assume thata R band b R c. Hence 11a — 5b
and 116 — 5S¢ are even. Therefore, 11a — 5b = 2k and 116 — 5¢ = 2£, where k, £ € Z.

Adding these equations, we obtain (11a — 5b) + (11b — 5¢) = 2k + 2£. Solving for
11a — 5c¢, we have

1la —5¢ =2k +2¢ — 6b = 2(k + £ — 3b).

Since k 4 £ — 3b is an integer, 11a — Sc is even. Hence a R ¢ and R is transitive.
Therefore, R is an equivalence relation. B

We now determine the equivalence classes for the equivalence relation just discussed.
Let’s begin with the equivalence class containing 0, say. Then

[0l={xeZ: xRO}={xeZ: llxiseven}
={xeZ: xiseven} = {0, &2, £4,...}.
Recall that the distinct equivalence classes always produce a partition of the set involved

(in this case Z). Since the class [0] does not consist of all integers, there is at least
one other equivalence class. To determine another equivalence class, we look for an

C
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element that does not belong to [0]. Since 1 ¢ [0], the equivalence class [1] is distinct
(and disjoint) from [0]. Thus

[Il={xeZ: xR1}={xeZ: llx —Siseven}
={xeZ: xisodd} = {&1,£3, £5,.. .}

Since [0] and [1] produce a partition of Z (that is, every integer belongs to exactly one
of [0] and [1]), these are the only equivalence classes in this case.

8.5 Congruence Modulo n }

Theorem 8.6

Proof

Next we describe one of the most important equivalence relations. If you have more
mathematics in your future, it is likely that you will see the equivalence relation we are
about to describe again — indeed often. Recall again that for integers « and b, where
a # 0, the integer a is said to divide b, written as a | b, if there exists an integer ¢ such
that b = ac. Also, for integers a, b, and n > 2, a is said to be congruent to b modulo n,
written @ = b (mod n), if n | (@ — b). For example, 24 = 6 (mod 9)since 9 | (24 — 6),
while 1 = 5 (mod 2) since 2 | (— 5). Also, 4 = 4 (mod 5) since 5 | (4 — 4). However,
8 £ 2 (mod 4) since 4 } (8 — 2). These concepts were introduced in Chapter 4.

Let’s consider a few examples of pairs a, b of integers such that @ = b (mod 5).
Noticethat7 = 7(mod 5),—1 = —1{mod 5),and 0 = 0(mod 5). Also,2 = =8 (med 5)
and —8 = 2 (mod 3). Notice also that 2 = 17 (mod 5). Therefore, both —8 = 2 (mod 5)
and 2= 17 (mod 5). Furthermore, —8 = 17 (mod 5). These examples might suggest
that the reflexive, symmetric, and transitive properties are satisfied here, a fact which
we are about to verify. This is the important equivalence relation we.referred to at the
beginning of this section, not just for # = 5 but for any integer n > 2.

Let n € Z, where n > 2. Then congruence modulo n (that is, the relation R defined on
Zbya R bifa=b(mod n)) is an equivalence relation on Z.

Leta € Z. Since n | 0, it follows that n | (¢ — @) and so @ = a (mod n). Thus, ¢ R a,
implying that R is reflexive. R

Next, we show that R is symmetric. Assume thata R b, wherea, b € Z.Sincea R b,
it follows that ¢ = b (mod #) and so n | (@ — b). Hence, there exists k € Z such that
a — b ='nk. Thus,

b—a=—(a—b)=—(nk)=n(=k).

Since —k € Z, it follows that n | (b — a), and so b = a (mod n). Therefore, b R a and
R is symmetric.
Finally, we show that R is transitive. Assume thata R band b R ¢, where a, b, ¢ €
Z. We show that @ R c. Since a R b and b R ¢, we know that a = b (mod n) and
b = c (mod n). Thus, n | (@ — b) and n | (b — ¢). Consequently,
a—b=nk and b-c=nl (8.6)
for some integers & and €. Adding the equations in (8.6), we obtain

(@a—=Db)+ (b —c)=nk +nl =nlk +£),
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s0 a — ¢ = n(k + £). Since k + £ € Z, we have n | (@ — ¢), and so a = ¢ (mod n).
Therefore, a R ¢ and R is transitive. ]

Theorem 8.6 describes a well-known equivalence relation. Let’s review how we verified
this. The proof we gave to show that congruence modulo 7 is an equivalence relation is
a common proof technique for this kind of result, and we need to be familiar with it. To
prove that R is reflexive, we began with an arbitrary element of Z. We called this element
a. Our goal was to show that a R a. By definition, a R a if and only ifa = a (mod n).
However, @ = a (mod n) if and only if # | (@ — a), which is the same as the statement
n | 0. Clearly, n | O and this is where we decided to start.

To prove that R is symmetric, we started (as always) by assuming that @ R b. Our
goal was to show that b R a. Since @ R b, the definition of the relation R tells us that
a = b (mod n). From this, we knew that » | (¢ — b) and a — b = nk for some integer
k. However, to show that b R a, we needed to verify that b = a (mod 7). But this can
be done only if we can show that 7 | (b — @) or, equivalently, that b — a = nZ for some
integer £. Hence we needed to verify that b — a can be expressed as the product of n
and some other integer. Since b — a is the negative of @ — b and we have a convenient
expression for a — b, this provided us with a key step.

Finally, to prove that R is transitive, we began by assuming thata R band b R c,
which led us to the expressions @ — b = nk and b — ¢ = nf, where k, £ € Z. Since our
goal was to show that @ R ¢, we were required to show that @ — ¢ is a multiple of
n. Somehow then, we needed to work the term a — ¢ into the problem, knowing that
a —b = nk and b — ¢ = nL. The key step here was to observe that a — ¢ = (a — b) -1;
b -o).

According to Theorem 8.6 then, congruence modulo 3 is an equivalence relation. In
other words, if we define a relation R on Z by a R b if a = b (mod 3), then it fqllow:s
that R is an equivalence relation. Let’s determine the distinct equivalence classes in this
case. First, select an integer, say 0. Then [0] is an equivalence class. Indeed,

Ol={xeZ: xR0 ={xeZ: x=0(mod 3)}
={xeZ:3|x}=1{0,£3,46,%9,...}.
Hence the class [0] consists of the muitiples of 3. This class could be denoted by [3]or
[6] or even [—300]. Since there is an integer that is not in [0}, there must be at least one
equivalence class distinct from [0]. In particular, since 1 ¢ [0], it follows that {1} # [0];
in fact, necessarily, [1] N [0] = @. The equivalence class
M={xeZ: xR1}={xeZ: x=1(mod 3)}
={xeZ:3|(x—-1}={1,-2,4,-57,-8,..}.
Since 2 ¢ [0} and 2 ¢ [1], the equivalence class [2] is different from both [0] and [1].
By definition,
NRl={xeZ: xR2={xeZ: x=2(mod 3)}
={xeZ:3|(x-2)}=1{2,-1,5-4,8-7,...}.

Since every integer belongs to (exactly) one of these classes, we have exactly three

Result to Prove
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distinct equivalence classes in this case, namely:
[0] = {0, £3, £6, £9, ...},
[l={1,-24,-57-8,...,
21=1{2,-1,5,—-4,8,-7,...}.

These equivalence classes have a connection with some very familiar mathematical
concepts: division and remainders. If m and n > 2 are integers and m is divided by r, then
we can express this divisionasm = ng + r, where ¢ is the quotient and r is the remainder.
The remainder r has the requirement that 0 <7 < n. With this requirement, ¢ and r are
unique and the result that we have just referred to is called the Division Algorithm.
(The Division Algorithm will be studied in considerable detail in Chapter 11.) As we
saw in Chapter 4, every integer m can be expressed as 3q + r, where 0 <r < 3, thatis,
r has one of the values 0, 1, 2. Hence, every integer can be expressed as 39,39+ 1, or
3g + 2 for some integer ¢. In this case, the equivalence class [0] consists of the multiples
of 3, and so every integer having a remainder of 0 when divided by 3 belongs to [0].
Furthermore, every integer having a remainder of 1 when divided by 3 belongs to [1],
while every integer having a remainder of 2 when divided by 3 belongs to [2]. Since

73=24-3+1 and —22=(-8)-3+2,

for example, it follows that 73 € [1] and —22 € {2]. In fact, {73] = [1] and [—22] = [2].
In general, for n > 2, the equivalence relation congruence modulo # results in 2
distinct equivalence classes. In other words, if we define @ R b by a = b (mod n), then
there are # distinct equivalence classes: [0], {i], ..., [» — 1]. In fact, for an integer r
with 0 < r < n, an integer m belongs to the set [/} if and only if there is an integer ¢ (the
quotient) such that m = ng + r. Thus the equivalence class [r] consists of all integers
having a remainder of » when divided by .
" Let’s consider another equivalence relation defined on Z involving congruence, but
which is seemingly different from the class of examples we have just described.

Let R be the relation defined on Z by a R b if 22+ b =0 (mod 3). Then R is an
equivalence relation.

To prove that R is reflexive, we must show that x R x for every x € Z. This means
that we must show that 2x + x = 0 (mod 3) or that 3x = 0 (mod 3). This is equivalent
to showing that 3 | 3x, which is obvious. This tells us where to begin the proof of the
reflexive property.

Proving that R is symmetric is somewhat more subtle. Of course, we know where to
begin. We assume that x R y. From this, we have 2x + y = 0 (mod 3). So 3 | 2x + y),
or 2x + y = 3r for some integer r. Our goal is to show that y R x or, equivalently, that
2y 4 x = 0(mod 3). Eventually, then, we must show that 2y + x = 3s for some integer
5. We cannot assume this of course. Since 2x + y = 37, it follows that y = 3r — 2x. So

2y +x =207 —2x) 4+ x = 6r —3x = 3(2r — x).

Since 2r — x € Z, we have 3 | (2y 4+ x), and the verification of symmetry is nearly
complete.
Proving that R is transitive should be as expected. é
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Let R be the relation defined on Z by a R b if 2a +b =0 (mod 3). Then R is an
equivalence relation.

Let x € Z. Since 3 | 3x, it follows that 3x = 0 (mod 3). So 2x + x = 0 (mod 3). Thus,
x R x and R is reflexive.

Next we verify that R is symmetric. Assume that x R y, where x, y € Z. Thus
2x 4+ y =0 (mod 3), and so 3 | (2x + y). Therefore, 2x + y = 3r for some integer r.
Hence y = 3r — 2x. So

2y +x =203r —2x)+ x = 6r — 3x = 3(2r — x).
Since 2r — x is an integer, 3 | (2y + x). So 2y + x = 0 (mod 3). Therefore, y R x and
R is symmetric. .

Finally, we show that R is transitive. Assume thatx R yand y R z, where x, y, z € 7.,
Then2x + y = 0 (mod 3) and 2y + z = 0 (mod 3). Thus, 3| (2x + y)and 3| 2y +2).
Fromthis, itfollows that 2x + y = 3r and 2y + z = 3s for some integers r and s. Adding
these two equations, we obtain

2x +3y +z=3r +3s;
50
2x+z=3r4+3s -3y =30 +s—y).
Since r 4 5 — y is an integer, 3 {(2x + z); s0 2x +z = 0 (mod 3). Hence x R z and R

is transitive, B

A few additional comments about the proof of the symmetric property in Result 8.7 might
be helpful. At one point in the proof we knew that 2x + y = 3r for some integer , and
we wanted to show that 2y 4- x = 3s for some integer s. If we added these two equations,
then we would obtain 3x -+ 3y = 3r + 3s. Of course, we can’t add these because we
don’t know that 2y + x = 3s. But this does suggest another idea.

Assume that x R y. Thus 2x + y = 0 (mod 3). Hence 3 | (2x + y); s02x +y = 3r
for some integer r. Observe that

3x+3y=Qx+y)+Qy+x)=3r +Q2y +x).
Therefore,
2y +x=3x+4+3y—-3r =3(x+y—r).

Because x +y —r € Z, it follows that3 | (2y + x). Consequently, 2y + x = 0(mod 3),
¥ R x,and R is symmetric. ¢

The distinct equivalence classes for the equivalence relation described in Result 8.7
are

Ol={xeZ:xR0O}={xeZ: 2x =0(mod 3)}
 ={reZ: 3|2} ={0,43, 46,49, .},
[ll={xeZ: xR1}={xeZ: 2x+1=0(mod 3)}
={xeZ:3|Qx+1)=(1,-24 57, -8,...},

Resuit 8.8
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Rl={xeZ: xR2)={xecZ: 2x 42 =0 (mod 3)}
={xeZ:3|2x+2)}=1(2,-1,5-4,8,-7,...).

Let’s discuss how we obtained these equivalence classes. We started with the integer
0 and saw that [0] = {x € Z : 3| 2x}. By trying various values of x (namely, 0, 1, 2,
3,4,5,etc.and —1, =2, —3, —4, etc.), we see that we are obtaining the multiples of 3.
(Exercise 4.6 of Chapter 4 asks you to show that if 3 | 2x, then x is a multiple of 3.) The
contents of [1] and [2] can be justified, if necessary, in a similar manner.

We have seen that if we define a relation Ry on Z bya Ry bifa=b(mod 3),
then we have three distinct equivalence classes; while if we define a relation RyonZ
bya Ry bif 2a + b = 0 (mod 3), then we also have three distinct classes — in fact, the
same equivalence classes. Let’s see why this is true. N '

Leta,b e Z.Thena = b (mod 3) ifand only if2a + b =0 (mod 3).

First, assume that @ = b (mod 3). Then 3 | (a — by and so a — b = 3x for some integer
x. Thus a = 3x + b. Now

2a+b=203x+b)+b = 6x +3b=32x +b).

Since 2x + b is an integer, 3 | (2¢ + b) and so 2a + b = 0 (mod 3).
For the converse, assume that 2a + b = 0 (mod 3). Hence 3 | (2a + b), which
implies that 2a + b = 3y for some integer y. Thus b = 3y — 2a. Observe that

a—b=a-{3y—-2a)=3a -3y =3(a—y).
Since @ — y is an integer, 3 | (¢ —b) and soa = b (mod 3). =
We shouldn’t jump to the conclusion that just because we are dealing with an
equivalence relation defined in terms of the integers modulo 3, we will necessarily have
three distinct equivalence classes. For example, suppose that we define a relation R on

Zbya R bifa® = b? (mod 3). Then, here too, R is an equivalence relation. In this case,
however, there are only fwo distinct equivalence classes, namely,

(0] = (0, %3, 6, £9, ...} and [1] = (1, £2, £4, £5, .. },

since whenever an integer » has a remainder 1 or 2 when it is divided by 3, then n? has
a remainder of 1 when it is divided by 3.

8.6 The Integers Modulo rg

We have already seen that for each integer n > 2, the relation R defined on Z byaRb
if a =b (mod n) is an equivalence relation. Furthermore, this equivalence relation
results in the # distinct equivalence classes [0], {11, ..., [n — 1]. We denote the set of
these equivalence classes by Z,, and refer to this set as the integers modulo n. Thus,
Z3 = {[0], [1], [2]} and, in general,

Zp={0L11],....[n—1]}.
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Hence each element [r] of Z,,, where 0 < r < n, is a set that contains infinitely many
integers; indeed, as we have noted, [] consists of all those integers having the remainder
r when divided by #. For this reason, the elements of Z,, are sometimes called residue
classes.

Although it makes perfectly good sense to take the union and intersection of two
elements of Z, since these elements are sets (in fact, subsets of Z), it doesn’t make
sense at this point to add or multiply two elements of Z,. However, since the elements
of Z, have the appearance of integers, say [a] and [b], where a, b € Z, it does suggest
the possibility of defining addition and multiplication in Z,. We now discuss how these
operations can be defined on the set Z,,.

Of course, we have seen addition and multiplication defined many times before,
When we speak of addition and multiplication being operations on a set S, we mean that
forx, y € S, the sum x + y and the product xy should both belong to S. For example,
in the set Q of rational numbers, the sum and product of two rational numbers a /b and
c/d(soa,b,c,d € Zandb,d # 0) are defined by

a ¢ ad+bc a ¢ ac
a5 ™ 3 iT W
both of which are rational numbers and so belong to Q.

As we mentioned, if addition and multiplication are operations on a set S, then
x+yeSandxyeSforall x,y € S. Therefore, if T is a nonempty subset of § and
x,yeT, thenx+ye Sandxy € S. The set T is closed under additionifx +y e T
whenever x, y € T. Similarly, T is closed under multiplication if xy € T whenever
x,y € T. Necessarily, if addition and multiplication are operations on a set S, then § is
closed under addition and multiplication.

For example, addition and multiplication are operations on Z. If A and B denote the
sets of even integers and odd integers, respectively, then A is closed under both addition
and multiplication but B is closed under multiplication only.

However addition and multiplication might be defined in Z,, we would certainly
expect that the sum and product of two elements of Z, to be an element of Z,,. There
appears to be a natural definition of addition and multiplication in Z,; namely, for two
equivalence classes [a] and [b] in Z,, we define

lal+{bl=[a+b] and [al-[b]=[abl. 8.7)

Let’s suppose that we are considering Zg, for example, where then Zg = {[0], [1],
.-, [5]}. From the definitions of addition and multiplication that we just gave, [1] +
[31=1[1+3] =[4]and [1]- [3] = [ - 3] = [3]. This certainly seems harmless enough,
but let’s consider adding and multiplying two other equivalence classes, say [2] and [3].
Again, according to the definitions in (8.7), [2] + [3] = [2 + 3] = [S]and [2] - [3] = [2-
3] = [6]. However, we have been expressing the elements of Zg by [0], [1], [2], {3], [4],
and [5] and we don’t explicitly see [2-3] = [6] among these elements. Since 6 =
0 (mod 6), it follows that 6 € [0]; that is, [6] = [0]. (Also, the remainder is 0 when
6 is divided by 6, and so [6] = [0].) Therefore, [2] - {3] = [0]. By similar reasoning,
[314[5] = [2] and [3]- [5] = [3]. In fact, the complete addition and multiplication
tables for Zg are given in Figure 8.1.

If we add [1] to [0], add {1] to [1], and continue in this manner, then we obtain
01+ [ =L+ [ =2}, 121+ (1] = (3}, ..., [5] 4+ [1] = [6] = [0, [6] + [1] =
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Figure 8.1 The Addition and Multiplication Tables for Zg

[0] + [1] = {1], and so forth; that is, we return to [0] and cycle through all the classes
of Zg again (and again). If, instead of Zg, we were dealing with Z;5, we would have
O+ 11=1{11, O+ 1= 2] 2]+ (1= (3], ..., [T} + [1]=[12] = [0], [12] +
[1] = [0] 4 [1] = [1], and so forth, and this should remind you of what occurs when a
certain number of hours is added to a time (in hours), where, of course, 12 o’clock is
represented here as 0 o’clock. (For example, if it is 11 o’clock now, what time will it be
45 hours from now?) - -

Although the definitions of addition and multiplication in Z, that we gave in (8.7)
should seem quite reasonable and expected, there is a possible point of concern here that
needs to be addressed. According to the definition of addition in Zs, [4] + [5] = [3].
However, the class [4], which consists of all integers x such that x = 4 (mod 6), need
not be represented this way. Since 10 € [4], it follows that [10] = [4]. Also, [16] =
[4] and [—2] = [4], for example. Moreover, [11] = [5], [17] = [S], and [-25] = [5].
Hence adding the equivalence classes [4] and [5] is the same as adding [10] and [—25],
say, since {10] = [4] and [—-25] = [5]. But, according to the definition we have given,
[10] 4 [—25] = [—15]. Luckily, [—15] = [3] and so we obtain the same sum as before.
But will this happen every time? That is, does the definition of the sum of the equivalence
classes [a] and [b] that we gave in (8.7) depend on the representatives a and b of these
classes? If the sum (or product) of two equivalence classes does not depend on the
representatives, then we say that this sum (or product) is well-defined. We certainly
would want this to be the case, which, fortunately, it is. More’precisely, addition and
multiplication in Z, are well-defined if whenever [a] = [b] and [c] = [d] in Z,, then
[a +c)=[b+d]and [ac] = [bd].

Addition in Z,, n > 2, is well-defined.

The set Z, is the set of equivalence classes resulting from the equivalence relation R
definedonZ bya R b ifa = b (mod n). Let [a], [b], [c], [d] € Z,, where [a] = [b]and
[c] = [d]. We prove that [a + ¢] = [b + d]. Since [a] = [b], it follows by Theorem 8.2
that @ R b. Similarly, ¢ R d. Therefore, @ = b (mod ») and ¢ = d (mod n). Thus,
n | (a —byand n | (c — d). Hence, there exist integers x and y so that

a—b=nxandc—d =ny. 8.8)
Adding the equations in (8.8), we obtain
(a—b)+(—d)=nx+ny=n(x-+y),
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80 (@ +¢)— (b+d)=n(x+y). This implies that n | [(a +c)— b+ d)]. Thus, Section 8.2: Properties of Relations

(@ +¢) = (b+d) (mod n). From this, we conclude that (@ + ¢) R (b - d), which im-

plies that [a + ¢] = [b + dl. ) 8.5. Let A = {a, b,c,d}, and let R = {(a, a), (a, b), (a, ¢), (a,d), (b. b), (b, ¢), (b,d), (c, ), (c,d), (d,d)} be a
& relation on A. Which of the properties reflexive, symmetric, and transitive does the relation R possess?

Justify your answers.

8.6. Let S = {a, b, c}. Then R = {(a, a), (a, b), (a, ¢)} is a relation on S. Which of the properties reflexive,
symmetric, and transitive does the relation R possess? Justify your answers.

If the prgof of Theorem 8.9 looks a bit familiar, review Result 4.10 and its proof. As
an exa.mple, in Z7, [118] + [26] = [144]. Since the remainder is 4 when 144 is divided
by 7, it follows that [118] + [26] = [4]. Furthermore, [118} = [6] and {26] = [5]; so

[118] + [26] = [6] + [5] = [11] = [4]. 8.7. Let S = {a, b, ¢). Then R = {(a, b)} is a relation on S. Which of the properties reflexive, symmetric, and
As we have mentioned, the multiplication in Z, that we described in (8.7) is also transitive docs the relation R possess? Justify your answers. )

well-defined. The verification of this fact has been left as an exercise (Exercise 8.41). 8.8. Let A = {a, b, c, d}. Give an example (with justification) of a relation R on A that has none of the
Addition and multiplication in Z, satisfy many familiar properties. Among these following properties: reflexive, symmetric, transitive.

are: 8.9. A relation R is defined on Z by a R b if |a — b| < 2. Which of the properties reflexive, symmetric, and

Commutative Propertics transitive does the relation R possess? Justify your answers.

8.10. Let A = {a, b, ¢, d}. How many relations defined on A are reflexive, symmetric, and transitive and contain
fa]l + [b] = [b] + [a) and [a] - [b] = [b]} - [a] foralla,b € Z; the ordered pairs (a, b), (b, ¢), (¢, d)? :
8.11. Let R = {J be the empty relation on a nonempty set A. Which of the properties reflexive, symmetric, and
transitive does R possess?
([a] +[5]) +[e] = [a] + ([b] + [c]) and 8.12. Let A = {1,2, 3, 4}. Give an example of a relationon A that is:
(la] - [b])-[c] =[a]l - ([P)-{c]) foralla,b,c < Z;

Associative Properties

(a) reflexive and symmetric, but not transitive.
(b) reflexive and transitive, but not symmetric.
fal - ([6] + [c]) = [a] - [b) + [a] - [c] foralla,b,c e Z (c) symmetric and transitive, but not reflexive.
(d) reflexive, but neither symmetric nor transitive.
(e) symmetric, but neither reflexive nor transitive.

Distributive Property

' Although we defined multiplication in Z, in a manner that was probably expected,
this is not the only way it could have been defined. For example, suppose that we are
considering the set Z5 of integers modulo 3. For equivalence classes [a] and [b] in Zj,
define Qle proguct [a]”‘ [l?] to equal [g], where [¢] 1§ the quotient when a%’ is divided 8.13. A relation R is defined on Z by x R y if xy > 0. Prove or disprove the following: (a) R is reflexive,
py 3. Since the “product” of every two elements of Z; is an element of Z3, this operation (by R issymmetric, . (¢) R is transitive.
is closed. In particular, [2] - [2] = [1] since the quotient is 1 when 2 - 2 = 4 is divided

by 3. However, [2] = [5] but[5] - [5] = [8] = [2]. Notice also that [5] - [2] = [3] = [0). . , IS
Hence this multiplication is not well-defined. Section 8.3: Equivalence Relations

(f) transitive, but neither reflexive nor symmetric.

8.14. Let R be an equivalence relation on A = {a, b, ¢, d, ¢, f, g} suchthata Rc,c Rd,d R g,andb R f.If
there are three distinct equivalence classes resulting from R, then determine these equivalence classes and

EXERCISES FOR CHAPTER § determine all elements of R. '

R 8.15. Let R be a relation defined on Z by a R b if a® = b>. Show that R is an equivalence relation on Z and

determine the distinct equivalence classes.

Section 8.1: Relations 8.16. (a) Let R be the relation defined on Z by a R b if @ + b is even. Show that R is an equivalence relation and
determine the distinct equivalence classes.

(b) Suppose that “even” is replaced by “odd” in (a). Which of the properties reflexive, symmetric, and
transitive does R possess?

8.17. Let A =1{1,2,3,4, 5, 6}. The relation

81 LetA={a,b,cland B = {r,s,1,u}. Furthermore, let R = {(a, 5), (a, t), (b, £)} be a relation from 4 to B.
Determine dom R and ran R.

8.2. Let A be a nonempty set and B C P(A). Define a relation R from A to B byx RY ifx € Y. Give an
example of two sets A and B that illustrate this. What is R for these two sets?

8.3. Let A = {0, 1}. Determine all the relations on A. R=1{(1,1),(1,9,(2,2),(23),(2.6),(3,2),(3,3),3,6), (4,4), 5. 1), 5, 5). (6,2), 6, 3), 6,6)}
8.4. Let A = {a,b,c}and B = {1,2,3,4}. Then R, = {(a,2),(a,3), (b, 1), (b, 3). (c, 4)} is a relation from A to is an equivalence relation on A. Determine the distinct equivalence classes.
B, while Ry = {(1, ), (1, ¢), 2, @), (2, b), (3, ¢), (4, a), (4, ¢)} is a relation from B to A. A relation R is 8.18. Let A = {1,2,3, 4,5, 6}. The distinct equivalence classes resulting from an equivalence relation R on A are

defined on A by x R y if there exists z € B such that x Ry z and z R y. Express R by listing its elements. {1, 4,5}, {2, 6}, and {3}. What is R?
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8.19.

8.20.

Chapter 8 Equivalence Relations

Let R be an equivalence relation defined on a set A containing the elements a, b, ¢, and d. Prove that if
aRb,cRd,anda Rd, thenb R c.

A relation R on a nonempty set A is defined to be circular if whenever x R yand y R z, then z R x for all

. X, ¥,z € A. Prove that a relation R on A is an equivalence relation if and only if R is circular and reflexive,

Section 8.4: Properties of Equivalence Classes

8.21.

8.27.

Give an example of an equivalence relation R on the set A = {v, w, x, ¥, z} such that there are exactly three
distinct equivalence classes. What are the equivalence classes for your example?

. Arelation R is defined on N by @ R b if a® + b? is even. Prove that R is an equivalence relation. Determine

the distinct equivalence classes.

. Let R be a relation defined on the set N by a R b if either a | borb | a.Prove or disprove: R is an

equivalence relation.

. Let S be a nonempty subset of Z, and let R be a relation defined on S byx Ryif3{(x+2y).

(a) Prove that R is an equivalence relation.
(b) S ={=7,-6,-2,0, 1,4, 5,7}, then what are the distinct equivalence classes in this case?

- Arelation R is defined on Z by x R y if 3x — 7y is even. Prove that R is an equivalence relation. Determine

the distinct equivalence classes.

. (a) Prove that the intersection of two equivalence relations on a nonempty set is an equivalence relation.

(b) Consider the equivalence relations R and R3 defined on Z byaRybifa=b(mod 2)anda R3 b if
@ = b (mod 3). By (a), R; = R, N Ry is an equivalence relation on Z. Determine the distinct
equivalence classes in R;.

Prove or disprove: The union of two equivalence relations on a nonempty set is an equivalence relation.

Section 8.5: Congruence Modulo

8.28.

8.29.
8.30.

8.31.

8.32.

8.33.

8.35.

8.36.

Classify each of the following statements as true or false.
(2) 25 =9 (mod 8), (b) —17 =9 (mod 8), (c) —14 = —14 (mod 4), (d) 25 = —3 (mod 11).
A relation R is defined on Z by a R b if 3a + 5b = 0 (mod 8). Prove that R is an equivalence relation.

Let R be the relation defined on Zby a R bif a + b = 0 (mod 3). Show that R is not an equivalence
relation.

The relation R on Z defined by a R b if a* = b2 (mod 4) is known to be an equivalence relation. Determine
the distinct equivalence classes.

The relation R defined on Z by x R y if x* = y? (mod 4) is known to be an equivalence relation. Determine
the distinct equivalence classes.

A relation R is defined on Z by a R b if 5a = 2b (mod 3). Prove that R is an equivalence relation.
Determine the distinct equivalence classes.

- Arelation R is defined on Z by @ R b if 2a + 2b = 0 (mod 4). Prove that R is an equivalence relation.

Determine the distinct equivalence classes.

Let R be the relation defined on Z by a R b if 2a 4+ 3b = 0 (mod 5). Prove that R is an equivalence
relation, and determine the distinct equivalence classes. ;

Let R be the relation defined on Z by a R b if > = b® (mod 5). Prove that R is an equivalence relation, and
determine the distinct equivalence classes.
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Section 8.6: The Integers Module n

8.37.
8.38.

8.39.

8.40.

8.41.

Construct the addition and multiplication tables in Z4 and Zs.

In Zg, express the following sums and products as [r], where 0 < r < 8.

(@ [2]+[6] () [2]-[6] () [~13]+1[138] (d) [—13]-[138]

In Z,y, express the following sums and products as [r], where 0 <r < 11.

@ (7]+[51 (&) [71-[51 () [-82]+[207] (d) [—82]-[207]

(a) Let [a], [b] € Zg. If [a] - [b] = [0], does it follow that [a] = [0] or [b] = [0]?
(b) How is the question in (a) answered if Zg is replaced by Zo? by Zo? by Z11?

(¢) For which integers n > 2 is the following statement true? (You are asked only to make a conjecture, not
to provide a proof.) Let [a], [b] € Z,,, n > 2. If [a] - [b] = [0], then [a] = [0] or [b] = [0]. ~

Prove that the multiplication in Z,, n > 2, defined by [a][b] = [ab] is well-defined. (See Result 4.11.)

ADDITIONAL EXERCISES FOR CHAPTER 8

8.42.

8.44.

8.45.

8.46.

8.47.

Prove or disprove:

(a) There exists an integer a such that ab = 0 (mT)d 3) for every integer b.
(b) Ifa € Z, then ab = 0 (mod 3) forevery b € Z.

(c) For every integer a, there exists an integer b such that ab = 0 (mod 3).

. Let k and £ be integers such that k¥ + £ = 0 (mod 3), and let a, b € Z. Prove thatif @ = b (mod 3), then

ka +£b = 0 (mod 3).
State and prove a generalization of Exercise 8.43.

In Exercise 8.13, a relation R was defined on Z by x R y if xy > 0, and we were asked to determirie which
of the properties reflexive, symmetric, and transitive are satisfied.

(a) How would our answers have changed if xy > 0 was replaced by: (i) xy < 0, (ii) xy > 0,
(i) xy # 0, (iv) xy > 1, (v) xy is odd, (vi) xy is even, (vii) xy # 2 (mod 3)?
(b) What are some-additional questions you could ask?

For the following statement § and proposed proof, either (1) S is true and the proof is correct, (2) § is true
and the proof is incorrect, or (3) S is false and the proof is incorrect. Explain which of these occurs.

S:  Every symmetric and transitive relation on a nonempty set is an equivalence relation.

Proof Let R be a symmetric and transitive relation defined on a nonempty set A. We need only show that
R is reflexive. Let x € A. We show that x R x. Let y € A such that x R y. Since R is symmetric, y R x.
Now x R y and y R x. Since R is transitive, x R x. Thus R is reflexive. : ]

Evaluate the proposed proof of the following result.

Result A relation R is defined on Z by a R b if 3 | (a + 2b). Then R is an equivalence relation.

Proof Assume thata R a. Then 3 | (a + 2a). Since a + 2a = 3a and a € Z, it follows that 3 | 3a or
3 | (@ + 2a). Therefore, a R a and R is reflexive.

Next, we show that R is symmetric. Assume thata R b. Then 3 | (@ + 2b). So a + 2b = 3x, where
x € Z. Hence a = 3x — 2b. Therefore,

b+2a =b+23x —2b) = b+ 6x — 4b = 6x — 3b = 3(2x — b).
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8.48.

8.49.

8.50.

8.51.

8.52.

8.53.

8.54.

8.55.

8.56.

8.57.

8.60.

Chapter 8 Equivalence Relations

Since 2x — b is an integer, 3 | (b + 2a). So b R a and R is symmetric.

Finally, we show that R is transitive. Assume thata R band b R ¢. Then 3 | (a + 2b) and 3 | (b + 2¢). So

,a+2b=23xand b+ 2c = 3y, where x, y € Z. Adding, we have (a + 2b) + (b + 2¢) = 3x +3y. So

a+2c=3x+3y=3b=3x+y—b).

Since x + y — bis an integer, 3 | (a + 2¢). Hence @ R ¢ and R is transitive. B

A relation R is defined on Z by a R b if |a — 2| = |b — 2|. Prove that R is an equivalence relation and
determine the distinct equivalence classes.

A relation R is defined on R by @ R b if a — b € Z. Prove that R is an equivalence relation and determine
the equivalence classes [1/2] and V2.

Determine each of the following.

(@) [41° = [A4141in Zs  (b) [71° in Zyo

Let A be a nonempty set and B a fixed subset of A. A relation R is defined on P(A) by X R Y if
XNnB=YnNB.

(a) Prove that R is an equivalence relation.

(b) Let A ={1,2,3,4} and B = {1, 3,4}. For X = {2, 3, 4}, determine [X].

Let Ry and R, be relations on a nonempty set A. Prove or disprove each of the following.

{a) If R N R, is reflexive, then so are Ry and R,.

(b) If Ry N Ry is symmetric, then so are Ry and R;.

(c) If Ry N R, is transitive, then so are R and R,.

Let R be an equivalence relation on a set A. The inverse relation R~ is defined on A as follows: For
a,be A,aR™' bifb R a. Prove that R™! is an equivalence relation on A.

Let Ry and R, be equivalence relations on a nonempty set A. A relation R = Ry R is defined on A as
follows: Fora, b € A, a R b if there exists ¢ € A such thata R; ¢ and ¢ Ry b. Prove or disprove: R is an
equivalence relation on A.

A relation R is defined on Z by a R b if 3 | (a® — b). Prove or disprove the following:

(a) R is reflexive.
(b) R is transitive.

A relation R is defined on Z by a R b if a = b (mod 2) and a = b (mod 3). Prove or disprove: R is an
equivalence relation on Z. ‘

A relation R isdefinedon Z by a R b if a = b (mod 2) ora = b (mod 3). Prove or disprove: R is an
equivalence relation on Z.

. A relation R on a nonempty set S is called sequential if for every sequence x, y, z of elements of S (distinct

or not), at least one of the ordered pairs (x, y) and (y, z) belongs to R. Prove or disprove: Every symmetric,
sequential relation on a nonempty set is an equivalence relation.

. LetS ={(a,b): a,b e R,a #0}.

(a) Show that the relation R defined on S by (a, b) R (¢, d) if ad = bc is an equivalence relation.

(b) Describe geometrically the elements of the equivalence classes [(1, 2)] and [(3, 0)].

(a) Show that the relation R defined on R x R by (a, b) R (¢, d) if |a| + |b| = |c| + |d]| is an equivalence
relation. . .

(b) Describe geometrically the elements of the equivalence classes [(1, 2)] and [(3, 0)].

Funections

f R is arelation from a set A to a set B and x is an element of A, then either x is related

to no elements of B or x is related to.at least one element of B. In the latter case, it
may occur that x is related to all elements of B or perhaps to exactly one element of B.
If every element of A is related to no elements of B, then R is the empty set @. If every
element of A is related to all elements of B, then R is the Cartesian product A x B.
However, if every element of A is related to exactly one element of B, then we have the
most studied relation of all: a function. Surely, you have encountered functions before,
at least in calculus and precalculus. But it is likely that you have not studied functions
in the manner we are about to describe here.

9.1 The Definition of Function |

Lét A and B be nonempty sets. By a function f from A to B, written f : A — B, we
mean a relation from A to B with the property that every element a in A is the first
coordinate of exactly one ordered pair in f. Since f is a relation, the set A in this case
is the domain of f, denoted by dom f. The set B is called the codomain of f.

For a function f : A — B, let (a, b) € f. Since f contains only one ordered pair
whose first coordinate is a, it follows that & is the unique second coordinate of an
ordered pair whose first coordinate is a; that is, if (¢, b) € f and (a,c) € f,thenb =c.
If (a, b) € f,then we write b = f(a) and refer to b as the image of a. Sometimes f is
said to miap « into b. Indeed, [ itself is sometimes called a mapping. The set

ran f = {b € B : bis animage under f of some element of A} = {f(x) : x € A}

is the range of f and consists of the second coordinates of the elements of f.If A isa
finite set, then the function f is a finite set, and the number of elements in f is |A| since
there is exactly one ordered pair in f corresponding to each element of A. Throughout
this chapter, as with earlier chapters, whenever we refer to cardinalities qf sets, we are
concerned with finite sets only.

Suppose that f : A — Band g : A — B are two functions from A to Banda € A.
Then f and g contain exactly one ordered pair having a as its first coordinate, say
(a,x) € fand(a, y) € g. If the sets f and g are equal, then (@, x) belongs to g as well.
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Figure 9.1 A function f; : A - B

Since g contains only one ordered pair whose first coordinate is a, it follows that (a, x) =
(a, y). But this implies that x = y, thatis, f(a) = g(«). Hence it is natural to define two
functions f : A — Band g : A — B to be equal, written f = g, if f(a) = g(a) forall
ac A

Let A = {1,2,3}and B = {x, y, z, w}. Then f; = {(1, y), 2, w), (3, y)} is a func-
tion from A to B, and so we may write f; : A —> B.Ontheotherhand, f, = {(1, x), (2, 2),
(3, y), (2, x)} is not a function since there are two ordered pairs whose first coordinate
is 2. In addition, f3 = {(1, z), (3, x)} is not a function from A to B either because
dom f3 # A. On the other hand, f; is a function from A — {2} to B.

It is often convenient to “visualize” a function f : A,— B by representing the two
sets A and B by diagrams and drawing an arrow (a directed line segment) from an
element x € A to.its image f(x) € B. This is illustrated for the function f; described
above in Figure 9.1. Therefore, in order to represent a function in this way, exactly one
directed line segment must leave each element of A and proceed to an element of B.

In calculus, “functions” such as f(x) = x? are considered. This function f is from
R to R, thatis, A = R and B = R. Although f(x) = x? is commonly referred to as
a “function” in calculus and elsewhere, strictly speaking, f(x) is the image of a real
number x under f. The function f itself is actually the set

f=1{(x,x»: xeR}.

So (2,4) and (-3, 9), for example, belong to f. The set {(x, x%) : x € R} of points
in the plane is the graph of f. In this case, the graph is a parabola. Here the function
7R — R defined by f(x) = x? can also be thought of as defined by a rule, namely
the rule that associates the number x? with each real number x.

Another function encountered in calculus is g(x) = ¢*. As we mentioned above,
this function is actually the set

g={(x,¢e) : xeR}

More precisely, this is the function g : R — R defined by g(x) = ¢* for all x € R.
In general, we will follow this latter convention for defining functionis that are often
described by some rule or formula. Consequently, the function A(x) = TET from calculus
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is the function 4 : R — {1} — R defined by h(x) = ﬁ forall x € R, x # 1, and the
function ¢(x) = Inx is the function ¢ : Rt — R defined by ¢(x) = Inx forall x € R*,
where, recall, R™ is the set of all positive real numbers.

Among the many classes of functions encountered in calculus are the polynomial
functions, rational functions, and exponential functions. The function [ defined above
is a polynomial function, £ is a rational function, and g is an exponential function. Other
important classes of functions encountered often in calculus are continuous functions
and differentiable functions.

The definition of function that we have given is most likely not the definition you
recall from calculus; in fact, you may not recall the definition of function given in calculus
at all. If this is the case, then it is not surprising. The evolution of what is meant by a
function has spanned hundreds of years. It was in the development of calculus that the
pecessity of a formal definition of function became apparent.

Early in the 18th century, the Swiss mathematician Johann Bernoulli wrote:

I call a function of a variable magnitude a quantity composed in any manner
whatsoever from this variable magnitude and from constants.

Later in the 18th century, the famous Swiss mathematician Leonhard Euler studied
calculus as a theory of functions and did not appeal to diagrams and geometric interpre-
tations, as many of his predecessors had done. The definition of function that Euler gave
in his work on calculus is:

A function of a variable quantity is an analytic expression composed in any way
whatsoever of the variable quantity and numbers or constant quantities.

Early in the 19th century, the German mathematician Peter Dirichlet developed a
more modern definition of function:

-y is-a function of x when to each value of x in a given interval
there corresponds a unique value of y.

Dirichlet said that it didn’t matter whether y depends on x according to some formula, law,

or mathematical operation. He emphasized this by considering the function f: R — R
defined by

F= 1 if x is rational

~ 10 ifx is irrational.

Later in the 19th century, the German mathematician Richard Dedekind wrote:
A function ¢ on a set S is a law according to which to every determinate element
s of S there belongs a determinate thing which is called the transform of s and
is denoted by ¢(s).

So, by this time, the modem definition of function had nearly arrived.
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9.2 The Set of All Functions from A to B J

For nonempty sets A and B, we denote the set of all functions from A to B by B4, That
is, BA = {f : f is a function from A to B} or, more simply,

BA=(f: f:A— B}
Although this may seem like peculiar notation, it is actually quite logical. In particular,

let’s determine B# for A = {a, b} and B = {x, y, z}. Each function f from A to B is
necessarily of the form

f =A@ o), ® /L

where «, 8 € B. Since there are 3 choices for o and 3 choices for g, the total number of
such functions f is 3 - 3 = 3% = 9. These nine functions are listed below:

fi={a,x), b0}, fi={a 0,6 L fr=1{ax)0 9}
fe={a y). &, 0} fs=1{ay, 00N fo=1{a G0
fi={a0,0,x)}, fi={a.,®.), fo={{a 2.0 2}

Hence the number of elements in B is 32. In general, for finite sets A and B, the number
of functions from A to B is

|84 = B[

If B = {0, 1}, then it is common to represent the set of all functions from A to B by 24.

9.3 One-to-One and Onto Functions J

We now consider two important properties that a function may possess. A function f
from a set A to a set B is called ene-to-one or injective if every two distinct elements
of A have distinct images in B. In symbols, a function f : A — B is one-to-one if
whenever x, y € A and x 3# y, then f(x) # f(y). Thus, if a function f : A — B isnot
one-to-one, then there exist distinct elements w and z in A such that f(w) = f(2).
LetA={a,b,c,d}, B={rs,t u,v},and C = {x, y, z}. Then

JSi=1{@ ), (b, u), (c,v), (d, )}

is a one-to-one function from A to B since distinct elements of A have distinct images
in B; while the function

f2={a, ), (0. 1). (¢, s}, (d, )}

from A to B is not one-to-one since a and c have the same image, namely s. There is no
one-to-one function from A to C, however.

In general, for a function f : A — B to be one-to-one, where A and B are finite
sets, every two elements of A must have distinct images in B, and so there must be at
least as many elements in B as in A, that is, |A]| < |B]. ) )

At times, the definition of a one-to-one function is difficult to work with since it
deals with unequal elements. However, there is a useful equivalent formulation of the
definition using the contrapositive:

Result 9.1

Proof

Example 9.2

Solution

Analysis
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A function f : A — B is one-to-one if
whenever f(x) = f(y), where x, y € A, then x = y.

We show how this formulation can be applied to functions defined by formulas.
Let the function f : R — R be defined by f(x) = 3x — 5. Then f is one-to-one.

Assume that f(a) = f(b), where a,b € R. Then 3a — 5 = 3b — 5. Adding 5 to both
sides, we obtain 3a = 3b. Dividing by 3, we have ¢ = b, and so f is one-to-one. B

Let the function f : R — R be defined by f(x) = x2 — 3x — 2. Determine whether f
is one-to-one. -

Since f(0) = —2 and f(3) = —2, it follows that f is not one-to-one. é

Thus to show that the function f defined in Example 9.2 is not one-to-one, we must
show that there exist two distinct real numbers having the same image under f. This
was accomplished by showing that f(0) = f(3). But what if we can’t find two real
numbers with this property? Naturally, if we can’t find two such numbers, then we might
think that f is one-to-one. In that case, we should be trying to prove that f is one-
to-one. We would probably begin such a proof by assuming that f(q) = f(b), that is,
a®—3a—2=b*—3b—2. We would then try to show that ¢ = b. We can simplify
a*—3a —2=b? - 3b — 2 by adding 2 to both sides, producing a® — 3¢ = 5* — 3b.
When attempting to solve an equation, it is often convenient to collect all terms on
one side of the equation with 0 on the other side. Rewriting this equation, wé obtain
a* —3a — b* + 3b = 0. Rearranging some terms and factoring, we have

a* —3a —b*+3b = (a® — b*) — 3(a —b)
=(a—b)a+b)—3a—by=(@a—b)a+b—3)=0.

Hence if f{a) = f(b), then (@ — b)(a +b — 3) = 0. Since (@ — b)a + b — 3)=0,it
follows that eithera — b = 0 (andsoa = b)ora+ b — 3 = 0. Therefore, f(a) = f(b)
does not imply that @ = b. It only implies that a = b or a + b = 3. Since 0+ 3 = 3,
we now see why F(0) = f(3). In fact, if @ and b are any two real numbers where
a+b =3, then f(a) = f(b). This tells us how to find all possible counterexamples to
the statement: f is one-to-one. Looking at f(x) = x2 — 3x — 2 once again, we see that
Sy =x(x —3)—2. Since x(x —3) =0 if x = 0 or x = 3, it is now more apparent
why 0 and 3 are numbers for which £(0) = f(3). é

Afunction f : A — B is called onto or surjective if every element of the codomain
B is the image of some element of A.

A function we considered earlier was f;: A — B, where A = {1,2,3},
B ={x,y,z,w}, and f; = {(1, ), (2, w), (3, )}. This function f1 is not onto since
neither x nor z is an image of some element of A. You might notice that for these two
sets A and B, there is no function from A to B that is onto since any such function
has exactly three ordered pairs but B has four elements. Thus for finite sets A and B,
if f: A — B isasurjective function, then |B| < |A|. The function g: B — A, where
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Result to Prove

PROOF STRATEGY

Resuit 9.3

Proof

PROOF ANALYSIS

g =1{(x,3),», 1), (z,3), (w, 2)} is a surjective function, however, since each of the
elements 1, 2, and 3 is an image of some element of B. Next, we determine which of the
functions defined in Result 9.1 and Example 9.2 are onto.

The function f : R — R defined by f(x) = 3x — 5 is onto.

Let’s make a few observations before we begin the proof. To show that f is onto, we
must show that every element in the codomain B = R is the image of some element in
the domain A = R. Since f(0) = —5 and f(1) = —2, certainly —5 and —2 are images
of elements of R. The real number 10 is an image as well since f(5) = 10.Is 7 an
image of some real number? To answer this question, we need to determine whether
there is a real number x such that f(x) = 7. Since f(x) =3x — 5, we need only find
a solution for x to the equation 3x — 5 = 7. Solving this equation for x, we find that
x = ( 4+ 5)/3, which, of course, is a real number. Finally, observe that

f(X)=f<is—>:3(7—T;L—5>—5:m

This discussion, however, gives us the information we need to prove that f is onto since
for an arbitrary real number r, say, we need to find a real number x such that f(x) =r.
However, then, 3x — 5 =r and x = (r +5)/3. é

The function f : R — R defined by f(x) = 3x — 5 is onto.

Let r € R. We show that there exists x € R such that f(x) = r. Choose x = (v + 5)/3.

Then x € Rand
f(X)=f(r:§—5>=3(H3L5)—5:r. .

Notice that the proof itself of Result 9.3 does not include consideration of the equation
3x — 5 = r. Our goal was to show that some real number x exists such that f(x) =r.
How we obtain this number, though possibly interesting, is not part of the proof. On the
other hand, it may be a good idea to accompany the proof with this information. é

Let A ={1,2,3}, B = {x,y,z,w},and C = {a, b, ¢}. Four functions g; : A — B,

g2:B—C,g3: A~ C,and g4 : A — C are defined as follows:

g1 = {(Ly), 2,w), 3, 0},

g = {(x,0), (v, @), (z,0), (w, b},

g =1{(1,a),2,0,3,b}

g =1{(1,b),(2,5),(3,b)}.
The functions g; and g3 are one-to-one, while g, and g4 are not one-to-one since g2(x) =
g2(w) = b and g4(1) = g4(2) = b. Both g5 and g5 are onto. The function g; is not onto

because z is not an image of any element of A, while g4 is not onto since neither a nor
¢ is an image of an element of A.
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Theorem 9.4

Proof

We have already mentioned, for finite sets A and B, that if f : A — B is a surjective
function, then {A| > |B|. Also, we mentioned that if f : A — B is one-to-one, then
|A| < |B|. Hence if A and B are finite sets and there is a function f : A — B that is
both one-to-one and onto, then |A| = |B|. What happens when A and B are infinite sets
will be dealt with in detail in Chapter 10. .

A function f : A — B is called bijective or a one-to-one correspondence if it is
both one-to-one and onto. From what we mentioned earlier, if a function f : A — B is
bijective and A and B are finite sets, then |A| = |B]. Perhaps it is also clear that if A
and B are finite sets with |A| = |B], then there exists a bijective function f: A — B.
A bijective function from a set A to a set B creates a pairing of the elements of A with
the elements of B.

There is another interesting fact concerning the existence of bijective functions
f + A — B for finite sets A and B with |A] = |B|.

Let A and B be finite nonempty sets such that |A} = |B|, and let f be a function from A
to B. Then f is one-to-one if and only if f is onto. .

Let |A| = |B| = n. Assume first that f is one-to-one. Since the n elements of A have
distinct images, there are  distinct images. Thus ran f = B and so f is onto.

For the converse, assume that f is onto. Thus each of the n elements of B is an
image of some element of A. Consequently, the » elements of A have n distinct images
in B, which implies that no two distinct elements of A can have the same image and so
/ is one-to-one. B

Theorem 9.4 concerns finite sets A and B with [A| = |B|. Even though we have not
defitied cardinality for infinite sets, we would certainly expect that |A] = |A| for every
infinite set A. With this understanding, Theorem 9.4 is false for infinite sets A and B,
even when A = B. For example, the function f : Z — Z defined by f(n) = 2n is one-
to-one; yet its range is the set of all even integers. That is, f is not onto, even though f
is a one-to-one function from Z to Z. The function f : N — N defined by g(n) =n — 1
when # > 2 and g(1) = 1 is onto but not one-to-one since g(1) = g(2) = 1. .

Forthesets A = {1,2,3}, B = {x,y,z, w},and C = {a, b, ¢} described above then,
no function from A to B or from B to C can be bijective. It is possible to have a bijective
function from A to C, however, since |A| = |C|. In fact, g3 is such a function, although
other bijective functions from A to C exist. Certainly, not every function from A to C is
bijective, as g4 illustrates.

For anonempty set A, the functioniy : A — Adefinedbyis(e) = aforeacha ¢ A
is called the identity function on A. If the set A under discussion is clear, we write the
identity function i4 by i. For § = {1, 2, 3}, the identity function is

is=i={1,1D,2,2),3,3).

Not only is this identity function bijective, the identity function i 4 is bijective for every
nonempty set A. Identity functions are important and we will see them again soon.
We give one additional example of a bijective function.
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Result 9.5

Proof

PROOF ANALYSIS

The function f : R — {2} — R — {3} defined by

3
f) = —
X —

is bijective.

Here it is necessary to show that f is both one-to-one and onto. We begin with the first of
these. Assume that f(a) = f(b), where a, b € R — {2}. Then a—’_‘_iz = %‘ Multiplying
both sides by (a — 2)(b — 2), we obtain 3a(b — 2) = 3b(a — 2). Simplifying, we have
3ab — 6a = 3ab — 6b. Adding —3ab to both sides and dividing by —6, we obtaina = b,
Thus f is one-to-one.

To show that f is onto, let r € R - {3}. We show that there exists x € R — {2} such
that f(x) = r. Choose x = ,27’3 Then
2r 3 %
fxy= f( ) — Zr(r 3)
r=3/ &H-
_ 6r _6r P
Ta-20-3 6
implying that f is onto. Therefore f is bijective. L

Some remarks concerning the proof that the function f in Result9.5 is onto may be useful.
For a given real number r in R — {3}, we need to find a real number x in R — {2} such that
f(x) = r. Since we wanted f(x) = XSTXZ = r, it was required to solve this equation for x.
This can be done by rewriting this equation as 3x = r(x — 2) and then simplifying it to
obtainrx — 3x = 2r. Now, factoring x from rx — 3x and dividing by r — 3, we have the
desired choice of x, namely x = 2r/(r — 3). Incidentally, it was perfectly permissible
to divide by r — 3 since r € R ~ {3} and so r 9é 3. Notice also that x R {2}, for if
x=2r)(r —3)=2,then2r =2r — 6, 2=y
for x is not part of the proof, again it may be useful to mcludc this work in addltlon to
the proof. ¢

Of course, if f(x) = f(y) implies thatx = y forall x, y € A, then f is one-to-one.
It may seem obvious thatif x = y, then f(x) = f(y)forallx, y € A since this is simply
a requirement of a function.

In order for a relation f from a set A to a set B to be a function from A to B, the
following two conditions must be satisfied:

(1) For each element a € A, there is an element b € B such that (a, b) € f.
(2) If (a, b),(a,c) € f,thenb =c.

Condition (1) states that the domain of f is A, that is, every element of A has an image
in B; while condition (2) says that if an element of A has an image in B, then this image
is unique.

Resuit to Prove

PROOF STRATEGY

Result 9.6

Proof
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Occasionally, a function f that satisfies condition (2) is called well-defined. Since
(2) is a requirement of every function however, it follows that every function must be
well-defined. There are situations though when the definition of a function f may make
it unclear whether f is well-defined. This can often occur when a function is defined on
the set of equivalence classes of an equivalence relation. The next result illustrates this
with the equivalence classes for the relation congruence modulo 4 on the set of integers.

The function f : Zy — Z4 defined by f([x]) = [3x + 1] is a well-defined bijective
function.

To prove that this function is well-defined, we are required to prove that if [a] = [b],
then f ([a]) = f ([b]), that is, [3a + 1] = [3b + 1]. It seems reasonable to use a direct
proof, so we assume that [a] = [b]. Since [a] and [b] are elements of Zj, to say that
[a] = [b] means thata = b (mod 4). Since a = b (mod 4), it follows that 4 | (a — b) and
$0 a — b = 4k for some integer k. To verify that [3a + 1] = [3b + 1], we are required
to show that 3¢ + 1 =3b+1 (mod 4) or, equivalently, that 3a +1)— 3b+ 1) =
3a — 3b = 3(a — b) is a multiple of 4.

Since Z4 consists only of four elements, namely, [0], [1], [2], (3], to prove that f
is bijective, we need only observe that the elements f ([0]), f ([1]), f ([2]) f ([3]) are
distinct. Q

The function f : Zs — Z4 defined by f ([x])': [3x + 1] is a well-defined bijective func-
tion.

First, we verify that this function is well-defined; that is, if [a] = [b], then f ([a )=
[ ([b]). Assume then that [«¢] = [b]. Thus a = b (mod 4) and so 4 | (¢ — b). Hence
a — b = 4k for some integer k. Therefore,

Ba+1)— @b+ 1) =3(a — b) = 3(4k) = 4(3k).

Since 3k is an integer, 4 | [3a + 1) — (3b + 1)]. Thus 3¢ +1 =35+ 1 (mod 4) and
[3a+1] ={3b+ 11,50 f ([a]) = f ([b]). Hence f is well-defined. Since f ([0]) = [1],
£ =10], £ ({2)) = [31, and f ([3]) = [2], it follows that f is both one-to-one and
onto; that is, f is bijective. : ]

C 9.5 Composition of Funcﬁonﬂ

As it is common to define operations on certain sets of numbers (and on the set Z,, of
equivalence classes, as we described in Chapter 8), it is possible to define operations
on certain sets of functions, under suitable circumstances. For example, for functions
f:R—=Rand g: R — R, you might recall from calculus that the sum f + g and
product fg of f and g are defined by

(f + 8 = f(x)+g&) and (fo)x) = f(x)- g(x) 6.1

for all x € R. So if f is defined by f(x) = x? and g is defined by g(x) = sinx, then
(f + 8)(x) = x% + sinx and (fg)(x) = x? sinx for ali x € R. In calculus we are espe-
cially interested in these operations because once we have learned how to determine the
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derivatives of f and &, we want to know how to use this information to find the deriva-
tives of f -+ g and fg. The derivative of /g, for example, gives rise to the well-known
product rule for derivatives:

(fe) () = f(x)- g'(x) + g(x) - F'(x).

This later led us to study the quotient rule for derivatives.

The definitions in (9.1) of the sum / +- g and product fg of the functions f : R — R
and g : R — R depend on the fact that the codomain of these two functions is R, whose
elements can be added and multiplied, and so f(x) + g(x) and f(x) - g(x) make sense.
On the other hand, iff:A—> B andg : A — B,where B = {a, b, c}, say, then f(x) 4
g(x)and f(x)- g(x) have no meaning.

There is an operation that can be defined on pairs of functions satisfying appropriate
conditions that has no connection with numbers. For nonempty sets A, B, and C and
functions f : A - Bandg : B — C,itis possible to create a new function from f and
g, called their composition. The composition g o f of f and g is the function from A
to C defined by

(go f)a)=g(fla)) forallac A.

Toillustrate this definition, let A = {1,2,3,4},B = {a, b, c, d},andC = {r,s,t, u, vl,
and define the functions f : A — Bandg: B — C by

[ =1{10.2,d),0, a,¢a),
& =@, u),(b,7r),(c,r),(d,5)}.

We now have the correct arrangement of sets and functions to consider the composition
go f.Since go f is a function from A to C, it follows that g o f has the following
appearance:

gof =112 B),3,y), @8,

where o, B, y, 8 € C. It remains only to determine the image of each element of A. First,
we find the image of 1. According to the definition of gof,

(go 1) =g(f (1) = gb) =,

so (I,rye go f. Similarly, (g o £)(2) = 8(f(2)=g(d) =+, and s0 (2,5) € gof.
Continuing in this manner, we obtain

gof ={Lr), 25,3, u), ¢ uw).

A diagram that illustrates how g o [ is determined is shown in Figure 9.2. To find the
image of 1 under g o f, we follow the arrow from 1 to b and then from b to r. The
function g o f is basically found by removing the set B. The fact that g o f is defined
does not necessarily imply that f o g is also defined. Since g is a function from B to C
and f is a function from A to B, the only way that f o ¢ would be definedis ifran g C A.
In the example we have just seen, f o g is not defined since ran g = {r, s, u} Z A.
Composition of functions is also encountered in calculus. Let’s consider an ex-
ample of composition that you might have seen in calculus, Again, suppose that the
functions f : R — Roand g : R — R are defined by f(x) =x? and g(x) =sinx. In

Result to Prove
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C

Figure 9.2, The composition function g o f

this case, we can determine both g o f and f o g; namely,
2
@0 N = (@) = g™ = sin ()

. 2 _ cin?x.

(fopw = e = S = e =swx

both defined,
This example also serves to illustrate that even when g o f and f o g-are

they need not be equal. Ii-known chain
The study of composition of functions in calculus led us t© the we

rule for differentiation:

(go Y) =g (fO) - [/ -
i i ition of functions that will be
There are two facts concerning propertics of compc(:;; " o St 5 0 in Geficec,

especially useful to us. First, if f and g are injective fun for surjective functions.
then g o f is injective. The corresponding statement is also true

Let f: A= Bandg: B — C be two functions.

(@) If f and g are injective, then sois g o f.
(b) If f and g are surjective, then sois g o f.
- 3 -to-one.

To verify (a), we use a direct proof and begin by assuming that f ar;?ag)a;e (Ojlz ;(,)) (Oa ),
To show that g o f is one-to-one, we prove that whenever (gof ))1_ . ;(az)). BLut
then a; = ay. However, (g o f)(a1) = (g © f)(a2) means thatg(f((al) *;fy) is exactly
g is one-to-one, 50 g(x) = g(y) implies that x = y. The form g(x )__ (). But we
what we have, where x = f(a;) and y = f(az). This leads us to fla) =
also know that f is one-to-one. : W

To verify (b), we need to prove that if .f and g are onto. thE;l g (‘Ds /; ;Sinoif:; :r)(f) :2;6
that g o f is onto, it is necessary to show that every element of & 1 (e C. Since g is
element of A under the function g o f. So we begin with an element ¢ ’
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Theorem 9.7

Proof

Corollary 9.8

Theorem 9.9

Proof

Example 9.10

onto, there is an element b € B such that g(b) = c. But f is onto, so there is an element
a & A such that f(a) = b. This suggests considering (g © ia). 'Y

Let f : A— Bandg:B — C betwo functions.

(a) If f and g are injective, thensois g o f.
(b) If f and g are surjective, then sois g o f .

Let f:A— B and g: B — C be injective functions. Assume that (g o f)ay) =
(g o f)(ay), where ay, @z € A. By definition, g(f(a1)) = g(f(a2)). Since g is injective,
it follows that f(a)) = f(ay). However, since f is injective, it follows thata; = a. This
implies that g o f is injective.

Nextlet f: A — Band g: B — C be surjective functions, and let ¢ € C. Since
g is surjective, there exisis b € B such that g(b) =c. On the other hand, since f is
surjective, it follows that there exists @ € A such that f(a) = b. Hence (g o f)a) =
g(f(a)) = g(b) = c, implying that g o f is also surjective. ]

Combining the two parts of Theorem 9.7 produces an immediate corollary.
If f: A— Bandg:B — C are bijective functions, then g o f is bijective.

For nonempty sets A, B, C, and D, let f:A—>B,g:B—~C, and h:C — D
be functions. Then the compositions go f: A —> C and hog: B — D are defined,
as are the compositions h o (g o f) : A — Dand(hog)o f : A — D.Composition of
the functions f, g, and & is associative if the functions 2 o (g o fland(hog)o f are
equal. This is, in fact, the case.

For nonempty sets A, B,C, and D, let f : A — B,g:B—>C,andh:C —~ D be
functions. Then (ho g)o f =ho(go f).

Leta € A and suppose that f(a) = b, g(b) = ¢, and h(c) = d. Then
((hog)o f)a) = (hog)f(@)={hog)b)=h(gb)=h)=d;

while
(ho(go ) =h((go @) =h(g(f@)) =h(Eg®) = hc)=d.
Thus (hog)o f =ho(gof). [

As we have mentioned, it is common, when considering the composition of func-
tions, to begin with two functions f and g, where f : A — Bandg: B — C and arrive
at the function g o f : A — C. Strictly speaking, however, all that is needed is for the
domain of g to be a set B’ where ran f is a subset of B. In other words, if f and g are
functions with f : A — B and g : B’ — C, where ran f C B', then the composition
go f:A— C isdefined. .

For the sets A = {~3,~2,...,3) and B =1{0,1,...,10}, B'=1{0,1,4,5,8,9}, and
C=1{1,2,...,10}, let f : A— Band g : B' — C be functions defined by f(n) = n’

Solution
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foralln € Aand g(n) =n+ 1foralln € B'.

(a) Show that the composition g o f : A — C is defined.
(b) Forn € A, determine (g o f)(n).

(a) Sinceran f = {0, 1,4,9} andran f € B’, it follows that the composition
go f:A—> C is defined.
(b) Forn e A, (g0 f)(n) = g(f(m) =g’y =n* + 1. ¢

C
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Theorem 9.11

Proof

Next we describe a property possessed by all bijective functions. In preparation for doing
this, we return to relations to recall a concept introduced in Chapter 8. For a relation R
from a set A to a set B, the inverse relation R ! from B to A is defined as

R'={(b,a): (a,b) € R}.
For example, if A = {a,b, ¢, d}, B = {1,2, 3}, and
R ={(a, 1, (a,3),(c,2),(c,3),(d, 1)}
is a relation from A to B, then
R = ((1,@),3,@). 2,0). G.0). (1. d))

is the inverse relation of R. Of course, every function f : A — B isalso arelation from A
to B, and so there is an inverse relation £ ! from B to A. This brings up a natural question:
Under what conditions is the inverse relation f~! from B to A also a function from B to
A? If the inverse relation f~! is a function from B to A, then certainly dom f~! = B.
This implies that f must be onto. If f is not one-to-one, then f(a;) = f(az) = b for
soméai, ay € Aandb € B,wherea; # a;. Butthen(b, a1), (b, @) € f",whichcannot
ocecur if £} is a function. This leads us to the following theorem. In the proof, two basic
facts are used repeatedly, namely

(15 f(a)=bifand only if (a,b) € f,and
(2) if £~V is a function and f(a) = b, then (b,a) € f~\.

Let f : A — B be a function. Then the inverse relation f~1 is a function from B to A if
and only if f is bijective. Furthermore, if f is bijective, then f ~1is also bijective.

First, assume that f~! is a function from B to A. Then we show that f is both one-to-
one and onto. Assume that f(a;) = f(a2) = y, where y € B. Then (a1, y), (a2, y) € f,
implying that (y, ay), (y, @2) € £~ Since ! is a function from B to A, every element
of B has a unique image under f~. Thus, in particular, y has a unique image under f~'.
Since f1(y) = a; and f~'(y) = ay, itnow follows that a; = a,,and so f is one-to-one.

To show that f is onto, let b € B. Since f~! is a function from B to A, there
exists a unique element a € A such that f~(b) = a. Hence (b, @) € £, implying that
(a,b) € f,thatis, f(a) = b. Therefore, f is onto.
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Example 9.12

Figure 9.3 A bijective function and its inverse

For the converse, assume that the function f : A — B is bijective. We show that
f~Vis a function from B to A. Let b € B. Since f is onto, there exists a € A such that
(a,b) € f.Hence (b, a) € f~1. It remains to show that (b, a) is the unique element of
£~ whose first coordinate is 5. Assume that (b, a) and (b, ') are both in f~'. Then
(a,b),(d', b) € f, which implies that f(a) = f(a’) = b. Since f is one-to-one, a = q’.
Therefore, we have shown that for every b € B there exists a unique elementa € A such
that (b, @) € 71 thatis, £~ is a function from B to A.

Finally, we show that if f is bijective, then f~! is bijective. Assume that f is
bijective. We have just seen that £~ is a function from B to A. First, we show that £~
is one-to-one.

Assume that f~1(b;) = f~1(by) = a. Then (by, a), (bs, @) € f~', and so (a, by),
(a,by) € f. Since f is a function, b; = by and £~ is one-to-one. To show that flis
onto, let @ € A. Since f is a function, there is an element b € B such that (a, b) € f.
Consequently, (b, a) € £~ so that f~1(b) =a, and f~! is onto. Therefore, f~! is
bijective. E

Let f: A — B be a bijective function. By Theorem 9.11 then, f~': B — Aisa
bijective function, which is referred to as the inverse function or simply the inverse
of f. Hence both composition functions f~' o f and f o f~! are defined. In fact,
f~'o f is a function from A to A and f o f~! is a function from B to B. As we
are about to learn, f~!o f and f o f~! are functions we’ve visited earlier. Let a € A
and suppose that f(a) = b. So (a, b) € f and therefore (b, @) € £, thatis, f~1(b) =
a.Thus (f 1o f) @ = f (f@) = B = a.and (f o f ) ) = £ (/7)) =
f(a) = b. So it follows that

flof=iy and fof l=ig

are the identity functions on the sets A and B. (See Figure 9.3.)

If abijective function f has a relatively small number of ordered pairs, then it is easy
to find f~'. But what if f is a bijective function that one might encounter in calculus,
say? We illustrate this next with the function described in Result 9.5.

The function f : R — {2} — R — {3} defined by
3x

flx)y= 5

X

is known to be bijective. Determine f~'(x), where x € R — {3}.

Solution
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Since (f o f71) (x) = x forall x € R — {3}, it follows that

37w
(ro e =r(rw) =2 00

Thus 3/ 71(x) = x(f~'(x) — 2) and 3£~ 1(x) = xf~1(x) — 2x. Collecting the terms in-
volving f~!(x) on the same side of the equation and then factoring out the term £~ (x),
we have .

2f ) =37 =2
SO
Fx = 3) = 2x.
Solving for £~1(x), we obtain

2x

-1 _
fo ==

¢

You might very well have dealt with the problem of finding the inverse of a function
before and might recall a somewhat different approach than the one we just gave. Let’s
look at this example again, but from a different perspective.

When we consider functions from calculus, rather than writing f(x) = x?, gx) =
Sx+ 1orh(x) =x + }[,Wesometimeswritetheseasy =x%y=5x+lLory=x4 }(
In Example 9.12, we were given f(x) = f—_‘i and found that f~!(x) = A% Let’s write
the inverse as y = % instead. That is, (x, y) € =, where y = % Of course, ini-
tially, we don’t know what y is. Butif (x, y) € f~', then (y, x) € f and we khow that
x = f(y)= ;% Solving this equation for y, we have x(y ~ 2) = 3y, soxy — 2x = 3y.
Collecting the terms with y on the same side of the equation and factoring out the term
¥, we obtain

xy~3y=2x and y(x —3)=2x.
. . 2x .
Solving for y, we obtain y = h’j; that is,
X —
2x
x—3

o=
In short; to find f~1if f(x) = ;3;%, we replace f(x) by x and x by y, and then solve
for y. The result is f~!(x). Of course, the procedure we have described for finding
7 (x) is exactly the same as before. The only difference is the notation. You might
have also noticed that the algebra performed to determine f~'(x) in Example 9.12 is
exactly the same as the algebra performed in proving f is onto in Result 9.5. é

Finding the inverse of a bijective function is not always possible by algebraic manip-
ulation. For example, the function f : R — (0, co)defined by f(x) = e* is bijective, but
f71x) = Inx. Indeed, the function ¢ : R — R defined by g(x) = 3x7 - 5x° + 4x — 1
is bijective but there is no way to find an expression for g~1(x).

If f: A — B isaone-to-one function from A to B that is not onto, then, of course,
f is not bijective, and, according to Theorem 9.11, f does not have an inverse (from B
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to A). On the other hand, if we define a new function g : A — ran f by g(x) = f(x)
for all x € A, then g is a bijective function and so its inverse function gliranf - A
exists. For example, let £ denote the set of all even integers and consider the function
f1Z — Z by f(n)=2n. Then this function f is injective but not surjective, and so
there is no inverse function of f from Z to Z. Observe that ran f = E. If we define
g:Z — E by g(n) = f(n) for all n € Z, then g is bijective and gV E—>Zisa
(bijective) function. In fact, g~'(n) = n/2 foralln € E.

9.7 Permutations J

We have already mentioned that the identity function i 4 defined on a nonempty set A is
bijective. Normally, there are many bijective functions that can be defined on nonempty
sets. These types of functions occur often in mathematics, especially in the area of
mathematics called abstract (or modern) algebra.

A permutation of (or on) a nonempty set A is a bijective function on A, that is,
a function from A to A that is both one-to-one and onto. By Results 9.1 and 9.3, the
function f : R —> R defined by f(x) = 3x — 5 is a permutation of R. Let’s consider
an even simpler example. For A = {1, 2,3}, let f be a permutation of A. Then f is
completely determined once we know the images of 1, 2, and 3 under f. There are three
possible choices for f(1), two choices for f(2) once f(1) has been specified, and one
choice for f(3) once f(1) and f(2) have been specified. From this, it follows that there
are 3.2 -1 = 3! = 6 different permutations f of the set A = {1,2, 3}

One of these functions is the identity function defined on {1, 2, 3}, which we denote
by ay; that is,

ar = {(1, 1),(2,2),3,3)}.
Another permutation of {1, 2, 3} is
oy ={(1,1),(2,3), 3, 2)}.

There are other common ways to represent these permutations. A permutation of {1, 2, 3}
is also written as
( 123 )

where the numbers immediately below 1, 2, and 3 are their images. Hence o1, ay, and
the other four permutations of {1, 2, 3} can be expressed as:

(1 23 (1 23 (1 23
“=\1 23] 2Tl 3 2) BT 3 201
(1 23 (1 23 _(1 23
“=\2 1 3) ®T 23 1) BTz 1 2)

Since each permutation «; (1 <i < 6) is a bijective function from {1, 2, 3} to
{1, 2, 3}, it follows from Corollary 9.8 that the composition of any two permutations
of {1, 2, 3} is again a permutation of {1, 2, 3}. For example, let’s consider
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{1 23 12 3\ (1 2 3
o= (1 32)-G 3002 Y
Since (a3 0 as) (1) = aa(es(1) = a2 (2) = 3, (a2 0 a5)(2) =2,and (@ o as) (3) = 1, it
follows that

wome (L2 3) (12 3)_(1 23\ _
0% =1 3 2 23 1)7\3 2 1)5%

By Theorem 9.9, it follows that composition of permutations on the same nonempty
set A is associative. Hence for every three integers i, j, k € {1,2, ---, 6},

(@ioaj)oap =a;o(ajoy).

Also, by Theorem 9.11, since a permutation is a bijective function;each permutation
has an inverse, which is also a permutation. Thus for each i (1=i<6)a = ; for
some j (1 < j < 6). The inverse of a permutation can be found by interchanging the
two rows and then re-ordering the columns so that the top row is in the patural order

1,2,3,.... Thus
Wl (23 1y (1 2 3) _
ST\ 2 37 \3 1 2)T%

In general, there are n! permutations of the set {1,2, ---, n}. The set of all such
permutations is denoted by &,,. Thus ’

83 = {ay, g, -+, g}

As we have seen with S;, the elements of S, satisfy the properties of closure,
associativity, and the existence of inverses for every positive integer n. This will be
revisited in Chapter 13.

EXERCISES FOR CHAPTER 9

Section 9.1: The Definition of Function

9.1 Let A = {a,b,c,d} and LB ={x,y,z}. Then f = {(a, y), (b, 2), (¢, ¥), (d, z)} is a furiction from A to B.
Determine dom f and ran f.

9.2. Let A ={1,2,3} and B = {a, b, ¢, d}. Give an example of a relation R from A to B containing exactly
three elements such that R is not a function from A to B. Explain why R is not a function.

9.3. Let A be a nonempty set. If R is a relation from A to A that is both an equivalence relation and a function
then what familiar function is R? Justify your answer.

s

9.4. For the given subset A; of R and the relation R; (1 <i < 3)from 4; to R, determine whether R; is a
function from A; to R. -
@ A1 =R, R ={(x,y): x € A;,y =4x — 3}
() Ay =[0,00), Ry = {(x, y): x € Ay, (y 4+ 2)* = x}
© As=R, Ry ={(x,y): x € A3, (x +y)* =4}

9.5. Let A and B be nonempty sets and let R be a nonempty relation from A to B. Show that there exists a
subset A’ of A and a subset f of R such that f is a function from A’ to B.



o o e R R S L O PR L NS P L

et L R

214 Chapter 9  Functions

9.6. In each of the following, a function f; : A; — R (1 < i < 5)is defined, where the domain A; consists of all
real numbers x for which f;(x) is defined. In each case, determine the domain A; and the range of f;.
(@ fitx)=1+x?
(0) ) =1-1
© flx)=+3x-1
(d) falx)=x>-38
© f5(x) = ;%5-

Section 9.2: The Set of All Functions from A to B
9.7. Let A= {1,2,3} and B = {x, y}. Determine B*.
9.8. Forsets A = {1,2,3,4} and B = {x, y, z}, give an example of a function g € B and a function & € BE,
9.9. For A = {a, b, c}, determine 2.
9.10. (a) Give an example of two sets A and B such that |B4| = 8.
(b) For the sets A and B given in (a), provide an example of an element in B4,

Section 9.3: One-to-One and Onto Functions
9.11. Let A= {w,x,y,z} and B = {r, 5, }. Give an example of a function f : A — B thatis neither one-to-one
nor onto. Explain why f fails to have these properties.

9.12. Give an example of two finite sets A and B and two functions f : A — B and g : B — A such that f is
one-to-one but not onto and g is onto but not one-to-one.

9.13. Afunction f : Z — Zis defined by f(n) = 2n + 1. Determine whether £-is (a) injective, (b) surjective.
9.14. Afunction f : Z — Z is defined by f(n) = n — 3. Determine whether f is (a) injective, (b) surjective.

9.15. A function f : Z — Zis defined by. f(n) = 5n + 2. Determine whether f is (a) injective, (b) surjective.
9.16. Prove or disprove: For every nonempty set A, there exists an injective function f : A — P(A).

9.17. Determine whether the function f : R — R defined by f(x) = x2 + 4x + 9 is (a) one-to-one, (b) onto.

9.18. Is there a function f : R — R that is onto but not one-to-one? Explain your answer.

9.19. Give an example of a function f : N — N that is
(a) one-to-one and onto (b) one-to-one but not onto
(c) onto but not one-to-one (d) neither one-to-one nor onto.

Section 9.4: Bijective Functions

9.20. Prove that the function f : R — R defined by f(x) = 7x — 2 is bijective.

9.21. Prove that the function f : R — {2} — R — {5} defined by f(x) = 5;‘:"2] is bijective.

9.22. Let f : Zs — Zs be a function defined by f([a]) = [2a + 3].
(a) Show that f is well-defined.
(b) Determine whether f is bijective.

9.23. For two finite nonempty sets A and B, let R be a relation such that ran R = B. Define the domination
number y(R) of R as the smallest cardinality of a subset S C A such that for every element y of B, there is
an element x € S such that x is related to y.
(a) Let A={1,2,3,4,5,6,7}and B = {a,b,c,d,e, f,g}and let R = {(1,e),(1,e),(2,0), (2, /), (2, 2),

(3.0), 3, £), 4, a),(4,0), 4, 8),(5,a),(5,b),(5, ¢), (6,d), (6, ), (7, a), (7, §)}. Determine y(R).
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(b) If R is an equivalence relation defined on a finite nonempty set A (and so B = A), then what is y{R)?
(c) If f is a bijective function from A to B, where both A and B are finite and nonempty, then what is y ( £)?

9.24. Let A = [0, 1] denote the closed interval of real numbers between 0 and 1. Give an example of two different
bijective functions fi and f, from A to A, neither of which is the identity function.

9.25. Let A be a nonempty set and let f : A —> A be a function. Prove that if f o f =i, then f is bijective.

Section 9.5: Composition of Funetions
9.26. Let A={1,2,3,4}, B ={a,b,c},and C = {w, x, y, z}. Consider the functions f : A — B and
g:B — C,where f = {(1,b),(2.¢), 3,¢). 4, @)} and g = {(a, x), (b, ), (¢, x)}. Determine g o f.
9.27. Two functions f : R — Rand g : R - Rare defined by f(x) = 3x? + 1 and g(x) = 5x —3forallx € R.
Determine (g o £)(1) and (f o g)(1). .
9.28. For nonempty sets A, B,and C,let f : A — B and g : B — C be functions.
(a) Prove:
If g o f is one-to-one, then f is one-to-one. .
using as many of the following proof techniques as possible: direct proof, proof by contrapoéitivc, proof
by contradiction.
(b) Disprove: If g o f is one-to-one, then g is one-to-one.
9.29. Prove or disprove the following:
(a) If two functions f : A — B and g : B — C are both bijective, then g o f : A — C is bijective.
(b) Let f: A~ Bandg: B — C be two functions. If g is onto, then g o f : A — C is onto.
() Letf: A— Bandg: B — C betwo functions. If g is one-to-one, then go f : A — C is one-to-one.
(d) There exist functions f : A — B and g : B — C such that f isnotontoand go f : A — C is onto.
(e) There exist functions f : A — B and g : B — C such that f is not one-to-oneand g o f : A — C is
- one-to-one.
9.30. Let A and B be nonempty sets. Prove that if f : A — B, then f ois = f andiz o f = f.
9.31. Let A denote the set of integers that are multiples of 4, let B denote the set of integers that are multiples of
8, and let B’ denote the set of even integers. Thus
A={4k: keZ},B={8k: keZ},and B ={2k: kcZ}.
Let f: AXx A— Bandg: B’ — Zbe functions defined by f(x,y) = xyforx,y € A and g(n} =n/2
forne B'.
(a) Show that the composition function g o f : A x A — Z is defined.
(b) Fork, £ € Z, determine (g o f)(4k, 4£).

Sectien 9.6; Inverse Functions

9.32. Let A = {a, b, ¢}. Give an example of a function f : A — A such that the inverse (relation) £~ is not a
function.

9.33. Show that the function f : R —> R defined by f(x) = 4x — 3 is bijective, and determine 7 ~!(x) for x € R.

9.34. Show that the function f : R — {3} = R — {5} defined by f(x) = j—jg is bijective, and determine f~(x)
forx e R — {5).

9.35. Let the functions f : R — Rand g : R — R be defined by f(x) = 2x + 3 and g(x) = —3x + 5.
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(a) Show that f is one-to-one and onto.
(b) Show that g is one-to-one and onto.
(c) Determine the composition function g o f.
> (d) Determine the inverse functions ! and g~'.
(e) Determine the inverse function (g o )~ of g o f and the composition f ' o g~'.

9.36. Let A=R — {1} and define f : A — Aby f(x) = forallx € A.

X —
(a) Prove that f is bijective.
(b) Determine £~1.
(c) Determine f o f o f.

9.37. Let A, B, and.C be nonempty sets and let f, g, and 4 be functions such that f:A—>B,g:B— C,and
h: B — C. For each of the following, prove or disprove:
@ Ifgof=hof, theng=h.
(b) If fisone-to-onecand go f =ho f,theng = h.

Section 9.7: Permutations

9.38. Leta:(; g i g ?)andﬁ: (é g 3 j ?)bepennutationsin&.Delexmineaoﬁ and g1
123456 123456
9.39. Lf:tot:(2 6415 3>andﬁ:(5 36121 4>beelementsof56.

(a) Determine =" and g,
(b) Determine @ o B and 8 o .

ADDITIONAL EXERCISES FOR CHAPTER 9

9.40. Let f : R — R be the function defined by f(x) = x>+ 3x + 4.
(a) Show that f is not injective.
(b) Find ali pairs ry, r of real numbers such that f(r;) = f(r2).
(c) Show that f is not surjective.
(d) Find the set S of all real numbers such that if s € S, then there is no real number x such that f(x) = s.
(e) What well-known set is the set S in (d) related to?

9.41. Let f : R — R be the function defined by f(x) = x> + ax + b, where a, b € R. Show that f is not
one-to-one. [Hint: It might be useful to consider the cases a # 0 and a = 0 separately.]

9.42. InResult 9.1, we saw that the (linear) function f : R — R defined by f(x) = 3x — 5 is one-to-one. In fact,
we have seen that other linear functions are one-to-one. Prove the following generalization of this result:
The function f : R — R defined by f(x) = ax + b, where a, b € R and a # 0, is one-to-one.

9.43. Bvaluate the proposed proof of the following result.
Result The function f : R- {1} = R — (3} defined by f(x) = % is bijective.

Proof First, we show that f is one-to-one. Assume that f(a) = f(b), where a, b € R — {1}. Then
Sa %‘ Crossmultiplying, we obtain 3a(b — 1) = 3b(a — 1). Simplifying, we have

a—1

9.44.

9.45.
9.46.

9.47.

9.48.
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3ab — 3a = 3ab — 3b. Subtracting 3ab from both sides and dividing by —3, we have a = b. Thus fis
one-to-one.
Next, we show that f is onto. Let f(x) = r. Then ;T’l = ;80 3x = r(x — 1). Simplifying, we have

3x =rx —randso3x —rx = —r. Therefore, x(3 —r) = —r. Since r € R — {3}, we can divide by 3 —
and obtain x = 5=~ = +55- Therefore, )
r 3(:5) 3r 3r
f(X)—f<r~3) T -1 r=(r-3) =3 7"

Thus f is onto. =

Let A ={a,b,c,d, e}. Then f = {(a, ¢). (b, €), (¢, d), (d, b), (é, a)} is a function from A to A:

(a) Show that it is possible to list the five elements of A in such a way that the image of each of the first
four elements on the list is to the immediate right of the element and that the image of the last element
on the list is the first element on the list.

(b) Show that it is not possible to list elements of A as in (a) for every function from A to A.

Let S be a nonempty set. Show that there exists an injective function from P(S) to P(P(S)).

For each of the following functions, determine, with explanation, whether the function is one-to-one and
whether it is onto. ‘

(@ f:RxR—> RxR, where f(x,y) =Gx -2,5y +7)

(b) g:ZxZ— ZxZ, where g(m, n) =(n+6,2 —m)

©) h:Z xZ— ZxZ,where h(r,s) = 2r + 1, 45 + 3)

() ¢:ZxZ—~>S=1{a+bJ/2: a,beZ}, where pla, b) = a+ b/2

(&) @ : R - R x R, where a(x) = (x%, 2x + 1).

Let U be some universal set and A a subset of i{. A function g4 : U — {0, 1} is defined by

J_ [l ifxea
8 =19 irg¢a.

Verify each of the following.”
(a) gu(x)=1forallx € U.
(b) gg(x) =0forallx € U.
(c) Ford =Rand A = [0, 00), (g4 0 ga)x) = 1 forx € R.
(d) For subsets A and Boff and C = AN B,
8c =(g4) - (gn)
wherte ((g4) - (g8))(x) = ga(x) - g5(x).
(e) ForACU,
g7(x) =1—galx)foreachx e U.

For nonempty sets A and B and functions f : A — B and g: 8B — A, suppose that g o f =y, the
identity function on A.

(a) Prove that f is one-to-one and g is onto.

(b) Show that f need not be onto.

(c) Show that g need not be one-to-one.

(d) Prove that if f is onto, then g is one-to-one.



218

9.49.
" (2) Show that f o fo f = i4.

9.53.

9.54.

9.56.

(o2

. Arelation f on R is defined by f =

Chapter 9 Functions
(e) Prove that if g is one-to-one, then f is onto.
(f) Combine the results in (d) and (e) into a single statement.

LetA:R—{O}andletf:A—>Abedeﬁnedbyf(x):lviforallxeR.

(b) Determine f~'.

. Give an example of a nonempty set A and a bijective function f : A — A such that (1) f # iy,

Q) fof#ig,and(3) fofof =i4.

cLetA={1,2},B={1,—1,2,~2},and C = {1,2,3,4}. Then £ ={(1, 1), (1, —1), (2.2), (2, D)} is a

relation from A to B, while g = {(1, 1), (-1, 1), (2, 4), (=2, 4)} is a relation from B to C. Furthermore,
gf ={(x,2): (x,y) € fand (y,z) € g forsome y € B}
is arelation from A to C. Obseérve that even though the relation f is not a function from A to B, the relation
gf is a function from A to C. Explain why.
{(x,y):xeRandy =xory = —x}and a function g : R - R is
defined by g(x) = x2. Then
gf ={(x,2): (x,y) € fand (y, z) € g for some y € B}.

(a) Explain why f is not a function from R to R.

(b) Show that gf is a function from R to R and explicitly determine it.

(¢) Even though the relation f is not a function from R to R, the relation gf is a function from R to R.
Explain why.

LetA={1,2}, B={1,2,3,4},and C = {1, 2,3,4, 5, 6}. Give an example of a function f from 4 to B

and a relation g from B to C that is not a function from B to C such that

gf ={(x,2): (x,y) e fand(y,z) € g forsome y € B}
is a function from A to C.

Let 7 be the set of all functions with domain and codomain R. Define a relation R on F by f R g if there
exists a constant C such that f(x) = g(x) + C forall x € R.
(a) Show that R is an equivalence relation.

(b) If f € F and its derivative A(x) is defined for all x € R, use this information to describe the elements in
the equivalence class [ f].

. (&) Let S = {a, b, c,d} and let T be the set of all six 2-element subsets of S. Show that there exists an

injective function f : § — {0,1,2, ..., |T|} such that the function g : T — {1,2, ..., |T'|} defined by
g(li, j) = 1f () — f())l is bijective.

(b) Let S ={a,b,c,d, e} and let T be the set of all ten 2-element subsets of S. Show that there exists no
injective function f : § — {0, 1,2, ..., |T|} such that the function g : T — {1,2, ..., |T|} defined by
g({i, jhy = (@) — f()l s bijective.

(¢) For the sets S and T in (b), show that there exists an injective function f:8—=1{0,1,2,...,/T|+2}
such that the function g : T — {1,2, ..., |T| + 2} defined by g({i, j}) = | f (i) — f())| is injective.

(d) The results in (b) and (c) should suggest a question to you. Ask and answer such a question.

Let § be the set of odd positive integers. A function F : N — § is defined by F(n) = k foreach n € N,
where k is that odd positive integer for which 3n 4+ 1 = 2"k for some nonnegative integer m. Prove or
disprove the following:

(a) F is one-to-one.
(b) F is onto.

9.57.

9.58.

9.59.

9.60.
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A function F : N — N U {0} is defined by F(n) = m for each n € N, where m is that nonnegative integer
for which 3n + 1 = 2"k and k is an odd integer. Prove or disprove the following:

(a) F is one-to-one.
(b) F is onto.

Recall that the derivative of Inx is 1 /x and that the derivative of x" is nx"~! for every integer n. In symbols,

n—t

—(lux) — and — (r ) = nx

Let f : R* — Rbe defined by f(x) =
by

In x for every x € R, Prove that the nth derivative of f(x) is given

=1y n — 1)

(n) - ( A

1w —

for every positive integer n.

Let f : R — Rbedefined by f(x) = xe™ forevery x € R. Prove that the nth derivative of f(x)is given by
P = (=1'e ™ (x — n)

for every positive integer n. .

For Exercises 9.60-9.62, use the following definition. Let f : A — B be a function. For a subset C of A,

the image of C under f is the set
fO={flO: ceC}h ' 5

(Thus f(A)is the range of f.)
Let Ay, Ay C A. Prove the following.
(@) f(A1UA) = fADU f(4y)
(b) fF(AIN A € f(ANN f(Ar)
(¢) If f is one-to-ome, then f(A; N A2) = f(A1) N f(Ay).

. Hg:Q—Qis deﬁned by g(r) =4r + 1 foreachr € Q, then determine g(Z) and g(E), where E is the set

of even integers.

. Define the function / : Z;g — Zo4 by h([a]) = [3a] foreach a € Z.

(a) Prove that the function 4 is well-defined, that is, prove that if [¢] = = h([b]) in
Zog.
(b) For the subsets A = {[0], [3], [6], {91, [12], [15]} and B =

and h(B) of Zy,.

[b] in Z14, then h([a]

{[0], [81} of Zy, determine the subsets h(A)




Cardinalities of Sets

any consider the Italian mathematician and scientist Galileo Galilei to be the

founder of modern physics. Among his major contributions was his mathematical
view of the laws of motion. Early in the 17th century, Galileo applied mathematics to
study the motion of the earth. He was convinced that the earth revolved about the sun,
an opinion not shared by the Catholic Church at that time. This led him to be imprisoned
for the last nine years of his life. -

Galileo’s two main scientific writings were Dialogue Concerning the Two Chief
World Systems and Discourses and Mathematical Demonstrations C oncerning Two New
Sciences, the first published before he went to prison and the second published (in the
Netherlands) while he was in prison. In these two works, he would oftent discuss scientific
theories by means of a dialogue among fictional characters. It is in this manner that he
could state his positions on various theories.

One topic that intrigued Galileo was infinite sets. Galileo observed that there is a
one:to-one correspondence (that is, a bijective function) between the set N of positive
integers and the subset S of N consisting of the squares of positive integers. This led
Galileo to observe that even thou gh there are many positive integers that are not squares,
there are as many squares as there are positive integers. This led Galileo to be faced
with a property of an infinite set that he found bothersome: There canbe a one-to-one
correspondence between a set and a proper subset of the set. While Galileo concluded
correctly that the number of squares of positive integers is not less than the number of
positive integers, he could not bring himself to say that these sets have the same number
of elements.

Bernhard Bolzano was a Bohemian priest, philosopher, and mathematician. Al-
though best known for his work in calculus during the first half of the 19th century, he
too was interesied in infinite sets. His Paradoxes of the Infinite, published two years after
his death and unnoticed for twenty years, contained many ideas of the modern theory
of sets. He noted that one-to-one correspondences between an infinite set and a proper
subset of itself are common and was comfortable with this fact, contrary to Galileo’s
feelings. The German mathematician Richard Dedekind studied under the brilliant Carl
Friedrich Gauss. Dedekind had a long and productive career in mathematics and made
many contributions to the study of irrational numbers. What had confused Galileo and
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interested Bolzano gave rise to a definition of an infinite set by Dedekind during the last
part of the 19th century: A set $ is infinite if it contains a proper subset that can be put in
one-to-one correspondence with S. Certainly, then, understanding infinite sets was not
an easy task, even among well-known mathematicians of the past.

We mentioned in Chapter 1 that the cardinality |S| of a set S is the number of
elements in S and, for the present, we would use the notation | S| only when S is a finite
set. A set § is finite if either § = @ or |S| = n for some n € N; while a set is infinite if
it is not finite. It may seem that we should write | S| = oo if § is infinite, but we will see
later that this is not particularly informative. Indeed, it is considerably more difficult to
give a meaning to |} if § is an infinite set; however, it is precisely this topic that we are
about to explore.

[ 10.1 Numerically Equivalent Sets ]

Theorem 10.1

Proof

Itis rather obvious that the sets A = {a, b, c} and B = {x, ¥, z} have the same cardinality
since each has exactly three elements. That is, if we count the number of elements in
two sets and arrive at the same value, then these two sets have the same cardinality.
There is, however, another way to see that the sets A and B described above have the
same cardinality without counting the elements in each set. Observe that we can pair
off the elements of A and B, say as (a, x), (b, ), and (c, z). This implies that A and B
have the same number of elements, that is, |A| = |B|. What we have actually done is
describe a bijective function f : A — B, namely f = {(a, x), (b, y), (¢, z)}. Although
it is much easier to see that | A| = |B| by observing that each set has three elements than
by constructing a bijective function from A to B, it is this latter method of showing that
|A} = | B] that can be generalized to the situation where A and B are infinite sets.

Two sets A and B (finite or infinite) are said to have the same cardinality, written
IA| = |B|, if either A and B are both empty or there is a bijective function f from A to
B.Two sets having the same cardinality are also referred to as numerically equivalent
sets. Two finite sets are therefore numerically equivalent if they are both empty or if
both have # elements for some positive integer n. Consequently, two nonempty sets A
and B are not numerically equivalent, written | A] # | B|, if there is no bijective function
f from one set to the other. The study of numerically equivalent infinite sets is more
challenging but considerably more interesting than the study of numerically equivalent
finite sets.

The justification for the term “numerically equivalent sets” lies in the following
theorem, which combines the major concepts of Chapters § and 9.

Let S be a nonempty collection of nonempty sets. A relation R is defined on S by A R B
if there exists a bijective function from A to B. Then R is an equivalence relation.

Let A € S. Since the identity function ig : A — A is bijective, it follows that A R A.
Thus R is reflexive. Next, assume that A R B, where A, B € S. Then there is a bijective
function f : A — B. By Theorem 9.11, f has an inverse function f~': B — A and,
furthermore, f~! is bijective. Therefore, B R A and R is symmetric.

Finally, assume that A R B and B R C, where A, B, C € S. Then there are bijective
functions f : A — Band g : B — C. It follows by Corollary 9.8 that the composition
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gof:A->Cis Bijective as well, and so A R C. Therefore, R is transitive. Conse-
quently, R is an equivalence relation. ]

According to the equivalence relation defined in Theorem 10.1, if A is a nonempty
set, then the equivalence class [A] consists of all those elements of S having the same
cardinality as A; hence the term “numerically equivalent sets” is natural for two sets
having the same cardinality.

—

10.2 Denumerable Sets }

In order to start to gain an understanding of the cardinality of an infinite set, we begin
with a particular class of infinite sets. A set A is called denumerable if |A| = |N|, that s,
if A has the same cardinality as the set of natural numbers. Certainly, if A is denumerable,
then A is infinite. By definition, if A is a denumerable set, then there is a bijective func-
tion f:N— A and so f = {(1, f(1)), (2, f(2)), (3, f(3)),...}. Consequently, A =
{f(), f(2), £(3),...}, that is, we can list the elements of A as f(1), f(2), f3),....
Equivalently, we can list the elements of A as a1, @y, as, ... , where then ¢; = f(i) for
i € N. Conversely, if the elemeiits of A can be listed as ay, @, as, ..., where a; # a;
fori # j, then A is denumerable since the function g : N — A defined-by g(n) = a,
for each n € N is certainly bijective. Therefore, A is a denumerable set if and only if it
is possible to list the elements of A as a1, a2, a3, ... and so A = {a1, @, a3,...}.

A set is countable if it is either finite or denumerable. Countably infinite sets are
then precisely the denumerable sets. Hence, if A is a nonempty countable set, then we can
either write A = {a;, 4y, a3, ..., a,} forsomen € Nor A = {a;, @y, a3, . ..}. A set that
is not countable is called uncountable. An uncountable set is necessarily infinité. It may
not be clear whether any set is uncountable, but we will soon see that such sets do exist.

Let’s look at a few examples of denumerable sets. Certainly, N itself is denumerable
since the identity function iy : N — Nis bijective. However, not only is the set of positive
integers denumerable, the set of a/l integers is denumerable. The proof of this fact that
we give illustrates a common technique for showing that a set is denumerable, namely, if
we can list the elements of a set A as ay, a3, a3, . . . such that every element of A appears
exactly once in the list, then A is denumerable. .

Result 16.2  The set Z of integers is denumerable.

Proof Observe that the elements of Z can be listed as 0, 1, — 1,2, —2, .. .. Thus the function
f N — Z described in Figure 10.1 is bijective, and so Z is denumerable. L]

The function f N — Z given in Figure 10.1 can be also defined by
1+ (-D"Cn—-1)

Sy = 1 (10.1)
1 2 3 4 5 -
N
01 -1 2 -2 .
Figure 10.1 A bijective function f : N — Z
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Theorem 16.3

Procf

Although we have already observed that this function f 1is bijective, Exercise 10.4. asks
for a formal proof of this fact.

The fact that Z is denumerable illustrates what Galileo had observed centuries ago:
It is possible for two sets to have the same cardinality where one is a proper subset of
the other. (Such a situation could never occur with finite sets, however.) For example,
N C Z and |N| = |Z|. This fact serves as an illustration of a result, the proof of which is
a bit intricate.

Every infinite subset of a denumerable set is denumerable.

In the proof, we begin with two sets, which we’}Jl call A and B, where 4 is denumerable,
B C A, and B is infinite. Because A is denumerable, we can write A = (a1, ay, a3, ...},
Since our goal is to show that B is denumerable, we need to show that we can write
B = {b1, by, b3, ...}. The question, of course, is how to do it.

Because B is an infinite subset of A, some of the elements of A belong to B (in
fact, infinitely many elements of A belong to B); while, most likely, some elements of
A do not belong to B. We can keep track of the elements of A that belong to B by
means of a set, which we’ll denote by §.Ifa; € B, then 1 € S; if ¢ ¢ B,then1¢S.
In general, n € § if and only if @, € B. Certainly, S € N. Since N is a well-ordered set
(by the Well-Ordering Principle), S contains a smallest element, say s. Thatis, a; € B.
Furthermore, if r is an integer such that 1 <r < s, then a, ¢ B. It is the element a
that we will call b,. It is now logical to look at the (infinite) set § — {s} and consider its
smallest element, say 7. Thus ¢ > 5. The element @, will become b,. And so on.

Since we want to give a precise and careful proof, we are already faced with two
problems. First, denoting the smallest element of § by s and denoting the smallest
element of S — {s} by ¢ will present difficulties to us. We need to use better notation. So
let us denote the smallest element of S by i; (so by = @;,) and the smallest element of
S —{i;} by i (so by = a;,). This is much better notation. The other problem we have
is when we wrote “And so on.” Once we have the positive integers i) and iy, it will
follow that the positive integer i3 is the least element of S — {iy, i5}. In general, once
we have determined the positive integers i1, i, ..., iz, where k € N, the positive integer
ir+1 is the smallest element of S — {iy, i, ..., it }. In fact, this suggests that the elements
b1, by, bs, ... can be located in A using induction.

After using induction to construct the set {by, by, b, ...}, which we will denote by
B', say, then we still have one more concern. Are we certain that B’ = B? Because each
element of B’ belongs to B, we know that B’ € B. To show that B’ = B, we must also
be sure that B C B’. As we know, the standard way to show that B C B’ is to take a
typical element b € B and show that b € B’.

Let’s now write a complete proof. é

Every infinite subset of a denumerable set is denumerable.

Let A beadenumerable setand let B be an infinite subset of A. Since A is denumerable, we
canwrite A = {a;, a3, a3, ...}.Let S = {{ € N : @; € B}; thatis, S consists of all those
positive integers that are subscripts of the elements in A that also belong to B. Since B is
infinite, § is infinite. First we use induction to show that B contains a denumerable subset.
Since § is anonempty subset of N, it follows from the Well-Ordering Principle that S has a

Result 10.4

Proof

Result 16.5

Proof
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leastelement, say ;. Letb; = a;,.LetS; = § — {i,}. Since S| # @ (indeed, S is infinite),
Sy has aleast element, say i,. Let by = a;,, which, of course, is distinct from &,. Assume
that for an arbitrary integer k > 2, the (distinct) elements by, bs, . . ., b have been defined
by b; = a;; for each integer j with 1 < j <k, where i; is the smallest element in §
and {; is the minimum element in Sic1=8 —{it, 2, ..., ij1} for2 < j < k. Now let
if+1 be the minimum element of S = § — {iy, is, ..., i;} and let by = a;,,,- Hence
it follows that for each integer n > 2, an element b, belongs to B that is distinct from
b1, by, ..., by_;. Thus we have exhibited the elements by, by, b3, ... in B.

Let B' = {by, by, b3, .. .}. Certainly B’ € B. We claim, in fact, that B = B’. It re-
mains only to show that B C B’. Let b € B. Since B C A, it follows that b = a, for
somen € Nandson e S. If n =iy, then b = b, = a, and so b € B'. Thus we may
assume that n > ;. Let S’ consist of those positive integers less than n that belong
to §. Since n > i and i; € S, it follows that ' # @. Certainly, I <|S'| <n — 1; so
§’ is finite. Thus |S’| = m for some m € N. The set S’ therefore consists of the m
smallest integers of S, that is, S’ = {i1, o, ..., i,;}. The smallest integer that belongs
to § and is greater than i, must be i,.1, of course, and i, > n. But n € §, so
n=ipandb=a, =a,, =bn € B'.Hence B =B’ ={by, by, b3, ...}, which is
denumerable. " ]

In order to use Theorem 10.3 to describe other denumerable sets, it is convenient to
introduce some additional notation. Let k € N. Then the set £Z is defined by

kZ = {kn: n e Z}.
Similarly,
kN = {kn : n e N}.

Thus 1Z = Z and IN = N, while 27 is the set of even integers. An immediate conse-
quence of Theorem 10.3 is stated next.

The set 27 of even integers is denumerable.

Since 2Z is infinite and 2Z C Z, it follows by Theorem 103 that 27 is denu-
merable. . =

Of course, kZ is denumerable for every nonzero integer k. We now describe a
denumerable set that can be obtained from two given sets. Recall, for sets A and B, that
the Cartesian product A x B = {(a,b): a € A, b € B}.

If A and B are denumerable sets, then A x B is denumerable.

Since A and B are denumerable sets, we can write A = {a], a, a3, .. .} and B =
{b1, b2, b, .. .}. Consider the table shown in Figure 10.2(a), which has an infinite (de-
numerable) number of rows and columns, where the elements ay, as, a3, . . . are written
along the side and by, by, b3, ... are written across the top. In row 7, column j of the
table, we place the ordered pair (a;, b;). Certainly, every element of A x B appears ex-
actly once in this table. This table is reproduced in Figure 10.2(b), where the directed
lines indicate the order in which we will encounter the entries in the table. That is, we
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“ by by by ees by by by e
ay {(a, by) (a, b)) (a1, b3) =0 ap by se
(az, b3)

(an, by (as,b3) =

ay |(an, by) (@, b)) (az,b3) =+ @

3 | (as, by) (a3, by) (a3, b3) = o a3

2

. o

(@ )

Figure 10.2  Constructing a bijective function f :N— Ax B

encounter the elements of A x B in the order

(ay, b1), (a1, o), (a2, by), (@1, b3), (a2, ), - - -

Since every element of A x B occurs in this list exactly once, this describes a
bijective function f : N — A x B, where

F(1) = (a1, by), £ = (a1, ba), F(3) = (a2, b1), (&) = (ar, b), f(58) =(az, b2), ...
Therefore, A x B is denumerable. &

We can use a technique similar to that used in proving Result 10.5 to show that
another familiar set is denumerable.

The set Q" of positive rational numbers is denumerable.

Consider the table shown in Figure 10.3(a). In row i, column j, we place the rational
number j/i. Certainly, then, every positive rational number appears in the table of Figure
10.2(a); indeed, it appears infinitely often. For example, the nuraber 1/2 appears in row
2, column 1, as well as in row 4, column 2.

1 2 3 4 .
1 2 3 4
1| L 2 3 4
1 1 1 1 1
2 | L 2 3 4
2 3 2 5 2
sl 2 s s
3 3 3 3 3
4 1 2 3 4
i 4 1 1 4
(a) (b

Figure 103 A table used to show that Q* is denumeréﬁe

10.2 Denumerable Sets 227

The table of Figure 10.3(a) is reproduced in Figure 10.3(b), where the arrows indicate
the order in which we will consider the entries in the table. That is, we now consider the
positive rational numbers in the order

1213214
1"172 17231
With the aid of this list, we can describe a bijective function f : N — Q7. In
particular, we define f(1) = 1/1 =1, f@=2/1=2,f3)=1/2, and f(4) =3/1=
3 as expected. However, since 2/2 = 1 and we have already defined f(1) =1, we do
not define f(5) = 1 (since f must be one-to-one). We bypass 2/2 = 1 and, following
the arrows, go directly to the next number on the list, namely 1/3. In fact, whenever
we encounter a nuraber on the list that we have previously seen, we move to the next
number on the list. In this manner, the function f being described will be one-to-one.
The function f is shown in Figure 10.4.
Because every element of @ is encountered eventually, £ is onto as well and so f
is bijective. Consequently, Q7 is denumerable. B

Y e

The function f described in Figure 10.4 is by no means unique. There are many
ways to traverse the positive rational numbers in the table described in Figure 10.3(a).
The tables shown in Figure 10.5 indicate two additional methods. .

Some care must be taken when proceeding about the entries in the table of Figure
10.3(a). For example, traversing the positive rational numbers by rows (see Figure 10.6)
just won’t do. Since the first row never ends, we will only encounter the positive integers.

The set QT can also be shown to be denumerable with the aid of the table in Figure
10.7. In the first row, all positive rational numbers j /i withi = 1 are shown. In the second
row, all positive rational numbers j/i with i = 2 and such that j/i has been reduced
to lowest terms are shown. This results in the rational number 2j —1/2 in row 2,

123 45 -
foooL bbbl
1243 3

Figure 10.4 A bijective function f N->Q*

4 | 1 2 3 4
4 1 3.4
1 1 1 1] 1
4 2 3

5 2 3 2

é L

3 | 3 3 3
4 1 2 3 _
3 4 ]

F 4 4 4

Figure 10.5  Traversing the positive rational numbers
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1 2 3 4
1 1 2 3 4.
1 1 1 1
1 2 3 4
2 2 2 2 2
1 2 3 4
3 3 3 3 3
4 1 2 3 4
4 4 4 4
Figure 10.6  How not to traverse the positive rational numbers

column j. We continue in this manner with all other rows. In this way, every positive
rational number appears exactly once in the table. Thus when we proceed through the
entries as the arrows indicate, we obtain the positive rational numbers in the order
1213314
12’1231
and the corresponding bijective function g : N — Q. Therefore, g =182 =2,
8(3) =1/2, g(4) =3, g(5) = 3/2, and so on.
Now that we have shown that Q* is denumerable, it is not difficult to show that the
set Q of all rational numbers is denumerable.

The set Q of all rational numbers is denumerable.
Since Q™ is denumerable, we can write Q" ={41,92,43,...}.Thus,Q = {0} U {q1, q2,

43, -- U {=q1, —q2, —q3, .. .}. Therefore, @ = {0, g1, —q1, g2, —¢2. . . .} and the func-
tion f : N — Q shown in Figure 10.8 is bijective and so ( is denumerable. 8

1 2 3 4 o -

1 Yo
2 %
5 5oL,
4 % ..

Figure 10.7  Another bijective function g : N —Q*
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1 2 3 4 5 .-
S R A A A
0 @ @ —-q@ -

Figure 10.8 A bijective function f : N — Q
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Although we have now given several examples of denumerable sets (and consequently
countably infinite sets), we have yet to give an example of an uncountable set. We will
do this next. First though, let’s review a few facts about decimal expansions of real
numbers. Every irrational number has a unique decimal expansion and this expansion
is nonrepeating, while every rational number has a repeating decimal expansion. For
example, 13—1 = 0.272727 - - -. Some rational numbers, however, have two (repeating)
decimal expansions. For example, % =0.5000-- - and % = 0.4999 - .. (The number 13—1
has only one decimal expansion,) In particular, a rational number a /b, where a, b € N,
that is reduced to lowest terms has two decimal expansions if and only if the only primes
that divide b are 2 or 5. If a rational number has two decimal expansions, then one of
the expansions repeats the digit 0 from some point on (that is, the decimal expansion
terminates), while the alternate expansion repeats the digit 9 from some point on.

‘We are now prepared to give an example of an uncountable set. Recall that for real

numbers a and b with a < b, the open interval (@, b) is defined by
(a,by={xeR: a<x<b}

Although, as it will turn out, all open intervals (a, b) of real numbers are uncountable,
we will prove now only that (0, 1) is uncountable.

The open interval (0, 1) of real numbers is uncountable.

Since uncountable means not countable, it is not surprising that we should try a proof
by coniradiction here. So the proof would begin by assuming that (0, 1) is countable.
Since (0, 1) is-an infinite set, this means that we are assuming that (0, 1) is denumerable,
which implies that there must exist a bijective function f : N — (0, 1). Therefore, for
each n € N, f(n) is a number in the set (0, ). It might be convenient to introduce
some notation for the number f(n), say f(n) = a,, where then 0 < a, < 1. Since f
is assumed to be one-to-one, it follows that a; # a; for distinct positive integers i and
J. Each number a,, has a decimal expansion, say a, = 0.d,1a,2a,3 - - -, where a,, is the
first digit in the expansion, a, is the second digit in the expansion, and so on. We have
to be a bit careful here, however, for as we have seen, some real numbers have two
decimal expansions. To avoid possible confusion, we can choose the decimal expansion
that repeats the digit O from some point on. That is, no real number a, has a decimal
expansion that repeats 9 from some point on.

But where does this lead to a contradiction? From what we have said, (0, 1) = {ay,
@, a3, .. .}. If we can think of some real number b € (0, 1) such that b ¢ {ay, az, a3, ...},
then this would give us a contradiction because this would say that f is not onto. So we
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need to find a number b € (0, 1) such that b # a,, for each n € N. Since b € (0, 1), the
number b has a decimal expansion, say b = 0.bb,bs - - . How can we choose the digits
b1, by, by, ... so that b +# a, for every n € N? We could choose by # a1y, by # an, etc.
But would this mean that b # a,, b = ay, etc.? We must be careful here. For example,
0.500 - - - and 0.499 - - - are two equal numbers whose first digits in their expansions are
not equal. Of course, the reason for this is that one is the alternate decimal expansion of
the other. Thus, provided we can avoid selecting a decimal expansion for b that is the
alternate decimal expansion for some number a,, where n € N, we will have found 3
number b € (1, 0) such that b ¢ {ay, as, as, . ..}. This will give us a contradiction. é

The open interval (0, 1) of real numbers is uncountable.

Assume, to the contrary, that (0, 1) is countable. Since (0, 1) is infinite, it is denumerable,
Therefore, there exists a bijective function f:N—=(0,1).ForneN,let f(n)= a,.
Since a, € (0, 1), the number g, has a decimal expansion, say 0.a,1@,2a,3 - - -, Where
an €{0,1,2,...,9}foralli € N.Ifa, is irrational, then its decimal expansion is unique.
If a, € Q, then the expansion may be unique. If it is not unique, then, without loss of
generality, we assume that the digits of the decimal expansion 0.a,1dna,3 - - - are 0 from
some position on. For example, since f is bijective, 2/5 is the image of exactly one
positive integer and this image is written as 0.4000- - - (rather than as 0.3999 . . -). To
summarize, we have

f() =ay =0apapas- -
f(2) = ay = 0.ay1ana - -

f(3) = a3 =0.az31an0a33 - - -

‘We show that the function f isnotonto, however. Define the number b = 0.b1bybs -+,
where b; € {0, 1,2,...,9} foralli € N, by

4
b,:{S

(For example, let’s suppose that @ =0.31717---,a; = 0.151515---, and a3 =
0.04000 - - -. Then the first three digits in the decimal expansion of b are 5, 4, and 5,
thatis, b = 0.545-...)

For each i € N, the digit b; # a;;, implying that b # a, for all n € N since b is not
the alternate expansion of any rational number, as no digit in the expansion of b is 9.
Thus, b is not an image of any element of N. Therefore, f is not onto and, consequently,
not bijective, producing a contradiction. L

ifa; =5
ifa; #5.

In the proof of Theorem 10.8, each digit in the decimal expansion of the number b
constructed is 4 or 5. We could have selected any two distinct digits that did not use 9.
It is now easy to give examples of other uncountable sets with the aid of the following
result.

Theorem 10.9 - Let A and B be sets such that A C B.If A is uncountable, then B is uncountable.

Proof

Corollary 16.10

Proof

Theorem 10.11

Theorem 10.12
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Let A and B be two sets such that A € B and A is uncountable. Necessarily then A and B
are infinite. Assume, to the contrary, that B is denumerable. Since 4 is an infinite subset
of a denumerable set, it follows by Theorem 10.3 that A is denumerable, producing a
contradiction. L

The set R of real numbers is uncountable.

Since (0, 1) is uncountable by Theorem 10.8 and (0, 1) € R, itfollows by Theorem 10.9
that R is uncountable. E]

Let’s pause for a moment to review a few facts that we've discovered about infinite
sets (at least about certain infinite sets). First, recall that two nonempty sets A and B are
defined to have the same cardinality (same number of clements) if there exists a bijective
function from A to B. We’re especially interested in the situation when A and B are
infinite. One family of infinite sets we’ve introduced is the class of denumerable sets,
Recall too that a set  is denumerable if there exists a bijective function from N to §.

Suppose that A and B are two denumerable sets. Then there exist bijective functions
f:N— Aandg : N'— B.SinCe f isbijective, f has an inverse function f~) : A —> N,
where f~!is also bijective. Since f':A— Nandg:N— Bare bijective functions,
it follows that the composition function g o f~' : A — B is also bijective. This tells us
that |A| = |B|, that is, A and B have the same number of elements, We state this as a
theorem for emphasis.

Every two denumerable sets are numerically equivalent,

Next, let B be an uncountable set. So B is an infinite set that is not denumerable.
Also, let A be a denumerable set. Therefore, there exists a bijective function f : N — A.
We claim that [A] # |B], that is, A and B do not have the same number of elements.
Let’s prove this. Assume, to the contrary, that |A| = |B{. Hence there exists a bijective
function g : A — B. Since the functions f:N— Aandg: A — B are bijective, the
composition function g o f : N — B is bijective. But this means that B is a denumerable
set, which is a contradiction. We also state this fact as a theorem.

If Ais a denumerable set and B is an uncountable set, then A and B are not numerically
equivalent.

Theorems 10.11 and 10.12 can also be considered as consequences of Theorem 10.1.
In particular, Theorem 10.12 says that Z and R are not numerically equivalent and so
IZ] # |R|. So, here are two infinite sets that do no have the same number of elements.
In other words, there are different sizes of infinity. This now brings up a number of
questions, one of which is: Do there exist three infinite sets so that no two of them have
the same number of elements? Also, if A is a denumerable set and B is an uncountable
set, is one of these sets “bigger” than the other in some sense? In other words, we would
like to be able to compare |A| and |B| in some precise manner. Since |Z] # |R| and
Z C R, it is tempting to conclude that |Z| < [R| but we have yet to give a meaning to
|Al < |B] for sets A and B. This idea will be addressed in Section 10.4. We should
remind ourselves, however, that for infinite sets C and D, itis possible that both C ¢ D
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and [C| = {D|. For example, Z C Q and |Z| = |Q| since Z and Q are both denumerablg,
Before leaving our discussion of Z and R, one other observation is useful. Recall that,
according to Theorem 10.3, if B is an infinite subset of a denumerable set A, then B ig
also denumerable. But what if A is uncountable? That is, if B is an infinite subset of ap
uncountable set A, can we conclude that B is uncountable? The sets Z and R answer thig
question since Z is infinite, R is uncountable, and Z C R. However, Z is not uncountable,

We have now seen two examples of uncountable sets, namely, the open interva]
(0, 1) of real numbers and the set R of all real numbers. Neither of these sets have the
same number of elements as any denumerable set. But how do these sets compare with
each other? We show that these two sets actually have the same number of elements, To
verify this, we show that there is a bijective function f : (0, 1) — R or equivalently, a
bijective function'g : R — (0, 1). We’ll show the first of these.

The sets (0, 1) and R are numerically equivalent.

We show that there is a bijective function f : (0, 1) — R. We are faced with two problems
here. First, we must discover a function f that we believe has this property and, second,
we must show that our function f is, in fact, bijective. Of course, if we can’t think of
such a function f, then we don’t have to worry about the second problem.

Let’s review what properties we want our function f to have. The domain of f is
(0, 1) and the range is R. So every real number needs to be the image of a number in
the set (0, 1); in fact, every real number needs to be the image of exactly one number in
the set (0, 1). Let’s think back to calculus of what the graph of such function might look
like. See Figure 10.9.

The graph of y = f(x) for our trial function f in Figure 10.9 actually looks a
bit like one branch of the graph of y = tanx, but perhaps this seems too complicated.
Another property of the graph of y = f(x) for our still-unknown function f is that it
appears that x =0 and x = 1 are vertical asymptotes. You might recall that when a
rational function (the ratio of two polynomials) has x = a as a vertical asymptote, where
a € R, then x — a occurs as a factor in the denominator of the rational function. So
perhaps x(x — 1) should be a factor in the denominator. We also have the graph of our
function intersecting the x-axis around x = 1/2; so this suggests a factor of x — % or

=

Figure 10.9  Constructing a bijective function f : (0, 1) = R
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2x — 1 in the numerator. Consequently, we seem to be arriving at a function f defined
by f(x) = (2x — 1)/(x? — x) for x € (0, 1). If we draw the graph of this function, then
we see that f is decreasing in the interval (0, 1), not increasing as we have indicated in
Figure 10.9. Although we could just as well use this function, we can define a function
whose graph is essentially that in Figure 10.9 by multiplying by —1, that is, by defining

I 1-2x

2x —
2—x  x?—x’

J)y=—

Let’s choose this as our function f. Of course, we will only know that we made a good
choice once we verify that the function f :(0, 1) — R defined in (10.2) is actually
bijective. Let’s attempt to prove this. :

It will turn out that showing that f is one-to-one is relatively straightforward. But
showing that f is onto is another story. Let’s see what we 're faced with for this function.
To prove that the function f : (0, 1) — R defined in (10.2) is onto, we must show that
foreach r € R, there exists x (0, 1) such that f(x) = r. This is certainly true if # = 0
since f(%) = 0, so we can assume that r # 0. Since we want
1-—2x
x2—x

(10.2)
X

wfG) = =r,
this gives us the equation rx* + (= + 2)x — 1 = 0. What must x equal? Think of this
equation as a quadratic equation (which it is), that is, ax® + bx + ¢ = 0, where @ = r,
b= —r +2,and ¢ = —1. By the quadratic formula, ’

—24/r2+4
x=STVTR (10.3)
2r
‘We need to analyze (10.3) a bit now and decide which sign should be chosen in +. Notice
thatif x = "_2—_2,’—% and we let r = 2, then x < 0; while if we letr = —2, thenx > 1.

Since foreachr € R, we want x € (0, 1) such that f(x) = r, we choose x = 5”2— ripd

Letr > 0. Then ’
2<Vrl+d<r24dr+4=r+2.

So
1T 7 =D+2 =D+t d -G+
= = < < =—=
2 2 2r 2r 2r 27
Therefore, when r > 0, we have & < x < 1.

2
Next, let » < 0. First, notice that since /(» — 2)?> > 0 and r < 0, we must have

V=22 = —( —2). Now
=4V F A< —D+Vrr—dr tA=(—2)—(r—2) =0,

Since r < 0,

r—2)+r2+4 0
LN TR
2r

Also,(r =)+ /2 +4>(r -2 +2=r.%0
C-D+VTTE -
< —_—— o

0

1
2r 2r 2
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So, as desired, when r < 0, we have 0 < x < % With this choice of x, it remains only

to show that f(x) =r. é
The sets (0, 1) and R are numerically equivalent.

Consider the function f : (0, 1) — R defined by
2)c

fx) =

‘We show that f is bijective. First, we verify that f is one-to-one. Let f(a) = f(b), where
a,b € (0,1). Then 124 = L2 Crossmultiplying and simplifying, we obtain

(a—Da+b—1—-2aby=0. (10.9)

To show thata = b, we need to show thata + b ~ 1 — 2ab # 0. Assume, to the contrary,
that @ + b — 1 — 2ab = 0. This is equivalent, however, to ab —a —b+ 1= —ab or
(a—1)b—1)=—ab.Since0 < a < 1and0 < b < 1,itfollowsthat(a — 1)(b ~ 1) >
Oand —ab < 0, which is impossible. Thus, as claimed, a + b — 1 — 2ab # 0. Therefore,
a—b =0andsoa = b. Hence f is one-to-one.

Next we verify that f is onto. Let r € R. We show that there exists x € (0, 1) such
that f(x) =r. Since f(%) =0, we can assume that » # 0. Let x = %4 Then
x € (0, 1) and

2/
1*2(%) -4t Ed)

(x) = =
f <r4+m>2 _ (r—2+«/m) 8 —4/r2 44
2r 2r :
Therefore, the function f is onto and consequently f is bijective. E

Actually, the function f : (0, 1) — R defined by f(x) = tan (3(2x — 1)) is bijec-
tive as well. However, the proof of this relies on knowing certain facts about this function.

10.4 Comparing Cardinalities of Sets ]

Theorem ¢o Prove

PROOF STRATEGY

As we know, two nonempty sets A and B have the same cardinality if there exists a
bijective function f : A — B. Let’s illustrate this concept one more time by showing
that two familiar sets associated with a given set are numerically equivalent. Recall that
the power set P(A) of a set A is the set of all subsets of A and that 24 is the set of
all functions from A to {0, 1}. If A = {a, b, ¢}, then |P(A)| = 2° = 8. Also, the set 24
contains 2!41 = 23 = § functions. So in this case, P(A) and 24 have the same number
of elements. This is not a coincidence.

For every nonempty set A, the sets P(A) and 24 are numerically e;quivalent

To prove that P(A) and 24 are numerically equivalent, it is necessary to construct &
bijective function ¢ : P(A) — 24. We use ¢ for this function since 2* is a set of functions

and it is probably better to use more standard notation, such as f, to denote the elements
of 24. But how can such a function ¢ be defined? Let’s take a look at P(A) and 24 for
= {a, b}. In this case,

P(A) = {0, {a}, (b}, {a, b}};
while 24 = {f1, 2, f2. fa}, where

f1=1{@,0,0.0}  fr={a 1),0,0)
fr=1@0), 0. D} fa={a1), G D}

Since each of P(A) and 24 has four elements, we can easily find a bijective function
from P(A) to 24. But this is not the question. What we are looking for is a bijective
function ¢ : P(A) — 24 for A = {a, b} that suggests a way for us to-define a bijective
function from P(A) to 24 for any set A (finite or infinite). Notice, for A = {a, b}, the
connection between the following pairs of elements, the first element belonging to P(A)
and the second belonging to 24:

g fi=1{a0),0® 0}
@ fa={aD.0 0
By f= 1@ 0,0, 1}
{a. b} fa={(a 1), D}

For example, the subset {a} of {a, b} contains & but not b, while f2 maps atolandb
to 0. For an arbitrary set A, this suggests defining ¢ so that a subset § of A is mapped
into the function in which 1 is the image of elements of A that belong to S and 0 is the
image of elements of A that do not belong to S. ) é

For every nonempty set A, the sets P(A) and 2* are numerically equivalent.

We show that there exists a bijective function ¢ from P(A) to 24. Define ¢ : P(4) — 24
such that for § € P(A), we have ¢(S) = fg, where, for x € A, :

: 1 if xes
fsm:{o it x¢s.

Certainly, fs € 24. First, we show that ¢ is one-to-one. Let ¢(S) = ¢(T). Thus, /s = fr,
which implies that fs(x) = fr(x) for every x € A. Therefore, fs(x) = 1if and only if
Sr(x) = 1forevery x € A, thatis, x € Sifandonlyif x € T, andso S = T.

It remains to show that ¢ is onto. Let f € 24, Define

S={xedA: f(x)y=1}.

Hence fs = f, and so ¢(S) = f. Thus ¢ is onto and, consequently, ¢ is bijective. &

It is clear that A = {x, y, z} has fewer elements than B = {a, b, ¢, d, e}, that is,
|Al < |B|. And it certainly seems that |B| < |N| and that, in general, any finite set has
fewer elements than any denumerable set (or than any infinite set). Also, our discussion
about countable and uncountable sets appears to suggest that uncountable sets have more
elements than countable sets. But these assertions are based on intuition. We now make
this more precise.
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The Continuum
Hypothesis

Theorem to Prove

PROOF STRATEGY

Theorem 10.15

A set A is said to have smaller cardinality than a set B, written as |A| < [B], if
there exists a one-to-one function from A to B but no bijective function from A to B,
Thatis, |A| < |B]if it is possible to pair off the elements of A with some of the elements
of B but not with all of the elements of B.If |A| < |B], then we also write | B| > |A[. For
example, since N is denumerable and R is uncountable, there is no bijective function from
N to R. Since the function f : N — R defined by f(n) = nforalin € N is injective, it
follows that [N| < |R|. Moreover, |A| < {B| means that |A] = |B| or |A] < |B|. Hence
to verify that |A| < |B|, we need only show the existence of a one-to-one function from
AtoB.

The cardinality of the set N of natural numbers is denoted by R, (often read “aleph
null”); so |[N| = ¥,. Actually, R is the first letter of Hebrew aiphabet. Indeed, if A is
any denumerable set, then |A] = R,. The set R of real numbers is also referred to as the
coﬁtinuum and its cardinality is denoted by c. Hence |R| = ¢ and from what we have
seen, 8, < c. It was the German mathematician Georg Cantor who helped to put the
theory of sets on a firm foundation. An interesting conjecture of his became known as:

There exists no set S such that

R, < |§] <c.

Of course, if the Continuum Hypothesis were true, then this would imply that every
subset of R is either countable or is numerically equivalent to R. However, in 1931
the Austrian mathematician Kurt Gidel proved that it was impossible to disprove the
Continuum Hypothesis from the axioms on which the theory of sets is based. In 1963 the
American mathematician Paul Cohen took it one step further by showing that it was also
impossible to prove the Continuum Hypothesis from these axioms. Thus the Continuum
Hypothesis is independent of the axioms of set theory.

Another question that might occur to you is the following: Is there a set S sucl? f‘hat
|S| > ¢? This is a question we can answer, however, and the answer might be surprising.

If A is a set, then |A| < |[P(A)|.

First, it is not surprising that | A| < [P(A)|if A s finite, forif A has n elements, wheren €
N, then P(A) has 2" elements and 2" > n (which was proved by induction in Result 6.15).
Of course, we must still show that |A| < |P(A)| when A is infinite. First we show that
there exists a one-to-one function f : A — P(A) for every set A. Let’s give ourselves an
example, say A = {a, b}. Then P(A) = {#, {a}, {6}, {a, b}}. Althoug}‘l there are many
injective functions from A to P(A), there is one natural injective function:

f={a.{ah), &, bH};

in other words, define f : A — P(A) by f(x) = {x}.

Once we have verified that this function is one-to-one, then we know that |Al £
|P(A)]. To show that the inequality is strict, however, we must prove that the.re is no
bijective function from A to P(A). The natural technique to use for this proof is proof
by contradiction.

If A is a set, then |A] < |P(A)}.

10.5 The Schroder-Bernstein Theorem 237

Proof If A=, then |A] =0 and |P(A)| = 1; so |A| < |P(A)|. Hence we may assume that

A # (. First, we show that there is a one-to-one function from A to P(A). Define
the function f : A — P(A) by f(x) = {x} for each x € A. Let f(x;) = f(x»). Then
{x1} = {x2}. So x| = x; and f is one-to-one.

Toprovethat [A| < |PP(A)],itremains to show that there is no bijective function from
A 10 P(A). Assume, to the contrary, that there exists a bijective function g : A — P(A).
Foreachx € A, let g(x) = A,, where A, C A. We show that there is a subset of 4 that
is distinct from A, for each x € A. D&fine the subset B of A by

B={xedA: x¢Al

By assumption, there exists an element y € Asuchthat B = A,.If y € Ay, theny ¢ B
by the definition of B. On the other hand, if y ¢ A, then, according to the definition of
the set B, it follows that y € B. In either case, y belongs to exactly one of A, and B.
Hence B # A,, producing a contradiction. ]

According to Theorem 10.15, there is no largest set. In particular, there is a set S
with [S] > c. N

L

10.5 The Schroder-Bernstein Theorem }

Lemma 10.16

For two nonempty sets A and B, let f be a function from A to B, and let D be‘énonempty
subset of A. By the restriction f; of f to D, we mean the function

fi={x,yef:xeD)

Hence a restriction of f refers to restricting the domain of f. For example, for the sets
A={a,b,c,d} and B ={1,2,3}, let f ={(a,2),(b,1),(c,3),(d,2)} be a function
from A to B. For D = {a, c}, the restriction of f to D is the function f; : D — B
given by {(a, 2), (¢, 3)}. Sometimes, we might also consider a new codomain B’ for
such a restriction f; of f. Of course, we must have ran f; C B’. Next, consider the
function g : R — [0, oc) defined by g(x) = x? for x € R. Although g is onto, g is not
one-to-one since g(1) = g(~1) = 1, for example. On the other hand, the restriction g;
of g t0 [0, 0o) is one-to-one and so the restricted function g; : [0, c0) =0, oc) defined
by g1(x) = g(x) = x? for all x € [0, 00) is bijective. Furthermore, if f : A — B isa
one-to-one function, then any restriction of f to a subset of A is also one-to-one.

Let'f: A— Band g : C — D be functions, where A and C are disjoint sets. We
define a function # from A U C to BU D by

[f) ifxea
h(x)_{g(x) ifxecC.

Recalling that a function is a set of ordered pairs, we see that 4 is the union of the two
sets f and g. Of course, it is essential for A and C to be disjoint in order to be guaranteed
that 4 is a function. If f and g are onto, then 4 must be onto as well; however, if f and
§ are one-to-one, then £ need not be one-to-one. The following result does provide a
sufficient condition for £ to be one-to-one, however.

Let f : A~ Bandg:C — D be one-to-one functions, where ANC = W, and define
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Proof

Theorem 10.17

Proof

h:AUC = BUD by

_[F0) ixca
h(x)*{g(x) ifxec.

If BN D = @,then h is also a one-to-one function. Consequently, if f and g are bijective
Junctions, then h is a bijective function.

Assume that h(x;) = h(x;) =y, where x;,x, € AUB. Theny € BU D. So y€Bor
y € D, say the former. Since B N D = @, it follows thaty ¢ D.Hence x{,x; € Aandsgo
h(xy) = f(x1) and h(xz) = f(x). Since f(x1) = f(x,) and f is one-to-one, it follows
that x; = x;. . B

Let A and B be nonempty sets such that B € A and let f: A — B. Thus for
x € A, the element f(x) € B. Since B C A, it follows, of course, that f ()c) € A and so
f(f(x)) € B.Ttis convenient to introduce some notation in this case. Let f1(x) = fx)
andlet f2(x) = f(f(x)).Ingeneral, foranintegerk > 2,let f¥(x) = f(f*'(x)). Hence
LY, f2), £3(x), ... is a recursively defined sequence of elements of B (and of A as
well). Thus f"(x) is defined for every positive integer .

For example, consider the function f : Z — 2Z defined by f(n) = 4n foralln € Z.
Then f1(3) = f(3) =4-3=12and f2(3) = f(f(3)) = f(12)=4-12 =48,

If A and B are nonempty sets such that B C A, then the function ¢ : B — A defined
by ¢(x) = x for all x € B is injective. This gives us the expected result that |B| < |A].
On the other hand, if there is an injective function from A to B, a more interesting
consequence results.

Let A and B be nonempty sets such that B C A. If there exists an injective function from
A to B, then there exists a bijective function from A to B.

If B = A, then the identity functionis : A — B = A is bijective. Thus we can assume
that B C A,andso A — B # . Let f : A — B be an injective function. If f is bijective,
then the proof is complete. Therefore, we can assume that f isnotonto. Henceran f C B,
andso B —ran f # @.

Consider the subset B’ of B defined by

B'={f"(x): xe A—B,neN}.

Thus B’ C ran f. Hence, foreach x € A — B, its image f(x) belongs to B’. Moreover,
forx € A — B, theelement f2(x) = f(f(x)) € B', f3(x) = f(f%(x)) € B, and so on.

LetC = (A — B) U B’, and consider the restriction f) : C — B’ of f to C. We show
that fi is onto. Let y € B’. Then y = f"(x) for some x € A — B and some n € N. This
implies that y = f(x) for some x € A — B, or y = f(x) for some x € B’. Therefore,
f1(x) = yfor some x € C, and so f; is onto. Furthermore, since f is one-to-one, the
function f; is also one-to-one. Hence f; : C — B’ is bijective.

Let D =B — B’ Since B—~ranf # @ and B —ran f € B — B, it follows that
D # 9. Also, D and B’ are disjoint, as are D and C. Certainly, the identity function

Theorem 10.18

Proof

Theorem A

Theorem B

10.5 The Schroder-Bernstein Theorem 239

ip : D — Disbijective. Let h : C U D — B’ U D be defined by

fHx) ifxeC
ip(x) ifxeD.

h(x) = {

By Lemma 10.16, & is bijective. However, CUD = A and B'UD =B; so h is a
bijective function from A to B. ]

From what we know of inequalities (of real numbers), it might seem that if A and
B are sets with |A| < |B| and |B| < |A|, then |A| = |B|. This is indeed the case. This
theorem is often referred to as the Schroder—Bernstein Theorem.

(The Schroder—Bernstein Theorem) If A and B are sets such that |A] < |B| and
|B| < |A|, then |A] = |B]|.

Since |A| < |B|and |B| < | Al, there are injective functions f : A — Bandg : B — A.
Thus g; : B — rang defined by gl(x) = g(x) for all x € B is a bijective function. By
Theorem 9.10, g Uexists and g1 :ran g — B is a bijective function.

Since f: A — B and g; : B — rang are injective functions, it follows by Theo-
rem 9.7 thatg; o f : A — rang is an injective function. Because ran g C A, we have by
Theorem 10.17 that there exists a bijective function 2 : A — rang. Thus # : A — rang
and g1 :tan g — B are bijective functions. By Corollary 9.8,

gl’loh,:A—>B

is a bijective function and |A[ = | B|. - . E

The Schroder—Bernstein Theorem is referred to by some as the Cantor-Schrider-
Bermnstein Theorem. Although the history of this theorem has never been fully docu-
mented, there are several substantiated facts.

A mathématician who will forever be associated with the theory of sets is Georg
Cantor (1845-1918). Born in Russia, Cantor studied for and obtained his Ph.D in math-
ematics from the University of Berlin in 1867. In 1869 he became a faculty member at
the University of Halle in Germany. It was while he was there that he became interested
in set theory.

In 1873 Cantor proved that the set of rational numbers is denumerable. Shortly
afterwards, he proved that the set of real numbers is uncountable. In this paper, he essen-
tially introduced the idea of a one-to-one correspondence (bijective function). During the
next several years, he made numerous contributions to set theory—studying sets of equal
cardinality. There were, however, a number of problems that proved difficult for Cantor.

Consider the following two theorems:

For every two sets A and B, exactly one of the following occurs: (1) |A} = |B|,
@ 1Al <|Bl, (3) 1Al > |B}.

If A and B are two sets for which there exist a one-to-one function from A to B and a
one-to-one function from B to A, then |A| = |B)|.
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Theorem 10.19

Proof

Cantor observed that once Theorem A had been proved, Theorem B could be proved.
On the other hand, there has never been any evidence that Cantor was able to prove
Theorem A. Ernst Zermelo (1871-1953) was able to prove Theorem A in 1904. However,
Zermelo’s proof made use of an axiom formulated by Zermelo. This axiom, which was
controversal in the mathematical world for many years, is known as the Axiom of Choice.

The Axiom of Choice. For every collection of pairwise disjoint nonempty sets,
there exists at least one set that contains exactly one element of each of these
nonempty sets.

As it turned out, not only can the Axiom of Choice be used to prove Theorem A, but
Theorem A is true if and only if the Axiom of Choice is true.

Ernst Schroder (1841-1902), a German mathematician, was one of the important
figures in mathematical logic. During 1897-1898 Schréder presented a “proof” of The-
orem B, which contained a defect however. About the same time, Felix Bernstein (1878~
1956) gave his own proof of Theorem B in his doctoral dissertation, which became the
first complete proof of Theorem B. His proof did not require knowledge of Theorem A.

You may be surprised to learn that R and the power set of N are numerically
equivalent. But how could one ever find a bijective function between these two sets?
Theorem 10.18 tells us that discovering such a function is unnecessary.

The sets P(N) and R are numerically equivalent.

First we show that there is a one-to-one function f : (0, 1) — P(N). Recall that a real

number a € (0, 1) can be expressed uniquely as @ = 0.aazas - -+, where each qg; €
{0, 1, ..., 9} and there is no positive integer N such that b, = 9 for all n > N. Thus we
define

fla) = {10 1q, :

For example, f(0.1234) = {1, 20, 300, 4000} and f(1/3) = (3, 30, 300, ...}. We now
show that f is one-to-one. Assume that f(a) = f(b), where a,b € (0,1) and a =
0.a1azas - -+ and b = 0.bybybs - - - with a;, b; € {0, 1,...,9) for each i € N such that
the decimal expansion of neither a nor b is 9 from some point on. Therefore,

n € N} = B.

neN) = A.

A={10""a,: neN} = (10"""p, :

Consider the i th digit, namely ;, in the decimal expansion of @. Then 10°"'¢; € A.Ifa; #
0, then 10, is the unique number in the interval [10°~", 9 - 10°~] belonging to A.
Since A = B, it follows that 10'~'a; € B. However, 10/ 'b; is the unique number in the
interval [10', 9. 10/~1] belonging to B; so 10" q; = 10°"'5;. Thus a; = b;.¥fa; =0,
then 0 € A and there is no number in the interval [10° !, 9 - 10' '] belonging to A. Since
A = B, it follows that 0 € B and there is no number in the interval {10°"1, 9. 10°7"]
belonging to B. Thus b; = 0 and so @; = b;. Hence a; = b; foralli € N,and soa = b.
Therefore, f is one-to-one and |(0, 1)| < [P(N)|.

Next we define afunction g : P(N) — (0, 1). For § € N, define g(S) = O.s15283 -

where
s 7{1 ifnes
5=,

ifné¢sS.

Corollary 10.20
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Thus g(S) is a real number in (0, 1), whose decimal expansion consists only of 1s and
2s. We show that g is one-to-one. Assume that g(S) = g(T'), where S, T < N. Thus

g(S)y=5s=0s1883- - =01tz =1 = (1),
where

P 1 ifnesandtf 1 ifneT

"2 ifng¢S "2 ifngT.

Since the decimal expansions of s and ¢ contain no 0s or 9s, both s and # have unique
decimal expansions. We show that § = T'. First, we verify that § € T. Letk € S. Then
s = 1. Since 5 = 1, it follows that # = 1, which implies that k € T. Hence S C T'. The
proof that T < § is similar and is therefore omitted. Thus S = 7 and g is 6ne-to-one.
Therefore, [P(N)| < [(0, 1)|. By the Schrider-Bemstein Theorem, | P(N)] = |(C, 1)I. By
Theorem 10.13, |(0, 1)] = |R|. Thus, [P(N)| = |R|. Y

As a corollary to Theorems 10.14 and 10.19, we have the following result.
The sets 2N and R are numericgjly equivalent.
We have already mentioned that [A| = R, for every denumerable set A and that

[R| = c. If A is denumerable, then we represent the cardinality of thé set 24 by 2% By
Corollary 10.20, 2% = . :

EXERCISES FOR CHAPTER 10

Section 10.2: Denumerable Sets

10.1. Prove that if A and B are disjoint denumerable sets, then A U B is denumerable.

10.2. LetR* denote the set of positive real numbers and let A and B be denumerable subsets of R*. Define
C ={x eR: —x € B}. Show that A U C is denumerable.

10.3. Let

2
S = xeR:x:——n +ﬁ,neN
n

Define f : N— Sby f(n) = ”2%/2
(a) List three elements that belong to S.
(b) Show that f is one-to-one.
(c) Show that f is onto.
(d) Is § denumerable? Explain.
10.4. Prove that the function f : N — Z defined in (10.1) by

is bijective.

1 (D'ea -1

fm) 7

10.5. Let A be a denumerable set and let B = {x, y}. Prove that A x B is denumerable.
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10.6.

10.7.
10.8.
10.9.
10.10.

10.11.
10.12.
10.13.
10.14."

Chapter 10 Cardinalities of Sets

Let B be a denumerable set and let A be a nonempty set of unspecified cardinality. If f : A — Bisa
one-to-one function, then what can be said about the cardinality of A? Explain.

Prove that S = {(a,b) : a,b € Nand b > 2a} is denumerable.
Let § € N x Nbedefinedby S = {(i, /) :

Prove that the set of all 2-element subsets of N is denumerable.

i < j}. Show that § is denumerable.

A Gaussian integer is a complex number of the form a + bi, where a, b € Z and i = +/—1. Show that the
set G of Gaussian integers is denumerable.

Let Ay, Az, As, ... be pairwise disjoint denumerable sets. Prove that U2 A;ds denumerable.
Let A = {a1, a, a3, ...}. Define B = A — {a,2 : n € N}. Prove that |A] = {B].

Prove that |Z} = [Z — {2}.

(a) Prove that the function f : R — {1} = R — {2} defined by f(x) = ;2}1 is bijective.

(b) Explain why |[R — {1}| = [R — {2}].

Seetion 10.3: Uncountable Sets

10.15.
10.16.
10.17.

10.18.

Prove that the set of irrational numbers is uncountable.

Prove that the set of complex numbers is uncountable.

Prove that the open interval (0, 2) and R are numerically equivalent by finding a bijective function

7 :(0,2) — R. (Show that your function is, in fact, bijective.)

(a) Prove that the function f : (0, 1) — (0, 2), mapping the open interval (0, 1) into the open interval
(0, 2) and defined by f(x) = 2x, is bijective.

(b) Explain why (0, 1) and (0, 2) have the same cardinality.

(¢) Leta, b € R, where a < b. Prove that (0, 1) and (, b) have the same cardinality.

Section 10.4: Comparing Cardinalities of Sets

10.19. Prove or disprove the following:

(a) If A is an uncountable set, then |A| = |R|.

(b) There exists a bijective function f : Q - R.

(c) If A, B,and C are sets such that A € B € (', and A and C are denumerable, then B is denumerable.
(d) Theset S = {‘/Ti ine€ N} is denumerable.

(e) There exists a denumerable subset of the set of irrational numbers.

(f) Every infinite set is a subset of some denumerable set.

(g) If A and B are sets with the property that there exists an injective function f : A — B, then |A| = |BI.

10.20. Prove or disprove: If A and B are two sets such that A is countable and |A| < |B|, then B is uncountable.

10.21. How do the cardinalities of the sets [0, 1] and [1, 3] compare? Justify your answer.

10.22. Let A =

{a, b, c}. Then P(A) consists of the following subsets of A:

Au=0, Ay =4 A4 = (a,b), As={a.c)
Ae = (b, c}, Af = {a}, Ay = {b), Ay = {c}.

In one part of the proof of Theorem 10.15, it was established (using a contradiction argument) that
{A] < |P(A)] for every nonempty set A. In this argument, the existence of a bxjectlve function

10.23.
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g+ A — P(A)is assumed, where g(x) = A, foreach x € A. Then a subset B of A is defined by
={xeA: x ¢ A}

(a) For the sets A and P(A) described above, what is the set B?

(b) What does the set B in (a) illustrate?

Let A and B be nonempty sets. Prove that [A| < |A x B}.

Section 10.5: The Schréder-Bernstein Theorem

10.24.
10.25.
10.26.
10.27.

10.28.

Prove that if A, B, and C are nonempty sets such that A € B C C and [A| =
Use the Schréder-Bermstein Theorem to prove that [0, Bl = {0, 17].
Prove that [ — {g}| = R for every rational number q and [R — {r}| = ¢ for every real-number r.

Let f 1 Z — 27 be defined by f(k) = 4k forall k € Z.

(a) Prove that f"(k) = 4"k for each k € Z and each n € N.

(b) For this function f, describe the sets B’, C, and D and functions f; and 4 given in Theorem 10.17.

Express each positive rational number as m/n, where m, n € N and m/n is reduced to-lowest terms. Let
d, denote the number of digits in @ € N. Thus dz =1,dj3 =2, and djgo = 3. Define the function
f:Q" — Nsothat f(m/n) is the positive integer with 2(d,, + d,,) digits whose first d,, digits is the
integer m, whose final d, digits is the integer n, and all of whose remaining d,, + d, digits are 0. Thus
f(2/3) =2003 and f(10/271) = 1000000271. :

(a) Prove that f is one-to-one.

(b) Use the Schroder—Bernstein Theorem to prove that @ is denumerable.

IC|, then | A] = |BI.

ADDITIONAL EXERCISES FOR CHAPTER 10

10.29.

10.30.

10.31.

Evaluate the proposed proof of the following result.

Result Let A and B be two sets with || =

|Bl.Ifa € Aandb € B, then |A — {a}| = |B — {b}].

Proof Since A and B have the same number of elements and one element is removed from each of A
and B, it follows that |A — {a}| = |B — {b}|. . El

Evaluate the proposed proof of the following result.

Result The sets (0, ob) and [0, 0o) are numerically equivalent.
Proof Define the function f : (0, 00) - [0, 00) by f(x) = x. First, we show that f is one-to-one.
Assume that f(a) = f(b). Thena = b and so f is one-to-one.

Next, we show that f is onto. Let 7 € [0, 00). Since f(r) = 7, the function f is onto. Since [ is bijective,
10, 00} = [0, c0)|. ®

For a real number x, the floor |x | of x is the greatest integer less than or equal to x. Therefore, [5.5] =5,
[3] =3,and [-5.5] = 6. Let f : N — Z be defined by f(n) = (~1)"|n/2].

(a) Prove that f is bijective.

(b) What does (a) tell us about Z? (See Result 10.2.)




Proofs in Calculus

he proofs that occur in calculus are considerably different than any of those we

have seen thus far. Calculus is the study of functions and limits. The functions
encountered in calculus are real-valued functions defined on sets of real numbers. That
is, each function that we study in calculus is of the type f: X — R, where X C R.
In the study of limits, we are often interested in such functions having the property
that either (1) X = N and increasing values in the domain N result in functional values
approaching some real number L, or (2) the function is defined for all real numbers
near some specified real number a and values approaching a result in functional values
approaching some real number L. We begin with (1), where X = N.

[ 12.1 Limits of Sequences }

A sequence (of real numbers) is a real-valued function defined on the set of natural
numbers; that is, a sequence is a function f : N — R.If f(n) = q, foreachn € N, then
f=1{1,a1),(2,a2), (3, a3), - - -}. Since only the numbers ay, az, as, - - - are relevant in
[, we also refer to ay, ay, as, - - - as the sequence, which we often denote by {a,}. The
numbers @y, ay, as, etc. are called the terms of {a,}, with a; being the first term, a; the
second term, etc. Thus a, is the nth term of the sequence. Hence {,ll} is the sequence
1,1/2,1/3, - while {#ﬂ} is the sequence 1/3,2/5,3/7, - - -. In these two examples,
the nth term of a sequence is given and, from this, we can easily find the first few terms
and, in fact, any particular term. On the other hand, finding the nth term of a sequence
whose first few terms are given can be challenging. For example, the nth term of the
sequence

o} —
IR,
Al

is 1/2n; the nth term of the sequence

267
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is 1+ 1/2"; the nth term of the sequence
305 37
BN § R A VA

is (n 4+ 1)/(3n — 1); the nth term of the sequence
L, -1, 1, -1, 1, =1, ---

is (=1)"*1; while the nth term of the sequence 1,4, 9, 16, - - - is n.

For the sequence {5}, the larger the integer n, the closer 1 / n is to 0; and for the
sequence {52}, the larger the integer n, the closer n/(2n + 1) is to 1/2. Qn the f)ther
hand, for the sequence {n®}, as the integer n becomes larger, n? becomes increasingly
large and does not approach any real number.

When we discuss how close two numbers are to each other, we are actually con-
sidering the distance between them. The distance between two real numbers a and b is
defined as |a — b|. Recall that the absolute value of a real number x is

_ix if x>0
sl = ~x if x <0

Hence the distance betweena = 3andb = 5is{3 — 5| = |5 — 3| = 2; while the distance
between 0 and 1/n, where n € N, is |0 — %1 = I% -0 = %

For a fixed positive real number 7, the inequality |x| < 7 is equivalent to the in-
equalities —r < x < r. Hence |x| < 3 is equivalent to —3 < x < 3; Wl-]illd jx —2| <A4
is equivalent to —4 < x —2 < 4. Adding 2 throughout these inequalities, we obtain
—4+2<(x—-2)+2<4+2andso—2 < x < 6. We have seen in Exercise 4.23 and
Theorem 4.17 that for real numbers x and y,

lxyl = lxllyl and |x+yl < x|+ [yl

Both of these properties will be useful in our discussion of calculus.

‘We mentioned that for some sequences {a,}, there is a real number L (or at least
there appears to be a real number L) such that the larger the integer n beco.mcs, the closer
ay is to L. We have now arrived at an important and fundamental idea in thé study of
sequences and are prepared to introduce a new concept to describe this situagon.

A sequence {a,} of real numbers is said to converge to a real number L if the larger
the integer 7, the closer a, is to L. Since the words “larger” and “closer” are vague and
consequently are open to interpretation, we need to make these words considerably more
precise. )

What we want to say then is that we can make a, as close to L as we wish (that
is, we can make |a, — L| as small as we wish) provided that n is large enough. Let ¢
(the Greek letter epsilon) denote how small we want {a, — L] to be; that is, we want
la, — L] < € by choosing n large enough. This is equivalent to —¢ < @, — L <e that
is, L — € < a, < L + €. Hence we require that @, be a number in the open interval
(L — ¢, L + €) when n is large enough. Now we need to know what we mean by ‘jlarge
enough”. What we mean by this is that there is some positive integer N such that if n is
an integer greater than N, then a, € (L — ¢, L + ¢). If such a positive integer N can be
found for every positive number ¢, regardless of how small € might be, then we say that
{a,} converges to L. This is illustrated in Figure 12.1.

Resuit to Prove

PROOF STRATEGY

Result 12.1

Proof
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e (3, a3) e
Lte J--m-mmmmmmm e
e
e
L | e e
& e
L—€ emmmme e
®(2,a) e
e
®(1,a)
e
1 2 3 N o

Figure 12.1 A sequence {a,} that converges to L

Formally then, a sequence {4, } of real numbers is said to converge to the real number
L if for every real number ¢ > 0, there exists a positive integer N such that if # is an
integer with n > N, then |a, — L| < €. As we indicated, the number e is a measure of
how close the terms a, are required to be to the number L, and N indicates a position
in the sequence beyond which the required condition is satisfied. If a sequence {a,}
converges to L, then L is referred to as the limit of {a,}, and we write limy oo an = L.
If a sequence does not converge, it is said to diverge. Consequently, if a sequence {a,}
diverges, then there is n0 real number L such that lim, ,0a, = L. ’

Before looking at a few examples, we introduce some useful notation. For a real num-
ber x, recall that [x] denotes the smallest integer greater than or equal to x. The integer
[x7 is often called the ceiling of x. Consequently, [8/3] = 3, [«/E] =2,[-1.6] = -1,
and [57 = 5. By the definition of [x7, it follows that if x is an integer, then [x] = x; while
if x is not an integer, then [x] > x. In particular, if n is an integer such that n > [x7,
thenn > x. .

We now show how the definition of convergent sequence is used to prove that a
sequence converges to some number.

The sequence {1} converges to 0.

Here we are required to show, for a given real number ¢ > 0, thatthere isa positive integer

N such thatif n > N, then |1 — 0] = || = L < ¢. The inequality 1 < ¢ is equivalent

ton > 1/e. Hence if we let N = [1/€] and take 7 to be an integer greater than N, then
1

n> o We can now present a formal proof. é

The sequence {1} converges to 0.

Lete > 0. Choose N = [1/¢] and let n be any integer such that n > N. Thus n > 1/e

andso |l -0/ =1 <e =
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PROOF ANALYSIS

Result to Prove

PROOF STRATEGY

Result 12.2

Proof

Result to Prove

PROOF STRATEGY

Result 12.3

Proofs in Calculus

Although the proof of Result 12.1 is quite short, the real work in constructing the proof
occurred in the proof strategy (our “scratch paper” work) that prgceded the pr_oof, ‘t')ut
which is not part of the proof. This explains why we chose N as we did and why this choice
of N was successful. In the proof of Result 12.1, we chose N = [1/€1 an_d showed that
with this value of N, every integer n withn > N yields |% — 0| < €, which, of course,
was our goal. There is nothing unique about this choice of N, however. In@eed, we could
have chosen N to be any integer greater than [1/€] or, equivalently, any integer greater
than 1/, and reached the desired conclusion as well. We could not, however, _choose N
to be an integer smaller than [1/€]. We cannot in general choose N = 1/€ since there
is no guarantee that 1/e is an integer. [}

We now consider another illustration of a convergent sequence.
The sequence {3 + n%} converges to 3.

Here we are required to show, for a given ¢ > 0, that there exists a positive integer N

such thatif n > N, then
| 2
‘(3 + ﬁ> -3

The inequality 2 = < € is equivalent to % > é and n > +/2]¢. Therefore, if we let
= [4/2/€] and choose 7 to be an integer greater than N, then n > /2/€. We can
now give a proof. é

2

2
=— <e¢.
n2

n

The sequence {3 + 5 2} converges to 3.

Lete > 0.Choose N = [+/2/€] andletn be any integer suchthatn > N.Thusn > /2/¢
and n? > 2/e. So n% < £and % < . Therefore,

o)l

We now consider a somewhat more complicated example.

1
The sequence {5~} converges to 5.

2n+1

Observe that
n 172nf2n4-1_{7 1 _ 1

m+1 2| |22+ D dn+2|” 4n+t2
The mequahty < € is equivalent to 4n + 2 > 1/e, whxch 1n turn, is equivalent to

4+2 -+ — 2 butife > 1/2, then
n> ﬁ — 5. It may appear that the proper choice for Nis |' 1 ut if €
N =0, whxch is not acceptable smce Nis requlred to be a positive integer. However,
notice that -~ i - i So if n > 4—, then n > —6 - 5 as well. Hence if we ChOOS:
N = [1/4¢€], then we can obtain the desired inequality.

1
The sequence { } converges to 5

n
2n+1

Proof
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Result 12.4

Proof
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Let € > 0 be given. Choose N = [1/4¢] and letn > N.Thenn > ﬁ >4 — 1L andso
4n>1—2and4n+2 > 1/e Hence ;15 < e. Thus
‘ n 1 2n—2n~—1 1 1
) = |- = <€ =
2n+1 2 22n + 1) 4n+2 4n 42

Again, the choice made for N in the proof of Result 12.3 is not unique. We could
choose N to be any integer greater than i

We mentioned that a sequence {a,} is said to diverge if it does not converge. To
prove that a sequence {a,} diverges, a proof by contradiction would be anticipated. We
would begin such a proof by assuming, to the contrary, that {a, } converges, say to some
real number L. We know that for every ¢ > 0, there is a positive integer N such that if
n > N, then |a, — L| < €. If we could show for even one choice of € > 0 that no such
positive integer N exists, then we would have produced a contradiction and proved the
desired result. Let’s see how this works in two examples.

The sequence {(—1)"*1} is divergent.

In a proof by contradiction, we begin by assuming that {(—1)**1} converges, to the limit
L say. Our goal is to show that there is some value of ¢ > 0 for which there is no positive
integer N that satisfies the requirement. We choose € = 1. According to the definition
of what it means for {(—1)"*!} to converge to L, there must exist a positive integer N
such that if » is an integer with n > N, then [(~1)"*! — L| < € = 1. Let & be an odd
integer such that & > N. Then

(=D — Ll =ji- L =L —1| < 1.

Therefore, —1 <L —1 <1 and 0 < L < 2. Now let £ be an even integer such that
£ > N.Then

(=D —Ll=|-1~LI=|L+1] <L

Thus,~1 <L+1<land-2<L <0.SoL <0<L, which, of course, is impossi-
ble. We now repeat what we have just said in a formal proof. : é

The sequence {(—1Y"*1} is divergent.

Assume, to the contrary, that the sequence {(—1)"+!} converges. Then
limy 00 (—1)"* = L for some real number L. Let ¢ = 1. Then there exists a posi-
tive integer N such that if n > N, then [(—1)"*! — L| < € = 1. Let k be an odd integer
such that k > N. Then

1 — L =1 =Ll =|L 1] < 1.

Therefore, —1 <L —1 <1 and 0 < L < 2. Next, let £ be an even integer such that
£ > N.Then

l-nt - z) =

—2 < L <0. Therefore, L. <0 < L, which is a contradiction. &

[=1—-Li=]L+1] <1.

So —-1<L+1<1and
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Result to Prove

PROOF STRATEGY

Result 12.5

Proof

One question that now occurs is how we knew to choose ¢ = 1. If € denotes an arbitrary
positive integer, then both inequalities {L — 1| < € and |L + 1| < € must be satisfied,
but these result in the inequalities

l—¢<L<l+4+eand —1—-e< L <—-1+e.

Inparticular, 1 —€ < L <« —1 + eandso 1 — € < —1 + €. Thisis only possible if 2¢ ~
2 or e > 1. Hence if we choose € to be any number such that 0 < € < 1, a contradiction
will be produced. We decided to choose € = 1. [}

The sequence {(—1)""" -1 is divergent.

As expected, we will attempt a proof by contradiction and assume that {(— 1)”“ 2h)is
a convergent sequence, with limit L say. For € > 0, there is a positive integer N then
such that

l( 1yr+ j_l—L <e

for each integer n such that n > N. There are some useful observations.
First, if n > N and n is odd, then

! n
! — L| <€ and so —€ < —L<e
n+1 n+1
Hence
n
L—€<——<L+e.
n-+1
Second, if n > N and n is even, then
n n
— —L| <€ and s0 —e < ——— — L < €.
n+1 n+1
Hence
n
‘ L—¢e<———<L+e.
n+1
Also, since n > 1, we have n +n > n + 1 and so 2n > n + 1. Hence T > %
Depending on whether L = 0, L > 0, or L < 0, we are faced with the decision as
to how to choose € in each case to produce a contradiction. é
The sequence {(—1)"+! ) is divergent.
Assume, to the contrary, that {(—1)""1 -4 -} converges. Then lim, ., co(— i =1

for some real number L. We consider three cases, depending on whether L =0, L > 0,
orL <0.

Case 1. L =0. Let € = 1. Then there exists a positive integer N such that if n > N,
then |(—=1)"+' 25 — 0] < 3 or < 1. Then 2n <n+1 and so n < 1, which is a
contradiction.

o
n+1

Result to Prove
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Case 2. L > 0. Let e = % Then there exists a positive integer N such that if n > N,

then [(—1)**+! im-Ll< % Let n be an even integer such that n > N. Then

L n L
—— < ———L < —.

2 n-+1 2
chce > < —% < 2 , which is a contradiction.
Case3. L <0.Lete = 75 Then there exists a positive integer N such thatif n > N,
then [(—1y"*1 -2 — L] < —%. Let n be an odd integer such that n > N. Then

L n L

— < =L < ——

2 n+1 2
and so 3 < o < L This is a contradiction. =

A sequence {a,} may diverge because as n becomes larger, a, becomes larger and
eventually exceeds any given real number. If a sequence has this property, then {a,} is
said to diverge to infinity. More formally, a sequence {a, } diverges to infinity, written
tim,_, 00 @y = 00, if for every positive number M, there exists a positive integer N such
thatif nis aninteger suchthatn > N,thena, > M. The sequence {(—1)"*!} encountered
in Result 124, although divergent, does not diverge to infinity. However, the sequence
{n?+ —} does diverge to infinity.

1
lim (nz + —) = 00.
n—00 n

For a given positive number M, we are required to show the existence of a positive integer
N suchthatifn > N, thenn? + 1> M. Noticethatifn> > M, then n? + 5> nt> M.
Since M > 0, it follows that n? - M is equivalent to n > +/ M. A formal proof can now

be constructed. é
lim { n® + LA 00

AT T T &

Let M be a positive number. Choose N = [+/M] and let » be any integer such that

n>N.Hencen>\/Mandson2>M.Thusn2+%>n2>M. El

12.2 Infinite Series ]

An important concept in calculus involving sequences is infinite series. For real numbers
ai, az, as, - - -, We write Zi‘;l ay = a1 + a + az + - - - todenote an infinite series (often
simply called a series). For example,

i —1+ 5+ ot di Lol 3y
e 32 Lo T T3 e T T

are infinite series.
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Lemma 12.7

Proof of
Lemma 12.7

The numbers aj, as, as, - - - are called the terms of the series ) o ax = a1 + ay+

as + - - -. The notation certainty seems to suggest that we are adding the terms ay, a,,

as, - - -. But what does it mean to add infinitely many numbers? A meaning must be given

to this. For this reason, we construct a sequence {s, }, called the sequence of partial sums

of the series. Here sy = ay, 5, = a; + a3, 83 = a1 + a; + a3, and, in general, forn € N,
n

-—i—an:Zak.

k=1

Sn=ar+ay+--

Because s, is determined by adding a finite number of terms, there is no confusion in
understanding the terms of the sequence {s, }. If the sequence {s,} converges, say to the
number L, then the series ) oo | a is said to converge to L and we write Y o ; a5 = L.
This number L is called the sum of >_po.; ai. If {s,} diverges, then ) po | ez is said to
diverge.

The French mathematician Augustin-Louis Cauchy is one of the most productive
mathematicians of the 19th century. Among his many accomplishments was his definition
of convergence of infinite series, a definition which is still used today. In his work Cours
d’Analyse, Cauchy considered the sequence {s,} of partial sums of a series. He stated
the following:

If, for increasing values of n, the sum s, approaches indefinitely a certain limit
s, the series will be called convergent, and this limit in question will be called
the sum of the series.

We consider an example of a convergent series.
s C oo 1
The infinite series } ; gz 5 converges to 1.

First, we consider the sequence {s,} of partial sums for this series. Since

= 1 1 1 1
ZokkEn 1272373470
1tfollows(hats1 He=te=5b+th=t+t=tads=4+5+4=
2 + +1 12 4'
Based on these three terms, it appears that s, = ;47 for every positive integer n. We
prove that this is indeed the case. é

For every positive integer n,

1 i 1 + 1 P 1 . n
T2 237 3.4 Mt D ntl
We proceed by mducnon For n =1, we have s = —Lz e m and the result holds.

Assume that s; = 12 + 273 + 34 e k(k1+l) = k+l’ where k is a positive integer.

We show that

) —

1 1 k+

1
73t VRS A

+2 3 3-4Jr

Se+1 =

1-

l\-)
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Proof of
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Observe that
o [ 1 +s L 1 } 1
R ) 3734 D tEFEED
k 1 kk+2)+1 K42k +1

TR DEFD G+ DG+
k412 k+1
T+ Dk+2)  k+2
By the Principle of Mathematical Induction, s, = S for every positive
integer 7. L]

k+ D&+ 2)

There is another way that we might have been able to see that Sp = 7. If we had
observed that

_ 1 ! 1
T a4+ n a1
then a; = % =1- %,az = % :%~ 3, etc. In particular,

. %
Sp =ar+ay+az+ - +ay

JE R O R R e

=1 1 n

T oa+l a4l
In any case, since we now know that s, = +t7» it remains only to prove that

n
um s, = lim =1
—00 n—oop + 1

lim =1
n—o00 41

For 2 a glvcn € > 0, we are required to find a positive integer N such thatif n > N, then

n+l_1l<6 Now

n—n-—1
n+1

n 1 —1 1
n+1 n RIESI T
The_inequality ﬁ < € is equivalent to 7+ 1 > f which in turn is equivalent to
n>L—11fn> 1 thenn>1— 1 Wecannow present a proof of this lemma,

lim =
n—oo 41
Lete>0beg1ven ChooseN = [1/¢]andletn > N.Thenn > 1 > - —1.Son > =~ 1.

Thusn +1 > = and < €. Hence

n+l
n
n+41

P :

—1‘ 1

We are now prepared to give a proof of the result.
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Result 12.9

Proof

Result 12.19

Proof
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The infinite series Y po ﬁ converges to 1.

. . o0 1 .
The nth term of the sequence {s,} of partial sums of the series ) .~ W 1

1 1

I
T2ta3" +-“+n(n+1)'

1
"ET2723 73
By Lemma 12.7,

1 1 n

3.4 ‘“+n(n+1)=n+1

lim =1.
n—oo n 4+ 1
It follows that lim, 0 5, = 1 and 3 oo, Z(?lﬁ) =1. -

: . . 1 1,1 :
We now turn to a divergent series. The series Y oo 7 =145+ 3 + ce- s famgus
and is called the harmonic series. Indeed, it is probably the best known divergent series.

. . 1 g
The harmonic series Y po + diverges.

Assume, to the contrary, that Z:L % converges, say to the number L. For each positive
integer n, let s, = Y p_; % Hence the sequence {s,} of partial sums converges to L.
Therefore, for each € > 0, there exists a positive integer N such that if n > N, then
ls, — L] < €. Let’s consider € = 1/4 and let n be an integer with n > N. Then

——<s, - L <.
4

4

.. 1 1
Since 2n > N, itis also the case that |5y, — L| < % andso —3 < s — L < 3. Observe
that

—1 —-—»1 +1>s +n(}~>—s +l
S2"=5n+rz+l+n+2+”' 2n " 2n "2
Hence
1 1 1 11 1
Z>52n*L>Sn‘|-'2'*L=(S:1—L)+§>_Z+5~Zy
which is impossible. ]

In Result 12.10, we showed that a certain series diverges, that is, it does not converge.
Consequently, it is not surprising that we proved this by contradiction. By assu.ming that
the sequence {s,} converges, this meant that the sequence has a limit L. This tells us
that an inequality of the type |s, — L| < € exists for every positive number € and‘for
sufficiently large integers n (which depend on €). The goal, of course, was to obtain a
contradiction. We did this by making a choice of € (€ = 1/4 worked!) that eventually
produced a mathematical impossibility. ¢

Lemma 12,11

Proof

Result 12,12

Proof

-3
3

12.3  Limits of Functions 2

The harmonic series Y o ,\1 not only diverges, it diverges to infinity; that is, if {s,}
is the sequence of partial sums for the harmonic series, then lim,_, o 5, = co0. We also
establish this fact. First, we verify a lemma, which shows once again that mathematical
induction can be a useful proof technique in calculus.

Lets, = Zzzl El =1+ % B %, where n € N. Then sp» > 1 + %for every positive
integer n. .

We proceed by induction. For n =1, spn = 1 + % and so the result holds for n = 1.

Assume that s > 1+ £, where k € N. We show that sy:n > [ + &1 Now observe
that . -

52k+'=1+%+~--+§%
1 1 1
=S2k+2—k:*i+m+"'+§m
1 1 1 '
252&'1'5,&—1—#%4%”-4—2](—“-
2k
=SZ*+W=S2k+E
>1+E+1’—‘1+k;.
- 22 2

By the Principle of Mathematical Induction, sy > L+ 5 for every positive
integer n. E

The harmonic series Z:ix % diverges to infinity.

Forn e N,lets, =Y, % Thus {s,} is the sequence of partial sums for the harmonic
series. We show that lim, ., o 5, = 00. Let M be a positive integer and choose N = 22M
Letn > N. Then, using Lemma 12.11, we have

1 1 1
=142+ 2ot !
m=ltgt ytyvritots
1
R O T S
M
>SN:522MEI+*'2*>M‘ s

12.3 Limits of Functionsj

We now turn to another common type of limit problem (perhaps the most common). Here
we consider a function f : X — R, where X C R, and study the behavior of  near some
real number (point) a. For the present, we are not concerned whether a € X, but since
we are concerned about the numbers f(x) for real numbers x near a, it is necessary that
[/ is defined in some “deleted neighborhood” of a. By a deleted neighborheod of a,
we mean a set of the type (@ — 8,a) U (¢, a+8) = (@ —8,a +8) — {a} C X for some
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a-6 a+d

e x-axis

a
Figare 12.2 A deleted neighborhood of a

positive real number § (the Greek letter delta). (See Figure 12.2.) It may actually be
the case that (@ — 8, @ + 8) C X for some § > 0. For example, if f : X — Ris defined
by f(x)= '% and we are interested in the behavior of f near 0, then 0 ¢ X. In fact,
it might very well be that X = R — {0}, in which case, (=4, 0) U (0, §) € X for every
positive real number 8. On the other hand, if f : X — Ris defined by f(x) = 7 and,
once again, we are interested in the behavior of f near 0, then 1, —1 ¢ X. A natural
choice for X is R — {1, —1}, in which case (-8, §) € X for every real number § such
that0 <8 < 1.

We are now prepared to present the definition of the limit of a function. Let f be a
real-valued function defined on a set X of real numbers. Also, let a € R such that f is
defined in some deleted neighborhood of . Then we say that the real number L is the
limit of f(x) as x approaches a, written lim,_,, f(x) = L, if the closer x is to a, the
closer f(x) is to L. The vagueness of the word “closer” again requires a considerably
more precise definition. Let the positive number € indicate how close f(x) is required to
be to L; that is, we require that | f(x) — L| < €. Then the claim is that if x is sufficiently
close to a, then | f(x) — L| < ¢. We use the positive number § to represent how close x
must be to @ in order for the inequality | f(x) — L| < ¢ to be satisfied, recalling that we
are not concerned about how, or even if, f is defined at a.

More precisely then, L is the limit of f(x) as x approaches a, written lim,—,, f(x) =
L, if for every real number € > 0, there exists a real number § > 0 such that for every
real number x with 0 < |x — a| < &, it follows that | f(x) — L} < €. This implies that
if 0 < |x — a| < &, then certainly f(x) is'defined. If there exists a number L such that
lim,—,, f(x) = L, then we say that the limit lim,_,, f(x) exists and is equal to L;
otherwise, this limit does not exist. Thus to show that lim,_,, f(x) = L, it is necessary
to specify € > O first and then show the existence of a real number § > 0. Ordinarily, the
smaller the value of ¢, the smaller the value of §. However, we must be certain that the
number § selected satisfies the requirement regardless of how small (or large) € may be.
Even though our choice of § depends on ¢, it should not depend on which real number
x with 0 < {x — al < § is being considered.

Accordingly, if lim,_,, f(x) = L, then for a given ¢ > 0, there exists § > 0 such
that if x is any number in the open interval (a — §, a + §) that is different from a, then
Jf(x) is a number in the interval (L — €, L 4 ¢). This geometric interpretation of the
definition of limit is illustrated in Figure 12.3.

We illustrate these ideas with an example.

Iinz Bx ~T7)=35.

Before giving a formal proof of this limit, let’s discuss the procedure we will use.
The proof begins by letting € > 0 be given. What we are required to do is to find a
number & > 0 such that if 0 < |x —~ 4| < &, then {(3x — 7) — 5| < € or, equivalently,

Result 12,13

Proof
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Result 12,14

Proof
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LTC fx)y L L+e

y-axis

X-axis

Figure 12.3 A geometric interpretation of lim f(x) = L
x—a

[3(x —4)| < e. This is also equivalent to |3] - |x — 4] < ¢ and to |x{— 4| < €/3. This
suggests our choice of §. We can now give a proof. ¢

li{r}‘ Bx~7)=5.

Lete > 0 be given. Choose § = ¢/3. Let x € Rsuch that 0 < |x — 4| < 6,% €/3. Then
[BGx =7y = 5[ = |3x — 12| = |3(x — 4)] = 3|x — 4| < 3(¢/3) = E

Let’s consider another example.
lim (=2x+1)=7.
>3

First we do some preliminary algebra. The inequality |(—2x + 1) — 7| < € is equivalent

to | — 2x — 6] < € and to 2|x + 3| < . This suggests a desired value of 8. We can now
give a proof. é

;ir'g} (“2x 4 1) =17

Lete > O be given and choose § = ¢/2. Letx € Rsuchthat0 < [x — (=3)] < § = €/2,
$00 < [x + 3| < €/2. Then
[(=2x+ D=7 =]-2x—6]=|—2(x+3)
=1-2lx+3|=2|x +3| <2(e/2) = €. ]
The two examples that we have seen thus far should tell us how to proceed when

the function is linear (that is, f(x) = ax + b, where a, b € R). We now present a slight
variation of this.

L 4xr -9
lim

>3 2x-3 =

6.

In this example, |f(x)— L| < e becomes |42'§2:39 — 6| <€ or, after simplifying,
|Qi‘i2x3)(_2;‘—”3) — 6| < €. However, since the numbers x are in a deleted neighborhood of
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Proof
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Result 12.16

Proof

3/2, it follows that 2x — 3 % 0 and so | ZE2EED 61 < ¢ becomes |(2x + 3) — 6] <
€, or [2x — 3| < e. Therefore, 2x — 3/2| < € and |x — 3/2] < €/2. We are now pre-
pared to give a proof. ¢

L 4xP—9
lim

=3 2x =3

=6.

Let e > 0 be given and choose § = ¢/2. Let x € R such that 0 < {x — 3/2| <8 =¢/2.
So2{x —3/2| < € and |2x - 3| < €. Hence |(2x +3) — 6] < €. Since 2x — 3 # 0, it

follows that |%§ — 6| < € and so 4;;:39 — 0] <e. E

We now turn to a limit of a quadratic function.

lim x> =09,

x—3

Once again for a given € > 0, we are required to find 8 > 0 such that if 0 < [x =3} <8,
then |x? — 9| < €. To find an appropriate choice of § in terms of €, we begin with
[x% — 9| < €. We wish to work the expression |x — 3| into this inequality. Actually,
this is quite easy since |x? — 9| < ¢ is equivalent to |x — 3|{x 4+ 3| < €. This might
make us think of writing |x — 3] < Ix_i?l and choosing § = ]x% However, § is re-
quired to be a positive number (a constant) which depends on € but not on x. The
expression |x + 3| can be eliminated, though, as we now show. Since it is our choice
how to select 8, we can certainly require § < I, which we do. Thus |x — 3| < 1 and so
—l<x—-3<1.Hence2 <x <4.Thus5 < x +3 < 7 and so |x + 3} < 7. So, under
this restriction for &, it follows that |x — 3|lx + 3] < 7|x — 3}. Nowif 7|x — 3| < ¢, that
is, if |x — 3| < ¢/7, then it will certainly follow that {x — 3[|x 4 3| < €. Arriving at this
inequality required thatboth |x — 3| < land|x — 3| < ¢ /7. This suggests an appropriate
choice of §.

lim x> =09,

x—3

Lete > 0O be given and choose 8 = min(1, /7). Let x € R such that 0 < [x =3 <b§=
min(l, €/7). Since [x — 3| < 1, it follows that —1 < x —3 < L and s0 5 < x +3 <7
In particular, [x 4 3| < 7. Because |x — 3| < ¢/7, it follows that
P =9 =|x —3llx +3| < [x = 3] -7 < (¢/T) - T = c. &
We have now seen four proofs of limits of type lim, ,, £(x) = L. InResult 12.13, we
chose § = €/3 for the given € > 0 and in Result 12.14, we chose § = €/2. In each case,
if we had considered a different value of a for the same function, then the same choice of
8 would be successful. This is because the function is linear in each case. In Result 12.15,
foragivene > 0, the selection of § = ¢/2 would also be successful if a # 3/2, provided
3/2 ¢ (a — 8, a + 8). This is because the function f in Result 12.15 defined by f(x) =
(4x? - 9)/(2x —3) is “nearly linear”, that is, f(x) = 2x + 3 if x # 3/2 and f(3/2) is
not defined. However, our choice of 8 = ¢/7 in the proof of Result 12.16 depended on
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Proof
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a = 3;thatis, if @ # 3, adifferent choice of § is needed. For example, if we were to prove
that lim, .4, x> = 16, then for a given € > 0, an appropriate choice for 8 is min(l, €/9).
Next we consider a limit involving a polynomial function of a higher degree.

lim (x> —2x* = 3x — 7) = 3.
x—=2

For a given € > 0, we are required to show that |(x° —y2x3 —3x-T -3 <e€if0 <
[x —2| < § for a suitable choice of § > 0. We then need to work |x — 2| into the
expression |x® — 2x® — 3x — 10|. Dividing x° — 2x> — 3x — 10 by x — 2, we obtain
x* = 2x% = 3x — 10 = (x — 2)(x* + 2x> + 2x2 + 4x + 5). Hence we have

Ix° —2x% —3x —10] = |x = 2{|x* + 2x% + 262 4 dx & 5]

Thus we seek an upper bound for |x* + 2x* + 2x? + 4x + 5]. To do this, we impose the
restriction§ < 1. Thus [x — 2/ < § < 1.So—1 <x~2 < land | < x < 3. Hence

[+ 20% + 207 + 4+ 5] = et 203+ (207 + J4x] + |5] < 170.

We are now prepared to prove Result 12.17. é

lim (0 ~2x3 —3x -7 =3
Let ¢ > 0 be given and choose § = min(1, €/170). Let x € R such that 0 < |x — 2] <
§ = min(1, €/170). Since |x — 2| < 1, it follows that 1 < x < 3 and so
[ + 203 + 202+ dx + 5] < |6+ 1203] + [2x2] + [4x] + 5] < 170.
Since |x — 2| < ¢/170, we have
(6> — 220 =32 —7) — 3] = |x® — 2% — 3x — 10}
=lx = 2] fx* + 2% + 267 + 4x + 5
< (e/170) - 170 = €. =
Our next example involves a rational function (the ratio of two polynomials).

i 2+1. 02
i = .
x—rﬂ x24 4 5

First observe that

21 20 SR+ D262 4D 3R -3 3lx — U+ 1
2 +4 5| 5(x2 4 4) TS24 5(x2+4)
3lx+1]

Hence it is necessary to find an upper bound for SGzray- Once again we restrict § so that
d<lL.Thenix—1j<lor0<x <2 Hence I <x+1<3;s03x+1]<9. Also,
since x > 0, it follows that 5(x2 + 4) > 20; so S5 < 75- Therefore,

3lx + 1) 9 1 9
— <9 —}=—.
S(x2+4) 20 20

‘We now present a proof of this resuit. é
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Result 12.18

Proof

Example 12.19

Solution

Result 12.20

Proof

x 41 2

lim .
=l x2 44 5

Lete > 0 be given and choose § = min(l, 20¢/9). Letx € RsuchthatO < [x — 1| < §.
Smcelx~1| 1, wehaveO< X <2and1 <x+1<3. Hence3lx+1<3-3=9
and 5(x? 4 4) > 20, so 5(x1+4) 20. Therefore, % < 9/20. Since |x — 1} < 20¢/9,
it follows that

41 2] [SP+ -2 4+ 4| 13x° -3
x2+4_§‘" 5(x2 +4) 5244
3lx—1lix+1] 20 9
T s+ 4 9 2

We now present one additional example on this topic.
i 3 x2=1 ; -
Determine lim,.y 5= and verify your answer.

Since it appears Lhat fim, (x> — 1) = 0 and lim,_,,(2x — 1) = 1, we would expect
that lim, 2{’1 = T = 0. To verify this, we need to show that for a given € > 0, there
is 8 > O such that if 0 < |x — 1| < &, then

x? -1 x2 =1
—0| = < €.
2x — 1 2x — 1
Observe that
xzfl‘gg(x—l)(x-l-l) 1 ]
26 —~1| | 2x—1 T x -1 '
e+l

Proceeding as before, we find an upper bound for el Ordinarily, we might
restrict § < 1, as before, but in this situation, we have a problem. If § < 1, then 0 <
[x =1 <8andso|x — 1] < 1.Thus 0 < x < 2 orx € (0, 2). However, this interval of
real numbers includes 1/2 and ““ ll is not defined when x = 1/2. Thus we place a tighter
restriction on 8. The resmcnon 8 1/2 is not suitable either, forif |x — 1| < § < 1/2,
then 1/2 < x < 3/2. Even though I‘Z’jll’l is defined for all real numbers x in this interval,
this expression becomes arbitrarily large if x is arbitrarily close to 1/2, allowing [2x — 1]
to be arbitrarily close to 0. That is, we canriot find an upper bound for ‘12;” ifs=1/2.
Hence we require that § < 1/4, say, and so jx — 1| <8 < 1/4. Thus 3/4 < x < 5/4.

Hence [x + 1] < 9/4. Also, [2x — 1| > 2(%) —1=1/2 and so T < 2. Therefore,

\[z):tlllx < % 2= 2. We now give a formal proof. L
2
-1

lim X =

=1 2x —1

Let € > 0 be given and choose § = min(1/4, 2¢/9). Let x € Rsuch that 0 < |x — 1| <
8. Since § < 1/4, it follows that |x —1| < 1/4 and so 3/4 <x < 5/4. Hence

‘x+1|<5/4+1—9/4. Also, ]2x—l{>2(%)71=1/2 and so IZ_ijl—\<2'
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Therefore, ";;tlf‘ <9.2= 3. Since|x — 1| <8 <2¢/9, it follows that
-1 x2 -1 |x+1|i I < 2¢ 9
— = X — — T = €.
-1 21| -1 9 2 =

Next we consider a limit problem where the limit does not exist.

1
lim - does not exist.

=0 X

As expected, we will give a proof by contradiction. If lim, ¢ % does exist, then .there
exists a real number L such that lim,_o + = L. Hence for every € > 0, there exists
§ > Osuchthatif O < |x| < §,then \1 — L| < €. For numbers x “close” to 0, it certainly
appears that % is “large” (in absolute value). Hence, regardless of the value of ¢, it seems
that there should be a real number x with 0 < |x| < & such that |} L _L{>e Itisour
plan to show that this is indeed the case. Thus, we choose ¢ = 1, for example and show
that no desired § can be found é

L1 .
lim — does not exist.
x—=0 X

Assume, to the contrary, that lim,_.o Xl exists. Then there exists a real number L such
that lim,_, ¢ } = L.Lete = 1. Then there exists § > 0 such that if x is a real number for
which0 < |x| < §,then |— — L} < € = 1. Choose an integer n such that n > (1/5] E
Since n > 1/, it follows thwt 0 < 1/n < 8. We consider two cases.

Casel. L <0.Letx =1/n.500 < |x| < 4. Since —L > 0, it follows that
1

——L1:|n~L[=n—LG>1=e,
X

which is a contradiction.

Case2. L >0.Letx = —1/n.S0o0 < |x} < §. Thus
1 )
’——Lt:i—n—L}:l—(n+L)\=n+L>n>1:6,
X

producing a contradiction in this case as well. E

Let f(x) = |x|/x, where x € Rand x # 0. Then lim,_,o f(x) does not exist.

The graph of this function is shown in Figure 12.4. If x > 0, then f(x) = |x|/x = x/x =
1; while if x < 0, then f(x) = |x|/x = —x/x = —1. Hence there are numbers x that
are “near” 0 such that f(x) = 1 and numbers x that are “near” 0 such that f(x) = —
This suggests a proof.

Let f(x) = |x|/x, where x € Rand x # 0. Then lim, .o f(x) does not exist.
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Figure 12.4  The graph of the function f(x) = |x|/x

Proof  Assume, to the contrary, that lim,_,o f(x) exists. Then there exists a real number L such

thatlim,_,o f(x) = L.Lete = 1, Then there exists § > 0 such that if x is a real number
satisfying 0 < |x — 0 = |x| < §, then | f(x) — L| < € = 1. We consider two cases.

Case 1. L > 0.Consider x = —§/2. Then |x| = §/2 < §. However, f(x) = f(—§/2) =

(8/2)/(=8/2) = —1.So |f(x)— L| =|—1—L{ =1+ L > 1, a contradiction.

Case2. L < 0.Letx = §/2.Then x| = §/2 < 8. Also, f(x) = f(§/2) =(8/2)/(8/2) =

LSo|f(x)—L|=|1-L|=1-L > I, acontradiction. B
[ 12.4 Fundamental Properties of Limits of Functions }

Theorem to Prove

PROOFSTRATEGY

Theorem 12.23

If we were to continue computing limits, then it would be essential to have some theorems
at our disposal that would allow us to compute limits more rapidly. We now present some
theorems that will allow us to determine limits more easily. We begin with a standard
theorem on limits of sums of functions.

Iflim f(x)=L and lim g(x) = M, then
Xx—a Xx—a

,}ﬂ (f)+gx)y=L+M.

Inthis case, we are required to show, foragivene > 0, that |(f(x) + g(x)) — (L + M)| <
€if 0 < |x — a| < § for a suitable choice of § > 0. Now

I(f) + 8Ge)) ~ (L + M) = [(f(x) — L) + (g(x) — M)| = | f(x) — L} + [g(x) — M|

Hence if we can show that both | f(x) — L| < ¢/2 and |g(x) — M| < €/2, for example,
then we will have obtained the desired inequality. However, because of the hypothesis,
this can be accomplished. We now make all of this precise.

Iflim f(x)=Land lim g(x) = M, then
x—a x—=a

lim (f(0) +g(x)) =L + M.
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Proof Lete > 0.Sincee/2 > 0, there exists 1 > OsuchthatifO < |x — a} < 8y, then | flx)—

Lemma 12.24

Proof
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L| < €/2. Also, there exists 8, > 0 such that if 0 < |x — a| < &, then |g(x) — M| <
€/2. Choose § = min(8;, §») and let x € R such that 0 < |x —a| < 8. Since 0 < |x —
al < 8, it follows that both 0 < [x —a| < §; and 0 < |x — a| < &,. Therefore,

I(f) + g(x) — (L + M) = [(f(x) — L) + (g(x) — M)}
S =L+ 1gt) — M| <€/2+¢/2=¢€. =

Theorem 12.23 states that the limit of the sum of two functions is the sum of their
limits. Next we show that this is also true for products. Before getting to this theorem, let’s
see what would be involved to prove it. Let lim,_,, f(x) = L and lim, ,, g(x) = M.
This means that we can make the expressions | f(x) ~ L| and |g(x) — M| as small as we
wish. Our goal is to show that we can make | f(x) - g(x) — LM| as small as we wish,
say less than € for every given € > 0. The question then becomes how to use what we
know about | f(x) — L| and |g(x) — M| as we consider | f(x) - g(x) — LM|. A common
way to do this is to add and subtract the same quantity to and from f(x)- g(x) — LM.
For example, ) :

[f(x)-g(x)— LM| = |f(x) g(x) — f(x)- M + f(x)- M — LM|
= [f()(gx) — M)+ (f(x) — L)M)|
SNl — M+ 1f(x) — Li|M]|.
If we can make each of | f(x)||g(x) — M| and | f(x) — L|| M| less than €/2, say, then we
will have accomplished our goal. Since | M| is a nonnegative constant and | f(x) — L|
and |g(x) — M| can be made arbitrarily small, only | f(x)| is in question. In fact, all that

is required to show is that f(x) can be bounded in a deleted neighborhood of «, that is,
| (x)I < B for some constant B > 0.

Suppose that lim, ., f(x) = L. Then there exists § > 0 such that if 0 < |x —a| < 8,
then | f(x)] < 14 |L|.

Let € = 1. Then there exists § > 0 such that if 0 < |x — a| < §, then'| f(x) — L| < 1.
Thus

O =1/ - L+ LI <|f&)— LI+ L] < L+]L}. s

We are now prepared to show that the limit of the product of two functions is the
product of their limits.

Iflim, ., f(x)=Landlim,,, g(x) = M, thenlim, ,, f(x)- gx)=LM.

As we discussed earlier,
[f(x)- g(x) — LM| = | f(x)- g(x) = f(x)- M + f(x)- M — LM)|
= {f()(glx) — M)+ (f(x) — L)M]|
< I fligle) — M|+ | f(x) = L{|M].
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Theorem 12.25

Proof

For a given € > 0, we show that each of | f(x)||g(x) — M| and | f(x) — L|{M| can
be made less than €/2, which will give us a proof of the result. Of course, this follows
immediately for | f(x) — L|{M}if M = 0. Otherwise, we can make | f(x) — L|less than
€/(2|M|). By Lemma 12.24, we can make |f(x)| less than 1+ |L|. Thus we make
|g(x) — M| < €/(2(1 + |L})). Now, let’s put all of the pieces together. ¢

Iflimy_,, f(x) =L andlim,,, g(x) = M, thenlim,_,, f(x) -gx)=LM.

Let € > 0 be given. By Lemma 12.24, there exists §; > O such thatif 0 < |x — a| < §,,
then | f(x)| < 1+ |L}]. Since lim,_,, g(x) = M, there exists &, > 0 such that if 0 <
|x — a| < 8, then |g(x) — M| < €/(2(1 + |L|)). We consider two cases.

Case 1. M = 0. Choose § = min(8y, §;). Let x € Rsuch that 0 < |[x — a| < 8. Then

[f()-g() — LM| = |f(x)-g(x) = f(x) - M + f(x)- M — LM|
[f)(glx) — M) + (f(x) — L)M|
< [fOliglx) — M[ + | f(x) — L{|M|
<1+ |LDe/QA+ L) +0=¢€/2 < €.
Case 2. M # 0. Since lim,,, f(x) = L, there exists 83 > Osuch thatif 0 < |x —a| <
83, then | f(x) — L} < €/(2{M}). In this case, we choose § = min(8y, &, 83). Now let
x € Rsuchthat 0 < |x —a| < §. Then
[f(x)-8(x) = LM| = [f(x) - g(x) — f(x)- M + f(x)- M — LM|
= 1f(x)gx) = M)+ (f(x) — L)M|
< |f)llgx) — M+ | (x) — L{|M|
< (L4 [LDe/2(1 + |LD) + (/2| MDIM]
=¢/24+¢€/2=¢€. &

|

i

Next we consider the limit of the quotient of two functions. As before, let lim,,,
f(x) = Landlim,_,, g(x) = M.Our goalis to show that lim,_,, % = % Of course,
this is not true if M =0, so we will need to assume that M 5 0. To prove that
limy g % = 7\[}’ we are required to show that Iﬁj—; - ﬁl can be made arbitrarily
small. Observe that

@7£ fx) - M—~L-gx) fx)- M—LM+LM—-L-gkx)
gx)- M

gy M| g(x)- M
_ 1<f(x> — DM + L(M ~ g(0)| _ |/ () = LIIM| + LM —~ g(x)|
gx)- M - g0l M|
[LIIM — g(x)|
lg(OlM|

_ -1
{63}

Thus to show that [g-t% - ﬁ] can be made less than € for any given positive number €, it

is sufficient to show that each of %’Lf] and %ﬁ;—f)‘ can be made less than € /2. Only

1/|g(x)| requires study. In particular, we need to show that there is an upper bound for
1/1g(x)| in some deleted neighborhood of a.

Lemma 12.26

Proof

Theorem to Prove

PROOF STRATEGY

Theorem 12.27

Proof
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If lim,,, g(x) =M # 0, then 1/|g(x)| < 2/IM]| for all x in some deleted neighbor-
hood of a.

Lete = |M|/2. Then there exists § > Osuchthatif 0 < |x —a] < §,then|g(x) — M| <
|M|/2. Therefore,

(M| =M — g(x)+g(x)] <M —g(x)l + [g(x)]
Hence |g(x)| = |M|—|M—g(x)| > |M|—|M|/2=|M|/2. Thus 1/]g(x)] <2/IM|. =&

Iflim,_, f(x)= L andlim, ,, g(x) =M % 0, then lim,_,, % =L
Returning to our earlier discussion, we now have
fo L] _ S —L| LM — g()l
glxy M|T g lg()1 M|
2
| - L« —— +|L||M e
< Df()c) gy +IHIM = 8@ s
This suggests how small we must make |f(x)—L| and |g(x) — M| ={M — g(x)| to
accomplish our goal. é
Iflim,,, f(x)= L andlim,,, g(x) = M # 0, then lim,_,, % = ﬁ

Lete > 0 be given. By Lemma 12.26, there exists §; > 0 such thatif 0 < |x —a| < 41,
then 1/|g(x)| < 2/]M|. Since lim,,, f(x) = L, there exists §; > 0 such that if 0 <
|x — a| < &, then | f(x) — L| < |M|e/4. We consider two cases.

Case 1. L = 0. Define § = min(8;, 62). Let x € R such that 0 < |x — a| < 8. Then

FO L| _Ife— Ll ILIM - g()

s M| T gkl gCOlIM]
Mle 2 € _,
4 M| 25"

Case 2. L #0. Since lim,_,, g(x) = M, there exists §3 > O such thatif 0 < [x —a| <
83, then'|g(x) — M| < |M}2c/(4|L)). In this case, define § = min(8,, &2, 83). Letx ¢ R
such that 0 < [x — a| < 8. Then

& L] _ @=Ll LM =g
glx) M7 g 18| M]
|Mle 2 L] |MPe 2 € €
. —_— e = - =€ L]
4 M| M| 4Ll M| 2 2

Now, with the aid of Theorems 12.23, 12.25, 12.27, and a few other general results,
it is possible to give simpler arguments for some of the limits we have discussed. First,
we present some additional results, beginning with an observation concerning constant
functions and followed by limits of polynomial functions defined by f(x) = x” for some
neN.
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Theorem 12.28

Proof

Theorem 12.29

Proof

Theorem 12.30

Proof

Theorem 12.31

Leta,c e R If f(x)=cforallx € R thenlim;, f(x)=c.

Let ¢ > 0 be given, and choose & to be any positive number. Let x € R such that 0 <
|x —a} < 8. Since f(x)=c for all x € R, it follows that [f&x)—cl=lc—c|=
0 <e. =

Let f(x) = x forall x € R Foreacha € R, lim;~q fx)=a.

Let € > 0 be given, and choose § = €. Let x € R such that 0 < |x —a} < §. Then
|fx)—al=lx—al<d=c¢. B

‘We now extend the result in Theorem 12.29.
Letn € Nand let f(x) = x" for all x € R. Then for eacha € R, lim,,, f(x)=a".

We proceed by induction. The statement is true for n =1 smce if f(x)=x, then
lim,_, f(x)=a by Theorem 12.29. Assume that lim,_q X* = a*, where k € N. We

show that lim, ., x*1 = g+ Observe that lim,_,, x**! —hmHa (x* - x) . By The-
orems 12.25 and 12.29 and the induction hypothesis,

Bm = lim (x*- le x ) Qim x) " (a) = at".

x—a xX—ra

By the Principle of Mathematical Induction, limyq x" =a" foreveryn e N. =

It is possible to prove the following theorem by induction as well. We leave its proof
as an exercise (Exercise 12.21).

fn be n = 2 functions such that imy_.q filx)=L;for1 <i <n.Then

+ fax) =Li+ Lot + Lo

Let fi, f2, "+,
lim (/i) + fole) 4

With the results we have now presented, it is possible to prove that if p(x) = ¢,x" +
Cp_1x" "1 4 -+« 4 1% 4 cg is a polynomial, then for eacha € R

lim p(x) = cd” + co1@" '+ -+ cra+co = pla. (12.1)
x—a

For example, applying this to Result 12.13, we have
1im(3x—7):3‘4~7=5.

Similarly, Result 12.14 can be established. Result 12.15 cannot be established directly
since hm)H;(Zx —3) = 0. Applying what we now know fto Result 12.16, we have

lim,_,3 x2 = 3% = 9 and in Result 12.17,

m(ed® = 2% =3x = 7)=2-2.22-3.2-T7=3.

x—>2
Also, if  is a rational function, that is, if r(x) is the ratio p(x) /q(x) of two polyno-
mials p(x) and g{x) such that g(a) # O fora € R, then by Theorem 12.27,

p(x) limy g P@ _ E@ = r(a). (12.2)

hm Flx) = llma q(x) limy 0 g(0) = 7@
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So, in Result 12.18, we have

L T S

ST 4 T 14 s

Although it is simpler and certainly less time-consuming to verify certain limits
with the aid of these theorems, we should also know how to verify limits by the € — §
definition.

L 12.5 Continuity ]

Once again, let f : X — R be a function, where X C R, and let a be a real number such
that f is defined in some deleted neighborhood of a. Recall that lim,_, , fxy=L for
some real number L if for every € > 0, there exists § > Osuch thatifx € (a — 8, a + 8)
and x # a, then | f(x) — L| < €. If f is defined at a and f(a) = L, then f is said to
be continuous at a. That is, f is continuous at g if lim,—., f(x) = f(a). Therefore, a
function f is continuous at a if forevery ¢ > 0, there exists § > Osuch thatif [x — a| < §,
then | f(x) — f(a)| < €. (Nonce that in this instance, 0 < |x — @| < § is being replaced
by |x — a| < 8.) Thus for f to e continuous at @, three conditions must be satisfied:

(1) f isdefined ata; (2) im f(x) exists;

3 lim £0) = f(@).

We now illustrate this.

Problem 12.32 A function f is defined by f(x) = (x* — 3x +2)/(x2 = 1) for all xeR—{-1,1i}LIs
S continuous at 1 under any of the following circumstances: (a) f is not defined at 1;

©) fFD) =0 (c) f(1) =—1/2?

Solufion  For f to be continuous at 1, the function f must be defined at 1. So we can answer
question (a) immediately. The answer is no. In order to answer questions (b) and (), we

must first determine whether lim,_,; f(x) exists. Observe that

f(x)kx2-3x+2__(x-l)(x72)_x-2
T2 -1 T =D HD x

since x # 1. Because fx) = ;ﬁ is a rational function, we can apply (12.2) to obtain

. ox—2 lim, )1(‘4—2) —1 1

lim = —_— =,

y—>1x+1 hmx%](‘c—k no 2 2
Hence if f(1) = —1/2, then f is continuous at 1. Therefore, the answer to question (b)
is no and the answer to (c) is yes. é

.- . . K2l
For additional practice, we present an € — § proof that lim,_,; =52+ Xfffz =1

2-3x 42 1
Result to Prove  lim X——;ii‘m =—=.
=1 x*—1 2
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PROOT STRATEGY

Resuit 12.33

Proof

Result to Prove

PROOF STRATEGY

Result 12.34

Proof

Observe that

52—3x+%7(_l>!_ (x - Dx—2) 1'_ g~2)+1}
x2—1 2 x—Dx+1) 2 (x+1) 2
2 —2)+(x+ 1) _ 3x -3 “3[)5—1]
= 2x + 1) ”12<x+1) e
If[x — 1] < 1,then0 < x < 2and |x + 1] > 1,50 1/|x + 1} < 1. We are now prepared
to prove that lim,_,; (x> — 3x +2)/(x2 = 1) = —1/2. N

i x2—3x+2_ 1
rgnl 2-1 = 2

Let € > 0 and choose § = min(1, 2¢/3). Let x € R such that [x — 1| < §. Since
|x — 1] < 1, it follows that 0 < x < 2. So |x + 1] > 1l and 1/|x + 1| < 1. Hence

[x2—3x+2 I\ &= D —2) l‘_ (x72)+£|

! x2—1 _<_E>“(xfl)(x+1) 2| |+ "2
‘3x—3 3lx—1] 3 2
= =z <z = 5
2+ D 2@x+1 2 3

Indeed, (12.2) states that if a rational function 7 is defined by r(x) = p(x)/q(x),
where p(x) and g(x) are polynomials such that g(a) # 0, then r is continuous at a. Also,
(12.1) implies that if p is a polynomial function defined by p(x) = c,x" + ¢, _1x" 1 4
-+ 4 c1x + cg, then p is continuous at every real number a.

We now present some examples concerning continuity for functions that are neither
polynomials nor rational functions.

The function f defined by f(x) = /x for x > 0 is continuous at 4.

Because f(4) =2, it suffices to show that lim, 4 /x =2. Thus |f(x)—L|=
|/x —2|. To work x —4 into the expression ./x —2, we multiply +/x —2 by
(VX +2)/(/x + 2), obtaining
VX =2(x+2) lx —4
N G kot
Jx4+2 Vr+2

First we require that § < 1, that is, [x — 4| < 1, s0 3 <x < 5. Since /x +2 > 3, it
follows that 1/(4/x +2) < 1/3. Hence

jx 4] lx — 4]
-2| = .
Wx—2l= e <5
This suggests an appropriate choice for 8. ¢

The function f defined by f(x) = /x for x > 0 is continuous at 4.

Let € > 0 be given and choose § = min(1, 3¢). Let x € R such that |x — 4] < §. Since
|x — 4] < 1,itfollows that3 < x < Sandso \/x + 2 > 3. Therefore, 1/(/x+2)<1/3.

Result 12.35

Proof
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y
31 o
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Figure 12.5  The graph of the ceiling function f(x) = [x]

Hence

WE) = [(ECDCERD A Lo .
Jx+2 | Vx+2 3
Figure 12.5 gives the graph of the ceiling function f : R — Z defined by f(x) =
[x7]. This function is not continuous at any integer but is continuous at all other real
nusnbers. We verify the first of these remarks and leave the proof of the second remark
as-an exercise (Exercise 12.24).

The ceiling function f : R — Z defined by f(x) = [x] is not continuous at any integer.

Assume, to the contrary, that there is some integer k such that f is continuous at k.
Therefore, lim,_,; f(x) = f(k) = [k] = k. Hence for ¢ = 1, there exists § > 0 such
that if |x — k[ < 8, then | f(x) — f(k)| = | f(x) — k| < € = 1. Let §; = min(8, 1) and
letx; € (k,k+81). Thus k < x; <k +8andk < x; < k+ 1. Hence f(x)) = [x,] =
k+1and|f(x;) —k| = |(k+ 1) — k| = 1 < 1, a contradiction. B

12.6 Differentiability j ‘

We have discussed the existence and nonexistence of limits lim, ., f(x) for functions
f X — Rwith X C R, where f is defined in a deleted neighborhood of the real number
a and, in the case of continuity at a, investigated whether lim, ., f(x) = f(a)if f is
defined in a neighborhood of a. If f is defined in a neighborhood of a, then there is an
important limit that concerns the ratio of the differences f(x) — f(a) and x — a.
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Example 12.36

Solution

equation of fangent line:

y=fl@=m(x—a),
where m =f'(a)

= X

Figure 126  Derivatives and slopes of tangent lines

A function f : X — R, where X C R, that is defined in a neighborhood of a real
number a, is said to be differentiable at a if lim,_., , ﬂ—"x):!{ﬂ exists. This limit is called
the derivative of f at ¢ and is denoted by f(a). Therefore,

- F@) = tim O S@
x—a xX—a
You probabiy already know that f'(a) is the slope of the tangent line to the graph of
y = f(x) at the point {a, f(a)). Indeed, if f'(a) = m, then the equation of this line is
y = f(@) = m(x — a). (See Figure 12.6.)
We illustrate derivatives with an example.

Show that the function f defined by f(x) = 1/x* for x # 0 is differentiable at 1 and
determine f'(1).

~1

b=

Thus we need to show that lim,_, ; f(‘T’:{Q = lim, ,; - exists. In a deleted neigh-
borhood of 1,
2
*_12_1= = _ 1—x2 :(1~x)(1+x)=‘1+x 23
x~-1 x-=1 x*(x-1) x2(x —1) x? ’

Since %% is a rational function, we can once again use (12.2) to see that

o l+x o dlime (14 x) 2

lim = —— = =

x>l —x2 hmx_,l(—xz) -1
and so f'(1) = —2.

We present an € — § proof of this limit as well. For a given € > 0, we are required
1_
to find § >0 such that if x € R with 0 < |x — 1] < 8, then {%11 —(-2)] <e.

Observe that

-2

21 1+4x
- - = (-2)

i

Ix — 1j|2x + 1]
x2 ’

_‘2x2—'x71 B
= = -

I werestrict§ sothat§ < 1/2,then |x — 1| < 1/2andso1/2 < x < 3/2.Sincex > 1/2,
itfollows that x> > 1/4and 1/x? < 4. Also, since x < 3/2, it follows that 2x + 1] < 4
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Hence {x — 1f|2x + 1]/x? < 16]x — 1|. This shows us how to select §. We now prove
that (1) = 2. é

Result 12.37  Let f be the function defined by f(x) = l/xzfor x # 0. Then f'(1) = —2.
Proof Lete > Obe givenand choose § = min(1/2, €/16). Letx € Rsuchthat0 < lx =1} < 4.

Since fx~ 1} < 1/2, it follows that 1/2 < x < 3/2. Thus x> > 1/4 and so 1/x < 4.
Also, |2x + 1| < 4. Since |x — 1| < /16, it follows that

_ L1
L0 ) - [Et o] -2
x—1 . x—1 x
2x%2—x -1 [2x + 1} €
:le = ~|x~I|<4-4~1—6:€. ]

From Result 12.37, it now follows that the slope of the tangent line to the graph of
y = 1/x?% at the point (1, 1) is —2 and, consequently, that the equation of this tangent
line is y —~ 1 = —2(x — 1). Differentiability of a function at some number a implies
continuity at a, as we now show.

Theorem 12.38  If a function f is differentiable at a, then f is continuous at a.

Proof  Since f is differentiable at a, it follows that lim, _,, LX)’# exists and equals the real
number f'(a). To show that f is continuous at a, we need to show that lime,, f(x)= f(a).

We write f(x) as
f(x) —a)+ f(a).

Now, using properties of limits, we have

_Iw-j@
X —a

lim f(x) = [lim M} lim(x — a) + lim f(a)
x—a x—a X —a x—a x—>a "
= f'@ -0+ f(a) = fla). s
The converse of Theorem 12.38 is not true. For example, the functions f and g

defined by f(x) = |x] and g(x) = ./x are continuous at O but neither is differentiable at
0. That f is not differentiable at 0 is actually established in Result 12.22.

EXERCISES FOR CHAPTER 12

Section 12.1: Limits of Sequences

12.1. Prove that the sequence 2‘ } converges to 0.
n

1
n?+1

12.2. Prove that the sequence } converges to 0.

{
{

12.3. Prove that the sequence {1 + Zln} converges to 1.
{

n+2
2143

12.4. Prove that the sequence } converges 10 3.
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12.5. By definition, lim,_, o0 a, = L if for every ¢ > 0, there exists a positive integer N such that if n is an
integer with n > N, then |a, — L| < €. By taking the negation of this definition, write out the meaning of
im0 @, # L using quantifiers. Then write out the meaning of {a,} diverges using quantifiers.

12.6. Show that the sequence {n*} diverges to infinity.

n +7n

12.7. Show that the sequence { } diverges to infinity.

Section 12.2: Infinite Series

12.8. Prove that the series > po, mﬁ) converges and determine its sum by
(a) computing the first few terms of the sequence {s,} of partial sums and conjecturing a formula for s,
(b) using mathematical induction to verify that your conjecture in (a) is correct;
(c) completing the proof.

12.9. Prove that the series Y oo | 2—& converges and determine its sum by
(a) computing the first few terms of the sequence {s,} of partial sums and conjecturing a formula for s,,;
(b) using mathematical induction to verify that your conjecture in (a) is correct;
(c) completing the proof.

12.10. The terms ay, ay, as, - - - of the series ZL | ax are defined recursively by a; = ¢ Lmd

2
a(n + D(n +2)

for n > 2. Prove that ) ;| a; converges and determine its value.

Ay = Gpy —

Section 12.3: Limits of Functions

12.11. Give an € — 8 proof that lim,_,,(3x + 1) = 4.
12.12. Give an € — § proof that Hmy, o 3x —5)=—

—2x-3

12.13. Determine lim,_,3 3 o

and verify that your answer is correct with an € — § proof.
12.14. Give an € — 8 proof that lim,_» 2x% —x —5) = 1.
12.15. Give an € — § proof that lim,_,, x> = 8.

12.16. Give an ¢ — 3 proof that lim,,3 2t = 2,

12.17. Determine limy_, ﬁ and verify that your answer is correct with an € — & proof.

12.18. Show that lim,_,¢o 7 does not exist.

12.19. The function f : R — R is defined by

1 x <3
fxy=415 x=3
2 x >3,

(a) Determine whether lim,_,3 f(x) exists and verify your answer.
(b) Determine whether lim,,,, f(x) exists and verify your answer.

Section 12.4: Fundamental Properties of Limits of Functions

12.20. Use induction to prove that lim._,, p(x) = p(a) for every polynomial p(x) = c,x" +
Co1X" V- 4 cx d o foralln e N,

12.21.

12.22.
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Use induction to prove that for every integer n > 2 and every n functions fi, f5, - - -
limy,, fi(x)=L;forl <i<n,

, [ such that

Im (A + fo) o+ i) = Li+ Lot Ly,

Use limit theorems to determine the following:
(@) lim, . (x* —2x% — 5x +8)
(b) limey (4x + 7)(3x* - 2)

MR
(© lim,p 252t

Section 12.5: Continuity

12.23.
12.24.

12.27.

. The function f defined by f(x) =

. The function f : R — {0,2} — Ris defined by f(x)

Use Theorem 12.23 to prove that every polynomial is continuous at every real number.

Let f : R — Z be the ceiling function defined by f(x) = [x]. Give an ¢ — § proof that if a is a real
number that is not an integer, then f is continuous at a.

x2—3t is not defined at 3. Is it possible to define f at 3 such that fis
continuous there? Verify your answer with an €— 8 proof

x3—2x2 . Use limit theorems to determine whether f

can be defined at 2 such that f is continuous at 2.

Prove that the function f : [1, 00) — [0, 00) defined by f(x) = +/x — 1 is continuous at x ="10.

Section 12.6: Differentiability

12.28.

12.29.

12.30.

The function f : R —> R is defined by f(x) = x2. Determine f'(3) and verify that your answer is correct
with an € — § proof.

The function f : R — {2} — Ris defined by f(x) =
is correct with an € — § proof.

The function f : R — R is defined by

P +2 Determine f’(1) and verify that your answer

)czsinxl ifx #£0

FO=1"0" ixzo,

Determine f'(0) and verify that your answer is correct with an € — § proof.

ADDITIONAL EXERCISES FOR CHAPTER 12

12.31.

12.32.
1233,
12.34,
12.35.
12.36.

Prove that the sequence {4 ”“ 7} converges to é
2w _ 1 ’
Prove that lim,, o W= 1

Prove that the sequence {1 + (—2)"} diverges.

Prove that lim,,_,o, (VA2 + 1 —n) =

Let a, cp, c1 € R such that ¢; £ 0. Give an € — § proof that lim,—,, (c1x + o) = c1a + ¢q.
Evaluate the proposed solution of the following problem.
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13.43.

13.44.

Chapter 13 Proofs in Group Theory

Evaluate the proposed proof of the following statement.

Result There exists no abelian group containing exactly three elements x such that x* = e.

Proof Assume, to the contrary, that there exists an abelian group G such that x* == e for exactly three
distinct elements x of G. Certainly, e* = ¢, so there are two non-identity elements ¢ and b such that

a’ = b* = ¢. Observe that (ab)? = a*h? = ee = e. Hence either ab = a, ab = b, or ab = e, which
implies, respectively, that b = e, a = ¢, or a = b, producing a contradiction.

Prove or disprove the following: For each odd integer k > 3, there exists no abelian group containing
exactly k elements x such that x* = e.

EXERCISES FOR 1™

Cl

IAPTER

Section 1.1: Describing a Set

1.1. Only (d) and (e) are sets. | :
13. @Al =5 MWBIBi=11, @|C|=51, @ID|=2, @®|EI=1, (O|Fl=2

1.5. (a) A={— I——2 3. ={xeZ: x < -1}
(b) B=1{-3, — } xeZ . -3<x<3t={xed: |x| <3} ﬂ
(c)C:{2—112}—_{xEZ —2<x<2,x#00={xecZ: 0<|x| <2}
El.myA:{-%AwiZSS A =Bx42: xeZ)
®) B={--,-10,-5,0,5,10,---} = {5x : x € Z}
(©) € =1{1,8,27,64,125, -} = fx’: x € N)

Section 1.2: Sﬁbse‘és

1.9. Letr = min(¢c —a, b—c)andletl—(c—r ¢+ r). Then [ i1scentered at c and C(a b)
.11, See Flgure i.

Figure I  Answer for Exercise 1.11

113, P(A) = {0, {0}, ({0}}, A) _
LIS, P(A) = {9, {0}, {9}, ({9}}. {0, 8}, {0, {B}}, {4, {B}}, A}; [P(A)] =8
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Section 1.3: Set Operations

1.17.

§:19.
1.21.
1.23.

(@) AUB =1{1,3,5,9,13,15} MB)ANB={9) (©A—-B=1{135,13}
()B—A={3,15} (A={3,7,11,15) ®OANB=1{1,5,13)

et A={1,2}, B={1,3},andC ={2,3}. Then B#CbutB— A =C — A = {3}.
(a) and (b) are the same, as are (¢} and (d)

See Figures 2(a) and (b) below.

Figure 2  Answers for Exercise 1.23

Section 1.4: Indexed Collections of Sets
1.25. LetU =1{1,2,...,8, A=1{1,2,3,5,B=1{1,2,4,6),and C = {1,3,4, 7).

1.27.
1.29,

1.31.

U/

C

Figure3 Answer for Exercise 1.25

Uyxes X=AUBUC={0,1,2,...,5) and {1y s X =ANBNC = {2}

Since |A| =26 and |A,| = 3 foreacha € A, we need to have at least nine sets of cardinality 3 for their union to
be A, that is, in order for | j_.. A, = A, we must have |S| > 9. However, if we let S = {a,d, g, j, m, p, s, v, ¥}
then {J,.5 A« = A. Hence the smallest cardinality of aset S with | J . A, = Ais9.

(@) {Ap}uen, Where A, = {x e R: 0 <x < 1/n} =10, 1/n]. |

(b) {A lhen, Where A, ={ae€Z: |a| <n}={-n,—(n-=-1),....(n—-1),n).

Exercises for Chapter 2 325

Section 1.5: Partitions of Sets

1.33. (a) S, is not a partition of A since 4 belongs to no element of ;.
(b) S, is a partition of A. S, can be written as {{1, 2}, {3, 4, 5}}.
(¢} §3 s not a partition of A because 2 belongs to two elements of ;.
(d) S41s not a partition of A since S4 is not a set of subsets of A.
1.35. A =1{1,2,3,4}. 5§ = {{1}, {2}, {3,4}} and S, = {{1, 2}, {3}, {4}}.
1.37. Let S ={A}, Ay, Ash,where A ={x e Q:x> 1}, Ay ={x € Q:x < 1}, and 45 = {1}.
1.39. Let S = {A}, A3, A3, A4}, where A| = {x € Z: x is odd and x is positive}, A, = {x € Z : x is odd and x is
negative, Ay = {x € Z : x is even and x is nonnegative}, Ay = {x € Z : x is even and x is negative)}.

Section 1.6: Cartesian Producis of S@ig

141, Ax B={(x,x),(x,y), 0, x), ), x) & :

1.43. P(A) = {0, {a}, (b}, A}, A x P(A) = {(a, D), (a, {a}), (@, {B)), (a, A), (b, B), (b, {a}), (b, (b)), (b, A)}.

1.45. P(A) = {9, {1}, {2}, A}, P(B) = {0, B}, A x B ={(1,9), (2, )}, |
P(A) x P(B) = {(8,9), (3, B), ({1}, 9), ({1}, B), ({2}, §), ({2}, B), (A, 9), (A, B)}.

147. S={3,0,2, 1,(1,2),0,3),(=3,0), (-2, 1), (—1,2), (2, = 1), (1, =2}, (0, =3), (=2, — 1), (-1, —~2)}.

A

$+(0,3)
(,.._1}2) (1:2)
2 T &
(-2, 1) (2, 1)
(—3,0) (3,0)
& - : - . & .
&'“_2 N T e (2,-1)
-2 | (L-2)
1 (0,,-3)

Figure 4 Answer for Exercise 1.47

S%eﬁem 2.1: Statements

2.1. (a) A false statement  (b) A true statement (c) Not a statement  (d) Not a statement (an open sentence)
(e) Not a statement () Not a statement (an open sentence) (g) Not a statement

2.3. (a) False. ¥ has no elements. (b)) True  (¢) True |
(d) False. {1} has 0 as its only element. (e) True (£} False. 1 is not a set.

25. @WxeZ:x>2) M{xeZ: x<2)

2 7. 3,5,11, 17,41, 59
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Section 2.2: The Negation of a Statement (d) P(x) = QO(x):Ifx = =2, then x? = 4. True for all x.

() OQ(x)= P(x):Ifx* =4, then x = —2. Trueif x =0, —2.
] ) P(x) © Q(x):x =—2ifand only if x> = 4. True if x =0, —2.
P Q@ ~F ~() | 1 225 xisoddifand only if x* is odd.
| That x is odd is a necessary and sufficient condition for x* to be odd.

2.9. Seec Figure 5.

T | T F F | ; 2.27. (a) True for (x, y) € {(3,4),(5,5)). (b) True for (x, v) € {(1,2),(6,6)}). (c) True for
T | F F oy T (x, y)y e {(1, —1), (1, O)}.
2.29. () P(1)= O(l)isfalse; (i) Q(4) = P(4) is true;
F 1T T F (iii) P(2) & R(2)istrue; (iv) O3) & R(3)is false.
F | F T T

Section 2.7: Tautologies and Contradictions

Figure 5  Answer for Exercise 2.9 2.31. The compound statement (P A (~ O)) A (£ A Q) 1s a contradiction since it 1s false for all combinations of

Section 2.3 The Disjmmﬁqm and C@n]?a,m ction of Statements truth values for the component statements £ and ). See the truth table below.

2.11. (a)True, (b)False, (¢)False, (d)True, (e) True. P 1O | ~Q | PAG | PAIQ) | (PATALAQ)
T T e T F i
2.13. (a) All nonempty subsets of {1, 3,5}. (b) All subsets of {1, 3, 5). T | F T F T ¥
(¢) There are no subsets A of S for which (~P{A)) A (~0Q(A)) is true. F T F F F 3
; FE! F | T F F F
Section 2.4: The Implication -

2.33. The compound statement ((P = (J) A (Q = R)) = (P = R)is atautology since it 1s true forall

2.15. See Figure 6. combinations of truth values for the component statements P, O, and R. See the truth table below

P Q P P=2Q(P=Q)=(-P Pl ORI FS0 | 0ok PSOAOSE | PSR | (P DA 0SB SESH
E Tl R | T F T F T T
Fl T | T T T T T T
T | F 1 F F T Fl F | T T T T T T
T| T | F T F F F T
Fi T T 7k T T | F | F F T 2 F T
F|l T | F T F R T T
F i F T T T F| F | F T T T T T

(P = O)A (Q = R)) = (P = R):If P implies O and O implies R, then P implies R.

Figure © Answer for Exercise 2.15 Section 2.8 L@gi@&j Equﬂfﬂi%ﬂ@@

2.17. (a) (P A Q) = R :If +/2is rational and 2 18 ranonal then +/3 is rational. (True)
(b) (P A Q)= (~R):If /2 is rational and £ s rational then /3 is not rational. (True)
(¢) (~PYANQO)Y= R:If /2 is not ratmnal and Z is rational, then +/3 is rational. (False)
(d) (P Vv Q)= (~R):If v/2is rational m“ 18 ratmnal then /3 is not rational. (True)

2.35. (a) See the truth table below.

2
v
2
t[::} .
"

g | ~MPVvE) | (PivVI~Y)

T o~ = e
T e T =4O
] = = | <

- -] )
-3 v oo
3 by by
> g Ty

Section 2.5: More On Implications

2.19. (@) P(x)= Ox):If |x] =4, thenx =4. P(—4) = Q(—4)is false. P(— 3) :i» O(—3)istrue. P(1) = Q(l)
1s true, P(4) = Q4)is true. P(5) = O(5) is true.
(b) P(x) = Q(x):If x* = 16, then [x| = 4. True forall x € S.
(¢) P(x)=> O(x):If x > 3,thendx — 1 > 12. True forall x € S.
2.21. (a) True for (x, y) = (3,4) and (x, y) = (5, 5), false for (x, y) = (1, —1). {(b) The biconditional ~(* v @) & ((~P) v (~(0)) 1s not a tautology, and so there are instances when this
(b) True for (x, y) = (1, 2) and (.}: y) = (6, 6), false for (x, y) = (2, —2). biconditional is false. |
(¢) True for (x, y) € {(1, —1), (=3, 4), (1, 0)} and false for (x, y) = (0, —1). | | 2.37. The statements O and (~Q) = (P A (~P)) are logically equivalent since they have the same truth values for
o all combinations of truth values for the component statements P and (. See the truth table below.

Since ~(P v Q) and (~FP) v (~Q) do not have the same truth values for all combinations of truth values
for the component statements £ and (J, the compound statements ~( P v ) and (~P) Vv (~(J) are not
logically equivalent.

Section 2.6: The Biconditional

PA(P) | (~0)= (P A(~P))

PT Q1] ~P | ~0
2.23. {(a) ~P(x):x # =2.Trueif x =0, 2. T T F F F T
(b) POV OX):x=—2o0rx =4 Trueifx = —2.2. fl%; ,f, }; ;E g ;f,
(€¢) PG)AQ(x):x = —2and x* =4. True if x = —2. F|F | T T F F
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A o Section 2.9: Some Fundamental Properties of Logical Equivalence {251 LetS=(3,5 11} and P(s, 1) : st — 2 is prime.
| S 2.38. (a) The state;nent PV {Q A R)isequivalentio (P v O) A (P v R) since the last two columns in the truth (b) True since P(s, t)is true foralls.r € S.
. : table of Figure 7 are the same. | (¢) 3s.1 € S, ~P(s.1).
. o | | (d) There exists, r € S such that st — 2 is not prime.
D P Q@ R PvQ PVR QAR PV(QAR)(PVQ)A(PVR) (e) False since the statement in (a) is true.
1 Section 2.11: Characterizations of Statements
T | F|T T T F T i)
o 4 2.53. Aninteger n is odd if and only if #? is odd.
DL L 2 I il i) 2.55. (a) a characterization. {(b) a characterization. (¢) a characterization.
F|lFIT 3 T In 10 R (d) a characterization. (Pythagorean theorem) (e} not a characterization. (Every positive number is the area of
_______ some rectangle. )
T |T|F T T F T T
T|F|F| T 7 2 T T | EXERCISES FOR CHAPTER 3
BT T F F B E . . o -
Section 3.1: Trivial and Vacuous Proofs
FlFF I F F 12 1
3.1. Proof Sincex?—2x+2=1(x —1)>+1>1,it follows that x* —2x +2 # 0forall x € R. Hence the
Figure 7. Answer for Exercise 2.39(a) | statement 1s true tnwaﬂy 2
1 3.3. Proof Notethatr“#rJrl Ifr>1, thenr+ > 1; while if 0 < r < 1, then-:}landsor—l— > 1.
(b} The statement ~(P Vv Q) is equivalent to (~P) A (~O) since the last two columns in the truth table of ‘+1 <1) 13 false for all » € QF and so the statement 13 true vacuously. | .. -
Figure 8 are the same. 3.5. Proof Smce n* —2n+1=(n— 17 >0, it follows that n* + | > 27 and so n + > 2 Thus the staternent 1s
| true vacuously. | -
P Q ~P ~Q PvQ ~(PVQ) (~P)A(~Q) |
7T | |r i E 3 | Section 3.2: Direct Proofs
'y F | F i fh K ¥ 3.7. Proof Letx beaneven integer. Then x = 2a for some integer a. Thus
faryT | Fo A F F Sx —3=502a)—3=10a —4+1 =250 —2) + 1.
FAER LT 1 F T ik Since S5a — 2 is an integer, 5x — 3 is odd. = o
. 39. Proof letl—n?>0.Thenn=0.Thus3n —2=3-0—2=—2jsaneveninteger. "
Figure 8 Answer for Exercise 2.39(b) | - j 3.1%. Proof Assume that (n + 1)2 (n + 2)*/4 is even, where n € §. Thenn = 2. Forn = 2, -
2.41. (a) x and y are even only If xv is even. | (n+2)"(n + 3)2/ 4= 100 which is even. - . =
(b) If xy is even, then x and y are even. . P
(¢) Either at least one of x and y is odd or xy is even. ' 1 Section 3.3: Proof by Contrapositive
(d) x and y are even and xy is odd. 3.13. First. we prove a lemma. Lemma Letn € Z. If 15n 1s even, then n Is even.
(Use a proof by contraposnwe to verify this lemma.) Then use this lemma to prove the result.
, o Proof of Result Assume that 157 1s even. By the lemma, n 1s even and so n = 2a for some integer a. Hence
Section 2.10: Quantified Statements .
. O9n = 9(2a) = 2(9a).
2.43. Vx € §, P(x): Forevery odd integer x, the integer x> + 1 is even. | -; . . * .
dx € §, O(x) : There exists an odd integer x such that x? is even. Simce Ja 1'3 an integer, 9 15 even. . . | . =
2.45. (a) There exists a set A such that A N A # §. | | [Note: This result could also be proved by assuming that 15# is even (and so 157 = 2a for some integer @) and
(b) Forevery set A, we have A € A. B ~ observing that 9n = 151 — 65 = 2a — 6] .
2.47. (a) False, since P(1) is false. (b) True, for example, P(3) is Ctrue. | 3.15. Lemma Letx € Z.If 7x + 4 is even, then x is even. (Use a proof by contrapositive to verify this lemma.)
249, (@ da.beZ.ab<0andag-~b > 0 Proof of Result Assume that 7x + 4 is even. Then by the lemma, x is even and so x = 2a for some integer a.
L 5 o | Hence |
(b) Vx,y € R, x # y implies that x* + y* > 0. | -
B (¢) For all integers a and b either ab > Qora 4+ b < 0. | ST | 3x — “.: ea)—1l=6a—12+1=203a—-6)+1.
i There exist real numbers x and y such that x # y and x* + y* < 0. Since 3a — 6 1s an integer, 3x — 11 is odd. %
e F (@) Va,becZ,ab>0ora+b <0 4 3.17. The proof would begin by assuming that nz(n 1+ 1)*/4 is odd, where n € S. Then n = 2 and so

Jx,y € R, x # yand x* + y? < 0. _ n°(n — 1*/4 = 1 is odd.
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Section 3.4: Proof by Cases Case 2. n = 3q + 1, where g > 3. Then n = 3(q — 3) + 10, where ¢ — 3 > 0. Thus n = 3a + 5b, where

| a=qg—-3>0and b =2, |

Case 3. n = 3q + 2, where g > 2. Then n = 3g — 1)+ 5, whereg — 1 > 1. Thus n = 3a + 5b, where
a=¢g—1>1landb=1. -

3.19. Proof Letn € Z.We consider two cases.
Case 1. n is even. Then n = 2a for some integer a. Thus
n* —3n+9=4a? - 3Q2a)+9 = 2Q2a* —3a +4)+ 1.
Since 2a* — 3a + 4 is an integer, n* — 3n + 9 is odd.

Case 2. n is odd. Then n = 2b + 1 for some integer b. Observe that Section 4.2: Proofs Enw}hlng C@HgT uernce of h}teg@m

4.11. Proof Assumethata =b (mod n)anda =c (mod n). Thenn|(a —b)andn | (a — ¢). Hence a — b = nx
n2—3n-{—9=(2b—|—1)2—3(2b+1)+9 | anda—c::ny,wherex,yEZ.Thusb:a—nxandc=a—ny.riherefore,b—c:
:4b2+4b+1_6b-3—i—9:4b2—2b+7 (a"ﬂx)“(ﬂ—ny)::ny——nx:n(ymx).Sincey—xisaninteger,n|(b~c)andsobzc(mgdn)_ =
4.13. (a) Proof Assumethata = 1 (mod 5). Then 5| (¢ — 1). Soa — 1 = 5k for some integer k. Thusa =Sk +1

= 2(2b% — b +3) + 1. - and s0
Since 2b* — b + 3 is an integer, n? — 3n + 9 is odd. 2 = (5k + 1)* = 25a° + 10a + 1 = 5(5a* + 2a) + 1.
3.21. Proof Assume that x or y is even, say x is even. Then x = 2a for some integer a. Thus xy = (2a)y = 2ay). | Thus
Since ay is an integer, xy is even. " .
3.23. One possibility is to begin by proving the implication “If x and y are of the same parity, then x — y 1s even.” a® — 1= 5(5a* + 2a).
Use a direct proof and consider two cases, according to whether x and y are both even or x and y are both odd. Since 5a” + 2a is an integer, 5 | (a*> — 1) and 50 ¢* = 1 (mod 5). .
For the converse of this implication, use a proof by contrapositive and consider two cases, where say - (b) We can conclude that b° = 1 (mod 5). | -
Case 1. x is even and y is odd. and Case 2. x is odd and y is even. | 4.15. Proof Assumethata = 5 (mod 6)and b = 3 (mod 4). ﬂhen 6|l(a—5and4 | (b - 3). Thus a — 5 = 6x and
3.25. {(a) Use the following facts: | _ b—3 =4y wherex,y € Z. Soa = 6x + 5 and b = 4y + 3. Observe that
(1) Let x, y € Z. Then x + y is even if and only if x and y are of the same parity. |
(2) Let x € Z. Then x* is even if and only if x even. 4a + 6b = 4(6x +5) + 6(4dy + 3) = 24x + 20 + 24y 4 18 = 24x + 24y + 38 = 8(3x + 3}’-'+ 4) + 6.
(b) Let x and y be integers. Then (x + y)* is odd if and only if x and y are of opposite parity. -
| since 3x + 3y + 4 is an integer, 8|(4da + 6b — 6) and so 4a + 6b = 6 (mod 8). | =
| - 4.17. Preof Eithera=3¢g,a =3¢+ 1ora =3qg -+ 2 for some integer g. We consider these three cases. |
Section 3.5: Proof Evaluations | - Casel.a =3g. Then

a* —a =(39) — (3q) = 219" ~ 3¢ = 3(9¢° - q).
Since 9¢° — g is an integer, 3 | (¢® — @) and so @® = a (mod 3).
Case 2. a = 3g 4+ 1. Then

EXERCISES FOR CHAPTER 4 | @ —a=0g+1P~3g+1) =274 +27¢> +9g + 1 —3g — |

= 27¢° +27¢% + 69 = 3(9¢> + 9¢* + 2q).

3.27. (3)1s proved.
3.29. The converse of the result has been proved. No proof has been given of the result itself. :

Section 4.1: Proofs Involving Divisibility of Integers

4.1. Proof Assume thata |b. Then b = ac for some integer ¢. Then b> = (ac)* = a’¢*. Since ¢* is an integer, Since 9¢° + 9¢° + 2q is an integer, 3 | (a® — a) and 50 @® = a (mod 3).
a2 | b2 H S Case 3. a = 3g + 2. Then
4.3. (a) Proof Assume that3 |m. Then m = 3¢g for some integer g. Hence m? = (39)* = 9g* = 3(3g*). Since | .
@ 3g° i{:aninteger 3lm| ’ . 0 ’ o G: _ 'ag%ﬂ:'@q +2)° = (3q +2) = (27¢° + 54¢° + 369 +8) — 3q — 2
(b) Letm € Z.1f3 Jm*, then3 [/ m. : _ =21 + 54g° +33g + 6 = 3(9¢° + 184% + Lig + 2).
(c) Start with the follcswmg Assume that3 fm. Thenm =3g +1orm = 3q + 2, where g € Z.. Consider |
| these two cases. Since 9¢° + 18¢* + 11q + 2 is an integer, 3 | (@ — a) and so @® = a (mod 3). -
(@) Letm € Z.If 3 | m?, then 3 | m.
(e) Letm € Z. Then 3 | m if and only if 3 | m? . Section 4.3: Proofs Invelving Real Numbers
4.5. iﬁ?ﬁf 1 kﬁj?ﬁigggfi f) ;j @ | ¢, say the latter Then ¢ = ak for some integer k. Thus be = blak) = a(bk) - 4.19. Proof Assumethata <3m -+ 1andb < 2m + 1. Since a and b are integers, @ < 3m and b < 2m. Therefore,
4.7. For the implication “If 3 f n,then 3 | 2n* + 1).”, use a direct proof. Assume that 3 fn. Thenn =3g + lor 2a +3b <203m)+30C2m) = 12m < 12m + 1,
n = 3g < 2 for some integer ¢g. Then consider these two cases. as desired. =
For the converse “If 3 | (2n2 + 1), then 3 [ n.” use a proof by contrapositive. 4.21. This exercise states that the arithmetic mean of two positive numbers is at least as large as their geometric mear.
4.9. Proof Letn ¢ Z withn > 8 Thenn = 3q, where g > 3, orn = 3g + 1, where. q > 3, orn = 3q -+ 2, where _ (a) Proof Since (a — b)* > 0, it follows that a? — 2ab + b? > 0. Adding 4ab to both sides, we obtain
g > 2. We consider these three cases. : a® +2ab + b* > 4ab or (a + b)* > 4ab. Taking square roots of both sides, we have a + b > 2+/ab and so

Case 1. n = 3q, where g > 3. Thenn = 3a + 5b, where a > 3 and b = 0. | ‘* vab < (a + b)/2, as desired. =
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4.23.

Solutions to Odd-Numbered Section F.xercises

(b) Assume that /ab =
a—=b.

Observe that if x = 0 or y = 0, then the result holds. Thus we may assume that x % 0 and y # 0. There are

three cases. |

Casel. x >0and y > 0.

Case2. x < Oandy < 0.

Case 3. One of x and y is positive and the other is negative, say x > O and y < 0.

(a + b)/2. Taking the steps in part (a) in reverse order, we obtain (@ — b)* = 0 and so

4.25. Proof Swmnce|x —z| = |(x — y)+ (y — z)|, it follows that

x —zZi=|x—-y)+ G- = |lx —yl+ |y —2z. B

Section 4.4: Proofs Involving Sets

4.27.

4.29,

4.31.
£.33.

We first showthat AUB C(A—BYU(B—-AU(ANB).Letx € AUB. Thenx € Aorx € B. Assume,
without loss of generality, that x € A. We consider two cases.

Casel.x € B.Sincex € Aandx € B, itfollowsthatx e ANB.Thusx e (A—- B)U(B — A)U (AN B).
Case2.x ¢ B.Simcex € Aandx ¢ B, itfollowsthatx € A — B, Again,x €e (A~ B)U(B - A)U (AN B).

Next, we verify that (A — B)U(B -~ A)U(ANB)C AUB.Letye (A—-BYU(B - A)U(AN B).
Thenye A—B,ye B— A ory € AN B. Ineachcase, either y € Aory € B. Therefore, y € AU B.
Proof Assume that AN B = A. We show that A C B. Let x € A. Since A = A N B, it follows that
xe€ ANBandsox € B. Hence A C B,

For the converse, assume that A C B. We show that A N B = A. Since AN B C A, it suffices to show that
ACTANB. Letx € A. Since A C B, it follows that x € B. Thus x € A and x € B, implying that x € AN B.
Theretore, A C AN B. =
Proof Assumethat A=0@and B =@.ThenAUB =0UJ = @. ®
Proof Assumethat A = B.Then AU B = AN B = A. It remains to verify the converse. Assume that
A% B. Thus A Z Bor B € A, say the former. Thus there existsa € A suchthata ¢ B, Sincea ¢ B, it
follows that a ¢ AN B. On the other hand, a € A implies thata € AU B. Therefore, AUB # AN B. =

Section 4.5: Fundamental Properties of Set Operations

4.35.

4.37.

Proof Fust,weshowthat AN(BUCYCANBYUMANC)LLetx e AN(BUC). Thenx € A and
xe BUC.Smmcex € BUC, itfollowsthatx € Borx € C,say x € B. Because x € A and x € B, it follows
thatx e ANB. Hencex €e (AN BYU(ANC).

Next, weshowthat (AN BYUANCO)CANBUCLLetye(ANBHUANC).Thenye ANBor
y € AN, say the former. Since y € AN B, itfollowsthatye Aandye Bandsoye Aandy € BUC.

Thusy € AN (B U C). g

Proof Wefirstshowthat(A - B)NA-C)CA—(BUC)Letxe{(A-BYN(A—-C). Thenxe€ A~ B

andx € A—~C.Sincex € A— B, itfollowsthatx € Aand x ¢ B. Because x € A — C, we have x € A and

x¢C. Simecex g Bandx ¢ C,wehavex ¢ BUC. Thusx € A —(BUCQ).
Next,weshowthat A —(BUC)C(A—B)NA—-C).Letye A—(BUC(C). Thusy € A and

yé€ BUC.Smcey ¢ BUC, itfollowsthaty ¢ Bandy ¢ C. Thusye A — Band y € A — C. Therefore,

ye(A—B)N(A - Q). =

4.39. Proof By Theorem4.21,

AUBNC)=ANBNC)=ANBUC)
= AN(BUCO)=(ANRBUANCOC)
— (ANB)U(A — O),

as desired. S , ”
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Section 4.6: Proofs Inveolving Cartesian Products of Sets

4.41.

4.43.

4.45.

4.47.

Let A and B be sets. Then A x B= B x Aifandonly if A = B or one of A and B is empty.
Proof First, we show thatif A = B or one of A and B is empty,then A X B =B X A. If A = B, then
certainly A x B = B x A; while if one of A and B is empty, say A = , then
AXB=0UXB=0=Bx0=28xA.

For the converse, assume that A and B are nonemptysets with A # B. Since A # B, at least one of A and .
£ 18 not a subset of the other, say A € B. Then there is an element ¢ € A such that ¢ B.Since B # 0, there

exists an element b € B, Then (a, b) € A x B but (a, b) ¢ B x A Hence A X B # B x A. ®

Proof First,assumethat A x C C B x C. Weshow that A € B. Leta € A. Since C # ), there exists ¢ € C
and so (a,c) € A x C.Since A x C C B x C, it follows that (a,c) ¢ BxCandsog < B.
For the converse, assume that A C B. Weshowthat A x C € B x C. Let (a,c) e A x C.Thena € A and

c e C.omce A C B, it follows that a € B. Thus (a, ¢) € B x C, as desired. . i

Proof We first show that A x (BN C) C (A x BYN (A x C). Let (x, vie A x (B ﬂ C). Then x € A and
yeBNC. Thusye Bandy € C. Thus(x, y) € A x Band(x, y) € A x C. Therefore,
(x,y) e (AXx B)N(A x C). |

It remains to show that (A x BYN(A x C) C A x (BN C). Let (x, y)€ (A X BYN(A x C) ‘Then
(x,y)e Ax Band(x,y)c AxC.Soxe€ A,ye B,andy € C.Hence y € BﬂCandso -
(x,y) € Ax(BNC). s
Proof Let(x,y)e (A x BYU(C x D). Then(x,y) € A X B or (x,¥) € C x D. Assume, without loss of -
generality, that (x, y) € A x B. Thus x € A and y € B. This implies that x € A U Candye BUD.

Theretore, (x, y) € (AU C) x (B U D). | . B
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Section 5.1: Counterexamples

5.1,

5.3,
5.5,

Leta = b = —1. Then log(ab) = log 1 = 0 but log(a) and log(b) are not defined. Thus a=h= —1i1sa
counterexample. .

Ifn =3, then 2n* + 1) = 19. Since 3 f 19, it follows that n = 3 is a counterexample, |
ffa=landb =2 then(a+b)y =3 =27, buta® +2a’b+2ab+2ab* +b> =14+4 144+ 8+ 8 =75,
Thus a = 1 and b = 2 form a counterexample.

Section 5.2: Proof by Contradiction

3.7,

3.9,

3.11.

5.3,

3.15.

Proof Assume, to the contrary, that there exists a largest negative rational number r. Thﬁs r = a/b, where
a,b € Zand b # 0. Consider r/2 = a/2b. Since a, 2b € Z and 2b # 0, the number r/2 1s rational. Because

r < r/2 < 0, this contradicts r being the largest negative rational number. | s

(Note: The fact that r/2 is a rational number may be sufficiently clear that this does not have to be verified. )

Proof Assume, to the contrary, that 200 can be written as the sum of an odd integer a and two even integers b | :
and c. Thena =2x 41,6 =2y, and ¢ = 2z, where x, v, 7 € Z. Thus |

200=a+b+c=2x+1)+2y+2z=2(x+y+2)+ 1.
Simce x -+ y + z € Z, it follows that 200 is odd, which is a contradiction. B
Proof Leta > 2and b be integers and assume, to the contrary, that a | » and a | b+ 1).Sob =ax and
b+1=ay, wherex,y € Z.Thenb+1=ax+1=ayandsol =ay—ax =a(y — x). Since y — x is an
integer, a | 1, which is a contradiction since a > 2. &
Proof Assume, to the contrary, that there exist an irrational number ¢ and a nonzero rational number b such
that ab is rational. Since & is a nonzero rational number, b = /s, wherer,s € Zandr,s # 0. Thenab = p/q,

where p,q € Z and q # 0. Thena = p/(bg) = (sp)/(rq). Since sp,rq € L and rg # 0, it follows that a is a
rational number, which 1s a contradiction. B

Assuine, to the contrary, that ar + s and ar — s are both rational. Then (ar + s) -+ (ar — s) = 2ar 1s rational.

Thus 2ar = p/q, where p,q € Z and p, g % 0. Then show that ¢ = p/(2qr) is rational, producing a
contradiction.
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5.17.

5.19.

Solutions to Odd-Numbered Section Fxercises

Consider beginning as follows: Assume, to the contrary, that @ = +/2 + 4/3 is a rational number. Then

a—~/2 = /3. Squaring both sides, we obtain a* — da/2 +2 = 3 and s0 /2 = (a* — 1)/(2a). This will lead
to ~/2 being rational, producing a contradiction.

Proof Lettr e ). Thent —t+0.-2=t4+0./3¢ SN T.Hence Q € SNT. We now show that

SNT C Q. Let x be an arbitrary element of S N 7. Then there exist p, g, r, s € Q@ suchthatx = p + g+/2 and
x = r +5+/3. Thus p + g2 = r + s/3. Hence p — r = s+/3 — g+/2. Squaring both sides, we obtain

5.33.
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Proof Let f(x) = x3 4+ x%? — 1. Since / 1s a polynomial function, it is continuous on the set of all real
numbers and so f is continuous on the interval 12/3, 1]. Because f(2/3) = —7/27 < 0 and f{D=12>0,1t

follows by the Intermediate Value Theorem of Calculus that there 18 a number ¢ between x = 2/3 and x = 1
such that f(c) = 0. Hence ¢ is a solution.

We now show that ¢ is the umque solution of f(x) = 0 between 2 /3and 1. Let ¢; and ¢,

be solutions of
f(x) = 0between 2/3 and 1. Then ¢i + ¢t —1=0and &+ 2 ns o

—1=0.Hencecf’+c%—-1:c§+c§-—1,

(p — ]")2 — 32 _ 2.5‘(_{\/6 1 qu lmplymg that C% —+ {:‘% — Cg C% and so

it sg # O, then 3 3,2 2 ;
\/a B (P . r)z — 242 _ 2q2 ¢ — G +Cl — () = (Cl "_62)(61 + C1Ca +C§) + (Cl — 2 )(¢y +CQ)

—25q | | = (¢ — CZ)(C‘; + CiCy + C% + 1+ ) = 0.

is a rational number. However, we saw in Exercise 5.18(a) that +/6 is irrational. Thus sq = 0, implying that
s=0o0rg =0.Inecithercase,x e Q. Thus SNTE Qandso SNT = Q. -
5.21. Proof Assume to the contrary, that there exists a positive integer x such that 2x < x* < 3x. Dividing these
inequalities by (the positive integer) x, we obtain 2 < x < 3. This 1S impossible since there 18 no integer
between 2 and 3. &
5.23. Assume, to the contrary, that there exist odd integers x and y such that x* +.y* = z*, where z € Z. Then
x=2a-+1and y =20+ 1, where a, b € Z. Thus

4y = Qa+ 1P+ Qb+ 1Y =4d* +da+ 1 +40° +4b+ 1 5
= 4> +a+ b +b)+2=2020a*+a+b*+b)+1] =2s,

D-V. - . . 2 2 .
ividing by the positive number C] + C1¢2 +¢5 + ¢; + ¢, we obtain ¢, — ¢, =0 and s0 ¢; = ¢5.

| - Section 5.5: Dispmvmg Existence Statementis

3.35. We show that if a and b are odd integers, then 4 f (3a* + 76%). Let a and b be odd mntegers. Thena = 2x + 1 |
and b = 2y + 1 for integers x and y. Then | B

2
3a° +7b° = 3(2x + 1Y +7Q2y + 1)* = 3(dx? + 4x + 1) +7(4y* + 4y + 1) |
= 12x" + 12x + 3 4+ 2898 + 28y + 7 = 4(3x2 + 3x - Ty +7y+2)+2.

| Since 2 is the remainder when 342 + 752 is divided by 4. it 2 2
where s = 2(a* + a + b* + b) + 1 is an odd integer. If 7 is even, then z = 2¢ for some integer ¢ and so 2 5.37. Weshow thatif  is an integer, then v itiollows that ¢/ Ga | o0

7 = 2(2¢?), where 2¢? is an even integer; while if 7 is odd, then z? is odd. Produce a contradiction in each case.
n*+ndtnlin = (n* + n%) + (n’ +n) = n*(n® + 1) + n(n_zr—i— 1)

Section 3.5: A Review of Three Proof Techniques ,
=n{n+ D"+ 1)

5.25. (a) Proof letn beanoddinteger. Thenn = 2x + 1 for some integer x. Thus
Tn—5=T72x+1)—5=14x+2 =2(7x + 1).

1seven. Letn € Z. Then #n is even or n is odd. We consider these two cases.
Case 1. n is even. Then n = 2¢ for some integer a. Then

| nt 40+ n? 4+ = n(n+ Dt + 1) = 2a(n + D(r* + 1) = 2[an + D(n* + D).
-Since a(n + 1)(n® + 1) is an integer, n* + 1% + 1n? + 1 is even.

Case 2. nis odd. Then n = 2b + 1 for some integer band son + 1 = 2b + 2 = 2(b + I). Tms
| n*+nttntdn=n+ DR +1) = 2n(b + D(m” + 1) = 2[n(b + 1)(n? + 1D].
stoce n(b + 1)(n* + 1) is an integer, n* -+ 13 + 12 + 1 is even.

Since 7x + 1 1s an integer, 7n — 3 1s even, =
(b} Proof Assume that7n — 5 isodd. Then 7n — 5 = 2x + 1 for some integer x. Hence

n=8n—-5—-(Tn-5=8r—-5 —2x+1)
=8n —2x — 6 =24n —x — 3).

| Since 4n — x — 3 is an integer, » is even. 2
(¢) Proof Assume, to the contrary, that there exists an odd integer n sach that 7r — 5 is odd. Thus | EXE
n = 2x + 1 for some integer x. Thus

RCISES FOI

Section 6.1: The Principle of Mathematical Induction

6.1. The sets in (b) and (d) are well-ordered.

6.3. Proof Let S be anonempty set of negative integers. Let T = {n : —n € S}. Hence 7 is a nonempty set of

positive integers. By the Well-Ordering Principle, T has a least element m. Hence m <nforalln eT.

Therefore, —~m € S and —m > —n forall —n € §. Thus —m is the largest element of S.
6.5. Proof We useinduction. Since 1 =2 - 12

some integer k£ > 1, that is,

Tn—5=T0Qx +1)— 5= 14x +2 = 2(7x + 1).

Since 7x 4- 1 1s an integer, 7n — 3 1s even, producing a contradiction. =
5.27. This result can be proved using either a proof by contrapositive or a proof by contradiction.

Section 5.4: Hxistence Proofs
&

— 1, the formula holds for n = 1. Assume that the formula holds for

5.29. Proof For the rational number ¢ = 1 and the irrational nuf/nﬁber b = /2, the number 1¥2 = 1 is rational. =
5.31. Proof Consider the irrational numbers +/3 and +/2. If +/3" is rational, then a = /3 and b = +/2 have the

desired properties. On the other hand, if ﬁﬁ 1s irrational, then
V2 NONG) 2
V3 W =V3 T =3 =3

L V2 . .
is rational. Thus a = /3 “and b = V2 have the desired properties. =

1+54+94 -+ @k —3) = 2k* — k.

We show that

L5 +9+ -+ 4k +1D) -3 =20k + 1)* = (k+ 1),
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Observe that
1 4+549+ -+ ME+D=-3]=[14+5+9+-- -+ @k -] +4k+1)-3
= 2k — k) +@dk+1)=2k"+3k+ 1
= 2k + 1) — (k+1).

The result then follows by the Principle of Mathematical Induction.
6.7. One possibility: 1 +7 + 13+ ... 4+ (6n — 5) = 3n* — 2n.
6.9. Proof We proceed by induction. Forn = 1, wehavel -3 =3 = I'“H}f'l”), which 1s frue. Assume that

1-342-44+3.5+ - +k(k+2) = T2 "where k € N. We then show that

1-3 42443544 (k+ Dk +3) = (k+1)(k+2¥2(k+1)+7]

(ko Dk + 2)2k +9)
. — 6 '

Observe that
1 - 34+2-443-54+---+4+(k+ 1} k+3)

(1-342-44+3-54+- -+ k(k + 2]+ &k + Dk -+ 3)
k(k + 1)(2k +7)

(k4 1)k +3)

I}

6
-kl + DRk +7) + 6(k + D)(k +3)
- 6
(b DQE* 4 Tk + 6k +18) (k4 1)(2k* 4 13k + 18)
- 6 B 6
_ (K + Dk +2)(2k +9)

6

By the Principle of Mathematical Induction,
nin + D(Zn +7)

6

342443 .54+ +nn+2) =

for every positive integer .

6.11. Proof We proceed by induction. Since ﬁ = :j;j_—g-, the formula holds for n = 1. Assume that

R I K

3.4 4.5 (e+2Dk+3) 3k+9

- where k 1s a positive integer. We show that

11 | 1 k+1 k41
3.4 4.5 T T k3 +d 3E+FD+9 3k+4)
Observe that
S 1
3.4 4.5 (k+3)k+4)
R S f 1 1, 1
T34 45T T kK +3) ] kEDE+D
ko 1 k(k +4) + 3

3k+9  (k+3)k+4 3k + 3k +4)
A4+4k+3 (k4 Dk +3)

3k +3)k+4) 3k +3)k+4)

k+ 1

3k +4)

|
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Bv the Principle ' : 1 l o 1 . .
BY ple of Mathematical Induction, 54 | G EeTE = 309 [Or every positive
mteger .

Section 6.2: A More General Principle of Mathematical Induction

6.13. Proof Since 1024 = 2'° > 10° = 1000, the inequality holds when n = 10. Assume that 2¢ > k’, where
k > 10 1s an arbitrary integer. We show that 2Ft! > (k + 1)°. Observe that

M =2 2 s =P+ > P 410 = 3k Tk
> k3 3k + Tk = k> 4 3k + 3k + 4k '
> kY L3k 43k 4+ 1 = (k+ 1)°

By the Principle of Mathematical Induction, 2" > n? for every mieger n > 10. =

6.15. froof We proceed by induction. Since 3' > 12, the inequality holds for n = 1. Assume that 3* :}sz, where &
is a positive integer. We show that 3**! > (k+ 1)2. Ifk = I, then 3¥*! =32 =9 » 4 = (] + 1)?. Thus we may
assume k£ > 2. Observe that

FH =3 S 3 = P U = KR 2k k> KR 2k
=k Ak =K+ 2%k + 2%k > KP4 2k + 4> K42k 4+ 1 = (k+ D)

By the Principle of Mathematical Induction, 3" > for every positive integer 7. S =

6.17. Proof We proceed by induction. Since (1 4+ x)! = 1 + 1x, the inequality holds whenn = 1. Agsume that
(1 4+ x)* > 1 4 kx, where k is an arbitrary positive integer. We show that |

(1+ x> 1+ (k + Dx.
Observe that -

I+ =1+ )0 4 ) > (1 + 01 + kx)

since 1 + x > 0. Thus

(1 + x)tt > (T+x)(I+kx) =14 (k+ Dx +kx® > 1+ (k+ D

'since kx? > U. By E_he Principle of Mathematical Induction, (1 + x)" > 1 4 nx for every positive integer n. &
6.19. Proof We proceed by induction. Since 81 | (10 — 10), the statement is true for 7 — 0. Assume that
811 (10" — 9%k = 10) 'where k is a nonnegative integer. We show that 81 | (1072 — 9(k + 1) — 10). Since

81 | (10" — 9k — 10), it follows that 10! — 9k — 10 — 81x, where x € Z. Thus 10! = 9k + 10 + 81x,
Therefore, -

S 107 =9k +1) — 10 = 10 1051 — 9k — 19
o = 10(% + 10 4 81x) — 9%k — 19
= 81k + 81 + 810x = 81(k + 1 + 10x).

Since (k -+ 1 + 10x) € Z, it follows that 81 | (10°+? — 9(k + 1) — 10). By the Principle of Mathematical
Induction, 81 | (10" — 95 — 10) for every nomiegative integer 7. &
6.21. Lemma Leta e Z.1f312a, wherea € Z, then 3 | a.

Proof of Result We employ mathematical induction. By the lemma, the result holds for.n = 1. Assume for

some positive integer k that if 3 | 2%a, then 3 | a. We show that if 3 | 25t1g, then 3 | a. Assume that 3 | 28+ 1lg,
Then 2°*'q = 3x for some integer x. Observe that '“

2Hlg = 202%q) = 3x.

Since 3 | 2(2“a), it follows by the lemma that 3 | 2a. By the induction hypothesis, 3 | a.

By the Principle of Mathematical Induction, it follows that for every positive integer n, if 3 | ‘Z”a
then 3 | a. |
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6.23. (a) Proof We proceed by induction. Certainly, the statement is true for m = 1. Assume that for some positive
integer k and any 2k integers ai, da, . .., a; and by, b, . .., by for which a; = b, (mod n)forl <i <k, we
havea; +a, + - +ar=b; + by + -+ by (mod n). Now let ¢y, €2, ..., Crrl and d(,d>, ...,dr; be
2(k + 1) integers such that¢; = d; (mod n)for 1 <i <k+l. Lletc=c +cp+ -+ G and
d =d, +d, + - - - + d,. By the induction hypothesis, ¢ = d (mod n). By Result 4.10,

C+ Cpy1 = d + dyy (mod »n). Thuscy + ¢+ - -+ 1 = di +dy + -+ *{‘korl(I’HDd 7).
The result then follows by the Principle of Mathematical Induction. 2
(b) The proof of (b) is similar to the one 1n (a).

6.25. (a) Proof We use induction to prove that every set with n real numbers, where n € N, has a largest element,
Certainly, the only element of a set with one element is the largest element of this set. Thus the statement is
true for n = 1. Assume that every set with k real numbers, where k € N, has a largest element. We show
that every set with k -+ 1 real numbers has a largest element. Let § = {a;, a2, . . -, i1} be aset with k + 1
real numbers. Then the subset T = {ay, aa, .. ., ax} of S has &k real numbers. By the induction hypothesis, T
has a largest element, say a. If a > @;.|, then a is the largest element of ; otherwise, a4 is the largest
element of S. In either case, S has a largest element.

By the Principle of Mathematical Induction, every finite nonempty set of real numbers has a largest
element. =
(b) Proof Let S be a finite nonempty set of real numbers. Define §' = {x : —x € §}. Since S’ is also a finite
nonempty set of real numbers, it follows by (a) that §” has a largest element y. Thus y = x forall x € &',
Therefore, —y € S and —y < —x forall —x € S. So —y is a smallest element of 5. =

Section 6.3: Proof by Minimum Counterexample

6.27. Proof Assume, to the contrary, that there is a positive integer n such that 3 [ (2*" — 1). Then there is a
smallest positive integer n such that 3} (2°" — 1). Let m be this integer. Since 3 | (22 — 1), it follows that
31(2% — 1) whenn = 1andsom > 2. Thusm =k + 1, where | <k < m. 503} (2% — 1). Hence
22k 1 = 3x for some integer x and so 2% = 3x + 1. Now

o2m {2k 1 =4.9% 1 =4(3x+ 1) —1=23x+1).

Since 4x + 1 € Z, it follows that 3 | (22" — 1), producing a contradiction. 9
6.29. Proof Certainly 5| (> — n)for n = 0. We now show that 5 | (n® — n) if n is a positive integer. Assume, to the
~ contrary, that there is some positive integer n such that > / (n> — n). Then there is a smallest positive integer 7
such that 5 [ (n° — n). Let m be this integer. Since 5 | (15 — 1), it follows that m > 2. So we can write
m==rk+1 wherel <k < m.Thus 5| (k° — k) and so k> — k = 5x for some integer x. Then

mS—m =kt 1 —~k+1) =k +5k"+10> + 10k + 5k +1 -k -1
= (k5 — k) + 5k* + 10K> + 10k* + Sk = Sx + 5k* + 10k° + 10k + Sk
= 5(x + k* +2k> + 2k* + k).

Since x + k% 4 2k + 2k% + k € 7., it follows that 5 | (m> — m), which is a contradiction.
Suppose next that n < 0. Thenn = —p, where p € Nand s0 3 | (p> — p). Thus p> — p = 5y for some
integer v. Since

n’—n=(-p) —(=p)=—(p° = p)=—05y) = 5(-)

and —y € Z, it follows that 5 | (n®> — n). -
6.31. Proof Assume, to the contrary, that there is a positive integer n for which there is no subset 5, of S such that
D ics, i = n. Let m be the smallest such integer. If we let 5, = (1}, then ) ;.5 i = 1. Som > 2. Thus m can be
expressed as m = k + 1, where 1 < k < m. Consequently, there exists a subset S, of Ssuchthat ), o i =k, It
| ¢ S, then S, = S, U {1} has the desired property. Otherwise, there is a smallest positive integer ¢ such that

6.35.

6.37,
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2 ¢ S, Thus 20,2, ..., 271 € §;. Since 2° 2" + - - 42070 =2t — 1 it follows that if we let
Sper = (S U2 —(2°, 28, ..., 27,

then ) ;.5 ¢ =k + 1 = m, producing a contradiction. =

“Section 6.4: The Strong Principle of Mathematical Induction
6.33.

Cﬁﬂjecture A sequence {a,} is defined recursively by a; = 1, a; = 2.and a, = a,-; + 2a,_, forn > 3. Then
— 2"~! for every positive integer n.

Prmf We proceed by the Strong Principle of Mathematical Induction. Since a; = 1, the conjecture s true for

n = 1. Assume that ¢; = 2°~! for every integeri with 1 <i < k, where k € N. We show that gy, = — 2F. Since

ai. = ap = 2 =2", it follows that a;41 = 2% for k = 1. Hence we may assume that & > 2. Thus

py) — dy —+ 2{1;:_1 — 2’2_1 4 ). 2;‘5"‘2 — zk"l 4+ Zkul
— 2k_“1 — 2‘!5_

The result then follows by the Strong Principle of Mathematical Induction. 5
(a) The sequence {F,} is defined recursively by Fy = 1, F, = l,and F, = F,_1 + F,_» forn > 3. :
(b) Proof We proceed by the Strong Principle of Mathematical Induction. Since £ = 1 isoddand 3 /1, it

follows that 2 | F; if and only if 3 | 1 and the statement is true for n = 1. Assume that 2 | F; 1f and only 1t

3 | i for every integer i with 1 < i <k and k ¢ N. We show that 2 { Fy, 1f and only if 3 | (k + 1). Since

F, = Fi.; = 1 and 3 J 2, the statement 1s true for k = 1. Hence we may assume that k£ > 2, We now

consider three cases, according to whetherk + 1 =3g,k+ 1 =3¢ + L,ork+ 1 = 3q + 2 for SOme

integer g.

Case 1.k + 1 =3g.Thus 3 fkand3 f(k — 1). By the inductive hypothess, Fk and Fk | are odd Since

Fro1 = Fi + F._,, 1t follows that Fj 1S evern.

Case2. k+1=3g+1.Thus3 |kand3 J(k—1). By the mductwe hypothesis, F is even and Fi_1 1S

odd. Since Fy., = Fj + Fy_1, it follows that Fy, 1s odd.

Case 3. k+1 =3¢ +2.Thus3 Jkand 3| (k —1). By the inductive hypothesis, £} 18 odd and Fi 18

even. Since Fi.1 = Fj + Fj., it follows that Fy.; 1s odd.

By the Strong Principle of Mathematical Induction, 2 | F, 1f and only if 3 | n for every positive

integer n. | B
Proof We use the Strong Principle of Mathematical Induction. Since 12 = 3.4+ 7 -0, the statement is true
when n = 12. Assume for an integer k > 12 that for every integer i with 12 <7 < k, there exist nonnegative
integers ¢ and b such that i = 3a + 7b. We show that there exist nonnegative integers x and y such that
k+1=3x+7y.Sincel3=3-2+47-1and 14 =30+ 7 -2, we may assume that k > 14. Since L
k — 2 > 12, there exist nonnegative integers ¢ and d such that k — 2 = 3¢ +7d. Hence k + 1 = 3(c + 1) + d.
By the Strong Principle of Mathematical Induction, for each integer n > 12, there are nonnegative integers a |
and b such that n = 3a + 7b. ’- =

Section 7.2: Revisiting Quantified Statements

7.1.

1.3,

7.5.

(a) Let S be the set of all odd integers and let P(n) : 3n + 1 is even. Vn € S, P(n).

(b) Proof Letn € S. Thenn = 2k + 1 for some integer kL. Thus3n+1=32k+1)+1=06k4+4= .
2(3k + 2). Since 3k + 2 is an integer, 3n + 1 is even. . - =

(a) Let P(n):n" tiseven. Vn € N, P(n).

(b) Note that P(1) is false and so the statement in (a) is false.

(a) Let PG, n):n<m <2n. Yne N—{1},Im € Z, P(m, n).

(b} Proof Letn > 2beaninteger andletm = n + 1. Since n > 2. it follows thatn < n 4+ 1 =
m<n+2<n+n=72n B
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7.7. (a) Let Pm,n):(n —2)Xm —2y> 0. VYane Z,3Im e Z, P(m, n).
(by dn ¢ Z,.Vm € L, ~ P(m, n).
(¢) Letn =2.Then(n —2)(m —2)=0-(m —2) =0 forallm € N.
7.9. (a) Let P(a, b, x): |bx| <aand Q(a,b): |b| <a. Yae N,3b € Z,(Q(a,b) A(¥Vx & R, Pla, b, x))).

(b) Proof Leta e Nandletb = 0. Then [bx| =0 < a for every real number x. 2
711, (a) Let P(x,y,n): x> +y*>n. 3n€ Z,Vx,y € R, P(x, y,n).

(b) Proof Letn = 0. Then for every two real numbers x and y, x* + y* > 0 = n. a
7.13. (a) Let P(a,b,n):a < ﬂ—1~ < b da,beZ, VneN, Pla,b,n).

(b) Proof Leta:Oandb:E.ThenforeverynEN,a:O{Lﬁ--::2:31 =

7.15. (a) Let S be the set of odd integers and P(a, b, ¢): abcisodd. Ya,b,c € S, P(a, b, ¢).
(b) Leta, b, and ¢ be odd integers. Thena =2x + 1, b =2y + l,andc =2z + 1, where x, y, z € Z.. Then
show that abc = 2x + D2y + 1){2z + 1) 1s odd.

Section 7.3: Testing Statements

7.87. The statement 1s frue,
Proof Since each of the following statements
P(l) = (1) :If 7 1s prime, then 5 1s prime.
P(2) = O(2):If 2 1s prime, then 7 1s prime.
P(3) = Q@) :1f 28 is prime, then 9 1s prime.
P(4) = O(4): If 8 is prime, then 11 is prime.
is true, Va € S, P(n) = Q(n) 1s true. g
7.19. This statement is false. Let x = 1. Then 4x + 7 = 11 is odd and x = 1 is odd. Thus x = 1 1s a counterexample.
7.21. 'This statement 18 true.
Proof Letx be an even integer. Then x = 2n for some integer n. Observe that x = 2n+ 1)+ (—1). Since n
is an integer, 2n + 1 is odd. Since —1 is odd as well, both 2n 4 1 and —1 are odd.
7.23. This statement is false. Let A = {1,2,3}and B = {2,3}. Then AU B = {1,2,3}and (AU B) — B = {1} # A.
Consequently, 4 = {1, 2, 3} and B = {2, 3} constitute a counterexample.
7.25. The statement 1s true.

Proof Consider the integer 35. Then 3+ 5 =8 isevenand 3 -5 = 15 1s odd. =

7.27. The statement is false. Letx =3 and y = —1. Then [x + y| = 3 + (= 1)] = 12| =2 and |x]| + {y] =
B3+ —=1|=3+1=4 Thus [x + vyl # x|+ |y{.Sox =3 and y = ——1 18 a counterexample.

7.29. The statement is false. We show that there is no reai number x such that x? < x < x°.
Suppose that there is a real number x such that x> < x < x°. Since x* > 0, it follows that x > 0. Dmdmg

x? < x < x’byx,wehave x <1 < x%. Thus 0 < x < 1 and x* > 1, which is impossible. 2|

7.31. The statement is true. For a = 0, any two real numbers b and ¢ # 0 satisfy the equality.

7.33. The statement is false. Note that x* + x* + 1 > 1 > O forevery x € R,

7.35. The statement is false. Neither of the expressions iif‘; or —— is defined whenx =1 orx = —1.
7.37. The statement is false. Let x = 6and y = 4. Then z = 2.

7.38. The statement is true.

Proof Assumethat A— B =@ foreveryset B.letB=0.ThenA —B=A—-0=A=9¥. B

7.4%. The statement 1s true.

Proof Let Abeanonemptyset.Let B=A.Then A—-B=B—-A=0.5|A-B|= B — A =0. 5

7.43, The statement is false. Observe that4 = 1 4 3.

7.45. The statement is true. Considerc = 1 and d = 2b + 1.

7.47. The statement is true. For each even integer n, n = n -+ 0.

7.49. The statement is false. Consider A = {1}, B ={2},and C = D = {1, 2}.

7.51. The statement is true. Let a = ~/2 and b = 1.

7.53. The statement is true. Consider the set B = § — A.

7.55. The statement is false. Let A = {1} and B = {2}. Then {1, 2} € P(A U B) but {1, 2} % P(AY U P(B).
7.57. The statement is false. Consider A = {1}, B = {1, 2}, and C = {1}.
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7.59. The statement is true. Observe that at least two of a, b, and ¢ are of the same parity, say a and b are of the same
parity. Then a + b is even.

7.61. The statement is false. Consider ¢ = 2 and ¢ = 1.
7.63. The statement 1s false. Consider n = 1.

7.65. The statement is true. Let x = 51 and y = 50. Then x* = (51)* = (50 + 1)*> = (50)* +2 - 50 + 1.
7.67. The statement is true.

Pmaf Let p be an odd prime. Then p = 2k + 1 forsome k € N. Fora =k + 1 and b = £,
a* ==k + 1P~ =( 2%+ D)k =2k+1=p. =

EXERCGISES FOR CHAPTER 8

Section 8.1: Relations

8.1. domR = {a,b}andran R = {s, t}.

8.3. Since A x A =1{(0,0),0, 1), 1,0, (1, D}and |A x A| = 4, the number of subsets of 4 x A and hence the
number of relations on A is 2° = 16. Four of these 16 relations are @, A x A, {(0, 0)}, and (0, 0),(0, 1), (1, 0)}.

Section 8.2: Properties of Relations

8.5. The relation R is reflexive and transitive. Since (a d) e Rand (d, a) ¢ R, it follows that R is not symmetric.
8.7. The relation R is transitive but neitherreflexive or symmetric.

8.9. The relation R is reflexive and symmetric. Observe that 3 R 1 and 1 R O but 3 R 0. Thus R is hét transitive.
8.11. The relation R is symmetric and transitive but not reflexive.

8.13. The relation R is reflexive and symmetric. Observe that —1 R 0 and 0 R 2 but —1 R 2. Thus R is not transitive.

Section 8.3: Equivalence Relations

8.15. Proof Sincea’ = a’ foreacha € Z, it follows that ¢ R @ and R is reflexive. Let a, b € Z such thata R b.
Then a® = »* and so b* = a®. Thus b R a and R is symmetric. Let a, b, ¢ € Z such thata R b and b R c. Thus
a’> = b’ and b> = ¢*. Hence @® = ¢® and so a R ¢ and R is transitive. =

Leta, b € Z. Note that a° = b° if and only if @ = b. Thus {a] = {a) for every a € Z.

8.17. . There are three distinct equivalence classes, namely [1] = {1, 5}, [2] = {2, 3, 6}, and [4] = {4}.

8.19. Proof Assumethata Rb,c Rd,anda Rd.Sincea R b and R is symmetric, b R a. Similarly, d R c¢. Because
bRa,aRd,and R 18 transitive, b R d. Finally, since b R d and d R c, it follows that b R ¢, as desired. =

Section 8.4: Properties of Equivalence Classes

821. Let R ={(v,v), (w,w), (x,x), (¥, ), (2, 2), (v, w), (W, v), (x, ¥), (y, x)}. Then [v] = {v, w}, [x] = {x, y}, and
[z] = {z} are three distinct equivalence classes. |

8.23. Observethat2 R 6and 6 R 3, but2 R 3. Thus R is not transitive, and so R is not an equivalence relation.

8.25. Proof lLetx € Z.Since 3x — 7x = —4x = 2(—2x) and —2x is an integer, 3x — 7x is even. Thus x R x and R
i1s reflexive.

Next, we show that R is symmetric. Let x R y, where x, y € Z. Thus 3x — 7y is even and so 3x — Tv = 2a
for some integer a. Observe that

3y —7x = (3x —Ty) — 10x + 10y = 2a — 10x + 10y = 2(a — 5x + 5y).

stince a — 5x + 5y is an integer, 3y — 7x is even. So y R x and R is symmetric.
Finally, we show that R is transitive. Assume that x R y and y R z, where x, y, z € Z. Then 3x — 7y and
3y — 7z are even. S0 3x — 7y = 2a and 3y — 7z = 2b, where a, b € Z. Adding these two equations, we obtain

Bx -7+ Q@y—Tz)=3x -4y — Tz =2a + 2b

andso3x — 7z =2a+2b+4y =2(a+ b+ 2y). Since a + b + 2y is an integer, 3x — 7z is even. Therefore,
x R z and R 1s transitive. =

There are two distinct equivalence classes, namely, [0] = {0, £2, +4, ...} and [1] = {£1, £3, £5, ...}
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8.27. Fortheset S = {1, 2, 3}, let
={(1, 1), (1, 2), (2, 1),(2,2),(3.3)} and R, = {(1, 1), (2,2),(2,3), (3, 2), 3, 3)}.
Then R; and R, are equivalence relations on §, but
R=R UR, ={(1,1,(1,2),2,1),(2,2),(2,3),(3,2),(3, 3)}
1s not an equivalence relation on S. For example, (1,2), (2,3 e Rbut(l,3) ¢ R, so R is not transitive,

Section 8.5: Congruence Modulo n

8.29. Proof leta € Z. Since 3a + 5a = 8a, it follows that 8 | (3a + 5a) and so 3a + 5a = 0 (mod 8). Hence

a R a and R 1s reflexive.
Next, we show that R is symmetric. Assume that ¢ R b, where a, b € Z. Then 3a + 5b = 0 (mod 8), that
1s, 3a + 5b = 8k for some integer k. Observe that (3a -+ 5b) + (3b + 5a) = 8a + 8b. Thus

3b +5a = 8a + 8b — (3a + 5b) = 8a + 8b — 8k = 8(a + b — k).

Since a + b — k 1s an integer, 8 | (36 + 5a) and so 35 + 5a = 0 (mod 8). Hence » R a and R 1s symmetric,
Finally, we show that R is transitive. Assume thata R b and b R ¢, where a, b, ¢ € Z.. Thus

3a+ 5b =0 (mod 8) and 36 + 5¢ = 0 (mod 8). So3a + 50 — 8x and 3b 4 5¢ = 8y, where x, y € Z. Observe

that

(3a + Sh) -+ (3b + 5¢) = 3a + 8b + 5¢ = 8x + 8.

Thus3a +5¢ =8x + 8y — 80 =8(x +y — b). Since x + y — b is an integer, 8 | (3a 4 3¢) and

3a + 5¢ = 0 (mod 8). Therefore, a R ¢ and R 1s transitive. i

8.31. There are two distinct equivalence classes, namely [0] = {0, +2, +4, ...} and [1] = {£1, £3, £5, . .}
8.33. Proof leta € Z.Since 5a — 2a = 3a, it follows that 3 | (5a — Za) and s0 5a = 2a (mod 3). Hencea R a

and R is reflexive.
Next, we show that R is symmetric. Assume that a R b, where a, b € Z. Then 5a = 2b (mod 3), that is,
Sa — 2b = 3k for some integer k. Observe that (5a — 26) + (56 — 2a) = 3a + 3b. Thus

56 —2a =3a+3b— (5a —2b)=3a+3b -3k =3(a+b—k).

Since a -+ b — k is an integer, 3 | (556 — 2a) and so 5b = 2a (mod 3). Hence b R a and R is symmetric.
Finally, we show that R is transitive. Assume thata R b and b R ¢, where a, b, ¢ € Z.. Thus
5a = 2b (mod 3) and 5b = 2¢ (mod 3). So Sa — 2b = 3x and 5b — 2¢ = 3y, where x, y € Z. Observe that

(5a —2b)+ (5b — 2¢) = (5a —2¢) + 3b = 3x + 3.

Thus 5a —2¢ =3x + 3y — 3b = 3(x 4+ y — b). Since x + y - b is an integer, 3 | (5a — 2¢) and

Sa = 2¢ (mod 3). Therefore, a R ¢ and R is transitive. B

There are three distinct equivalence classes, namely

ho;u_{o +3, 46, ...},
={....-5-214, . } and
21={...,-4,-1,2,5,...}.

8.35. Proof Fn‘st we show that R is reflexive. Let @ € Z. Since 2a + 3a = 5a, it follows that 5 | (2a + 3a) and so

a R a. Hence R 1s reflexive. -
Next, we show that R is symmetric. Assume that a R b, where a, b € Z. Then 2a 4 3b = 0 (mod 5).
Hence 2a + 3b = 5k for some integer k. Observe that (2a + 3b) + (26 + 3a) = 5a + 5b. Thus

2b +3a = 5a + 5b — (2a + 3b) = 5a + 5b — 5k = 5(a + b — k).

Since a + b — k 18 an integer, 5 | (2b + 3a) and 80 26 + 3a = 0 (mod 5). Hence 0 R a and'R is sjfmmetric.
Finally, we show that R is transitive. Assume thata R band b R ¢, where a, b, ¢ € Z. Thus
2a +3b =0 (mod 5)and 2b -+ 3¢ =0 (mod 5).So 2a + 3b = 5x and 2b + 3¢ = Sy, where x, v € Z.
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Observe that
(2a -+ 3b) + (2b + 3¢) = 2a +5b + 3¢ = 5x + 5y.

Thus 2a + 3¢ = 5x + 5y — 56 = 5(x + y — b). Since x + y — b is an integer, 5 | (2a + 3c) and

2a + 3¢ = 0 (mod 5). Therefore, a 'R ¢ and R is transitive. 5

The distinct equivalence classes are [0, [1], [2], [3], and {4]. In fact, the set of distinct equivalence classes 18 Z:s.

Section 8.6: The Integers Modulo n

8.37. The addition and multiplication tables in Z, are shown below.

+ | 0] [t} [2] 3 - 1oF i 2] [3]
0] | 01 11 {21 [3 O | (0] [0 (01 (O
Iy b 21 31 [0 110 {1 121 (3
2] | 21 131 (0] (1] 210 21 [0 2
3P B 01 11 [2 31410 31 2] [

8.35. (a) [7]+ (5] =[12]1=[1].
(b) [7]-[5]1 =1[35] = [2].
(€) [-82]+[207] = [6] + [9] = [4].
(d) [—82]-[207] =[6] - [9] = [10]. ..

8.41. Proof Let[al,[b],[c], [d] € Z,, where [a] = [b] and [¢] = [d]. We prove that [ac] = [bd]. Since la] = [b],
it follows that @ R b, where R is the relation defined in Theorem 8.6. Similarly, ¢ R 4. Therefore,
a = b (mod n)and ¢ = d (mod n). Thus,n | (¢ — b) and n | (¢ — d). Hence, there exm mtegerq x and y so that

a—b=nxandc—d =ny.

Thus a = nx +band c = ny + d and so ac = (nx + b)(ny + d) = nxny + nxd + bny + bd. Hence
ac — bd = nxny + nxd + bny = n{nxy + xd -+ by).

Thus implies that z | (ac — bd). Thus, ac = bd (mod #). From this, we conclude that ac R bd, which implies
‘that [ac] = [bd ] =

Section 9.1: The Definition of Function

9.1. dom f ={a,b,c,d}andran f = {y, z}.

9.3. Since R is an equivalence relation, R is reflexive. So (a, a) € R forevery a € A. Since K is also a function from -
Ato A, we must have R = {(a,a) : a € A} and so R is the identity function on A.

2.5, LetA"={a € A:(a,b) e Rforsomeb € B)}. Furthermore, for each element a’ € A’, select exactly one
elementb’ € (b e B :(a’,b)e R}. Then f = {(a’,b") : a’ € A’} is a function from A’ to B.

Section 9.2: The Set of All Functions From A to B

9.7. B ={fi, fo..... fs}, where fi = {(1,x),(2,x), 3, 0)}, fo = {(1, x), (2, x), (3, y)},
Ja=1{{1,x), 2, v), 3,0}, f1 = {1, ¥), (2, x), (3, x)}. By interchanging x and y in f;, f5, fa, f4, we obtain
fs+ Iss f1, fa.

9.9. For A ={a, b, c}and B = {0, 1}, there are 8§ different functions from A to B, namelv
S1=1a,0),(0,0),(c.0)}, fo=1{@a 0),(,0),(, D},
3 =1Ua,0), (b, D, (c,0)},  fa=1{a, 0,0, 1), 1)}
Js=WUa, 1),(6,0),(c. 0}, fo=1{a, 1), 0),(,1)
fr=1{a, 1), 1), (c, 0}, fz={@a, 1}, @, 1), D
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Section 9.3: One-fo-one and Onto Functions

911, Let f = {{w,r), (x,r), (¥,7). (z,9)}. Since f(w) = f(x) = r and ¢ is not an image of any element of A, it
follows that f is neither one-to-one nor onto.
9.13. The function f 1s injective, but not surjective. There is no n € Z such that f(n) = 2.
9.15. The function f 1s injective but not surjective. There i1sno n € Z such that f(n) = 5.
8.17. (a) Since f(0) = f(—4), it follows that f is not one-to-one.
(b} Note that f(x) = (x +2)* +5> 5, 50 f 1s not onto. For example, there 1sno x € R such that f(x) = 4.
9.19. (a) Define f(n) =nforalln e N.
(b) Define f(n)=2nforalln € N.
(¢} Define f(1) =1and f(n) =n — 1 for each integer n > 2.
(d) Define f(n) =1 foralln e N. E

Section 9.4: Bijective Functions

9.21. Proof We first show that f is one-to-one. Assume that f(a) = f(b), where a, b € R — {2}. Then
24t — 240 Multiplying both sides by (a@ — 2)(b — 2), we obtain (5a + (b —2) = (5b + D)@ —2).
Simplitying, we have 5ab — 10a + b — 2 = Sab — 10b + a — 2. Subtracting 5ab — 2 from both sides, we have
—10a 4+ b = —10b + a. Thus 11a = 11b and so a = b. Therefore, f is one-to-one.
To show that f 1s onto, let r € R — {5}. We show that there exists x € R — {2} such that f{x} = r. Choose

x = 2 Thenx € R — {2} and

2r+1. SCE)+1 5Qr4+ D)+ —5 1l

= == p— — = 7,
Jo = r—23 ) i"f; 2 Qr+ 1) —2(r —3) 11
implying that f 1s onto. Therefore f is bijective. =

9.23. (a) Consider S = {2, 5, 6}. Observe that for each y € B, there exists x € S such that x is related to y. This says
that y(R) < 3. On the other hand, let §° € A such that for every element y of B, there is an element x € §
such that x 1s related to y. Observe that S must contain 6, at least one of 2 and 3, and at least one of 4, 5 and
7. Thus | S’} > 3. Therefore, v(R) = 3.

(b) If R is an equivalence relation defined on a finite nonempty set A, then y(R) is the number of distinct
equivalence classes of R. |
(¢) It f 15 a byjective function from A to B, then y(f) = [A].
9.25. Proof We first show that f is one-to-one. Let a, b € A such that f(a) = f(b). Now

a = isa)=(f o f)a) = f(f@) = f(F(B))
= (f o f)b) = is(b) =b.

Thus f 1s one-to-one.
Next, we show that f 1s onto. Let ¢ € A. Suppose that f(c) = d € A. Observe that

fd)= f(fe)=(fo f)c)=ialc)=rc.

Thus f is onto. =

Section 9.5: Compeosition of Functions

9.27. (go /)(1) = g(f(1)) = g4) = 17 and (f o g)1) = f(g(1)) = f(2) = 13.
9.29. (a) The statement is true. This is Corollary 9.8.
(b) The statement i1s false. Let A = {1,2}, B = {a,b},and C = {x, y}; andlet f : A — Bandg: B — (C be
defined by f = {(1,a), (2,a)} and g = {{a, x), (b, v)}. Then g o f = {(1, x), (2, x)}. Thus g is onto but
g o [ 1S not. |
{¢) The statement 1s false. Consider the functions f and g in (b).
(d) The statement is true.

Proof LetA=1{1,2},B=1{a,b,c},and C ={x,y};andlet f : A — Band g: B — C be defined by
S =1{,0a), @2, b)} and g = {(a, x), (b, y), (¢, y)}. Then g o f = {(1, x), (2, y)} 1s onto but f is not onto. =
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(e) The statement is false. We show that for functions f:A— Bandg: B — C,if f 1s not one-to-one, then
go f:A— Cisnotone-to-one.

Since f 18 not one-to-one, there exist g, b € A such that a # band f(a) = f(b). Thus
(g 0 f)a) = g(f(a)) = g(f(b)) = (g o f)(b) and s0 g o f is not one-to-one.

9.31. (a) Proof Let(x,y)e A x A. Then x = 4q and y =4b, wherea, b € Z. Since f(x, y) = xy =
(4a)(4b) = 2(8ab) and 8ab e Z., it follows that J(x,y) e B and so g o f is defined.

=
(b) (g o N4k, 40) = g(f(dk,4L)) = g(16kE) = 8k¢.
Section 9.6: Inverse Functions
9.33. Proof First, we show that / 1s one-to-one. Assume that f(a) = f(b), where a, b € R. Thendaq — 3 — 4p — 3.
Adding 3 to both sides and dividing by 4, we obtain @ = b. Next we show that f 1s onto. Let r € R. Then
(r +3)/4 € R. Therefore, f(f—}i) = 4(‘”:3) 3=r. =

Note that f~'(x) = (x + 3)/4 for x € R.

9.35. (a) Proof Let f(a) = f(b), wherea, b ¢ R. Then2a + 3 = 2b + 3. Adding —3 to both side and dividing by
2, we have a = b and so f is one-to-one. Let r € R. Letting x = (r — 3)/2, we have

r— 3
f(x)::Z( 5 )"1-3:(?‘“3)—[—3-—:.}'
and so f 1s onto. =
(b) The proof is similar to that in (a). i,
(€ (go fHlx)=—6x —4.
d) f7i(x) =% and g7 (x) = Z*.
(&) (g0 N7 = (fog™x) = —(x + 4)/6. : '
9.37. (a) The statement is false. Let A = {1,2), B = {x, yh and C = {r, s}. Define f = {(1, x), (2, x)},
g =1, r), (y, i} and i = {(x,7), (y,)}. Then g o f = {(1,7), (2, ")} = ho f but g = h.
(b} The statement is false. Let A = {1}, B — (x, ¥}, and C = {r, s}. Define f = {(1, x)}, g = {{(x,7), (y, )},
and /1 = {(x, 1), (v, $)}. Then f is one-to-one, gof={0,r)}=ho fbutg #£h, |
Section 9.7: Permutations
_ 1 2 3 4 5 6 _ 1 2 3 4 5 6
2.39. b = e
(a) o (4,1 6352)”<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>