












































































































































































































































































































































Chapter 14

Proofs in Ring Theory

We have noted that many of the proofs we have seen thus far involve integers and their properties.
This was certainly the case in Chapter 11, where we were primarily concerned with additive and
multiplicative properties of integers. Many important properties of integers follow from just a
very few familiar additive and multiplicative properties of integers. In particular, every three
integers a, b, and c satisfy the following:

(1) a+ b = b+ a (2) (a+ b) + c = a+ (b+ c)
(3) a+ 0 = a (4) a+ (−a) = 0
(5) a(bc) = (ab)c (6) a(b+ c) = ab+ ac

(14.1)

Properties (1) – (4) tell us that the integers form an abelian group under addition, a fact we
observed in Chapter 13. You can probably think of other familiar properties of integers (such
as ab = ba), but let’s concentrate on the six properties listed above. We saw in Chapter 13
that some of these properties have names. For example, (1) is called the commutative law of
addition; while (2) and (5) are the associative laws of addition and multiplication, respectively.
Property (6) is called the distributive law. Property (3) states that the integer 0 is the identity
under addition; while property (4) tells us that for an integer a, the integer −a is its inverse
under addition. Properties (3) and (4) in particular may seem as if they are such basic properties
of the integers that they should not even be mentioned. However, it is precisely that these six
properties are so basic and natural that makes them important and draws our attention to them.

A question now arises: Just what facts about the integers are consequences only of these
six properties? An even more basic question is: If we have a nonempty set S of objects (not
necessarily integers) for which it is possible to add and multiply every two elements of S (and
in each case obtain an element of S) such that properties (1) - (6) are satisfied, then what
additional properties must S possess? Of course, whatever properties that can be deduced
about the elements of S will be properties of the integers as well.

In fact, this is the essence of the area of abstract algebra that we are about to encounter
(and often of all mathematics). While studying a familiar set of objects, we may discover an
interesting fact about this set. But what features of this set led us to this conclusion? And
if any other set had these same features, does this interesting fact hold for these sets as well?
We are now prepared to explore nonempty sets on which addition and multiplication have been
defined that satisfy properties (1) - (6).

14.1 Rings

Addition and multiplication of integers are binary operations since each associates an integer
with each (ordered) pair of integers. Binary operations in general are discussed in Chapter 13.
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2 CHAPTER 14. PROOFS IN RING THEORY

In the current context, a nonempty set with one or more binary operations that are required
to satisfy certain prescribed properties is referred to as an algebraic structure. Hence we
have already seen examples of algebraic structures. Indeed, every group (see Chapter 13) is an
algebraic structure. Studying algebraic structures is fundamental to abstract algebra.

We mentioned that the familiar operations of addition and multiplication defined on the
integers satisfy the six properties listed in (14.1). Other familiar sets of numbers with these
operations also satisfy these six properties, including the rational numbers, the real numbers,
and the complex numbers. The situation is different for the irrational numbers, however, since
addition and multiplication are not even binary operations. For example,

√
2 and −√

2 are
irrational numbers while

√
2 · √

2 = 2 and
√

2 + (−√
2) = 0 are not.

These and other examples suggest a general concept. A set R (this is not the symbol used
for the set of real numbers) with two binary operations, one of which is called addition and
denoted by + and the other called multiplication and denoted by · (where we often write ab
rather than a · b for a, b ∈ R), is called a ring if it satisfies the following six properties:

R1 Commutative Law of Addition: a+ b = b+ a for all a, b ∈ R;

R2 Associative Law of Addition: (a+ b) + c = a+ (b+ c) for all a, b, c ∈ R;

R3 Existence of Additive Identity: There exists an element 0 ∈ R such that a+0 = a for
all a ∈ R;

R4 Existence of Additive Inverse: For each a ∈ R, there exists an element −a ∈ R such
that a+ (−a) = 0;

R5 Associative Law of Multiplication: a(bc) = (ab)c for all a, b, c ∈ R;

R6 Distributive Laws: a(b+ c) = ab+ ac and (a+ b)c = ac+ bc for all a, b, c ∈ R.

Notice that property R3 requires the existence of at least one element in R, which implies
that every ring is nonempty. Recall that if S is a set with a binary operation ∗ and e ∈ S
is an identity for S under ∗, then e ∗ a = a ∗ e = a for all a ∈ S. Since a ring R has two
binary operations and an identity element is only required for the operation of addition, we
refer to an element 0 specified in property R3 as an additive identity. The notation 0 for an
additive identity is chosen because the integer 0 is an additive identity in Z. In other words,
an additive identity in a ring R has the same characteristic as the integer 0 under addition in
Z. It is important to realize that when we refer to an additive identity 0 in a ring R, we are
referring only to an element in R that we are denoting by 0 and that satisfies property R3,
namely, a+ 0 = a for all a ∈ R. Since property R1 holds in every ring, we also have 0 + a = a.

Also, if an algebraic structure (S, ∗) has an identity e, then an element a ∈ S has an inverse
b ∈ S if a ∗ b = b ∗ a = e. Each element of a ring R is only required to have this property for the
operation of addition. Thus, an inverse of an element a ∈ R with respect to addition is called
an additive inverse of a. In Z, an additive inverse of an integer m is its negative −m. For
this reason, we use −a to denote an additive inverse of an element a in a ring R. We must keep
in mind that an element −a in R stands only for some element in R that satisfies property R4,
namely, a+ (−a) = 0. By property R1, we also know that (−a) + a = 0. Since properties R1 –
R4 are required of every ring R, it follows that (R,+) is an abelian group.

A ring with binary operations + and · is commonly denoted by (R,+, ·). However, if the
two operations involved are clear, then we simply write R. In particular, if we are dealing
with a familiar set with standard operations of addition and multiplication (and these are the
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operations we are using), then we write only the symbol for that set. Thus Z, Q, R, and C are
rings.

We now look at some other common examples of rings.

Result 14.1 The set 2Z of even integers is a ring under ordinary addition and multiplication.

Proof. First we show that ordinary addition and multiplication are binary operations on 2Z.
Let a, b ∈ 2Z. Then a = 2x and b = 2y for x, y ∈ Z. Then a + b = 2x + 2y = 2(x + y) and
ab = (2x)(2y) = 2(2xy). Since x+ y and 2xy are integers, a+ b and ab belong to 2Z.

Since 2Z ⊆ Z and the binary operations in 2Z are the same as those in Z, properties R1,
R2, R5, and R6 are automatically satisfied. Moreover, since the integer 0 is even, 0 ∈ 2Z and so
2Z has an additive identity. To show that property R4 is also satisfied, let a ∈ 2Z. So a = 2x,
where x ∈ Z. Then −a = −(2x) = 2(−x). Since −x ∈ Z, it follows that −a ∈ 2Z.

Result 14.2 The set Zn = {[0], [1], [2], · · · , [n− 1]}, n ≥ 2, of residue classes is a ring under
residue class addition and residue class multiplication.

Proof. It was indicated in Chapter 7 that both residue class addition and multiplication
defined by [a] + [b] = [a + b] and [a] · [b] = [ab] are well-defined and so are binary operations
in Zn. That properties R1, R2, R5, and R6 are satisfied depends only on the corresponding
properties in the ring Z. For example, to see that R1 and R2 are satisfied, let [a], [b], [c] ∈ Zn.
Then

[a] + [b] = [a+ b] = [b+ a] = [b] + [a]

and

([a] + [b]) + [c] = [a+ b] + [c] = [(a+ b) + c] = [a+ (b+ c)]
= [a] + [b+ c] = [a] + ([b] + [c]).

The proofs of properties R5 and R6 are similar. The residue class [0] is an additive identity in
Zn and an additive inverse for [a] is [−a] since [a] + [−a] = [a+ (−a)] = [0].

The ring (Zn,+, ·) described in Result 14.2 is commonly called the ring of residue classes
modulo n.

Result 14.3 The set M2(R) of 2 × 2 matrices over R is a ring under matrix addition and
matrix multiplication.

Proof. Recall that for A =

[
a b
c d

]
and B =

[
e f
g h

]
inM2(R), addition and multiplication

are defined by

A+B =

[
a+ e b+ f
c+ g d+ h

]
and AB =

[
ae+ bg af + bh
ce+ dg cf + dh

]
.

An additive identity for M2(R) is the zero matrix Z =

[
0 0
0 0

]
and an additive inverse for the

matrix A given above is the matrix −A =

[
−a −b
−c −d

]
. The verification of properties R1, R2,

R5, and R6 depends only on the properties of the ring R.

Not only is M2(R) a ring under matrix addition and matrix multiplication, so too is Mn(R)
for each integer n ≥ 2.
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Result 14.4 The set FR = {f : f : R → R} of real-valued functions with domain R is a
ring under function addition and function multiplication.

Proof. Recall that for f, g ∈ FR, addition and multiplication are defined by

(f + g)(x) = f(x) + g(x) and (f · g)(x) = f(x) · g(x)
for all x ∈ R. The proofs of properties R1, R2, R5, and R6 depend only on properties of the
ring R. For example, property R1 follows because

(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x)

for all x ∈ R and so f + g = g + f ; while property R5 follows because

((f · g) · h)(x) = (f · g)(x) · h(x) = (f(x) · g(x)) · h(x)
= f(x) · (g(x) · h(x)) = f(x) · (g · h)(x) = (f · (g · h))(x)

for all x ∈ R and so (f · g) · h = f · (g · h).
The zero function f0 : R→ R defined by f0(x) = 0 for all x ∈ R is an additive identity since

for each f ∈ FR and all x ∈ R,

(f + f0)(x) = f(x) + f0(x) = f(x) + 0 = f(x)

and so f + f0 = f .
For f ∈ FR, the function −f ∈ FR defined by (−f)(x) = − (f(x)) for all x ∈ R is an

additive inverse for f since for all x ∈ R,

(f + (−f))(x) = f(x) + (−f)(x) = f(x) + (−f(x)) = 0 = f0(x)

and so f + (−f) = f0.

A less common, though useful, example of a ring is given next.

Result 14.5 The set R ×R = R2 is a ring under the addition (a, b) + (c, d) = (a + c, b + d)
and multiplication (a, b) · (c, d) = (ac, bd).

Before proving this result, it is important to know that we are defining a new sum (a, b)+(c, d)
in terms of the familiar sums a + c and b + c of two real numbers. Hence + has two different
meanings here. A similar distinction exists between the product in R2 and the standard product
of real numbers.

Proof of Result 14.5. Certainly the addition and multiplication defined here are binary
operations on R2. That R2 satisfies property R1 follows because addition in R is commutative.
Let (a, b), (c, d) ∈ R2. Then

(a, b) + (c, d) = (a+ c, b+ d) = (c+ a, d+ b) = (c, d) + (a, b).

Let (a, b) ∈ R2. Observe that (0, 0) ∈ R2 and that

(a, b) + (0, 0) = (a+ 0, b+ 0) = (a, b).

Thus (0, 0) is an additive identity in R2. Moreover, (−a,−b) ∈ R2 and

(a, b) + (−a,−b) = (a+ (−a), b+ (−b)) = (0, 0).
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Hence (−a,−b) is an additive inverse of (a, b) and properties R3 and R4 hold.
We only verify one of the distributive laws for a ring as the argument for the remaining law

is similar. Again, let (a, b), (c, d), (e, f) ∈ R2. Applying the distributive law for addition and
multiplication in R, we have

(a, b)[(c, d) + (e, f)] = (a, b)(c+ e, d+ f) = (a(c+ e), b(d+ f))
= (ac+ ae, bd+ bf) = (ac, bd) + (ae, bf)
= (a, b)(c, d) + (a, b)(e, f),

establishing this distributive law in R2.
The associative properties R2 and R5 can be established in R2 in a similar manner.

Next we show that familiar sets, under unfamiliar binary operations, need not be rings.

Example 14.6 For a, b ∈ R, define addition ⊕
and multiplication

⊙
by

a
⊕
b = a+ b− 1 and a

⊙
b = ab,

where the operations indicated in a + b − 1 and ab are ordinary addition, subtraction, and
multiplication. Then (R,

⊕
,
⊙

) is not a ring.

Solution. It was shown in Example 13.4 that the binary operation
⊕

satisfies properties R1-R4,
that is, (R,

⊕
) is an abelian group. Because

⊙
is ordinary multiplication, property R5 holds

as well. However, property R6 is not satisfied since for a = b = c = 0,

a
⊙

(b
⊕
c) = 0

⊙
(−1) = 0 and (a

⊙
b)

⊕
(a

⊙
c) = 0

⊕
0 = −1.

Therefore, (R,
⊕
,
⊙

) is not a ring. ♦
Let’s see what happens when ordinary addition and multiplication of real numbers are re-

versed.

Example 14.7 The set R of real numbers is not a ring when addition ∗ is defined as ordinary
multiplication and multiplication ◦ is defined as ordinary addition.

Solution. We denote ordinary addition of real numbers by + and ordinary multiplication by ·
(though we write a · b as ab, as usual). We show that a distributive law fails in (R, ∗, ◦). Let
a = b = c = −1. Then

a ◦ (b ∗ c) = a+ (bc) = (−1) + (−1)(−1) = (−1) + 1 = 0,

while

(a ◦ b) ∗ (a ◦ c) = (a+ b)(a+ c) = [(−1) + (−1)][(−1) + (−1)] = (−2)(−2) = 4.

Therefore, (R, ∗, ◦) is not a ring. ♦
Some rings satisfy properties beyond the six properties required of all rings. We have already

mentioned that the integers satisfy the familiar property: ab = ba for all a, b ∈ Z. This, of course,
is the commutative law of multiplication. Rings are not required to have this property. However,
when they do, we give these rings a special name. A ring (R,+, ·) is called a commutative
ring if it satisfies
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R7 Commutative Law of Multiplication: ab = ba for all a, b ∈ R.

A ring (R,+, ·) that does not satisfy the Commutative Law of Multiplication is called a non-
commutative ring. While the rings Z,Q,R,C, 2Z,Zn,FR, and R2 are commutative, the ring
M2(R) is noncommutative. For example, if we let

A =

[
0 0
2 0

]
and B =

[
0 2
0 0

]
,

then

AB =

[
0 0
0 4

]
�=

[
4 0
0 0

]
= BA.

Another property that Z possesses, which is basic yet important, is that it contains an integer
e with the property that a · e = e · a = a for every integer a. Of course, 1 has this property
in Z. In general, a ring (R,+, ·) is called a ring with unity (or a ring with multiplicative
identity) if it satisfies

R8 Existence of Multiplicative Identity: There exists an element 1 ∈ R such that a · 1 =
1 · a = a for all a ∈ R.

If (R,+, ·) has an element 1 satisfying property R8, then 1 is called a unity for R. Again, we
stress that much care is needed here. When we write 1, we mean only an element of R that
satisfies property R8, namely, a · 1 = 1 · a = a for all a ∈ R. It does not imply that 1 is the
integer 1. Indeed, R itself could be a ring with unity that contains no integers whatsoever. Also,
if R is a commutative ring, then to show that some element 1 ∈ R is a unity requires only to
show that a · 1 = a for all a ∈ R since a · 1 = 1 · a for all a ∈ R.

The rings Z,Q,R,C,Zn,FR, and R2 are rings with unity. The number 1 is a unity for Z,
Q, and R, as is 1 = 1 + 0i a unity for C. The residue class [1] is a unity for Zn; while the
constant function f1 : R→ R defined by f1(x) = 1 for all x ∈ R is a unity for FR. Furthermore,
the ordered pair (1, 1) is a unity for R2. The noncommutative ring M2(R) has a unity as well.
Indeed, the 2 × 2 identity matrix

I =

[
1 0
0 1

]

is a unity for M2(R) since[
a b
c d

] [
1 0
0 1

]
=

[
1 0
0 1

] [
a b
c d

]
=

[
a b
c d

]

for all a, b, c, d ∈ R. On the other hand, not all rings have a unity. In particular, the ring 2Z of
even integers does not have a unity since the only integer e such that e · a = a for every integer
a is e = 1 but 1 /∈ 2Z.

14.2 Elementary Properties of Rings

Despite the fact that there are many different kinds of rings, there are properties that all
rings have in common. Necessarily, of course, any such properties are consequences of the six
defining properties of a ring. We now present some properties that all rings share, beginning
with the uniqueness of certain types of elements in rings.
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The definition of a ring R guarantees that it contains an additive identity, that is, an element
0 such that a+ 0 = a for all a ∈ R. Although the definition does not specify that there is only
one such element, there is, in fact, only one. Also, the definition of R states that for each a ∈ R,
there is an element −a ∈ R such that a + (−a) = 0. Again, there is no indication that each
element of R has only one additive inverse, but, in fact, this is the case. Actually, these are
consequences of the fact that R is a group under addition (see Theorem 13.9), but we verify
these facts here.

Theorem 14.8 Let R be a ring. Then

(i) R has a unique additive identity, and

(ii) each element in R has a unique additive inverse.

Proof. We first verify (i). Suppose that both 0 and 0′ are additive identities for R. Since 0 is
an additive identity, 0′ +0 = 0′. Also, since 0′ is an additive identity, 0 + 0′ = 0. It then follows
by the commutative law that 0′ = 0′ +0 = 0+0′ = 0 and so 0′ = 0. Therefore, there is only one
additive identity in R and (i) holds.

We now verify (ii). Suppose that −x and x′ are both additive inverses for the element x ∈ R.
Then x+ (−x) = 0 and x+ x′ = 0. Hence

−x = −x+ 0 = −x+ (x+ x′) = (−x+ x) + x′ = 0 + x′ = x′.

So each element in R has a unique additive inverse.

Proof Analysis Let’s revisit the proof of the uniqueness of additive inverses in Theorem 14.8
to see how this proof may have been constructed. We know that x+ (−x) = 0 and x+ x′ = 0.
Since x+(−x) = 0 = x+x′, it follows, by adding −x to the equal elements x+(−x) and x+x′,
that

−x+ (x+ (−x)) = −x+ (x+ x′). (14.2)

The left side of (14.2) is −x + 0 = −x. Our goal was to show that −x = x′, so this suggests
starting with −x = −x + 0 = −x + (x + x′) and the remainder of the proof follows quite
naturally. The resulting proof given in Theorem 14.8 is certainly much clearer than giving a list
of equalities, with no accompanying explanations:

x+ (−x) = x+ x′

−x+ (x+ (−x)) = −x+ (x+ x′)
(−x+ x) + (−x) = (−x+ x) + x′

0 + (−x) = 0 + x′

−x = x′. ♦

In view of Theorem 14.8, we can now refer to the additive identity of a ring and the additive
inverse of an element in a ring. The additive identity of a ring R is called the zero element of
R.

Not only are the additive identity and the additive inverse of every element in a ring R
unique, but if R has a unity, then this element is unique as well.

Theorem 14.9 If R is a ring with unity, then R has a unique unity.
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Proof. Let 1 and 1′ be unities in R. Since 1 is a unity, 1 · 1′ = 1′ · 1 = 1′; while since 1′ is a
unity, 1 · 1′ = 1′ · 1 = 1. Therefore, 1 = 1 · 1′ = 1′.

A basic fact concerning rings allows us to simplify certain algebraic expressions. Although
the next theorem is a consequence of the fact that R is an abelian group under addition (see
Theorem 13.7), we provide a proof of this theorem.

Theorem 14.10 (Cancellation Law of Addition) If a, b, and c are elements in a ring
(R,+, ·) such that a+ b = a+ c, then b = c.

Proof. Observe that

b = 0 + b = [(−a) + a] + b = (−a) + (a+ b)
= (−a) + (a+ c) = [(−a) + a] + c = 0 + c = c.

Therefore, the Cancellation Law of Addition holds in (R,+, ·).
Proof Analysis Another version of the preceding proof begins with a + b = a + c (that is,
a+ b and a+ c represent the same element in R). If the additive inverse −a of a is now added
to this element, we obtain

−a+ (a+ b) = −a+ (a+ c).

By the associative law,
(−a+ a) + b = (−a+ a) = c;

so 0 + b = 0 + c and thus b = c. ♦
We have seen that the zero element 0 in a ring R has the property that 0 + 0 = 0. Hence R

contains an element c such that c+c = c, namely, c = 0. However, as an immediate consequence
of the Cancellation Law of Addition, no other element of R has this property.

Corollary 14.11 Let (R,+, ·) be a ring. If c is an element of R such that c + c = c, then
c = 0.

Proof. Since c+c = c, we also have c+c = c+0. Now, canceling c, it follows by Theorem 14.10
that c = 0.

Although the defining property of the zero element of a ring (R,+, ·) concerns only one of
the two operations, namely addition, it has a property involving multiplication that is probably
not unexpected.

Theorem 14.12 For every element a in a ring (R,+, ·),
a · 0 = 0 · a = 0.

Proof. Since the proofs that a ·0 = 0 and 0 ·a = 0 are similar, we only verify the first of these.
Observe that

a · 0 + 0 = a · 0 = a · (0 + 0) = a · 0 + a · 0.
The result now follows from Corollary 14.11 (where c = a · 0).

We now turn our attention to properties of rings involving additive inverses. At times, a
very simple argument for some fact can be given by recognizing that −a represents the unique
element which when added to a results in 0. Two examples of this appear in the following
theorem.
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Theorem 14.13 Let (R,+, ·) be a ring and let a, b ∈ R. Then
(i) −(−a) = a

(ii) if a = −b, then b = −a.

Proof. Since a+ (−a) = 0, it follows that a is the additive inverse of −a, that is, a = −(−a).
This verifies (i).

To establish (ii), let a = −b. Hence a is the additive inverse of b and so a + b = 0. This,
however, implies that b is the additive inverse of a and so b = −a.

We now consider some results concerning the product of two elements in a ring, at least one
of which is an additive inverse. Since the additive inverse is an element that is defined only in
terms of addition, it would seem natural that any property concerning such an element that
involves multiplication must be a consequence of the distributive laws. (This is exactly what
occurred in Theorem 14.12.)

Theorem 14.14 Let (R,+, ·) be a ring and let a, b ∈ R. Then

(−a) · b = a · (−b) = −(ab).

Proof. To show that (−a) · b = −(ab), it suffices to verify that (−a) · b is the additive inverse
of a · b. This can be accomplished by showing that a · b+ (−a) · b = 0. Observe that

a · b+ (−a) · b = [a+ (−a)] · b = 0 · b = 0.

A proof that a · (−b) = −(a · b) is similar.

Corollary 14.15 Let (R,+, ·) be a ring and let a, b ∈ R. Then

(−a) · (−b) = ab.

Proof. By Theorem 14.14, (−a) · (−b) = a · [−(−b)], and by Theorem 14.13, −(−b) = b. Thus
(−a) · (−b) = a · b.

In the ring of integers we know that if a, b ∈ Z, then a+(−b) = a−b. We follow this convention
in an arbitrary ring. If (R,+, ·) is a ring and a, b ∈ R, then we define the subtraction of b from
a as a− b = a+ (−b). In particular, if a = b in R, then we arrive at the seemingly obvious fact
that a− b = b− b = b+ (−b) = 0.

We present a basic fact concerning subtraction.

Result 14.16 Let (R,+, ·) be a ring and let a, b, c ∈ R. Then a(b− c) = ab− ac.

Proof. Observe that a(b− c) = a[b+(−c)] = ab+a · (−c). By Theorem 14.14, a(−c) = −(ac),
so a(b− c) = ab+ [−(ac)] = ab− ac.

14.3 Subrings

We have seen that the subset 2Z of Z is a ring when the operations of addition and multi-
plication used in 2Z are the same as those of Z. Since Z is already a ring, we found that it was
relatively easy to prove that 2Z is a ring. We saw that 2Z inherits the properties R1, R2, R5,
and R6 of a ring from Z. What we didn’t know automatically, and therefore had to verify, was
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that 2Z is closed under addition and multiplication, that the zero element of Z is also in 2Z,
and that each element of 2Z has an additive inverse in 2Z. In general, then, it is much easier
to prove that a subset S of a known ring R is a ring under the same operations defined on R.
This observation leads us to an important concept in the study of rings.

Let R be a ring. If S is a subset of R such that S is a ring under the same operations defined
on R, then S is called a subring of R. If R contains at least two elements, then R contains
at least two subrings, namely R itself and the “zero subring” {0}. We now state exactly what
properties need to be verified to show that a subset of a known ring R is a subring of R.

Theorem 14.17 (The Subring Test) A nonempty subset S of a ring R is a subring of R
if and only if S is closed under subtraction and multiplication.

Proof. If S is a subring of R, then certainly S is closed under subtraction and multiplication.
For the converse, let R be a ring and S a nonempty subset of R that is closed under subtraction
and multiplication. We show that S itself is a ring. Since S �= ∅, there is some element
s ∈ S. Because S is closed under subtraction, s − s = 0 ∈ S, that is, the zero element of
R belongs to S and so property R3 holds. Now let a ∈ S. Again, since S is closed under
subtraction, 0 − a = 0 + (−a) = −a ∈ S and so property R4 holds. This implies that the
additive inverse of an element of S also belongs to S. For a, b ∈ S, we know that −b ∈ S and so
a− (−b) = a+ [−(−b)] = a+ b ∈ S. Hence S is closed under addition as well.

Now it remains to show that addition is commutative, that addition and multiplication are
associative, and that distributive laws hold, namely, properties R1, R2, R5, and R6 hold in S.
But all these properties are inherited from R and so hold in S as well.

Consequently, to show that a subset S of a ring R is a subring, we need only show that S
is nonempty and that S is closed under subtraction and multiplication. We now illustrate how
the Subring Test is used by presenting several examples, beginning with a new proof that 2Z is
a ring under ordinary addition and multiplication.

Result 14.18 The subset 2Z of even integers is a subring of Z.

Proof. Since 0 is an even integer, 2Z is nonempty. Let a, b ∈ 2Z. Then a = 2x and b = 2y,
where x, y ∈ Z. Observe that a − b = 2x − 2y = 2(x − y) and ab = (2x)(2y) = 2(2xy). Since
x− y and 2xy are integers, a− b and ab belong to 2Z. By the Subring Test, 2Z is a subring of
Z.

Result 14.19 The subset R×{0} = {(x, 0) : x ∈ R} of the ring R×R is a subring of R×R.

Proof. Since (0, 0) ∈ R×{0}, the set R×{0} is nonempty. Let a, b ∈ R×{0}. Then a = (x, 0)
and b = (y, 0) for some x, y ∈ R. Thus a−b = (x, 0)−(y, 0) = (x−y, 0−0) = (x−y, 0) ∈ R×{0}
and a ·b = (x, 0) · (y, 0) = (xy, 0) ∈ R×{0}. By the Subring Test, R×{0} is a subring of R×R.

The next example concerns a subring of the ring of complex numbers. A complex number
of the form a+ bi, where a, b ∈ Z and i =

√−1, is called a Gaussian integer.

Result 14.20 The set G = {a+ bi : a, b ∈ Z} of Gaussian integers is a subring of the ring C
of complex numbers.
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Proof. Since 0 = 0 + 0i ∈ G, the set G is nonempty. Let x, y ∈ G. Then x = a + bi and
y = c+ di, where a, b, c, d ∈ Z. Observe that

x− y = (a+ bi) − (c+ di) = (a− c) + (b− d)i

and
xy = (a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i.

Since a− c, b− d, ac− bd, and ad+ bc are integers, x− y and xy are Gaussian integers. By the
Subring Test, G is a subring of C.

The elements that belong to two subrings of a ring R also produce a subring of R.

Result 14.21 If S1 and S2 are subrings of a ring R, then S1 ∩ S2 is also a subring of R.

Proof. Since 0 ∈ S1 and 0 ∈ S2, it follows that 0 ∈ S1 ∩ S2 and so S1 ∩ S2 is nonempty. Let
a, b ∈ S1 ∩ S2. Then a, b ∈ Si for i = 1, 2. Since S1 and S2 are subrings of R, it follows that
a− b ∈ Si and ab ∈ Si for i = 1, 2. Hence a− b ∈ S1 ∩ S2 and ab ∈ S1 ∩ S2. Therefore, by the
Subring Test, S1 ∩ S2 is a subring of R.

14.4 Integral Domains

Properties possessed by the integers have led us to the concept of a ring as well as two special
kinds of rings, namely commutative rings and rings with unity. We have seen that if R is a ring,
then a · 0 = 0 · a = 0 for every a ∈ R. This property can be stated in another way:

Let a, b ∈ R. If a = 0 or b = 0, then a · b = 0. (14.3)

Of course, the converse of (14.3) also holds in the ring Z:

Let a, b ∈ Z. If a · b = 0, then a = 0 or b = 0. (14.4)

The implication (14.4) also holds in the ring of real numbers. Indeed, (14.4) is the critical
property of real numbers needed for solving many equations. For example, if (x− 3)(x+2) = 0,
where x ∈ R, then x = 3 or x = −2. This leads us to another important concept.

A nonzero element a in a ring R is called a zero divisor of R if there exists a nonzero
element b in R such that either ab = 0 or ba = 0. Of course, in this case, b is a zero divisor of
R as well.

Certainly then, the rings Z and R have no zero divisors. Furthermore, 2Z,Q, and C are
rings possessing no zero divisors. There are, however, some well-known rings that do have zero
divisors. In Z6, we have seen that [2][3] = [6] = [0]. Since [2] �= [0] and [3] �= [0], it follows
that [2] and [3] are zero divisors in Z6. The residue class [4] is also a zero divisor in Z6 since
[4][3] = [0].

Consider the functions f and g in FR defined as:

f(x) =

{
1 if x ∈ Q
0 if x ∈ I g(x) =

{
0 if x ∈ Q
1 if x ∈ I

Then (f · g)(x) = f(x) · g(x) = 0 = f0(x) for all x ∈ R. Hence f · g = f0, the zero element of
FR, but f �= f0 and g �= f0. So f and g are zero divisors in FR.

In M2(R), let
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A =

[
0 1
0 1

]
and B =

[
1 1
0 0

]
.

Then

AB =

[
0 0
0 0

]
while BA =

[
0 2
0 0

]
.

Hence A and B are zero divisors in the noncommutative ring M2(R).
From what we have seen, it is not all that uncommon for a ring R to contain nonzero elements

whose product is the zero element of R. Thus, it is useful to distinguish those rings that contain
zero divisors from those that do not. Before proceeding further though, we need to address one
special kind of ring. A ring R is called trivial if it contains only one element – necessarily,
then, the zero element. That is, R is trivial if R = {0}. If R is nontrivial, then it contains at
least two elements, and consequently at least one nonzero element. If R is a trivial ring, then
certainly a · 0 = 0 · a = a for all a ∈ R since a = 0 is the only element of R. Therefore, if R
is trivial, then it contains a unity (namely 0). Obviously, a trivial ring is commutative as well.
On the other hand, if R is a nontrivial ring with unity, then it cannot occur that the unity and
zero elements are the same.

Theorem 14.22 If R is a nontrivial ring with unity 1, then 1 �= 0.

Proof. Assume, to the contrary, that 1 = 0. Since R is a nontrivial ring, there is an element
a ∈ R such that a �= 0. However, then

a = a · 1 = a · 0 = 0,

which is a contradiction.

A nontrivial commutative ring with unity that contains no zero divisors is called an integral
domain. Therefore, all of the rings Z, Q,R, and C are integral domains.

Not all commutative rings with unity are integral domains, however. For example, we saw
that [2] and [3] are zero divisors in Z6. We also saw that FR possesses zero divisors. Moreover,
since (0, 1)·(1, 0) = (0, 0) inR2, it follows that (0, 1) and (1, 0) are zero divisors inR2. Therefore,
although all of Z6, FR, and R2 are commutative rings with unity, none is an integral domain.

Since an integral domain is required to be a commutative ring with a unity, 2Z is not an
integral domain, despite the fact that it is both commutative and contains no zero divisors, as
it does not contain a unity.

We have seen that every ring satisfies the Cancellation Law of Addition. For multiplication,
the situation can be quite different. There are two possible cancellation laws in this case.

Cancellation Laws of Multiplication: Let R be a ring and let a, b, c ∈ R.
(1) If ab = ac, where a �= 0, then b = c.

(2) If ac = bc, where c �= 0, then a = b.

Of course, if R is a commutative ring, then (1) and (2) say the same thing. In a noncom-
mutative ring, (1) is referred to as the Left Cancellation Law of Multiplication and (2) as the
Right Cancellation Law of Multiplication. In the ring Z6, [3] · [2] = [3] · [4] but [2] �= [4]. So the
Cancellation Laws of Multiplication fail to hold in Z6. The Cancellation Laws of Multiplication
never fail to hold in rings without zero divisors, however.
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Theorem 14.23 Let R be a ring. Then the Cancellation Laws of Multiplication hold in R if
and only if R contains no zero divisors.

Proof. Assume first that R is a ring without zero divisors. We only verify the Left Cancellation
Law (1) since the proof of (2) is similar. Let a, b, c ∈ R, where a �= 0 and ab = ac. Since ab = ac,
it follows that ab + (−(ac)) = ac + (−(ac)) and so ab − ac = 0. Thus a(b − c) = 0. Since R
contains no zero divisors and a �= 0, it follows that b− c = 0 and so b = c.

For the converse, assume that R is a ring in which the Cancellation Laws of Multiplication
hold. We show that R contains no zero divisors. Let a, b ∈ R such that ab = 0. We show that
a = 0 or b = 0. If a = 0, then we have the desired result. So we may assume that a �= 0. Hence
a · b = 0 = a ·0 and so a · b = a ·0. By the (Left) Cancellation Law of Multiplication, the element
a can be canceled in a · b = a · 0, arriving at b = 0. Thus R has no zero divisors.

Since a ring R satisfying the Cancellation Laws of Multiplication is equivalent to R containing
no zero divisors, we have an immediate consequence of Theorem 14.23.

Corollary 14.24 Let R be a nontrivial commutative ring with unity. Then R is an integral
domain if and only if the Cancellation Law of Multiplication holds in R.

While Z6 is not an integral domain, it is not difficult to show that Z5 is (by constructing
a multiplication table for Z5 as in the same manner done for Z6 in Figure 7.1 of Chapter 7).
Consequently, some rings Zn are integral domains while others are not. You might have seen a
difference between Z6 and Z5 already, namely, 5 is prime and 6 is not. We are about to see that
this is the key observation. In the proof of the next theorem, we will use the fact that if a and
b are integers and p is a prime such that p | ab, then p | a or p | b. (This theorem is discussed
in detail in Chapter 11. In particular, see Corollary 11.14.)

Theorem 14.25 For an integer n ≥ 2, the ring Zn is an integral domain if and only if n is
a prime.

Proof. First, we show that if Zn is an integral domain, then n is a prime. Assume that n is
not a prime. Then n = ab for some integers a and b with 1 < a < n and 1 < b < n. Thus
[a] �= [0] and [b] �= [0] in Zn. On the other hand, [a][b] = [ab] = [n] = [0] in Zn. Hence [a] and
[b] are zero divisors in Zn and so Zn is not an integral domain.

For the converse, assume that n is a prime. We show that Zn is an integral domain. Certainly,
Zn is a nontrivial commutative ring with unity. It remains only to show that Zn has no zero
divisors. Let [a], [b] ∈ Zn such that [a] · [b] = [0]. Then [a] · [b] = [ab] = [0], which implies that
ab ≡ 0 (mod n). Therefore, n | ab. Since n is a prime, it follows by Corollary 11.14 that n | a
or n | b; so [a] = [0] or [b] = [0]. Thus Zn contains no zero divisors.

14.6 Fields

Initially, we saw that many fundamental properties of integers are shared by other algebraic
structures. This led us to the concept of rings. Among the many rings we encountered are Z,
2Z, Q, R, C, Zn, FR, and M2(R). However, only some of these are commutative rings with
unity, namely, Z,Q, R, C, Zn, and FR; and only some of these are integral domains, namely,
Z,Q, R, C, and Zp, where p is a prime. There is a property that Q, R, C, and Zp possess that
Z does not, however, which will finally allow us to distinguish Z from these rings.
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Let a be a nonzero integer. Unless a is 1 or −1, there is no integer b such that ab = 1. On
the other hand, if a is a nonzero rational number, then there is always a rational number b such
that ab = 1. Indeed, b = 1/a ∈ Q has this property.

This discussion leads us to another concept. Let R be a ring with unity 1. A nonzero element
a of R is called a unit if there is some element b in R such that ab = ba = 1. In this case, b is
called a multiplicative inverse of a. (Of course, b is also a unit with multiplicative inverse a.)
We must take care to distinguish between the terms “unit” and “unity” in a ring R. A unity in
R is an element 1 ∈ R such a · 1 = 1 · a = a for all a ∈ R. On the other hand, if R is a nontrivial
ring with unity 1, then a nonzero element a ∈ R is a unit if a · b = b · a = 1 for some b ∈ R. The
unity 1 is always a unit since 1 · 1 = 1. As with additive inverses, multiplicative inverses in a
ring are unique.

Theorem 14.26 Let R be a nontrivial ring with unity. Then each unit in R has a unique
multiplicative inverse.

Proof. Let a be a unit in R and suppose that b and c are multiplicative inverses of a. Hence
ab = ba = 1 and ac = ca = 1. It then follows that

b = b · 1 = b(ac) = (ba)c = 1 · c = c.

Therefore, a has a unique multiplicative inverse.

For a unit a in a nontrivial ring with unity, we write a−1 for the (unique) multiplicative
inverse of a. The only units in Z are 1 and −1 since these are the only integers a for which there
is an integer b such that ab = 1. In Q and R, however, all nonzero elements are units. In Z6,
[5] · [5] = [25] = [1], so both [1] and [5] are units. Furthermore, there are no other units in Z6,
as can be seen from the multiplication table (Figure 7.1) in Chapter 7.

A nontrivial commutative ring with unity in which every nonzero element is a unit is called
a field. In addition to Q and R, the ring C of complex numbers is a field.

Result 14.27 The ring C of complex numbers is a field.

Proof. We have already noted that C is a commutative ring with a unity, so we are only
required to show that every nonzero complex number is a unit. Let x be a nonzero complex
number. Hence x = a + bi, where a, b ∈ R and either a �= 0 or b �= 0. Thus a2 + b2 �= 0. We
show that there exists a complex number y = c+ di, where c, d ∈ R, such that xy = 1 = 1+ 0i.

Let c =
a

a2 + b2
and d =

−b
a2 + b2

and observe that

xy = (a+ bi)(c+ di) = (a+ bi)
(

a

a2 + b2
+

−b
a2 + b2

i

)

=
1

a2 + b2
(a+ bi)(a− bi) =

1
a2 + b2

(
a2 − b2i2

)

=
a2 + b2

a2 + b2
= 1 = 1 + 0i.

Hence x has a multiplicative inverse, namely, x−1 =
a

a2 + b2
+

−b
a2 + b2

i.

Proof Analysis In the proof of the preceding result, for the nonzero complex number x =
a + bi, how did we know to choose y = c + di so that xy = 1 = 1 + 0i? That is, how did we
know what the multiplicative inverse of x was? Actually, that was not so difficult.
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Since xy = (a+ bi)(c+ di) = 1 + 0i, it follows that (ac− bd) + (ad+ bc)i = 1 + 0i. Hence

ac− bd = 1 (14.5)

and
ad+ bc = 0. (14.6)

Multiplying equation (14.5) by a, equation (14.6) by b, and adding, we obtain

(a2 + b2)c = a; (14.7)

while multiplying equation (14.5) by −b, equation (14.6) by a, and adding, we obtain

(a2 + b2)d = −b. (14.8)

Solving (14.7) for c and (14.8) for d, we find that

c =
a

a2 + b2
and d =

−b
a2 + b2

.

Hence a
a2+b2

+ −b
a2+b2

i is the logical choice for x−1. That c + di is actually x−1 was, of course,
verified in the proof of Result 14.27. ♦

Fields are actually special kinds of integral domains, as we now show.

Theorem 14.28 Every field is an integral domain.

Proof. Let F be a field. To verify that F is also an integral domain, we need only show that
F contains no zero divisors. Let a be a nonzero element of F and let b ∈ F such that ab = 0.
Then 0 = a−1 · 0 = a−1(ab) =

(
a−1a

)
b = 1b = b. Since b = 0, it follows that a is not a zero

divisor.

Certainly, the converse of Theorem 14.28 is not true since Z is an integral domain that is
not a field. However, under a certain restriction, an integral domain is a field as well.

Theorem 14.29 Every finite integral domain is a field.

Proof. Let D be a finite integral domain, say D = {a1, a2, · · · , an}. To show that D is a field,
we need only show that every nonzero element of D has a multiplicative inverse. Let a ∈ D,
where a �= 0, and consider the elements aa1, aa2, · · · , aan. If aai = aaj , where 1 ≤ i ≤ n and
1 ≤ j ≤ n, then ai = aj by the Cancellation Law of Multiplication. This implies that the
elements aa1, aa2, · · · , aan are distinct and are, in fact, all n elements of D. Thus one of these
elements is 1 and so aak = 1 for some integer k with 1 ≤ k ≤ n. Hence ak = a−1 and a has a
multiplicative inverse.

We have seen in Theorem 14.25 that Zn is an integral domain if and only if n is a prime.
Theorem 14.29 now gives us the following result.

Corollary 14.30 The ring Zn is a field if and only if n is prime.
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Exercises for Chapter 14

14.1 Verify that each of the following is a ring by showing that (1) the indicated addition and
multiplication are binary operations and (2) the required six properties are satisfied. (You
may assume that both Z and R are rings under ordinary addition and multiplication.)

(a) The set kZ, where k ∈ Z and k ≥ 2, under ordinary addition and multiplication.

(b) The set Z[
√

2] = {a+ b
√

2 : a, b ∈ Z} under ordinary addition and multiplication.

14.2 Verify that each of the following is not a ring.

(a) The set FR under function addition and function composition.

(b) The set Z under the addition defined by a ∗ b = a and ordinary multiplication.

(c) The set Z under ordinary addition and the multiplication defined by a ∗ b = a.

(d) The set Z under the addition defined by a∗b = min{a, b} and ordinary multiplication.

(e) The set Z under ordinary addition and the multiplication defined by a∗b = min{a, b}.

14.3 For a given set S and binary operations ∗ and ◦, determine whether (S, ∗, ◦) is a ring.

(a) S = R, a ∗ b = a+ b+ 1, a ◦ b = ab.

(b) S = R+, the set of positive real numbers, a ∗ b = ab and a ◦ b = ab.

14.4 Let a be an element in a ring (R,+, ·). Complete the proof of Theorem 14.12 by proving
that 0 · a = 0.

14.5 Let a and b be elements in a ring (R,+, ·). Complete the proof of Theorem 14.14 by
proving that a · (−b) = −(a · b).

14.6 Let R be a ring with unity 1. Use Theorem 14.14 to prove that (−1)a = −a for all a ∈ R.

14.7 Let (R,+, ·) be a ring with the property that a2 = a · a = a for every a ∈ R.

(a) Prove that every element in R is its own additive inverse, that is, prove that −a = a
for every a ∈ R. [Hint: Consider (a+ a)2.]

(b) Prove that R is a commutative ring. [Hint: Consider (a+ b)2.]

14.8 Does there exist an example of a nontrivial ring (R,+, ·), that is, R has at least two
elements, such that addition and multiplication in R are the same, namely, a+ b = ab for
all a, b ∈ R? Justify your answer.

14.9 Verify that each of the following subsets is a subring of the given ring.

(a) S =

{[
a 0
0 b

]
: a, b ∈ R

}
in the ring M2(R).

(b) S = {a+ b 3
√

2 + c 3
√

4 : a, b, c ∈ Q} in the ring R.

14.10 Prove that the subset S = {[0], [2], [4]} is a subring of Z6.
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14.11 Recall that a Gaussian integer is a complex number of the type a+ bi, where a, b ∈ Z and
i =

√−1, and that the set G of Gaussian integers is a subring of the ring C of complex
numbers. Define an even Gaussian integer to be a complex number of the type a + bi,
where a, b ∈ 2Z. Is the set 2G of even Gaussian integers a subring of G? Justify your
answer.

14.12 By Result 14.21, if S1 and S2 are subrings of a ring R, then S1 ∩S2 is a subring of R. Both
2Z and 3Z are subrings of the ring Z. Give a simple description of the subring 2Z∩ 3Z in
Z. Justify your answer.

14.13 Let S =

{[
a b
0 0

]
: a, b ∈ R

}
.

(a) Prove that S is a subring of M2(R).

(b) Prove that there is an element E ∈ S such that EA = A for all A ∈ S, but there is
an element C ∈ S such that CE �= C.

(c) Prove that S does not possess a unity.

14.14 Use Theorem 14.23 to prove Corollary 14.24.

14.15 Define multiplication ◦ on 2Z by a ◦ b = ab/2. Prove that (2Z,+, ◦) is an integral domain,
where + is ordinary addition.

14.16 Let R be a commutative ring with unity.

(a) Prove that a unit of R is not a zero divisor in R.

(b) Determine whether the converse of (a) is true.

(c) Prove that if R is a finite ring and a is not a zero divisor of R, then a has a multi-
plicative inverse in R.

14.17 Define addition ∗ and multiplication ◦ on Z as follows:

a ∗ b = a+ b− 1 and a ◦ b = a+ b+ ab.

Prove that (Z, ∗, ◦) is a ring with unity and answer the following questions.

(a) Is this ring commutative?

(b) Is this ring an integral domain?

(c) Is this ring a field?

14.18 Show that Z[
√

2] = {a+ b
√

2 : a, b ∈ Z} is not a field.

14.19 Give an example of a ring that is not a field but has a subring that is a field.

14.20 Let R be a nontrivial commutative ring with unity. Prove that R is a field if and only if
for every a, b ∈ R with a �= 0, the equation ax = b has a solution x ∈ R.

14.21 Prove that Q[i] = {a+ bi : a, b ∈ Q} is a field.

14.22 Let (F,+, ·) be a field and let a, b ∈ F with a �= 0. Show that the equation a · x = b has a
unique solution x ∈ F .
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14.23 Give examples of the following (if they exist):

(a) a finite ring

(b) an infinite ring

(c) a noncommutative finite ring

(d) a noncommutative infinite ring

(e) a ring with unity

(f) a ring without unity

(g) a noncommutative ring with unity

(h) a noncommutative ring without unity

(i) a ring that is not an integral domain

(j) a finite integral domain

(k) an infinite integral domain

(") an integral domain that is not a field

(m) a finite field

(n) an infinite field

14.24 For the following statement S and proposed proof, either (1) S is true and the proof is
correct, (2) S is true and the proof is incorrect, or (3) S is false and the proof is incorrect.
Explain which of these occurs.

S: Let A = {n ∈ N : n = 0}. Then A is a subring of (Z,+, ·).
Proof. Let a, b ∈ S. Then a = 0 and b = 0. Since a − b = 0 − 0 = 0 ∈ A and
a · b = 0 · 0 = 0 ∈ A, it follows that A is closed under subtraction and multiplication. By
the Subring Test, (A,+, ·) is a subring of (Z,+, ·).

14.25 For the following statement S and proposed proof, either (1) S is true and the proof is
correct, (2) S is true and the proof is incorrect, or (3) S is false and the proof is incorrect.
Explain which of these occurs.

S: Let R be a ring with unity containing at least two elements and let

R′ = {a ∈ R : a− r is a unit for each r ∈ R}.

Then R′ is a subring of R.

Proof. Let a, b ∈ R′. First, consider a − b and r ∈ R. Then (a − b) − r = a − (b + r).
Since a ∈ R′ and b + r ∈ R, it follows that (a − b) − r is a unit and so a − b ∈ R′. Next,
consider ab and r′ ∈ R. Then ab− r′ = a− (a− ab+ r′). Since a ∈ R′ and a− ab+ r′ ∈ R,
it follows that ab− r′ is a unit. Thus ab ∈ R′. By the Subring Test, R′ is a subring of R.



Chapter 15

Proofs in Linear Algebra

A topic you may very well have studied in geometry, calculus, or physics is vectors. You
might recall vectors both in the plane R2 = R × R and in 3-space R3 = R × R × R.
Often one thinks of a vector as a directed line segment from the origin to some other point.
Examples of these (both in the plane and in 3-space) are shown in Figure 15.1.

(4, 3)

4

y
z

x

3

(a)

3

4

(b)x

y

2

(2, 3, 4)

Figure 15.1: Vectors in the plane and 3-space

The vector u in the plane (it is customary to print vectors in bold) shown in Fig-
ure 15.1(a) can be expressed as u = (4, 3); while the vector v in 3-space shown in Fig-
ure 15.1(b) can be expressed as v = (2, 3, 4). The vectors i = (1, 0) and j = (0, 1) in the
plane and i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1) in 3-space will be of special interest to
us.

15.1 Properties of Vectors in 3-Space

One important feature of vectors is that they can be added (to produce another vector);
while another is that a vector can be multiplied by an element of some set, usually a
real number (again to produce another vector). In this context, these elements are called
scalars. Let’s focus on vectors in 3-space for the present. Let u = (a1, b1, c1) and v =
(a2, b2, c2), where ai, bi, ci (i = 1, 2) are real numbers. The sum of u and v is defined by

u+ v = (a1 + a2, b1 + b2, c1 + c2)

1
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and the scalar multiple of u by a scalar (real number) α is defined by

αu = (αa1, αb1, αc1).

From this definition, it follows that

u = (a1, b1, c1) = (a1, 0, 0) + (0, b1, 0) + (0, 0, c1)
= a1(1, 0, 0) + b1(0, 1, 0) + c1(0, 0, 1) = a1i+ b1j+ c1k.

That is, it is possible to express a vector u in 3-space in terms of (and to be called a
linear combination of) the vectors i, j, and k in 3-space. Listed below are eight simple,
yet fundamental, properties that follow from these definitions of vector addition and scalar
multiplication in R3:

1. u+ v = v + u for all u,v ∈ R3.

2. (u+ v) +w = u+ (v +w) for all u,v,w ∈ R3.

3. For z = (0, 0, 0), u+ z = u for all u ∈ R3.

4. For each u ∈ R3, there exists a vector in R3 which we denote by −u such that
u+ (−u) = z = (0, 0, 0).

5. α(u+ v) = αu+ αv for all α ∈ R and all u,v ∈ R3.

6. (α+ β)u = αu+ βu for all α, β ∈ R and all u ∈ R3.

7. (αβ)u = α(βu) for all α, β ∈ R and all u ∈ R3.

8. 1u = u for all u ∈ R3.

These properties are rather straightforward to verify, as we illustrate with properties 1,
4, and 6. To verify property 1, observe that

u+ v = (a1, a2, a3) + (b1, b2, b3) = (a1 + b1, a2 + b2, a3 + b3)
= (b1 + a1, b2 + a2, b3 + a3) = v + u.

Here, we used only the definition of addition of vectors in R3 and the fact that addition of
real numbers is commutative.

To verify property 4, we begin with a vector v = (b1, b2, b3) ∈ R3 and show that there
is some vector in R3, which we denote by −v, such that v + (−v) = z = (0, 0, 0). There is
an obvious choice for −v, however, namely (−b1,−b2,−b3). Observe that

v + (−b1,−b2,−b3) = (b1, b2, b3) + (−b1,−b2,−b3)
= (b1 + (−b1), b2 + (−b2), b3 + (−b3)) = (0, 0, 0).

Hence, −v = (−b1,−b2,−b3) has the desired property. We note also that, according to the
definition of scalar multiplication in R3,

(−1)v = ((−1)b1, (−1)b2, (−1)b3) = (−b1,−b2,−b3) = −v.

We will revisit this observation later.
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To establish property 6, observe that

(α+ β)u = (α+ β)(a1, b1, c1)
= ((α+ β)a1, (α+ β)b1, (α+ β)c1))
= (αa1 + βa1, αb1 + βb1, αc1 + βc1)
= (αa1, αb1, αc1) + (βa1, βb1, βc1)
= α(a1, b1, c1) + β(a1, b1, c1)
= αu+ βu.

Thus, showing that (α + β)u = αu + βu also depends only on some familiar properties
of addition and multiplication of real numbers. Vectors in the plane can be added and
multiplied by scalars in the expected manner and, in fact, satisfy properties 1-8 as well.

15.2 Vector Spaces

In addition to vectors in the plane and 3-space, there are other mathematical objects
that can be added and multiplied by scalars so that properties 1-8 are satisfied. Indeed,
these objects provide a generalization of vectors in the plane and 3-space. For this reason,
we will refer to these more abstract objects as vectors as well. The study of vectors is a
major topic in the area of mathematics called linear algebra.

A nonempty set V , every two elements of which can be added (that is, if u,v ∈ V , then
u + v is a unique vector of V ) and each element of which can be multiplied by any real
number (that is, if α ∈ R and v ∈ V , then αv is a unique element in V ) is called a vector
space (in fact, a vector space over R) if it satisfies the following eight properties:

1. u+ v = v + u for all u,v ∈ V . (Commutative Property)

2. (u+ v) +w = u+ (v +w) for all u,v,w ∈ V . (Associative Property)

3. There exists an element z ∈ V such that v + z = v for all v ∈ V .

4. For each v ∈ V , there exists an element −v ∈ V such that v + (−v) = z.

5. α(u+ v) = αu+ αv for all α ∈ R and all u,v ∈ V .

6. (α+ β)v = αv + βv for all α, β ∈ R and all v ∈ V .

7. (αβ)v = α(βv) for α, β ∈ R and all v ∈ V .

8. 1v = v for all v ∈ V .

The elements of V are called vectors and the real numbers in this definition are called
scalars. Hence if u,v ∈ V and α, β ∈ R, then both αu and βv belong to V . Therefore,
αu+βv ∈ V . The vector αu+βv is called a linear combination of u and v. We can also
discuss linear combinations of more than two vectors. Let u, v, w be three vectors in V
and let α, β, γ be three scalars (real numbers). Therefore, αu, βv, and γw are three vectors
in V and αu+ βv + γw is a linear combination of u, v, and w. We’ve now encountered a
familiar situation in mathematics. Since addition in V is only defined for two vectors, what
exactly is meant by αu+βv+γw? There are two obvious interpretations of αu+βv+γw,
namely, (αu+ βv) + γw (where αu and βv are added first, producing the vector αu+ βv,
which is then added to γw) and αu+(βv+ γw). However, property 2 (the associative law
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of addition of vectors) guarantees that both interpretations give us the same vector and
consequently, there is nothing ambiguous about writing αu+βv+γw without parentheses.
In fact, if v1,v2, . . . ,vn ∈ V and α1, α2, . . . , αn ∈ R, then α1v1 + α2v2 + . . . + αnvn is a
linear combination of the vectors v1,v2, . . . ,vn.

The element z ∈ V described in property 3 (and used in property 4) is called a zero
vector and an element −v in property 4 is called a negative of v. By the commutative
property, we also know that z+ v = v and (−v) + v = z for every vector v ∈ V . Since V
satisfies properties 1–4, the set V forms an abelian group under addition (see Chapter 13).

Although we have only defined a vector space over the set R of real numbers (and this
is all we will deal with), it is not always required that the scalars be real numbers. Indeed,
there are certain situations when complex numbers are not only suitable scalars but in fact,
the preferred scalars. Other possibilities exist as well.

Of course, we have seen two examples of vector spaces, namely,R2 andR3 (with addition
and scalar multiplication defined above). More generally, n-space Rn = R × R × . . . × R
(n factors) is a vector space where addition of two vectors u = (a1, a2, . . . , an) and v =
(b1, b2, . . . , bn) is defined by

u+ v = (a1 + b1, a2 + b2, . . . , an + bn)

and scalar multiplication αu, where α ∈ R, is defined by

αu = (αa1, αa2, . . . , αan).

We now describe two vector spaces of a very different nature. Recall that FR is the set
of all functions from R to R, that is,

FR = {f : f : R → R}.

Therefore, the well-known trigonometric function f1 : R → R defined by f1(x) = sinx for
all x ∈ R belongs to FR. The function f2 : R → R defined by f2(x) = 3x+ x/(x2 + 1) for
all x ∈ R also belongs to FR.

For f, g ∈ FR and a scalar (real number) α, addition and scalar multiplication are
defined by

(f + g)(x) = f(x) + g(x) for all x ∈ R,
(αf)(x) = α(f(x)) for all x ∈ R.

For the functions f1 and f2 defined above,

(f1 + f2)(x) = sinx+ 3x+
x

x2 + 1
and (5f2)(x) = 15x+

5x
x2 + 1

.

Under these definitions of addition and scalar multiplication, FR is a vector space, the
verification of which depends only on ordinary addition and multiplication of real numbers.
As an illustration, we verify that FR satisfies properties 2-5 of a vector space.

First we verify property 2. Let f, g, h ∈ FR. Then

((f + g) + h)(x) = (f + g)(x) + h(x) = (f(x) + g(x)) + h(x)
= f(x) + (g(x) + h(x)) = f(x) + (g + h)(x)
= (f + (g + h))(x)
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for all x ∈ R. Therefore, (f + g) + h = f + (g + h).
Second we show that FR satisfies property 3 of a vector space. Define the (constant)

function f0 : R → R by f0(x) = 0 for all x ∈ R. We show that f0 is a zero vector for FR.
For f ∈ FR,

(f + f0)(x) = f(x) + f0(x) = f(x) + 0 = f(x)

for all x ∈ R. Therefore, f + f0 = f . The function f0 is called the zero function in FR.
Next we show that FR satisfies property 4 of a vector space. For each function f ∈ FR,

define the function −f : R → R by (−f)(x) = −(f(x)) for all x ∈ R. Since

(f + (−f))(x) = f(x) + (−f)(x) = f(x) + (−f(x)) = 0 = f0(x)

for all x ∈ R, it follows that f + (−f) = f0 and so −f is a negative of f .
Finally, we show that FR satisfies property 5 of a vector space. Let f, g ∈ FR and

α ∈ R. Then, for each x ∈ R,

(α(f + g))(x) = α ((f + g)(x)) = α (f(x) + g(x))
= αf(x) + αg(x) = (αf)(x) + (αg)(x) = (αf + αg)(x)

and so α(f + g) = αf + αg.
We now consider a special class of real-valued functions defined on R. These functions

are important in many areas of mathematics, not only linear algebra. A function p : R → R
is called a polynomial function (actually a polynomial function over R) if

p(x) = a0 + a1x+ . . .+ anx
n

for all x ∈ R, where n is a nonnegative integer and a0, a1, . . . , an are real numbers. The
expression p(x) itself is called a polynomial in x. You may recall that if an �= 0, then n is
the degree of p(x). The zero function f0 is a polynomial function. It is assigned no degree,
however. We denote the set of all polynomial functions over R by R[x]. Hence R[x] ⊆ FR.

Let f, g ∈ R[x] and let α ∈ R. Then

f(x) = a0 + a1x+ . . .+ anx
n and g(x) = b0 + b1x+ . . .+ bmxm,

where n and m are nonnegative integers and ai, bj ∈ R for 0 ≤ i ≤ n and 0 ≤ j ≤ m. If we
assume, say, that m ≥ n, then the sum f + g is the polynomial function defined by

(f + g)(x) = f(x) + g(x)
= (a0 + b0) + (a1 + b1)x+ . . .+ (an + bn)xn + bn+1x

n+1 + . . .+ bmxm;

while the scalar multiple αf of f by α is the polynomial function defined by

(αf)(x) = α(f(x)) = (αa0) + (αa1)x+ . . .+ (αan)xn.

These definitions are, of course, exactly the same as the sum of two elements of FR and the
scalar product of an element of FR by a real number.

Actually, R[x] is itself a vector space overR under the addition and scalar multiplication
we have just defined. For example, let f, g ∈ R[x]. Since R[x] ⊆ FR and addition in R[x]
is defined exactly the same as in FR, it follows that f + g = g + f ; that is, property 1 of a
vector space is satisfied. By the same reasoning, property 2 and properties 5-8 are satisfied
as well. The zero function f0 is in R[x] and we know that f + f0 = f for all f ∈ FR.
Hence p + f0 = p for all p ∈ R[x]. So f0 is a zero vector for R[x]. For f ∈ R[x] defined
by f(x) = a0 + a1x + . . . + anx

n, we know that −f is given by (−f)(x) = −(f(x)) =
(−a0)+ (−a1)x+ . . .+(−an)xn. Thus −f ∈ R[x] is a negative of f . Thus properties 3 and
4 are satisfied as well, and so R[x] is a vector space over R.
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15.3 Matrices

Among the best known and most important examples of vector spaces are those con-
cerning matrices. A rectangular array of real numbers is called a matrix. The plural of
“matrix” is “matrices”. (In general, a matrix need not be an array of real numbers — it can
be a rectangular array of elements from any prescribed set. However, we will deal only with
real numbers.) Thus a matrix has m rows and n columns for some pair m, n of positive
integers and contains mn real numbers, each of which is located in some row i and column
j for integers i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ n. A matrix with m rows and n columns
is said to have size m×n and is called an m×n matrix (read as “m by n matrix”). Hence

B =

[
1

√
2 −3/2

0 −.8 4

]

is a 2 × 3 matrix, while

C =


 4 1 9

0 3 2
7 −1 1




is a 3 × 3 matrix. A general m × n matrix A is commonly written as

A =




a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn


 .

Therefore, aij represents the element located in row i and column j of A. This is referred
to as the (i, j)-entry of A. In fact, it is convenient shorthand notation to represent the
matrix A by [aij ] and to write A = [aij ]. The ith row of A is [ai1ai2 . . . ain] and the jth
column is 


a1j

a2j
...
amj


 .

For two matrices to be equal, they must have the same size. Furthermore, two m × n
matrices A = [aij ] and B = [bij ] are equal, written as A = B, if aij = bij for all integers i
and j with 1 ≤ i ≤ m and 1 ≤ j ≤ n. That is, A = B if A and B have the same size and
corresponding entries are equal. Hence, in order for

A =

[
2 x −3

1/2 4 0

]
and B =

[
2 4/5 −3
y 4 0

]

to be equal, we must have x = 4/5 and y = 1/2.
For positive integers m and n, let Mmn[R] denote the set of all m × n matrices whose

entries are real numbers. If m = n, then the matrices are called square matrices. The set
of all m × m (square) matrices whose entries are real numbers is also denoted by Mm[R].

We now define addition and scalar multiplication in Mmn[R]. Let A,B ∈ Mmn[R],
where A = [aij ] and B = [bij ]. The sum A+B of A and B is defined as that m×n matrix
[cij ], where cij = aij + bij for all integers i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ n. For α ∈ R,
the scalar multiple αA of A by α is defined as αA = [dij ], where dij = αaij for all integers
i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ n. For example, if
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A =

[
2 −1 −3
0 4 0

]
and B =

[
3 −9 2

−2 5 0

]
,

then

A+B =

[
5 −10 −1

−2 9 0

]
and (−2)A =

[
−4 2 6
0 −8 0

]
.

Under this addition and scalar multiplication, Mmn[R] is a vector space. As an illustration,
we verify that properties 1 and 3-5 of a vector space are satisfied in M2[R]. Let α ∈ R and
let

A =

[
a11 a12
a21 a22

]
and B =

[
b11 b12
b21 b22

]
.

Then

A+B =

[
a11 a12
a21 a22

]
+

[
b11 b12
b21 b22

]
=

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]

=

[
b11 + a11 b12 + a12
b21 + a21 b22 + a22

]
=

[
b11 b12
b21 b22

]
+

[
a11 a12
a21 a22

]
= B +A.

This verifies property 1 of a vector space. We see here that verifying property 1 depended
only on the definition of addition of matrices and the fact that real numbers are commutative
under addition.

Let Z =

[
0 0
0 0

]
, often called the 2 × 2 zero matrix. Then

A+ Z =

[
a11 a12
a21 a22

]
+

[
0 0
0 0

]
=

[
a11 + 0 a12 + 0
a21 + 0 a22 + 0

]

=

[
a11 a12
a21 a22

]
= A

and so Z is a zero element of M2[R], thereby verifying property 3.

Next, let −A =

[
−a11 −a12
−a21 −a22

]
. Consequently,

A+ (−A) =

[
a11 a12
a21 a22

]
+

[
−a11 −a12
−a21 −a22

]
=

[
0 0
0 0

]
= Z,

and so −A is a negative of A. Therefore, property 4 is satisfied. We note also that if A is
multiplied by the scalar −1, then we obtain

(−1)A = (−1)

[
a11 a12
a21 a22

]
=

[
−a11 −a12
−a21 −a22

]
= −A.

Finally,

α(A+B) = α

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]
=

[
α(a11 + b11) α(a12 + b12)
α(a21 + b21) α(a22 + b22)

]
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=

[
αa11 + αb11 αa12 + αb12
αa21 + αb21 αa22 + αb22

]
=

[
αa11 αa12
αa21 αa22

]
+

[
αb11 αb12
αb21 αb22

]

= α

[
a11 a12
a21 a22

]
+ α

[
b11 b12
b21 b22

]
= αA+ αB.

Under the right set of circumstances, matrices can also be multiplied — although this
is, of course, not a requirement for a vector space.

Let A = [aij ] be an m × n matrix and B = [bij ] be an n × r matrix, that is, let A and
B be two matrices, where the number of columns in A equals the number of rows in B. In
this case, we define the product AB of A and B as that m × r matrix [cij ], where

cij = ai1b1j + ai2b2j + . . .+ ainbnj =
n∑

k=1

aikbkj (15.1)

for all integers i and j with 1 ≤ i ≤ m and 1 ≤ j ≤ r. Hence the (i, j)-entry of AB is
obtained from the ith row of A and jth column of B, that is,

[ai1 ai2 . . . ain] and




b1j

b2j
...
bnj




by multiplying corresponding terms of this row and column and then adding all n products.
The expression (15.1) is referred to as the inner product of the ith row of A and the jth
column of B. For example, let

A =

[
1 −3 5 0

−1 0 6 2

]
and B =




1 −6 5
2 0 1
3 3 2

−6 9 0


 .

Since A is a 2 × 4 matrix and B is a 4 × 3 matrix, the product AB is defined and, in fact,
AB = [cij ] is the 2 × 3 matrix, where the six inner products are

c11 = 1 · 1 + (−3) · 2 + 5 · 3 + 0 · (−6) = 10
c12 = 1 · (−6) + (−3) · 0 + 5 · 3 + 0 · 9 = 9
c13 = 1 · 5 + (−3) · 1 + 5 · 2 + 0 · 0 = 12
c21 = (−1) · 1 + 0 · 2 + 6 · 3 + 2 · (−6) = 5
c22 = (−1) · (−6) + 0 · 0 + 6 · 3 + 2 · 9 = 42
c23 = (−1) · 5 + 0 · 1 + 6 · 2 + 2 · 0 = 7.

Hence

AB =

[
10 9 12
5 42 7

]
.

On the other hand, since the matrix B above is a 4 × 3 matrix and A is a 2 × 4 matrix,
the product BA is not defined. Certainly, however, if A and B are any two square matrices
of the same size, then AB and BA are both defined though they need not be equal. For
example, if
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A =

[
1 2
1 2

]
and B =

[
0 1
1 0

]
,

then

AB =

[
2 1
2 1

]
, while BA =

[
1 2
1 2

]
.

15.4 Some Properties of Vector Spaces

Although we have now seen several different vector spaces, there are a number of proper-
ties that these vector spaces have in common (in addition to the eight defining properties).
Indeed, there are a number of additional properties that all vector spaces have in common.
Since vector spaces are defined by eight properties, one might expect, and rightfully so, that
any other properties they have in common are consequences of these eight properties.

According to property 3, every vector space contains at least one zero vector and by
property 4, every vector has at least one negative. We show that “at least one” can be
replaced by “exactly one” in both instances. Actually, these are consequences of the fact
that every vector space is a group under addition (Chapter 13). We verify these nevertheless.

Theorem 15.1 Every vector space has a unique zero vector.

Proof. Let V be a vector space and assume that z and z′ are both zero vectors in V . Since
z is a zero vector, z′ + z = z′. Moreover, since z′ is a zero vector, z + z′ = z. Therefore,
z = z+ z′ = z′ + z = z′.

As a consequence of Theorem 15.1, we now know that a vector space V possesses only
one zero vector z that satisfies property 3 of a vector space. Hence we can now refer to z
as the zero vector of V .

Theorem 15.2 Let V be a vector space. Then every vector in V has a unique negative.

Proof. Let v ∈ V and assume that v1 and v2 are both negatives of v. Thus v + v1 = z
and v + v2 = z. Hence

v1 = v1 + z = v1 + (v + v2) = (v1 + v) + v2 = z+ v2 = v2.

Proof Analysis Let’s revisit the proof of Theorem 15.2. We wanted to show that each
vector v has only one negative. We assumed that there were two negatives of v, namely v1
and v2. Our goal then was to show that v1 = v2. We started with v1. Our idea was to
add z to v1, as this sum is the vector v1 again. Since z can also be expressed as v+v2, we
made this substitution, bringing the vector v2 into the discussion. Eventually, we showed
that this expression for v1 was also equal to v2. There is another approach we could have
tried.

Since v1 and v2 are both negatives of v, it follows that v+v1 = z and v+v2 = z, that
is, v+ v1 = v+ v2. If we add the same vector to both v+ v1 and v+ v2, we obtain equal
vectors (since v+v1 = v+v2). A good choice of a vector to add to both v+v1 and v+v2
is a negative of v (either one!). This gives us the following list of equalities:

v1 + (v + v1) = v1 + (v + v2)
(v1 + v) + v1 = (v1 + v) + v2

z+ v1 = z+ v2

v1 = v2.
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Although this string of equalities results in v1 = v2, this is not a particularly well-written
proof. However, since our goal is to show that v1 = v2, this suggests a way to arrive at
our goal. We start with v1 (at the bottom of the left column), proceed upward, then to the
right, and downward, producing

v1 = z+ v1 = (v1 + v) + v1 = v1 + (v + v1)
= v1 + (v + v2) = (v1 + v) + v2 = z+ v2 = v2,

which is similar to the proof given in Theorem 15.2 (though a bit longer). ♦
As a consequence of Theorem 15.2, we can now refer to −v as the negative of v. Of

course, the zero vector z has the property that z+z = z. However, no other vector has this
property.

Theorem 15.3 Let V be a vector space. If v is a vector such that v+v = v, then v = z.

Proof. Since v + (−v) = z, it follows that

z = v + (−v) = (v + v) + (−v) = v + (v + (−v)) = v + z = v.

A proof like that given for Theorem 15.3 can be obtained by adding −v to the equal
vectors v + v and v and proceeding as we did in the discussion following the proof of
Theorem 15.2. Also, see Exercise 15.6(b).

We now describe two other properties concerning the zero vector that are consequences
of Theorem 15.3.

Corollary 15.4 Let V be a vector space. Then

(i) 0v = z for every vector v in V and

(ii) αz = z for every scalar α ∈ R.

Proof. First, we prove (i). Observe that

0v = (0 + 0)v = 0v + 0v.

By Theorem 15.3, 0v = z.
Next we verify (ii). Observe that

αz = α(z+ z) = αz+ αz.

Again, by Theorem 15.3, αz = z.

Hence, by Corollary 15.4, 0v = z for every vector v in a vector space and αz = z for
every scalar α. That is, if either α = 0 or v = z, then αv = z. We now show that the
converse of this statement is true as well.

Theorem 15.5 Let V be a vector space. If αv = z, then either α = 0 or v = z.
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Proof. If α = 0, then, of course, the statement is true. So we may assume that α �= 0. In
this case,

v = 1v =
(
1
α

α

)
v =

(
1
α

)
(αv) =

(
1
α

)
z = z.

Another useful property is that the scalar multiple of a vector by −1 is the negative of
that vector. Actually, we have observed this earlier with two particular vector spaces but
this is true in general.

Theorem to Prove If v is a vector in a vector space, then (−1)v = −v.
Proof Strategy Since v has a unique negative, to show that (−1)v = −v, we need only
verify that the sum of v and (−1)v is z. ♦

Theorem 15.6 If v is a vector in a vector space, then (−1)v = −v.
Proof. Observe that

v + (−1)v = 1v + (−1)v = (1 + (−1))v = 0v = z.

Hence (−1)v = −v.

15.5 Subspaces

Earlier we saw that FR = {f : f : R → R} is a vector space (under function addition
and scalar multiplication). Since the set R[x] of all polynomial functions over R is a subset
of FR and the addition and scalar multiplication defined in R[x] are exactly the same as
those defined in FR, it was considerably easier to show that R[x] is a vector space. This
idea can be made more general.

For a vector space V , a subset W of V is called a subspace of V if W is vector space
under the same addition and scalar multiplication defined on V . Hence if W is a subspace
of a known vector space V , then W itself is a vector space. Since every subspace contains
a zero vector, W must be nonempty.

As we study vector spaces further, we will see that certain subspaces appear regularly
and consequently it is beneficial to have an understanding of subspaces. Furthermore, some
sets having an addition and scalar multiplication defined on them are subsets of known
vector spaces and can be shown to be vector spaces more easily by verifying that they are
subspaces.

What is required to show that a subset W of a vector space V is a subspace of V ? Of
course, W must satisfy the eight properties required of all vector spaces. In addition, if
u,v ∈ W , then u + v must belong to W . This property is expressed by saying that W
is closed under addition. Also, if α is a scalar (a real number) and v ∈ W , then αv
must belong to W . We express this property by saying that W is closed under scalar
multiplication.

Property 1 (the commutative property) requires that u+v = v+u for every two vectors
u and v inW . However, V is a vector space and satisfies property 1. Thus u+v = v+u and
W satisfies property 1. By the same reasoning, property 2 and properties 5-8 are satisfied
by W . These properties of W are said to be inherited from V . Hence for a nonempty
subset W of a vector space V to be a subspace of V , it is necessary that W be closed under
addition and scalar multiplication. Perhaps surprisingly, these requirements are sufficient
as well for a nonempty subset W of V to be subspace of V .
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Theorem 15.7 (The Subspace Test) A nonempty subset W of a vector space V is a
subspace of V if and only if W is closed under addition and scalar multiplication.

Proof. First, let W be a subspace of V . Certainly, W is closed under addition and scalar
multiplication. For the converse, let W be a nonempty subset of V that is closed under
addition and scalar multiplication. As we noted earlier, W inherits properties 1, 2 and 5-8
of a vector space from V . Since W is nonempty and is closed under addition and scalar
multiplication, only properties 3 and 4 remain to be verified. Since W �= ∅, there is some
vector v in W . Since W is closed under scalar multiplication, it follows by Corollary 15.4(i)
that 0v = z ∈ W . Hence W contains a zero vector (namely the zero vector of V ) and
property 3 is satisfied. Now let w be any vector of W . Again, (−1)w ∈ W . However, by
Theorem 15.6, (−1)w = −w ∈ W , and so w has a negative in W (namely the negative of
w in V ). Thus property 4 is satisfied in W as well.

The proof of Theorem 15.7 brought out two important facts. Namely, if W is a subspace
of a vector space V , then W contains a zero vector (namely, the zero vector of V ) and for
every vector w ∈ W , its negative −w belongs to W as well.

Every vector space V (containing at least two elements) always contains two subspaces,
namely V itself and the subspace consisting only of the zero vector of V . We now present
several examples to illustrate how the Subspace Test (Theorem 15.7) can be applied to show
that certain subsets of a vector space are (or are not) subspaces of that vector space. The
first two examples concern the vector space R3.

Result 15.8 The set
W = {(a, b, 2a − b) : a, b ∈ R}

is a subspace of R3.

First observe that W contains all vectors of R3 whose 3rd coordinate is twice the first
coordinate minus the second coordinate. So for example, W contains (3, 2, 4), taking a = 3
and b = 2, and (0, 0, 0), taking a = b = 0. Of course, if W is to be a subspace of R3, then
it is essential that W contains the zero vector of R3.

Proof of Result 15.8. Since W contains the zero vector of R3, it follows that W �= ∅.
To show that W is a subspace of V , we need only show that W is closed under addition
(that is, if u,v ∈ W , then u+v ∈ W ) and that W is closed under scalar multiplication (that
is, if u ∈ W and α ∈ R, then αu ∈ W ). Let u,v ∈ W and α ∈ R. Then u = (a, b, 2a − b)
and v = (c, d, 2c − d), where a, b, c, d ∈ R. Then

u+ v = (a+ c, b+ d, 2(a+ c) − (b+ d)) ∈ W and
αu = (αa, αb, 2(αa) − (αb)) ∈ W.

By the Subspace Test, W is a subspace of R3.

Example 15.9 Determine whether

W = {(a, b, a2 + b) : a, b ∈ R}

is a subspace of R3.
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Solution. Taking a = b = 1, we see that u = (1, 1, 2) ∈ W . Then 2u = (2, 2, 4). Since
4 �= 22 + 2, it follows that 2u /∈ W . Since W is not closed under scalar multiplication,
W is not a subspace of R3. (The subset W of R is not closed under addition either since
u+ u /∈ W .) ♦

We next consider the vector space FR. We have already mentioned that R[x] is a
subspace of FR. Also, the set CR = {f ∈ FR : f is continuous} is a subspace of FR.
Indeed, R[x] is a subspace of CR as well.

Result 15.10 Let F0 = {f ∈ FR : f(1) = 0}. Then F0 is a subspace of FR.

Hence the function f1 : R → R defined by f1(x) = x− 1 belongs to F0, as does the zero
function f0 : R → R defined by f0(x) = 0 for all x.

Proof of Result 15.10. Since F0 contains the zero function, F0 �= ∅. Let f, g ∈ F0 and
α ∈ R. Then

(f + g)(1) = f(1) + g(1) = 0 + 0 = 0 and (αf)(1) = αf(1) = α · 0 = 0.

Thus f + g ∈ F0 and αf ∈ F0. By the Subspace Test, F0 is a subspace of FR.

Example 15.11 Determine whether

F1 = {f ∈ FR : f(0) = 1}
is a subspace of FR.

Solution. Observe that the functions g, h ∈ FR defined by g(x) = x+1 and h(x) = x2+1
belong to F1. However, (g+h)(x) = g(x)+h(x) = x2+x+2 and (g+h)(0) = 2, so g+h /∈ F1.
Therefore, F1 is not a subspace of FR. ♦

The next example concerns the vector space M2(R) of 2× 2 matrices with real entries.

Result 15.12 The set

W =

{[
a 0
b c

]
: a, b, c ∈ R

}

is a subspace of M2(R).

Hence W consists of all these 2 × 2 matrices whose (1, 2)-entry is 0. Thus the zero
matrix, all of whose entries are 0, belongs to W .

Proof of Result 15.12. Since W contains the zero matrix, W �= ∅. Let A,B ∈ W and
α ∈ R. So

A =

[
a 0
b c

]
and B =

[
d 0
e f

]
,

where a, b, c, d, e, f ∈ R. Then

A+B =

[
a+ d 0
b+ e c+ f

]
and αA =

[
αa 0
αb αc

]
.

Therefore, A + B and αA belong to W and by the Subspace Test, W is a subspace of
M2(R).
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15.6 Spans of Vectors

In Result 15.12 we showed that the set

W =

{[
a 0
b c

]
: a, b, c ∈ R

}

is a subspace of M2(R). Thus if A ∈ W , then A =

[
a 0
b c

]
for some a, b, c ∈ R. Observe,

also, that

A =

[
a 0
b c

]
=

[
a 0
0 0

]
+

[
0 0
b 0

]
+

[
0 0
0 c

]

= a

[
1 0
0 0

]
+ b

[
0 0
1 0

]
+ c

[
0 0
0 1

]
.

In other words, A (and, consequently, every matrix in W ) is a linear combination of[
1 0
0 0

]
,

[
0 0
1 0

]
, and

[
0 0
0 1

]
. Therefore, W is the set of all linear combinations of

these three matrices. This observation illustrates a more general situation.
Recall that if V is a vector space, v1,v2, . . . ,vn ∈ V , and α1, α2, . . . , αn ∈ R, then

every vector of the form α1v1 +α2v2 + . . .+αnvn is a linear combination of the vectors
v1,v2, . . . ,vn. Thus, by taking α1 = α2 = . . . = αn = 0, we see that the zero vector is a
linear combination of v1,v2, . . . ,vn. Also, by taking αi = 1 for a fixed integer i (1 ≤ i ≤ n)
and all other scalars 0, we see that each vector vi is a linear combination of v1,v2, . . . ,vn.
We have noted that every linear combination of vectors in V is a vector in V and, of course,
the set of all such linear combinations is a subset of V . In fact, more can be said of this
subset.

Theorem 15.13 Let V be a vector space containing the vectors v1,v2, . . . ,vn. Then the
set W of all linear combinations of v1,v2, . . . ,vn is a subspace of V .

Proof. Since W contains the zero vector of V , it follows that W �= ∅. Let u,w ∈ W and
let α ∈ R. Then u = α1v1 + α2v2 + . . .+ αnvn and w = β1v1 + β2v2 + . . .+ βnvn, where
αi, βi ∈ R for 1 ≤ i ≤ n. Then

u+w = (α1 + β1)v1 + (α2 + β2)v2 + . . .+ (αn + βn)vn and
αu = (αα1)v1 + (αα2)v2 + . . .+ (ααn)vn.

So both u + w and αu are linear combinations of v1,v2, . . . ,vn and hence belong to W .
Thus by the Subspace Test, W is a subspace of V .

For vectors v1,v2, . . . ,vn in a vector space V , the subspace W of V consisting of all
linear combinations of v1,v2, . . . ,vn is called the span of v1,v2, . . . ,vn and is denoted by
〈v1,v2, . . . ,vn〉. Also, W is referred to as the subspace of V spanned by v1,v2, . . . ,vn.

By Result 15.12,

W =

{[
a 0
b c

]
: a, b, c ∈ R

}
=

〈[
1 0
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]〉
.
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We saw in Result 15.8 that W = {(a, b, 2a − b) : a, b ∈ R} is a subspace of of R3. Since
(a, b, 2a − b) = a(1, 0, 2) + b(0, 1,−1), it follows that W is spanned by the vectors (1, 0, 2)
and (0, 1,−1), that is, W = 〈(1, 0, 2), (0, 1,−1)〉.

We consider another illustration of spans of vectors.

Result 15.14 Let f1, f2, f3, g2 and g3 be five functions in R[x] defined by f1(x) = 1,
f2(x) = 1 + x2, f3(x) = 1 + x2 + x4, g2(x) = x2, and g3(x) = x4 for all x ∈ R, and let
W = 〈f1, f2, f3〉 and W ′ = 〈f1, g2, g3〉. Then W = W ′.

Since W and W ′ are sets of vectors (polynomial functions) and our goal is to show that
W = W ′, we proceed in the standard manner by showing that each of W and W ′ is a subset
of the other.

Proof of Result 15.14. First, we show that W ⊆ W ′. Let f ∈ W . Then f =
af1 + bf2 + cf3 for some a, b, c ∈ R. Hence, for each x ∈ R,

f(x) = a · 1 + b ·
(
1 + x2

)
+ c ·

(
1 + x2 + x4

)
= (a+ b+ c) + (b+ c) · x2 + c · x4.

Thus, f is also a linear combination of f1, g2, and g3. Consequently, W ⊆ W ′. It remains
to show that W ′ ⊆ W . Let g ∈ W ′. Then

g = af1 + bg2 + cg3 for some a, b, c ∈ R.

So, for each x ∈ R,

g(x) = a · 1 + b · x2 + c · x4 = (a − b) · 1 + b ·
(
1 + x2

)
+ c · x4

= (a − b) · 1 + (b − c) ·
(
1 + x2

)
+ c ·

(
1 + x2 + x4

)
.

Hence g is also a linear combination of f1, f2, f3 as well and so W ′ ⊆ W .

From what we have seen, if V is a vector space containing the vectors v1,v2, . . . ,vn,
then W = 〈v1,v2, . . . ,vn〉 is a subspace of V (that contains v1,v2, . . . ,vn). Quite possibly
other subspaces of V contain v1,v2, . . . ,vn as well. Of course, V itself is a subspace of
V containing v1,v2, . . . ,vn. In a certain sense though, W is the smallest subspace of V
containing v1,v2, . . . ,vn.

Theorem 15.15 Let V be a vector space containing the vectors v1, v2, . . ., vn and let
W = 〈v1,v2, . . . ,vn〉. If W ′ is a subspace of V containing v1, v2, . . ., vn, then W is a
subspace of W ′.

Proof. Since W and W ′ are subspaces of V , we need only show that W ⊆ W ′. Let
v ∈ W . Thus v = α1v1 + α2v2 + . . . + αnvn, where αi ∈ R for 1 ≤ i ≤ n. Since vi ∈ W ′

for 1 ≤ i ≤ n and W ′ is a subspace of V , it follows that v ∈ W ′. Hence W ⊆ W ′.

There is a consequence of Theorem 15.15 that is especially useful.

Corollary 15.16 Let V be a vector space spanned by the vectors v1, v2, . . ., vn. If W
is a subspace of V containing v1, v2, . . ., vn, then W = V .
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Proof. Since W is a subspace of V , certainly W ⊆ V . By Theorem 15.15, V ⊆ W . Thus
W = V .

To illustrate a number of the concepts and results introduced thus far, we consider an
example concerning 3-space.

Result 15.17

(i) For the vectors i = (1, 0, 0), j = (0, 1, 0), and k = (0, 0, 1), R3 = 〈i, j,k〉.
(ii) If w1 = (1, 1, 0), w2 = (0, 1, 1), and w3 = (1, 1, 1), then R3 = 〈w1,w2,w3〉.
(iii) Let u1 = (1, 1, 1), u2 = (1, 1, 0), and u3 = (0, 0, 1). Then 〈u1,u2,u3〉 = 〈u1,u2〉.

Proof. Let W1 = 〈i, j,k〉. Since W1 is a subspace of R3, it follows that W1 ⊆ R3.
We now show that R3 ⊆ W1. Let v ∈ R3. So v = (a, b, c), where a, b, c ∈ R. Then
v = (a, 0, 0) + (0, b, 0) + (0, 0, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) = ai + bj + ck. Hence v
is a linear combination of i, j, and k, and so v ∈ W1. Hence R3 ⊆ W1. This implies that
R3 = 〈i, j,k〉 and (i) is verified.

Next, we verify (ii). Let W2 = 〈w1,w2,w3〉. To verify that R3 = W2, it suffices to show
by Corollary 15.16 and part (i) of this result that each of the vectors i, j, and k belongs to
W2. To show that i, j, and k belong toW2, we are then required to show that each of i, j, and
k is a linear combination of w1, w2, and w3. Since i = (1, 0, 0) = (1, 1, 1) + (−1)(0, 1, 1), it
follows that i = 0 ·w1+(−1)w2+1 ·w3. Now j = (0, 1, 0) = (1, 1, 0)+(0, 1, 1)+(−1)(1, 1, 1);
so j = 1 · w1 + 1 · w2 + (−1)w3. Finally, k = (0, 0, 1) = (1, 1, 1) + (−1)(1, 1, 0) and so
k = (−1)w1 + 0 ·w2 + 1 ·w3. Hence R3 = W2 and (ii) is established.

Finally, we verify (iii). Let W = 〈u1,u2〉 and W ′ = 〈u1,u2,u3〉. Since W ′ contains the
vectors u1 and u2, it follows by Theorem 15.15 that W ⊆ W ′.

By Corollary 15.16, to prove that W ′ ⊆ W , we need only show that each of the vectors
u1, u2, and u3 belongs to W , that is, each of these three vectors is a linear combination of
u1 and u2. This is obvious for u1 and u2 as u1 = 1 · u1 + 0 · u2 and u2 = 0 · u1 + 1 · u2.
Thus it remains only to show that u3 is a linear combination of u1 and u2. However,
u3 = (0, 0, 1) = (1, 1, 1) + (−1)(1, 1, 0) = 1 · u1 + (−1)u2, completing the proof.

15.7 Linear Dependence and Independence

For the vectors u1 = (1, 1, 0) and u2 = (0, 1, 1) in R3, the vector u3 = (−1, 1, 2) ∈ R3 is
a linear combination of u1 and u2 since

u3 = (−1, 1, 2) = (−1) · u1 + 2 · u2 = (−1) · (1, 1, 0) + 2 · (0, 1, 1).
Therefore, in a certain sense, the vector u3 depends on u1 and u2 in a linear manner. This
linear dependence can be restated as

(−1) · u1 + 2 · u2 + (−1) · u3 = (0, 0, 0).

This kind of dependence plays an important role in linear algebra.
Let S = {u1,u2, . . . ,um} be a nonempty set of vectors in a vector space V . The set

S is called linearly dependent if there exist scalars c1, c2, . . . , cm, not all 0, such that
c1u1 + c2u2 + . . .+ cmum = z. If S is not linearly dependent, then S is said to be linearly
independent. For S = {u1,u2, . . . ,um}, we also say that the vectors u1,u2, . . . ,um are
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linearly dependent or linearly independent according to whether the set S is linearly de-
pendent or linearly independent, respectively. Consequently, the vectors u1,u2, . . . ,um are
linearly independent if whenever c1u1 + c2u2 + . . . + cmum = z, then ci = 0 for each i
(1 ≤ i ≤ m).

We now consider some examples.

Example 15.18 Determine whether S = {(1, 1, 1), (1, 1, 0), (0, 1, 1)} is a linearly inde-
pendent set of vectors in R3.

Solution. Let a, b, and c be scalars such that

a · (1, 1, 1) + b · (1, 1, 0) + c · (0, 1, 1) = (0, 0, 0).

By scalar multiplication and vector addition, we have (a + b, a + b + c, a + c) = (0, 0, 0),
arriving at the following system of equations:

a+ b = 0
a+ b+ c = 0

a+ c = 0.

Subtracting the first equation from the second, we obtain c = 0. Substituting c = 0 into the
third equation, we obtain a = 0. Substituting a = 0 and c = 0 into the second equation, we
obtain b = 0. Hence a = b = c = 0 and S is linearly independent. ♦

Example 15.19 Determine whether

S =

{[
2 1
1 0

]
,

[
0 1
1 2

]
,

[
1 1
1 1

]}

is a linearly independent set of vectors in M2(R).

Solution. Again, let a, b, and c be scalars such that

a

[
2 1
1 0

]
+ b

[
0 1
1 2

]
+ c

[
1 1
1 1

]
=

[
0 0
0 0

]
.

By scalar multiplication and matrix addition, we have[
2a+ c a+ b+ c
a+ b+ c 2b+ c

]
=

[
0 0
0 0

]
.

This results in the system of equations:

2a+ c = 0
a+ b+ c = 0

2b+ c = 0

where the second equation actually occurs twice. From the first and third equations, it
follows that c = −2a and c = −2b and so a = b = −c/2. Substituting these values for a
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and b in the second equation gives (−c/2) + (−c/2) + c = −c + c = 0, that is, the second
equation is satisfied for every value of c. Hence, if we let c = −2, say, then a = b = 1 and

1 ·
[
2 1
1 0

]
+ 1 ·

[
0 1
1 2

]
+ (−2) ·

[
1 1
1 1

]
=

[
0 0
0 0

]
.

Consequently, S is a linearly dependent set of vectors. ♦
We now show that a familiar set of polynomial functions is linearly independent.

Theorem to Prove For every nonnegative integer n, the set Sn = {1, x, x2, . . . , xn} is
linearly independent in R[x].

Proof Strategy The elements of Sn are actually functions, say Sn = {f0, f1, f2, . . . , fn},
where fi : R → R is defined by fi(x) = xi for 0 ≤ i ≤ n and for all x ∈ R. To show that Sn

is linearly independent, we are required to show that if c0 · 1 + c1x+ c2x
2 + . . .+ cnx

n = 0,
where ci ∈ R for 0 ≤ i ≤ n, then ci = 0 for all i. Of course, the question is how to do
this. By choosing various values of x, we could arrive at a system of equations to solve. For
example, we could begin by letting x = 0, obtaining c0 · 1 + c1 · 0 + c2 · 0 + . . .+ cn · 0 = 0,
and so c0 = 0. Therefore, c1x + c2x

2 + . . . + cnx
n = 0. Letting x = 1 and x = 2, we have

c1 + c2 + . . .+ cn = 0 and 2c1 +22c2 + . . .+2ncn = 0. We could actually arrive at a system
of n equations and n unknowns, but perhaps this is sounding complicated.

On the other hand, from the statement of the theorem, another approach is suggested.
Quite often when we see a theorem stated as “for every nonnegative integer n”, we think
of applying induction. The main challenge to such a proof would be to show that if
{1, x, x2, . . . , xk} is linearly independent, where k ≥ 0, then {1, x, x2, . . . , xk+1} is linearly in-
dependent. Hence we would be dealing with the equation c0·1+c1x+c2x

2+. . .+ck+1x
k+1 = 0

for ci ∈ R, 0 ≤ i ≤ k + 1, attempting to show that ci = 0 for all i (0 ≤ i ≤ k + 1). We
already mentioned that showing c0 = 0 is not difficult. In order to make use of the induction
hypothesis, we need a linear combination of the polynomials 1, x, x2, . . . , xk. One idea for
doing this is to take the derivative of c0 · 1 + c1x+ c2x

2 + . . .+ ck+1x
k+1. ♦

Theorem 15.20 For every nonnegative integer n, the set Sn = {1, x, x2, . . . , xn} is lin-
early independent in R[x].

Proof. We proceed by induction. For n = 0, we are required to show that S0 = {1} is
linearly independent in R[x]. Let c be a scalar such that c · 1 = 0. Then surely c = 0 and
so S0 is linearly independent.

Assume that Sk = {1, x, x2, . . . , xk} is linearly independent in R[x], where k is a non-
negative integer. We show that Sk+1 = {1, x, x2, . . . , xk+1} is linearly independent in R[x].
Let c0, c1, . . . , ck+1 be scalars such that

c0 · 1 + c1x+ c2x
2 + . . .+ ck+1x

k+1 = 0, (15.2)

for all x ∈ R. Letting x = 0 in (15.2), we see that c0 = 0. Now taking the derivatives of
both sides of (15.2), we see that

c1 · 1 + 2c2x+ 3c3x2 + . . .+ (k + 1)ck+1x
k = 0

for all x ∈ R. By the induction hypothesis, Sk is a linearly independent set of vectors in
R[x] and so c1 = 2c2 = 3c3 = . . . = (k + 1)ck+1 = 0, which implies that c1 = c2 = c3 =
. . . = ck+1 = 0. Since c0 = 0 as well, it follows that Sk+1 is linearly independent.
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Proof Analysis Before proceeding further, it is important that we understand the proof
we have just given. The proof began by showing that S0 = {1} is linearly independent.
What this means is that S0 consists of the single constant polynomial function f defined
by f(x) = 1 for all x ∈ R. Let c be a scalar (real number) such that c · f = f0, where f0
is the zero polynomial function defined by f0(x) = 0 for all x ∈ R. Thus, for each x ∈ R,
(cf)(x) = f0(x) = 0, that is,

(cf)(x) = c · f(x) = c · 1 = 0 = f0(x)

and so c = 0. ♦
We now consider a result for a general vector space.

Result 15.21 If v1,v2, and v3 are linearly independent vectors in a vector space V ,
then v1, v1 + v2, and v1 + v2 + v3 are also linearly independent in V .

Proof. Let a, b, and c be scalars such that

a · v1 + b · (v1 + v2) + c · (v1 + v2 + v3) = z.

From this, we have
(a+ b+ c) · v1 + (b+ c) · v2 + c · v3 = z.

Since v1,v2, and v3 are linearly independent, a + b + c = b + c = c = 0, from which it
follows that a = b = c = 0 and so v1, v1 + v2, and v1 + v2 + v3 are linearly independent.

Let S = {v1,v2, . . . ,vn} be a set of n vectors, where n ∈ N, and let S′ be a nonempty
subset of S. Then |S′| = m for some integer m with 1 ≤ m ≤ n. Since the order in which
the elements of S are listed is irrelevant, these elements can be rearranged and relabeled if
necessary so that S′ = {v1,v2, . . . ,vm}. This fact is quite useful at times.

Theorem 15.22 Let S be a finite nonempty set of vectors in a vector space V . If S
is linearly independent in V and S′ is a nonempty subset of S, then S′ is also linearly
independent in V .

Proof. We may assume that S′ = {v1,v2, . . . ,vm} and S = {v1, v2, . . . , vm, vm+1, . . . , vn},
where then 1 ≤ m ≤ n. If m = n, then S′ = S and surely S′ is linearly independent. Thus
we can assume that m < n. Let c1, c2, . . . , cm be scalars such that

c1v1 + c2v2 + . . .+ cmvm = z.

However, then,

c1v1 + c2v2 + . . .+ cmvm + 0vm+1 + 0vm+2 + . . .+ 0vn = z. (15.3)

Since S is linearly independent, all scalars in (15.3) are 0. In particular, c1 = c2 = . . . =
cm = 0, which implies that S′ is linearly independent.

We can restate Theorem 15.22 as follows: Let V be a vector space, and let S and S′

be finite nonempty subsets of V such that S′ ⊆ S. If S is linearly independent, then S′

is linearly independent. The contrapositive of this implication gives us: If S′ is linearly
dependent, then S is linearly dependent.
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Although we have only discussed linear independence and linear dependence in connec-
tion with finite sets of vectors, these concepts exist for infinite sets of vectors as well. An
infinite set of vectors in a vector space V is linearly independent if every finite nonempty
subset of S is linearly independent. Equivalently, an infinite set S of vectors in a vector
space V is linearly dependent if some finite nonempty subset of S is linearly dependent.
Every example we have seen of a (finite) set S of linearly dependent vectors in some vector
space V gives rise to an infinite set T of linearly dependent vectors; namely, any infinite
subset T of V such that S ⊆ T is linearly dependent. But what is an example of a vec-
tor space that contains infinitely many linearly independent vectors? We provide such an
example now.

Result 15.23 The set T = {1, x, x2, . . .} is linearly independent in R[x].

Proof. Let S be a finite nonempty subset of T . Then there is a largest nonnegative integer
m such that xm ∈ S. Therefore, S ⊆ Sm = {1, x, x2, . . . , xm}. By Theorem 15.20, Sm is lin-
early independent in R[x] and by Theorem 15.22, S is linearly independent. Consequently,
T is linearly independent in R[x].

15.8 Linear Transformations

We have seen that many properties of a vector space V , subspaces of V , the span of a set
of vectors in V , and linear independence and linear dependence of vectors in V deal with a
common concept: linear combinations of vectors. Perhaps this is not unexpected in an area
of mathematics called linear algebra. There are occasions when two vectors spaces V and
V ′ are so closely linked that with each vector w ∈ V , there is an associated vector w′ ∈ V ′

such that the vector associated with αu+ βv in V is αu′ + βv′ in V ′. Such an association
describes a function from V to V ′. In particular, a function f : V → V ′ is said to preserve
linear combinations of vectors if f(αu+βv) = αf(u)+βf(v) for all u,v ∈ V and every
two scalars α and β. If f : V → V ′ has the property that f(u + v) = f(u) + f(v) for all
u,v ∈ V , then f is said to preserve addition; while if f(αu) = αf(u) for all u ∈ V and
every scalar α, then f is said to preserve scalar multiplication.

Let z′ be the zero vector of V ′. If f : V → V ′ preserves linear combinations and
u,v ∈ V , then

f(u+ v) = f(1 · u+ 1 · v) = 1 · f(u) + 1 · f(v) = f(u) + f(v)

and f(αu) = f(αu + 0v) = αf(u) + 0f(v) = αf(u) + z′ = αf(u). Hence if f : V →
V ′ is a function that preserves linear combinations, then f preserves addition and scalar
multiplication as well.

Conversely, suppose that f : V → V ′ is a function that preserves both addition and
scalar multiplication. Then for u,v ∈ V and scalars α and β,

f(αu+ βv) = f(αu) + f(βv) = αf(u) + βf(v),

that is, f preserves linear combinations. Because functions that preserve linear combinations
are so important in linear algebra, they are given a special name.

Let V and V ′ be vector spaces. A function T : V → V ′ is called a linear transfor-
mation if it preserves both addition and scalar multiplication, that is, if it satisfies the
following conditions:
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1. T (u+ v) = T (u) + T (v)

2. T (αv) = αT (v)

for all u,v ∈ V and all α ∈ R. There are some points in connection with these conditions
that need to be addressed and that may not be self-evident. Condition 1 states that T (u+
v) = T (u) + T (v) for every two vectors u and v of V . Hence the addition indicated in
T (u + v) takes place in V ; while, on the other hand, since T (u) and T (v) are vectors in
V ′, the addition indicated in T (u) + T (v) takes place in V ′. Also, condition 2 states that
T (αv) = αT (v) for every vector v in V and every scalar α. By the same reasoning, the
scalar multiplication indicated in T (αv) takes place in V , while the scalar multiplication
in αT (v) takes place in V ′. From what we have already seen, every linear transformation
preserves linear combinations of vectors (hence the name).

Let’s consider an example of a linear transformation.

Result 15.24 The function T : R3 → R2 defined by

T ((a, b, c)) = T (a, b, c) = (2a+ c, 3c − b)

is a linear transformation.

Before we prove Result 15.24, let’s be certain that we understand what this function
does. For example, T (1, 2, 3) = (5, 7), T (1,−6,−2) = (0, 0), while T (0, 0, 0) = (0, 0) as well.
We now show that T is a linear transformation.

Proof of Result 15.24. Let u,v ∈ R3. Then u = (a, b, c) and v = (d, e, f) for
a, b, c, d, e, f ∈ R. Then

T (u+ v) = T (a+ d, b+ e, c+ f) = (2(a+ d) + c+ f, 3(c+ f) − (b+ e))
= (2a+ c, 3c − b) + (2d+ f, 3f − e)
= T (a, b, c) + T (d, e, f) = T (u) + T (v)

and

T (αu) = T (α(a, b, c)) = T (αa, αb, αc)
= (2αa+ αc, 3αc − αb) = α(2a+ c, 3c − b) = αT (u),

as desired.

Sometimes the vectors in R3 are written as “column vectors”, that is, as


 a

b
c


 rather

than (a, b, c) or the “row vector” [a b c]. In this case, notice that the linear transformation
T : R3 → R2 defined by T (a, b, c) = (2a+ c, 3c − b) can be described as

T (a, b, c) = T




 a

b
c




 =

[
2 0 1
0 −1 3

] a
b
c


 =

[
2a+ c

−b+ 3c

]
,

that is, if we let v =


 a

b
c


 and A =

[
2 0 1
0 −1 3

]
, then this linear transformation can be

defined in terms of the matrix A, namely,

T (v) = Av.
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In general, if A is an m × n matrix, then the function T : Rn → Rm defined by
T (u) = Au for an n × 1 column vector u ∈ Rn is a linear transformation. For example,

consider the 3 × 2 matrix A =


 1 −2

3 −1
2 5


. For u =

[
a
b

]
, v =

[
c
d

]
, and α ∈ R,

T (u+ v) = T

([
a+ c
b+ d

])
=


 1 −2

3 −1
2 5



[

a+ c
b+ d

]
=


 a+ c − 2b − 2d

3a+ 3c − b − d
2a+ 2c+ 5b+ 5d




=


 a − 2b

3a − b
2a+ 5b


+


 c − 2d

3c − d
2c+ 5d


 = T

([
a
b

])
+ T

([
c
d

])

= T (u) + T (v)

and

T (αu) = T

([
αa
αb

])
=


 1 −2

3 −1
2 5



[

αa
αb

]
=


 αa − 2αb

3αa − αb
2αa+ 5αb




= α


 a − 2b

3a − b
2a+ 5b


 = αT

([
a
b

])
= αT (u).

Thus, T : R2 → R3 is a linear transformation. The proof for a general m × n matrix
is similar. As another illustration of a linear transformation, we consider a well-known
function from R[x] to itself.

Result 15.25 The function D (for differentiation) from R[x] to R[x] defined by

D(c0 + c1x+ c2x
2 + . . .+ cnx

n) = c1 + 2c2x+ . . .+ ncnx
n−1

is a linear transformation.

Proof. Let f, g ∈ R[x], where f(x) = a0 + a1x+ a2x
2 + . . .+ arx

r and g(x) = b0 + b1x+
b2x

2 + . . .+ bsx
s and, say, r ≤ s. Then

D(f(x) + g(x)) = D ((a0 + a1x+ . . .+ arx
r) + (b0 + b1x+ . . .+ bsx

s))

= D
(
(a0 + b0) + (a1 + b1)x+ . . .+ (ar + br)xr + br+1x

r+1 + . . .+ bsx
s
)

= (a1 + b1) + . . .+ r(ar + br)xr−1 + (r + 1)br+1x
r + . . .+ sbsx

s−1

=
(
a1 + 2a2x+ . . .+ rarx

r−1
)
+
(
b1 + 2b2x+ . . .+ sbsx

s−1
)

= D(f(x)) +D(g(x))

and

D(αf(x)) = D
(
αa0 + αa1x+ αa2x

2 + . . .+ αarx
r
)

= αa1 + 2αa2x+ . . .+ rαarx
r−1

= α(a1 + 2a2x+ . . .+ rarx
r−1) = αD(f(x)).

Since D preserves both addition and scalar multiplication, it is a linear transformation.

There is a special kind a function from a vector space to itself that is always a linear
transformation.
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Result 15.26 Let V be a vector space over the set R of real numbers. For c ∈ R, the
function T : V → V defined by T (v) = cv is a linear transformation.

Proof. Let u,w ∈ V . Then

T (u+w) = c(u+w) = cu+ cw = T (u) + T (w);

while, for α ∈ R,

T (αu) = c(αu) = (cα)(u) = (αc)(u) = α(cu) = αT (u).

Therefore, T is a linear transformation.

For c = 1, the function T defined in Result 15.26 is the identity function; while for
c = 0, the function T maps every vector into the zero vector. Consequently, both of these
functions are linear transformations.

We now look at functions involving other vector spaces. For a function f ∈ FR and a
real number r, we define the function f + r by (f + r)(x) = f(x) + r for all x ∈ R.

Example 15.27 Let r be a nonzero real number. Prove or disprove: The function T :
FR → FR defined by T (f) = f + r is a linear transformation.

Solution. Let f, g ∈ FR. Observe that

T (f + g) = (f + g) + r,

while
T (f) + T (g) = (f + r) + (g + r) = (f + g) + 2r.

Since r �= 0, it follows that T (f + g) �= T (f) + T (g). Therefore, T is not a linear transfor-
mation. ♦

Example 15.28 Let T : M2(R) → M2(R) be a function defined by

T

([
a b
c d

])
=

[
ad 0
0 bc

]
.

Prove or disprove: T is a linear transformation.

Solution. Since

T

(
2

[
1 1
1 1

])
= T

([
2 2
2 2

])
=

[
4 0
0 4

]

and

2T

([
1 1
1 1

])
= 2

[
1 0
0 1

]
=

[
2 0
0 2

]
,

T is not a linear transformation. ♦

Example 15.29 The function T : M2(R) → M2(R) is defined by

T

([
a b
c d

])
=

[
a a
c c

]
.

Prove or disprove: T is a linear transformation.
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Solution. Let

[
a1 b1
c1 d1

]
,

[
a2 b2
c2 d2

]
∈ M2(R) and α ∈ R. Then

T

([
a1 b1
c1 d1

]
+

[
a2 b2
c2 d2

])
= T

([
a1 + a2 b1 + b2
c1 + c2 d1 + d2

])

=

[
a1 + a2 a1 + a2
c1 + c2 c1 + c2

]
=

[
a1 a1
c1 c1

]
+

[
a2 a2
c2 c2

]

= T

([
a1 b1
c1 d1

])
+ T

([
a2 b2
c2 d2

])
;

while

T

(
α

[
a1 b1
c1 d1

])
= T

([
αa1 αb1
αc1 αd1

])
=

[
αa1 αa1
αc1 αc1

]

= α

[
a1 a1
c1 c1

]
= αT

([
a1 b1
c1 d1

])
.

Since T preserves both addition and scalar multiplication, T is a linear transformation. ♦

15.9 Properties of Linear Transformations

An important property of linear transformations is that the composition of any two
linear transformations (when the composition is defined) is also a linear transformation.
This fact has an interesting consequence as well.

Theorem 15.30 Let V, V ′, and V ′′ be vector spaces. If T1 : V → V ′ and T2 : V ′ → V ′′

are linear transformations, then the composition T2◦T1 : V → V ′′ is a linear transformation
as well.

Proof. For u,v ∈ V and a scalar α, observe that

(T2 ◦ T1)(u+ v) = T2(T1(u+ v)) = T2(T1(u) + T1(v))
= T2(T1(u)) + T2(T1(v)) = (T2 ◦ T1)(u) + (T2 ◦ T1)(v)

and

(T2 ◦ T1)(αv) = T2(T1(αv)) = T2(αT1(v))
= αT2(T1(v)) = α(T2 ◦ T1)(v).

Therefore, T2 ◦ T1 is a linear transformation.

As an example of the preceding theorem, let T1 : R3 → R2 and T2 : R2 → R3 be defined
by T1(a, b, c) = (a+ 2b− c, 3b+ 2c) and T2(a, b) = (b, 2a, a+ b). Then T2 ◦ T1 : R3 → R3 is
given by

(T2 ◦ T1)(a, b, c) = T2(T1(a, b, c))
= T2(a+ 2b − c, 3b+ 2c)
= (3b+ 2c, 2a+ 4b − 2c, a+ 5b+ c).
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From what we mentioned earlier, T1 and T2 can also be defined by

T1




 a

b
c




 =

[
1 2 −1
0 3 2

] a
b
c


 and T2

([
a
b

])
=


 0 1

2 0
1 1



[

a
b

]
.

Interestingly enough,

(T2 ◦ T1)




 a

b
c




 =


 0 1

2 0
1 1



[
1 2 −1
0 3 2

] a
b
c


 ,

that is, the composition T2 ◦ T1 can be obtained by multiplying the matrices that describe
T1 and T2. Therefore, if we represent the linear transformations T1 and T2 by matrices A1
and A2, respectively, then the matrix that represents T2 ◦ T1 is A2A1. This also explains
why the definition of matrix multiplication, though curious at first, is actually quite logical.

Two fundamental properties of a linear transformation are given in the next theorem.

Theorem 15.31 Let V and V ′ be vector spaces with respective zero vectors z and z′. If
T : V → V ′ is a linear transformation, then

(i) T (z) = z′ and

(ii) T (−v) = −T (v) for all v ∈ V .

Proof. We first verify (i). Since T preserves scalar multiplication,

T (z) = T (0z) = 0T (z) = z′.

Next we verify (ii). Let v ∈ V . Then

T (v) + T (−v) = T (v + (−v)) = T (z) = z′,

the last equality following by (i). Since the vector T (v) in V ′ has a unique negative, namely
−T (v), we conclude that T (−v) = −T (v).

If T : V → V ′ is a linear transformation, then it is often of interest to know how T acts
on subspaces of V . Let’s recall some terminology and notation from functions. In a linear
transformation T : V → V ′, the set V is the domain of T and the set V ′ is the codomain
of T . If W is a subset of V , then T (W ) = {T (w) : w ∈ W} is the image of W under T .
In particular, T (V ) is the range of T .

Theorem 15.32 Let V and V ′ be vector spaces and let T : V → V ′ be a linear transfor-
mation. If W is a subspace of V , then T (W ) is a subspace of V ′.

Proof. Let z and z′ be the zero vectors in V and V ′, respectively. Since z ∈ W and
T (z) = z′ by Theorem 15.31, it follows that z′ ∈ T (W ) and so T (W ) �= ∅. Thus we need
only show that T (W ) is closed under addition and scalar multiplication. Let x and y be
two vectors in T (W ). Hence, there exist vectors u and v in W such that T (u) = x and
T (v) = y. Then

x+ y = T (u) + T (v) = T (u+ v).
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Since u,v ∈ W and W is a subspace of V , it follows that u + v ∈ W . Hence x + y =
T (u+ v) ∈ T (W ).

Next let α be a scalar and x ∈ T (W ). We show that αx ∈ T (W ). Since x ∈ T (W ),
there exists u ∈ W such that T (u) = x. Now

αx = αT (u) = T (αu).

Since αu ∈ W , it follows that αx = T (αu) ∈ T (W ). By the Subspace Test, T (W ) is a
subspace of V ′.

To illustrate Theorem 15.32, let’s return to the linear transformation T : R3 → R2

defined in Result 15.24 by T (a, b, c) = (2a+ c, 3c − b). Let W = {(a, b, 0) : a, b ∈ R}. We
use the Subspace Test to show that W is a subspace of R3. Since (0, 0, 0) ∈ W , it follows
that W �= ∅. Let (a1, b1, 0), (a2, b2, 0) ∈ W and let α ∈ R. Then

(a1, b1, 0) + (a2, b2, 0) = (a1 + a2, b1 + b2, 0) ∈ W and α(a1, b1, 0) = (αa1, αb1, 0) ∈ W.

Since W is closed under addition and scalar multiplication, W is a subspace of R3. By
Theorem 15.32, T (W ) = {(2a,−b) : a, b ∈ R} is a a subspace of R2. We show in fact that
T (W ) = R2. Certainly, R2 = 〈(1, 0), (0, 1)〉. Hence to show that T (W ) = R2, it suffices, by
Corollary 15.16, to show that (1, 0) and (0, 1) belong to T (W ). Letting a = 1/2 and b = 0,
we see that (1, 0) ∈ T (W ); while letting a = 0 and b = −1, we see that (0, 1) ∈ T (W ).

For this same linear transformation T , we saw that T (1,−6,−2) = (0, 0) and T (0, 0, 0) =
(0, 0). Hence both (1,−6,−2) and (0, 0, 0) map into the zero vector of R2. The fact that
(0, 0, 0) maps into (0, 0) is not surprising, of course, since Theorem 15.31 guarantees this.

If T : V → V ′ is a linear transformation and W ′ is a subset of V ′, then

T−1(W ′) = {v ∈ V : T (v) ∈ W ′}

is called the inverse image of W ′ under T . If W ′ = {z′}, where z′ is the zero vector of
V ′, then T−1(W ′) is called the kernel of T and is denoted by ker(T ). That is, the kernel
of T : V → V ′ is the set

ker(T ) = T−1({z′}) = {v ∈ V : T (v) = z′}.

An interesting feature of the kernel lies in the following theorem.

Theorem 15.33 Let V and V ′ be vector spaces and let T : V → V ′ be a linear transfor-
mation. Then the kernel of T is a subspace of V .

Proof. Let z and z′ be the zero vectors of V and V ′, respectively. Since T (z) = z′, it
follows that z ∈ ker(T ) and so ker(T ) �= ∅. Now let u,v ∈ ker(T ) and α ∈ R. Then

T (u+ v) = T (u) + T (v) = z′ + z′ = z′

and
T (αu) = αT (u) = αz′ = z′.

This implies that u + v ∈ ker(T ) and αu ∈ ker(T ). By the Subspace Test, ker(T ) is a
subspace of V .

Returning once again to the linear transformation T : R3 → R2 in Result 15.24 defined
by T (a, b, c) = (2a+ c, 3c − b), we see that
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ker(T ) = {(a, b, c) : 2a+ c = 0 and 3c − b = 0}
is a subspace of R3. Since 2a+ c = 0 and 3c − b = 0, it follows that a = −c/2 and b = 3c.
Thus ker(T ) = {(−c/2, 3c, c) : c ∈ R}. In other words, ker(T ) is the subspace of R3

consisting of all scalar multiples of (−1/2, 3, 1).

Exercises for Chapter 15

15.1 Prove that the set C = {a + bi : a, b ∈ R} of complex numbers is a vector space
under the addition (a + bi) + (c + di) = (a + c) + (b + d)i and scalar multiplication
α(a+ bi) = αa+ αbi, where α ∈ R.

15.2 Although we have taken R to be the set of scalars in a vector space, this need not
always be the case. Let V = {([a], [b]) : [a], [b] ∈ Z3} and let Z3 be the set of scalars.

(a) Show that V is a vector space over the set Z3 of scalars under the addition
([a], [b]) + ([c], [d]) = ([a + c], [b + d]) and scalar multiplication [c]([a], [b]) =
([ca], [cb]).

(b) Write out precisely the elements of V . (Hence a vector space can have more than
one vector and be finite.)

15.3 Addition or scalar multiplication is defined in R3 in each of the following. (Each
operation not defined is taken as the standard one.) Under these operations, determine
whether R3 is a vector space.

(a) (a, b, c) + (d, e, f) = (a, b, c)

(b) (a, b, c) + (d, e, f) = (a − d, b − e, c − f)

(c) (a, b, c) + (d, e, f) = (0, 0, 0)

(d) α(a, b, c) = (a, b, c)

(e) α(a, b, c) = (b, c, a)

(f) α(a, b, c) = (0, 0, 0)

(g) α(a, b, c) = (αa, 3αb, αc)

15.4 Let V be a vector space, where u,v ∈ V . Prove that there exists a unique vector x
in V such that u+ x = v.

15.5 Let V be a vector space with v ∈ V and α ∈ R. Prove that α(−v) = (−α)v = −(αv).

15.6 (a) Let V be a vector space and u,v,w ∈ V . Prove that if u + v = u + w, then
v = w. (This is the cancellation property for addition of vectors.)

(b) Use (a) to prove Theorem 15.3.

15.7 Prove or disprove:

(a) No vector is its own negative.

(b) Every vector is the negative of some vector.

(c) Every vector space has at least two vectors.
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15.8 Let V be a vector space containing nonzero vectors u and v. Prove that if u �= αv
for each α ∈ R, then u �= β(u+ v) for each β ∈ R.

15.9 Determine which of following subsets of R4 are subspaces of R4.

(a) W1 = {(a, a, a, a) : a ∈ R}
(b) W2 = {(a, 2b, 3a, 4b) : a, b ∈ R}
(c) W3 = {(a, 0, 0, 1) : a ∈ R}
(d) W4 = {(a, a2, 0, 0) : a ∈ R}
(e) W5 = {(a, b, a+ b, b) : a, b ∈ R}

15.10 Let FR be the vector space of all functions from R to R. Determine which of the
following subsets of FR are subspaces of FR.

(a) W1 consists of all functions f such that f(1) = 0 = f(2).

(b) W2 consists of all functions f such that f(1) = 0 or f(2) = 0.

(c) W3 consists of all functions f such that f(2) = 2f(1).

(d) W4 consists of all functions f such that f(1) �= f(2).

(d) W5 consists of all functions f such that f(1) �= 0.

15.11 Recall that the set R[x] of polynomial functions is a subspace of FR. Now determine
which of the following subsets of R[x] are subspaces of R[x].

(a) U1 = {f : f(x) = a for a fixed real number a} (The set of all constant polyno-
mials)

(b) U2 = {f : f(x) = a+ bx+ cx2 + dx3, a, b, c, d ∈ R, d �= 0}
(c) U3 = {f : f(x) = a+ bx+ cx2 + dx3, a, b, c, d ∈ R}
(d) U4 = {f : f(x) = a0 + a2x

2 + a4x
4 + . . .+ a2mx2m,m ≥ 0, and ai ∈ R for 0 ≤

i ≤ m}
(e) U5 = {f : f(x) = (x3 + 1)g(x) for some g ∈ R[x]}

15.12 Let M2(R) be the vector space of 2 × 2 matrices whose entries are real numbers.
Determine which of the following subsets of M2(R) are subspaces of M2(R).

(a) W =

{[
a b
c d

]
: ad − bc = 0

}

(b) W =

{[
a b
c d

]
: α1a+ α2b+ α3c+ α4d = 0

}
, where α1, α2, α3, α4 are fixed

real numbers.

15.13 Prove that

W =




 a1 a2 a3

0 a4 a5
0 0 a6


 : ai ∈ R for 1 ≤ i ≤ 6




is a subspace of the vector space M3[R].
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15.14 Let U and W be subspaces of a vector space V . Prove that U ∩W is a subspace of V .

15.15 The graph of the functionf : R → R defined by f(x) = 3
5x is a straight line in

R2 passing through the origin. Each point (x, y) on this graph is a solution of the
equation 3x− 5y = 0. Prove that the set S of solutions of this equation is a subspace
of R2.

15.16 Determine the following linear combinations:

(a) 4 · (1,−2, 3) + (−2) · (1,−1, 0)

(b) (−1)

[
3 −2
1 −3

]
+ 2

[
1 1
1 2

]
+ 5

[
−1 −1
−1 −1

]

15.17 In R3, write i = (1, 0, 0) as a linear combination of u1 = (0, 1, 1),u2 = (1, 0, 1), and
u3 = (1, 1, 0).

15.18 Let u = (1, 2, 3), v = (0, 1, 2), and w = (3, 1,−1) be vectors in R3.

(a) Show that w can be expressed as a linear combination of u and v.

(b) Show that the vector x = (8, 5, 2) can be expressed as a linear combination of u,
v, and w in more than one way.

15.19 Let V be a vector space containing the vectors v1,v2, . . . ,vn and the vectors w1, w2,
. . ., wm. Let W = 〈v1,v2, . . . ,vn〉 and W ′ = 〈w1,w2, . . . ,wm〉. Prove that if each
vector vi (1 ≤ i ≤ n) is a linear combination of the vectors w1,w2, . . . ,wm, then
W ⊆ W ′.

15.20 Prove that 〈(1, 2, 3), (0, 4, 1)〉 = 〈(1, 6, 4), (1,−2, 2)〉 in R3

15.21 Let V be a vector space and let u and v in V . Prove that

(a) 〈u,v〉 = 〈u, 2u+ v〉
(b) 〈u,v〉 = 〈u+ v,u− v〉

15.22 Determine which sets S of vectors are linearly independent in the indicated vector
space V .

(a) S = {(1, 1, 1), (1,−2, 3), (2, 5,−1)};V = R3.

(b) S = {(1, 0,−1), (2, 1, 1), (0, 1, 3)};V = R3.

(c) S =

{[
1 1
0 0

]
,

[
1 2
1 1

]
,

[
0 1
0 1

]}
;V = M2(R).

15.23 For the vectors u = (1, 1, 1) and v = (1, 0, 2), find a vector w such that u,v,w are
linearly independent in R3. Verify that u,v,w are linearly independent.

15.24 Prove or disprove: If u1,u2,u3 are linearly independent vectors in a vector space V ,
then u1 + u2,u1 + u3, 2u3 are linearly independent vectors in V .

15.25 Determine which sets S of vectors in FR are linearly independent.

(a) S = {1, sin2 x, cos2 x}
(b) S = {1, sinx, cosx}
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(c) S = {1, ex, e−x}
(d) S = {1, x, x/(x2 + 1)}.

15.26 Let S = {u1,u2, . . . ,un} be a linearly dependent set of n ≥ 2 vectors in a vector space
V . Prove that if each subset of S consisting of n − 1 vectors is linearly independent,
then there exist nonzero scalars c1, c2, . . . , cn such that c1u1 + c2u2 + . . .+ cnun = z.

15.27 Prove that if T : V → V ′ is a linear transformation, then

T (α1v1 + α2v2 + . . .+ αnvn) = α1T (v1) + α2T (v2) + . . .+ αnT (vn),

where v1,v2, . . . ,vn ∈ V and α1, α2, . . . , αn ∈ R.

15.28 Let V and V ′ be vector spaces and let T : V → V ′ be a linear transformation. Prove
that if W ′ is a subspace of V ′, then T−1(W ′) is a subspace of V .

15.29 Prove that there exists a bijective linear transformation T : R2 → C, where C =
{a+ bi : a, b ∈ R} is the set of complex numbers.

15.30 For vector spaces V and V ′, let T1 and T2 be linear transformations from V to V ′.
Define T1 + T2 : V → V ′ as

(T1 + T2)(v) = T1(v) + T2(v).

Prove that T1 + T2 is also a linear transformation.

15.31 Let W =

{[
a b
0 a+ b

]
: a, b ∈ R

}
.

(a) Prove that W is a subspace of M2(R)

(b) Prove that there exists a bijective linear transformation T : R2 → W .

15.32 For the 2 × 3 matrix A =

[
3 1 −1
2 −5 2

]
, a function T : R3 → R2 is defined by

T (u) = Au, where u is a 3 × 1 column vector in R3.

(a) Determine T (u) for u =


 4

−1
−2


.

(b) Prove that T is a linear transformation.

15.33 Let D : R[x] → R[x] be the differentiation linear transformation defined by

D(c0 + c1x+ . . .+ cnx
n) = c1 + 2c2x+ . . .+ ncnx

n−1.

Determine each of the following.

(a) D(W ), where W = {a+ bx : a, b ∈ R}.
(b) D(W ), where W = R.

(c) ker(D).
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15.34 Let T : M2(R) → M2(R) be the linear transformation defined by

T

([
a b
c d

])
=

[
a a
c c

]

and consider the subset W =

{[
a 0
0 d

]
: a, d ∈ R

}
of M2(R).

(a) Prove that W is a subspace of M2(R).

(b) Determine the subspace T (W ) of M2(R).

(c) Determine the subspace ker(T ) of M2(R).

15.35 For the following statement S and proposed proof, either (1) S is true and the proof
is correct, (2) S is true and the proof is incorrect, or (3) S is false and the proof is
incorrect. Explain which of these occurs.

S: Let V be a vector space. If u is a vector of V such that u+v = v for some v ∈ V ,
then u+ v = v for all v ∈ V .

Proof. Assume that u+v = v for some v ∈ V . Then we also know that z+v = v,
where z is the zero vector of V . Hence u + v = z + v. By Exercise 15.6, u = z and
so u+ v = v for all v ∈ V .



Chapter 16

Proofs in Topology

Recall from calculus that a function f : X → R, where X ⊆ R, is continuous at a ∈ X if
for every ε > 0, there exists δ > 0 such that if |x − a| < δ, then |f(x) − f(a)| < ε. When we
write |x− a|, we are referring to how far apart x and a are, that is, the distance between them.
Similarly, |f(x) − f(a)| is the distance between f(x) and f(a). It is not surprising that distance
enters the picture here since when we say that f is continuous at a, we mean that if x is a
number that is close to a, then f(x) is close to f(a). The term “close” only has meaning once
we understand how we are measuring the distances between the two pairs of numbers involved.
It might seem obvious that the distance between two real numbers x and y is |x−y|; however, it
turns out that the distance between x and y need not be defined as |x−y|, although it is certainly
the most common definition. Furthermore, when the continuity of a function f : A → B is being
considered, it is not essential that A and B be sets of real numbers. That is, it is possible to
place these concepts of calculus in a more general setting. The area of mathematics that deals
with this is topology.

16.1 Metric Spaces

We have already mentioned that the distance between two real numbers x and y is given by
|x − y|. There are four properties that this distance has, which will turn out to be especially
interesting to us:

(1) |x− y| ≥ 0 for all x, y ∈ R;
(2) |x− y| = 0 if and only if x = y for all x, y ∈ R; (16.1)
(3) |x− y| = |y − x| for all x, y ∈ R;
(4) |x− z| ≤ |x− y| + |y − z| for all x, y, z ∈ R.

Many of the fundamental results from calculus depend on these four properties. Using these
properties as our guide, we now define distance in a more general manner.

Let X be a nonempty set and let d : X ×X → R be a function from the Cartesian product
X × X to the set R of real numbers. Hence for each ordered pair (x, y) ∈ X × X, it follows
that d((x, y)) is a real number. For simplicity, we write d(x, y) rather than d((x, y)) and refer
to d(x, y) as the distance from x to y. The distance d is called a metric on X if it satisfies the
following properties:

(1) d(x, y) ≥ 0 for all x, y ∈ X;

(2) d(x, y) = 0 if and only if x = y for all x, y ∈ R;

1
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(3) d(x, y) = d(y, x) for all x, y ∈ X (symmetric property);

(4) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X (triangle inequality).

A set X together with a metric d defined onX is called a metric space and is denoted by (X, d).
Since the set R of real numbers together with the distance d defined on R by d(x, y) = |x− y|
satisfies the properties listed in (16.1), it follows that (R, d) is a metric space.

We now consider two other ways of defining the distance between two real numbers.

Example 16.1 For X = R, let the distance d : X ×X → R be defined by d(x, y) = x − y.
Determine which of the four properties of a metric are satisfied by this distance.

Solution. Since d(1, 2) = −1, property 1 is not satisfied. On the other hand, since d(x, y) =
x − y = 0 if and only if x = y, property 2 is satisfied. Because d(2, 1) = 1, it follows that
d(1, 2) 	= d(2, 1) and so the symmetric property (property 3) is not satisfied. Finally,

d(x, z) = x− z = (x− y) + (y − z) = d(x, y) + d(y, z),

and the triangle inequality (property 4) holds. ♦

In our next example, we present a distance function that is actually a metric on R.

Result 16.2 For X = R, let d : X ×X → R be defined by

d(x, y) = |2x − 2y|.

Then (X, d) is a metric space.

Proof. Clearly, d(x, y) = |2x − 2y| ≥ 0 and d(x, y) = 0 if and only if 2x = 2y. Certainly,
if x = y, then 2x = 2y. Assume next that 2x = 2y. If we take logarithms to the base 2
of both 2x and 2y, then we have x = y. Thus, d(x, y) = 0 if and only if x = y. Since
d(x, y) = |2x − 2y| = |2y − 2x| = d(y, x), it follows that d satisfies the symmetric property.
Finally, by property 4 in (16.1),

d(x, z) = |2x − 2z| = |(2x − 2y) + (2y − 2z)| ≤ |2x − 2y| + |2y − 2z| = d(x, y) + d(y, z)

and the triangle inequality holds.

Another set on which you have undoubtedly seen a distance defined is R × R = R2. Hence
an element P ∈ R2 can be expressed as (x, y), where x, y ∈ R. Here we are discussing points
in the Cartesian plane, as you saw in the study of analytic geometry. There the (Euclidean)
distance d(P1, P2) between two points P1 = (x1, y1) and P2 = (x2, y2) is given by

d(P1, P2) =
√

(x1 − x2)2 + (y1 − y2)2.

This distance is actually a metric on R2. That the first three properties are satisfied depends
only on the following facts for real numbers a and b: (1) a2 ≥ 0, (2) a2 + b2 = 0 if and only
if a = b = 0, (3) a2 = (−a)2. The triangle inequality is more difficult to verify, however, and
its proof depends on the following lemma, which is a special case of a result commonly called
Schwarz’s Inequality.
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Lemma 16.3 If a, b, c, d ∈ R, then

ab+ cd ≤
√

(a2 + c2)(b2 + d2).

Proof. Certainly, (ab+ cd)2 + (ad− bc)2 ≥ (ab+ cd)2. Since

(ab+ cd)2 + (ad− bc)2 = (a2b2 + 2abcd+ c2d2) + (a2d2 − 2abcd+ b2c2)
= a2b2 + a2d2 + b2c2 + c2d2

= (a2 + c2)(b2 + d2),

the desired inequality follows.

We can now show that this distance is a metric.

Result 16.4 For X = R2, let P1 = (x1, y1) and P2 = (x2, y2) be two points in R2 and let
d : X ×X → R be defined by

d(P1, P2) =
√

(x1 − x2)2 + (y1 − y2)2.

Then (X, d) is a metric space.

Proof. We have already mentioned that the first three properties of a metric are satisfied,
so only the triangle inequality remains to be verified. Let P1 = (x1, y1), P2 = (x2, y2), and
P3 = (x3, y3). Thus using Lemma 16.3, where a = x1 − x2, b = x2 − x3, c = y1 − y2, and
d = y2 − y3, we have

[d(P1, P3)]
2 = (x1 − x3)2 + (y1 − y3)2

= [(x1 − x2) + (x2 − x3)]2 + [(y1 − y2) + (y2 − y3)]2

= (x1 − x2)2 + (x2 − x3)2 + 2(x1 − x2)(x2 − x3) +
2(y1 − y2)(y2 − y3) + (y1 − y2)2 + (y2 − y3)2

≤ (x1 − x2)2 + (x2 − x3)2 +

2
√

(x1 − x2)2 + (y1 − y2)2
√

(x2 − x3)2 + (y2 − y3)2 +

(y1 − y2)2 + (y2 − y3)2

=
(√

(x1 − x2)2 + (y1 − y2)2 +
√

(x2 − x3)2 + (y2 − y3)2
)2

= [d(P1, P2) + d(P2, P3)]
2 ,

which gives us the desired result.

There is a metric defined on N × N = N2 which goes by the name of the Manhattan
metric or taxicab metric. For points P1 = (x1, y1) and P2 = (x2, y2) in N2, the distance
d(P1, P2) is defined by

d(P1, P2) = |x1 − x2| + |y1 − y2|.
For example, consider the points P1 = (2, 2) and P2 = (4, 6) shown in Figure 16.1 (a). The
taxicab distance between these two points is d(P1, P2) = |2 − 4| + |2 − 6| = 6. Thinking of the
points (x, y) as street intersections in a certain city (Manhattan), we have a minimum of 6 blocks
to travel (by taxicab). Two such routes are shown in Figure 16.1 (b), (c).

Not only is the Manhattan metric a metric on N2, it is also a metric on Z2 and on R2. A
proof of the following result is left as an exercise (Exercise 16.2).
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Figure 16.1: The Manhattan metric

Result 16.5 For points P1 = (x1, y1) and P2 = (x2, y2) in R2, the distance d(P1, P2) defined
by

d(P1, P2) = |x1 − x2| + |y1 − y2|
is a metric on R2 (the Manhattan metric).

We have seen that there is more than one metric on both R and R2. The metric spaces (R, d),
where d(x, y) = |x − y|, and (R2, d), where d((x1, y1), (x2, y2)) =

√
(x1 − x2)2 + (y1 − y2)2, are

called Euclidean spaces and the associated metrics are the Euclidean metrics. These are
certainly the most familiar metrics on R and R2.

For every nonempty set A, it is always possible to define a distance d : A×A → R that is a
metric. For x, y ∈ A, the distance

d(x, y) =

{
0 if x = y
1 if x 	= y

is called the discrete metric on A.

Result 16.6 The discrete metric d defined on a nonempty set A is a metric.

Proof. By definition, d(x, y) ≥ 0 for all x, y ∈ A and d(x, y) = 0 if and only if x = y. Also, by
the definition of this distance, d(x, y) = d(y, x) for all x, y ∈ A. Now let x, y, z ∈ A. If x = z,
then certainly 0 = d(x, z) ≤ d(x, y) + d(y, z). If x 	= z, then d(x, z) = 1. Since x 	= y or y 	= z,
it follows that d(x, y) + d(y, z) ≥ 1 = d(x, z). In any case, the triangle inequality holds.

16.2 Open Sets in Metric Spaces

Returning to our discussion of a real-valued function f from calculus, we said that f is
continuous at a real number a in the domain of f if for every ε > 0, there exists a number δ > 0
such that if |x− a| < δ, then |f(x) − f(a)| < ε. This, of course, is what led us to rethink what
we meant by distance and which then led us to metric spaces. However, continuity itself can be
described in a somewhat different manner. A function f is continuous at a if for every ε > 0,
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there exists a number δ > 0 such that if x is a number in the open interval (a− δ, a+ δ), then
f(x) is a number in the open interval (f(a) − ε, f(a) + ε). That is, continuity can be defined in
terms of open intervals. What are some properties of open intervals? Of course, an open interval
is a certain kind of subset of the set of real numbers. But each open interval has a property
that can be generalized in a very useful manner. An open interval I of real numbers has the
property that for every x ∈ I, there exists a real number r > 0 such that (x− r, x+ r) ⊆ I, that
is, for every x ∈ I, there is an open interval I1 centered at x that is contained in I.

Let (X, d) be a metric space. Also, let a ∈ X and let a real number r > 0 be given. The
subset of X consisting of those points (elements) x ∈ X such that d(x, a) < r is called the open
sphere with center a and radius r and is denoted by Sr(a). Thus x ∈ Sr(a) if and only
if d(x, a) < r. For example, the open sphere Sr(a) in the Euclidean space (R, d) is the open
interval (a− r, a+ r) with mid-point a and length 2r. Conversely, each open interval in (R, d)
is an open sphere according to this definition. So the open spheres in (R, d) are precisely the
open intervals of the form (a, b), where a < b and a, b ∈ R. In the Euclidean space (R2, d), the
open sphere Sr(P ) is the interior of the circle with center P and radius r. In the Manhattan
metric space (R2, d), where the distance between two points P1 = (x1, y1) and P2 = (x2, y2) is
defined by d(P1, P2) = |x1 − x2| + |y1 − y2|, the open sphere S3(P ) for P = (5, 4) is the interior
of the square shown in Figure 16.2.
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Figure 16.2: An open sphere S3(P ) for P = (5, 4)

Since every point in a metric space (X, d) belongs to an open sphere in X (indeed, it is the
center of an open sphere), it is immediate that every two distinct points of X belong to distinct
open spheres. In fact, they belong to disjoint open spheres.

Theorem 16.7 Every two distinct points in a metric space belong to disjoint open spheres.

Proof. Let a and b be distinct points in a metric space (X, d) and suppose that d(a, b) = r.
Necessarily, r > 0. Consider the open spheres S r

2
(a) and S r

2
(b) having radius r/2 centered

at a and b, respectively. We claim that S r
2
(a) ∩ S r

2
(b) = ∅. Assume, to the contrary, that

S r
2
(a)∩S r

2
(b) 	= ∅. Then there exists c ∈ S r

2
(a)∩S r

2
(b). Thus d(c, a) < r/2 and d(c, b) < r/2. By

the triangle inequality, r = d(a, b) ≤ d(a, c)+ d(c, b) < r/2+ r/2 = r, which is a contradiction.

A subset O of a metric space (X, d) is defined to be open if for every point a of O, there
exists a positive real number r such that Sr(a) ⊆ O, that is, each point of O is the center of
an open sphere contained in O. In the Euclidean space (R, d), each open interval (a, b), where
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a < b, is an open set. To see this, for each x ∈ (a, b), let r = min(x− a, b− x). Then the open
sphere Sr(x) = (x− r, x+ r) is contained in (a, b). In fact, the set (−∞, a) ∪ (a,∞) is open in
(R, d) for each a ∈ R. On the other hand, the half-open set (or half-closed set) (a, b] is not
open since there exists no open sphere centered at b and contained in (a, b]. Similarly, the sets
[a, b], [a, b), (−∞, a], and [a,∞) are not open in (R, d).

Every metric space contains some open sets, as we now show.

Theorem to Prove In a metric space (X, d),

(i) the empty set ∅ and the set X are open, and

(ii) every open sphere is an open set.

Proof Strategy To show that a subset A of X is open, it is required to show that if a is a
point of A, then a is the center of an open sphere contained in A. The empty set satisfies this
condition vacuously and X satisfies this condition trivially; so we concentrate on verifying (ii).

We begin with an open sphere Sr(a) having center a and radius r. For an arbitrary element
x ∈ Sr(a), we need to show that there is an open sphere centered at x and with an appropriate
radius that is contained in Sr(a). Since the theorem concerns an arbitrary metric space (X, d),
there is not necessarily any geometric appearance to the open sphere Sr(a). On the other hand,
it is helpful to visualize Sr(a) as the interior of circle (see Figure 16.3).

Since d(x, a) < r, it follows that r′ = r − d(x, a) is a positive real number. It appears likely
that Sr′(x) ⊆ Sr(a). To show this, it remains to show that if y ∈ Sr′(x), then y ∈ Sr(a); that
is, if d(y, x) < r′, then d(y, a) < r. It is natural to use the triangle inequality in an attempt to
verify this. ♦
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Figure 16.3: A diagram indicating an open sphere Sr(a) in a metric space (X, d)

Theorem 16.8 In a metric space (X, d),

(i) the empty set ∅ and the set X are open, and

(ii) every open sphere is an open set.

Proof. Since there is no point in ∅, the statement that ∅ is open is true vacuously. For each
point a ∈ X, every open sphere centered at a is contained in X. Thus X is open and (i) is
verified.

To verify (ii), let Sr(a) be an open sphere in (X, d) and let x ∈ Sr(a). We show that there
exists an open sphere centered at x and contained in Sr(a). Since d(x, a) < r, it follows that
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r′ = r − d(x, a) > 0. We show that Sr′(x) ⊆ Sr(a). Let y ∈ Sr′(x). Since d(y, x) < r′ and
d(x, a) = r − r′, it follows by the triangle inequality that

d(y, a) ≤ d(y, x) + d(x, a) < r′ + (r − r′) = r.

Therefore, y ∈ Sr(a) and so Sr′(x) ⊆ Sr(a).

To illustrate Theorem 16.8, we return to the metric space (X, d) described in Result 16.2,
namely, X = R with d(x, y) = |2x − 2y| for x, y ∈ R. Thus ∅ and X = R are open sets as are
all open spheres Sr(a), where a ∈ R and r > 0. One such open sphere is S1(0) = {x ∈ R :
|2x −20| < 1}. The inequality |2x −20| < 1 is equivalent to the inequalities −1 < 2x −1 < 1 and
0 < 2x < 2. Since 2x > 0 for all x, it follows that 0 < 2x < 2 is satisfied for all real numbers in the
infinite interval (−∞, 1), and so (−∞, 1) is the open sphere with center 0 and radius 1 (according
to the given metric). We also consider the open sphere S6(1) = {x ∈ R : |2x − 21| < 6}. Here
|2x − 21| < 6 is equivalent to the inequalities −6 < 2x − 2 < 6 and −4 < 2x < 8 and so S6(1) is
the open sphere (−∞, 3) with center 1 and radius 6.

We are now prepared to present a characterization of open sets in any metric space.

Theorem 16.9 A subset O of a metric space is open if and only if it is a (finite or infinite)
union of open spheres.

Proof. Let (X, d) be a metric space. First let O be an open set in (X, d). We show that
O is a union of open spheres. If O = ∅, then O is the union of zero open spheres. So we
may assume that O 	= ∅. Let x ∈ O. Since O is open, there exists a positive number rx such
that Srx(x) ⊆ O. This implies that

⋃
x∈O Srx(x) ⊆ O. On the other hand, if x ∈ O, then

x ∈ Srx(x) ⊆ ⋃
x∈O Srx(x), implying that O ⊆ ⋃

x∈O Srx(x). Therefore, O =
⋃

x∈O Srx(x).
Next we show that if O is a subset of (X, d) that is a union of open spheres, then O is open.

If O = ∅, then O is open. Hence we may assume that O 	= ∅. Let x ∈ O. Since O is a union of
open spheres, x belongs to some open sphere, say Sr(a). Since Sr(a) is open, there exists r′ > 0
(as we saw in the proof of Theorem 16.8) such that Sr′(x) ⊆ Sr(a) ⊆ O. Therefore, O is open.

Two important properties of open sets are established in the next theorem.

Theorem 16.10 Let (X, d) be a metric space. Then

(i) the intersection of any finite number of open sets in X is open, and

(ii) the union of any number of open sets in X is open.

Proof. We first verify (i). Let O1, O2, · · · , Ok be k open sets in X, and let O = ∩k
i=1Oi. If O

is empty, then O is open by Theorem 16.8(i). Thus, we may assume that O is nonempty and let
x ∈ O. We show that x is the center of an open sphere that is contained in O. Since x ∈ O, it
follows that x ∈ Oi for all i (1 ≤ i ≤ k). Because each set Oi is open, there exists an open sphere
Sri(x) ⊆ Oi, where 1 ≤ i ≤ k. Let r = min{r1, r2, · · · , rk}. Then r > 0 and Sr(x) ⊆ Sri(x) ⊆ Oi

for each i (1 ≤ i ≤ k). Therefore, Sr(x) ⊆ ∩k
i=1Oi = O. Thus O is open.

Next we verify (ii). Let {Oα}α∈I be an indexed collection of open sets in X, and let O =
∪α∈IOα. We show that O is open. If O = ∅, then again O is open. So we assume that O 	= ∅.
By Theorem 16.9, each open set Oα (α ∈ I) is the union of open spheres. Thus, O is a union of
open spheres. It again follows by Theorem 16.9 that O is open.
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For the Euclidean space (R, d), each open interval In =
(

−1 − 1
n
, 1 +

1
n

)
, n ∈ N, is an open

set. By Theorem 16.10,
∞⋃

n=1
In = (−2, 2) is an open set, as is

100⋂
n=1

In =
(

−101
100

,
101
100

)
. However,

Theorem 16.10 does not guarantee that
∞⋂

n=1
In is open. Indeed,

∞⋂
n=1

In is the closed interval

[−1, 1], which is not an open set. The open interval Jn =
(
0,

1
n

)
, n ∈ N, is an open set as well.

Thus
∞⋃

n=1
Jn = (0, 1) is an open set. In this case,

∞⋂
n=1

Jn = ∅, which is also an open set.

We now turn to the Euclidean space (R2, d). Let P0 = (0, 0). For n ∈ N, the open sphere

Sn(P0) centered at (0, 0) and having radius n is an open set. Here
∞⋃

n=1
Sn(P0) = R2, which

is open; while
∞⋂

n=1
Sn(P0) = S1(P0), which is open. In (R2, d), where d is the discrete metric,

S1(P0) = {P0}, while S2(P0) = R2. Of course, all sets are open in a discrete metric space.
There is another important class of sets in metric spaces that arise naturally from open sets.

Let (X, d) be a metric space. A subset F of X is called closed if its complement F is open. For
example, in the Euclidean space (R, d), each closed interval [a, b] where a < b, is closed since its
complement (−∞, a)∪ (b,∞) is open. Let a be a point in a metric space and let Sr[a] consist of
those points x ∈ X such that d(x, a) ≤ r. The set Sr[a] is called a closed sphere with center
a and radius r. Not surprisingly, Sr[a] is closed, as we show next. Moreover, ∅ and X are both
open and closed.

Theorem 16.11 In a metric space (X, d),

(i) ∅ and X are closed, and

(ii) every closed sphere is closed.

Proof. Since ∅ and X are complements of each other and each is open, it follows that each
is closed. To verify (ii), let Sr[a] be a closed sphere in (X, d), where a ∈ X. We show that its
complement Sr[a] is open. We may assume that Sr[a] is nonempty and a proper subset of X.
Let x ∈ Sr[a]. Thus d(x, a) > r and r∗ = d(x, a) − r > 0. We show that Sr∗(x) ⊆ Sr[a], that is,
if y ∈ Sr∗(x), then y /∈ Sr[a]. Let y ∈ Sr∗(x). Since d(x, y) < r∗ = d(x, a) − r, it then follows by
the triangle inequality that

d(y, a) ≥ d(x, a) − d(x, y) > d(x, a) − r∗ = r

and so d(y, a) > r. Hence y ∈ Sr[a], which implies that Sr∗(x) ⊆ Sr[a].

Some other useful facts about closed sets follow immediately from Theorem 16.10. First, it
is useful to recall from Result 9.15 and Exercise 9.24 that if A1, A2, . . . , An are n ≥ 2 sets, then

n⋃
i=1

Ai =
n⋂

i=1

Ai and
n⋂

i=1

Ai =
n⋃

i=1

Ai.

These are DeMorgan’s Laws for any finite number of sets. There is a more general form of
DeMorgan’s Laws.
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Theorem 16.12 (Extended DeMorgan Laws) For an indexed collection {Aα}α∈I of sets,

(a)
⋃
α∈I

Aα =
⋂
α∈I

Aα and (b)
⋂
α∈I

Aα =
⋃
α∈I

Aα.

We present the proof of (a) only, leaving the proof of (b) as an exercise (Exercise 16.14).

Proof of Theorem 16.12 (a). First we show that
⋃
α∈I

Aα ⊆
⋂
α∈I

Aα. Let x ∈
⋃
α∈I

Aα. Then

x /∈
⋃
α∈I

Aα. Hence x /∈ Aα for each α ∈ I, which implies that x ∈ Aα for all α ∈ I. Consequently,

x ∈
⋂
α∈I

Aα and so
⋃
α∈I

Aα ⊆
⋂
α∈I

Aα.

Next we show that
⋂
α∈I

Aα ⊆
⋃
α∈I

Aα. Let x ∈
⋂
α∈I

Aα. Then x ∈ Aα for each α ∈ I. Thus

x /∈ Aα for all α ∈ I. This implies, however, that x /∈
⋃
α∈I

Aα and hence that x ∈
⋃
α∈I

Aα.

Therefore,
⋂
α∈I

Aα ⊆
⋃
α∈I

Aα.

Corollary 16.13 Let (X, d) be a metric space. Then

(i) the union of any finite number of closed sets in X is closed, and

(ii) the intersection of any number of closed sets in X is closed.

Proof. Let F1, F2, · · · , Fk be k closed sets in X and let F =
k⋃

i=1

Fi. Then F =
k⋃

i=1

Fi =
k⋂

i=1

Fi.

Since each set Fi (1 ≤ i ≤ k) is closed, each set Fi is open. By Theorem 16.10, F is open and
so F is closed. This verifies (i).

Next we verify (ii). Let {Fα}α∈I be an indexed collection of closed sets in X, and let

F =
⋂
α∈I

Fα. Then F =
⋂
α∈I

Fα =
⋃
α∈I

Fα by Theorem 16.12. Since each set Fα (α ∈ I) is closed,

each set Fα is open. By Theorem 16.10, F is open and so F is closed.

16.3 Continuity in Metric Spaces

We have seen then in calculus that defining a function f to be continuous at a real number
can be formulated in terms of distance or in terms of open intervals, each of which can be
generalized. Now we generalize the concept of continuity itself.

Let (X, d) and (Y, d′) be metric spaces, and let a ∈ X. A function f : X → Y is said to
be continuous at the point a if for every positive real number ε, there exists a positive real
number δ such that if x ∈ X and d(x, a) < δ, then d′(f(x), f(a)) < ε. The function f : X → Y
is continuous on X if it is continuous at each point of X. If X = Y = R and d = d′ is defined
by d(x, y) = |x− y| for all x, y ∈ R, then we are giving the standard definition of continuity in
calculus.

We now consider some examples of continuous functions in this more general setting.

Result 16.14 Let (R2, d) be the Manhattan metric space whose distance d(P1, P2) between
two points P1 = (x1, y1) and P2 = (x2, y2) in R2 is defined by d(P1, P2) = |x1 − x2| + |y1 − y2|,
and let (R, d′) be the Euclidean space, where d′(a, b) = |a− b|. Then
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(i) the function f : R2 → R defined by f((x, y)) = f(x, y) = x+ y is continuous.

(ii) the function g : R2 → R defined by g(x, y) = d′(x, y) = |x− y| is continuous.

Proof. We first verify (i). Let ε > 0 be given and let P0 = (x0, y0) ∈ R2. We choose δ = ε.
Now let P = (x, y) ∈ R2 such that d(P, P0) = |x− x0| + |y − y0| < δ. Then

d′(f(x, y), f(x0, y0)) = d′(x+ y, x0 + y0) = |(x+ y) − (x0 + y0)|
= |(x− x0) + (y − y0)| ≤ |x− x0| + |y − y0| < δ = ε.

Therefore, f is continuous.
We now verify (ii). Again, let ε > 0 be given and let P0 = (x0, y0) ∈ R2. For a given ε > 0,

choose δ = ε. Let P = (x, y) ∈ R2 such that d(P, P0) = |x− x0| + |y − y0| < δ. We show that

d′(g(P ), g(P0)) = d′(|x− y|, |x0 − y0|) = ||x− y| − |x0 − y0|| < ε,

which is equivalent to −ε < |x− y| − |x0 − y0| < ε. Observe, by the triangle inequality, that

|x− y| − |x0 − y0| = |(x− x0) + (x0 − y0) + (y0 − y)| − |x0 − y0|
≤ |x− x0| + |x0 − y0| + |y0 − y| − |x0 − y0|
= |x− x0| + |y0 − y| < δ = ε.

Similarly, |x0 − y0| − |x− y| ≤ |x− x0| + |x− y| + |y0 − y| − |x− y| = |x− x0| + |y0 − y| < ε.
Proof Analysis Let’s review how Theorem 16.14(ii) was proved. The main goal was to show
that ||x−y|−|x0−y0|| < ε given that |x−x0|+ |y0−y| < δ. Letting a = |x−y| and b = |x0−y0|,
we have the inequality |a − b| < ε to verify, which is equivalent to −ε < a − b < ε, which, in
turn, is equivalent to

a− b < ε and b− a < ε.

Thus one of the inequalities we wish to establish is |x− y| − |x0 − y0| < ε. Since we know that
|x−x0|+ |y0 − y| < δ, this suggests working the expression |x−x0|+ |y0 − y| into the expression
|x−y|−|x0−y0|. This can be accomplished by adding and subtracting the appropriate quantities.
Observe that

|x− y| − |x0 − y0| = |(x− x0) + (x0 − y0) + (y0 − y)| − |x0 − y0|
≤ |x− x0| + |x0 − y0| + |y0 − y| − |x0 − y0|
= |x− x0| + |y0 − y| < δ.

This suggests choosing δ = ε. Of course, we must be certain that with this choice of δ, we can
also show that |x0 − y0| − |x− y| < ε. ♦

The function i : R → R defined by i(x) = x for all x ∈ R is, of course, the identity function.
It would probably seem that this function must surely be continuous. However, this depends on
the metrics being used.

Example 16.15 Let (R, d) be the discrete metric space and (R, d′) the Euclidean space with
d′(x, y) = |x− y| for all x, y ∈ R. Then

(i) the function f : (R, d) → (R, d′) defined by f(x) = x for all x ∈ R is continuous, and
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(ii) the function g : (R, d′) → (R, d) defined by g(x) = x for all x ∈ R is not continuous.

Solution. First we verify (i). Let a ∈ R and let ε > 0 be given. Choose δ = 1/2. Let x ∈ R
such that d(x, a) < δ = 1/2. We show that d′(f(x), f(a)) < ε. Since d is the discrete metric and
d(x, a) < 1/2, it follows that x = a. Hence d′(f(x), f(a)) = |f(x) − f(a)| = |x− a| = |a− a| =
0 < ε.

Next we verify (ii). Let a ∈ R and choose ε = 1/2. Let δ be any positive real number.
Let x = a + δ/2 ∈ R. Then d′(x, a) = |x − a| = |(a + δ/2) − a| = δ/2 < δ. Since x 	= a,
d(g(x), g(a)) = d(x, a) = 1 > ε. Hence for ε = 1/2, there is no δ > 0 such that if d′(x, a) < δ,
then d(g(x), g(a)) < ε. Therefore, g is not continuous at a. ♦

Continuity of functions defined from one metric space to another can also be described by
means of open sets. To do this, we need additional definitions and notation. Let (X, d) and
(Y, d′) be metric spaces and let f : X → Y . If A is a subset of X, then its image f(A) is that
subset of Y defined by

f(A) = {f(x) : x ∈ A}.
Similarly, if B is a subset of Y , then its inverse image f−1(B) is defined by

f−1(B) = {x ∈ X : f(x) ∈ B}.

To illustrate these concepts, consider a function f : R → R, for some metric d on R, where
f is defined by f(x) = x2 for all x ∈ R. Then f(x) is a polynomial (whose graph is a parabola).
Let A = (−1, 2], B = [−2, 2], and C = [0, 4]. Then f(A) = C, while f−1(C) = B.

Now let (X, d) and (Y, d′) be metric spaces, let f : X → Y , and let a ∈ X. Suppose that
for each ε > 0, there exists δ > 0 such that if x ∈ X and d(x, a) < δ, then d′(f(x), f(a)) < ε.
Then f is continuous at a. Equivalently, f is continuous at a if whenever x ∈ Sδ(a), then
f(x) ∈ Sε(f(a)). Hence f is continuous at a if for each ε > 0, there exists δ > 0 such that
f(Sδ(a)) ⊆ Sε(f(a)). We now present a characterization of those functions f that are continuous
on the entire set X.

Theorem to Prove Let (X, d) and (Y, d′) be metric spaces and let f : X → Y . Then f is
continuous on X if and only if for each open set O in Y , the inverse image f−1(O) is an open
set in X.

Proof Strategy Let’s begin with the implication: If f is continuous on X, then for each
open set O in Y , the inverse image f−1(O) is an open set in X. Using a direct proof, we would
assume that f is continuous and that O is an open set in Y . If f−1(O) = ∅, then f−1(O) is an
open set in X; while if f−1(O) 	= ∅, then we are required to show that every element x ∈ f−1(O)
is the center of an open sphere contained in f−1(O). So let x ∈ f−1(O). Therefore, f(x) ∈ O.
We know that O is open; so there is some open sphere Sε(f(x)) contained in O. However, f is
continuous at x; so there exists δ > 0 such that f(Sδ(x)) ⊆ Sε(f(x)). Hence Sδ(x) ⊆ f−1(O).

We also attempt a direct proof to verify the converse. We begin then by assuming that for
each open set O in Y , the set f−1(O) is open in X. Our goal is to show that f is continuous
on X. We let a ∈ X and ε > 0 be given. The open sphere Sε(f(a)) is an open set in Y . By
hypothesis, f−1 (Sε(f(a))) is an open set in X. Furthermore, a ∈ f−1 (Sε(f(a))). Therefore,
there exists δ > 0 such that f(Sδ(a)) ⊆ Sε(f(a)) and f is continuous on X. ♦

We now give a more concise proof.
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Theorem 16.16 Let (X, d) and (Y, d′) be metric spaces and let f : X → Y . Then f is
continuous on X if and only if for each open set O in Y , the inverse image f−1(O) is an open
set in X.

Proof. Assume first that f is continuous on X. Let O be an open set in Y . We show that
f−1(O) is open in X. If f−1(O) = ∅, then f−1(O) is open; so we may assume that f−1(O) 	= ∅.
Let x ∈ f−1(O). Since x ∈ f−1(O), it follows that f(x) ∈ O. Because O is open, there exists an
open sphere Sε(f(x)) that is contained in O. Since f is continuous at x, there exists δ > 0 such
that f(Sδ(x)) ⊆ Sε(f(x)) ⊆ O. Thus, Sδ(x) ⊆ f−1(O), as desired.

For the converse, assume that for each open set O of Y , the inverse image f−1(O) is an
open set of X. We show that f is continuous on X. Let a be an arbitrary point in X. Let
ε > 0 be given. The set Sε(f(a)) is open in Y and so its inverse image f−1(Sε(f(a))) is open in
X and contains a. Then there exists δ > 0 such that the open sphere Sδ(a) ⊆ f−1(Sε(f(a))).
Therefore, f(Sδ(a)) ⊆ Sε(f(a)) and so f is continuous at a. Hence f is continuous on X.

With the aid of Theorem 16.16, it can now be shown that any constant function from one
metric space to another is continuous.

Result 16.17 Let (X, d) and (Y, d′) be metric spaces and let f : X → Y be a constant
function, that is, f(x) = c for some c ∈ Y . Then f is continuous.

Proof. Let O be an open set in Y . Then f−1(O) = ∅ if c /∈ O; otherwise f−1(O) = X. In any
case, f−1(O) is open. By Theorem 16.16, f is continuous on X.

16.4 Topological Spaces

In the previous section, we introduced the concept of a continuous function from one metric
space to another, and the definition was formulated in terms of the metrics on the spaces
involved. However, Theorem 16.16 shows that the continuity of a function on a metric space can
be established in terms of open sets only, without any direct reference to metrics. This suggests
the possibility of discarding metrics altogether, replacing them by open sets, and describing
continuity in an even more general setting. This gives rise to another mathematical structure,
called a topological space.

Let X be a nonempty set, and let τ (the Greek letter “tau”) be a collection of subsets of
X. Then (X, τ) is called a topological space, and τ itself is called a topology on X, if the
following properties are satisfied:

(1) X ∈ τ and ∅ ∈ τ .
(2) If O1, O2, · · · , On ∈ τ , where n ∈ N, then ∩n

i=1Oi ∈ τ.
(3) If, for an index set I, Oα ∈ τ for each α ∈ I, then ∪α∈IOα ∈ τ .

In a topological space (X, τ), we refer to each element of τ as an open set of X. Property (1)
states that X and the empty set are open. Property (2) states that the intersection of any finite
number of open sets is open; while property (3) states the union of any number of open sets is
open. For example, for a nonempty set X, let τ1 = {∅, X} and τ2 = P(X), the set of all subsets
of X. Then for i = 1, 2, (X, τi) is a topological space. The topology τ1 is called the trivial
topology on X, while τ2 is the discrete topology on X. In (X, τ1), the only open sets are X
and ∅; while in (X, τ2), every subset of X is open.
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It follows immediately from the definition of a topological space and the properties of open
sets in a metric space that every metric space is a topological space. The converse is not true
however. When we say that a topological space (X, τ) is a metric space, we mean that it is
possible to define a metric d on X such that the set of open sets of (X, d) is τ .

Example 16.18 Let X = {a, b, c} and τ = {∅, X, {a}, {a, b}, {a, c}}. Then (X, τ) is a topolog-
ical space that is not a metric space.

Solution. To see that (X, τ) is a topological space, it suffices to observe that the union or
intersection of any elements of τ also belongs to τ .

We now show that (X, τ) is not a metric space, that is, there is no way to define a metric onX
such that the resulting open sets are precisely the elements of τ . We verify this by contradiction.
Assume, to the contrary, that there exists a metric d such that the open sets in (X, d) are the
elements of τ . Let r = min{d(a, b), d(b, c)}. Necessarily, r > 0. Then

Sr(b) = {x ∈ X : d(x, b) < r} = {b},
which, however, does not belong to τ , a contradiction. ♦

We now present two other examples of topological spaces, the first of which is suggested by
the preceding result.

Result 16.19 Let X be a nonempty set. For a ∈ X, let τ consist of ∅ and each subset of X
containing a. Then (X, τ) is a topological space.

Proof. Since a ∈ X, it follows that X ∈ τ . Furthermore, ∅ ∈ τ ; so property (1) is satisfied.
Let O1, O2, · · · , On be n elements of τ . If Oi = ∅ for some i (1 ≤ i ≤ n), then ∩n

i=1Oi = ∅ and
so ∩n

i=1Oi ∈ τ. Otherwise, a ∈ Oi for all i with 1 ≤ i ≤ n. Thus a ∈ ∩n
i=1Oi, implying that

∩n
i=1Oi ∈ τ. Finally, for an index set I, let {Oα}α∈I be a collection of elements of τ . If Oα = ∅

for all α ∈ I, then ∪α∈IOα = ∅ and so ∪α∈IOα ∈ τ . Otherwise, a ∈ Oα for some α ∈ I and so
a ∈ ∪α∈IOα. Therefore, ∪α∈IOα ∈ τ . Hence (X, τ) is a topological space.

Our next example of a topological space uses the Extended DeMorgan Laws (Theorem 16.12).

Result to Prove Let X be a nonempty set, and let τ be the set consisting of ∅ and each subset
of X whose complement is finite. Then (X, τ) is a topological space.

Proof Strategy If X is a finite set, then τ consists of all subsets of X. In this case, τ is
the discrete topology on X, and (X, τ) is a topological space. Hence we need only be concerned
with the case when X is infinite. We already known that ∅ ∈ τ . Also X = ∅, which is finite; so
X ∈ τ as well. So (X, τ) satisfies property (1) required of a topological space.

In order to show that (X, τ) satisfies property (2), we let O1, O2, · · · , On ∈ τ for n ∈ N.
We are required to show that ∩n

i=1Oi ∈ τ . If any of the open sets O1, O2, · · · , On is empty,
then ∩n

i=1Oi = ∅ and so ∩n
i=1Oi belongs to τ . Hence it suffices to assume that Oi 	= ∅ for all

i (1 ≤ i ≤ n). It is necessary to show that ∩n
i=1Oi is finite. However, ∩n

i=1Oi = ∪n
i=1Oi by

DeMorgan’s law. Since each set Oi is finite (1 ≤ i ≤ n), the union of these sets is finite as well.
Therefore, ∩n

i=1Oi ∈ τ and property (2) is satisfied.
To show that property (3) is satisfied, we begin with an indexed family {Oα}a∈I of open sets

in X and are required to show that ∪a∈IOα ∈ τ . We can proceed in a manner similar to the
verification of property (2). ♦



14 CHAPTER 16. PROOFS IN TOPOLOGY

Result 16.20 Let X be a nonempty set, and let τ be the set consisting of ∅ and each subset
of X whose complement is finite. Then (X, τ) is a topological space.

Proof. If X is finite, then τ is the discrete topology. Hence we may assume that X is infinite.
Since the complement of X is ∅, it follows that X ∈ τ . Since ∅ ∈ τ as well, (1) holds. Let
O1, O2, · · · , On be n elements of τ . If Oi = ∅ for some i (1 ≤ i ≤ n), then ∩n

i=1Oi = ∅ ∈ τ . Hence
we may assume that Oi 	= ∅ for all i (1 ≤ i ≤ n). Then each set Oi is finite. By DeMorgan’s
law, ∩n

i=1Oi = ∪n
i=1Oi. Since ∩n

i=1Oi is a finite union of finite sets, it is finite. Thus ∩n
i=1Oi ∈ τ

and so (2) is satisfied. To verify (3), let {Oα}a∈I be any collection of elements of τ . Again, by
DeMorgan’s law, ⋃

a∈I

Oα =
⋂
a∈I

Oα.

If Oα = ∅ for all α ∈ I, then Oα = X and so
⋃

a∈I Oα = X. Thus we may assume that there
is some β ∈ I such that Oβ 	= ∅. Hence Oβ is finite and

⋂
a∈I Oα ⊆ Oβ. So

⋂
a∈I Oα is finite as

well. Therefore, ∪a∈IOα ∈ τ and (3) is satisfied.

We saw in Theorem 16.7 that every two distinct points in a metric space (X, d) belong to
disjoint open spheres in X. Since open spheres are open sets in X, it follows that two distinct
points in X belong to disjoint open sets. This is often a useful property for a topological space
to have.

A topological space (X, τ) is called a Hausdorff space (named for the mathematician Felix
Hausdorff) if for each pair a, b of distinct points of X, there exist disjoint open sets Oa and Ob

of X containing a and b, respectively. The following result is a consequence of Theorem 16.7.

Corollary 16.21 Every metric space is a Hausdorff space.

On the other hand, not every topological space is a Hausdorff space and not every Hausdorff
space is a metric space. We verify the first of these. The second of these is a deeper question in
topology.

Example 16.22 Let X be an infinite set and let τ be the set consisting of ∅ and every subset
of X whose complement is finite. Then (X, τ) is a topological space that is not a Hausdorff
space.

Solution. We saw in Result 16.20 that (X, τ) is a topological space; so it remains only to
show that (X, τ) is not a Hausdorff space. Let a and b be any two distinct elements of X. We
claim that there do not exist two disjoint open sets, one containing a and the other b. Assume, to
the contrary, that there exist (nonempty) open sets Oa and Ob containing a and b, respectively,
such that Oa ∩Ob = ∅. Then, by DeMorgan’s law, Oa ∩Ob = X = Oa ∪Ob. Since X is infinite,
at least one of Oa and Ob is infinite. This implies that at least one of Oa and Ob is not open,
which is a contradiction. ♦

16.5 Continuity in Topological Spaces

By Theorem 16.16, if (X, d) and (Y, d′) are metric spaces, then a function f : X → Y is
continuous if and only if f−1(O) is an open set in X for each open set O in Y . Hence, instead of
defining a function f to be continuous in terms of distances in the two metric spaces (as we did),
we could have defined f to be continuous in terms of open sets. Since it would be meaningless
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to define a function from one topological space to another to be continuous in terms of distance,
we have a logical alternative.

Let (X, τ) and (Y, τ ′) be two topological spaces. A function f : X → Y is defined to be
continuous if f−1(O) is an open set in X for every open set O in Y . Let’s see how this definition
works in practice.

Result 16.23 Let (X, τ) and (Y, τ ′) be two topological spaces.

(i) If τ is the discrete topology on X, then every function f : X → Y is continuous.

(ii) Let τ be the trivial topology on X and let f : X → Y be a surjective function. Then f is
continuous if and only if τ ′ is the trivial topology on Y.

Proof. First we verify (i). Let O be an open set in Y . Since f−1(O) is a subset of X, it follows
that f−1(O) is an open set in X and so f is continuous.

Next we verify (ii). Assume first that τ ′ is the trivial topology on Y . Then Y and ∅ are the
only open sets in Y . Since f−1(Y ) = X and f−1(∅) = ∅ are open sets in X, it follows that f is
continuous. For the converse, assume that τ ′ is a topology on Y that is not the trivial topology.
Then there exists some open set O in Y distinct from Y and ∅. Since f is surjective, f−1(O) is
distinct from X and ∅. Thus f−1(O) is not an open set in X, implying that f is not continuous.

Result 16.24 Let (X, τ) and (Y, τ ′) be topological spaces.

(i) The identity function i : X → X (defined by i(x) = x for all x ∈ X) is continuous.

(ii) If g : X → Y is a constant function, that is, if g(x) = c for all x ∈ X, where c ∈ Y , then
g is continuous.

Proof. We first verify (i). Let O be an open set in X. Since i−1(O) = O is an open set in X,
the function i is continuous.

Next we verify (ii). Let O be an open set in Y . If c ∈ O, then g−1(O) = X; while if c /∈ O,
then g−1(O) = ∅. In either case, g−1(O) is an open set in X and so g is continuous.

Example 16.25 Let X = {a, b, c} with the topology τ = {∅, X, {a}, {a, b}, {a, c}} and let f :
X → X be defined by f(a) = b, f(b) = c, and f(c) = a. Determine whether f is continuous.

Solution. Since O = {a} is an open set in X and f−1(O) = {b} is not an open set in X, the
function f is not continuous. ♦

Based on the definition given of a continuous function from one metric space to another,
it might appear more natural, for topological spaces (X, τ) and (Y, τ ′), to define a function
f : X → Y to be continuous if, for every x ∈ X and every open set O of Y containing f(x),
there exists an open set U of X containing x such that f(U) ⊆ O. This is equivalent to our
definition, as we are about to see. First, a lemma is useful.

Lemma 16.26 Let X and Y be nonempty sets and let f : X → Y be a function. For every
subset B of Y ,

f
(
f−1(B)

)
⊆ B.
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Proof. Let y ∈ f (
f−1(B)

)
. Then there is x ∈ f−1(B) such that f(x) = y. This implies that

y ∈ B.

Result to Prove Let (X, τ) and (Y, τ ′) be topological spaces. Then f : X → Y is continuous
if and only if for every x ∈ X and every open set O of Y containing f(x), there exists an open
set U of X containing x such that f(U) ⊆ O.

Proof Strategy Assume first that f is continuous. Let x ∈ X and let O be an open set in Y
containing y = f(x). What we are required to do is to find an open set U of X containing x such
that f(U) ⊆ O. There is an obvious choice for U , however, namely, f−1(O). An application of
Lemma 16.26 will complete the proof of this implication.

Next, we consider the converse. Assume that for every x ∈ X and every open set O of Y
containing f(x), there is an open set U of X containing x such that f(U) ⊆ O. Since our goal is
to show that f is continuous, we need to show that for every open set B of Y , the set f−1(B) is
open in X. Of course, if f−1(B) = ∅, then f−1(B) is an open set; so we assume that f−1(B) 	= ∅.
If we can show that f−1(B) is the union of open sets, then f−1(B) is open. Let x ∈ f−1(B).
Then f(x) ∈ B. By hypothesis, there is an open set Ux in X containing x such that f(Ux) ⊆ B.
This implies that f−1(B) is a union of open sets in X. ♦

Result 16.27 Let (X, τ) and (Y, τ ′) be topological spaces. Then f : X → Y is continuous if
and only if for every x ∈ X and every open set O of Y containing f(x), there exists an open set
U of X containing x such that f(U) ⊆ O.

Proof. Assume first that f is continuous. Let x ∈ X and let O be an open set in Y that
contains f(x). Since f is continuous, f−1(O) is an open set in X containing x. Let U = f−1(O).
By Lemma 16.26, f(U) = f

(
f−1(O)

) ⊆ O.
For the converse, assume that for every x ∈ X and every open set O of Y containing f(x),

there is an open set U of X containing x such that f(U) ⊆ O. Let B be an open set in Y .
We show that f−1(B) is an open set in X. If f−1(B) = ∅, then f−1(B) is open in X. So we
may assume that f−1(B) 	= ∅. For each x ∈ f−1(B), the set B is an open set in Y containing
f(x). By assumption, there is an open set Ux in X containing x such that f(Ux) ⊆ B. Thus
Ux ⊆ f−1(B). However, then, f−1(B) =

⋃
x∈f−1(B) Ux and so f−1(B) is an open set in X as

well.

Exercises for Chapter 16

16.1 In each of the following, a distance is defined on the set R of real numbers. Determine
which of the four properties of a metric space are satisfied by d. Verify your answers.

(a) d(x, y) = y − x (b) d(x, y) = (x− y) + (y − x)
(c) d(x, y) = |x− y| + |y − x| (d) d(x, y) = x2 + y2

(e) d(x, y) = |x2 − y2| (f) d(x, y) = |x3 − y3|
16.2 For points P1 = (x1, y1) and P2 = (x2, y2) in R2, the Manhattan metric d(P1, P2) is defined

by d(P1, P2) = |x1 − x2| + |y1 − y2|. Prove that the Manhattan metric is, in fact, a metric
on R2.

16.3 Let (X, d) be a metric space. For two points P1 = (x1, y1) and P2 = (x2, y2) in X2, define
d′ : X × X → R by d′(P1, P2) = d(x1, x2) + d(y1, y2). Which of the four properties of a
metric space are satisfied by d′?
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16.4 Let (X, d) be a metric space. For two points P1 = (x1, y1) and P2 = (x2, y2) in X2, define
d∗ : X ×X → R by d∗(P1, P2) =

√
[d(x1, x2)]2 + [d(y1, y2)]2. Which of the four properties

of a metric space are satisfied by d∗?

16.5 Let A be a set and let a and b be two distinct elements of A. A distance d : A× A → R
is defined as follows:

d(x, y) =




0 if x = y
1 if {x, y} = {a, b}
2 if x 	= y and {x, y} 	= {a, b}.

Which of the four properties of a metric space are satisfied by this distance?

16.6 Let (X, d) be a metric space.

(a) Define d1(x, y) = d(x, y)/[1 + d(x, y)]. Prove that d1 is a metric for X.

(b) Define d2(x, y) = min{1, d(x, y)}. Prove that d2 is a metric for X.

16.7 In each part that follows, a distance d(P1, P2) between two points P1 = (x1, y1) and P2 =
(x2, y2) is defined on the Cartesian product R2. Determine which of the four properties
of a metric space is satisfied by each distance d. For those distances that are metrics,
describe the associated open spheres.

(a) d(P1, P2) = min {|x1 − x2|, |y1 − y2|}
(b) d(P1, P2) = max {|x1 − x2|, |y1 − y2|}
(c) d(P1, P2) = (|x1 − x2| + |y1 − y2|) /2

16.8 Let (R2, d) be the metric space whose distance d(P1, P2) between two points P1 = (x1, y1)
and P2 = (x2, y2) is given by d(P1, P2) =

√
(x1 − x2)2 + (y1 − y2)2. Prove that the set

S = {(x, y) : −1 < x < 1 and − 1 < y < 1} is open in (R2, d).

16.9 Let (R2, d) and (R2, d′) be metric spaces, where for two points P1 = (x1, y1) and P2 =
(x2, y2) in R2, d(P1, P2) =

√
(x1 − x2)2 + (y1 − y2)2 and d′(P1, P2) = |x1 − x2| + |y1 − y2|.

Prove each of the following.

(a) Every open set in (R2, d) is open in (R2, d′).

(b) Every open set in (R2, d′) is open in (R2, d).

16.10 In the metric space (R, d), where d(x, y) = |x − y|, determine which of the following sets
are open, closed, or neither and verify your answers.

(a) (0, 1] (b) [0, 1] (c) (−∞, 1]
(d) (0,∞) (e) (0, 2) − {1} (f) Q
(g) I (h) { 1

n | n ∈ N} (i) { 1
n | n ∈ N} ∪ {0}

16.11 Let (R2, d) be the metric space whose distance d(P1, P2) between two points P1 = (x1, y1)
and P2 = (x2, y2) in R2 is defined by d(P1, P2) = |x1 − x2| + |y1 − y2|, and let (R, d′) be
the metric space with d′(a, b) = |a− b|.
Verify each of the following.

(a) The function f : (R2, d) → (R, d′) defined by f(x, y) = 1
2(x− y) is continuous.
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(b) The function g : (R2, d) → (R, d′) defined by g(x, y) = x is continuous.

16.12 Let (R2, d) be the metric space whose distance d(P1, P2) between two points P1 = (x1, y1)
and P2 = (x2, y2) in R2 is defined by d(P1, P2) =

√
(x1 − x2)2 + (y1 − y2)2 and let d′ be

the discrete metric, that is,

d′(P1, P2) =

{
0 if P1 = P2
1 if P1 	= P2.

Verify each of the following.

(a) The function f : (R2, d) → (R2, d′) defined by f(x, y) = (x, y) is continuous.

(b) The function g : (R2, d′) → (R2, d) defined by g(x, y) = (x, y) is not continuous.

16.13 Let X = {a, b, c, d}. Determine which of the following collections of subsets of X are
topologies on X. Verify your answers.

(a) S1 = {∅, {a}, {a, b}, {a, c}}
(b) S2 = {∅, X, {a, b}, {a, c}}
(c) S3 = {∅, X, {a}, {a, b}, {a, d}, {a, b, d}}

16.14 Prove the Extended DeMorgan Law in Theorem 16.12(b).

16.15 let X be a nonempty set and let S ⊆ X. Let τ consist of ∅ and each subset of X containing
S. Prove that (X, τ) is a topological space.

16.16 Let (X, τ) be a topological space. Prove that if {x} is an open set for every x ∈ X, then
τ is the discrete topology.

16.17 Let (X, τ) be a topological space, where X is finite. Prove that (X, τ) is a metric space if
and only if τ is the discrete topology on X.

16.18 (a) For a set X with a ∈ X, let τ consists of X together with all sets S such that a /∈ S.
Prove that (X, τ) is a topological space.

(b) State and prove a generalization of the result in (a).

16.19 Let X be a nonempty set and let τ be the set consisting of ∅ and each subset of X whose
complement is countable. Prove that (X, τ) is a topological space.

16.20 Let a, b, c be three distinct elements in a Hausdorff space (X, τ). Prove that there exist
pairwise disjoint open sets Oa, Ob, and Oc containing a, b, and c, respectively.

16.21 Let τ be the set consisting of ∅, R, and each interval (a,∞), where a ∈ R. It is known
that (R, τ) is a topological space. (Don’t attempt to prove this.) Show that (R, τ) is not
a Hausdorff space.

16.22 Prove that if (X, τ) is a topological space with the discrete topology, then (X, τ) is a
Hausdorff space.

16.23 Let (N, τ) be a topological space, where τ consists of ∅ and {S : S ⊆ N, 1 ∈ S}, and let
f : N → N be a continuous permutation. Determine f(1).
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16.24 LetX = {a, b, c} with the topology τ = {∅, X, {a}, {a, b}, {a, c}}. Determine all continuous
functions from X to X.

16.25 Let (X, τ1), (Y, τ2), and (Z, τ3) be topological spaces, and let f : X → Y and g : Y → Z be
functions. Prove that if f and g are continuous, then the composition g ◦f is a continuous
function from X to Z.

16.26 Let τ be the trivial topology on a nonempty set X. Prove that if f : X → X is continuous,
then f is a constant function.

16.27 For the following statement S and proposed proof, either (1) S is true and the proof is
correct, (2) S is true and the proof is incorrect, or (3) S is false and the proof is incorrect.
Explain which of these occurs.

S: Let X be an infinite set and let τ consists of ∅ and all infinite subsets of X. Then
(X, τ) is a topological space.

Proof. Since X is an infinite subset of X, it follows that X ∈ τ . Since ∅ ∈ τ , property
(1) of a topological space is satisfied. Let O1, O2, . . . , On be elements of τ for n ∈ N.
We show that ∩n

i=1Oi ∈ τ . If Oi = ∅ for some i with 1 ≤ i ≤ n, then ∩n
i=1Oi = ∅ and

∩n
i=1Oi ∈ τ . Otherwise, Oi is infinite for all i (≤ i ≤ n). Hence ∩n

i=1Oi is infinite and so
∩n

i=1Oi ∈ τ . Thus property (2) is satisfied. Next, let {Oα}α∈I be an indexed family of
open sets. If Oα = ∅ for each α ∈ I, then ∪α∈IOα = ∅ and so ∪α∈IOα ∈ τ . Otherwise, Oα

is infinite for some α ∈ I and so ∪α∈IOα is infinite. Hence ∪α∈IOα ∈ τ . Therefore, τ is a
topology on X.

16.28 Let (X, τ) and (Y, τ ′) be two topological spaces. According to Result 16.23(i), if τ is the
discrete topology on X, then every function f : X → Y is continuous. The converse of
Result 16.23(i) is stated as follows together with a “proof”.

Converse of Result 16.23(i): Let (X, τ) and (Y, τ ′) be two topological spaces. If every
function from X to Y is continuous, then τ is the discrete topology on X.

“Proof.” Suppose that every function f : X → Y is continuous and assume, to the
contrary, that τ is not the discrete topology on X. Then there exists some subset S of X
such that S is not open in X. So S is distinct from X and ∅. Let T be an open set in Y
and let a, b ∈ Y such that a ∈ T and b /∈ T . Define a function f : X → Y by

f(x) =

{
a if x ∈ S
b if x /∈ S.

Since T is open in Y and f−1(T ) = S is not open in X, it follows that f is not continuous,
which is a contradiction.

(a) Is the proposed proof of the converse correct?

(b) If the answer to (a) is yes, then state Result 16.23(i) and its converse using “if and
only if”. If the answer to (a) is no, then revise the hypothesis of the converse so that
it is true (with attached proof).

16.29 Let X be a set with at least two elements, and let a ∈ X. Prove or disprove:

(a) If (X, d) is a metric space, then X − {a} is an open set.
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(b) If (X, d) is a topological space, then X − {a} is an open set.

16.30 For the following statement S and proposed proof, either (1) S is true and the proof is
correct, (2) S is true and the proof is incorrect, or (3) S is false and the proof is incorrect.
Explain which of these occurs.

S: Let (X, d) be a metric space. For every open set O in X such that O 	= ∅, and every
element b ∈ O, there exists an open sphere Sr(b) in X such that Sr(b) and O are disjoint.

Proof. Let r = min{d(b, x) : x ∈ O}. Consider the open sphere Sr(b). We claim that
Sr(b)∩O = ∅. Assume, to the contrary, that Sr(b)∩O 	= ∅. Then there exists y ∈ Sr(b)∩O.
Since y ∈ Sr(b), it follows that d(b, y) < r. However, since y ∈ O, this contradicts the fact
that r is the minimum distance between b and an element of O.

16.31 Prove or disprove: Let (X, d) be a metric space. For every open set O in X such that
O 	= ∅, there exist b ∈ O and an open sphere Sr(b) in X such that Sr(b) and O are disjoint.
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Answers and Hints to Selected Odd-Numbered Exercises in Chapters 14-16

Chapter 14

14.1 (a) Proof. Let a, b ∈ kZ. Then a = kx and b = ky for some x, y ∈ Z. Note that
a+ b = kx+ ky = k(x+ y) and ab = (kx)(ky) = k(kxy). Since x+ y, kxy ∈ Z, it follows
that a + b, ab ∈ kZ; so the addition and multiplication defined are binary operations on
kZ. Since kZ ⊆ Z and the binary operations in kZ are the same as those in Z, properties
R1, R2, R5, and R6 are automatically satisfied. Moreover, since 0 = k · 0 and 0 ∈ Z, it
follows that kZ has an additive identity. To show that property R4 is also satisfied, let
a ∈ kZ. So a = kx, where x ∈ Z. Then −a = −(kx) = k(−x). Since −x ∈ Z, it follows
that −a ∈ kZ.

14.3 (a) Solution We show that (S, ∗, ◦) is not a ring. Certainly, ∗ and ◦ are binary operations
on S. However, property R6 is not satisfied. To see this, let a = b = c = 0. Then
a ◦ (b ∗ c) = 0 ◦ 1 = 0 and (a ◦ b) ∗ (a ◦ c) = 0 ∗ 0 = 1. ♦

14.7 Proof. Let a ∈ R. Then a2 = a. Thus (a + a)2 = (a + a)(a + a) = a(a + a) + a(a +
a) = (a2 + a2) + (a2 + a2) = (a + a) + (a + a). Since (a + a)2 = a + a, it follows that
(a + a) + (a + a) = (a + a) + 0. Applying the Cancellation Law of Addition (Theorem
14.10), we obtain a+ a = 0. Therefore, −a = a.

14.9 (a) Since the zero matrix
[
0 0
0 0

]
belongs to S, it follows that S �= ∅. Let M1,M2 ∈ S.

Thus M1 =
[
a1 0
0 b1

]
and M2 =

[
a2 0
0 b2

]
, where ai, bi ∈ R for i = 1, 2. Then

M1 − M2 =
[
a1 − a2 0
0 b1 − b2

]
and M1M2 =

[
a1a2 0
0 b1b2

]
belong to S. By the

Subring Test, S is a subring of M2(R).

14.11 Solution The set 2G of even Gaussian integers is a subring of G.

Proof. Since 0 ∈ 2Z, it follows that 0 = 0+0i ∈ 2G and so 2G �= ∅. Let x, y ∈ 2G. Then
x = a1+b1i and y = a2+b2i, where ai, bi ∈ 2Z for i = 1, 2. Then x−y = (a1−a2)+(b1−b2)i
and xy = (a1a2 − b1b2)+(a1b2+a2b1)i. Since a1 −a2, b1 − b2, a1a2 − b1b2, a1b2+a2b1 ∈ 2Z,
it follows by the Subring Test that 2G is a subring of G.

14.13 (a) Since the zero matrix
[
0 0
0 0

]
belongs to S, it follows that S �= ∅. Let M1,M2 ∈ S.

Thus M1 =
[
a1 b1
0 0

]
and M2 =

[
a2 b2
0 0

]
, where ai, bi ∈ R for 1 ≤ i ≤ 2. Then

M1 − M2 =
[
a1 − a2 b1 − b2
0 0

]
and M1M2 =

[
a1a2 a1b2
0 0

]
belong to S. By the

Subring Test, S is a subring of M2(R).

(b) Let E =
[
1 1
0 0

]
and let A =

[
a b
0 0

]
be an arbitrary element of S. Then

EA =
[
1 1
0 0

] [
a b
0 0

]
=

[
a b
0 0

]
. Let C =

[
2 3
0 0

]
∈ S. Then CE =[

2 3
0 0

] [
1 1
0 0

]
=

[
2 2
0 0

]
�= C.
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14.15 Proof. First we show that (2Z,+, ◦) is a ring. Certainly, 2Z is closed under addition. Let
a, b, c ∈ 2Z. Then a = 2x, b = 2y, and c = 2z, where x, y, z ∈ 2Z. So a ◦ b = (2x)(2y)/2 =
2(xy). Since xy is an integer, 2Z is closed under this multiplication. Because (2Z,+, ·)
is a ring, where · is ordinary multiplication, (2Z,+, ◦) satisfies properties R1–R4 and
the integer 0 is the zero element. Now a ◦ (b ◦ c) = a ◦ (bc/2) = a(bc)/4 = (ab)c/4 =
(ab/2)◦ c = (a◦ b)◦ c; so (2Z,+, ◦) satisfies property R5. Finally, a◦ (b+ c) = a(b+ c)/2 =
(ab/2) + (ac/2) = (a ◦ b) + (a ◦ c), and so (2Z,+, ◦) satisfies property R6. Therefore,
(2Z,+, ◦) is a ring. Since a ◦ b = ab/2 = ba/2 = b ◦ a, the ring (2Z,+, ◦) is commutative.
Because a ◦ 2 = (a · 2)/2 = a and 2 ∈ 2Z, the integer 2 is a unity for (2Z,+, ◦). Next,
suppose that a ◦ b = 0, where a, b ∈ Z. Then ab/2 = 0 and so ab = 0, implying that a = 0
or b = 0. Therefore, (2Z,+, ◦) is an integral domain.

14.19 Hint: Consider the following rings R and subrings S:

(a) R =M2(R); S =
{[

a 0
0 a

]
: a ∈ R

}
.

(b) R = R[x]; S = {f ∈ R[x] : f is a constant function}.
(c) R = Q × Z; S = Q × {0}.

14.21 Hint: First show that Q[i] is a subring of C. Then show that every nonzero element of
Q[i] is a unit.

14.23 (a) Zn (n ≥ 2)

(b) Z

(c) M2(Z2)

(d) M2(R)

14.25 (3) occurs. Now explain your answer with justification.

Chapter 15

15.1 Proof. Let u,v ∈ C and α, β ∈ R. Then u = a+ bi and v = c+ di, where a, b, c, d ∈ R.
Then u+v = (a+ bi)+ (c+ di) = (a+ c)+ (b+ d)i and αu = α(a+ bi) = αa+αbi. Since
a+c, b+d, αa, αb ∈ R, it follows that u+v ∈ C and αu ∈ C. Now u+v = (a+c)+(b+d)i =
(c+a)+(d+b)i = v+u, and property 1 is satisfied. Let w = e+fi, where e, f ∈ R. Then
(u+v) +w = [(a+ c) + (b+ d)i] + (e+ fi) = [(a+ c) + e] + [(b+ d) + f ]i = [a+ (c+ e)] +
[b+(d+ f)]i = (a+ bi)+ [(c+ e)+ (d+ f)i] = (a+ bi)+ [(c+di)+ (e+ fi)] = u+(v+w);
so property 2 is satisfied.

Let z = 0 + 0i. Since u + z = (a + bi) + (0 + 0i) = a + bi = u, property 3 is satisfied.
Let −u = (−a) + (−b)i. Then u + (−u) = (a + bi) + [(−a) + (−b)i] = 0 + 0i = z, and
property 4 is satisfied. Because α(u+ v) = α[(a+ bi) + (c+ di)] = α[(a+ c) + (b+ d)i] =
(αa+αc)+(αb+αd)i = (αa+αbi)+(αc+αdi) = α(a+bi)+α(c+di) = αu+αv, property
5 is satisfied. Now (α+β)u = (α+β)(a+bi) = (α+β)a+(α+β)bi = αa+βa+αbi+βbi =
(αa+αbi)+(βa+βbi) = α(a+bi)+β(a+bi) = αu+βu. Thus property 6 is satisfied. Since
(αβ)u = (αβ)(a+ bi) = (αβ)a+ (αβ)bi = α(βa) +α(βbi) = α(βa+ βbi) = α(β(a+ bi)) =
α(βu), property 7 is satisfied. Finally, 1 · u = 1(a+ bi) = 1 · a+1 · bi = a+ bi = u, and so
property 8 is satisfied.
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15.3 (a) Since (1, 0, 0) + (0, 1, 0) = (1, 0, 0) and (0, 1, 0) + (1, 0, 0) = (0, 1, 0), property 1 is not
satisfied and so R3 is not a vector space.

(c) Let v = (1, 0, 0) and let z = (a, b, c) be the zero vector, where a, b, c ∈ R. Then
v + z = (0, 0, 0) �= v; so property 3 is not satisfied and R3 is not a vector space.

(e) Let v = (1, 0, 0). Since 1v = (0, 0, 1) �= v, property 8 is not satisfied and R3 is not a
vector space.

15.5 Proof. Observe that α(−v) = α((−1)v) = (α(−1))v = (−α)v = ((−1)α)v = (−1)(αv) =
−(αv).

15.7 (a) The statement is false. Since z + z = z, it follows that −z = z. ♦
15.9 (a) The set W1 is a subspace of R4. Proof. Since (0, 0, 0, 0) ∈ W1, it follows that

W1 �= ∅. Let u,v ∈ W1 and α ∈ R. Then u = (a, a, a, a) and v = (b, b, b, b) for some
a, b ∈ R. Then u+v = (a+ b, a+ b, a+ b, a+ b) and αu = (αa, αa, αa, αa). Because
u + v, αu ∈ W1, it follows that W1 is a subspace of R4 by the Subspace Test.

(c) Since (0, 0, 0, 1) ∈ W3 but 2(0, 0, 0, 1) /∈ W3, it follows that W1 is not closed under
scalar multiplication and so W3 is not a subspace of R4. ♦

15.11 (a) The set U1 is a subspace of R[x]. Proof. Since the zero function f0 defined by
f0(x) = 0 for all x ∈ R belongs to R[x], it follows that U1 �= ∅. Let f, g ∈ U1 and
α ∈ R. Then there exist constants a and b such that f(x) = a and g(x) = b for all
x ∈ R. Then (f + g)(x) = f(x) + g(x) = a + b and (αf)(x) = αf(x) = αa. Since
f + g, αf ∈ U1, it follows by the Subspace Test that U1 is a subspace of R[x].

(b) Since the function h defined by h(x) = x3 for all x ∈ R belongs to U2, but (0 ·h)(x) =
0 · h(x) = 0 · x3 = 0 does not belong to U2, it follows that U2 is not closed under
scalar multiplication and so U2 is not a subspace of R[x]. ♦

15.15 Proof. Since (0, 0), that is, x = 0 and y = 0, is a solution of the equation, (0, 0) ∈ S and
so S �= ∅. Let (x1, y1), (x2, y2) ∈ S and α ∈ R. Then 3x1 − 5y1 = 0 and 3x2 − 5y2 = 0.
However, 3(x1+x2)−5(y1+y2) = (3x1−5y1)+(3x2−5y2) = 0. Thus (x1+x2, y1+y2) ∈ S.
Furthermore, 3(αx1)−5(αy1) = α(3x1−5y1) = α·0 = 0, and so α(x1, y1) = (αx1, αy1) ∈ S.
Therefore, S is a subspace of R2 by the Subspace Test.

15.17 i = −1
2u1 + 1

2u2 + 1
2u3.

15.19 Proof. Let v ∈ W . Thus v = c1v1 + c2v2 + . . . + cnvn, where ci ∈ R for 1 ≤ i ≤ n.
Furthermore, let vi = ai1w1 + ai2w2 + . . . + aimwm, where aij ∈ R for 1 ≤ i ≤ n and
1 ≤ j ≤ m. Then

v = [c1 c2 . . . cn]




v1
v2
...

vn


 = [c1 c2 . . . cn] A




w1
w2
...

wm


 ,

where A =



a11 a12 . . . a1m

a21 a22 . . . a2m
...

...
...

...
an1 an2 . . . anm


. Hence v is a linear combination of w1,w2, . . . ,wm

and so v ∈ W ′.
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15.21 Proof. We first show that 〈u,v〉 ⊆ 〈u, 2u + v〉. Observe that u ∈ 〈u, 2u + v〉 and
v = (−2)u + 1 · (2u + v) ∈ 〈u, 2u + v〉. By Exercise 15.19, 〈u,v〉 ⊆ 〈u, 2u + v〉.
Next, we show that 〈u, 2u + v〉 ⊆ 〈u,v〉. Since u ∈ 〈u,v〉 and 2u+v is a linear combination
of u and v, it follows that 〈u, 2u + v〉 ⊆ 〈u,v〉, again by Exercise 15.19.

15.23 Hint: One possibility is to choose w = (1, 0, 0). Now consider au + bv + cw = (0, 0, 0),
where a, b, c ∈ R.

15.25 (a) The set S is not linearly independent since 1 + (−1) sin2 x + (−1) cos2 x = 0 for all
x ∈ R.

(b) The set S is linearly independent. Proof. Let a, b, c ∈ R such that a · 1+ b · sinx+
c · cosx = 0. We show that a = b = c = 0. Letting x = 0, x = π/2, and x = −π/2,
we obtain a + c = 0, a + b = 0, and a − b = 0, respectively. Solving these equations
simultaneously, we obtain a = b = c = 0.

15.27 Hint: Consider a proof by mathematical induction.

15.29 Proof. Define the mapping T : R2 → C by T (a, b) = a + bi. Assume that T (a, b) =
T (c, d). Then a + bi = c + di, which implies that a = c and b = d. Thus (a, b) = (c, d).
Hence T is one-to-one. Next let a+ bi ∈ C. Since T (a, b) = a+ bi, the mapping T is onto.
Therefore, T is bijective. Let u = (a, b) and v = (c, d) be vectors in R2 and let α ∈ R.
Then T (u+ v) = T (a+ c, b+ d) = (a+ c) + (b+ d)i = (a+ bi) + (c+ di) = T (u) + T (v).
Also, T (αu) = T (αa, αb) = (αa) + (αb)i = α(a + bi) = αT (u). Since T preserves both
addition and scalar multiplication, T is a linear transformation.

15.33 (a) D(W ) = R

(b) D(W ) = {0}
(c) ker(T ) = R.

15.35 (1) occurs.

Chapter 16

16.1 (a) property (1) is not satisfied. For example, d(2, 1) = −1 < 0.
property (2) is satisfied since d(x, y) = y − x = 0 if and only if x = y.
property (3) is not satisfied. For example, d(2, 1) = −1 and d(1, 2) = 1.
property (4) is satisfied since d(x, y) + d(y, z) = (y − x) + (z − y) = z − x = d(x, z).

(b) Since d(x, y) = (x− y) + (y − x) = 0, property (1) is satisfied.
Since d(1, 2) = 0 and 1 �= 2, property (2) is not satisfied.
Since d(x, y) = d(y, x) = 0, property (3) is satisfied.
Since d(x, y) + d(z, x) = d(x, z) = 0, property (4) is satisfied.

16.3 Hint: For P1 = (x1, y1) and P2 = (x2, y2), d′(P1, P2) = d(x1, x2) + d(y1, y2) ≥ 0 + 0 = 0,
so (1) is satisfied. If P1 = P2, then x1 = x2 and y1 = y2. Thus d′(P1, P2) = d(x1, x2) +
d(y1, y2) = 0 + 0 = 0. Conversely, if d′(P1, P2) = 0, then d(x1, x2) + d(y1, y2) = 0. Since
d(x1, x2) ≥ 0 and d(y1, y2) ≥ 0, it follows that d(x1, x2) = 0 and d(y1, y2) = 0. So x1 = x2
and y1 = y2, it follows that P1 = P2, and so (2) is satisfied. Now properties (3) and (4)
remain to be considered.
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16.5 Hint: It is straightforward to show that properties (1)-(3) are satisfied. So only property
(4) needs to be investigated. Consider d(x, y) for various pairs x, y of elements of A.

16.7 (a) Let P1 = (1, 2) and P2 = (1, 3). Since d(P1, P2) = 0 and P1 �= P2, it follows that
(R2, d) is not a metric space.

16.9 (a) Hint: Consider beginning a proof as follows: Let O be an open set in (R2, d). To
show that O is open in (R2, d′), we show that every point P0 = (x0, y0) is the center of
an open sphere in (R2, d′) that is contained in O. Since O is open in (R2, d), there exists
a real number r > 0 such that Sr(P0) ⊆ O. It remains to show that S′

r(P0) = {P ∈ R2 :
d′(P, P0) < r} is contained in Sr(P0).

16.11 (a) Hint: Consider beginning a proof as follows: Let P0 = (x0, y0) ∈ R2, and let ε > 0
be given. We show that there exists δ > 0 such that if d(P, P0) < δ, where P = (x, y),
then d′(f(P ), f(P0)) < ε. Notice that d(P, P0) = |x− x0|+ |y − y0| and d′(f(P ), f(P0)) =∣∣1
2(x− y)− 1

2(x0 − y0)
∣∣.

16.13 (a) No, since X /∈ S1.

(b) No, since {a, b} ∩ {a, c} = {a} /∈ S2.

(c) Yes.

16.17 Hint: Consider beginning a proof as follows: Observe that the result is true if |X| ≤ 1. So
we may assume that |X| ≥ 2. Assume that (X, τ) is a metric space, say (X, d). First we
show that {a} is open for every a ∈ X. Let r = min{d(x, a) : x ∈ X−{a}}. Since X−{a}
is finite, r > 0. Then Sr(a) = {a} is open. Now complete the proof of this implication.

For the converse, assume that (X, τ) is a discrete topological space. Then τ = P(X). We
define the “discrete” metric d on X by d(x, y) = 1 if x �= y and d(x, y) = 0 if x = y. It
remains to show that every subset of X is open in (X, d).

16.19 Hint: It is useful to prove the Lemma: If O1, O1, . . . , On are countable sets, where n ∈ N,
then ∪n

i=1Oi is countable.

16.21 Let a and b be distinct real numbers, where, say a < b, and let Oa and Ob be open sets
containing a and b, respectively. Since (a,∞) ⊂ Oa and (b,∞) ⊂ Ob, it follows that
(b,∞) ⊂ Oa ∩Ob. So Oa ∩Ob �= ∅.

16.23 We claim that f(1) = 1.

Proof. Let f(a) = 1. Since {1} is an open set and f is continuous, it follows that
f−1({1}) = {a} is open. Since 1 ∈ {a}, it follows that a = 1. Thus f(1) = 1.

16.27 (3) occurs. The fact that O1, O2, . . . , On (n ∈ N) are infinite sets does not imply that
∩α∈IOα is infinite. For example, let X = Z, n = 2, O1 = {k ∈ Z : k ≥ 0} and O2 = {k ∈
Z : k ≤ 0}. Then O1 and O2 are infinite, but O1 ∩O2 = {0}.

16.29 (a). Solution: The statement is true.

Proof. Let b ∈ X − {a}, and let d(b, a) = r. Then the open sphere Sr(b) is contained in
X − {a}.

16.31 The statement is false. Now a counterexample must be found.
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